

i

Pro Project Management
with SharePoint 2010

■ ■ ■

Mark J. Collins

■ CONTENTS

ii

Pro Project Management with SharePoint 2010

Copyright © 2010 by Mark J. Collins

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2829-5

ISBN-13 (electronic): 978-1-4302-2830-1

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Jonathan Hassell
Technical Reviewer: Jeff Sanders
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan Gennick,
 Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes, Jeffrey Pepper, Frank
 Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh
Coordinating Editor: Corbin Collins
Copy Editor: Damon Larson
Indexer: BIM Indexing & Proofreading Services
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com.

■ CONTENTS

iii

To Donna, my beautiful wife and my best friend.

Thank you for sharing the adventure with me!

■ CONTENTS

iv

Contents at a Glance

■ About the Author ...xvi
■ About the Technical Reviewer ...xvii

■ Acknowledgments ...xviii

■ Chapter 1: Introduction ...1
■ Chapter 2: Collecting Requirements ...7
■ Chapter 3: Processing Incoming E-mail ...25
■ Chapter 4: Managing Requirements ...45
■ Chapter 5: Supporting Discussions ...59
■ Chapter 6: User Stories...83
■ Chapter 7: Project Backlog...103
■ Chapter 8: Iteration Backlog ..123
■ Chapter 9: Burndown Charts ...143
■ Chapter 10: Getting Organized ..175
■ Chapter 11: Creating Test Cases ..191
■ Chapter 12: Reporting Defects...211
■ Chapter 13: Testing Metrics ...243
■ Chapter 14: Workflow Tasks ..279
■ Chapter 15: State Machine Workflows ..301
■ Chapter 16: Creating Custom Forms...359
■ Epilogue...381
■ Index ..383

■ CONTENTS

v

Contents

■ About the Author ...xvi

■ About the Technical Reviewer ...xvii

■ Acknowledgments ...xviii

■ Chapter 1: Introduction ...1
About This Book .. 1
Prerequisites .. 2
Project Management Activities .. 2

Requirements .. 2
Implementation .. 2
Testing .. 3
Postproduction Phase... 3

■ Chapter 2: Collecting Requirements ...7
Defining Requirements .. 7
Creating a Project Management Site... 7
Defining Functional Areas.. 8

Defining the Content Type... 9
Creating the Functional Areas List .. 11
Populating the Functional Areas List .. 13

Defining the Requirements .. 13
Adding Custom Site Columns.. 13

Functional Area ... 14
Requirement Type .. 16
Additional Columns.. 17

Defining the Content Type... 18
Creating the Requirements List ... 20

Testing the Requirements List ... 21
Defining the All Items View.. 21

■ CONTENTS

vi

Adding Requirements ... 21
Summary.. 22

■ Chapter 3: Processing Incoming E-mail ...25
Incoming E-mails .. 25

Understanding SharePoint’s E-mail Capability... 25
Configuring Incoming E-mail .. 26

Using Automatic Mode... 26
Installing the SMTP Server Feature... 26
Starting the SMTP Service .. 28
Configuring the SMTP Server .. 29
Configuring SharePoint.. 30

Using Advanced Mode.. 31
Configuring an Incoming List .. 33

Creating the Incoming Requirements Document Library.. 33
Enabling Incoming E-Mails.. 34
Handling Attachments.. 36

Adding a Workflow.. 37
Associating the Approval Workflow .. 38
Testing the Workflow .. 41
Completing the Initiation Form .. 41
Completing the Approval Task .. 42

Summary.. 42
■ Chapter 4: Managing Requirements ...45

Analyzing Requirements .. 45
Prioritizing Requirements .. 45
Requirement Dependencies .. 46

Adding Factors... 46
Using the List Settings Page ... 46
Adding a Factor ... 47
Adding Additional Factors.. 49
Scoring a Requirement ... 50

Calculating the Overall Score... 50
Adding a Calculated Column ... 51
Modifying the View ... 52

Supporting Non-Negotiable Requirements ... 53
Adding the Required Flag ... 53

■ CONTENTS

vii

Modifying the Overall Score Formula ... 54
Sorting the View .. 54

Supporting Dependencies.. 55
Adding a Lookup Column .. 55
Adding a Dependency... 56

Summary.. 57
■ Chapter 5: Supporting Discussions ...59

Adding the Requirement Discussions List.. 59
Linking the Related Requirement.. 61
Handling Deleted Records ... 61
Adding a Discussion.. 62
Using the Discussion Feature .. 64
Choosing the Default View... 66

Combining Lists .. 67
Adding a Web Part... 67

Defining the Connection.. 69
Testing the Display Form ... 70

Creating a New Web Page... 72
Adding a Page to the SharePoint Site .. 73
Adding a Related List .. 74

Using Outlook.. 76
Configuring the Outlook List.. 76
Viewing Discussions in Outlook .. 77
Posting a Reply .. 78

Summary.. 80
■ Chapter 6: User Stories...83

Defining User Stories .. 83
Describing User Stories .. 84
Linking to Requirements .. 85

Implementing User Stories in SharePoint .. 85
Defining Themes ... 86
Creating New Site Columns ... 87

Defining the Theme Column ... 89
Defining the Story Priority Column .. 89
Defining the Story Points Column .. 90
Defining the Epic Column.. 91

■ CONTENTS

viii

Defining the Story Requirements Column... 91
Summarizing the Site Columns... 92

Creating the User Story Content Type .. 92
Creating the User Stories List... 94
Defining the View .. 96

Modifying the New Form ... 97
Summary..101

■ Chapter 7: Project Backlog...103
Describing Agile Methodology...103

Using Iterations ...103
Defining the Project Backlog..104

Implementing Iterations ..105
Defining Iterations ..105

Adding Site Columns ..105
Creating the Iteration Content Type...107
Creating the Iteration List ..108

Assigning an Iteration...110
Creating a Site Column...110
Modifying a Content Type ...113
Assigning User Stories ..114

Enhancing the Iteration Form ...114
Implementing a Project Backlog..116

Adding User Story Details...116
Creating the Story Dependencies Column...117
Creating the Story Risk Column ..117
Creating the Story Ready Column ...118

Modifying the User Stories List..118
Creating the Project Backlog View...119

Adding a View Filter ..119
Specifying the Content ...120

Summary..121
■ Chapter 8: Iteration Backlog ..123

Review ..123
Populating the Iteration Backlog...123

Defining Iteration Tasks ...123
Managing Defects ...124

■ CONTENTS

ix

Handling Issues ...124
Using the Iteration Backlog..125
Implementing an Iteration Items List ...125

Creating New Site Columns ...125
Creating the Content Types ...128

Creating the Base Content Type..128
Creating the Iteration Task Content Type ..129
Creating the Remaining Content Types ...130

Creating the Iteration Items List..131
Using the Iteration Items List ..131

Modifying the Default View ...131
Adding Tasks..133
Adding Defects and Issues ...134

Creating the Iteration Backlog ...137
Creating an Iteration Backlog View ...137
Enhancing the Iteration Form ...138

Summary..140
■ Chapter 9: Burndown Charts ...143

Review ..143
Using Burndown Charts ...143

Understanding a Burndown Chart..144
Using a Project Burndown ...144

Implementing an Iteration Burndown ...145
Defining the Iteration Burndown Stats List..146

Creating the Iteration Burndown Content Type..147
Creating the Iteration Burndown Stats List..148

Creating a Datasheet View ...148
Populating the Data ..150
Creating Iteration Views ...150

Modifying the Default View ...150
Adding New Views ..151

Customizing the New Form ...152
Creating a Developer’s Portal ..157

Creating a Web Part Page ...157
Building the Web Page..159
Adding a Chart...161

■ CONTENTS

x

Enabling the Enterprise Features ..161
Adding the Chart Web Part ..162
Configuring the Chart Data..164
Adding a Connection ..165

Displaying the Portal Page ...165
Creating a Project Burndown...167

Collecting Data Points ..167
Modifying the Project Backlog View..169
Adding a Project Page ...170

Summary..171
■ Chapter 10: Getting Organized ..175

Using Document Libraries ...175
Creating a Document Library ..175
Providing Version History ..177
Viewing Library Documents in Office ...180
Organizing Documents in Folders ..182
Customizing Your Library ..183

Using Calendars ..184
Organizing Links ...186
Putting It All Together...187
Summary..189

■ Chapter 11: Creating Test Cases ..191
Glossary ..191
Defining Test Cases...192

Breadth First, Then Depth..192
Nonfunctional Testing..192
Traceability ..192
Operation Grid...193
Organizing Test Scenarios..193

Building a SharePoint Solution..194
Creating a Test Areas List ...194
Building a Test Scenarios List ..195

Adding Site Columns ..195
Creating a Content Type ..196
Creating the List ..198
Adding Test Scenarios ..199
Using a Datasheet View..201

■ CONTENTS

xi

Building a Test Cases List ...201
Creating the Site Columns ...201
Creating the Content Type...202
Creating the Test Cases List ...204
Adding Test Cases ...205
Creating a Data Entry View ..206

Creating a Test Scenarios Page ..207
Summary..210

■ Chapter 12: Reporting Defects...211
Review ..211
Test Cycles ...212

Test Items... 212
Agile Testing...213
Test Results ..214

Implementing Test Cycles..214
Defining Test Cycles ...214

Creating the Test Status Site Column ...214
Creating the Test Cycle Content Type ..215
Modifying the Test Cycles Views ...217
Adding a Test Cycle...218

Defining Test Items...219
Creating Additional Site Columns...219
Creating the Test Item Content Type..220
Creating the Test Items List ...221

Implementing the Test Cycle Workflow ...222
Creating a Visual Studio Project ..222
Defining the Workflow..227
Implementing the Workflow Logic..228
Deploying and Running the Workflow ...231

Recording the Test Results ...233
Adding a Web Part Page..233
Performing the Tests...235

Generating Defects in the Iteration Backlog ..236
Modifying the Iteration Defect Content Type..236
Adding the Workflow Logic ..238
Deploying and Running the Workflow ...241
Modifying the Iteration Backlog ..241

■ CONTENTS

xii

Summary..242
■ Chapter 13: Testing Metrics ...243

Review ..243
Using Testing Metrics ...244

Progress Metrics ..244
Quality Metrics ..244

Coverage ..245
Initial Quality...245
Defect Removal Effectiveness..246

Analyzing Defect Source...246
Supporting Testing Metrics..247

Creating Additional Site Columns ...247
Adding the Defect Properties...247
Adding the Totals Columns..248
Adding the Calculated Columns..249

Modifying the Lists..251
Modifying the Test Items List ..252
Modifying the Test Cycles List ...253
Modifying the Iterations List ...254

Computing the Metrics...255
Reusing the Chapter12 Project ..255
Implementing the Metric Logic ...258

Modifying the InProgress Block ..258
Adding the Completed Block ...262

Running the Workflow..265
Creating Another Test Cycle ..267

Adding Defect Source Analysis ..270
Creating the Defect Source List ...271
Creating a Lookup Column ..272
Creating a Group By View...273

Summary..274
■ Chapter 14: Workflow Tasks ..279

Understanding Workflows ...279
Human-Centric Workflows ..279
State Machine Workflows...280

Defining the States..281

■ CONTENTS

xiii

Defining the Workflow Tasks...282
Tasks in SharePoint...283

Using the Tasks List ..283
Understanding the Payload ...284

Designing an Issue-Tracking System ..284
Adding an Active State ..284
Defining Resolution Types ...285

Creating the SharePoint Objects..286
Designing the Issues List ..286

Adding Site Columns ..286
Creating the PM Issue Content Type ..288
Creating the Issues List...290

Creating the Task Content Types ..291
Creating the Site Columns ...291
Modifying the Workflow Task Content Type ...294
Creating the Content Types ...296
Adding the Content Types to the Tasks List ...298

Summary..299
■ Chapter 15: State Machine Workflows ..301

Creating the Workflow Project...301
Configuring the Workflow Project ...302
Understanding Workflow States..305

Navigation..306
Initialization and Finalization ...306
Substates ..307
SetState...308
Setting Up the Workflow ..308

Defining the States ..309
Initial and Final States ..309
Adding the Remaining States...310

Implementing the Event Handlers ..311
CreateTask MethodInvoking Event...312
OnTaskChanged Events..314

Accessing Extended Properties..315
Adding the Event Handlers ..315

State Initializers ...319
Remaining Events ...320

■ CONTENTS

xiv

Using a Work Task...321
Designing the State Initialization ..321

Initializing the New State ...321
Correlation Tokens ...322
Specifying the Content Type..323

Initializing the Assigned State..324
IfElseActivity ..324
Defining Declarative Rule Conditions ..325

Initializing the Active State...329
Initializing the Resolved State..329
Initializing the Waiting State..330

Designing the Event Handlers ...331
Designing the Initial State ..331
Designing the New State...332
Designing the Assigned State ...335

Using the UpdateTask Activity ..336
Finishing the Assigned State ..338

Designing the Active State..338
Designing the Resolved State...339
Designing the Waiting State ...341

Configuring the Workflow ..344
Adding an Association Form ..345
Using the Association Data ..347
Associating the Workflow ...348

Testing the Workflow ..350
Summary..356

■ Chapter 16: Creating Custom Forms...359
Creating a Custom Task Form ...359

Connecting to SharePoint ..359
Modifying the Form Layout ...363
Publishing the Form..366
Testing the Custom Form...367

Creating the Remaining Task Forms...368
Creating a Custom Issue Form ..370

Changing the Control Type ..371
Handling Date and Time Picker Controls...372
Handling Person/Group Picker Controls ...373

■ CONTENTS

xv

Changing the Labels..375
Testing the Form ...376

Summary..378
■ Epilogue...381

■ Index ..383

■ CONTENTS

xvi

About the Author

■Mark Collins has been developing software and managing software
development projects for 30 years in a variety of industries and a wide
range of technologies. He wrote his first project plan using Microsoft
Project 1.0. Fortunately, the available tools have improved significantly. He
is often called upon to provide order and process to the project at hand.
With a pragmatic approach, he implements the ideal balance of
implementing structure while minimizing overhead.

A second underlying theme in Mark’s career has been the improvement of
software development methodologies. The process and structure applied
in development projects will determine the quality and productivity you
can achieve. To that end, Mark has developed several computer-aided
software engineering (CASE) tools. His latest application suite is called
Omega Tool (see www.thecreativepeople.com).

For questions and comments, you can contact Mark at
markc@thecreativepeople.com.

■ CONTENTS

xvii

About the Technical Reviewer

■Jeff Sanders is a published author and an accomplished
technologist. He is currently employed with Avanade Federal
Services in the capacity of group manager/senior architect, and is
also manager of the Federal Office of Learning and Development.

Jeff has years of professional experience in the field of IT and
strategic business consulting, leading both sales and delivery
efforts. He regularly contributes to certification and product
roadmap development with Microsoft, and speaks publicly on
Microsoft enterprise technologies. With his roots in software
development, Jeff’s areas of expertise include operational
intelligence, collaboration and content management solutions,
distributed component-based application architectures, object-
oriented analysis and design, and enterprise integration patterns
and designs.

Jeff is also CTO of DynamicShift, a client-focused organization specializing in Microsoft
technologies, specifically SharePoint Server, StreamInsight, Windows Azure, AppFabric, Business
Activity Monitoring, BizTalk Server, Commerce Server, and .NET. He is a Microsoft Certified Trainer, and
leads DynamicShift in both training and consulting efforts.

He enjoys spending time with his wife and daughter, and wishes he had more of it.
He may be reached at jeff.sanders@dynamicshift.com.

■ CONTENTS

xviii

Acknowledgments

First, I want to acknowledge that anything that I have ever done that is of any value or significance was
accomplished through the provision of my Lord and Savior, Jesus Christ. This book was well beyond my
own ability, and it was nothing short of God’s amazing grace that enabled me to complete it. He has
once again proven that “I can do all things through His anointing” (Phil 4:13).

Next, I want to say a big thank you to my beautiful wife, Donna. I can honestly say that I would not
be who I am if it were not for what you have sown into my life. You are the embodiment of a Proverbs 31
wife. I am truly blessed to be able to share my life with you. Thank you for your loving support and for
making life fun!

I am also very thankful for all the people at Apress who made this book possible and for all their
hard work that turned it into the finished product you see now. Everyone at Apress has made writing this
book a pleasure. Thank you!

Finally, I want to thank Jeff Sanders, Jonathan Hassell, Adam Heath, Corbin Collins, and Damon
Larson. Each of you contributed your time and talent to make this book a success. Thank you!

C H A P T E R 1

■ ■ ■

1

Introduction

The primary activity of project managers is to keep track of information. Work items are completed,
milestones are achieved, defects are reported, tests are passed . . . and the list goes on. More than simply
capturing this information, project managers need to analyze this data and provide meaningful status
reports. SharePoint is uniquely suited to this environment. As you’ll see throughout this book,
SharePoint can be used as a repository for all of these project management artifacts. Using a
combination of web and Microsoft Office applications, you can provide easy access to enter, view, and
report on your project data.

About This Book
This book is written for individuals who are tasked with providing a Project Management Information
System (PMIS). You may be a project manager who realizes the need for a better system than e-mails
and spreadsheets. Or you may be an IT/IS staff member asked to support the project management office
(PMO). The exercises in this book will show you step by step how to utilize the features in SharePoint to
build a custom solution that fits your specific needs. Each chapter will begin with an explanation of a
project management activity. This will explain the purpose of the feature that will be implemented in the
chapter. This will help the developer to understand the problem that is being solved and set the context
for why the feature should be implemented. The rest of the chapter will then provide detailed
instructions for creating the described feature. Most of the projects that are presented here can be
implemented by someone with minimal experience in SharePoint.

My approach to managing projects is based on practical application. I like ideas that work. Activities
that add little value to the overall goal steal time and focus from those that are beneficial. Unfortunately,
what works well in one environment may not be that effective in another. So flexibility is another key
factor. Having a repertoire of management techniques will help you find the right one for any given
situation. This book is intended to give you a few more tools to hang on your tool belt.

My goal in writing this book is to give you the concepts and practical examples from which you can
draw upon to create your own PMIS. I recommend that you work through all the projects in this book.
When you have finished, you’ll have a working site that you can refer back to. Then you can create your
own SharePoint site and implement the features that fit your environment, using your initial site as an
example. If you’re comfortable working with SharePoint, you could also simply read this book and then
implement the portions that fit your specific needs.

CHAPTER 1 ■ INTRODUCTION

2

Prerequisites
This book assumes that you have Microsoft SharePoint Server 2010 installed. It also relies on Microsoft
SharePoint Designer 2010, which is a free product that you can download from Microsoft. A couple of
the chapters use Visual Studio 2010 to implement some advanced features. If you don’t have Visual
Studio installed, you can still implement most of the projects in this book.

Some of the chapters assume you also have the Microsoft Office applications installed, including
Word, Outlook, and Excel. Again, you can implement most of the features without these, but because the
Office applications are so well integrated with SharePoint, they add a lot to the user experience.

Project Management Activities
This book is structured around the typical project management activities. Each chapter covers a specific
project management task. The topics included are based primarily on my experience of managing many
successful projects. This includes a variety of management styles and disciplines. Rather than attempt to
dictate any particular approach, my motivation is to give you practical techniques so you can pick and
choose, and then adapt to your specific needs.

This book is not intended to tell you how to manage a project. Instead, once you have decided how
your projects should be managed, the material in this book will show you how to create a system that
will help you do that more effectively. That being said, however, I think you’ll find that the examples
presented here will give you some good ideas that you may want to try in addition to (or instead of) your
existing activities. In each chapter I’ll also give you ideas for extending or adapting the implementation.
Feel free to be creative. The best solution is one that fits the way you work.

Requirements
A good set of requirements is the starting point for successful projects. Part 1 of this book describes ways
to capture and manage requirements. Typically, this task is performed by a business analyst, and there
are various approaches to extracting a set of requirements. This book is focused on collecting the end
result of this process. The chapters in this part show you how to use SharePoint to store the results of the
requirement-gathering process.

Implementation
Part 2 of this book demonstrates techniques for managing the implementation phase of a project. The
activities covered are based on the agile methodology. The topics covered include

• Capturing user stories

• Providing a project backlog (stack)

• Scheduling iterations (sprints)

• Tracking work items including tasks, issues, and defects

• Reporting, including burndown charts and key performance indicators (KPI)

CHAPTER 1 ■ INTRODUCTION

3

While the terminology and some of the techniques are specific to the agile methodology, the sample
implementations can be tailored to fit other development methodologies.

Testing
Part 3 of this book deals with the testing activities. It provides for storing specific test cases as well as
general testing documentation such as test plans and information about testing tools and
configurations. In this part, you’ll also provide a mechanism for recording defects and tracking their
resolution. Finally, various reporting features will be demonstrated for communicating testing progress
and overall quality indicators.

Postproduction Phase
Once the initial implementation is complete, you’ll need to handle product support and issue reporting
and resolution. In Part 4 of the book, you’ll implement a facility for reporting issues and enhancement
requests. These will be processed through a workflow that includes tasks for analysts, developers, testers,
and customer support, as appropriate. By the end of this part, you will have built a full-featured, tasked-
based issue-tracking system.

P A R T 1

■ ■ ■

1

Requirements

Requirements are a key part of any project management system. They can feed many
other project management activities during the implementation, testing, and even
post-production phases. In this section, I’ll demonstrate some techniques for
collecting and managing requirements.
 In Chapter 2, you’ll build a simple list for tracking requirements. Requirements
can be expressed in various ways, so this list will be somewhat generic and allow
attachments to provide details as appropriate. In Chapter 3, I’ll show you how you can
allow anyone to submit a requirement via e-mail. SharePoint stores these incoming e-
mails in a document library. You will also add a simple workflow to review and extract
the requirement details.
 The project demonstrated in Chapter 4 will enhance the list you implemented in
Chapter 2 by providing a mechanism for scoring each requirement. This gives you a
way to quickly prioritize the existing requirements. In Chapter 5, you’ll enhance this
list further by allowing relationships between individual requirements. You will also
allow and track communication regarding requirements by using a discussion list.

C H A P T E R 2

■ ■ ■

7

Collecting Requirements

In this chapter, you’ll create a simple list that will be used to track requirements. The remaining chapters
in this section will add more capabilities to this list.

Defining Requirements
Requirements can be expressed in many forms. For example, use cases are used to effectively
communicate processing rules for specific scenarios. Other requirements, such as system or legal
constraints, will normally be described in other formats. Deliverables, such as report definitions, are
usually best defined with a sample output provided by an image or Excel spreadsheet. Rather than trying
to force all requirements into a common format, it will usually work better to design the requirements-
tracking system to allow multiple formats.

One approach that is often used is to compile all requirements into a single document. However,
this approach makes it difficult to track individual requirements. Each requirement should be as specific
as practical and then mapped to implementation and testing plans. To account for this when a single
document is used, often the paragraph number is used as the unique identifier for mapping purposes.
This works well for the traditional waterfall approach where the requirements are fully documented
before the implementation begins. For iterative techniques this quickly becomes unmanageable.

A SharePoint list is the ideal solution. Each item is uniquely identified and can be mapped to
subsequent activities. Because a list can contain items of different types, a single requirements list can
contain many different types of requirements. The approach used in this chapter is to create a simple list
with columns that are common to all types. A single text field is used to store the requirement
description. When other formats are needed, such as a diagram or spreadsheet, these are provided as
attachments.

Creating a Project Management Site
Start by creating a SharePoint site. This site will be used for all of the projects in this book. Use the Team
Site template, as shown in Figure 2-1. This will create some standard lists, such as Tasks, Calendar, and
Shared Documents, that will be useful for managing projects.

CHAPTER 2 ■ COLLECTING REQUIREMENTS

8

Figure 2-1. Creating a new ProjectManagement site

You will create a Requirements list that will contain the following pieces of information:

• Title: Very brief summary of the requirement

• Requirement type: The format of the requirement (use case, deliverable, etc.)

• Functional area: The organizational entity requesting or primarily affected by this
requirement

• Priority: Initial assessment of the criticality of this requirement

• Description: Text field that describes the requirement

Defining Functional Areas
To allow for a dynamic list of functional areas, you’ll need to create a list that will store the possible
values. You will use SharePoint Designer to first define a content type and then create a list based on this
content type. To start SharePoint Designer, from the Site Actions menu, select the Edit in SharePoint
Designer link, as shown in Figure 2-2.

CHAPTER 2 ■ COLLECTING REQUIREMENTS

9

Figure 2-2. Starting SharePoint Designer

Defining the Content Type
In SharePoint Designer, select the Content Types link from the Navigation pane, as shown in Figure 2-3.

Figure 2-3. Selecting the Content Types link

The Content Types page lists all the existing content types. Click the Content Type button in the
ribbon to create a new content type. In the Create a Content Type dialog box, enter the name Functional

CHAPTER 2 ■ COLLECTING REQUIREMENTS

10

Area. Select Item for the parent content type, which can be found in the List Content Type group. Put
the new content type into a new group called Project Management. The completed dialog box should
look like Figure 2-4. Click the OK button to create the content type.

Figure 2-4. Creating a new content type

The Functional Area content type should now be in the content type list in the Project Management
group. Scroll to the bottom of the list and click the Functional Area link to display its properties. Then
click the Edit content type columns link to modify the list of columns. The content type should have a
single column, Title, which was inherited from the Item content type.

Add the following columns to this content type (these columns can be found in the existing site
column collection):

• Manager's Name

• E-Mail

Save the changes by clicking the Save button in the title bar. The column list should look like Figure

2-5 when you’ve finished.

CHAPTER 2 ■ COLLECTING REQUIREMENTS

11

Figure 2-5. Defining the Functional Area content type

Creating the Functional Areas List
Now you’ll create a Functional Areas list that is based on this content type. In SharePoint Designer,
select the Lists and Libraries link in the Navigation pane, as shown in Figure 2-6.

Figure 2-6. Selecting the Lists and Libraries page

In the Ribbon, click the Custom List button, as shown in Figure 2-7.

Figure 2-7. Clicking the Custom List button

In the dialog box that appears, enter the name Functional Areas, as shown in Figure 2-8, and click
the OK button.

CHAPTER 2 ■ COLLECTING REQUIREMENTS

12

Figure 2-8. Creating a new list

This list should now be included in the Lists and Libraries page. Click the Functional Areas link to
edit this list. In the Settings section, select the check box to “Allow management of content types.” Also
uncheck the box to “Display this list on the Quick Launch.” In the Content Types section, click the Add
button and then select the Functional Area content type, which should be in the Project Management
group. Then delete the Item content type and make sure Functional Area is set as the default type. These
two sections should look like Figure 2-9.

Figure 2-9. The Functional Area settings

Save the changes to this list definition.

CHAPTER 2 ■ COLLECTING REQUIREMENTS

13

■Tip It’s a good idea to adopt your naming convention early on. The most important thing to keep in mind is
consistency. It doesn’t matter so much what conventions you use as long as you use them everywhere. One
convention I use is to make the names of lists plural (e.g., Functional Areas). This is consistent with the
standard lists such as Tasks and Announcements. Content types, on the other hand, are singular, as they
represent a single object. You don’t have to follow this convention, however, and you can rename the standard
lists to match your naming preferences.

Populating the Functional Areas List
The Functional Areas list is not likely to be viewed or modified frequently so you unchecked the box to
remove it from the Quick Launch. To display this list, click the Lists link in the Quick Launch menu.
From the All Items page, click the Functional Areas link.

■Tip Notice that the list only displays the Title column. When the list was created, it was based on the Item
content type, so the view that was created only included the Title column. This list is now based on the
Functional Area content type, which includes two other columns. From the List ribbon, click the Modify View
button and add the Manager's Name and E-Mail columns to the view.

Use the Add new item link to add several functional areas. When you’re done, the list should look
like Figure 2-10.

Figure 2-10. Displaying the Functional Areas list

Defining the Requirements
Now you’re ready to define the Requirements list. Like the previous list, you’ll start by defining the
content type, but first you will need to define some new site columns. From SharePoint Designer, select
the Site Columns link in the Navigation pane.

CHAPTER 2 ■ COLLECTING REQUIREMENTS

14

Adding Custom Site Columns
You will need to create the following custom columns:

• Functional Area: A lookup column for the list you just created

• Requirement Type: A choice field to specify the requirement format

• Requirement Description: A multiline text field for entering the requirement

• Submitted By: The user who submitted the requirement

Functional Area
Now that you have created a list to store the dynamic collection of functional areas, you’ll create a
column that can be used to reference it. Click the New Column button in the ribbon and select the
Lookup column type, as shown in Figure 2-11.

Figure 2-11. Choosing the column type

In the Create a Site Column dialog box, enter the name Functional Area and create a new group
called Project Management, as shown in Figure 2-12.

CHAPTER 2 ■ COLLECTING REQUIREMENTS

15

Figure 2-12. Creating a site column

In the Column Editor dialog box, shown in Figure 2-13, select the Functional Area list as the source
for this column and choose the Title field as the one to be displayed for the value of this column. You
can also select additional columns to be included. These will be automatically added to your list or
content type when this column is added. You won’t need that for this column, so just leave them all
unchecked.

Figure 2-13. Configuring the lookup column

CHAPTER 2 ■ COLLECTING REQUIREMENTS

16

■Tip I left the “Allow blank values?” check box selected. That will make this an optional column on the
Requirements list. If this is an important piece of information in your requirements process, you might want to
make it required by unchecking this box. Also, you can select the “Allow multiple values?” check box, which will
allow multiple functional areas to this requirement. This could be useful depending on how you intend to use this
data.

Save this column definition by clicking the Save button in the title bar.

Requirement Type
Next, you’ll create a column to define the type of requirement (e.g., use case, legal constraint, or
deliverable). This will use a Choice column type where the possible values are hard-coded in the column
definition.

■Note Unlike functional areas, requirement types are more static, so defining a hard-coded list of allowed
values should be acceptable. Arguably, someone could devise new ways of expressing a requirement. However, it
is a relatively simple matter for a developer or power user to add a new option using SharePoint Designer.
Functional areas are designed so that an end-user can set up new areas themselves. These are the kinds of trade-
offs that you will need to make as you design your own system. Perhaps in your organization, though, functional
areas are static and a Choice column is sufficient.

Click the New Column button in the ribbon and select the Choice column type. Enter the name
Requirement Type and select the Project Management group (that you just created), as shown in Figure
2-14.

CHAPTER 2 ■ COLLECTING REQUIREMENTS

17

Figure 2-14. Creating the Requirement Type column

In the Column Editor dialog box, enter the possible values for this column. You can use the values
shown in Figure 2-15 or enter types that are more suitable for your scenario. I added an Other type, set
this as the default value, and made the column required (by leaving the “Allow blank values?” box
unchecked). You could remove the default value, which will require the user to choose a type before
submitting the requirement. Also, you have the option to allow the users to add other values not defined
by this list. To do that, select the “Allow “fill-in” choices” check box.

Figure 2-15. Configuring the Requirement Type column

Additional Columns
Add the remaining columns as follows:

CHAPTER 2 ■ COLLECTING REQUIREMENTS

18

• Requirement Description: Use the Multi Lines of Text column type.

• Submitted By: Use the Person or Group column type.

For the Submitted By column, there are several ways to configure this in the Column Editor. You can

choose to allow blank values and also to allow multiple values. You can limit this to individuals or also
allow groups. You can also choose which user field is displayed in the column—such as the Account
(login), Name, or Work e-mail. A suggested configuration is shown in Figure 2-16.

Figure 2-16. Configuring the Submitted By column

Put these site columns in the same Project Management group to keep all your custom columns
together. The list of custom columns should look like Figure 2-17.

Figure 2-17. The list of new column definitions

Defining the Content Type
Now you’re ready to create a Requirement content type, which is pretty easy once the columns are
defined. Click the Content Type link in the Navigation pane. Then click the Content Type button in the
ribbon. Enter the name Requirement and select Item as the parent content type. Put this in the same
Project Management group that you created for the Functional Area content type, as shown in Figure 2-
18.

CHAPTER 2 ■ COLLECTING REQUIREMENTS

19

Figure 2-18. Creating the Requirement content type

Select the Requirement content type, which will display the Content Type Settings page. Click the
Edit content type columns link. There should be a single column named Title, which was inherited from
the Item content type. Add the following columns to this content type:

• Requirement Type

• Functional Area

• Priority

• Submitted By

• Requirement Description

• Date Created

CHAPTER 2 ■ COLLECTING REQUIREMENTS

20

■Note Some of these columns are standard columns shipped with SharePoint. You’ll need to find the group that
these columns are in. Within each group, the columns are listed in alphabetical order. You can also use the search
option provided by the Site Column Picker dialog box. Just start entering the column name in the search box, and
the list will show only matching columns.

The completed column list should look like Figure 2-19.

Figure 2-19. The completed column list

Creating the Requirements List
The last step is to create a new list based on the Requirement content type. You’ll do this the same way
that you created the Functional Areas list. Select the Lists and Libraries link in the Navigation pane and
then click the Custom List button in the ribbon. Enter the name Requirements, as shown in Figure 2-20.

Figure 2-20. Creating a new Requirements list

CHAPTER 2 ■ COLLECTING REQUIREMENTS

21

Select the Requirements list to display the List Settings page. Select the “Allow management of
content types” check box. Add the Requirement content type to this list, set this as the default content
type, and then remove the Item content type.

Testing the Requirements List
Go to the SharePoint site and select the Requirements list. This list will be empty and will only include the
Title column.

Defining the All Items View
Just like with the Functional Areas list, you will need to add the desired columns to the view. From the
List ribbon, click the Modify View button. Select the columns that you want displayed and specify the
order they should appear on the page. The completed section should look like Figure 2-21.

Figure 2-21. Defining the All Items view

CHAPTER 2 ■ COLLECTING REQUIREMENTS

22

Adding Requirements
Now your list is ready to use. Click the Add new item link to create a new requirement. The New Item
form should look like Figure 2-22.

Figure 2-22. Entering a new requirement

Notice that the Functional Area drop-down list contains the areas that you added to the associated
list. The Requirement Type defaulted to Other, but the other values were available in the drop-down list.
After saving this form, the Requirements list should look like Figure 2-23.

Figure 2-23. The Requirements list with a new entry

Notice the ID column, which is assigned by the system. This is a unique identifier that can be used
when mapping this requirement in future activities.

CHAPTER 2 ■ COLLECTING REQUIREMENTS

23

Summary
In this chapter you created a Requirements list to store and manage requirements as they are identified.
In the process, you also used several SharePoint techniques, including

• Defining new site columns using SharePoint Designer

• Creating a Lookup column based on an associated list

• Creating a Choice column using hard-coded values

• Creating new content types using SharePoint Designer

• Creating custom lists based on a content type

In subsequent chapters you will build upon this initial implementation.

C H A P T E R 3

■ ■ ■

25

Processing Incoming E-mail

In this chapter you’ll provide a facility that allows individuals the ability to contribute to the
requirement-gathering process by simply sending an e-mail.

Incoming E-mails
The requirements process often requires input from people outside your organization. They may not
have access to your SharePoint site, or they may prefer to send an e-mail with their requirements instead
of filling out a form. You may want to empower your end users to submit feedback, which can be helpful
in planning a future release. You might need to accept unsolicited enhancement requests from your
internal or external customers.

Understanding SharePoint’s E-mail Capability
You could allow these to accumulate in an inbox and periodically review them with Outlook talking an
appropriate action. However, there is a better way to keep track of these. SharePoint provides a facility
for handling incoming e-mails. This provides a convenient way to archive these e-mails and make them
available to appropriate individuals.

In addition to lists, which you used in the previous chapter, SharePoint also provides document
libraries. A document library is used to store documents such as pictures or spreadsheets. Anything that
can be saved as a file can be stored in a document library. SharePoint also provides the infrastructure for
controlling access to these libraries.

SharePoint allows you to enable a document library to accept incoming e-mails. As part of this
configuration, you’ll assign an e-mail address to the document library. Once this is set up, the e-mails
sent to that address, along with any attachments, are automatically added to the document library.

Another advantage of using a document library to store the e-mail is the ability to create a workflow
for the incoming e-mail. You can use SharePoint workflows to notify someone of the new document or
assign a task for someone to review the incoming e-mail.

CHAPTER 3 ■ PROCESSING INCOMING E-MAIL

26

Configuring Incoming E-mail
In this chapter I’ll show you how to set up and use incoming e-mail support in SharePoint. The first step
is to configure your SharePoint server to support incoming e-mails. There are two ways to do this, and
they are referred to as automatic mode and advanced mode. In automatic mode, you will run the Simple
Mail Transfer Protocol (SMTP) server on the SharePoint server. The SharePoint server communicates
directly with the SMTP server. In advanced mode, the SMTP server can run at a different location. You
must tell the SharePoint server the location of the drop folder in which the incoming e-mails will be
placed. SharePoint checks this folder periodically and processes any new items that have been
“dropped” there.

■Note The SMTP server provided with Windows Server implements simple file-based e-mail processing.
Incoming messages are stored as a file in a drop folder. It has no support for individual mail boxes. In an e-mail
address, the text after the @ symbol specifies the server that the message is sent to, and the text to the left of the
@ symbol specifies the mailbox on that server. The SMTP server ignores the mailbox information. All messages
sent to that server are placed in a single drop folder.

Using Automatic Mode
The easiest way to configure incoming e-mail is to simply install the SMTP server on the SharePoint
server and configure SharePoint to use automatic mode.

■Caution The SMTP server can only be used on a server OS. If you are running SharePoint on a desktop OS
(Vista or Windows 7) you will need to use advanced mode. Also, if you are using a SharePoint farm, you must
install the SMTP server on each of the SharePoint servers in the farm.

Installing the SMTP Server Feature
To install the SMTP server, run the Server Manager application, which can be found in the
Administrative Tools Start menu. Right-click the Features node and select Add Features, as shown in
Figure 3-1.

CHAPTER 3 ■ PROCESSING INCOMING E-MAIL

27

Figure 3-1. Adding new features

In the Add Features Wizard, select the SMTP Server feature, as shown in Figure 3-2.

Figure 3-2. Selecting the SMTP Server feature

If there are other features that are required by the SMTP server, you’ll see a pop-up informing you of
the required features. If that happens, click the Add Required Features button, and these features will be
added as well. The confirmation page is then displayed. It will list the SMTP server plus any prerequisite
features.

CHAPTER 3 ■ PROCESSING INCOMING E-MAIL

28

Click the Install button to begin the installation. The progress page will be displayed. When the
install has finished, the results page shown in Figure 3-3 is displayed.

Figure 3-3. Results page showing a successful installation

Starting the SMTP Service
The SMTP server is implemented as a Windows service. For some reason, by default, this service is set up
to be started manually. You can verify this by selecting the Services application from the Administrative
Tools Start menu. Find the Simple Mail Transfer Protocol (SMTP) service and check its startup type. It is
normally set to Manual, as shown in Figure 3-4.

Figure 3-4. Checking the SMTP service status

CHAPTER 3 ■ PROCESSING INCOMING E-MAIL

29

Right-click this service and choose Properties. In the Properties dialog box, change the startup type
to Automatic. After you have applied this change, click the Start button to start the service. In the future,
the service should start by itself whenever the server is rebooted.

Configuring the SMTP Server
To configure the SMTP server, you’ll need to use version 6.0 of IIS Manager. This can be found in the
Administrative Tools menu, as shown in Figure 3-5.

Figure 3-5. Starting IIS Manager (version 6)

A default domain is created for you based on the fully qualified Active Directory name for this
server, as shown in Figure 3-6.

Figure 3-6. Showing the default e-mail domains

If you right-click this domain and choose Properties, you can view and edit the drop folder (see
Figure 3-7).

CHAPTER 3 ■ PROCESSING INCOMING E-MAIL

30

Figure 3-7. Setting the drop folder

By default, this will be in the C:\inetpub\mailroot\Drop folder. You can change this to a different
location, but it must be on a local disk.

Configuring SharePoint
Launch the SharePoint 2010 Central Administration application, which you can find in the Start menu in
the Microsoft SharePoint 2010 Products folder. From the System Settings page, click the Configure
incoming e-mail settings link, as shown in Figure 3-8.

Figure 3-8. Selecting the incoming e-mail settings

CHAPTER 3 ■ PROCESSING INCOMING E-MAIL

31

The Configure Incoming E-Mail Settings page, shown in Figure 3-9, will be displayed.

Figure 3-9. The Configure Incoming E-Mail Settings page with Automatic mode

Configuring SharePoint for automatic mode is really easy. Click the Yes radio button for the “Enable
sites on this server to receive e-mail?” option. For the settings mode, choose Automatic. You can leave
the rest of the values with their default settings.

Using Advanced Mode
While automatic mode is pretty simple to set up, there are situations in which it is not available.
Probably the most common is when you install SharePoint on a desktop OS. If the SMTP server is not
installed on the local machine, the Configure Incoming E-Mail Settings page, shown in Figure 3-10, will
not allow the Automatic option to be selected.

CHAPTER 3 ■ PROCESSING INCOMING E-MAIL

32

■Caution SharePoint can be installed on a desktop OS such as Windows 7; however, this is not supported for
production environments.

You will need to have an SMTP server somewhere that will receive the incoming messages. One
option is to install the Windows SMTP server on a different server on your network. You can follow the
same instructions that were explained earlier. You might be able to configure your existing e-mail
system to save the incoming messages to a drop folder in a compatible format.

In the Configure Incoming E-Mail Settings page, select advanced mode and then enter a path to the
drop folder, as shown in Figure 3-10. Make sure that you set up the permissions to the drop folder so the
SharePoint service account has full control.

Figure 3-10. The Configure Incoming E-Mail Settings page with advanced mode

CHAPTER 3 ■ PROCESSING INCOMING E-MAIL

33

■Tip To send an e-mail to SharePoint, the e-mail address will be <list name>@<server name>. The server
name is the domain name specified when configuring the SMTP server. By default this is the fully qualified Active
Directory name for the server. In my example this is SVR01.internal.thecreativepeople.com. This is probably
not an address that is reachable from outside your network. If you are using Microsoft Exchange or a similar
enterprise e-mail system, you should consider setting up an address on your e-mail system and configure this to
forward the e-mail to the SharePoint server.

Configuring an Incoming List
Now that SharePoint is configured to receive e-mails, you can create a list and set it up to receive
incoming e-mails. Launch SharePoint and go to the ProjectManagement site that you set up in Chapter 2.

Creating the Incoming Requirements Document Library
From the Site Actions menu, select the More Options link, as shown in Figure 3-11.

Figure 3-11. Selecting the More Options link

Select the Document Library template and enter the name Incoming Requirements.

CHAPTER 3 ■ PROCESSING INCOMING E-MAIL

34

Enabling Incoming E-Mails
Click the Library Settings button in the Library ribbon, as shown in Figure 3-12.

Figure 3-12. Selecting the library settings

The Document Library Settings page is shown in Figure 3-13.

Figure 3-13. The Incoming e-mail setting slink

Select the Incoming e-mail settings link, which can be found in the Communications section. This
will display the Incoming E-Mail Settings page shown in Figure 3-14.

CHAPTER 3 ■ PROCESSING INCOMING E-MAIL

35

Figure 3-14. Configuring incoming e-mails

To enable this list to receive e-mails, select the Yes radio button in the Incoming E-Mail section. You
will also need to specify a unique e-mail address. The portion of the e-mail address to the right of the @
symbol is fixed and cannot be changed. This is the address of the SharePoint server (or an SMTP server
that is receiving mail on behalf of this SharePoint server). This address was configured previously using
the SharePoint 2010 Central Administration application. The SMTP server puts all e-mails into a single
drop folder and ignores the portion of the e-mail address to the left of the @ symbol.

SharePoint, however, only looks at the left-hand potion of the e-mail address. It uses this to
determine which list the e-mail should be stored in. A single drop folder will be used for this server.
Because of this, the address entered here must be unique across the entire server. This includes all sites
and subsites on this server. If you enter an address that has been used somewhere on this server, you’ll
see the error shown in Figure 3-15.

CHAPTER 3 ■ PROCESSING INCOMING E-MAIL

36

Figure 3-15. Error indicating that the address has already been used

Handling Attachments
The incoming e-mails can have attachments, and there are several options to control how these are
handled. The first option is to include all attachments in the root folder. This will create a document in
the list for each attachment. Figure 3-16 shows the library contents after two e-mails have been received.

Figure 3-16. The library contents with two incoming e-mails

The drawback of this approach is that the attachments are not linked together; they are each listed
as individual documents. For this reason, it is generally preferred to group attachments into a folder. You
can group these by subject or by sender. Grouping by subject is the most common approach. Figure 3-17
shows the contents of the library with subject grouping after the same two e-mails have been received.
Notice that both items are folder objects.

Figure 3-17. The library contents with subject grouping

If you click one of these items, you’ll see the contents of the folder, as shown in Figure 3-18.

CHAPTER 3 ■ PROCESSING INCOMING E-MAIL

37

Figure 3-18. Displaying the folder contents

If another e-mail is received with the same subject, its attachments are stored in the same folder.

■Caution You cannot have two documents in the same folder with the same name. If a subsequent e-mail is
received that has the same subject as a previous e-mail, the attachments are “added” to the existing folder.
However, if a file with that name already exists, the existing file is overwritten or the new file is ignored, depending
on how the list is configured. The “Overwrite file with the same name?” radio buttons control this behavior.

The “Save original e-mail?” option is somewhat misleading. If this is set to Yes, the e-mail will be
saved as a document in the library. If set to No, only the attachments are stored in the list, and the e-mail
itself is ignored. If saved, the e-mail is stored as an EML file. Unfortunately, SharePoint does not have a
built-in viewer for files of this type. If you select this document, a download dialog box will appear. To
view the contents, save the file and then open it with Outlook.

You should think through how you expect people will use this feature to submit requirements and
configure the incoming e-mails accordingly. For example, if the requirement will generally be in the e-
mail itself and attachments rarely used, put all the documents in the root folder and make sure you
choose to “save” the original e-mail. If the requirement is always specified in an attachment, you should
put everything in the root folder and not save the e-mail. This is equivalent to uploading the
requirements document to the library. If you can’t rely on any consistency, your safest option is to group
by subject, or perhaps sender.

■Tip If you need to customize the way incoming e-mails are handled, you can implement your own custom
event handler in Visual Studio. Override the SPEmailEventReceiver class to add your custom logic. Use other
classes in the SharePoint object model to add or update list items as necessary.

Adding a Workflow
As a final step to this project, you’ll add a simple workflow to this list to notify someone when a new e-
mail is received. This workflow will add an item to their task list. Click the Workflow Settings button on
the Library ribbon, as shown in Figure 3-19.

CHAPTER 3 ■ PROCESSING INCOMING E-MAIL

38

Figure 3-19. Selecting the Workflow Settings button

Associating the Approval Workflow
This will display the existing workflows associated with this list. The Workflows page shown in Figure 3-
20 indicates that there are no existing workflows.

Figure 3-20. The Workflows page showing no existing workflows

Click the Add a workflow link, and the standard workflow association page shown in Figure 3-21 will
be displayed.

CHAPTER 3 ■ PROCESSING INCOMING E-MAIL

39

Figure 3-21. The completed association page

Select the Approval – SharePoint 2010 workflow. This workflow will create one or more tasks for
someone to review and approve the document that the workflow is executed for. Enter the workflow
name Review Requirement. You can use the default values for the task and history lists. The task list
indicates the list that will contain the approval tasks that will be generated. The history list contains
information about the execution of the workflow. Check the “Start this workflow when a new item is
created” check box. This specifies that a workflow should be automatically started when a new item is
added to the library. The completed form should look like Figure 3-21.

Click the Next button, which will display the workflow-specific page shown in Figure 3-22.

■Note When associating a workflow to a list or library, there are always two association forms. The first is a
standard form (see Figure 3-21) that is used by all workflows. The second form is workflow specific (see Figure 3-
22).

CHAPTER 3 ■ PROCESSING INCOMING E-MAIL

40

Figure 3-22. The workflow-specific association page

This workflow will create a task for each person that you have set up as a reviewer. In the Reviewers
section, select a person or group that you want to review this requirement. If you select a group, the
Expand Groups check box determines how the task should be assigned to the group. If Expand Groups is
not selected, the task is assigned to the group, and anyone in the group can complete the task. If
selected, a task is created for each person in the group. This means that every person in the group must
review the document. If multiple tasks are created, the Order drop-down specifies whether they are
assigned serially (one at a time) or in parallel (the reviews may be performed concurrently).

You can specify a due date for these tasks, either as a specific date or based on a duration from the
time the task is assigned. I set this up for a duration of two days, which means that each reviewer will
have two days to complete the task from the time it is assigned to them. Keep in mind that if you are
using the serial option, the overall duration for the review process is compounded.

In the Reviewers section, you can also create additional stages. This allows you to fine-tune the
review process. For example, you can have one person or group perform an initial review followed by a
subsequent group once the first stage has completed.

Click the Save button to complete the association.

CHAPTER 3 ■ PROCESSING INCOMING E-MAIL

41

Testing the Workflow
The workflow is designed to start automatically when an item is added to the list. However, you can also
start it manually. To start a workflow on an existing item, select the item in the list and then click the
Workflow button in the Document ribbon. This will display the Workflows page shown in Figure 3-23.

Figure 3-23. The Workflows page

This page shows all the workflows that have been associated with this list. Currently only the Review
Requirement workflow is available. The page also shows the status of any currently running or completed
workflow instances. Click the Review Requirement link to start this workflow.

Completing the Initiation Form
This will display a form that looks like the workflow-specific association form. This is called the initiation
page, and it is often very similar to the association page. The association page defines all the default
values for the workflow parameters. When starting a workflow manually, the initiation form is displayed
so you can adjust the parameters that are sent to the workflow for this instance.

■Note When a workflow is started automatically, the initiation form is not used, and the values from the
association form are used instead.

You can use all the default values on the initiation form or modify them if you prefer. Click the Start
button to begin the workflow. After a few seconds, the Incoming Requirements library will be displayed.
The Review Requirement column indicates the current status of that workflow. It should indicate In
Progress, as shown in Figure 3-24.

CHAPTER 3 ■ PROCESSING INCOMING E-MAIL

42

Figure 3-24. The Incoming Requirements library showing an In Progress workflow

Completing the Approval Task
The workflow should have created an approval task. Go to the Tasks list, and you should see a new item.
Select this task, and the task form should look like Figure 3-25.

Figure 3-25. The approval task form

The top of this form states “This workflow task applies to New Requirement.” If you click the New
Requirements link, the folder containing the e-mail and its attachments will be displayed. The reviewer
can examine the submitted requirements and add a new item to the Requirements list. When finished,
they will click the Approve button on the task form. They could also choose to reject this requirement by
clicking the Reject button. If the requirement is approved, the task will be marked Complete and the
Incoming Requirements document will be marked Approved.

CHAPTER 3 ■ PROCESSING INCOMING E-MAIL

43

Summary
In this chapter you learned how to do the following:

• Create a document library that accepts incoming e-mails

• Implement a simple document approval workflow

You implemented these as part of the requirement-gathering process. As you work through the

remaining chapters in this book, you will probably think of ways these techniques can be employed to
facilitate other project management activities.

C H A P T E R 4

■ ■ ■

45

Managing Requirements

In this chapter you’ll enhance the Requirements list that you created in Chapter 2. First, you’ll implement
a way to score each requirement. This will provide a quantitative approach for determining which
requirements should be implemented first. Then you’ll add a feature to specify dependencies since
some requirements will rely on other related requirements. With these enhancements you’ll be able to
more easily plan the project and decide which requirements are in scope.

Analyzing Requirements
As you start gathering requirements, you could have hundreds, even thousands of them. So how do you
decide which to work on first?

Prioritizing Requirements
You should devise a mechanism for scoring each requirement based on a set of factors that fit your
environment. A factor is an estimate of the impact that implementing this requirement would have.
Some examples are:

• Improved customer service

• Time/money saved

• Increased market share

These factors can be either positive or negative. A factor such as time/money saved is a positive one;

the more time saved, the better. You can also use negative factors such as required development or risk.
Requirements that take more effort to implement would lower their overall score. This approach allows
you to identify the low-hanging fruit; the items that have a big impact with relatively little effort.

The first step in this process is to decide on what factors work for you. When evaluating a
requirement, what things about it would increase (or decrease) its importance? Ultimately, these should
measure how implementing this requirement will help your organization fulfill its mission statement or
operational objectives. Each factor should be assigned a relative weight, as some will have a bigger
impact than others. I recommend using scale from –10 to 10 and assign the negative factors a negative

CHAPTER 4 ■ MANAGING REQUIREMENTS

46

weight. The most important positive factor should be given a 10 and all other factors should then be
assigned a weight based on their relative importance.

■Tip If you use a scale with positive numbers only, such as 1 to 10, when computing an overall score, you’ll
need to remember to subtract the score for negative factors instead of adding them. Using negative numbers for
the relative weight may seem a bit confusing, but it simplifies the subsequent computation.

The next step is to score each requirement against these factors. Use a score of 1 to 10. Again, assign
a 10 to the highest requirement and then score the remaining ones relative to that one. This can be
difficult to do because you may not have all the requirements identified yet. You may want to define
scale to use for each factor. For example, for the development-required factor, you can specify the score
to use for each predefined range of person-days to implement. For other factors this may be less
quantitative, but it is a good idea to define some type of criteria so the scoring is consistent for all
requirements.

There are some requirements that are, well, required. These are essential, non-negotiable
requirements. These could be legal or operational constraints that are imposed on the project. Or they
could be requirements that are so important that it would be pointless to implement the project without
them. For these requirements, instead of scoring them, you’ll just need to identify them as required.

Requirement Dependencies
Requirements should be detailed and specific. They may start out rather general, but as the process
evolves they will be broken down into smaller, more specific requirements. At that level, requirements
tend to be interrelated. For example, one requirement may be to collect sales tax and another to report
the sales tax collected on the income report. In order to report on sales tax, the system must first collect
it. In this case, the second requirement is dependent on the first.

When planning your project, you’ll need to keep in mind how these requirements are related. A
high-priority requirement may be dependent on a low-priority requirement. If the first is added to the
project, the second must be also, even if it otherwise would fall below the cutoff line.

Another thing to be aware of is how breaking a requirement into smaller pieces can affect their
individual scores. Take the sales tax scenario as an example. Collecting the tax may take a lot of effort
and have little benefit, while the report may be easy and have more visibility. In this case, the first may
get a low score and the second a much higher score. To compensate for this, you may want to score
these together as a single requirement and give both the same score.

Adding Factors
You will need to add some columns to the Requirements list where you can score each of the factors. In
the instructions that follow, I will use generic names like Factor1. You can do the same, but you will
eventually need to decide on what factors you’ll want to use and name these columns accordingly.

CHAPTER 4 ■ MANAGING REQUIREMENTS

47

Using the List Settings Page
Open the ProjectManagement site that you used with the previous chapters and select the Requirements
list. In the List ribbon, click the List Settings button, as shown in Figure 4-1.

Figure 4-1. Selecting the list settings

Scroll down to the Columns section and you’ll see the columns that are currently defined for this
list. This section should look like Figure 4-2.

Figure 4-2. The Columns section of the Requirements list settings page

Adding a Factor
Click the Create column link, which appears just after the list of existing columns. In the first section of
the Create Column page, shown in Figure 4-3, you’ll specify the name and the column type. For the
column type, you have the same choices that you had when using SharePoint Designer in Chapter 2.

CHAPTER 4 ■ MANAGING REQUIREMENTS

48

Figure 4-3. Specifying the Name and Type

Enter a name for this factor. I used Factor1, but you can choose a more meaningful name. For the
type, select Number. Notice that the remainder of the page is updated based on your selection because
each type has different options available. Enter the information in the Additional Columns Settings
section, as shown in Figure 4-4.

Figure 4-4. The Additional Column Settings section

The description only shows the first two lines of text, but you can have more than that. This is a
good place to define the scale that should be used for this factor. Indicate that this column must have a

CHAPTER 4 ■ MANAGING REQUIREMENTS

49

value and specify the default value of 0. You can define the minimum and maximum values allowed for
this column. Also, you should specify the number of decimal places to be zero since you’re only working
with whole numbers. If you click the “Add to all content types” check box, this column will also be added
to the Requirement content type as well as the Requirements list. Click the OK button to add this column.

Adding Additional Factors
The List Settings page should be displayed, which will now include the new column. The columns are
listed in alphabetical order, so the new column may not be at the end of the list. Repeat the following
steps to add as many factors as you want:

1. Click the Create column link.

2. On the Create Column page, enter the name of the factor.

3. Specify the type as Number.

4. Enter a description for this factor (include scale information).

5. Require a value and set the default to 0.

6. Specify the minimum and maximum allowed values to 0 and 10, respectively.

7. Specify the number of decimal places as 0.

When you’re done, the Column section of the List Settings page should look like Figure 4-5.

Figure 4-5. The updated column list

CHAPTER 4 ■ MANAGING REQUIREMENTS

50

Scoring a Requirement
Now that the factors have been added to the list, edit one of the existing requirements and specify the
score for each factor. For each factor there should be a field that looks like Figure 4-6.

Figure 4-6. Entering a factor score

The description that you entered for this factor is displayed below the text box. You can place text
here that will help the user enter consistent and accurate scores. The asterisk next to the factor name
indicates that this is a required field.

■Note For new requirements, the score for each factor should default to 0. However, the default value logic is
only applied when the item is first created. Since this is an existing record, the factors are all blank, and the edit
form should require you to enter a value for each before you can save the record.

After entering a score for each factor, the requirement should look like Figure 4-7.

Figure 4-7. A newly scored requirement

Calculating the Overall Score
Now that you have scored the requirements using the defined factors, it would be very useful to compute
an overall score based on relative weight of each of the factors. To do that, you’ll use a calculated
column.

The overall score is computed by multiplying the score for that factor by the relative weight assigned
to the factor. These products are then summed to arrive at the overall score. The relative weights are
fixed; they are the same for all requirements. The actual scores can be different for each requirement.
For example, assume Factor1 has a relative weight of 10, Factor2 has a relative weight of 5, and Factor3
has a weight of –7. In this case Factor1 is twice as important as Factor2. Factor3 is somewhere between
these but has a negative value because the higher the score, the less desirable this requirement is.

In this scenario, the overall score is computed by adding the score for Factor1 × 10, plus the score
for Factor2 × 5, plus the score for Factor3 × –7.

CHAPTER 4 ■ MANAGING REQUIREMENTS

51

Adding a Calculated Column
The value of a Calculated column is determined by a formula that you specify. This formula can include
other columns in the list, as well as many built-in functions.

From the List ribbon, click the List Setting button. In the List Settings page, click the Create column
link just like you did to add the factors. For the column name, enter Overall Score and select the
Calculated column type. Enter the formula as follows:

=([Factor1]*5)+([Factor2]*7)+([Factor3]*10)+([Factor4]*-4)+([Factor5]*2)

This formula simply multiplies each factor score by the relative weight determined for that factor
and then adds up the products. You may have different column names. Instead of these generic names,
use the correct column names from your Requirements list. Also, the weights I used are just random
numbers; you will need to use the weighted values that you determined for each factor.

■Tip To add a column to the formula, you can select the column from the list box to the right of the formula and
click the Add to formula link. When a column is used in a formula and the name contains spaces, it must be
enclosed by square brackets (i.e., []).

Change the data type returned to Number and set the number of decimal places to 0. The completed
form should look like Figure 4-8.

Figure 4-8. Entering a Calculated column definition

CHAPTER 4 ■ MANAGING REQUIREMENTS

52

Click the Save button to add this column. Select the Requirements list and you should now see the
Overall Score column in the view.

■Tip For more information about formulas in a Calculated column, go to http://msdn.microsoft.com/en-
us/library/bb862071.aspx. This page provides lots of examples of formulas that perform string manipulation,
mathematical and statistical functions, date comparisons and formatting, and conditional logic.

Modifying the View
The Overall Score should have been added to the default view. Now that you have this column, you
probably don’t need the individual factor scores in the view. From the List ribbon, click the Modify View
button, as shown in Figure 4-9.

Figure 4-9. Clicking the Modify View button

On the Edit View page, unselect the factor columns (Factor1, Factor2, etc., or whatever you named
your columns). Make sure you leave Overall Score checked. Click the OK button to save your changes.
The Requirements list should now look like Figure 4-10.

Figure 4-10. The default view with the overall score

The view form still shows the individual factor scores, as demonstrated in Figure 4-11.

CHAPTER 4 ■ MANAGING REQUIREMENTS

53

Figure 4-11. The View form showing all factor scores

Supporting Non-Negotiable Requirements
Before you finish up this feature, you’ll add a flag to indicate that this is a required (or non-negotiable)
requirement.

Adding the Required Flag
Go to the List Settings page and click the Create column link. On the Create Column page, enter the
name as Required and choose the Yes/No column type. Select the default value of No because, hopefully,
most of your requirements will not fall into this category. The completed form should look like Figure 4-
12.

CHAPTER 4 ■ MANAGING REQUIREMENTS

54

Figure 4-12. Creating the Required column

Modifying the Overall Score Formula
For required items, the score is not applicable. To avoid any confusion, it would be best to not display a
score (even if the user enters values for one or more factors). To do that, modify the Overall Score
formula to return 0 if it has the Required flag. From the List Settings page, select the Overall Score
column. Modify the formula as follows:

=IF(Required,0,(Factor1*5)+(Factor2*7)+(Factor3*10)+(Factor4*-4)+(Factor5*2))

If the Required flag is set, the formula returns 0.

■Note The square brackets are not required if the column name does not have spaces. Notice that they have
been removed from the formula that you originally entered.

Sorting the View
The last step is to sort the list so that required and higher-scoring items are at the top. Go back to the
Requirements list and click the Modify View button from the List ribbon. In the Sort section, choose

CHAPTER 4 ■ MANAGING REQUIREMENTS

55

Required as the first sort column and select the “Show items in descending order” option. Then choose
Overall Score as the second sort column, and also use the descending-order option for this column. The
completed section should look like Figure 4-13.

Figure 4-13. Specifying the sort criteria

The default view should now sort the requirements, putting the required items first and then sorting
the remaining items based on their overall score. The view should look like Figure 4-14.

Figure 4-14. The sorted view

Supporting Dependencies
The next feature that you’ll implement is to provide the ability to define dependencies between
individual requirements.

Adding a Lookup Column
You’ll now enhance the Requirements list to allow you to specify dependencies. You’ll do this using a
multivalued Lookup column. From the List Settings page, click the Create column link. On the Create
Column page, enter the name as Dependencies and select the Lookup column type.

In the Additional Column Settings section, select the Requirements list from the “Get information
from” drop-down box. Select Title as the column to be used, which should be the default value. Check
the “Allow multiple values” check box. This will allow a requirement to define multiple dependencies.
The completed form should look like Figure 4-15.

CHAPTER 4 ■ MANAGING REQUIREMENTS

56

Figure 4-15. Specifying the additional column settings

Click the Save button to create the new column.

Adding a Dependency
Go to the Requirements list, select one of the items, and edit it. The edit form should include the
Dependencies column, as shown in Figure 4-16.

Figure 4-16. Editing the dependencies

CHAPTER 4 ■ MANAGING REQUIREMENTS

57

Because the column supports multiple values, the edit form lists all the requirements (in
alphabetical order) and provides an Add button to add an item to the Dependencies list. You can also
select an existing dependency and use the Remove button to remove it from the Dependencies list.

Select one of the other requirements, click the Add button, and then save the form. The view will be
displayed, and the selected requirement will be shown in the Dependencies list. The view should look like
Figure 4-17.

Figure 4-17. The updated view showing the dependencies

Summary
In this chapter you provided a facility for scoring each requirement based on specific factors. The overall
score was then calculated based on the weighted value of each factor. You also added a flag to indicate
those requirements that are non-negotiable. Finally, the view was sorted to put higher-priority
requirements at the top of the list. This allows you to easily see the more important requirements. You
also implemented a feature for defining dependencies between individual requirements.

In this chapter, instead of using SharePoint Designer, you used the List Settings page in SharePoint
to modify the Requirements list and the underlying Requirement content type. You used a Calculated
column to compute the overall score and a multivalued Lookup column to specify dependencies.

C H A P T E R 5

■ ■ ■

59

Supporting Discussions

Often during the requirement-gathering process there can be negotiation between individuals before
arriving at the final requirement. While the final result is the primary artifact used for managing the
project, sometimes the internal discussion can be a useful reference. In this chapter I’ll show you how to
add discussions to your SharePoint site. Specifically, you will do the following:

1. Create a discussion list, which will allow users to post comments and respond to
previous posts.

2. Link a discussion to a specific requirement so you can organize the discussions.

3. Try different ways of displaying the various threads within a discussion.

4. Use web parts to display both a requirement and the related discussion on the
same page.

5. Use Outlook to view the discussion and post replies.

■Note A discussion board in SharePoint is implemented as a list containing the Discussion content type. The
Discussion content type is derived from the Folder content type and is basically a specialized folder. The items
that individuals post to a discussion use the Message content type and are stored in the Discussion folder. In
addition to storing the contents of the posted message, the Message content type has several columns that are
used for maintaining the discussion threads. Users don’t always reply to the last post; sometimes they reply to a
previous post, which starts another thread. SharePoint provides several view formats to allow you to see the posts
and the threads they are part of.

Adding the Requirement Discussions List
Open the ProjectManagement site that you have been using. From the Site Actions menu, select the More
Options link. Filter the options to List types, only and select the Discussion Board template. Enter the
name Requirement Discussions, as shown in Figure 5-1.

CHAPTER 5 ■ SUPPORTING DISCUSSIONS

60

Figure 5-1. Creating the Requirement Discussions list

Open the List Settings page. Notice that this list supports two content types, Discussion and
Message, as explained earlier and demonstrated in Figure 5-2.

Figure 5-2. Supported content types

Discussion is the default content type. You normally start by adding a discussion and then adding
messages (posts) to a discussion.

CHAPTER 5 ■ SUPPORTING DISCUSSIONS

61

Linking the Related Requirement
Now you’ll link the discussion with the related requirement. To do that, you’ll add a Lookup column to
the new Requirement Discussions list. Click the Create column link. Enter the name Requirement and
select the Lookup column type. In the Additional Column Settings section, make this a required field, but
don’t require unique values. At first it might seem like a good idea to require unique values, as it would
prevent someone from creating multiple discussions for the same requirement. However, this would
also prevent you from having multiple messages posted to the discussion. A discussion with only one
message is not very interesting.

Select Requirements as the related table and choose the Title column to be displayed. The
completed section should look like Figure 5-3.

Figure 5-3. Specifying the relationship

Handling Deleted Records
The Relationship section at the bottom of the Create Column page provides options for enforcing
referential integrity. The new list, Requirement Discussions, will have a column that references a record
in the Requirements list. Referential integrity ensures that you can’t remove the referenced requirement
without first removing the reference to it. By default, the “Enforce relationship behavior” check box is
unchecked. With this setting, referential integrity is ignored. If the related requirement is deleted, this list

CHAPTER 5 ■ SUPPORTING DISCUSSIONS

62

will have a broken link. In other words, the Requirement Discussions item will refer to a Requirements
item that no longer exists.

It is generally a good idea to handle this to avoid the broken-link scenario. SharePoint provides two
options. The “Restrict delete” option will prevent users from deleting a Requirements item if it has a
Requirement Discussions item referencing it. The “Cascade delete” option will delete all related objects.
If the Requirements item is deleted, the related Requirement Discussions item, if there is one, will also be
deleted. Figure 5-4 shows the options and the text provided to explain these options.

Figure 5-4. Cascading deletes in the related table

In this scenario, the cascade option seems like the right approach. There’s no need to keep the
discussion details if the requirement is no longer needed. However, it is also reasonable to use the
restrict option to force the user to remove the discussion details first. If the requirement is being deleted
because it is a duplicate, the discussion should be moved to the other requirement. You can choose to
use the restrict option if you prefer.

Click the Save button to add this column. You will probably see the dialog shown in Figure 5-5.

Figure 5-5. Adding an index on the related column

In order to efficiently enforce this relationship, the system requires an index on the new column so
it can easily perform a reverse lookup. Click OK to allow the index to be created.

Adding a Discussion
Select the new Requirement Discussions list and click the Add new discussion link. Enter the subject and
add a comment to the body. Select an existing item from the Requirement drop-down list, as shown in
Figure 5-6. Click the Save button to add the record.

CHAPTER 5 ■ SUPPORTING DISCUSSIONS

63

Figure 5-6. Adding a new discussion

A new discussion will be added to the list, as shown in Figure 5-7.

Figure 5-7. The Requirement Discussions list with a newly added discussion

Click the Subject, Inactive Logon, in the list, which is a link to open the discussion. The discussion
will be displayed in flat view, as shown in Figure 5-8.

Figure 5-8. Displaying the discussion in flat view

CHAPTER 5 ■ SUPPORTING DISCUSSIONS

64

Using the Discussion Feature
Click the Reply link on the post and enter a response. The edit form will look like Figure 5-9. You just
need to type the response. The subject and related requirement are defaulted from the initial post. (In
fact, the subject cannot be changed when posting a reply.)

Figure 5-9. Adding a reply

Try creating several replies where at least one of them is replied from a previous post (not from the
last post) to generate a new thread. The flat view lists all the posts in simple chronological order, as
shown in Figure 5-10.

CHAPTER 5 ■ SUPPORTING DISCUSSIONS

65

Figure 5-10. Displaying the flat discussion view

■Note Please ignore the fact that it looks like I’m talking to myself in this thread. In a real scenario, these posts
would be entered by different users.

From the List ribbon, switch to threaded view, as shown in Figure 5-11.

CHAPTER 5 ■ SUPPORTING DISCUSSIONS

66

Figure 5-11. Switching the discussion view

The same discussion in threaded view is shown in Figure 5-12.

Figure 5-12. Displaying the discussion in threaded view

Apart from the fact that the user’s picture is not shown, you should also note the indentation, which
helps to show the message threads. Notice that the third and fourth posts are indented the same
amount. That is because both of these were replies to the second post. If you click the Show Quoted

CHAPTER 5 ■ SUPPORTING DISCUSSIONS

67

Messages link, the full message chain is displayed so you can see exactly which message chain this reply
was made to.

Choosing the Default View
The Requirement Discussion list was created with three standard views. You can see these listed in the
Views section of the List Settings page, which should look like Figure 5-13.

Figure 5-13. Listing the standard views

When the list is first selected, the Subject view is used to display the top-level information. This view
lists each of the discussions along with general information, such as the number of replies. An example
of this is shown in Figure 5-7. The two other views, Threaded and Flat, are used when a discussion is
selected. These views show the details of the messages that were posted in this discussion. As you can
see, flat view is selected as the default view for discussion mode.

To change the default view, click the Threaded link, which will display the Edit View page. Check the
“Make this the default view” check box, as shown in Figure 5-14.

Figure 5-14. Selecting the default view option

Now when you select a discussion from the Requirements Discussions list, threaded view will be
displayed by default.

Combining Lists
At this point you have the Requirements list, which contains the details of the actual requirement, and
the Requirement Discussions list, which includes the history of posts related to this requirement. It
would be really helpful to combine these into one list, or at least put both on one page. I’ll now show you
two ways you can accomplish that.

CHAPTER 5 ■ SUPPORTING DISCUSSIONS

68

Adding a Web Part
Select the Requirements list, and from the List ribbon, select the Modify Form Web Parts button, as
shown in Figure 5-15. In the context menu, select the Default Display Form link.

Figure 5-15. Modifying the Web Parts

The existing display form will be shown, with the addition of a link to add a web part, as shown in
Figure 5-16.

Figure 5-16. The existing display form

Click the Add a Web Part link. The top part of the form allows you to search for an existing web part
that can be added to the form. From the Lists and Libraries category, select the Requirement
Discussions list, as shown in Figure 5-17.

CHAPTER 5 ■ SUPPORTING DISCUSSIONS

69

Figure 5-17. Adding the Requirement Discussions list

Defining the Connection
This will add the entire list to the form. However, you only want the discussion that is related to the
current requirement. To accomplish that you’ll now set up a filter.

■Tip SharePoint provides a sophisticated framework that allows web parts to communicate with other web
parts. The work is done primarily in the web parts themselves, so assembling existing web parts is a fairly easy
task. For more information and web part connections, see the article at http://msdn.microsoft.com/en-
us/library/ms178187.aspx.

If you hover the mouse over the Requirement Discussions list, a down arrow will appear. Click it to
display the context menu. Select the Connections link, then the Get Filter Values From link, and finally
the Requirements link, as shown in Figure 5-18.

Figure 5-18. Selecting the filter menu

The will display the Configure Connection dialog box shown in Figure 5-19. Choose the ID column
for the provider field name and the Requirement column for the consumer field name.

CHAPTER 5 ■ SUPPORTING DISCUSSIONS

70

Figure 5-19. Specifying the connection properties

■Note The Requirement Discussions web part is the consumer of the connection. It uses the information
provided to it to filter the discussion list. The Requirements list in the bottom web part is the provider, passing the
ID of the current requirement to the discussion list.

Click the Finish button to update the connection. The Requirement Discussions list will now be
empty because there is no currently selected requirement, as shown in Figure 5-20.

Figure 5-20. The updated form with the new web part

Testing the Display Form
Click the Stop Editing button in the ribbon to go back to the Requirements list. Select the requirement
that you added the discussion to and choose the View Item link from the context menu. The display form
should look like Figure 5-21.

CHAPTER 5 ■ SUPPORTING DISCUSSIONS

71

Figure 5-21. Displaying a requirement

The bottom portion looks like it used to, but the top now shows the summary of the related
discussion. If you click Inactive Logon, which is a link to view the discussion, the threaded discussion
view should be displayed, as shown in Figure 5-22.

CHAPTER 5 ■ SUPPORTING DISCUSSIONS

72

Figure 5-22. Displaying the threaded discussion view

■Note Now that you’ve added a web part to the display form, you could also follow these instructions to add the
same web part to the edit form.

Creating a New Web Page
Another way to combine two lists is to create a new page and put two web parts on the page. This
provides a little different approach for navigating the requirements, as you’ll see.

CHAPTER 5 ■ SUPPORTING DISCUSSIONS

73

Adding a Page to the SharePoint Site
From the Site Actions menu, click the New Page link, as shown in Figure 5-23.

Figure 5-23. Adding a new page to the site

In the New Page dialog box, enter the page name View Requirements, as shown in Figure 5-24.

Figure 5-24. Specifying the page name

Click the Check Out button in the ribbon, as shown in Figure 5-25. This will allow you to edit the
page.

CHAPTER 5 ■ SUPPORTING DISCUSSIONS

74

Figure 5-25. Checking out the new page

From the Insert ribbon, click the Web Part button, as shown in Figure 5-26.

Figure 5-26. Adding a web part to the page

The top part of the form will allow you to select an existing web part. Select the Requirements list
from the Lists and Libraries category and click the Add button.

Adding a Related List
Select the Requirements web part by clicking the check box in the upper right-hand corner of the web
part. When you do that, the Web Part Tools ribbon should become available. Click the Options link and
then click the Insert Related List button, as shown in Figure 5-27.

Figure 5-27. Inserting a related list

Select the Requirement Discussions list. You should now have both web parts loaded on the page,
which should look like Figure 5-28.

CHAPTER 5 ■ SUPPORTING DISCUSSIONS

75

Figure 5-28. The new page with both web parts

From the Editing Tools ribbon, click the Save & Close button to save the changes, as shown in Figure
5-29.

Figure 5-29. Saving the changes to the web page

To test the web part connection, select the requirement that you added the discussion to. The
related Requirement Discussions item should be displayed below the Requirements list, as shown in
Figure 5-30.

CHAPTER 5 ■ SUPPORTING DISCUSSIONS

76

Figure 5-30. The related discussion displayed below the Requirements list

If you click the Inactive Logon link, the threaded view will be displayed, showing all the messages
that have been posted.

■Caution Make sure you check the page back in. The checked-out banner will continue to be displayed to
remind you until the page is checked in.

Using Outlook
Before I finish this chapter, I want to show you how you can use Outlook to view and post messages to
the discussions.

Configuring the Outlook List
Select the Requirement Discussions list. From the List ribbon, click the Connect to Outlook button, as
shown in Figure 5-31.

CHAPTER 5 ■ SUPPORTING DISCUSSIONS

77

Figure 5-31. Connecting the discussion to Outlook

You will probably see a pop-up dialog box like the one shown in Figure 5-32. Click the Allow button
to allow the SharePoint site to update your Outlook client.

Figure 5-32. Dialog box requesting permission to update Outlook.

This will be followed by another dialog box displayed by Outlook, shown in Figure 5-33, confirming
that you want to add this discussion to Outlook. Click the Yes button to associate the list. You can also
click the Advanced button if you want to configure this discussion list.

Figure 5-33. Outlook’s confirmation dialog box

CHAPTER 5 ■ SUPPORTING DISCUSSIONS

78

Viewing Discussions in Outlook
Within a few seconds, an offline copy of the Requirement Discussions list will be created in Outlook. You
can select a discussion and expand the message details to see all the messages that have been posted.
The Outlook list will look like Figure 5-34.

Figure 5-34. Outlook’s view of the Requirement Discussions list

Outlook has a different way of showing the message threads. Notice the color-coded dots in the top
portion of this page.

Posting a Reply
You can also post a reply from Outlook. Select one of the messages and click the Post Reply button. Enter
a comment, as shown in Figure 5-35.

CHAPTER 5 ■ SUPPORTING DISCUSSIONS

79

Figure 5-35. Posting a reply from Outlook

Outlook uses an offline cache of the data in SharePoint. When you post a reply, it is stored in the
local cache, but the server is not updated until a send-and-receive operation is performed. This will
synchronize all changes between the server and the local cache. If you refresh the SharePoint page, the
new post should be displayed, as shown in Figure 5-36.

Figure 5-36. New post from Outlook updated in SharePoint

■Tip Keep in mind that Outlook uses a local copy of the discussion list, which is automatically synchronized
with the server. This allows you to view and even post responses while disconnected from the network. Changes
are synchronized with the server when the client has been reconnected with the server.

CHAPTER 5 ■ SUPPORTING DISCUSSIONS

80

Summary
In this chapter you created a discussion list to record the internal comments that naturally occur when
defining requirements. Using Outlook to view and send messages, this process is just as easy as the
traditional method of sending e-mails. However, with this approach the comments are stored in a
central location and automatically tied to the related requirements. You won’t have to search through
your inbox to find a particular comment.

You also used web parts to provide two different ways to simultaneously display both the
requirement and the discussion details. Using web parts is a great way to build very useful forms and
web pages by combining existing SharePoint data. You will use this approach in other chapters as well.

P A R T 2

■ ■ ■

1

Managing Development

In this section, I’ll address the activities that typically occur when managing the
project implementation. This includes organizing the requirements into appropriately
sized pieces, prioritizing and planning the development of those pieces, and tracking
the overall progress of both the work performed and the work remaining. This
represents a major part of the resource expenditure and often receives a great deal of
management attention. Knowing how much work is left to do and when you’re likely
to finish is the dream of every project manager. The techniques presented here will
help you accomplish that.
 I have chosen to design the solutions in this section around the agile
methodology. This is a widely adopted approach with lots of successful agile projects
to its credit. If you’ve done any agile development, the process and terminology
should be familiar to you. If you’re not using the agile approach, the techniques
provided here can be adapted to suit your environment. Read through these chapters
and apply the pieces that fit.
 In Chapter 6 you’ll provide a list that will contain user stories, which is a way of
breaking the project into implementable and deliverable chunks. These can be linked
to the requirements, which allow you to trace the mapping between requirements and
implementation. In Chapter 7 you’ll add a project backlog as a view into these stories.
This is sometimes called the stack and represents the work left to be done. In Chapter

2

8 you’ll provide the ability to group these into iterations (also called sprints).
 In Chapter 9 you’ll support the remaining work items, which include tasks,
issues, and defects. Finally, in Chapter 10, you’ll provide various metrics to provide
visibility into the overall project progress, including burn-down charts.

C H A P T E R 6

■ ■ ■

83

User Stories

In this chapter you’ll provide a facility for defining user stories, which is a handy technique for capturing
the functionality of the project. I’ll first explain what user stories are and then show you how to create a
SharePoint list to store them.

Defining User Stories
In agile development, a user story is used to describe a piece of the system. It may be thought of as a
specific feature that should be implemented or a particular interaction that needs to occur. The
approach is to divide the entire project into a set of user stories. If you were building a house, for
example, the list of user stories might look something like this:

• Pour footings.

• Lay the foundation.

• Frame the first floor.

• Frame the second floor.

• Rough-in the electrical service.

Each of these is a demonstrable piece of the finished work. You can visually inspect and verify that

the unit of work is indeed complete. You can’t say that the foundation is 95 percent complete. If you
have obtained a construction loan, the bank will want proof that the planned user stories have been
completed before additional funds are released.

In the same way, user stories are an effective way to access the status of a project. When writing the
user stories for your project, try to find items that demonstrate real progress. Each user story should
deliver something of value. The initial stories may be somewhat trivial. Even displaying “Hello, World!”
can sometimes be meaningful if it proves that some particular infrastructure is working.

A user story must be small enough so that it can be completed by a single person in a short amount
of time (usually one to four weeks). At the risk of oversimplifying, a user story defines a piece of
demonstrable work. Throughout the project, these pieces are refined, prioritized, scheduled, and
completed.

CHAPTER 6 ■ USER STORIES

84

Describing User Stories
With the agile methodology, a user story is initially written at a very high level. It’s almost like a
placeholder or a reminder to do something. For example, it might be as simple as, “Provide an order
entry form.” The initial definition must be sufficient, however, to communicate the general idea; both
users and developers can visualize an order-entry form without needing to define the specific fields or
tab order.

In a “pure” agile project, user stories are written on a 3×5-inch index card. Using a small card forces
the information to be kept at a very high level. The cards can then be reordered by simply rearranging
them in the stack. We will, of course, implement this electronically. A sample user story is shown in
Figure 6-1.

Figure 6-1. A sample user story

The user story definition must be sufficient to allow the users or stakeholders to define a priority for
the user story. Priority can be defined as simply as high, medium, or low, or you could assign a number
from 1 to 5. Three or four levels should be sufficient. One particularly creative definition is Must, Should,
Could, and Won’t. These properties provide a connotation that may help your users specify the
appropriate priority.

Some agile approaches require a more formal approach to defining user stories. For example, they
might require that each story be defined in terms of who is doing what and why they are doing it. The
preceding story could be written in a more formal style, as “A salesperson (who) needs to enter an order
(what) to fulfill a customer’s needs (why).” The formal approach tends to force you to think a little bit
before writing the user story.

User stories can be grouped into themes. This will help you organize the stories, especially on larger
projects. Themes can be based on functional areas, technology, or any other logical grouping that works
for you.

An important aspect of user stories is that a developer should be able to provide a high-level
estimate of work required to complete it. This is because user stories are implemented in relatively short
iterations. (I’ll cover iterations in more detail in Chapter 7.) If you’re using two-week iterations and have
a five-person team, you’ll have a total of 50 person-days to complete the iteration. Throw in a holiday
and you’re down to 40 days. So the stories need to be fairly small and easily quantified. One approach
that is often used is to assign story points to each story. A story point is based on an arbitrary (but
consistent) scale that reflects the relative work required to implement a user story. With a little practice
you’ll be able to determine that the average iteration can complete a certain number of story points.

Before the work begins, the details will need to be defined. This is generally deferred until just before
the implementation starts. This is referred to as just-in-time (JIT) analysis. This is the general approach
to agile development. Rather than doing all the analysis up-front before beginning the implementation,
the development is started right away and the analysis is done as needed, throughout the project.

CHAPTER 6 ■ USER STORIES

85

Sometimes you may have a rather large story that is too big to be called a story. This is referred to as
an epic. These must be further detailed into stories at some point. An epic allows you to save a
placeholder for the big piece that you don’t quite have a handle on yet. For example, “Reconcile the sales
data with the accounting system” would likely be an epic. You will eventually need to define the specific
stories that must be implemented, but you can defer that until more of the system’s features have been
identified.

Often the user story details are provided as the acceptance criteria. In a test-first approach, the test
cases are provided first and are then used to drive the implementation. This is like studying for a test and
being given the questions ahead of time. The developer knows exactly how their work will be tested. This
makes a lot of sense but does rely on someone doing a good job defining the test cases.

Linking to Requirements
Agile pundits may say that you can capture your requirements solely by defining user stories. With this
approach, the collection of user stories becomes the requirements definition. There are scenarios where
this will work and actually work quite well. For small projects that require a less formal definition,
starting with the user stories can be a great way to jump-start your project.

However, in many cases you will need to perform a more formal requirement definition process
using some of the techniques explained in the previous chapters. User stories are still a great way to
drive the implementation activities, as you’ll see throughout the next few chapters. So you’ll need to
provide an audit trail between the requirements and the user stories. This will ensure that all of the
requirements have been addressed, and will allow you to easily reference the associated requirement
when providing details to a user story.

You’ll need to allow for a many-to-many relationship between requirements and user stories. A
single requirement can generate multiple user stories. Likewise, a user story can satisfy more than one
requirement.

Implementing User Stories in SharePoint
You’ll now build a SharePoint list that you can use to capture user stories. To summarize the content of
the list, you will need the following data elements:

• Brief description

• Who, what, and why (to support a formal style)

• Theme

• Priority

• Story points

• Epic—a Boolean flag to indicate this needs to be broken down further

• Details

• Acceptance criteria

• Linked requirements

• Attachments

CHAPTER 6 ■ USER STORIES

86

You will also modify the New form, which is used to add a user story. The initial form will include
only high-level data elements, such as description, theme, and priority.

Defining Themes
First, you’ll need to create a list of themes, which will be used as a lookup when creating a new user
story. You don’t need any details about the themes, just a name to populate the drop-down. This is
pretty easy to do by creating a custom list and using only the default columns.

Open the ProjectManagement SharePoint site that you have been using. From the Site Actions menu,
select the More Options link, as shown in Figure 6-2.

Figure 6-2. Selecting the More Options page

In the dialog that is displayed, select the Custom List template, which can be found in the Blank &
Custom group. Enter the list name as Themes, as shown in Figure 6-3, and click the Create button.

CHAPTER 6 ■ USER STORIES

87

Figure 6-3. Creating the Themes list

This will create the list and then display the empty list. Using the Add new item link, create several
themes for you to choose from when adding user stories. The completed list should look like Figure 6-4.

Figure 6-4. The Themes list with sample data

Creating New Site Columns
Now you’ll need to define some new site columns to store the data elements needed for the User
Stories list. From the Site Actions menu, select the Edit in SharePoint Designer link, which will launch
SharePoint Designer. Select the Site Columns link on the Navigation pane to list all of the existing site
columns. These are organized into groups. Scroll to the end of the list and you should see a Project
Management group that contains all of the custom columns that you have created so far.

Using the New Column button in the ribbon, add the columns listed in Table 6-1. Select the Project
Management group, as shown in Figure 6-5, so that these will be included in your custom group. Most of
these columns require only basic information, which is listed in the table. Some of the more complex
columns are described following in more detail.

CHAPTER 6 ■ USER STORIES

88

Figure 6-5. Choose the existing Project Management group.

■Tip The Description column that is entered when defining the site column is displayed on the data entry
form. This is a good place to put brief instructions so the user will know what data is expected in this field.

Table 6-1. Required Site Columns

Name Column Type Description
Who Single line of text Who is performing the function or interacting with the

system?

What Single line of text What function or interaction is being executed?

Why Single line of text Why is this action being taken? What is the desired result?

Theme Lookup

Story Priority Choice Which word best describes the priority of this user story?

Story Points Number Enter a number reflecting the relative size of this user story.

Epic Yes/No Does this user story need to be broken down further?

Story Details Multiple lines of text Provide implementation details (use attachments if
necessary).

CHAPTER 6 ■ USER STORIES

89

Name Column Type Description
Acceptance
Criteria

Multiple lines of text How will this story be tested? What is the success criteria?

Story
Requirements

Lookup Which requirement(s) are satisfied by this user story?

Defining the Theme Column
The Theme column provides a lookup for the Themes list. When creating this, select the Title field as
shown in Figure 6-6. This will display the theme title on the view and data forms.

Figure 6-6. Configuring the Theme column

Also, I left the “Allow blank values?” check box selected to make this field optional. You can uncheck
this box if you want to ensure that every user story has a theme.

Defining the Story Priority Column
Story Priority is a Choice column where the user can select from the choices you define. You can use
whatever naming convention works for you. I used 1 Must, 2 Should, 3 Could, and 4 Won’t, as shown in
Figure 6-7.

CHAPTER 6 ■ USER STORIES

90

Figure 6-7. Configuring the Story Priority column

You can use high, medium, and low, or some other values that will be meaningful to the users.

■Note You could make the Story Priority a numeric field. One useful advantage of doing this is that it makes
sorting easier. You could simply sort by this field, and the higher-priority stories would be displayed at the top.
Sorting Must, Should, Could, and Won't doesn’t put them in actual priority order. However, I think using words
instead of numbers will help the users select the appropriate value. One way to compromise between the two is to
define the choices as 1 Must, 2 Should, and so on. This provides the textual connotation while still allowing a
numerical sort.

I also unselected the “Allow blank values?” check box and specified the default value as 2 Should.
This will require a value but default it to 2 Should. The user will only need to change the selection when
Should is not appropriate. This is a matter of personal preference. You might rather allow null values and
not default a selection. Then you would know that the value was set intentionally, instead of being
defaulted by the system.

Defining the Story Points Column
I set a default value of 0 for the Story Points column and limited the maximum value to 10, as shown in
Figure 6-8.

CHAPTER 6 ■ USER STORIES

91

Figure 6-8. Configuring the Story Points column

Using this approach, zero means “undefined.” Again, you might prefer to simply allow null values.
Also, depending on the scale you’re using to determine the store points, 10 may not be an appropriate
maximum. You should consider entering the scale information in the column description to help the
user enter an accurate value.

Defining the Epic Column
After creating the Epic column, you’ll need to edit it to change the default value to No, as shown in Figure
6-9. The initial form doesn’t give you a place to change the default value.

Figure 6-9. Changing the default value of the Epic column

Defining the Story Requirements Column
The Story Requirements column is a Lookup column just like the Theme column. However, it allows
multiple values since the user story could address more than one requirement. Make sure you select the
Requirements list and the Title field, as shown in Figure 6-10. You should also allow null values, since
you may not be using the Requirements list.

CHAPTER 6 ■ USER STORIES

92

Figure 6-10. Configuring the Story Requirements column

Summarizing the Site Columns
When you have created all the new site columns, the list in your custom Project Management group
should look like Figure 6-11.

Figure 6-11. The list of all custom site columns

The value of the URL for your columns will be different from what is shown here.

Creating the User Story Content Type
Now you’re ready to create the User Story content type. From SharePoint Designer, select the Content
Types link in the Navigation pane. In the Create a Content Type dialog box, enter the name User Story.

CHAPTER 6 ■ USER STORIES

93

Select Item as the parent type and add this to the existing Project Management group, as shown in Figure
6-12.

Figure 6-12. Creating the User Story content type

This will add the new content type to the list. Select it to display the content type editor. Click the
Edit content type columns link in the Customization section. The User Story content type will have a
single column, Title, which is inherited from the Item content type. This column will store the brief
description. You’ll need to add all the custom site columns that you just created. Using the Add Existing
Site Column button in the ribbon, add the following columns:

• Who

• What

• Why

• Theme

• Story Priority

• Store Points

• Epic

• Story Details

CHAPTER 6 ■ USER STORIES

94

• Acceptance Criteria

• Story Requirements

When you have finished, the column list for the User Story content type should look like Figure 6-

13.

Figure 6-13. User Story content type columns

Creating the User Stories List
The last step is to create the User Stories list based on the User Story content type. From SharePoint
Designer, select the Lists and Libraries link in the Navigation pane. Click the Custom List button in the
ribbon. Enter the name User Stories, as shown in Figure 6-14.

Figure 6-14. Creating a new User Stories list

This will create a new list that will be added to List section. Click the User Stories link to edit the new
list. In the Settings section, select the “Allow management of content types” check box, as shown in
Figure 6-15. This will allow you to add the User Story content type.

CHAPTER 6 ■ USER STORIES

95

Figure 6-15. Allowing management of content types

In the Content Types section, click the Add button to add a new content type. Choose the User
Story content type from the Content Types Picker control shown in Figure 6-16.

Figure 6-16. Selecting the User Story content type

In the list editor, select the Item content type and click the Delete button in the ribbon. This will
remove the Item content type from the User Stories list and should set the User Story content type as
the default content type.

■Tip In the Content Type section of the list editor, the content type name is a link. If you click it, the content type
editor will be displayed to edit that content type. To select the Item content type to remove it, don’t click the Item
link. Instead, click somewhere else on that row. That will select the content type so you can remove it.

CHAPTER 6 ■ USER STORIES

96

The Content Type section should look like Figure 6-17.

Figure 6-17. The Content Type section

Defining the View
The default view that was created was based solely on the Item content type. You’ll need to modify the
view to add the appropriate columns from the User Story content type. Open the SharePoint site and
select the User Stories list, which should be an empty list. From the List ribbon, click the List Settings
button. Scroll down to the bottom of the page and click the All Items link in the Views section.

In the Columns section, add the following columns:

• Epic

• Story Points

• Story Priority

• Theme

Change the position of the Theme column to 3, so it will be displayed just after the Title. Click the OK

button to save the changes. The empty list will then be displayed with the additional columns. Click the
Add new item link and fill out the initial part of the form, as shown in Figure 6-18.

CHAPTER 6 ■ USER STORIES

97

Figure 6-18. Adding a new user story

Click the Save button to add the user story. The list should now look like Figure 6-19.

Figure 6-19. The default User Stories view

Modifying the New Form
The default New form that is generated for you contains all the columns supported by the list. User
stories, however, are usually created a very high level. The details are then filled in later as the project
progresses. To simplify the initial creation of user stories, you’ll now modify the form to accept only the
few fields that are likely to be used when a user story is first identified.

From the List ribbon, click the Edit List in SharePoint Designer button, as shown in Figure 6-20.

CHAPTER 6 ■ USER STORIES

98

Figure 6-20. Launching SharePoint Designer

This will launch SharePoint Designer (if not already running) and display the list editor. Click the
List Form button in the ribbon. In the Create New List Form dialog box, enter the form name as
InitialUserStory. Select the New item form radio button and select the “Set as default form for selected
type” check box, as shown in Figure 6-21. This will cause the new form to be used whenever a new item
is created.

Figure 6-21. Creating a new list form

This will create a new form named InitialUserStory.aspx, which is actually a copy of the existing
NewForm.aspx. It will be listed in the Forms section of the list editor, as shown in Figure 6-22.

CHAPTER 6 ■ USER STORIES

99

Figure 6-22. The Form section with the new form added

Click the InitialUserStory.aspx link to edit this form. This will display the form editor. The top
portion of the windows shows the actual markup code and the bottom contains a preview of what the
form will look like. Each row in the form contains two columns. If you select one of the rows, the
corresponding code will be highlighted, as demonstrated in Figure 6-23. I will show you how you can
remove rows, which will delete the referenced columns from the form. If you have experience working
with XAML files, you can also do more advanced formatting.

Figure 6-23. The form editor in SharePoint Designer

CHAPTER 6 ■ USER STORIES

100

Each row on the form starts with a <tr> tag and ends with a closing </tr> tag. The highlighted code
in Figure 6-23 includes two sections wrapped in <td> and </td> tags. These sections represent the
columns. The first column includes the label, Story Details, and the second contains the control for
editing the Story Details column. Delete the highlighted code along with the preceding <tr> and
subsequent </tr> tag. That will remove the Story Details row from the form.

Repeat this step to also remove the Acceptance Criteria, Story Requirements, and Attachments
rows. If you’re not using the formal style (who, what, and why), you can also remove these rows as well.
When you save your changes, the preview pane will be refreshed to reflect the changes you’ve made.

When you’re done, close SharePoint Designer and create a new user story in the SharePoint site.
The New form should look like Figure 6-24.

Figure 6-24. The revised New form

When you view or edit an existing item, the initial form that includes all the columns will be used, as
demonstrated in Figure 6-25.

CHAPTER 6 ■ USER STORIES

101

Figure 6-25. Viewing an existing item

Summary
In this chapter you learned about user stories, which provide a useful technique for breaking a system
down into smaller pieces that will be later prioritized and scheduled. You then implemented a simple list
in SharePoint that you’ll use to enter and view these user stories. I also showed you how to edit the New
form to display only a subset of the columns. This allows you to have a fairly simple form when creating
user stories. The Edit form still allows for all the columns to be viewed and edited.

In the next two chapters, you’ll organize these user stories and plan the iterations that will
implement them.

C H A P T E R 7

■ ■ ■

103

Project Backlog

In the last chapter you created a User Stories list, which you’ll use to collect the features of the project.
Once these have all been identified, the collection of user stories will now be the definition of the work to
be done. In this chapter you’ll begin using these to start planning the project.

Describing Agile Methodology
A key principle in agile methodology is dividing the work into a series of iterations.

Using Iterations
Here is a simple analogy to help you envision this process. You go to the mall on a serious shopping
spree and fill up your car with boxes, bags, and packages of all shapes and sizes. You arrive home and are
faced with the task of bringing everything into the house. You quickly realize that you can’t carry
everything in one trip, so you start planning the loads. Perhaps on the first trip you bring in the box of ice
cream that’s starting to melt. On the next trip you carry the big heavy box. On subsequent trips you carry
several lighter-weight items. As the car begins to empty, you find yourself figuring how many loads are
left.

You just applied the agile methodology to manage the project of unloading the car. The things you
brought in are the user stories, and each trip represents an iteration. You can only carry a certain
amount with each trip so at the beginning of the each trip you review what is left and plan the next load.
You can estimate how many trips (iterations) you’ll need, which will give you a good idea of when you’ll
be done.

■Note In some agile variations, like Scrum, iterations are called sprints. The connotation is that, as in track and
field, a sprint is short and fast. During a sprint, it’s “all hands on deck,” as everyone is focused on the single goal
of completing the sprint. Throughout this book I will use the more generic term iteration, but the solutions provided
here will work just as well for sprints.

CHAPTER 7 ■ PROJECT BACKLOG

104

Iterations are fairly short, about one to four weeks in duration. Each user story must be completed
in a single iteration; this includes testing. Iterations are never late; they always end on the prescribed
date. If one or more user stories were not completed, they are simply moved to a future iteration.

The important thing to know about iterations is that you only plan the next one. You first decide
which users stories will be completed in the next iteration. Based on that, you plan the activities solely
around completing that iteration. During the iteration, you are likely to identify new user stories and
adjust existing ones. As we all know, during a project, priorities will change, assumptions turn out to be
incorrect, and resources are realigned. So rather than planning the entire project in detail only to change
it on a regular basis, with the agile methodology, you only plan the next iteration.

Defining the Project Backlog
A backlog is simply a list of items that still need to be completed. In this chapter I’ll address the project
backlog, which is the list of user stories that have not been completed. In the next chapter I’ll cover the
iteration backlog, which is the list of tasks left to complete the iteration. While these two are similar in
concept, in practice they are very different.

■Note The project backlog is sometimes called the product backlog. I will use the term project as it is, again,
more generic. Also, the iteration backlog is often called the sprint backlog.

The first step in planning the next iteration is to decide which user stories will be included. The
project backlog provides the information necessary to determine which items should be chosen. I
discussed a few of these in the previous chapter. Priority and estimated effort (defined by story points)
are the main factors that will be used. There are a few more that you’ll add in this chapter, as follows:

• Dependencies: Often a group of user stories need to be implemented in a certain
order. On each one you can specify one or more other stories that must be
completed first. The backlog can then indicate which items have unfulfilled
dependencies.

• Risk: When analyzing a project there are usually a few items that have some risk
associated with them. They may require something that has not been done before
and has some unknowns about it. Or a particular story might be critical to the
overall success of the project. It is a good idea to address the riskier user stories
first. This gives you more time to adjust the remainder of the project should
something unexpected occur.

• Readiness: As I explained in the previous chapter, a user story often starts as a
high-level description. The details are filled in later as the project progresses. The
implication of this approach is that not all user stories are ready to be
implemented. Some may still be an epic that needs to be broken down further
before the work can be scheduled. Others may lack sufficient detail to start
implementation. The project backlog should provide some insight into the
readiness of each user story. Those that require more analysis should be pushed
back for future iterations.

CHAPTER 7 ■ PROJECT BACKLOG

105

■Note I mentioned that during an iteration everyone is focused on completing the current iteration. That is true
for the developers. However, the stakeholders, business analysts, and architects are busy working to refine the
remaining user stories. That is an ongoing process. In addition to defining the existing user stories, often during an
iteration, additional user stories are identified, requiring more analysis and readjusted priorities.

In this chapter you’ll implement a project backlog. This is basically the User Stories list that you
created in the previous chapter. However, you’ll need a few more data elements and a specialized view
that only returns the user stories not already assigned to an iteration.

Implementing Iterations
The first thing you’ll do is define iterations. You’ll start by creating an Iteration content type and then
creating a list based on this. You’ll then modify the User Stories list to allow each item to be assigned to
an iteration.

Defining Iterations
For each iteration, you’ll record basic information, including the following:

• Iteration number

• Status (planned, current, or complete)

• Start date

• End date

Open the SharePoint site that you have been working with. From the Site Actions menu, click the

Edit in SharePoint Designer link.

Adding Site Columns
You’ll need to create site columns to store the iteration number and status. From the Navigation pane in
SharePoint Designer, click the Site Columns link. Then click the New Column button in the ribbon and
select the Number column type. Enter the name Iteration Number and select the Project Management
group, as shown in Figure 7-1.

CHAPTER 7 ■ PROJECT BACKLOG

106

Figure 7-1. Creating the Iteration Number column

Click the Column Settings button in the ribbon. In the Column Editor dialog box, enter 0 for the
default value and unselect the “Allow blank values?” check box. Specify whole numbers only, as shown
in Figure 7-2.

Figure 7-2. Modifying the column settings

Create an additional site column named Iteration Status. Use the Choice column type and select the
Project Management group. In the Column Editor dialog box, enter the choices as Planned, Current, and
Complete. Enter Planned for the default value and unselect the “Allow blank values?” check box. I used
the “Radio buttons” display option, but you can also you the “Drop-down menu” option, if you prefer.
The completed dialog box should look like Figure 7-3.

CHAPTER 7 ■ PROJECT BACKLOG

107

Figure 7-3. Configuring the Iteration Status column

Creating the Iteration Content Type
Now you’re ready to create the content type. Click the Content Types link in the Navigation pane. Then
click the Content Type button in the ribbon. Enter the name Iteration, as shown in Figure 7-4.

Figure 7-4. Creating the Iteration content type

CHAPTER 7 ■ PROJECT BACKLOG

108

This will display the Content Type Settings page. Click the Edit content type columns link in the
Customization section. Add the following site columns:

• Iteration Number

• Iteration Status

• Start Date

• End Date

The list of columns for the Iteration content type should look like Figure 7-5.

Figure 7-5. The columns in the Iteration content type

■Tip The Title column is inherited from the base Item content type. All lists and content types require this.
This is also a required field, meaning that you must supply a value before you can create the iteration. I
recommend that you enter the Title as Iteration <n>, with n being the iteration number. That’s a little bit of
extra data entry. You could store the iteration number in the Title field and not have a separate Iteration
Number column. However, I prefer having a separate numeric field, as it helps with sorting. In a text field, 2 comes
after 11.

Creating the Iteration List
Select the Lists and Libraries link in the Navigation pane and then click the Custom List button in the
ribbon. Enter the name Iterations, as shown in Figure 7-6.

CHAPTER 7 ■ PROJECT BACKLOG

109

Figure 7-6. Creating the Iterations list

The page will then show all of the existing lists. Click the Iterations list to modify it. In the Settings
section, click the “Allow management of content types” check box. Then click the Add button in the
Content Types section. In the Content Type Picker that is displayed, select the Iteration content type
that you just created. Remove the Folder and Item content types from this list and save your changes.
The Iterations list is now available.

Go to the SharePoint site and select the Iterations list. Use the Add new item link to add an
iteration. The completed form should look like Figure 7-7.

Figure 7-7. Adding a new iteration

CHAPTER 7 ■ PROJECT BACKLOG

110

Assigning an Iteration
The next step is to modify the User Stories list to allow each story to be assigned to an iteration. You’ll
need to first create a Lookup column for the Iterations list and then add this to the User Story content
type.

■Caution Because the content type you’re modifying is already being used, you must push these changes so
the list will be updated as well. When you assign a content type to a list, SharePoint creates a copy of the content
type definition. This creates two separate definitions: one in the site’s Content Type list and one in the list’s
Content Type list. If you look at the content type in both places using SharePoint Designer, you’ll notice that they
have different ID values. Actually, the list content type is created as a child of the site content type. You can
modify the list’s content type, but these changes are not propagated to the site content type, nor is any other list
that may use this content type. When you edit a list using the List Settings page, it only updates the list’s content
type. However, when you change the site’s content type, you can choose to push these changes to all child
content types. You should update the site’s content type and push the changes to all child objects. This will keep
everything in sync.

Creating a Site Column
Instead of using SharePoint Designer, you’ll use the Site Settings page to create a site column and to
modify the content type. From the Site Actions menu, click the Site Settings link, as shown in Figure 7-8.

CHAPTER 7 ■ PROJECT BACKLOG

111

Figure 7-8. Navigating to the Site Settings page

There are links in the Galleries section of the Site Settings page for creating and modifying site
columns and content types. Click the Site columns link, as shown in Figure 7-9.

Figure 7-9. Displaying the Site Columns page

On the Site Columns page, click the Create link to create a new site column. The New Site Column
page, shown in Figure 7-10, will be displayed.

CHAPTER 7 ■ PROJECT BACKLOG

112

Figure 7-10. Creating the Iteration site column

This is basically the same information that you would enter using SharePoint Designer. Enter the
name Iteration and select the Lookup column type. The page will be updated to reflect the options that
are appropriate for this type. Select the Iterations list and the Iteration Number column. This will cause
the associated iteration number to be displayed on the User Stories form. The completed page should
look like Figure 7-10. Click OK to create the new site column.

CHAPTER 7 ■ PROJECT BACKLOG

113

Modifying a Content Type
Go back to the Site Settings page and click the Site content types link. On the Site Content Types page,
select the Project Management group to filter the content types that are listed on the page. The page
should look like Figure 7-11.

Figure 7-11. The Site Content Types page

Click the User Story link to modify the content type. Then select the Add from existing site columns
link near the bottom of the page. This will list all the existing site columns. Select the Project Management
group to filter this list. Select the Iteration column and click the Add button. Make sure that the Update
List and Site Content Types radio button is set to Yes. The completed page should look like Figure 7-12.
Click the OK button to save the changes.

Figure 7-12. Adding a column to the User Story content type

CHAPTER 7 ■ PROJECT BACKLOG

114

■Tip SharePoint Designer also provides the ability to push content type changes to all child objects. However, in
practice I have found that to not work reliably. Perhaps a future release will fix this. In any case, making the
changes from the SharePoint UI seems to work fine.

Assigning User Stories
Go to the User Stories list and edit one of the records. There should be a drop-down list at the bottom of
the form that allows you to select the iteration, as shown in Figure 7-13.

Figure 7-13. Selecting an iteration

Select the iteration that you just created and save your changes.

Enhancing the Iteration Form
Now that you have the ability to assign user stories to an iteration, it would be really useful to list the
user stories when displaying an iteration. You’ll add that now by adding a web part to the Display form
just like you did in Chapter 5. Go to the Iterations list. In the List ribbon, click the Modify Form Web
Parts button. This will list the existing forms for this list. Click the Default Display Form link, as shown in
Figure 7-14.

Figure 7-14. Selecting the Display form

Click the Add a Web Part link near the top of the form. From the Lists and Libraries category,
select the User Stories list and click the Add button, as shown in Figure 7-15.

CHAPTER 7 ■ PROJECT BACKLOG

115

Figure 7-15. Adding the Iteration list web part

The list of user stories is now added to the Iteration form. But it is showing all of them, and you
only want to include the stories that have been assigned to this iteration. To do that, you’ll need to set up
a filter. If you hover over the User Stories list, a drop-down icon will appear at the top-right corner.
Click this and then select the Connections, Get Filter Values From, and Iterations links, as shown in
Figure 7-16.

Figure 7-16. Adding a connection between web parts

In the Configure Connection dialog box, select the ID column as the provider field and Iteration as
the consumer field, as shown in Figure 7-17. Click the Finish button to create the connection.

Figure 7-17. Configuring the connection

CHAPTER 7 ■ PROJECT BACKLOG

116

Click the Stop Editing button in the ribbon to save the changes. Now, display the iteration and you
should also see the list of user stories assigned to that iteration, as demonstrated in Figure 7-18.

Figure 7-18. The Iterations Display form with user stories

Implementing a Project Backlog
With these changes, you now have the ability to assign user stories to an iteration. When displaying an
iteration, the page also shows which user stories are included. Now you’ll implement a project backlog.

Adding User Story Details
There are a few more details that you’ll need to add to the User Stories list to help. Again, you’ll be
modifying an existing content type, so you’ll use the Site Settings page instead of SharePoint Designer
since it better handles pushing down to child objects. From the Site Actions menu, click the Site Settings
link. In the Site Galleries section, click the Site columns link. Select the Project Management group to limit
the list to only show your custom columns.

CHAPTER 7 ■ PROJECT BACKLOG

117

Creating the Story Dependencies Column
Click the Create link to add a new site column. Enter the column name Story Dependencies and select
the Lookup column type. Select the Project Management group. For the additional column settings, select
the User Stories list, the Title column, and the “Allow multiple values” check box, as shown in Figure
7-19. Click the OK button to create the site column.

Figure 7-19. Configuring the Story Dependencies column

Creating the Story Risk Column
Click the Create link again to create another site column. Enter the column name Story Risk and select
the Choice column type. Again, select the Project Management group. Enter the choices as 1 High, 2
Medium, and 3 Low. Select the “Require that this column contains information” radio button and enter
3 Low for the default value, as shown in Figure 7-20. Click the OK button to save the changes.

CHAPTER 7 ■ PROJECT BACKLOG

118

Figure 7-20. Configuring the Story Risk column

Creating the Story Ready Column
Create another column with the name Story Ready using the Yes/No column type. Select the Project
Management group and specify No for the default value, as shown in Figure 7-21.

Figure 7-21. Configuring the Story Ready column

Modifying the User Stories List
Go back to the Site Settings page and click the Site content types link. Click the User Story link to view this
content type. Then click the Add from existing site columns link near the bottom of the page. The page
will list the site columns that are not currently included in this content type. Select the Project
Management group to limit the list to only show the custom columns. Select the Story Dependencies, Story
Ready, and Story Risk columns, and click the Add button. Make sure the “Update all content types
inheriting from this type?” radio button is set to Yes, as shown in Figure 7-22. Click the OK button to
update the content type.

CHAPTER 7 ■ PROJECT BACKLOG

119

Figure 7-22. Adding columns to the User Story content type

Now go to the User Stories list and add a few items. Populate these new columns on some of the
user stories.

Creating the Project Backlog View
As I mentioned, the project backlog is simply the list of user stories that have not yet been assigned to an
iteration. You will implement this as a custom view of the User Stories list by adding a filter to the view.

Adding a View Filter
Go to the User Stories list. In the List ribbon, click the Create View button, as shown in Figure 7-23.

Figure 7-23. Creating a new view

CHAPTER 7 ■ PROJECT BACKLOG

120

On the Create View page, click the Standard View link. Enter the name as Project Backlog. In the
Filter section, select the Iteration column and leave the operation as “is equal to.” Also leave the value
blank, as shown in Figure 7-24.

Figure 7-24. Specifying the iteration filter

This will cause the view to only include the user stories that do not have an iteration assigned.

Specifying the Content
The product backlog will be used to view the user stories and decide which ones to include in the next
iteration. To support that, the view should include the columns that would be most useful for that
purpose. I recommend including the following columns:

• Title—which is also a link to display this user story

• Theme

• Epic

• Story Ready

• Story Risk

• Story Priority

• Story Points

• Story Dependencies

In the Columns section, make sure these columns (and only these columns) are checked. Also,

modify the Position value so the columns will appear in this order.
Also, it would be helpful to sort these so the most likely candidates are near the top of the list.

SharePoint only allows you to specify two columns to sort on. Which columns will work best to sort on is

CHAPTER 7 ■ PROJECT BACKLOG

121

somewhat dependent on how you will use them. I suggest sorting first by Story Ready (in descending
order) and then by Story Risk. This will put the stories that are not ready at the bottom of the list and
the higher-risk items (that are ready) at the top. The Sort section should look like Figure 7-25.

Figure 7-25. Specifying the sort criteria

You can use different columns and sort criteria to fit the way you will be using this list. The project
backlog should look like Figure 7-26.

Figure 7-26. The Project Backlog view

Summary
In this chapter you added a facility in your system to assign user stories to an iteration. Specifically, you
did the following:

• Created an Iterations list to define the iterations

• Modified user stories so you can assign each user story to a specific iteration

• Enhanced the Iterations Display form to show the user stories that have been
assigned to this iteration

• Provided a product backlog that lists all user stories that have not been scheduled
yet

CHAPTER 7 ■ PROJECT BACKLOG

122

This will enable you to start the process of planning an iteration. In the next chapter, you’ll implement
an iteration backlog, which provides the ability to plan items that are specific to the current iteration.

C H A P T E R 8

■ ■ ■

123

Iteration Backlog

The iteration backlog is the primary tool that the development team uses to manage its activities. In this
chapter, you’ll add an iteration backlog to your SharePoint site.

Review
In Chapter 6 you implemented a facility for defining user stories, which are a great way to divide a
project into smaller, deliverable units. The key point to remember about user stories is that each one
represents a piece of functionality that can be delivered to the customer and verified. It may not be very
useful by itself, but it does demonstrate tangible implementation progress.

In Chapter 7 you then provided a way to define iterations. An iteration is a relatively short time
period (usually one to four weeks) that is focused on implementing a set of user stories. You also
implemented the ability to assign user stories to an iteration. You provided a project backlog, which lists
the user stories not yet scheduled in an iteration. This is used at the beginning of an iteration to choose
the set of user stories to be included.

So now you have the current iteration defined with a set of user stories to work on. In this chapter,
you’ll implement an iteration backlog, which you will use to plan the work needed to complete the
assigned user stories.

Populating the Iteration Backlog
The iteration backlog can contain the following items:

• Tasks

• Defects

• Issues

Defining Iteration Tasks
Each user story needs to be broken down into a series of tasks. Tasks describe the actual work items that
must be completed. During the iteration planning, the following question is answered: “What tasks are

CHAPTER 8 ■ ITERATION BACKLOG

124

required to be completed in order to deliver this functionality?” These tasks should include any
necessary design or analysis tasks as well as testing and documentation tasks.

For each task, the amount of work should be estimated. This is generally done in terms of person-
hours. When all the tasks have been identified, you’ll have a pretty good estimate of how long it will take
to complete this iteration. At this point, before the iteration begins, you may need to add or remove
some user stories from the iteration. This is a normal part of the iteration-planning process.

Once the iteration has started, the list of tasks can fluctuate. New tasks may be identified and
existing tasks may be determined to be unnecessary, or redundant. Even more likely, however, the task
estimates can change as you progress through the iteration.

Managing Defects
An iteration is supposed to deliver verified functionality. This requires that testing occur during the
iteration. Testing will undoubtedly identify defects. These defects are also added to the iteration backlog.
So, in addition to the initially planned the tasks, the team must also correct the defects that have been
identified.

■Note There is some disagreement about how to deal with defects. The consensus is that, if possible, defects
should be corrected in the iteration in which they were identified. This is reflected in my approach of adding them
to the iteration backlog. However, what should you do if there are unresolved defects when the iteration is
finished? There are basically two options. First, you could create a new user story to address the defect. This
would defer the resolution to a future iteration. The second option is to state that the user story was not
completed, since it has known defects, and put the user story back on the project backlog. The argument for the
latter approach is that you can’t really say the user story is complete. Ultimately, you’ll probably need to decide
this on a case-by-case basis.

Some defects can significantly affect the ability to work on other tasks. These should be identified as
such to help with the prioritization of tasks. The term I’ll use to describe this is blocking.

Handling Issues
The third item type that can be added to the iteration backlog are issues. Issues are generally
dependencies outside of the development team. An issue could be a question about a requirement that
needs to be clarified. Or perhaps some third-party component is not working as expected. Each issue
should also indicate if this is blocking development. This is somewhat subjective, since all issues will
become blocking eventually. The blocking attribute should be used if most development is currently
stopped due to this issue.

While issues may not actually require work by the development team (as tasks and defects do), they
still impact the ability to deliver the iteration in time. So they are included in the iteration backlog. As
with defects, issues should be resolved before the iteration is complete. Unresolved issues will likely lead
to moving the affected user story back to the project backlog.

CHAPTER 8 ■ ITERATION BACKLOG

125

Using the Iteration Backlog
The iteration backlog defines all the work items that the development team needs to complete. Team
members use this to decide which item to work on next. Each item should have the following
information:

• Iteration: This is used to restrict the view to only the items in the current iteration.

• Short description:

• User story: This is optional, as some tasks may not be assigned to a single user
story. However, where possible, the user story should be identified, as it will help
with tracking.

• Status: Pending (not started), In Progress, Complete

• Effort: For items that are in progress, this should reflect the amount of work
remaining, usually expressed in person-hours.

• Details: Optional

At the beginning of each day, the iteration backlog is reviewed to plan the day’s activities. As tasks

are started, the status should be changed from Pending to In Progress. This indicates that someone has
started working on this task. As tasks are completed, the status should be changed to Complete.
Throughout the iteration, tasks can be added or removed as needed.

At the end of every day, developers should update the items that they have worked on to make sure
the status is correct and to reestimate the work remaining. This is always expressed as the amount of
work remaining, regardless of how much time has been spent already. For example, assume a task was
estimated to take 12 hours to complete. You worked 6 hours today, but there is still more to do. You
should estimate how much time is left and not just subtract the time already spent from the estimate.

Also, pending tasks should be updated if a more accurate estimate is available. The goal is to make
the iteration backlog present an accurate picture of how much work needs to be done before the
iteration ends.

Implementing an Iteration Items List
You’ll create an iteration backlog in SharePoint as a list called Iteration Items, which will contains
tasks, defects, and issues. You’ll use a separate content type for each type of item. This will allow you to
have a different set of columns for each, while still being included in the same list.

Creating New Site Columns
You’ll first need to define some new columns that will be included in the Iteration Items list. Open the
SharePoint site. From the Site Actions menu, select the Edit in SharePoint Designer link. This will launch
SharePoint Designer and open this site. Click the Site Columns link in the Navigation pane. Add the
following columns, making sure to add them to the Project Management group:

CHAPTER 8 ■ ITERATION BACKLOG

126

• User Story: Lookup

• Item Status: Choice (Pending, In Progress, Complete)

• Hours Left: Number

• Blocking: Yes/No (set the default value to No)

• Task Details: Multi Lines of Text

• Defect Details: Multi Lines of Text

• Issue Details: Multi Lines of Text

For the User Story column, select the User Stories list and the Title column. Select the “Allow

blank values?” check box, as shown in Figure 8-1, since not all items can be assigned to a user story.

Figure 8-1. Configuring the User Story column

For the Item Status column, enter the choices as Pending, In Progress, and Complete. Unselect the
“Allow blank values?” check box and specify the default value of Pending, as shown in Figure 8-2.

CHAPTER 8 ■ ITERATION BACKLOG

127

Figure 8-2. Configuring the Item Status column

For the Hours Left column, unselect the “Allow blank values?” check box and set the default to 0.
Select whole numbers only and set the minimum value to 0, as shown in Figure 8-3. This will prevent the
users from entering negative numbers.

Figure 8-3. Configuring the Hours Left column

For the Blocking column, after creating the column, click the Column Settings button in the ribbon
and change the default value to No. For the remaining columns, you can use all the default values.

CHAPTER 8 ■ ITERATION BACKLOG

128

Creating the Content Types
The iteration backlog will contain three types of objects, and you’ll use a different content type for each.
Since the columns of these content types are similar, you’ll create a base content type called Iteration
Item, from which the other three will be derived.

Creating the Base Content Type
In SharePoint Designer, click the Content Types link in the Navigation pane. Then click the Content Type
button in the ribbon. In the Create a Content Type dialog box, enter the name Iteration Item, select Item
for the parent type, and select the Project Management group, as shown in Figure 8-4.

Figure 8-4. Creating the Iteration Item content type

Select the Iteration Item link from the list of content types to edit the content type. Click the Edit
content type columns link in the Customization section. Using the Add Existing Site Column button in
the ribbon, add the following site columns to this content type:

• Iteration

• User Story

• Item Status

CHAPTER 8 ■ ITERATION BACKLOG

129

• Hours Left

Make sure you save your changes. The column list should look like Figure 8-5.

Figure 8-5. The column list for the Iteration Item content type

Creating the Iteration Task Content Type
Click the Content Types link in the Navigation pane. Then click the Content Type button in the ribbon. In
the dialog box, enter the name Iteration Task and select the Iteration Item as the parent content type.
Make sure to select the Project Management group, as shown in Figure 8-6.

Figure 8-6. Creating the Iteration Task content type

CHAPTER 8 ■ ITERATION BACKLOG

130

Select the Iteration Task content type from the content type list and edit the column list. Notice
that all the columns you added to the Iteration Item content type are automatically included. Add the
Task Details column and save your changes. The completed column list should look like Figure 8-7.

Figure 8-7. The Iteration Task column list

Creating the Remaining Content Types
In the same way, create the Iteration Defect and Iteration Issue content types. Both of these will
require the Blocking column. The Defect Details and Issue Details columns, respectively, should be
added as well. The column list for these content types should look like Figure 8-8 and Figure 8-9.

Figure 8-8. The Iteration Defect column list

Figure 8-9. The Iteration Issue column list

CHAPTER 8 ■ ITERATION BACKLOG

131

Creating the Iteration Items List
Now you’re ready to create the Iteration Items list. In SharePoint Designer, click the Lists and Libraries
link in the Navigation pane. Then click the Custom List button in the ribbon. Enter the name Iteration
Items and click the OK button.

You will add all three content types to this list. This will enable you to add tasks, defects, and issues
in the same list. Click the Iteration Items link to edit this list. In the Settings section, select the “Allow
management of content types” check box. Then click the Add button in the Content Types section. In
the Content Types Picker dialog box, select the Iteration Task content type and click the OK button.
Repeat this step to also add the Iteration Defect and Iteration Issue content types. Also remove the
Folder and Item content types.

■Tip Make sure the Iteration Task content type is set as the default. It is a little easier to add the default
content type, and you are likely to add far more tasks that the other two types.

Using the Iteration Items List
Open the SharePoint site and display the Iteration Items list. You’ll notice that it only displays the
Title column. You’ll now modify the default view to include the other columns.

Modifying the Default View
From the List ribbon, click the Modify View button. In the Columns section, remove the Attachments
column and then add the following columns:

• Content Type

• Item Status

• Blocking

• Title

• Hours Left

• User Story

Also update the position so they will be displayed in this order. The Columns section should look

like Figure 8-10.

CHAPTER 8 ■ ITERATION BACKLOG

132

Figure 8-10. The updated Columns section

In the Sort section, sort by the Item Status column and then by the Blocking column, both in
descending order, as shown in Figure 8-11.

Figure 8-11. The updated Sort section

In the Filter section, only include items where the Item Status is not Complete. The Filter section
should look like Figure 8-12.

CHAPTER 8 ■ ITERATION BACKLOG

133

Figure 8-12. The updated Filter section

In the Totals section, add the sum of the Hours Left column, as shown in Figure 8-13.

Figure 8-13. The updated Totals section

Click the OK button to save the changes to the default view.

Adding Tasks
Click the Add new item link to create a new task for the list. Since Iteration Task is set as the default
content type, when creating items through this link, this content type will be used. The New form will
look like Figure 8-14.

CHAPTER 8 ■ ITERATION BACKLOG

134

Figure 8-14. Creating a new iteration task

After adding a few tasks, the view will look like Figure 8-15.

Figure 8-15. The default view

Adding Defects and Issues
To add the other content types, use the Item ribbon. If you click the bottom portion of the New Item
button, a menu will appear for you to select the content type to use. Click the Iteration Defect link to
enter a new defect, as shown in Figure 8-16.

CHAPTER 8 ■ ITERATION BACKLOG

135

Figure 8-16. Selecting the Iteration Defect content type

■Tip Notice that the description for all of these content type is the same. This is the description that was
entered for the base type. No description was entered for the child types, so they defaulted to the parent’s
description. You might want to add a description for these content types.

The New form will look like Figure 8-17. Notice that the Blocking and Defect Details fields are
included in the form.

CHAPTER 8 ■ ITERATION BACKLOG

136

Figure 8-17. Entering a new defect

You can control which content types can be selected and the order in which they are listed with the
New Item button. From the List ribbon, click the List Settings button. In the Content Type section, click
the Change new button order and default content type link. The page shown in Figure 8-18 is then
displayed, which you can use to adjust the order of the content types.

Figure 8-18. Modifying the content type order

After adding some defects and issues, the view should now look like Figure 8-19. Notice the Pending
items are listed at the top with the Blocking items listed first.

CHAPTER 8 ■ ITERATION BACKLOG

137

Figure 8-19. Default view containing multiple content types

Creating the Iteration Backlog
The Iteration Items list can now be used as the iteration backlog. However, there’s one more thing
you’ll need to do. The list needs to be filtered to only show the items for a single iteration. I’ll show you
two ways you can accomplish that.

■Note In theory, all items on the iteration backlog should be complete by the time the iteration has ended. So, if
everything is done as expected, you would not need to add a filter for the iteration. However, if Murphy’s Law
holds true, you should not count on this. It is a good practice to filter out other iterations just in case some items
were left over.

Creating an Iteration Backlog View
You’ll now create a new view called Iteration Backlog, which will specifically include only one iteration.
From the List ribbon, click the Create View button. Then click the Standard View link. This will display
the Create View page.

Enter the name as Iteration Backlog. This new view should have the same column settings as the
default view. However, the other sections default to the initial values. Set the Sort and Totals sections
just like you did for the default view. In the Filter section, filter by Item Status not equal to Complete
and also by Iteration equal to 1 as shown in Figure 8-20.

CHAPTER 8 ■ ITERATION BACKLOG

138

Figure 8-20. Defining the view filter

■Caution This view is hard-coding the iteration to filter on. The disadvantage of this approach is that you’ll have
to change the view with every new iteration. That’s not a big price to pay, but it is still worth considering. If you
forget, you’ll probably have an empty backlog until this is corrected.

Enhancing the Iteration Form
The second approach is to display the iteration backlog on the Iterations list’s Display form. In the
previous chapter you used a web part to display the list of user stories included in an iteration. You’ll
now use the same approach to add the iteration backlog.

Go to the Iterations list. In the List ribbon, click the Modify Form Web Parts button and then
select the Default Display Form link, as shown in Figure 8-21.

Figure 8-21. Selecting the default display form

Click the Add a Web Part link near the top of the form. From the Lists and Libraries category,
select the Iteration Items list and click the Add button. This will add the Iteration Items list to the top
of the form. Now you’ll need to set up a connection to the web part so it can be filtered based on the
selected iteration. Hover the mouse over this web part, and the drop-down icon will appear near the top-
right corner. Click this, and then click the Connections, Get Filter Values From, and Iterations links, as
shown in Figure 8-22.

CHAPTER 8 ■ ITERATION BACKLOG

139

Figure 8-22. Setting up a connection to the web part

In the dialog box, select the ID column for the provider and the Iteration column for the consumer,
as shown in Figure 8-23.

Figure 8-23. Specifying the connection columns

Click the Stop Editing button in the ribbon to save your changes. Now select the first iteration. The
Display form should now include the iteration backlog, as demonstrated in Figure 8-24.

CHAPTER 8 ■ ITERATION BACKLOG

140

Figure 8-24. The iteration backlog on the Iteration form

The display form for the Iterations list now contains some very useful information. In addition to
the iteration details such as start and end dates, it shows all the user stories that are included in the
iteration. It now also includes the iteration backlog.

Summary
In this chapter you provided a place to list all the work items that need to be included in the current
iteration. This includes the following:

• Tasks: Implementation items needed to complete the user stories

• Defects: Bugs found during the iteration

• Issues: Problems that could affect the success of the iteration

CHAPTER 8 ■ ITERATION BACKLOG

141

These are included in the Iteration Items list, which is used as the iteration backlog. This is used
initially to plan the work of the upcoming iteration. The development team will also use this on a daily
basis to track progress and to know what items are left to complete.

In the next chapter, you’ll use the details captured here to present metrics that will give an accurate
representation of how the iteration is going.

C H A P T E R 9

■ ■ ■

143

Burndown Charts

In the previous chapters you provided mechanisms for organizing the project, breaking it down into
relatively short iterations and then planning the activities of the current iteration. In this chapter, you’ll
implement facilities for tracking progress, both for the current iteration as well as the overall project. You
will also build a developer’s portal page that will include most of the features of your SharePoint site that
developers will use on a daily basis.

Review
You expressed the project’s requirements as a set of user stories. Each user story represents a deliverable
unit of functionality. You then implemented the project as a series of iterations, where each iteration
delivers a subset of the user stories. So you delivered a working system with the first iteration, and each
subsequent iteration provides additional functionality. For example, the first iteration might provide the
ability to log in. The second might allow you to change your password. The third might provide a way for
your password to be e-mailed to you if you’ve forgotten it.

For the current iteration, you listed all the tasks necessary to implement the assigned user stories.
These tasks were stored in an iteration backlog. The backlog can also include defects that need to be
corrected and issues that need to be resolved. The iteration backlog is a convenient place to quickly see
all the items that still need to be worked on. Each item also contained an estimate of the amount of work
remaining to complete that item. The sum of these estimates represents the amount of work to be
completed before the end of the iteration.

Using Burndown Charts
In agile methodology, the iteration burndown is a useful graphical representation of the progress of the
iteration. The concept is quite simple. At the end of each day, an estimate is made of the amount of work
remaining. This is done by adding up the estimates for each of the items in the iteration backlog. These
data points are the tracked over time. An example of a burndown chart is shown in Figure 9-1.

CHAPTER 9 ■ BURNDOWN CHARTS

144

Figure 9-1. A sample iteration burndown chart

Understanding a Burndown Chart
In this iteration, the initial estimate was made at 500 hours. In an ideal situation, you would see a
straight line from 500 at day 0 to 0 on day 15. (This is a three-week iteration, so there are 15 work days to
complete the iteration.) To complete 500 hours of work in 15 days, the development team needs to
complete an average of 100 hours every three days. As you can see from this burndown chart, this
iteration was less than ideal.

In a couple of days, after making good progress, the remaining work actually increased. This is
typical, because once you start the actual implementation, additional tasks are often identified or initial
estimates need to be revised. After three days, while the remaining work should have dropped by 100
hours, there was still 500 hours left.

Around day 6, there was a sharp drop in the remaining work. The project manager realized that the
iteration was in trouble and decided to remove one or more user stories from the iteration. These were
put back on the project backlog to be included in a future iteration. When the user stories were moved
from the iteration, the tasks associated with those user stories were also removed. This decreased the
remaining work to just over 300 hours, putting the iteration back on track.

On day 10, there was another setback, where progress seems to have slowed. In this case, the team
completed the same amount of work, but additional items were added to the backlog. This is because
the testers found several serious defects that will require some effort to correct.

It is now the end of day 13 and there are just over 100 hours of work left and 2 days remaining in the
iteration. The average production has been about 35 person-hours per day, and you’ll probably need 3
days to complete the remaining work. So what do you do? Remove one or more user stories? Call for
mandatory overtime? Deliver the iteration late?

As you can see, the iteration burndown chart can quickly communicate how the iteration is
progressing. It is based solely on the amount of work remaining, which is reestimated every day. As the
iteration proceeds, the estimate becomes more accurate.

Using a Project Burndown
A project burndown works much like an iteration burndown, except the remaining work is expressed as
the number of story points that have not yet been delivered. Recall from Chapter 6 that each user story is
assigned a number of story points. This is way of specifying the relative size of the user story.

CHAPTER 9 ■ BURNDOWN CHARTS

145

■Note The size of a user story is not necessarily based on the amount of work required, and this should not be
construed as an estimate of effort. The estimate is only done for the current iteration when all the tasks have been
identified. Rather, a story point is just a subjective assessment, along the lines of, “This one is twice as big as that
one.”

After each iteration is complete, the number of story points remaining is tracked over the course of
the project. The project backlog provides the details of the remaining user stories and should tell you the
number of story points remaining. A sample project burndown chart is shown in Figure 9-2.

Figure 9-2. A sample project burndown chart

This project started out with 100 story points. After five iterations, more than half of the story points
remained. Based on this progress, it was estimated that the project would take another six or seven
iterations. Since this project is using 3-week iterations, the project would take between 18 and 21 more
weeks to complete. The stakeholders decided to remove some of the lower-priority user stories in order
to complete the project in ten iterations. The sharp drop after iteration six reflects this change.

After eight iterations, there are 18 story points remaining. The team has been delivering between
eight and ten story points per iteration. Based on this burndown chart, the project appears on schedule
to be completed in a total of 30 weeks.

Implementing an Iteration Burndown
To implement an iteration burndown chart, you’ll first define a list to hold the data points. I’ll then show
you two ways to enter the data. First, you’ll use a datasheet view that will allow you to quickly enter
several data points. I’ll then show you how to create a specialized form for entering new data points.
Once the data has been captured, you’ll use a Chart web part to display the data in SharePoint as a line
chart.

CHAPTER 9 ■ BURNDOWN CHARTS

146

Defining the Iteration Burndown Stats List
You’ll create this list by first defining the content type and then adding it to a custom list. Open the
SharePoint site and then, from the Site Options menu, click the Edit in SharePoint Designer link. This will
launch SharePoint Designer and open the current site. You will need to define an additional site column.
Click the Site Columns link in the Navigation pane, and then click the Site Column button in the ribbon.
Choose the Number column type and enter the name Iteration Day. Make sure you select the Project
Management group, as shown in Figure 9-3.

Figure 9-3. Creating the Iteration Day site column

Click the Column Settings button in the ribbon and unselect the “Allow blank values?” check box.
Set the default and minimum values to 0, as shown in Figure 9-4, and save your changes. Day 0 will
represent the initial value before the iteration has started.

Figure 9-4. Modifying the Iteration Day column

CHAPTER 9 ■ BURNDOWN CHARTS

147

Creating the Iteration Burndown Content Type
Click the Content Types link in the Navigation pane and then click the Content Type button in the
ribbon. Enter the name Iteration Burndown and select Item for the parent type, as shown in Figure 9-5.
Click the OK button to create the content type.

Figure 9-5. Creating the Iteration Burndown content type

Select the Iteration Burndown link from the list to define the content type. In the content type
editor, click the Edit content type columns link in the Customization section. Using the Add Existing Site
Column button, add the following site columns:

• Iteration Number

• Iteration Day

• Hours Left

Make sure you save your changes.

CHAPTER 9 ■ BURNDOWN CHARTS

148

Creating the Iteration Burndown Stats List
Click the Lists and Libraries link in the Navigation pane, and then click the Custom List button in the
ribbon. Enter the list name Iteration Burndown Stats. Click the Iteration Burndown Stats link in the list
to define this list. In the Settings section, unselect the “Allow attachments” check box and select the
“Allow management of content types” check box. Save the changes. The Settings section should look like
Figure 9-6.

Figure 9-6. The Iteration Burndown Stats list settings

Click the Add button in the Content Types section and select the Iteration Burndown content type
from the Content Type Picker. Remove the Folder and Item content types from this list. Save your
changes.

Creating a Datasheet View
Go to the SharePoint site and select the new Iteration Burndown Stats list. Now you’ll create a
datasheet view that will allow you to quickly enter multiple data points. From the List ribbon, click the
Create View button and then click the Datasheet View link.

■Tip If you are using a 64-bit version of Office on the client, you may get an error stating “A datasheet
component compatible with Microsoft SharePoint Foundation is not installed.” SharePoint uses a datasheet
component that is provided in the Office client to display a datasheet view. However, this is not included in the 64-
bit version of Office. For more information you can view the article at http://support.microsoft.com/
kb/2266203. Basically, Microsoft provides two options. The first is to uninstall the 64-bit version and use the 32-
bit version instead. The second is a workaround where you can install the 32-bit version of the datasheet
component. There are a few restrictions, the biggest of which is that you must use a 32-bit version of Internet
Explorer.

CHAPTER 9 ■ BURNDOWN CHARTS

149

Enter the view name Data Entry. Select the following columns to be displayed:

• Title

• Iteration Number

• Iteration Day

• Hours Left

Select the position value so these columns will be displayed in this order. Specify the sort criteria to
sort by Iteration Number in descending order (so the most recent iteration will be first), and then sort by
Iteration Day. The Sort section should look like Figure 9-7.

Figure 9-7. Specifying the sort criteria

Click the OK button to create the view. The form should look like Figure 9-8.

Figure 9-8. The empty Data Entry view

You should modify the All Items view to include these same columns as well. You will be using this
default view later in this chapter. You can remove the Title column from the All Items view. Also, in the
Sort section, sort by Iteration Number in descending order, and then by Iteration Day, also in
descending order. For the Data Entry view, the Iteration Day was sorted in ascending order, but for the
default view, you’ll want these in reverse order.

CHAPTER 9 ■ BURNDOWN CHARTS

150

Populating the Data
In order to have some data to test the iteration burndown chart, use the Data Entry view to populate
some data points.

■Note The Title column is required, even though it is not used. All lists must include a Title column, as this
is inherited from the base Item content type. The form will require you to specify a Title. To satisfy this
requirement, you can just enter an asterisk (*) or any other character.

When you have entered some data points, the view should look like Figure 9-9.

Figure 9-9. The Data Entry view with data points

Creating Iteration Views
There are some views of the Iteration list that will be useful later in this chapter. There are only two
iterations that are you will normally be interested in:

• The current iteration that is being implemented

• The next iteration that is being planned

You’ll create a Current and a Planned view, which will filter the Iterations list based on the
Iteration Status column. This will provide a convenient way to retrieve the desired iteration without
having to hard-code the iteration number.

CHAPTER 9 ■ BURNDOWN CHARTS

151

Modifying the Default View
The default view only includes the Title column. You’ll add the additional columns now so they will
automatically be included when you create the new views. Go to the Iterations list. From the List
ribbon, click the Modify View button. Unselect the Attachments and Title columns. Then add the
following columns:

• Iteration Number

• Iteration Status

• Start Date

• End Date

Select the position value so these columns are included in this order. The Columns sections should
look like Figure 9-10. Click OK to save the changes.

Figure 9-10. Selecting the columns for the default view

Adding New Views
From the List ribbon, click the Create View button and then click the Standard View link. Enter the name
Planned. In the Filter section, select the Iteration Status column and enter the value Planned. The
Filter section should look like Figure 9-11.

Figure 9-11. Specifying the filter criteria

CHAPTER 9 ■ BURNDOWN CHARTS

152

Repeat these steps to create a view named Current. For this view, however, select the “Make this the
default view” check box, as shown in Figure 9-12.

Figure 9-12. Making this the default view

The current iteration is the one that will most often be used. By making the Current view the default
view, only the current iteration will be displayed when viewing the Iterations list. The Planned and All
Items views are available if other iterations are needed.

■Tip If the status of the iteration that you entered in the previous chapter is not Current, change its status now.
It should be displayed when the Current view is used. The remaining enhancements in this chapter are designed
to work with the current iteration.

Customizing the New Form
Now, back to the Iteration Burndown Stats list. You now have a Data Entry view, which allows you to
enter multiple data points through a datasheet form. However, a single data point should be entered at
the end of each day, after each of the items has been updated. As I promised, I’ll now show you how to
modify the New form when adding a single data point. You will modify the form to include some
additional web parts that will provide the information needed when entering the data point.

Go to the Iteration Burndown Stats list. From the List ribbon, click the Modify Form Web Parts
button, as shown in Figure 9-13. This is the same button you used in previous chapters. In this case,
however, choose the Default New Form link.

Figure 9-13. Selecting the Modify Form Web Parts button

Click the Add a Web Part link near the top of the form. From the Lists and Libraries category,
select the Iterations list and click the Add button. Select the check box at the top-right corner of the
web part. Then from Web Part Tool ribbon, click the Web Part Properties button. Change the toolbar
type to No Toolbar. In the Appearance section, change the title to Current Iteration and specify the

CHAPTER 9 ■ BURNDOWN CHARTS

153

height as 55 pixels, as shown in Figure 9-14. Click the OK button in the properties pane to save these
changes.

Figure 9-14. Editing the web part properties

Click the Add a Web Part link to add another web part. For this web part, select the Iteration Items
list. Edit the web part like you did for the previous one. Select the Iteration Backlog view, select No
Toolbar, and enter Iteration Backlog for the title. Enter 60 for the height, as shown in Figure 9-15.

Figure 9-15. Editing the backlog web part

CHAPTER 9 ■ BURNDOWN CHARTS

154

Click the Add a Web Part link to add a third web part. Select the Iteration Burndown Stats list. Edit
the web part properties and enter the title as Last Data Point. Also, select No Toolbar and enter the
height as 55 pixels, as shown in Figure 9-16.

Figure 9-16. Editing the Last Data Point web part

Now you’ll need to set up the connections to filter for the current iteration. Hover the mouse over
the Iteration Backlog web part and then click the drop-down icon. Click the Connections, Get Filter
Values From, and Current Iteration links, as shown in Figure 9-17.

Figure 9-17. Creating a web part connection

In the dialog box, select the ID column for the provider and the Iteration column for the consumer,
as shown in Figure 9-18.

CHAPTER 9 ■ BURNDOWN CHARTS

155

Figure 9-18. Configuring the connection

In the same way, create a connection for the Last Data Point web part. Connect it to the Current
Iteration web part just like the previous web part. For this web part, however, you’ll need to connect
them using the Iteration Number column, as shown in Figure 9-19.

Figure 9-19. Configuring the connection using the Iteration Number column

Click the Stop Editing button to save the form changes. Now add a new data point using the Add
new item link at bottom of the list. Notice the New form shown in Figure 9-20.

CHAPTER 9 ■ BURNDOWN CHARTS

156

Figure 9-20. Adding a new data point using the enhanced form

In addition to the normal data entry form, the additional web parts are providing

• The current iteration number and the iteration start and end dates

• The iteration backlog showing the current estimate

• The iteration day of the last data point

• The hours left as of the last data point

By simply assembling a few extra web parts, the default New form now contains all the details you’ll
need to enter the data point for today. The web parts were configured with a fixed height so only the top
row (or summary line) is visible. There are scroll bars on the form so you can see the rest of these lists if
you need to.

CHAPTER 9 ■ BURNDOWN CHARTS

157

Creating a Developer’s Portal
So far, I still haven’t shown you how to display the iteration burndown chart. This can be added as a web
part to an existing page, such as the Iterations list default view page. However, this page is already fairly
busy with several web parts on it. Instead, you’ll create a new web page and assemble the web parts that
are useful to the development team. This will include the iteration backlog and the iteration burndown
chart.

Creating a Web Part Page
From the Site Actions menu, click the More Options link, as shown in Figure 9-21.

Figure 9-21. Selecting the More Options link

This will display the Create form. Filter the list to only include pages, and then select the Web Part
Page template, as shown in Figure 9-22. Click the Create button.

CHAPTER 9 ■ BURNDOWN CHARTS

158

Figure 9-22. Selecting the Web Part Page template

Enter the page name Portal. You can choose from a variety of formats, as shown in Figure 9-23. The
Header, Footer, 3 Columns layout will work well for this page.

Figure 9-23. Configuring the web page

You will also need to select the document library where this page should be stored. I added this to
the Site Pages library. You might want to create a new library to store this page. You can control access
at the library level, so if you want to grant or restrict access to this page, you’ll need to create a library for

CHAPTER 9 ■ BURNDOWN CHARTS

159

it. Click the OK button to create the web page. This will display the empty page shown in Figure 9-24.
The form has links to add web parts to the various sections based on the layout that was chosen.

Figure 9-24. The initial web page

Building the Web Page
As you can see, the web page is built by assembling a collection of web parts. Put the Iterations list in
the Header section and make sure that you select the Current view. This will ensure that this page always
shows the current iteration. To save space, you can edit the web part to select the No Toolbar option and
enter a fixed height of about 55 pixels, just like you did previously.

Add the Iteration Items list to the Footer. Edit the web part and select the Iteration Backlog view,
and also change the title to Iteration Backlog. Leave the Summary Toolbar option as is, since the
developers will need to add and update the items in this list. Don’t restrict the height, as you will want to
display as many items as will fit on the page.

You will also need to set up a connection to the Current Iteration web part so the backlog will be
restricted to the current iteration only. The filter should use the ID column of the provider and the
Iteration column of the consumer, as shown in Figure 9-25.

CHAPTER 9 ■ BURNDOWN CHARTS

160

Figure 9-25. Configuring a web part connection

Add the User Stories list to the Left Column section. Edit the web part to select the All Items view
and the No Toolbar option. This should be a read-only list. Set up a connection to the Current Iteration
web part just like you did for the other web part, using the ID and Iteration columns. Click the Stop
Editing button, and the new page should be displayed. It should look similar to Figure 9-26.

Figure 9-26. The partial web page

CHAPTER 9 ■ BURNDOWN CHARTS

161

Adding a Chart
Now you’ll finally add the burndown chart to this page. You will use the Chart web part that is provided
with SharePoint 2010 Enterprise edition.

Enabling the Enterprise Features
If you install the Enterprise edition of SharePoint 2010, you have to specifically enable the enterprise
features. The Chart web part can be found in the Business Data category. This category will only be
available if the enterprise features have been enabled.

■Tip If you don’t have Enterprise edition, there are a couple free products that you can install to provide charting
ability. If you use one of these, follow the instructions provided with the documentation. The basic approach will be
similar to the technique described here. For Fusion Charts, use this link:
http://charts4sharepoint.codeplex.com.

Also, you might want to check out this link as well for details about ChartPart:
http://chartpart.codeplex.com.

At the time of this writing, these products do not support SharePoint 2010, but this appears to be currently under
development.

To enable the enterprise features, use the SharePoint 2010 Central Administration application,
which you should have in your Start menu. From the main page, click the Upgrade and Migration link.
Then click the Enable Features on Existing Sites link. This will display the page shown in Figure 9-27.

Figure 9-27. Enabling the enterprise features

Select the check box and click the OK button. This process may take several minutes to complete.

CHAPTER 9 ■ BURNDOWN CHARTS

162

Adding the Chart Web Part
Go to the Portal page and from the Page ribbon, click the Edit Page button. Click the Add a Web Part link
in the right column section. Select Chart Web Part from the Business Data category, as shown in Figure
9-28, and click the Add button.

Figure 9-28. Adding the Chart web part

Hover the mouse over this web part, and then click the drop-down icon. Click the Customize Your
Chart link, as shown in Figure 9-29.

Figure 9-29. Configuring the chart options

On the first page that is displayed, choose the basic line chart, as shown in Figure 9-30.

CHAPTER 9 ■ BURNDOWN CHARTS

163

Figure 9-30. Selecting the line chart option

Click the Next button to go to the step 2. You can configure various appearance options here. The
only one that I recommend is that you change the Chart Width to 500px. Click the Next button to go to
step 3. There are quite a few options here. I suggest that you add a chart title, as shown in Figure 9-31.
You can use the default values for the remaining options. Click the Finish button to return to the Portal
page.

Figure 9-31. Adding a chart title

CHAPTER 9 ■ BURNDOWN CHARTS

164

Configuring the Chart Data
The Portal page will now display a line chart using canned data. The next step is to configure the chart
to use the data from the Iteration Burndown Stats list. Click the Edit Page button in the Page ribbon,
and then click the Data & Appearance link just above the chart. In the page that is displayed, click the
Connect Chart To Data link.

The first page of the Data Connection Wizard shows the available data sources that you can connect
the chart to. Choose the “Connect to a List” option and click the Next button to go to step 2. The site
drop-down should already have the current site selected. In the List drop-down, select the Iteration
Burndown Stats list. Then click the Next button, which will take you to step 3 and show a preview of the
data in this list.

You’ll need to set up a filter so only the data points from the current iteration are used. Expand the
Filter Data section. Select Iteration Number for the first parameter and select Int32 for the type. You can
enter 1 for the default value. The page should look like Figure 9-32. Then click the Preview Data button
to verify the filter is working correctly.

Figure 9-32. Creating an Iteration Number parameter

Click the Next button to go to the step 4. On this page, you’ll specify which columns to use for
populating the chart. For the Y field select the Hours Left column, and for the X field select the Iteration
Day column, as shown in Figure 9-33. Click the Finish button close the wizard.

Figure 9-33. Configuring the column bindings

CHAPTER 9 ■ BURNDOWN CHARTS

165

Adding a Connection
The last step is to set up a connection to this web part so the current iteration number is used to filter the
data. Click the Edit Page button in the Page ribbon. Hover the mouse over the Chart Web Part and click
the drop-down icon. Then click the Connections, Get Parameters From, and Current Iteration links, as
shown in Figure 9-34.

Figure 9-34. Creating a connection to the Chart web part

Then select the Iteration Number column for the provider and the Iteration_x0020_Number
parameter for the consumer, as shown in Figure 9-35.

Figure 9-35. Configuring the web part connection

■Note When configuring the Chart web part, you selected the Iteration Number column to filter the data by.
This created a parameter named Iteration_x0020_Number. This is the internal name assigned to this column.
Since the column name had a space in it, the space was replaced with _x0020_ when defining the internal name.
The parameter’s name is used when setting up the connection.

Edit the Chart web part and change the title to Iteration Burndown.

CHAPTER 9 ■ BURNDOWN CHARTS

166

Displaying the Portal Page
The Portal page is now complete. The page should look similar to Figure 9-36.

Figure 9-36. The completed Portal page

This page provides most of the information that developers will need. It has information about the
current iteration, such as the end date. It also lists the user stories that will be completed in this iteration.
The title of the user story is a link to the details about the user story. This is useful for finding reference
information. The iteration burndown is displayed, giving everyone a snapshot of how the iteration is
going. Finally, the iteration backlog is where developers can view the outstanding tasks and update their
status.

CHAPTER 9 ■ BURNDOWN CHARTS

167

Creating a Project Burndown
Before I end this chapter, I want to show you how to create a project burndown. This is very similar to
the iteration burndown.

Collecting Data Points
The project burndown chart displays the number of remaining story points at the beginning of each
iteration. The simplest way to capture this is to add a Story Points Remaining column to the Iterations
list. Just before each iteration is started, the current number of story points not yet delivered is recorded
on the iteration. This data will then be displayed in a chart.

From the Site Actions menu, click the Site Settings link. Then click the Site columns link, which will
display a list of existing site columns. Click the Create link at the top of the page to define a new site
column. Enter the name Story Points Remaining, select the Number column type, and select the Project
Management group. In the Additional Column Settings section, enter a minimum value of 0 and select 0
for the decimal places, as shown in Figure 9-37.

Figure 9-37. Configuring the Story Points Remaining site column

Then click the Site content types link in the Galleries section. The page will then list all the content
types defined for this site. Select the Iteration content type, which will be in the Project Management
group. Click the Add from existing site columns link near the bottom of the page. Select the Project
Management group to filter the list of existing site columns. Select the Story Points Remaining column
and click the Add button. Make sure the “Update all content types inheriting from this type?” option is
set to Yes, as shown in Figure 9-38. Click the OK button to add the Story Points Remaining site column
to both the Iteration content type and the Iterations list.

CHAPTER 9 ■ BURNDOWN CHARTS

168

Figure 9-38. Adding the Story Points Remaining site column

Now go to the Iterations list and edit the current iteration. The edit form should now include the
new column, as demonstrated in Figure 9-39.

CHAPTER 9 ■ BURNDOWN CHARTS

169

Figure 9-39. Entering the story points remaining

Create several more iterations so there will be some data points to graph. Make sure that you assign
sequential iteration numbers. Also, set the Iteration Status to Planned so this won’t interfere with the
Portal page and other forms that are based on the current iteration.

Modifying the Project Backlog View
You’ll need to make a minor enhancement to the Project Backlog view to add a total for the Story
Points column. This will make it easy for you to determine the number of story points remaining. Go to
the User Stories list. From the List ribbon, select the Project Backlog view and then click the Modify
View button. In the Totals section, select Sum for the Story Points column, as shown in Figure 9-40.

Figure 9-40. Providing a sum of story points

CHAPTER 9 ■ BURNDOWN CHARTS

170

Adding a Project Page
The project burndown chart doesn’t logically belong on any existing form, so you’ll create a new page
like you did for the Portal page. This page will have only a single web part, so you can create a simple
web page. From the Site Actions menu, click the New Page link. Enter the page name Project Info, as
shown in Figure 9-41.

Figure 9-41. Creating a new site page

From the Insert ribbon, click the Web Part button. Select the Chart web part from the Business Data
category and click the Add button. This will add the web part to the page. From the Page ribbon, click the
Save & Close button. The page will display with a default chart. Click the Data & Appearance link to
configure the chart.

Click the Connect Chart To Data link, and then select the Connect to a List option and select the
Iterations list. No filter is required, so click the Next button to skip the next step. For the data binding,
select Story Points Remaining for the Y field and Iteration Number for the X field, as shown in Figure 9-
42.

Figure 9-42. Selecting the data bindings

The page will now display the data points using the default chart configuration. Edit the web part
and change the title to Project Burndown. Now you’ll need to configure the appearance of the chart.

CHAPTER 9 ■ BURNDOWN CHARTS

171

Click the Data & Appearance link again, but this time click the Customize Your Chart link. In step 1,
select the standard line chart. In step 2, change the width to 500px. In step 3, enter Project Burndown
for the title and change the font to 14 pts. Then click the finish button. The page should look similar to
Figure 9-43.

Figure 9-43. The Project Info page

By extrapolating this graph, you can estimate that it will take four or five more iterations to complete
the project.

Summary
In this chapter you created web pages to display the iteration and project burndown charts. You used the
Chart web part provided with the Enterprise edition of SharePoint 2010. The web part allowed you to
easily add a graphical representation of your data. To support this feature, you provided a place to store
the data points that are displayed in the charts. You also used some additional SharePoint techniques,
including

• Creating a datasheet view for bulk editing

• Creating new web pages

• Modifying an existing data entry form to provide additional data

• Creating custom views to filter the list data

The solutions described in this chapter made heavy use of web parts. By simply assembling web
parts for existing lists, you can easily implement useful pages and forms.

In the next section, you’ll provide facilities to support the testing activities.

P A R T 3

■ ■ ■

1

Testing

In this section I’ll describe some typical testing activities and explain how you can
use SharePoint to facilitate these. Testing activities occur throughout the project.
Testing is not a project phase like requirement gathering, implementation, and
support. However, I have grouped these activities together as they are logically
related. Also, all testing activities should be coordinated through a comprehensive
test plan. My intention is not to teach you how to test, but to help you organize the
test activities that you choose to include in your test plan.
 A SharePoint site is a great place to store all kinds of information from
documents, spreadsheets, calendars, contacts, and useful links. In Chapter 10, I’ll
show you some ways you can take advantage of these capabilities to organize your
test planning and activities. None of this is rocket science, and the ideas I’ll present
can be used in other areas as well. Then, in Chapter 11, I will show you how to
develop and organize your test cases.
 Once the testing has started, the solution presented in Chapter 12 will allow you
to record defects and track your test activities. Finally, in Chapter 13, I’ll show you
how to capture and report various testing metrics. These will not only provide insight
into the overall testing progress but also the quality of the project.

C H A P T E R 1 0

■ ■ ■

175

Getting Organized

In this chapter, I’ll show you some useful techniques for organizing information in SharePoint. This is a
very brief introduction to SharePoint, but it will get you started with some of the more useful features.

Using Document Libraries
A document library in SharePoint is a specialized list, where each item in the list contains some type of
document. At its most basic level, a document library is a handy place to store your files and to keep
related items in one place. Putting your documents in a library is a great way to share and organize
them. SharePoint also provides some nice features—which I will demonstrate briefly—that you will
probably find useful.

Creating a Document Library
The first step is to create a document library. From the Site Action menu, click the New Document
Library link, as shown in Figure 10-1.

Figure 10-1. Selecting the New Document Library link

CHAPTER 10 ■ GETTING ORGANIZED

176

This will display the dialog box shown in Figure 10-2. Enter the name Test Documents and a
description. The Navigation option is used to indicate if you want a link to this library in the Quick
Launch area. Make sure you enable the Document Version History option. This will allow you to keep a
record of each version of the document. I will demonstrate this feature later. Finally, select “Microsoft
Word document” for your library template, as shown in Figure 10-2.

Figure 10-2. Creating the Test Documents library

■Tip If you choose the Microsoft Word document as the library template, you are not limited to this type of
document. In fact, you can store any type of file in any library. The choice of template, however, determines the
additional columns in your library, which I’ll explain later.

Click the Add document link to add a new document to the library. Use the Browse button to select
the document that you want to add. You can also enter comments to describe the document, as shown
in Figure 10-3.

CHAPTER 10 ■ GETTING ORGANIZED

177

Figure 10-3. Adding a new document to the library

The library will now list this document along with information about its last modification, as shown
in Figure 10-4.

Figure 10-4. The document summary

Providing Version History
One of the great features of a document library is that it can automatically keep previous versions. This is
really helpful, especially when there are several people contributing content. To edit a shared document,
the first thing you should do is check it out. Click the actions drop-down next to the document title and
click the Check Out link, as shown in Figure 10-5.

CHAPTER 10 ■ GETTING ORGANIZED

178

Figure 10-5. Viewing the document options

Click the OK button to confirm the check out. Notice that the icon in the list has changed. The arrow
in the green box indicates that the file has been checked out. This will indicate to everyone else that the
document is being edited and will prevent anyone else from checking it out.

Modify the document on your local disk (the same one that you added to the library initially). From
the Documents ribbon, click the Upload button. This will display the same Upload Document dialog box
that you used to add the file. Browse to the file and enter a description of the changes you made. Notice
the “Add as a new version to existing files” check box. With this checked, it will add this as a new version
to the existing document instead of creating a new document. For this to work, the file names need to be
the same. Click the OK button to upload this revision.

The upload process will automatically check in the document for you. It will then display the Edit
form, shown in Figure 10-6, where you can modify the document properties. You can click the Cancel
button since you don’t need to make any changes.

Figure 10-6. After uploading a new revision

CHAPTER 10 ■ GETTING ORGANIZED

179

From the actions drop-down beside the document title, click the Version History link. The dialog
shown in Figure 10-7 will be displayed, listing all the versions that have been made. You can use this
dialog to remove versions that you don’t want to keep.

Figure 10-7. Viewing the version history

■Note This feature does not provide change tracking; it simply archives each file that is uploaded. This will
allow you to see previous versions of the document. It will allow you to compare versions, but if you need a full-
featured change tracking facility, you should turn on the change-tracking feature in the Office document.

You may have noticed that SharePoint does not require you to check out a document before editing
it or uploading a new version. This is the default setting. If you’re working in a team environment, you
should require a checkout before changing a shared document. To do that, click the Library Settings
button in the Library ribbon. Click the Versioning settings link in the General Settings section. The
versioning options are shown in Figure 10-8.

CHAPTER 10 ■ GETTING ORGANIZED

180

Figure 10-8. Modifying the versioning settings

At the bottom of this page, in the Require Check Out section, click the Yes radio button. This will
require documents to be checked out before they can be modified.

There are a few other options on this page that you might be interested in. If you choose to require
content approval, when a new version is uploaded, it will be saved as a draft. Most people will not have
access to draft versions, so it will not be available to the general public. The document must be approved
before it becomes available. Use this feature if you want to control the content that is being uploaded. If
you enable this, the other options will control how the drafts are versioned and who is allowed to see
them.

Viewing Library Documents in Office
If you are storing Office documents (such as Word or Excel documents), you can check out the file from
within the Office document. From the SharePoint document library, click the document title, which is a
link that opens the document. Depending on your system configuration, you may see the banner, shown
in Figure 10-9, warning you about potentially unsafe documents. Just click the Enable Editing button.

CHAPTER 10 ■ GETTING ORGANIZED

181

Figure 10-9. The Protected View banner

Because you turned on the option that requires a check out, you should see another banner telling
you that the document must be checked out first, as shown in Figure 10-10. Click the Check Out button.

Figure 10-10. Checking the document out from Office

Click the File tab to see the document options that are available. The first section, shown in Figure
10-11, tells you that the document is currently checked out. When you have finished with your changes,
you can click the Check In button to check the document in. You can also use the Discard Check Out
button if you decide to not make any changes.

Figure 10-11. Checking-in a document from the File tab

You can also view the list of previous versions, as shown in Figure 10-12.

Figure 10-12. Viewing the version history on the File page

If you click one of the previous versions, the selected version will be displayed with a banner
warning you that this is not the current version. This banner includes a Compare button so you can see
the differences between this version and the current version.

Make some changes to the document and save your changes. From the File tab, click the Check In
button. The Check In dialog box, shown in Figure 10-13, will appear. Enter a description of what was
changed and click the OK button.

CHAPTER 10 ■ GETTING ORGANIZED

182

Figure 10-13. Viewing the version history on the File tab

You can select the “Keep the document checked out after checking in this version” check box. This
will check in your changes, making them available for others to see, while keeping the document
checked out so others cannot edit it.

Organizing Documents in Folders
A document library will allow you to create folders for organizing the contents. If you have a lot of
documents, you might want to group them into folders. To add a new folder, click the New Folder button
in the Documents ribbon, as shown in Figure 10-14.

Figure 10-14. Adding a folder

In the New Folder dialog box, enter the folder name. The folders will be listed along with the
documents, as shown in Figure 10-15.

Figure 10-15. The document library with folders

Click the folder name to see the contents of the folder. A folder can also have subfolders.

CHAPTER 10 ■ GETTING ORGANIZED

183

Customizing Your Library
As I mentioned earlier, a document library is a specialized list. This means that, in addition to storing a
document, each item can have data columns. The default columns already created for you include Type,
Name, Modified, and Modified By. You can also add custom columns just like you can for lists. For
example, suppose you created a document for each test scenario and you created a document library to
store these. You could include columns to specify the ID assigned to that scenario, a brief description,
and the current status.

To add a new column, click the Create Column button in the Library ribbon, as shown in Figure 10-
16.

Figure 10-16. Adding custom columns

This will create a new column for this list only. If you want to include an existing site column, click
the Library Settings button instead. On the Document Library Settings page, the existing columns are
listed with links to modify the columns, as shown in Figure 10-17. Click the Add from existing site
columns link to display a list of existing columns that can be added to your library.

Figure 10-17. Displaying the existing library columns

You can also create additional views to filter the list of documents. For example, you might want a
view that only shows the documents that you have currently checked out. You could also filter the view
by one or more of the custom columns.

CHAPTER 10 ■ GETTING ORGANIZED

184

Using Calendars
Calendars are useful for displaying certain types of information. You might want to keep track of when
staff members are unavailable. Or perhaps you need to use some special test equipment that is only
available to your team at specific times. A calendar works well for these purposes.

You can create a new calendar by creating a list using the Calendar template. From the Site Actions
menu, click the More Options link and then select the Calendar template, as shown in Figure 10-18.

Figure 10-18. Creating a new calendar

■Tip Because this site was creating using the Team Site template, a calendar has already been created for
you. You can use this calendar for everything on your site, or you can create individual calendars for each area. A
common calendar for everything related to this project can be useful. However, for large projects, specialized
calendars may be more manageable.

CHAPTER 10 ■ GETTING ORGANIZED

185

Items in a calendar list are often referred to as events. To add events to the calendar, hover the
mouse over the desired date and an Add link will appear. Click that link and fill in the event details, as
shown in Figure 10-19.

Figure 10-19. Entering a new event

Events can span multiple days. You can also set up a recurring event such as weekly staff meetings.
After you have saved the event, it is then included in the calendar, as shown in Figure 10-20.

Figure 10-20. Displaying the Test Resources calendar

As with all other lists, you can add columns to the list to store custom data. You can also create
custom views to filter the events based on the type of event or even the custom columns. SharePoint

CHAPTER 10 ■ GETTING ORGANIZED

186

provides standard views for displaying a single day, a week, or a month. If you have multiple calendars
on your site, you can overlap up to ten calendars on a single view.

Organizing Links
SharePoint includes an out-of-the-box list that you can use to keep track of various links. You can use
this list to store hyperlinks to documents or internal and external web sites. If you have multiple test
environments, you can create links to them here so everyone will know where to find them. An
advantage of using the Links list is that you only need to update them in one place should the link need
to be changed.

A Links list was created for you when you created the site using the Team Site template. Click the
Lists link in the Quick Launch pane to see all the lists that are available on the site, and then click the
Links link. This will display an empty list. Click the Add new link link. Enter the link URL and description,
as shown in Figure 10-21.

Figure 10-21. Adding a link to the Test Plan document

The default view includes the notes column as well as a link for editing the link, as shown in Figure
10-22.

Figure 10-22. The default view

CHAPTER 10 ■ GETTING ORGANIZED

187

I recommend removing the extra information from this view and just showing the URL column. The
Notes column may be useful as well, depending on how clear the descriptions are.

■Tip The URL column contains two parts: the actual URL and a description. In the view, the description is
displayed and the URL is not. This column is displayed as a hyperlink where the description is displayed and the
URL defines the href command.

Add several other links to internal or external web sites. With the modified view, the Links list will
look like Figure 10-23.

Figure 10-23. The simplified Links view

Putting It All Together
Now you’ll create a portal page like you did for the developers that includes these reference lists. You’ll
create a web part page and include the lists and libraries so you can view them all from a single page.

From the Site Actions menu, click the More Options link. Select the Web Part Page template and
click the Create button. Enter the name Testing and choose the Right Column, Header, Footer, Top
Row, 3 Columns layout, as shown in Figure 10-24.

CHAPTER 10 ■ GETTING ORGANIZED

188

Figure 10-24. Selecting the page layout

Click the Add a Web Part link in the Right Column section. From the Lists and Libraries category,
select the Links list. Edit the web page and select the All Links view. In the same way, add the Testing
Resource list to the Header section. Finally, add the Test Documents library to the Footer section. Click
the Stop Editing button to display the page, which should look like Figure 10-25.

CHAPTER 10 ■ GETTING ORGANIZED

189

Figure 10-25. The testing portal page

Summary
In this chapter you used some of the basic features of a SharePoint site to organize your project
information. The techniques described in this chapter could also be used in many other areas of your
project. A document library provides

• A common location for storing documents

• Automatic document versioning

• Simple integration with Office applications

• The ability to customize data and views

You created a calendar to track events and resources that affect your project. You also used a Links list to
keep useful links to internal and external documents and web sites. Finally, you created a portal page
that included these lists and libraries for easy reference.

C H A P T E R 1 1

■ ■ ■

191

Creating Test Cases

In this chapter, you’ll build the test cases that will be used to verify your project. Defining a set of test
cases to verify all of the requirements can be a daunting task. I’ll explain some techniques that should
help you accomplish this, and later in the chapter I’ll show you how to capture the test cases in a
SharePoint list.

Glossary
There are several terms that I’ll use throughout this section that have been used in different ways, so I’d
like to provide a working definition for the remainder of this book.

• Test case: Specifies the expected outcome based on a specific input and defined
preconditions.

• Test coverage: Specifies how much of the system has been exercised to verify that it
functions as expected in all scenarios.

• Test plan: Describes a summary of the testing activities, including an estimated
schedule. In a large project, especially one with multiple deliverables, the test plan
provides the high-level coordination of resources and activities. A test plan will
describe the types of testing that are included in the project, such as unit and
integration tests.

• Test scenario: Refers to a set of related test cases that are typically performed in a
specified sequence. A scenario performs a function and the test cases represent
the individual steps. Test scenarios are often linked to a user story (see Chapter 6).

• Test strategy: Refers to the overall approach to ensuring the quality of the project.
The strategy will specify the methodology and the resources that will be used. It
will also define the high-level goals and philosophy of the testing process. The
strategy should describe any special test harnesses that will be used and how
automated testing will be employed.

CHAPTER 11 ■ CREATING TEST CASES

192

• Variations: Refers to test cases that differ only by the input/output combinations.
Often multiple test cases are used to verify the same function with a different set
of inputs. In this case it might be more efficient to use a single test case and list the
expected output based on each set of inputs.

Defining Test Cases
At this point in the project, the test strategy should be written and an initial test plan developed. The
next step in the overall test plan is to define test cases that will verify that the end product fulfills the
specified requirements.

Breadth First, Then Depth
Test cases are very detailed and specific. You could easily end up with hundreds, even thousands, of test
cases. I have seen people make the mistake of just starting to write test cases without planning first. I
have done this myself as well. I think one of the reasons for this is because it’s easy to think of test cases.
The problem is, however, that you need to define all the test cases. Starting at a high level and gradually
drilling down is the approach that is most likely to produce good test coverage.

Another advantage of this approach is that you can still test without detailed test cases. For example,
suppose you only had time to write 90 percent of the test cases. With the high-level approach, you would
know which areas were missing detailed test cases. You could perform ad hoc testing in these areas and
hopefully still achieve adequate coverage.

With this in mind, you should start the process by listing the test scenarios. As I explained in the
glossary, a test scenario is a set of test cases that cover a particular function. Scenarios are described in
general terms. For example, “Verify the login page.” You can address specific areas that need to be
addressed by listing additional scenarios such as “Handle expired passwords.” Later you will address
each scenario, writing the specific test cases that are needed.

Nonfunctional Testing
We tend to focus our attention on providing and then verifying functionality. Does the system deliver the
required features and do they work as expected? However, there are often many nonfunctional
requirements that need to be addressed as well. Areas such as performance, security, vulnerability, and
scalability are often key factors to a successful project.

When defining the test scenarios, make sure you also include these areas. At this point, you don’t
have to figure out how you’re going to test for vulnerability, for example. But you should identify risk
areas and scenarios that must be considered. Again, you will later determine the specific tests that
should be performed, but adding these to the list of test scenarios will keep these more intangible
qualities on your testing radar.

Traceability
One approach to ensuring good test coverage is to link each test scenario with one or more
requirements. Mapping each requirement to a set of test scenarios, and eventually to test cases, will help
you see how well each requirement is covered. If you have a good set of detailed requirements, this will
help you identify most of the test scenarios.

CHAPTER 11 ■ CREATING TEST CASES

193

■Caution Be careful about exclusively relying on the requirements to identify your test scenarios. Sometimes
assumptions are made when the requirements are written and not explicitly stated. The requirements are still a
good starting point; however, just look for implied requirements that should be covered as well.

If the agile methodology is used for development, traceability becomes even more important. The
user stories that are included in an iteration must be tested before the iteration is complete. By linking
each test scenario to a user story, you will be able to determine the scenarios (and eventually test cases)
that must be tested during each iteration.

Operation Grid
One technique that may help you identify test scenarios is to create a spreadsheet that maps common
operations to similar objects. For example, if your project is implementing several web pages, you may
be able to factor out some common operations. Suppose each page needs to display a list of items, and
allow one to be selected and displayed with details. The item can then be modified and saved. The page
also allows the user to create a new item. You could create the grid shown in Figure 11-1. Each cell in the
grid represents a test scenario.

Figure 11-1. A sample operation grid

This approach works well if there are several items that have similar operations. It may not help in
all situations. Use this technique if it helps you. Also, if you create a grid to identify common scenarios,
keep in mind that there will often be additional test scenarios for the other features that are not
common.

Organizing Test Scenarios
As you start collecting test scenarios, it will be helpful to divide them into groups. This will allow you to
group together similar items, which generally improves your overall efficiency. You might want to
prioritize these groups or assign different resources to each group. These groups could be based on
functional areas (Operations, Sales, Inventory, etc.) or technology layers such as UI or business rules.

Your choice of groups will depend on how the test activities are planned and assigned. I suggest that
you allow the end user to define these groups so they can tailor the solution to their needs.

Also, you might want to distinguish between functional and nonfunctional test scenarios.
Nonfunctional test scenarios often require more effort to design test cases for and usually require a
different test approach from functional tests.

CHAPTER 11 ■ CREATING TEST CASES

194

Building a SharePoint Solution
Now you’ll implement lists in SharePoint that will allow you to capture the results of this process. You
will first build a Test Areas list, which is a simple list of group descriptions. By putting these in a list, the
users can define their own groups of test scenarios. You will then create a list of test scenarios that can
be linked to requirements and/or user stories. Finally, you will provide a facility for expanding these into
specific test cases. In the next chapter you’ll provide a way to record the test results based on these test
cases.

Creating a Test Areas List
Because the Test Areas list contains only the Title column, you can create the list in SharePoint using
the Custom List template without defining a new content type. Open the SharePoint site. From the Site
Actions menu, click the More Options link, as shown in Figure 11-2.

Figure 11-2. Selecting the More Options link

In the Create dialog box, select the Custom List template and enter the name Test Areas. Click the
More Options button. This list will be used to define the groups used for organizing the test scenarios.
Once these have been set up, the users will not need to view or edit this list. Select the No option in the
Navigation section, as shown in Figure 11-3.

CHAPTER 11 ■ CREATING TEST CASES

195

Figure 11-3. Turning off the Quick Launch option

This will exclude this list from the Quick Launch menu. Click the Create button to add the list. The
empty list will be displayed. Use the Add new item link to add a few areas. When you’re done, the list
should look like Figure 11-4.

Figure 11-4. The Test Areas list

Building a Test Scenarios List
Now you’ll create the Test Scenarios list, which you’ll do in SharePoint Designer. From the Site Actions
menu, click the Edit in SharePoint Designer link.

Adding Site Columns
You’ll need to create a couple of site columns that this list will use. The first is a Lookup column for the
Test Areas list that you just created. In SharePoint Designer, click the Site Columns link on the
Navigation pane. Then click the New Column button in the ribbon and select the Lookup column type.
Enter the name Test Area and select the Project Management group. In the Column Editor, select the Test

CHAPTER 11 ■ CREATING TEST CASES

196

Areas list and the Title column, and select the “Allow blank values?” check box, as shown in Figure 11-5.
Click the OK button to add the site column.

Figure 11-5. Configuring the Test Area column

The other column you’ll need is a Boolean field that you can use to distinguish between functional
and nonfunctional test scenarios. Click the New Column button and choose the Yes/No column type.
Enter the name Functional Scenario and select the Project Management group. Click the Save icon at the
top of the application to save your changes.

Creating a Content Type
Click the Content Type link in the Navigation pane and then click the Content Type button in the ribbon.
In the Create a Content Type dialog box, enter the name Test Scenario, select Item as the parent content
type, and select the Project Management group, as shown in Figure 11-6.

CHAPTER 11 ■ CREATING TEST CASES

197

Figure 11-6. Creating a new content type

Click the Test Scenario link to edit this content type. In the Customization section, click the Edit
content type columns link. The Title column will already be included, as it was inherited from the Item
content type. Using the Add Existing Site Column button in the ribbon, add the following site columns to
this content type:

• Functional Scenario

• Test Area

• % Complete

• User Story

• Story Requirements

■Tip In the Site Columns Picker dialog box, you can start typing the name of the site column, and the list will be
automatically filtered based on what you enter. This is a quick way to find the column you’re looking for.

When you have finished, the content type should look like Figure 11-7.

CHAPTER 11 ■ CREATING TEST CASES

198

Figure 11-7. The Test Scenario content type

■Note The Test Scenario content type allows each scenario to be linked to a user story and one or more
requirements. My intent is that you would use one or the other. If the agile methodology is used during
development, test scenarios should be linked to user stories to support the intra-iteration testing. There is no need
to also link scenarios to requirements in this case.

Creating the List
Click the Lists and Libraries link in the Navigation pane and then click the Custom List button in the
ribbon. Enter the name Test Scenarios and click the OK button. This will create the Test Scenarios list
and add it to the collection of lists. Click the Test Scenarios link to configure this list.

In the Settings section, unselect the “Allow attachments” check box and select the “Allow
management of content types” check box. The Settings section will look like Figure 11-8.

Figure 11-8. The modified Settings section

Click the Add button in the Content Types section and add the Test Scenario content type. Remove
the Folder and Item content types. Click the Save icon to save your changes.

Go to the SharePoint site and select the Test Scenarios list. You may have to refresh the page if this
list is not included in the Quick Launch area. The list will be empty and the default view will only include
the Title column. From the List ribbon, click the Modify View button. Add the following columns and
set the Position value so they will be displayed in this order:

CHAPTER 11 ■ CREATING TEST CASES

199

• Functional Scenario

• Test Area

• % Complete

• User Story

• Story Requirements

The Columns section of the view definition should look like Figure 11-9. Click the OK button to the
save the updated view.

Figure 11-9. Selecting the view columns

Adding Test Scenarios
Now you’re ready to add some scenarios to your list. Click the Add new item link and enter a test
scenario, as shown in Figure 11-10.

CHAPTER 11 ■ CREATING TEST CASES

200

Figure 11-10. Adding a test scenario

Notice that the User Story can be selected from the drop-down but is not required. The Story
Requirements column was configured to allow multiple values. To assign this test scenario to a
requirement, select the requirement(s) and click the Add button. The % Complete column is used to
indicate if all the test cases for this scenario have been entered. Initially these should be set to 0 or left
blank.

Add several more scenarios so you’ll have some data to test with. The view will be similar to Figure
11-11.

Figure 11-11. The Test Scenario default view

CHAPTER 11 ■ CREATING TEST CASES

201

Using a Datasheet View
If you need to enter a lot of scenarios, which you probably will, you might find it more efficient to use a
datasheet view. You can easily display the current view using a datasheet by clicking the Datasheet View
button in the List ribbon. In datasheet mode, the default view will look like Figure 11-12.

Figure 11-12. The default view in datasheet mode

Notice that even in datasheet mode, you can still select the Test Area and User Story column from
a drop-down list. Because the Story Requirements column allows multiple values, it works a little
differently. When you click the drop-down icon, the available list is displayed with check boxes, as
shown in Figure 11-13. You can click the check box on the appropriate requirement(s).

Figure 11-13. Selecting a multivalued column

Building a Test Cases List
Next, you’ll create the Test Cases list. Just like with the Test Scenarios list, you first create the necessary
site columns and then define the content type. Finally, you’ll create the list and add the content type to
it.

Creating the Site Columns
Test cases will be assigned to a test scenario, so you’ll need a Lookup column for the Test Scenarios list.
You will also need several columns for the test case details.

If SharePoint Designer is not already open, click the Edit in SharePoint Designer link in the Site
Actions menu. Click the Site Columns link in the Navigation pane, and then click the New Column
button in the ribbon and select the Lookup column type. Enter the name Test Scenario and select the
Project Management group. In the column editor, select the Test Scenarios list and the Title column.
Also, unselect the “Allow blank values?” check box, as shown in Figure 11-14. All test cases should be
assigned to a scenario.

CHAPTER 11 ■ CREATING TEST CASES

202

Figure 11-14. Configuring the Test Scenario site column

In the same way, create the following site columns:

• Sequence: Number (set to whole numbers only, don’t allow blanks)

• Test Preconditions: Multi Lines of Text

• Test Inputs: Multi Lines of Text

• Test Outputs: Multi Lines of Text

Make sure you put all of these in the Project Management group. Click the Save icon to save your
changes.

Creating the Content Type
Click the Content Type link in the Navigation pane and then click the Content Type button in the ribbon.
Enter the name Test Case, select the Item content type as the parent, and select the Project Management
group, as shown in Figure 11-15.

CHAPTER 11 ■ CREATING TEST CASES

203

Figure 11-15. Creating the Test Case content type

Click the OK button, which will create the content type and include it in the list. Click the Test Case
link to edit this content type. In the Customization section, click the Edit content type columns link. The
Title column will already be included. Using the Add Existing Site Column button in the ribbon, add the
following additional site columns:

• Test Scenario

• Sequence

• Test Preconditions

• Test Inputs

• Test Outputs

• % Complete

The content type should look like Figure 11-16 when you have finished. Make sure you save your
changes.

CHAPTER 11 ■ CREATING TEST CASES

204

Figure 11-16. The Test Case content type columns

Creating the Test Cases List
Click the Lists and Libraries link in the Navigation pane, and then click the Custom List button in the
ribbon. Enter the name Test Cases and click the OK button. Then click the Test Cases link to configure
this list. In the Settings section, select the “Allow management of content types” check box, which will
allow you to add and remove content types from this list.

■Note In the Test Scenarios list, you removed the “Allow Attachments” option. Test scenarios are simply a
collection of test cases that verify a particular feature or function. Scenarios are basically a mechanism for
grouping test cases—they don’t, in themselves, provide any testing details. However, a test case does define
specific input, output, and preconditions. It is conceivable that attachments could be used to supply these details.
So, the Test Cases list will allow attachments.

Click the Add button in the Content Types section, and select the Test Case content type. Then
remove the Folder and Item content types. Go to the SharePoint site and display the Test Cases list. In
the List ribbon, click the Modify View button. In the Columns section, remove the Attachments column
and add the following columns:

• Title (should already be in the view)

• Test Scenario

• Sequence

• % Complete

Modify the Position property so these will be displayed in this order. The Columns section should
look like Figure 11-17.

CHAPTER 11 ■ CREATING TEST CASES

205

Figure 11-17. The modified Columns section

In the Sort section, sort by the Test Scenario and then by the Sequence columns, both in ascending
order. The Sort section will look like Figure 11-18.

Figure 11-18. The Sort section of the default view

Click the OK button to save the changes to the view.

Adding Test Cases
Click the Add new item link and enter a test case, as shown in Figure 11-19.

CHAPTER 11 ■ CREATING TEST CASES

206

Figure 11-19. Adding a test case

Because this test case has been completely specified, the % Complete was set at 100. Sometimes you
might just create the test case and fill in the details later. This is a good idea when you’re trying to
capture all the test cases—in a group session, for example. You can identify the need and come back to it
later with the specifics. In this case, you’ll set % Complete to something less that 100 (or just leave it
blank). Also, you can use the Attach File button to add a separate document with supporting details.

Creating a Data Entry View
As with test scenarios, you will probably find it more efficient to enter test cases using a datasheet view.
The current view, however, does not include all the columns that you’ll need to enter. To accommodate
data entry via a datasheet, you’ll now create a new view for that purpose.

CHAPTER 11 ■ CREATING TEST CASES

207

From the List ribbon, click the Create View button. Then click the Datasheet View link. Enter the
name Data Entry and select the following columns:

• Title

• Test Scenario

• Sequence

• % Complete

• Test Preconditions

• Test Inputs

• Test Outputs

Set the Position value so these columns will be in this order. Also, in the Sort section, sort by the
Test Scenario and Sequence columns, just like you did with the default view. Enter a few more test cases
so you’ll have some data to test with. The Data Entry view should look like Figure 11-20.

Figure 11-20. The Data Entry view

Creating a Test Scenarios Page
You’ll now create a web page that will list the test scenarios and also show the specific test cases for the
selected scenario. This will allow you to easily browse the scenarios, view the existing test cases, and add
more test cases if needed. You will use the same web part page used in previous chapters.

From the Site Actions menu, select the More Options link. In the Filter By section, select Page. Then
select the Web Part Page template, as shown in Figure 11-21.

CHAPTER 11 ■ CREATING TEST CASES

208

Figure 11-21. Selecting the Web Part Page template

Click the Create button. Enter the name Test Scenarios and select the Header, Footer, 3 Columns
layout. Select the Site Pages library, as shown in Figure 11-22.

Figure 11-22. Configuring the Test Scenarios page

Click the Add a Web Part link in the Header section. From the Lists and Libraries category, select
the Test Scenarios list and click the Add button. In the same way, add the Test Cases list to the Footer
section.

Set up a connection between the web parts so the Test Cases list is filtered based on the selected
test scenario. Click the drop-down icon on the Test Cases web part, and click the Connections, Get Filter
Values From, and Test Scenarios links, as shown in Figure 11-23.

CHAPTER 11 ■ CREATING TEST CASES

209

Figure 11-23. Adding a connection

In the dialog box, select the ID column for the provider and the Test Scenario column for the
consumer, as shown in Figure 11-24.

Figure 11-24. Configuring the web part connection

Click the Stop Editing button to display the Test Scenarios page. As you select a test scenario, the
associated test cases will be displayed, as demonstrated in Figure 11-25.

CHAPTER 11 ■ CREATING TEST CASES

210

Figure 11-25. The completed Test Scenarios page

From this page you can add new test cases, as well as edit existing test cases and scenarios.

Summary
In this chapter you implemented a facility for defining test scenarios, which can then be expanded into
detailed test cases. The scenarios are linked to either user stories or requirements, as appropriate, and
are also categorized by user-defined test areas. You also provided some usability features to make data
entry and analysis more efficient, including

• A datasheet view for capturing test scenarios

• A datasheet view for defining test cases

• The ability to enter partial information and fill in details later

• A web page to browse the scenarios, which also lists the associated test cases

These facilities support the test-planning activities. In the next chapter you’ll use the test scenarios and
test cases as the primary input into the actual testing process.

C H A P T E R 1 2

■ ■ ■

211

Reporting Defects

In this chapter you’ll provide a facility for defining a test cycle, which is a set of test cases that are to be
performed against a specific release. You will then use this to record the test results.

Review
In the previous chapter you defined the test cases that will be used to verify your project. This process
started by defining test scenarios. Each test scenario covers a particular topic or set of interactions,
without the detailed input/output specifications. A scenario is usually a short description, often just a
phrase or two. By keeping these brief and at a high level, you can more easily cover the entire scope that
must be tested, without getting bogged down with the details. Scenarios can be used for both functional
and nonfunctional requirements.

You provided for scenarios to be grouped into testing areas to help organize them. Test scenarios
can also be assigned to either a user story or one or more requirements. This allows you to trace each
test scenario back to the requirement that is being verified. This provides two advantages:

• The originating requirement is readily available when writing the detailed test
cases.

• You can see at a glance the scenarios defined for each requirement and determine
how well it has been covered.

Once the scenarios were defined, you then provided a means for entering the specific test cases.
Each test case defines the specific input and expected output, as well as any assumed preconditions.
Because of the volume of test cases, you created a datasheet view for easier data entry. You also provided
a web page for viewing the test scenarios and the test cases associated with each.

When the test planning is complete, you will have a set of test cases that have been organized into
scenarios. Each scenario, in turn, is associated with a user story or requirement. Now it’s time to start
testing and recording the results.

CHAPTER 12 ■ REPORTING DEFECTS

212

Test Cycles
As you probably know, tests are often repeated. For example, the system is released and the specified
test cases are performed. Defects are reported and addressed and an update is then released. At this
point, the tests are performed again. This cycle is repeated as often as necessary.

Test Items
A test cycle is simply the set of test cases that are to be executed against a specific release. It is a
collection of test items, each of which references a test case. The test case specifies the test to be
performed, including input and output details. The test item, however, records the results. When the test
is repeated, in a subsequent test cycle, a separate test item will record those results. This is illustrated in
Figure 12-1.

Figure 12-1. The relationship between test cases and test items

The same test case is used for both tests, which also references a test scenario. The scenario can be
associated with a user story (or one or more requirements). These objects define the test that should be
performed. The test item records a single execution of that test, including the results. The test cycle
provides the context of the test execution—for example, the specific release that the test is performed
against.

CHAPTER 12 ■ REPORTING DEFECTS

213

■Tip The target for each test cycle should remain static. In other words, you should not make any changes
during the test. Changes can invalidate previous test results and leave you with an inaccurate assessment of the
quality of the current release. If there are significant issues with the current release and it is difficult or impractical
to complete the remaining tests, the test cycle should be cancelled. When the issues are addressed, a new release
will be retested with a new test cycle.

At the beginning of each test cycle, the specific test cases are chosen to be included in that cycle.
You don’t necessarily have to execute every test case in every cycle. Part of the test planning is to
determine the appropriate tests for each test cycle. In any case, a test item is created for each test case
that should be performed. The test cycle, along with its set of test items, defines the work to be done.
They also serve as the place to record the test results.

Agile Testing
This approach fits very well with the agile development methodology. The test cases associated with
each iteration must be performed before the iteration is finished. So there will be at least one test cycle
per iteration. Additional test cycles may be necessary as well.

If you’re using the agile methodology for development, the definition of each test cycle becomes
fairly straightforward. Each iteration is responsible for delivering a set of user stories. Each user story has
a set of test scenarios that have been defined, which are then expanded into test cases. This is illustrated
in Figure 12-2. Iterations and user stories are a very convenient (and effective) way to define your test
cycles.

CHAPTER 12 ■ REPORTING DEFECTS

214

Figure 12-2. Determining test cases for an iteration

■Note The solution described in the remainder of this chapter is based on using the agile methodology. It uses
the definition of the iteration and user stories to automate the creation of the test items for each test cycle. If you
are not using agile, the concepts described here are still very much applicable. The only difference is that you will
either need to populate the test cycle manually or provide some other criteria for automating this process.

Test Results
A test item captures a single execution of a test case. In addition to referencing a test case (that defines
the test), a test item will record whether the test has been executed or not and a pass/fail indicator. For
failed tests, a comment should be included to describe the defect.

Failed tests can be fed into whatever defect-reporting mechanism you may have in place. In Chapter
8, you implemented a defect list as part of the iteration backlog. The solution presented here will feed
failed tests directly into the iteration backlog. You can modify this process to populate a separate bug list
if you’re not using the iteration backlog.

Implementing Test Cycles
The remainder of this chapter will show you how to build a solution that follows this approach. You will
first create a Test Cycles list and a Test Items list. These will be created using SharePoint Designer, just

CHAPTER 12 ■ REPORTING DEFECTS

215

like you created the previous lists. To automatically populate the Test Items list, you’ll create a workflow
using Visual Studio 2010. The workflow will be associated with the Test Cycles list. After creating a new
test cycle, you’ll execute the workflow, which will create the necessary test items.

You will then enhance this workflow to also copy the defects to the iteration backlog for any failed
tests. To support this, you will modify the Iteration Defect content type to support a reference to a Test
Items list. The test item provides the reference to the test case, which defines the test, as well as a
description of the defect.

Defining Test Cycles
Open the SharePoint site. From the Site Actions menu, click the Edit in SharePoint Designer link, which
will launch SharePoint Designer and open this site.

Creating the Test Status Site Column
Click the Site Columns link in the Navigation pane. Then click the New Column button in the ribbon and
select the Choice column type. Enter the name Test Status and select the Project Management group.
Define the following choices:

• Initial

• Planned

• InProgress

• Completed

• Cancelled

Enter Initial for the default value and unselect the “Allow blank values?” check box. The Column
Editor dialog box will look like Figure 12-3. Click the OK button. Then click the Save icon to save the
changes.

Figure 12-3. Defining the Test Status column

CHAPTER 12 ■ REPORTING DEFECTS

216

Creating the Test Cycle Content Type
Click the Content Type link in the Navigation pane and then click the Content Type button in the ribbon.
Enter the name Test Cycle and select Item as the parent type. Also, select the Project Management group,
as shown in Figure 12-4.

Figure 12-4. Adding the Test Cycle content type

Click the Test Cycle link in the list of content types, which will display the content type editor. Click
the Edit content type columns link in the Customization section. Using the Add Existing Site Column
button in the ribbon, add the following site columns to this content type:

• Iteration

• Test Status

• Start Date

• End Date

The list of columns should look like Figure 12-5.

CHAPTER 12 ■ REPORTING DEFECTS

217

Figure 12-5. The site columns included in the Test Cycle content type

Creating the Test Cycles List
Click the Lists and Libraries link in the Navigation pane. Click the Custom List button in the ribbon,
enter the name Test Cycles, and click the OK button. Click the Test Cycles link to configure this list. In the
settings section, unselect the “Allow attachments” check box and select the “Allow management of
content types” check box. The Settings section should look like Figure 12-6.

Figure 12-6. Configuring the Settings section

In the Content Type section, click the Add button and select the Test Cycle content type. Remove
the Folder and Item content types. Click the Save icon to save your changes.

Modifying the Test Cycles Views
Go back to the SharePoint site and refresh the page so the Test Cycles list will be included in the Quick
Launch area. Go to the Test Cycles list. The default view only includes the Title column. From the List
ribbon, click the Modify View button. Add the following columns and change the position so they are
displayed in this order:

• Test Status

• Iteration

• Start Date

• End Date

CHAPTER 12 ■ REPORTING DEFECTS

218

Now you’ll add a view that only includes test cycles that are in progress. You are usually most
interested in the current test cycle, and this view will make it easier to find it. From the List ribbon, click
the Create View button and then click the Standard View link. Enter the name Current. The list of
columns should be the same as the default view. Go to the Filter section, select the Test Status column,
and enter InProgress for the criteria. The Filter section should look like Figure 12-7. Click the OK button
to save this view.

Figure 12-7. Defining the filter for the Current view

Adding a Test Cycle
Click the Add new item link to create a test cycle. Enter the Title as Iteration 1 - 1st Pass and select
Iteration 1, as shown in Figure 12-8.

CHAPTER 12 ■ REPORTING DEFECTS

219

Figure 12-8. Adding a test cycle

■Tip You will need to select the All Items view to be able to see this test cycle, since it is in the Initial
status and the Current view only shows InProgress test cycles.

Defining Test Items
Now you will create the Test Items list using the same approach. Each test item must reference the test
cycle that it is included in, as well as the test case that it will execute. It will also record the test results.

Creating Additional Site Columns
You’ll start by creating several site columns. Go back to SharePoint Designer and click the Site Columns
link in the Navigation pane. Click the New Column button in the ribbon and select the Lookup column
type. Enter the name Test Cycle and select the Project Management group. In the Column Editor dialog
box, select the Test Cycles list and the Title column. Unselect the “Allow blank values?” check box, as
shown in Figure 12-9.

CHAPTER 12 ■ REPORTING DEFECTS

220

Figure 12-9. Defining the Test Cycle column

In the same way, create a site column named Test Case that references the Test Cases list, as shown
in Figure 12-10.

Figure 12-10. Defining the Test Case column

In addition, create the following site columns, putting them in the Project Management group and
using the default settings for each:

CHAPTER 12 ■ REPORTING DEFECTS

221

• Test Pass/Fail: Yes/No

• Test Comment: Multi Lines of Text

Make sure you save your changes.

Creating the Test Item Content Type
Click the Content Type link in the Navigation pane. Click the Content Type button in the ribbon. Enter
the name Test Item and select Item as the parent type. Also, select the Project Management group. Click
the OK button to create the content type. Then click the Test Item link in the list of content types, and
click the Edit content type columns link in the Customization section. Using the Add Existing Site
Column button in the ribbon, add the following site columns to this content type:

• Test Cycle

• Test Case

• Test Status

• Start Date

• End Date

• Test Pass/Fail

• Test Comment

Click the Save icon to save the changes. The list of columns should look like Figure 12-11.

Figure 12-11. The site columns of the Test Item content type

Creating the Test Items List
Click the Lists and Libraries link in the Navigation pane and then click the Custom List button in the
ribbon. Enter the name Test Items and click the OK button to create the list. Then click the Test Items
link to configure this list. In the Settings section, unselect the “Display this list on the Quick Launch” and
“Allow attachments” check boxes. Also, select the “Allow management of content types” check box, as
shown in Figure 12-12.

CHAPTER 12 ■ REPORTING DEFECTS

222

Figure 12-12. Configuring the Test Items list

■Note The Test Items list will not be in the Quick Launch area because you won’t need to access it directly.
Instead, you will be creating a site page that will allow you to view a test cycle and all of its test items.

In the Content Types section, add the Test Item content type and remove the Folder and Item
content types. Click the Save icon to save the changes.

Implementing the Test Cycle Workflow
As I described earlier, the Test Items list can be populated automatically for a given test cycle. Each test
cycle references an iteration. The iteration specifies a collection of user stories, each of which specifies a
collection of test scenarios. Scenarios, in turn, contain a list of test cases. By traversing the Iterations,
User Stories, Test Scenarios, and Test Cases lists, you can generate the set of test cases associated with
a test cycle. To implement this logic, you’ll create a workflow in Visual Studio.

■Tip The workflow that you’ll create is not the typical workflow that generates tasks and has multiple steps in a
process. Rather, as you’ll see, it is simply some code that you can execute on demand.

Creating a Visual Studio Project
Start Visual Studio 2010 with administrator privileges. You can do this by right-clicking the Visual Studio
shortcut and selecting the Run as administrator option, as shown in Figure 12-13.

CHAPTER 12 ■ REPORTING DEFECTS

223

Figure 12-13. Running Visual Studio 2010 as administrator

From the Start Page, click the New Project link. In the New Project dialog box, select the Sequential
Workflow template from the SharePoint 2010 category, as shown in Figure 12-14. Select an appropriate
folder to create the project in and click the OK button.

Figure 12-14. Selecting the Sequential Workflow project template

This will start the SharePoint Customization Wizard, which will present a series of dialogs to help
configure the project. In the first dialog box, shown in Figure 12-15, enter the URL of the SharePoint site.
The URL for your site will be different from the one shown here.

CHAPTER 12 ■ REPORTING DEFECTS

224

Figure 12-15. Specifying the SharePoint site

■Note The sandbox solution is not available because workflows must be deployed as a farm solution.

In the second dialog box, you’ll provide information about the workflow that you are creating. Enter
the name TestCycle and select the List Workflow option, as shown in Figure 12-16. Workflows are
typically associated with a specific list. SharePoint 2010 introduced the ability to define site workflows,
which are not tied to a list or library. For this workflow, however, you’ll want to associate this with the
Test Cycle list.

CHAPTER 12 ■ REPORTING DEFECTS

225

Figure 12-16. Selecting the workflow type

In the third dialog box, select the Test Cycles list as the one that the workflow should be associated
with. You can leave the default options for the history and task lists. The dialog box should look like
Figure 12-17.

CHAPTER 12 ■ REPORTING DEFECTS

226

Figure 12-17. Associating the workflow with the Test Cycles list

The history list is an internal list used by the workflow engine to record when a workflow is
executed. It can also be used to log information and error messages from the workflow. The tasks list is
used to store tasks that may be generated by the workflow. (This workflow will not generate any tasks,
however.)

The final dialog box allows you to specify when the workflow should be started. You can configure
the workflow to start automatically when a new item is added to a list or when an item is changed. For
your purposes, however, you only want the workflow to be executed manually. Unselect the other two
options, as shown in Figure 12-18.

CHAPTER 12 ■ REPORTING DEFECTS

227

Figure 12-18. Selecting the workflow start options

Defining the Workflow
Now that the project wizard has configured the workflow, you’re ready to implement the processing
logic. The workflow diagram should be displayed with a single activity, as shown in Figure 12-19.

Figure 12-19. The initial workflow design

CHAPTER 12 ■ REPORTING DEFECTS

228

The onWorkflowActivated1 activity is executed when the workflow is started. The Toolbox window
contains other activities that you can include in your workflow. Find the CodeActivity in the Toolbox
and drag it to the workflow diagram, just below the onWorkflowActivated1 activity. The diagram should
look like Figure 12-20.

Figure 12-20. The modified workflow design

Notice the red circle with an exclamation point inside. This is letting your know that there is an error
with your workflow. You can click this icon to view the error message. In this case, it is because the event
handler has not been created for this activity. Double-click the codeActivity1 activity, which will
generate the event handler and open the code-behind file where you will implement this handler.

Implementing the Workflow Logic
In the code-behind file, Workflow1.cs, add the following namespace just after the existing using
statements:

using System.Collections.Generic;

For the codeActivity1_ExecuteCode event handler, enter the code shown in Listing 12-1.

Listing 12-1. Implementation of the codeActivity1 Event Handler

private void codeActivity1_ExecuteCode(object sender, EventArgs e)
{
 using (SPWeb web = SPContext.Current.Web)
 {
 // Get the test cycle that we're working on
 SPListItem cycle = workflowProperties.Item;

 // Get the status of the test cycle
 string cycleStatus = cycle["Test Status"] as string;

CHAPTER 12 ■ REPORTING DEFECTS

229

 // Get the referenced iteration
 SPFieldLookupValue value =
 new SPFieldLookupValue(cycle["Iteration"].ToString());
 SPList iterations = web.Lists["Iterations"];
 SPListItem iteration = iterations.GetItemById(value.LookupId);

 // Get the lists that we will need later
 SPList testScenarios = web.Lists["Test Scenarios"];
 SPList testCases = web.Lists["Test Cases"];
 SPList testItems = web.Lists["Test Items"];

 // If the status is Initial, populate the Test Items list
 if (cycleStatus == "Initial")
 {

 // Iterate through all of the user stories
 List<int> userStoryIDs = new List<int>();
 SPList userStories = web.Lists["User Stories"];
 foreach (SPListItem userStory in userStories.Items)
 {
 if (userStory["Iteration"] != null &&
 userStory["Iteration"].ToString() ==
 cycle["Iteration"].ToString())
 userStoryIDs.Add(userStory.ID);
 }

 // Iterate through all of the test scenarios
 List<int> testScenarioIDs = new List<int>();
 foreach (SPListItem testScenario in testScenarios.Items)
 {
 if (testScenario["User Story"] != null)
 {
 SPFieldLookupValue userStoryFieldValue =
 new SPFieldLookupValue(testScenario["User Story"].ToString());

 if (userStoryIDs.Contains<int>(userStoryFieldValue.LookupId))
 testScenarioIDs.Add(testScenario.ID);
 }
 }

 // Iteration through all of the test cases
 foreach (SPListItem testCase in testCases.Items)
 {
 SPFieldLookupValue testScenarioFieldValue =
 new SPFieldLookupValue(testCase["Test Scenario"].ToString());

 if (testScenarioIDs.Contains<int>(testScenarioFieldValue.LookupId))
 {
 // Add this test case to the test cycle
 SPListItem testItem = testItems.Items.Add();
 testItem["Title"] = testCase.Title;

CHAPTER 12 ■ REPORTING DEFECTS

230

 testItem["Test Status"] = "Planned";
 testItem["Test Cycle"] =
 cycle.ID.ToString() + ";#" + cycle.Title;
 testItem["Test Case"] =
 testCase.ID.ToString() + ";#" + testCase.Title;
 testItem.Update();
 }
 }

 // Mark the test cycle as Planned
 cycle["Test Status"] = "Planned";
 cycle.Update();
 }
 }
}

Most of this code should be self-explanatory, but I will explain some of the more salient points. The
SPWeb class represents the SharePoint site and is used to access the lists within this site. This is obtained
by using the static SPContext class and retrieving the Current.Web property. You should always access
this within a using statement so it is automatically disposed of when it goes out of scope.

The SPList class represents a SharePoint list such as the Iterations or Test Cases lists. The
SPListItem class represents a list item—a specific record within a list.

The workflowProperties variable is an instance of the SPWorkflowActivationProperties class. This
was set up for you by the project template and provides information about the current workflow
instance, such as any parameters that are being passed in. The Item property specifies the list item that
the workflow was executed on. Since the workflow is associated with the Test Cycles list, this will be an
item from this list. This tells us the specific test cycle that the workflow is supposed to process.

Navigating through a Lookup column is a little more complicated than you might expect. The actual
value that is returned when accessing a Lookup column is a string that includes both the ID of the
referenced object and the display column. This is typically the Title of the referenced record, but could
be a different column depending on how the site column was defined. The two parts are delimited by the
;# characters. To obtain the ID from this value, you can parse the string yourself. However, SharePoint
provides the SPFieldLookupValue class to do this for you. To use this, you create an instance of the
SPFieldLookupValue class passing in the column value to the constructor. You can then use the LookupId
property to obtain the ID portion. Once you have the ID, you can call the GetItemById() method of the
SPList object to obtain the referenced object. This is demonstrated in the following code:

// Get the referenced iteration
SPFieldLookupValue value = new SPFieldLookupValue(cycle["Iteration"].ToString());
SPList iterations = web.Lists["Iterations"];
SPListItem iteration = iterations.GetItemById(value.LookupId);

The cycle variable is the SPListItem object associated with the test cycle that the workflow is being
executed on. Its Iteration column is retrieved and passed to the SPFieldLookupValue class constructor.
The LookupId property is then passed to the GetItemById() method of the Iterations list. This returns an
SPListItem object that represents the specific iteration associated with this test cycle.

The workflow logic first checks the status of the test cycle. If it is set to Initial, the workflow then
obtains all the relevant test cases and populates the Test Items list. If the status is not Initial, nothing
more is done. This prevents duplicates from being created should the workflow be executed multiple
times. The workflow logic traverses the User Stories, Test Scenarios, and Test Cases lists.

CHAPTER 12 ■ REPORTING DEFECTS

231

For each test case, a test item is created and added to the Test Items list. A reference to the test cycle
and test case record is made by populating the associated Lookup columns. Notice that the value is
computed by concatenating the ID with the Title property, separated by the same ;# delimiter. Finally,
the test cycle is also updated, changing its status to Planned.

Deploying and Running the Workflow
Press F6 to build the project and fix any compiler errors that may occur. To deploy this solution to the
SharePoint site, right-click the solution in Solution Explorer and choose the Deploy Solution link, as
shown in Figure 12-21.

Figure 12-21. Deploying the workflow

■Tip If you want to debug the workflow, set a breakpoint in your event handler code. Then, instead of deploying
the workflow, simply press F5. This will deploy the workflow to the SharePoint site and start the Visual Studio
debugger. The SharePoint site will be displayed in a new browser window and the Test Cycles list will be
selected. Start the workflow from here as you would normally, and the execution will stop at your breakpoint. From
there you can step through the code to verify the logic.

Go to the SharePoint site and select the Test Cycles list. Click the Title column of the existing test
cycle record that you created earlier to display the View form. Click the Workflows button near the top of
the form. This will display the available workflows, as shown in Figure 12-22.

CHAPTER 12 ■ REPORTING DEFECTS

232

Figure 12-22. Displaying the available workflows

Click the TestCycle link to start this workflow. After a few seconds the workflow should finish, and
you’ll see the form shown in Figure 12-23. This is the All Items view (the default view), with a column
added to display the workflow status.

Figure 12-23. Displaying the list with the workflow status

To verify the results of the workflow, you can display the contents of the Test Items list.

■Tip This list was not added to the Quick Launch area. Click the Lists link in the Quick Launch to display all of
the lists. You can then select the Test Items list from there.

The default view of the Test Items list only includes the Title column. From the List ribbon, click
the Modify View button. Add the following columns to the view:

CHAPTER 12 ■ REPORTING DEFECTS

233

• Test Cycle

• Test Status

• Test Case

• Test Pass/Fail

• Test Comment

The view should look like Figure 12-24.

Figure 12-24. The Test Items list populated by the workflow

Recording the Test Results
At this point you have planned a test cycle and populated it with a test item for each test case. This
would be assigned to the test team to perform the specified tests. Go to the Test Cycles list, edit the test
cycle, and change the Test Status to InProgress.

To make this easier for the test team, you’ll provide a web page that lists the test cycles that are in
progress and displays all the test items associated with the selected test cycle. This will use the same web
part page that you have used before.

Adding a Web Part Page
From the Site Actions menu, click the More Options link. Filter the template list to Page types only, select
the Web Part Page template, and then click the Create button. Enter the name Test Cycle, select the
Header, Footer, 3 Columns layout, and select the Site Pages library, as shown in Figure 12-25.

CHAPTER 12 ■ REPORTING DEFECTS

234

Figure 12-25. Configuring the Test Cycle page

Click the Add a Web Part link in the Header section. From the Lists and Libraries category, select
the Test Cycles list and click the Add button. Edit the web part to select the Current view. This will filter
the list to only test cycles that are in progress. Also change the toolbar type to No Toolbar.

In the same way, add the Test Items list to the Footer section. Set up a connection between these
web parts so the Test Items list is filtered by the selected test cycle. From the drop-down icon next to the
Test Items web part, click the Connections, Get Filter Values From, and Test Cycles links, as shown in
Figure 12-26.

Figure 12-26. Adding a web part connection

In the dialog box that is displayed, select the ID column for the provider and the Test Cycle column
for the consumer, as shown in Figure 12-27. Click the Stop Editing button in the ribbon.

CHAPTER 12 ■ REPORTING DEFECTS

235

Figure 12-27. Configuring the web part connection

The page should look like Figure 12-28.

Figure 12-28. The Test Cycle page

Performing the Tests
The Test Cycle page lists the cycles that are active, which is normally only one, and displays all the test
items for the associated test cycle. The Test Case column is a link to the test case, which has all the
details needed to execute the test. The drop-down menu next to the Title column can be used to edit
the test item and report the test results.

Edit one of the test items and update the status, as shown in Figure 12-29.

CHAPTER 12 ■ REPORTING DEFECTS

236

Figure 12-29. Editing a test item

Edit several more of the existing test items, making sure to change the status to Completed. On some,
leave the Test Pass/Fail check box unselected, which indicates that the test failed. For failed tests, enter
a Test Comment as well.

Generating Defects in the Iteration Backlog
For the final step in this chapter, you’ll now enhance the workflow to also copy failed test items to the
iteration backlog.

Modifying the Iteration Defect Content Type
To support this feature, you’ll need to modify the Iteration Defect content type to include an optional
reference to the Test Items list. When displaying the defect, the test item can then be viewed, which
provides details of the test as well as a description of the defect. Because this is an existing content type,
you’ll use the SharePoint Site Settings page instead of SharePoint Designer. This will propagate the
change to the Iteration Items list as well.

From the Site Actions menu, click the Site Settings link. Then click the Site columns link in the
Galleries section. Click the Create link. In the New Site Column page, enter the name Test Item, select
the Lookup column type, and select the Project Management group. In the Additional Column Settings

CHAPTER 12 ■ REPORTING DEFECTS

237

section, select the Test Items list and the Title column. You can leave the remaining options with their
default values. The sections should look like Figure 12-30.

Figure 12-30. Configuring the Test Item site column

Go back to the Site Settings page and click the Site content types link. Select the Project
Management group to filter the list, and then click the Iteration Defect link to edit this content type. Click
the Add from existing site columns link. Select the Project Management group to filter the list of site
columns. Select the Test Item site column and click the Add button. Make sure to set the “Update all
content types inheriting from this type?” option to Yes. The page should look like Figure 12-31.

CHAPTER 12 ■ REPORTING DEFECTS

238

Figure 12-31. Adding the Test Item site column

Click the OK button to add the site column.

Adding the Workflow Logic
Go back to the Visual Studio project and add the code from Listing 12-2 to the event handler. The
existing code includes logic inside an if statement to be executed only when the status is Initial. This
code will add another if statement for when the status is InProgress.

Listing 12-2. Logic for the InProgress Status

if (cycleStatus == "InProgress")
{
 // Retrieve the failed items
 SPQuery query = new SPQuery();
 query.Query =
 "<Where>" +
 "<And>" +
 "<Eq>" +
 "<FieldRef Name='Test_x0020_Cycle' LookupId='TRUE' />" +
 "<Value Type='Lookup'>" + cycle.ID.ToString() + "</Value>" +
 "</Eq>" +
 "<And>" +
 "<Eq>" +
 "<FieldRef Name='Test_x0020_Status' />" +
 "<Value Type='Choice'>Completed</Value>" +
 "</Eq>" +
 "<Eq>" +

CHAPTER 12 ■ REPORTING DEFECTS

239

 "<FieldRef Name='Test_x0020_Pass_x002f_Fail' />" +
 "<Value Type='Boolean'>No</Value>" +
 "</Eq>" +
 "</And>" +
 "</And>" +
 "</Where>";

 SPListItemCollection failedItems = testItems.GetItems(query);

 // If there are any that failed...
 if (failedItems.Count > 0)
 {
 SPContentType defectContent = web.ContentTypes["Iteration Defect"];
 SPList iterationItems = web.Lists["Iteration Items"];

 foreach (SPListItem failed in failedItems)
 {
 // See if this failure has already been reported
 SPQuery itemQuery = new SPQuery();
 itemQuery.Query =
 "<Where>" +
 "<And>" +
 "<And>" +
 "<And>" +
 "<Eq>" +
 "<FieldRef Name='Iteration' LookupId='TRUE' />" +
 "<Value Type='Lookup'>" +
 iteration.ID.ToString() + "</Value>" +
 "</Eq>" +
 "<Eq>" +
 "<FieldRef Name='ContentType' />" +
 "<Value Type='Text'>Iteration Defect</Value>" +
 "</Eq>" +
 "</And>" +
 "<Eq>" +
 "<FieldRef Name='Test_x0020_Item' LookupId='TRUE' />" +
 "<Value Type='Lookup'>" +
 failed.ID.ToString() + "</Value>" +
 "</Eq>" +
 "</And>" +
 "<Or>" +
 "<Eq>" +
 "<FieldRef Name='Item_x0020_Status' />" +
 "<Value Type='Choice'>Pending</Value>" +
 "</Eq>" +
 "<Eq>" +
 "<FieldRef Name='Item_x0020_Status' />" +
 "<Value Type='Choice'>InProgress</Value>" +
 "</Eq>" +
 "</Or>" +
 "</And>" +
 "</Where>";

CHAPTER 12 ■ REPORTING DEFECTS

240

 SPListItemCollection matches = iterationItems.GetItems(itemQuery);

 // If this failure has not been reported...
 if (matches.Count == 0)
 {
 // ...add this failure to the defect list
 SPListItem defect = iterationItems.Items.Add();
 defect["ContentTypeId"] = defectContent.Id;
 defect["Title"] = failed.Title;
 defect["Item Status"] = "Pending";
 defect["Iteration"] = iteration.ID.ToString() + ";#" +
 iteration.Title;
 defect["Test Item"] = failed.ID.ToString() + ";#" + failed.Title;

 // Determine the user story
 SPFieldLookupValue testCaseFieldValue =
 new SPFieldLookupValue(failed["Test Case"].ToString());
 SPListItem testCase =
 testCases.GetItemById(testCaseFieldValue.LookupId);
 if (testCase != null)
 {
 SPFieldLookupValue testScenarioFieldValue =
 new SPFieldLookupValue(testCase["Test Scenario"].ToString());
 SPListItem testScenario =
 testScenarios.GetItemById(testScenarioFieldValue.LookupId);
 if (testScenario != null)
 {
 defect["User Story"] = testScenario["User Story"];
 }
 }

 defect.Update();
 }
 }
 }
}

This logic uses the query support of SharePoint. Queries are performed by creating an SPQuery
object and passing this to the GetItems() method of the SPList class. The actual query is specified in the
Query property of the SPQuery class using Collaborative Application Markup Language (CAML), which is
an XML-like syntax.

■Tip CAML is somewhat difficult to use but quite powerful. If you want more information about using CAML, I
suggest you start with this site: http://msdn.microsoft.com/en-us/library/ms462365.aspx.

CHAPTER 12 ■ REPORTING DEFECTS

241

The first query returns all the failed test items for the current test cycle. It returns all items that are in
this test cycle where the Test Status is Completed and the Test Pass/Fail column is No. Notice that the
column names must be specified using their internal name, which doesn’t allow spaces or special
characters.

For each failed item, a second query is executed to see if there is already a defect linked to this test
item. The query ignores completed defects. The intention here is that if the defect was marked complete
and a subsequent test reported a failure, a new defect needs to be reported. If the defect is still open,
then there’s no need to create a duplicate record.

If no existing (incomplete) defect is found, a new item is added to the Iteration Items list.

Deploying and Running the Workflow
Press F6 to build the solution and fix any compiler errors. Then right-click the solution in Solution
Explorer and choose the Deploy Solution link just like you did before. This will update the existing
workflow with the revised logic.

Go to the SharePoint site and select the Test Cycles list. View the current test cycle and click the
Workflow button near the top of the form. Then click the TestCycle link to start the workflow. After a few
seconds the display should show that the workflow completed. Go to the Iteration Items list and you
should see some additional defects.

Modifying the Iteration Backlog
Because the description of the defect is in the test item, you’ll need to modify the Iteration Backlog view
to include the new Test Item column. From the List ribbon, select the Iteration Backlog view. Then
click the Modify View button. Select the Test Item column to be included in the view. Click the OK
button to save the change.

The iteration backlog should now look like Figure 12-32.

Figure 12-32. The modified Iteration Backlog view

CHAPTER 12 ■ REPORTING DEFECTS

242

Notice that the two new defects have a link to the associated test item. The defects that were
manually entered do not. In this case, the Title is a description of the test case and not necessarily a
description of the defect. You’ll need to click the link for the test item to see the defect description. If you
prefer, you could modify the workflow to use the Test Comment column for the defect title.

Summary
In this chapter you implemented a Test Cycles list. A test cycle is used to define a set of test items that
are to be performed against a specific release. You also created the Test Items list, which is used to
contain these test items. Each test item references a specific test case.

You implemented a workflow in Visual Studio 2010. A workflow is a convenient place to write logic
that should be executed as a background process. This workflow determines the appropriate set of test
cases based on the iteration assigned to the test cycle. For each test case, a test item was added to the
Test Items list. This process allows the users to automatically generate the items for a test cycle. You
then created a web page for viewing the test items associated with the current test cycle. After several
test items were updated, including some failed tests, you enhanced this workflow to automatically
populate the iteration backlog.

The test team now has the tools it needs to plan and execute the specified test cases. In the next
chapter you will analyze the test results to get some insight into the testing progress as well as the
project’s overall quality.

C H A P T E R 1 3

■ ■ ■

243

Testing Metrics

In this chapter I’ll present several metrics that will help communicate the testing progress and provide
some indications as to the overall quality of the project. Then I’ll show you how to add these to your
SharePoint site.

Review
In Chapter 11 you developed the test cases to be used in verifying your project. You started this process
by identifying test scenarios, which are a fairly brief description of a specific area that needs to be tested.
I referred to this as defining breadth first, and then depth. By keeping scenarios brief, you can quickly list
them as they come to mind, much like you would in a brainstorming session. I also suggested some
other techniques, such a creating a matrix of objects against a set of common operations.

Scenarios can be assigned to a user story or one or more requirements. This traceability allows you
to look at each requirement to see if it has been covered adequately. If you have a good set of user stories,
these can be a great source of test scenarios. In fact, in a test-first approach to agile development, the
acceptance tests are developed as part of the requirements definition. Scenarios should be used to
identify nonfunctional areas as well.

The next step in the test-planning process is to refine each of the scenarios into a set of detailed test
cases. Each test case defines a set of inputs and expected outputs. Specifying test cases at this level of
detail will provide consistency in test results and remove ambiguity later. It will also allow you to use
less-experienced testers.

In Chapter 12 you then provided the infrastructure for performing these tests. Testing is performed
in a test cycle. Each test cycle includes a subset of test cases. At the beginning of the cycle you decide
which test cases should be performed. You then execute these tests and report the defects that were
found. Typically, these will be corrected and the tests can be repeated in a subsequent test cycle.

A test cycle contains a collection of test items, and each item references a single test case. The test
case defines the test that should be performed, and the test item plans (and records) a particular
execution of that test. The test-planning activity develops the test scenarios and test cases, whereas the
test execution activity revolves around planning test cycles and the test cases that should be included.

In Chapter 12 you also implemented a workflow to populate a test cycle based on the hierarchy of
iteration, user stories, test scenarios, and test cases. In agile development, each of the user stories in an
iteration needs to be tested before the iteration is finished. So you’ll need at least one test cycle for each
iteration. Subsequent cycles will probably be needed as well. You enhanced this workflow to also copy
the failed tests to the iteration backlog as defects.

CHAPTER 13 ■ TESTING METRICS

244

■Note In this chapter you will continue with the agile pattern. This provides a convenient platform for
demonstrating the concepts of this chapter. These concepts work equally well when working with test cycles that
are based on some other criteria. You will need to adjust the process to work with your particular structure.

Using Testing Metrics
The purpose of using metrics is to provide an objective assessment of your project. Testing metrics
generally fall into two categories: progress and quality. Progress metrics indicate how much work has
been done and how much is left. Quality metrics try to answer the question “How good is the end
result.” This can be somewhat subjective.

Progress Metrics
Measuring progress is fairly straightforward. For the current test cycle, you will have assigned a certain
number of test cases. The number of test cases that have been completed is compared to the number
planned, as follows:

test progress (CTC/TTC) = # of completed test cases / # of planned test cases x 100%

The metric only considers test cases that are actually completed (whether passed or failed is
irrelevant). In a given test cycle you may not be able to complete all the test cases. For example, a defect
could prevent you from exercising related test cases. Therefore, you could show that you are only 90
percent complete, but there are no more test cases available. For completeness, you may want to also
report cancelled test cases or remove these from the total number. This metric should be updated on a
daily basis, as this should reflect the progress of the current cycle in near real time.

Another useful metric is the total test cases performed for each iteration. This is really more a
measure of effort than progress. This is computed by adding the total completed test cases for all test
cycles in an iteration. For the current iteration, this may not be complete, so you should be careful about
comparing it with previous iterations. You may want this available for prior iterations only.

Quality Metrics
There are many ways to measure quality. My intent in this chapter is not to provide you with an
exhaustive study of testing, but rather to give you some useful techniques for capturing and reporting
metrics.

CHAPTER 13 ■ TESTING METRICS

245

■Note In this chapter, I will focus on metrics that can be fairly easily gleaned from data that you’re already
capturing. This will give you a very good starting point. There are other techniques, such as surveys, that are also
useful, but require more work to gather the data. If you want to add more metrics, start by deciding what
information will help you improve the process, and then determine how best to collect the information. You should
be able to incorporate additional metrics into your SharePoint site using an approach similar to the ones shown
here.

The theory of testing is that a given project has a fixed number of defects, and the goal is to find all of
them before the product is released. The main problem is that we don’t know what that number is, so
we’re never quite sure when we have found the last one. This is kind of like an Easter egg hunt, where
you hide eggs all over the yard and then watch the children try to find them. If you don’t count the eggs
before hiding them, then you don’t know if they have all been found. I have come across some stragglers
months, even years, later. That’s what delivered defects are; they’re the ones you didn’t know about that
often show up down the road.

Coverage
The term coverage describes how thoroughly the project was tested (e.g., was every line of code
executed?). A white box approach looks at the detailed design and tries to ensure that every decision
path has been verified. In contrast, a black box approach tries to test every possible combination of
inputs. These are both excellent ways to ensure coverage. However, I suggest an easier and more
practical approach.

You can measure relative coverage by comparing the number of test cases for each story point.
Recall from Chapter 6 that a story point is an arbitrary but consistent scale applied to each user story.
More complex user stories will be assigned more story points. For a given iteration you know how many
story points are included. Once all the test cases have been written, you can compute the total number
of test cases for that iteration. The formula is expressed as follows:

test coverage (TC/SP) = # of test cases / # of story points

This does not give you an insurance policy that every branch has been tested. Rather, it gives you a
relative measurement. Twenty TC/SP is better than ten, but not as good as thirty. You can then adjust
this ratio based on experience. If you’re noticing that too many defects are not being caught, try
increasing this ratio.

Initial Quality
This is a measure of the quality of the system before it enters the testing phase, and is determined based
on the number of defects that were found. There are many factors that influence quality, such as clear
requirements, good design, skilled implementers, and effective tools. Some would argue that these
things—as opposed to effective testing—are what produce a quality product. Well, we need both, but
measuring the initial quality is an important metric.

Initial quality is computed as follows:

quality ratio (D/SP) = # of defects / # of story points

CHAPTER 13 ■ TESTING METRICS

246

You might want to provide a weight factor for each defect. A major failure that keeps the system
from working may be given more weight that a cosmetic issue. Keep it simple, however. For example,
just use a simple scale of 1 to 5, or perhaps just a blocking vs. nonblocking flag.

Defect Removal Effectiveness
While the initial quality metric is a reflection on the development activities, defect removal measures the
ability to fix the reported defects. There are two metrics that are helpful here. The first is the ratio of
repeated defects. A defect is considered to be repeated if it is reported in one test cycle and still exists in a
subsequent test cycle. This metric is computed as follows:

repeated defect ratio (RD/CSP) = (# of repeated defects × 100) / # of story points

This is the number of repeated defects per 100 story points. The factor of 100 is added because this
number will be fairly small and most people like whole numbers between 0 and 100. If a defect is still
reported in a third test cycle, it will be counted, again, as a repeated defect.

With each subsequent test cycle, the number of defects should be decreasing. This is graphed as the
quality indicator (D/SP) shown for each test cycle. The slope of the curve is a good indication of how
many defects still exist. This metric can be calculated as follows:

defect removal rate (DRR) = # of weighted defects × (# of test cycles – 1) / (# of initial
weighted defects - # of weighted defects)

This formula calculates the average number of defects removed in each test cycle, and then
estimates the number of test cycles left to remove the remaining defects. This metric estimates the
number of additional test cycles that you will need before all the defects are removed, based on past
experience.

■Tip It often happens that the initial defects are removed only to find new defects appear. This could be the
fault of the testers for not finding all the defects in the first test cycle. To be fair, this sometimes happens because
the initial defects prevent adequate testing of all the features. This can also be caused by fixes introducing new
defects. Whatever the cause, however, this metric still presents an accurate picture of when the defects will be
removed.

Analyzing Defect Source
In addition to the metrics just described, you should capture the source of each defect. Was this defect
caused by unclear requirements or a flawed design, or was it just something that was overlooked in
implementation? Was this introduced with a fix to a previous defect? This information should be
captured for each defect and then later analyzed.

You should choose the categories that you can assign based on your situation. You’ll implement this
as a dynamic list so you can add new categories later. This data will be helpful when performing a
postmortem of the project. Along the same lines, you might want to include some other data points that
may provide some useful analysis. You can add these to the appropriate list and analyze them using the
approach that will be described later in this chapter.

CHAPTER 13 ■ TESTING METRICS

247

Supporting Testing Metrics
In the remainder of this chapter I’ll show you how to capture and report the metrics I just described.
You’ll start by adding the necessary columns to the existing lists. Some of these values will be manually
entered in the associated form. The rest will be generated by the system using data that already exists in
your site. To do that, you’ll implement a workflow just like you did in Chapter 12.

Creating Additional Site Columns
You will need several new site columns to store the data that will be used to compute the testing metrics.
I will explain how to create these using the SharePoint UI.

■Tip If you prefer, you can create these site columns using SharePoint Designer just like you’ve done in the
previous chapters. The end result is the same either way.

Adding the Defect Properties
Open the SharePoint site. From the Site Actions menu, click the Site Settings link. Click the Site columns
link, which is in the Galleries section. This will display the Site Settings page, which lists all of the existing
site columns. Click the Create link to create a new column. Enter the name Repeated Defect and select
the Yes/No column type. Select the Project Management group and set the default value to No, as shown in
Figure 13-1. Click the OK button to create the column.

Figure 13-1. Creating the Repeated Defect site column

Click the Create link again to create a second column named Defect Severity. Select the Number
column type and select the Project Management group. Configure the column to require a value, with a
default value of 1. Specify a minimum value of 1 and a maximum value of 3, as shown in Figure 13-2.

CHAPTER 13 ■ TESTING METRICS

248

Figure 13-2. Configuring the Defect Severity column

Adding the Totals Columns
Now you’ll create several columns that will store accumulated totals. Create a site column for each of the
entries in Table 13-1. Use the Number column type, select the Project Management group, specify 0
decimal places, and set the default value to 0.

Table 13-1. Totals Columns

Column Name Description

Weighted Defects Number of defects, weighted by severity

Initial Weighted Defects Number of defects, weighted by severity, in the initial test cycle

Repeated Defects Number of repeated defects

Test Cycle Count Number of completed test cycles

CHAPTER 13 ■ TESTING METRICS

249

Column Name Description

Test Cases Planned Number of planned test cases

Test Cases Completed Number of completed test cases

Test Cases Cancelled Number of cancelled test cases

Test Cases Failed Number of failed test cases

The Additional Column Settings section should look like Figure 13-3.

Figure 13-3. The Additional Column Settings section for the totals columns

Adding the Calculated Columns
Now you’ll create the columns that will compute the actual metric value. These will be Calculated
columns that will execute the appropriate formula using the data from the other columns. Click the
Create button to create a new column. Enter the name Test Progress, select the Calculated column type,
and select the Project Management group.

Next to the Formula field, there is a list of the existing site columns. Double-click the Test Cases
Completed and Test Cases Planned columns to add these to the formula. Enter a / character between
these to indicate that the value of the Test Cases Completed column should be divided by the value of
the Test Cases Planned column. Select Number for the data type as and select the “Show as percentage”
check box. The Additional Column Settings section should look like Figure 13-4.

CHAPTER 13 ■ TESTING METRICS

250

Figure 13-4. Configuring the Test Progress column

■Caution I had a couple columns not save correctly. When viewing the column after saving it, the formula was
blank. This appeared to be a SharePoint bug. If you notice this problem, just edit the column using SharePoint
Designer and reenter the formula.

Likewise, create another calculated column named Test Coverage. The formula should be

=[Test Cases Planned]/[Story Points]

Configure the returned data type as a Number. This time, however, this is not a percentage, so leave
the “Show as percentage” check box unselected. Set the number of decimal places to 1 as shown in
Figure 13-5.

CHAPTER 13 ■ TESTING METRICS

251

Figure 13-5. Configuring the Test Coverage column

The formula for each of the calculated columns is listed in Table 13-2. Create a column for the
remaining items using the same settings as the Test Coverage column.

Table 13-2. Calculated Columns

Column Name Formula

Test Progress =[Test Cases Completed]/[Test Cases Planned]

Test Coverage =[Test Cases Planned]/[Story Points]

Quality Ratio =[Weighted Defects]/[Story Points]

Repeated Defect Ratio =100*[Repeated Defects]/[Story Points]

Defect Removal Rate =[Weighted Defects]*([Test Cycle Count]-1)/([Initial Weighted
Defects]-[Weighted Defects])

Modifying the Lists
You have defined new site columns to store the metrics and the intermediate values that are used to
compute the metrics. Now you will modify the existing lists by adding the appropriate columns.

CHAPTER 13 ■ TESTING METRICS

252

Modifying the Test Items List
Click the Lists link in the Quick Launch area and then click the Test Items link. From the List ribbon, click
the List Settings button. The Columns section will list the existing columns included in the Test Items
list. There are links at the bottom of the list that are used to modify the columns, as shown in Figure 13-6.

Figure 13-6. The Columns section of the List Settings page

Click the Add from existing site columns link. Select the Project Management group to filter the list of
columns. Select the Defect Severity and Repeated Defect columns and click the Add button. Leave the
“Add to all content types” and “Add to default view” check boxes selected, as shown in Figure 13-7. Click
the OK button to update the list.

Figure 13-7. Adding columns to the Test Items list

CHAPTER 13 ■ TESTING METRICS

253

Display the Test Items list and notice that the additional columns have been added to the view.
However, they are currently empty. Edit each of the existing items (you only need to update the failed
items) and enter a severity, and set the Repeated Defect column to No. The view will look like Figure 13-8.

Figure 13-8. The modified Test Items list

Modifying the Test Cycles List
You’ll now modify the Test Cycles list in a similar fashion. Go to the Test Cycles list and click the List
Settings button in the List ribbon. Then click the Add from existing site columns link. Filter the list of
columns by selecting the Project Management group. Then select the following columns and click the
Add button:

• Repeated Defects

• Story Points

• Test Cases Cancelled

• Test Cases Completed

• Test Cases Failed

• Test Cases Planned

• Weighted Defects

Unselect the “Add to default view” check box, as shown in Figure 13-9. The columns will be added to
the list as well as the content type, but they will not be displayed in the default view.

CHAPTER 13 ■ TESTING METRICS

254

Figure 13-9. Adding columns to the Test Cycles list

Using the same procedure, add the following columns to the Test Cycles list. With these columns,
however, leave the “Add to default view” check box selected. These calculated columns represent the
final metrics, and you’ll want to show these when viewing the list of test cycles.

• Quality Ratio

• Test Progress

The default view should look like Figure 13-10.

Figure 13-10. The Test Cycles list with new metrics

Notice that the value of the new columns is #DIV/0!. This is because the divisor is 0, since the data
values have not been calculated yet.

Modifying the Iterations List
Go to the Iterations list and from the List Settings page, add the following site columns. For these
columns, unselect the “Add to default view” check box but leave the “Add to all content types” check box
selected.

• Initial Weighted Defects

• Repeated Defects

• Test Cases Completed

CHAPTER 13 ■ TESTING METRICS

255

• Test Cases Planned

• Test Cycle Count

• Weighted Defects

Then add the following calculated columns, leaving both check boxes selected:

• Defect Removal Rate

• Quality Ratio

• Repeated Defect Ratio

• Test Coverage

The default view will now include the calculated columns, but the value will also be displayed as
#DIV/0! because the data has not been calculated yet.

Computing the Metrics
Now that you have all the additional data elements defined, you’re ready to compute the metric values.
To gather the summary values from the existing data, you’ll implement a workflow process just like you
did in the previous chapter. In fact, you will reuse the same workflow project and add additional logic to
it.

Reusing the Chapter12 Project
You will create a Chapter13 Visual Studio solution and copy the Chapter12 project into the new solution.
That will leave the existing project/solution as is. By copying the project, however, you’ll save some
work. More importantly, the new solution will support the needs of both chapters. The workflow that
you’ll implement now will replace the existing workflow.

Start Visual Studio 2010 as an administrator. On the start page, select the Empty SharePoint Project
template in the SharePoint 2010 category, as shown in Figure 13-11. Enter the solution name Chapter13.

CHAPTER 13 ■ TESTING METRICS

256

Figure 13-11. Creating the Chapter13 solution

The SharePoint Customization Wizard will then run, but only present the initial dialog. Enter the
URL for your SharePoint site and select the farm solution, as shown in Figure 13-12.

Figure 13-12. Configuring the SharePoint solution

CHAPTER 13 ■ TESTING METRICS

257

■Caution Some SharePoint features, such as workflows, are not supported in a sandboxed solution. This is
why the sandboxed solution was not available when you created the solution for Chapter 12. However, since this is
an empty solution, both options are available in the Customization Wizard. Make sure you select the farm solution
option.

Open Windows Explorer and navigate to the Chapter12 solution folder. There will be a Chapter12
subfolder that contains the Chapter12 project. Copy this to the Chapter13 folder that was just created for
this solution. The Chapter13 folder will now have both Chapter12 and Chapter13 subfolders, as shown in
Figure 13-13.

Figure 13-13. Copying the Chapter12 project folder

Go back to Visual Studio. From Solution Explorer, right-click the Chapter13 project and click the
Remove link. Then right-click the Chapter13 solution and click the Add ➤ Existing Project links. In the
Add Existing Project dialog box, navigate to the Chapter13\Chapter12 folder and select the
Chapter12.csproj file, as shown in Figure 13-14. Click the Open button to add this project.

Figure 13-14. Adding the Chapter12 project

Solution Explorer should show a Chapter13 solution that contains a Chapter12 project, as shown in
Figure 13-15.

CHAPTER 13 ■ TESTING METRICS

258

Figure 13-15. Solution Explorer with the Chapter12 project

Implementing the Metric Logic
In Solution Explorer, expand the Workflow1 feature. Then double-click the Workflow1.cs file, which will
open the workflow designer shown in Figure 13-16.

Figure 13-16. The workflow designer

Double-click the codeActivity1 activity, which will open the code-behind file and show the current
implementation that you entered in Chapter 12. This code first checks the status of the test cycle and
then performs different actions based on this status. For the Initial status, it populates the Test Items
list based on the test cases defined for the associated iteration. If the test cycle is InProgress, it looks for
failed test cases and creates an item in the Iteration Items list (iteration backlog).

Modifying the InProgress Block
You will now add code to accumulate the data values needed to compute the metrics. If the status is
InProgress, this code will accumulate values within this test cycle. If the status is Completed, the code will
roll up these values to the associated iteration. The code for the InProgress block is shown in Listing 13-
1. The modified code is shown in bold.

CHAPTER 13 ■ TESTING METRICS

259

Listing 13-1. The Modified Implementation of the “InProgress” Block

if (cycleStatus == "InProgress" || cycleStatus == "Completed")
{
 // Retrieve the failed items
 SPQuery query = new SPQuery();
 query.Query =
 "<Where>" +
 "<And>" +
 "<Eq>" +
 "<FieldRef Name='Test_x0020_Cycle' LookupId='TRUE' />" +
 "<Value Type='Lookup'>" + cycle.ID.ToString() + "</Value>" +
 "</Eq>" +
 "<And>" +
 "<Eq>" +
 "<FieldRef Name='Test_x0020_Status' />" +
 "<Value Type='Choice'>Completed</Value>" +
 "</Eq>" +
 "<Eq>" +
 "<FieldRef Name='Test_x0020_Pass_x002f_Fail' />" +
 "<Value Type='Boolean'>No</Value>" +
 "</Eq>" +
 "</And>" +
 "</And>" +
 "</Where>";

 SPListItemCollection failedItems = testItems.GetItems(query);

 // If there are any that failed...
 if (failedItems.Count > 0)
 {
 SPContentType defectContent = web.ContentTypes["Iteration Defect"];
 SPList iterationItems = web.Lists["Iteration Items"];

 foreach (SPListItem failed in failedItems)
 {
 // See if this failure has already been reported
 SPQuery itemQuery = new SPQuery();
 itemQuery.Query =
 "<Where>" +
 "<And>" +
 "<And>" +
 "<And>" +
 "<Eq>" +
 "<FieldRef Name='Iteration' LookupId='TRUE' />" +
 "<Value Type='Lookup'>" +
 iteration.ID.ToString() + "</Value>" +
 "</Eq>" +
 "<Eq>" +
 "<FieldRef Name='ContentType' />" +
 "<Value Type='Text'>Iteration Defect</Value>" +

CHAPTER 13 ■ TESTING METRICS

260

 "</Eq>" +
 "</And>" +
 "<Eq>" +
 "<FieldRef Name='Test_x0020_Item' LookupId='TRUE' />" +
 "<Value Type='Lookup'>" +
 failed.ID.ToString() + "</Value>" +
 "</Eq>" +
 "</And>" +
 "<Or>" +
 "<Eq>" +
 "<FieldRef Name='Item_x0020_Status' />" +
 "<Value Type='Choice'>Pending</Value>" +
 "</Eq>" +
 "<Eq>" +
 "<FieldRef Name='Item_x0020_Status' />" +
 "<Value Type='Choice'>InProgress</Value>" +
 "</Eq>" +
 "</Or>" +
 "</And>" +
 "</Where>";

 SPListItemCollection matches = iterationItems.GetItems(itemQuery);

 // If this failure has not been reported...
 if (matches.Count == 0)
 {
 // ...add this failure to the defect list
 SPListItem defect = iterationItems.Items.Add();
 defect["ContentTypeId"] = defectContent.Id;
 defect["Title"] = failed.Title;
 defect["Item Status"] = "Pending";
 defect["Iteration"] = iteration.ID.ToString() + ";#" +
 iteration.Title;
 defect["Test Item"] = failed.ID.ToString() + ";#" + failed.Title;

 // Determine the user story
 SPFieldLookupValue testCaseFieldValue =
 new SPFieldLookupValue(failed["Test Case"].ToString());
 SPListItem testCase =
 testCases.GetItemById(testCaseFieldValue.LookupId);
 if (testCase != null)
 {
 SPFieldLookupValue testScenarioFieldValue =
 new SPFieldLookupValue(testCase["Test Scenario"].ToString());
 SPListItem testScenario =
 testScenarios.GetItemById(testScenarioFieldValue.LookupId);
 if (testScenario != null)
 {
 defect["User Story"] = testScenario["User Story"];
 }
 }

CHAPTER 13 ■ TESTING METRICS

261

 defect.Update();
 }
 }
 }

 /*------------------------------------*/
 // Gather TestCycle metrics
 /*------------------------------------*/
 // Walk through all the test items
 int planned = 0;
 int completed = 0;
 int cancelled = 0;
 int failedCount = 0;
 int weightedDefect = 0;
 int repeated = 0;

 SPQuery testItemQuery = new SPQuery();
 testItemQuery.Query =
 "<Where>" +
 "<Eq>" +
 "<FieldRef Name='Test_x0020_Cycle' LookupId='TRUE' />" +
 "<Value Type='Lookup'>" + cycle.ID.ToString() + "</Value>" +
 "</Eq>" +
 "</Where>";

 SPListItemCollection items = testItems.GetItems(testItemQuery);
 foreach (SPListItem item in items)
 {
 planned++;
 string status = item["Test Status"].ToString();
 switch (status)
 {
 case "Completed":
 completed++;
 if (item["Test Pass/Fail"].ToString() == "False")
 {
 failedCount++;
 weightedDefect +=
 int.Parse(item["Defect Severity"].ToString());

 if (item["Repeated Defect"].ToString() == "True")
 repeated++;
 }
 break;

 case "Cancelled":
 cancelled++;
 break;
 }
 }

 // Compute the total story points

CHAPTER 13 ■ TESTING METRICS

262

 SPList userStories = web.Lists["User Stories"];
 int storyPoints = 0;

 SPQuery userStoryQuery = new SPQuery();
 userStoryQuery.Query =
 "<Where>" +
 "<Eq>" +
 "<FieldRef Name='Iteration' LookupId='TRUE' />" +
 "<Value Type='Lookup'>" + iteration.ID.ToString() + "</Value>" +
 "</Eq>" +
 "</Where>";

 SPListItemCollection stories = userStories.GetItems(userStoryQuery);
 foreach (SPListItem story in stories)
 storyPoints += int.Parse(story["Story Points"].ToString());

 // Store the accumulated totals
 cycle["Repeated Defects"] = repeated;
 cycle["Test Cases Cancelled"] = cancelled;
 cycle["Test Cases Completed"] = completed;
 cycle["Test Cases Failed"] = failedCount;
 cycle["Test Cases Planned"] = planned;
 cycle["Weighted Defects"] = weightedDefect;
 cycle["Story Points"] = storyPoints;

 cycle.Update();
}

■Caution The If statement for this block was changed to include the Completed status as well as
InProgress. This code is designed to be able to run multiple times without duplicating data, so there’s no harm in
running it again. The Completed status was added in case the user marks the test cycle as Completed before
running the workflow.

This code queries the Test Items list for all items in the current test cycle. It walks through the items
that are returned and computes the number of items planned, completed, failed, and so on. It then gets
the list of user stories for the associated iteration and computes the total number of story points. The test
cycle is then updated with the computed values.

Adding the Completed Block
If the test cycle has been completed, the statistics for the iteration is recomputed to include this test
cycle. Add the Completed block using the code shown in Listing 13-2.

CHAPTER 13 ■ TESTING METRICS

263

Listing 13-2. Implementation of the Completed Block

// If the status is Completed, accumulate the Iteration metrics
if (cycleStatus == "Completed")
{
 // Walk through all the test cycles for this iteration
 int initialWeightedDefects = 0;
 int currentWeightedDefects = 0;
 int totalCompleted = 0;
 int totalPlanned = 0;
 int totalRepeated = 0;
 int cycleCount = 0;
 int storyPoints = 0;

 SPList testCycles = web.Lists["Test Cycles"];

 SPQuery cycleQuery = new SPQuery();
 cycleQuery.Query =
 "<Where>" +
 "<And>" +
 "<Eq>" +
 "<FieldRef Name='Iteration' LookupId='TRUE' />" +
 "<Value Type='Lookup'>" + iteration.ID.ToString() + "</Value>" +
 "</Eq>" +
 "<Eq>" +
 "<FieldRef Name='Test_x0020_Status' />" +
 "<Value Type='Choice'>Completed</Value>" +
 "</Eq>" +
 "</And>" +
 "</Where>" +
 "<OrderBy>" +
 "<FieldRef Name='StartDate' />" +
 "</OrderBy>" ;

 SPListItem initialCycle = null;
 SPListItem currentCycle = null;

 SPListItemCollection items = testCycles.GetItems(cycleQuery);
 foreach (SPListItem item in items)
 {
 cycleCount++;

 // Since the test cycles are returned in chronological order,
 // the first one will be the initial cycle and the last one
 // will be the current (or most recent) test cycle
 if (initialCycle == null)
 initialCycle = item;
 currentCycle = item;

 totalCompleted += int.Parse(item["Test Cases Completed"].ToString());
 totalPlanned += int.Parse(item["Test Cases Planned"].ToString());

CHAPTER 13 ■ TESTING METRICS

264

 totalRepeated += int.Parse(item["Repeated Defects"].ToString());

 // Accumulate
 }

 // Get the initial and current defect counts
 if (initialCycle != null)
 initialWeightedDefects =
 int.Parse(initialCycle["Weighted Defects"].ToString());

 if (currentCycle != null)
 {
 currentWeightedDefects =
 int.Parse(currentCycle["Weighted Defects"].ToString());
 storyPoints = int.Parse(currentCycle["Story Points"].ToString());
 }

 // Update the iteration
 iteration["Initial Weighted Defects"] = initialWeightedDefects;
 iteration["Weighted Defects"] = currentWeightedDefects;
 iteration["Repeated Defects"] = totalRepeated;
 iteration["Test Cases Planned"] = totalPlanned;
 iteration["Test Cases Completed"] = totalCompleted;
 iteration["Test Cycle Count"] = cycleCount;
 iteration["Story Points"] = storyPoints;

 iteration.Update();
}

This code queries the Test Cycles list for all completed test cycles for the associated iteration.

■Note InProgress or Cancelled test cycles are not included in the iteration metrics.

The results are returned in chronological order so the initial test cycle will be returned first and the
most recent test cycle will be last. The code uses this to determine the initial and current defect counts.
The other data values are simply accumulated. Finally, the iteration is updated to store the current
metrics.

CHAPTER 13 ■ TESTING METRICS

265

■Note This code sums the Test Cases Completed column for all test cycles. If there were 100 test cases
defined and all of these were completed in each of three test cycles, the value would then be 300. This figure is
used to compute the Test Coverage. So, with this logic, each time the same tests are reexecuted, the Test
Coverage value is increased. Arguably, this may not be accurate. Does rerunning the same test cases actually
provide better coverage? For scripted test cases, probably not, but if you’re performing manual testing, rerunning
the same test again can find defects not found the first time around. You may want to change this logic to use the
largest number from each of the test cycles.

Running the Workflow
Press F6 to build the solution and fix any compiler errors. From Solution Explorer, right-click the
Chapter12 project and click the Deploy link. This will retract the current version of this workflow and
deploy the current version. Go to the Test Cycles list and edit the current test cycle to set the status to
Completed. Then view this test cycle and click the Workflow button, which will display the Workflows
dialog shown in Figure 3-17.

Figure 3-17. Using the Workflows dialog to start the TestCycle workflow

Click the TestCycle link to start the workflow. In a few seconds the workflow will finish. Close the
dialog box and refresh the page. View the test cycle to see the computed values. The View form should
look like Figure 3-18.

CHAPTER 13 ■ TESTING METRICS

266

Figure 3-18. The Test Cycles View page

Notice that the intermediate values have been computed as well as the calculated columns. The
Quality Ratio, for example, is set to 1.0 because the total weighted defects is five and there are five story
points. Also, the Test Progress is set at 60 percent because three out of five test cases have been
completed.

■Note You will likely have different data points, so the metrics values may be different.

Go to the Iterations list and view the current iteration. You will probably have several additional
web parts on the View form that you added in previous chapters. Scroll to the bottom of the form to see
the computed metrics. The form should look similar to Figure 3-19.

CHAPTER 13 ■ TESTING METRICS

267

Figure 3-19. The iteration metric values

Because there is only a single test cycle, some of the values for the iteration will be the same as the
test cycle. Notice that the Initial Weighted Defects column is equal to the Weighted Defects column,
which is the current number of defects. Because of this, the Defect Removal Rate is shown as #DIV/0!.
Because no defects have yet been removed, it is not able to compute the removal rate.

Creating Another Test Cycle
To finish testing the metrics, you’ll need to generate another test cycle. Go to the Test Cycles list and
click the Add new item link. Enter the name Iteration 1 - 2nd Pass and leave the status as Initial, as
shown in Figure 3-20. Click the Save button to add the test cycle.

CHAPTER 13 ■ TESTING METRICS

268

Figure 3-20. Adding a new test cycle

Now view this test cycle and click the Workflows button. Click the TestCycles link to run this
workflow. The workflow will change the status to Planned. Edit this test cycle and change the status to
InProgress. Click the Site Pages link in the Quick Launch area and select the Test Cycle page, which is
shown in Figure 3-21.

CHAPTER 13 ■ TESTING METRICS

269

Figure 3-21. The Test Cycles page showing the second test cycle

Edit each of these test items, marking them complete. Mark one of them as failed and select the
Repeated Defect check box, as shown in Figure 3-22.

Figure 3-22. Marking a test item as failed

CHAPTER 13 ■ TESTING METRICS

270

Go to the Test Cycles list and edit the second test cycle, and set the status to Completed. Then view
this test cycle and run the TestCycle workflow. After it has finished, view the test cycle. Notice the Test
Progress is at 100 percent because all of the test cases have been completed. Go to the Iterations list
and view the current iteration. You should see different metrics, as demonstrated in Figure 3-23.

Figure 3-23. The revised iteration metrics

Notice that the Defect Removal Rate is showing 0.7. This means that it will take 0.7 more test cycles
to remove all defects based on the current rate. The weighted defect count dropped from 5 to 2 in one
cycle. Based on that rate, the remaining defects will take another 0.7 cycles. Also notice that the Quality
Ratio has decreased from 1.0 to 0.4.

■Note Because of the limited data points in our test data, the metrics may seem odd. You can test the logic
with more test cases and test cycles and verify it is working as expected.

Adding Defect Source Analysis
Before I finish this chapter I want to show you one more technique to help you analyze your test results.
You will add a column to the Iteration Items list to record the source of the defect. This will give you
some insight into your process to help you minimize the number of defects that are introduced.

First, you’ll need to create a list to define the defect sources that can be chosen. You will then create
a Lookup column for this list and add it to the Iteration Defect content type. Finally, you’ll create a view
that summarizes the number of defects for each source.

CHAPTER 13 ■ TESTING METRICS

271

Creating the Defect Source List
From the Site Actions menu, click the More Options link. Select the Custom List template and enter the
name Defect Sources, as shown in Figure 3-24. Click the Create button to add the list.

Figure 3-24. Adding the Defect Sources list

Using the Add new item link, create several sources of defects. The view will look like Figure 3-25.

Figure 3-25. The Defect Sources list

CHAPTER 13 ■ TESTING METRICS

272

Creating a Lookup Column
From the Site Actions menu, click the Site Settings link. Then click the Site columns link in the Galleries
section. Click the Create link to add a new site column. On the Create Column page, enter the name
Defect Source, and select the Lookup column type and the Project Management group. In the Additional
Column Settings section, select the Defect Sources list and the Title column, as shown in Figure 3-26.

Figure 3-26. Configuring the Defect Source site column

From the Site Settings page, select the Site content types link. Select the Project Management group to
filter the list of existing content types. Click the Iteration Defect link, and then click the Add from existing
site columns link. Select the Project Management group, and then select the Defect Source column and
click the Add button. Make sure the “Update all content types inheriting from this type?” option is set to
Yes, as shown in Figure 3-27. Click the OK button to save the changes.

CHAPTER 13 ■ TESTING METRICS

273

Figure 3-27. Adding the Defect Source column

Go to the Iteration Item list and edit each of the items that use the Iteration Defect content type.
Specify a defect source for each of these.

Creating a Group By View
Go to the Iteration Items list and click the Create View button in the List ribbon, and then click the
Standard View link. Enter the name Defects and add Defect Source to the column list. In the Filter
section, select the Content Type column and enter Iteration Defect, as shown in Figure 3-28.

Figure 3-28. Adding a filter to the Defects view

Expand the Group By section and select the Defect Source column. Select the Collapsed display
option, as shown in Figure 3-29.

CHAPTER 13 ■ TESTING METRICS

274

Figure 3-29. Grouping by the Defect Source column

Click the OK button to create the new view. The view will show a summary line for each defect
source indicating how many defects are from that source. You can expand one of these to view the
details for that source, as demonstrated in Figure 3-30.

Figure 3-30. Expanding the Defects view

Summary
In this chapter you added columns to both the Test Cycles list and the Iterations list to record valuable
statistics. You also added the following calculated columns to compute specific metrics:

• Test Progress

• Quality Ratio

• Repeated Defect Ratio

CHAPTER 13 ■ TESTING METRICS

275

• Defect Removal Rate

You modified the workflow implemented in Chapter 12 to provide logic to accumulate the data
necessary to compute the metrics. With this solution, you can simply rerun the workflow to recalculate
either the test cycle or iteration metrics. You also modified the Iteration Items list to allow the source to
be specified for each defect. The summary information was displayed in a new view using the Group By
feature.

P A R T 4

■ ■ ■

1

Postproduction

You have completed your project and everyone is enjoying the benefits of it.
However, your work is not finished yet. In this phase you’ll need to provide ongoing
support and maintenance. The nature of this phase will vary greatly depending on the
type of product and your organizational structure. In this section you’ll build a system
to process and track issues that have been reported. These could be defects not
caught in testing, enhancement requests, or support questions.
 I worked on a project one time that had a ridiculously unrealistic deadline. For the
last couple of months prior to launch our team literally worked around the clock. The
day came and we went live, on schedule. Feeling a sense of accomplishment and
sheer exhaustion we were thankful to have that project behind us. Little did we
realize, however, that the next few months would be far worse than the last. Once live,
we were dealing with bugs reported by real customers and the pressure to resolve
them was multiplied. Hopefully your projects will go much more smoothly than this,
but postproduction issues are inevitable, so you need to plan for them . . . before they
arrive.
 To effectively handle these items, you will implement a custom workflow that will
track each item as it is worked through various stages. In Chapter 14 I’ll explain the
workflow design, and you will create the lists and content types that are needed to

support the workflow process. In Chapter 15 you’ll create a state machine workflow
using Visual Studio 2010. In Chapter 16 you’ll use InfoPath 2010 to create custom task
forms.

C H A P T E R 1 4

■ ■ ■

279

Workflow Tasks

In this chapter you’ll begin building a workflow to handle the postproduction requests. These could be
defects that need to be corrected, support questions, or enhancements that should be considered for
future releases. The basic concepts introduced here can be used in other types of requests as well.

Understanding Workflows
A workflow is a process that performs steps in a predefined order. Using conditional logic, some steps
can be skipped if not required, and other steps can be repeated as needed. The workflow design consists
of both the steps and the logic for determining the particular steps to be executed for each instance.

Human-Centric Workflows
When most of the steps in a workflow are implemented by people, it is considered a human-centric
workflow. The steps in this case are called tasks. Even human-centric workflows can have automated
steps, such as computing a value, generating a file, or sending an e-mail. However, the focus is typically
on the tasks that require a person to do something. An example of a human-centric workflow is shown in
Figure 14-1.

CHAPTER 14 ■ WORKFLOW TASKS

280

Figure 14-1. A sample human-centric workflow

The requestor submits a request, which is then reviewed by an administrator and assigned to a
developer. When the developer has completed the work, a tester then verifies that it is working as
expected and the issue is closed. That is the normal, expected path. The dotted lines represent some of
the alternate paths. The administrator may send it back to the requestor for clarification, for example.
The requestor could close the request or resubmit it. Likewise, the tester may find a problem and send it
back to the developer for correction. A good workflow design anticipates the various alternate paths that
should be allowed.

State Machine Workflows
SharePoint 2010 supports two types of workflows:

• Sequential

• State machine

CHAPTER 14 ■ WORKFLOW TASKS

281

You have already implemented a sequential workflow, which completes each task in sequential
order. Sequential workflows are good for simple processes. A state machine workflow, however, is better
suited for implementing human-centric workflows.

Defining the States
As its name suggests, a state machine workflow is designed by specifying the possible states. A state
represents a stable condition of the workflow. Often a workflow will be idle, waiting for something to
happen. That idle condition is represented by a state. When that something occurs, there is some
activity, and the result is that the workflow becomes idle again, usually in a different state. That
something is represented by an event, which is usually triggered when a task is updated.

For example, in the scenario described in Figure 14-1, when an issue is entered, it goes in to a New
state and waits. When the admin reviews the issue and assigns it, the issue then goes into an Assigned
state. Once again, the issue becomes idle waiting for the developer to work on it. The first step in
designing a state machine workflow is to define these idle points.

■Tip The first step in designing a state machine workflow is to determine the idle points of the process. These
will be modeled as states.

The states that correspond to the workflow shown in Figure 14-1 include the following:

• New: Waiting to be reviewed by the administrator

• Assigned: Waiting for a developer to work on it

• Resolved: Completed and waiting to be verified by a tester

• Waiting: Waiting on input from the requestor

These are illustrated in Figure 14-2.

CHAPTER 14 ■ WORKFLOW TASKS

282

Figure 14-2. Defining the workflow states

Only the primary paths are included in this diagram, and there are no paths to the Waiting state
since this is not part of the normal path.

Defining the Workflow Tasks
Each state also represents a task that needs to be completed. In the New state, for example, the workflow
is waiting for the administrator to assign the issue to a developer (or return it to the requestor). Typically,
when a workflow enters a state, a task is created, which represents the work that is required. The
workflow then waits for that task to be updated, and the workflow executes some action based on the
result of that task.

States can also be used to wait for some nonhuman input. You could create a state, for example, that
waits for a database value to be updated or a message to be received. We do not use tasks for these states.
Tasks are reserved for human actions only.

CHAPTER 14 ■ WORKFLOW TASKS

283

■Tip Using a consistent naming convention will help avoid confusion. The state names are usually based on
what has just happened. For example, a new issue was reported (it’s in the New state) or an issue was just
assigned (it’s in the Assigned state). The task being performed in that state is often associated with the next state.
For example, in the New state, the issue is assigned, which moves it to the Assigned state. I will use the state
name as the name of the associated task even though it may not describe the action performed by that task. One
of the reasons for doing this is because there can be multiple actions in a given state. In the New state, for
example, the administrator could also send it back to the requestor, which will move it to the Waiting state. So
the name of the task will be New to indicate that this task is to review all new requests.

Tasks in SharePoint
A workflow is basically a sequence of tasks. The workflow will define these tasks and their proper
sequencing. As the workflow executes, tasks are generated. From a user’s perspective, however, the user
simply works on the tasks that are assigned to them. There are often many issues being worked on
simultaneously, so each person can have numerous tasks assigned to them at any point in time.

Using the Tasks List
SharePoint provides a standard Tasks list, which you already have in your SharePoint site. This was
created for you because the site was created using the Team Site template. The tasks that are generated
by the workflow are placed in this Tasks list. You can create a view of this list that only includes active
tasks assigned to you. This can then be used as your to-do list. If you’re a developer, your task list will
include the issues that have been assigned to you that are not yet resolved. It will also include the
resolved issues that the tester found a problem with.

The Tasks list is not specific to this workflow; it is used for the entire SharePoint site. You can create
several workflows that all feed into the same Tasks list. You can also manually add tasks to this list. This
provides a consolidated view of all the work items that are assigned to you. However, each task could
require different information. For example, tasks in the New state need a place for the administrator to
assign a developer. In contrast, tasks in the Resolved state need a place to indicate whether the
resolution worked.

■Note You can create additional task lists, and when you configure the workflow you can specify which list to
use. However, it is generally best to have a single list so each person only needs to check one place to see their
work items.

CHAPTER 14 ■ WORKFLOW TASKS

284

To deal with this, each type of task can use a custom content type. This will allow you to define the
fields that are applicable for each type of task. All items in the Tasks list should use the Task content type
or a content type derived from it. All tasks generated by a workflow must use the Workflow Task content
type (which is derived from the Task content type) or a custom content type derived from Workflow Task.

■Tip Creating a custom content type for each type of task will also allow you to create custom task forms. You
will do this in Chapter 16. All the tasks will be in a single list, but when you open each one, a custom form will be
used that will include only the applicable fields.

Understanding the Payload
Tasks are generated to perform a specific action on behalf of the related issue. As an issue is processed,
tasks are generated to assign it, to resolve it, to test it, and so on. Tasks represent the work that is done,
but the issue is the payload that the tasks are attached to. As the issue works its way through the various
states of the workflow, the tasks that are generated are attached to the issue.

This relationship is very important from both perspectives. First, each the task references the
associated issue. The information in the task item includes only task-specific details such as who it is
assigned to and the status of the task. When working on a particular task, the issue contains all the
details of the issue, not the task. Secondly, when reviewing an issue, you’ll be able to see all the tasks that
were generated for that issue. So you’ll know who assigned it and when and who tested it.

The workflow can automate the copying of data between a task and its related issue. For example,
the title of each task should include the title of the related issue. Also, when a task is generated, the issue
can be updated to reflect what state it is in. When the developer completes their task and enters a
description of the resolution in the task form, this can be copied to the issue.

Keep in mind that the issue that is created will be stored in an Issues list. The tasks that are
generated go into the Tasks list. So you’ll have two different lists to use. The Tasks list defines the work
items and is generally the primary list that is used by the people participating in the workflow process.
You can also view the Issues list to see which ones are still open and check their current status. The
requestor, for example, may use the Issues list to see what is happening to their requests.

Designing an Issue-Tracking System
The issue-tracking system that you will build in the next three chapters is similar to the sample workflow
described previously in this chapter. There are two “improvements” that are useful and will also help to
demonstrate some interesting “twists” that workflows often require you to deal with.

Adding an Active State
The first improvement is that there will be an Active state. This indicates that the developer has started
working on it. The other tasks are fairly short lived, but the developer’s tasks could take some time to
complete. It will be helpful to know that this is actively being worked on. In this case, when moving from
the Assigned state to the Active state, no new task is needed.

CHAPTER 14 ■ WORKFLOW TASKS

285

The states that you’ll use for this project are

• New: Waiting to be reviewed by the administrator

• Assigned: Waiting for a developer to work on it

• Active: Currently in progress

• Resolved: Completed and waiting to be verified by a tester

• Waiting: Waiting on input from the requestor

Defining Resolution Types
The second improvement is that there are multiple reasons for an item to be in the Waiting state. These
are

• More info: As previously discussed, this indicates that some clarification is needed

• Working as designed: The issue that was reported is actually working correctly.
This may indicate that documentation or training needs to be improved, but in
any case, no system change is required.

• Enhancement: The request is an enhancement to the current system. This will not
be acted upon in the support system but will be recorded and used when planning
the next release.

Both the administrator (in the New state) and the developer (in the Assigned and Active states) can
move the issue to the Waiting state by indicating one of these three reasons. To allow for different task
forms, a separate content type will be used for each reason. However, they will all go into a single
Waiting state.

For the More Info task, the requestor is asked to provide some details for the request. For the other
tasks (Working as Designed and Enhancement), the requestor is being informed as to the resolution of this
issue. They can appeal this decision by resubmitting the request, with additional information, if
appropriate. Otherwise, they can simply close the issue.

The issue will have a resolution type, which will be one of the following values:

• Working as Designed: The reported issue is working correctly.

• Enhancement: The request will be treated as an enhancement and considered for a
future release.

• Closed: The user closed the issue.

• Resolved: The issue was resolved and verified by the tester.

CHAPTER 14 ■ WORKFLOW TASKS

286

■Note Notice that the issue can only be closed by the requestor or by the tester.

The resolution type will allow you to find all the issues that were considered an enhancement, for
example. When planning the next release, these issues can be part of the requirement-gathering process.

Creating the SharePoint Objects
For the rest of this chapter, you will create the site columns, content types, and lists that will be needed
for the implementation of this workflow. You’ll start by creating the Issues list, which will serve as the
payload for the workflow, and then define the custom content types used for each of the tasks. In
Chapter 15, you will create the workflow logic that will require these objects.

Designing the Issues List
You’ll now create the list that will record the issues that are entered and, eventually, the resolution of
those issues. You will first create the additional site columns that are needed and then define a content
type. The Issues list can then be created using the new content type.

Adding Site Columns
You will need several new site columns. Open the SharePoint site, and from the Site Actions menu, click
the Edit in SharePoint Designer link. Click the Site Columns link in the Navigation pane, and then click
the New Column button in the ribbon and select the Choice column type. Enter the name PM Issue
Status and select the Project Management group, as shown in Figure 14-3.

Figure 14-3. Creating the PM Issue Status column

CHAPTER 14 ■ WORKFLOW TASKS

287

Enter the following values for the allowed choices (each of these values is associated with a state in
the workflow):

• New

• Assigned

• Active

• Resolved

• Pending

• Closed

Enter New for the default value and unselect the “Allow blank values?” check box, as shown in
Figure 14-4.

Figure 14-4. Configuring the PM Issue Status column

In the same way, create a site column named Resolution Type with the following choices:

• Resolved

• Working as Designed

• Enhancement

• Closed

CHAPTER 14 ■ WORKFLOW TASKS

288

In this case, however, don’t enter a default value, and leave the “Allow blank values?” check box
selected. This column will not be set until the issue has been processed through the workflow. The
column settings should look like Figure 14-5.

Figure 14-5. Configuring the Resolution Type column

Add the following additional site columns using the Multi Lines of Text column type. Put these in
the Project Management group, and use the default values for all of the other properties:

• Resolution

• Issue Feedback

Click the Save icon to save the changes.

Creating the PM Issue Content Type
Next you’ll create a content type to store the properties of each issue. Click the Content Types link in the
Navigation pane and then click the Content Type button in the ribbon. Enter the name PM Issue, select
Item as the parent content type, and select the Project Management group, as shown in Figure 14-6. Click
the OK button to create the content type.

CHAPTER 14 ■ WORKFLOW TASKS

289

Figure 14-6. Creating the PM Issue content type

Then select this content type from the list to configure it. Click the Edit content type columns link in
the Customization section. Using the Add Existing Site Column button in the ribbon, add the following
columns:

• Date Created

• PM Issue Status

• Description

• Priority

• Assigned To

• Date Completed

• Resolution Type

• Resolution

• Issue Feedback

CHAPTER 14 ■ WORKFLOW TASKS

290

Click the Save icon to save these changes. The column list should look like Figure 14-7.

Figure 14-7. Adding the site columns

■Caution The SharePoint site already has an Issue content type, so you named your content type PM Issue.
Likewise, there is also an existing Issue Status column, so you named the new column PM Issue Status.

Creating the Issues List
Now click the List and Libraries link in the Navigation pane and click the Custom List button in the
ribbon. Enter the name Issues, as shown in Figure 14-8.

Figure 14-8. Creating the Issues list

Then click the Issues link in the list to configure it. In the Settings section, select the “Allow
management of content types” check box and click the Save icon. Then click the Add button in the

CHAPTER 14 ■ WORKFLOW TASKS

291

Content Types section and select the PM Issue content type. Remove the Folder and Item content types
from this list.

Go back to SharePoint and open the Issues list. You may need to refresh the page for this list to be
included in the Quick Launch area. From the List ribbon, click the Modify View button and add the
following columns to the default view:

• PM Issue Status

• Priority

• Assigned To

• Resolution Type

Click the OK button to save the changes. The default view should look like Figure 14-9.

Figure 14-9. The empty default view

Creating the Task Content Types
The last step in this chapter is to create a content type for each task that could be generated by the
workflow. You will first create the additional site columns that will be needed.

Creating the Site Columns
In each of the workflow tasks, the user will need to take some kind of action. For example, the
administrator will need to either assign the issue to a developer or send it back to the requestor. The
tester will need to either indicate that the issue has been resolved or send it back to the developer. On
each task form, you’ll include an action column where the user will indicate the action being taken. The
choices available, however, will be different for each workflow state. To accomplish this, you’ll create a
site column for each state using the Choice column type and enter the appropriate actions on each.

Go back to SharePoint Designer and click the Site Columns link in the Navigation pane. For each of
the columns listed in Table 14-1, click the New Column button, select the Choice column type, and select
the Project Management group. Then enter the choices shown in the table. The default choice for each
column should be None. Unselect the “Allow blank values?” check box for each column.

CHAPTER 14 ■ WORKFLOW TASKS

292

Table 14-1. Defining the Action Columns

Name Allowed Choices

Issue New Action None, Assign, More Info, Working as Designed, Enhancement

Issue Assigned Action None, Completed, More Info, Working as Designed, Enhancement

Issue Resolved Action None, Resolved, Not Resolved

Issue Waiting Action None, Close, Resubmit

The configuration of the Issue New Action column will look like Figure 14-10. The others will be

identical, except they will have a different set of allowed choices.

Figure 14-10. Configuring the Issue New Action column

You will also need an additional column that will be on the developer’s task so they can indicate that
they are starting work on this issue. Click the New Column button and select the Yes/No column type.
Enter the name Issue Started, select the Project Management group, and click the OK button. Then click
the Column Settings button in the ribbon and change the default value to No, as shown in Figure 14-11.

CHAPTER 14 ■ WORKFLOW TASKS

293

Figure 14-11. Configuring the Issue Started column

In the New state, the administrator will need to assign a developer and set the priority of the issue, so
you’ll need a column to store these values. The Task content type already has an Assigned To column
and a Priority column. However, these apply to the task, and you’ll need additional columns that will
be used to update the issue.

Click the New Column button in the ribbon and select the Person or Group column type. Enter the
name Issue Assigned To, and select the Project Management group. Click the OK button to create the
column. Then click the Column Settings button and change the option to allow all users, as shown in
Figure 14-12.

Figure 14-12. Configuring the Issue Assigned To column

Click the New Column button again and select the Choice column type. Enter the name Issue
Priority, select the Project Management group, and click the OK button. In the Column Editor dialog box
enter the following choices:

CHAPTER 14 ■ WORKFLOW TASKS

294

• (1) High

• (2) Normal

• (3) Low

Leave “Allow blank values?” checked and clear the default value, as shown in Figure 14-13.

Figure 14-13. Configuring the Issue Priority column

Click the Save icon to save the changes.

Modifying the Workflow Task Content Type
The custom content types that will be used by the workflow must be derived from the Workflow Task
content type. Unfortunately, this is defined as a hidden type, and you cannot select it from the Create a
Content Type dialog box. To work around this issue, you’ll need to modify this content type so that it is
selectable.

Because this content type is hidden, you can’t view or modify it using SharePoint Designer or the
normal SharePoint UI. However, there is a backdoor method that will allow you access to it. Start
Internet Explorer and enter the following URL (you’ll need to insert the server name for your SharePoint
site):

http://<your SharePoint server>/_layouts/ManageContentType.aspx?ctype=0x010801

By entering the ctype=0x010801 parameter, you can navigate directly to a specific content type
(0x010801 is the ID for the Workflow Task content type). This bypasses the logic that hides the content
type.

CHAPTER 14 ■ WORKFLOW TASKS

295

■Note This content site is defined at the home site, not in your ProjectManagement site. The URL specifies the
server name but does not include the path of your particular site. This change will affect all sites on that server.

This URL should display the page shown in Figure 14-14.

Figure 14-14. Displaying the Workflow Task content type

Notice that the group is _Hidden; this is what makes this content type unavailable. Click the Name,
description, and group link, which will allow you to change the group. Select the List Content Types
group, as shown in Figure 14-15.

Figure 14-15. Changing the group

CHAPTER 14 ■ WORKFLOW TASKS

296

■Tip If you want, after creating your custom content types, you can edit the WorkflowTask content type and
put it back in the _Hidden group. The _Hidden group is not included in the list of groups. Instead, you can select
the “New group” radio button and enter _Hidden for the group name.

Creating the Content Types
Go back to SharePoint Designer and click the Content Types link in the Navigation pane. Click the
Content Type button in the ribbon. In the Create a Content Type dialog box, enter the name Issue New
and select Workflow Task from the List Content Types group as the parent type, as shown in Figure 14-
16.

Figure 14-16. Creating the Issue New content type

Then select the Issue New content type from the list and click the Edit content type columns link in
the Customization section. Notice that it already has quite a few columns, which were inherited from the
Task or Workflow Task content types. Using the Add Existing Site Column button in the ribbon, add the
following columns:

CHAPTER 14 ■ WORKFLOW TASKS

297

• Issue New Action

• Issue Assigned To

• Issue Priority

Click the Save icon to save the changes. The complete list of columns should look like Figure 14-17.

Figure 14-17. The Issue New columns

In the same way, create the content types listed in Table 14-2. These content types are identical to
the Issue New content type, except the list of additional columns will be different.

CHAPTER 14 ■ WORKFLOW TASKS

298

Table 14-2. Creating the Remaining Task Content Types

Content Type Additional Columns

Issue Assigned Issue Assigned Action, Issue Started, Resolution

Issue Resolved Issue Resolved Action, Issue Feedback

Issue WAD Issue Waiting Action, Issue Feedback

Issue Enhancement Issue Waiting Action, Issue Feedback

Issue Info Issue Waiting Action, Issue Feedback

Adding the Content Types to the Tasks List
Finally, you’ll need to modify the Tasks list to allow the new content types. Click the Lists and Libraries
link in the Navigation pane and then select the Tasks list. Using the Add button in the Content Types
section, add the following content types:

• Issue New

• Issue Assigned

• Issue Resolved

• Issue Info

• Issue Enhancement

• Issue WAD

If you click the Content Types link (this is also the label for the Content Types section), the list of
allowed content types should look like Figure 14-18.

CHAPTER 14 ■ WORKFLOW TASKS

299

Figure 14-18. The supported content types for the Tasks list

Summary
In this chapter I explained the overall design of the issue-tracking system that you will implement. This
is based on a state machine model that uses the following states:

• New: Waiting to be reviewed by the administrator

• Assigned: Waiting for a developer to work on it

• Active: Currently in progress

• Resolved: Completed and waiting to be verified by a tester

• Waiting: Waiting on input from the requestor

At each of these states, the workflow will create a task for a person to complete. When the task has
been completed, the workflow will progress to the appropriate state and generate a new task.

You then implemented the Issues list and the underlying content type. Each item in this list
specifies the details of the issue being reported and will contain the eventual resolution once the
workflow has completed. The Issues list is the payload that workflow tasks are associated with.

Finally, you defined a content type for each of the tasks that will be generated by the workflow.
These content types were derived from the Workflow Task content type. To do that, you had to first
change this content so it was not in the _Hidden group.

C H A P T E R 1 5

■ ■ ■

301

State Machine Workflows

In the previous chapter I presented the design of an issue-tracking system and you created the lists and
content types that will be used. In this chapter you will implement the workflow logic using a state
machine workflow.

■Note Creating a state machine workflow in Visual Studio requires more technical expertise than the previous
exercises. This kind of project is typically assigned to a developer rather than a power user. I will explain, step by
step, how to use the toolset to create the workflow. You might prefer to download the complete solution from
www.apress.com. If you do, there are a few things that you’ll need to change to work with your specific SharePoint
site. I’ll point these out throughout this chapter.

Creating the Workflow Project
Start Visual Studio with administrator privileges. From the start page, click the New Project link. Select
the State Machine Workflow template from the SharePoint 2010 category. Enter the name Chapter15
and choose a suitable location, as shown in Figure 15-1.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

302

Figure 15-1. Creating a state machine workflow project

Configuring the Workflow Project
The SharePoint Customization wizard will then display a series of dialog boxes. In the first dialog box,
the site should default to the pm site (the site you used for the first Visual Studio project in Chapter 12);
use this default value. In the second dialog box, enter the workflow name IssueTracking, and select the
List Workflow type, as shown in Figure 15-2.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

303

Figure 15-2. Configuring the workflow settings

In the third dialog box, select the Issues list to associate this workflow with, as shown in Figure 15-3.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

304

Figure 15-3. Associating the workflow with the Issues list

In the final dialog box, set the start options so the workflow is started when an item is added to the
list. You should have only the middle check box checked, as shown in Figure 15-4.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

305

Figure 15-4. Selecting the start options

Understanding Workflow States
Visual Studio should display the workflow designer with a single activity named Workflow1InitialState.
This is a StateActivity, and it contains a single activity called eventDrivenActivity1. If you double-click
the eventDrivenActivity1, you’ll see what looks like a miniworkflow, similar to the one shown in Figure
15-5.

Figure 15-5. EventDrivenActivity sequence

This sequence contains the same OnWorkflowActivated activity that you’ve used on your previous
workflow in Chapter 12. This event handler is executed when a workflow instance is first started. The
EventDrivenActivity is a special type of sequence; in fact, its parent class is SequenceActivity. So, like

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

306

SequenceActivity, it can contain any number of child activities, but it has some unique rules. Essentially,
the sequence can contain only one activity that handles events, and that must be the first child activity.

Activities that handle events include the HandleExternalEventActivity and activities that are
derived from it. Workflow event activities, such as OnWorkflowActivated and OnTaskChanged, are derived
from HandleExternalEventActivity. So, the workflow generated by the template satisfies that rule.

A state can have multiple EventDrivenActivity objects, but each one must respond to a different
event. You could have one EventDrivenActivity that has OnWorkflowActivated for its first child activity,
and the second EventDrivenActivity could use OnWorkflowModified. Which sequence is executed is
determined by which event was raised.

Navigation
As you probably noticed, when you double-click a sequence to expand it, only that sequence is
displayed. The rest of the workflow is hidden. With state machine workflows, you’ll find yourself doing
that a lot since all of the real “work” is done on sequences that are not visible from the top-level diagram.
To help find your way within the workflow, the top of the workflow designer includes a navigation bar,
which is shown in Figure 15-6.

Figure 15-6. The workflow navigation bar

The main (or top-level) diagram is Workflow1. The state is called Workflow1InitialState; this is the
second level. You are currently on the third level, which is the eventDriveActivity1 sequence. The top-
level diagram displays both the first and second levels. That is, it displays the main workflow (level 1),
which includes the states (level 2). If you click either link on the navigation bar, the top-level diagram
will be displayed.

Initialization and Finalization
The StateActivity is also a special sequence activity. It can contain only four types of activities. The first
you’ve already seen, which is the EventDrivenActivity. Navigate back to the top-level diagram, and
right-click the Workflow1InitialState activity. Figure 15-7 displays the content menu.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

307

Figure 15-7. Context menu for a StateActivity

Two of your other choices of activities are included in this menu. In addition to the
EventDrivenActivity, you can also add a StateInitializationActivity and a
StateFinalizationActivity. These are also derived from SequenceActivity, and can have multiple child
activities. The StateInitializationActivity contains activities that you want executed whenever the
workflow enters that state. Similarly, the StateFinalizationActivity contains activities that are
executed when the workflow leaves that state.

Both of these are optional, and you can have one without the other. But you cannot have more than
one of each. You should not put any event handlers in these sequences; the workflow should never
become idle during these activities. Their purpose is to perform initialization or cleanup activities for
this state.

Substates
The fourth type of activity that can be included on a StateActivity is another StateActivity. These are
known as substates. In a complex workflow, you may want to model a mini–state machine for a
particular state.

In our issue-tracking system, for example, when an issue is in the New state, it is reviewed and
assigned to a developer. Suppose the review process requires several steps to complete, such as multiple
reviewers or developer feedback. You could model that review process as its own state machine. That
would keep the overall state machine more manageable.

To use substates, drag the StateActivity objects onto the top-level state. Then define the events just
like you would for top-level states.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

308

SetState
You will use the SetStateActivity to transition to another state. The SetStateActivity is normally used
in an EventDrivenActivity. For example, when an issue is reviewed and assigned, this will trigger an
OnTaskChanged event. The event handler will then use the SetStateActivity to move the workflow to the
Assigned state.

■Caution In the toolbox there are two activities labeled SetState. The one in the “Windows Workflow 3.0”
section is the one I’m referring to here and is the one you will use throughout this chapter. The SetState activity
in the “SharePoint Workflow” section is completely different and is used for setting workflow properties. Do not
use this one.

You can also use the SetStateActivity in a StateInitializationActivity. You may want to do this if
the initialization activities determine that this state is not required. The initialization sequence can
immediately move the workflow to the next state, essentially skipping this state.

■Caution You cannot use a SetStateActivity in a StateFinalizationActivity.

Setting Up the Workflow
There’s some initial configuration work you’ll need to do before you start implementing the state logic.
Select the Workflow1InitialState activity, and in the Properties window, change the name to
stateInitial. Then select the eventDrivenActivity1 activity and rename it to eventInitial. Double-click
the eventInitial activity to display the sequence for this event. The sequence contains only the
onWorkflowActivated1 activity. Double-click this activity to generate the event handler, and open the
Workflow1.cs code-behind file. Add the following namespaces:

using System.Collections.Generic;
using System.Xml.Linq;

Add the class members shown in Listing 15-1 (these should go just after the workflowProperties
member and before the onWorkflowActivated1_Invoked() event handler):

Listing 15-1. Specifying Additional Class Members

private string _admin = "internal\\test1";
private string _test = "internal\\test2";

// Issue data
private string _title;
private string _description;

// Task data
private string _action = "";
private string _priority = "(2) Normal";
private string _assign = "";

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

309

private string _resolution;
private string _feedback;

// Task IDs
private Guid _taskId = Guid.Empty;
private Guid _workTaskId = Guid.Empty;

The _admin and _test members will store the logon names of the users that the tasks will be
assigned to. For now, just hard-code these to whatever values you want to use. You’ll add an association
form later to allow these to be specified by the end users. The _title and _description members will
store these values that are obtained from the Issues item. These will be used in setting the properties of
the tasks that will be generated.

The section labeled “Task data” contains properties that you will extract from the tasks as they are
processed by the workflow. The _taskId and _workTaskId members are used to store the IDs of the tasks.
I will explain how these are used later.

For the implementation of the onWorkflowActivated1_Invoked() event handler, add the following
code:

// Get the details from the Issue item that we’ll need later
_title = workflowProperties.Item.Title;
_description = workflowProperties.Item["Description"].ToString();

// Set the Date Created
SPListItem item = workflowProperties.Item;
item["_DCDateCreated"] = DateTime.UtcNow;
item.Update();

This code first gets the Title and Description columns from the Issues list item and stores them in
the class members. Recall from Chapter 12 that the workflowProperties.Item property represents the list
item that the workflow is being executed for. The event handler then sets the Date Created column to
the current date/time.

■Tip Workflow stores dates using Coordinated Universal Time (UTC). The workflow client translates this based
on the localization configuration. Since you are setting the date in code, you should use the UtcNow property.

Defining the States
As I indicated in the previous chapter, the first step in designing a state machine workflow is to identify
the states, which are the idle points in a workflow process. In a human-centric workflow, such as this
one, states will usually have a user task associated with them.

Initial and Final States
There are two special states that all workflows will have: an initial state and a completed (or final) state.
The initial state is where the workflow will start. The project template created the initial state for you,
which you renamed stateInitial. Right-click the stateInitial activity, and click the Set as Initial State
link. Notice that the icon in the activity changes to a green circle indicating this is the initial state.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

310

The completed state represents a workflow that has finished. No activity may be performed on a
completed state. It is simply a placeholder, indicating the end of the workflow. Drag a StateActivity to
the workflow diagram and change its name to stateFinal. Right-click the stateFinal activity and click the
Set as Completed State link. Notice that the icon changes to a red circle, and the helper text disappears.

The initial workflow design should look like Figure 15-8.

Figure 15-8. The initial workflow design

Adding the Remaining States
Your workflow will have the following additional states. For each state, drag an additional StateActivity
object onto the workflow diagram and rename it as state<State Name> (e.g., stateNew, stateAssigned,
etc.).

• New: Waiting to be reviewed by the administrator

• Assigned: Waiting for a developer to work on it

• Active: Currently in progress

• Resolved: Completed and waiting to be verified by a tester

• Waiting: Waiting on input from the requestor

The diagram should look like Figure 15-9.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

311

Figure 15-9. The workflow diagram with all the states

Notice the helper text that is displayed when you drag a StateActivity to the workflow. It is
reminding you to include one of the four types of activities that are allowed on a StateActivity.

Implementing the Event Handlers
I have found it to be a little more efficient to write all the event handlers first, and then when configuring
the activities, select them from the drop-down list.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

312

CreateTask MethodInvoking Event
To generate a task, you will use the CreateTaskWithContentType activity. This works just like the
CreateTask activity except it allows you to specify a custom content type. It raises a MethodInvoking event
just before the activity creates the task. You will need to provide an event handler for this to specify the
properties of the task that is to be created.

Add the code shown in Listing 15-2 to the Workflow1.cs class. There is a separate event handler for
each type of task that can be generated.

Listing 15-2. CreateTask MethodInvoking Event Handlers

/*--*/
/* Create task event handlers */
/*--*/
// New
private void createNewTask_MethodInvoking(object sender, EventArgs e)
{
 CreateTaskWithContentType task = sender as CreateTaskWithContentType;
 task.TaskId = Guid.NewGuid();

 SPWorkflowTaskProperties wtp = new SPWorkflowTaskProperties();
 wtp.PercentComplete = (float)0.0;
 wtp.AssignedTo = _admin;
 wtp.TaskType = 0;
 wtp.DueDate = DateTime.UtcNow.AddDays(1);
 wtp.Title = "New: " + _title;
 wtp.Description = _description;

 task.TaskProperties = wtp;
}

// Assigned
private void createAssignedTask_MethodInvoking(object sender, EventArgs e)
{
 CreateTaskWithContentType task = sender as CreateTaskWithContentType;
 task.TaskId = Guid.NewGuid();
 _workTaskId = task.TaskId;

 SPWorkflowTaskProperties wtp = new SPWorkflowTaskProperties();
 wtp.PercentComplete = (float)0.0;
 wtp.AssignedTo = _assign;
 wtp.TaskType = 1;
 wtp.DueDate = DateTime.UtcNow.AddDays(1);
 wtp.Title = "Issue: " + _title;
 wtp.Description = _description;

 task.TaskProperties = wtp;

 // Update the item to show the assignee
 SPUser u = workflowProperties.Web.SiteUsers[_assign];
 SPListItem item = workflowProperties.Item;

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

313

 item["AssignedTo"] = u;
 item.Update();
}

// Resolved
private void createResolvedTask_MethodInvoking(object sender, EventArgs e)
{
 CreateTaskWithContentType task = sender as CreateTaskWithContentType;
 task.TaskId = Guid.NewGuid();

 SPWorkflowTaskProperties wtp = new SPWorkflowTaskProperties();
 wtp.PercentComplete = (float)0.0;
 wtp.AssignedTo = _test;
 wtp.TaskType = 2;
 wtp.DueDate = DateTime.UtcNow.AddDays(1);
 wtp.Title = "Resolved: " + _title;
 wtp.Description = _description;

 task.TaskProperties = wtp;
}

// Waiting - Working as Designed
private void createWADTask_MethodInvoking(object sender, EventArgs e)
{
 CreateTaskWithContentType task = sender as CreateTaskWithContentType;
 task.TaskId = Guid.NewGuid();

 SPWorkflowTaskProperties wtp = new SPWorkflowTaskProperties();
 wtp.PercentComplete = (float)0.0;
 wtp.AssignedTo = _admin;
 wtp.TaskType = 3;
 wtp.DueDate = DateTime.UtcNow.AddDays(1);
 wtp.Title = "Working as Designed: " + _title;
 wtp.Description = _resolution;

 task.TaskProperties = wtp;

 // Update the items's Resolution Type
 SPListItem item = workflowProperties.Item;
 item["Resolution Type"] = "Working as Designed";
 item.Update();
}

// Waiting - Enhancement
private void createEnhancementTask_MethodInvoking(object sender, EventArgs e)
{
 CreateTaskWithContentType task = sender as CreateTaskWithContentType;
 task.TaskId = Guid.NewGuid();

 SPWorkflowTaskProperties wtp = new SPWorkflowTaskProperties();
 wtp.PercentComplete = (float)0.0;
 wtp.AssignedTo = _admin;

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

314

 wtp.TaskType = 4;
 wtp.DueDate = DateTime.UtcNow.AddDays(1);
 wtp.Title = "Enhancement: " + _title;
 wtp.Description = _resolution;

 task.TaskProperties = wtp;

 // Update the items's Resolution Type
 SPListItem item = workflowProperties.Item;
 item["Resolution Type"] = "Enhancement";
 item.Update();
}

// Waiting - More Info
private void createInfoTask_MethodInvoking(object sender, EventArgs e)
{
 CreateTaskWithContentType task = sender as CreateTaskWithContentType;
 task.TaskId = Guid.NewGuid();

 SPWorkflowTaskProperties wtp = new SPWorkflowTaskProperties();
 wtp.PercentComplete = (float)0.0;
 wtp.AssignedTo = _admin;
 wtp.TaskType = 5;
 wtp.DueDate = DateTime.UtcNow.AddDays(1);
 wtp.Title = "More info needed: " + _title;
 wtp.Description = _description;

 task.TaskProperties = wtp;

 // Update the items's Resolution Type
 SPListItem item = workflowProperties.Item;
 item["Resolution Type"] = "Closed";
 item.Update();
}

Each of these event handlers work basically the same way. First, the sender parameter is cast as a
CreateTaskWithContentType activity. Then its TaskId property is set by generating a new Guid. An
SPWorkflowTaskProperties object is then created, the appropriate properties are set, and this object is
stored in the task’s TaskProperties property.

In most cases, the associated Issues list item is also updated as appropriate.

OnTaskChanged Events
The OnTaskChanged event is raised whenever a task is updated. A copy of the before and after properties
are passed to the event handler. The code can then determine what has changed and take the
appropriate action.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

315

Accessing Extended Properties
The properties that need to be retrieved are custom columns that are not included in the base Workflow
Task content type. Consequently, these are not included in the SPWorkflowTaskProperties class. To
access these, you’ll need to use the ExtendedProperties collection. Unfortunately, to do that, you’ll need
to provide the field Id.

To obtain the Id of a particular field, you can use the following code:

workflowProperties.TaskList.Fields.GetField("Issue Priority").Id

The workflowProperties.TaskList property specifies an SPList object that represents the list used
to store the workflow tasks. In this case, it’s the standard Tasks list. Its Fields property is a collection of
all the fields that are defined for that list. The GetField() method finds the specified field in the
collection and returns an SPField object. You can then obtain its Id property.

Adding the Event Handlers
Add the code shown in Listing 15-3, which implements an OnTaskChanged event handler for each
workflow state.

Listing 15-3. OnTaskChanged Event Handlers

/*--*/
/* OnTaskChanged event handlers */
/*--*/
// New
private void onNewChanged_Invoked(object sender, ExternalDataEventArgs e)
{
 CreateTaskWithContentType task = sender as CreateTaskWithContentType;
 SPTaskServiceEventArgs args = (SPTaskServiceEventArgs)e;

 _taskId = args.taskId;

 SPWorkflowTaskProperties after = args.afterProperties;
 if (after != null)
 {
 _action = after.ExtendedProperties[
 workflowProperties.TaskList.Fields
 .GetField("Issue New Action")
 .Id].ToString();

 _priority = after.ExtendedProperties[
 workflowProperties.TaskList.Fields
 .GetField("Issue Priority")
 .Id].ToString();

 _assign = after.ExtendedProperties[
 workflowProperties.TaskList.Fields
 .GetField("Issue Assigned To")
 .Id].ToString();

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

316

 // Store the item's priority
 if (_priority.Length > 0)
 {
 SPListItem item = workflowProperties.Item;

 if (_priority.Length > 0)
 item["Priority"] = _priority;

 item.Update();
 }
 }
}

// Assigned
private void onAssignedChanged_Invoked(object sender, ExternalDataEventArgs e)
{
 CreateTaskWithContentType task = sender as CreateTaskWithContentType;
 SPTaskServiceEventArgs args = (SPTaskServiceEventArgs)e;

 _taskId = args.taskId;

 SPWorkflowTaskProperties after = args.afterProperties;
 if (after != null)
 {
 _action = after.ExtendedProperties[
 workflowProperties.TaskList.Fields
 .GetField("Issue Assigned Action")
 .Id].ToString();

 bool started = bool.Parse(after.ExtendedProperties[
 workflowProperties.TaskList.Fields
 .GetField("Issue Started")
 .Id].ToString());

 if (started)
 _action = "Start";

 _resolution = after.ExtendedProperties[
 workflowProperties.TaskList.Fields
 .GetField("Resolution")
 .Id].ToString();

 if (_resolution.Length > 0)
 {
 SPListItem item = workflowProperties.Item;
 item["Resolution"] = _resolution;
 item.Update();
 }
 }
}

// Active

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

317

private void onActiveChanged_Invoked(object sender, ExternalDataEventArgs e)
{
 CreateTaskWithContentType task = sender as CreateTaskWithContentType;
 SPTaskServiceEventArgs args = (SPTaskServiceEventArgs)e;

 _taskId = args.taskId;

 SPWorkflowTaskProperties after = args.afterProperties;
 if (after != null)
 {
 _action = after.ExtendedProperties[
 workflowProperties.TaskList.Fields
 .GetField("Issue Assigned Action")
 .Id].ToString();

 bool started = bool.Parse(after.ExtendedProperties[
 workflowProperties.TaskList.Fields
 .GetField("Issue Started")
 .Id].ToString());

 if (!started)
 _action = "Pause";

 _resolution = after.ExtendedProperties[
 workflowProperties.TaskList.Fields
 .GetField("Resolution")
 .Id].ToString();

 if (_resolution.Length > 0)
 {
 SPListItem item = workflowProperties.Item;
 item["Resolution"] = _resolution;
 item.Update();
 }
 }
}

// Resolved
private void onResolvedChanged_Invoked(object sender, ExternalDataEventArgs e)
{
 CreateTaskWithContentType task = sender as CreateTaskWithContentType;
 SPTaskServiceEventArgs args = (SPTaskServiceEventArgs)e;

 _taskId = args.taskId;

 SPWorkflowTaskProperties after = args.afterProperties;
 if (after != null)
 {
 _action = after.ExtendedProperties[
 workflowProperties.TaskList.Fields
 .GetField("Issue Resolved Action")
 .Id].ToString();

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

318

 _feedback = after.ExtendedProperties[
 workflowProperties.TaskList.Fields
 .GetField("Issue Feedback")
 .Id].ToString();

 if (_feedback.Length > 0 && _feedback != "<DIV></DIV>")
 {
 SPListItem item = workflowProperties.Item;
 if (item["Issue Feedback"] != null)
 item["Issue Feedback"] += "\r\n";
 item["Issue Feedback"] += _feedback;
 item.Update();
 }
 }
}

// Waiting
private void onWaitingChanged_Invoked(object sender, ExternalDataEventArgs e)
{
 CreateTaskWithContentType task = sender as CreateTaskWithContentType;
 SPTaskServiceEventArgs args = (SPTaskServiceEventArgs)e;

 _taskId = args.taskId;

 SPWorkflowTaskProperties after = args.afterProperties;
 if (after != null)
 {
 _action = after.ExtendedProperties[
 workflowProperties.TaskList.Fields
 .GetField ("Issue Waiting Action")
 .Id].ToString();

 _feedback = after.ExtendedProperties[
 workflowProperties.TaskList.Fields
 .GetField("Issue Feedback")
 .Id].ToString();

 if (_feedback.Length > 0 && _feedback != "<DIV></DIV>")
 {
 SPListItem item = workflowProperties.Item;
 if (item["Issue Feedback"] != null)
 item["Issue Feedback"] += "\r\n";
 item["Issue Feedback"] += _feedback;
 item.Update();
 }
 }
}

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

319

State Initializers
When entering a state, in addition to creating a task for that state, you will also want to update the
associated issue to indicate the current state. To do that you’ll use a CodeActivity. Enter the code shown
in Listing 15-4, which implements a method for each state.

Listing 15-4. State Initialization Code

/*--*/
/* State initializers */
/*--*/
private void codeInitNew_ExecuteCode(object sender, EventArgs e)
{
 SPListItem item = workflowProperties.Item;
 item["PM Issue Status"] = "New";
 item.Update();
}

private void codeInitAssigned_ExecuteCode(object sender, EventArgs e)
{
 SPListItem item = workflowProperties.Item;
 item["PM Issue Status"] = "Assigned";
 item.Update();
}

private void codeInitActive_ExecuteCode(object sender, EventArgs e)
{
 SPListItem item = workflowProperties.Item;
 item["PM Issue Status"] = "Active";
 item.Update();
}

private void codeInitResolved_ExecuteCode(object sender, EventArgs e)
{
 SPListItem item = workflowProperties.Item;
 item["PM Issue Status"] = "Resolved";
 item.Update();
}

private void codeInitWaiting_ExecuteCode(object sender, EventArgs e)
{
 SPListItem item = workflowProperties.Item;
 item["PM Issue Status"] = "Pending";
 item.Update();
}

By now you should be familiar with this code. It simply obtains the associated issue and sets its PM
Issue Status column to the appropriate value based on the state being entered.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

320

Remaining Events
There are a couple of additional event handlers that you’ll need. Add the code shown in Listing 15-5 to
implement these.

Listing 15-5. Additional Event Handlers

/*--*/
/* Complete task event handlers */
/*--*/
private void completeTask_MethodInvoking(object sender, EventArgs e)
{
 CompleteTask ct = (CompleteTask)sender;
 ct.TaskId = _taskId;
}

private void completeWorkTask_MethodInvoking(object sender, EventArgs e)
{
 CompleteTask ct = (CompleteTask)sender;
 ct.TaskId = _workTaskId;
}

/*--*/
/* Misc code activity handlers */
/*--*/
private void codeSetClosed_ExecuteCode(object sender, EventArgs e)
{
 // Now set the BugStatus and the completed date
 SPListItem item = workflowProperties.Item;
 item["DateCompleted"] = DateTime.UtcNow;
 item["PM Issue Status"] = "Closed";
 item.Update();
}

private void codeSetResolved_ExecuteCode(object sender, EventArgs e)
{
 // Now set the BugStatus and the completed date
 SPListItem item = workflowProperties.Item;
 item["DateCompleted"] = DateTime.UtcNow;
 item["PM Issue Status"] = "Closed";
 item["Resolution Type"] = "Resolved";
 item.Update();
}

The CompleteTask activity will be used to mark a particular task as complete. It will raise the
MethodInvoking event just before the activity is executed. You will use this to specify the TaskId property.
There are two versions of this event handler. The first one provides the Id property of the current task.
The other provides the Id of the work task, which I’ll explain later.

The other two methods are called to close the issue. They both set the DateCompleted and PM Issue
Status columns. The second implementation also overrides the Resolution Type column, setting it to

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

321

Resolved. When an issue is put into the Waiting state because it is an enhancement or working as
designed, the Resolution Type column is set accordingly. When the issue is then closed, the first version
is used, which leaves the Resolution Type property as it is. However, when an issue is closed from the
Resolved state, the second version is used to ensure the Resolution Type is set to Resolved.

Using a Work Task
When entering a state, a task is generated for working that state for the issue. If an issue reenters the
same state again, a new task is generated. For example, when an issue is created, it enters the New state
and a task is created. When the task is worked, it is marked completed. If the issue goes to the Waiting
state and is then resubmitted, it will go to the New state again. In this case another task is generated.

The exception to this logic is the developer’s task in the Assigned or Active states. Once it has been
assigned to a developer, we want to reuse the same task. If the tester finds an issue with the resolution, it
should go back to the same developer for them to finish the task. It’s not a new task; rather, the
developer is making an adjustment to the original task. I refer to the developer’s task as the work task. It
is the task where the principle work is being performed.

To support this design, the workflow records the TaskId property of the work task in the _workTaskId
class member. The first time the workflow enters the Assigned state, a task is generated and its TaskId
property is stored. When entering the Assigned or Active states, if this is populated, the task is reused
instead of creating a new one.

■Note I realize that this design is somewhat arbitrary. You could argue that the tester’s task or the admin’s
task should be reused as well. I designed it this way to demonstrate both approaches. You can modify the logic if
this design needs to be adjusted to suit your requirements.

Designing the State Initialization
Now you’re ready to design the workflow logic. On each event you can add logic for

• State initialization

• Event handlers

• State finalization

For this design you’ll only need the first two. The basic pattern that you’ll use is to create a task in
the state initialization and then wait for it to be updated in the event handler.

Initializing the New State
Drag a StateInitialization activity to each state except stateInitial and stateFinal. Change the
activity name to init<state name> (e.g., initNew).

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

322

■Tip All of the activities in the workflow must have unique names. The workflow designer will automatically
generate unique names for you by taking the name of activity type and adding a sequential number (such as
eventDrivenActivity1). This is OK for simple workflows, but for complex workflows such as this one, more
meaningful names will help you keep track better. As you start debugging, you may not remember which state
eventDrivenActivity6 was for.

Double-click the initNew activity (in the New state), which will display an empty sequence. Drag a
CreateTaskWithContent type activity to the sequence and rename it createNewTask.

Correlation Tokens
Correlation tokens allow you to associate activities that need to be performed on the same object
instance. For example, when you add an OnTaskChanged event handler, you’ll want it to operate on the
same task instance that you’re creating here. You ensure this by assigning the same correlation token to
both activities. You will have other CreateTask/OnTaskChanged activity pairs in your workflow, and you
will assign a different correlation token to each.

There are generally two types of correlation tokens. You’ll use one at the workflow level and one at
the task level. The project template already set up a token at the workflow level called workflowToken.
The Properties window for the OnWorkflowActivated1 activity (on the eventInitial sequence) is shown
in Figure 15-10.

Figure 15-10. OnWorkflowActivated Properties window

If you expand the CorrelationToken property, you’ll see the OwnerActivityName property, which is
used to define the scope of the token. In this case, it is defined for Workflow1, which is the name of the
workflow.

Select the createNewTask activity that you just created, and in the Properties window, enter the
CorrelationToken as newToken. Then expand this property, and select stateNew for the
OwnerActivityName. This will limit the scope of this token to the New state, since both the task creation
and the handling of the OnTaskChanged event are contained in this state.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

323

■Caution Since the project template already generated a workflowToken for you, there is a temptation to use
it everywhere that an activity requires a CorrelationToken. Be careful about doing that. When you have multiple
tasks in your workflow, you need to correlate events with the correct task.

Specifying the Content Type
The CreateTaskWithContentType activity allows you to specify a custom content type to use for this task.
You do this by specifying the Id of the content type in the Properties window. To determine the Id of the
Issue New content type, you can use SharePoint Designer. Select this content type and the ID will be
displayed, as shown in Figure 15-11. Enter the ID in the Properties window. Your ID will be different
from the one shown here.

Figure 15-11. Displaying the content type in SharePoint Designer

■Caution If you are using the Visual Studio solution from the Apress web site (www.apress.com), make sure
you change the ContentTypeId property to use the one assigned on your site. There are several other places, later
in this chapter, where you’ll also need to change the ContentTypeId property.

You will also need to specify the MethodInvoking event handler. Select the
createNewTask_MethodInvoking method from the drop-down list. This will set the TaskProperties and
TaskId properties in code. The completed Properties window should look like Figure 15-12.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

324

Figure 15-12. The createNewTask Properties window

Drag a CodeActivity to the sequence just below createNewTask and change the name to
codeInitNew. In the Properties window, for the ExecuteCode property, select the
codeInitNew_ExecuteCode method from the drop-down list. The completed state initialization sequence
will look like Figure 15-13.

Figure 15-13. The initialization sequence for the New state

Initializing the Assigned State
Navigate back to the main workflow diagram then double-click the initAssigned activity. This sequence
will create a task and execute a CodeActivity just like the first one. However, because this is the work
task, we need to see if the task has already been created.

IfElseActivity
Drag an IfElseActivity onto the initAssigned sequence. The workflow diagram should look like Figure
15-14.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

325

Figure 15-14. An initial IfElseActivity

An IfElseActivity can have any number of branches, and all except the last branch must specify a
boolean condition. The processing goes from left to right until it finds a branch with a condition that is
true. Each branch can contain a sequence of activities. The first branch with a true condition is then
executed, and the activity is completed (no other branches are executed). If no true condition is found,
the last branch is executed if it does not have a condition.

For a typical if-then-else scenario, use two branches. The left branch will have a condition and the
right will not. If the left branch’s condition is true, the left branch is executed; otherwise, the right
branch is executed.

You can also use the IfElseActivtity like a switch statement. Specify the appropriate case
condition on each branch. Leave the condition blank on the last branch if you want an else case.

■Caution If you specify a condition on all branches, then it is possible that none of the branches will be
executed. In that case, the IfElseActivity is simply skipped, and processing will continue with the next activity.

There are two ways that you can specify a condition. You can use a code condition by implementing
an event handler that returns true or false in the event arguments. The other method is to define a
declarative rule condition, which you’ll use here.

Defining Declarative Rule Conditions
In the workflow designer, select the left branch, and change the name to ifNotCreated. In the Properties
window, for the Condition property, select Declarative Rule Condition, and then expand this property.
Select the ConditionName, and click the ellipses. This will display the Select Condition dialog box shown
in Figure 15-15.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

326

Figure 15-15. An empty Select Condition dialog box

This dialog box should be empty since you have not created any conditions yet. Click the New link to
create one. In the Rule Condition Editor shown in Figure 15-16, enter this._workTaskId ==
System.Guid.Empty.

Figure 15-16. The Rule Condition Editor

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

327

■Tip The Condition property uses standard C# syntax. You can access workflow members using the this.
notation. You can also access static members such as DateTime.Now.

When you click the OK button, the condition will be created but will be given the name Condition1.
Click the Rename link and change the name to notCreated. While the Select Condition dialog is
displayed, go ahead and create all the other conditions that you will need. Create the conditions listed in
Table 15-1.

Table 15-1. Declarative Code Conditions

Name Condition

Assign this._action == "Assign" && this._assign > ""

Assigned this._assign > ""

Close this._action == "Close"

Completed this._action == "Completed"

Enhancement this._action == "Enhancement"

MoreInfo this._action == "More Info"

notCreated this._workTaskId == System.Guid.Empty

notResolved this._action == "Not Resolved"

Pause this._action == "Pause"

Resolved this._action == "Resolved"

Resubmit this._action == "Resubmit"

Start this._action == "Start"

Wad this._action == "Working as Designed"

WorkTask this._workTaskId != System.Guid.Empty

Select the notCreated condition and click the OK button to update the Properties window. The

completed Properties window should look like Figure 15-17.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

328

Figure 15-17. The completed Properties window for the ifNotCreated branch

Drag a CreateTaskWithContentType activity to the left branch of the IfElseActivity and change the
name to createAssignedTask. In the Properties window, enter the ContentTypeId property using the ID
of the Issue Assigned content type. For the CorrelationToken, enter taskToken, and then expand the
property and select Workflow1 for the OwnerActivityName. Select the createAssignedTask_MethodInvoking
method for the MethodInvoking property. The completed Properties window should look like Figure 15-
18.

Figure 15-18. Configuring the createAssignedTask activity

Drag a CodeActivity below the IfElseActivity and change its name to codeInitAssigned. For the
ExecuteCode property select the codeInitAssigned_ExecuteCode method. The initialization sequence
should look like Figure 15-19.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

329

Figure 15-19. The Assigned state initialization sequence

Initializing the Active State
The Active state is a little different from the other states because you don’t need to create a task. To get
to the Active state, the workflow must have first been in the Assigned state so the work task will have
already been created. Navigate back to the main workflow diagram and then double-click the initActive
activity. Drag a CodeActivity to the sequence and rename it codeInitActive. In the Properties window,
select the codeInitActive_ExecuteCode method.

Initializing the Resolved State
From the main workflow diagram, double-click the initResolved activity. Drag a
CreateTaskWithContentTypeActivity and rename it createResolvedTask. In the Properties window, enter
the ID of the Issue Resolved content type. Enter resolvedToken for the CorrelationToken. Expand the
property and select stateResolved for the OwnerActivityName. Select the
createResolvedTask_MethodInvoking method.

Drag a CodeActivity below the createResolvedTask activity. Change its name to codeInitResolved
and select the codeInitResolved_ExecuteCode method. The initialization sequence should look like
Figure 15-20.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

330

Figure 15-20. The Resolved state initialization sequence

Initializing the Waiting State
From the main workflow diagram, double-click the initWaiting activity on the Waiting state. The
initialization sequence for the Waiting state will create a task using one of three content types depending
on the action that moved the workflow to the Waiting state. You’ll use an IfElseActivity to determine
which content type to use.

Drag an IfElseActivity to the initWaiting sequence. Rename the left branch ifWaitingWad and the
right branch ifWaitingEnhancement. Right-click the IfElseActivity and click the Add Branch link.
Rename this branch elseMoreInfo. Select the first branch, select Declarative Rule Condition for the
Condition property, and then expand this property. Select the ConditionName and click the ellipses. This
will display the Select Condition dialog box. Select the Wad condition and click the OK button. In the
same way, select the Enhancement condition for the second branch.

Drag a CreateTaskWithContentType activity to the ifWaitingWad branch. Rename it
createWaitingWadTask. Enter the appropriate ContentTypeId. Enter waitingToken for the
CorrelationToken property, expand this property, and select stateWaiting for the OwnerActivityName.
Select the createWADTask_MethodInvoking method. The completed Properties window should look like
Figure 15-21 (your ContentTypeId will be different from the one shown here).

Figure 15-21. The createWaitingWadTask Properties window

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

331

Now you can copy this activity to the other two branches. Right-click the createWaitingWadTask and
click the Copy link. Then right-click inside the second branch (where the text says “Drop Activities
Here”) and click the Paste link. Likewise right-click the third branch and click the Paste link. Rename
these activities createWaitingEnhancementTask and createWaitingMoreInfoTask, respectively. You’ll
also need to change the ContentTypeId property and select the corresponding MethodInvoking event
handlers (createEnhancementTask_MethodInvoking and createInfoTask_MethodInvoking, respectively).

Finally, drag a CodeActivity below the IfElseActivity and rename it codeInitWaiting. Select the
codeInitWaiting_ExecuteCode method. The completed sequence should look like Figure 15-22.

Figure 15-22. The Waiting state initialization sequence

Designing the Event Handlers
Now you’ll design the activity sequences to respond to the OnTaskChanged events.

Designing the Initial State
The workflow always starts in the Initial state. As soon as the workflow is activated you’ll want to move
to the New state, which is where your custom logic starts. To do that, you’ll use a SetState activity.

The stateInitial object already has an EventDrivenActivity object, eventInitial. Double-click it
to display the activity sequence. So far it only has the onWorkflowActivated1 event handler. Drag a
SetStateActivity below this and rename it setInitialNew. In the Properties window, select the stateNew
state for the TargetStateName property. The completed sequence should look like Figure 15-23.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

332

Figure 15-23. The initial state event handler

Navigate back to the main workflow diagram. Notice that there is now a connection between the
eventInitial activity and the New state, as illustrated in Figure 15-24. This indicates that this event
handler can cause the workflow to transition to the New state.

Figure 15-24. The workflow diagram showing a state connection

For the remainder of the states (except Final), drag an EventDrivenActivity to the state. Change the
activity name to event<State name> (e.g., eventNew).

Designing the New State
As I mentioned earlier, the first activity in an EventDrivenActivity sequence must be an event handler.
For all of these sequences, you will use the OnTaskChanged activity. This is executed whenever the
associated task is modified.

Double-click the eventNew activity to display its sequence, which should be empty. Drag an
OnTaskChanged activity to the sequence and rename it onNewChanged. In the Properties window, select
newToken as the CorrelationToken and select the onNewChanged_Invoke method for the Invoked event
handler. The completed Properties window should look like Figure 15-25.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

333

Figure 15-25. The onNewChanged Properties window

The Invoked event handler is called when the onTaskChanged event is raised. You implemented this
code earlier. It simply extracts the pertinent properties from the task and stores them in class members.
The primary class member that drives the workflow logic is the _action member. For each state, the
corresponding content type provides an action field that contains the choices that are applicable. The
remaining event handler logic will take the appropriate action based on the action that was selected.

■Tip It is certainly possible that the task was modified but no action was taken. The None action is allowed for
all content types, and is the default value. If the user does not select an action, no action is taken and the workflow
leaves the issue in the current state.

In the New state, there are four possible actions (other than None):

• Assign

• More Info

• Working as Designed

• Enhancement

Drag an IfElseActivity below the onNewChanged activity. Add two more branches and rename all the
branches as follows: ifNewAssign, ifNewMoreInfo, ifNewWad, and ifNewEnhancement. For each
branch, use a declarative rule condition and select an existing condition, which you defined earlier. The
conditions to use are Assign, MoreInfo, Wad, and Enhancement, respectively.

For each branch, you’ll need to complete the New task since an action was taken. Drag a
CompleteTask activity to each branch, and rename these completeNewAssign, completeNewMoreInfo,
completeNewWad, and completeNewEnhancement, respectively. For each of these activities, select
newToken for the CorrelationToken and select the completeTask_MethodInvoking method. The Properties
window will look like Figure 15-26.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

334

Figure 15-26. The completeNewAssign Properties window

Drag a SetStateActivity to each branch to cause a transition to the appropriate state. Name these
activities setNewAssign, setNewMoreInfo, setNewWad, and setNewEnhancement, respectively. For the
TargetStateName property, select stateAssigned for setNewAssign, and select stateWaiting for all the
others. The completed sequence should look like Figure 15-27.

Figure 15-27. The eventNew sequence

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

335

Designing the Assigned State
This event handler will be very similar to the last one. It starts with an OnTaskChanged activity to capture
the values from the modified task. It then uses an IfElseActivity to take appropriate action based on
the action selected. In this case there will be five branches because there are five possible actions, as
follows:

• Start

• Completed

• More Info

• Working as Designed

• Enhancement

Double-click the eventAssigned activity on the main workflow diagram. This will display the empty
sequence. Drag an OnTaskChanged activity to the sequence and rename it onAssignedChanged. Select the
taskToken and the onAssignedChanged_Invoked method.

Drag an IfElseActivity below this, set a total of five branches, and name them using the same
naming convention you used in the previous sequence and based on the actions just listed. For each
branch, use a declarative rule condition, selecting an existing condition that matches the associated
action (Start, Completed, MoreInfo, Wad, and Enhancement).

The ifAssignedStart branch will simply have a SetState activity to move the workflow to the Active
state. The partially completed sequence should look like Figure 15-28.

Figure 15-28. The partial eventAssigned sequence

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

336

Using the UpdateTask Activity
For the other four branches, the work task will be suspended. You won’t close it, in case the issue is
resubmitted by the requestor or the tester finds an issue with the resolution. Instead, the task status will
be changed to “Waiting on someone else.” Also, since you will reuse this task, you’ll need to clear the
selected action. If the developer edits this task, the action should be set back to the default value of None,
which will make them select an appropriate action again.

To do this you’ll use the UpdateTask activity. Drag an UpdateTask activity to the ifAssignedCompleted
branch and rename it updateAssignedResolved. In the Properties window, select taskToken for the
CorrelationToken property. You’ll need to specify the task properties that are to be changed and the task
that is to be updated. You’ll do this by binding the TaskProperties and TaskId properties to a
dependency property and then setting these values in code.

In the Properties window, select the TaskId property and then click the ellipses. In the dialog that
appears, click the second tab. Enter the new member name as updateWorkTask_TaskId, as shown in
Figure 15-29. Click the OK button to create the class member.

Figure 15-29. Creating a dependency property

In the same way, select the TaskProperties property, click the ellipses, click the second tab, and
enter the name updateWorkTask_TaskProperties. The Properties window should look like Figure 15-30.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

337

Figure 15-30. The updateAssignedResolved Properties window

This creates a class member, referred to as a dependency property that is bound to the UpdateTask
activity. You can then update this class member in code before the UpdateTask activity is executed.

Go to the code-behind file, Workflow1.cs. Notice that code has been added to set up the dependency
properties that you just created. Add the methods shown in Listing 15-6.

Listing 15-6. Modifying the UpdateTask Properties

/*--*/
/* Set the UpdateTask properties */
/*--*/
private void updateWorkWaiting_MethodInvoking(object sender, EventArgs e)
{
 updateWorkTask_TaskId = _workTaskId;
 updateWorkTask_TaskProperties = new SPWorkflowTaskProperties();
 updateWorkTask_TaskProperties.ExtendedProperties[
 workflowProperties.TaskList.Fields.GetField("Status")
 .Id] = "Waiting on someone else";
 updateWorkTask_TaskProperties.ExtendedProperties[
 workflowProperties.TaskList.Fields.GetField("Issue Assigned Action")
 .Id] = "None";
}

private void updateWorkAvailable_MethodInvoking(object sender, EventArgs e)
{
 updateWorkTask_TaskId = _workTaskId;
 updateWorkTask_TaskProperties = new SPWorkflowTaskProperties();
 updateWorkTask_TaskProperties.ExtendedProperties[
 workflowProperties.TaskList.Fields.GetField("Status")
 .Id] = "In Progress";
 updateWorkTask_TaskProperties.ExtendedProperties[
 workflowProperties.TaskList.Fields.GetField("Issue Assigned Action")
 .Id] = "None";
 updateWorkTask_TaskProperties.ExtendedProperties[
 workflowProperties.TaskList.Fields.GetField("Issue Started")
 .Id] = "False";

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

338

}

This first method puts the work task in the “Waiting on someone else” status. The second puts it in
the “In Progress” status. Both methods clear the Issue Assigned Action property. Go back to the
workflow diagram and select the updateAssignedResolved activity. In the Properties window, select the
updateWorkWaiting_MethodInvoking method for the MethodInvoking property. This method will be called
before the UpdateTask is executed, which allows you to specify the TaskID and the TaskProperties that
should be changed.

Finishing the Assigned State
Copy this UpdateTask activity to the other three branches, giving them appropriate names
(updateAssignedMoreInfo, updateAssignedWad, and updateAssignedEnhancement).

Drag a SetStateActivity to all four branches. The ifAssignedCompleted branch will move to the
Resolved state. The other three branches will move to the Waiting state. The completed sequence should
look like Figure 15-31.

Figure 15-31. The eventAssigned sequence

Designing the Active State
The event handler for the Active state is identical to the Assigned state, except there is a Pause action
instead of a Start action. The Start action moves the workflow to the Active state, while the Pause
action moves it back to the Assigned state. If the developer starts working on an issue and then decides

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

339

that they need to stop for a while, they can use the Pause action to indicate that it is no longer being
actively worked on.

The easiest way to implement this is to select all the activities on the eventAssigned sequence (hold
down the Ctrl button and click each of the activities) and then copy them (right-click any of the selected
activities and click the Copy link) to the eventActive sequence (navigate to the eventActive activity,
right-click it, and then click the Paste link). You will need to rename all of the activities.

Make sure you change the OnTaskChanged activity to call the onActiveChanged_Invoked method. Also,
rename the ifAssignedStart branch to ifActivePause, use the Pause declarative rule condition, and
change the SetStateActivity to move to the Assigned state. The completed sequence should look like
Figure 15-32.

Figure 15-32. The eventActive sequence

Designing the Resolved State
The event handler for the Resolved state will start with an OnTaskChanged activity. It will then have two
branches for the two possible actions, Resolved and Not Resolved.

Double-click the eventResolved activity from the main workflow diagram. Drag an OnTaskChanged
activity to this sequence and rename it onResolvedChanged. In the Properties window, select the
resolvedToken and the onResolvedChanged_Invoked method for the Invoked property.

Drag an IfElseActivity below the onResolvedChanged activity. Rename the branches ifResolved and
ifNotResolved. Select the existing Resolved and notResolved declarative rule conditions.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

340

■Caution The first branch handles the case when the issue is marked as resolved and the second branch
handles the scenario when it is marked as not resolved. It is possible that neither action was chosen. Since each
branch specifies a different condition, if neither is satisfied, then neither branch will be executed. This is exactly
how you want this to work. If the action is still None, then the tester has not finished the task.

If the issue is resolved, you will need to complete the current task (the tester’s task) as well as the
work task. You also need to update the issue to mark it as closed and move to the final state. Drag two
CompleteTask activities to the ifResolved branch and rename them completeResolved and
completeResolvedWork. For the first one, select the resolvedToken and the
completeTask_MethodInvoking method. For the second activity, select the taskToken and the
completeWorkTask_MethodInvoking method. Also, drag a CodeActivity and select the
codeSetResolved_ExecuteCode method. Finally, add a SetStateActivity and select the Final state.

If the issue is not resolved, you’ll still need to complete the current task and update the work task to
change the status to In Progress. You’ll also move the workflow to the Assigned state.

Copy the first CompleteTask activity from the first branch to the second branch and rename it
completeNotResolved. Then drag an UpdateTask activity below this. Select the taskToken and bind the
TaskId and TaskProperties to the dependency properties that you created earlier. You can do that by
selecting the property, clicking the ellipses, and then selecting the appropriate class member from the
dialog box. You will also need to select the updateWorkAvailable_MethodInvoking method for the
Invoking property.

Finally, drag a SetStateActivity and set the TargetStateName to stateAssigned. The complete
sequence should look like Figure 15-33.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

341

Figure 15-33. The eventResolved sequence

Designing the Waiting State
The event handler for the Waiting state is basically the same as the Resolved state. There are two possible
actions, Close and Resubmit. If the Close action is taken, the current task is completed as well as the work
task. The issue is closed and the workflow enters the Final state. If the Resubmit action is chosen, the
current task is completed and the work task is updated.

However, there may not be a work task. If the workflow went to the Waiting state directly from the
New state, then the task was never assigned to a developer and no work task was created. In this case,
with the Close action, you need to skip the step that completes the work task. With the Resubmit action,
you’ll need to skip the UpdateTask activity and move to the New state instead of the Assigned state.

From the main workflow diagram, double-click the eventWaiting activity to display the empty
sequence. Drag an OnTaskChanged activity to the sequence and rename it onWaitingChanged. In the
Properties window, select the waitingToken and the onWaitingChanged_Invoked method. Drag an
IfElseActivity below this and rename the branches ifWaitingClose and ifWaitingResubmit. For these
two branches, use the Close and Resubmit declarative rule conditions, respectively.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

342

Drag a CompleteTask activity onto the ifWaitingClose branch and rename it completeWaiting. In
the Properties window, select the waitingToken and the completeTask_MethodInvoking method. Copy this
activity to the ifWaitingResubmit branch and rename it completeWaitingResubmit.

Drag an IfElseActivity to both branches. Rename the left branch of each of these IfElseActivity
objects ifWorkTask and ifWorkTaskResubmit, respectively. Choose the WorkTask declarative rule
condition for both of these left branches.

Drag a CompleteTask activity to the ifWorkTask branch and rename it completeWaitingWork. In the
Properties window, select the taskToken and the completeWorkTask_MethodInvoking method. Drag a
CodeActivity below the IfElseActivity in the ifWaitingClosed branch. Rename it codeWaitingClosed
and select the codeSetClosed_ExecuteCode method. Drag a SetStateActivity below this, rename it
setWaitingFinal, and set the TargetStateName to stateFinal.

Drag an UpdateTask activity to the ifWorkTaskResubmit branch and rename it updateWaiting. In the
Properties window, select the taskToken and the updateWorkAvailable_MethodInvoking method. Also,
bind the TaskID and TaskProperties to the dependency properties that you set up earlier. Drag a
SetStateActivity after this, rename it setWaitingAssigned, and set the TargetStateName to
stateAssigned.

Finally, drag a SetStateActivity to the right branch, rename it setWaitingNew, and set its
TaregtStateName to stateNew. The completed sequence should look like Figure 15-34.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

343

Figure 15-34. The eventWaiting sequence

The complete state diagram should look like Figure 15-35.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

344

Figure 15-35. The complete state diagram

Configuring the Workflow
Now you’ll add an association form that will allow the end users to configure the admin and test users.
This workflow is configured to start automatically when an item is added to the Issues list. An initiation
form is not helpful here because it is used only when starting a workflow manually. However, the
association form will allow the users to configure the workflow when it is associated with a list—the
Issues list in this case.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

345

Adding an Association Form
From Solution Explorer, right-click the Workflow1 feature and select Add ➤ New Item. In the Add New
Item dialog box, select the Workflow Association Form template, and enter the name as
Chapter15Association.aspx, as shown in Figure 15-36.

Figure 15-36. Adding an association form

Listing 15-7 shows the contents of the Chapter15Association.aspx file, with the lines that you’ll need
to add in bold.

Listing 15-7. Implementation of Chapter15Association.aspx

<%@ Assembly Name="$SharePoint.Project.AssemblyFullName$" %>
<%@ Assembly Name="Microsoft.Web.CommandUI, Version=14.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c" %>
<%@ Import Namespace="Microsoft.SharePoint" %>
<%@ Import Namespace="Microsoft.SharePoint.ApplicationPages" %>
<%@ Register Tagprefix="SharePoint"
 Namespace="Microsoft.SharePoint.WebControls"
 Assembly="Microsoft.SharePoint, Version=14.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c" %>
<%@ Register Tagprefix="Utilities"
 Namespace="Microsoft.SharePoint.Utilities"
 Assembly="Microsoft.SharePoint, Version=14.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c" %>
<%@ Register Tagprefix="asp"

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

346

 Namespace="System.Web.UI"
 Assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35" %>

<%@ Page Language="C#"
 DynamicMasterPageFile="~masterurl/default.master"
 AutoEventWireup="true"
 Inherits="Chapter15.Workflow1.Chapter15Association"
 CodeBehind="Chapter15Association.aspx.cs" %>

<asp:Content ID="Main" ContentPlaceHolderID="PlaceHolderMain" runat="server">

 Admin User:
 <SharePoint:PeopleEditor
 AllowEmpty="false"
 ValidatorEnabled="true"
 id="adminUser"
 runat="server"
 ShowCreateButtonInActiveDirectoryAccountCreationMode="true"
 SelectionSet="User" />

 Test User:
 <SharePoint:PeopleEditor
 AllowEmpty="false"
 ValidatorEnabled="true"
 id="testUser"
 runat="server"
 ShowCreateButtonInActiveDirectoryAccountCreationMode="true"
 SelectionSet="User" />

 <asp:Button ID="AssociateWorkflow"
 runat="server"
 OnClick="AssociateWorkflow_Click"
 Text="Associate Workflow" />

 <asp:Button ID="Cancel"
 runat="server"
 Text="Cancel"
 OnClick="Cancel_Click" />
</asp:Content>

<asp:Content ID="PageTitle"
 ContentPlaceHolderID="PlaceHolderPageTitle"
 runat="server">
 Workflow Association Form
</asp:Content>

<asp:Content ID="PageTitleInTitleArea"
 runat="server"
 ContentPlaceHolderID="PlaceHolderPageTitleInTitleArea">

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

347

 Workflow Association Form
</asp:Content>

This code adds two PeoplePicker controls to the form: one to select the admin user and the other to
select the test user. Now open the Chapter15Association.aspx.cs code-behind file, and add the
following namespaces:

using System.Linq;
using System.Xml.Linq;
using System.Collections.Generic;

Then provide the following implementation for the GetAssociationData() method:

private string GetAssociationData()
{
 XElement data = new XElement("InitiationData",
 new XElement("AdminUsers",
 from PickerEntity x in adminUser.Entities.ToArray()
 select new XElement("Name", x.Description)),
 new XElement("TestUsers",
 from PickerEntity x in testUser.Entities.ToArray()
 select new XElement("Name", x.Description)));

 return data.ToString();
}

This code creates an XML string that contains the values from the PeoplePicker controls. It allows
for multiple users to be selected for each.

Using the Association Data
Finally, open the Workflow1.cs code-behind file, and add the code from Listing 15-8 to the
onWorkflowActivated1_Invoked method.

Listing 15-8. Code to Add to the onWorkflowActivated Event Handler

// Get the association data
if (workflowProperties.AssociationData != null)
{
 XElement data = XElement.Parse(workflowProperties.AssociationData);

 foreach (XElement x in data.Element("AdminUsers").Elements())
 {
 _admin = x.Value;
 break; // just get the first one
 }
 foreach (XElement x in data.Element("TestUsers").Elements())
 {
 _test = x.Value;

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

348

 break; // just get the first one
 }
}

This code takes the first user from the AdminUser collection and stores it in the _admin class member.
Likewise, the _test member is set using the first user from the TestUsers collection. If no association
data is available, the workflow will use the hard-coded values.

Associating the Workflow
Now you’re ready to deploy and test the workflow. Press F6 to build the solution and fix any compiler
errors. Then, from Solution Explorer, right-click the Chapter15 project, and click the Deploy link. Visual
Studio should have already associated the workflow with the Issues list. However, you’ll now associate it
manually so you can use the association form that you provided.

Go to the SharePoint site and select the Issues list. From the List ribbon, click the Workflow Settings
button, as shown in Figure 15-37.

Figure 15-37. Selecting the Workflow Settings page

This will display the Workflow Settings page shown in Figure 15-38.

Figure 15-38. The Workflow Settings page

This page shows all the workflows associated with this list and the number of workflow instances
currently in progress. Click the IssueTracking link to display the standard association page shown in
Figure 15-39. Everything on this page should default correctly; these are the settings you specified when
setting up the project in Visual Studio. Click the Next button to display the next page.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

349

Figure 15-39. The standard workflow association page

The next page, shown in Figure 15-40, will be the custom page that you created. It has two
PeoplePicker controls on it. Enter a user for the Admin User and Test User fields, and click the Associate
Workflow button.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

350

Figure 15-40. The custom association page

Testing the Workflow
Go to the Issues list and add a new item to the list. Just enter the title and description, and leave the
other fields as they are, as shown in Figure 15-41. Then click the Save button.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

351

Figure 15-41. Entering a new issue

The item will be added to the Issues list and the workflow will be activated. The workflow will start
by generating a task in the Tasks list. Go to the Tasks list and you should see a new task, as shown in
Figure 15-42.

Figure 15-42. A new task added to the Tasks list

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

352

■Note The workflow runs in the background, and depending on other activity on the server, the workflow may
be suspended for a while. If the task does not appear immediately, just a wait a few seconds and refresh the page.

Edit this task and select the Assign action. Enter a user on the PeoplePicker control and set the
priority as shown in Figure 15-43. Click the Save button.

Figure 15-43. Modifying the new task

The Tasks list should now show that the first task is complete and a new task has been assigned to
the developer, as demonstrated in Figure 15-44.

Figure 15-44. A new task has been assigned to the developer.

Edit this task, select the Enhancement action, enter a comment explaining that this is an
enhancement as shown in Figure 15-45, and save the form.

Figure 15-45. Modifying the developer’s task

The task list should now show that the developer’s task is “Waiting on someone else” and a new task
has been assigned to the admin user (Test2), as shown in Figure 15-46.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

353

Figure 15-46. An Enhancement task has been added to the list.

Edit the Enhancement task and choose the Resubmit action. Enter a comment in the feedback field
and click the Save button, as shown in Figure 15-47.

Figure 15-47. Modifying the Enhancement task

The workflow will close the Enhancement task and change the developer’s task to In Progress, as
shown in Figure 15-48.

Figure 15-48. The updated Tasks list

Edit the developer’s task and select the Issue Started check box. Leave the action set to None, as
shown in Figure 15-49. This is simply indicating that you have started on this task.

Figure 15-49. Selecting the Issue Started check box

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

354

Now go to the Issues list. You should see that the status is currently Active. Also notice that the
Priority and Assigned To columns have been updated by the workflow, as demonstrated in Figure 15-
50.

Figure 15-50. The updated Issues list

The requestor may not have access to the Tasks list, but they can view the Issues list to see the
progress of their request. Go back to the Tasks list and edit the developer’s task. Set the action to
Completed, enter a resolution, and click the Save button, as shown in Figure 15-51.

Figure 15-51. Modifying the developer’s task to show the work is completed

The workflow will then generate a new task assigned to the tester (Test3), as shown in Figure 15-52.

Figure 15-52. A new task for the tester has been added to the Tasks list

Edit the new task, set the action to Resolved, and enter a feedback comment, as shown in Figure 15-
53.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

355

Figure 15-53. Modifying the tester’s task

The Tasks list should now show that all tasks are complete, including the developer’s task, as
demonstrated in Figure 15-54.

Figure 15-54. The final Tasks list with tasks completed

Go back to the Issues list and display the issue. The form should look like Figure 15-55.

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

356

Figure 15-55. Details of the completed issue

The issue was initially created with only the Title and Description columns populated. As you work
the tasks that are generated by the workflow, the details of this are automatically filled in. You can also
see the tasks details by clicking the Workflow button on this form. The task details that are displayed are
shown in Figure 15-56.

Figure 15-56. Displaying the task details

Summary
Congratulations! You just implemented a fairly complex state machine workflow. This is a very effective
way to manage a multistep process involving several people. All of the participants—the admin,

CHAPTER 15 ■ STATE MACHINE WORKFLOWS

357

developer, and tester—simply work off of their tasks list. Imagine this process with dozens of issues
being worked on simultaneously in various stages of the process.

In the chapter’s example, I used a view of the Tasks list that showed all tasks so you could see what
was happening as the workflow progressed. Normally, each person would only see the active tasks
assigned to them. After they complete a task it is removed from their view and they can pick another task
from the list.

The requester or a project manager can look at the Issues list to see which issues are still open, what
state they are in, and who they are assigned to. This provides a good view into the process without
needing all the task details. The details are available as well by looking at the workflow history.

As I’m sure you noticed, the task forms are somewhat awkward, with lots of fields that the users do
not need to be concerned about. In the next chapter I’ll show you how to use InfoPath 2010 to create
custom task forms.

C H A P T E R 1 6

■ ■ ■

359

Creating Custom Forms

In the previous chapter you implemented a task-based tracking system using a state machine workflow.
When an item was added to the Issues list, the workflow took over, generating tasks according to the
business rules. The participants performed the tasks assigned to them as the issue progressed through
the workflow. The Tasks list and the individual task forms are the primary interface to this system.

Each task type (e.g., New, Assigned, Resolved) used a different content type, allowing each to define
the specific columns that are needed. For example, the New task needs a place to assign a developer while
the Resolved task needs a place to indicate whether the issue was resolved. These content types were
derived from the Workflow Task content type. Because of this they inherited a large number of columns
that, while important to the workflow process, are not needed on the task forms.

Creating a Custom Task Form
In this chapter you will use InfoPath 2010 to create custom task forms. Each form will only include the
columns that the user needs to see or update, which will provide a much better user experience.

Connecting to SharePoint
To accomplish that, you’ll create a custom form specifically for each new content type. Start the InfoPath
2010 Designer application. Select File ➤ New, and then select the SharePoint List template. Click the
Design Form button, as shown in Figure 16-1.

CHAPTER 16 ■ CREATING CUSTOM FORMS

360

Figure 16-1. Selecting the SharePoint List template

■Tip If you get an error message indicating that Microsoft Office Forms Services 2010 is not available, you will
need to activate this feature in the SharePoint server. Unfortunately, it is not listed as a configurable feature in
SharePoint’s Central Administration tool. Instead, you’ll need to use the PowerShell utility. From the Windows Start
menu, select the Microsoft SharePoint 2010 Products folder and run the SharePoint 2010 Management Shell
application.

Then execute the following commands:
Install-SPFeature -path "IPFSSiteFeatures" – force
Install-SPFeature -path "IPFSWebFeatures" – force

Executing these commands will activate InfoPath Forms Services and should resolve this error.

This will display the Data Connection Wizard, as shown in Figure 16-2.

CHAPTER 16 ■ CREATING CUSTOM FORMS

361

Figure 16-2. The Data Connection Wizard

Enter the URL for your site, such as http://omega5/pm, and click the Next button. In the next dialog
box, choose the option to customize an existing list, and select the Tasks list, as shown in Figure 16-3.

Figure 16-3. Selecting the existing Tasks list

CHAPTER 16 ■ CREATING CUSTOM FORMS

362

The next dialog box, shown in Figure 16-4, lists the content types that are supported by the Tasks
list. Select the custom Issue New content type, and click the Next button.

Figure 16-4. Selecting the Issue New content type

For the final dialog box, leave the default options as shown in Figure 16-5, and click the Finish
button.

CHAPTER 16 ■ CREATING CUSTOM FORMS

363

Figure 16-5. Using the default options for the final dialog box

Modifying the Form Layout
The InfoPath designer will then display the existing form that was retrieved from the SharePoint site,
which should be similar to the one shown in Figure 16-6.

CHAPTER 16 ■ CREATING CUSTOM FORMS

364

Figure 16-6. The initial InfoPath form

The list of fields in the Fields navigation window was obtained from the content type definition. The
current form is roughly based on how the standard form is formatted. You’ll need to delete most of the
rows on this form. To delete a row, right-click the row label and choose Delete ➤ Rows in the context
menu, as shown in Figure 16-7. You can also select several rows and delete them this way.

Figure 16-7. Deleting rows from the form

CHAPTER 16 ■ CREATING CUSTOM FORMS

365

Delete all the rows except the Title, Description, Related Content, Issue New Action, Issue
Assigned To, and Issue Priority. Change the labels for some of the columns as follows:

• Related Content: Issue

• Issue New Action: Action

• Issue Assigned To: Assign To

• Issue Priority: Priority

The form should look like Figure 16-8.

Figure 16-8. Updated form definition

Select the Control Tools ribbon. Click the Title field, and select the Read-Only check box, as shown
in Figure 16-9.

CHAPTER 16 ■ CREATING CUSTOM FORMS

366

Figure 16-9. Using the Control Tools ribbon to make the title read-only

Select the Description and Issue fields, and make them read-only as well. The user should not be
able to modify these fields from the task form.

Publishing the Form
Because you started with an existing list form, InfoPath knows exactly where to publish the new form.
From the File menu, click the Quick Publish button, as shown in Figure 16-10.

Figure 16-10. Using the Quick Publish feature

CHAPTER 16 ■ CREATING CUSTOM FORMS

367

When the form has been published, you’ll see a confirmation dialog box, as shown in Figure 16-11.
Click the OK button and then close the InfoPath application.

Figure 16-11. Publish confirmation dialog box

Testing the Custom Form
Open the SharePoint site and select one of the generated New tasks. It should now display using the
custom form, as shown in Figure 16-12.

Figure 16-12. The custom display form

If you click the Edit Item button, the edit form should be displayed, as shown in Figure 16-13.

CHAPTER 16 ■ CREATING CUSTOM FORMS

368

Figure 16-13. The custom edit form

Notice that the Title, Description, and Issue fields are not editable on this form. These are derived
from the Issues list item that this task is related to. You can click the link in the Issue field to display the
issue and make changes there, if necessary. Try displaying one of the other tasks; it should use the
standard form rather than the custom InfoPath form.

Creating the Remaining Task Forms
Start the InfoPath 2010 application and follow the same procedure to select the existing Tasks list. This
time, however, select the Issue Assign content type. Remove all the fields except Title, Description,
Related Content, Issue Assigned Action, Issue Started, and Resolution. Then rename Related
Content as Issue, Issue Assigned Action as Action, and Issue Started as Started. Also, set Title,
Description, and Issue to be read-only. The form should look like Figure 16-14.

CHAPTER 16 ■ CREATING CUSTOM FORMS

369

Figure 16-14. The Issue Assigned custom task form

From the File tab, click the Quick Publish button to update the form in the SharePoint server. From
the File tab, select the New menu and then the SharePoint List template, and then click the Design
Form button. Navigate to the Issue Resolved content type and edit the form just like the previous two.
The form should look like Figure 16-15.

Figure 16-15. The Issue Resolved custom task form

■Tip Because the admin may have tasks with different task types assigned to them, and most of these have
the same fields, it would be helpful to indicate the reason they are in the Waiting state. You’ll add some static text
to each form to indicate that.

Follow the same procedure to create a custom task form for the Issue Info content type. Remove
the unneeded rows, rename the labels, and set the read-only property as you have with the other forms.
Then right-click the Title label and insert a new row, as shown in Figure 16-16.

CHAPTER 16 ■ CREATING CUSTOM FORMS

370

Figure 16-16. Adding a new row

In the new row, enter More information is requested: and change the font size to 14. The form
should look like Figure 16-17.

Figure 16-17. The Issue Info custom task form

Publish this form to the server. Follow the same steps to create custom task forms for the Issue
Enhancement and Issue WAD content types. Enter This is an enhancement: and Working as designed: on
each form, respectively. Make sure you publish the form after you finish making the changes.

Creating a Custom Issue Form
As I demonstrated in the previous chapter, most of the columns on the Issues list are populated by the
workflow as the associated tasks are completed. While we need to display these fields, we don’t want to
allow anyone to modify them. To accomplish that, you’ll implement a custom form.

CHAPTER 16 ■ CREATING CUSTOM FORMS

371

Start the InfoPath 2010 Designer application and navigate to the Issues list. Because there is only
one content type allowed for this list, the additional dialog to select the content type is skipped. The
existing form is displayed in Figure 16-18.

Figure 16-18. The current Issue form

All the fields except for Title, Attachments, and Description should be marked as read-only. Select
the Resolution control and select the Read-Only check box in the Control Tools ribbon. Update the Issue
Feedback control to also be read-only.

Changing the Control Type
InfoPath will only allow to you to make text fields read-only. Combo boxes and date fields, for example,
cannot be made read-only. To resolve this, you’ll need to first change the field to use the Text Box
control. Select the PM Issue Status control (select the control in the second column, not the label). In the
Control Tools ribbon, click the Change Control button and the click the Text Box link, as shown in Figure
16-19.

CHAPTER 16 ■ CREATING CUSTOM FORMS

372

Figure 16-19. Changing the control type to Text Box

After you have changed the control type, the Read-Only check box should be available for you to
select. In the same way, change the Priority and Resolution Type controls to Text Box controls and mark
them as read-only.

Handling Date and Time Picker Controls
Select the Date Created control and change it to a Text Box like you did with the other fields. Then right-
click the control and click the Text Box Properties link, as shown in Figure 16-20.

Figure 16-20. Selecting the Text Box Properties link

The Text Box Properties dialog box, shown in Figure 16-21, allows you to configure how the date
field is converted to a text string. Click the Format button to select how you want the date formatted.

CHAPTER 16 ■ CREATING CUSTOM FORMS

373

Figure 16-21. The Text Box Properties dialog box

Click the OK button to save the changes. Notice that there are two Text Box controls in the cell,
along with some helper text, as shown in Figure 16-22.

Figure 16-22. The Date Picker control after being converted to a Text Box control

This column supports both date and time, and is usually presented as a Date Picker followed by a
Time control. The conversion to a text box converted both controls. Select the second control and delete
it. The helper text is defined on the site column. You can also delete this from the form, as it is not
needed.

Select the Date Completed control and change it to a Text Box control. Because this field only
displayed the date portion, there is only one control. You should also go to the text box properties and
select the appropriate format, like you did with the Date Created control.

Handling Person/Group Picker Controls
The Assigned To column is bound to a Person/Group Picker control, and InfoPath does not support
converting these to any other type of control. Select the control and delete it.

■Caution Delete the control from the cell; do not delete the row.

CHAPTER 16 ■ CREATING CUSTOM FORMS

374

Select the empty cell, and from the Control Tools ribbon, select the Calculated Value control, as
shown in Figure 16-23.

Figure 16-23. Selecting the Calculated Value control

This will insert a Calculated Column control in this cell. Right-click this control and click the Change
Binding link, as shown in Figure 16-24.

Figure 16-24. Changing the binding of an existing field

Click the Advanced link, and then select the DisplayName property of the Assigned To column, as
shown in Figure 16-25.

CHAPTER 16 ■ CREATING CUSTOM FORMS

375

Figure 16-25. Selecting the DisplayName property

Changing the Labels
Before finishing this form, change a few of the labels. Change PM Issue Status to Status and Issue
Feedback to Feedback. Also, enlarge the Description column to allow more lines for entering data. The
completed form should look like Figure 16-26.

CHAPTER 16 ■ CREATING CUSTOM FORMS

376

Figure 16-26. The completed Issue form

From the File tab, click the Quick Publish button to publish these changes to the SharePoint server.

Testing the Form
Display the existing issue in the list. The display form should look like Figure 16-27.

CHAPTER 16 ■ CREATING CUSTOM FORMS

377

Figure 16-27. The custom display form

Close this form and then click the Add new item link to create a new issue. The new form is shown in
Figure 16-28.

CHAPTER 16 ■ CREATING CUSTOM FORMS

378

Figure 16-28. The custom new issue form

Notice that the only editable fields are the Title, Attachments, and Description columns.

Summary
In this chapter you used InfoPath 2010 to create a custom task form for each content type. You used the
Quick Publish feature to publish the new form to the SharePoint server. You also created a custom form

CHAPTER 16 ■ CREATING CUSTOM FORMS

379

for creating and viewing items in the Issues list. This form converted may of the controls to Text Box
controls that were then made read-only.

In the last three chapters, using a combination of tools including Visual Studio 2010, Windows
Workflow, and InfoPath 2010, you created a custom SharePoint application with a rich user interface.

■ ■ ■

381

Epilogue

If you have worked through all the chapters in this book, then you should already have a powerful
project management tool. Hopefully it will meet most of your needs. If so, great! More importantly,
however, I hope I have planted a seed that you can grow by adding your own creativity and diligence to
produce something really great.

I planned the activities in this book with the intention of imparting to you two necessary
ingredients. The first is an understanding of how to employ the features of SharePoint. This is a very
broad topic, and I tried to demonstrate a subset of features that I found to be particularly helpful;
everything from document libraries to state machine workflows. The second ingredient includes some
useful project management techniques, such as user stories, iteration backlogs, test cycles, and
gathering quality metrics. Some of these may be new ideas to you. Undoubtedly, you’ll find some of
these useful for your scenario, and others less of a good fit.

In each chapter I paired up a management technique with a SharePoint feature in a logical fashion.
Many of the technology solutions can be used in many applications, not just the one I paired it with. An
automated process for gathering metrics, for example, can be used in many places besides testing.

The third ingredient, which you must supply, is imagination. Only you can envision the appropriate
application of technology to produce a solution that is uniquely suited to your environment. The
building blocks that I have given you, plus others that you will create yourself, are at your disposal.

Isaac Newton once wrote, “If I have seen a little further it is by standing on the shoulders of giants.”
My goal is to help you see a little further than I have. Enjoy!

■ ■ ■

383

Index

■A
Active states, 284–285, 329, 338–339

Add a Web Part link, 68, 114, 138, 152–154, 188,
208, 234

Add a workflow link, 38

Add as a new version to existing files check box,
178

Add button, 57

Add document link, 176

Add Existing Site Column button, 93, 128, 147,
197, 203, 216, 221, 289, 296

Add Features Wizard, Server Manager
application, 26

Add from existing site columns link, 113, 118,
167, 183, 237, 252–253, 272

Add new discussion link, 62

Add New Item dialog box, Solution Explorer,
345

Add new item link, 13, 22, 96, 109, 155, 195, 199,
205, 267, 271

Add new link link, 186

Add Required Features button, 27

Add to all content types check box, 252, 254

Add to default view check box, 252–254

Add to formula link, 51

Additional Column Settings section, 48, 55, 61,
167, 236, 249, 272

Admin User field, 349

Administrative Tools menu, 29

AdminUser collection, 348

Advanced button, 77

Advanced link, 374

advanced mode, 25–26, 31–33

agile methodology, 103–105

agile testing, 213

All Items link, 96

All Items page, 13

All Items view, 21, 149, 152, 160, 219, 232

All Links view, 188

Allow, 17

Allow attachments check box, 148, 198, 217, 221

Allow blank values? check box, 16, 89, 106, 127,
146, 201, 215, 287–288, 291

Allow button, 77

Allow management of content types check box,
12, 21, 94, 109, 131, 148, 198, 204, 217,
290

Allow multiple values check box, 55, 117

■ INDEX

384

approval tasks, completing, 42–43

Approve button, 42

Assign action, 352

Assign condition, 329

Assigned state, 324–328, 335–338

Declarative Rule conditions, 325–328

finishing, 338

IfElseActivity, 324–325

using UpdateTask activity, 336–338

Assigned To column, 293, 354, 373–374

assigning iterations, 110–114

assigning user stories, 114

creating site columns, 110–112

modifying content types, 113

associating workflows, 38–40, 348–349

association forms, 345–347

association page, 39

Attach File button, 206

attachments, 36–37

Attachments column, 131, 151, 204

automatic mode, 26–31

configuring SharePoint, 30–31

configuring SMTP server, 29–30

installing SMTP server feature, 26–27

starting SMTP service, 28

■B
base content type, creating, 128–129

Blank & Custom group, 86

Blocking column, 127, 130, 132, 135

burndown charts, 143–171

creating project burndowns, 166–171

adding Project page, 170–171

collecting data points, 167–169

modifying Project Backlog view, 169
developer portals

adding Chart Web part, 162–163

adding charts, 161

adding connections, 165

building Web page, 159–160

configuring Chart data, 164

creating Web Part page, 157–159

displaying Portal pages, 166

enabling enterprise features, 161

overview, 156–157
iteration burndowns, 145–156

adding new views, 151–152

creating content types, 147

creating datasheet view, 148–149

creating iteration views, 150

creating Stats lists, 148

customizing New form, 152

Iteration Burndown Stats list, 146

modifying default views, 151

populating data, 150
using, 143–145

Business Data category, 161–162, 170

■C
Calculated Column control, 374

Calculated columns, 51–52, 249–251

Calculated Value control, 374

Calendar template, 184

calendars, 184–186

CAML (Collaborative Application Markup
Language), 240

Cascade delete option, 62

cases, test, 205–206

Cases Completed column, 249

Change Binding link, 374

Change Control button, 371

Change new button order and default content
type link, 136

Chart web part, 145, 161–162, 165, 170

ChartPart tool, 161

charts, burndown. See burndown charts

■ INDEX

385

Check In button,, 181

Check In dialog box, 181

Check Out button, 73, 181

Check Out link, 177

Choice column type, 16, 89, 106, 117, 215, 286,
291

Close action, 341

Close condition, 327

codeActivity1 activity, 228, 258

codeActivity1 event handler, 228

codeActivity1_ExecuteCode event handler, 228

codeInitActive_ExecuteCode method, 329

codeInitAssigned_ExecuteCode method, 328

codeInitNew_ExecuteCode method, 324

codeInitResolved_ExecuteCode method, 329

codeInitWaiting_ExecuteCode method, 331

codeSetClosed_ExecuteCode method, 342

codeSetResolved_ExecuteCode method, 340

Collaborative Application Markup Language
(CAML), 240

Collapsed display option, 273

Column Editor dialog box, 15, 17, 106, 195, 215,
219, 293

Column Settings button, 106, 127, 292–293

columns

adding, 17–18

site, 87–92, 105–106, 247–251

calculated, 249–251

creating, 125–127

defect, 247

Epic column, 91

Story Points, 90–91

Story Priority, 89–90

Story Requirements, 91

Theme, 89

totals, 248–249
Story Dependencies, 117

Story Ready, 118

Story Risk, 117

Columns section, 47, 49, 96, 120, 131–132, 199,
204–205, 252

Completed block, 262–264

Completed condition, 327

CompleteTask activity, 320, 333, 340, 342

completeTask_MethodInvoking method, 333,
340, 342

completeWorkTask_MethodInvoking method,
340, 342

computing metrics, 255–270

adding Completed block, 262–264

creating Test Cycles, 267–270

modifying InProgress block, 258–262

workflows, 265–267

Condition property, 325, 327, 330

Configure Connection dialog box, 69, 115

Configure Incoming E-Mail Settings page, 30–
32

Connect Chart To Data link, 164, 170

Connect to a List option, 164, 170

Connect to Outlook button, List ribbon, 76

connections, adding, 165

Connections link, 69, 115, 138, 154, 165, 208,
234

Content Type button, 107, 128–129, 196, 202,
216, 221, 296

Content Type Settings page, 19, 108

content types, 9–10, 18–20, 107–108, 128–130

creating, 196–197, 202–203

base content type, 128–129

iteration task content type, 129–130

remaining content types, 130
modifying, 113

Task, 291–299

adding content types to Tasks list,
298–299

creating content types, 296–297

creating Site columns, 291

modifying Workflow Task content
type, 294–295

■ INDEX

386

Content Types link, Navigation pane, 196, 202,
216, 221

Content Types Picker control, 95

Content Types Picker dialog box, 131

Content Types section, 95–96, 109, 131, 136,
198, 217, 222, 291, 298

ContentTypeId property, 323, 328, 331

Control Tools ribbon, 365–366, 371, 374

Control type, changing in custom forms, 371–
372

correlation tokens, 322–323

CorrelationToken property, 322, 330, 336

Create a Content Type dialog box, 9, 92, 128,
196, 294, 296

Create a Site Column dialog box, 14

Create Column button, Library ribbon, 183

Create column link, 47, 49, 51, 53, 55, 61

Create Column page, 47, 49, 53, 55, 61, 272

Create dialog box, 194

Create link, 111, 117, 167, 236

Create New List Form dialog box, 98

Create View button, List ribbon, 119, 137, 148,
151, 207, 218, 273

Create View page, 120, 137

createAssignedTask_MethodInvoking method,
328

createNewTask activity, 322

createNewTask Properties window, 324

createNewTask_MethodInvoking method, 323

createResolvedTask activity, 329

createResolvedTask_MethodInvoking method,
331

CreateTask MethodInvoking event, 312–314

CreateTaskWithContentType activity, 312, 314,
322, 328, 330

createWADTask_MethodInvoking method, 330

createWaitingWadTask Properties window, 330

Current Iteration link, 154, 165

Current Iteration web part, 159–160

Current view, 150, 152, 159, 218–219, 234

Current.Web property, 230

custom forms, 359–379

customTask, 359–368

connecting to SharePoint, 359–362

modifying form layout, 363–366

testing, 367–368
Issue, 370–379

changing Control type, 371–372

changing labels, 375–376

Date and Time Picker controls, 372–
373

Person/Group Picker controls, 373–
374

testing, 376–379
Task, 370

Custom List button, 11, 20, 94, 108, 131, 198,
204, 217, 221, 290

Custom List template, 86, 194, 271

custom site columns, adding, 14–18

additional columns, 17–18

functional areas, 14–16

requirement types, 16–17

Customization section, 108, 128, 221, 289, 296

Customization Wizard, SharePoint, 223, 256

Customize Your Chart link, 162, 171

■D
data

Chart, configuring, 164

collecting points of, 167–169

populating, 150

Data & Appearance link, 170–171

Data Connection Wizard, 164, 360–361

Data Entry view, 149–150, 152, 206–207

datasheet mode, 201

datasheet view

creating, 148–149

using, 201

Datasheet View button, List ribbon, 201

■ INDEX

387

Datasheet View link, 148, 207

Date Completed control, 373

Date control, 372–373

Date Created control, 372–373

DateCompleted column, 320

Declarative Rule conditions, 325–328, 330

Default Display Form link, 68, 114, 138

Default New Form link, 152

default views

modifying, 131–133

Test Scenario, 200

Defect Details field, 130, 135

Defect Removal Rate column, 251

Defect Severity column, 247–248, 252

Defect Source analysis, 270–275

creating Defect Source lists, 271

creating groups by views, 273–275

creating Lookup columns, 272–273

Defect Source column, 272–274

Defect Sources, 246, 272

defects

adding, 134–136

adding properties, 247

managing, 124

removal of, 246

Defects view, 273–274

dependencies

requirement, 46

supporting, 55–57

Dependencies column, 56

Dependencies list, 57

Deploy link, 265, 348

Deploy Solution link, Solution Explorer, 231,
241

Description column, 88, 309, 356, 366

Design Form button, 359, 369

developer portals, 156–157

adding Chart Web part, 162–163

adding charts, 161

adding connections, 165

building Web page, 159–160

configuring Chart data, 164

creating Web Part page, 157–159

displaying Portal pages, 166

enabling enterprise features, 161

Discard Check Out button, 181

Discussion Board template, 59

Discussion content type, 59

Discussion folder, 59

discussions, 59–80

adding Requirement Discussions lists, 59–
67

default views, 67

Discussion feature, 64–67

handling deleted records, 61–62

linking related requirements, 61
combining lists, 67–76

adding pages to SharePoint sites,
73–74

adding related lists, 74–76

connections, 69–70

testing display forms, 70–71
Outlook, 76–80

configuring lists, 76–77

posting replies, 78–80

viewing discussions in, 78
display forms, testing, 70–71

Display this list on the Quick Launch check box,
12, 221

DisplayName property, 374–375

document libraries, 175–183

creating, 175–177

customizing, 183

organizing documents in folders, 182

providing version history, 177–180

viewing documents in Office, 180–182

Document Library Settings page, 34, 183

Document Library template, 33

■ INDEX

388

Document ribbon, 41

Document Version History option, 176

Drop-down menu option, 106

■E
Edit content type columns link, 10, 93, 108, 128,

147, 197, 203, 216, 221, 289

Edit form, 178

Edit in SharePoint Designer link, 8, 87, 105, 125,
146, 195, 201, 215, 286

Edit Item button, 367

Edit List in SharePoint Designer button, List
ribbon, 97

Edit Page button, Page ribbon, 162, 164–165

Edit View page, 52, 67

Editing Tools ribbon, 75

E-Mail column, 13

e-mails, 25–43

advanced mode, 31–33

automatic mode, 26–31

configuring SharePoint, 30–31

configuring SMTP server, 29–30

installing SMTP server feature, 26–
27

starting SMTP service, 28
incoming lists, 33–37

attachments, 36–37

creating Incoming Requirements
document library, 33

enabling incoming e-mails, 33–35
SharePoint, 25

workflows, 37–43

associating, 38–40

completing approval tasks, 42–43

completing initiation forms, 41

testing, 41
Empty SharePoint Project template, 255

Enable Features on Existing Sites link, 161

Enable sites on this server to receive e-mail?
option, 31

enabling incoming e-mails, 35

Enforce relationship behavior check box, 61

Enhancement action, 352

Enhancement condition, 327, 330

Enhancement task, 353

enterprise features, enabling, 161

Epic column, 91

event handlers, 311–321

Active state, 338–339

Assigned state, 335–338

finishing, 338

using UpdateTask activity, 336–338
CreateTask MethodInvoking event, 312–314

Initial state, 331–332

New state, 332–334

OnTaskChanged events, 314–318

accessing extended properties, 315

adding event handlers, 315–318
remaining events, 320–321

Resolved state, 339–341

state initializers, 319

using work tasks, 321

Waiting state, 331, 341–344

eventActive activity, 339

eventAssigned activity, 335

eventDrivenActivity1 activity, 305, 308

eventInitial activity, 332

eventNew activity, 332

eventResolved activity, 339

eventWaiting activity, 344

ExecuteCode property, 324, 328

Existing Project link, 257

Expand Groups check box, 40

ExtendedProperties collection, 315

■F
factors, 46–50

■ INDEX

389

additional factors, 49

scoring requirements, 50

using List Settings page, 47

features, enabling enterprise, 161

Features node, Server Manager application, 26

Fields property, 315

File page, 181

File tab, 181–182, 369, 376

Filter By section, 207

Filter Data section, 164

filter menu, 69

Filter section, 132–133, 218, 273

filters, view, 120

Final states, 309–310, 340–341

finalization, 306–307

Finish button, 70

flat discussion view, 65

flat view, 63, 67

Folder content type, 109, 131, 148, 204, 217, 291

folders, organizing documents in, 182

Footer section, 188, 234

Format button, 372

forms

custom. See custom forms

iteration, 114–116

Forms section, list editor, 98–99

Functional Area column, 14

Functional Area content type, 10–12, 18

Functional Area drop-down list, 22

Functional Area link, 10

Functional Area settings, 12

functional areas, 8–16

content types, 9–10

creating lists, 11–12

populating lists, 13

Fusion Charts tool, 161

■G
Galleries section, 111, 236, 272

Get Filter Values From link, 69, 115, 138, 154,
208, 234

Get information from drop-down box, 55

Get Parameters From link, 165

GetAssociationData() method, 347

GetField() method, 315

GetItemById() method, 230

GetItems() method, 240

GetItems() method, SPList class, 240

Group column type, 18

groups, creating by views, 273–275

■H
HandleExternalEventActivity activity, 306

Header section, 234

_Hidden group, 295–296

Hours Left column, 127, 133, 164

href command, 187

human-centric workflows, 279–280

■I
ID column, 69, 139, 154, 160

ID property, 231, 315

If statement, 262

IfElseActivity, 324–325

implementing iteration items lists, 125–131

creating content types, 128–130

creating base content type, 128–129

creating iteration task content type,
129–130

creating remaining content types,
130

creating new site columns, 125–127

In Progress status, 340

Inactive Logon link, 76

Incoming E-Mail Settings page, 34

incoming e-mails, enabling, 33

incoming lists, 33–37

■ INDEX

390

attachments, 36–37

creating Incoming Requirements document
library, 33

enabling incoming e-mails, 33–35

Incoming Requirements document library, 33,
41–42

initActive activity, 329

initAssigned activity, 324

initial states, 309–310, 331–332

Initial status, 258

Initial Weighted Defects column, 248, 267

initialization, 306–307

InitialUserStory.aspx link, 98–99

initiation forms, completing, 41

initiation page, 41

initNew activity, 322

initResolved activity, 329

initWaiting activity, 330

InProgress block, 258–262

InProgress test cycles, 219

Insert Related List button, 74

Insert ribbon, 74

Install button, 27

Int32 type, 164

Invoked method, 332–333

Invoking property, 340

Issue Assign content type, 368

Issue Assigned Action column, 292

Issue Assigned Action property, 338

Issue Assigned content type, 298, 328

Issue Assigned custom task form, 369

Issue Assigned To column, 293

Issue content type, 290

Issue Details column, 130

Issue Enhancement content type, 298, 370

Issue field, 366

Issue form, 371, 376

Issue Info content type, 369

Issue Info custom task form, 370

Issue Info Issue content type, 298

Issue New Action column, 292

Issue New content type, 296–297, 323, 362

Issue Priority column, 294

Issue Resolved Action column, 292

Issue Resolved content type, 298, 331, 369

Issue Resolved custom task form, 369

Issue Started check box, 353

Issue Started column, 293

Issue Status column, 290

Issue WAD content type, 298, 370

Issue Waiting Action column, 292

issues

adding, 134–136

handling, 124

Issues list, 286–291

adding Site columns, 286–288

creating Issues list, 290–291

creating PM issue content type, 288–290

IssueTracking link, 348

issue-tracking systems, 284–286

adding Active states, 284–285

resolution types, 285–286

IssueTracking workflow, 302

Item content type, 10, 93, 95, 109, 131, 148, 150,
204, 217, 291

Item link, 95

Item property, 230

Item Status column, 126–127, 132

Iteration Backlog view, 153, 159, 241

iteration backlogs, 123–141

creating, 137–141

enhancing iteration form, 138–141

iteration backlog views, 137
generating defects in, 236–242

adding workflow logic, 238–241

deploying and running workflow,
241

modifying Iteration Backlog, 241–
242

■ INDEX

391

modifying Iteration Defect content
type, 236–238

implementing iteration items lists, 125–131

creating content types, 128–130

creating new site columns, 125–127
populating, 123–124

defining iteration tasks, 123–124

handling issues, 124

managing defects, 124
using, 125

using iteration items list, 131–136

adding defects and issues, 134–136

adding tasks, 133–134

modifying default views, 131–133
Iteration Burndown Stats list, 148, 152, 154, 164

iteration burndowns, 145–156

adding new views, 151–152

creating content types, 147

creating datasheet view, 148–149

creating iteration views, 150

creating Stats lists, 148

customizing New form, 152

Iteration Burndown Stats list, 146

modifying default views, 151

populating data, 150

Iteration column, 113, 139, 154, 159–160

Iteration content type, 108–109, 167

Iteration Day column, 146, 164

Iteration Defect content type, 130–131, 135,
215, 236–238, 270, 273

Iteration Defect link, 134, 237, 272

Iteration form, 115, 140

Iteration Issue content type, 130–131

Iteration Item content type, 128–129

Iteration Items list, 137–138, 153, 159, 236, 241,
258, 270, 273

Iteration list, 115, 140

Iteration Number column, 108, 112, 155, 165

Iteration Number parameter, 164

Iteration site column, 112

Iteration Status column, 107, 151

Iteration Task content type, 130–131

Iteration_x0020_Number parameter, 165

iterations, 105–116

adding site columns, 105–106

assigning, 110–114

assigning user stories, 114

creating site columns, 110–112

modifying content types, 113
creating iteration Content type, 107–108

creating iteration lists, 108–109

enhancing iteration forms, 114–116

Iterations Display form, 116

Iterations list, 114, 151–152, 157, 167–168, 170,
254–255, 266

■J
JIT (just-in-time), 84

■K
Keep the document checked out after checking

in this version check box, 182

KPI (key performance indicators), 2

■L
labels, 375–376

Last Data Point web part, 154–155

Left Column section, 160

libraries

documents, 175–183

creating, 175–177

customizing, 183

organizing documents in folders,
182

providing version history, 177–180

viewing documents in Office, 180–
182

■ INDEX

392

Incoming Requirements document, 33

Library Settings button, Library ribbon, 33, 179,
183

links, organizing, 186–187

Links list, 186–187

List and Libraries link, 11, 94, 290

List Content Types group, 10, 295–296

list editor, 98

List Form button, 98

List ribbon, 51, 76, 96–97, 119, 131, 136–138, 273

List Settings button, 47, 51, 96, 136, 253

List Settings page, 47, 49, 51, 53–55, 60, 67, 110,
253

List template, SharePoint, 369

List Workflow option, 224

lists, 251–255

combining, 67–76

adding pages to SharePoint sites,
73–74

adding related lists, 74–76

connections, 69–70

testing display forms, 70–71
configuring in Outlook, 76–77

creating, 11–12, 20–21, 198–199

Defect Source, 271

incoming, 33–37

attachments, 36–37

creating Incoming Requirements
document library, 33

enabling incoming e-mails, 33–35
Issues, 286–291

adding Site columns, 286–288

creating Issues list, 290–291

creating PM issue content type, 288–
290

iteration, 108–109

modifying

Iterations, 254–255

Test Cycles, 253–254

Test Items, 252–253
populating, 13

Requirement Discussions, 59–67

default views, 67

Discussion feature, 64–67

handling deleted records, 61–62

linking related requirements, 61
Test Areas, 194–195

Test Cases

building, 201

creating, 204–205
Test Scenarios list, 195

testing, 21–23

adding requirements, 22–23

All Items view, 21
User Stories

creating, 94–96

modifying, 118–119
Lists and Libraries category, 68, 74, 114, 138,

152, 188, 208, 234

Lists and Libraries link, 20, 108, 131, 148, 198,
204, 217, 221, 298

Lists link, Quick Launch area, 232

Lookup column type, 14, 55, 61, 110, 112, 117,
201, 219, 230, 270

Lookup columns, creating, 272–273

LookupId property, 230

■M
Make this the default view check box, 67, 152

management sites, creating, 7–8

Manager's Name column, 13

Message content type, 59

MethodInvoking method, 320, 325, 331

MethodInvoking property, 328, 338

metrics

computing, 255–270

adding Completed block, 262–264

■ INDEX

393

creating Test Cycles, 267–270

modifying InProgress block, 258–
262

workflows, 265–267
progress, 244

quality, 244–246

coverage, 245

defect removal, 246

initial quality, 245–246
testing. See testing metrics

Microsoft SharePoint 2010 Products folder, 30

Microsoft Word document template, 176

Modify Form Web Parts button, List ribbon, 68,
114, 138, 152

Modify View button, List ribbon, 131, 151, 169,
198, 204, 217, 232, 241

modifying Iteration Backlog, 241–242

More Info task, 285

More Options button, 194

More Options link, Site Actions menu, 59, 184,
187, 194, 207, 233

More Options page, 86

Multi Lines of Text column type, 18, 288

■N
Name, description, and group link, 295

navigation, 306

Navigation option, 176

Navigation page, 87

Navigation pane, 9, 11, 20, 94, 107–108, 128–
129, 148, 296

New Column button, 14, 16, 87, 105, 195, 201,
286, 291–293

New Document Library link, 175

New Folder button, Document ribbon, 182

New Folder dialog box, 182

New form

customizing, 152

modifying, 97–101

New group radio button, 296

New Item button, 134, 136

New Page dialog box, 73

New Page link, 73, 170

New Project dialog box, 223

New Project link, 223, 301

New Requirements link, 42

New Site Column page, 111, 236

New state, 281–283, 285, 307, 321–322, 324,
332–334

New task, 333

NewForm.aspx form, 98

None action, 333

nonfunctional testing, 192

non-negotiable requirements, 53–55

adding Required flag, 53

modifying Overall Score formula, 54

sorting views, 54–55

notCreated condition, 327

Notes column, 187

notResolved condition, 327, 339

Number column type, 105, 146, 167, 247, 249

■O
objects, SharePoint, 286–299

creating Task content types, 291–299

designing Issues list, 286–291

Office, viewing documents in, 180–182

onActiveChanged_Invoked method, 339

onAssignedChanged_Invoked method, 335

onNewChanged activity, 333

onNewChanged Properties window, 334

onNewChanged_Invoke method, 332

onResolvedChanged activity, 339

onResolvedChanged_Invoked method, 339

OnTaskChanged activity, 332, 335, 339, 341

OnTaskChanged events, 314–318

accessing extended properties, 315

adding event handlers, 315–318

■ INDEX

394

OnTaskChanged method, 315, 322

onWaitingChanged_Invoked method, 341

onWorkflowActivated method, 305, 347

OnWorkflowActivated Properties window, 322

OnWorkflowActivated1 activity, 228, 308, 322

onWorkflowActivated1_Invoked() method,
308–309, 331, 347

operation grid, 193

Options link, 74

organization, 175–189

calendars, 184–186

document libraries, 175–183

creating, 175–177

customizing, 183

organizing documents in folders,
182

providing version history, 177–180

viewing documents in Office, 180–
182

organizing links, 186–187

test scenarios, 193

Outlook program, 76–80

configuring lists, 76–77

posting replies, 78–80

viewing discussions in, 78

Overall Score column, 52, 54

Overall Score formula, 54

Overwrite file with the same name? radio
button, 37

OwnerActivityName property, 322

■P
pages

adding to SharePoint sites, 73–74

Portal, displaying, 166

Project, adding, 170–171

Test Scenarios, creating, 207–210

Web

building, 159–160

creating, 157–159
Pause action, 338

Pause condition, 327, 339

payloads, 284

PeoplePicker control, 347, 349, 352

Person column type, 18

Person or Group column type, 293

Person/Group Picker control, 373–374

Planned view, 150, 152

PM (Project Management) issue content type,
288–290

PM Issue content type, 290–291

PM Issue Status column, 286–287, 290, 319–320

PM Issue Status control, 371

PMIS (Project Management Information
System), 1

PMO (project management office), 1

populating data, 150

populating iteration backlogs, 123–124

defining iteration tasks, 123–124

handling issues, 124

managing defects, 124

Portal pages, 158, 162–164, 166, 189

Position property, 204

Post Reply button, 78

posting replies, 78–80

postproduction phase, 3

prerequisites, 2

Preview Data button, 164

prioritizing requirements, 45–46

Priority column, 293, 354

Priority control, 372

progress metrics, 244

Project Backlog view, 121, 169

project backlogs, 103–122

adding user story details, 116–118

creating Story Dependencies
column, 117

creating Story Ready column, 118

■ INDEX

395

creating Story Risk column, 117
agile methodology, 103–105

creating project backlog views, 119–122

adding a view filter, 120

adding view filters, 120

specifying content, 120–122
iterations, 105–116

adding site columns, 105–106

assigning, 110–114

creating iteration Content type, 107–
108

creating iteration lists, 108–109

enhancing iteration forms, 114–116
modifying user stories lists, 118–119

Project Burndown web part, 170

project burndowns, 166

adding Project page, 170–171

collecting data points, 167–169

modifying Project Backlog view, 169

Project Info page, 170–171

project management activities, 2–3

implementation, 2–3

postproduction phase, 3

requirements, 2

testing, 3

Project Management Information System
(PMIS), 1

project management office (PMO), 1

Project Management (PM) issue content type,
288, 290

ProjectManagement site, 33, 59, 295

projects, creating management sites, 7–8

Properties dialog box, 28

properties pane, 153

Properties window, 308, 322–323, 327–330, 332–
333, 339

Protected View banner, 181

Publish confirmation dialog box, 367

■Q
quality metrics, 244–246

coverage, 245

defect removal, 246

initial quality, 245–246

Quality Ratio column, 251

Query property, 240

Query property, SPQuery class, 240

Quick Launch area, 198, 217, 222, 232, 291

Quick Launch menu, 195

Quick Launch option, 195

Quick Launch pane, 186

Quick Publish button, File tab, 366, 369, 376

Quick Publish feature, 366

■R
Radio buttons display option, 106

Read-Only check box, 365, 372

records, handling deleted, 61–62

Reject button, 42

Relationship section, Create Column page, 61

Remove button, 57

Remove link, 257

Repeated Defect check box, 269

Repeated Defect column, 247–248, 251–253

replies, posting, 78–80

Reply link, 64

reporting defects, 211–242

generating defects in iteration backlog, 236–
242

adding workflow logic, 238–241

deploying and running workflow,
241

modifying Iteration Backlog, 241–
242

modifying Iteration Defect content
type, 236–238

recording test results, 233–236

■ INDEX

396

test cycles, 212–214

adding, 218

agile testing, 213

creating additional Site Columns,
219–221

creating content type, 216–221

creating list, 217

creating Test Items list, 221–222

creating Test Status Site Column,
215

defining, 215

defining test items, 219

modifying views, 217–218

test items, 212–213

test results, 214

workflow, 222–232
Require that this column contains information

radio button, 117

Required column, 54

Required flag, 53–54

Requirement column, 69

Requirement content type, 18–20, 49

Requirement Description column, 14, 18

Requirement Discussions lists, 59–67

default views, 67

Discussion feature, 64–67

handling deleted records, 61–62

linking related requirements, 61

Requirement Discussions web part, 70

Requirement drop-down list, 62

Requirement Type column, 14

requirements, 7–23, 45–57

adding custom site columns, 14–18

additional columns, 17–18

functional areas, 14–16

requirement types, 16–17
adding factors, 46–50

additional factors, 49

scoring requirements, 50

using List Settings page, 47
calculating scores, 50–52

adding Calculated column, 51–52

modifying views, 52
content types, 18–20

creating lists, 20–21

creating project management sites, 7–8

defining, 7

functional areas, 8–13

Content Type, 9–10

creating lists, 11–12

populating lists, 13
linking user stories to, 85

non-negotiable, 53–55

adding Required flag, 53

modifying Overall Score formula, 54

sorting views, 54–55
prioritizing, 45–46

requirement dependencies, 46

supporting dependencies, 55–57

testing lists, 21–23

adding requirements, 22–23

All Items view, 21
Requirements list, 13, 16, 46–47, 54, 67–68, 70,

74, 91

Requirements web part, 74

Resolution Type column, 287–288, 320

Resolution Type control, 372

Resolution Type property, 321

resolution types, 285–286

Resolved condition, 327, 339

Resolved state, 321, 329, 339–341

Restrict delete option, 62

Resubmit action, 341, 344, 353

Resubmit condition, 327

Review Requirement column, 41

Review Requirement link, 41

■ INDEX

397

Review Requirement workflow, 41

Right Column section, 188

Run as administrator option, 222

■S
Save & Close button, 75

Save original e-mail? option, 37

scenarios, test, 199–200

scores, 50–52

adding Calculated column, 51–52

modifying views, 52

scoring requirements, 50

search option, 20

Select Condition dialog box, 326, 330

sender parameter, 314

Sequence column, 202, 205, 207

SequenceActivity class, 305

Sequential Workflow template, 223

Server Manager application, 26

Set as default form for selected type check box,
98

Set as Initial State link, 309

SetState, 308

Settings section, 131, 198, 217, 221, 290

SharePoint

adding pages to sites, 73–74

configuring, 30–31

connecting to, 359–362

implementing user stories in, 85–97

creating new site columns, 87–92

creating User Stories list, 94–96

creating User Story content type,
92–94

themes, 86–87

views, 96–97
overview, 25

tasks in, 283–284

payload, 284

Tasks list, 283
SharePoint 2010 Products folder, Microsoft, 30

SharePoint Customization Wizard, 223, 256

SharePoint List template, 369

SharePoint objects, 286–299

creating Task content types, 291–299

adding content types to Tasks list,
298–299

creating content types, 296–297

creating Site columns, 291

modifying Workflow Task content
type, 294–295

designing Issues list, 286–291

adding Site columns, 286–288

creating Issues list, 290–291

creating PM issue content type, 288–
290

Show as percentage check box, 249

Show Quoted Messages link, 66

Site Actions menu, 33, 59, 86–87, 110, 116, 125,
170, 207, 271

Site Column Picker dialog box, 20

site columns, 247–251

adding, 105–106, 195–196

adding calculated columns, 249–251

adding defect properties, 247

adding to Issues list, 286–288

adding totals columns, 248–249

creating, 87–92, 110–112, 125–127, 201–202,
291

Epic column, 91

Story Points, 90–91

Story Priority, 89–90

Story Requirements, 91

Theme, 89
custom, adding, 14–18

additional columns, 17–18

functional areas, 14–16

requirement types, 16–17

■ INDEX

398

Site Columns link

Galleries section, 236, 272

Navigation pane, 125, 195, 201, 215, 219

Site Columns page, 111

Site Columns Picker dialog box, 197

Site content types link, 113, 118, 167, 237, 272

Site Content Types page, 113

Site Galleries section, 116

Site Pages library, 158, 208, 233

Site Settings link, Site Actions menu, 110, 116,
167, 236, 272

Site Settings page, 111, 113, 118, 236–237, 272

SMTP server

configuring, 29–30

installing, 26–27

starting service, 28

Sort section, 132, 205

sorted view, 55

SPContext class, 230

SPEmailEventReceiver class, 37

SPFieldLookupValue class, 230

SPList class, 230, 240

SPListItem class, 230

SPQuery class, 240

SPWeb class, 230

SPWorkflowActivationProperties class, 230

SPWorkflowTaskProperties class, 315

Standard View link, 120, 137, 151, 218, 273

Start action, 338

Start condition, 327

Start Page, 223

Start this workflow when a new item is created
check box, 39

State Machine Workflow template, 301

state machine workflows, 301–357

configuring

adding association forms, 345–347

associating workflows, 348–349

overview, 344

using association data, 347–348
event handlers, 311–321

Active state, 338–339

Assigned state, 335–338

CreateTask MethodInvoking event,
312–314

Initial state, 331–332

New state, 332–334

OnTaskChanged events, 314–318

remaining events, 320–321

Resolved state, 339–341

state initializers, 319

using work tasks, 321

Waiting state, 331, 341–344
state initialization, 321–331

Active state, 329

Assigned state, 324–328

correlation tokens, 322–323

Resolved state, 329

specifying content type, 323–324

Waiting state, 330–331
states, 281–282, 305–311

adding, 310–311

initial and final, 309–310

initialization and finalization, 306–
307

navigation, 306

SetState, 308

setting up workflows, 308–309

substates, 307
testing, 350–357

workflow tasks, 282

stateFinal activity, 310

stateFinal state, 321

stateInitial activity, 309

stateInitial state, 321

StateInitialization activity, 321

■ INDEX

399

stateNew state, 331

states, 281–282, 305–311

adding, 310–311

initial and final, 309–310

initialization, 321–331

Active state, 329

Assigned state, 324–328

correlation tokens, 322–323

and finalization, 306–307

Resolved state, 329

specifying content type, 323–324

Waiting state, 330–331
navigation, 306

SetState, 308

setting up workflows, 308–309

substates, 307

Stats lists, creating, 148

Stop Editing button, 70, 116, 139, 155, 160, 188,
234

Story Dependencies column, 117

Story Details column, 100

Story Details row, 100

Story Points column, 90–91, 169

Story Points Remaining column, 167–168

Story Priority column, 89–90

Story Ready column, 118

Story Requirements column, 91, 200

Story Risk column, 117

Submitted By column, 14, 18

substates, 307

Summary Toolbar option, 159

supporting dependencies, 55–57

switch statement, 325

System Settings page, 30

■T
TargetStateName property, 331, 334

Task content types, 291–299

adding content types to Tasks list, 298–299

creating content types, 296–297

creating Site columns, 291

modifying Workflow Task content type,
294–295

Task Details column, 130

Task forms, 370

TaskId property, 314, 320–321, 323, 336, 340,
342

TaskProperties property, 314, 325, 336, 340, 342

tasks

adding, 133–134

in SharePoint, 283–284

payload, 284

Tasks list, 283
Tasks list, 42, 283, 315, 351, 355, 357

<td> tag, 100

Team Site template, 7, 184, 186

Test Area column, 196, 201

Test Areas list, 194–195

Test Case column, 235

Test Case content type, 203–204

Test Case link, 203

test cases, 191–210

breadth and depth, 192

creating Test Scenarios page, 207–210

defined, 191

nonfunctional testing, 192

operation grid, 193

organizing test scenarios, 193

SharePoint solution, 194–207

adding site columns, 195–196

adding test cases, 205–206

adding test scenarios, 199–200

building Test Cases list, 201

building Test Scenarios list, 195

creating content type, 196–197, 202–
203

creating data entry view, 206–207

■ INDEX

400

creating lists, 198–199

creating Site columns, 201–202

creating Test Areas list, 194–195

creating Test Cases list, 204–205

using datasheet view, 201
traceability, 192–193

Test Cases Cancelled column, 249

Test Cases Completed column, 249, 265

Test Cases Failed column, 249

Test Cases list, Footer section, 204, 208

Test Cases Planned column, 249

Test Cases web part, 208

Test Comment column, 242

Test Coverage column, 250–251

test coverage, defined, 191

Test Cycle column, 220, 234

Test Cycle content type, 217

Test Cycle Count column, 248

Test Cycle link, 216, 224

Test Cycle page, 234–235, 268

test cycles, 212–214

adding, 218

agile testing, 213

creating

additional Site Columns, 219–221

content type, 216–221

lists, 217

Test Items list, 221–222

Test Status Site Column, 215
defining, 215

modifying views, 217–218

test items, 212–219

test results, 214

workflow, 222–232

creating Visual Studio Project, 222–
226

defining, 227–228

deploying and running, 231–232

implementing logic, 228–231
Test Cycles list, 215, 219, 226, 234, 253–254,

267–270

Test Cycles View page, 266

Test Documents library, 176, 188

Test Inputs column, 202

Test Item column, 241

Test Item content type, 221–222

Test Item link, 221

Test Item site column, 237–238

test items, 212–213

Test Items list, 215, 221–222, 230, 232–234, 236,
252–253

Test Items web part, 234

Test Outputs column, 202

Test Pass/Fail check box, 236

Test Pass/Fail column, 241

test plan, defined, 191

Test Preconditions column, 202

Test Progress column, 249–251

Test Scenario column, 202, 205, 207

Test Scenario content type, 198

test scenario, defined, 191

Test Scenario link, 197

Test Scenarios link, 198, 208

Test Status column, 218

Test Status Site Column, creating, 215

test strategy, defined, 191

Test User field, 349

TestCycle link, 232, 241, 265

TestCycle workflow, 265, 270

TestCycles link, 268

testing

custom forms, 367–368, 376–379

display forms, 70–71

project management activities, 3

state machine workflows, 350–357

workflows, 41

testing metrics, 243–275

adding Defect Source analysis, 270–275

■ INDEX

401

creating Defect Source lists, 271

creating groups by views, 273–275

creating Lookup columns, 272–273
computing metrics, 255–270

adding Completed block, 262–264

creating Test Cycles, 267–270

modifying InProgress block, 258–
262

workflows, 265–267
creating additional site columns, 247–251

adding calculated columns, 249–251

adding defect properties, 247

adding totals columns, 248–249
defect sources, 246

lists, 251–255

modifying Iterations, 254–255

modifying Test Cycles, 253–254

modifying Test Items, 252–253
progress metrics, 244

quality metrics, 244–246

coverage, 245

defect removal, 246

initial quality, 245–246
Testing Resource list, 188

TestUsers collection, 348

Text Box control, 371, 373

Text Box link, 371

Text Box Properties dialog box, 372–373

Text Box Properties link, 372

Theme column, 89

themes, 86–87

Themes list, 87

this. notation, 327

threaded discussion view, 72

Threaded link, 67

threaded view, 65–67

Time control, 373

Time Picker control, 372–373

Title column, 13, 117, 149, 151, 197, 201, 217,
232, 237, 309

Title field, 91, 365

Title property, 231

Toolbox window, 228

totals columns, 248–249

Totals section, 133

<tr> tag, 100

■U
Update all content types inheriting from this

type? option, 167, 237, 272

Update all content types inheriting from this
type? radio button, 118

Update List and Site Content Types radio
button, 113

updateAssignedResolved activity, 338

UpdateTask activity, 336–338, 340–342

updateWorkAvailable_MethodInvoking
method, 340, 342

updateWorkWaiting_MethodInvoking method,
338

Upgrade and Migration link, 161

Upload button, Document ribbon, 178

URL column, 187

user stories, 83–101

adding, 116–118

creating Story Dependencies
column, 117

creating Story Ready column, 118

creating Story Risk column, 117
assigning, 114

implementing in SharePoint, 85–97

creating new site columns, 87–92

creating User Stories list, 94–96

creating User Story content type,
92–94

themes, 86–87

views, 96–97
linking to requirements, 85

■ INDEX

402

modifying lists, 118–119

modifying New form, 97–101

User Stories list, 94–96, 105, 110, 114–115, 117,
119, 126, 160, 169

User Story column, 126, 201

User Story content type, 92–94, 110, 113, 119

User Story link, 113, 118

using statement, 230

UtcNow property, 309

■V
variations, defined, 192

version, providing history of, 177–180

Version History link, 179

Versioning settings link, 179

View form, 53

View Item link, 70

views

All Items, 21

creating groups by, 273–275

data entry, creating, 206–207

datasheet

creating, 148–149

using, 201
default, modifying, 151

filters, adding, 120

iteration

backlog, 137

creating, 150
modifying, 52

new, adding, 151–152

project backlog, 119–122

adding view filters, 120

modifying, 169

specifying content, 120–122
sorting, 54–55

user stories, 96–97

Views section, 67, 96

Visual Studio Project, creating, 222–226

■W
Wad condition, 327, 330

Waiting on someone else status, 338

Waiting state, 282–283, 285, 330–331, 341–344,
369

Web page, building, 159–160

Web Part button, Insert ribbon, 74, 170

Web Part page, creating, 157–159

Web Part Page template, 157–158, 187, 207–208,
233

Web Part Properties button, Web Part Tool
ribbon, 152

Web Part Tools ribbon, 74

Weighted Defects column, 248, 267

Word document template, Microsoft, 176

work tasks, 321

workflow, 222–232

creating Visual Studio Project, 222–226

defining, 227–228

deploying and running, 231–232

implementing logic, 228–231

Workflow Association Form template, 345

workflow association page, 349

Workflow button, 41, 241, 265, 356

Workflow Settings button, 37, 348

Workflow Settings page, 348

Workflow Task content type, 284, 315

Workflow1 feature, 258, 345

Workflow1.cs file, 228, 258, 308, 312, 337, 347

Workflow1InitialState activity, 305–306, 308

workflowProperties variable, 230

workflowProperties.Item property, 309

workflowProperties.TaskList property, 315

workflows, 37–43, 265–267

associating, 38–40, 348–349

completing approval tasks, 42–43

■ INDEX

403

completing initiation forms, 41

creating SharePoint objects, 286–299

creating Task content types, 291–
299

designing Issues list, 286–291
human-centric, 279–280

issue-tracking systems, 284–286

adding Active states, 284–285

resolution types, 285–286
state machine, 280. See also state machine

workflows

states, 281–282

workflow tasks, 282
tasks in SharePoint, 283–284

payload, 284

Tasks list, 283
testing, 41

Workflows button, 231

Workflows dialog box, 265

Workflows page, 38, 41

workflow-specific association page, 40

WorkTask condition, 327, 342

■XYZ
Yes/No column type, 53, 118, 196, 247, 292

	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1 Introduction
	About This Book
	Prerequisites
	Project Management Activities
	Requirements
	Implementation
	Testing
	Postproduction Phase

	PART 1 Requirements
	Chapter 2 Collecting Requirements
	Defining Requirements
	Creating a Project Management Site
	Defining Functional Areas
	Defining the Content Type
	Creating the Functional Areas List
	Populating the Functional Areas List

	Defining the Requirements
	Adding Custom Site Columns
	Functional Area
	Requirement Type
	Additional Columns

	Defining the Content Type
	Creating the Requirements List

	Testing the Requirements List
	Defining the All Items View
	Adding Requirements

	Summary

	Chapter 3 Processing Incoming E-mail
	Incoming E-mails
	Understanding SharePoint’s E-mail Capability

	Configuring Incoming E-mail
	Using Automatic Mode
	Installing the SMTP Server Feature
	Starting the SMTP Service
	Configuring the SMTP Server
	Configuring SharePoint

	Using Advanced Mode

	Configuring an Incoming List
	Creating the Incoming Requirements Document Library
	Enabling Incoming E-Mails
	Handling Attachments

	Adding a Workflow
	Associating the Approval Workflow
	Testing the Workflow
	Completing the Initiation Form
	Completing the Approval Task

	Summary

	Chapter 4 Managing Requirements
	Analyzing Requirements
	Prioritizing Requirements
	Requirement Dependencies

	Adding Factors
	Using the List Settings Page
	Adding a Factor
	Adding Additional Factors
	Scoring a Requirement

	Calculating the Overall Score
	Adding a Calculated Column
	Modifying the View

	Supporting Non-Negotiable Requirements
	Adding the Required Flag
	Modifying the Overall Score Formula
	Sorting the View

	Supporting Dependencies
	Adding a Lookup Column
	Adding a Dependency

	Summary

	Chapter 5 Supporting Discussions
	Adding the Requirement Discussions List
	Linking the Related Requirement
	Handling Deleted Records
	Adding a Discussion
	Using the Discussion Feature
	Choosing the Default View

	Combining Lists
	Adding a Web Part
	Defining the Connection
	Testing the Display Form

	Creating a New Web Page
	Adding a Page to the SharePoint Site
	Adding a Related List

	Using Outlook
	Configuring the Outlook List
	Viewing Discussions in Outlook
	Posting a Reply

	Summary

	PART 2 Managing Development
	Chapter 6 User Stories
	Defining User Stories
	Describing User Stories
	Linking to Requirements

	Implementing User Stories in SharePoint
	Defining Themes
	Creating New Site Columns
	Defining the Theme Column
	Defining the Story Priority Column
	Defining the Story Points Column
	Defining the Epic Column
	Defining the Story Requirements Column
	Summarizing the Site Columns

	Creating the User Story Content Type
	Creating the User Stories List
	Defining the View

	Modifying the New Form
	Summary

	Chapter 7 Project Backlog
	Describing Agile Methodology
	Using Iterations
	Defining the Project Backlog

	Implementing Iterations
	Defining Iterations
	Adding Site Columns
	Creating the Iteration Content Type
	Creating the Iteration List

	Assigning an Iteration
	Creating a Site Column
	Modifying a Content Type
	Assigning User Stories

	Enhancing the Iteration Form

	Implementing a Project Backlog
	Adding User Story Details
	Creating the Story Dependencies Column
	Creating the Story Risk Column
	Creating the Story Ready Column

	Modifying the User Stories List
	Creating the Project Backlog View
	Adding a View Filter
	Specifying the Content

	Summary

	Chapter 8 Iteration Backlog
	Review
	Populating the Iteration Backlog
	Defining Iteration Tasks
	Managing Defects
	Handling Issues

	Using the Iteration Backlog
	Implementing an Iteration Items List
	Creating New Site Columns
	Creating the Content Types
	Creating the Base Content Type
	Creating the Iteration Task Content Type
	Creating the Remaining Content Types

	Creating the Iteration Items List

	Using the Iteration Items List
	Modifying the Default View
	Adding Tasks
	Adding Defects and Issues

	Creating the Iteration Backlog
	Creating an Iteration Backlog View
	Enhancing the Iteration Form

	Summary

	Chapter 9 Burndown Charts
	Review
	Using Burndown Charts
	Understanding a Burndown Chart
	Using a Project Burndown

	Implementing an Iteration Burndown
	Defining the Iteration Burndown Stats List
	Creating the Iteration Burndown Content Type
	Creating the Iteration Burndown Stats List

	Creating a Datasheet View
	Populating the Data
	Creating Iteration Views
	Modifying the Default View
	Adding New Views

	Customizing the New Form

	Creating a Developer’s Portal
	Creating a Web Part Page
	Building the Web Page
	Adding a Chart
	Enabling the Enterprise Features
	Adding the Chart Web Part
	Configuring the Chart Data
	Adding a Connection

	Displaying the Portal Page

	Creating a Project Burndown
	Collecting Data Points
	Modifying the Project Backlog View
	Adding a Project Page

	Summary

	PART 3 Testing
	Chapter 10 Getting Organized
	Using Document Libraries
	Creating a Document Library
	Providing Version History
	Viewing Library Documents in Office
	Organizing Documents in Folders
	Customizing Your Library

	Using Calendars
	Organizing Links
	Putting It All Together
	Summary

	Chapter 11 Creating Test Cases
	Glossary
	Defining Test Cases
	Breadth First, Then Depth
	Nonfunctional Testing
	Traceability
	Operation Grid
	Organizing Test Scenarios

	Building a SharePoint Solution
	Creating a Test Areas List
	Building a Test Scenarios List
	Adding Site Columns
	Creating a Content Type
	Creating the List
	Adding Test Scenarios
	Using a Datasheet View

	Building a Test Cases List
	Creating the Site Columns
	Creating the Content Type
	Creating the Test Cases List
	Adding Test Cases
	Creating a Data Entry View

	Creating a Test Scenarios Page
	Summary

	Chapter 12 Reporting Defects
	Review
	Test Cycles
	Test Items
	Agile Testing
	Test Results

	Implementing Test Cycles
	Defining Test Cycles
	Creating the Test Status Site Column
	Creating the Test Cycle Content Type
	Creating the Test Cycles List
	Modifying the Test Cycles Views
	Adding a Test Cycle

	Defining Test Items
	Creating Additional Site Columns
	Creating the Test Item Content Type
	Creating the Test Items List

	Implementing the Test Cycle Workflow
	Creating a Visual Studio Project
	Defining the Workflow
	Implementing the Workflow Logic
	Deploying and Running the Workflow

	Recording the Test Results
	Adding a Web Part Page
	Performing the Tests

	Generating Defects in the Iteration Backlog
	Modifying the Iteration Defect Content Type
	Adding the Workflow Logic
	Deploying and Running the Workflow
	Modifying the Iteration Backlog

	Summary

	Chapter 13 Testing Metrics
	Review
	Using Testing Metrics
	Progress Metrics
	Quality Metrics
	Coverage
	Initial Quality
	Defect Removal Effectiveness

	Analyzing Defect Source

	Supporting Testing Metrics
	Creating Additional Site Columns
	Adding the Defect Properties
	Adding the Totals Columns
	Adding the Calculated Columns

	Modifying the Lists
	Modifying the Test Items List
	Modifying the Test Cycles List
	Modifying the Iterations List

	Computing the Metrics
	Reusing the Chapter12 Project
	Implementing the Metric Logic
	Modifying the InProgress Block
	Adding the Completed Block

	Running the Workflow
	Creating Another Test Cycle

	Adding Defect Source Analysis
	Creating the Defect Source List
	Creating a Lookup Column
	Creating a Group By View

	Summary

	PART 4 Postproduction
	Chapter 14 Workflow Tasks
	Understanding Workflows
	Human-Centric Workflows
	State Machine Workflows
	Defining the States
	Defining the Workflow Tasks

	Tasks in SharePoint
	Using the Tasks List
	Understanding the Payload

	Designing an Issue-Tracking System
	Adding an Active State
	Defining Resolution Types

	Creating the SharePoint Objects
	Designing the Issues List
	Adding Site Columns
	Creating the PM Issue Content Type
	Creating the Issues List

	Creating the Task Content Types
	Creating the Site Columns
	Modifying the Workflow Task Content Type
	Creating the Content Types
	Adding the Content Types to the Tasks List

	Summary

	Chapter 15 State Machine Workflows
	Creating the Workflow Project
	Configuring the Workflow Project
	Understanding Workflow States
	Navigation
	Initialization and Finalization
	Substates
	SetState
	Setting Up the Workflow

	Defining the States
	Initial and Final States
	Adding the Remaining States

	Implementing the Event Handlers
	CreateTask MethodInvoking Event
	OnTaskChanged Events
	Accessing Extended Properties
	Adding the Event Handlers

	State Initializers
	Remaining Events
	Using a Work Task

	Designing the State Initialization
	Initializing the New State
	Correlation Tokens
	Specifying the Content Type

	Initializing the Assigned State
	IfElseActivity
	Defining Declarative Rule Conditions

	Initializing the Active State
	Initializing the Resolved State
	Initializing the Waiting State

	Designing the Event Handlers
	Designing the Initial State
	Designing the New State
	Designing the Assigned State
	Using the UpdateTask Activity
	Finishing the Assigned State

	Designing the Active State
	Designing the Resolved State
	Designing the Waiting State

	Configuring the Workflow
	Adding an Association Form
	Using the Association Data
	Associating the Workflow

	Testing the Workflow
	Summary

	Chapter 16 Creating Custom Forms
	Creating a Custom Task Form
	Connecting to SharePoint
	Modifying the Form Layout
	Publishing the Form
	Testing the Custom Form

	Creating the Remaining Task Forms
	Creating a Custom Issue Form
	Changing the Control Type
	Handling Date and Time Picker Controls
	Handling Person/Group Picker Controls
	Changing the Labels
	Testing the Form

	Summary

	Epilogue
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

