

Requirements Engineering and Management
for Software Development Projects

Murali Chemuturi

Requirements Engineering
and Management
for Software Development
Projects

Foreword by Tom Gilb

123

Murali Chemuturi
Chemuturi Consultants
murali@chemuturi.com

ISBN 978-1-4614-5376-5 ISBN 978-1-4614-5377-2 (eBook)
DOI 10.1007/978-1-4614-5377-2
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2012944969

� Springer Science+Business Media New York 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

This book is a practical textbook which will be useful for a requirements student
and/or a software manager student, to get a picture of the very many practical
considerations that go into specifying and validating requirement for IT/IS
projects.

The book does not oversimplify subjects that require mature consideration in
order to succeed. In my view the author gets many and most critical points correct,
better than the many less mature authors.

For a small example of such points, the importance of stakeholders, the silliness
of the non-functional requirement term, and an understanding that quality is
designed in, not tested in.

The pages are, like my own detailed work, dense with powerful and useful lists
of considerations. They will give excellent structure to a teacher who can help
students discuss the points, and explain to students using examples.

I hope this textbook finds its place as a teaching tool for information technology
courses. But the lone reader can safely use it as a mature way to survey the entire
software development scene today.

Kolbotn, Norway, 8 June 2012 Tom Gilb

v

Preface

Gerald M. Weinberg, author of the book ‘‘The Psychology of Computer
Programming’’ is attributed with the quote —‘‘If builders built houses the way
programmers built programs, the first woodpecker to come along would destroy
civilization.’’ I could not agree more. The rate of project failure is much higher in
software development compared to either manufacturing or construction. It is not
that there are no failures in manufacturing or construction. Those failures are in
‘‘first-of-its-kind’’ projects, especially in manufacturing. In construction, these are
even fewer. For example, the Empire State Building of New York city was the first
of its kind when it was built. It is the first building in the world to go up 80 floors
high above ground. It was the tallest building in the world for a number of years.
The issues, there would have been many, were solved in the specifications and the
design stage. The construction would scrupulously adhere to the design. It was a
success.

Why do software projects fail at such a high rate even when there were similar
projects executed earlier?

Two major causes are attributed for this phenomenon. The first is the poor
understanding and definition of product requirements. This leads to technical
failure. The second is the poor project management of developing the software
product to the specified requirements resulting in unsustainable overruns of cost
and schedule. Both the reasons lead to project failure.

In this book, I am focusing on the precise understanding and definition of
product requirements. As in other areas, there is more misunderstanding about this
critical activity than right understanding.

‘‘The hardest single part of building a software system is deciding what to
build… No other part of the work so cripples the resulting system if done wrong.
No other part is more difficult to rectify later.’’ said Frederick Brooks, Jr., Brooks
Computer Science Building, University of North Carolina, USA. (From his paper
‘‘No Silver Bullet: Essence and Accident in Software Engineering,’’ 1986 as also
The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition,
Chap. 16.) I concur wholeheartedly.

vii

http://dx.doi.org/10.1007/978-1-4614-5377-2_16
http://dx.doi.org/10.1007/978-1-4614-5377-2_16

Unfortunately for me or perhaps for the software development industry itself,
there is no commonly accepted taxonomy for software engineering activities. It is
not that there are no definitions at all. The definitions that are there, are not
universally accepted. Some, like ‘‘non-functional requirements’’ are downright
ridiculous. That is the reason why I am explaining every term I use here, as you
will notice, from the first fundamentals. Wherever, possible, I am using the ter-
minology from a credible source. I am giving all the available meanings with my
own interpretation with the idea that the reader is better informed when the same
matter is presented by someone else with a different set of nomenclature. Please
bear with me for this over-specification.

My own perception was gathered from my experience, observation, study and
participation in discussion forums of how well the requirements are either engi-
neered or managed. It is not very flattering to the community of requirements
engineers or managers. There are many doubts, which begin right at the funda-
mental stage among the practitioners. This is, perhaps, due to the fact that uni-
versities are not conducting courses in requirements engineering and management.
Their focus is more on engineering and producing code rather than on the forward
or backward linkages to code production. Managements rather hasten the project
teams into coding ASAP. Of course, there are exceptions without which, I would
not have been able to gather best practices.

In this book, I tried to give you a complete view of the activities of require-
ments engineering as well as requirements management. Both the activities,
engineering and management, are equally important. Engineering activities, per-
formed well, produce the right deliverable. When we manage the engineering
activities diligently, we produce the deliverable within the estimated cost and on
schedule. The variances that are bound to be there would be predictable and within
acceptable levels. Management activities when performed diligently would also
allow us to plow the experience back into the process of performing engineering
activities and facilitate improvement.

The information presented here is from my experience, observation, academic
study and participation in the Internet discussion forums.

That was my intent and I would like to learn how you perceived my effort to be.
Please feel free to email me at murali@chemuturi.com and I promise to respond to
every email that I receive normally in one business day.

June 2012 Murali Chemuturi

viii Preface

murali@chemuturi.com

Acknowledgments

When I look back, I find that there are so many people to whom I should be
grateful. Be it because of their commissions or omissions, they made me a stronger
and a better person, and both directly and indirectly helped to make this book
possible. It would be difficult to acknowledge everyone’s contributions here, so to
those whose names may not appear, I wish to thank you all just the same. I will
have failed in my duty if I did not explicitly and gratefully acknowledge the
persons below:

• My parents, Appa Rao and Vijaya Lakshmi, the reason for my existence.
Especially my father, a rustic agrarian, who by personal example taught me the
virtue of hard work and how sweet the aroma of sweat from the brow can be.

• My family, who stood by me like a rock in difficult times. Especially my wife,
Udaya Sundari, who gave me the confidence and the belief that ‘‘I can.’’ And my
two sons, Dr. Nagendra and Vijay, who provided me the motive to excel.

• My two uncles, Raju and Ramana, who by personal example taught me what
integrity and excellence mean.

• Springer Science+Business Media and especially Ms. Susan Lagerstrom-Fife
and Ms. Courtney Clark for their belief in the content of this book, for their
generous allocation of time, and for leading me by the hand like the Good Lord
through every step of making this book a reality.

• The staff of Springer Science+Business Media all of whom were involved in
bringing this book out to the public.

To all of you, I humbly bow my head in respect, and salute you in acknowl-
edgement of your contribution.

Murali Chemuturi

ix

Contents

1 Introduction to Requirements Engineering and Management 1
1.1 What is a ‘‘Requirement’’ . 1
1.2 Requirements Management . 4
1.3 Requirements Management Scenarios 6
1.4 Agencies Responsible for Managing Requirements 7
1.5 Approaches to Requirements Management 8
1.6 Requirements Engineering . 9
1.7 Topics Proposed to be Covered in this Book 10

2 Understanding Requirements . 13
2.1 Classification of Requirements . 13
2.2 Classification of Requirements Based

on Functionality Considerations . 13
2.3 Classification of Requirements Based

on Product Construction Considerations. 18
2.4 Classification of Requirements Based

on Source of Requirements . 21
2.5 Levels of Requirements . 23
2.6 Definition of Requirements in the Context

of Software Development . 24
2.7 Evolution of Requirements. 25

3 Elicitation and Gathering of Requirements 33
3.1 Introduction . 33
3.2 Elicitation of Requirements . 34

3.2.1 Personal Interviews . 35
3.2.2 Customer/Market Surveys 40
3.2.3 Questionnaires . 41
3.2.4 Observation . 42
3.2.5 Demonstration of Product Prototypes 42

xi

http://dx.doi.org/10.1007/978-1-4614-5377-2_1
http://dx.doi.org/10.1007/978-1-4614-5377-2_1
http://dx.doi.org/10.1007/978-1-4614-5377-2_1#Sec1
http://dx.doi.org/10.1007/978-1-4614-5377-2_1#Sec1
http://dx.doi.org/10.1007/978-1-4614-5377-2_1#Sec1
http://dx.doi.org/10.1007/978-1-4614-5377-2_1#Sec1
http://dx.doi.org/10.1007/978-1-4614-5377-2_1#Sec2
http://dx.doi.org/10.1007/978-1-4614-5377-2_1#Sec2
http://dx.doi.org/10.1007/978-1-4614-5377-2_1#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_1#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_1#Sec4
http://dx.doi.org/10.1007/978-1-4614-5377-2_1#Sec4
http://dx.doi.org/10.1007/978-1-4614-5377-2_1#Sec5
http://dx.doi.org/10.1007/978-1-4614-5377-2_1#Sec5
http://dx.doi.org/10.1007/978-1-4614-5377-2_1#Sec6
http://dx.doi.org/10.1007/978-1-4614-5377-2_1#Sec6
http://dx.doi.org/10.1007/978-1-4614-5377-2_1#Sec7
http://dx.doi.org/10.1007/978-1-4614-5377-2_1#Sec7
http://dx.doi.org/10.1007/978-1-4614-5377-2_2
http://dx.doi.org/10.1007/978-1-4614-5377-2_2
http://dx.doi.org/10.1007/978-1-4614-5377-2_2#Sec1
http://dx.doi.org/10.1007/978-1-4614-5377-2_2#Sec1
http://dx.doi.org/10.1007/978-1-4614-5377-2_2#Sec2
http://dx.doi.org/10.1007/978-1-4614-5377-2_2#Sec2
http://dx.doi.org/10.1007/978-1-4614-5377-2_2#Sec2
http://dx.doi.org/10.1007/978-1-4614-5377-2_2#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_2#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_2#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_2#Sec4
http://dx.doi.org/10.1007/978-1-4614-5377-2_2#Sec4
http://dx.doi.org/10.1007/978-1-4614-5377-2_2#Sec4
http://dx.doi.org/10.1007/978-1-4614-5377-2_2#Sec5
http://dx.doi.org/10.1007/978-1-4614-5377-2_2#Sec5
http://dx.doi.org/10.1007/978-1-4614-5377-2_2#Sec6
http://dx.doi.org/10.1007/978-1-4614-5377-2_2#Sec6
http://dx.doi.org/10.1007/978-1-4614-5377-2_2#Sec6
http://dx.doi.org/10.1007/978-1-4614-5377-2_2#Sec7
http://dx.doi.org/10.1007/978-1-4614-5377-2_2#Sec7
http://dx.doi.org/10.1007/978-1-4614-5377-2_3
http://dx.doi.org/10.1007/978-1-4614-5377-2_3
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec1
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec1
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec2
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec2
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec4
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec4
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec5
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec5
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec6
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec6
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec7
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec7

3.2.6 Product Demonstrations . 43
3.2.7 Brainstorming . 44

3.3 Gathering Requirements. 44
3.4 Elicitation and Gathering in Agile Projects 47
3.5 Elicitation and Gathering in COTS Product

Implementation. 47
3.6 Elicitation and Gathering in Testing Projects 48
3.7 Elicitation and Gathering in Software

Maintenance Projects. 49
3.8 Elicitation and Gathering in Real Time Software

Development Projects . 50
3.9 Elicitation or Gathering? . 50
3.10 Deliverables of Elicitation and Gathering. 51
3.11 Pitfalls in Requirements Elicitation and Gathering 52
3.12 Final Words . 54

4 Requirements Analysis . 55
4.1 Introduction to Analysis. 55
4.2 Analysis of the Information Collected in the Elicitation

and Gathering. 57
4.3 Resolving the Issues that Cropped up During

the Analysis . 65
4.4 Deliverables of Requirements Analysis Phase. 65
4.5 Final Words . 65

5 Establishment of Requirements . 67
5.1 Introduction to Establishment of Requirements. 67
5.2 Documentation . 68

5.2.1 User Requirements Specification 69
5.2.2 Software Requirements Specification 70

5.3 Quality Control of the Documents 75
5.4 Obtaining Approvals . 80
5.5 Configuration Management . 81
5.6 Establishment of Requirements in COTS Product

Implementation Projects . 82
5.6.1 Gaps Analysis Document 84
5.6.2 SOW Document . 84

5.7 Establishment of Requirements in Software
Maintenance Projects. 86

5.8 Establishment of Requirements in Migration, Porting
and Conversion Projects . 87

5.9 Establishment of Requirements in Agile
Development Projects . 88

xii Contents

http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec8
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec8
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec9
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec9
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec10
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec10
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec11
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec11
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec12
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec12
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec12
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec13
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec13
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec14
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec14
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec14
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec15
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec15
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec15
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec16
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec16
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec17
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec17
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec18
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec18
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec19
http://dx.doi.org/10.1007/978-1-4614-5377-2_3#Sec19
http://dx.doi.org/10.1007/978-1-4614-5377-2_4
http://dx.doi.org/10.1007/978-1-4614-5377-2_4
http://dx.doi.org/10.1007/978-1-4614-5377-2_4#Sec1
http://dx.doi.org/10.1007/978-1-4614-5377-2_4#Sec1
http://dx.doi.org/10.1007/978-1-4614-5377-2_4#Sec2
http://dx.doi.org/10.1007/978-1-4614-5377-2_4#Sec2
http://dx.doi.org/10.1007/978-1-4614-5377-2_4#Sec2
http://dx.doi.org/10.1007/978-1-4614-5377-2_4#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_4#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_4#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_4#Sec4
http://dx.doi.org/10.1007/978-1-4614-5377-2_4#Sec4
http://dx.doi.org/10.1007/978-1-4614-5377-2_4#Sec5
http://dx.doi.org/10.1007/978-1-4614-5377-2_4#Sec5
http://dx.doi.org/10.1007/978-1-4614-5377-2_5
http://dx.doi.org/10.1007/978-1-4614-5377-2_5
http://dx.doi.org/10.1007/978-1-4614-5377-2_5#Sec1
http://dx.doi.org/10.1007/978-1-4614-5377-2_5#Sec1
http://dx.doi.org/10.1007/978-1-4614-5377-2_5#Sec2
http://dx.doi.org/10.1007/978-1-4614-5377-2_5#Sec2
http://dx.doi.org/10.1007/978-1-4614-5377-2_5#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_5#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_5#Sec4
http://dx.doi.org/10.1007/978-1-4614-5377-2_5#Sec4
http://dx.doi.org/10.1007/978-1-4614-5377-2_5#Sec5
http://dx.doi.org/10.1007/978-1-4614-5377-2_5#Sec5
http://dx.doi.org/10.1007/978-1-4614-5377-2_5#Sec6
http://dx.doi.org/10.1007/978-1-4614-5377-2_5#Sec6
http://dx.doi.org/10.1007/978-1-4614-5377-2_5#Sec7
http://dx.doi.org/10.1007/978-1-4614-5377-2_5#Sec7
http://dx.doi.org/10.1007/978-1-4614-5377-2_5#Sec8
http://dx.doi.org/10.1007/978-1-4614-5377-2_5#Sec8
http://dx.doi.org/10.1007/978-1-4614-5377-2_5#Sec8
http://dx.doi.org/10.1007/978-1-4614-5377-2_5#Sec9
http://dx.doi.org/10.1007/978-1-4614-5377-2_5#Sec9
http://dx.doi.org/10.1007/978-1-4614-5377-2_5#Sec10
http://dx.doi.org/10.1007/978-1-4614-5377-2_5#Sec10
http://dx.doi.org/10.1007/978-1-4614-5377-2_5#Sec11
http://dx.doi.org/10.1007/978-1-4614-5377-2_5#Sec11
http://dx.doi.org/10.1007/978-1-4614-5377-2_5#Sec11
http://dx.doi.org/10.1007/978-1-4614-5377-2_5#Sec12
http://dx.doi.org/10.1007/978-1-4614-5377-2_5#Sec12
http://dx.doi.org/10.1007/978-1-4614-5377-2_5#Sec12
http://dx.doi.org/10.1007/978-1-4614-5377-2_5#Sec13
http://dx.doi.org/10.1007/978-1-4614-5377-2_5#Sec13
http://dx.doi.org/10.1007/978-1-4614-5377-2_5#Sec13

6 Quality Assurance in Requirements Management 91
6.1 Introduction to Quality Assurance. 91
6.2 Quality Assurance in the Context of Requirements

Engineering and Management . 93
6.2.1 Process, Standards and Guidelines. 93
6.2.2 Right People with Right Training 95
6.2.3 Quality Control . 97
6.2.4 Measurement and Analysis 97
6.2.5 Project Postmortem . 98

6.3 Verification . 98
6.3.1 Peer Reviews . 99
6.3.2 Managerial Reviews . 102
6.3.3 Best Practices and Pitfalls in Verification. 102

6.4 Validation . 103
6.4.1 Brainstorming . 103
6.4.2 Storyboarding . 104
6.4.3 Prototyping. 104
6.4.4 Expert Review . 104
6.4.5 End User Review . 105
6.4.6 Feedback Mechanism from Validation 105

6.5 Determination of Applicable Quality Control Activities. 105

7 Planning for Requirements Management 107
7.1 Introduction to Planning . 107
7.2 Definition of Planning . 107
7.3 Planning for Requirements Management 108
7.4 To Document or Not to Document? 109
7.5 Different Project Plans . 110
7.6 Planning for Requirements Management in Projects 111

7.6.1 Requirements Elicitation and Gathering 111
7.6.2 Requirements Analysis. 112
7.6.3 Requirements Establishment 112
7.6.4 Requirements Change Control and Management . . . 113
7.6.5 Requirements Tracing, Tracking and Reporting. . . . 113
7.6.6 Measurement and Metrics 114
7.6.7 Formats and Templates for Planning 114

7.7 Best Practices and Pitfalls in Planning. 114

8 Requirements Change Management . 117
8.1 Introduction . 117
8.2 Communication of Changes . 118
8.3 Origination of Changes . 119
8.4 Change Request Resolution . 121
8.5 CR Implementation . 122

Contents xiii

http://dx.doi.org/10.1007/978-1-4614-5377-2_6
http://dx.doi.org/10.1007/978-1-4614-5377-2_6
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec1
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec1
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec2
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec2
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec2
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec4
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec4
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec5
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec5
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec6
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec6
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec7
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec7
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec8
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec8
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec9
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec9
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec10
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec10
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec11
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec11
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec12
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec12
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec13
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec13
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec14
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec14
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec15
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec15
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec16
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec16
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec17
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec17
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec18
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec18
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec19
http://dx.doi.org/10.1007/978-1-4614-5377-2_6#Sec19
http://dx.doi.org/10.1007/978-1-4614-5377-2_7
http://dx.doi.org/10.1007/978-1-4614-5377-2_7
http://dx.doi.org/10.1007/978-1-4614-5377-2_7#Sec1
http://dx.doi.org/10.1007/978-1-4614-5377-2_7#Sec1
http://dx.doi.org/10.1007/978-1-4614-5377-2_7#Sec2
http://dx.doi.org/10.1007/978-1-4614-5377-2_7#Sec2
http://dx.doi.org/10.1007/978-1-4614-5377-2_7#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_7#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_7#Sec4
http://dx.doi.org/10.1007/978-1-4614-5377-2_7#Sec4
http://dx.doi.org/10.1007/978-1-4614-5377-2_7#Sec5
http://dx.doi.org/10.1007/978-1-4614-5377-2_7#Sec5
http://dx.doi.org/10.1007/978-1-4614-5377-2_7#Sec6
http://dx.doi.org/10.1007/978-1-4614-5377-2_7#Sec6
http://dx.doi.org/10.1007/978-1-4614-5377-2_7#Sec7
http://dx.doi.org/10.1007/978-1-4614-5377-2_7#Sec7
http://dx.doi.org/10.1007/978-1-4614-5377-2_7#Sec8
http://dx.doi.org/10.1007/978-1-4614-5377-2_7#Sec8
http://dx.doi.org/10.1007/978-1-4614-5377-2_7#Sec9
http://dx.doi.org/10.1007/978-1-4614-5377-2_7#Sec9
http://dx.doi.org/10.1007/978-1-4614-5377-2_7#Sec10
http://dx.doi.org/10.1007/978-1-4614-5377-2_7#Sec10
http://dx.doi.org/10.1007/978-1-4614-5377-2_7#Sec11
http://dx.doi.org/10.1007/978-1-4614-5377-2_7#Sec11
http://dx.doi.org/10.1007/978-1-4614-5377-2_7#Sec12
http://dx.doi.org/10.1007/978-1-4614-5377-2_7#Sec12
http://dx.doi.org/10.1007/978-1-4614-5377-2_7#Sec13
http://dx.doi.org/10.1007/978-1-4614-5377-2_7#Sec13
http://dx.doi.org/10.1007/978-1-4614-5377-2_7#Sec14
http://dx.doi.org/10.1007/978-1-4614-5377-2_7#Sec14
http://dx.doi.org/10.1007/978-1-4614-5377-2_8
http://dx.doi.org/10.1007/978-1-4614-5377-2_8
http://dx.doi.org/10.1007/978-1-4614-5377-2_8#Sec1
http://dx.doi.org/10.1007/978-1-4614-5377-2_8#Sec1
http://dx.doi.org/10.1007/978-1-4614-5377-2_8#Sec2
http://dx.doi.org/10.1007/978-1-4614-5377-2_8#Sec2
http://dx.doi.org/10.1007/978-1-4614-5377-2_8#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_8#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_8#Sec4
http://dx.doi.org/10.1007/978-1-4614-5377-2_8#Sec4
http://dx.doi.org/10.1007/978-1-4614-5377-2_8#Sec5
http://dx.doi.org/10.1007/978-1-4614-5377-2_8#Sec5

8.6 CRR . 125
8.7 Progress/Status Reporting of CRs . 126
8.8 Handling the Impact of CRs. 126
8.9 Measurement and Metrics of Change Management 127

9 Requirements Tracing, Tracking and Reporting 129
9.1 Introduction . 129
9.2 Requirements Traceability . 129
9.3 Need for Requirements Traceability 130
9.4 Mechanisms for Tracing Requirements 132
9.5 When Should We Trace the Requirements? 134
9.6 Tracking of Requirements . 134
9.7 Requirements Reporting. 135
9.8 Reconciliation of Requirements . 136

10 Measurement and Metrics . 139
10.1 Introduction . 139
10.2 Measurement and Metrics . 139
10.3 Metrics Relevant to Requirements Engineering

and Management . 141
10.3.1 Productivity Metrics . 143
10.3.2 Change Request Metrics. 145
10.3.3 Quality Metrics . 147
10.3.4 Relative Effort Metrics . 149
10.3.5 Schedule Metrics. 151

10.4 Summary of Metrics . 152

11 Roles and Responsibilities in REM . 153
11.1 Introduction . 153
11.2 Role of the Organization . 153

11.2.1 Organization . 154
11.2.2 Staff . 155
11.2.3 Process . 159
11.2.4 Quality Assurance . 161
11.2.5 Training . 161
11.2.6 Recognition and Rewards 162

11.3 Role of the Individuals . 163
11.3.1 Business/System Analysts. 163
11.3.2 Quality Control . 164
11.3.3 Project Manager . 165
11.3.4 Process Definition and Improvement Group 166
11.3.5 Senior Management . 167

11.4 Final Words . 167

xiv Contents

http://dx.doi.org/10.1007/978-1-4614-5377-2_8#Sec6
http://dx.doi.org/10.1007/978-1-4614-5377-2_8#Sec6
http://dx.doi.org/10.1007/978-1-4614-5377-2_8#Sec7
http://dx.doi.org/10.1007/978-1-4614-5377-2_8#Sec7
http://dx.doi.org/10.1007/978-1-4614-5377-2_8#Sec8
http://dx.doi.org/10.1007/978-1-4614-5377-2_8#Sec8
http://dx.doi.org/10.1007/978-1-4614-5377-2_8#Sec9
http://dx.doi.org/10.1007/978-1-4614-5377-2_8#Sec9
http://dx.doi.org/10.1007/978-1-4614-5377-2_9
http://dx.doi.org/10.1007/978-1-4614-5377-2_9
http://dx.doi.org/10.1007/978-1-4614-5377-2_9#Sec1
http://dx.doi.org/10.1007/978-1-4614-5377-2_9#Sec1
http://dx.doi.org/10.1007/978-1-4614-5377-2_9#Sec2
http://dx.doi.org/10.1007/978-1-4614-5377-2_9#Sec2
http://dx.doi.org/10.1007/978-1-4614-5377-2_9#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_9#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_9#Sec4
http://dx.doi.org/10.1007/978-1-4614-5377-2_9#Sec4
http://dx.doi.org/10.1007/978-1-4614-5377-2_9#Sec5
http://dx.doi.org/10.1007/978-1-4614-5377-2_9#Sec5
http://dx.doi.org/10.1007/978-1-4614-5377-2_9#Sec6
http://dx.doi.org/10.1007/978-1-4614-5377-2_9#Sec6
http://dx.doi.org/10.1007/978-1-4614-5377-2_9#Sec7
http://dx.doi.org/10.1007/978-1-4614-5377-2_9#Sec7
http://dx.doi.org/10.1007/978-1-4614-5377-2_9#Sec8
http://dx.doi.org/10.1007/978-1-4614-5377-2_9#Sec8
http://dx.doi.org/10.1007/978-1-4614-5377-2_10
http://dx.doi.org/10.1007/978-1-4614-5377-2_10
http://dx.doi.org/10.1007/978-1-4614-5377-2_10#Sec1
http://dx.doi.org/10.1007/978-1-4614-5377-2_10#Sec1
http://dx.doi.org/10.1007/978-1-4614-5377-2_10#Sec2
http://dx.doi.org/10.1007/978-1-4614-5377-2_10#Sec2
http://dx.doi.org/10.1007/978-1-4614-5377-2_10#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_10#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_10#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_10#Sec4
http://dx.doi.org/10.1007/978-1-4614-5377-2_10#Sec4
http://dx.doi.org/10.1007/978-1-4614-5377-2_10#Sec8
http://dx.doi.org/10.1007/978-1-4614-5377-2_10#Sec8
http://dx.doi.org/10.1007/978-1-4614-5377-2_10#Sec11
http://dx.doi.org/10.1007/978-1-4614-5377-2_10#Sec11
http://dx.doi.org/10.1007/978-1-4614-5377-2_10#Sec14
http://dx.doi.org/10.1007/978-1-4614-5377-2_10#Sec14
http://dx.doi.org/10.1007/978-1-4614-5377-2_10#Sec18
http://dx.doi.org/10.1007/978-1-4614-5377-2_10#Sec18
http://dx.doi.org/10.1007/978-1-4614-5377-2_10#Sec21
http://dx.doi.org/10.1007/978-1-4614-5377-2_10#Sec21
http://dx.doi.org/10.1007/978-1-4614-5377-2_11
http://dx.doi.org/10.1007/978-1-4614-5377-2_11
http://dx.doi.org/10.1007/978-1-4614-5377-2_11#Sec1
http://dx.doi.org/10.1007/978-1-4614-5377-2_11#Sec1
http://dx.doi.org/10.1007/978-1-4614-5377-2_11#Sec2
http://dx.doi.org/10.1007/978-1-4614-5377-2_11#Sec2
http://dx.doi.org/10.1007/978-1-4614-5377-2_11#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_11#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_11#Sec4
http://dx.doi.org/10.1007/978-1-4614-5377-2_11#Sec4
http://dx.doi.org/10.1007/978-1-4614-5377-2_11#Sec11
http://dx.doi.org/10.1007/978-1-4614-5377-2_11#Sec11
http://dx.doi.org/10.1007/978-1-4614-5377-2_11#Sec12
http://dx.doi.org/10.1007/978-1-4614-5377-2_11#Sec12
http://dx.doi.org/10.1007/978-1-4614-5377-2_11#Sec13
http://dx.doi.org/10.1007/978-1-4614-5377-2_11#Sec13
http://dx.doi.org/10.1007/978-1-4614-5377-2_11#Sec14
http://dx.doi.org/10.1007/978-1-4614-5377-2_11#Sec14
http://dx.doi.org/10.1007/978-1-4614-5377-2_11#Sec15
http://dx.doi.org/10.1007/978-1-4614-5377-2_11#Sec15
http://dx.doi.org/10.1007/978-1-4614-5377-2_11#Sec16
http://dx.doi.org/10.1007/978-1-4614-5377-2_11#Sec16
http://dx.doi.org/10.1007/978-1-4614-5377-2_11#Sec17
http://dx.doi.org/10.1007/978-1-4614-5377-2_11#Sec17
http://dx.doi.org/10.1007/978-1-4614-5377-2_11#Sec18
http://dx.doi.org/10.1007/978-1-4614-5377-2_11#Sec18
http://dx.doi.org/10.1007/978-1-4614-5377-2_11#Sec19
http://dx.doi.org/10.1007/978-1-4614-5377-2_11#Sec19
http://dx.doi.org/10.1007/978-1-4614-5377-2_11#Sec20
http://dx.doi.org/10.1007/978-1-4614-5377-2_11#Sec20
http://dx.doi.org/10.1007/978-1-4614-5377-2_11#Sec21
http://dx.doi.org/10.1007/978-1-4614-5377-2_11#Sec21

12 Requirements Management Through SDLC 169
12.1 Introduction . 169
12.2 Pre-Project Phase . 170
12.3 RM in Requirements Phase of SDLC 171
12.4 Software Design . 171
12.5 Construction. 172
12.6 Testing . 172
12.7 Acceptance Testing . 173
12.8 Installation and Commissioning . 174
12.9 RM Through SDLC . 175

13 Tools and Techniques for Requirements Engineering
and Management . 177
13.1 Introduction . 177
13.2 Structured Systems Analysis and Design Method 177

13.2.1 Feasibility Study . 179
13.2.2 Requirements Analysis and Specification 179
13.2.3 High Level Design . 179
13.2.4 Low Level Design. 179
13.2.5 Construction . 179
13.2.6 Testing. 180
13.2.7 Delivery and Implementation 180
13.2.8 Software Maintenance . 180
13.2.9 Requirements Engineering and Management

in SSADM . 181
13.2.10 ER Diagrams . 181
13.2.11 Data Flow Diagrams . 183
13.2.12 Context Diagram. 185
13.2.13 Structure Chart . 186

13.3 IEEE Software Engineering Standards 187
13.4 Object Oriented Methodology. 188
13.5 Unified Modeling Language. 191

13.5.1 Class Diagrams . 191
13.5.2 Use Cases . 192
13.5.3 Sequence Diagrams . 196
13.5.4 Statecharts . 196
13.5.5 Activity Diagrams . 196
13.5.6 Component Diagrams . 197
13.5.7 Deployment Diagrams . 198
13.5.8 Final Words on UML . 198

13.6 Agile Methods . 199
13.7 Planguage . 200
13.8 Final Words on Tools and Techniques in Requirements

Engineering and Management . 200

Contents xv

http://dx.doi.org/10.1007/978-1-4614-5377-2_12
http://dx.doi.org/10.1007/978-1-4614-5377-2_12
http://dx.doi.org/10.1007/978-1-4614-5377-2_12#Sec1
http://dx.doi.org/10.1007/978-1-4614-5377-2_12#Sec1
http://dx.doi.org/10.1007/978-1-4614-5377-2_12#Sec2
http://dx.doi.org/10.1007/978-1-4614-5377-2_12#Sec2
http://dx.doi.org/10.1007/978-1-4614-5377-2_12#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_12#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_12#Sec4
http://dx.doi.org/10.1007/978-1-4614-5377-2_12#Sec4
http://dx.doi.org/10.1007/978-1-4614-5377-2_12#Sec5
http://dx.doi.org/10.1007/978-1-4614-5377-2_12#Sec5
http://dx.doi.org/10.1007/978-1-4614-5377-2_12#Sec6
http://dx.doi.org/10.1007/978-1-4614-5377-2_12#Sec6
http://dx.doi.org/10.1007/978-1-4614-5377-2_12#Sec7
http://dx.doi.org/10.1007/978-1-4614-5377-2_12#Sec7
http://dx.doi.org/10.1007/978-1-4614-5377-2_12#Sec8
http://dx.doi.org/10.1007/978-1-4614-5377-2_12#Sec8
http://dx.doi.org/10.1007/978-1-4614-5377-2_12#Sec9
http://dx.doi.org/10.1007/978-1-4614-5377-2_12#Sec9
http://dx.doi.org/10.1007/978-1-4614-5377-2_13
http://dx.doi.org/10.1007/978-1-4614-5377-2_13
http://dx.doi.org/10.1007/978-1-4614-5377-2_13
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec1
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec1
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec2
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec2
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec4
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec4
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec5
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec5
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec6
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec6
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec7
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec7
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec8
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec8
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec9
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec9
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec10
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec10
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec11
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec11
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec11
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec12
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec12
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec13
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec13
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec14
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec14
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec15
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec15
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec16
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec16
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec17
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec17
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec18
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec18
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec19
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec19
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec20
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec20
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec21
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec21
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec22
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec22
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec23
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec23
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec24
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec24
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec25
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec25
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec26
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec26
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec27
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec27
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec28
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec28
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec29
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec29
http://dx.doi.org/10.1007/978-1-4614-5377-2_13#Sec29

14 Pitfalls and Best Practices in Requirements Engineering
and Management . 203
14.1 Introduction . 203
14.2 Best Practices and Pitfalls at the Organizational Level 203

14.2.1 Approach to Requirements Engineering
and Management . 204

14.2.2 Provision of Resources. 205
14.2.3 Training and Updating of Skills 206
14.2.4 Definition and Improvement of Process 206
14.2.5 Motivation and Morale of the Resources 207
14.2.6 Quality Assurance . 209
14.2.7 Knowledge Repository . 210

14.3 Project Level Pitfalls and Best Practices 211
14.3.1 Planning. 211
14.3.2 Preparation for Elicitation and Gathering

of Requirements . 212
14.3.3 Misunderstanding About Requirements 212
14.3.4 Vague Requirements . 212
14.3.5 Modeling Issues . 213
14.3.6 Prioritization of Requirements 213
14.3.7 Change Management . 213
14.3.8 Tracing and Tracking of Requirements 214
14.3.9 Supervision. 214
14.3.10 Project Postmortem . 214

14.4 Final Words of Pitfalls and Best Practices 215

15 REM in Agile Projects . 217
15.1 Introduction . 217
15.2 Extreme Programming. 219
15.3 Scrum . 220
15.4 Dynamic Systems Development Method 221
15.5 Feature Driven Development . 222
15.6 Test Driven Development . 223
15.7 Adaptive Software Development. 224
15.8 RUP and AUP . 225
15.9 Kanban . 226
15.10 Crystal Clear . 228
15.11 Establishment of Requirements in Agile Projects 229
15.12 Tracing and Progress Monitoring of Requirements 231
15.13 Final Words on REM in Agile Projects 232

xvi Contents

http://dx.doi.org/10.1007/978-1-4614-5377-2_14
http://dx.doi.org/10.1007/978-1-4614-5377-2_14
http://dx.doi.org/10.1007/978-1-4614-5377-2_14
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec1
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec1
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec2
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec2
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec4
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec4
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec5
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec5
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec6
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec6
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec7
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec7
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec8
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec8
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec9
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec9
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec10
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec10
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec11
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec11
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec12
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec12
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec12
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec13
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec13
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec14
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec14
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec15
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec15
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec16
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec16
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec17
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec17
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec18
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec18
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec19
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec19
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec20
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec20
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec21
http://dx.doi.org/10.1007/978-1-4614-5377-2_14#Sec21
http://dx.doi.org/10.1007/978-1-4614-5377-2_15
http://dx.doi.org/10.1007/978-1-4614-5377-2_15
http://dx.doi.org/10.1007/978-1-4614-5377-2_15#Sec1
http://dx.doi.org/10.1007/978-1-4614-5377-2_15#Sec1
http://dx.doi.org/10.1007/978-1-4614-5377-2_15#Sec2
http://dx.doi.org/10.1007/978-1-4614-5377-2_15#Sec2
http://dx.doi.org/10.1007/978-1-4614-5377-2_15#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_15#Sec3
http://dx.doi.org/10.1007/978-1-4614-5377-2_15#Sec4
http://dx.doi.org/10.1007/978-1-4614-5377-2_15#Sec4
http://dx.doi.org/10.1007/978-1-4614-5377-2_15#Sec5
http://dx.doi.org/10.1007/978-1-4614-5377-2_15#Sec5
http://dx.doi.org/10.1007/978-1-4614-5377-2_15#Sec6
http://dx.doi.org/10.1007/978-1-4614-5377-2_15#Sec6
http://dx.doi.org/10.1007/978-1-4614-5377-2_15#Sec7
http://dx.doi.org/10.1007/978-1-4614-5377-2_15#Sec7
http://dx.doi.org/10.1007/978-1-4614-5377-2_15#Sec8
http://dx.doi.org/10.1007/978-1-4614-5377-2_15#Sec8
http://dx.doi.org/10.1007/978-1-4614-5377-2_15#Sec9
http://dx.doi.org/10.1007/978-1-4614-5377-2_15#Sec9
http://dx.doi.org/10.1007/978-1-4614-5377-2_15#Sec10
http://dx.doi.org/10.1007/978-1-4614-5377-2_15#Sec10
http://dx.doi.org/10.1007/978-1-4614-5377-2_15#Sec11
http://dx.doi.org/10.1007/978-1-4614-5377-2_15#Sec11
http://dx.doi.org/10.1007/978-1-4614-5377-2_15#Sec12
http://dx.doi.org/10.1007/978-1-4614-5377-2_15#Sec12
http://dx.doi.org/10.1007/978-1-4614-5377-2_15#Sec13
http://dx.doi.org/10.1007/978-1-4614-5377-2_15#Sec13

Appendix A: Documentation Guidelines . 233

Appendix B: Planguage . 249

About the Author . 261

Index . 263

Contents xvii

Abbreviations

ANSI American National Standards Institute
ASD Adaptive Software Development
AUP Agile Unified Process
BFS Business Function Specification
CCB Change/Configuration Control Board
CIO Chief Information Officer
CMMI Capability Maturity Model Integration
COBOL Common Business Oriented Language
COTS Commercial Off The Shelf
CPU Central Processing Unit
CR Change Request
CRM Customer Relationship Management
CRR Change Request Register
DBA Database Administrator
DBMS Database Management System
DDS Detail Design Specification
DFD Data Flow Diagram
DIR Defect Injection Rate
DSDM Dynamic Systems Development Method
EAI Enterprise Architecture Integration
EDI Electronic Data Interchange
EDP Electronic Data Processing
ERD Entiry-Relationship Diagram
ERP Enterprise Resources Planning
FDD Feature Driven Development
FDS Functional Design Specification
FS Functional Specification
GMP Good Manufacturing Practice
GPM Gross Productivity Metric for Requirements Engineering
GSDP Good Software Development Practice
GUI Graphical User Interface

xix

HLD High Level Design
HR Human Resources
IDE Interactive Development Environmet
IEEE Institute of Electrical and Electronics Engineers
ISO International Organization for Standardization
IT Information Technology
IV&V Independent Verification and Validation
JSS Joint Services Specification
LLD Low Level Design
LOC Lines of Code
MBA Master of Business Administration
MIS Management Information System
NASSCOM National Association of Software and Services

Companies of India
NIU Network Interface Unit
OOAD Object Oriented Analysis and Design
OOM Object Oriented Methodology
PEG Productivity for Elicitation and Gathering
PER Productivity for Establishing the Requirements
PM Project Management
RAM Random Access Memory
RCL Requirements Capture Language
REC Relative Effort spent on resolving CRs
RECC Relative Effort spent on a specific Change Request Category
REM Requirements Engineering and Management
RM Requirements Management
RQC Relative Effort metric for Quality Control of Requirements

engineering activities
ROI Return On Investment
RSM Requirements Stability Metric
RUP Rational Unified Process
SCM Supply Chain Management
SCMP Software Configuration Management Plan
SDLC Software Development Life Cycle
SDS Software Design Specification
SMRE Schedule Metric for Requirements Engineering
SOP Standard Operating Procedure
SOW Statement of Work
SPIN Software Process Improvement Network
SPMN Software Project Managers Network
SPMP Software Project Management Plan
SQAP Software Quality Assurance Plan
SRS Software Requirements Specification
SSADM Structured Systems Analysis and Design Method
SyRS System Requirements Specification

xx Abbreviations

TCM Test Coverage Metric
TDD Test Driven Development
TQM Total Quality Management
UI User Interface
UML Unified Modeling Language
URS User Requirements Specification
VARS Value Added Re-Sellers
WIP Work in Process
XP Extreme Programming
Y2K Year 2000

Abbreviations xxi

Chapter 1
Introduction to Requirements
Engineering and Management

Requirements are the precursor to all other software development phases, namely,
software design, software construction and testing. When the end result of the
software development activity is a COTS (Commercial Off The Shelf) product, we
term requirements as ‘‘product specifications’’. When the end result of the software
development activity is to deliver the product to a single client in a project scenario,
we use the term requirements. In either case, the activity of managing the require-
ments is the same.

The importance of properly managing requirements cannot be overemphasized
as any omission of a vital requirement or error committed during requirements
analysis results in increased cost of the product and in some cases, may result in
project / product failure. Another important aspect of requirements management is
the change management. If changes to requirements are not properly controlled,
it may result in uncontrollable scope creep and increased costs.

A proper understanding of requirements and careful management thereof can
prevent project failures and contribute to the delivery of quality software products
to intended clients.

1.1 What is a ‘‘Requirement’’

Consider these five statements:

1. I ‘‘hope’’ to have a car (The capability to posses a car is absent but hope exists
that someday it might be possible)

2. I ‘‘wish’’ to have a car (The capability to posses a car is distinctly possible but
not feasible yet)

3. I ‘‘desire’’ to have a car (The capability to posses a car exists. But there are
other competing demands to cater to.)

M. Chemuturi, Requirements Engineering and Management for Software
Development Projects, DOI: 10.1007/978-1-4614-5377-2_1,
� Springer Science+Business Media New York 2013

1

4. I ‘‘need’’ a car (The capability exists and it is feasible. Having a car surpassed
other competing demands)

5. I ‘‘require’’ a car (Possessing a car can no longer be postponed. It is essential
now)

Could you see the increasing emphasis with each statement as it moves from
statement 1 to statement 5? The term ‘‘Requirement’’ connotes essentiality of
some need.

The dictionary defines requirements as ‘‘a need’’, ‘‘a thing needed’’, ‘‘a nec-
essary condition’’, ‘‘a demand’’, ‘‘something essential to the existence or occur-
rence of something else’’, and ‘‘something that is needed or that must be done’’.

Simply stated, a requirement is a need of some person or process. A require-
ment is capable of being fulfilled. If we come across a requirement that cannot be
fulfilled, it becomes a desire that can perhaps be fulfilled at a later date or with a
better technology or better set of circumstances.

Wikipedia defines requirements in the context of software engineering thus, ‘‘It
is a statement that identifies a necessary attribute, capability, characteristic, or
quality of a system in order for it to have value and utility to a user’’. In the context
of other engineering disciplines, it defines requirements as ‘‘a singular docu-
mented need of what a particular product or service should be or perform’’.

IEEE (Institute of Electrical and Electronics Engineers) standard 610 ‘‘Glossary
of Software Engineering Terminology’’ provides three definitions:

1. A condition or capability needed by a user to solve a problem or achieve an
objective,

2. A condition or capability that must be met/possessed by a system or system
component to satisfy a contract, standard, specification or other formally
imposed documents.

3. A documented representation of a condition or a capability as in (1) or (2)
above.

CMMI
�

(Capability Maturity Model Integration) for Development version 1.3
also gives three definitions almost similar to IEEE definitions:

1. A condition or capability needed by a user to solve a problem or achieve an
objective,

2. A condition or capability that must be met/possessed by a product, service,
product component or service component to satisfy a supplier agreement,
standard, specification or other formally imposed documents.

3. A documented representation of a condition or a capability as in (1) or (2)
above.

As can be seen, CMMI definitions are slightly different that too, only in the
second definition and that difference is only minimal. It appears that CMMI
adopted the IEEE definitions.

The above definitions suffer from the following limitations:

2 1 Introduction to Requirements Engineering and Management

1. They talk only about needs – that is, only the essential aspects. The do not take
into consideration, the reasonable expectations of the users which expect the
development team to bring their expertise to bear on the software product

2. They do not take into consideration the constraints of the users with which they
have to live with, even if the software offers better options. For example there
are many situations where authentication by the signature of the hand is
essential in spite of the great advances in the field of digital signatures.

3. They do not take into consideration the interfaces with other and perhaps
existing systems. This is especially so in cases where a COTS product like ERP
(Enterprise Resources Planning) or CRM (Customer Relationship Manage-
ment) type of product implementations.

4. They do not place the responsibility for the requirements. By not including the
stakeholders who can state needs, the developers are mislead and miss out on
some of the essential stakeholders while defining the requirements.

5. It ignores unstated needs. It gives the connotation that ‘‘if it is not documented,
it is not considered’’. This is perhaps, the origin of the joke, especially in the
matter of Microsoft’s Windows operating system, that it has a Start button but
no Stop button!

The software development industry is generally adhering to these definitions.
But circumstances are continuously changing especially so in the field of software
and its development. We need a more comprehensive definition. Summarizing the
above discussion, we may define ‘‘Requirements’’ in the context of software
development projects, in a more comprehensive manner, thus,

A requirement is a need, expectation, constraint or interface of any stake-
holders that must be fulfilled by the proposed software product during its
development’’.

This definition has the following key terms:

1. Need—It is something basic without which the existence becomes untenable. It
is the absolute minimum necessity if the system is to be useful. If a need is not
met, the system becomes unusable or less usable.

2. Expectation—Expectation is an unstated need. When users entrust the devel-
opment of software to a team (in-house or outsourced) it is expected that the
development team brings expertise of software to bridge the gap in the needs
stated by the user.

3. Constraint—It is a hurdle that the user has to live with. It may be in terms of a
limitation on the leverage of the software design or development.

4. Interface—It is the basis for interaction with the customers, suppliers, and
peers (in the forward chain or backward chain) of the user.

5. Stakeholders—A stakeholder is someone who is affected by the outcome of a
human endeavor. A software development project has multiple stakeholders,
namely,

a. The end user who is the ultimate user of the product
b. The project team that is going to develop the product to fulfill the need

1.1 What is a ‘‘Requirement’’ 3

c. The marketing team, if the resultant product is a COTS product so that they
can find customers and sell it

d. The managements of both the supplier and the customer as both derive ROI
(Return on Investment) from the endeavor

6. That must be fulfilled—The need must be fulfilled. If it cannot be fulfilled
either due to limitations of technology or finance, it becomes a future
requirement. If the need cannot be fulfilled by the present endeavor, then the
endeavor itself becomes unnecessary

7. The proposed software product—It is the place where the need is expected to
be fulfilled. It is the end result of the present endeavor

8. During its development—This specifies the timeline when the need shall be
fulfilled. If it is not being fulfilled during present development, then the need
remains unfulfilled or a future need.

When we come to the software development arena, we have two types of
requirements namely the user requirements and the software requirements.

User requirements are the needs specified by the end user for the proposed
software product. They consist mainly of functionalities to be achieved by the
software and any conveniences that are needed in improving the personal per-
formance. Users may also require additional analyses that may be not possible in
the present system but are necessary in improving the performance of the system
or to serve the customers in a better manner.

Software requirements are additions to the user requirements that are unique to
software systems like usability, security, user friendliness, audit trails and so on.

Software Requirements is a term used by IEEE. Even then, IEEE did not define
this phrase in its glossary of software engineering terminology standard in spite of
defining a standard for ‘‘Software Requirements Specifications’’. Even the CMMI
for development version 1.3 also does not mention this phrase.

1.2 Requirements Management

Having put the term ‘‘requirement’’ in its proper perspective, let us now look at the
phrase ‘‘Requirements Management’’, the topic that is covered by this book. As
can be readily seen the two words in this phrase are ‘‘Requirements’’ and
‘‘Management’’. We have already defined and put the term ‘‘Requirements’’ in its
proper perspective.

Now let us look at the term ‘‘Management’’. This term has three connotations.

1. The first connotation is as a ‘‘group of individuals’’ who are running the affairs
of the company. They normally comprise of the Board of Directors and other
senior executives designated by the Board as Managers.

4 1 Introduction to Requirements Engineering and Management

2. The second connotation is as an ‘‘art and a social science (process)’’ practiced
by individuals to get things done by others without absolute authority or clarity
in the organizational processes.

3. The third connotation is as a ‘‘body of knowledge’’ about getting things done

It is the second connotation that is pertinent to the present context of require-
ments management. Management as a process consists of the following sub
processes:

1. Planning
2. Organizing
3. Staffing
4. Controlling

Therefore, requirements management includes the above four aspects. CMMI
Version 1.3 defines requirements management, as, ‘‘The management of all
requirements received by or generated by the project or work group, including
both technical and non-technical requirements levied on the project or work group
by the organization’’. Technical requirements are defined as ‘‘properties of product
or service to be acquired or developed’’ and non-technical requirements are
defined as ‘‘requirements affecting product and service acquisition or development
that are not properties of the product or service’’.

This definition specifies that requirements can be of two varieties, namely
technical and non-technical requirements. It also states that requirements can be
received from external sources such as customers or can be generated within the
project team too. Especially in COTS (Commercial Off The Shelf) product sce-
nario, many, if not all, requirements are generated within the project team.

Wikipedia defines requirements management, as, ‘‘Requirements management
is the process of documenting, analyzing, tracing, prioritizing, and agreeing on
requirements and then controlling and communicating to relevant stakeholders. It
is a continuous process throughout the project’’.

This definition enumerates the activities to be performed as part of requirements
management, namely,

1. Documenting requirements
2. Analyzing the requirements
3. Tracing the requirements through out the development life cycle
4. Prioritizing the requirements, especially their order of implementation
5. Agreeing upon the requirements, that is requirements are accepted for imple-

mentation by the project team and are approved by the stakeholders
6. Controlling the requirements, that is controlling the change to the agreed upon

requirements
7. Communicating the status and progress of implementation of requirements and

changes received thereon to all stakeholders.

This definition also states that the process of requirements management begins
with the starting of the projects and completes with the ending of the project.

1.2 Requirements Management 5

Both are good definitions and cover requirements management in an apt manner
and help us in understanding the subject fully. While the CMMI definition covers
the activities using the term ‘‘management’’, the Wikipedia definition enumerates
the activities. The Wikipedia definition can be considered as the continuation of
the CMMI definition of requirements management.

As part of management, we plan for ensuring that right requirements (that are
complete, exhaustive and clear) are made available to the development team. The
plan would include activities:

1. for collecting, analyzing and establishing the project requirements
2. for ensuring that changes to the established requirements are carried out in a

controlled manner
3. for ensuring that all requirements are traced through the development life cycle

and are delivered to the customer effectively.

The organizing part consists of creating and maintaining an environment that is
conducive to carry out requirements related activities efficiently and effectively. It
includes defining processes for carrying out the required activities as well as
ensuring that quality is built into the deliverables. It also includes defining pro-
cesses for ensuring that changes to requirements are made in a controlled manner.

Staffing process includes recruiting qualified personnel to carry out require-
ments related activities; providing them necessary training; providing necessary
tools and techniques; and keep them motivated.

Controlling is ensuring that all the above three activities are carried out con-
forming to the corresponding plans and making mid-course corrections as and
when required to ensure that deliveries are made on time and with the best
attainable quality.

1.3 Requirements Management Scenarios

Requirements need to be managed during software development which is carried
out for the following purposes:

1. When an organization wishes to shift a set business process from manual
processing system to a computer-based processing system

a. When the requisite software is developed using its internal software
development department, the project is referred to as ‘‘in-house project’’.

b. When the requisite software is outsourced to an external software devel-
opment organization, the project is referred to as ‘‘external project’’.

2. When an organization decides to shift an older computer-based system (perhaps
a batch processing system) to a better computer-based system (perhaps a web-
based processing system),

6 1 Introduction to Requirements Engineering and Management

a. When the requisite software is developed using its internal software
development department, the project is referred to as ‘‘upgrade in-house
project’’,

b. When the requisite software is outsourced to an external software devel-
opment organization, the project is referred to as ‘‘upgrade external project’’

3. When an organization decides to develop a software product for selling to
various customers, which I call ‘‘product development’’.

4. When an organization decides to overhaul their existing software product and
upgrade it to next level which I call ‘‘product upgrade’’

Scenarios 1 and 2, are commonly referred to as ‘‘project development’’ and
scenarios 3 and 4 are commonly referred to as ‘‘product development’’. I will be
using these two terms in this book.

1.4 Agencies Responsible for Managing Requirements

Basically it is the project manager who has to manage the requirements for the
project, but others do have a role in managing the requirements. In the project
development scenario, two agencies need to manage requirements:

1. In the in-house project development scenario, the software project manager is
responsible for managing the project requirements. Of course, he can delegate
this activity to a business analyst on the team.

2. In the external project scenario, two persons are responsible for managing the
requirements:

a. The project coordinator at the outsourcing organization
b. The software project manager at the outsourced organization

3. In the product development scenario

a. Product Manger who is normally from the marketing department and is
usually in-charge of selling the final product manages the requirements in
the organization

b. The project manager who is leading the software development team.

The above mentioned agencies are primarily responsible for managing software
project’s requirements. It does not mean that other stakeholders are free of any
responsibility in respect of project requirements management. The rest of the
stakeholders have the secondary responsibility.

The senior management of the organization have the responsibility of providing
resources for the activity and to ensure that the activity is being carried out
diligently. The end-users are responsible to provide the requirements compre-
hensively and lucidly as well as to provide clarifications whenever needed by the
project team. The business analysts are vested with the responsibility to accurately

1.3 Requirements Management Scenarios 7

record the requirements and convey them to the development team. The devel-
opment team has the responsibility to build and deliver the software conforming to
the requirements as well as to ensure that all accepted requirements are fully met.

1.5 Approaches to Requirements Management

There are two schools or thought on this aspect. One school of thought states that
the project requirements must be managed methodically and diligently conforming
to a defined process which is continuously improved in the organization. The other
school of thought is that there is no such need for expending special effort for
managing project requirements as it is a natural part of software development.

The salient aspects of the first school of thought are:

1. The organization needs to be a process-driven organization. That is, the orga-
nization must have a defined process; the process is diligently implemented
within the organization; the process must be internalized; the organizational
process is continuously improved conforming to a defined process for
improvement.

2. The organizational process would have a set of procedures, standards, guide-
lines, formats and templates for managing requirements.

3. The effectiveness of the implemented process is measured and corrective action
is taken to correct / improve the process as necessary.

4. Deviations from the defined process are allowed and waivers given based on the
specific set of conditions conforming to the tailoring guidelines specified in the
process.

The main argument in favor of a process-driven approach is that uniformity can
be achieved across the organization in the matter of requirements management.
This is a great advantage for software development organizations executing
multiple projects concurrently. If the requirements management is allowed without
any controls, it is likely to derail the projects and result in failed project execution.
The other advantages are that new project managers can perform on par with the
experienced ones; experienced ones can perform at a higher level of performance;
and it provides predictability for performance for everyone concerned in the
project execution. Process-driven approach places the onus for performance and
results on the process than on the individual.

The proponents of ad-hoc management for project requirements argue that there
is no inherent need for uniformity across projects in the organization; the process
puts overhead and reduces the productivity of the project resources; the measure of
ultimate success of the project is not in how well the requirements are managed but
how well the end product performs; and finally, that the management of require-
ments has little impact on the final product. They also point out that however well
the process may have been defined, if the individual implementing it is weak, the
results would be disastrous. They say that it is better to invest in a capable

8 1 Introduction to Requirements Engineering and Management

individual and trust him/her to get the results than invest in a process. Ad-hoc
approach places onus on the individual to obtain results. Heroics are possible.
Adherents of agile methodologies prefer ad-hoc approach to requirements man-
agement in true adherence to agile philosophy which puts emphasis on customer
satisfaction over everything else. Agile projects use iterative life cycle for software
development in which the total software product is developed and delivered in
iterations with no iteration being longer than four weeks.

It is my observation that the methodical approach gets results relatively more
often than an ad-hoc approach. Imagine yourself going to a doctor to cure some
malady. Let us say that the doctor does not believe in process-driven approach.
Assume for a minute that the doctor tells you ‘‘Here, take this medicine. If it doesn’t
work come back and I will give you another medicine. I will cure your malady with an
iterative approach. It is much faster and cheaper to cure your trouble than going
through all those unreliable diagnostic procedures. What do you say?’’

Are you likely to continue your treatment with that doctor? The chances are
very slim—right? You would go to a doctor who first diagnoses your malady using
a series of diagnostic procedures than jumping into treatment right away, even
though the doctor costs you more money. But here we are in software development
organizations, advocating jumping into coding right away and thumb our noses at
methodical approach.

Do I sound like condemning ad-hoc approach completely?

Here are my recommendations:

1. When the organization is small with the owner managing the projects, ad-hoc
approach would deliver results.

2. If the organization has few concurrent projects, say less than five, the ad-hoc
approach would be adequate.

3. When the functional domain in which the organization operates is the same in all
projects and the human resources are stable with little attrition, again the ad-hoc
approach would get the results.

4. If the organization is large, handles multiple projects concurrently, has sig-
nificant attrition in the human resources and the functional domains are dif-
ferent in every project, a process-driven approach is perhaps mandatory.

1.6 Requirements Engineering

The word ‘‘Engineering’’ has multiple meanings and connotations.
One definition of the term ‘‘engineering’’ is ‘‘engineering is the application of

science for practical purposes’’. It connotes that all engineering is based on proven
scientific principle and therefore engineering is not art.

Another definition of the term engineering is that engineering is a field of study
and research. The fields of study and research such as mechanical engineering,

1.5 Approaches to Requirements Management 9

electrical engineering, construction engineering, chemical engineering, electronics
engineering and so on are all collectively known as engineering.

Engineering is also defined as a process. It is a process of converting the
specifications of customers into such artifacts that are used by artisans to produce
the product that fulfills the customer specifications. The artifacts can be engi-
neering drawings, process documents, parts lists, material specifications and so on.
The artifacts can even be textual documents.

The definition relevant to requirements engineering is the last one that it is a
process. However, requirements engineering does not cover the entire definition. It
only covers the definition partially. The activities included in requirements engi-
neering are:

1. Collecting the requirements from customers
2. Compiling and collating the requirements
3. Establishment of the requirements
4. Ensuring the integrity of the requirements
5. Tracing, tracking and reporting the progress of requirements through the

software development life cycle.

Each of these activities are discussed in detail in the following chapters.

1.7 Topics Proposed to be Covered in this Book

Having placed both ‘‘Requirements’’ and ‘‘Requirements Management’’ in their
proper perspective, we are now ready to move forward. We will be learning all the
above topics in greater detail in the subsequent chapters.

This book aims at consolidating my theoretical knowledge garnered from
reading books; learning from the knowledgeable seniors; my own experience in
software development; observation of peer projects; and my experience in con-
ducting training programs to the learners of the discipline of requirements man-
agement. This consolidation - it is my fervent hope would aid the learners as a
guide for learning and the experienced professionals in the field as a reference text.

The following topics are covered to be covered in this book:

1. Introduction to Requirements Management—covered in this chapter
2. Understanding Requirements
3. Elicitation / Gathering Requirements
4. Requirements Analysis and Development
5. Establishment of Requirements
6. Verification and validation of requirements
7. Planning for Requirements Management
8. Change Management in Requirements Management
9. Requirements, Tracing, Tracking and Progress Reporting

10. Metrics & Measurement in Requirements Management

10 1 Introduction to Requirements Engineering and Management

11. Roles & Responsibilities in Requirements Management
12. RM through SDLC
13. Tools and techniques for use in Requirements Management

13.1 SSADM
13.2 OOAD
13.3 UML
13.4 Agile methods
13.5 Any other organization specific tools

14. Pitfalls and best practices in Requirements Management.

1.7 Topics Proposed to be Covered in this Book 11

Chapter 2
Understanding Requirements

We have defined the term ‘‘requirement’’ in Chap. 1 as applied in the context of
requirements management in software development. Now let us discuss the
requirements in greater detail so that we understand the term in its entirety.

2.1 Classification of Requirements

Requirements can be classified based on three considerations, namely,

1. Functionality considerations—these are the requirements that fulfill the set of
selected business processes and deliver the results to end-users.

2. Product construction considerations—these are the requirements that are nec-
essary to build the product efficiently as well as to maintain it later on.

3. Source considerations—requirements for software development are provided
from different sources. This classification is based on the agencies that provide
the requirements.

2.2 Classification of Requirements Based on Functionality
Considerations

Requirements can be classified into two major classes from the functionality
standpoint, namely,

1. Core functionality requirements
2. Ancillary functionality requirements

M. Chemuturi, Requirements Engineering and Management for Software
Development Projects, DOI: 10.1007/978-1-4614-5377-2_2,
� Springer Science+Business Media New York 2013

13

http://dx.doi.org/10.1007/978-1-4614-5377-2_1

Core functionality requirements are those functionalities of the product without
which, the product is not useful for the users. These functionalities must be ful-
filled and exceptions cannot be granted or resorted to during development of the
product. Core functionality addresses the performance of a set of business pro-
cesses. The main purpose of software development is to fulfill this core
functionality.

Ancillary functionality requirements supplement core functionality. Even if the
ancillary functionality is not fulfilled, the product is still useful but may cause
inconvenience in the form of loss of productivity or security. One significant point
to be noted here is that the customer, more often than not, may not specify this
functionality and even expects the development team to take care of this ancillary
functionality!

Figure 2.1 depicts the classification based on functionality pictorially.
Classification of requirements based on functionality consideration is some-

times classified as (a) Functional Requirements and (b) Non-Functional Require-
ments. When we prefix the word ‘‘non’’ to any other word, it connotes the opposite
of the word. When we say ‘‘non-functional’’ it has connotation that the require-
ments do not function or do not serve any function. In reality these requirements
may not serve business process functions directly but they are serving a useful
purpose in the software, They indirectly, perhaps, assist in the better functioning of
business processes. User-friendliness does not serve any business process but if we
take it away from our software, using the software and performing the business

Fig. 2.1 Classification of software project requirements based on functionality

14 2 Understanding Requirements

processes using the software becomes tedious. That is the reason, I have not used
the ‘‘functional and non-functional’’ classification of requirements.

In almost all cases of software development, core functionality is addressed
completely. The customer provides core functionality in project scenario. It is
defined by the project team or domain experts in the case of a product development
scenario. But when it comes to ancillary functionality, it is common to miss out on
some of the ancillary functionality. In many cases where the end product of
software development is panned by the critics, the criticism stems from the fact
that all relevant ancillary functionality is not fully or not efficiently implemented.

Various classes of statutory functionality requirements is depicted pictorially in
Fig. 2.2.

The following are the ancillary functionalities that need to be included in the
overall requirements for the project:

1. Statutory functionality—This functionality is required because of regulations/
standards of government, or industry associations or professional associations.
In software development industry we have Institute of Electrical and Electronics
Engineers (IEEE), Software Process Improvement Networks (SPINs), Soft-
ware Project Managers Networks (SPMNs) in addition to governments.

Fig. 2.2 Ancillary functionality requirements

2.2 Classification of Requirements Based on Functionality Considerations 15

The functionality to enable persons with disabilities to use the product as also the
functionality to ensure that intruder prevention come under this category.

2. Safety functionality—This functionality protects the user from causing injury
to the users. However, as computer usage especially from this stand point
cannot cause physical injury, it has to protect him from logical injuries
including financial losses. Examples for safety functionality include charging
the credit card but not booking a ticket in online transactions, computational
inaccuracies, performing wrong transaction (buying shares when we intended
to sell), and data loss due to accidental deletes.

3. Security functionality—While safety functionality is to protect the user from
the product, security is safety from external attacks. Protection from intruders,
malicious use of insiders, and data theft via the Internet and so on are
examples of security functionality.

4. Usability functionality—It was originally referred to as User-friendliness.
The objective of this functionality is to make the software usable intuitively
and with minimal reference to user manuals. Graphical user Interface (GUI)
has achieved much of this functionality but improvement is always possible.

5. Data Integrity Protection functionality—Now that computing shifted from
EDP (Electronic Data Processing) rooms to end users, this has become an
important functionality for any software product. End user can unintentionally
and innocently affect data integrity. They may enter numerals in name fields
and alphabets in numeric fields. In Human Resources (HR) applications, they
may enter a date of birth such that the age of the employee may either be
below legal employment age or above the retirement age. In hospital or hotel
management applications, they may enter check out date as prior to check in
date. Users can enter wrong data in a hoard of ways. It is essential that all
necessary actions must be taken to prevent entry of wrong data. So data
validation requirements become important aspect of ancillary functionality.

6. Response time functionality—Sometimes, especially in real time applica-
tions, response times form part of core functionality. In business applications
however, they form part of ancillary functionality. In web based applications,
response times are important as the user and the server may not be at one
location and if the application does not respond fast enough, the user may
abort the application or do something else. Normally these form part of
organizational development standards.

7. Memory constraints functionality—With software controlling every device
today, the constraint still remains. It is a thing of the past as far as computers
are concerned but devices like mobile phones, cars, washing machines and the
like, not to mention rockets and space shuttles, memory constraints remains.
In these cases, memory constraint has to be taken into consideration. These
requirements can be obtained from hardware manufacturers who supply the
hardware on which the software needs to function.

8. Software footprint constraint—When the software resides on a chip in small
handheld devices and in various machines, the final size of the package that
gets installed becomes very important. Now all the Computer Numerically

16 2 Understanding Requirements

Controlled (CNC) machines not only in workshops but also in homes do have
this limitation. In the present era, the cars, the refrigerators, the washing
machines, the ovens, the mobile phones all have software on a chip which
have limited capacity. This calls for restrictions on the size of the software that
can be installed on the chip. This information can be obtained from the
hardware manufacturers supplying the selected chips on which the software is
going to be installed.

9. Fault tolerance functionality—Users make mistakes in using software, mostly
unintentionally. This functionality ensures that software does not crash or abort
when a mistake is committed by the user. It provides an error message and
provides an alternative path and allows the user to use other functionality
besides coming out of the fault-scenario smoothly without causing any damage.

10. Reliability functionality—There is a misconception in some quarters that
since there are no moving parts, software ought to function reliably if it
correctly runs once. But in these days of fast obsolescence, this becomes
applicable. Every 3 years a new version of the operating system, browser, and
middleware are released. The hardware, including processors, Network
Interface Units (NIUs), switches, etc. are also upgraded every now and then.
Since most modern applications work on the Internet the threat of viruses,
spyware and malware also increased significantly. Any of these can impact the
way our software works. Therefore, it is important to build the software in
such a way that some of the possible changes do not affect the software or
provide functionality to indicate that the environment changed so that cor-
rective action could be taken. The users should not be faced with a software
failure to understand that it needs upgrade. Software failure due to environ-
mental change needs to be trapped and an alternative path needs to be
available for the users for smooth changeover or closure of the application.

11. Feel-good functionality—This functionality is making the user interface look
jazzy and sexy. The idea is to make the users feel good while using the
software. This is adding glitz to the user interface screens and using nice
pictures for buttons and icons and so on. I know of software product failure
because the screens are not sexy!

12. Esteem functionality—This functionality brings pride to the users. For
example, a Rolex watch delivers the same core functionality (showing time) as
any other watch. But by ensuring that the thicker gold plating of the casing,
scratch-proof crystal and so on, Rolex watches bring pride to the owners albeit
at a higher cost. In software too this kind of functionality can be brought in the
form of better messages, handling of error conditions, adding functionality
that no other software possesses and so on.

13. One-upmanship (competitive edge) functionality—This functionality gives
competitive edge to the software. It is having more functionality than any of
the competitive software packages possesses. This functionality may be in
core functionality or ancillary functionality. Compared feature to feature, this
package would have one or more functional aspects in every feature over the
competitive software packages.

2.2 Classification of Requirements Based on Functionality Considerations 17

2.3 Classification of Requirements Based on Product
Construction Considerations

Any product, either for use by one organization or multiple organizations, needs to
be built such that it works reliably without defects over the life of the product. In the
case of software product, the life of the product is not dependent on its structure or
wear and tear caused by functioning continuously but is dependent on the hardware
platform it is installed on. A software product works as long as its hardware plat-
form is unchanged, in working condition and is maintained well. In these days of
fast obsolescence of hardware, the life of computer hardware itself is short com-
pared to other types of machinery. As most of the present day software products are
working on the Internet, there are many external factors that can adversely affect the
application’s reliability and defect-free functioning of the software product.
Therefore, utmost care needs to be exercised in constructing the software product so
that minor modifications in the environment outside the software and hardware
platforms would not impact the reliability and defect-free functioning of the
product. These requirements are unlikely to come from the end users or manage-
ments of the client organization. These need to be derived and implemented in the
software product by the project team and the management of the software devel-
opment organization. From this standpoint, the classification of requirements is
enumerated below. Figure 2.3 depicts these requirements pictorially

1. Maintainability—The resultant product ought to be maintainable. That is, it
ought to be possible to modify the code, add code or delete some code. The key
aspect of maintainability is not just to add, modify or delete but to do those
activities efficiently, effectively and with minimum expenditure of resources.
Another important aspect of maintainability is that persons other than the
original developers should be able to maintain the product. The product
specifications that dictate product maintainability come under this category.
These are normally in the standards and guidelines selected for the product.

2. Flexibility—Flexibility refers to the ability of the product to be used in mul-
tiple similar scenarios. For example, a materials management software product
should be useful in engineering industry, chemical industry, mass production
system and batch production system. Another understanding of flexibility refers
to the ability of the product to be useful without any modification, when some
of the underlying parameters change. For example, in a payroll software
product, addition of a new deduction or addition of a new payment, should not
render the product useless. On the other hand, the package should still be usable
without changing the source code. The functionality specification that is
focused on achieving flexibility in product functioning comes under this cate-
gory. These specifications are usually part of standards, guidelines and ancillary
functionality requirements.

3. Efficiency—The resultant product ought to use resources efficiently. The
resources used by the product are not just computer resources (CPU, RAM, disk

18 2 Understanding Requirements

space etc.) but also the time of end users, bandwidth on the network, backup
storage and so on. The product should minimize the time expected to be spent
by the users, perhaps, by reducing the needed key strokes and mouse clicks.
The functionality specification that is focused on efficiency of resource usage
comes under this category. Standards, guidelines, ancillary functionality
requirements provide these requirements.

4. Reusability—The product ought to be built is such a way that its components
can be used in other products. Automobile industry implements this concept
diligently. The same engine is used in multiple models. Components like a
steering wheel, brakes, tires, shafts etc. are used without any change in many
models. The dictum ‘‘There is no point in re-inventing the wheel’’ seems to

Fig. 2.3 Product construction consideration requirements

2.3 Classification of Requirements Based on Product Construction Considerations 19

have originated there. In software industry, re-usability is rather an exception
rather than a rule. But it pays to implement this concept in software products
too. These are non-functional requirements and are normally covered by
standards and guidelines or the organization.

5. Portability—In earlier days, porting is referred to as shifting the software
developed in the same language such as COBOL from one hardware platform
to another. But now, such a thing is passé. But another type of porting has come
on to the scene. It is shifting the web site from one host to another. With cloud
computing, it would be much more frequent in the future to be shifting
applications from one host/data center to another. The functionality specifica-
tions focused on ensuring that the impact of porting is minimized come under
this category and include standards and guidelines for achieving the portability.

6. Operations ease—Modern software products are large and multi-functional
systems involving many users, perhaps, from different geographical regions
spanning international borders. To keep such systems operational round the
clock, they need specialists running the operations. Therefore, many of them
need dedicated/shared systems administrators, DBAs and network administra-
tors. In many cases, updating the software or hardware has to be achieved
without bringing down the systems. Therefore, the software product needs to be
built keeping all these aspects in consideration. These aspects are covered
normally by the standards and guidelines dealing with product architecture,
design and construction.

7. Testability—Of course, the product has to be testable and will be so. What is
so special about testability then? It is generally agreed that 100 % testing of
large software products is not practicable. Therefore, a variety of quality
assurance activities are implemented during software development. The cost of
fixing defects varies proportionately with the stage in which the defect is
uncovered. A defect uncovered during unit testing costs much less to fix than a
defect that is uncovered during system testing stage. The final product is always
testable but what is sometimes becomes difficult to test is, the software unit/
component. The software product has to be designed and built in such a way
that every software unit is independently testable in a stand-alone manner.
Testability requirements are normally covered by the standards and guidelines
dealing with software architecture, design and construction guidelines.

8. Interface functionality—In these days of web based Internet applications,
interfacing becomes essential. The internet itself is built with multiple layers.
There are many browsers, and different servers, ISPs and networking protocols
that an Internet application has to interface with. Additionally, the applications
need to be built in such a way that it would be possible to interface with
applications that the organization may build later on. This kind of functionality
would be covered under standards and guidelines dealing with software design
and construction, normally.

20 2 Understanding Requirements

2.4 Classification of Requirements Based on Source
of Requirements

Yet another way to look at requirements is based on the source from where it is
obtained. There are many sources from which we can garner requirements for the
proposed software product. Enumerated below are the possible sources for
establishing the requirements for a software product.

1. End users—These people are those that use the end product to perform their
individual business processes. The software product is basically aimed at
fulfilling their needs. These people provide the core functionality especially
relating to the aspects of inputs, process and outputs at working level. End
users may not be able to provide the management requirements expected from
the software. End users can be located in the case of project scenario (intended
for use within one organization) in the departments funding the software
development. In the case of a COTS (Commercial Off The Shelf) product
scenario, end users are scattered across the target market for the product. We
may perhaps need to conduct market surveys to get their needs or select
randomly some end users and interview them to obtain their needs and the
core functionality for the product.

2. Management of customer organization—These people provide the MIS
(Management Information System) portion of the core functionality. They
provide what information they need to extract from the software so that they can
manage the organization effectively. These may include the special analyses,
special reports, audit trails, security concerns, safety concerns and so on,
necessary from the software product. In a project scenario, these people can be
located in the organization looking at the organization chart. But in the case of
COTS product development, we really need to put in efforts to locate such
experts. They can be found in the domain experts, academia, and through market
surveys selecting the senior management personnel to provide the information.

3. Domain experts—These individuals are those that have worked for long
years in the business domain in which the proposed software product would be
developed. These individuals are especially useful and extensively used in
COTS product development. These people may or may not be IT (Information
Technology) experts but they would have the knowledge of systems and
procedures or the domain. They would know the detailed procedures, formats,
templates, guidelines, standards and checklists used by the end users in the
domain. Additionally they would be experts in the process that is used to
convert the inputs to outputs as well as the legal issues involved with the
domain. These people would be occasionally used in project scenarios to
obtain information about industry best practices or when the requirements
provided by the end users and their management are perceived to be either
incomplete or ambiguous. Domain experts can provide end-to-end core
functionality or clarify any issues thereof.

2.4 Classification of Requirements Based on Source of Requirements 21

4. Project team—Project team comprises of the project mangers, project leaders,
software designers, business analysts, programmers, testers, User Interface (UI)
developers, and Database Administrators (DBAs). These people are also a source
of providing requirements albeit the fact that they may not be able to provide
core functionality unless the product is proposed to be used in software devel-
opment activities. They would however be able to provide ancillary functionality
such as usability, maintainability, safety, security, and reliability and so on.

5. Statutes—Statutes include governmental regulations pertaining not only to
usability of the software but also about possible illegal activities. The intended
software product shall not either commit, aid or abet any sort of criminal
activity. Therefore, the requirements need to include all statutes that need to
be implemented as well as ensure that all prohibited functionality is excluded
from the proposed software product. The business analysts carrying out
requirements analysis ought to be aware of the statutes that mandate inclusion
of functionality as well as the functionality that is prohibited. Some of the
examples of prohibited activities include stealing of personal data, siphoning
away of monies in dormant bank accounts, sending spam emails and so on.

6. Industry standards—These include standards of industry (such as ISO,
CMMI, NASSCOM (National Software and Services Companies of India) or
professional associations (such as IEEE, SPINs, SPMNs) or organizational
standards of either the vendor organization or the client organization. These
standards address various aspects of software engineering methodologies
including processes, guidelines, formats, templates and checklists). A host of
information and best practices are available from such standards and ancillary
functionality can be derived from those standards.

7. Software designers—Software designers can provide ancillary requirements
about the efficiency, fault tolerance, operations ease, installation ease,
usability, structural stability and so on of the end product. Software designers
are also normally part of the project team but are treated separately because
software designers play a key role in the final product. Finally it is the soft-
ware designers that have to shoulder the responsibility for any missing/
defective functionality in the end product of software development.

8. Software programmers—Software programmers are at the end of the chain
for implementing the requirements in the software. However, they are the
people who need to implement all the requirements conveyed to them using
software design documents. However, coding guidelines, UI guidelines, and
any other organizational guidelines would not form part of design documents
and programmers are expected to be knowledgeable of such standards as well
as implement them effectively in every program they code. Software pro-
grammers can specify ancillary functionality aspects pertaining to maintain-
ability, testability, reusability of the code and so on.

9. Software quality assurance team—A Software quality assurance team
includes reviewers, testers, and process specialists. These people can provide
ancillary requirements about testability, and quality perspectives of the pro-
posed software product.

22 2 Understanding Requirements

10. Management of software development team—These individuals include
project manager, project leader and other senior management personnel
including program managers. These individuals would be in a position to have
a bird’s eye view of the overall project and would be able to provide interface
requirements to ensure that the software product would be able to interface
effectively with other applications in the organization. They would also be
able to ensure that all functionality is included for the proposed software
product.

11. Marketing department—Especially in product development organizations,
marketing is a source of product requirements/specifications. A Marketing
department can generate product requirements from the field staff or a market
survey of the potential users of the proposed product. Market surveys are a
very popular vehicle to collect user requirements and freeze product specifi-
cations. A Marketing department is the primary source for one-upmanship
functionality in a COTS product.

2.5 Levels of Requirements

Institute of Electrical and Electronics Engineers (IEEE) has specified two levels of
requirements specifications, namely, the User Requirements Specification and
Software Requirements Specification. This gives rise to the question ‘‘Do we have
two levels of requirements in software development?’’

In any product there are two sets of requirements. One is the set of needs that
the product fulfills and the second is the set of specifications that the product must
adhere to in order for it to fulfill the needs of users. Let us take a bridge over a river
(or a body of water) as an example. The need to be fulfilled is a bridge that can
carry six lanes of traffic over a river of two furlongs breadth. Now based on this
specification, some preliminary work is carried out to determine the depth of the
water body, the banking on both the sides, the soil quality at the bottom of the
water, the number of cars, trucks and other vehicles that traverse the bridge etc.
Based on the study, the specifications for the bridge are finalized. These are the
product specifications for the bridge, which include the load it has to support, the
type of bridge (suspension, column supported, arched etc.), the width and so on.
Based on these product specifications, a bridge is designed. Using the design, the
bridge is constructed.

Similarly, in software development, the first expression of the need is the
requirement of software to fulfill the requirements of a business process. Taking this
first into account, a preliminary study is conducted to ascertain the needs of the
business processes. From these results the product specifications would be drawn up.

In the manufacturing industry, the aspect of drawing up product specifications
is referred to as Conceptual Design (or the High Level Design) and the working
out the details is referred to as the Detail Design (or the Low Level Design).

2.4 Classification of Requirements Based on Source of Requirements 23

Thus, there are three layers before the actual fabrication/manufacture/con-
struction begins and these are:

1. The needs
2. The product Specifications
3. The design

In software development too, we have three levels before the coding begins.
There are various nomenclatures for these three levels. I am presenting a few here
but there could be others.

1. User Requirements Specification (URS), System Requirements Specification
(SyRS), Business Function Specification (BFS), Functional Specification (FS),
Requirements

2. Low Level Design (LLD), Software Requirements Specification (SRS), Func-
tional Design Specification (FDS), Architecture

3. High Level Design (HLD), Software Design Description (SDD), Software
Design Specification (SDS), Detail Design Specification (DDS)

Now the next question that arises is ‘‘what requirements do we need to man-
age—user requirements or software requirements?’’

User requirements are original and first in the chain. Software requirements are
not original. They are derived from user requirements. When user requirements
change, the software requirements also change. Therefore, we need to manage user
requirements. If we can minimize changes to user requirements, the changes to
software requirements would automatically be minimized. This book focuses on
managing user requirements.

2.6 Definition of Requirements in the Context of Software
Development

How do you answer the question ‘‘what constitutes a software application?’’

I am sure there will be numerous or multiple alternative answers for this
question. The answer I select is that the application consists of a number of
information processing processes. Information processing processes can be further
divided into three classes, namely,

1. Input processes
2. Output processes
3. Associative processes

Input processes obtain information from outside the application boundary. The
information would be provided by an entity (an individual, a machine or another
computer application). The input can be data (facts, and figures about an entity),
control data (triggers for events in the application such as start, stop, change, print etc.).

24 2 Understanding Requirements

Output processes send information across the application boundary. The
recipients of information would be an entity (an individual, a machine or another
computer application). The output could be normal data in the form of a report
either on paper or computer screen or to another application, or it could be control
data in the form of trigger to another application. The giving/receiving application
can be on another computer or another machine.

Associative processes are those processes that aid and assist the input and
output processes in information processing. Consider a login process; it is neither
an input nor an output. Similarly a file upload is a process; and so is an integrity
checking process and so is the POD (Power On Diagnostics) process. These are all
examples of associative processes.

Requirements elicitation/gathering is mainly enumerating all the processes that
form a part of a software application and obtaining details about these processes so
that downstream activities can be executed without further reference to the client
or with minimal reference to the client.

Now each process has these attributes:

1. Inputs—each process receives certain inputs. While input processes receive
inputs from external sources, output processes and associative processes receive
inputs from the internal sources.

2. Outputs—Each process delivers some outputs. While output processes deliver
to external recipients, input processes and associative processes deliver to
internal recipients.

3. Process—each process carries out some transformation of inputs and converts
them to outputs. Each process consists of some related steps with a start and an
end event. The process includes verification of the inputs for their complete-
ness, appropriateness and freedom from errors.

4. Triggers—each process needs a trigger that initiates the process into execution.
The trigger could be an event initiated by an individual or another application
or could even be by the application itself.

When we enumerate all the processes and define all the above four aspects for
each of the processes comprising the software application, we have a complete
requirements specification document.

2.7 Evolution of Requirements

Requirements start out as a single idea and over a period of time, evolve into a full
set which can then be further processed into a software product. The phases in the
evolution of requirements are discussed in this section. Please note that it is not
mandatory that every organization uses these phases; some of the phases may be
dropped or some other phases may be used; or they may use different set of phases
altogether.

2.6 Definition of Requirements in the Context of Software Development 25

In a new product—non-existent in the market—This is a scenario in which a
completely new product, the type which is not existing in the market is contem-
plated. In this scenario, the requirements are evolved as follows:

1. Idea germination—Here, the entrepreneur or the product manager germinates
an idea based on his/her observations of the needs of the target market and
perceives a need for a product that can fulfill the unfulfilled needs of target
customers. In a large organization, there could be a few product managers and
all of them could come up with new product ideas. It is stated that it takes about
eight serious ideas to get one product idea to be approved and built. Not all
approved ideas are successful and not all dropped ideas are bad ideas.
Remember Chester Carlson was turned down for 5 years by organizations such
as IBM and GE when he approached them for his idea on Xerox machines?
This approved idea is the first phase in the evolution of requirements for
developing new product the kind of which is non-existent in the market.

2. Brainstorming—Brainstorming is a technique in which experts in the subject
at hand gather in an informal meeting and give a free rein to their imagination.
All ideas expressed are recorded for later analysis which would shortlist ideas
that are worthy of pursuing. In requirements management, all desirable product
features are enumerated by the brainstorming, which are then sifted and feasible
ones are culled. These form the initial requirements for the product.

3. Market/customer/consultant surveys—Now the initial requirements are tes-
ted using a market survey. Various methods of market survey are available and
an appropriate one would be selected and used. The market survey would
validate the initial requirements and usually adds a few more requirements.
These requirements would be further validated by experts drawn from the
market, consultants or academia using personal interviews.

4. Personal interviews—Personal interviews are conducted with selected experts
who may be marketers, product designers, support staff, consumers, consultants
or academics. The requirements finalized by the market surveys would be
discussed with them for two purposes. One—to validate the requirements;
two—to add to the requirements. This is the final step before attempting to
design a prototype and go to market again to validate the product.

5. Prototype and demos—After the requirements are validated through personal
interviews, normally a prototype of the product would be built. Prototypes are
discussed in greater detail in Chap. 3. Now these prototypes are shown to
prospective customers, and experts in the field. Their feedback is taken, eval-
uated and requirements are updated. This is the final step in the evolution of
requirements.

6. Freeze requirements—Freezing the requirements involves documenting the
requirements conforming to organizations standards and subjecting further
changes to the rigor of configuration control and change management. The
frozen requirements are then used to carry out full scale product design and
development of the product and introducing it into the market. Normally, the

26 2 Understanding Requirements

http://dx.doi.org/10.1007/978-1-4614-5377-2_3

changes proposed on frozen requirements are considered for the next upgrade/
release of the product.

New product—existing in the market—This is a scenario in which the
product is new to the organization proposing to develop it but something similar is
available in the market. When somebody or an organization wishes to develop a
competitor to a product that is already existing in the market, the requirements
evolve through the following phases:

1. Idea germination—The entrepreneur or the product manager or someone with
a say gets an idea to develop a product as a competitor for an existing product.
The existing product may not be fulfilling the market expectations or the market
is large enough to accommodate a new and innovative product or some such
motive could be behind the idea. This is the preliminary requirement.

2. Market/customer/consultant surveys—Market surveys are conducted to
confirm the need for an additional product and to unearth the needs unfulfilled
by products existing in the market.

3. Personal interviews—Personal interviews with experts in the field are con-
ducted to validate the data from market surveys and to add any more
requirements to the list.

4. Brainstorming—In the brainstorming, one-upmanship ideas over the existing
product are generated. Ideas about more functionality, better presentation,
better workflow, improved ease-of-use, more user options, flexibility etc. are
generated during brainstorming. These would be analyzed and requirements are
finalized.

5. Prototypes—Normally prototypes are not constructed in this scenario as a
working product is available in the market. But, it may be used sometimes to
prove a concept or a feature and get feedback from the market.

6. Freeze requirements—Freezing requirements as noted earlier involves
approving the requirements document and subjecting it to the rigor of config-
uration control and change management.

Product upgrade—We have a product that has been in the market for some
time and we have been receiving feedback about the desired additional features or
improvements in the existing features from our customers, field support staff,
marketers and Value Added Resellers (VARs). We also find that competitors have
brought their products into the market which are cutting into our market share.
Therefore, we wish to upgrade our product to keep it competitive and attractive to
the market. Here is how the requirements evolve:

1. Feedback/Surveys from VARS—VARS are one valuable source of feedback
about the existing product owing to their proximity to the competitors in the
market and end users. Whenever they provide feedback, we need to analyze and
resolve it. When we contemplate upgrading the product, we need to conduct a
survey to elicit their views on the improvements desirable to our product over
and above what they already communicated. The information obtained from the

2.7 Evolution of Requirements 27

feedback and survey of VARS needs to be analyzed to remove duplication and
the feasibility of implementation.

2. Feedback/Surveys from tech support staff—Support staff is in the field and
are the first contact with the customers/end users. They would receive issues,
concerns and suggestions for improvement from the customers. Most product
organizations would have a formal mechanism to capture this kind of infor-
mation during their interaction with customers. When we contemplate a product
upgrade, we need to collate all such feedback and conduct a formal survey to
elicit any further suggestions from the field staff to comprehensively capture all
the expertise gained by the field support executives. The feedback and survey
results can be analyzed to finalize upgrade requirements.

3. Customer/market surveys—Customers are the only people in the supply
chain that can provide first-hand feedback. All others can only provide second-
hand feedback. Therefore, we need to conduct customer surveys. These would
validate the feedback obtained from VARs and field support staff.

4. Personal interviews—We need to conduct personal interviews to validate the
findings of various surveys conducted as well as to uncover any biases or
prejudices that have crept into our survey results. We conduct personal inter-
views on a sampling basis using stratified sampling technique.

5. Freezing of requirements—Once we have collected feedback/survey results
from VARS, field support staff and customers, we analyze the results to con-
solidate the requirements and eliminate duplicates. We select the requirements
for the product upgrade based on their feasibility. Then we document the
requirements conforming to organizational standards and subjecting the docu-
ment to the rigor of configuration and change management.

Project development scenario—The end result of software development either
in the product development or project development is a software product. Then
why should we distinguish product development and project development? The
way I distinguish project development from product development is based on the
use of the end product. In the project development scenario, the end product is
proposed to be used by one customer or one set of end users within one organi-
zation. The end product of product development on the other hand, is proposed to
be used in multiple locations, in multiple organizations, and by different sets of
end users. Because of this distinction, the process of obtaining and finalizing
requirements assumes different levels of importance. In a product development
scenario, we need to spend much more time on finalizing requirements because
any mistake committed during this phase would have a strategic impact on the
final success of the product and the survival of the organization itself. Since the
project is for one customer, the preferences of that customer assume paramount
importance. In the project development scenario, we do not have VARS or field
support staff or multiple customers to cater to. We have only one customer and one
set of end users to whom we should listen to and satisfy them through our software
product. In this scenario, we have two classes, namely in-house project and out-
sourced project. In the in-house project, the end product would be used within the

28 2 Understanding Requirements

same organization, even if it is in another department. An outsourced project is one
in which the end product would be used in an organization other than the one in
which it was developed. In outsourced projects, the organization that develops the
product would normally be specializing in software development for other orga-
nizations. In both scenarios, the business analysts would interact with the end users
performing business processes, to elicit, gather and finalize requirements. The
evolution of requirements in these two scenarios is discussed below.

In-house project—new project—The evolution of requirements in in-house
new project would take this course:

1. Proposal by a functional department—A department responsible for a set of
business processes proposes computerization of the processes with a view,
perhaps to increase efficiency, reduce turnaround time or improve quality and
initiates the process. The first step in the process is the definition of the scope of
work and defining the boundaries of the application that is proposed for
computerization. This is the initial requirement. This scope would then be
forwarded to the IS (Information Systems) department to come up with a
budget. The department obtains financial approval for the budget requested by
the IS department and requests the IS department to carry out all necessary
activities to computerize the selected set of business processes. The IS
department may be called by different names in different organizations.

2. User Requirements definition—Business Analysts from the IS department
would elicit/gather requirements from the end users. Elicitation and gathering
of requirements is described in Chap. 3 of this book. The principal methods
used in this scenario are personal interviews and study of procedure manuals,
forms and templates used in the performance of the processes as well as per-
sonal observation to collate the user requirements. All the requirements collated
are analyzed to finalize requirements for the proposed system. Requirements
Analysis is described in Chap. 4 of this book.

3. Finalization of the requirements—The requirements allocated to the pro-
posed system are then documented conforming to the organizational standards.
This document is internally reviewed and approved within the IS department
and is then forwarded to the functional department for review and approval.
The functional department reviews the document and requests clarifications, if
necessary. Normally a meeting takes place between the executives of the
functional department and the IS department, in which the document contents
are discussed and clarifications from both sides are provided. The IS depart-
ment implements any feedback received from the functional department and
obtains the approval from the functional department. This document acts as the
reference between the IS department and the functional department during the
course of the software development. This document would be subjected to the
rigor of the configuration and change management.

In-house project—upgrade—Usually, the software products being developed
and used inside an organization are maintained regularly as needed. The strict
meaning of ‘‘maintenance’’ is to restore/keep an artifact/product to its working

2.7 Evolution of Requirements 29

http://dx.doi.org/10.1007/978-1-4614-5377-2_3
http://dx.doi.org/10.1007/978-1-4614-5377-2_4

state. However, in the software industry, product expansion is also carried out
under the caption of ‘‘maintenance’’. But such product expansions, carried out as
part of software maintenance, are usually minor in nature. When the product is
scaled up significantly, an upgrade project is undertaken. Such major upgrades are
necessitated from time to time and could be to use the newer technologies (such as
web enabling the applications) or newer business scenarios (such as mergers or
acquisitions or a major re-organization, etc.) For an upgrade project undertaken in
the organization, in-house, the requirements would evolve in the following
manner.

1. Proposal by the functional department—The trigger for the functional
department to propose a major upgrade to the software product would be
external usually. The trigger may be availability of new technology, availability
of sparable funds, a change in the business scenario and so on. In such cases,
the functional department would define the scope of work for the product
upgrade and invite the IS department to propose a budget and obtains the
financial approval for the budget. The definition of the scope of work for the
expansion would be the initial set of requirements.

2. Use Requirements definition—Business Analysts would approach the exec-
utives of the functional department and elicit/gather the requirements. In this
case, the elicitation/gathering is limited the expanded functionality only. If the
upgrade is to convert the existing application from an existing platform to a
newer platform, this phase may be avoided altogether except to see if any
additional requirements are necessitated due to the change in the technical
platform. These requirements are analyzed and requirements are finalized for
the project.

3. Finalization of the requirements—These requirements are documented and
are forwarded to the functional department for approval. The functional
department accords approval after getting its feedback implemented in the
document by the IS department. This document is then subjected to the rigor of
the organizational configuration and change management.

Outsourced project—new project—The outsourced project in this context is
the project executed at the vendor’s place for a client. An organization realized the
need for computerization of a set of its business processes, but decided to out-
source the software development portion of the project to a specialist software
development organization. Now, this project is proposed to be executed at the
organization specializing in software development. The requirements evolve in the
following manner in this scenario.

1. Project acquisition—The first step in the project execution is to acquire the
project from an outsourcer organization. The projects are outsourced in dif-
ferent combination of software development phases, such as (a) Requirements,
design, construction, testing and delivery; (b) Design, construction, testing and
delivery; (c) Construction, testing and delivery; (d) Testing and delivery and
any other combination. The projects may be on fixed-price contracts or time-

30 2 Understanding Requirements

and-material priced contracts. Whatever the case may be, the project acquisi-
tion phase would certainly include the definition of the scope of the project,
which is the initial requirement for the project.

2. Requirements elicitation/gathering—During this phase, Business Analysts
from the vendor organization (or internal analysts if requirements definition is
not outsourced) would elicit/gather the requirements from the client executives.
They would be using personal interviews and surveys to elicit the requirements
and study the existing process manuals, formats and templates to gather the
requirements. They would then be analyzed to form the project requirements.
Sometimes the requirements may be provided by the client along with the
purchase order. In such cases, the organization just needs to assess the received
requirements for adequacy and completeness.

3. Analyze the requirements—Subject the collated requirements to analysis to
determine their technical feasibility, eliminate duplicates, group them into
logical groups and prioritize them, Analysis is described in Chap. 4 of this
book.

4. Finalize the requirements—This involves documenting the analyzed
requirements to ensure that they are conforming to the agreed standards and
obtaining internal approvals after due quality assurance process of the
organization.

5. Customer approvals—The finalized requirements would then be submitted for
customer review and approval. The customer would review the requirements
document and request improvement, if necessary, by providing the feedback.
When the customer is satisfied, approval would be accorded to the requirements
document. Now, this approved requirements document would be brought under
the vendor’s configuration and change management process. This document
would be the reference point for all interaction between the customer and the
vendor in matters relating to project requirements.

Outsourced project—upgrade—Outsourcing a major product upgrade to a
vendor is risky as the source code needs to be provided to the vendor to upgrade the
product. It had to be done in the case of Y2 K conversion. Millions of LOC (Lines
of Code) had to be uploaded to vendor’s computers for them to convert it to be
compliant with Y2 K requirements. No major breach-of-trust case was reported
arising out of stealing intellectual property contained in the source code even
though most of the upgrade is carried out overseas. In cases where the upgrade is to
re-develop the code on a new platform, of course, the original source code need not
be given to the vendor. Requirements in this scenario would evolve in this manner:

1. Project acquisition—In this scenario, the definition of scope would be much
more lucid than in the scope definition of a new project. This is due to the fact
that the product is working and the upgrade requirements are better defined. It is
usual to get a list of detailed requirements in the RFP (Request for Proposal)
itself. However, in platform upgrade, requirements may have to be elicited/
gathered from the customer executives. The RFP provides the initial
requirements.

2.7 Evolution of Requirements 31

http://dx.doi.org/10.1007/978-1-4614-5377-2_4

2. Requirements elicitation/gathering—When required, the requirements need
to be gathered in the same way as explained for the new project requirements
evolution in the above section. When requirements need to be elicited/gathered,
they will be collated using personal interviews and surveys as the tools.

3. Requirements analysis—When requirements are provided, they will be ana-
lyzed for their adequacy and completeness and clarifications are obtained. If
there are requirements which are elicited/gathered, they will be analyzed for
their feasibility for implementation.

4. Finalize the requirements—The finalized requirements would then be docu-
mented conforming to the agreed standards. These will be subjected to an
internal quality assurance process and internal approvals need to be obtained.
Then the approved document would be forwarded to the customer for their
feedback and approval.

5. Customer approvals—A Customer would review the requirements document
for the completeness of information and to ensure that the requirements are
properly understood by the vendor. The customer would communicate feed-
back, if any, for implementation and after the document is to their satisfaction,
the customer would accord the approval to the requirements document. This
approved document would be subjected to the rigor of the vendor’s configu-
ration and change management process. This document would be the reference
point for all matters relating to project requirements between the outsourcer and
the vendor.

Of course, there would be variations to the evolution of requirements from one
organization to another. What is presented here are the typical scenarios. Another
aspect to be noted is that the projects are of various types. There are full life cycle
projects, part life cycle projects, testing projects, conversion projects, porting
projects, migration projects and so on.1 Whatever the project type, requirements
are the first step in the project execution and any error committed in this phase
would have a recurring impact on all the subsequent phases of the project.

1 Interested readers are suggested to read the book ‘‘Mastering Software Project Management:
Best Practices, Tools and Techniques’’ by Murali Chemuturi and Thomas M. Cagley, Jr.,
published by J.Ross Publishing, Inc, USA, 2010.

32 2 Understanding Requirements

Chapter 3
Elicitation and Gathering of Requirements

3.1 Introduction

The Dictionary meaning of the term ‘‘elicit’’ is to ‘‘draw forth or bring out’’ some-
thing that is latent or potential or ‘‘call forth or draw out’’ as information or response.
This connotes a dialog in which information is drawn out from a party possessing the
needed information.

CMMI v 1.3 defines elicitation as ‘‘Using systematic techniques such as proto-
types and structured surveys to proactively identify and document customer and end-
user needs’’. This definition too indicates a dialog between software developers and
customers albeit using of techniques like prototyping and surveys to draw out the
needed information.

The Dictionary assigns multiple meanings to the term ‘‘gather’’. One of them is
‘‘to bring together’’ as in ‘‘tried to gather a crowd’’. Another meaning is to pick up or
amass as if ‘‘by harvesting/gathering ideas for the project’’. Another one is ‘‘to effect
collection of’’ as in ‘‘gather contributions’’. As you can see, the term ‘‘gather’’
connotes collecting things which are available but scattered over the place.

While most technical documents on requirements management combine both
elicitation and gathering together, they are distinct from each other.

Elicitation is first hand collection of information from individuals who are directly
concerned with the project, using interviews. It is from primary sources. Primary
sources include end users, experts, and brain storming.

Gathering is an indirect collection of information from sources other than human
beings. It is from secondary sources. Secondary sources include documents, existing
applications, and standards and guidelines.

Elicitation and gathering of requirements is the precursor for all requirements
management activities. Both these techniques are widely used by the software
development industry. In some cases, elicitation precedes gathering and in some
cases gathering precedes elicitation. In a few cases only one (either elicitation or
gathering) technique may be used. Scenarios, in which neither of these techniques is

M. Chemuturi, Requirements Engineering and Management for Software
Development Projects, DOI: 10.1007/978-1-4614-5377-2_3,
� Springer Science+Business Media New York 2013

33

used, may exist, but rarely. It may happen that the customer provides a compre-
hensive set of requirements to the development team in which case, the team can start
software design activity. Normally, the development team may have to add some
ancillary functionality to the requirements provided by the customer before
embarking on the software design activity. It is possible that elicitation may not be
used but some sort of gathering needs to be used in software development activity,
especially when the customer provides a comprehensive set of core functionality
requirements.

We collect the following information for each of the processes, to be able to
analyze it and prepare a requirements specification document that can guide the
downstream activities of software design, construction and testing.

1. The list of processes within the application boundary
2. The four attributes for each process, namely, the inputs, the outputs, the

transformation and the verifications carried out on the inputs
3. The trigger for the process
4. The exit point for the process

Now let us look into each of these techniques in a detailed manner.

3.2 Elicitation of Requirements

As noted earlier, elicitation is obtaining information from primary sources of
information. Merriam Webster’s Dictionary (http://www.merriam-webster.com)
provides the following definitions of the word ‘‘elicit’’ among others:

1. ‘‘To draw forth or bring out (something latent or potential)’’
2. ‘‘To call forth or draw out (as information or response)’’

The examples, among others, provided are:

1. She has been unable to elicit much sympathy from the public
2. My question elicited no response

The connotation that is implied in the term ‘‘elicitation’’ is that information is
obtained using personal interviews as the vehicle for obtaining the required
information.

The following techniques are used to elicit requirements.

1. Personal Interviews
2. Questionnaires
3. Customer/market surveys
4. Observation
5. Demonstration of product prototypes or the product itself
6. Brainstorming

Now let us look at each of these techniques in a little more detail.

34 3 Elicitation and Gathering of Requirements

http://www.merriam-webster.com

3.2.1 Personal Interviews

Personal interviews are perhaps most extensively used especially in the case of
project software development.

When software is developed in-house, the Business Analysts from the IS
department meet the end users to collect requirements using personal interviews.
Personal interviews are the primary means of capturing project requirements in the
case of in-house software development projects.

When software development is outsourced, the vendor receives a set of top
level rudimentary requirements which need to be developed further so that soft-
ware design can begin. The development team studies the preliminary require-
ments and identifies gaps–gaps between what is provided in the preliminary
requirements and the granularity needed for commencing the software design. It is
sometimes possible to bridge the gaps using other methods like emails and phone
calls when the identified gaps are minimal or are of simple nature. But when the
gaps are significantly many, or are of complex nature (that is, the development
team is not able to understand fully the implications of the preliminary require-
ments received), personal interviews become necessary. Unless proper care is
taken, it is easy to waste time and effort on eliciting information using personal
interviews. The following steps would aid in the collection of right information
using personal interviews:

1. Planning of personal interviews—Planning involves identifying the resources
required to achieve the objective. In this case, it is the concerned executives
who can provide necessary information, time and effort required to collect the
information as well as logistics necessary to conduct the interviews and to sift
the information collected. We begin by making a list of individuals that can
provide relevant and useful information. We then estimate the clock hours
needed to elicit information from each of those executives. We also estimate
the time and effort required from us to prepare for conducting the interview and
the type of persons that can conduct the interview and elicit the requirements.

2. Study the preliminary information and relevant subject literature to
understand the domain at hand—If we are already knowledgeable in the
domain at hand, we may perhaps skip this step. Otherwise, it pays to study the
preliminary information provided by the client and identify the gaps. If there is
no preliminary information from the client, we may study the literature avail-
able on the subject and this study could include running demos of similar
products developed earlier in our organization or demos available on the
Internet. This will help us in becoming familiar with the jargon of the inter-
viewee and aid in quick understanding of the responses received in the inter-
view. This is a very important step in eliciting requirements using personal
interview technique. Failures in eliciting requirements using personal inter-
views mainly stem from skipping this step or performing this step in a very
cursory manner. A well prepared interviewer can obtain all the information in

3.2 Elicitation of Requirements 35

one iteration where as an ill-prepared person would need multiple iterations to
obtain the same amount of information.

3. Prepare a set of questions to ask to aid in the structured elicitation of
information—Whether it is from our existing knowledge of the domain or
from the study of literature and demos of similar software products, as well as
from the gaps identified, we need to prepare a set of questions to guide us in
conducting each of the interviews effectively. We need to prepare questions in
such a way that each question would elicit information about one topic at a
time. We can also ask corollaries as necessary to ensure completeness of the
provided information. We record the questions in a format or template designed
for conducting the interviews so that we can log the information received
against the relevant question. It pays rich dividends if we get the question set to
a peer review and implement the feedback and thereby improve the quality of
questions. On each topic, in order to have complete information, we need to
ask:

a. The trigger that activates the process
b. The inputs for the process (data items)
c. The outputs/deliverable of the process (data items)
d. The validations that need to be carried out on the inputs to ensure that

proper inputs are fed to the process

4. Prepare formats and templates to capture information efficiently—We
need to prepare the formats and templates for capturing the information
effectively during the course of the interview. It is tempting to go into a per-
sonal interview with only white paper scribbling pad, pencil and an eraser.
Doing so, we would waste, not only our time but also of the interviewee. It is
normal in these days to use a laptop for capturing information during interview.
Paper-based templates and formats are passé. Create special folders for cap-
turing the information. Copy the formats and templates into those folders. Fill
in the prepared questions into those formats and templates as appropriate.
Arrange a peer review to ensure preparedness before we actually begin the
interview. A suggested template for capturing the process information is given
as Table 3.1. This may be used while carrying out personal interviews to
capture the process information.

5. Fix appointments with the identified executives—most executives providing
information for capturing the requirements do prefer to plan the session so that
they can arrange their schedule and ensure that no interruption is caused. You
may call the executive and fix up the date and time of interview. Sometimes,
you may need to speak with the secretary, especially when you are trying to
interview senior management personnel. You may use email or a corporate
calendar also to fix up an interview, if the concerned executive is comfortable
with such an arrangement. In today’s automated environments, you may need
to put up a request for an appointment on the organization’s calendar system.
Whatever be the method may be, ensure to set-up the appointment so that when
you arrive for the interview, the executive is ready to give you the information.

36 3 Elicitation and Gathering of Requirements

Table 3.1 Template for capturing process information

3.2 Elicitation of Requirements 37

Having an appointment also enables the executive to be prepared for the
interview as well as to make the templates/formats used by the company
available to you.

6. Conduct the interview effectively—It is often the case that the personal
interview goes astray and takes much more time than envisaged. It is easy to get
distracted from the main objective of the interview which is to obtain infor-
mation about the processes being performed at the workstation. Since human
beings are involved, empathy and gentleness are required while conducting the
interview. Here is where preparation about the processes helps in gently
questioning and obtaining the right information. When you conclude the
interview, you must have all the information (inputs, outputs, process steps, and
data items) of all processes performed by the person. Here are some suggestions
on conducting an effective interview:

Table 3.1 continued

38 3 Elicitation and Gathering of Requirements

a. Be on time so that the executive would not be kept waiting.
b. Ask questions in the gentlest manner possible and listen attentively and

carefully so that the need for repetition is minimized
c. Make notes as you listen and understand the explanation. If you are

recording the interview, inform the interviewee of the fact as some people
may object to being taped. The issue with audio recording is that we cannot
quickly check if we have all the information at the end of the interview. To
do so, you need to playback the entire interview! So, as you record the
interview, be careful to capture all the required information.

d. Draw rough flow charts to clarify your understanding of the process steps
and get them confirmed by the interviewee.

e. Never dispute or pick an argument with the person. If you get the feeling
that the person is not right, you can get it clarified from his superior or with
the same person in a second round. But if you get into an argument, the
interview goes astray.

f. When in doubt, describe your understanding and ask the individual to
confirm your understanding rather than ask the person to repeat.

g. In some cases, it becomes necessary to have another round of discussion,
fix up the next appointment before you conclude.

h. Do not forget to collect the forms used by the individual. These help you to
understand the person’s inputs and outputs.

i. When you collect the forms or note down the data items, ask for the type of
data and its maximum length. Non-software personnel are apt to give the
average length, but it is necessary to provide for the maximum length in the
database.

j. When you have to terminate an interview before capturing information
about all the processes performed by the individual, terminate after capture
of complete information about a process. Terminating midway for a process
tends to repeat information capture for the process all over again.

7. Capture information—While conducting the interview, the information pro-
vided by the individual may be captured using the template provided in
Table 3.1. Capturing information while the interview is in progress, may force
you to hurry in noting down the details. Unless one is adept in speed writing, it
would be difficult to capture the information provided by the interviewee by
hand. It may be a good idea to use a tape recorder of some kind or use a laptop’s
sound recording facility to capture the voice of the interview so that it can be
replayed later, to capture information into the template.

8. Check for completeness of information using organizational checklists
9. Sift the information collected into requirements, information for filling in the

identified gaps and data useful for software design such as workflows.

3.2 Elicitation of Requirements 39

3.2.2 Customer/Market Surveys

This is perhaps the most extensively used technique to capture the requirements for
a product and is used widely in the software product development scenario. Sur-
veys generally collect information from a wide audience. The objective of a survey
can be to obtain information, or prove/disprove a hypothesis, to learn the social
trend, to learn how a particular product is being used and so on. The survey used in
requirements management is to obtain information from the targeted users of the
proposed product. The information thus obtained shall be analyzed to develop the
requirements for the proposed product. Surveys elicit opinions from both the
existing customers and the people forming part of the target market. Normally the
following categories of persons would be approached to provide the information:

1. CIOs (Chief Information Officers) or whoever is looking after the computer
departments of the organization, in case the proposed product is focused on
assisting the information departments in efficiently managing the IS (Infor-
mation Systems) functioning.

2. The general public, if the proposed product is targeted at the public at large.
3. Existing customers, if an existing product is proposed to be upgraded with new

functionality.
4. VARs (Value Added Resellers) both for developing a new product or upgrading

an existing product. For a new product, the VARs would provide valuable
information based on their experience with the other products in the market.

5. Internal product technical support staff for improvements to solve the problems
they faced in the field.

6. Consultants of specialized fields to provide information about the product
requirements in their specialty.

Normally surveys are conducted in three ways:

1. Face-to-face method—in this method, an individual representing the organi-
zation would approach the members of the selected audience and personally
interview the person to obtain necessary information. This would be used,
sparingly as it is very costly compared to the postal survey. When it is expected
that the responses to a questionnaire would not be satisfactory and supple-
mental questions are needed to elicit complete information, this technique
would be used. The flip side of this technique is its high cost as higher cost
individuals are needed to interview and obtain the information. Another dis-
advantage is that the number of responses would be far less compared to postal
surveys. It is still used for a few cases to check the efficacy of the findings of a
postal survey. This technique uses the methodology described in Sect. 3.2.1.

2. Postal method—in this method, questionnaires are mailed/emailed to the target
participants and responses are collected. When mailers are used, it is customary
to provide addressed and stamped envelopes to mail back the responses so that
the respondent is not required to spend money for mailing back the response.
Questionnaires are detailed in Sect. 3.2.3.

40 3 Elicitation and Gathering of Requirements

3. Web based surveys—This is the latest method being used by software product
developers. The main advantage of this method is that collation of information
from the survey is automatic and immediate. In both the above methods,
namely, face-to-face and postal surveys, the results need to be entered into a
database to enable analysis. In this case, the results are automatically and
immediately stored into the database and the turnaround time is drastically
reduced. Some precautions are necessary to limit the participants to a geo-
graphic region. Otherwise, we may receive responses from all over the world.
In the case of face-to-face and postal surveys, the participants are automatically
limited to the selected set or respondents. But in web based surveys, we need to
devise mechanisms to limit the participants. Often, web based surveys are
coupled with email invitations to participate in the survey so as to limit the
participants. In addition to the cost of developing the questionnaire, the cost of
the software necessary to conduct the survey would be involved. Alternately,
we may use specialized providers of web based surveys, who, fortunately, are
available and provide the service at an affordable cost. This technique also uses
questionnaires detailed in Sect. 3.2.3.

3.2.3 Questionnaires

Questionnaires are one of the very popular methods of eliciting requirements.
These are used mostly in the software product development scenario. The product
management team or whoever is looking after the development of requirements for
the proposed product designs a suitable questionnaire. Normally, most of the
product development scenarios are based on an existing product. Therefore, the
questionnaires enumerate all the existing features of the product as well as new
ones and the respondent is requested to:

1. Set the order of importance of the features
2. The features that are most essential
3. The features that are not essential
4. The features that may motivate the respondent to either buy or switch to the

new product
5. Any other additional features the respondent would like to see in the new

product.

Sometimes, an incentive to respond is provided to obtain maximum response
for the questionnaire. Normally the incentive would be a draw of lots for a prize or
a free report or something like that.

In a project development scenario, when requirements are elicited by personal
interviews detailed in Sect. 3.2.1 above, questionnaires could be used to aid the
interviewer to obtain full information from the interviewee. Here, the question-
naire is not administered as in an examination with the respondent filling in the

3.2 Elicitation of Requirements 41

appropriate answers. Here the questionnaire acts as a sort of tickler so that the
interviewer extracts all the information available with the interviewee.

3.2.4 Observation

In some cases, the analyst simply observes the operations while they are taking
place and collects the information. Take for example,

1. the point of sales in a super market/mall
2. a busy bank teller
3. a guest registration counter in a busy hospital/hotel
4. an online registration/reservation system,
5. a customer support person/help desk
6. an enquiry/assistance counter in a busy public facility including bus stations,

railway stations, airports etc.
7. working machines in the case of real time software development
8. or any other such scenario.

In all the above scenarios, the observation method comes in handy.
The counter executive would be able to explain his/her version, but there is

another side that of the customer/patient, who are not part of the organization.
Customer/patient are external to the system but are impacted by it. If the system
does not take their concerns into consideration, it may turn them off from the
organization. Customers’ views can be obtained in such cases, but observing a few
would be helpful. Personal observation supplements/confirms the information
obtained by surveys and personal interviews. Personal observation is also helpful
in confirming the efficacy of the system after pilot implementation so that
improvements, if any required, can be implemented before the final roll out.
Observation helps in obtaining the following information, first hand:

1. Response times needed from the system
2. Ease of use of the system
3. Efficiency of the system in practical use
4. The additional help needed by the users while utilizing the system
5. Productivity of the end-user.

The information obtained from personal observations would be leading to
ancillary functionality requirements rather than core functionality requirements.

3.2.5 Demonstration of Product Prototypes

Demonstration of product prototypes is more often used to finalize requirements
than to obtain original requirements. Often times, the customer is not willing to

42 3 Elicitation and Gathering of Requirements

sign off on a requirements document as they are not well versed with the software
development methodologies and techniques such as DFDs (Data Flow Diagrams),
ERDs (Entity Relationship Diagrams), Use Cases, Class Diagrams etc. They are
afraid that they are approving something they do not understand and are unsure if
their stated requirements are included. Therefore, software development organi-
zations often build a prototype of the proposed system as they understood and
demonstrate it to the end-users. The end-users look at the prototype and provide
feedback on:

1. the missing features, if any, from the stated requirements
2. modification of the implementation of their requirements to suit their needs
3. wrong implementation of their requirements, if any
4. any additional requirements that were not included earlier

Prototypes used for this type of demonstrations are of two types,

1. Use and discard prototypes—these are built using a graphic tool like Visio or
a presentation tool like PowerPoint, or a spreadsheet like Excel. Once all the
requirements are obtained, the prototype would be discarded. That is, it would
serve no other purpose than to give an idea to users and obtain their feedback
and approval.

2. Use and improve prototypes—here, the prototype would be a mock up on the
actual development platform. The skeleton of the product would be built with
not much code behind the screens or reports but enough to demonstrate the
product to the end users. It would consist of screen layouts and report formats.
Screen layouts enable a user to visualize how the information input/enquiries
would look like and to determine if they meet their requirements. Report lay-
outs enable them to analyze the information outputs and to determine if their
requirements are understood by the developers in the right perspective.

When the initial requirements are very fluid and unreliable, use and throw
prototypes are used. But if, the initial requirements are more reliable, use and
improve prototypes are used. However, it is the project team’s choice to use either
type of prototype. One additional advantage of prototyping is that the software
design also gets finalized by the time requirements are finalized. The concomitant
disadvantage is that effort must be expended on software design right at the time of
eliciting requirements.

Prototypes are used in project development scenarios largely. Prototypes are
also used when developing a new product the like of which does not exist in the
market.

3.2.6 Product Demonstrations

Now a day, quite a few COTS products are available with comprehensive func-
tionality with built in best practices for such areas as ERP (Enterprise Resources

3.2 Elicitation of Requirements 43

Planning), CRM (Customer Relationship Management), SCM (Supply Chain
Management) etc. A number of organizations are using these readymade products
to automate their operations. But often times, some amount of customization in the
product would be needed to make it suitable to the unique needs of the specific
organizations. In these cases, demonstration of the product would be used to elicit
requirements for the customization. In this case, a Business Analyst proficient in
the product as well as the functional domain would guide the audience through all
the features of the product. The users would then point out the areas that need
customization to suit their organization. These aspects would be noted by the
Business Analyst for later analysis and freezing of the project requirements.

3.2.7 Brainstorming

Brainstorming has a variety of uses but in the context of requirements engineering
and management, it is used mainly in generating initial requirements in the product
development scenario. For a new product that is not existing in the market, it
would aid in enumerating the features and for an existing product, it aids in
enumerating the additional features. In brainstorming, a group of people knowl-
edgeable on the subject gather in an informal environment and air their views on
the subject at hand. The idea is to give wings to each person’s imagination so that
the best information can be brought out. No one in the group would criticize
other’s view except to the extent of pointing out any blatant mistakes. All views
are recorded for later analysis. The analysis would sift out the grain from the chaff
and cull the right requirements for use.

All the requirements captured through elicitation are analyzed. Analysis of
requirements is covered in Chap. 4. The analysis would shortlist the requirements
for the project. These requirements combined with other requirements from other
sources including gathering of requirements would be documented and finalized
for the project.

3.3 Gathering Requirements

Merriam Webster’s Dictionary (http://www.merriam-webster.com) defines the
word ‘‘gather’’ to mean ‘‘to pick up or amass as if by harvesting (gathering ideas
for the project)’’; ‘‘to scoop up or take up from a resting place’’ among others for
using that word as a transitive verb. As examples, it gives:

1. ‘‘Give me just a minute to gather my things and then we can leave’’
2. ‘‘The child is gathering flowers to give to his mother’’
3. ‘‘The police are continuing to gather evidence relating to the crime’’

44 3 Elicitation and Gathering of Requirements

http://dx.doi.org/10.1007/978-1-4614-5377-2_4
http://dx.doi.org/10.1007/978-1-4614-5377-2_4
http://www.merriam-webster.com

I gave these examples to enunciate the difference between ‘‘elicitation’’ and
‘‘gathering’’ of requirements in the context of software development. Elicitation is
to obtain by enquiry. Elicitation is the first hand collection of the information from
either the individuals performing the business processes or by observation. On the
other hand, gathering connotes that something is already available, scattered or
lying around and that it is there to be collected. Thus, gathering, basically, is
collecting information from secondary sources which are published materials,
records, process documents and so on. In requirements management, both elici-
tation and gathering techniques are used to collate information to analyze and
finalize requirements for the proposed software product. Even in organizations that
do not use documented processes to guide the performance of business processes,
Business Analysts need to refer to formats and templates for gathering information
about the formats of the reports and enquiries to be included in the proposed
software product.

The following are some of the documents that we study to gather project
requirements :

1. Organizational records—These are logs of activities carried out in the orga-
nizations. They give information for the design of database, maximum lengths
to be provided for various fields, the size to which the data can grow over a
period of time and so on. The following information becomes available from
organizational records:

a. Number of tables that may have to be designed—each type of record can
roughly correspond with a table in a database. Sometimes, for example a
purchase order in a material management application, can spawn out to
more than one table.

b. Number and type of fields in various tables—each column in a record can
roughly correspond with a filled in table. It is also common in manually
maintained records to include more than one data item in one column (such
as address) against a row, in which case, each distinct data item corre-
sponds to a field.

c. Maximum lengths for each of the fields—Often times, the end users specify
the average length for a field than the maximum that may occur. Records
are one good source to determine the maximum length necessary to hold
data in a field.

d. Relations between various tables—study of records would reveal the
information drawn from other records which could help in determining the
relations between tables in the database.

e. Size of tables—the number of records gives an idea of the number of
records and the time frame in which they accumulated. Extrapolating these
numbers, we can determine the size to which each table can grow over a
period of time. This information coupled with the organization’s data
retention policies can help us determine the database growth strategies.

3.3 Gathering Requirements 45

2. Process documentation—Organizational process documentation would usu-
ally consist of processes, procedures, standards, guidelines, SOPs (Standard
Operating Procedures) with processes at the highest level in each category.
Studying these documents would give us a complete idea about the organiza-
tional functioning and how the business processes would be performed by
individuals designated for each process. When an organization has a well
documented process which is followed scrupulously in the organization, the
need to conduct personal interviews would be minimized. They provide almost
all the information necessary to finalize the requirements.

3. Standards, and guidelines—Standards and guidelines certainly form part of
process documentation but deserve a special mention because they mandate
how business processes are to be performed in the organization without
exceptions. Standards, and guidelines give us the idea about the business
processes of the organization and would give detailed steps in each of the
processes. This information gives us the details about the processes associated
with input, output and associative processes. We may need a supplemental
input to the information contained in other process documents to finalize
requirements but standards and guidelines are usually self-contained.

4. Customer satisfaction surveys—These form part of organizational records but
deserve special mention as they may bring out inefficiencies inherent in the
process. The information contained in these records may be used to enquire if
any process changes are necessary before the process is computerized/
upgraded.

5. Customer complaints—Often, customers of an organization do not wait to
voice their complaints till they receive a customer satisfaction survey format.
While most of this information could be found in the customer satisfaction
surveys, there may still be additional records of customer complaints. These
also give us information about the possible improvements in the system which
can perhaps be implemented in the proposed system.

6. Publications/reports/case studies—on any given subject, we do have many
books, best practices reports, experience reports and so on produced by experts/
industry associations/consultancy organizations available for study. For
example, we now have a host of reports on the implementation experience of
ERP (Enterprise Resource Planning) which are very helpful in finalizing
requirements of a proposed ERP implementation project. Similarly there are
organizations such as Gartner Group, Forrester Research, Technology Evalu-
ation Centers which bring out study reports which are very helpful, for final-
izing requirements, especially in product development scenarios.

Thus to reiterate what was stated at the beginning of this section, gathering
requirements is collecting information from secondary sources such as documents.

46 3 Elicitation and Gathering of Requirements

3.4 Elicitation and Gathering in Agile Projects

Agile methodology places more emphasis on satisfying the customer than on
documentation. Agile methodology also places emphasis on co-location of the
customer with the development team. When the project is executed in-house, this
is met easily. But when the project is offshored, this becomes a bit more difficult to
achieve. I have seen, what is called ‘‘virtual co-location’’ of the customer. That is,
the customer is in his usual location but is available over phone, chat, email and
video conferencing to the development team even though both are separated by
mighty oceans. And the interesting aspect is that it seems to be working!

Another aspect stipulated by the Agile methodologies is that the iteration is
short generally not exceeding four weeks. So, the practitioners of Agile method-
ologies aver that it is not really necessary to elaborately document the require-
ments. We may state that the Agile practitioners do not adequately document the
requirements but they do capture project requirements, iteration by iteration. They
mostly use the elicitation methodology for capturing the project requirements. Still
gathering is used, albeit, to a lesser extent especially for report layouts.

How Agile practitioners document their project requirements is a topic covered
in the chapter on establishment of project requirements.

3.5 Elicitation and Gathering in COTS Product
Implementation

There are many COTS products in the areas of ERP, CRM, SCM (Supply Chain
Management), EAI (Enterprise Architecture Integration), Telecom and so on.
These products comprise of the best practices culled from their respective industry
and cover all functional areas of the selected domain. While so, very few orga-
nizations, if at all, can implement the product in total, without having to modify
any of their existing business practices. In most cases, some sort of customization
would be necessary in the product as well as in the practices. As the products are
delivered in the form of executable code, normally a layer would be built over the
standard version using the tools provided by the product to suit the practices of the
specific organization.

The project requirements for this scenario comprise of the areas of the product
which need to be modified for the organization as well as the details thereof for
building the layer above the product to meet those needs.

Now, capturing project requirements in this scenario needs special qualifica-
tions from the Business Analysts. The Business Analyst ought to be proficient in
the product functionality as well as the functional domain.

Both elicitation and gathering would be useful in the projects for implementing
the COTS products.

3.4 Elicitation and Gathering in Agile Projects 47

First, if there are any process documents detailing the business practices of the
organization are available, they would be studied to capture the gaps between the
product and the business practices. Then, product demos would be conducted with
the concerned functional executives to see how many gaps need product cus-
tomization and how many business practices can be modified by the organization.
Once this is carried out the project requirements would be ready.

It may sometimes happen that there is little or no useful process documentation
available. In such cases, personal interviews and product demos would be the
methods to capture the project requirements.

Perhaps, this is the only scenario, in which project requirements are captured by
demonstrating the product itself!

3.6 Elicitation and Gathering in Testing Projects

Testing projects differ from other types of partial life cycle projects. In partial life
cycle projects, the aim to produce working and defect-free code starts at some
point in the software development life cycle. But in the case of testing projects, the
software is already developed. The objective of the project could be different for
each testing project. The objectives of testing are:

1. To uncover all lurking defects
2. To certify a product as defect-free, virus-free, or malware-free and so on
3. To benchmark a product vis-a-vis other comparable products
4. To accept software from a vendor and start using it

The testing that is carried out concurrently while developing the software is
normally referred to as embedded testing. The testing carried out at the end of
software development on the final product is normally referred to as product
testing. Embedded testing is carried out by the organization which is developing
the software. Product testing is sometimes outsourced. Besides unit testing, inte-
gration testing, system testing and user acceptance testing there are umpteen
variety of tests that are conducted. These include stress testing, load testing,
parallel testing, concurrent testing, end to end testing, negative testing, intuitive
testing and so on. A testing project could include any combination of those tests.
However, when the testing project is initiated, one thing is certain and that is, the
code is ready and working. Perhaps, if it was a process-driven project, the
requirements and design documents also would also be available.

So what sort of requirements would be needed for a testing project? We can
enumerate them below:

1. The type of tests to be conducted as part of the testing project
2. Information for planning the specified tests
3. Information for designing the test cases
4. Information for pass/fail decisions

48 3 Elicitation and Gathering of Requirements

5. Process for ensuring the quality of the testing process
6. Defect reporting and fixing strategy
7. Regression testing strategy
8. Constraints of time, budget etc.
9. Progress reporting mechanisms

Now, all this information needs to be collected for executing the testing project.
This information may be available in project documents or it may have to be
elicited from the concerned executives. So, both elicitation and gathering may
have to be used in testing projects for capturing the project requirements.

I had seen some testing projects being outsourced without any specifications or
requirements or objectives being specified. They simply want the product to be
tested and certified. Of course, the testers can point out defects lurking, if any, in
the product. All the freedom is given to the testers to choose the type of tests they
like to conduct, the method of testing and the test cases design. In such cases,
brainstorming also would be a technique to generate project requirements.

3.7 Elicitation and Gathering in Software Maintenance
Projects

Software maintenance is said to be consuming about 50 % of a software product
life cycle. In some cases, it crossed the 50 % of the life cycle especially in the
mainframe COBOL products developed during the sixties and the seventies.
Software maintenance work may be carried out in-house or it could be outsourced.
When outsourced, the software maintenance project would have an overall con-
tract for the project comprising of the rates, time booking, process for resolution of
maintenance work requests, turnaround times, prioritization rules and so on. Then
each individual work request would be over the phone, in email or as a formal
documented request. Both elicitation and gathering are used in software mainte-
nance projects. When maintenance is carried out in-house, the formal documen-
tation is not rigorously enforced. An informal or barely formal information is
given to the IS department which deputes a Business Analyst to elicit require-
ments. Therefore, elicitation of requirements is used on more occasions than
gathering. Some organizations, especially large ones, do use very formal main-
tenance work requests and in such cases, even in in-house software maintenance,
gathering is the most extensively used technique for capturing project require-
ments. In outsourced projects, the outsourcer and the vendor could be separated by
seven seas. Personal elicitation is almost ruled out except for telephonic elicitation.
As there is a vendor—vendee relationship involving payments, estimation and
approval of estimates comes in. So, formal maintenance work requests are the
mostly used form of communication. These maintenance work requests would

3.6 Elicitation and Gathering in Testing Projects 49

contain detailed requirements. The vendor needs to ensure that the requirements
spelled out are complete and adequate to carry out the work. Therefore, gathering
is used more extensively than elicitation.

3.8 Elicitation and Gathering in Real Time Software
Development Projects

Real time software, embedded software and firmware are utilized in controlling
some sort of hardware. Real time software could run on computers while embedded
software and firmware are usually on chips. These projects differ from the projects
that produce commercial business process software. For one thing, these software
products have very stringent constraints on usage of resources (CPU, RAM, and
storage) than in commercial software products. Second, the response time
requirements are very critical. The tolerance allowed in the specification of response
times is very narrow. Those response times must be met. The requirements come not
only from the end user but also the agencies that supply the hardware on which the
software resides or functions. Elicitation of requirements from the users as well as
the hardware suppliers also need to be carried out. Study of catalogues, product
specifications, and component literature is also of paramount importance in cap-
turing the requirements. Sometimes, the products using this kind of software are in
fiercely competitive markets. Examples are cars, washing machines, entertainment
products like, TVs, DVD players, and set top boxes. In these products, even the cost
(money) becomes a constraint and a requirement, which needs to be met by the
product. By making the software costlier, the product may lose to competitors in the
market as total product cost rises. And missing a requirement could cause the
product to lose out in the market on the features front. So, capturing project
requirements in these projects is a very delicate balancing affair between capturing
comprehensive project requirements and the ability to meet the constraints. Gath-
ering assumes more importance than eliciting in these projects.

3.9 Elicitation or Gathering?

I have come across a misconception especially among software development
fraternity that elicitation is the only technique for capturing project requirements.
The reality is different. Both are used extensively in the industry. In most scenarios
of requirements management, both elicitation and gathering are used in varying
degrees. Both are equally important elements of capturing project requirements for
the proposed software product. In the case of in-house project development,
elicitation is more extensively used to capture project requirements than gathering.
In outsourced project development, the requirements are usually supplied to the

50 3 Elicitation and Gathering of Requirements

vendor by the outsourcer. So, the vendor does need not to do much in terms of
requirements capturing other than to ensure that the supplied requirements are
comprehensive for each of the requirements. In a product development scenario,
gathering is utilized much more extensively than elicitation to capture project
requirements. It is not a question of elicitation or gathering, it is a situation of
elicitation and gathering for capturing project requirements.

3.10 Deliverables of Elicitation and Gathering

What are the deliverables of the elicitation and gathering activities? Perhaps,
‘‘deliverables’’ is not the right word because the end result of these activities would
not be in a presentable form. The deliverables of these activities are still in
intermediate form needing further transformation. Information is transmitted by
the individuals performing business processes to Business Analysts. The following
information would be available when elicitation and gathering activities are
completed:

1. Notes taken during the personal interviews
2. Responses to questionnaires administered personally
3. Responses to questionnaires administered using the postal method
4. Responses to surveys
5. Formats and templates used in performing the business processes obtained

from executives performing those processes. These would also contain all the
data items used in the performance of the processes

6. Information culled from studying the organizational records
7. Organizational process documentation, standards and guidelines
8. Flowcharts of process steps
9. List of inputs, outputs and associative processes performed in the organization

for the proposed software development
10. Information/notes on how the inputs are converted into outputs
11. Analyses to be carried out on the stored data for preparing the management

information
12. Details of required reports for the senior management of the organization.

Of course, all this information would be in raw form, that is, not properly
documented/formatted for others to understand and work with. The information
can be properly understood and interpreted by the Business Analysts who collated
it. When this information is subjected to analysis, it would come to a form that can
be used in the down the line activities. We are however, ready for the next activity
of requirements analysis.

3.9 Elicitation or Gathering? 51

3.11 Pitfalls in Requirements Elicitation and Gathering

Requirements management is one of the concern areas of the software develop-
ment. It is also one of the major causes of the failure of the software development
projects. Assuming that requirements in the context of software development are
understood in their right perspective, the following are the pitfalls in elicitation and
gathering of requirements :

1. Untrained personnel being used as Business Analysts is one major pitfall.
Originally Systems Analysts (individuals from the software development fra-
ternity who began as programmers and are promoted over a period of time)
were capturing project requirements. Presently, Business Analysts who are
from functional domains are capturing project requirements. Of course, the
breed of Systems Analysts is not extinct. When Systems Analysts capture
requirements, design considerations creep in and when Business Analysts
capture requirements, budgetary and domain considerations creep in. In the
present day, Business Analysts are drawn straight out of business management
colleges and put on job. This is one major concern. A new-entrant fresh-out-of-
college, even with training on requirements management, would not be able to
capture requirements in their entirety. Either a Systems Analyst or a Business
Analyst, should have put in a few years of working experience in their
respective fields, before imparting training and putting them on requirements
elicitation and gathering activity. This is one major pitfall in requirements
elicitation and gathering.

2. Bringing in consideration of software design while capturing project
requirements—This is another major pitfall especially when the requirements
capturing is carried out by Systems Analysts. Requirements capturing is con-
cerned with ‘‘what’’ needs to be achieved and design is concerned with ‘‘how’’
to achieve it. Mixing ‘‘how’’ with ‘‘what’’ causes us to miss some vital infor-
mation that is essential to fulfill the core functionality of the proposed software
product. When capturing the project requirements, we need to take a user’s
view point. Often times, because of their proximity to software development,
the Systems Analysts tend to view the requirements from the software point of
view. When this happens, we tend to fit the requirements to the software where
as what we ought to be doing is simply capturing the requirements. Whether the
captured requirements fit the possible software design is to be considered
during requirements analysis stage. We tend to forget that software is proposed
to be developed to fulfill the performance of a set of selected business processes
but not to give a software product and tell the users to fit their working to the
software. This approach of bringing in the design considerations into require-
ments capturing inhibits the users from giving their view point
comprehensively.

3. Bringing in the considerations of time and budgetary concerns during the
process of elicitation and gathering of requirements—Business Analysts,
especially in COTS product implementation products, take this excuse to

52 3 Elicitation and Gathering of Requirements

persuade the users to accept the features in the product than to customize the
product. How to manage the constraints of time and budget is a case for project
management but not for the requirements capturing. This pitfall can be over-
come by distinguishing the requirements capturing from project management
considerations.

4. Not preparing well when beginning the personal interviews—Personal inter-
views remain one of the major source of requirements elicitation especially in
the project development scenario and is perhaps the only scenario in agile
projects. But if we need to elicit information from human beings, preparation is
necessary. The users are not well versed in the information requirements of the
software developers. Usually, the end users start by narrating the work they do
and their concerns and issues. Unless they are carefully and tactfully guided the
required information may not be forthcoming from them as they do not know
what to give out. So it behooves on the Business Analyst to prepare well before
interviewing a person to capture requirements and be ready with right questions
to elicit appropriate responses. Asking a wrong question would elicit a wrong
and inappropriate response and derails the interview itself. A Business Analyst
also has to prepare to ascertain if the user is providing right information or not.
If not, the requirements would all be wrong. Business Analysts or whosoever is
entrusted with the job of capturing project requirements ought to be trained in
the art of interviewing and evoking right response. This sort of training in the
industry is rather an exception than a rule. Not preparing adequately before
conducting personal interviews is a common pitfall in the elicitation and
gathering of project requirements.

5. Prejudices—Both the users and analysts often come with prejudices towards
each other’s function. Users sometimes show reluctance to part with critical
information for the fear of losing their unique indispensability. Analysts
sometimes feel that the users do not easily divulge information and it has to be
extricated. Sometimes, these are factual and sometimes imaginary. It is
essential to instill confidence in users that the proposed computer-based solu-
tion is to assist them than to supplant them. This would encourage the users to
readily share all the information. It is necessary to train the analysts in the art of
conducting personal interviews. That way, this pitfall can be overcome.

6. Omitting the capture of vital process steps and data items in their completeness.
Process steps such as validation steps are oft forgotten. The average size of data
items is captured instead of maximum size of the data items. Data precision for
numeric data items is also oft forgotten. The onus is on the analyst to prod the
information sources and obtain complete information. More iterations would be
required to obtain complete information if we forget some vital aspects.

3.11 Pitfalls in Requirements Elicitation and Gathering 53

3.12 Final Words

Elicitation and gathering is a critical activity in the requirements management.
When a project fails due to inefficient engineering and management of require-
ments, in most cases, the failure would be because of poor requirements elicitation
and gathering. In most cases, we carry out elicitation and gathering for the project
(or iteration in the case of agile projects) in multiple installments. But the first
installment should see that 70–80 % of the requirements being collected. The
remaining information may be collected in one or two more installments. If we
take more installments for elicitation and gathering, we may often receive con-
tradictory and duplicate requirements. So it is necessary that all efforts must be put
in to ensure that this phase is carried out diligently.

54 3 Elicitation and Gathering of Requirements

Chapter 4
Requirements Analysis

4.1 Introduction to Analysis

When we complete elicitation and gathering activities of requirements manage-
ment, we have information in the raw form. When we analyze it, we would have
plausible requirements which after review and approval would transform into
project requirements.

Now what exactly is meant by the term ‘‘analysis’’?

Merriam Webster’s dictionary defines the term ‘‘analysis’’, among others, as:

1. Separation of a whole into its component parts
2. Identification or separation of ingredients of a substance
3. An examination of a complex, its elements and their relations
4. A method in philosophy of resolving complex expressions into simpler or more

basic ones

The term ‘‘analysis’’ has a connotation of reducing complexity by breaking
down a whole into its component parts to understand how it works and provide
better insight into something. Most of us would have come across the following
analyses:

1. Chemical analysis—In this analysis, a substance is broken down into its
component parts. The science of Chemistry has many methods and chemicals to
break a substance down to its component parts. A substance that cannot be
further broken down except into its atoms is referred to as an element.
Chemical analysis is basically breaking down a substance into its elements.

2. Scientific analysis—this analysis helps in understanding a phenomenon using
scientific method. Scientific method is characterized by controlled and
repeatable experiments to test a hypothesis. In scientific experiments, all
variables except the ones which are being investigated/evaluated are controlled.
The scientific method is also characterized by the absence of bias. That is, the

M. Chemuturi, Requirements Engineering and Management for Software
Development Projects, DOI: 10.1007/978-1-4614-5377-2_4,
� Springer Science+Business Media New York 2013

55

same results would be obtained by any person when the experiment is repeated.
Scientific analysis helps us in understanding the ‘‘why’’ of a situation.

3. Statistical analysis—this analysis aids us in understanding and drawing
inferences from a mass of data. Statistical analysis can be performed only on
numeric data. Most people are acquainted with statistical analysis, at least to the
extent of using averages. It uses measures like measures of central tendency,
measures of dispersion, skewness and measures of correlation. It has a number
of analysis techniques including correlation analysis, time series analysis, and
trend analysis. It has a number of tests such as goodness of fit, hypothesis
testing, variance testing and so on. It facilitates determining the probability of
occurrence of events. It is one of the most extensively used analyses in physical
as well as social sciences.

4. Mathematical analysis—using proven mathematical formulas, we analyze the
expected behavior of complex systems. One of the easier examples to under-
stand includes the behavior of buildings under various stresses such as earth
quakes, tornadoes, and floods. Another is evaluating the behavior of ships and
aircraft before building them. It is popularly referred to as ‘‘simulation’’. It is
extensively used in product design in all fields including construction, manu-
facturing as well space exploration.

5. Medical analysis—in medical analysis, a patient’s condition is analyzed in
comparison to a healthy person. The analysis consists of evaluating the
symptoms, parameters and diagnostic procedures to aid the medical practitioner
to draw inference about the patient’s condition. Symptoms act as requirements
based on which, further diagnostic procedures are carried out to precisely
determine the patient’s condition and then using the results, treatment is
determined and administered.

6. Market analysis—market analysis consists of analyzing the market for a
product or an organization. It would analyze the data using statistical methods
to ascertain the present market share in terms of the sales and geographical
regions. It would also ascertain the relative position of the product or organi-
zation in customer perception. Other market analysis using statistical analysis
methods include ascertaining the customer needs for a geographical area,
demographic analysis, target market analysis, market growth/decline rate,
benchmarking of the product or service in terms of pricing and profitability and
so on.

7. Situational analysis—I think that every one of us carry out this analysis almost
every day. Whenever we come across a situation that is not to our liking, we
analyze it and draw inferences. But to carry out this analysis properly, we need
to have a standard or accepted process. In social situations, we use the standards
of behavior to analyze the situation; in religious matters, we use the religious
scriptures; in organizational matters, we use organizational process. We com-
pare the situation with the standard situation and draw inferences. These
inferences lead to actions.

8. SWOT analysis—this is one analysis most of us are familiar with. We enu-
merate the strengths, weaknesses, opportunities and threats for any given

56 4 Requirements Analysis

scenario and draw inferences. While this has origins in the industry, it is now
being used extensively in social sciences also.

9. Business analysis—Business analysis originated in the IT (Information
Technology) field. Originally, it began with comparing an ERP product with
the requirements of the business processes of an organization to identify the
gaps between both, so that the product could be customized to suit the orga-
nization. But, it has expanded beyond the original usage to encompass all the
activities in the software development life cycle prior to software design. It now
includes the feasibility study to ascertain if a new system is viable, compiling
the business requirements, and preparing the requirements specification docu-
ment. Validation of the end product against the approved requirements has also
come under the umbrella of business analysis. While feasibility study and
validation of the end product are out of scope for this book, we discuss business
analysis role in finalizing requirements in the following sections/chapters.

Summarizing the above discussion, analysis gives us insight into a situation and
allows us to draw inferences for taking further steps in the implementation of the
solution.

4.2 Analysis of the Information Collected in the Elicitation
and Gathering

We carry out the following analysis activities on the information obtained through
elicitation and gathering.

1. Enumerate all the requirements
2. Verify each requirement for completeness
3. Evaluate each requirement for its feasibility

a. Technical
b. Financial
c. Timeline

4. Bifurcate requirements into

a. Core functionality requirements
b. Ancillary functionality requirements

5. Group core functionality requirements together into logical groups
6. Group ancillary functionality requirements into their logical groups
7. Identify requirements that are duplicated
8. Identify requirements that are contradictory to each other
9. Identify system interfaces

10. Identify stakeholders for each requirement

a. Primary stakeholder

4.1 Introduction to Analysis 57

b. Secondary stakeholders

11. Prioritize the requirements by the logical group and within every logical group

a. By timeline
b. By technical feasibility
c. By financial feasibility

12. Identify gaps, in the case of COTS product implementation

a. Between the product and the organizational needs
b. The needs that can be met by re-engineering the organizational processes
c. The needs that necessitate product customization

13. Determine the schedule of implementation for the requirements
14. Resolve the issues/inconsistencies uncovered in the above activities

Before we embark on the analysis of requirements, it is essential that we have
collected as many requirements as possible from all possible sources. When we
analyze the requirements, we may find gaps and may have to go back to sources of
requirements once again to fill the gaps. But we need to have almost all the
requirements to enable us to analyze the collected information. The tendency is to
commence analysis as soon as we collect the information from the end users. Then
we would be having only the core functionality requirements. We need to obtain
the ancillary functionality requirements too before the analysis can begin.
Otherwise, there is every possibility that ancillary requirements are forgotten
altogether or added during software design as an afterthought.

Now let us discuss each of these analysis actions in detail.
Enumerate All the Requirements—It is possible that the requirements are

elicited or gathered over a period of time either by a single individual or multiple
individuals. The requirements are in the form of notes either on paper or on a
laptop. The first step in analyzing the requirements is to transcribe them at one
place from the raw requirements. This will enable us to perform all the analysis
actions enumerated above. It is better to use a requirements analysis tool or a
spreadsheet as these will allow us to carry out data manipulation actions such as
grouping, and uncovering duplicates. The suggested format is shown in Table 4.1.
It is advantageous to use a structured language while enumerating the require-
ments. That way, we can easily discover duplicates just by sorting the list. We
normally begin recording a requirement with a verb followed by two or three more
(or a limited number) words. Examples are:

1. Capture login information
2. Raise Purchase Order
3. Raise Invoice

Verify each Requirement for Completeness—We need to verify that every
captured requirement is complete. Otherwise, we may not be able to properly
classify the requirement or prioritize it. It is also not possible to carry out software

58 4 Requirements Analysis

design from incomplete requirements. To ensure the completeness of a require-
ment, we ensure that its:

1. Inputs are defined
2. The validations that need to be performed on the input data are defined
3. The process of converting the inputs to outputs is defined
4. The outputs expected from the process are defined
5. All the relevant templates and formats are available

Once we have all this information for a requirement, it can be deemed to be
complete.

Evaluate each Requirement for Its Feasibility—Technical—Technical fea-
sibility includes limitations of hardware, software or algorithmic. Sometimes the
requirements may not be feasible to be achieved with the current state of tech-
nology or the technology available within the organization. Examples include
certain types of analyses that are easily performed by the individuals but cannot be
performed automatically. Response times are examples for technology limitations.
A frequently asked requirement to provide a mechanism to define a new billing
plan in consumer services such as cable and mobile phone services is an example
of algorithmic limitations. Pattern recognition is also not easily achieved by the
software.

Evaluate each Requirement for Its Feasibility—Financial—Sometimes, the
requirements may be technically feasible but in our considered opinion, are too
costly to fit into the available budget. Such possibilities occur when a specialized

Table 4.1 Suggested format for enumerating all the requirements
R

eq
ui

re
m

en
t I

d

R
eq

ui
re

m
en

t D
es

cr
ip

tio
n

Fu
nc

tio
na

lit
y

(C
or

e/
A

nc
ill

ar
y)

L
og

ic
al

 G
ro

up

St
ak

eh
ol

de
rs

Inputs
(Y/N/Incomplete)

Outputs

(Y/N/
Incomplete)

A
re

 P
ro

ce
ss

 S
te

ps
 d

ef
in

ed
?

Feasibility

(Y/N)

Pr
io

ri
ty

D
ef

in
ed

?

Fo
rm

at
s/

Sa
m

pl
e

D
oc

um
en

ts
 a

va
ila

bl
e

D
at

a
V

al
id

at
io

n
de

fi
ne

d

D
ef

in
ed

?

Fo
rm

at
s/

Sa
m

pl
e

D
oc

um
en

ts
 a

va
ila

bl
e?

T
ec

hn
ic

al

Fi
na

nc
ia

l

T
im

el
in

e

4.2 Analysis of the Information Collected in the Elicitation and Gathering 59

hardware or third party software tools are needed to meet the requirement. We
have to evaluate each requirement for its financial feasibility.

Evaluate each Requirement for Its Feasibility—Timeline—This limitation is
encountered frequently in the industry especially in project scenarios. The
requirement is feasible both on a technology basis as well as a financial basis but
the timeline cannot be met. It happens because sometimes, the amount of work to
fulfill the requirement takes longer than the required timeline.

If there are any requirements that are not feasible due to technical, financial or
timeline, we need to resolve them with the end user department. The possible
resolutions are:

1. Drop the requirement altogether
2. Postpone the requirement to a future date
3. Increase the budget (financial as well as timeline) to meet the requirement
4. Obtain the technology from outside the organization (if it is available) to meet

the requirement

Bifurcate Requirements into Core and Ancillary Functionality—This
bifurcation allows us to achieve better grouping of the requirements. This grouping
would help in setting priorities as well as during software design. We assess each
of the requirements and fit them either as a core functionality requirement or an
ancillary functionality requirement.

Group Core Functionality Requirements Together into Logical Groups—
We need to group core functionality requirements by the logical group to which
they belong. This would help in software design. This can be achieved by taking
help from the organization of the function which is the focus of our study. We can
take a bottom-up approach here. First we allocate the requirements to the work-
station at which it is being performed. Normally a set of operations would be
performed at each workstation. Then, we can allocate the requirement to the
department/section in which the person operating the workstation reports to.
Normally the hierarchical levels from the lowest to top level for a major function
would be three or four although exceptions can be found in the industry. The
person holding the workstation would report to a section supervisor who would be
supervising a set of similar workstations and reporting to a manager. The manager
would be managing a few supervisors and reporting to the head of that department.
As an example, if we take a warehouse in a supply chain/material management
application, there would be a few workstations for material issue and a few
workstations for material receipt. Normally all material issue persons would report
to a supervisor and all material receipt persons would be reporting to another
supervisor. Both of these supervisors would be reporting to the person holding
charge of the warehouse. Thus, when we group requirements, we group them into:

1. Warehouse—material issues
2. Warehouse—material receipts

So, we group requirements based on the workstations and departments. This
grouping would facilitate grouping of related functions into modules during the

60 4 Requirements Analysis

software design phase. We need to carry out this assessment for each of the
requirements until all requirements are neatly grouped into their logical groups.

Group Ancillary Functionality Requirements into Their Logical Groups—
The ancillary functionality requirements are enumerated in Chap. 2. While all core
functionality requirements can be designed by one class of designers, all ancillary
functionality requirements cannot be designed by one class of designers. Some of
the ancillary functionality requirements such as security requirements, and
usability requirements would need a different class of designers. Therefore, it is
necessary to group ancillary functionality requirements into their logical groups to
facilitate better software design.

Identify Requirements that are Duplicated—Especially in large projects
wherein requirements are collected from multiple agencies, it is possible that
stated requirements are duplicated. We need to eliminate the duplicated require-
ments so that design effort is not wasted. This can be easily achieved if we had
followed requirements description conventions suggested in an earlier section. We
can sort the requirements by the ‘‘Requirement Description’’, second column of
Table 4.1. We can examine if any requirements are duplicated and if any such
duplication is uncovered, we can easily eliminate such duplication. This step is in
fact a cleansing step that provides us unique requirements.

Identify Requirements that are Contradictory to each Other—This step is
also a cleansing step but is not as easy as locating duplicate requirements. If we
have contradictory requirements and allow them to slip through design and con-
struction, we would have a software product that provides unpredictable/unreliable
results. To identify contradictory requirements, we need to study each of the
requirements; understand it in the right perspective and then see if any other
requirement is contradicting the one at hand. The following tips would help in
identifying contradictory requirements:

1. When requirements for the same function are collected from two or more
workstations, we are likely to receive contradictory requirements. When
looking for contradictory requirements, we need to look into the requirements
specified for the same function by different individuals.

2. It is likely to have contradiction between the perceptions of the person per-
forming a function and the individuals providing inputs or receiving outputs
from that function. So, we need to look closely at the requirements specified by
the individual performing a function and the persons providing inputs to that
function or receiving outputs from that function.

3. There is also a possibility of contradiction in the perceptions of the person
performing a function and his supervisor. It is more likely to be so if the length
of experience of these two individuals varies significantly. That is, one of them
is new to the function and the other is much more senior. To identify contra-
dictory requirements, we also need to look closely at the information provided
by the person performing the function as well as the person to whom he/she is
reporting to.

4.2 Analysis of the Information Collected in the Elicitation and Gathering 61

http://dx.doi.org/10.1007/978-1-4614-5377-2_2
http://dx.doi.org/10.1007/978-1-4614-5377-2_2

4. There is also a likelihood of contradiction in the perceptions of senior man-
agement functionaries and the working level functionaries. So we also need to
examine closely the information provided by the senior management personnel
and the working level personnel to identify the contradictory requirements.

Summarizing, there is a possibility of contradiction in the requirement if more
than one individual provides information for that requirement. So examine all such
information and eliminate contradictory requirements,

Identify System Interfaces—End users are likely to cross system boundaries
and give requirements that form part of another system. For example, a supply
chain system has close linkages with operations as well as finance. End users are
likely to give requirements that actually fall within either operations or finance.
Similarly, CRM has linkages with operations and finance. The operations
department would have linkages with supply chain, CRM, finance as well as
human resource systems. Whenever end users specify requirements that actually
form part of another system, we need to identify them as requirements for inter-
faces with other systems. We need to identify all such requirements and classify
them under system interface requirements. When we identify a system interface
requirement, we need to ensure that:

1. The other system with which the interface is needed is identified
2. The data to be received from the other system is defined
3. The data that is to be transmitted to the other system is defined
4. The protocols, if any, for the interface are identified
5. The entry and exit criteria for the interface are defined

Identify Stakeholders for each Requirement—We need to identify the
stakeholders for each of the requirements. These are the persons who need to be
approached during the project execution for any clarification about the require-
ment. The primary stakeholders of course, are the individuals performing the
function and the secondary stakeholders are the superiors, providers of inputs to
and recipients of outputs from the person performing the function. We need to
carry out this task for each of the requirements.

Prioritize the Requirements—Prioritization is the setting of the order of
implementing the requirements when there is a resource crunch. If resources are
available all requirements would be implemented concurrently. This priority will
help the project management to implement requirements of higher priority first if
they find themselves short of the requisite resources. Here are some rules for
setting priority to help you:

1. Dominant factor first—sometimes, it may be possible that a certain function
needs to be implemented first. For example, in most applications there would be
master data files and without these being created/maintained, the application
would not run. Therefore, they need to be implemented first. This type of
constraint is referred to as the dominant factor.

2. Most linked first—in many applications there would be some modules which
would have maximum linkages with the remaining modules. For example, the

62 4 Requirements Analysis

purchase order module in a supply chain project or customer relationship
management project or account heads in a financial accounting project are
modules which would impact many other modules. So these would be imple-
mented first.

3. First come first served—we implement the requirements in the chronological
order they are received/approved.

4. Quickest (or the smallest) first—we implement the requirement that takes the
least amount of effort first and the order will be in the amount of effort needed
to implement it. The reverse (maximum effort or the largest requirement first) is
also possible and is followed in some cases.

5. Most urgent first—the order of implementation would be based on the urgency
of need specified by the organization where the software would be implemented

6. Highest benefit—the order of implementation would be based on the benefit
yield by implementing the requirement. The first one to be implemented is the
one which would yield the highest benefit and the order of implementation
would be based on the decreasing amount of benefit expected from the
requirement.

7. Lowest cost—the order of implementation would be based on the increasing
cost of implementing the requirement. The lowest cost one would be imple-
mented first and the rest would be implemented in the increasing order of the
cost. The reverse (highest cost first) is also possible and is followed in some
cases.

8. Tardiest first—the requirement that is waiting for the longest period is first
implemented. This is resorted to when there are many requirements of equal
priority and are awaiting implementation.

It is also possible to use a combination of these rules to set priorities for the
implementation of the requirements. We need to select the set of rules for setting
the priority and then set the priorities for all the requirements.

Normally we set two-level priorities although three level priorities are also
used. The first level priority indicates the general priority of implementation. If
there is a need to prioritize implementation even within the requirements having
identical priority, the second-level priorities are used. For example the first level of
priority is based on the urgency. If there are multiple requirements of equal
urgency, then we prioritize such requirements based on the amount of benefit they
yield to the organization. Third level, if used, would set the priority if the resource
crunch is such that even the requirements with second level priority need to be
further prioritized.

The resource crunch could be in terms of finances, timelines or technical
limitations.

Identify Gaps, in the Case of COTS Product Implementation—Gaps in this
context should be understood as the mismatch between the features of the product
and the practices/process requirements of the organization. This action is at the
core of requirements analysis in the projects that implement a COTS product for
applications such as ERP, SCM, CRM etc. During elicitation/gathering phases, we

4.2 Analysis of the Information Collected in the Elicitation and Gathering 63

would have discussed the product features and the possibility of meeting their
needs with the existing product features and collated their views. Now, based on
those discussions and the notes taken, we now have to identify the gaps between
the product features and the stated organizational needs. We enumerate these
differences for all the proposed modules. Using this list, we identify those gaps that
need customization of the product. Table 4.2 shows a suggested format for gap
identification.

Determine the Schedule of Implementation of Requirements—Scheduling is
the activity of assigning calendar dates to planned activities. When we carry out
requirements analysis, we may not be in a position to assign absolute calendar
dates to implement the requirements because we may still need to resolve some of
the issues uncovered during analysis itself. Based on the priorities assigned to all
the enumerated requirements, we can prepare a tentative schedule with an assumed
start date. If we use a tool such as MS Project, Primavera or PMPal, we can shift
the start date and the tool would take care of the rescheduling of the remaining
dates. Before we schedule the implementation of requirements, we need to esti-
mate the effort required for the remaining activities of software development and
implementation (if included). This schedule would assist the end users to assess
the project execution and plan their further activities. Discussion on effort esti-
mation and scheduling is beyond the scope of this book. Interested readers are
advised to refer to the book ‘‘Software Estimation: Best Practices, Tools and
Techniques for Software Project Estimators’’ by Murali Chemuturi, Published by
J.Ross Publishing, Inc. 2009.

Table 4.2 Gap analysis
G

ap
 I

d

G
ap

D
es

cr
ip

tio
n

M
od

ul
e

Id

C
om

po
ne

nt
 I

D

(s
cr

ee
n/

re
po

rt
/o

th
er

)

St
ak

eh
ol

de
rs

B
ri

dg
in

g
ac

tio
n

(c
us

to
m

iz
e

pr
oc

es
s

/ p
ro

du
ct

)

A
re

 P
ro

ce
ss

 S
te

ps
 d

ef
in

ed
? Feasbility

(Y/N)

Pr
io

ri
ty

T
ec

hn
ic

al

Fi
na

nc
ia

l

T
im

el
in

e

64 4 Requirements Analysis

4.3 Resolving the Issues that Cropped up During the Analysis

We have noted during the discussion on analyzing the requirements that some
issues/inconsistencies could crop up. These issues could be stemming from
requirement feasibility, shortfall of information for inputs, outputs or process
steps, contradictory requirements, duplicate requirements, logical grouping of
requirements, and prioritizing the requirements. We need to resolve all the issues
before we move on to the next phase of requirements management. We need to,
perhaps, go back to the end users or their superiors or technical or domain experts
or whosoever provided us the information and discuss the issue and resolve all the
issues. Once we resolve an issue, we need to update the enumerated requirements
to reflect the resolution.

4.4 Deliverables of Requirements Analysis Phase

Upon completion of the requirements analysis, we would have the following

1. A list of all requirements
2. A list of gaps, in the case of COTS product implementation
3. All issues in requirements are resolved
4. Priorities and a tentative schedule for implementation of requirements
5. Stakeholders for all requirements are identified
6. All requirements are logically grouped

We would only have one document, perhaps a spreadsheet or information inside
a tool that would have all the information noted above. We would also have the
information collated in the elicitation and gathering phase. Now we are fully
armed to begin the establishment of project requirements.

4.5 Final Words

It is normal practice in the industry to carry out this phase informally. That is no
formal enumeration of requirements is carried out. All the steps in the analysis
detailed in the foregoing sections are also omitted. What normally happens is that
these activities are combined with the establishment of requirements. Once the
requirements information is collated during the elicitation and gathering phase,
the preparation of the requirements specification document is embarked upon and
the analysis steps discussed in this chapter are concurrently carried out. In smaller
projects of short duration, perhaps, analysis can be combined with establishment of
the requirements. But in larger projects and especially in product development, it
pays to formally carry out analysis. I have seen technical failures of large projects

4.3 Resolving the Issues that Cropped up During the Analysis 65

and products stemming from poor requirements management and the requirements
management failed because the requirements were not analyzed properly in the
first place.

Most people who use the term ‘‘analysis’’ understand it poorly. I have seen this
poor understanding even in some people who hold the title of ‘‘Business Analyst’’
in organizations. That is the reason why I included information about various
connotations of the term right at the beginning of the chapter to clear the air about
it and give the reader a proper grounding in the art of requirements analysis. This
should help individuals to understand requirements analysis in its right perspective
and pave the way for better requirements management in software projects and
thus reduce the technical failure of projects due to poor requirements management.

66 4 Requirements Analysis

Chapter 5
Establishment of Requirements

5.1 Introduction to Establishment of Requirements

Merriam Webster’s dictionary defines the term ‘‘Establishment’’ as ‘‘a settled
arrangement’’, ‘‘as established order of society’’ among other definitions. CMMI�

model document for development used the term ‘‘establishment’’ in the context of
requirements but left it without a definition. The term ‘‘establishment’’ is defined
here on the lines of the Merriam Webster’s dictionary. That is, ‘‘Establishment of
requirements in a software project is defined as the documentation of the project
requirements conforming to organizational documentation guidelines, carrying out
applicable quality assurance activities, obtaining the required approvals and
subjecting the document to the rigor of organizational configuration management.’’

The definition includes four key aspects, namely,

1. Documentation—It is the act of capturing all the information compiled as
requirements in a structured manner conforming to organizational/project
documentation guidelines and formats/templates. All compiled information that
is subjected to the requirements analysis, is included in the document. Each
requirement has all the details necessary to carry out the next activity. The
resulting document is generally referred to as the Requirements Specification’’
or ‘‘Requirements Specification Document’’.

2. Quality Assurance activities—These activities ensure that quality has been
built into the artifacts. Some of these activities are at an organizational level to
create an environment that fosters quality in all the work carried out in the
organization. The others are at project level which create project specific
environments for building quality into the artifact and to confirm that quality is
indeed built into the artifact. In the case of requirements management, the
environment at an organizational level includes training, processes, standards,
guidelines, formats and templates etc. and the environment at the project level
includes project plans, and project specific training, standards, guidelines,

M. Chemuturi, Requirements Engineering and Management for Software
Development Projects, DOI: 10.1007/978-1-4614-5377-2_5,
� Springer Science+Business Media New York 2013

67

formats and templates etc. The activities that ensure that quality is indeed built
into the artifact are verification and validation.

3. Obtaining approvals—An artifact is not deemed fit for use in the project until
it is approved by the concerned executives. In the case of Requirements
Specification, the approvals are accorded by the IS department (in the case of
internal projects) or the concerned project manager (in the case of external
projects) as well as the approvals of the end user department or the client
organization. These two levels of approvals authenticate the information con-
tained within the artifact for use on the project.

4. Configuration management—Configuration management is the set of activi-
ties that ensure that any changes to approved artifacts are affected in a con-
trolled manner. That is each change request is raised, evaluated, impact
ascertained, approved/rejected and approved change requests are implemented
in the artifact conforming to an organizational process and the project plans.
Covering configuration management comprehensively is beyond the scope of
this book and interested readers are referred to the book ‘‘Mastering Software
Project Management: Best Practices, Tools and Techniques’’.1

Performing all the above four activities diligently is referred to as the ‘‘estab-
lishment of requirements’’ for the project. Let us discuss all these activities in
detail in the following sections.

5.2 Documentation

As noted in Chap. 2, we have two requirements specifications. One is User
Requirements(URS) Specification aimed at capturing the needs of the end users and
the other is Software Requirements Specification (SRS) aimed at guiding the design
and construction of the product. IEEE terms these two documents as Systems
Requirements Specification (SyRS) and Software Requirements Specification
(SRS). However, individual organizations may have different names for these two
documents as noted in Chap. 2. We will discuss both these documents in this section.

Documenting the requirements, be it URS or SRS, is describing each of the
captured requirements in detail with all relevant details in a comprehensive and
structured manner so that the concerned stakeholders can understand the
requirements without any ambiguity and ensure that their stakes are well provided
for. The stakes for the providers of information for the document are that their
requirements are understood as intended and accurately captured by the software
development team. The stakes for users of the document are to ensure that all the
necessary information is available in the documents to carry out their own
downstream activities. The crux of documenting the requirements lies in ensuring
that there is no ambiguity in the documented requirements. Normal free-flowing

1 By Murali Chemuturi and Thomas M. Cagley, Jr., published by J. Ross Publishing, Inc., 2010.

68 5 Establishment of Requirements

http://dx.doi.org/10.1007/978-1-4614-5377-2_2
http://dx.doi.org/10.1007/978-1-4614-5377-2_2

language is prone to inject ambiguity into the document, especially in the English
language, which is unusually rich in the availability of multiple words with similar
(not identical) meaning. It is also rich in the adages, idioms and phrases which are
not uniformly interpreted all-over the world. Regional flavors influence interpre-
tation of the meanings of the written word. Again, English language also facilitates
obfuscation of meaning very easily. Therefore, it is common practice to restrict the
free usage of language in documenting the requirements in the software devel-
opment organizations.

The normal practice in organizations is to eliminate ambiguity in the documents,
to define a set of documentation guidelines and to ensure conformance to that
guideline in all software engineering documents. All standards organizations such as
IEEE, ANSI, JSS as well as government departments do have their own docu-
mentation guidelines for preparing professional documents. A suggested docu-
mentation guideline is provided in Appendix A. Another alternative is the Planguage
of Tom Gilb2 which is briefly described in Appendix B. IEEE is working on this
aspect in their project P1805—Guide for Requirements Capture Language (RCL).
We can also use those guidelines in our organization with or without change.
However, every organization is unique in its own way and it is better to derive an
organizational documentation guidelines/standard appropriate for its unique envi-
ronment and use it in the documentation of requirements. This organizational
guideline can draw upon the best aspects of all such available guidelines.

One other aspect worth discussing here is the methodologies available for doc-
umenting the requirements. There are literally a plethora of methodologies con-
tinuously coming into, and going out of, fashion in the software engineering field.
These include SSADM, OOM, UML, and Agile methodologies (Scrum, DSDM,
Clearcase, XP and so on). These are all in vogue in different organizations and each
has its own followers. However, those methodologies are used to describe the heart
of the document. The other sections of the document such as title page, table of
contents, system information, constraints, and closing pages are left uncovered by
these methodologies. Therefore, in the templates provided in the following sections,
I have indicated where specific methodological deviations can occur.

5.2.1 User Requirements Specification

URS captures all the requirements provided by the end users as well as other
sources at one place in a comprehensive and structured manner. This document
would be used by two sets of audiences, namely the end users and other providers
of requirements as well as the software developers. Providers of requirements
would refer to this document to ensure that their requirements are understood as

2 Book—Competitive Engineering: A handbook for Systems Engineering, Requirements
Engineering , and Software Engineering using Planguage , Elsevier Butterworth, Heinmann, 2005.

5.2 Documentation 69

intended and captured accurately by the business analysts properly. The end users
would use this document as the reference point for all interactions with the soft-
ware development team and in accepting the final product when it is delivered. The
software development team would refer to this document to carry out the sub-
sequent software development activities namely derivation of product specifica-
tion, design of the proposed software product/system, and developing the user
acceptance test plan of the product. We need to document URS in such a manner
that the users would have no trouble in understanding the document and accord
approval to the document. To ensure that aspect, we need to use the user’s lan-
guage while documenting the URS. Or, in other words, we need to avoid any
jargon normally part of software development fraternity or the software devel-
opment organizations. IEEE standard 1233 deals with defining SyRS. It is com-
mon for organizations to have in place documentation guidelines to ensure that
free-form language that can give rise to ambiguities, vagueness or conflicting
meaning, has not crept into the document. A suggested set of documentation
guidelines are provided as Appendix A to this book.

We need to document the requirements in the logical groups we arranged while
analyzing the requirements. It is also advantageous to use the same nomenclature
that is in the list of requirements generated during the requirements analysis. That
will maintain consistency between the two documents. A suggested template for
documenting URS is given in Table 5.1. It contains essentially five sections: Title
page, table of contents page, project information page, requirements definition
pages and closing pages including appendixes, if any.

In agile software development methodology projects, it is common to replace
URS with a set of User Stories which describe the requirements in a descriptive
manner. In true conformance to the agile philosophy, no template or format is
commonly advocated and the stories are formatted differently in different orga-
nizations. The cardinal rule in this case is that the project team, which usually
comprises the client representative, must be comfortable in the format and be able
to use it to develop the software. Therefore, no attempt is made here to present a
format for documenting the User Stories in this book.

So is the case with Use Case methodology. Use Cases are also used to docu-
ment URS. A Scenario description is used to capture user requirements along with
the Use Case diagram. There is no standard format or template commonly advo-
cated in Use Case methodology to document the requirements.

5.2.2 Software Requirements Specification

A Software Requirements Specification (SRS) document may be referred by dif-
ferent names in individual organizations as explained in Chap. 2 but, irrespective
of the specific name used in the organization, the document contains the specifi-
cations for the proposed software product/system. I am using the name ‘‘SRS
(Software Requirements Specification)’’ in this book because it is christened so by

70 5 Establishment of Requirements

http://dx.doi.org/10.1007/978-1-4614-5377-2_2

Table 5.1 Suggested template for documenting URS

(continued)

5.2 Documentation 71

Table 5.1 (continued)

(continued)

72 5 Establishment of Requirements

IEEE. If you expand the acronym SRS as ‘‘Software-Requirements Specification’’
(combining the first two words), the meaning would become clearer. It is the
specification document detailing the requirements for the software product/system
from the technical perspective. Perhaps, it would be even more lucid if we term it
as ‘‘Software Product Specification’’, but it would be adding another term to the
already bulging vocabulary of software engineering.

SRS is derived from the requirements specified by the end-users in the URS.
While URS documents requirements from the perspective of the end-users, SRS
documents requirements from the perspective of the product. SRS is the statement
of technical specifications for the proposed software product. SRS is the main
reference for the product designers in carrying out the design of the proposed
software product/system along with other organizational standards and guidelines
for software design.

Prototype is often used to supplant SRS in some organizations. Those organizations
document user requirements in the URS and build a prototype instead of deriving and
documenting the software requirements. The main advantage of doing so is that the
end-users can better perceive the proposed software product/system when presented
with a prototype rather than a SRS document. The downside of building a prototype is
that much more effort needs to be spent in building a prototype than in documenting
SRS. Second, if the user-requirements are poorly understood, the prototype may have
to undergo major changes and it would consume significant effort in overhauling the
prototype than it would take in overhauling a SRS document.

Prototype is used heavily in product development in the manufacturing
industry. When it is contemplated to build a number of products with the same
design, such as automobiles, it is common practice to build one car with the design
and subject it to all necessary tests. When the prototype successfully passes

Table 5.1 (continued)

5.2 Documentation 73

through all the tests, the mass manufacture begins. In these cases, the prototype is
used more to prove the product design than to document the product specifications.

Prototypes are also used when building one-of-a-kind product such as ships,
aircrafts, rockets and so on. The quantity of these products would be just one. So
building a full scale prototype is not possible. In these cases, the prototype is a
scaled down model of the proposed product. The prototype is subjected to all
applicable tests in the laboratory. Once the prototype passes through all the tests,
the main product would be built. Here too, the prototype is built mainly to prove
the design than to document product specifications.

Thus as you can see, prototype is not really used to document product speci-
fications in the manufacturing industry but to prove the design. The step of doc-
umenting product specifications is not skipped in the manufacturing industry. The
design for the proposed product must be ready to begin building prototype.

But in software industry, in some organizations, prototypes are advocated to
supplant the product specification document. The prototype would contain the
fulfillment of both the user requirements and product specifications but it is not
possible to move backwards from prototype towards extracting the product
specifications.

In agile methodologies, user stories are used to carry out software design. They
skip the step of documenting the product specifications. Agile goes from user
stories direct to design and then on to product construction. In most cases of agile
development, they go straight from user stories to product construction skipping
both product specification and product design. Agile adherents consider effort
spent on documentation other than which is absolutely essential as wasted effort.

Software development is unlike manufacturing as it does not involve the
making and breaking of any physical material. A mistake is not visible to
everyone; it is not lying on the floor in front of everyone but lurking inside the
computer; one needs to open the program to locate it. Correcting a mistake in
manufacturing involves a lot of noise made by the equipment, and waste of
material. Correcting a mistake in software development is just ‘‘debugging’’
without involving noise or material wastage. On the other hand, to determine the
material defect, one needs to carry out chemical analysis in manufacturing. In
software development, looking at source code is adequate to understand the defect.

So, what are the conclusions? Do I advocate preparing an SRS or skipping it?
When it comes to building a prototype, I am not very enthusiastic. We need to

take approval from the customer/end-users only for the URS. SRS is inherently an
internal document for the guidance of the software designers. Prototype is essential
to prove the product design. But I have had occasion to see wherein the end-user
organization is not able to decipher even the URS. They want some solution to
their problems in information management but expect the software developer to
use his/her expertise to come up with the solution for the problem that is not
properly defined by the end-users. In such cases, even the URS is not approved. In
such cases, a prototype is perhaps the only solution to move forward, wherein a
prototype is URS, SRS and design all rolled into one. Except in such extreme
cases, I do not see or recommend the use of prototype to supplant SRS.

74 5 Establishment of Requirements

Coming to the practice of combining URS and SRS into one document like the
user story or the scenario, we need to take the specific instance into cognizance.
Iterative construction of the product is possible in many cases but not all. Building
one thousand row houses is possible to achieve in ten iterations of hundred houses
per iteration. But constructing a building like the Empire State Building, or the
Sears Towers or the Petronas Towers or the Burj Dubai is not workable in itera-
tions. So if the proposed software product/system is amenable for iterative con-
struction, perhaps SRS may be skipped. Another important consideration is the
need for software maintenance to determine the need for an SRS. If the devel-
opment language is of self-documenting variety or has an IDE (Interactive
Development Environment) that makes it easier to understand the source code and
maintain it easily, perhaps, we can skip SRS.

Barring those specific cases mentioned in the above paragraph, I humbly submit
that skipping the SRS is not a good practice. There are standards of ‘‘GMP’’ (Good
Manufacturing Practices) for various types of manufacturing industry. I wish that
our software development industry can also come up with ‘‘GSDP’’ (Good Soft-
ware Development Practices), some day!

Table 5.2 provides a suggested template for documenting SRS. It has essen-
tially eight sections, namely, the title page, table of contents, project information,
hardware and system software specifications page, interface specifications page,
core functionality specification pages, ancillary functionality specification pages,
and the closing pages.

5.3 Quality Control of the Documents

In the establishment of requirements, ensuring that quality is built into the
requirements specifications is very important. The impact of an error that escaped
being caught and rectified in this phase would have serious impact when uncov-
ered in later stages. If the escaped error is caught in software design phase, we
have to retrace our steps by one level before we can move forward. If the error is
caught in the software construction phase, we need to retrace our steps by two
levels and if the error is caught during the acceptance stage, we need to retrace our
steps by three levels besides the embarrassment of being pointed out by the cus-
tomer. If the error is caught after the software product/system is implemented, we
might even have to suffer losses. The later the error is unearthed, the greater is its
impact and loss. Therefore, we need to subject these requirements specification
documents to diligent quality control activities. The possible quality control
activities are verification and validation. Quality control and quality assurance
activities are very important in software development. Therefore, we have dedi-
cated a separate chapter for a detailed discussion of these activities including
concepts. These are discussed in greater detail in Chap. 6.

5.2 Documentation 75

http://dx.doi.org/10.1007/978-1-4614-5377-2_6

Table 5.2 Suggested template for documenting SRS

(continued)

76 5 Establishment of Requirements

Table 5.2 (continued)

(continued)

5.3 Quality Control of the Documents 77

Table 5.2 (continued)

(continued)

78 5 Establishment of Requirements

Table 5.2 (continued)

(continued)

5.3 Quality Control of the Documents 79

5.4 Obtaining Approvals

A document is not frozen until it is approved by an appropriate authority.
Approvals are required to be obtained from two sources, namely, the internal
sources and the client organization. Normally URS needs both the approvals.

Table 5.2 (continued)

80 5 Establishment of Requirements

SRS is normally approved by the internal sources unless the contractual
arrangements mandate approval from the customer.

Before, the document is submitted for internal approval, it should have been
subjected to the planned quality control activities. The approving authority would
ensure that the document has indeed passed through the quality control activities and
is cleared for approval. Then he/she would carry out a managerial review of the
document and provide the feedback to the originator of the document. Managerial
reviews are detailed in Chap. 6. Once the feedback is implemented to the satisfaction
of the approving authority, internal approval is granted. The internal approval may
be a signature on a hard copy of the document or it can be an email or it can be digital
signature depending on the practice within the specific organization. The approval
information in whatever form, is stored for future reference and records. In the case
of requirements documents, in some organizations, the person holding charge of the
service delivery department (also frequently referred to as the technical head or
delivery head) accords internal approval and in others, the software project manager
accords the internal approval. Normally the approving authorities for various doc-
uments are named in the organizational process documents.

The artifacts can be submitted to customer organization for approval only after
obtaining the internal approval. In the case of internal projects, approval of the IS
department is essential before submitting to the client department. The customer,
be it internal or external, needs to review the document before according approval
to move forward on the project. This review can be a guided review or a postal
review. Various types of reviews are explained in Chap. 6. The client feedback, if
any, needs to be implemented in the document and re-submitted for approval. The
client would review the implementation of the feedback and upon being satisfied
that the requirements are properly understood by the software development
organization, approval would be accorded to the document.

It is normal practice to submit URS for client approval. SRS would be sub-
mitted for client approval only in cases where it is a contractual requirement.
Normally, clients would not like to look at SRS as it is more of a design document
than a requirements document.

5.5 Configuration Management

Configuration Management is an important aspect of software engineering and
software project management in ensuring that the right software artifacts (code
artifacts and information artifacts) are delivered to the customer. Configuration
management assumes much more importance in software development, than in
manufacturing, as the artifacts are maintained in soft copy form, it is possible for
different versions of an artifact to exist concurrently. In manufacturing, two ver-
sions of the same part cannot exist at the same time. While it is possible for different
versions of engineering drawings to exist concurrently, the drawing release process
ensures that earlier versions are withdrawn before newer versions are issued.

5.4 Obtaining Approvals 81

http://dx.doi.org/10.1007/978-1-4614-5377-2_6
http://dx.doi.org/10.1007/978-1-4614-5377-2_6

Therefore software development organizations implement a rigorous
configuration management process to ensure that the integrity of project’s software
artifacts is protected. It is protected using a configuration management tool or a
directory/folder structure coupled with strict security enforcement. Once a software
artifact is brought under the rigor of configuration management, changes to the
artifact are strictly controlled conforming to the organizational change management
process. We discuss change management as applicable to requirements management
in Chap. 8. When is the right time to bring the requirements specifications documents
under the rigor of configuration management? As a general rule, a software artifact is
brought under the rigor of configuration management only after the final level of
internal approval is accorded to the artifact. So, if we receive any feedback from the
customer as a response to our submission for approval, the artifact would still be
subjected to change management process.

Establishment of requirements is depicted pictorially in Fig. 5.1.

5.6 Establishment of Requirements in COTS Product
Implementation Projects

COTS product implementation products differ from software development projects
because the software product is already available. But, it has to be customized,
either by building a layer over the product which is the case most of the times or
modifying the source code which is the case in a few cases. The stages in
implementation of a COTS product from the software engineering standpoint, in
an organization are:

1. Gaps analysis—This is comparing the functional practices existing in the
organization with the functionality available in the COTS product to bring forth
the gaps between them. The gaps are recorded in a gaps analysis document. Each
of the gaps is analyzed to determine one of the three possible alternative courses
of actions to bridge the gap. The three possible alternatives are to customize the
COTS product, customize the organizational practice or take no action and leave
both as they were. We discuss this document in detail in the subsequent sections

2. Statement of Work (SOW) preparation—This draws upon the gaps analysis
document to determine the customization necessary for the COTS product. The
gaps that would be bridged by customizing the organizational functional
practices are omitted in the SOW document. The gaps that need customization
of the COTS product would be included in the SOW document. We will discuss
this document also in the subsequent sections.

3. Software design—Using the SOW document, software design is carried out to
bridge the selected gaps. When a layer is proposed to be built over the COTS
product, a Software Design Document would be prepared. When it is proposed
to modify the source code of the COTS product, a Conversion Guidelines
document would be prepared. This activity is beyond the scope of this book.

82 5 Establishment of Requirements

http://dx.doi.org/10.1007/978-1-4614-5377-2_8

4. Construction of the code to fulfill the SOW—Code will be developed or
customized conforming to the software design. When building a layer over the
COTS product, new source code would be developed. When the source code is
modified, the code changes would be implemented in the source code con-
forming to the Conversion Guidelines document.

Fig. 5.1 Establishment of requirements

5.6 Establishment of Requirements in COTS Product Implementation Projects 83

5. Testing—testing of the new layer or the code changes of the COTS product are
tested to uncover defects lurking inside the code. Once all the defects are
rectified, the code would be passed on to the next stage.

6. Implementation—during this stage, the COTS product would be implemented.
Then if a new software layer is built, it would be implemented. Now the
implementation is tested to ensure that all functionalities are working as
designed without any defects, it would be commissioned for use in the
organization.

The above description is very brief and meant just to record an overview of an
elaborate process for COTS product implementation. Different organizations
would have different stages/phases with different nomenclature. For the purpose of
this book and the topic, gaps analysis and SOW documents are relevant and would
be discussed in greater detail.

5.6.1 Gaps Analysis Document

This document records the gaps between the COTS product and the functional
practices of the client organization. Table 4.2 in Chap. 4 gives the suggested
format for capturing the gaps uncovered during the requirements analysis phase of
COTS product implementation projects. This is the first level document prepared
in the projects implementing a COTS product (such as ERP, SCM, CRM, or a data
warehousing product and so on). This document is the equivalent of URS in
software development projects. Based on this document, the SOW document
would be prepared.

5.6.2 SOW Document

SOW document in COTS product implementation projects may be viewed as the
equivalent of the SRS document in software development projects. It documents
the product specifications for the COTS product implementation projects.

SOW document would normally have four sections, namely, the title page, table
of contents page, SOW pages and the closing pages. A suggested template for
capturing the SOW is given in Table 5.3.

Using this document, software design to build the additional layer or modify the
code is carried out.

The activities of quality control, obtaining approvals and configuration man-
agement are as described in Sects. 5.3, 5.4 and 5.5.

84 5 Establishment of Requirements

http://dx.doi.org/10.1007/978-1-4614-5377-2_4
http://dx.doi.org/10.1007/978-1-4614-5377-2_4

Table 5.3 Template for SOW

(continued)

5.6 Establishment of Requirements in COTS Product Implementation Projects 85

5.7 Establishment of Requirements in Software
Maintenance Projects

Software maintenance projects could be handled either by the in-house team or
may be entrusted to an external organization specializing in software maintenance.
When an in-house team handles software maintenance, the project would be
handled using a maintenance work order (referred to as program change request,
function modification request, software change request and so on in different
organizations) which would contain details of the required software maintenance.
If the project is entrusted to an external organization, then both the organizations

Table 5.3 (continued)

86 5 Establishment of Requirements

would enter into a contract describing the process for resolution of software
maintenance work orders, the turnaround times, prioritization policies, cost esti-
mation, guidelines for code maintenance, and payment for the work carried out etc.
Then each work request would be handled in conformance with the contract.
Software maintenance work is classified under two heads, namely, software
modification (including bug/defect fixing, modification to meet a changed
requirement, or effecting some change to improve productivity etc.) and functional
expansion. For software modification, the process would be as follows:

1. Receive the request
2. Replicate the described scenario in development environment
3. Locate the piece of code needing modification
4. Effect the required code modification conforming to software maintenance

guidelines
5. Subject the modifications to quality control activities
6. Deliver the fix.

Some of the maintenance requests would be so urgent/small as to deliver in two
hours. Others would have to be delivered within one business week at the most. In
view of the short turnaround times, there is not much scope for formalized analysis
and documentation in software modification type of maintenance work.

Functional expansion is normally adding additional functionality to the existing
software and would involve building new code rather than code modification. This
normally would be handled as a fresh software development project. However,
such functional expansion projects would be of relatively shorter duration and
would range from one calendar month to a maximum of one calendar year. The
requirements establishment procedure and templates described in the foregoing
sections for software development projects would be utilized for this kind of
software maintenance scenario.

5.8 Establishment of Requirements in Migration, Porting
and Conversion Projects

Migration projects involve migration of an existing system from one version of a
software platform to a newer version of the same platform. The objective of these
projects is to make use of the better facilities available in the new version which
may include better response time, better user interface or better integration with
other systems.

Porting projects move the existing system from one hardware platform to
another hardware platform keeping the same software platform. The objective of
these projects is to make use of a more robust hardware platform to cater to an
increased load and to provide better response times to users.

5.7 Establishment of Requirements in Software Maintenance Projects 87

Conversion projects involve modifying the existing system by keeping same
hardware and software platforms to implement some major changes in the envi-
ronment. Euro conversion and Y2K projects are excellent examples of this kind of
projects. In the recent times, the introduction of Sarbanes–Oxley statute and the
IFRS (International Financial Reporting System) have caused the existing systems
to be converted to be compliant with the requirements of these statutes.

The execution of these projects has common software engineering cycle:

1. Develop/purchase a tool that migrates/ports/converts the existing code to the
new platform. When a new software platform is released, it usually includes a
migration tool for migrating code from older versions. Similarly for porting and
conversion also, tool vendors quickly come up with tools. But it has been the
experience that most tools do not complete migration/porting/conversion to the
extent of one hundred percent. They do leave some gray areas untouched.
These remaining pieces of code need to be migrated/ported/converted by hand.

2. Test the code/manually inspect the migrated/ported/converted code and modify
any code that has not been fully migrated/ported/converted by the tool.

3. Subject the new code to applicable quality control activities.
4. Implement the new system in place of the older system.

Now in these projects, requirements engineering or management has a small role.
The requirements are available publicly and tools are also mostly, available. The
functionality of the product/system remains unaltered. Therefore, no templates or
processes are described here for the establishment of requirements for these projects.

5.9 Establishment of Requirements in Agile
Development Projects

Agile is a philosophy rather than a single software development life cycle. Many
software development methodologies are shown under the umbrella of agile
methodologies. Some of them are XP (Extreme Programming), Scrum, DSDM
(Dynamic Systems Development Method), Clear Case, Feature-driven develop-
ment, Test-driven development and so on. The philosophy is stated in the agile
manifesto, thus:

1. Value individuals over processes and tools
2. Value Working software over comprehensive documentation
3. Value customer collaboration over contract negotiation
4. Value responding to change over following a plan

In line with the above philosophy, agile adherents do not encourage docu-
mentation and keep it to the minimum. However, ‘‘user story’’ is used as the main
technique for recording requirements. True to agile philosophy again, no template
is used for documenting the user story. As the phrase indicates, it is a story
narrated by the user to describe the problem for the proposed product/system.

88 5 Establishment of Requirements

Therefore, it would be in the style of the user and the format and content differ
from one user to another. It is possible that the user story may not provide all the
information required for the developers. In such cases, the gaps in the information
are obtained through interactions with the co-located customer. The agile meth-
odology mandates ‘‘co-location’’ of the customer representative with the devel-
opment team. So, the customer interactions are possible as and when required by
the development team. Projects adhering to agile methodologies are able to deliver
results to their customers proving that agile philosophy is indeed working.
Therefore, I have not provided any template or format for establishing require-
ments in agile development methodologies.

5.9 Establishment of Requirements in Agile Development Projects 89

Chapter 6
Quality Assurance in Requirements
Management

6.1 Introduction to Quality Assurance

The word ‘‘quality’’ has multiple meanings and connotations. It means ‘‘character’’,
‘‘inherent feature’’, ‘‘degree of excellence’’ and ‘‘distinguishing attribute’’ among
others. In the present context, we refer to ‘‘degree of excellence’’ as the meaning of
the term ‘‘quality’’.

Quality is a term that is often used without any adjectives like good or bad. We
often say ‘‘It is a ‘quality’ product’’ meaning that the product has superior or better
than average quality.

International Organization for Standardization (ISO) defined the word ‘‘quality’’
as ‘‘the degree to which a set of inherent characteristics fulfills requirements. The
term ‘quality’ can be used with such adjectives as poor, or good or excellent.
‘Inherent’ as opposed to ‘assigned’ means a permanent characteristic existing inside
something.’’

Another popular definition of ‘‘quality’’ by Joseph Juran is ‘‘quality is fitness for
use’’.

These two definitions have practical implications for implementation. Juran’s
definition leaves the terms ‘‘fitness’’ and ‘‘use’’ undefined. Unless these two terms
are defined, the definition is open to misinterpretation by users and producers of
goods and services and they often do. The ISO definition makes ‘‘quality’’ a
continuum and usage of adjectives is mandatory. But most of us are used to using
the term ‘‘quality’’ without any adjectives to mean good quality. Again the terms
‘‘good’’, or ‘‘bad’’ or ‘‘poor’’ or ‘‘excellent’’ are vague terms not lending them-
selves to quantification or measurement.

M. Chemuturi, Requirements Engineering and Management for Software
Development Projects, DOI: 10.1007/978-1-4614-5377-2_6,
� Springer Science+Business Media New York 2013

91

Definitions cannot have vagueness that is open for misinterpretation. I offered
the below definition for quality in the book ‘‘Software Quality Assurance: Best
Practices, Tools and Techniques for Software Developers’’1 thus:

Quality is an attribute of a product or service that is provided to consumers,
completely conforming to or exceeding the best of the available specifications for
that product or service. It includes making those specifications available to the end
user of the product or service.

The specifications that form the basis of the product or service being provided
might have been defined by a governmental body, an industry association, or a
standards body. Where such a definition is not available, the provider may define
such specifications.

This is a more comprehensive definition of the term ‘‘quality’’. It mandates the
provider to declare and conform to a set of applicable specifications. The speci-
fications have to be defined by a national or international or industry association or
a professional body. Only when such specifications are not available, the provider
is free to define a new set of specifications. It mandates that the specifications
cannot be secret or hidden from public view. It is also mandatory for the provider
to meet or exceed those specifications. This definition of quality defines the
minimum acceptable level for quality and that is to meet the specifications which
are publicly available.

Having understood the term ‘‘quality’’, we can now move forward to quality
assurance.

When manufacturing and services on commercial terms began, the quality
depended on the capability of the artisan providing them. It was person dependent.
But when production of large quantities of products began, an independent
inspection was introduced to ensure that all parts were indeed included on the
product. In due course, testing of the product was also introduced to ensure
functioning of the product. These two activities, namely, inspection and testing,
came to be referred together as ‘‘quality control’’ connoting the control of quality
of outgoing products or services.

Even though quality control did a great job in ensuring that manufacturing
activities build-in quality, the product failures still occurred due to poor specifi-
cation or design. Quality control could not ensure that the pre-shop-floor activities,
including product specifications and product design, are indeed building quality
into the product. This led to introduction of standards for specifications and design.
Verification and validation of specifications and design were started to ensure that
quality is built into the product right at the stages of product specification and
product design. Quality assurance includes all activities, that is, quality control
activities and standards that ensure that quality is built into a product or service.

Now we have to acknowledge one fact that quality control activities, while they
consume resources, do not help us build quality into the product. Therefore,

1 Software Quality Assurance: Best Practices, Tools and Techniques for Software Developers,
J.Ross Publishing, Inc, 2010.

92 6 Quality Assurance in Requirements Management

the new concept of Total Quality Management (TQM) gained ground. TQM
suggests building all activities necessary to build quality into the process (either
for manufacturing or services) itself so that the need for quality control is dras-
tically reduced and thereby reduces the cost of achieving quality itself. This has led
to organizations moving towards a process-driven management.

This is a brief introduction to the vast subject of quality. Interested readers are
suggested to read my book on software quality assurance cited in the foregoing
section.

6.2 Quality Assurance in the Context of Requirements
Engineering and Management

In order to ensure that quality is built into project requirements, we need to put in
place five things:

1. Process, standards and guidelines
2. Right people with right training
3. Quality control of the deliverables of requirements engineering
4. Measurement and analysis
5. Project postmortem during the project closure.

Now let us discuss these five things in detail.

6.2.1 Process, Standards and Guidelines

These are in fact the pre-requisites for ensuring quality in the deliverables of the
requirements engineering and management activity. As we have learnt in the
earlier sections that the quality control activities are post-facto and do not build in
quality into the deliverables. We have to ensure that the activities are carried out in
such a manner that quality gets built into the deliverables by the individuals
performing the activities. This is the philosophy advocated by TQM. This can be
achieved by defining a comprehensive process for carrying out the activity in the
organization and then internalize it among the individuals performing the
requirements engineering activities. A process is a network of procedures,
standards, guidelines, formats, templates and checklists which are appropriate for
the organization. By appropriate, I mean:

1. They must be suitable for the kind of work being executed within the
organization

2. They must be elaborate enough to ensure capture of complete information
3. They must be so designed as to assist the users in performing the work effi-

ciently and comprehensively

6.1 Introduction to Quality Assurance 93

4. They must be designed to be self-explanatory needing little or no training for
use by trained individuals.

Procedures are step-by-step instructions and explain how to perform/accom-
plish an activity. Standards prescribe the parameters for the performance of the
activity. A guideline is similar to a standard but is more suggestive and less
prescriptive in nature than standards. Formats and templates assist the performers
in comprehensively capturing the information. Format and template are similar in
nature except that a template contains helpful hints to aid the users in capturing the
information within the document. A checklist is tickler for the memory to alert the
individual performing the activity to any missing information. The process ties up
all these pieces together to present a comprehensive whole.

A comprehensive process for requirements engineering and management would
include the following artifacts:

1. An overall process document linking all the artifacts that deal with require-
ments engineering and management with in the organizations

2. A set of procedures for:

a. Elicitation of requirements
b. Gathering of requirements
c. Analysis of requirements
d. Establishment of requirements
e. Measurement and analysis for the performance of requirements engineering

and management activity
f. Verification and validation of the deliverables of the activity of require-

ments engineering and management

3. A set of formats and templates for

a. Capturing the information during elicitation and gathering of requirements
b. Document the URS
c. Document the SRS
d. Defect reporting during verification and validation activities

4. Checklists for:

a. Elicitation and gathering of requirements
b. Documenting URS
c. Documenting the SRS
d. Verification and validation.

Now let us not misunderstand that all the above must be paper-based docu-
ments. It could be soft copies or could be embedded inside a software tool.

94 6 Quality Assurance in Requirements Management

6.2.2 Right People with Right Training

This is another pre-requisite to ensure that quality is in-built in the deliverables of
the requirements engineering activity.

Who are the right people to carry out the requirements analysis? A few years
ago, senior programmers, that is, the programmers that had put in a minimum of 2–
4 years of experience in programming work were initiated into requirements
analysis work under the close supervision of a project leader. Those were the days
of mainframe computers. It continued until recent times. The advent of COTS
products like ERP, SCM, CRM etc. caused this practice to change. In the projects
implementing the COTS products, functional specialists with training on the
specific product were utilized to analyze requirements. These individuals worked
in the respective functional areas, be it material management, HR, or marketing;
then received training in the usage of the COTS product and worked on imple-
menting the product at a couple of sites in the minimum. Now, owing to a shortage
of these functional specialists, the practice has moved forward to utilizing people
with MBA (Master of Business Administration) or an equivalent educational
qualification to carry out the requirements engineering function with some training
on the product and requirements engineering. Universities started offering courses
in business analysis to bridge the gap between the demand and supply of business
analysts. The function of managing requirements rests with the software project
manager in most of the organizations.

Now, as the present scenario exists, all persons enumerated below are utilized
by organizations to carry out requirements engineering activity:

1. Senior software engineers who worked on similar functional domains
2. Functional Specialists with training on the respective product, especially in the

projects implementing COTS products
3. People with MBA or equivalent qualifications and training in the requirements

engineering
4. Project leaders and project managers

Who among these are the right individuals to carry out this activity? We cannot
prescribe only one set of qualifications and experience to handle requirements
engineering in all types of projects. My recommendations are based on the type of
software project, which are as under:

1. Full life cycle software development projects—It is advantageous to utilize
either functional specialists or project leaders or project managers who have
handled projects in the same functional domain earlier.

2. COTS product implementation projects—In these projects, we can utilize
functional specialists or people qualified in business administration or business
analysis with training on the respective COTS product.

3. Conversion/migration/porting projects—in these projects, functional domain
has little significance. Therefore, for these types of projects, senior software

6.2 Quality Assurance in the Context of Requirements 95

engineers, and project leaders deliver the best results when the requirements
engineering activity is entrusted to them.

4. Software maintenance projects—again, in these projects too, functional domain
has little significance. Therefore, it is best that senior software engineers carry
out the requirements engineering activity.

5. Testing projects—To test a software product effectively, knowledge of the
functional domain is essential. Therefore, functional specialists or project
leaders who handled projects in the same domain earlier are best suited for
carrying out the requirements engineering activity.

Having right people is one thing but keeping them on the cutting edge of current
technology is another. Their skills need to be continuously honed. The role of
training in keeping the individuals up to date cannot be overemphasized. We
normally conduct the following types of trainings to requirements engineering
professionals:

1. Induction Training—We need to conduct induction training when a profes-
sional joins our organization. He/she might be proficient in the subject of
requirements engineering but he/she needs to be trained on the organizational
process, tools and techniques used in the organization. This will enable the
person to deliver results that are consistent with the results delivered by the
existing professionals.

2. Tool Training—we need to conduct training on the usage of tools and tech-
niques used in the organization for carrying out requirements engineering
activity. This training is conducted initially when an individual joins a new
organization and when a new tool is acquired by the organization.

3. Requirements Engineering Training—Often, organizations promote existing
programmers to take on higher responsibilities. Some of those promoted may
be able to handle requirements engineering activity. In such cases, they need to
be trained on the theory and practice of requirements engineering to prepare
them for shouldering the responsibility. They may be trained in-house or
sponsored to an external training program. If the individual is trained at an
external institution, the person needs to be put through the induction training
discussed above so that the organizational practices are imparted to the person.

4. Continuing Education—We conduct training periodically on the new devel-
opments in the field of requirements engineering. The periodicity of this type of
training varies from organization to organization and on the developments
taking place in the field.

5. Knowledge sharing—As we execute projects, the individuals gain fresh
insights and knowledge about the discipline. We organize this type of training
whenever a project is completed. This will be conducted by the persons who
worked on the completed projects sharing the experience gained on the project.
It would include sharing of the information on the successes and failures; best
practices and pitfalls; any special developments of the project. This will enable
all the professionals in the organization to have knowledge of all the projects
executed in the organization even though they did not work on all the projects.

96 6 Quality Assurance in Requirements Management

6. Seminars, workshops and tutorials—Professional bodies, universities and
research institutions conduct seminars, workshops and tutorials on various
topics of relevance inviting public participation. We nominate our professionals
when these are on the topic of requirements engineering. From these, our
professionals would gain insight into the experience of other organizations as
well as the discoveries of the latest research. We cannot provide this knowledge
through in-company training programs.

7. Participation in discussion groups and message boards—we encourage our
professionals to participate in message boards and discussion groups on the
topic of requirements engineering. These Internet forums provide for exchange
of information freely among participants. In fact, these have become the pri-
mary source of knowledge improvement because the question can be specific
and pointed to the issue at hand and relevant answers come forth. Such forums
are available on Yahoo, Google, MSN, and LinkedIn among others.

8. On-the-job Training—Even when a professional is trained in the discipline,
the person has a first project! During such occasions, the individual would be
closely supervised by a senior specialist to provide the person with first project
experience besides ensuring the success of the project. We used to refer to this
as ‘‘apprenticeship’’ earlier.

We adopt all of these vehicles for training in organizations. In addition to these
training programs, we also conduct project-specific training whenever a special
situation exists in the project.

6.2.3 Quality Control

We carry out these activities to ensure that quality was indeed built into the
deliverables. Verification and validation are the main activities for carrying out
quality control activities. These are separately discussed in subsequent sections of
this chapter.

6.2.4 Measurement and Analysis

We do not know the efficacy of the performance if we do not measure the per-
formance and benchmark it with similar performance within the organization or
outside the organization. This is a vital activity and a separate chapter is dedicated
for a detailed discussion of this topic.

6.2 Quality Assurance in the Context of Requirements 97

6.2.5 Project Postmortem

Normally organizations are focused on delivering results and completing projects
rather than on analyzing the past performance. If a project is successfully com-
pleted, it is argued that, its performance is acceptable. But the real efficacy of
project performance can be gauged realistically only when the project postmortem
is diligently conducted. Project postmortem looks at the project performance from
all angles in a critical manner to uncover best practices and pitfalls experienced
during the project execution. This will add significant value to the organizational
knowledge base and to the individual competence.

6.3 Verification

Verification is ensuring that the ‘‘right thing is done’’. It does not involve powering
up/running the product and testing its functionality. Verification does not involve
any tests to ensure that the right thing is accomplished. Verification is carried out
visually and perhaps through touch and feel. IEEE standard 610 for ‘‘Standard
Glossary for Software Engineering Terminology’’ defines the term ‘‘verification’’
as ‘‘the process of evaluating a system or component to determine whether the
products of a given development phase satisfy the conditions imposed at the start
of the phase’’ and also as ‘‘formal proof of program correctness’’. CMMI model
document defines the term ‘‘verification’’ as ‘‘confirmation that work products
properly reflect the requirements specified for them. In other words, verification
ensures that ‘you built it right’.’’

One thing is common in all these definitions—it does not involve ensuring the
achievement of functionality by testing the product.

When we consider the case of requirements engineering, we do not have a
product yet. So the question of testing the functionality does not arise. We have
two types of verification that can be used in carrying out quality control of
requirements. These are:

1. Peer review

a. Independent review

i. Individual review
ii. Group review

b. Guided review

i. Individual review
ii. Group review

98 6 Quality Assurance in Requirements Management

2. Managerial review

a. Independent review
b. Guided review

6.3.1 Peer Reviews

Peer review is carried out by a person who has similar knowledge and experience
as the author of the artifact. Peers are selected normally from within the organi-
zation but can be selected from outside the organization when it does not have the
persons with the requisite experience and expertise besides the author. Peer review
looks very closely at the contents of the artifact. Every aspect of the artifact
receives attention including documentation guidelines, formatting, spelling and
grammar in addition to the technical content. The objectives of peer review are:

1. Ensure that the technical content is accurate.
2. Ensure that the technical content is comprehensive.
3. Ensure that all organizational standards and guidelines are adhered to in the

preparation of the artifact.
4. Ensure that the artifact is clear and lucid when used by others and that no

ambiguity is present in the artifact.
5. Ensure that the content in no case contains unnecessary content whether it is

innocent or malicious.

Figure 6.1 presents the peer review process pictorially.
Individual reviews are carried out by a single reviewer who is qualified and has

the domain knowledge to review the artifact. In this case, the author and the
reviewer interact with each other directly.

Group reviews involve multiple persons in the review. In group reviews nor-
mally a person acts as the review coordinator. Usually, the author or the project
manager of the project acts as the review coordinator. The review coordinator
selects the reviewers; provides them the artifact; collects feedback from al the
reviewers; collates the feedback; arranges for implementation of the feedback and
reviews the implementation of the feedback and passes the document to the next
stage.

Independent review is carried out in the absence of the author of the artifact.
The artifact is provided to the reviewer or reviewers. Reviewer/reviewers would
review the document and provide the review feedback to the author/review
coordinator for implementation in the artifact. Once the feedback is implemented
in the artifact, the reviewer/review coordinator would verify the implementation
and pass it for next stage.

Guided review is carried out in the presence of the author of the artifact. If only
one reviewer is assigned to review the artifact, the author would present the details
of the artifact to the reviewer. The reviewer provides the feedback to the author
during the review itself. The author implements the feedback later on and presents

6.3 Verification 99

it once again to the reviewer and obtains the go-ahead for the artifact for the next
stage.

If multiple reviewers are selected for guided review, the review coordinator
arranges a meeting of all the reviewers. The author presents the details of the
artifact to the group. The review coordinator takes down all the feedback provided
by the reviewers during the presentation and collates it. The feedback is received
and implemented by the author of the artifact. The review coordinator reviews the
implementation and passes it on to the next stage.

Fig. 6.1 Peer review process

100 6 Quality Assurance in Requirements Management

Table 6.1 provides a suggested format for recording the feedback of the review.
It is possible that the feedback is directly fed into a defect reporting tool, It is not
necessary that the feedback is in paper form.

Table 6.1 Review feedback form

Review Feedback Report

1. Project name:
2. Name of the artifact being reviewed, with version number:
3. Name(s) of the reviewer(s):
4. Name of the author of the artifact:
5. Date(s) on which the review is conducted:
6. Type of review: independent / guided individual / group postal / meeting

Defects uncovered during the audit (use an additional sheet if required)

Defect
ID

Defect
description

Reference
to process for

the defect

Defect
 origin

Closed
on

Status
(open /
closed)

Signature of the lead reviewer:
Date of signature:

Corrective actions implemented
Corrective action implemented Defect IDs covered by

this corrective action
Any comments

Signature of the author:
Date of signature:

Defect closure actions (to be filled in by the lead reviewer)

I have verified and found that all the defects described above are closed satisfactorily,
except the following defects, which are retracted or pending

1.
2.
3.

Signature of the lead reviewer:
Date of signature:

6.3 Verification 101

6.3.2 Managerial Reviews

Managerial reviews are carried out by the person to whom the author of the artifact
reports. In other words, managerial review is carried out by the person approving
the artifact. The objectives of carrying out a managerial review are:

1. The artifact submitted for approval is the right one belonging to the right
project and product

2. The artifact submitted is complete in all respects and that no required infor-
mation is missing

3. All quality control activities are performed; all feedback is implemented and
that the artifact is passed for approval

4. Using the experience and the well-honed hunches, identify all possible problem
areas in the artifact and correct them.

Managerial review is a bird’s eye view of the document. It does not go into the
minute detail as the peer review would. The person carrying out managerial review
would glean through the artifact to see if everything is alright. Most often, man-
agerial review would not uncover any defects. But if it discovers any defect, it
would normally be a big issue necessitating a major revision. Manager, because of
their experience gained in handling multiple projects in diverse domains are
excellently positioned to uncover major slips of detail. But the major contribution
of a managerial review is to ensure that all preceding activities including quality
control activities are completed successfully.

Managerial review does not produce a review feedback form. The corrections
are communicated to the author. The author normally subjects the artifact to peer
review once again to ensure that it is reviewed in detail.

The deliverable for a managerial review is the approval of the artifact to the
next stage, if no feedback is necessary.

6.3.3 Best Practices and Pitfalls in Verification

One pitfall is to treat verification as a mere formality to fill a review feedback form
showing no defects for the purpose of quality audits and record keeping. We need
to keep records for facing quality audits successfully but cooking up records is a
bad practice. Verification adds value following the adage that ‘‘two heads are
better than one’’. One is always blind to one’s own faults/defects. So, a peer review
overcomes that natural weakness of an individual.

The Second most common pitfall is to skip one of the two types of reviews.
Both add values in their unique way. Often, peer review is skipped in preference
for the managerial review. Managerial review in spite of the best intentions of the
manager, would not be able to delve deep enough into the detail a peer review can.

102 6 Quality Assurance in Requirements Management

Nor can peer review bring in the well-developed hunches and experience that a
managerial review can. Therefore, neither review can really be skipped.

In some organizations, group reviews are omitted altogether. True, group
reviews place an extra overhead on the project and the adage ‘‘too many cooks
spoil the broth’’ may become applicable. Group reviews come in handy especially
in projects handling new domains or of very large size. Group reviews have their
place and should be utilized in applicable cases.

6.4 Validation

Validation is confirmation, authentication or corroboration of a claim. A claim
may be that something is defect-free or something is working as intended. Vali-
dation confirms or rejects the claim.

IEEE standard 610 in its standard glossary of software engineering terminology
defines the term validation as ‘‘The process of evaluating a system or component
during or at the end of the development process to determine whether it satisfies
specified requirements.’’

The CMMI� model document for development defines validation as ‘‘Confir-
mation that the product, as provided (or as it will be provided), will fulfill its
intended use. In other words, validation ensures that ‘you built the right thing.’ The
purpose of Validation is to demonstrate that a product or product component
fulfills its intended use when placed in its intended environment.’’

Validation includes powering up the appliance or product and testing its
functionality. Normally, validation is understood to be testing in the industry. But
in requirements engineering, we do not yet have a testable product. Therefore, we
need to adopt other means of validation. Here are some of the techniques that help
us in validating the requirements:

1. Brainstorming
2. Story boarding
3. Prototyping
4. Expert review
5. End user review.

Let us discuss each of these techniques in greater detail.

6.4.1 Brainstorming

Brainstorming is a technique wherein concerned and knowledgeable people gather
in an informal environment to give vent to free thinking. This is useful when a
specialist expert is not available for the subject at hand. Everyone in the group
shares their knowledge so that collectively the knowledge would be substantial.

6.3 Verification 103

For validating the requirements specification documents, the group deliberates the
contents and comes to the best possible validation.

6.4.2 Storyboarding

Storyboarding is a technique used in film making in which pictures of the proposed
movie are pinned on the wall sequentially so that the storyline is clear to the
viewers of the pictures. If there are any gaps or absurdities present, they will come
out clearly as well. This technique is used in validating the requirements docu-
ments. Requirements are printed on paper and are pinned in a logical sequence on
a wall or a board. Then selected experts would go through the requirements and
see if the requirements are valid requirements. This technique alleviates the
necessity to read voluminous documents, make sense out of the write-up and
decide the validity of the requirements. This technique is very effective but it
would need extra effort in preparing the storyboard. Some people use a slideshow
or PowerPoint slides to present the story instead of pinning the requirements on a
wall or a board. The experts can view the slideshow any number of times to
validate the requirements. This technique is used across many organizations for
validating requirements.

6.4.3 Prototyping

Prototyping, as discussed in Chap. 5 on establishment of requirements, is used
more to prove design than to establish software project requirements. But a few
organizations still use, in special circumstances, prototypes to establish require-
ments and to validate requirements as well. Prototypes are especially useful in
validating the product specifications (SRS). In product development projects, a
prototype is built and it is demonstrated to select end users to collect their feed-
back. This feedback helps the organization to improve the product design as well.
End users would not be able to visualize aesthetic aspects from requirements
documents, especially of user interfaces of products. And as user interface plays a
vital role in the success of the product, a prototype comes in handy to evaluate the
user interface before we really built it.

6.4.4 Expert Review

Expert in this context is a person who is well versed in the functional domain of
the proposed project or product. In some cases, the customer depends on the
software development organization’s expertise to deliver a software product with

104 6 Quality Assurance in Requirements Management

http://dx.doi.org/10.1007/978-1-4614-5377-2_5

industry best practices included in it. In the case of product development, normally
a functional expert guides the development team but to take advantage of another
expert’s knowledge as well as to validate the product specifications, another
independent expert is requested to review the requirements and validate them. The
expert may be a single individual or a set of individuals. The method may be an
independent review or a guided review. Expert review uncovers gaps in the
requirements, if any, and help in arriving at a comprehensive set of requirements.

6.4.5 End User Review

End users are the individuals who are likely to use the resultant software product
from the proposed project. End users are found within the client organization for a
client-oriented project or in another department of the same organization for an
internal project. For business-to-customer projects such as airline ticket reserva-
tion, the end users are likely to be scattered across the world. In such cases, we
need to carefully select end users from different demographic/geographical regions
to get the best feedback. These end users ought to be knowledgeable about the
document conventions and be able to understand the documents and provide
intelligent feedback. The review may be independent or guided but in most cases,
a guided review is preferred as the individuals are not part of the organization and
hence are not obliged to abide by the timetable of the organization. Arranging a
meeting and get them all together and present them with the requirements for
review would be better as their feedback can be collated in one go. It is also
effective on timeline considerations. A guided review also facilitates in ensuring
that the end users understand the requirements as intended without bringing in
their individual experiences to interpret the requirements.

6.4.6 Feedback Mechanism from Validation

The feedback vehicle presented in Table 6.1 can be used for collating and tracking
the feedback to resolution. It can be paper based or software tool based. In the
present day, the shift is more pronounced towards a software tool based feedback
reporting and resolution mechanism.

6.5 Determination of Applicable Quality Control Activities

As can be inferred from the above discussions, there is some leeway and freedom
regarding the choice of the quality control activities as well as how to perform
them. The process at the organizational level sets general guidelines for project

6.4 Validation 105

level quality control activities. At the project level the project manager prepares
various plans including SPMP (Software Project Management Plan), SCMP
(Software Configuration Management Plan), SQAP (Software Quality Assurance
Plan), Project Induction Training Plan, Project Schedule and so on. Among these
plans, SQAP would contain the quality control activities that are planned for the
project. The activities needed for ensuring that quality is indeed built into the
requirements documents are defined in this SQAP. Quality assurance activities to
ensure that the project activities are performed so as to build quality into the
requirements documents are defined either in the SPMP or SQAP deriving them
from the organizational process, standards, guidelines, formats, templates and
checklists for quality assurance.

Implementing the quality assurance as well as quality control activities is
carried out during project execution including tracking and control using the usual
project control mechanisms defined in the SPMP. These include status review
meetings, status reports, measurement and metrics.

106 6 Quality Assurance in Requirements Management

Chapter 7
Planning for Requirements Management

7.1 Introduction to Planning

The quote attributed to Abraham Lincoln states, ‘‘If I am given six hours to fell a
tree, I will spend the first four on sharpening the axe’’, emphasizes the importance
of planning. Another quote attributed to Peter Drucker states ‘‘Nobody plans to
fail; but they just fail to plan’’. I don’t think that I can do any better than these two
quotes to explain the importance of planning. Planning may not prevent failure
altogether but it certainly increases the chances of success and reduces the risk of
failure in any human endeavor. It helps in anticipating the required resources
reliably and in locating the risky areas in our endeavor so that we have adequate
time to prepare and mitigate them successfully. But before we move further on this
topic, let us define planning and understand its import.

7.2 Definition of Planning

Planning is defined as the intelligent estimate of resources required to accomplish
a predefined endeavor successfully at a future date within a defined environment.

The key aspects of the above definition are:

1. Estimate—it is the best guess/anticipation of future requirements. It can be
based on the organizational norms and the expertise/experience of the
estimator.

2. Resources—cover the 4 M’s, ‘‘Men (people, term ‘men’ is only used for the
sake of rhyme), Materials including money, Methods, and Machines (equip-
ment)’’. Resources are always applied over the course of the performance of the
human endeavor.

3. At a future date—the dates for executing the project are in the future.

M. Chemuturi, Requirements Engineering and Management for Software
Development Projects, DOI: 10.1007/978-1-4614-5377-2_7,
� Springer Science+Business Media New York 2013

107

4. In a defined environment—the environment where the work is going to be
performed is defined. The environment is defined during the planning exercise.
Any variation in the environment would affect the plan. The Environment refers
to a wide variety of conditions including work logistics, workstation design,
technical environment, processes and methods of management, prevailing
morale at the workplace and corporate culture to name a few aspects.

5. Endeavor—any activity performed by human beings that would consume
resources and would achieve a pre-defined objective.

The scope of the project would not be completely understood until we compile
the requirements. But, what are the objectives of planning for requirements
management? There could be multiple objectives for the endeavor. Here are the
objectives of planning for requirements management:

1. Identify the resources needed to perform the requirements engineering activity
efficiently and effectively. The resources are qualified and experienced human
resources, money for expenses, duration needed and the machines (servers,
laptops, tablets, PCs etc.) and tools required for the activity

2. Identify the risks associated with the activity and prepare a mitigation plan
3. Identify the dates for performing various requirements engineering activities

during the course of project execution so that a project schedule can be
prepared

4. Identify all the stakeholders of the activity so that every stakeholder contributes
according to their role.

Any other project-specific objective can be added to the above list.
Having put the definition of planning in its proper perspective, we can now

move forward on planning for requirements management.

7.3 Planning for Requirements Management

When do we carry out planning for a software project? This is normally the first
activity as soon as the project is either approved or acquired. It normally precedes
the requirements engineering activity. We prepare project plans during the project
planning phase of the project. But in some cases, we may have to carry out some of
the activities of requirements management even before planning the project. For
example, in the case of internal projects, we may sometimes need to firm up the
requirements as a prerequisite for the project to be sanctioned. A project would not
be planned unless project is approved and budget is sanctioned. Even in external
projects, we need to understand the requirements if only in their rudimentary state
to offer a bid and acquire the project. Irrespective of where the project is executed,
the organization conducts a feasibility study to ascertain if the project is worth
committing funds to. The feasibility study would collect preliminary requirements
to determine the need and the desirability of recommending the project.

108 7 Planning for Requirements Management

What I have been trying to establish is that at least some portion of the
requirements engineering activity precedes project planning, because no one
would like to embark on an endeavor without any knowledge of what they are
getting into. Such portion may be preliminary requirements as in most cases or as
it is in a few cases, it could be full user requirements.

We can certainly plan for establishment of project requirements, change
management of requirements, tracing and tracking of requirements through the
course of project execution and measurement of the efficacy of requirements
management in the project. We will discuss these aspects in the following sections.

7.4 To Document or Not to Document?

That is the question most people like an answer for! Documentation is not man-
datory for planning. For small projects, documentation is not really essential. But
for all other projects, documenting the plans offers several advantages:

1. It allows us to think through the project as well as review our own plans and
ensure their comprehensiveness

2. It allows us to get a second opinion on the efficacy of our plans
3. In long drawn out projects, it allows us to keep the perspective. We are prone to

forget the original plan in the long run; the document allows us to refresh our
memory

4. It becomes the reference point to assess progress and control the project
execution

5. We human beings do not have a photographic memory and tend to forget the
details over a period of time. Plans impact multiple stakeholders and all would
remember a different version of the plan in the long run, if it was not docu-
mented. If we wish to avoid arguments, differences of opinion and conflicts, we
need to document the plans. A document acts as a point of reference and keeps
every stakeholder on the same page at all times.

Therefore, it is advantageous to document the plans, especially in large and
long duration projects.

Agile projects do not prepare planning documents because they follow an
iterative development life cycle with each of the iterations being limited to a
maximum of 4 weeks. In such situations, perhaps, a documented plan may not be
necessary for each of the iterations. It is still advantageous to have an overall plan
for all the iterations put together. Other projects do document project plans.

7.3 Planning for Requirements Management 109

7.5 Different Project Plans

While full life cycle development projects prepare several plans, especially in
large projects, we limit our discussion here to the plans relevant to requirements
management. They are:

1. SPMP—Software Project Management Plan—this is the primary project plan
and is referred to by many names including Software Project Plan, Software
Development Plan, and Project Plan etc. This is the top level plan for a project
and all other plans are subordinate to this plan. Other plans are spawned into
separate documents only if the project is very large and deserves a separate plan
for each of the other aspects of project management.

2. SCMP—Software Configuration Management Plan—this plan would include
all activities focused on ensuring the integrity of all the code artifacts and
information artifacts as well as controlling the changes to the artifacts that are
subjected to the rigor of the organizational configuration management process.

3. SQAP—Software Quality Assurance Plan—this plan would include all activ-
ities focused on ensuring that quality is built into all the project deliverables.
They include the quality control activities of verification and validation besides
various processes, procedures, standards, guidelines, formats, templates and
checklists selected for use in the project.

4. Induction Training Plan—this plan would include all activities focused on
bringing newly allocated human resources up to speed quickly on the project. It
includes the required topics of training for each role, duration for each topic, the
methodology of imparting the training, faculty specifications, evaluation of the
feedback received from the completed training programs and so on.

5. Project Schedule—this is a PERT/CPM (Program Evaluation and Review
Technique/Critical path Method) based project schedule. It will include all the
activities that need to be completed in order to execute and complete the
proposed project. It will contain the sequence in which the activities need to be
performed as well as the sets of activities that can be performed concurrently
and those that need to be performed sequentially.

There are other plans like the implementation plan, master data creation plan,
deployment plan, end user training plan, system changeover plan, software
maintenance plan and so on that are used in especially large projects. But the five
plans discussed above are most frequently used in the management of project
requirements. Therefore, I have not delved deep into the details of the remaining
plans.

Project planning is a large subject in itself and to cover it comprehensively is
beyond the scope of this book. I have included sparse material about planning here
as a prelude to planning activities relevant to the management of project
requirements. Interested readers are advised to refer to ‘‘Mastering Software
Project Management: Best Practices, Tools and Techniques’’ referred to earlier in
this book.

110 7 Planning for Requirements Management

7.6 Planning for Requirements Management in Projects

We need to plan for the following requirements engineering activities in our
project plans:

1. Requirements Elicitation and Gathering
2. Requirements Analysis
3. Requirements Establishment
4. Requirements Change Control and Management
5. Requirements Tracing, Tracking and Reporting
6. Measurement and Metrics.

Let us discuss planning for each of these in greater detail.

7.6.1 Requirements Elicitation and Gathering

The activities of elicitation and gathering would be included in the SPMP which
would include:

1. The resources required, namely, the human resources, the number required,
the proposed role for each of the individuals, when exactly they would be
needed (this aspect can be referenced from the project schedule), the likely
release dates, the qualifications, experience and expertise necessary for the
individuals, and any other project specific needs would be recorded here. Other
resources like the laptops, voice recorders, video recorders, Internet connec-
tivity, special software tools and any other project specific hardware resources
would also be included in this plan. It would also include funds requirement, if
any, for procurement of special hardware, software tools, travel, stay and
boarding, as well as any other project specific requirements.

2. The methodology adopted for the project—The methodology includes the
software development life cycle, work management (allocation and de-alloca-
tion, measurement and metrics etc.), communication, progress review, report-
ing and so on. SPMP would also record the specific methodology adopted for
each of the aspects of the project. This could be simply a reference to relevant
organizational process assets. Or it may point to documents maintained under
the configuration management of the project. In some cases, it may even be
recorded within SPMP itself! Whatever the case may be, SPMP will make it
clear as to the specific methodology adopted for the project for elicitation and
gathering.

3. The standards and guidelines—SPMP would normally specify the standards
and guidelines selected for use in the project. These may be organizational
standards or client organization’s standards. SPMP would point to the location
of the standards and guidelines selected for the project which may within the
organizational process assets library or within the project configuration

7.6 Planning for Requirements Management in Projects 111

management. Normally, standards and guidelines would not be recorded in the
SPMP.

4. The project specific processes, procedures, formats, templates and checklists—
SPMP would normally provide reference or pointers to formats, templates and
checklists selected for use in the project. They would be either in the organi-
zational process assets library or the project’s configuration management.

5. Project specific tools and techniques—Projects would be using tools for
preparing various diagrams like flow charts, DFDs, ERDs use case diagrams
and so on. Other tools used in the project include configuration management
tools, documentation tools (such as MS Office suite), data analysis tools, and
communication tools including audio/video conferencing and collaboration
tools. All these would be enumerated in the SPMP and pointers would be
included to locate their user manuals or help files.

Thus most of the activities of elicitation and gathering are covered by the SPMP
and the project schedule. The remaining activities would be covered in the other
plans.

7.6.2 Requirements Analysis

This aspect would find a place in two plans, namely the SPMP and the project
schedule. The project schedule would record the dates on which this activity would
be performed. SPMP would contain the details of the persons carrying out the
activity, the methodology, and the tools and techniques utilized in the analysis.
SPMP would also contain the pointers to the procedure, standards, guidelines,
formats and templates necessary for carrying out this activity.

7.6.3 Requirements Establishment

The activities that need planning are the resources, the timelines, the methodology,
standards, guidelines, formats, templates and checklists. The methodology
includes documenting guidelines, quality control methodology, approval meth-
odology, and configuration management methodology. We also need to plan, the
tools and techniques used for documenting, defect reporting, resolution, and
communication.

SPMP would record the methodology and pointers to the documentation
guidelines, adopted for the project in the establishment of project requirements. It
will also include information about the selected tools and techniques proposed for
use on the establishment of the project requirements.

SCMP would record the selected configuration management methodology for
establishment of project requirements as well as the change management

112 7 Planning for Requirements Management

methodology. It will also record the version control methodology of project’s soft-
ware artifacts including check-in and check-out procedures.

SQAP would enumerate the quality control activities selected for the estab-
lishment of project requirements. It will include pass/fail criteria, defect reporting
and resolution methodology as well as escalation methodology and mechanisms in
case of disputed decisions.

The project schedule would contain various timelines for the establishment of
project requirements, performance of quality control activities, list of artifacts
needing approval from customer, and submission for and receipt of approvals.

7.6.4 Requirements Change Control and Management

Greek Philosopher Heraclitus said, ‘‘There is nothing permanent except Change.’’
Hardly any project is ever completed without some changes being requested and
implemented. So, it is very important that we plan for receiving and implementing
change requests. Change management forms part of the configuration management
process. Therefore, it is planned for in the SCMP. As it is rather not possible to
predict the timelines for receiving the change requests, so, the project schedule
would not contain any change management activities. The SCMP would however,
contain all the activities pertaining to change management including receipt of
change requests, recording them, analyzing them, implementation strategy,
implementation, quality control activities, and measurement and metrics to ana-
lyze the impact of change requests on the project.

7.6.5 Requirements Tracing, Tracking and Reporting

Requirements are to be traced through all the activities of software development so
as not miss any of them at any stage. This will ensure a software product that truly
meets all the requirements of the end user as well as those of other stakeholders.
Tracking and reporting of the requirements engineering activities provide needed
information to all the stakeholders and keep them on the same page. Therefore, all
these activities need to be planned. SPMP contains the information on the meth-
odology, periodicity and tools used in tracing of the requirements through the
software development. SPMP would also include information on the methodology
used for tracking and reporting on the requirements engineering activities as well
as the formats and templates used for reporting the performance of the require-
ments engineering activities in the project. SPMP would also enumerate the
agencies responsible for tracing, tracking and reporting activities, the periodicity
of reporting as well as the agencies that receive the reports. The storage of the
documents used in tracing, tracking and reporting is defined in the SCMP.

7.6 Planning for Requirements Management in Projects 113

7.6.6 Measurement and Metrics

Measurement facilitates determining the progress quantitatively, which facilitates
drawing inferences and initiating necessary corrective actions commensurate with
the variance. Metrics facilitates benchmarking the performance with other projects
within the organization or with the other similar organizations. The aspect of
measurements and metrics relevant to requirements engineering and management
are covered in a separate chapter. SQAP normally contains all of the proposed
measurements for the project and so would contain the measurements and metrics
proposed to evaluate the requirements engineering activities. In some cases, SPMP
would contain this information. The plan would contain various measurements,
their periodicity, proposed metrics, the methodology to derive the proposed met-
rics and the formulas thereof, as well as the proposed analysis and benchmarking.
It would also contain the information of how and to whom the metrics information
would be communicated.

7.6.7 Formats and Templates for Planning

I have not provided the formats and templates for the plans discussed in this
chapter as the information pertaining to requirements engineering forms a min-
iscule portion of these plans. The plans contain many more aspects of project
planning and execution. Also, we do not make separate plans for requirements
engineering activities and I do not advocate preparing separate plans for
requirements engineering activities.

7.7 Best Practices and Pitfalls in Planning

I have seen planning being treated as an exercise in creating planning documents.
This is the worst pitfall many organizations fall into. Planning is an exercise in
thinking trough the projects and evaluating every task in terms of the resources it
needs, the quantity, type and timelines the resources are required, the methodology
that is best suited to accomplish it successfully, the timelines for its performance,
and the tools and techniques necessary for its successful accomplishment. Docu-
mentation is to retain that thinking for reference throughout the duration of project
execution by all the stakeholders. But planning is certainly not an exercise in
creating documents.

Another pitfall that organizations frequently fall into is avoiding the documen-
tation altogether. There are many stakeholders to a project that include end users,
customers, organizational management, the project team, the quality assurance
department, finance and marketing departments, the program manager and so on.

114 7 Planning for Requirements Management

If all these agencies are to be brought on to the same page, nothing is more simpler
and cost effective than a document. A format helps documenting the plan compre-
hensively than placing an overhead on the project manager. It reminds the project
manager of any aspects of the project that are either missed or forgotten.

Another pitfall that I had occasion to witness is to treat project schedule prepared
using MS-Project or such other tool as the entire plan for the project. Nothing can be
more misleading. It is simply a schedule. Such schedules do not contain the selected
methodology, standards, guidelines, formats, templates and checklist for the project
and tools and techniques proposed for use on the project. A schedule also does not
contain the methodology of carrying out quality control activities, defect reporting
and resolution methodology, an escalation mechanism, nor does it document the
configuration and change management procedures. So, preparing a schedule and
treating it as the comprehensive project plan is not very wise.

A less common pitfall is to overdo the documentation part. Use of a very
comprehensive template even for a short duration project is a pitfall. The plan
ought to be commensurate with the size and duration of the project. Using the
same comprehensive template for all projects without considering the project size
and duration is not very wise.

7.7 Best Practices and Pitfalls in Planning 115

Chapter 8
Requirements Change Management

8.1 Introduction

The quote, ‘‘There is nothing permanent except Change’’ attributed to Greek
Philosopher Heraclitus, emphasizes how the world changes. World changes and
requirements too, change midway through the project execution. Almost all pro-
jects would need some change or the other after the requirements are frozen.

Requirements change management begins only upon freezing of the require-
ments, that is, the requirements documents are approved and are subjected to the
project’s configuration management. It will continue through the project execution
until the project deliverables are handed over to the customer.

What is a change? A change is basically a requirement that is specified/modified
after the requirements are frozen. The new requirement may be a modified version
of an already specified requirement. Or it could be a new requirement altogether.

Why do requirements change?

Requirements change midway through the course of project execution for a
variety of reasons. Core functionality requirements may change due to:

1. The business environment in which the organization operates undergoes a
change to which the organization needs to respond. This can cause the software
requirements to change.

2. The management of the organization may effect a reorganization of its oper-
ations and this may necessitate a change in the core functionality requirements.

3. Some of the end users may have forgotten some requirements or remembered a
new requirement after freezing the requirements. This would necessitate a
change of requirements.

4. A new statute or a court judgment, or a government diktat can cause changes
after the requirements are frozen.

5. Process improvement activities may have modified some of the existing busi-
ness practices and these can cause the requirements to change.

M. Chemuturi, Requirements Engineering and Management for Software
Development Projects, DOI: 10.1007/978-1-4614-5377-2_8,
� Springer Science+Business Media New York 2013

117

6. Data analysis of completed projects can reveal some anomalies which could
result in changing the requirements.

Ancillary functionality requirements also can change for the following reasons:

1. During design phase or construction phase, it may be uncovered that imple-
mentation of some requirements as frozen may not be possible due either to
technical reasons or cost considerations. This may necessitate a change of
requirements.

2. Some of the system software may release patches or service packs affecting the
software design causing the requirements to change.

3. A new threat or a security hole may be discovered in the system software
necessitating a revision of the requirements.

4. Someone may uncover a better way to achieve the functionality causing the
requirements to change.

Whatever the reason may be and whatever the requirement may be, some
changes become necessary during the project execution after the requirements are
frozen. Therefore, we need to equip ourselves with the means to handle changes in
an orderly manner ensuring that the smooth work flow continues without major
interruption. Normally this is covered in the SCMP and forms part of configuration
management of the project.

8.2 Communication of Changes

How are changes communicated to the project team? Changes can be communi-
cated to the project team either by telephonic information, in person, through an
email, through a software tool or more formal methods. Agile methods mandate
colocation of the customer with the project team and hence see no need for formal
or written methods for communicating change. In the agile projects the commu-
nication would be in person. In other projects, all the above methods would be
used. It is possible to communicate changes without written documents but, formal
methods have advantages. They are:

1. Formal methods help in keeping a record of the changes requested for analysis
later at the end of the project.

2. Formal methods facilitate tracking each change to its resolution and that no
requested change is forgotten.

3. Formal methods ensure that all required information is communicated along
with the requested change.

4. Formal methods enable analysis of changes and effect improvements in the
process to minimize changes as well as to improve the process of defining
project requirements more comprehensively.

118 8 Requirements Change Management

The formal mechanism used for handling change management is a CR (Change
Request). A suggested format for a CR is shown in Table 8.1.

8.3 Origination of Changes

Changes can originate from various stakeholders including:

1. Customers—Customers’ representatives raise change requests mainly to
change core functionality requirements. Occasionally they can also raise
requests to modify ancillary functionality when the system software proposed
by them has undergone changes. The changes stem mainly from changes in a
business scenario, or new/modified statutes, and reorganization of key depart-
ments etc. The world is dynamic and anything could change to effect the frozen
core functionality requirements and customers could raise change requests.

2. End users—End users raise change requests when a frozen requirement needs
to be changed because they either forgot a key aspect of a requirement or they
forgot a requirement totally. They may add a field or modify a field; they may
change the screen layout or report layout; they may need an additional report;
and modify the steps of a process and so on. Normally change requests raised
by end users would affect core functionality requirements.

3. Project team—Project team members can raise a change request occasionally
when they are not able to implement a requirement in its entirety or need a
design modification. They may not be able to pack all the controls on the same
screen or all the fields on the same report and this would cause them to raise a
change request. Sometimes, they may be able to combine multiple screens into
one screen layout. Normally project team’s change requests are concerned with
implementing the design and issues thereof.

4. Testing team—It is rare that a testing team raises a change request as it is
focused more on uncovering defects than on finding opportunities for
improvement. But testing teams may find opportunities for improvement
(especially about system response times uncovered on performance testing,
system stress uncovered in stress testing or concurrency control aspects
uncovered in concurrent testing) while carrying out testing and may raise
change requests albeit in practical terms these changes often are initially
confused with problem reports. Testing teams do find some opportunities for
improvement and raise change requests to resolve those changes.

5. Organizational Standards group—Organizational Standards groups may
change an existing standard or bring out a new one, which may impact projects
in progress. In such cases they may raise a change request to retrofit the
standard into the project deliverables. Unless the change addresses a critical
issue, the Organizational Standards group generally identifies a migration path
for the change.

8.2 Communication of Changes 119

Table 8.1 Change request form

Requirements Change Request Form

Project Id:
Project Name :
Date :
CR Reference :

Initiator Information
Name of Initiator
Designation
Contact Information :
Phone Number
Email id
Location

Details of the Change Requested
Name of Module affected
by the CR

List of components
affected by the CR

Description of the
requested Change
(Add additional sheets, if
required)

Reasons for the change

Priority (Immediate
implementation / when
possible before completion
of project / to be retrofitted at
the end of project)

Implementation Information
Aspect Name Of the Person Date of completion

Analysis
Approved for
implementation or
Rejected
Implementation
Review
Regression
Testing
Closed on

120 8 Requirements Change Management

These are the sources for origination of change. Now let us look at the reso-
lution of change requests.

8.4 Change Request Resolution

The first response to a CR is to record it in a Change Request Register (CRR) so
that it can be tracked to resolution. A CRR could be as simple as an Excel
Worksheet or a software tool like PMPal that facilitates the functionality of a CRR.
The CRR is the main tool for tracking all CRs to resolution. By recording the CR
in the CRR will ensure that no CR is overlooked/forgotten. It would also enable
tracking every CR to resolution. It would further enable us to analyze the CRs at
the end of the project. The resolution of a change request can be:

1. Accept the CR and implement it immediately
2. Accept the CR but implement it later along with all other CRs
3. Reject the CR

After a change request has been logged in the register, the CR is analyzed by a
PM or a designated person. In large projects, there would be a CCB (Change/
Configuration Control Board) that would analyze the CR and accord approval for
implementation or reject it. In either case, the analysis would determine:

1. Whether the information contained in the CR is comprehensive with all per-
tinent details and facilitates implementation of CR.

2. Whether implementation of CR would be feasible both in technical as well as
financial considerations. When the CR is raised by internal sources such as the
project team or testing team, the analysis would also determine if the imple-
mentation is desirable from a user viewpoint in addition to its feasibility.

3. The amount of effort, cost and calendar time it would consume to implement
the CR.

4. The impact of the CR on the overall project, if it is accepted (especially in
terms of effort, schedule and cost) or rejected (fulfillment of functionality).

Once the analysis is completed, the Impact Analysis would be submitted to
CCB or the PM who would approve or reject the CR. In the case of rejection, the
decision along with reasons for rejection would be communicated to the originator
of the CR and the CR is closed in the CRR. If the CR is accepted, the PM or the
CCB would decide on the strategy for implementation of the CR. Once a CR is
approved for implementation, it would be implemented in accordance with the CR
implementation strategy decided and recorded in the Software Configuration
Management Plan (SCMP). Strategies can include:

1. Implementing CRs immediately on receipt and approval
2. Consolidate all CRs and retrofit them at the end of the project or any another

appropriate point in the development process

8.3 Origination of Changes 121

3. Situational implementation:

a. If the component which is affected by the CR is yet to be constructed or is
being constructed, then implement the CR when the impacted component is
under construction.

b. If the construction of the component, which is affected by the CR, is
completed, keep the CR pending and retrofit it into the component at the end
or at a convenient time.

c. If the construction of the component is completed but not implementing the
current CR would render the component a bottleneck for other components,
it would be implemented immediately.

Once the analysis and strategy for CR implementation are decided, the CR
would be implemented in line with the analysis and implementation strategy
decided by the CCB or the PM.

Changes can cause disruption to the flow of project execution regardless of
whether it begins as a smooth flow or a chaotic path. When a CR is received, in
many cases, it would impact an artifact that is already completed. This causes
severe impact. In rare circumstances the impact would be on an artifact that is yet
to be completed. If the impact is only to the current artifact, the impact will tend to
be less severe. Regardless of the scenario, artifacts like requirement documents,
design documents and others will have to be reviewed and may have to be revised
which will impact the project execution flow.

The phase of development at which the CR is received also determines the
severity of the impact. For example, a CR is received just after the requirements
phase will tend to cause the least severe impact as compared to a CR for the same
item received when the project is in the system testing phase.

Table 8.2 summarizes the severity of the impact of CRs on project execution
flow. But one thing is certain; CR does impacts project execution flow.

The timing when a change request is received can influence the implementation
of CRs as much as the strategy. Table 8.3 shows the impact on a set of typical
artifacts based on the phase during which the CR is received and the possible
strategies for implementing the CR.

8.5 CR Implementation

First let us look at scenario where a project is using the most used situational
approach to implement accepted CRs. The following are the steps generally fol-
lowed for implementing the CRs under this strategy:

1. Is the activity impacted by the CR completed? If the activity is not completed
and is yet to be started, the CR would be incorporated into the requirements and
design (as required) documents.

122 8 Requirements Change Management

2. If the work on the impacted component is started but not completed, the CR
would be handed over to the team member (or members) carrying out the work
for implementation. The CR would then be incorporated into the deliverables.

3. If the work on the component impacted by the CR is completed, then the CR
would be kept pending to be implemented either at the end of the project or at a
convenient time, such as when some resources become free or a part of the
team is idle waiting for some approval or clarification and so on.

If the project was following a strategy of holding CRs and then retrofitting them
at a convenient point in time, the following steps would followed to implement the
CRs:

1. Each CR is further analyzed to determine the components and deliverables
impacted by it.

2. At the completion of analysis, CR implementation activities are consolidated
into packages normally by the component.

3. Work allocation would be made so that all CRs pertaining to one component or
one set of related components would be allocated to the same set of team
members.

Table 8.2 Severity of the impact caused by CRs

Phase in which
CR is received

Severity of impact caused by CR based on the type of CR

URS CR SRS CR Design
CR

Construction CR

User requirements Nil Nil Nil Nil
SRS Medium

severity
Nil Nil Nil

Design High
severity

Medium
severity

Nil Nil

Construction High
severity

High
severity

High
severity

1. Medium if the component is
already constructed

2. Low, if the component is
not yet constructed

Table 8.3 Impacted artifacts and the strategy for implementation of CR based on the phase
during which the CR is received

Phase in which
CR is received

Artifacts impacted Suitable strategies for
implementation

User/software
requirements
phase

User/software requirements
documents

As and when received or when
convenient but before design is
started

Design phase User/software requirements
documents and design documents

As an when received or when
convenient but before design is
completed

Construction
phase

User/software requirements
documents, design documents and
source code

As and when received or, retrofitted
or situational implementation

8.5 CR Implementation 123

4. The allocated team members would carry out the activities required to imple-
ment the CR.

5. The additions/modifications would be subjected to planned quality control
activities such as reviews and regression testing.

6. All defects uncovered during reviews and testing would be rectified by the
concerned team members.

7. Once all CRs are implemented, a managerial review of CR implementation
would be carried out by the PM or a person designated by the PM to ensure that
all the accepted CRs are satisfactorily resolved and they passed through quality
control activities. Then all the CRs would be closed.

8. The artifacts would then be promoted to the next stage.

If the CRs were implemented when received or when convenient, the following
steps would be taken to resolve the accepted CRs:

1. The CR would be allocated for resolution to the appropriate set of team
members

2. If the CR impacts an information artifact,

a. The information artifact would be copied to team’s folders for modification
so that the original will be unaffected.

b. It would be modified as necessary.
c. It would be subjected to quality control activities, namely the peer review

and managerial review.
d. Any defects uncovered during quality control activities would be rectified

by the concerned team member.
e. After all defects are rectified, the artifact would receive appropriate

approvals.
f. The current artifact in the configuration management folders would be

moved to the archived artifacts folder and the updated artifact would be
moved to the configuration management’s current folders.

g. All concerned team members would be informed of the change in the
artifact.

h. If the CR implementation includes modifying the code artifacts in addition
to information artifacts, the CR would then be passed on to the team
members assigned with the work of implementing the CR in the code
artifacts along with reference to the updated information artifact.

3. If the CR impacts a code artifact, either independently or after an information
artifact has been updated, the following steps would implement the CR in code
artifacts:

(a) The PM would allocate the CR for resolution to an appropriate set of team
members for implementation along with references to any updated infor-
mation artifacts.

(b) The allocated team members would carry out the necessary coding. This
activity would be governed by the coding guidelines for the project.

124 8 Requirements Change Management

(c) The CR would then be allocated for Peer Review. The personnel involved
in the Peer Review would review the code to ensure that the:

a. Implementation fulfills the requirements of the CR.
b. The implementation conforms to the project guidelines and other soft-

ware engineering standards of the organization.
c. There is no trash or malicious code left in the software.
d. The changed code ensures efficiency of execution and response times.

(d) Once the CR is passed thru the Peer Review, it would be submitted for
Regression Testing.

(e) The testing team would carry out regression testing to ensure that all
changes and additions requested in the CR are correctly working and that
the original functionality is unaffected by the implementation.

(f) Once regression testing is completed and all defects pointed out either in
peer review or regression testing are resolved and closed, then the artifact is
promoted to the next stage and the CR is closed in the CRR.

8.6 CRR

The CRR is used to record all the CRs received from any source and track each
one to closure. The actual format of CRR can be an excel sheet or a tool based
register. It is normally maintained electronically as soft copy.

The CRR would normally contain the following entries:

1. CR Reference number
2. Date on which the CR is received
3. Approval information including who approved it and the date of approval
4. Allocation details for Analysis including to whom it is allocated and comple-

tion date
5. Allocation details for implementation of CR including to whom it is allocated,

and completion date
6. Allocation details for peer review including to whom it is allocated, and

completion date
7. Allocation details for regression testing including to whom it is allocated, and

completion date
8. Status—open, closed or under analysis/approval/implementation/peer review/

regression testing
9. Date on which CR is closed

Table 8.4 shows a suggested CRR format.

8.5 CR Implementation 125

8.7 Progress/Status Reporting of CRs

Normally the status of implementation, progress of CR resolution and CR metrics
are reported as a component of the Weekly Status Reports to the concerned
executives. This serves the purpose of providing historical records and alerting
senior management to the need for intervention where necessary or warranted.

8.8 Handling the Impact of CRs

Once we determine the impact of the CRs, we need to make a decision on how to
handle the impact. We have the three options:

1. Absorb the impact. Ensure that the schedule and cost are not affected.
2. Pass on the impact to the customer completely. Customer will approve delayed

deliveries, and pay extra for the additional effort spent on implementing the
CRs.

3. Absorb partially for small CRs and pass on the impact of the bigger CRs to the
customer.

One important aspects or one of the most important aspects is that we need to
set a policy for handling the impact of the CRs and make it a part of the contract to
ensure that the CRs do not cause a rift between the project team and the customer.
More often than not, contracts miss this aspect of handling the impact caused by
the CRs. Some of such organizations have ended up fighting in a court of law.
I recommend the following strategy:

1. Absorb the impact of small CRs, that is, any CR requiring 2 person hours or
less. But this is subject to a limit of 1 % of the estimated effort for the project.
That is small CRs would continue to be absorbed until the cumulative effort
spent in implementing small CRs reaches the absorption limit

Table 8.4 Change request form
C

R
 R

ef
.

C
R

 D
at

e

A
pp

ro
ve

d
B

y

A
pp

ro
va

l D
at

e

A
na

ly
ze

d
by

A
na

ly
si

s
St

ar
t

D
at

e

A
na

ly
si

s
E

nd
 D

at
e

Im
pl

em
en

te
d

B
y

Im
pl

em
en

ta
ti

on
 S

ta
rt

D

at
e

Im
pl

em
en

ta
ti

on
 E

nd

D
at

e

P
ee

r
R

ev
ie

w
ed

 B
y

P
ee

r
R

ev
ie

w
 S

ta
rt

 D
at

e

P
ee

r
R

ev
ie

w
 E

nd
 D

at
e

T
es

te
d

B
y

T
es

ti
ng

 S
ta

rt
 D

at
e

T
es

ti
ng

 E
nd

 D
at

e

St
at

us

C
lo

se
d

D
at

e

126 8 Requirements Change Management

2. Any CR needing more than 2 person hours, the impact would be passed on to
the customer

3. The impact analysis in terms of effort, schedule and cost would be submitted to
the customer for approval before implementing the CR. All CRs would be
implemented only after approval by the customer.

Now if the project is internal, that is, the development team and the end user
team work in the same organization, there would be no cost implication but the
schedule implication would still be applicable. Since it is internal project, we
should strive to absorb the schedule impact because the delay in deliveries would
adversely affect the system roll out.

Now the above strategies would work fine for CRs from end users/customers.
How do we handle the CRs from project team itself? Well, the change is ours and
therefore, we cannot pass it on to anyone. We need to absorb it.

8.9 Measurement and Metrics of Change Management

Change Management is a critical activity of requirements management. I am
dealing this topic in a separate chapter on measurement and metrics of require-
ments management itself.

8.8 Handling the Impact of CRs 127

Chapter 9
Requirements Tracing, Tracking
and Reporting

9.1 Introduction

The most common cause of software product failure or dissatisfaction of end users
with the delivered product is missing requirements or badly implemented
requirements. Some of the requirements are forgotten, or changed, or deleted or
poorly implemented especially in made-to-order software development projects.
So, we need to trace, track and report the transition of requirements into a software
product all through the software development life cycle. This chapter discusses
these topics.

9.2 Requirements Traceability

Requirements tracing involves identifying the requirement in all the software
artifacts including information artifacts and code artifacts.

Wikipedia defines traceability as ‘‘the ability to chronologically interrelate the
uniquely identifiable entities in a way that matters’’.

IEEE standard 610—IEEE Standard Glossary of Software Engineering Ter-
minology defines traceability thus: ‘‘The degree to which a relationship can be
established between two and more products of the development process, especially
products having a predecessor-successor or master-subordinate relationship to one
another; for example, the degree to which the requirements and design of a given
software component match’’ and also as ‘‘The degree to which each element in a
software development product establishes its reason for existing; for example, the
degree to which each element in a bubble chart references the requirement that it
satisfies.’’

CMMI model document for development version 1.3 defines traceability as ‘‘A
discernible association between requirements and related requirements,

M. Chemuturi, Requirements Engineering and Management for Software
Development Projects, DOI: 10.1007/978-1-4614-5377-2_9,
� Springer Science+Business Media New York 2013

129

implementations, and verifications.’’ and bi-directional traceability as ‘‘An asso-
ciation among two or more logical entities that is discernible in either direction
(i.e., to and from an entity)’’

There could be other definitions of the term traceability offered by other
authors. The implications of the above definitions are:

1. We need to be able to trace the path of a requirement from its origin to the
features of the end product.

2. We need to be able to trace the requirement in the reverse, that is, we should be
able to trace a product feature to its origin in the requirements.

3. We need to be able to trace the requirement to any intermediate artifact in both
directions that is from the requirement to the feature of the artifact and from the
feature in the artifact to its origin in the requirements.

In short, traceability involves the ability to trace requirement to any interme-
diate point in the evolutionary path traversed by the product and from any point in
that path to its requirement.

9.3 Need for Requirements Traceability

Requirements can be changed at any point during the software development life
cycle as depicted in Fig 9.1.

Any stakeholder can place a change request at any point during the software
development life cycle. Some of the requirements may be deleted altogether. Some
fresh requirements may be added. The requirements at the stage of their definition
and the product testing stage may not be the same. If we wait till the end and try to
match the product features with the original requirements, it is possible that there
would be many mismatches. If we need to be able to prove that all customer
requirements are diligently met, we need to be able to trace them through the
software development life cycle.

Another aspect is the scope management for the project. The scope defined at
the beginning of the project would undergo changes due to the change requests
raised by various stakeholders. The scope in most cases would be increased and in
a few cases may even be reduced. But in most cases, the scope would not remain
the same. To keep track of the scope creep, tracing the requirements through the
software development life cycle would be very useful. We would be able to
identify when and how the scope of work has changed.

It has been generally accepted by the software development community, that
100 % testing is impractical even if it is desirable. In the scenario of changing
requirements, it would be difficult to assess the test coverage of the defined
requirements. If we trace the transformation of requirements through the software
development life cycle, we would be in a better position to assess the coverage of
requirements in our testing.

130 9 Requirements Tracing, Tracking and Reporting

It is not uncommon for the project manager to change midway through the
project execution due to a variety of reasons including resignation, termination,
illness, allocation to another project and so on. When the new project manager
takes over the project, it would be very difficult to understand where a feature’s
requirement originated without a proper traceability of the requirements. Diligent
tracing of the requirement through software development life cycle would be a
great help in such cases when the project manager changes.

Fig. 9.1 Requirements traversal through product development

9.3 Need for Requirements Traceability 131

In some cases one requirement would span across multiple modules and
components when finally implemented. For example consider the requirement—
‘‘the system must be secure’’. It needs to be implemented in multiple components
such as the login screen; prevention of accessing any screen directly bypassing the
login screen; audit trails to investigate any intrusions; firewalls, anti-viruses and so
on. Similarly, one component could be implementing multiple requirements. For
example a sales transaction would trigger multiple actions across the system; the
stock needs to be decreased; the income needs to be increased; the salesperson
performance needs to be incremented; the customer may need to be created; the
customer account needs to be suitably updated and so on. Unless we trace all
requirements to implementation and all implementation to their requirements, we
would not know how comprehensively did we implement the requirements.

Therefore, it is important and essential to trace all requirements in both
directions, namely from requirement to implemented features and from product
features to their requirements.

9.4 Mechanisms for Tracing Requirements

The most popular mechanism used for tracing requirements through the software
development life cycle is the traceability matrix. An example of a traceability
matrix is depicted in Table 9.1. In the traceability matrix, each requirement is
traced in a row. The first column would contain the requirement id which is
normally the one taken from the URS. The brief description column would contain
a brief description normally taken from the requirements analysis sheet for con-
sistency. References columns would be filled with the section numbers from
information artifacts and program names from code artifacts. Each column may
contain multiple references. In cases where a requirement is completely deleted,
we indicate ‘‘Deleted’’ and include its reference in the column captioned ‘‘Deleted/
Modified’’ column. If it is modified, the change request id is indicated in the
‘‘Change Request’’ column. This column too may contain multiple references. The
description in the ‘‘Brief Description’’ column would not change when the
requirement is deleted. When any requirement is modified, we need to evaluate if
the description needs change and affect it on a case-by-case basis.

We may add more columns or rows depending on our own unique require-
ments. The traceability matrix is normally implemented using Excel worksheets.
But if the number of requirements is very large, Excel sheets would be cumber-
some to manage. We may need to use a specialized requirements traceability tool.

With Excel sheets, we can trace from either requirement to its implementation
or from an implementation to a requirement. We can also use a separate worksheet
for each module to cover the entire project in the same file. Excel is an excellent
tool for implementing requirements traceability for a project. But when we come
to the organizational level, Excel sheets would not be able to consolidate the
information. It is better to use a specialized tool with RDBMS in the backend.

132 9 Requirements Tracing, Tracking and Reporting

T
ab

le
9.

1
R

eq
ui

re
m

en
ts

tr
ac

ea
bi

li
ty

m
at

ri
x

R
eq

ui
re

m
en

ts
tr

ac
ea

bi
li

ty
m

at
ri

x

P
ro

je
ct

id
:

L
as

t
up

da
te

d
on

:

R
eq

ui
re

m
en

t
id

B
ri

ef
de

sc
ri

pt
io

n
O

ri
gi

n
of

re
qu

ir
em

en
t

R
ef

er
en

ce
s

of
th

e
re

qu
ir

em
en

t
in

ot
he

r
ar

ti
fa

ct
s

S
R

S
D

es
ig

n
do

cu
m

en
t

C
od

e
co

m
po

ne
nt

T
es

t
ca

se
s

T
es

t
lo

gs
C

ha
ng

e
re

qu
es

t
D

el
et

ed
/m

od
ifi

ed
(i

nc
lu

de
re

fe
re

nc
e)

R
em

ar
ks

9.4 Mechanisms for Tracing Requirements 133

9.5 When Should We Trace the Requirements?

We need to trace the requirements throughout the software development life cycle
all the time. We need to be especially careful whenever a state transition occurs in
the software development life cycle. Here are the typical stages where we need to
update the traceability matrix:

1. Whenever a change request is implemented—usually most change requests
impact requirements. So, every time we implement a change request, we need
to see if any requirement has been affected and then update the traceability
matrix with the resulting changes.

2. When we complete the software design for any module—first, we need to fill in
the references of the design document against the implemented requirements in
the traceability matrix. It is possible that some of the requirements might have
been changed to suit the design. So, we need to assess if any requirement is
impacted by the design and then update the traceability matrix.

3. Whenever a code component is completed—the coding of a component is the final
stage of implementation as testing is merely confirmation that the implementation
is defect free. It is possible that a component could have implemented multiple
requirements either fully or partially. For example, the requirement of security is
implemented across multiple components. So, as soon as we complete the coding
of a component, we need to update the traceability matrix against all the
requirements which were implemented in the component.

4. Whenever we complete unit/integration/integration testing of a component/
module/product—usually, testing does not impact a requirement. It merely
confirms that the implementation is as defect free as possible. But there are
occasions when the testing uncovers a major defect due to which we may have
to re-visit not only the code or design but also the requirements. After a test is
completed, we need to assess if such a situation has arisen due to testing and
update the traceability matrix suitably.

As we update the traceability matrix, it would become easier for us to trace any
requirement in either forward pass (passing from requirement to implementation)
or backward pass (implementation to requirement).

9.6 Tracking of Requirements

What is the big difference between tracing and tracking of requirements? Is it
different at all?

‘‘Yep’’ I would say. Tracing is just ensuring that every requirement is imple-
mented in all stages of software development. Tracing requirements through the
software development life cycle ensures that the requirement has traversed all the
stations in its path to implementation. But, what about the qualitative aspect of

134 9 Requirements Tracing, Tracking and Reporting

implementing the requirement, does tracing ensure it? How well is the requirement
implemented?

Tracking requirements ensures that the requirement is implemented compre-
hensively both in letter and in spirit.

Tracking requirements requires diligence from project management team. It is
not achieved by looking at the traceability matrix to ensure that every requirement
is implemented. We need to go deeper that.

Tracking requirements and ensuring that they are comprehensively imple-
mented belongs to quality assurance activities. In Chap. 6 we discussed the ver-
ification and validation of requirements. We also discussed the ‘‘how’’ of those two
techniques. We included a bullet in Sect. 6.3.1, on Peer Reviews, which states
‘‘Ensure that the technical content is comprehensive.’’ It is aimed at achieving this
objective to ensure that the requirements are comprehensively implemented.
Validation ensures that the implementation is indeed working and is defect free.

Verification and validation together ensure that the implementation of the
requirements is comprehensive to the extent they are implemented in the software
artifacts. The traceability matrix ensures that all requirements are implemented.

Quality assurance goes beyond the verification and validation techniques.
Quality assurance includes the quality control activities (namely the verification and
validation) as well as activities aimed at preventing defects and ensuring that the
work is carried out comprehensively. These are discussed in Sect. 6.2, on ‘‘Quality
Assurance in the context of Requirements Engineering and Management.’’ Just to
recap, the activities include defining and continuously improving an organizational
process for carrying out various activities, staffing with the right resources well
trained in their craft, diligent quality control, measurement and analysis of results,
and project postmortem. The process includes procedures, standards, guidelines,
checklists, formats and templates. All these play a vital role in ensuring that the
requirements are comprehensively implemented throughout the software develop-
ment life cycle. Quality control ensures that the implementation is right and is free
from defects. Even the traceability matrix discussed in this chapter is also a format
included in the organizational process assets from the formats and templates section.

Thus:

1. Tracing requirements using the traceability matrix ensures that all requirements
are implemented.

2. The organizational process and diligent quality control ensures that all
requirements are comprehensively implemented.

9.7 Requirements Reporting

It is one thing to carry out work conforming to a defined organizational process
and it is yet another thing to ensure that work is carried out diligently, compre-
hensively and delivers results without defects. The difficulty increases

9.6 Tracking of Requirements 135

http://dx.doi.org/10.1007/978-1-4614-5377-2_6
http://dx.doi.org/10.1007/978-1-4614-5377-2_6
http://dx.doi.org/10.1007/978-1-4614-5377-2_6

proportionately with the distance you are separated from the level where work is
carried out. It is more accentuated in large organizations. The people working on
the job and the first level management would always be knowledgeable about the
progress and quality of requirements implementation. It is the senior management
and other stakeholders that would be in the dark unless we have a proper reporting
system that keeps all stakeholders with the relevant information. Organizations
normally use a weekly status reports in which the project management team
prepares a comprehensive report on the project and communicates it to all
stakeholders. This report would contain all aspects of the project under execution
and provide the stakeholder with all that they need to know.

It is an exception rather than a rule to include the detailed progress achieved in
the implementation of requirements in the weekly progress reports generated by
the project management team. The weekly status reports contain the overall project
progress, issues, items needing special attention from the senior management,
change requests and so on but not the implementation of requirements. The change
requests would be normally be reported as part of the weekly status report. The
number of change requests received, rejected, accepted, completed, and under
resolution would be normally reported. Sometimes, the effort spent on resolving
the change requests and the corresponding impact on schedule would also find
place in the weekly status report.

The argument for not making a special mention of the requirements imple-
mentation is that:

1. Their implementation is quantitatively monitored using the traceability matrix.
2. The qualitative aspect of implementation is monitored using the quality control

activities.
3. The change request resolution is tracked using the change register and the

weekly status report.
4. When you carefully consider, the progress of the project itself is the progress of

implementation of requirements in the software artifacts (code as well as
information artifacts) of the project. So, reporting project progress itself is
progress of requirements implementation.

Therefore, it is felt that no separate reporting of requirements implementation is
necessary in the project status report or monitoring activities.

9.8 Reconciliation of Requirements

It is necessary to finally reconcile the number of requirements originally accepted
for implementation and the final number of requirements implemented at the
completion of the project.

However, the first priority is to ensure that all customer requirements as
amended by the accepted change requests are implemented comprehensively. This
is accomplished by the acceptance testing. The main objective of acceptance

136 9 Requirements Tracing, Tracking and Reporting

testing is not to uncover lurking defects but to ensure that all the requirements are
implemented in quantity and quality. In internal projects (that is the project
deliverable is intended for use within the same organization), the acceptance
testing is carried out by the end user department or the business analysts. In
external projects (that is when the deliverable is intended to be used in another
organization) the acceptance testing is carried out by the representatives of the
customer. In product development projects (that is the deliverable is intended to be
sold as a COTS product), the acceptance testing is carried out by a group of
specially selected end users. This type of testing is known as ‘‘beta testing.’’ They
would not know the original set of requirements but they would test if the product
meets their own requirements. By using a set of multiple testers, all the require-
ments would be covered by one tester or another.

Another activity that is carried out as part of reconciliation is a final inspection/
review of the traceability matrix. If any requirement is not traceable to its
implementation, then, it has been missed. A corrective action would then be
planned and implemented.

All in all, the reconciliation of requirements implementation is an important
activity and is carried out in most organizations either explicitly or implicitly.

9.8 Reconciliation of Requirements 137

Chapter 10
Measurement and Metrics

10.1 Introduction

‘‘What you can’t measure, you can’t understand, manage or improve’’ said a wise
person. It explains succinctly the importance of measurement in the best possible
manner. Measurement allows us to assess the performance in quantitative terms
telling us where we stand comparatively. Without measurement, we can assess the
performance only in subjective terms and it has been proven that subjective
assessments can be erroneous. Measurement facilitates the following advantages:

1. It allows for an objective assessment of progress, and performance.
2. It allows us to compare our performance and benchmark it with other similar

performances.
3. It allows us to set quantitative and fair targets to our resources and measure

their performance against those quantitative targets.
4. It facilitates a fair system of rewards and punishments based on the quantitative

data.
5. It facilitates computation of productivity and thus allows us an opportunity for

productivity improvement and thereby, cost reduction.

All in all measurement is advantageous for the organization and it has come to
be accepted by managements as essential for efficient management and
improvement. Process standards like the ISO 9000 or the CMMI mandate
measurement and analysis as well as using that quantitative data for organizational
management.

10.2 Measurement and Metrics

In software development taxonomy, there is a plethora of terminology. For the
same meaning, there are many terms floating around. No two standards agencies
agree upon the same set of terms for a purpose. So, there is confusion among the

M. Chemuturi, Requirements Engineering and Management for Software
Development Projects, DOI: 10.1007/978-1-4614-5377-2_10,
� Springer Science+Business Media New York 2013

139

practitioners with each claiming that their standard as the right one and all others
are aberrations. Hence, if I do not define what I mean by the terms used in this
book, it is possible that I may aggrieve/mislead some. Therefore, I would like to
define the terms used in this book. Let us examine some popular definitions for
popular terms used in the software development in the context of measurement and
benchmarking.

Let us look at measurement first and then at metric.
Measurement
CMMI model document version 1.3 defines the term ‘‘measure’’ first. It defines

measure as ‘‘a variable to which a value is assigned as a result of measurement’’.
CMMI model document goes on to distinguish ‘‘measure’’ as ‘‘base measure’’ and
as ‘‘derived measure.’’ CMMI defines base measure as ‘‘A base measure is
functionally independent of other measures.’’ CMMI defines derived measure as
‘‘Measure that is defined as a function of two or more values of base measures.’’ It
defines ‘‘measurement’’ as ‘‘A set of operations to determine the value of a
measure’’ and the measurement result as ‘‘a value determined by performing
measurement.’’

From these definitions, we can, for our context, infer that:

1. Measurement is a process to determine the numerical value of some aspect of
software development.

2. The result of measurement is a ‘‘measure’’ in numerical terms.
3. Base measure is the direct result of measurement.
4. We need to perform some mathematical transformations on one or more

measures to obtain the ‘‘derived measure’’.

Metric—IEEE standard 610 Standard Glossary of Software Engineering
Terminology defines metric as ‘‘A quantitative measure of the degree to which a
system, component or process possesses a given attribute’’ and ‘‘quality metric’’ as
‘‘A quantitative measure of the degree to which an item possesses a given quality
attribute’’ and ‘‘A function whose inputs are software data and whose output is a
single numerical value that can be interpreted as the degree to which the software
possesses a given quality attribute.’’ CMMI model document version 1.3 used the
term ‘‘metric’’ at a few places but left it undefined.

From the first IEEE definition of metric, we can see that it is very similar to the
definition of base measure given by the CMMI model document. The second defi-
nition of IEEE for the ‘‘quality metric’’ is again, very similar to the CMMI definition
of the ‘‘derived measure.’’

It would have been great if both (IEEE and CMMI) had agreed on a common
set of terminology and definitions. It seems to me that the authors of CMMI
wanted to move away from the oft used term ‘‘metric’’ and used the term ‘‘derived
measure.’’ Still, they used the term ‘‘metric’’ a few times in their model document
version 1.3. That shows the popularity of the term ‘‘metric’’ in the software
development fraternity.

For the purpose of this book, I am going to use the two terms, measurement, and
metric.

140 10 Measurement and Metrics

Measurement is ‘‘A set of operations to determine the value of a measure’’ and
measurement result is ‘‘a value determined by performing measurement’’—the
same definitions as of the CMMI.

A Metric is ‘‘A function whose inputs are software data and whose output is a
single numerical value that can be interpreted as the degree to which the software
possesses a given quality attribute.’’ This is the IEEE definition. To clarify further,
metric is a derived number from one or more measures and other metrics.

Now we have understood all the terms used in measurement n the software
development industry.

Now let us look at benchmarking. IEEE standard 610 Standard Glossary of
Software Engineering Terminology defines benchmark as ‘‘A standard against which
measurements or comparisons can be made’’ and benchmarking as ‘‘A procedure,
problem or test that can be used to compare systems of components to each other or to
a standard.’’

Thus benchmark is an established quantitative value in the context of
measurement and a standard in other contexts. Benchmarking is the process of
establishing a benchmark. Unfortunately though, we do not have industry standard
benchmarks in our software development industry. We have to establish our own
benchmarks for our organization. Software industry follows the popular adage that
‘‘you are your worst enemy and competitor’’!

Having put the terminology in its proper perspective, let us now look at the
metrics that we can use in requirements engineering and management.

10.3 Metrics Relevant to Requirements Engineering
and Management

Do we carry out measurement in software development? Yes, but perhaps not as
diligently as in manufacturing or as one would wish. We measure the following
attributes:

1. Effort spent by all resources using the organizational timesheets. Our measure-
ment will be as good as our timesheet is. Effort is measured normally in person
hours while in a few cases person days are also utilized. A good timesheet that can
support effective measurement program would have:

a. Employee id
b. Cost center/Department id
c. Project id
d. Module id
e. Software Development phase
f. Software Development task
g. Date
h. Starting time
i. Ending time

10.2 Measurement and Metrics 141

2. Size of artifacts using work register. The size would be different for information
artifacts and code artifacts. Size of information artifacts is often measured in
number of pages, number of requirements, number of classes and so on. Code
artifacts are generally measured in LOC (Lines of Code), Function Points,
Object Points or SSU (Software Size Units). Measuring software size forms
part of the software estimation subject and is beyond the scope of this book.
Interested readers may refer ‘‘Software Estimation: Best Practices, Tools and
Techniques for Software Project Estimators’’ (2009) by Murali Chemuturi and
published by J.Ross Publishing, Inc, USA for more information.

3. Defects uncovered in software artifacts, both the information artifacts and code
artifacts. Defects are measured as integer numbers. They may also be classified
as critical, major and minor or some such categorization. We often associate the
origin of the defect with the measurement of defects. We obtain defect data
from defect reports or defect resolution tools and the organizational defect
definition which would define the class (critical, major or minor) and the
origins.

4. We also make note of the dates on which activities are performed. We obtained
the scheduled dates from the project schedule. We obtain the actual dates from
the work register and the timesheets.

5. We also measure the change requests placed on the project to gauge their
impact on the project and the stability requirements.

So, the primary measures are effort, size, defects, dates and changes. From these
measures we derive a host of metrics for the project out of which a subset is
relevant for the requirements engineering and management. In the following
sections, we discuss those metrics that are relevant to requirements engineering
and management.

We derive metrics in the following five classes:

1. Productivity Metrics
2. Change Request Metrics
3. Quality Metrics
4. Relative Effort Metrics
5. Schedule Metrics

Productivity metrics assist us in assessing the efficiency of handling the
function.

Change request metrics allows us to assess the stability of requirements in the
project.

Quality metrics assist us in understanding how well we performed the function
and the level of quality in our deliverables.

Relative Effort metrics assist us in understanding the importance we are giving
to the function in the overall scheme of software development.

Schedule metrics assist us in understanding how well we met the delivery
commitments to our client.

Now let us look at each of them in a little greater detail.

142 10 Measurement and Metrics

10.3.1 Productivity Metrics

Productivity has multiple connotations. The one relevant here is that productivity
is the rate of accomplishing a unit of work. It is the pace of working. It is the rate
of delivering the assignment. While it is not pertinent to include more information
on the concept of productivity in this book, I suggest that interested readers may
refer to ‘‘Software Estimation: Best Practices, Tools and Techniques for Software
Project Estimators’’ (by Murali Chemuturi and published by J.Ross Publishing,
Inc, USA, 2009). The general formula for productivity is:

Productivity ¼ Outputs = Inputs

Inputs are in person hours and outputs are in various units of work for software
development work. It is expressed as so many person hours per unit size as in ‘‘10
person hours per function point’’. We can derive the productivity for the following
activities of requirements engineering:

1. A gross productivity metric for all activities of requirements engineering put
together. This would be useful for estimating the requirement of resources at
the beginning of the project, especially for the senior management.

2. For each of the following activities:

a. Elicitation and gathering
b. Establishing the requirements

The formulas for each of these metrics are discussed below.

10.3.1.1 Gross Productivity Metric for Requirements Engineering

The formula is:

GPM ¼ E�N

Where:
GPM Gross Productivity Metric for Requirements Engineering
E Effort spent in person hours for all activities of requirements engineering

including, elicitation, gathering, establishing, quality control, and change
management

N Number of requirements as established in the requirements traceability
matrix or URS

Data for this metric can be collated from:

1. Project timesheets in which the effort spent would be available.
2. Number of requirements can be collated from the traceability matrix or URS.

10.3 Metrics Relevant to Requirements Engineering and Management 143

This metric can be derived only after the project is completed. It is easy to derive
this metric because, we do not have to utilize special timesheets to extract effort data.

This metric is computed in most organizations and is utilized for estimating the
resource requirements for the requirements engineering activity of the project. It is
also utilized in cost estimation for the purposes of setting a budget for the project
in the case of internal projects and for setting the price in the case of external
projects to offer a quote against the RFP.

10.3.1.2 Productivity of Elicitation and Gathering

The formula for computing the productivity metric for elicitation and gathering is:

PEG ¼ EEG�N

Where:
PEG Productivity for Elicitation and Gathering
EEG Effort spent in person hours for all requirements engineering activities

related to elicitation, and gathering
N Number of requirements as established in the requirements traceability

matrix or URS

Data for this metric can be collated from:

1. Project timesheets in which the effort spent would be available.
2. Number of requirements can be collated from the traceability matrix or URS.

This metric can be derived after the project requirements are established and are
subjected to configuration management. We need not wait till the project is
completed. It is not easy to derive this metric because, we do not get this data in
the usual timesheets used in the industry. We have to utilize special timesheets to
extract effort data.

Most organizations do not compute this metric because of the difficulty in
obtaining the effort data. If computed, it gives better insight into how each of the
major requirements engineering activities are consuming the total effort and
thereby allows us an opportunity to effect focused improvement.

10.3.1.3 Productivity of Establishing the Requirements

This metric is computed to arrive at the productivity for establishing the
requirements as URS and SRS. The activities, of documenting, verifying, vali-
dating, and implementing the feedback, are all included in the effort used for
computing the metric.

The formula for this metric is:

PER ¼ EPR�N

144 10 Measurement and Metrics

Where:
PER Productivity for Establishing the Requirements
EPR Effort spent in person hours for all requirements engineering activities for

establishing the requirements including, documenting, verifying, validat-
ing, implementing the feedback and approving the URS and SRS

N Number of requirements as established in the requirements traceability
matrix or URS

Data for this metric can be collated from:

1. Project timesheets from which the effort spent would be available.
2. Number of requirements can be collated from the traceability matrix or URS.

This metric can be derived after the project requirements are established and are
subjected to configuration management. We need not wait till the project is
completed. It is not easy to derive this metric because, we do not get the effort data
in the usual timesheets used in the industry. We have to utilize special timesheets
to extract effort data required for computing this metric.

Most organizations do not compute this metric because of the difficulty in
obtaining the effort data. If computed, it gives better insight into how each of the
major requirements engineering activities are consuming the total effort and
thereby allows us an opportunity to effect focused improvement.

Another aspect of this metric is that this activity is being downgraded from
being ‘‘business analysis’’ to ‘‘technical writing’’ in many organizations by
utilizing ‘‘technical writers.’’ This is an emerging trend because this activity
(documenting requirements) does not need fully qualified business analysts. It can
be performed using the information collected during elicitation and gathering
activities under the guidance of a business analyst. The advantage is reduction in
the cost of requirement engineering as a whole. This practice is catching up in the
industry. This metric helps us in determining the productivity of the technical
writers and to set targets for them during project execution and better granularity
during cost estimation.

10.3.2 Change Request Metrics

CRs are a reflection of the stability of the requirements. The argument is that if the
requirements analysis is carried out diligently applying all necessary QA activities,
CRs would not be needed. The CRR (Change Request Register) is the source of
information for measuring the stability of requirements. These metrics are
normally referred to as change request metrics or CR metrics.

10.3 Metrics Relevant to Requirements Engineering and Management 145

10.3.2.1 Requirements Stability Metric

Requirements Stability Metric (RSM) metrics normally indicate the requirements
stability. The following formula is used to compute requirements stability
expressed as a percentage:

RSM ¼ Total no: of requirements� No: of CRsð Þ=Number of Requirements½ �
� 100

Another variant of this formula is:

RSM ¼ No: of CRs=Number of Requirementsð Þ � 100

where, RSM is the Requirements Stability Metric.
We derive this metric to gauge the stability of requirements. There is no

industry benchmark for the requirements stability. We need to establish an
organizational benchmark collating the data from past projects. We compare the
metric for a just completed project with this benchmark to draw inferences and
take corrective and preventive actions. We also use this metric for process
improvement of requirements engineering.

The data for deriving this metric can be obtained from the project CRR and the
traceability matrix or the URS. We can derive this metric only after the project is
completed.

10.3.2.2 Relative Effort Spent on a Change Category

Another analysis that is carried out is the classification of changes into various
categories so that the origin of changes can be determined and inferences drawn to
see if any trend is emerging. Examples of scenarios are:

1. Suppose that the bulk of CRs are emanating from poor coding—then the
organization will be alerted that additional training for coders is necessary.

2. Suppose that the bulk of CRs show that the understanding of customer
requirements was not satisfactory, the organization will realize that Business
Analysts need to be trained to be more effective in the process of requirements
elicitation/gathering.

3. Suppose the bulk of CRs were due to defective design, then the organization
would learn that software designers/architects should be improved.

In my opinion most categories of change requests could be reduced by one or
more of the following suggestions:

1. Training to improve the skills of the personnel.
2. Better software development process.
3. Better tools and techniques.
4. Better standards and guidelines for coding, design, architecture and review.

146 10 Measurement and Metrics

5. Rigorous implementation of quality control.

Formula for computing the metric for a change category is:

RECC ¼ ðeffort spent on resolving CRS of a category=Total
effort Spent on resolving all change requestsÞ � 100

Where, RECC is the metric for Relative Effort spent on a specific Change
Request Category.

The effort data for this metric can be collected from organizational timesheets
and the CR data can be collated from the CRR. There is no industry benchmark for
this metric. Therefore, we need to derive our own organizational benchmark.
When the actual metric varies from the benchmark, we carry out an analysis to
ascertain if the variance is due to random causes or assignable causes. If there are
any assignable causes, we can draw inferences for improving the process to be
implemented in future projects. We can derive this metric only after the project is
completed.

10.3.3 Quality Metrics

Quality metrics assist us in finding the level of quality in our deliverables as well
as to improve their quality level. Quality in a deliverable is the absence of the
defects or conversely, presence of defects in the deliverables diminishes their
quality. Therefore, we measure the level of quality using the defects discovered in
our deliverables. We compute the below quality metrics.

10.3.3.1 Defect Injection Rate

When a person completes an artifact and hands it over for quality control activities,
it is expected to be free from defects. But in practice, there would be some defects.
These defects left inside the artifact by the author are referred to as ‘‘injected
defects.’’ This is a relative metric and we derive the number of defects against the
number of requirements. We derive this metric from URS and the SRS. The
formula is:

DIR ¼M � N

Where:
DIR Defect Injection Rate metric
M Number of defects uncovered in quality control activities
N Number of requirements as established in the requirements traceability

matrix or the URS

10.3 Metrics Relevant to Requirements Engineering and Management 147

We express this metric as ‘‘M’’ defects per ‘‘N’’ requirements. Let me illustrate
this with an example.

Let us assume that there are 100 requirements in the traceability matrix and 5
defects were uncovered in all quality control activities that are attributable to
requirements engineering. We express this as—DIR is one defect for every 20
requirements

Now what does it mean to us? No metric is meaningful without a comparable
benchmark. While we do not have an industry benchmark for DIR, we have an
ideal benchmark for delivered defects and that is 3 defects per one million
opportunities. This is the ideal situation and we refer to the organization that
achieved this level of quality as the ‘‘Six Sigma’’ level of quality organization. The
level of quality is referred to as five sigma level if the delivered defects are 3 per
one hundred thousand opportunities and four sigma if there are 3 delivered defects
for ten thousand opportunities. Most professional organizations that have imple-
mented a process to drive the organization would be between four sigma and five
sigma levels at a minimum.

The philosophy of quality is to aim for zero-defects. We are now in the era of
total quality management philosophy which states that we need to prevent error
than to spend effort to uncover and fix it. Therefore, the DIR must be as close to
the sigma level of the organization as possible. However, realizing that there
would always be some defects left in the artifact by its author, we accept a
variance of up to 20 % in the industry. That is if we are at four sigma level, then
the DIR can be 3.6 defects per ten thousand opportunities or 36 defects per one
hundred thousand opportunities or 360 defects per one million opportunities.

We can compute this metric after the project is completed as the defects may be
uncovered during design, coding or testing in addition to requirements engineering
that may be attributable to requirements stage.

10.3.3.2 Delivered Defect Density

We compute this metric for the overall project. We get this data only after the
software product is put into production and is being used by the end users. The
defect reports do come from the end users. Normally at this stage, it would be
difficult to trace the origin of the defect. Another aspect is that unless all the
accepted requirements of the end users are met, the product would not be accepted.
Therefore, once the product is in production, we would not be getting defect
reports whose origin lies in the requirements engineering stage of the software
development. Therefore, I am not discussing this metric in this book. This metric is
more relevant to software design and construction activities of the software
development than to requirements engineering.

148 10 Measurement and Metrics

10.3.4 Relative Effort Metrics

Relative effort metrics help us in assessing the reasonableness of the importance
given to activities. Absolute metrics do not tell us about the importance given to an
activity. These metrics inform us of the relative importance being accorded to an
activity in comparison with other activities. We compute the following metrics.

10.3.4.1 Importance to Requirements Engineering in the Project

This metric is computed using the formula:

RRE ¼ ERE � TEð Þ � 100

Where
RRE Relative importance to Requirements Engineering in the project
ERE Effort in person hours spent on all activities of Requirements Engineering
TE Total effort in Person hours spent on all activities of the project

This metric is expressed as a percentage. We compare this percentage to the
organizational benchmark and take appropriate corrective and preventive action as
well as improve the process to control the variance in it. The data for this can be
easily obtained from the organizational timesheets for the project.

While there is no established benchmark, 20 % is used in full life cycle (from
requirements to acceptance testing and delivery) development projects to gauge
the reasonableness of the amount of effort spent on requirements engineering.
When a project’s RRE exceeds the organizational benchmark, we carry out an
analysis to ascertain what pitfalls caused this slide and draw lessons for future
projects. If this metric falls below the organizational benchmark, we analyze the
project to ascertain what best practices allowed the savings to improve our process.

But if we spent less time than the organizational benchmark, it could result in:

1. Higher DIR whose origin is in requirements engineering
2. Receiving more CRs

We can see a correlation between the effort spent on requirements engineering and
the quality or stability of requirements. If the above two outcomes are absent, it
establishes that we implemented some the best practices. So, this metric helps us in
analyzing the requirements engineering activity and its impact on quality or CRs.

10.3.4.2 Quality Control of the URS and SRS

The main activities for ensuring that quality is in-built in the URS and SRS are
verification consisting of peer review and managerial review and validation. The
formula for computing this metric is::

10.3 Metrics Relevant to Requirements Engineering and Management 149

RQC ¼ EQC � ERð Þ � 100

Where:
RQC Relative Effort metric for Quality Control of Requirements engineering

activities
EQC Effort spent in person hours for carrying out quality control activities

namely, peer review, managerial review, validation, and implementing the
feedback for both the URS and SRS

ER Total effort spent in person hours on all requirements engineering
activities

This metric is expressed as a percentage of the total effort on requirements
engineering.

Data for this metric can be collated from project timesheets from which the
effort spent would be available.

Quality control is an activity consuming resource but does not really adding any
value to the product except uncovering the lurking defects. Therefore, the man-
agement is concerned if more than a reasonable amount of effort is spent on quality
control activities.

We have to spend a minimum amount of effort on uncovering defects and
ideally speaking, there should be only one, iteration for quality control activities.
If there are more defects, it takes more iterations and consequently, consumes
more effort for quality control. So, if the percentage is higher, it means that the
quality of other requirements activities needs improvement. But how do we
determine what is fair? One way is to establish the organizational benchmark for
this metric and improve it over a period of time. While there is no approved
industry benchmark for the metric, the industry uses 15 % as a heuristic as opti-
mum percentage of time that can be spent on quality control of requirements
engineering activities.

10.3.4.3 Relative Effort Spent on resolving CRs

Another metric normally derived is the amount of relative effort (expressed as a
percentage) spent on resolving CRs using the below formula:

REC ¼ Total effort spent on resolving CRs =Total effort spent on the projectð Þ
� 100

Where, REC is the Relative Effort spent on resolving CRs.
The data for computing this metric can be obtained from the organizational

timesheets.
While there is no industry benchmark on how much percentage of time can be

spent on resolving CRs, we can have a model metric for the organization. If a
specific project overshoots this model metric, we may subject the CRs to deeper

150 10 Measurement and Metrics

analysis to uncover the reason behind the high percentage of time spent on
resolving the CRs. This metric helps us in understanding if the project effort is
wasted on resolving preventable CRs.

10.3.5 Schedule Metrics

Effort metrics tell us the impact on the cost and thereby on the profit. While effort
metrics are important for the organization, delivering the software, on schedule is
much more important for the customer. Not achieving the benchmark effort
metrics, would impact the cost and profit from the project but would not have
strategic impact. Not achieving accepted schedules may even cause the project to
be cancelled and thus has strategic impact on the organization. We compute the
below schedule metrics.

10.3.5.1 Overall Schedule Metric

Here we compute the schedule metric for the schedule of the completion of
requirements stage in the software development signified by the establishment of
URS and the SRS and subjecting them to the rigor of configuration management.
This metric is expressed as a percentage. The formula for deriving this metric is:

SMRE ¼ ½ðNumber of calendar days actually taken � Number of

calendar days scheduledÞ � Number of calendar days scheduled� � 100

where SMRE is the Schedule Metric for Requirements Engineering
This metric is positive when we overshoot the schedule, that is, the delivery is

delayed and negative when we beat the schedule and delivered before the
scheduled delivery date.

While there is no industry wide benchmark for this metric, any amount of delay
is frowned upon.

Another important question is which scheduled date is to be considered—is it
the original schedule or the amended schedule?

From the standpoint of organizational efficiency, we need to take the original
schedule into consideration. It may not always be to our liking. We may use the
amended schedule if we wish to present an attractive set of metrics.

The data for deriving this metric can be obtained from the project schedule and
the work register. This metric can be derived as soon as the URS and SRS are
subjected to the rigor of the configuration management.

This metric assists us in learning about our capability to meet the schedules and
improve them if necessary.

10.3 Metrics Relevant to Requirements Engineering and Management 151

10.3.5.2 Individual Schedule Metrics

These metrics are just the same as the overall schedule metric except that these are
computed for each of the persons involved in the requirements engineering activity.
Why do we need these? By deriving this metric for each of the staff, we can ascertain
who is delivering the best performance and who the bottleneck in the delivery chain is.

10.4 Summary of Metrics

The Table 10.1 summarizes the metrics as relevant to requirements engineering
activity.

Table 10.1 Metrics relevant to requirements engineering

Metric Purpose

Productivity metrics To ascertain the efficiency of our performance
Gross productivity metric 1. Assists in cost estimation

2. Assists in estimating the resource requirements
Productivity for elicitation and

gathering
To assess the efficiency of elicitation and gathering

activity
Productivity for establishment of

requirements
To assess the efficiency of the establishment activity of

requirements
Resolving change request Metrics To assess the impact of changes on the project
Requirements stability metric To assess the volatility of requirements
Relative effort spent on a change

request category
To identify the change category which is causing more

change requests and thereby identify weak areas of
requirements engineering activities

Quality metrics To assess the levels of quality of the deliverables of the
requirements engineering

Defect injection rate To assess how well the requirements engineering is being
carried out in the project in the first iteration

Relative effort metrics To assess the importance accorded to requirements
activity in the overall scheme of the project

Relative importance to requirements
engineering in the project

To assess the importance received by the requirements
engineering activity in the overall project

Quality control of URS and SRS To assess if we spent reasonable amount of time in
quality control

Relative effort spent on resolving CRs To assess if the time spent on resolving CRs is reasonable
Schedule metrics To assess how well we are meeting the accepted

schedules
Overall schedule metric To assess if we have met the schedule of the final delivery

of requirements engineering activity
Individual schedule metrics To assess how well individual resources are meeting their

accepted schedules

152 10 Measurement and Metrics

Chapter 11
Roles and Responsibilities in REM

11.1 Introduction

To achieve the objective of handling the activity of requirements engineering and
management efficiently and effectively, we need to define the roles and respon-
sibilities of all the agencies involved in the activity. Once defined, the concerned
individuals ought to be trained to perform their roles in the letter and the spirit of
the definition. We also should have checks and balances built into the system to
ensure that the defined process is implemented effectively in the organization as
well as ways to trigger improvements thereof.

There are two important agencies that should collaborate and function effec-
tively for any activity including requirements engineering and management, to be
successful. One is the organization itself and the other is the set of individuals
involved with the function. We will be discussing the roles of these two agencies
in greater detail in the following sections.

11.2 Role of the Organization

The main role of the organization is to provide an environment conducive to
producing excellent results in any endeavor by the human resources. Organizations
facilitate and the individuals perform. What are the elements of an organizational
environment that have to be designed so as to facilitating excellent performance?
Here are the elements:

1. Organization
2. Staff
3. Process
4. Quality Assurance

M. Chemuturi, Requirements Engineering and Management for Software
Development Projects, DOI: 10.1007/978-1-4614-5377-2_11,
� Springer Science+Business Media New York 2013

153

5. Training
6. Recognition and rewards

Let us discuss each of them in detail.

11.2.1 Organization

By organization, I mean the arrangement of various departments in the organi-
zation. An organization is arranged into various departments each having its own
set of responsibilities and a concomitant authority. When the departments are
properly organized, the departments work in a close-knit manner putting shoulder
to shoulder and support each other to produce synergetic results that are better than
the sum of individual efforts. When the departments are poorly organized,
departments do not support each other; do not communicate with each other; they
necessitate coordination; there will be too many meetings to resolve issues;
escalation becomes too frequent; the results would be less than the sum of indi-
vidual efforts; and the quality of the deliverables would be impacted. Therefore,
the organization ought to be diligent in organizing the departments. Each
department must have a clear role and a set of deliverables with concomitant
authority to accomplish results.

While the subject of organizing in general is not in the scope of this book,
we need to recognize that it plays a vital role in the efficient functioning of the
organization. Another important aspect is that the organization must recognize the
importance of the activity of requirements engineering and management and
provide a place for it in the organization. Most organizations do not have a
specialist department for requirements engineering. Business analysts or systems
analysts are normally part of the project team that delivers the software and they
report to the project manager. If the organization has multiple projects in execu-
tion, there will be business analysts spread across many projects. But there is no
central department that owns these analysts to focus on their development.
Business analysts or systems analysts are usually part of the software development
pool in software development organizations and are part of the IS department in
other organizations.

Slowly but surely, the field of requirements engineering and management is
severing itself from programmers. A few years ago, senior programmers were
carrying out this activity. But now, it is no more so. It is evolving itself into a
separate specialty. While I do not advocate a separate department for the activity of
requirements engineering and management, I do advocate a support group for this
activity separate from the project. When the business analyst needs a consultation,
there ought to be a place from where to obtain it from within the organization.
Organizations ought to give consideration to this specialty and provide a sup-
port group for requirements engineering and management. The organizations

154 11 Roles and Responsibilities in REM

specializing in software development as their main source of revenue ought to
dedicate a department to support this activity.

Another important support to be provided by the organization is the knowledge
repository. Each organization would usually have a knowledge repository, it is
doubtful if it contains material concerning requirements engineering and
management. The knowledge repository ought to have a section on requirements
engineering and management which must be updated with the latest developments
in the field.

11.2.2 Staff

For any department in the organization to deliver effective results, it needs
competent staff and the activity of requirements engineering and management is
no exception. It needs qualified staff, trained in the field of requirements
engineering and management and mentored on the job to be able to deliver
effective results.

Deciding on the qualifications needed for carrying out requirements engineering
work, it must be noted that it is not the same for every type of project. Different
types of projects need differently qualified persons. Let us look at project types and
the needed qualifications one by one.

11.2.2.1 Projects Implementing a COTS Product

There are a variety of excellent COTS products with built-in industry best practices,
available at a cost that is lower than the cost of custom-software development for
comparable functionality. These are available in the fields of ERP (Enterprise
Resources Planning), SCM (Supply Chain Management), CRM (Customer Rela-
tionship Management), EDI (Electronic Data Interchange). EAI (Enterprise
Applications Integration), Financials, Banking, Manufacturing, credit card
processing, telecom billing and so on. Most of them can be implemented as they are
or with some extension or customization. In these types of projects, the main activity
of requirements engineering would be mapping the functionality available in the
COTS product with the requirements of the organization; bringing out a gaps
document; carrying out the acceptance testing; and handhold the customer during
commissioning and rolling out of the product. This activity needs functional
specialists trained on the COTS product under implementation. To implement a
financials COTS product, we need persons qualified in accounting with experience
in handling accounting function. To implement a HR COTS product, we need
individuals qualified in the HR subject with some experience in a HR department.
To implement, SCM COTS product, we need individuals qualified in the material
management/supply chain management subject with experience in a materials
management department. Usually, it is common to take individuals with MBA

11.2 Role of the Organization 155

(Master of Business Administration) or an equivalent qualification with some
experience in their respective functions and then train them on the COTS product
before putting them on the job. Can a newcomer be used in these positions? Strictly
speaking,—no. But, the individual can be taken a s a trainee and mentored on the job
by senior staff for some time before putting them on the job independently.

So in this type of project, it is better to use persons with professional qualifi-
cations in the respective field with some field experience and training on the
respective COTS product.

11.2.2.2 Full Life Cycle Software Development Projects

Full life cycle software development projects begin with requirements analysis and
end with acceptance testing at a minimum. Project acquisition and implementation
are also included in internal projects. This project type is perhaps the oldest in all
software development projects. The practice from the beginning has been to utilize
senior programmers for requirements engineering work which was referred to as
‘‘systems analysis’’ in those days and until recently.

After the advent of ERP and its implementation projects, functional specialists
made an entry into software development projects. Managements have been quick
to grasp the merits of using functional specialists in requirements engineering and
started using them in full life cycle development projects with much better results
than when senior programmers were used. So, now the trend is to use functional
specialists for requirements engineering in these full life cycle projects even
though the practice of systems analysis is not yet extinct.

So, just as in COTS product implementation projects, business analysts are
being utilized more and more frequently for requirements engineering activity.
Presently, MBAs are being recruited with some experience in functional domains
and are trained in the requirements engineering specialty for use as business
analysts in full life cycle software development projects. The practice of recruiting
fresh graduates from business schools is also picking up. However, these indi-
viduals need to be mentored on the job before giving them independent charge for
a new project.

11.2.2.3 Testing Projects

Just a few years ago, testing was just an appendage of software development.
Software developers used to self-test and certify the product for use. Independent
testers were unheard of! Gone are those days and IV and V (Independent Verifi-
cation and Validation) has become an essential part of software development. With
the advent of web based projects the need for testing the software products
increased exponentially. Additionally, the need for certification of COTS products
for use is becoming rather mandatory to prove that they are functionally adequate
and are safe for use. Because of the complexity involved in testing the software for

156 11 Roles and Responsibilities in REM

use on the Internet, most organizations are outsourcing the testing activity, so
much so, now there are many organizations specializing only in testing.

Requirements engineering in these projects is entirely different from other
projects. In other projects, the focus is on getting the end users to define their needs
comprehensively and document them in such way that software engineers can
develop the desired product. In testing projects, we need to ensure that the product
works as specified. The specifications are already available in URS, SRS and
possibly the design document. The requirements besides what is contained in the
URS and the SRS are the timelines that need to be adhered to for completing the
testing.

Then comes the designing of the test strategy, and developing the test cases.
Testers would carry out the testing using the test cases.

The need is to find out how the end users would use the product and simulate
that usage during testing to ensure that it works and works without defects. The
test case designer, if not the tester, ought to know the difference between the right
result and the wrong result. Therefore, the test case design is normally carried out
by functional specialists because they are best positioned to know if the product
covers the functionality comprehensively.

In some testing projects, there may not be any documentation in which case,
there is a need to elicit and gather testing requirements from the end users. If it
becomes necessary, then the requirements engineering is similar to that of full life
cycle software development projects.

Most organizations use functional specialists for requirements engineering and
test case design in testing projects. Fresh business graduates are also being used
with training on software testing. I think that using functional specialists is the
right approach.

11.2.2.4 Conversion/Porting/Migration Projects

In these projects, there already exists a working software product which needs to
either be converted or ported to another platform or migrated to a newer version of
the existing platform.

Conversion projects are like Y2 K or Euro conversion projects. The software
product is already working but needs to be converted to accommodate the year
2000 or Euro functionality.

When an application is moved from one hardware platform to another but using
the same programming language, we refer to those projects as porting projects.
The need is to adjust the code of the product to handle the specific differences
between both the platforms.

Migration projects involve shifting the application on the same hardware
platform but on to its next version of the software platform. The newer version
may have a few differences of syntax and may have some extra facilities too. So
the application needs adjustment to be able to handle the differences and make use
of the additional facilities provided by the newer version.

11.2 Role of the Organization 157

In these projects, the product already exists and there is no need to go to the end
users again. Perhaps, the documentation and test plans also may exist in some
cases. The important activity is to locate the adjustment needed and effect it.
Everything is technical in nature as code verification is needed to locate the
differences.

Requirements engineering in these projects involves locating the adjustments
necessary to the existing code. It is best achieved by senior programmers.
Functional specialists are poorly equipped to come out with the necessary code
adjustments. Therefore, it is best to use senior programmers for carrying out
requirements engineering in these projects.

11.2.2.5 Partial Life Cycle Projects

A partial life cycle project can be any combination of the phases of the software
development life cycle. Normally the product implementation, requirements
engineering and the construction phases are outsourced. Software design is rarely
outsourced. Product implementation is one of the most outsourced projects. We
had examined the scenario of product implementation in one of the above sections.
That leaves us requirements engineering and construction.

For the projects involving requirements engineering, the only requirements to
be gathered are the timelines and the cost during project acquisition. These can be
handled by the marketing personnel. The project would be executed by business
analysts. Needless to say perhaps, these need to be functional specialists.

For construction projects in which the project involves developing the code and
conducting quality assurance activities conforming to a design document which is
usually supplied by the outsourcer. Here the need to understand the technical
aspects is more important than understanding the business functionality. There-
fore, senior programmers or the systems analysts are best positioned to carry out
the requirements engineering activity, which involves understanding the technical
aspects. In fact, there is no requirements engineering activity except to understand
the design document and deliver code adhering to that document.

Sometimes, only the requirements documents may be supplied and software
design may also be included in the construction projects. In those cases too, the
requirements are already established. So, there is no need for functional specialists.
The technical persons can handle the remaining little portion of the requirements
engineering activity.

11.2.2.6 Projects Developing Real Time Software

Real time software is used to control machines including cars, aero planes, CNC
(Computer Numerically Controlled) machines, rockets and many others. In fact,
there is hardly any machine in the present day that is not software controlled. In
this software, there are no business functions. There are only technical functions.

158 11 Roles and Responsibilities in REM

Normally, the real time software is developed by technical people with engi-
neering qualification especially from electronics engineering or similar back-
ground. The requirements are all technical in nature.

The requirements engineering activity is therefore handled by technical persons
especially by senior programmers who handled similar projects earlier.

Table 11.1 enumerates the appropriate individuals to handle requirements
engineering activities.

11.2.3 Process

Another important aspect for which the organization owns the responsibility is
definition and continuous improvement of an appropriate process for the require-
ments engineering activity. While quality control activities uncover defects and
facilitate their correction, a well-defined process would ensure that quality is built
into the deliverables right during the engineering stage itself, and reduces the effort
spent on quality control besides facilitating improvement in the efficiency all around.

An organizational process consists of a network of procedures, standards,
guidelines, formats, templates and checklists.

A procedure consists of:

1. Step by step instructions on how to accomplish a specific task
2. Instructions to ensure that quality is built into the deliverable
3. Suggestions to prevent defects in the deliverable
4. Suggestions to ensure efficiency in the utilization of resources
5. The list of suggested quality control activities to ensure that the deliverable is

defect-free
6. References to associated standards, guidelines, formats, templates and check-

lists that can be used in performing the task

Table 11.1 Persons appropriate for requirements engineering activity project-wise

Project type Persons appropriate for requirements
engineering activity

Implementation of COTS project Functional specialists with training on the
respective COTS product

Full life cycle software development projects Functional specialists
Testing projects Functional specialists
Conversion/porting/migration projects Senior programmers
Partial life cycle projects—requirements

engineering
Functional specialists

Partial life cycle projects—software design,
construction and testing

Senior programmers

Partial life cycle projects—construction and
testing

Senior programmers

Real time software projects Senior programmers

11.2 Role of the Organization 159

Procedures help a new entrant to perform on par with an experienced resource
and an experienced resource to perform at the peak efficiency.

A standard is something that is established by authority for use in the perfor-
mance of an activity. In an organizations, standard is a document that consists of
the selected alternative for use by the organizational resources from among various
available alternatives. A standard is a restriction because it restricts the freedom of
people in selecting the alternative of their choice. But by spending effort and
resources to evaluate all the available alternatives beforehand to select the optimal
alternative for use within the organization, it helps resources by reducing their
effort to make a wise decision in every project. It also ensures a uniform level of
quality in the deliverables of all projects. It is because of standardization the cost
of various products including cars have come to affordable levels.

A guideline is akin to a standard except that the standard is prescriptive while a
guideline is suggestive. A guideline guides a person in selecting a suitable alter-
native and various other aspects associated with it but stops short of prescribing a
specific alternative.

A format is a document with a prescribed organization of information that aids
in capturing information comprehensively in the first place and to aid in under-
standing the information contained in the document by the reader. It delineates the
documents into sections, tables and frames to capture and present information
efficiently.

A template document is similar to a format document except that it contains
explanation in each cell about what information to be placed in the cell. It would
also contain selection lists so that instead of entering information some boxes can
be checked.

A checklist is a list of items usually neglected in a deliverable document.
A checklist contains a number of items against which, we need to enter either
‘‘yes’’ or ‘‘no’’. Usually, all items must have a ‘‘yes’’ marked against it. All items
that are marked ‘‘no’’ need to be revisited again. A checklist is used by the authors
to ensure that the deliverable is comprehensive and by the quality control persons
to ensure that nothing is left out of the deliverable.

It is the responsibility of the organization to define a process that is appropriate
for the organization and implement it. As change is constant in modern organi-
zations, the organization also needs to institute a mechanism to review the process
periodically and improve it to ensure that the process is relevant even in the
changed conditions. Normally each software development organization would
have a Software Process Group which would initially define the process, then
implement it and capture suggestions for improvement. The improvement
suggestions are evaluated and appropriate ones are picked up and dovetailed into
the process periodically.

A well-defined process for requirements engineering is a prime requisite for
ensuring that it is carried out efficiently in the organization and it is the respon-
sibility of the organization performed through the organizational process group.

160 11 Roles and Responsibilities in REM

11.2.4 Quality Assurance

Quality assurance includes both defect prevention and defect detection. Defect
prevention is ensured using the defined organizational process. Quality control
needs to be performed at the project level to uncover all lurking defects so that
they can be fixed.

The quality control in an organization is like police in a town. Existence of
police cannot prevent a determined criminal but would deter any criminal with
lesser determination from committing a crime. Besides, the police would catch the
criminal, well almost all criminals. So is quality control; it cannot prevent all
the defects from being injected but it would prevent most and trap most of the
remaining ones so that we deliver a near defect-free deliverable.

Presently, many software development organizations do not have a robust
quality control department. In organizations that develop software for in-house
(within the organization) use, independent quality control may itself be totally
absent. This is not conducive to delivering good quality outputs.

It is the organization’s responsibility to establish a robust quality assurance
department and ensure that rigorous quality control is carried out on all the
deliverables including the requirements engineering deliverables. Quality control
activities may not prevent injection of defects but uncovers them and ensures that
the final deliverable is as defect free as humanly possible.

11.2.5 Training

Having qualified staff is essential to perform requirements engineering activities in
the organization efficiently. But periodic training to update and hone their skills is
essential if we need to continue performing at the highest level. These days, a
significant amount of research is being carried out in every field of human
endeavor and so is the case with the field of requirements engineering. The way
requirements engineering activities were performed in the 1970s is vastly different
from the way they are now performed. If we do not train and keep our staff at the
cutting edge of developments, they will soon become obsolete very quickly,
especially in these days of fast obsolescence.

A training department in the organization would go a long way in ensuring that
all the staff is adequately trained. The training department ought to perform the
following activities:

1. Maintain the skill database of all employees of the organization
2. Organize a knowledge repository to facilitate self-study to update knowledge
3. Assess the training needs of the staff at regular intervals and analyze the gaps in

the skills available and the skills needed
4. Draw up training plans to bridge the skill gaps uncovered in the above analysis

11.2 Role of the Organization 161

5. Maintain a databank of various public training programs available in the
vicinity and the external faculty that can be called upon in times of need to be
able to conduct various training programs

6. Organize suitable training programs to update the skills and knowledge of the
resources

7. Evaluate the efficacy of the training programs conducted within and without the
organization

8. Perform all other functions necessary to keep the employees on the edge of
technology of their respective specializations

Therefore, a training department would go a long way in ensuring that all
employees possess the knowledge necessary to perform their activities at the peak
efficiency.

The training department not only organizes training programs but also deputes
staff to attend various seminars to learn about the latest research and developments
taking place in the field.

It is the responsibility of the organization through its training department to
provide necessary training to its staff and maintain the skills of its staff up to date.

11.2.6 Recognition and Rewards

People are typical. When they are out of job, they promise to work to their full
capacity but once they get one, they, or rather most of them, resort to penalty-
avoidance level of working. This is well recognized in the industry and research
has been carried out about how to motivate employees to give their best to the
organization. It is now widely recognized that recognition and rewards are the best
way to motivate employees toward attaining and contributing their full potential to
the organization.

We need to institute a system of recognition and rewards to the individuals
performing the requirements engineering activity. These must be fair and the
method of selecting the individuals for rewards must be transparent and based on
quantitative data. In some cases a certain individual always performs best and
comes first. Organizations commit the mistake of giving the reward to the same
person consecutively. This makes all others feel completely demotivated. If a
person is consistently performing at the top of the pack, it is better to promote him/
her to the next level. It is better to give the rewards in such a manner that everyone
should feel that he/she has a fair chance of getting it. That way, the individual
would be motivated to try for the reward.

Should the reward always be financial in nature? Not necessarily. It can be just
a mention in a large gathering, or a certificate or some such other thing. In some
organizations, they simply give a star to be pinned on their lapel. The more stars
one has pinned on the shirt, the more recognized that person would be in
organizational gatherings.

162 11 Roles and Responsibilities in REM

Whatever method the organization chooses, for recognizing and rewarding, it is
necessary to have a system of recognition and rewards to motivate in the
organization to motivate the staff toward higher level of performance.

All of those above activities are the responsibility of the organization. All these
activities create an environment that is conducive to producing great results and
delivering quality outputs. Once the environment is in place, the individuals can
excel in that environment. One cannot excel in a poor environment.

11.3 Role of the Individuals

An organization has the onus of creating the right environment in which
individuals can excel. But ultimately it is the individuals that perform the function
and deliver the results. We have the following individual roles in the context of
requirements engineering and management in software development projects:

1. Business/System Analysts
2. Quality Control
3. Project Manager
4. Process definition and improvement group
5. Senior management

Let us discuss the role of each of these individuals.

11.3.1 Business/System Analysts

These are the people who bear the brunt of carrying out the requirements
engineering work. They bear the primary responsibility for the deliverables within
accepted schedule and at the best possible quality. They carry out the requirements
elicitation, gathering, analysis, establishment of requirements preparing the
traceability matrix initially and the acceptance testing finally to ensure that the
final product meets all the requirements effectively. The rest of the individuals
either perform quality control on their deliverables or supervise (project manager/
leader) them or work under (technical writers) them. What are the responsibilities
of this set of people? Here they are:

1. Take ownership of the requirements engineering activity in a project or as
directed by the organizational management

2. Carry out all requirements activities diligently, accurately and efficiently and
on time

3. Establish project requirements on time and as defect-free as possible
4. Keep their knowledge up to date through organization sponsored programs

and self-study

11.2 Role of the Organization 163

5. Assist the organization in the definition of the organizational process for
requirements engineering as well as continuously improve it to keep it up to
date plowing back the experience gathered while executing the projects

6. Assist the organization in setting up a knowledge repository for the subject of
requirements engineering

7. Assist the organization in the recruitment of personnel to fill the positions of
business analysis through recruitment and selection

8. Assist the organization in training the new recruits for induction into projects
to carry out the work of requirements engineering

9. Evaluate tools and techniques for carrying out requirements engineering and
to recommend appropriate ones for acquisition to improve the efficiency of the
activity

10. Contribute to the profession in general to extend the frontiers of knowledge of
requirements engineering

11. Any other organization specific activity.

One aspect worth noting here is about the career path for business analysts.
Earlier, the systems analysts were progressing towards leading a project and then
on to project management. Because the systems analysts grew from programming
work, leading and managing projects was easy and presumed to be natural. But
when we recruit functional specialists and assign them to carry out requirements
engineering activities, promoting them to project management seems risky. But
organizations have been promoting business analysts to the role of project manager
and they seem to be performing ably. I would suggest that re-orientation training
be imparted before promoting a business analyst to a project manager. This would
help the business analyst to appreciate the technical issues with better clarity.

11.3.2 Quality Control

We have explained in detail the quality control activities as applicable to
requirements engineering. The persons entrusted with the quality control activities
ought to perform their activities diligently so that all and any lurking defects are
uncovered and passed on for fixing. They ought to err on the positive side, that is,
finding more errors even if they are perceived to be frivolous rather than allowing
a defective deliverable to slip through. Their responsibilities are:

1. Take ownership of the quality of the deliverable in a software project
2. Carry out the quality control activities of verification and validation diligently

and uncover all defects lurking inside the deliverable
3. Raise a defect report for all quality control activities carried out and follow

through until all defects are satisfactorily resolved
4. Assist the project management in the project postmortem and discuss all defects

so that they can be prevented in the future projects

164 11 Roles and Responsibilities in REM

5. Assist the organization in training new recruits in quality control so that they
can be inducted into the project quality assurance quickly

6. Contribute to the organizational initiatives in process definition and improve-
ment for quality control activities

Quality control is a thankless job and is perceived to be negative by other indi-
viduals of the organization as they have the onerous task of pointing fingers at
other’s errors. Therefore, management ought to support quality control personnel to
ensure the quality in the deliverables by finding and removing defects from them.

Many organizations have the quality control activities performed by peers, that
is, by other business analysts/systems analysts working on projects. The
management ought to ensure that uncovering defects should not be hampered by
‘‘you scratch my back and I will scratch yours’’ syndrome. The organization
should inculcate a culture in which quality control is perceived as an exercise in
removing defects rather than an exercise in pointing fingers.

11.3.3 Project Manager

A project Manager (PM) is like the thread in a garland of flowers. A PM integrates
the efforts of all individuals into a finished product that is as defect-free as
humanly possible; meets the requirements of the customer and is delivered on
time, within the sanctioned budget or cost agreed upon.

A PM is the immediate layer over the business analysts/systems analysts and has
the potential to impact the requirements engineering activity to a great extent both
positively and negatively. A PM provides facilitation to the business analysts/sys-
tems analysts so that they can perform and excel. A PM is the one to ensure imple-
mentation of all the organizational processes, standards, guidelines, formats,
templates and checklists. If the PM is diligent, the organizational processes would be
implemented effectively.

The responsibilities of a PM in the context of requirements engineering are:

1. Plan the activities of requirements engineering along with all other project
execution activities

2. Schedule the activities pertaining to requirements engineering giving them due
consideration and allocating it all the necessary resources of people, time, and money

3. Request and obtain required number of qualified and trained resources to carry
out the activities effectively and efficiently

4. Allocate the work of all requirements engineering activities to appropriate
resources on time, set fair targets and de-allocate appropriately

5. Appraise the performance of the resources fairly
6. Assist the organization in the recognition of performance and giving rewards

to deserving resources without any prejudice or bias
7. Take all actions necessary to motivate the resources and keep the team morale

at the highest possible level

11.3 Role of the Individuals 165

8. Spare the time of the resources to assist the organization in the recruitment,
training and process definition/improvement activities as required by the
organization

9. Administer disciplinary actions as necessitated fairly
10. Enforce schedules so that all deliveries are effected on time

A project managed well by a qualified and experienced PM would deliver better
quality deliverables than a project managed by poorly qualified/experienced project
manager. When the PM is a bit less than desirable in terms of experience/qualifi-
cations, it would be in the organization’s best interest that a senior manager closely
oversees the project execution, while mentoring the PM toward better performance.

11.3.4 Process Definition and Improvement Group

Professional organizations do normally have a process for carrying every activity
in the organization. They do normally earmark a set of people to champion
definition and improvement of the process. This core group champions and
facilitates the process definition and improvement. The actual definition is carried
out by experts drawn from the functional groups within the organization or
sometimes when the right expertise is not available, experts may be drawn from
outside the organization. The responsibilities of this core group are:

1. Champion the definition and improvement of process in the organization
2. Identify the right experts from within or without the organization and provide

them facilities for the process definition, review the feedback/change requests
placed for process improvement, and dovetail the feedback/change requests into
the process

3. Coordinate the quality control of the process artifacts and obtain approvals
from concerned authorities for implementing the process in the organization

4. Pilot and implement the process in the organization
5. Take ownership of all process assets in the organization and safeguard them

against unauthorized changes
6. Take all actions necessary to internalize the process in the organization
7. Provide handholding assistance to organizational resources in the right

implementation of the defined process
8. Institute appropriate mechanisms to receive, analyze and implement feedback/

change requests received from various agencies regarding the process
9. Periodically review all approved feedback and arrange to implement the

feedback, pilot it and roll out the revised process in the organization
10. Coordinate with certification agencies and obtain desired certifications for the

organization
11. Coordinate any other activity relevant to process definition and improvement

in the organization.

166 11 Roles and Responsibilities in REM

11.3.5 Senior Management

It is impossible to do anything in an organization without the support of its senior
management. Requirements engineering and management is no exception. The
role of the senior management in ensuring that the requirements engineering
activity and management is carried out efficiently and effectively is:

1. To provide adequate resources to carry out requirements engineering activity
in the organization

2. Provide facilities and funds to impart the required training to keep the business
analysts/systems analysts at the leading edge of technology and practice

3. To facilitate definition and improvement of organizational processes
4. Accord approval to all process artifacts for implementation in the organization

after due managerial review
5. Periodically review the performance of the practice of requirements

engineering and management within the organization and take necessary
corrective and preventive actions to keep the practice at its best

6. Appraise the persons involved in the requirements engineering and manage-
ment in the organization and accord recognition and rewards periodically

7. Enforce discipline on the resources whenever it becomes necessary to elimi-
nate deadwood and keep the team motivated

8. Take all necessary actions to motivate the resources and keep the morale very
high in the organization in general and in the resources involved with the
requirements engineering activity in particular

9. Any other activities necessary to ensure that the practice is carried out
efficiently and effectively in the organization

10. In fact, all the responsibilities specified earlier in the section on the role of the
organization are the responsibility of the senior management.

11.4 Final Words

If any organizational endeavor has to succeed, the collaboration between the
organization and the concerned individuals is essential. The Organization is
represented by the senior management. The Organization creates an environment
conducive to pursue excellence and produce desired results. Individuals utilize that
environment and produce desired results and move the organization towards
achieving excellence.

11.3 Role of the Individuals 167

Chapter 12
Requirements Management Through
SDLC

12.1 Introduction

While establishment of requirements is among the first activities in the software
development life cycle, requirements need to be managed through the SDLC
(Software Development Life Cycle) to ensure that all the customer requirements
are included in the final deliverable. To do so, we need to include the additional
requirements received through the change requests, delete the requirements that
are eliminated through change requests and modify the requirements modified
through the change requests.

But, the industry does not have a single standardized SDLC and in fact, there
are multiple SDLCs. Here are some of the popular SDLCs:

1. Water fall model
2. Spiral model
3. RAD and JAD
4. Iterative model
5. Agile methods

a. XP
b. Scrum
c. RUP agile version
d. Many more

There are many SDLCs out there in the software development industry. While a
detailed discussion of all the life cycles out there is out of scope for this book, the
following phases are commonly part of any SDLC:

1. Requirements
2. Software Design
3. Construction
4. Testing

M. Chemuturi, Requirements Engineering and Management for Software
Development Projects, DOI: 10.1007/978-1-4614-5377-2_12,
� Springer Science+Business Media New York 2013

169

In addition, we need to consider the pre-project phase as well as the post-delivery
installation and commissioning phase as both have an impact on the requirements
management of the project. However, each of the SDLCs implement these phases in
their own way and the artifacts recommended also vary significantly. Still all four
phases are used albeit with differences in all SDLCs. Let us now discuss how the
requirements are managed in each of these phases.

12.2 Pre-Project Phase

While the pre-project phase is not part of SDLC, it is relevant to requirements
management. The project is a sequel to fulfill an existing requirement. In this
phase, the requirement for software is recognized and established to the extent that
the investment to fulfill that requirement is justified and approved. In this phase,
the following activities are carried out:

1. Recognition of the need—the need for computerized information processing or
the need to upgrade the existing system is recognized by a concerned executive
in the organization. Then the need is articulated to the management so that
attention is focused on that need and investigation is initiated to ascertain the
efficacy of the need. In some organizations, including software development
organizations, BPO (Business Process Organizations), and others, the IT
infrastructure, including application software is part of the original investment
itself. But upgrading the IT infrastructure in those organizations again has to be
recognized and perhaps the marketing department or the strategic planning
department or the senior management itself recognizes the need. This activity
recognizes the presence of a need for IT infrastructure, including application
software, and approves further investigation to establish or reject the need.

2. Investigation of the need to approve feasibility study—senior management
would consider the need recognized by the concerned executive and approve
expenditure toward further investigation of the need or reject the proposal.
Once approved, a feasibility study is commissioned to establish the requirement
or reject it.

3. A feasibility study is used to establish the requirement and draw up the project
specifications—it is conducted to justify or reject investment in the proposed
computerized information processing need. A feasibility study investigates the
need, captures, the volumes, resources (people, equipment, money, and dura-
tion) needed to fulfill the need, carry out cost-benefit analysis and draw up
project specifications. The deliverable of the feasibility study would be a fea-
sibility report.

4. Approval of investment—The feasibility report would be considered by senior
management and depending on the availability of funds, approves the project.
This will spur the project into action.

170 12 Requirements Management Through SDLC

5. Project initiation—Once the funds are approved and a budget is sanctioned, in
principle, the project is initiated. The project initiation activities include

a. Identification and allocation of the project manager.
b. Project planning.
c. Setting up the development environment including allocation of worksta-

tions, servers, connectivity and seating facility.
d. Allocation of team members.
e. Project kickoff meeting and handover the project to the project manager.

In the context of requirements management, the pre-project phase concludes
with the project initiation. Establishment of the need for the application software is
accomplished in the pre-project phase.

12.3 RM in Requirements Phase of SDLC

In the requirements phase, primarily, we establish the requirements for the project.
Chapters 2–5 of this book, deal with this topic in detail. Chapter 6 deals with
ensuring quality in the established requirements. In view of the topic being dealt
with, in detail, in the preceding chapters, there is no point in briefly repeating it
here.

A requirements traceability matrix is crated and initiated in this phase apart
from establishing the project requirements in detail. This matrix would be updated
in all the subsequent phases.

12.4 Software Design

The established requirements are the input for the software design phase. But
carrying out design could discover opportunities to provide extra functionality
without too much additional cost or sometimes without any additional financial
burden. Sometimes, we may modify some of the requirements to suit the available
technology. For example, a printed hardcopy report may be replaced by a screen
based enquiry. Another opportunity may be to send an email in token of receipt
instead of a printed and signed receipt. We need to remember that end users are not
exposed to all the facilities available in the computers or the capabilities of the
modern computers. They would not be able to specify in such a way that the
capabilities of the computers and software development platforms are exploited to
their fullest potential. Therefore, during the design phase, we ought to look for
opportunities for improvement in the functionality which is beneficial to the end
users or the organizational management. Another aspect of requirements
management we need to handle in the design phase is the change requests that are
placed by end users or any other stakeholder. We need to implement all the change

12.2 Pre-Project Phase 171

http://dx.doi.org/10.1007/978-1-4614-5377-2_2
http://dx.doi.org/10.1007/978-1-4614-5377-2_5
http://dx.doi.org/10.1007/978-1-4614-5377-2_6

requests received thus far, in design phase itself so that the software construction
team would not be hindered by design changes during construction of the software.

The Requirements traceability matrix would be updated including the refer-
ences from the design document against each of the requirements. If it happens
that any requirement is not having a reference of the design document against it,
it means that the requirement is missed out in the software design of the product.
This action of updating the traceability matrix helps us in uncovering the missing
requirements that have not been taken care of in the design stage. We can then
modify the design to include the missing requirement.

12.5 Construction

Construction of the software product realizes the requirements. In this phase, we
implement the software design. We develop the code and self-test it to ensure that
the functionality as designed is achieved and is as defect-free as humanly possible.
Unit testing, integration testing and system testing are part of the construction phase.

It is very common that the maximum percentage of change requests is received
in this phase. Therefore, implementation of change requests is a major RM activity
of this phase. Additionally, all change requests kept pending for retrofitting into
the product need to be implemented during this phase.

Therefore, in this phase, we perform the activities of realizing the requirements,
implementing the change requests received and updating the requirements trace-
ability matrix to include references to the code against each of the requirements.

12.6 Testing

We carry out software testing with three objectives in mind, namely,

1. To uncover all lurking defects so as to make the product as defect-free as
humanly possible.

2. To ensure that all requirements of the end users and all other stakeholders are
implemented in the project.

3. The resultant software product is robust and is adhering to the design.

The three aspects, critical for the testing activity, are:

1. Test strategy.
2. Test plans.
3. Test cases.

In test strategy, we determine the best way to test the product so that the product
is as thoroughly tested as possible, the cost of testing is minimized and all testing

172 12 Requirements Management Through SDLC

objectives are met. The test strategy is normally captured in the software quality
assurance plan.

In test plans we determine the resources required to implement the test strategy,
the types of tests to be carried out and the schedule of testing.

Test cases implement the test plans and draw up details of how the product is
tested. A requirement normally results in multiple test cases and rarely, in only one
test case.

Testing consists of designing the test cases and then executing those test cases
on the software product. While designing test cases, we need to ensure that all
requirements of all stakeholders are covered. Often times, it is not possible to
cover all requirements in the designed test cases. The reason in most cases is either
the paucity of time or funds to test the product thoroughly. Therefore, we compute
a metric referred to as the ‘‘Test Coverage’’ metric. The formula for test coverage
metric is:

TCM = (Number of requirements covered by test cases 7 Total number
of requirements as established in the requirements traceability matrix or the
URS) 3 100

Where TCM = Test Coverage metric.
TCM is usually expressed as a percentage. While there is no standard per-

centage for TCM to determine the adequacy, 90 % is usually treated as good
coverage. By this statement, do not mistake me that I condone less than 100 %
coverage! Far from it! Test coverage of 100 % is the best practice and I strongly
advocate it.

In the testing phase, from the standpoint of requirements management, we
ensure that all requirements are properly implemented in the product and update
the traceability matrix with references of the test cases and test logs against each of
the requirements in the matrix.

12.7 Acceptance Testing

While acceptance testing is also part of testing, it is separately handled as it is
conducted by the customer. Acceptance testing is dedicated to proving that all
requirements are indeed implemented in the software product. So, we need to:

1. Ensure that the acceptance test plan and test cases do cover all the
requirements.

2. We need to conduct the test ensuring that all requirements are implemented in
the final software product.

3. The product works without defects when used positively.

First we need to verify and validate that the acceptance test plan and test cases
cover all the requirements comprehensively. Often, the acceptance testing
becomes a formality before accepting the delivery of the software product. True,
the acceptance testing is positive testing not intended to uncover defects but it is

12.6 Testing 173

conducted to ensure that all end user requirements are included in the product.
When the product is submitted for acceptance testing, all defects should have been
uncovered and fixed. If a defect is uncovered during acceptance testing, it should
be related to implementation of a requirement but not any other type of defect. But
it would be wrong to assume that the earlier tests would have ensured that all
requirements were implemented. Acceptance testing should focus on ensuring that
all requirements are implemented and should be carried out with all diligence in
positively testing the product.

Before beginning the acceptance testing, we need to verify the requirements
traceability matrix to ensure that all requirements are tracked to the product and
the quality records to ensure that all quality control activities are carried out
diligently.

We verify the requirements traceability matrix to ensure that each of the
requirements can be traced through all the software development activities and that
no requirement is missed out at any stage. If any requirement is missed in the
matrix, we need to lay special emphasis on testing that specific requirement.

We need to verify quality records of the project to ensure that all planned
quality assurance activities are performed and that all uncovered defects are fixed.
The quality records also have the potential to reveal if any requirement is missed
or not implemented properly.

Thus, we ensure that all requirements are implemented properly during the
acceptance testing.

12.8 Installation and Commissioning

Installation involves deploying all the machines including servers, workstations
and networking equipment and then installing the software on the respective
machines. Commissioning involves preparing the master data, loading it in the
database, pilot runs of the system, then changeover to production and hand over
the system to the users and the maintenance team.

During the installation and commissioning, especially the commissioning part
of it, we will also be training the end users in the efficient usage of the system of
which the application software is the most important component. In addition to
training, we need to handhold them for some time so that they become adept at
using the system effectively.

During both the training and the handholding period, we need to show the end
users how their requirements are met by the software and how to go about per-
forming their functions on the system and producing the results expected of them.

During this phase, we help the end users to understand how their requirements
are met and how to go about achieving their results.

174 12 Requirements Management Through SDLC

12.9 RM Through SDLC

Summarizing all the above discussion,

1. During the pre-project phase, we establish a need for the system so that the
project can be approved and a project can be spawned.

2. During the requirements phase, we elicit, and gather requirements, analyze
them and establish the requirements for the project so that software design can
begin and be completed based on the established requirements.

3. During the software design phase. We ensure that all the established require-
ments are included in the software design so that the construction phase could
realize all the requirements.

4. During the software construction phase, we realize all the established
requirements in the software product and implement any and all change
requests received from any of the stakeholders.

5. During the testing phase, we ensure that all requirements are indeed built into
the software product and there are no defects that can be detected through the
planned testing.

6. During the acceptance testing phase, we ensure that all requirements are indeed
met, including the added/modified requirements to the satisfaction of the
customer. The emphasis is on ensuring that all requirements are included and
they are working flawlessly when used as they should be in the software
product.

7. During the installation and commissioning phase, we train the end users to utilize
the software product to accomplish their objectives efficiently. We handhold
them to make them experts in using it to realize their stated requirements,

8. In the design phase, construction phase and testing phase, we also manage the
change requests received in addition to the activities stated above.

That is how we manage the requirements through the software development life
cycle.

12.9 RM Through SDLC 175

Chapter 13
Tools and Techniques for Requirements
Engineering and Management

13.1 Introduction

Requirements Engineering received significant attention from the research com-
munity as well as from practitioners. They have all focused their efforts on finding
ways and means to establish software project requirements quickly, as effortlessly as
possible, and as accurately as possible. Many tools and techniques were proposed for
use in Requirements Engineering. The popular ones are discussed in the following
sections. These are:

1. SSADM (Structured Systems Analysis and Design Method)
2. IEEE Software Engineering Standards
3. OOM (Object Oriented Methodology)
4. UML (Unified Modeling Language)
5. Agile methods

Let us discuss each of these in brief here. Each of the above is a full-fledged
software development methodology from requirements to delivery. I will be giving a
brief explanation about each methodology and delving deeper into how they engineer
and manage project requirements.

13.2 Structured Systems Analysis and Design Method

SSADM was originally developed for the Office of Government Commerce (then it
was Central Computer and Telecommunications Agency) of UK for use in pro-
curement of software for governmental use. It has been in use since the 1980s and has
been implemented in many organizations across the world, each adding its own
flavor to the methodology.

M. Chemuturi, Requirements Engineering and Management for Software
Development Projects, DOI: 10.1007/978-1-4614-5377-2_13,
� Springer Science+Business Media New York 2013

177

SSADM uses the waterfall method as software development life cycle.
Figure 13.1 depicts the waterfall model pictorially. The waterfall model originally
had five phases, namely, Requirements, Design, Implementation, Verification, and
Maintenance. But since the original definition, organizations made many modifi-
cations to this model and many variants are found in the organizations. SSADM
lays emphasis on rigorous documentation as the basis for the software develop-
ment. This emphasis, in fact, has originated in the manufacturing model used in
project type of manufacturing organizations.

Let us discuss the stages of SSADM as popularly used in many organizations,
in a little greater detail.

Fig. 13.1 Waterfall model

178 13 Tools and Techniques for Requirements Engineering

13.2.1 Feasibility Study

Feasibility is conducted to assess the viability of computerizing a system. It col-
lects information on the functionality being proposed, the costs, and the benefits
expected to accrue from the implementation of the system. The deliverable of this
phase is the feasibility report which would be considered by the management, who
would either reject the proposal or accord the approval and financial sanction to
the proposal.

13.2.2 Requirements Analysis and Specification

Requirements analysis and specification phase elicits and gathers requirements,
analyzes them and prepares a ‘‘requirements specification’’ document. This aspect
has been discussed in detail in the preceding chapters. Initially the requirements
specification document was referred to as Functional Specifications Document and
it transformed to present day’s URS.

13.2.3 High Level Design

Using the requirements specification document, high level design of the system is
carried out. This consisted of defining the system architecture, the main process
flows (organization of the proposed system into logical modules) and defining the
inputs and outputs. This is documented in a HLD (High Level Design) document.

13.2.4 Low Level Design

This phase consisted of defining the specification for each unit of software. LLD is
used to carry out design of each unit of the proposed software product and the
specifications are then documented. The deliverable from this phase is the LLD
(Low Level Design) document. The software programming would be carried out
using this LLD document.

13.2.5 Construction

During this phase, all programs would be constructed and subjected to unit testing.
The completed units are then integrated into their modules and the modules are

13.2 Structured Systems Analysis and Design Method 179

subjected to integration testing. All defects uncovered during the tests are fixed.
The deliverable of this phase is the working source code and executable code.

13.2.6 Testing

In this phase, the executable code is subjected to system testing on the target
system on which the software is to be implemented and any defects uncovered are
fixed. The deliverable of this phase is the readiness of the system to roll into
piloting, parallel runs and production.

13.2.7 Delivery and Implementation

During this phase, the software is delivered to the target system and is imple-
mented, including conducting pilot runs of the system, running it in parallel with
the existing system and then finally rolling out the new system into production.
This phase also includes the preparation of user documentation including, the user
manual, operations manual and troubleshooting manual.

13.2.8 Software Maintenance

The next activity on software is obviously the maintenance of the software in
production. Maintenance includes bug fixing, modification and functional expan-
sion. The software would be replaced when a major change to the system becomes
necessary from the functionality point of view or due to a major technological
change such as obsolescence of the existing hardware or the onset of a phenom-
enon like the Y2K or the Internet.

SSADM also devised a few tools for modeling and documenting the require-
ments and design. These are:

1. Logical Data Modeling—It is the representation of a system which can be
either a manual system or a computerized system. During requirements
analysis, we build a logical data model of the manual system being taken up.
During design, we build a logical data model for the proposed computerized
system. Logical data model was proposed during the days of Hierarchical
DBMS (Database Management) and Network DBMS. With the onset of
Relational DBMS, ER (Entity Relationship) modeling was developed from the
logical data modeling.

2. Dataflow Modeling—It is building a model of the flow of data in the system.
As computerized systems basically process data, the system processes revolve

180 13 Tools and Techniques for Requirements Engineering

around the data. Each process transforms a part of the system data in some
way. When all of the processes are executed, the system data is transformed as
desired. The data flows from one process to another until information is
extracted and presented as output of the system. This model is presently
referred to as process modeling. During requirements analysis, we model the
existing processes and during design, we model the proposed system.

3. Entity Behavior Modeling—It is modeling the sequence of operations in the
system. Events in the processes impact and transform the entities. We model
each event and the behavior of the impacted entities and the sequence of events
in a process from the first input to the final output, diagrammatically in this
modeling.

SSADM, from the day it was implemented, held its place among the other various
software development methodologies. The original model was modified by many
organizations and researchers. I would rather go to the extent of saying that all other
methodologies that have emerged since, still contain a streak of SSADM in them. In
the spiral model and the iterative model, each increment/iteration is still a waterfall
model. The logical data modeling which later transformed into ERD (Entity Rela-
tionship Diagram) is the only way to model system data even today. The process
standards like the ISO 9000 and CMMI� implement the philosophy of SSADM.
IEEE also followed the SSADM model in defining the software engineering stan-
dards when they released the first set in 1988. The agile methods denounce the heavy
reliance of SSADM on documentation but still implement the waterfall model in
each of the iterations. In outsourced development SSADM is still significantly uti-
lized to drive software development contracts.

13.2.9 Requirements Engineering and Management in SSADM

SSADM accorded significant importance to the aspect of requirements engineering
and management by designating a separate phase for this activity. During this
phase, the activities of elicitation, gathering, analysis and establishment are carried
out. The deliverable of this phase is the Requirements Specifications Document.

The technique of logical data modeling to model the system data was the
originally suggested technique but now, ERDs are being used to model data. The
technique of dataflow diagrams is used to model process flow in SSADM.

13.2.10 ER Diagrams

Data modeling deals with establishing the relationship between various data
entities in the system. In any information transaction, data is transmitted between
entities. Let us take a simplified purchase transaction:

13.2 Structured Systems Analysis and Design Method 181

1. An item is to be purchased in an organization. So a purchase order is raised on
a vendor.

2. The vendor supplies the item to the inventory.
3. The vendor raises an invoice on the organization for payment.
4. The organization makes the payment.

From this transaction we could establish relationships:

1. There is a relationship between the purchase order and the vendor
2. There is a relationship between the vendor and the inventory
3. There is a relationship between the vendor and the invoice
4. There is a relationship between the invoice and the payments

Modeling relationships of this type is referred to as data modeling.
An entity is a place, person or a thing and is described by its attributes. For

example, an employee in a payroll system is an entity. A purchase order is an
entity in a material management system. ER Diagrams (ERD) pictorially represent
the relationships between various data entities in the system.

The entity is represented by a rectangular box in the ERDs. The relationship
between entities is represented by a line in ERDs. The ends of the line represent
the type of relationship between entities. There are three types of relationship:

1. One-to-one relationship—An item would be in one purchase order. This is
represented in the ERDs by a straight line with normal end.

2. One-to-many relationship—A purchase order could contain many items. This
is represented in the ERDs by a straight line with crow’s feet at the end of the
line having ‘‘many’’ relationship.

3. Many-to-many relationship—A vendor can receive multiple purchase orders
and supply multiple materials. This is represented in the ERDs by a straight
line with crow’s feet at both ends of the line.

The symbols used in ERDs and the relationships are shown in Fig. 13.2.
Figure 13.3 depicts a simple ERD, modeling the purchasing transaction detailed

above. A purchase order entity is placed on the vendor and the vendor entity may
receive multiple purchase orders as depicted in the figure. The vendor would
supply items to warehouse inventory. The vendor could be supplying multiple
items to the warehouse against multiple purchase orders. The vendor would raise
invoices for materials supplied. The warehouse would be requesting purchase of
items which have fallen below the reordering level set for the items.

Of course, real life ERDs would be much more elaborate and complex as there
would be many entities in a system and they would have complex relationships
with each other. The real life ERDs would span across many sheets. Many soft-
ware tools are available for modeling entity relationships and some of them could
be using different types of notations, especially in representing the relationships
between entities.

182 13 Tools and Techniques for Requirements Engineering

13.2.11 Data Flow Diagrams

Dataflow diagrams are used to model the process of transforming the data by the
system. During the requirements phase, we model the existing system and during
design phase, we model the proposed system.

The symbols used in DFDs are shown in Fig. 13.4. The symbol of the process
has many variants. I am depicting two of those variants.

Fig. 13.2 Symbols used in ER diagrams

Fig. 13.3 Example of an entity-relationship diagram

13.2 Structured Systems Analysis and Design Method 183

Now let us model the purchase order transaction using a DFD. Let us first
enumerate the steps in the process which we can model pictorially. Here is the
simplified process:

1. An executive from the production department or warehouse raises a pro-
curement requisition on to the purchase department for purchase of item or
items.

2. The purchase department receives the requisition and files it (stores it).
3. The purchase department raises enquiries on vendors asking for price

quotations.
4. The vendors receive the enquiry and stores it.
5. The vendors transmit price quotes to the purchase department.
6. The purchase department receives the quotes and stores them.
7. The purchase department transmits the quotes to the executive who originated

the procurement requisition.
8. The executive selects the vendor and sends the recommendation to the pur-

chase department.
9. The purchase department stores the recommendation.

Fig. 13.4 Symbols used in
DFDs

184 13 Tools and Techniques for Requirements Engineering

10. The purchase department raises a purchase order on the selected vendor.

Let us model this process in a DFD. Figure 13.5 depicts this process pictorially.
DFDs for real life systems would span across multiple sheets. To make a large

system comprehensible, it is normally divided into multiple levels. The top level
DFD is normally a context diagram described in the subsequent sections. Then for
each subsequent level a DFD is prepared. The lowest level DFD would be for a
software unit. If a totally granular DFD set is prepared, it can almost supplement a
design document. But more often than not, DFDs would not be prepared to the
lowest unit level. Each organization decides at what level of granularity, the DFDs
would be stopped in its projects.

13.2.12 Context Diagram

Context diagrams are used to show the context in which the proposed system
operates. It also shows the context of the modules within the system. In the context
diagrams, circles are used to represent entities and arrows to show the relationship
with arrows pointing in the direction of the flow of information between the
entities. An arrow head only at one of the ends depicts a unidirectional

Fig. 13.5 DFD for a purchase order process

13.2 Structured Systems Analysis and Design Method 185

relationship. That is information flows only in one direction. A line with arrow
heads at both the ends depicts a bidirectional relationship. That is, information
flows in both directions between the entities.

Figure 13.6 depicts the context of material management system in an
organization.

13.2.13 Structure Chart

S structure chart is used to depict the hierarchy of the functionality in the system. It
uses rectangular boxes to depict entities in the system and the lines with arrow
heads show the flow of information between the entities. Figure 13.7 depicts a
structure chart pictorially.

Fig. 13.6 Context diagram of material management system in the organization

186 13 Tools and Techniques for Requirements Engineering

There could be many variants of the model and the diagrams described above.
SSADM is one of the most researched models of software engineering method-
ologies. Many researchers modified the SSADM with their own improvements and
authored books about their models. Organizations too have customized the model
and implemented it in their own way. It is not an exaggeration to say that SSADM
has not been implemented in its original form anywhere except in the beginning
and that too in UK. So, I do not claim that the model I described here is the ‘‘right’’
SSADM but what I described is the one I have observed in many organizations.

13.3 IEEE Software Engineering Standards

IEEE (Institute of Electrical and Electronics Engineers, USA) is an association of
engineers from all over the world. Its membership, of about 400,000, includes
engineers with a minimum of graduate level qualifications in the electrical, elec-
tronics, computers and telecommunications engineering or engineers working in
these fields. IEEE has a standards wing which develops standards for the industry
collaboratively with engineers drawn from the industry and the academia. The

Fig. 13.7 Structure chart of material management system

13.2 Structured Systems Analysis and Design Method 187

individuals involved in the development of these standards need not necessarily be
the members of IEEE. The volunteers work without any compensation too. All the
standards developed by IEEE are subject to peer review and voting before they are
released. All the standards are periodically reviewed and the revised versions are
regularly released. IEEE standards are highly respected and are implemented in the
products and interfaces all over the world.

I am proud and feel privileged to be admitted to the IEEE in the first place and
be elevated to the category of Senior Member in the second place.

IEEE undertook development of standards for the field of software engineering
and released the first set in 1988. Some of these are revised and re-released in
1997–1998. There is great wisdom in these standards. Many organizations have
adopted these standards. The process model CMM� (Capability Maturity Model)
released by SEI (Software Engineering Institute of the Carnegie Mellon Univer-
sity) in 1998 emphasized IEEE standards in its model document, even though, this
emphasis is dropped in its later versions of CMMI� (CMM Integration).

IEEE standards advocate a methodical and process driven approach. One
important aspect to be noted here is that implementing IEEE standards has not
failed any organization so far!

Table 13.1 gives a list of software engineering standards released so far.
All of these standards promote methodical working and implementation of

industry best practices. They focus on large scale projects but allow scaling to suit
smaller projects. The standards relevant to Requirements Engineering and Man-
agement are, 610, 830, 1028, 1028, 1044, 1233 and P1805. IEEE continues to
develop and improve the standards and some more standards will continue to be
released. IEEE has initiated a project (P1805) on the language to be used for
defining requirements for software projects. It may be released soon.

Implementing IEEE standards in the organization is one of the best practices, in
software development in general and REM in particular.

13.4 Object Oriented Methodology

Object Oriented programming brought real-world thinking into software devel-
opment. In the real-world there are objects that have characteristics and functions.
How the objects perform and use the characteristics and produce results is not of
concern to the outside world. Therefore, the programs were modified to resemble
real-world objects.

Object oriented methodology is a software development methodology that
views software development as development of objects (instead of programs) that
can be assembled into a software product. Each object is not a complete stand-
alone unit but is a component that can be picked up and used along with other
objects to assemble a software product. Each object has data structures built into it
along with the methods (small programs or functions or subprograms) that utilize
it. The object encapsulates (conceals) the methods and the data structure from

188 13 Tools and Techniques for Requirements Engineering

Table 13.1 List of software engineering standards

Standard
number

Brief description of the standards

610 IEEE standard glossary of software engineering terminology
730 IEEE guide for software quality assurance plans
828 IEEE standard for software configuration management plans
829 IEEE standard for software test documentation
830 IEEE recommended practice for software requirements specifications
982 IEEE guide for the use of IEEE standard dictionary of measures to produce

reliable software
1008 IEEE standard for software unit testing
1012 IEEE standard for software verification and validation
1016 IEEE recommended practice for software design descriptions
1028 IEEE standard for software reviews
1044 IEEE guide to classification for software anomalies
1045 IEEE standard for software productivity metrics
1058 IEEE standard for software project management plans
1061 IEEE standard for a software quality metrics methodology
1062 IEEE recommended practice for software acquisition
1063 ieee standard for software user documentation
1074 IEEE standard for developing software life cycle processes
1175 IEEE trial-use standard reference model for computing system tool

interconnections
1219 IEEE standard for software maintenance
1220 IEEE standard for application and management of the systems engineering

process
1228 IEEE standard for software safety plans
1233 IEEE guide for developing system requirements specifications
1320 IEEE standard for conceptual modeling language and syntax and semantics for

IDEF
1348 IEEE recommended practice for the adoption of computer-aided software

engineering (case) tools
1362 IEEE guide for information technology—system definition—concept of

operations (conops) document
1420 IEEE standard for information technology—software reuse—data model for

reuse library interoperability—basic interoperability data model
1430 IEEE guide for information technology—software reuse—concept of operation

for interoperating reuse libraries
1471 IEEE recommended practice for architectural description of software-intensive

systems
1517 IEEE standard for information technology—software life cycle processes—reuse

process
12119 IEEE application of international standard ISO/IEC 12119—information

technology—software packages—quality requirements and testing
12207 IEEE/EIA guide—industry implementation of international standard ISO/IEC

12207—standard for information technology—software life cycle
processes—implementation considerations

14143 Implementation note for IEEE adoption of ISO/IEC 14143 information
technology—software Measurement—functional size measurement

P1805 Guide for requirements capture language (to be released)

13.4 Object Oriented Methodology 189

outside view. That is, the user need not be concerned with the ‘‘how’’ of the object.
The user can view the object as a black box that receives some needed inputs and
outputs the expected values. Since each object is self-contained, they can be easily
reused. Thus object oriented methodology avoids the need for re-programming for
the same functionality.

The following terminology is associated with OO Methodology. This is given
to introduce the reader to the concepts underlying the OOM. This explanation is
given in brief and the reader is advised to refer to other material for full coverage
of the subject, if felt necessary.

Object—an object is a combination of methods (functions/subprograms/small
programs) and data structures that are used by the methods. Each of the methods
performs one action and achieves a predefined functionality affecting the data
defined in the data structures.

Class—a class is a model of the real world from which an object can be created.
A Class is abstract and object is its implementation. A Class is a ‘‘super object’’ in
that every object is an instance of a class.

Message—A Message is the input to the object that invokes a method con-
tained inside the object and spurs that method into action to process and produce a
response to the message received. This response is again conveyed as a message
back to the originator.

Abstraction—is the action of analyzing the real world objects and forming
classes based on the similarity of characteristics of the real world objects so that
they can be understood, analyzed, designed and implemented to produce the
desired software product. Abstraction is at a high level. It does not consider the
implementation details.

Encapsulation—In object oriented methodology, the data is hidden from the
sight of the users. The data is accessed through the methods contained in the
object. This aspect of preventing direct access to the data of the objects is referred
to as encapsulation.

Polymorphism—it is the ability of the objects to be implemented differently to
achieve multiple functionalities. When the objects are similar but perform dif-
ferently, the same message can be used to communicate with different objects and
obtain different results. The ability to obtain different results using the same
message by sending it to different object is referred to as polymorphism.

Inheritance—Inheritance is the ability of the object to inherit the character-
istics of the class from which it is instantiated. When we instantiate an object from
a class, the object inherits all the methods and data structures of the class. In
addition, the object can have some more methods and data structures.

OOM focuses more on the engineering side of software development than on
the management side. Therefore, it does not tell us how to go about managing the
software project using OOM. One thing is clear though, OOM expects that the user
requirements are already established. It is a pre-project activity as far as OOM is
concerned. OOM starts with analyzing the user requirements and then extracts the
classes from the requirements using abstraction, then designs classes, and imple-
ments them in the software code. Then the software product is assembled using the

190 13 Tools and Techniques for Requirements Engineering

objects instantiated from the classes. The product is then tested and deployed. This
is in brief how the object oriented software development project is executed.

So, when we come to the requirements management portion of the project, we
need to establish the user requirements as we would in any other software project.
OMT (Object Modeling Technique) was oriented towards modeling the design but
not the requirements and therefore, it is not covered here. OOM is currently using
UML, which is detailed in the following sections for modeling the design as well
as requirements.

13.5 Unified Modeling Language

Unified Modeling Language (UML) is used for modeling requirements and design
of software systems. It began in the object oriented methodology but is currently
used in all types of software development projects. UML was created and is
maintained by the OMG (Object Management Group). Ivar Jacobson, James
Rumbaugh, and Grady Booch are credited to have created UML at Rational
Software (now a part of IBM).

One aspect to remember is that UML is not a software development method-
ology but is meant to model the computer applications. It is more like a language
to describe the system. UML uses the following diagrams to model the software
system:

1. Class Diagrams
2. Use Cases
3. Sequence Diagrams
4. Statecharts
5. Activity Diagrams
6. Component Diagrams
7. Deployment Diagrams

We will discuss each of them in a little greater detail in the below sections.

13.5.1 Class Diagrams

Class diagrams are used to depict the classes in a model. Class diagrams are used
to model high level design (roughly equivalent to SRS). User requirements are
analyzed and classes are abstracted and then modeled using class diagrams. Each
class has attributes (data), methods, and relationships with other classes.
Figure 13.8 depicts the symbols used in class diagrams. Using these symbols, class
diagrams are prepared to model classes in the system. Figure 13.9 depicts a very
simplified class diagram for a procurement system.

13.4 Object Oriented Methodology 191

13.5.2 Use Cases

A use case (a case in the use of the system) depicts pictorially a ‘‘unit of func-
tionality’’ of the proposed system. Usually, a use case has two elements, namely,
the use case diagram and a use case description.

Use case diagrams use the symbols depicted in Fig. 13.10. In use case dia-
grams, an ellipse represents the use case. It is usually accompanied by the name of
the use case and optionally a use case ID. The actor is depicted by the symbol of a
stickman. The stickman is usually identified by a name. The actor could be a
human being interacting with the system using a GUI (Graphical User Interface) or
another system interacting with the system using a machine interface or a protocol.
The interaction between the actors and the use case is represented by lines. The
system boundary is represented by a rectangle. The actor is usually outside the
system. Figure 13.11 depicts the procurements system using use case
methodology.

The description that accompanies a use case diagram can be a free flowing
scenario description but a structured description is preferable. In whatever form
the organization desires to document the description, it is better to include the
following options in the use case description:

Fig. 13.8 Symbols used in
class diagrams

192 13 Tools and Techniques for Requirements Engineering

Fig. 13.9 Example of a simple class diagram

Fig. 13.10 Symbols used in
use case diagrams

13.5 Unified Modeling Language 193

1. Use case name and optionally use case Id
2. Primary actor
3. Other actors
4. Objective of the use case
5. Precondition
6. Trigger—the event that triggers this use case
7. Exit condition (the definition of completion or success of the use case)
8. Use case description
9. Workflow

10. Alternate workflows

An example description of the use case depicted in Fig. 13.11 is given in
Table 13.2.

In this manner, we describe each of the use cases in the use case diagram. Now,
as you can perhaps see, some vital information is missing from the above
description. The data description is more or less absent. For each of the data items,
the details of data type (numeric, character, date, currency etc.), the field width,
their constraints etc. are not mentioned. In some cases, these are described in the use
case description or a separate entry is used to describe this information. In some

Fig. 13.11 Use case diagram example

194 13 Tools and Techniques for Requirements Engineering

cases, they attach formats currently being used in the organization. Sometimes,
these are elicited from the users by the designers and are used for software design.

Use cases have become very popular tools for capturing the project requirements
in recent times due to their simplicity and clarity of presentation. The use case
diagrams are very easy to draw and even easier to comprehend.

Table 13.2 Description of the use case (Procurement Requisition) depicted in Fig. 13.11

Project Id

Use case name Procurement requisition
Primary actor Production executive
Other actors Purchase officer, uses this use case to raise enquiries of prospective vendors
Objective of the use

case
1. To capture the material requirement of the production executive
2. To obtain full information of the items to facilitate raising enquiries

Precondition There should be a production order against which the expenditure can be
booked

Trigger The BOM (Bill of Material) should have been prepared and approved
Exit condition 1. Procurement requisition is filled in by the production executive

2. Email is sent to purchase officer that a procurement requisition is
awaiting for next step

Use Case
description

After a purchase order is received from a customer by the marketing
department, it will be passed on to the engineering department. The
engineering department would prepare engineering drawings for
manufacturing the product and releases them to the production planning.
Production planning raises production orders to various production
shops authorizing them to initiate production. Production shops assess
the material stock and raise procurement requisitions on purchase for
procurement of materials that are in short supply. This requisition
triggers procurement action. This requisition would contain information
about the item code, item description, the required quantity, the date by
which the item is required and the estimated cost of the item being
procured, along with references to the production order and the project
id. The requisition is computer based and need to be accessible from the
production shop’s PC

Workflow 1. Production order is received by the production shop
2. Material stock in the warehouse is assessed and material shortages are

enumerated by the production executive
3. Production executive raises the procurement requisition using the

computerized procurement system
4. The requisition is sent for authorization of concerned authority

automatically by the computer
5. The authorization is granted by the concerned executive
6. An email is sent to the purchase office that a procurement requisition is

awaiting action
Alternate workflow Sometimes, the system itself has to raise the procurement requisition

especially in the matter of standard items such as hardware like nuts and
bolts, stationary, cleaning materials and so on. This has to be based on
re-order level, ordering quantity, and safety stock decided for each of
the standard items in the stock

13.5 Unified Modeling Language 195

The data description is absent and it needs to be obtained and documented using
other means. The use case diagrams are indeed simple but it is difficult to represent
complicated logic in large complex software system.

In the Table 13.2, I have not included the description for all the use cases
included in the Fig. 13.11. Only one use case is described as an example. Using the
format given in Table 13.2 other use cases can be described.

Use case diagrams coupled with use case descriptions are used to capture
requirements for the projects by many organizations.

13.5.3 Sequence Diagrams

Sequence diagrams depict the sequence of operations between classes or objects.
Sequence diagrams are used more to model the design but can also be used to
model requirements. Sequence diagrams depict the classes/objects included in the
scenario and the interactions between them along with the sequence.

Objects are depicted using rectangles, the actors are depicted using the stickman,
and the messages are depicted using solid lines and dotted lines. Figure 13.12 depicts
a sample sequence diagram for the procurement system.

13.5.4 Statecharts

Statecharts are used to model the behavior of the entities in the system. Usually,
statecharts are more often used to model the design of the system but they could
also be used to model the behavior of the use cases

A very simple statechart is depicted in Fig. 13.13. In this statechart, the
requirement of material is recognized and when the event of Production Executive
raising the procurement request the state of material requirement transitions to
Procurement Requisition. Now the event of the Purchase Officer raising an enquiry
on the prospective vendors transitions the state to Enquiry.

Statecharts are used more to depict the design of the proposed system than in
capturing the requirements. All, the same, statecharts are definitely useful in cap-
turing the requirements especially the transition of the state of the entities.

13.5.5 Activity Diagrams

Activity diagrams model the procedural flow of actions that are part of a use case
or a set of use cases. Activity diagrams are normally used to depict the sequence of
execution in a system. Activity diagrams use similar notation as statecharts.

A sample activity diagram is depicted in Fig. 13.14 for the procurement system
in a simplified manner.

196 13 Tools and Techniques for Requirements Engineering

13.5.6 Component Diagrams

Component diagrams model the relationship between the components of a soft-
ware system. Component diagrams are used to model the design of a software
product rather than to capture the requirements of a proposed project. I am not
going into the details of this type of diagramming as it is not used for capturing

Fig. 13.12 Sequence diagram example

13.5 Unified Modeling Language 197

requirements and this book’s focus is on requirements engineering and
management.

13.5.7 Deployment Diagrams

Deployment diagrams are used to depict the physical deployment of system arti-
facts including the hardware artifacts, system software artifacts and application
artifacts of a facility. They deal with the facility management and system design
that includes hardware as well rather than with either project requirements of
software design. Deployment diagrams are not used in the field of requirements
engineering and management. Therefore, I am not covering them in this chapter.

13.5.8 Final Words on UML

UML has become very popular of which use cases have been particularly popular,
because of their simplicity and ease of use. Use cases along with use case descriptions

Fig. 13.13 Example of a simple statechart

198 13 Tools and Techniques for Requirements Engineering

are being used to describe project requirements. Of the other diagrams, class dia-
grams and sequence diagrams are also used extensively. Others are being used but not
on the same scale as the use cases.

13.6 Agile Methods

Agile methods do not use any formal methods for modeling the systems either for
capturing the project requirements or the proposed system design. If at all, they use
UML modeling techniques described above for either capturing project require-
ments or the design of the proposed system. We have a more detailed discussion
about agile methods in Chap. 12.

Fig. 13.14 Activity diagram example

13.5 Unified Modeling Language 199

http://dx.doi.org/10.1007/978-1-4614-5377-2_12

13.7 Planguage

Planguage is developed by Tom Gilb for describing requirements as well as
software design. It is dealt with in much greater detail in Appendix B and therefore
not described here.

13.8 Final Words on Tools and Techniques in Requirements
Engineering and Management

All the tools and techniques described above, more or less, do aid requirements
engineering rather than management. Requirements management is basically
ensuring that the activity is carried out efficiently and effectively. Project plans
ensure that the activity is planned as described in Chap. 7 on planning. Ensuring that
requirements are included and fulfilled at every stage of software engineering is
achieved using the requirements traceability matrix which is discussed in Chap. 9.
Changes are inevitable midway through any human endeavor and requirements
management is no exception. We discussed requirements change management in
Chap. 8. The important aspect to be defined for effectively carrying out the activity is
the assignment of responsibilities to appropriate agencies and sharing it between the
organization and the individual. This aspect of roles and responsibilities is discussed
in Chap. 11. The tools and techniques useful in these activities are discussed in the
cited chapters.

Now, let us address the question—which tool or technique is best suited to a
given scenario? I confess that there is no single right answer to this question. All
the tools and techniques discussed in this chapter help us in modeling the system
and capture the requirements so that we can understand it fully and thereby design
and build the ‘‘right’’ software system for our clients. Another important point I
would like to stress here is that the techniques described above are by no means
comprehensive. There are a plethora of models and diagrams available in software
engineering. Just to record all the models and diagrams available would take a full
book in itself.

One tool that is used across the board for modeling data and assisting us in the
design of the database is the ER diagram. I have not seen any other technique
being used to model data as much as ER diagrams are used.

But when it comes to modeling project requirements, there is diversity. SSADM
is still very much in use and looks to be there for some more time to come. UML
has stormed on to the scene and has been put to use in significant number of
projects. But it has been criticized too. In fact Ivar Jacobson who perhaps is more
responsible than anyone else in defining the UML has started another initiative to
define a new methodology for software engineering. The web site www.semat.org
is spearheading that initiative. Semat stands for Software Engineering Method and
Theory. It is proposed to release the new methodology by the year 2013.

200 13 Tools and Techniques for Requirements Engineering

http://dx.doi.org/10.1007/978-1-4614-5377-2_7
http://dx.doi.org/10.1007/978-1-4614-5377-2_9
http://dx.doi.org/10.1007/978-1-4614-5377-2_8
http://dx.doi.org/10.1007/978-1-4614-5377-2_11
http://www.semat.org

What I can certainly say with confidence is that the software engineering tools
are nowhere near the granularity or the accuracy that other engineering disciplines
have in engineering drawings. They say that ‘‘drawing is the language of engi-
neers.’’ But it is not so for software engineers. We, the academics, the practitio-
ners, and the thinkers, in the software engineering field seem to continue our
search to find the perfect set of tools so that we can define our requirements and
design without ambiguity and in a manner that all concerned would interpret it in
the same manner.

In the meanwhile, we continue to use the tools and techniques with which we
are most knowledgeable and comfortable to use.

13.8 Final Words on Tools and Techniques in Requirements 201

Chapter 14
Pitfalls and Best Practices
in Requirements Engineering
and Management

14.1 Introduction

Requirements engineering and management is a vital activity in software
development. If other activities are not handled properly, there could be defects in
the product or the project may suffer from cost or schedule overruns. But if
requirements are not handled properly, we may have a wrong product on our hands
at the end of the project! Requirements management has a strategic impact on the
project. It is the difference between success and failure of the project. Defects can
be fixed, but we cannot re-develop the product.

Therefore, it is imperative that we implement the industry best practices and
avoid the pitfalls in the management of requirements if we wish to ensure success
of the project by delivering the right product. Here we discuss some of the pitfalls
that frequently plague the requirements management activity as well as the best
practices that have always ensured the success of the project.

14.2 Best Practices and Pitfalls at the Organizational Level

Organization has a major role in either the success or failure of the project.
Organization sets the framework in which the individuals perform and can excel or
fail. The framework facilitates the individual capacity to perform. It can propel the
individual to excel or push the person to fail. Organization has the onus in the
following aspects:

1. Approach to Requirements Engineering and Management
2. Provision of Resources
3. Training and Updating of Skills
4. Definition and Improvement of Process
5. Motivation and Morale of the Resources

M. Chemuturi, Requirements Engineering and Management for Software
Development Projects, DOI: 10.1007/978-1-4614-5377-2_14,
� Springer Science+Business Media New York 2013

203

6. Quality Assurance
7. Knowledge Repository.

Let us discuss each of the above aspects in detail hereunder.

14.2.1 Approach to Requirements Engineering
and Management

This is perhaps the first and most important aspect of the organizational framework
the organization has the responsibility to set. There are basically two approaches,
namely,

1. A process driven approach
2. Ad hoc approach.

A process driven approach consists of defining a process that is appropriate for
the organization that includes industry best practices as well. All of the activities
are carried out in the organization conforming to the corresponding process. When,
it is essential, a waiver is requested and taken from the concerned authority to
perform an activity deviating from the specification of the process. A waiver is
usually granted only when the suggested approach is argued to be better than the
existing one. A process driven approach ensures predictable results. It makes a
novice perform like an experienced one and an experienced one to perform like an
expert. A process driven approach also brings in uniformity across the organization
and the customer can expect similar results irrespective of the person performing
the activity. There is a criticism that a process driven approach curtails the free-
dom of the individuals performing the activity. This is partially true but waivers
are granted in deserving cases although unbridled experimentation is not
permitted.

An ad hoc approach gives all the freedom to the individuals performing the work.
There will be no process to conform to. In these cases, the results depend on the
expertise, experience and the motivation of the person. If the person is an expert, has
excellent experience and is highly motivated, this approach can produce spectacular
success. But if the person is a novice and is poorly motivated, the results can be
spectacularly disastrous.

For small organizations running fewer than three projects concurrently, an ad
hoc approach may be adequate as the gaps in knowledge can be bridged by the
superiors. But as the organization grows larger and handles many projects
concurrently, an ad hoc approach may not be adequate.

When organizations start, they are usually small handling few projects
concurrently. Then they grow larger with their initial success. Then if the growing
organization does not then adopt a process driven approach, it may not be able to
control the project execution efficiently and may move toward failure. So, nor-
mally organizations move towards a process driven approach as they grow in size.

204 14 Pitfalls and Best Practices in Requirements

The best practice is to adopt a process driven approach in the early stages of the
organization itself so that the projects are executed in a disciplined manner from the
beginning.

14.2.2 Provision of Resources

Organization provides resources without which even work itself cannot be
performed. But often organizations overlook on the quality of resources. Some
organizations entrust the requirements engineering activity to software engineers
themselves who are not knowledgeable in the project’s domain. In some cases,
senior software engineers are assigned and in some cases, even programmers are
assigned to the requirements activity. When the resources are not properly qual-
ified or trained, and are assigned to perform an activity, the activity suffers on both
the quality and productivity fronts. Obviously, the requirements are not defined
properly resulting in many change requests during the project execution. Too
many change requests affect the rhythm of the software development resulting in
cost and schedule overruns at a minimum.

The best practice in this area is to provide qualified resources, with the right
kind of training in the requirements engineering activity, tools and techniques
thereof, as well as, mentoring on the job to make them full-fledged business
analysts. Only such people ought to be assigned the activity of requirements
engineering. When it becomes necessary to assign software engineers to require-
ments engineering activity for any reason, it is essential to provide them training in
requirements engineering and the project domain at a minimum before assigning
them the requirements engineering activity.

The Second pitfall that I have frequently observed is that inadequate time is
allocated to requirements engineering. Managements often push the project team
to begin coding before the project requirements are properly and comprehensively
established. Why organizations fall into this pit is because the project is allocated
with all the resources—all at once. It is better to space out the allocation of
resources on an ‘‘as required’’ basis. That way, the pressure to utilize the pro-
gramming resources would not exist and allows time to perform the requirements
engineering activity comprehensively. The best practice is to allocate an adequate
duration for carrying out the requirements engineering activity. I am not advo-
cating spending unending time in carrying out the activity but I do advocate giving
the requirements engineering activity due consideration and importance while
preparing the project schedule. The right amount of time needed for a project
depends on the nature of the project and the amount of work involved in estab-
lishing the requirements. What we need to do is to give this activity due impor-
tance and consideration during project estimation and scheduling so that the
activity is performed diligently and comprehensively.

14.2 Best Practices and Pitfalls at the Organizational Level 205

14.2.3 Training and Updating of Skills

Training has been the bane of many software development organizations, Training
of resources is not considered as an important activity. Training imparts skills in
the human resources necessary to carry out the present job effectively, as well as,
to equip them to be ready to shoulder higher responsibilities in the future. The right
kind of training goes a long way in ensuring that the performance on the job is
effective. While organizations spend readily for imparting training on a new
language programming, they do shy away from spending on imparting require-
ments engineering skills to selected employees.

The software development field is one noted for fast obsolescence through con-
tinuous new developments. The requirements engineering itself has undergone a
metamorphosis from the days of a simple functional specifications definition to
present day’s advanced requirements establishment techniques. Therefore, the skills
of the people carrying out the requirements engineering ought to be upgraded on a
regular basis. This can be achieved by sponsoring employees to attend public sem-
inars conducted on the topic, subscribing to related journals, conducting knowledge
sharing sessions and so on.

The pitfall has been that these activities of training and updating of skills had
not been given adequate attention in the organizations. The best practice is to
conduct initial skills training and then periodically update the skills with the latest
developments in the field using a process driven approach.

14.2.4 Definition and Improvement of Process

Any organizational activity would have predictable results if it is driven by an
organizational process which is continuously improved in line with the changing
times. It is the organizational responsibility to define a process for carrying out the
requirements engineering activity and to continuously improve it.

The pitfall has been that organizations do not define a robust process, including
procedures, standards, guidelines, formats, templates and checklists to carry out
requirements engineering activity. Sometimes a sketchy process would be defined
under the garb of allowing freedom to the people performing the activity. Sometimes
a process is defined but it is relegated to the records and not implemented. Sometimes
the process is not improved on a periodic basis. The ills plaguing the industry in terms
of the process definition and improvement are many. This has been the pitfall of many
organizations.

The best practice is to initially define a robust process appropriate for the orga-
nization and to improve it continuously using a process driven approach.

206 14 Pitfalls and Best Practices in Requirements

14.2.5 Motivation and Morale of the Resources

Provision of resources, training them and updating their skills, as well as, defi-
nition and improvement of a robust process would all be brought to naught if the
individuals performing the activity are not motivated and their morale is not
maintained at a high level. A highly motivated set of individuals can achieve
miracles and a badly motivated team would not be able to achieve even moderate
success. We see this happening on the sports field regularly and history is replete
with many examples.

How do we motivate the individuals? It is not easy to answer this question in
simplistic terms. The need for motivation differs from individual to individual.
What motivates one individual may not motivate another. Money and fear, the
traditional tools used for motivating individuals have lost their sheen. The
implementation of need-based-minimum-wage concept and fair employment
practices have been done away with the capability of fear to motivate. They also
dented the capacity of money to motivate. Some individuals are still motivated by
these two tools but only for a limited duration after which they lose fear. Money to
some extent is still a motivator but it is not getting corresponding return on
investment.

There are many theories of motivation and I am referring to only two of them.
The first one is the ‘‘carrot-and-stick’’ theory and the other is the ‘‘expectancy’’
theory. These are in my opinion, are very important to apply at individual level.

When people come to work in an organization they do have some expectations,
such as payment of wages regularly, fair treatment, possibility for advancement in
career, rewards for performance beyond the normal level, punishment for bad
performance and so on. When these expectations are met, the individual stays
motivated to perform. When any of these expectations are not met, the motivation
of the individual deteriorates. So it delves upon the organizations to meet these
expectations of the employees. It would be very difficult for the organization or the
individuals to meet these expectations, if:

1. These expectations are not recognized at all
2. The policies concerning good performance, and bad performance are not

defined or not transparent to the individuals
3. The policies regarding career advancement are not defined or not transparent to

individuals
4. The policies regarding reward and punishment are not defined or not trans-

parent to the individuals.

So, it is imperative for the organizations to define these policies, make them
transparent to the employees and implement them scrupulously so that the
expectations of the employees can be met satisfactorily. Defining these policies
and making them transparent would set the right expectations in the employees.
Often organizations do promote employees to the next level, provide rewards and
recognition, and discipline erring employees without any explicit definition.

14.2 Best Practices and Pitfalls at the Organizational Level 207

The activities are performed, perhaps on a regular basis, as I saw in many orga-
nizations, but these are not transparent to the employees. These are not based on
any policy definitions, or set targets. When this happens, employees suspect cloak-
and-dagger methods and this sets wrong expectations in the employees. Wrong
expectations of employees can never be met leading to demotivation of the indi-
viduals. The best practice is to set right expectations in the employees by explicit
declaration of relevant policies.

The carrot-and-stick theory implies reward for good work and punishment for bad
work. When this theory is implemented scrupulously it would yield wonderful
results. But any laxity in its implementation or any instances of non-implementation
would water down the results. As Douglas McGregor said the discipline should be
like a hot stove. It should cause a burn without any bias to anyone who touches it; the
burn should be commensurate with the amount of touch; and the burn should be
immediate. If handing the stick is not handled in the way of a hot stove, it is bound to
produce unpredictable results. The pitfall of many organizations is to deviate from
the hot stove theory when handling disciplinary cases.

There is a misconception that all the rewards ought to be financial in nature.
They need not be. Many people are motivated by recognition more than by money.
Most people crave more for affection and recognition than money. A meeting with
the Chairman of the company motivates a person much more than a week’s salary,
perhaps. Many organizations do give rewards to their employees, some financial
and some non-financial in nature. While they do so, it sometimes happens that the
same person keeps getting the reward successively every time. The person may be
a super performer and richly deserves it having earned it by sheer performance,
every time. But this would have a demotivating effect on the others who just stop
trying for the award being unable to compete with the super performer. When we
have a super performer on our hands, we ought to find different ways of motivating
that individual. We may promote him/her or give a higher rate of pay. But we need
to give the reward to others too. All the employees should see the possibility of
winning the award. Only then, they would try to excel.

Similarly, modern organizations are shying away from giving negative rewards
(punishments). In the days gone by, organizations relied entirely on negative
rewards and the world has come full circle with the organizations relying only on
positive rewards. While positive rewards propel employees towards better per-
formance and excellence, negative rewards keep them from indiscipline and work
to the detriment of the team performance. Negative rewards are the ones that
prevent a person from being selfish and goad the individual towards cooperating
with the team. Ultimately organizations require success of the team. Think of it as
a team that has but one super player playing to project him/her in the limelight at
the cost of other players. Would that team win the shield? The team that collab-
orates with each other working shoulder to shoulder would be the winner ulti-
mately. To foster teamwork among the staff, we need to ensure that every one on
the team has a chance of getting recognition and reward as well as receiving
negative reward for negative performance.

208 14 Pitfalls and Best Practices in Requirements

Another aspect to be noted is that the organization provides a platform for the
employees to stay motivated. It includes a decent wage, working conditions,
chances of career advancement, policies for fair treatment of employees and so on.
Then it behooves the managers to utilize that platform to motivate the staff by
providing unbiased and fair treatment, fair allocation of workload, prompt griev-
ance handling, and so on.

Books are written on employee motivation and morale and it is not desirable to
include all that material in this book. Interested readers are advised to read a good
book on the subject.

Now the pitfalls into which organizations fall in the matter of employee
motivation are as follows. The first pitfall is to never give any rewards or rec-
ognition. Large organizations are especially known for adopting this practice.
Their argument is that the salaries include a component of the reward and yearly
salary hikes are the rewards. Stability of employment is the reward. Perhaps,
financial rewards may not be needed but a public recognition would go a long way
in motivating a person. Administering recognition and rewards without a trans-
parent policy on an ad-hoc basis is one other major pitfall. Another is to give the
reward and recognition to the same person successively, under the justification that
the individual is a super performer. Giving the reward three times consecutively
would certainly demotivate all others. Another pitfall is to shy away from
administering negative rewards. Negative rewards are the ones that prevent selfish
working and promote teamwork.

Best practices are as follows. The organization needs to have a transparent
system of recognition and rewards. The rewards, perhaps, need not necessarily be
financial in nature. These are administered at regular intervals of time. These are
fairly administered without any bias and based on objective data which each of the
contestants can verify and agree with. It is ensured that the reward and recognition
is given to as many employees as possible. No single individual receives the same
reward more than twice consecutively.

14.2.6 Quality Assurance

Quality assurance goes a long way in ensuring that the deliverables of the
requirements engineering activity are defect free in the first place and strive for
excellence in the second place. Many organizations argue that quality assurance
does not add quality but only verify that it exists. So it is a cost which can be
avoided. The philosophy of Total Quality Management (TQM) advocates placing
emphasis on the process than on inspection and testing. True enough. But look at
QA as you would look at the existence of a police department. The police may not
be able to prevent a crime from occurring nor can it solve every crime. But its
mere existence inhibits many a prospective criminal from committing a crime.
Similarly the existence of a quality assurance function improves the diligence of
the performers from injecting defects into the deliverable.

14.2 Best Practices and Pitfalls at the Organizational Level 209

Reviews are the quality control tool to verify the quality of the deliverables of
requirements engineering. We have three types of reviews, namely the peer
reviews, managerial reviews and expert reviews. Most organizations do implement
peer reviews. Often organizations skip either the peer review or the managerial
review. Expert reviews are required to validate the requirements. It is rather the
exception than the practice to implement expert reviews in the organizations.
Expert reviews can bridge the gaps in the requirements, which exist because the
user has forgotten or the analyst has missed some aspects.

The best practice is to implement all three types of reviews for all requirements
engineering artifacts.

Another important aspect is to prevent defects. This is achieved by a robust
organizational software engineering process and defining/adopting international
standards and guidelines such as IEEE software engineering standards. Many
organizations neglect this aspect taking refuge under the argument that standards
inhibit the creative instincts of the individuals. Standards ensure a minimum level
of quality in the deliverables. It is always possible to take waivers when an
individual comes up with an alternative that is even better than what is defined in
the standards. Second, the standards are not set in stone; they are amenable for
improvement. Just as organizational processes are improved, standards can also be
improved by dovetailing the best practices uncovered in the projects that were
already executed in the organization or out of new developments in the field.

The pitfall of organizations is to define a weak process coupled with no stan-
dards or weak standards. Another pitfall is the non-implementation of the process
and standards by giving waivers to too many projects.

The best practice is to have a robust set of processes and standards and dili-
gently improving them periodically. This set of processes and standards is
implemented diligently in all projects and waivers are given under really exten-
uating circumstances only.

14.2.7 Knowledge Repository

A knowledge repository would consist of self-study materials to gain/update
knowledge of employees, records of projects completed in the organization and
any other relevant materials. Most professional organizations would have a
knowledge repository. A knowledge repository would aid in effectively perform-
ing any activity by providing reference material from within and without the
organization.

The pitfall many organizations fall into is not having a knowledge repository at
all. Some do have a knowledge repository but only in the name without any usable
material in it. Some have it, but it is poorly organized. Some organizations treat the
organizational knowledge repository as a dumping ground for records of com-
pleted projects.

210 14 Pitfalls and Best Practices in Requirements

The other pitfall is that organizations do not update the project records to ‘‘as
built’’ state before entrusting them to the knowledge repository. This leaves the
records as they were prepared. The changes that took place during execution are
not dovetailed back into the records. Referring to records that are at variance with
actual occurrences is futile and provides wrong guidance to the resources referring
to them.

Another pitfall is an unorganized knowledge repository. All the information is
contained in the knowledge repository but it is not easy to extract the required
information. One has to sift through the records manually one-by-one. This makes
it tedious to use the knowledge contained in the repository.

The best practice is to consciously plan and organize an organizational
knowledge repository. Update the records to as-built stage before consigning them
to the repository. Normalize the metrics with actual values and subject them to
variance analysis before including them in the knowledge repository. Update the
information contained in the knowledge repository with state-of-the-art informa-
tion. Have a set of dedicated staff that is well versed with knowledge management
to diligently update the information on a regular basis. This goes a long way in
ensuring that the organization moves towards excellence in the matter of
requirements engineering and management.

14.3 Project Level Pitfalls and Best Practices

While the pitfalls and the best practices at the organizational level have severe
impact on all projects across the organization, the pitfalls and best practices also
occur at the project level. In fact, the best practices and pitfalls that occur in the
project are the ones that trigger improvement of the processes and standards at the
organizational level. Let us look at the pitfalls and best practices at the project
level.

14.3.1 Planning

Some projects do not consider the activity of requirements engineering while
planning the project. Requirements engineering is treated as a necessary evil
before we can begin coding. The oft forgotten requirements engineering activity
during planning is the requirements change management. When changes come in,
they are treated on a case-by-case basis. This would cause what is popularly
referred to as ‘‘scope creep’’—increase in the amount of work that needs to be
carried out. The best practice is to focus on the activities of requirements engi-
neering while carrying out project planning and provide for resources to carry it
out effectively.

14.2 Best Practices and Pitfalls at the Organizational Level 211

14.3.2 Preparation for Elicitation and Gathering
of Requirements

If we wish to capture the requirements comprehensively, preparation is essential.
We need to acquaint ourselves with the domain, prepare formats, templates, ensure
that all concerned personnel would be available and that only the right persons are
being contacted and so on before we embark on requirements elicitation. More
often than not, analysts approach this activity with little or no preparation at all.
This will result in making multiple trips or not capturing the requirements
comprehensively.

The best practice is to prepare well before we begin the activity of requirements
elicitation and gathering.

14.3.3 Misunderstanding About Requirements

In many cases, the requirements are wrongly understood. They are understood to
be only the core functionality requirements stated by the customer or end users.
Ancillary functionality requirements are often missed out or left for the software
designers to provide them. Most of the ancillary functionality requirements do not
come from the end users or the customers. They may have to be generated by the
team or from experts in the field.

The best practice is to take ancillary functionality requirements into consider-
ation and establish them also along with the core functionality requirements.

14.3.4 Vague Requirements

It is easy to miss requirements that are not objective in nature while establishing
the requirements. Requirements like ‘‘ease of use’’ or ‘‘aesthetically appealing’’
are difficult to interpret or implement. By using documentation guidelines, and
effective peer reviews, we can avoid such vagueness from creeping into our
established requirements. We often see such vague requirements in the established
requirements. This shows lack of diligence on the part of those defining and
reviewing the requirements artifacts.

Best practice is to ensure that no requirement is left vague. This can be achieved
by having the right documentation guidelines, as well as, having an effective peer
review.

212 14 Pitfalls and Best Practices in Requirements

14.3.5 Modeling Issues

Now, we have plenty of diagrams to model the data and the system. We can draw
any number of diagrams to model the present system or the way as we understand
the system. The diagrams are great if used properly in understanding the system.
After all, a picture is worth a thousand words. But often, we draw diagrams in a
complicated manner making it difficult to make any sense out of them. One, the
diagrams take a lot of time to draw them and two they take a significant amount of
time from those who try to interpret them and carry out the software design.
Therefore, we need to use the modeling diagrams judiciously. We must draw a
diagram when it aids clarity and to simplify narration. We should not avoid nar-
ration because we included a diagram. The diagrammatic tools available in soft-
ware engineering are not as efficient as engineering drawings in communicating
information—yet.

Therefore, the best practice is to provide a judicious mix of diagrams and
narration to make our establishment of requirements in a clear and lucid manner.

14.3.6 Prioritization of Requirements

During the establishment of requirements, we ought to prioritize individual
requirements. Often times, this aspect is overlooked. When we do not prioritize the
individual requirements, their fulfillment would be based on the convenience of
the project team rather than the necessity of the end users. This results in the
situation of ‘‘urgent functionality is not yet ready and for the functionality that is
ready for use end users are not ready’’.

The best practice is to prioritize the requirements especially from the standpoint
of the necessity of the end users. This will enable us to execute the project and
making deliveries that would be put to immediate use and thus save the investment
made in the software project.

14.3.7 Change Management

We know that almost all software projects would have changes during the
execution phase of the project. Still, it is not uncommon for projects to be neg-
ligent on the aspect of requirements change management. Even when the orga-
nizational process mandates planning and managing the change requests, the
project management neglects this aspect sometimes. Planning for change man-
agement and implementing the plan should not be neglected. Careful planning for
handling mid-project change requests and diligent implementation of the change
management plan are best practices.

14.3 Project Level Pitfalls and Best Practices 213

14.3.8 Tracing and Tracking of Requirements

It is not uncommon to miss out on some requirements specified by the end users.
As we carry out software design, construction and testing, we miss out on some of
the requirements. To ensure that we do not miss out any requirement, we use the
requirements traceability matrix tool. What often happens is that we neglect to
maintain the traceability matrix under pressure from various software engineering
and management activities. This is the pitfall that many project managers fall into.

The best practice is to diligently maintain and update the traceability matrix at
every stage. Then verifying it regularly to ensure that the requirements are all
included in every stage of software engineering ensures that all requirements are
included in the software product.

14.3.9 Supervision

The quality of supervision has a very significant impact on any human endeavor.
In requirements engineering and management too, the same is true. Organization
provides a platform for project managers to motivate their resources. Fair allo-
cation of work, fair grievance handling, provision of adequate duration for com-
pletion of assignments, fair and equitable recognition and rewards, opportunities
for learning new skills and updating of existing skills and so on would go a long
way in keeping the morale high and motivates the employees. It may not be an
exaggeration to state that more employee separations happen due to poor super-
vision than organizational policies.

The best practice is to ensure that the supervision of resources working on the
requirements engineering activity is carried out fairly and equitably. It may be
necessary to train the project managers in managing people to achieve fair
supervision.

14.3.10 Project Postmortem

Hospitals periodically conduct a conference referred to as ‘‘death conference’’. In
this conference, all cases of death that took place in the hospital are discussed. The
pathologist who conducted the postmortem leads the discussion by giving the
cause of the death and how the treatment slowed/hastened the death. The doctor
who treated the patient discusses the assumptions and diagnostic decisions he/she
arrived at and so on. The mistakes committed, if any, are discussed openly. It is
from these conferences that all the doctors learn so that the mistakes are not
repeated again. Similarly when we complete a project, we also need to conduct a
project postmortem meeting and discuss the achievements and failures so that all

214 14 Pitfalls and Best Practices in Requirements

participants learn from both the positive aspects and negative aspects of the
project. Unfortunately, this is not conducted for all completed projects. When it is
conducted, we discuss only the positive aspects and sweep the negative aspects
under the carpet. Such meetings would not achieve any positive learning. They are
a waste of time.

The best practice is to conduct a thorough project postmortem meeting and
discuss all aspects including achievements and failures. It should be led by the
person who conducted the phase end audit for the project closure and the project
manager who managed the project. The objective of the meeting should be to learn
from the completed project so that we can avoid the mistakes and take advantage
of the best practices. This is a best practice.

14.4 Final Words of Pitfalls and Best Practices

We have been executing software projects in a methodical way beginning with the
onset of SSADM for over three decades. We have gathered a significant amount of
knowledge on this topic of requirements engineering and management. It is a
matter of concern that poor requirements engineering and management continues
to be the number one reason for software product failure. Unless we carry out the
requirements engineering and management effectively, we may not build the
‘‘right’’ product or worse still, we may end up building the ‘‘wrong’’ product.

Therefore, it is imperative, for all of us involved in requirements engineering
and management, as well as, project management, to avoid the pitfalls and adopt
the best practices. This chapter is a step in that direction.

14.3 Project Level Pitfalls and Best Practices 215

Chapter 15
REM in Agile Projects

15.1 Introduction

Agile projects use a variety of software development methodologies for developing
software. All these methodologies adhere to what is known as ‘‘Agile Manifesto’’
which states, thus:

‘‘We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

1. Individuals and interactions—over process and tools
2. Working software—over comprehensive documentation
3. Customer collaboration—over contract negotiation
4. Responding to change—over following a plan

That is, while there is value in the items on the right, we value the items on the
left.’’

There are twelve principles behind Agile Manifesto:

1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the
project.

5. Build projects around motivated individuals. Give them an environment and
support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and
within a development team is a face-to-face conversation.

7. Working software is the primary measure of progress.
8. Agile processes promote sustainable development. The sponsors, developers

and the users should be able to maintain a constant pace indefinitely.

M. Chemuturi, Requirements Engineering and Management for Software
Development Projects, DOI: 10.1007/978-1-4614-5377-2_15,
� Springer Science+Business Media New York 2013

217

9. Continuous attention to technical excellence and good design enhances agility.
10. Simplicity—the art of maximizing the amount of work not done—is essential.
11. The best architectures, requirements and designs emerge from self-organizing

teams.
12. At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behavior accordingly.

This is available on www.agilemanifesto.org.
Another hallmark of agile methodologies is that they consider requirements as

always in an emerging state and that they are never finalized. So changes can occur
at any time. The software design is aimed at fulfilling the present requirements and
not for some assumed future requirements. Agile methodologies normally have
smaller teams and smaller products even though we now find that agile is being
used for larger systems as well.

I am neither a fanatic-fan nor an antagonistic-critic of this methodology. I do
not attempt to either criticize or extoll the agile methodology. I am just presenting
it as information to you, the readers.

What I believe is that agile methodology, just as other software development
methodologies, has its place and works best in certain scenarios and may not be
effective in other scenarios. I also believe that this is neither the first methodology
nor the ultimate panacea for software development.

There are many methodologies considered to be conforming to the agile
manifesto, of which the following are the popular ones:

1. XP (Extreme Programming)
2. Scrum
3. DSDM (Dynamic Systems Development Method)
4. Feature Driven Development
5. Test Driven Development
6. Adaptive Software Development
7. RUP (Rational Unified Process) and AUP (Agile unified Process)
8. Kanban
9. Crystal Clear.

Let us discuss how requirements are handled in each of these methodologies.
I am including a very brief description of each of these methodologies. To include
a comprehensive treatise about each of these methodologies would take too much
space. Interested readers may read specialized books on the methodology that
interests them. The focus here is on the requirements management in each of these
methodologies.

Another important aspect of agile methodologies is that the organizations
implementing these methodologies can tailor the actual implementation to suit
their unique culture. Therefore, there would be many variants in vogue of what is
described in this chapter.

218 15 REM in Agile Projects

http://www.agilemanifesto.org

15.2 Extreme Programming

Extreme Programming (XP) goes through six phases, namely the exploration,
planning, iterations to release, putting into production, maintenance and
death.

In the exploration phase two main activities are carried out. The customer
writes the story cards as the first activity. Each card describes a feature and all
cards put together include all the requirements for the first release of the software.
The second activity is carried out by the developers, who familiarize themselves
with the development environment.

In the planning phase, the developers prioritize and schedule the development
for the first phase. The schedule is usually limited to 2 months.

In the iterations to release phase, multiple iterations may take place for each of
the releases. Normally no iteration would exceed 4 weeks duration. The devel-
opment team selects the stories for development in consultation with the customer.

The putting into production phase would see that one release of the software is
released to the customer after a final round of testing. If the customer asks for any
changes in the software, they will be implemented. The release process could be in
iterations, each of which would normally be limited to a 1 week duration.

After putting one release into production, the team would take up the next
release of the proposed software product.

In the maintenance phase, the development team would support the customer in
effectively utilizing the released software. Sometimes new people could be
inducted into the team for carrying out the maintenance.

The death phase begins when the customer has no more stories that need
development of software. It also requires the stable operation of the software that
was put into production, and the development team is no longer required to support
the system in production.

As you can see, the requirements are handled in the exploration phase and the
putting into production phase. In the exploration phase, the customer writes the
user story cards. Each card would contain one feature of the software. Any
shortfalls, ambiguities or vagueness in the story cards is resolved using a face-to-
face communication with the customer who is co-located with the development
team. During the putting into production phase, the customer may request changes
in the developed software, using the face-to-face communication.

The customer is chiefly responsible for defining the requirements for the pro-
posed project. The programmers develop programs realizing the user stories.
Programmers and testers can take clarifications from the co-located customer
about the user stories whenever they require clarification.

15.2 Extreme Programming 219

15.3 Scrum

Scrum is a term taken from the game of rugby. When the ball is not in anybody’s
hands and both teams struggle to get it crowding around the ball, the term used to
describe the scenario is ‘‘scrum-mage’’. It is generally taken to mean ‘‘a brief and
disorderly struggle or fight’’. Scrum is steadily gaining more popularity among
agile methodologies and a certification (Scrum Master) is also offered for profi-
ciency in using Scrum methodology.

Scrum manages the project in three phases, namely the pregame phase,
development phase and postgame phase.

Pregame phase includes two main activities, namely the planning and the
architecture design. During planning, a ‘‘product backlog list’’ is created. This list
would consist of all the product requirements, to the extent possible. This
list would be owned by the ‘‘product owner’’ who is a team member. Now, how the
list is actually s created may vary from organization to organization. In some
cases, the product owner would elicit, gather, analyze and establish the product
backlog. In other cases, the list would be filled in by the customer, the marketing
department, the field support personnel and the developers themselves. Another
notable feature of Scrum is that this product backlog list can be constantly updated
including addition of newer items. But the development team interacts with only
the product owner for all matters concerning the project requirements. The plan-
ning phase includes prioritizing the requirements. Planning also includes defining
the development environment, risk assessment, progress control, training and so
on. As part of the architecture definition activity, the high level design of the
proposed product based on the enumerated product backlog is created.

The development phase consists of ‘‘sprints’’. A sprint is an iteration of soft-
ware development that results in the release of a portion of the proposed software
product fulfilling a part of the overall functionality. Each sprint can include
requirements analysis, software design, construction and delivery. The duration of
a sprint is usually restricted to less than 4 weeks. This phase, in sprints, sees the
development of the software product fulfilling all the requirements. Requirements
change management also takes place in this phase. By the time this phase is
completed, all requirements would have been met by the software product.

When all the requirements are implemented in the developed software product,
the postgame phase begins. Overall product testing may also take place in the
postgame phase, if necessary. The postgame phase includes handing over the
system and supporting the customer in the usage of the delivered system.

The requirements are primarily defined in the planning phase and to a lesser
extent in each of the sprints. The product owner champions the establishment of
the product backlog list. The customer and other stakeholders do assist the product
owner in the establishment of the product backlog list. Any stakeholder intent on
modifying any of the requirements would interact with the product owner and
modify the product backlog list.

220 15 REM in Agile Projects

The product backlog list is the set of requirements defined for the project. This
list could include product features, and functionality in fresh development projects.
It would include defects, and enhancements for a software upgrade project.

The backlogs for a sprint are identified during a ‘‘sprint planning meeting’’. The
product owner, users, customers, organizational management, and Scrum team
participate in the planning meeting. The meeting decides the functionality selected
for realization during the next sprint. The users, customer and management
participate in the first planning meeting and all the subsequent meetings are only
attended by the product owner, and the Scrum team.

15.4 Dynamic Systems Development Method

Dynamic Systems Development Method (DSDM) makes the philosophy of soft-
ware development stand on its head! Instead of freezing the functionality for the
proposed product and scheduling it, it freezes the duration and then selects the
functionality to fit the duration!

DSDM is carried out in five phases, namely, feasibility study, business study,
functional model iteration, design and build iteration, and implementation.
The phases of the feasibility study and business study are carried out only once and
the remaining three phases are iterated. Each iteration is referred to as a ‘‘time
box’’ in the DSDM taxonomy. Each time box is planned with a set of functionality
and a fixed duration with the objective of fulfilling the set functionality within the
time box. Usually, the maximum duration for a time box is a few weeks not
exceeding two calendar months.

During the feasibility study, the feasibility of executing the project using the
DSDM is assessed based on the type of project and the organizational culture. The
phase deliverables are a feasibility report and an outline plan for development. The
feasibility report would include details of technical feasibility and the associated
risks. If the risks are major, then a prototype of the proposed product may also be
built. The outline plan will include schedule of the project with major milestones
and resource requirements.

During the business study phase, the knowledge transfer takes place from the
stakeholders to the development team. This is advocated to be achieved by con-
ducting meetings or workshops. These would consider all aspects of the proposed
system and set development priorities. The business processes are understood by
the development team and sometimes are even documented. The deliverables from
this phase are business area definition, system architecture definition and outline
prototyping plan. The business area definition describes the business processes in a
high level manner. The system architecture definition is a sketch and it is expected
to change during the course of the development. The prototyping plan would
consist of the strategy for prototyping and the configuration management plan.

In the functional model iteration, a prototype for the iteration is designed, using
which the product would be developed. A functional model (use and improve

15.3 Scrum 221

prototype) is built in this phase which would be handed over for the next phase
along with the source code. The other deliverables from this phase are the prior-
itized functions, functional prototyping review documents, non-functional
requirements (or ancillary functionality requirements), and risk analysis for the
next steps of development.

The design and build iteration phase sees the development of the proposed
software product. The deliverable of this phase is a tested system that fulfills a set
of functionality earmarked for the iteration.

The implementation phase is where the system is transferred to the production
system. The product is implemented, training to users is conducted, and the
software is rolled out into production including handholding of users during initial
usage of the implemented system. In addition to the implemented system, a user
manual and a project report are the deliverables of this phase.

The last three phases are iterated until all functionality is built into the proposed
software product and it is implemented on the production system.

The project requirements are collected during the business study phase and are
documented in the business area definition document. Further, DSDM proposes
three roles for handling the project requirements, namely, the Ambassador User,
the Adviser User and a Visionary. The Ambassador User is normally one of the
users of the proposed system. The Ambassador User is the main interface between
the development team and the users, and brings the domain knowledge to the team.
An Ambassador User provides clarifications to the development team as and when
requested. An Ambassador User also provides the project progress to all the
project stakeholders. An Advisor User is similar to an Ambassador User, but has
some special expertise in the proposed system. He may be a member of the IS
department bringing in the operations point of view to the team or an auditor who
brings security aspects to the team and so on. A visionary is the one who provides
the business objectives of the proposed product and the project. Visionary is
usually the one who came up with the idea for the development of the proposed
software product.

15.5 Feature Driven Development

Feature Driven Development (FDD) develops software in five phases, namely,
develop an overall model, build a features list, plan by feature, design by
feature and build by feature. FDD assumes that requirements are already
established before the project begins and takes off from that point onwards.

During the ‘‘develop an overall model’’ phase, the domain experts make a
presentation to the development team and walk them through the functionality. In
the case of large systems, the functionality may be further divided and multiple
presentations are made to the development team. The objective of this walk-thru
meeting is to familiarize the development team with the functionality for the

222 15 REM in Agile Projects

proposed software product. The development team discusses the functionality and
constructs an appropriate object model for the proposed software product.

In the ‘‘build a features list’’ phase, the development team draws up a features
list which would contain ‘‘client-valued’’ major features for the proposed software
product. Each of the major features may further be subdivided into features. The
feature list prepared by the development team may be reviewed by the users and
the domain experts to confirm that all required functionality is included.

In the ‘‘plan by feature phase’’, an overall plan is prepared in which the features
are prioritized. Then based on the dependencies between the features, sets of
features are assigned to ‘‘chief programmers’’. A schedule for developing the
assigned features is also drawn up.

The phases of ‘‘design by feature’’ and ‘‘build by feature’’ are iterated until
software is developed for all features. In these two phases, a set of features is
selected, then designed and developed. Each iteration is normally limited to
2 weeks or less. These two phases include, design, design verification, coding, unit
testing, integration and code walk through. Upon completion of an iteration suc-
cessfully, the developed code is included in the build of the main product.

This methodology assumes that requirements already exist when the project
begins. These are converted into features list through the collaboration between the
domain expert and the development team. These features drive the design and
development of the proposed software product. As FDD is also an agile method, it
ought to accept changes during the two phases of designing and building the
product.

15.6 Test Driven Development

Test Driven Development (TDD) is based on the premise that testing is crucial to
developing a defect-free product. To be able to write any test case, one should
know the functionality as well as the software design. To write a test case for unit
testing, in addition to knowing about the functionality and the design, even the
knowledge of code is also necessary. Thus, TDD forces one to think through the
project requirements and software design.

The phases in TDD are, write/add an automated test case, run the test (and it
fails), write the production code and run the test again, and when the code passes
the test, refactor the code. Then the next cycle begins by adding another test case.

By test case, I mean it is a test case for conducting a unit test. Adding an
automated test case requires using an automated software testing tool, and we need
to write some code to be able to run the test case. That involves learning the
functionality, and designing the component before we can write some rudimentary
code. But we write an efficient unit test case. As we write test cases, we would
have a set of robust unit tests and it will result in a quality product because the unit
test is the most crucial test in achieving software quality.

15.5 Feature Driven Development 223

During the phase of writing production code, we improve the preliminary code
to make it robust. Then we run the automated test case once again. Writing/
modifying the code and re-testing it can go through multiple iterations until the
code passes the automated test case comprehensively.

During the refactor phase, the code that passed the test would be cleaned by
removing all trash code and unused variables.

Now the cycle repeats until all functionality is achieved and it is no more
possible to write any new automated test cases.

TDD methodology does not include establishment of requirements. TDD
assumes that requirements are already established before the development starts.
Handling change requests involves changing the automated test cases. It has to be
done as and when change requests are received.

15.7 Adaptive Software Development

ASD or Adaptive Software Development is also an incremental and iterative
development methodology. That is, the software is developed in increments and
each increment is developed in iterations. That way, it is possible to handle large
software projects under this methodology. ASD also encourages the use of the use-
and-improve prototyping as the main software engineering technique.

ASD goes through three phases, namely, speculate, collaborate and learn. The
term ‘‘Speculate’’ is used to highlight the aspect of planning; ‘‘Collaborate’’ is used
instead of development/implementation/realization/construction to emphasize
team work; ‘‘Learn’’ is used to acknowledge mistakes already committed and to
learn from them.

The Speculation phase consists of two activities, the project initiation and the
cycle planning. During project initiation, three artifacts are prepared, namely, the
project vision charter, project data sheet and product specification outline. The
project vision charter contains the project objectives in brief. The project data
sheet is usually one page containing vital information about the project. The
product specification outline again is a brief statement of the functionality for the
proposed software product. In the cycle planning, the team estimates the duration
and resources required to complete the cycle. In each cycle, a set of components
are engineered and constructed by the team. During the learning phase, the quality
control activities are carried out and the software components developed in the
cycle would be released. The learning from the mistakes uncovered during the
quality control activities are plowed back into the next cycle planning.

ASD as its name suggests does not prescribe any roles and responsibilities or
software development methodologies, but adapts these from the existing practices
of the organization. Each organization can implement its own practices and
management style in the project execution.

ASD assumes that requirements are established. No one on the team assumes
responsibility for the requirements establishments. The customer is expected to be

224 15 REM in Agile Projects

co-located with the team and therefore, we need to assume that the customer would
explain the requirements and guides the team in achieving the desired functionality
for the proposed software product.

Changes in requirements are assumed and are implemented as and when a
change is received in the collaboration phase.

15.8 RUP and AUP

AUP (Agile Unified Process) is a scaled down version of RUP (Rational Unified
Process) of Rational Corporation, now a part of the IBM.

RUP itself is an iterative process with four phases, namely, inception, elabo-
ration, construction and transition. All of these phases are iterated until all
software is completely developed.

In the inception phase, the scope of the project is defined, the functionality
earmarked for the iteration is defined through use cases, acceptance criteria is
defined, initial software architecture is devised, and the schedule and cost are
estimated.

In the elaboration phase, software design is carried out, tools for use in the
project are identified, an executable prototype is created, and the development
environment is defined and created. Once this phase is completed the team is ready
to embark on developing the proposed software product for the iteration.

During the construction phase, all software development is carried out for the
iteration, including normal testing. Any changes requested are also implemented.
This phase ensures that all project objectives of productivity, quality, costs and
schedule are met. Completion of this phase sees the functionality set for the
iteration is realized in the software product and it will be ready for release.

In the transition phase, the constructed software is released to production use of
the end users in the actual environment. In this phase, the activities of beta testing,
piloting, end user training, documentation like the user manual, operations manual,
troubleshooting manual, etc., are prepared, and rolling out the product into pro-
duction is carried out. Handholding of end users during initial usage is also part of
this phase. Normally two types of software release are carried out in this phase,
namely, the beta release and general release. Beta release is for testing by the end
users and general release is for putting the software into production.

RUP uses nine workflows namely, business modeling (modeling of the busi-
ness process proposed for the project), requirements, analysis and design,
implementation (software development), test, deployment, configuration and
change management, project management and environment (software devel-
opment environment including tools, and other support to development).

Requirements are gathered in the inception phase and are developed further in
the elaboration phase. The requirement activity is carried out by the Business
Process Analyst. The requirements are captured using the use cases. A Business

15.7 Adaptive Software Development 225

Model Reviewer reviews the defined use cases to ensure quality in the defined
requirements.

While RUP is an iterative development model, it is not considered an agile
method. Its variant AUP (Agile Unified Process) is used as an agile method for
software development. The commonality between both models is the dependence
on use cases as the method for capturing requirements and software design.

AUP uses the same four phases as in RUP, namely, the inception, elaboration,
construction and transition phases detailed above. It also emphasizes the iteration
of these four phases to realize all the user requirements in the proposed software
product.

AUP utilizes only seven workflows instead of nine workflows of RUP. These
are, modeling, implementation, test, deployment, configuration management,
project management, and environment. The requirements workflow is merged
into the modeling phase. Architecture definition part of the analysis and design
phase is merged into the modeling phase. The detailed design part of the analysis
and design phase is merged into the implementation phase.

AUP uses two types of software release, namely the development release and
the production release. The development release is for deployment on the target
system and is used for quality control and training the end users. The production
release is the software ready for putting the system into production.

The requirements in the AUP are established utilizing the use case method in
the modeling phase. Change management happens throughout the project. The
Business Analyst takes responsibility for defining the requirements and tracing
them through the software development.

15.9 Kanban

The Kanban technique has originated in the Japanese manufacturing plants of the
Toyota Corporation. Kanban in Japanese means ‘‘signboard/signaling device’’.
This technique was utilized to achieve JIT (Just In Time) manufacturing. In high-
volume manufacturing the practice before the onset of Kanban, was used to pro-
duce the maximum number of components at each of the workstations. This has
led to a pile up of components at a few workstations that had higher capacity than
the downstream workstations. Over a period of time, the pile up was significant,
locking up scarce capital. To reduce the pile up of components at workstations, the
Kanban technique was introduced. Kanban suggests that a new batch of compo-
nents should be started if and only if the previously produced components are
picked up by the downstream workstation. Kanban has changed the concept of
‘‘pushing’’ to ‘‘pulling’’.

‘‘Pushing’’ indicates pushing components from an upstream workstation to the
downstream workstation without considering whether the downstream workstation
is ready to receive them.

226 15 REM in Agile Projects

‘‘Pulling’’ indicates a ‘‘downstream workstation pulling the component from the
upstream workstation’’ and the upstream workstation would produce components
only when the previous batch of components is picked up by the downstream
workstation. That is, the upstream workstation produces components ‘‘just in
time’’ for the downstream workstation to begin its operation. This has resulted in
huge savings for Toyota and it has been adopted at most high volume manufac-
turing organizations.

Now software development organizations also are trying to adopt this technique
into software development field. Releasing the entire software in one big-bang
would result in it being idle if the implementation parameters are not yet made
ready. So, it advocates delivering software in iterations to those sites which are
ready for implementation and use in production.

The Kanban philosophy of software development focuses on delivering the
software just-in-time for implementation. In many organizations, software is
developed well in advance of installing the IT infrastructure making the software
wait for the facility to come up, hardware to be received, system software to be
received and so on. This is locking up valuable capital. So Kanban places emphasis
on scheduling the software development work ‘‘to be ready in time’’ rather than on
‘‘as soon as possible’’ basis.

The Kanban system does not prescribe any software life cycle or development
method. Kanban advocates an iterative development methodology to deliver
software in installments. The development organization can follow their existing
software development processes.

There are five steps in Kanban development, namely, visualize the workflow,
limit WIP (Work In Progress), manage flow, make process policies explicit, and
improve collaboratively.

To visualize the workflow, a set of cards are pinned to a wall referred to as the
card-wall. The cards on the wall are arranged in columns. Each card column would
contain the steps of a process flow of the proposed system.

Limit WIP advocates against taking up too many modules in parallel. It sug-
gests taking up one or two modules at a time so that workable software becomes
ready faster. If ten team members take up ten programs of ten different modules it
will make the WIP higher. On the other hand, if ten programmers of the team take
up ten different programs of one or two modules, there will be something ready for
use in a short time.

Manage the flow indicates that the workflow is measured, reported and moni-
tored at each step. This will ensure that the iteration is executed efficiently and the
iteration delivery is ready on time.

Making the policies explicit, involves every stakeholder in the manner the work
is carried out by the team. That way, the stakeholders can give suggestions for
improvement and participate in discussions effectively. This would make it easier
to arrive at a consensus easily.

Improving collaboratively involves allowing suggestions for improvement to
come from any source. All suggestions received are analyzed by all stakeholders
and agreed suggestions are implemented incrementally in the process steps.

15.9 Kanban 227

The requirements are captured in the cards and pinned on the card wall. The
column would be maintained on the wall until its functionality is realized and will
be removed on the release of the software. Changing a requirement means
changing a card on the wall. The tracing of requirements through software
development would depend on the specific software development methodology
implemented in the project.

15.10 Crystal Clear

Crystal methodologies believe that more rigor in software development is required
as the project size increases. They consist of four methodologies coded by color,
namely, Crystal Clear (no color), Crystal Yellow, Crystal Orange and Crystal Red.
A Crystal Clear project would have about 6 team members, a Crystal Yellow
project would have around 20 team members, Crystal Orange project would have
about 40 team members and a Crystal Red project would have about 80 team
members. As can be seen, a Crystal Red project would need the maximum rigor.
The rigor needed would progressively diminish in Orange, Yellow and Clear
projects.

There are some common aspects in all Crystal project types. They all utilize an
incremental software development life cycle. Each increment is limited to a duration
of four calendar months with most of the iterations falling between one and three
calendar months. Face-to-face communication is the preferred method of commu-
nication for establishing requirements or requesting changes. The customer or
customer representative is expected to be co-located with the development team.

Of these, the Crystal Clear methodology is considered to be agile. Crystal Clear
methodology consists of 6–10 team members. Crystal Clear has the following
properties:

1. Workshops for transferring domain knowledge to developers
2. Incremental development life cycle with frequent deliveries of usable software
3. Osmotic communication, by customer being co-located with the development

team, or in other words, close interaction with users
4. Advocates automated tests, at least, in regression testing
5. The iteration is to be limited to a maximum of three calendar months.

Crystal clear insists on testing tools, configuration management tools and use of
white boards in place of documents. White boards would contain the design of the
proposed software as well as meeting summaries.

The crystal method uses eight practices in each increment to develop software.
These are staging, revision and review, monitoring, parallelism and flux,
holistic diversity strategy, methodology-tuning technique, user viewings, and
reflection workshops.

During staging, the next increment would be planned. The team selects the
requirements they can deliver in three calendar months and schedules the work.

228 15 REM in Agile Projects

Revision and review accomplish the code development/modification and review
of the objectives of the increment. These two activities are carried out in all the
iterations.

Monitoring involves monitoring the increment progress. The monitoring is carried
out by means of reaching the milestones, defined in the staging step. The result of
monitoring may be that the product is mature for reviewing or it is still in development.

Parallelism and flux indicate that teams can work in parallel, especially in
Crystal Orange or Red projects. When working in parallel, the synchronization
becomes important. Careful monitoring would ensure synchronization of work
between parallel teams.

Holistic diversity strategy splits large functional teams into cross-functional
groups so that each team would have specialists from multiple disciplines. This
allows the project to have smaller teams with required specialties. Instead of
having specialists at a central place and being used by all teams on a need-basis,
they are allocated to the team itself.

The methodology tuning technique uses team workshops and meetings to select
a development methodology and tune it to the needs of the project. In each
increment the team can draw lessons from the present increment and use it to
improve the performance for the next increment.

The user viewing techniques are basically reviews by end users ahead of the
software release. Crystal recommends two user viewings per increment. This
ensures that all user requirements are met by the release.

The reflection workshops are held twice: the pre-increment reflection workshop
and the post-increment workshop. Pre-increment reflection workshops facilitate
reflection on the experience of the previous increments so that the present increment
could be executed efficiently. The post-increment workshops facilitate reflection of
the events of the increment and to draw lessons for the future increments.

Crystal methods do not prescribe any development life cycle. So, the team can
choose any life cycle. Since there are no set phases, requirements are not restricted
to any one phase. However, the staging activity would have to consider require-
ments. Normally Crystal clear uses informal use cases to record requirements.
These would be traced through the software development using release plan and
test cases. Normally a user manual is also prepared and it would also contain proof
that requirements are indeed implemented.

15.11 Establishment of Requirements in Agile Projects

All agile projects do have some common aspects:

1. They all believe in the agile manifesto
2. They all require the full involvement of the customer or customer-representative

in the software development. Most specify co-locating the customer with the

15.10 Crystal Clear 229

project team. Some of them go to the extent of mandating that the customer/
representative/user must be part of the project team

3. They all believe in developing the code
4. They try and minimize the documentation
5. They all focus on delivering the code, that is the software engineering part
6. They all do not talk about the ‘‘management part’’ of the software development

project.

All in all, strictly speaking agile methods are software engineering methodol-
ogies rather than management methodologies. Second, they all focus on designing,
building and testing the product and more or less silent on the aspects of
requirements engineering and management. They also do not acknowledge the
need to trace the requirement through all the engineering artifacts.

The philosophy of agile methodologies seems to be that the customer is
responsible to take care of the requirements and ensure that they are implemented.
By co-locating the customer or making the customer part of the project team they
ensure that the requirements are efficiently taken care of. As, many projects are
handled using the agile methods, we have to acknowledge that the philosophy is
indeed working.

Still, agile projects do establish the requirements in some way even though the
rigor of such establishment may not match with the rigor of the other software
development methodologies. Here are some ways in which requirements are
established in agile projects:

1. User Story cards—users write user stories on cards. Each card would contain
one feature for a program. One card may result in one program or multiple
cards may be necessary to complete a program. The card may not give full
information to the programmer. More often than not, a conversation between
the programmer and the user would be necessary for the programmer to fully
comprehend the requirement and program it.

2. Task list—Task list is another means to document the requirements. It is an
enumeration of the requirements or user stories that need to be developed. This
list gets updated as and when the tasks are completed to indicate the project
progress.

3. CRC cards (Class, Responsibility and Collaboration)—Each card records the
requirements and the interaction between requirements in such a way that
software can be designed and constructed.

4. Customer acceptance test cases—List of user acceptance test cases also serve
as project requirements.

5. Feature lists—List of features to be built into the product is another mecha-
nism to establish project requirements. Each feature must possess some client
value and should be implementable in 2 weeks or less.

6. Informal Use Cases—Agile projects use scaled down use cases with much
reduced rigor in describing the scenarios of the use cases

7. Product backlog—This is another mechanism to record the requirements. In
this the features yet to be completed are enumerated. These are described not as

230 15 REM in Agile Projects

requirements or features but as pending items or backlogs of functionalities that
are yet to be completed.

8. Test Cases—Test cases are developed in place of requirements. Code is
developed to pass these test cases.

9. URS—yes, some agile projects do use good old URS to establish the project
requirements. These come in handy when the projects are outsourced to a far off
location offshore, the client organization supplies the URS as customer co-
location with the team is out of the question. Daily conference calls either with
the video or audio are used in place of the daily standup meetings.

15.12 Tracing and Progress Monitoring of Requirements

Progress monitoring is mostly face-to-face. Normally daily standup meetings are
the means by which all the project progress is communicated to all the team
members of whom the customer or customer representative is also one party. It is
usually the responsibility of the customer to communicate the progress of the
project to any other stakeholder. And if any other stakeholder wishes to com-
municate with the team, the stakeholder may participate in the standup meeting or
communicate the same to the customer representative who would in turn interact
with the project team and resolve the stakeholder concern.

Tracing of the requirements in the product is again incumbent on the customer
representative on the project team. Since a customer representative participates in
all meetings of the project team, he/she can ensure that all project requirements are
indeed met by the project deliverables. A formal traceability matrix is neither
defined nor updated.

The following are some of the means utilized by the agile projects to trace the
requirements and monitor the progress of the project.

Standup meetings—In this meeting, all the team members meet usually at the
beginning of the shift for a very short duration of about 15 min every day. During
the meeting, every team member informs the others about what was completed the
previous day, the plan for the current day and the problems or concerns the
individual is facing. These are discussed and consensus is arrived at immediately.
If any issue could not be solved immediately, the manager/coach/mentor would
find a solution and conveys it to the concerned team member and also perhaps in
the next standup meeting. Communication of the progress to the other stakeholders
is the responsibility of the customer representative.

Visible wall graphs—The progress of the project is depicted in appropriate
graphs as dash boards. The color green is used to indicate an activity that is under
control; red is used to indicate activities that are out of control; and yellow is used
to indicate activity that is tending towards slippage.

15.11 Establishment of Requirements in Agile Projects 231

Burn-down charts—it is a line graph connecting the number of hours spent on
the project every day. Burn-down chart show progress by depicting the number of
hours already spent. Figure 15.1 depicts a typical burn-down chart.

15.13 Final Words on REM in Agile Projects

Agile projects shun formality and excessive documentation. Therefore, it does not
make use of pre-defined formats or templates and therefore, is not presented in this
book. Each organization or for that matter, each project can devise its own formats
and templates to suit their unique project needs.

The practice of requirements establishment, tracing and management vary from
organization to organization and perhaps project to project. Freedom to the
development team is the mantra of the agile methodologies.

Fig. 15.1 Example of a
burn-down chart

232 15 REM in Agile Projects

Appendix A
Documentation Guidelines

A.1 Introduction

The language of English or perhaps every language, for that matter, is especially
rich in vocabulary with many words with almost the same meaning except for
subtle variations. The grammar allows free-flowing writing and in a poetic manner.
It is possible to write grammatically correct language yet obscure the real meaning
behind the write up. Well, poetic language is best for writing poems and flowery
language is fit for writing novels. But if we use those features of the language for
capturing and recording requirements for a software project, it would be very
difficult to proceed with the next steps of the project. Again, such language would
not allow us to ensure that the requirements are met because of the ambiguity.

In requirements specifications, we need to use the language to mean precisely
one thing that is interpreted by all stakeholders in the same way. Therefore, we
need to restrict the freedom of individuals involved in requirements engineering
work in documenting the requirements and provide them guidelines so that all
those involved in requirements engineering would document the requirements
specifications in a similar manner. Every organization ought to have a set of
documentation guidelines for business writing and most professional organizations
would have such documentation guidelines.

Here is a suggested set of documentation guidelines and these can be adopted in
your organization as it is or with modifications to suit your unique needs.

A.2 Documentation Guidelines

This guideline covers primarily the method of presentation, composition and
editorial practice to be followed in the preparation of requirements engineering
documents.

M. Chemuturi, Requirements Engineering and Management for Software
Development Projects, DOI: 10.1007/978-1-4614-5377-2,
� Springer Science+Business Media New York 2013

233

A.2.1 Formatting

All documents shall be formatted as follows:

1 The page size of all documents shall be ‘letter’. If a special paper size is
needed, a waiver is required.

2 Each document shall have a header except on the title page. It shall have:

2.1 The name of the document
2.2 The page number. The page numbering shall start from the table of the

contents page which will be ‘2’

3 Each document shall have footer. It shall have:

3.1 Copyright information
3.2 The version number

4 The margins shall be:

4.1 Left margin shall be 1’’
.2 Right margins shall be 0.75’’
4.3 Top margin shall be 0.5’’
4.4 Bottom margin shall be 0.5’’

5 The typing shall be flush with the left margin. No tabbing is required for the
first line in a paragraph.

6 The font size shall be:

6.1 The font shall be Times New Roman. This can be deviated from in
customer documents and the documents that are sent to customers. In
those documents, the font preferred by the customer shall be used.

6.2 Normal textual matter shall be of 11 points
6.3 All captions shall be bold-faced
6.4 All headers will be of 14 points size
6.5 For diagrams prepared inside the organization, the font size shall be 11

points
6.6 If the diagrams are copied from elsewhere, the restrictions of the type of

font and the size would not apply.

A.2.1 Title Page

All documents except those that are less than three pages in length will have a title
page. The contents of the title page are:

1. The name of the document in font size 16 shall be placed about one third
distance from the top

2. The name of the document shall include the name of the document in the first
line and the second line can have the name of the customer / the project for
which this document is prepared

234 Appendix A: Documentation Guidelines

3. The name of our organization and the month and year of preparation of the
document shall be placed just above the revision history block. These will be
two lines in font size 14

4. There will be a revision history block at the bottom of the page. The revision
history block shall be as depicted in Table A.1.

A.2.3 Table of Contents

All documents with 5 sections or more shall have a table of contents page. It will
be on a separate page. It shall be prepared using the table of contents feature and
shall be set to ‘‘formal’’ type. It shall be the next page after the title page.

A.2.4 Content Pages

Content pages shall start on a fresh page after the table of contents page and will
continue till the end of the document.

A.2.5 Terminology

All the technical terminology will conform to IEEE standard 610 ‘‘IEEE Standard
Glossary of Software Engineering Terminology’’. If a customer enforces a
different standard, a waiver needs to be obtained for using a different set other that
IEEE standard 610.

A.2.6 Abbreviations

All abbreviations need to be aligned with internationally understood abbreviations.
When there is room for doubt or if the abbreviation is not found in any
international standards, the full form is to be given within brackets the first time
the abbreviation is used in the document. The following guidelines shall be
followed when using abbreviations:

Table A.1 Revision History Block

Version
Number

Details of Changes Prepared
by

Approved
by

Date of
Approval

Appendix A: Documentation Guidelines 235

1. Abbreviations, in general will be used without a full stop after them except in
cases where the abbreviations result in common English words, such as:

1.1. ‘No.’ for ‘numbers’
1.2. ‘Fig.’ For ‘figure’
1.3. ‘Bull.’ For ‘bulletin’

2. Abbreviations shall not be used where the meaning is likely to be obscured. In
cases of doubt, words should be spelled out in full.

3. Abbreviations—‘e.g.’, ‘i.e.’ and ‘viz’ shall not be used. Instead, the words,
‘for example’, ‘that is’ and ‘namely’ shall be used in their places respectively.

4. The same abbreviation shall be used both for singular and plural words
5. Letters of abbreviation shall neither be spaced nor punctuated.

5.1. Incorrect—I S O /I.S.O.
5.2. Correct—ISO

6. Generally, abbreviations shall not be used in main titles.

A.2.7 Definition of Terms and Abbreviations

When definitions of terms and abbreviations are included in the document, they
will be preceded by words ‘‘For the purpose of this document, the following
definitions will apply’’. Such definitions are listed in the alphabetical order.
Definitions of terms shall be unambiguous, precise and given in descriptive form.

Example:

Estimate—An Estimate is a best guess of the resources required to perform a
future activity.

BFS—Business Function Specification.

A.2.8 Paragraphing and Section Numbering

The text of a document shall be suitably numbered and subdivided in accordance
with the method described below.

Decimal notation shall be used for numbering paragraphs and sections. Hindu-
Arabic numerals shall be used for such numbering. The scheme of numbering is
shown below:

A.B.C.D.

Where

• A—Section Number: shall be incremented for every succeeding section
• B—Paragraph number: shall be incremented within the section for every

succeeding paragraph

236 Appendix A: Documentation Guidelines

• C—Sub-Paragraph Number: shall be incremented within the paragraph for
every succeeding sub-paragraph

• D—Sub-sub-Paragraph Number: shall be incremented within the sub-paragraph
for every succeeding sub-sub-paragraph

The number of levels shall not go beyond four levels.

A.2.9 Appendices

Any lengthy matter, which would not add value in the body of the document, but is
of referential value in the use of the document, shall be given as an appendix.

As far as possible, appendices shall be avoided.

A.2.10 Enumeration

It is preferable to enumerate items in a bulleted form than to run them along.
However, if the number of items is three or less, they may run along in the
sentence itself unless for some reason bulleting is preferred. When the
enumeration runs along in a sentence, each of the items is suffixed with a
comma and the conjunction ‘and’ shall precede the last item.

When bulleting is used to enumerate items, the enumeration shall be preceded
by such introductory words as, ‘consisting of’, ‘as follows’, ‘conditions are’, etc.
and also by a dash (–). No bullet list shall stand-alone without any introduction.

Bullets shall be numbered, using numerals. For subsequent levels bullets,
decimal notation as explained for paragraph numbering will be used. Example—If
the first level bullet starts as 1, the second level bullet will be 1.1; the third level
bullet will be 1.1.1 and so on.

Each bullet shall be confined to enumerate one single item or idea. Running
enumeration shall be avoided as far as possible in bullets. When an idea is
enumerated on a bullet, it shall be restricted to one or two sentences.

A.2.11 References

Care should be taken to avoid references to material that can change in time.
However, exceptions to this guideline are international and local standards and
organizational process documents and when these documents are referenced; their
version number will also be included in the reference. When such reference is
made, such introductory words as, ‘conforming to’, ‘adhering to’, ‘in accordance
with’, ‘as prescribed in’ and ‘as given in’ shall precede its designation. If this
reference is only for information, the word ‘see’ shall be used before the
designation. The words ‘as per’ shall be avoided when quoting from a document.

Appendix A: Documentation Guidelines 237

All matter from the standard document that has crucial importance will be
included in the body text itself.

A.2.12 Tables

Tables shall be used to show relationships clearly and wherever tabular
presentation would eliminate repetition.

Each table shall have a caption placed at the top of the table. The caption shall
contain a table number and title. The table number shall consist of the section/
chapter number followed by decimal point and a serial table number within the
section/chapter. Suffixing of table number with alphabets such as A, B shall be
avoided. Correct example—Table 5.2—URS Template.

Each table shall as a general rule, be placed after the first reference to it and as
near to it as possible, without needlessly breaking into the middle of a paragraph.
However, tables requiring frequent reference from multiple locations of the
document may be given at the end of the document.

In no case shall an entry in any cell be blank. Where the absence of information
is to be indicated, it may be so indicated by writing ‘NIL’ in the cell. Where the
requirement is not relevant and does not apply, it may be so indicated by writing
‘NA’ (Not Applicable) in the cell.

In general footnotes to tables shall be avoided. If it is imperative to use foot
notes, they shall be placed immediately below the table. To indicate references to
foot notes, asterisks may be used. In case there are a number of footnotes, super-
scripted numerals in one consecutive series shall be used.

Other aspects to be considered are:

1. Align digits from the right. Use decimals rather than fractions and align
decimal points

2. Do not use ditto marks
3. Symbols such as # and % may be used only in column headings to conserve space
4. Place currency sign, where necessary, in the column heading and with the totals.

A.2.13 Illustrations

Illustrations, such as, line graphs, bar charts, and pie charts shall be used wherever
it is possible to illustrate an idea more clearly, concisely and accurately.

A.2.13.1 Captions for Illustrations

Each illustration shall have a caption, placed at the top of the illustration. The
caption shall contain illustration number and title. The caption shall be prefixed
with word—‘Fig.’ The illustration number shall consist of the section/chapter

238 Appendix A: Documentation Guidelines

http://5.2

number followed by decimal point and a serial illustration number within the
section/chapter. Suffixing of illustration number with alphabets such as A, B shall
be avoided for stand-alone illustrations. However, where illustrations are grouped
together and presented at one place, the illustration number may be prefixed using
alphabets A, B, C, etc. The first letter of all the principal words in the caption shall
be in capitals.

Each illustration shall as a general rule, be placed after the first reference to it
and as near to it as possible, without needlessly breaking into the middle of a
paragraph. However, an illustration requiring frequent reference from multiple
locations of the document may be given at the end of the document.

A.2.13.2 Line Graphs

Line Graphs are best used to depict trends or changes over time, or relationships
between two or more variables. The guidelines for preparing Line Graphs are:

1. The independent variable shall be represented on the X-axis
2. The dependent variable shall be represented on the Y-axis
3. Keep the plot lines to the minimum—in any case not more than five per graph
4. When more than one plot line is used, make the lines clearly distinguishable by

the use of colour, solid lines, dotted lines, dashes etc.
5. Include a legend within the graph
6. Begin the Y-axis at zero. X-axis need not begin at zero
7. Keep all the gradations equal
8. Label items on the axes.

A.2.13.3 Bar Charts

Bar Charts are best used to compare multiple alternatives with each alternative
depicted as a bar. The guidelines for preparing Bar Charts are:

1. Begin Y-axis at zero.
2. Break the bar with wavy lines or slash marks between zero and the lowest value

when the bar is too long.
3. Keep all the vertical gradations equal and all the horizontal gradations equal.
4. Keep width of all bars equal. Keep the width of the space between bars equal.

Make the bars wider than the space between the bars.
5. Arrange the bars in some order—alphabetically, chronologically, ascending or

descending order etc.
6. Distinguish between the bars by using contrasting colours/hatch-patterns.
7. Include a legend within the graph.
8. Label items on the axes and the bars. Place figures within the bars or at the top

of each bar to give accurate values.

Appendix A: Documentation Guidelines 239

A.2.13.4 Pie Charts

Pie Charts are best used to depict apportionment of a single entity on various
heads. The pie or the circle is the whole; the slices or segments are the
apportionments. The parts must add up to 100 %. The guidelines for preparing Bar
Charts are:

1. There shall be at least three segments—otherwise, the chart is unnecessary.
2. Restrict the number of segments to seven. This can be achieved by clubbing

minor segments into one single ‘‘Miscellaneous’’ or ‘‘Others’’ segment. This
segment can be explained in a footnote.

3. Identify each segment either within the circle or outside the circle using a
guideline.

4. Distinguish between the segments using contrasting colors or hatch patterns
5. Make the size of the pie appropriate for the page.

A.3 Language

It is not possible to include all the rules of English grammar in this guideline.
However, a few guidelines are included here to achieve uniformity and to assist as
a reference guide for writing Correct English.

A.3.1 Sentence Construction

While it is possible to construct sentences with one or two words, it is
recommended that the sentences be constructed with at least three words. The
characteristics of a good sentence are:

1. It is short, simple and clear
2. It has a single central idea
3. It has agreement between its parts
4. Verbs are properly used
5. Pronouns are properly used
6. It is preferably affirmative
7. It is preferably in active voice.

A.3.1.1 Short, Simple and Clear

To keep sentences short, simple and clear are:

1. Use simple and familiar words
2. Avoid unnecessary words
3. Use simple sentences as far as possible

240 Appendix A: Documentation Guidelines

4. When writing complex sentences, restrict sub-ordinate clauses to two
5. When writing compound sentences restrict the number of conjunctions to two

A.3.1.2 Single Central Idea

This can be achieved by focussing on the subject and by not introducing additional
subjects in the sentence.

A.3.1.3 Agreement Between Parts

There must be consistency and agreement between parts of the sentence:

1. Subject and verb must agree with each other.
2. Number—Singular/Plural—should be consistent through the sentence—

correct examples are:

a. A list of guidelines was given to the auditor.
b. Mr. Smith, as well as his two assistants, was working on the assignment.
c. The software processes, which are maintained by QA, are extremely

complex.

3. Words linked to the subject by expressions such as ‘together with’, ‘as well
as’, ‘along with’, ‘including’, ‘and not’, ‘in addition to’, do not affect the
number of the verb. The correct examples are:

a. The Project Leader, as well as his two Module Leaders and five Team
Members, writes efficient code.

b. The Vice President, and not the Business Unit Heads, was charged with
the responsibility.

4. When the subject is any of the following words or is modified by them, the
verb must be singular. Each, Everybody, Anybody, Nobody, Every, A person,
Either. Example—Each one of the group has a responsibility.

5. When the subject is a collective noun, the meaning to be conveyed shall
determine whether the subject is singular or plural. Example—The committee
were equally divided in supporting the two proposals.

A.3.2 Proper Usage of Verbs

Tenses of verbs in a sentence will accurately indicate the correct sequence of
actions. The verb in a sub-ordinate clause shall therefore take a tense consistent
with the verb in the main clause. Here are some examples of some correct
examples:

1. When the machine stopped, the foreman realized that no one had oiled it.
2. When he had come, I left.

Appendix A: Documentation Guidelines 241

3. When he came, I left.
4. Before he came, I left.
5. Because he came, I left.

When a participle is used in a phrase, there must be something for the phrase to modify,
to cling to or depend upon. Consider this sentence—‘‘While watching TV, an argument
broke out.’’ What is wrong in the above sentence? An argument cannot watch TV.

Modifiers must be located so that it is clear what they modify. Consider this
sentence ‘‘Even though it will take six years for the machines to pay for
themselves, if conditions do not bring about a change in prices, the investment is
decidedly attractive in the long run.’’ Does the italicized clause in the above
sentence refer to ‘‘it will take six years …’’ or ‘‘to ‘‘the investment is …’’

A.3.3 Proper Usage of Pronouns

Pronouns must refer unmistakably to their antecedents, such as who, which, that,
must be placed as close to their antecedents as possible.

Consider this sentence ‘‘We are sending you a check for the defective part, which we
hope would be satisfactory.’’ To what does ‘‘which’’ refer to? To ‘‘part’’ or to ‘‘check’’?

Consider another sentence ‘‘She had already informed the typist that she would
be responsible for the general form of the letters.’’ Who would be responsible—
‘‘typist’’ or ‘‘she:?

A.3.4 Punctuation

Use commas to set off non-restrictive clauses, introduced usually by such words as
who, which, that and where. Here are some correct examples:

1. A refrigerator, which is a necessity to American housewives, is a luxury in most
parts of the world.

2. Mr. Johnson, who has been with us many years, has earned an enviable
reputation in our department.

3. Washington, where the White House is located, is the capital of USA.

Use a semi-colon to separate two independent clauses not connected by a
coordinating conjunction. Here are some correct examples:

1. We shall send your merchandize on September 25th; this should arrive in ample
time for your Christmas sale.

2. The report was submitted on time; the resulting action corrected the difficulty.

Use of colon is not recommended where the practice of using soft copies is
prevalent as colon would not be clearly visible. Usage of hyphen/dash (–) is
recommended to introduce a formal list. Here is an example.

242 Appendix A: Documentation Guidelines

1. There are three steps in this procedure -

a. Analyze the job carefully
b. Eliminate unnecessary details
c. Reduce operations to routine wherever possible.

The following are the guideline in using the ‘‘Apostrophe’’:

1. Use apostrophe to indicate possession:

a. For nouns not ending in ‘s’, place an apostrophe followed by an ‘s’.
Example—The client’s response is expected tomorrow.

2. For nouns ending in ‘s’, place an apostrophe after the noun. Example—EDS’
strength is in maintaining large applications.

3. Use an apostrophe to show that letters have been omitted. Examples—Don’t,
could’ve, it’s.

A.3.5 Numbers

Here are the guidelines for handling numbers inside the text:

1. Write out numbers below ten and numbers divisible by ten up to hundred.
2. If a sentence begins with a number, write it.
3. When numbers are expressed in words, use a hyphen to join compound

numbers, such as twenty-three, sixty-one.
4. When a sentence begins with a number, followed by another number to form

an approximation, both should be expressed in words. Example—‘‘Twenty or
Twenty-five days will be needed to finish the task.’’

5. When a sentence contains two series of numbers, the number in one series
should be expressed in words and the other series should be expressed in
figures. Example—‘‘Five students scored 95 %; seventeen students scored
80 %; and eleven scored 75 %.’’

6. When one number immediately precedes another number of a different
context, one number should be expressed in words and the other in figures.
Examples:

a. We ordered twenty-five 10 by 12 prints.
b. The specification calls for four teams of 12 persons each.

7. Amounts of money, generally, should be expressed in figures.
8. The following should be expressed in figures, generally.

a. Dates
b. Street numbers
c. Numbered items (page xx, Chap. 2 etc.)
d. Decimals

Appendix A: Documentation Guidelines 243

http://dx.doi.org/10.1007/978-1-4614-5377-2_2

e. Dimensions
f. Percentages
g. Fractions

9. A zero shall appear before the decimal point if it is not preceded by a numeral.
10. Common decimals less than one shall be used in the singular but any number

greater than one shall be used in the plural.

A.3.6 Capitalization

Here are the guidelines in capitalization of letters:

1. Capitalize the first word and all other principal words in titles of books, reports
or business documents. Examples:

a. Software Requirements Document
b. Analysis of the Tool for Project Management

2. Capitalize all the words of names used to identify organizations, places,
buildings etc. Examples:

a. Cyber Towers
b. International Business Machines Inc.
c. New York

3. Capitalize the first word of the following:

a. Complete sentences
b. Bullets
c. Quotations, only if the quotation is a complete statement. Example—Your

letter said ‘‘Send the replacement by air.’’

4. Do not capitalize words in the following:

a. General terms which do not identify a specific person, place or thing.
Examples—

i. ‘‘a doctor (but Dr. Smith)
ii. our president (but President Regan)

iii. my uncle (but Uncle Rockefeller)

b. The names of seasons. Example—spring, summer, winter
c. Nouns used with numbers. Examples:

i. page 57
ii. type 1

iii. method 3

244 Appendix A: Documentation Guidelines

A.3.7 Usage of Words

Here are the guidelines for using articles:

A.3.7.1 Articles

AN—The rule governing the use of article ‘an’ is phonetic and not orthogonal. The
article ‘An’ is used before vowels and a silent ‘h’. Examples:

1. an eyelet
2. an 18th century practice
3. an heirloom’’

A—The article ‘a’ is used before all consonants and also before vowels preceded
by the sound ‘y’ or ‘w’. Examples:

1. a unit
2. a one-room
3. a eulogy

THE—The definite article ‘the’ is applied to an individual object or objects
mentioned earlier in the text or already known, or contextually particularized.
When in doubt, the answer to ‘what’ or ‘which’ generally clarifies whether ‘the’ is
required or not. Examples:

1. The software developed at Microsoft is commercial in nature. Which software?
‘The’ software developed at Microsoft.

The definite article ‘the’ should not be used when objects are referred to in
general or by an undefined sense. Example:

1. India, in comparison with other countries of the world, ought to have 20 million cars.

a. Which countries? Other countries in general.

A.3.7.2 AND/OR

The use of the expression ‘and/or’ is not recommended except in tables. Examples:

1. NEMA and/or IEEE abbreviations may be used—NOT RECOMMENDED
2. NEMA abbreviations or IEEE abbreviations may be used—RECOMMENDED

A.3.7.3 Usage of ‘etc.’

Use of ‘etc.’ shall be avoided as far as possible. If it is found absolutely necessary
to use ‘‘etc.’’, it should be used after three or more nouns without the conjunction
‘and’. In particular, ‘etc.’ shall not be used after a sequence introduced by
expressions like ‘for example’ and ‘such as’.

Appendix A: Documentation Guidelines 245

A.3.7.4 Shall, Should, Will, Would, Must, May and Can

1. Shall—The word ‘shall’ will be used to indicate the advisory (not obligatory)
character of a requirement.

2. Should—The word ‘should’ will be used to indicate that the requirement is
advisory and not obligatory.

3. Will—The word ‘will’ will be used to indicate the obligatory (not advisory)
character of a requirement.

4. Would—The word ‘would’ will be used to indicate that the requirement is
obligatory (not advisory).

5. Must—The word ‘must’ will not be used to express obligatory character.
6. May—The word ‘may’ will be used when permissive character or probability

of occurrence is implied.
7. Can—The word ‘can’ will not be used to express either permissive character or

probability of an occurrence.

A.4 Recommended and Not Recommended Usage

It may be noted that the list given below is by no means complete. However, this is
a first list that may be improved further.

Not recommended Recommended

At the present time Now
Despite the fact that Although
For the reason that Since/because
On behalf of For
So as to To
Inter alia Among other things
Mutatis mutandis With necessary alterations
Ipso facto By the very fact
Erroneous Wrong
Annihilate Destroy
Recapitulate Recall
Facilitate Help
Utilize Use
Competence Skill
Above mentioned clauses Clauses mentioned above
Adequate enough Adequate or Enough
Afore mentioned Mentioned earlier
Brief details Details
Enclosed herewith Enclosed
Equipments Equipment
May invariably Shall invariably

(continued)

246 Appendix A: Documentation Guidelines

(continued)

Not recommended Recommended

Often times Often
Personnels Personnel
Sufficient enough Sufficient or Enough
Two times Twice
As per ‘In conformance’ with or ‘ according to’

or ‘adhering to’ or ‘in adherence with’
Kindly Please
Advance planning Planning
As to whether Whether
Basic fundamentals Fundamentals
But nevertheless Nevertheless
Close scrutiny Scrutiny
Collaborate together Collaborate
Complete monopoly Monopoly
Definite Decision Decision
Difficult dilemma Dilemma
Descend down Descend
Direct confrontation Confrontation
During the course of During
Eradicate completely Eradicate
Estimated at about Estimated at
Estimated roughly at Estimated at
Every now and then Now and then
Exact opposites Opposites
Few in number Few
Free gift Gift
Future plans Plans
Integral part of Part of
Invited guests Guests
Just recently Recently
Midway between Midway or between
Might possibly Might or possibly
My personal opinion My opinion
Over exaggerate Exaggerate
Period of time Period
Plan ahead Plan
Refer back Refer
Repeat again Repeat
Reply back Reply
Reported to the effect that Reported that
Revert back Revert
Spell out in detail Spell out
Sum total Sum or Total
Sworn affidavits Affidavits
True facts Facts

Appendix A: Documentation Guidelines 247

A.5 Final words of Documentation Guidelines

This guideline assumes that the reader is competent in basic grammar of English
language. I am giving the finer points of documenting requirements documents
correctly and facilitate identical interpretation of information presented. When we
document requirements in software engineering, one of the main objectives is to avoid
the possibility for confusion. We need to ensure that the reader would arrive at the same
interpretation as the writer intended. These guidelines are a step in that direction. Every
professional standards organization would have a documentation guideline and ensure
that all the documents released by them are conforming to that guideline. Software
organizations also produce a significant amount of documentation that would be
referred to by individuals other than the author. Therefore, it is essential for software
development organizations to have a documentation guideline. The guidelines
presented here may be used as they are or with modification.

248 Appendix A: Documentation Guidelines

Appendix B
Planguage

B.1 Introduction

Planguage was developed over a period of time by Tom Gilb (www.gilb.com)
during his work as a faculty member, as well as, a consultant to various profes-
sional organizations such as HP, IBM, Intel, Philips, Ericson and so on. It was
intended for use in systems engineering to improve the quality of specifications. It
was published in book form in 2005 under the title of ‘‘Competitive Engineering:
A Hand Book for Requirements Engineering, and Software Engineering using
Planguage’’, authored by Tom Gilb and published by Elsevier Butterworth-
Heinemann, USA. This appendix is an excerpt from that book with permission
from Tom Gilb. I record here my sincere thanks to Mr. Tom Gilb for giving me
permission to include details about Planguage in this book. If any reader wishes to
have a comprehensive understanding of Planguage, I suggest reading the above
mentioned book which is about 500 pages of tightly-packed information.

Planguage gives us tools to tackle large and complex systems with an objective
of reducing the risk of waste, delay and failure. Planguage should be viewed as a
powerful way to develop and implement strategies that will help the project to
deliver the required competitive results. Planguage focuses on reducing or
eliminating the ambiguity in the specifications.

B.2 Planguage

Planguage consists of a specification language and a corresponding set of process
descriptions. These two (Planguage terms and processes) are used together. The
Planguage terms consist of concepts, grammar, and icons. The process descriptions
consist of best practices for carrying out certain tasks. These are, Requirement
Specification, Design Engineering, Specification Quality Control, Impact Estimation,

M. Chemuturi, Requirements Engineering and Management for Software
Development Projects, DOI: 10.1007/978-1-4614-5377-2,
� Springer Science+Business Media New York 2013

249

http://www.gilb.com

and Evolutionary Project Management. The symbols used in Planguage diagrams are
depicted in Fig. B.1.

Tom Gilb suggests a template for capturing the project requirements and
preparing the Requirement Specification (Tom Gilb was very specific in his book
to use the term ‘‘Requirement’’ in place of the commonly used ‘‘Requirements’’.
This may be noted.) It is depicted in Table B.1.

Function Specification Template is depicted in Table B.2.

Scalar Requirement Template is depicted in Table B.3.

Fig. B.1 Symbols used in planguage diagrams

250 Appendix B: Planguage

Table B.1 Requirement Specification Template

Requirement Specification Template (A Summary Template)

Tag: <Tag Name for the System>
Type: System

==================== Basic Information ==================

Version: <Date or other version number>
Status: <Draft / SQC / Exited / Approved / Rejected>
Quality Level: <Maximum remaining major defects/page, sample size,
date>
Owner: <Role/email/name of the person responsible for changes and updates>
Stakeholders: <Name any stakeholders (other than the owner) with an interest in
the system>
Gist: <A brief description of the system>
Description: <A full description of the system>
Vision: <The overall aims and direction for the system>

==================== Relationships =====================

Consists of: Subsystem: <Tags for the immediate hierarchical subsystems if any,
comprising this system>
Linked to: <Other systems or program that this system interfaces with>

=============== Function Requirements ==================

Mission: <Mission statement or tag of the mission statement>
Function Requirement:
 <{Function Target, Function Constraint}>: <State tags of the function re-
quirements>
Note: 1. See Function Specification Template
 2. By default, ‘Function Requirement’ means ‘Function Target’

============= Performance Requirements =================

Performance Requirement:
<{Quality, Resource Saving, Workload Capacity}>: <State tags of the perfor-
mance requirements>
Note: See Scalar Requirement Template

Appendix B: Planguage 251

(continued)

Table B.1 (continued)

Resource Requirement:
<{Financial Resource, Time Resource, Headcount Resource, others}>: <State
tags of the resource requirements>
Note : See Scalar Requirement Template

================== Design Constraints ===================

Design Constraint: <State tags of any relevant design constraints>

=============== Condition Constraints ===================

Condition Constraint: <State tags of any relevant condition constraints or speci-
fy a list of condition constraints>

============ Priority and Risk Management ================

Rationale: <What are the reasons supporting these requirements?>
Value: <State overall stakeholder value associated with these requirements>
Assumptions: <Any assumptions that have been made>
Dependencies: <Using text or tags, name any major system dependencies>
Risks: <List or refer to tags of any major risks that could cause delay or negative
impacts to the achieving of the requirements>
Priority: <Are there any known overall priority requirements?>
Issues: <Unresolved concerns or problems in the specification or the system>

======== Evolutionary Project Management Plan =============

Evo Plan: <State the tag of the Evolutionary Project Management Plan>

================ Potential Design Ideas ===================

Design Ideas: <State tags of any design ideas for this system, which are not in
the Evo Plan>

============== Resource Requirements ===================

252 Appendix B: Planguage

Table B.2 Function Specification Template

 Function Specification Template

<Function Tag1>

Type: Function

Description: <Describe the function here, well enough to allow testing of it>

Attribute 1: Scale <?> Goal: <?>
Attribute 2: Scale <?> Goal: <?>
Attribute n: Scale <?> Goal: <?>

Note :

1. Scale is the precision of the attribute
2. Goal is the usage of the attribute

Appendix B: Planguage 253

Table B.3 Scalar Requirement Template

 Elementary Scalar Requirement Template

Tag: <Tag name of the elementary scalar requirement>
Type:
<{Performance Requirement: {Quality Requirement, Resource Saving Require-
ment, Workload Capacity Requirement}. Resource Requirement: {Financial Re-
quirement, Time Requirement, Headcount Requirement, others }}>

==================== Basic Information ==================

Version: <Date or other version number>
Status: <Draft / SQC / Exited / Approved, / Rejected>
Quality Level: <Maximum remaining major defects/page, sample size,
date>
Owner: <Role/email/name of the person responsible for changes and updates>
Stakeholders: <Name any stakeholders (other than the owner) with an interest in
the system>
Gist: <A brief description, capturing the essential meaning of the requirement >
Description: <Optional, full description of the requirement>
Ambition: <Summarize the ambition level of only the targets below. Give the
overall real ambition level in 5 – 20 words.>

=================== Scale of Measure ====================

Scale: <Scale of measure for the requirement (States the units of measure for all
the targets, constraints and benchmarks) and the scale qualifiers>

(continued)

Table B.3 (continued)

Goal/Budget [<when, where, if]: <Planned target level> <-<Source>
Stretch [<when, where, if]: <Motivating ambition level> <-<Source>
Wish [<when, where, if]: <Dream level (unbudgeted> <-<Source>

======== Constraints =========== Specific Restrictions =======

Fail [<when, where, if]: <Failure level> <-<Source>
Survival [<when, where, if]: <Survival level> <-<Source>

==================== Relationships =====================

Is part of: <Refer to the tags of any supra-requirements (complex requirements)
that this requirement is part of. A hierarchy of tags (For example A, B, C) is pre-
ferable>
Is impacted by: <Refer to the tags of any design ideas that impact this require-
ment> <-<Source>
Impacts: <name any requirements or designs or plans that are impacted by this
requirement>

============ Priority and Risk Management ================

Rationale: <Justify why this requirement exists>
Value: <Name [Stakeholder, time, place, event]: Quality, or express in words, the
value claimed as a result of delivering the requirement >
Assumptions: <State any assumptions made in connection with this requirement>
<-<Source>
Dependencies: <State anything that achieving the planned requirement level is
dependent on> <-<Source>
Risks: <List or refer to tags of any major risks that could cause delay or negative
impact > <-<Source>
Priority: <List the tags of any system elements that must be implemented before
or after this requirement>
Issues: <State any known issues>

===================== Measurement ====================

Meter: <The method to be used to obtain measurements on the defined Scale>

======== Benchmarks ======= Past Numeric Values ==========

Past [<when, where, if]: <Past or current level. State if it is an estimate> <-
<Source>.
Record [<when, where, if]: <State-of-the-art level> <-<Source>
Trend [<when, where, if]: <Prediction of the rate of the change or future state-of-
the-art level> <-<Source>

========= Targets ========== Future Numeric Values ========

B.3 Glossary of Planguage Terms

Now, I present you the glossary of the terms used in Planguage. I will be covering all
the terms used for requirements engineering activity and leaving out the rest. Also, I
would not be covering the entire description given in the book here as it will be
repetition. The idea is to introduce you to the Planguage and if you are interested in
learning more, I suggest reading the book by Tom Gilb mentioned earlier.

Planguage is a full-fledged method for carrying out software engineering. It
needs significant effort and little time from you to master it and use it expertly. If
you put in the effort and spend the time, I am sure you can reap rich benefits from
using Planguage.

Term Explanation

A
After Indicates a planned sequencing of events
Aim A stated desire to achieve something by certain stakeholders
Ambition A parameter which can be used to summarize the ambition level of a

performance or resource target requirement
And A logical operator to join any two expressions
Assumption Unproven conditions, which if not true at some defined point in time,

would threaten something, such as the volatility of specification or the
achievement of our requirements

Attribute An observable characteristic of a system.
Author A person, who writes or updates a document or specification of any kind
Authority A specific level of power to ‘decide’ or ‘influence’ a specific matter

requiring some degree of judgment or evaluation
B
Background Background information is the part of a specification, which is useful

related information, but is not central (core) to the implementation nor
is it commentary

Backroom Refers to a conceptual place used to describe any process or activities that
are not necessarily visible upfront

Baseline A set of system attribute specifications that defines the state of a given
system

Basis An underlying idea that is a foundation for a specification
Before A parameter used to indicate planned sequencing of events
Benchmark A specified reference point or baseline
Benefit Value delivered to stakeholders
Binary An adjective used to describe objects which are specified as observable in

two states
C
Catastrophe Level of an attribute where disaster threatens all or a part of a system
Checklist A list of questions used to check a document for completeness or accuracy
Complex A complex component is composed of more than one elementary and/or

complex component

(continued)

Appendix B: Planguage 255

(continued)

Term Explanation

Condition A specified pre-requisite for making a specification or a system component
valid

Condition
Constraint

A requirement that imposes a conscious restriction for a specified system
scope

Consists of A parameter used to list a complete set of the sub-components or elements
comprising a component

Constraint A requirement that explicitly and intentionally tries to directly restrict any
system or process

Core Specification It will result in real system changes being made; incorrect core
specification would materially and negatively affect the system in terms
of costs, effort or quality.

Cost An expense incurred in building or maintaining a system
Credibility The strength of belief in and hence validity of information
Critical Factor A scalar attribute level, a binary attribute or condition in a system, which

can on its own, determine the success or failure of the system under
specified conditions

D
Definition A parameter that is used to define a tagged item
Dependency A reliance of some kind of one set of components on another set of

components
Description A set of words and/or diagrams, which describe and partially define a

component
Deviation The amount of value (estimated or actual) by which some attribute differs

from some specific benchmark or target
Due A parameter indicating when some aspect of a specification is due
During Used when specifying events to indicate a time dependency for events that

must be carried out concurrently
E
Elementary Elementary component is not decomposed into sub-components
Error Something done incorrectly by a human being
Estimate A numeric judgment about a future, present or past level a scalar system

attribute
Event A specified occurrence
Evidence The historical facts, which support an assertion.
Evolutionary It implies association with an iterative process of change, feedback,

learning and consequent change
Except Used to specify that the following term or expression is an exception from

the previous term or expression
F
Fail Signals an undesirable and unacceptable system state
Frontroom It refers to a conceptual place used to describe any process or activities
Function It is what a system does
Function Constraint A requirement which places a restriction on the functionality that may exist

in a system
Function

Requirement
Specifies that the presence or absence of a defined function is required

(continued)

256 Appendix B: Planguage

(continued)

Term Explanation

Function Target A specified function requirement. We need to plan delivery of the function
under the specified conditions

Fuzzy A specification which is known to be somewhat unclear, potentially
incorrect or incomplete

G
Gap For a scalar attribute gap is a range from an impact estimate or a

specification benchmark to a specification target
Gist A parameter used to state the essence, or main point, of a specification
Goal A primary numeric target level of performance
I
Icon In Planguage an icon is a symbol that is keyed (keyed icon) or drawn

(drawn icon) that represents a concept
If A logical operator used in qualifiers to explicitly specify conditions
Impact The estimated or actual numeric effect on a requirement attribute under

given conditions
Impacts A parameter that is used to identify the set of attributes that are considered

likely to be impacted by a given attribute
Includes Expresses the concept of inclusion of a set of components within larger set

of components
Issue Any subject of concern that needs to be noted for analysis and resolution
L
Level A defined numeric position on a scale of measure
Limit A numerical level at a border, that is, at an edge of a scalar range
M
Master Definition The primary and authoritative source of information about the meaning of

a specification or a specification element
Metric Any kind of numerically expressed system attribute
Mission A mission specifies who we are (or what we do) in relation to the rest of the

world
O
Objective A synonym of performance requirement
Or A logical operator used in qualifiers or other appropriate specifications
Or Better An expression used within a scalar specification to explicitly emphasize

that the specified level has a range of acceptable values rather than
being just a fixed single value

Or Worse An expression used within a scalar specification to explicitly emphasize
that the specified level has a range of acceptable values rather than
being just a fixed single value

Owner A person or group responsible for an object and for authorizing any change
to it

P
Parameter A Planguage defined term. Parameters are always written with at least a

leading capital letter to signal the existence of a formal definition
Past A parameter used to specify historical reference, a benchmark.
Percentage

Uncertainty
It is calculated from the scale uncertainty baseline and target data

(continued)

Appendix B: Planguage 257

(continued)

Term Explanation

Performance An attribute set that describes measurably ‘how good’ the system is at
delivering effectiveness to its stakeholders

Performance
Constraint

Specifies some upper and lower limits for an elementary scalar
performance attribute

Performance
Requirement

Specifies the stakeholder requirements for ‘how well’ a system should
perform

Performance Target Is a stakeholder-valued numeric level of system performance
Place Defines where
Planguage Tom Gilb � A specification language and a set of related methods for

systems engineering
Priority The determination of a relative claim on limited resources
Procedure A repeatable description to instruct people as to the best-known practice, or

recommended way, to carry out the task of a defined process
Process Is a work activity which consists of an entry process, entry conditions, a

task process, and an exit process
Q
Qualifier A defined set of conditions embedded in, or referenced by, a specification
Quality A scalar attribute reflecting ‘how well’ a system functions
Quality Level A measure of a specification’s conformance to any specified relevant

standards
R
Range The extent between and including two defined numeric levels on a scale of

measure
Rationale The reasoning or a principle that explains and thus seeks to justify a

specification
Readership The readership of a specification is all the ‘types of people’ we intend shall

read or use the specification
Record A parameter used to inform us about an interesting extreme of achievement
Relationship A connection between two objects
Requirement A stakeholder-desired, or needed, target or constraint
Requirement

Engineering
A requirement process carried out with an engineering level of rigor

Requirement
Specification

A defined set of requirements

Resource Any potential system input (time, money, effort, space, data and any other)
Resource Constraint A resource requirement, which specifically restricts or serves as a warning

about the level that can be used of a resource
Resource

Requirement
Specifies how much of a resource should be made available for later

consumption
Resource Saving A performance attribute of a system
Resource Target It is a budget.
Review Any process of human examination of ideas with a defined purpose and a

defined standards of inquiry
Risk Any factor that could result in a future negative consequence
Role A defined responsibility, interest, or scope for people

(continued)

258 Appendix B: Planguage

(continued)

Term Explanation

Rule Any statement of a standard on how to write or carry out some part of a
systems engineering or business process

S
Safety Deviation A measure of the estimated-or-observed difference between a required

safety margin and the estimated or actual system attribute level
Safety Factor The dimensionless ratio of ‘conscious over-design’ that is either required

or actually applied to some part of the system
Safety Margin A scalar difference between a required defined target or constraint level,

and its calculated safety level derived using the appropriate safety
factor

Scalar An adjective used to describe objects, which passes or are measured using
at least one scale of measure

Scale A parameter used to define a scale of measure
Scale Impact Is an absolute numeric value on the scale of measure
Scale Uncertainty An estimate of the error margins for a specific scale impact
Scope Describes the extent of influence of something
Software

Engineering
The discipline of making software systems deliver the required value to all

stakeholders
Source A synonym for process input information
Specification Communicates one or more system ideas and/or descriptions to an intended

audience
Stakeholder Any person, group or object, which has some direct or indirect interest in a

system
Standards An official, written specification that guides a defined group of people in

doing a process. It is a best-known practice
Status The outcome of an evolution of a defined condition
Stretch A parameter used to define a somewhat more ambitious target level than

the committed goal or budget levels
Supports Used to indicate what an attribute is mainly intended to support
Survival A state where the system can exist
System (Planguage) Any useful subset of the universe that we choose to specify. It can be

conceptual or real. In Planguage a system can be described
fundamentally by a set of attributes

System Engineering An engineering process encompassing and managing all relevant system
stakeholder requirements, as well as all design solutions and necessary
technology, economic and political areas

T
Tag A term that serves to identify a statement, or set of statements,

unambiguously
Target A specified stakeholder-valued requirement which you are aiming to

deliver under specified conditions
Task A defined and limited piece of work
Test To plan and execute an analytical process on any system, product or

process, where we attempt to understand if the system performs as
expected or not

(continued)

Appendix B: Planguage 259

(continued)

Term Explanation

Time Defines ‘when’
Trend A parameter used to specify how we expect or estimate attribute levels to

be in the future
Type Specifies the category of a Planguage concept
Uncertainty The degree to which we are in doubt about how an impact estimate, or

measurement, of an attribute reflects reality
U
Until A logical operator that is used to limit the extent of a scalar range of values
User-defined Term A definition of a term made by a user
V
Value Perceived benefit: that is, the benefit we think we will get from something
Version An initial or changed specification instance
Vision An idea about a future state, which is very long range and probably

idealistic, may be even unrealistic
W
Wish A parameter used to specify a stakeholder-valued, uncommitted target

level for a scalar attribute
Workload Capacity A performance attribute. It is used to express the capacity of a system to

carry out its workload, that is, ‘how much’ a system can do, did or will
do

260 Appendix B: Planguage

About the Author

Murali Chemuturi is an information technology
and software development subject matter
expert, hands-on pro-grammer, author,
consultant and trainer. Since 2001, he is
offering consultancy on information technology
and train-ing to organizations in India and in
the USA from Chemuturi Consultants.

Chemuturi Consultants also offers
a number of products to aid project
managers and software development
professionals such as PMPal, a software
project management tool; and Estimator-
Pal, FPAPal and UCPPal, a set of
software

estimation tools. Chemuturi Consultants also offers a material requirements
planning software product MRPPal to assist small to medium manufacturing
organizations to efficiently manage their materials.

Prior to starting his own firm, Murali gained over 15 years of industrial
experience in various engineering and manufacturing management positions. He
then gained more than 26 years of information technology and software
development experience. His most recent position prior to forming his firm was
Vice President of Software Development at Vistaar e-Business Pvt., Ltd.

Mr. Chemuturi’s undergraduate degrees and diplomas are in Electrical and
Industrial Engineering and he holds a MBA and a Post Graduate Diploma in
Computer Methods and Programming. He has several years of academic
experience teaching a variety of computer and IT courses such as COBOL,
Fortran, BASIC, Computer Architecture, and Database Management Systems.

M. Chemuturi, Requirements Engineering and Management for Software
Development Projects, DOI: 10.1007/978-1-4614-5377-2,
� Springer Science+Business Media New York 2013

261

Mr. Chemuturi authored two books, namely ‘‘Software Estimation: Best
Practices, Tools and Techniques for Software Project Estimators’’ and ‘‘Mastering
Software Quality Assurance: Best Practices, Tools and Techniques for Software
Developers’’ published in the USA by J. Ross Publishing, Inc, He co-authored
another book with Thomas M. Cagley, Jr. titled ‘‘Mastering Software Project
Management: Best Practices, Tools and Techniques’’, published by J. Ross
Publishing, Inc of the USA.

Murali is a senior member of IEEE, a senior member of the Computer Society
of India and a Fellow of the Indian Institute of Industrial Engineering and he is a
well published author in professional journals.

262 About the Author

Index

A
Abbreviations, 235
Acceptance testing, 48, 137
Activity diagrams, 191, 196
Adaptive software development, 218, 224
Agile, 9, 11, 47, 53, 54, 69, 70, 74, 88, 109,

118, 169, 181
Agile manifesto, 217
Analysis, 10, 30, 55–57, 65, 82, 84, 97, 112,

177, 179, 225
Analysis, 1, 20, 27, 29, 41, 44, 51, 52, 55–58,

63–66, 70, 84, 95, 112, 114, 121, 122,
127, 145

Analyze, 29, 127
Ancillary functionality, 13–15, 42, 57, 118, 212
Approvals, 29, 30, 68, 80
ASD, 224, 225

B
Best practices, 11, 20, 31, 43, 46, 47, 64, 68,

92, 98, 105, 110, 142, 143, 149, 155,
173, 188, 203–215

Best practices, 102, 114, 203, 211, 215
Brainstorming, 24, 25, 44, 103
Burn-down charts, 232

C
Capitalization, 244
Change register, 136
Change request, 68, 86, 113, 119, 121, 130,

132, 134, 136, 137, 142, 145, 146, 166,
169, 205, 213

Class diagrams, 191
Classification, 13, 14, 17, 19, 146
CMMI�, 2, 4–6, 33, 67, 98, 103, 130,

139–141, 181, 188
Communication, 49, 111, 112, 118, 219, 228
Competitive edge, 16
Conceptual design, 22
Configuration, 68, 81, 225, 226
Construction, 17, 83, 172, 179, 225, 226, 240
Context diagram, 185
Core functionality, 13–15, 19, 34, 42, 52,

62, 117
Core functionality, 60, 75
COTS, 47, 63, 82, 155
CRM, 3, 44, 47, 62, 63, 84, 95, 155
CRR, 121, 126, 145–147
Crystal clear, 218, 228, 229

D
Data flow diagrams, 43, 183
Data integrity, 15, 79
Dataflow modeling, 180
Defect density, 148
Deliverables, 51, 65
Demonstration, 42, 44
Development team, 3–8, 14, 21, 35, 47, 70,

89, 105, 127, 217, 219, 220, 223, 228
DFD, 43, 112, 183, 185
Documentation, 46–48, 51, 67–70, 74, 87, 99,

109, 112, 115, 158, 180, 181, 212, 217,
225, 230, 232, 233, 248

Domain, 9, 14, 20, 35, 36, 44, 95, 96, 99, 104,
205, 212, 222

M. Chemuturi, Requirements Engineering and Management for Software
Development Projects, DOI: 10.1007/978-1-4614-5377-2,
� Springer Science+Business Media New York 2013

263

D (cont.)
Domain experts, 20
Dominant factor, 62
Dynamic systems development method, 88,

218, 221

E
Efficiency, 17, 18, 27, 42
Elicitation, 10, 23, 27–29, 33, 36,

44, 45, 47, 48, 50–55, 57, 94,
111, 143–145, 181, 212

Elicitation, 34, 47–52, 57, 111, 212
End user review, 105
End users, 26, 58, 105, 105, 119
Entity behavior modeling, 181
ER diagrams, 181, 182
ERD, 181, 182
ERDs, 43, 112, 181, 182
ERP, 3, 43, 46, 47, 57, 63, 84, 156
Establishment, 10, 47, 65, 67, 75, 82, 86–88,

104, 109, 111–113, 151, 163, 169, 171,
206, 213, 224

Esteem functionality, 16
Estimate, 107, 236, 256
Evolution of requirements, 24
Expert review, 104

F
Face-to-face, 40, 219
Fault tolerance, 16
FDD, 222, 223
Feature driven

development, 222, 223
Feel-good, 16
Flexibility, 17, 25
Formats, 8, 20, 29, 36, 43, 45, 59, 67, 68, 93,

94, 106, 110, 112–114, 135, 159, 165,
194, 206, 212

Formatting, 234
Full life cycle, 95, 156

G
Gathering, 29, 30, 33, 44, 47–52, 57, 111,

144, 212
Gathering, 10, 23, 27, 33, 34, 44, 46–53, 55,

63, 66, 94, 111, 112, 143–146

H
High level design, 22, 179, 191

I
Idea germination, 24, 25
IEEE, 2, 4, 14, 20, 21, 68–70, 73, 98, 103, 129,

140, 141, 177, 181, 187, 188, 235
Implementation, 3, 5, 26, 30, 42, 47, 52, 81,

113, 121, 122, 124, 156, 172, 174, 180
Industry standards, 20
In-house project, 28
Interface functionality, 19
Interview, 19, 24–27, 29, 30, 33–36, 38–42,

51, 53
ISO, 20, 91, 139, 181, 236

J
Joseph Juran, 91

K
Kanban, 218, 226, 227
Knowledge repository, 204, 210
Knowledge sharing, 96

L
Language, 233
Logical data modeling, 180
Low level design, 22, 179

M
Maintainability, 17, 20
Management, 1, 2, 4–11, 15, 17, 19, 28, 33,

36, 44, 45, 47, 68, 74, 82, 91, 93, 94,
106–115, 117, 118, 135, 151, 165, 171,
173, 181, 182, 190, 191, 198, 200, 205,
209, 230, 250

Managerial reviews, 81, 99
Marketing, 21
Measurement, 10, 93, 94, 97, 109, 113, 128,

135, 139, 189, 260
Memory constraint, 15
Methodology, 40, 47, 70, 110–113, 115, 177,

188, 189, 192, 200, 218, 220, 223, 224

264 Index

Metrics, 10, 106, 111, 113, 114, 128, 139,
141–143, 145–147, 149, 151, 152, 211

Migrationporting and conversion, 87
Morale, 108, 165, 167, 203, 207, 209, 214
Motivation, 203, 207

N
New product, 25

O
Object oriented programming, 188
Observation, 42, 45
One-upmanship, 16
OOM, 69, 177, 190
Operations ease, 18
Organization, 4–9, 17–20, 24–30, 35, 40, 42,

44–48, 51, 56–58, 60, 63, 64, 66, 68,
70, 74, 81, 82, 84, 93, 95–99, 104, 105,
114, 117, 119, 125, 127, 136, 137, 141,
145–150, 154, 155, 157, 159–167, 170,
178, 180, 182, 188, 194, 196, 200, 207,
214, 220, 221, 224, 227, 232, 244

Outsourced project, 29, 30, 49

P
Partial life cycle, 158
Peer review, 98
PERT / CPM, 110
Pitfalls, 11, 52, 96, 98, 114, 149, 203, 209,

211, 213
Pitfalls, 102
Planguage, 69, 200, 249, 250, 255, 257–260
Planning, 3, 10, 35, 44, 46, 107, 108, 110,

112, 114, 155, 211, 213, 247
Portability, 18
Postal method, 40
Postmortem, 93, 98, 214
Prioritize, 62
Process, 46, 93, 159, 166, 206
Productivity, 143, 144
Programmers, 21
Project acquisition, 29, 30
Project development, 26
Project manager, 165
Project plans, 110
Project team, 20, 119
Proposal, 27, 28
Prototype, 25
Prototypes, 25, 34, 42, 43, 74, 104

Prototyping, 104
Punctuation, 242

Q
Quality assurance, 21, 67, 91, 93, 161, 209
Quality control, 97, 164
Questionnaires, 34, 40, 41, 51
Questions, 36

R
Real Time software, 50
Recognition and rewards, 162
Records, 45
Reliability, 16
Reporting, 10, 49, 60, 88, 94, 101,

105, 111–115, 136
Requirement, 2, 3, 5
Requirements analysis, 30, 65, 112,

179, 225
Requirements engineering, 10, 96, 141, 143,

181, 204
Resources, 107, 111, 205, 207
Response time, 15
Reusability, 18
Roles and responsibilities, 200, 224

S
Safety functionality, 14
Schedule, 64, 151, 152
SCM, 44, 47, 63, 84, 95, 155
SCMP, 110
Scrum, 69, 88, 169, 218, 220, 221
SDLC, 11, 169, 170
Security functionality, 15
Senior management, 167
Sequence diagrams, 196
Situational, 56, 122
Software design, 82, 171
Software design, 3, 34, 82, 169, 171, 175, 226
Software designers, 20
Software footprint, 15
Software maintenance, 49, 86, 180
Software maintenance, 49, 86, 180
Software requirements, 1, 21, 22, 73, 124, 244
SOW, 82–84
SPMP, 110, 111
SQAP, 110, 113
SRS, 22, 68, 70, 73–76, 81, 84, 94, 104, 144,

147, 149, 151, 157, 191

Index 265

S (cont.)
SSADM, 11, 69, 177, 178, 180, 181, 187, 200,

215
Stakeholders, 3, 62, 251
Standards, 20, 46, 93, 111, 119, 187
Statecharts, 191, 196
Statement of work, 82
Statutes, 20
Statutory functionality, 14
Storyboarding, 104
Structure chart, 186, 187
Survey, 24, 26, 40, 41, 46
Surveys, 33, 40
SWOT, 56
SyRS, 22, 68, 70

T
TDD, 223, 224
Templates, 36, 114
Terminology, 235
Test coverage, 130, 173
Test driven development, 88, 218, 223
Testability, 18
Testing, 1, 18, 29, 31, 34, 48, 49, 56, 92, 96,

98, 103, 119, 125–127, 130–132, 134,
137, 149, 156, 157, 163, 172–175, 179,
180, 209, 214, 219, 220, 223–225, 228,
230

Tom Gilb, 69, 200, 249, 250, 255, 258
TQM, 93, 209
Traceability, 129–137, 143, 144–148, 163,

171–174, 200
Tracing, 5, 10, 109, 111, 113, 114, 129, 130,

132, 134, 135, 226, 228
Tracing, 113, 132, 214, 231, 232
Tracking, 1, 10, 105, 106, 109, 111, 113, 114,

118, 121, 134–136
Training, 95–97, 110, 161, 206

U
UML, 11, 69, 177, 191, 198, 199, 200
Unified modeling language, 177, 191
URS, 22, 68–71, 73, 75, 81, 84, 94, 132, 143,

144–147, 149–152, 157, 173, 179, 231,
238

Usability functionality, 15
Use and discard, 43
Use and improve, 43
Use Case, 70, 112, 192–196, 198, 226
Use Case, 192, 230
User requirements, 69

V
Vague requirements, 212
Validation, 10, 15, 36, 53, 57, 59, 68, 75, 92,

94, 97, 103–105, 110, 135, 149, 156,
164, 189

VARS, 26
Verification, 10, 23, 34, 68, 75, 92, 94, 97, 98,

102, 110, 130, 135, 149, 158, 164, 178,
223

W
Waterfall, 178, 181
Web based, 41
Wikipedia, 2, 5, 6, 129

X
XP, 69, 88, 169, 218, 219

266 Index

	Requirements Engineeringand Managementfor Software DevelopmentProjects
	Foreword
	Preface
	Acknowledgments
	Contents
	Abbreviations
	1 Introduction to Requirements Engineering and Management
	2 Understanding Requirements
	3 Elicitation and Gathering of Requirements
	4 Requirements Analysis
	5 EstablishmentEstablishment of Requirements
	6 Quality Assurance in Requirements ManagementManagement
	7 Planning for Requirements Management
	8 Requirements Change Management
	9 Requirements Tracing, Tracking and Reporting
	10 MeasurementMeasurement and MetricsMetrics
	11 Roles and Responsibilities in REM
	12 Requirements Management Through SDLC
	13 Tools and Techniques for Requirements EngineeringRequirements Engineering and ManagementManagement
	14 Pitfalls and Best Practices in Requirements Engineering and Management
	15 REM in Agile Projects
	Appendix A DocumentationDocumentation Guidelines

