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Preface

This book grew out of a two day workshop that was held in May 2006 and was
funded by the Engineering division of the U.S. National Science Foundation
(NSF) under the Control, Networks and Computational Intelligence program.
The purpose of this workshop was to bring together key contributors to the
field of networked sensing to discuss the state-of-the-art in research, the main
mathematical issues in the design and deployment of sensor networks, and
the problems solved and the problems remaining. At the end of the workshop
the participants had agreed on writing assignments. The intended audience
for this book are graduate students, engineers and scientists in the fields of
signal processing, control, information theory and statistics. The book is typ-
ical of many recent edited collections on emerging topics in engineering. The
chapters were written by some of the principal architects of recent advances
in mathematical aspects of sensory networks.

Boston, MA Venkatesh Saligrama
August, 2007
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Introduction

Venkatesh Saligrama

Boston University

Recent advances in sensor and computing technologies has provided the impe-
tus for deploying distributed sensing systems. Distributed networks are envi-
sioned in such diverse applications as building safety, environmental monitor-
ing, power systems, manufacturing as well as military and space applications.
Distributed sensing systems hold the promise of providing an inexpensive,
non-intrusive means to understand phenomena that exhibit spatial and tem-
poral variations at multiple scales.

While significant effort over the last decade in sensor development physical
layer transmission and networking infrastructure has laid the initial ground-
work for practical deployment, realization of such distributed sensing systems
is still in its infancy. The principle challenges can be attributed to fundamen-
tal system-level difficulties. These arise due to the difficulty in monitoring
a dynamic uncertain environment through an underlying power/bandwidth
constrained ad-hoc networked infrastructure. The main challenge can be sum-
marized as follows: How to make decisions under uncertainty, which arises
from spatially distributed dynamic information when sharing distributed data
is limited by networking constraints.

Over the last few years there has been significant interest in developing
systematic techniques to synthesize interactive and reconfigurable distributed
sensing systems that are capable of performing effective inferencing and con-
trol tasks under overall resource constraints. This can be seen from a number of
different control, information theory and signal processing conferences where
several tracks and sessions have been dedicated to such topics. Nevertheless,
the research to date in this area is fragmented possibly due to the fact that the
fundamental challenges intersect many of the traditional areas. The purpose
of this book is to present broad trends in the mathematical aspects of Net-
worked Sensing, Information and Control by some of the principal architects
working in this area.

The book chapters are grouped under four major themes: (a) Blind lo-
calization, which accounts for uncertain sensor locations and attributes; (b)
Distributed computation in the context of detection, function computation



2 Venkatesh Saligrama

and data dissemination; (c) Fundamental issues in reconstruction of spatially
distributed phenomena with rate constrained sensor networks; (d) Networked
Estimation and Control of dynamical systems.

From a systems perspective every “piece” of “raw” information in a sen-
sor network has typically a state-overhead information such as spatial loca-
tion, time of origin, resolution, and attributes, e.g., sensing-modality, associ-
ated with it. Different classes of sensor network applications require differ-
ent amounts of this “state” information from one spatio-temporal volume of
the network to be available at another spatio-temporal volume in order to
induce some optimal level of performance in both the network scaling and
non-scaling regimes. For example, at one end of the spectrum are applications
that require only simple network-wide order statistics, e.g., max, min, me-
dian, for which it is unnecessary to transport the spatial location information
overheads associated with each piece of data. At the other extreme are appli-
cations such as field-mapping, e.g., for environmental monitoring, for which
the spatio-temporal state information of different pieces of data is critical for
good performance. Intermediate applications which also require the spatio-
temporal state include singularity and boundary estimation and evolution,
e.g., detecting and tracking the boundaries of convection currents and toxic
plumes including classical target tracking. Classical problems of inference such
as classification, estimation, and filtering need to be systematically revisited
under distributed constraints.

Blind Localization

The first two chapters deal with sensing issues pertaining to unknown sen-
sor locations/attributes. This is a fundamental issue encountered in sensor
networks. The first chapter by Balzano and Nowak considers the problem
of blindly calibrating sensor response using routine sensor network measure-
ments. They show that as long as the sensors slightly oversample the signals
of interest, then unknown sensor gains can be perfectly recovered. Exploiting
incoherence conditions between measurement model and sensor observations
they show surprisingly that neither a controlled stimulus nor a dense deploy-
ment is required. The second chapter by Rangarajan, Raich, and Hero con-
siders the problem of target localization when sensor locations are unknown.
They use the distributed weighted multidimensional scaling (dwMDS) algo-
rithm to obtain estimates of the sensor positions. By exploiting the fact that
target motion is manifested only at a sparse set of sensors they are able to
effectively localize target position.

Distributed Computation over Unreliable Communication Networks

The next set of chapters address distributed computation techniques on unre-
liable communication networks. These consider sensing scenarios that require
only simple network-wide order statistics and global knowledge of sensor at-
tributes or locations are not a major concern. These set of chapters are focused
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on distributed computation and fundamental limits to communication mes-
sage complexity. The first chapter in this part by Tang and Tsitsiklis study
the problem of decentralized detection in a sensor network consisting of nodes
sending information to a fusion center which is located at the root of a tree.
Such a tree configuration, although effective from an energy perspective could
possibly have worse performance, compared to other distributed architectures
such as a parallel configuration. Surprisingly, they show that the optimal error
exponent is often the same as that corresponding to a parallel configuration.
The following chapter by Ying, Srikant and Dullerud, focus on symmetric
function computation over an unreliable communication network. By using
multi-reception diversity to combat channel noise and data aggregation they
reduce the number of transmissions. They propose a distributed algorithm
whose energy consumption is only a factor of log log n more than the lower
bound. The last chapter in this part by Dimakis and Ramachandran focuses
on distributed storage. This is an important issue in long term deployments
of sensor networks. These networks must log important information and store
it until the information can be recovered. Since storage nodes are expected to
fail, redundancy is necessary to guarantee the required reliability and the au-
thors describe distributed, scalable and energy-efficient algorithms to generate
and dynamically maintain encoded information representations in networks.

Rate Constrained Field Reconstruction

The third part of the book deals with fundamental issues in reconstruction
of spatially distributed phenomena with rate constrained sensor networks.
The first of these chapters by Wang, Ma, Zhao, Ishwar and Saligrama study
distributed field reconstruction within a target distortion D using a dense net-
work of noisy one–bit randomized scalar quantizers in the presence of additive
observation noise of unknown distribution. They construct an order optimal
scheme and show that when the noise, sensor placement pattern, and the sen-
sor schedule satisfy certain minimal technical requirements, it is possible to
drive the MSE to zero with increasing sensor density at points of field conti-
nuity while ensuring that the per–sensor bitrate and sensing–related network
overhead rate simultaneously go to zero. The following chapter by Neuhoff
and Pradhan study a similar question in a Bayesian setting. They take an
information theoretic perspective and characterize fundamental tradeoffs be-
tween sensor density, mean-squared distortion and encoding rate. They pose
and answer the following questions: What happens to the encoding rate, in
bits per unit area, produced by the encoders as the sensors become more nu-
merous and dense? Does the increasing density of sensors cause the encoding
rate to increase without limit? Or does the increasing correlation between
neighboring sensor measurements sufficiently mitigate the increasing density
to permit encoding rate to remain bounded as density increases? The last
chapter in this section by Gastpar takes yet another perspective on the prob-
lem. In contrast to the first two chapters’ focus on source coding the last
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chapter focuses on implication of wireless multi-access networks. Shannon’s
theory established that bits are a universal currency of information in point-
to-point communication. Nevertheless, whether bits form a universal currency
is far from clear in networked settings. The chapter presents a rich collection of
examples illustrating the different classes of problems: (a) networked commu-
nication problems for which bits are a universal currency of information, (b)
counter-examples where bits are far from being universal, and (c) approximate
separation theorems, where bits are somehow close to universal.

Dynamics and Control over Communication Networks

The final part deals with networked real-time control and considers dynamic
sensed environments. The first chapter by Robinson and Kumar considers the
design of transport layer, one of five layers in the internet protocol suite, for
networked control problems. Traditional data network transport protocols fail
to deal with the time value of, or the relationships between, the data being
transmitted. They introduce a new method, that they call Linear Tempo-
ral Coding (LTC), for potential use in wireless networked control systems. In
LTC, instead of retransmitting dropped packets, linear combinations of packet
contents are formed based on the previous messages’ delivery status. They il-
lustrate advantages of this protocol over conventional protocol, which favors
transmission of the most recent packet. The second chapter by Saligrama
and Castañón expands on this theme and considers distributed tracking with
a sensor network subjected to random intermittent communication connec-
tivity. The problem they consider is to design efficient encoding and fusion
rules to optimally track moving objects with intermittent communications.
The emphasis in this chapter is on designing lossless protocols, i.e., protocols
which recover centralized performance. They derive scalable communication
protocols that transmit a summary of all past measurements that achieve loss-
less performance. The third chapter in this part by Fummeler and Veeravalli
focuses on sensor management in tracking applications. Specifically, they con-
sider the problem of tracking with low-power sensors and develop efficient
dynamic management strategies for conserving battery power. In particular,
they develop dynamic sleep-wake schedules for sensors that optimizes their
lifetimes while ensuring small tracking errors. Unfortunately, open loop poli-
cies with fixed or random duty cycles are not efficient. Their key idea is that
the location of the object (if known) at the time when the sensor is put to sleep
would be useful in determining the sleep duration of the sensor; the closer the
object, the shorter the sleep duration should be. The last chapter by Ganguli,
Cortés and Bullo investigates multi-agent robotic systems. Such systems have
recently gained importance as basic components of complex networks intended
to perform a wide variety of tasks such as search and rescue, exploration, en-
vironmental monitoring, location-aware computing, and the maintaining of
structures. In this chapter they develop algorithms for visually-guided agents,
i.e., mobile robotic agents with line-of-sight sensing and communication capa-
bilities, to solve a distributed version of the Art Gallery Problem. This problem
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involves placing guards inside an art gallery such that every point is visible
by at least one guard. By exploiting a combination of “geometric structure +
information management + navigation algorithms” they are able to control
individual agents to explore and traverse nonconvex polygons only based on
local sensing and communication to achieve the deployment objectives.

The motivating examples in this book are drawn from specific domains
such as national defense, environmental monitoring and security. However, as
pointed out in several of these chapters, the theory and methods are general
and applicable to a far wider range of networked sensing applications. We
hope that this book will generate additional interest in the general area of
sensor networks.



Part I

Blind Localization



1

Blind Calibration of Networks of Sensors:
Theory and Algorithms

Laura Balzano and Robert Nowak

University of California, Los Angeles and University of Wisconsin, Madison

1.1 Introduction

With the wide variety of sensor network applications being envisioned and
implemented, it is clear that in certain situations the applications need more
accurate measurements than uncalibrated, low-cost sensors provide. Arguably,
calibration errors are one of the major obstacles to the practical use of sen-
sor networks [3], because they allow a user to infer a difference between the
readings of two spatially separated sensors when in fact that difference may
be due in part to miscalibration. Consequently, automatic methods for jointly
calibrating sensor networks in the field, without dependence on controlled
stimuli or high-fidelity groundtruth data, is of significant interest. We call
this problem blind calibration.

One approach to blind sensor network calibration is to begin by assuming
that the deployment is very dense, so that neighboring nodes should (in prin-
ciple) have nearly identical readings [4]. Unfortunately, many existing and en-
visioned sensor network deployments may not meet the density requirements
of such procedures.

The difference in our approach is that it leverages correlation in the collec-
tion of sensors without requiring a dense deployment, making it much more
suitable for practical applications. We assume this correlation is defined and
that the readings from n sensors lie in a subspace of n-dimensional Euclidean
space.

We assume a linear model for the sensor calibration functions. This means
that the sensor readings are calibrated up to an unknown gain and offset (bias)
for each sensor, possibly after applying a suitable and fixed transformation
to the raw sensor readings, e.g., taking the logarithm or applying the original
factory calibration transformation.

This work makes three main contributions. First, we propose a novel au-
tomatic sensor calibration procedure that requires solving a linear system of
constraints involving routine sensor measurements. By “routine” we mean that
actual signal measured by the sensor network is uncontrolled and unknown.
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This is why we refer to the problem as blind calibration. The constraint equa-
tions are based on mild assumptions that guarantee that the sensor measure-
ments are at least slightly correlated over space, i.e., the network oversamples
the underlying signals of interest. Second, we prove the rather surprising fact
that these assumptions, which are commonly met in practice, suffice to per-
fectly recover unknown sensor gains. That is, it is possible to blindly calibrate
the gains using only the routine readings made by the sensors. Third, we prove
that the sensor offsets (biases) can also be partially recovered from routine
readings; they can be completely recovered with some additional overhead.

To give a preview of our approach, suppose we are measuring a tempera-
ture field with an array of n sensors. Temperature fields tend to vary smoothly,
and so they may be considered to be bandlimited. The Nyquist theorem dic-
tates a minimum spacing between sensors in order to adequately sample a
bandlimited signal. If sensors are spaced more closely than the minimum re-
quirement, then we are “oversampling” the signal. In this case, the underlying
bandlimited signal will lie in a lower dimensional (low frequency) subspace of
the n dimensional measurement space. This condition provides a useful con-
straint for blind calibration. Correctly calibrated signals must lie in the lower
dimensional subspace, and this leads to a system of linear equations which
can be used to solve for the gain and offset calibration parameters.

1.2 Problem Formulation

Consider a network of n sensors. At a given time instant, each sensor
makes a measurement, and we denote the vector of n measurements by
x = [x(1), . . . , x(n)]′, where ′ denotes the vector transpose operator (so that
x is an n × 1 column vector). We will refer to x as a “snapshot.” When nec-
essary, we will distinguish between snapshots taken at different times using a
subscript (e.g., xs and xt are snapshots at times s and t).

Each sensor has an unknown gain and offset associated with its response,
so that instead of measuring x the sensors report

y(j) =
x(j) − β(j)

α(j)
, j = 1, . . . , n

where α = [α(1), . . . , α(n)]′ are the sensors’ gain calibration factors and
β = [β(1), . . . , β(n)]′ are the sensors’ calibration offsets. It is assumed that
α(j) �= 0, j = 1, . . . , n. With this notation, the sensor measurement y(j) can
be calibrated by the linear transformation x(j) = α(j)y(j) + β(j). We can
summarize this for all n sensors using the vector notation

x = Y α + β , (1.1)

where Y = diag(y) and the diag operator is defined as
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diag(y) =

⎡
⎢⎣

y(1)
. . .

y(n)

⎤
⎥⎦ .

The blind calibration problem entails the recovery of α and β from routine
uncalibrated sensor readings such as y.

In general, without further assumptions, blind calibration appears to be
an impossible task. However, it turns out that under mild assumptions that
may often hold in practice, quite a bit can be learned from raw (uncalibrated)
sensor readings like y. Assume that the sensor network is slightly “oversam-
pling” the phenomenon being sensed. Mathematically, this means that the
calibrated snapshot x lies in a lower dimensional subspace of n-dimensional
Euclidean space. Let S denote this “signal subspace” and assume that it is
r-dimensional, for some integer 0 < r < n. For example, if the signal being
measured is bandlimited and the sensors are spaced closer than required by
the Shannon-Nyquist sampling rate, then x will lie in a lower dimensional
subspace spanned by frequency basis vectors. If we oversample (relative to
Shannon-Nyquist) by a factor of 2, then r = n/2. Basis vectors that corre-
spond to smoothness assumptions, such as low-order polynomials, are another
potentially relevant example. In general, the signal subspace may be spanned
by an arbitrary set of r basis vectors. The calibration coefficients α and β and
the signal subspace S may change over time, but here we assume they do not
change over the course of blind calibration. As we will see, this is a reasonable
assumption, since the network may be calibrated from very few snapshots.

Let P denote the orthogonal projection matrix onto the orthogonal com-
plement to the signal subspace S. Then every x ∈ S must satisfy the constraint

Px = P (Y α + β) = 0 (1.2)

This is the key idea behind our blind calibration method. Because the pro-
jection matrix P has rank n − r, the constraint above gives us n − r linearly
independent equations in 2n unknown values (α and β). If we take snapshots
from the sensor network at k distinct times, y1, . . . ,yk, then we will have
k(n − r) equations in 2n unknowns. For k ≥ 2n/(n − r) we will have more
equations than unknowns, which is a hopeful sign. In fact, as we will show, in
many cases it is possible to blindly recover α and β from a sufficient number
of uncalibrated sensor snapshots.

1.3 Initial Observations

1.3.1 Blind Calibration in No Noise

Given k snapshots at different time instants y1, . . . ,yk, the subspace con-
straint (1.2) results in the following system of k(n − r) equations:
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P (Y i α + β) = 0 , i = 1, . . . , k (1.3)

The true gains and offsets must satisfy this equation, but in general the equa-
tion may be satisfied by other vectors as well. Establishing conditions that
guarantee that the true gains and/or offsets are the only solutions is the main
theoretical contribution of this work.

It is easy to verify that the solutions for β satisfy

Pβ = −P Ȳ α (1.4)

where Ȳ = 1
k

∑k
i=1 Y i, the time-average of the snapshots. One immediate ob-

servation is that the constraints only determine the components of β (in terms
of the data and α) in the signal “nullspace” (the orthogonal complement to
S). The component of the offset β that lies in the signal subspace is uniden-
tifiable. This is intuitively very easy to understand. Our only assumption is
that the signals measured by the network lie in a lower dimensional subspace.
The component of the offset in the signal subspace is indistinguishable from
the mean or average signal. Recovery of this component of the offset requires
extra assumptions, such as assuming that the signals have zero mean, or ad-
ditional calibration resources, such as the non-blind calibration of some of the
sensor offsets. We discuss this further in Section 1.5.

Given this characterization of the β solutions, we can re-write the con-
straints (1.3) in terms of α alone:

P (Y i − Ȳ )α = 0 , i = 1, . . . , k (1.5)

If α̂ is a solution to this system of equations, then every vector β satisfying
Pβ = −P Ȳ α̂ is a solution for β in the original system of equations (1.3).
In other words, for a given α̂, the value of the component of the offset in the
nullspace is P Ȳ α̂.

Another simple but very important observation is that there is one degree
of ambiguity in α that can never be resolved blindly using routine sensor
measurements alone. The gain vector α can be multiplied by a scalar c, and
it cannot be distinguished whether this scalar multiple is part of the gains or
part of the true signal. We call this scalar multiple the global gain factor. A
constraint is needed to avoid this ambiguity, and without loss of generality
we will assume that α(1) = 1. This constraint can be interpreted physically
to mean that we will calibrate all other sensors to the gain characteristics
of sensor 1. The choice of sensor 1 is arbitrary and is taken here simply for
convenience.

In Sections 1.4 and 1.5, we show that with noiseless measurements and
perfect knowledge of the subspace P , there is exactly one solution to 1.5 and
it is possible to calibrate the gain calibration factors. We also show that we
are able to calibrate the offset calibration factors with further information.
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1.3.2 Blind Calibration in Noise

If noise, mismodeling effects, or other errors are present in the uncalibrated
sensor snapshots, then a solution to (1.5) may not exist. There are many
methods for finding the best possible solution, and in this work we employ
singular value decomposition and standard least squares techniques.

First, note that the constraints can be expressed as

Cα = 0 (1.6)

where the matrix C is given by

C =

⎡
⎢⎣

P (Y 1 − Ȳ )
...

P (Y k − Ȳ )

⎤
⎥⎦ (1.7)

In the ideal case, there is always at least one solution1 to the constraint
Cα = 0, since the true gains must satisfy this equation. As we will show in
Section 1.4, under certain conditions there will always be exactly one solution
for α.

On the other hand, if the sensor measurements contain noise or if the
assumed calibration model or signal subspace is inaccurate, then a solution
may not exist. That is, the matrix C may have full column rank and thus will
not have a right nullspace. A reasonable robust solution in such cases is to
find the right singular vector of C associated with the smallest singular value.
This vector is the solution to the following optimization.

α̂ = arg minα ‖Cα‖2
2

subject to ‖α‖2
2 = 1 (1.8)

In other words, we find the vector of gains such that Cα̂ is as close to zero
as possible. This vector can be efficiently computed in numerical computing
environments, such as Matlab, using the economy size singular value decom-
position (svd)2. Note that in the ideal case (no noise or error) the svd solution
satisfies (1.5). Thus, this is a general-purpose solution method.

Blind calibration of the gains can also be implemented by solving a system
of equations in a least squared sense as follows. Recall that we have one
constraint on our gain vector, α(1) = 1. This can be interpreted as knowing
the gain coefficient for the first sensor. We can use this knowledge as an
additional constraint on the solution.

α̂ = arg minα ‖Cα‖2
2

subject to α(1) = 1 (1.9)

1 This does not include the trivial solution α = 0. With no noise and perfect
knowledge of P , there is always one vector in the nullspace of C.

2 The Matlab command is svd(C, 0).
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An equivalent optimization without constraints can be derived as follows.
If we let c1, . . . , cn be the columns of C, let α̃ be the gain vector with α(1)
removed, and let C̃ be the matrix C with the first column removed, we can
rewrite the system of equations as C̃ α̃ = −c1. The robust solution is the
value of α̃ that minimizes the LS criterion ‖C̃ α̃ + c1‖2

2.
More generally, we may know several of the gain coefficients for what we

call partially blind calibration. Let h be the sum of the α(i)ci corresponding
to the known gains, let α̃ be the gain vector with the known gains α(i)
removed, and let C̃ be the matrix C with those columns ci removed. Now we
have C̃ α̃ = −h and the robust solution is the minimizer of

‖C̃ α̃ + h‖2
2 (1.10)

We can solve this optimization in a numerically robust manner by avoiding the
squaring of the matrix C̃ that is implicit in the conventional LS solution, α̃ =
(C̃′C̃)−1C̃′(−h). This “squaring” effectively worsens the condition number of
the problem and can be avoided by using QR decomposition techniques3.

1.3.3 Estimation of the Subspace

The key component of the problem formulation proposed in Section 1.2 is the
true signal subspace P . In some cases, the phenomenon behavior has enough
structure that the subspace can be derived. In other cases, the deviation of
the true signals from an assumed subspace is small enough that, with a ro-
bust implementation of blind calibration, the results will still be good. Or, if
a subspace does not change over time, it can be estimated early in the deploy-
ment with calibrated sensors and then used later to identify how the sensor
calibration has drifted.

¿From experience, we have seen that there are further cases where blind
calibration is sensitive to errors in the subspace. It is beyond the scope of
this work to provide extensive tools for identifying the true signal subspace,
however here we briefly describe estimation of the subspace rank r from the
measurements y(i), i = 1, . . . , k.

Given a particular measurement vector y, we can subtract the mean of
the k measurement vectors ȳ and get

y − ȳ =
x − x̄

α
(1.11)

where division of the vector is element-wise. Without loss of generality, we can
assume that x̄ = 0. Letting A = diag(α) we can rewrite this as y = A−1x.

Each signal x lies in an r-dimensional subspace S, where r < n but is
unknown. Let φ1, . . . ,φr denote a basis for S. Then x =

∑r
i=1 θiφi, for

certain coefficients θ1, . . . , θr. Therefore, y =
∑r

i=1 θiA
−1φi.

3 We used α = C̃\−h in Matlab.
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We can find the unknown r by building the covariance matrix of the mea-
surements.

Covy =
1
k

k∑
j=1

(yj − ȳ)(yj − ȳ)T (1.12)

As long as k > r and the vectors xi, i = 1, . . . , k, are linearly independent,
the rank of this covariance matrix will be r.

1.4 Gain Calibration

This section theoretically characterizes the existence of unique solutions to the
gain calibration problem. As pointed out in Section 1.3.1, the gain calibration
problem can be solved independently of the offset calibration task, as shown
in (1.5), which corresponds to simply removing the mean snapshot from each
individual snapshot. Therefore, it suffices to consider the case in which the
snapshots are zero-mean and to assume that Ȳ = 0, in which case the gain
calibration equations may be written as

P Y i α = 0 , i = 1, . . . , k (1.13)

The results we present also hold for the general case in which Ȳ �= 0. We
first consider general conditions guaranteeing the uniqueness of the solution to
(1.13) and then look more closely at the special case of bandlimited subspaces.

1.4.1 General Conditions

The following conditions are sufficient to guarantee that a unique solution to
(1.13) exists.

A1. Oversampling: Each signal x lies in a known r-dimensional subspace
S, r < n. Let φ1, . . . ,φr denote a basis for S. Then x =

∑r
i=1 θiφi, for

certain coefficients θ1, . . . , θr.
A2. Randomness: Each signal is randomly drawn from S and has mean zero.

This means that the signal coefficients are zero-mean random variables.
The joint distribution of these random variables is absolutely continu-
ous with respect to Lebesgue measure (i.e., a joint r-dimensional density
function exists). For any collection of signals x1, . . . ,xk, k > 1, the joint
distribution of the corresponding kr coefficients is also absolutely continu-
ous with respect to Lebesgue measure (i.e., a joint kr-dimensional density
function exists).

A3. Incoherence: Define the nr × n matrix

MΦ =

⎡
⎢⎣

P diag(φ1)
...

P diag(φr)

⎤
⎥⎦ (1.14)
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and assume that rank(MΦ) = n − 1. Note that MΦ is a function of the
basis of the signal subspace. The matrix P , the orthogonal projection
matrix onto the orthogonal complement to the signal subspace S, can
be written as P = I − ΦΦ′, where I is the n × n identity matrix and
Φ = [φ1, . . . ,φr].

Assumption A1 guarantees that the calibrated or true sensor measure-
ments are correlated to some degree. This assumption is crucial since it implies
that measurements must satisfy the constraints in (1.3) and that, in princi-
ple, we can solve for the gain vector α. Assumption A2 guarantees the signals
are not too temporally correlated (e.g., different signal realizations are non-
identical with probability 1). Also, the zero-mean assumption can be removed,
as long as one subtracts the average from each sensor reading. Assumption A3
essentially guarantees that the basis vectors are sufficiently incoherent with
the canonical sensor basis, i.e., the basis that forms the columns of the iden-
tity matrix. It is easy to verify that if the signal subspace basis is coherent
with the canonical basis, then rank(MΦ) < n − 1. Also, note that MΦ1 = 0,
where 1 = [1, . . . , 1]′, which implies that rank(MΦ) is at most n − 1. In gen-
eral, assumption A3 only depends on the assumed signal subspace and can be
easily checked for a given basis. In our experience, the condition is satisfied
by most signal subspaces of practical interest, such as lowpass, bandpass or
smoothness subspaces.

Theorem 1. Under assumptions A1, A2 and A3, the gains α can be perfectly
recovered from any k ≥ r signal measurements by solving the linear system of
equations (1.5).

The theorem is proved in the Appendix. The theorem demonstrates that
the gains are identifiable from routine sensor measurements; that is, in the
absence of noise or other errors, the gains are perfectly recovered. In fact,
the proof shows that under A1 and A2, the condition A3 is both necessary
and sufficient. When noise and errors are present, the estimated gains may
not be exactly equal to the true gains. However, as the noise/errors in the
measurements tend to zero, the estimated gains tend to the true gains.

1.4.2 Bandlimited Subspaces

In the special case in which the signal subspace corresponds to a frequency
domain subspace, a slightly more precise characterization is possible which
shows that even fewer snapshots suffice for blind calibration. As stated above,
assumption A3 is often met in practice and can be easily checked given a signal
basis Φ. One case where A3 is automatically met is when the signal subspace
is spanned by a subset of the Discrete Fourier Transform (DFT) vectors:

φm = [1, e
−i2πm

n , . . . , e
−i2(n−1)πm

n ]′/
√

n, m = 0, . . . , n − 1
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In this case we show that only �n−1
n−r � + 1 snapshots are required. This can

be significantly less than r, meaning that the time over which we must as-
sume that the subspace and calibration coefficients are unchanging is greatly
reduced. The following assumptions and theorem summarize this result.

B1. Oversampling: Assume that each signal x lies in a bandlimited r-
dimensional subspace S, r < n, spanned by φm1

, . . . ,φmr
, where

m1, . . . ,mr are distinct integers from the set {0, . . . , n− 1}. Furthermore,
assume that these integers are aperiodic in the following sense. Let s de-
note the vector with one at locations m1, . . . ,mr and zero otherwise. This
vector indicates the support set of the signal subspace in the DFT do-
main. The integers m1, . . . ,mr are called aperiodic if every circular (mod
n) shift of s is distinct. It is easy to check this condition and, in fact, most
bandlimited subspaces have aperiodic support sets.

B2. Randomness: Note that each signal x ∈ S can be written as x =∑r
j=1 θjφmj

, for certain coefficients θ1, . . . , θr. Each signal is randomly
drawn from S and has mean zero. This means that the signal coefficients
are zero-mean random variables. The joint distribution of these random
variables is absolutely continuous with respect to Lebesgue measure (i.e.,
a joint r-dimensional density function exists). Also assume that multiple
signal observations are statistically uncorrelated.

Assumption B1 guarantees that the calibrated or true sensor measure-
ments are spatially correlated to some degree. As before, this assumption is
crucial since it implies that measurements must satisfy the constraints in (1.3)
and that, in principle, we can solve for the gain vector α. The rationale behind
the assumption that the frequency support set is aperiodic is less obvious, but
its necessity is due to the 2π-periodicity of the DFT (see [1] for further details).
Assumption B2 guarantees the signals are not temporally correlated (analo-
gous to A2, above). The following theorem characterizes the identifiability of
the sensor gains in this situation.

Theorem 2. It is necessary to make at least k ≥ �n−1
n−r � signal measurements

in order to determine the gains, where �z� denotes the smallest integer greater
than or equal to z. Moreover, under assumptions B1 and B2, the gains α can
be perfectly recovered from any k = �n−1

n−r �+ 1 signal measurements by solving
the linear system of equations (1.5).

The theorem is proved in the Appendix. The proof takes advantage of the
special structure of the DFT basis. Alternatively, one could apply Theorem 1
in this case to obtain a slightly weaker result; namely that under B1 and B2
k ≥ r observations suffice to perfectly recover the gains.

1.5 Offset Calibration

The component of the offset in the signal subspace is generally unidentifiable,
but in special cases it can be determined. For example, if it is known that the
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phenomenon of interest fluctuates symmetrically about zero (or some other
known value), then the average of many measurements will tend to zero (or
the known mean value). In this situation, the average

1
k

k∑
i=1

yi =

(
1
k

k∑
i=1

xi − β

)
/α ≈ −β/α

where the the division operation is taken element-by-element. This follows
since 1

k

∑k
i=1 xi ≈ 0 for large enough k. Thus we can identify the offset

simply by calculating the average of our measurements. More precisely, we
can identify β̃ = β/α, which suffices since we can equivalently express the
basic relationship (1.1) between calibrated and uncalibrated snapshots as
x = (Y + β̃)α.

Another situation in which we can determine (or partially determine) the
component of the offset in the signal subspace is when we have knowledge of
the correct offsets for a subset of the sensors. We call this partially blind offset
calibration. Suppose that we are able to directly measure the offsets at m < n
sensors, indexed by m distinct integers 1 ≤ �1, . . . , �m ≤ n. Let βm denote an
m × 1 vector these offsets. Let T be an m × n “selection” matrix that when
applied to an arbitrary n× 1 vector produces an m× 1 vector of the elements
at locations �1, . . . , �m from the original vector. With this notation, we can
write βm = Tβ. Also note that

βm = Tβ = T (Pβ + (I − P )β) = TPβ + T (I − P )β,

where (I − P )β is the offset component in the signal subspace and Pβ is the
offset component in the orthogonal complement to the signal subspace.

As pointed out in Section 1.3.1, we can determine the component of the
offset in the nullspace using Pβ = −P Ȳ α̂. Let us assume that this component
is known (from the estimated calibration gains), and define β∆ = T (I −
P )β, the signal subspace component of the offset at sensors �1, . . . , �m. This
component satisfies the relation

β∆ = βm − TPβ = βm + TP Ȳ α̂. (1.15)

The projection matrix corresponding to the signal subspace, (I − P ), can
be written in terms of a set of orthonormal column vectors, φ1, . . . ,φr, that
span the signal subspace. Let Φ = [φ1 · · ·φr] denote an n × r matrix whose
columns are the basis vectors. Then (I − P ) = ΦΦ′ and so we can also write
β∆ = TΦΦ′β. Note that the offset component in the signal subspace is
completely determined by the r parameters θ = Φ′β. Defining ΦT = TΦ, we
can write β∆ = ΦT θ. If ΦT is invertible, then using (1.15) the parameters
θ can be uniquely determined by θ = Φ−1

T (βm + TP Ȳ α̂). Thus, if ΦT is
invertible, then the complete offset vector β can be determined from the
subset of offsets βm and the estimated gains α̂. If ΦT has rank q < r, then
we can determine the signal subspace offset component up to a remaining
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unidentifiable component in a smaller r−q dimensional subspace of the signal
subspace.

The rank of ΦT cannot be greater than m, the number of known sensor
offsets, which shows that to completely determine the offset component in the
signal subspace we require at least m = r known offsets. In general, knowing
the offsets for an arbitrary subset of m sensors may not be sufficient (i.e.,
ΦT may not be invertible), but there are important special cases when it is.
First note the Φ, by construction, has full rank r. Also note that the selection
matrix T selects the m rows corresponding to the known calibration offsets
and eliminates the remaining n−m rows. So, we require that the elimination of
any subset of n−m rows of Φ does not lead to a linearly dependent set of (m×
1) columns. This requirement is known as an incoherence condition , and it is
satisfied as long as the signal basis vectors all have small inner products with
the natural or canonical sensor basis (n×1 vectors that are all zero except for a
single non-zero entry). For example, frequency vectors (e.g., Discrete Fourier
Transform vectors) are known to satisfy this type of incoherence condition
[5]. This implies that for subspaces of bandlimited signals, ΦT is invertible
provided m ≥ r.

1.6 Evaluation

In order to evaluate whether this theory of blind calibration is possible in
practice, we explore its performance in simulation under both measurement
noise and the mis-characterization of the projection matrix P . Additionally,
we show the performance of the algorithm on two temperature sensor datasets,
one dataset from a controlled experiment where the sensors are measuring all
the same phenomenon and thus lie in a 1-dimensional subspace, and the other
from a deployment in a valley at a nature preserve called the James Reserve4,
where the true dimension of the spatial signal is unknown.

1.6.1 Simulations

To test the blind calibration methods on simulated data, we simulated both
a field and snapshots of that field. We generated gain and offset coefficients,
measurement noise, and most importantly, a projection matrix P .

We simulated a smooth field by generating an 256 × 256 array of pseudo-
random Gaussian noises (i.e., a white noise field) and then convolving it with
the smooth impulse response function h(i, j) = e(−s((i−l/2)2+(j−l/2)2), s > 0.
Figure 1.1 shows an example field with the smoothing parameter s = 1, which
could represent a smoothly varying temperature field, for example. We sim-
ulated sensor measurements by sampling the field on a uniform 8 × 8 grid
of n = 64 sensors. For gains, we drew uniformly from α ∈ [0.5, 1.5] and for

4 http://www.jamesreserve.edu
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Example Simulated Field Measured Field

Fig. 1.1. Two example simulated square fields. On the left, a 256 × 256 field gen-
erated with a basic smoothing kernel, which represents a true continuous field. On
the right, an 8 × 8 grid of measurements of the same field. The fields can be quite
dynamic and still meet the assumptions for blind calibration. The fields are shown
in pseudo-grayscale, with black denoting the minimum valued regions and white
denoting the maximum valued regions.

offsets from β ∈ [−.5, .5]. After applying α and β to the measurements, we
then added Gaussian noise, with mean zero and variance σ.

Separately, we created P to be a low-pass DFT matrix. We kept 3 fre-
quencies in 2d, which means with symmetries we have an r = 49-dimensional
subspace5. With this setup, we can adjust the parameters of the smoothing
kernel, while keeping P constant, to test robustness of blind calibration to an
assumed subspace model that may over- or under-estimate the dimension of
the subspace of the true field. The smoothing kernel and projection P both
characterize lowpass effects, but the smoothing operator is only approximately
described by the projection operator, even in the best case. We can also create
our field by projecting the random field onto the r-dimensional subspace using
P ; this represents the case where the true subspace is known exactly.

Estimates of the gains and offsets were calculated using the methods dis-
cussed above and described in more detail below. The graphs show error in
gain, or equivalently in offset, as a fraction of the vector magnitude as follows:

errα =
‖α − α̂‖2

‖α‖2
(1.16)

Error in the uncalibrated signal was calculated in the same way, assuming the
estimate for gain, α̂, is the all-ones vector and the estimate for offset, β̂, is the
all-zeros vector. Error in the predicted signal was calculated by first applying
the gain and offset factors to each measured signal yi (x̂i = yi ◦ α̂ + β̂ where
◦ is the hadamard product) and then calculating error as:

5 If the 2-dimensional signal has p frequencies, then the subspace is of rank r =
(2p + 1)2.
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errxi
=

‖xi − x̂i‖2

‖xi‖2
, i = 1, . . . , k (1.17)

Finally, the error was then averaged over the k measurements.

Error Results using SVD

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Error in Gain Estimation

n
o
rm

 e
rr

o
r 

v
e
c
to

r 
/ 
n
o
rm

 t
ru

e
 g

a
in

 v
e
c
to

r

noise variance

 

 

uncalibrated
blind calibration

Fig. 1.2. Gain error performance with exact knowledge of P and increasing mea-
surement noise. Error averaged over 100 simulation runs.

We simulated blind calibration with the described simulation set-up. We
first generated mean-zero fields using our smoothing kernel and took snapshot
measurements of each field. We used k = 5r snapshots (slightly more than the
theoretical minimum of k = r) in order to improve our zero-mean signal as-
sumption and to provide added robustness to noise and modeling errors. Then
we constructed the matrix C from equation (1.7) and took the minimum right
singular vector as the estimate of the gains α as described in Section 1.3.2.
We then estimated β = −Ȳ α.

Results from totally blind calibration in simulation, under the burden of
increasing noise variance using exact knowledge of the subspace defined by P ,
are shown in Figures 1.2, 1.3, and 1.4. That is, the fields in these simulations
were created by projecting random signals into the space defined by projection
matrix P . The maximum value in the signals was 1, and therefore the noise
variance can be taken as a percentage; i.e., variance of 10−2 represents 1%
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Fig. 1.3. Offset error performance with exact knowledge of P and increasing mea-
surement noise. Error averaged over 100 simulation runs.
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Fig. 1.4. Error in the estimate of the signal x with exact knowledge of P and
increasing measurement noise. Error averaged over 100 simulation runs.
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Fig. 1.5. Gain error performance with uncertainty in the subspace P . Error aver-
aged over 100 simulation runs.
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Fig. 1.6. Offset error performance with uncertainty in the subspace P . Error aver-
aged over 100 simulation runs.
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Fig. 1.7. Error in the estimate of the signal x with with uncertainty in the subspace
P . Error averaged over 100 simulation runs.

noise in the signal. Figure 1.2 shows the error in gain estimation as compared
to the error in the uncalibrated signal. Figure 1.3 shows the error in offset
estimation, along with the uncalibrated error and the energy of the mean true
signal. Figure 1.4 shows error in the resulting estimate of the signals x, after
applying the estimates of α and β to y in order to recover x̂.

Blind calibration did very well in this scenario. Not until the noise in the
signal was 25% did the uncalibrated gains outperform the blindly calibrated
gains. As for offset, the blindly calibrated estimate was always much better
than the uncalibrated, and in fact stayed very close to the theoretical minimum
of the mean true signal. The combination is illustrated nicely in Figure 1.4,
where we can see that the error in the blindly calibrated signal remains very
close to the case where we know the corect gain and offset. The figures show
mean error over 100 simulation runs.

Knowing the true subspace exactly is possible in practice only when per-
forming blind calibration in a very well-known environment, such as an indoor
factory. Even in this case, there will be some component of the true signals
which is outside of the subspace defined by the chosen P . Figure 1.7 shows
how gain and offset error are affected by out-of-subspace components in the
true signals. We used a basic smoothing kernel to control smoothness of the
true field and kept P constant as described above with r = 49. The smoothing
kernel and the projection operator are both low-pass operators, but even in
the best case, some of the smoothed field will be outside of the space defined
by the projection matrix P . We defined the error in P as ‖x − Px‖2/‖x‖2.
The x-axis value in the figure is the average error in P over 100 random fields
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smoothed with a given smoothness parameter. The figure shows mean and me-
dian error in gain and offset estimates over these 100 simulation runs. Again
the results are compelling. The gain estimation error was around 10−2 even
when 10% of the signal was outside of the subspace. The offset estimation as
well was still very accurate, below 7 × 10−3 even when 20% of the signal was
outside of the subspace.

Comparison of Techniques
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Fig. 1.8. Gain error performance for SVD, blind LS, and partially blind LS. Results
show mean error over 50 simulation runs.

Here we compare the SVD technique to the LS technique and the totally
blind calibration to partially blind calibration, where we know some of the
calibration coefficients ahead of time.

The methods each work as follows. SVD performs gain estimation using
the minimum right singular vector of the svd, i.e. by finding the solution to
Equation (1.8), and normalizes assuming α(1) = 1. Offsets are then estimated
using β = −Ȳ α. Totally blind LS performs gain estimation by solving Equa-
tion (1.9) in a least-squares sense and assuming knowledge only of α(1) = 1.
Offsets are estimated as in SVD. Partially blind LS performs gain estimation
by solving equation (1.10) in the least-squared sense, but now assuming we
know some number of true gains and offsets. Offsets are then estimated as
described in Section 1.5 for non-zero mean signals, i.e. using β∆ = TΦΦ′β
to solve for θ = Φ′β and thus β.

For partially blind LS we use enough of the true offsets such that we can
solve for the complete component of β in the signal subspace. The fields we
simulated are nearly bandlimited subspaces, and so the theory would imply
that r true offsets are enough to estimate β. In order to be robust to noise,
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Fig. 1.9. Offset error performance for SVD, blind LS, and partially blind LS. The
top graph shows offset error for zero-mean signals, and the bottom graph is for
non-zero-mean signals. Results show mean error over 50 simulation runs.

we used knowledge of the offsets of r +5 sensors, again slightly more than the
bare minimum suggested by the theory.

A comparison of the techniques is quite interesting. First, as we expect, the
partially blind estimation does better than the other two methods in all cases;
this follows from the fact that it is using more information. In Figure 1.8 you
can see in the gain estimation, the SVD method out-performs totally blind
LS, but partially blind LS has the lowest error of all the methods.

In the case of offset error, the SVD and totally blind LS techniques out-
perform one another depending on the noise variance and whether or not the
signals are zero-mean.

Figure 1.9 shows offset error for all three techniques. The partially blind LS
method is unaffected by non-zero mean signals, which follows because method
for estimating the offsets does not change with a zero-mean assumption. The
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other methods, on the other hand, capture the mean signal as part of their
offset estimates, and as we can see, estimation error using the non-zero-mean
signals is higher than using zero-mean signals.

The most intriguing part of these results is that totally blind LS performs
slightly better than SVD for the offset estimate in non-zero-mean signals,
despite the fact that it is using a gain estimate with more error from the first
step in order to estimate the offsets. This implies that if calibration offset is the
most important for calibration of your system, and you have non-zero-mean
signals, you might prefer the totally blind LS method over the SVD.

1.6.2 Evaluation on Sensor Datasets

We evaluate blind calibration on two sensor network datasets, which we call
the calibration dataset and the cold air drainage transect dataset .

Calibration Dataset

The calibration dataset was collected in September 2005 [2] along with data
from a reference-caliber instrument in order to characterize the calibration
of the thermistors used for environmental temperature measurement at the
James Reserve. From the experiment, the conclusion was drawn that after the
factory-supplied calibration was applied to the raw sensor measurements, the
sensors differed from the reference thermocouple linearly, i.e. by only a gain
and offset. Thus these sensors are suitable for evaluating the work we have
done thus far on blind calibration. The data is available in the NESL CVS
repository6.

The setup of this experiment consisted of nine7 temperature sensors. These
sensors were placed in a styrofoam box along with a thermocouple attached
to a datalogger, providing ground truth temperature readings. Therefore, all
sensors were sensing the same phenomenon, and so the subspace spanned by
the nine measurements is rank one. Thus, for P we used a lowpass dct matrix
which kept only the dc frequency space. To illustrate, we used the following
commands in Matlab:

r = 1; n = 9;
I = eye(n);
U = dct(I);
U(r+1:n,:) = 0;
P = idct(U);

We calibrated these data using snapshots from the dataset and the SVD
method. Figure 1.10 shows the calibration coefficient estimates and recon-
structed signals for the sensors in the experiment. The gains and offsets were

6 This data is available at http://www.ee.ucla.edu/∼sunbeam/bc/
7 The experiment had ten sensors, one of which was faulty. In this analysis we used

data from the nine functional sensors.
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Fig. 1.10. Results of blind calibration on the calibration dataset.

recovered with very little error. The uppermost plot shows the data before and
after calibration, along with the ground truth measurement in blue. The lower
plot shows the true and estimated gains and offsets. This clearly demonstrates
the utility of blind calibration.

Cold Air Drainage Dataset

The cold air drainage transect dataset consists of data from an ongoing deploy-
ment at the James Reserve. The deployment measures air temperature and
humidity in a valley in order to characterize the predawn cold air drainage.
The sensors used are the same as the sensors in the calibration dataset, and
thus again the factory calibration brings them within an offset and gain of
one another. The data we used for evaluation is from November 2, 2006, and
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Fig. 1.11. The mica2 motes in the cold air drainage transect run down the side of
a hill and across a valley. The mote locations pictured are those that we used in the
evaluation of blind calibration.

it is available in the sensor data repository called SensorBase8. On this same
day, we visited the James Reserve with a reference-caliber sensor and took
measurements over the course of the day in order to get the true calibration
parameters for comparison.

The deployment consists of 26 mica2 motes which run from one side of a
valley to the other (Figure 1.11) across a streambed and in various regions of
tree and mountain shade. Each mote has one temperature and one humidity
sensor. For our purposes, we collected calibration coefficients from 10 of the
temperature sensors.

The signal subspace in this application does not correspond to a simple
lowpass or smooth subspace, since sensors at similar elevations may have sim-
ilar readings, but can be quite distant from each other. In principle, the signal
subspace could be constructed based on the geographic positions and eleva-
tions of the sensor deployment. However, since we have the calibrated sensor
data in this experiment, we can use these data directly to infer an approx-
imate signal subspace. We constructed the projection P using the subspace
associated with the four largest singular values of the calibrated signal data
matrix.

We performed totally blind calibration using SVD. We constructed C using
64 snapshots taken over the course of the morning along with P as described.
Figure 1.12 shows the results. The gain error was very small, only .0053 aver-
age per sensor, whereas if we were to assume the gain was 1 and not calibrate
the sensors at all, the error would be .0180 average per sensor. On the other

8 http://sensorbase.org
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hand, the offset error was only slightly better with blind calibration than it
would have been without: we saw .3953 average error per sensor as compared
to 0.4610 error if the offsets were assumed to be zero. We believe that the
offset estimation did not perform well due primarily to the fact that the mean
signal is not zero in this case (e.g., the average sensor readings depend on
elevation). Better offset estimates could be obtained using knowledge of one
or more of the true sensor offset values.
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Fig. 1.12. True and estimated gains and offsets for the cold air drainage transect
dataset.

1.7 Related Work

The most straightforward approach to calibration is to apply a known stim-
ulus x to the sensor network and measure the response y. Then using the
groundtruth input x we can adjust the calibration parameters so that (1.1) is
achieved. We call this non-blind calibration, since the true signal x is known.
This problem is called inverse linear regression; mathematical details can be
found at [9]. Non-blind calibration is used routinely in sensor networks [11, 14],
but may be difficult or impossible in many applications.

As for blind calibration in sensor networks, the problem of relating mea-
surements such as received signal strength or time delay to distance for local-
ization purposes has been studied extensively [10, 13]. This problem is quite
different from the blind calibration problem considered in this chapter, which
assumes that the measurements arise from external signals (e.g., tempera-
ture) and not from range measurements between sensors. In [15], the problem
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of calibrating sensor range measurements by enforcing geometric constraints
in a system-wide optimization is considered. Calibration using geometric and
physical constraints on the behavior of a point light source is considered in [6].
The constraint that proximal sensors in dense deployments make very similar
measurements is leveraged in [4]. In this work, our constraint is simply that
the phenomenon of interest lies in a subspace. This is a much more general
constraint and hopefully therefore it can be widely applicable.

Blind equalization and blind deconvolution [12] are related problems in
signal processing. In these problems, the observation model is of the form
y = h ∗x, where ∗ is the convolution operator, and both h and x must be re-
covered from y. Due to the difference between the calibration and convolution
models, there are significant differences between blind deconvolution and blind
calibration. However, in certain circumstances, blind calibration is mathemat-
ically equivalent to multi-channel blind deconvolution [7, 8]. Blind calibration
involves observing multiple unknown signals through one unknown calibration
function. Multi-channel blind deconvolution involves observing one unknown
signal through multiple unknown channels. In the deconconvolution set-up, a
common assumption is that the multiple channels have finite impulse response
functions. This places the channels in a lower dimensional subspace (of the
space of all impulse responses), and singular value decomposition techniques,
similar to those proposed for blind calibration in this chapter, have been de-
vised for solving the blind deconvolution problem in this setting [7, 8]. The
blind calibration problem is mathematically equivalent to the multi-channel
blind deconvolution problem, in the following special case. First observe that
the multiplicative calibration gain can be expressed as a convolutional oper-
ation in the frequency domain. Now suppose that the signal subspace is a
lowpass frequency subspace spanned by low-frequency DFT vectors. In this
case, blind gain calibration is exactly equivalent to multi-FIR-channel blind
deconvolution (the two problems are related by the DFT). In general, how-
ever, the signal subspace may not be a low-frequency subspace, and the two
problems are quite different. In this sense, blind calibration is much more gen-
eral than multi-channel blind deconvolution, but the relation between the two
problems suggests that more sophisticated solution methods, such as IQML
[8], might be applicable to blind calibration.

1.8 Extensions and Future Work

There are many issues in blind calibration that could be explored further.
The two main areas ripe for study are the choice of the subspace P and the
implementation of blind calibration. There are many possible choices for a
suitable subspace, including frequency subspaces and smoothness subspaces.
How to choose the subspace when faced with a sensor deployment where
the true signals are unknown is an extremely important question for blind
calibration. Methodologies for creating a P would be extremely useful to
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the more general application of blind calibration, especially ones which could
incorporate trusted measurements or the users’ knowledge of the physical
space where the sensors are deployed. At the same time, implementations of
blind calibration that are robust to model error in the subspace would allow
users to be more liberal in the choice of P .

The theoretical analysis shown here is done under noiseless conditions
and with a perfect model. Future work includes both noisy analysis to find
analytical bounds that can be compared to simulation results and sensitivity
analysis for our system of linear equations. Our experience is that solutions
are robust to noise and mismodeling in some cases, and sensitive in others;
we do not have a good understanding of the robustness of the methodology
at this time.

Extending the formulation to handle non-linear calibration functions
would be useful in cases where a raw non-linear sensor response must be cal-
ibrated. We believe that many of the techniques developed in this work can
be extended to more general polynomial-form calibration functions. Other in-
teresting topics include distributed blind calibration and blind calibration in
the presence of faulty sensors.

1.9 Conclusions

The problem of sensor calibration is central to the practical use of sensor net-
works. The blind calibration formulation and methods developed in this work
use only routine sensor measurements, and thus give an extremely promising
formulation for the mass calibration of sensors. We have shown that cali-
bration gains are identifiable. We have proved how many measurements are
necessary and sufficient to estimate the gain factors, and we have shown neces-
sary and sufficient conditions to estimate the offsets. We have demonstrated a
working implementation on simulated and real data, which uncovered interest-
ing relationships between implementation and blind calibration performance.
Overall, we have demonstrated that blind calibration has great potential to be
possible in practice, and we feel that the proposed formulation merits further
investigation.
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Appendix

Theorem 1:

Proof. First note that the case where the signal subspace is one-dimensional
(r = 1) is trivial. In this case there is one degree of freedom in the signal, and
hence one measurement coupled with the constraint that α(1) = 1 suffices to
calibrate the system. For the rest of the proof we assume that 1 < r < n and
thus 2 ≤ k < n.

Given k signal observations y1, . . . ,yk, and letting α̂ represent our esti-
mated gain vector, we need to show that the system of equations

⎡
⎢⎣

PY 1

...
PY k

⎤
⎥⎦ α̂ = 0 (1.18)

has rank n − 1, and hence may be solved for the n − 1 degrees of freedom
in α̂. Note each subsystem of equations, PY j , has rank less than or equal
to n − r (since P is rank n − r). Therefore, if k < n−1

n−r , then the system of
equations certainly has rank less than n− 1. This implies that it is necessary
that k ≥ n−1

n−r . Next note that Y j = XjA, where Xj = diag(xj) and A =
diag([1, 1/α(2), . . . , 1/α(n)]′). Then write

⎡
⎢⎣

PX1

...
PXk

⎤
⎥⎦d = 0 (1.19)

where d = Aα̂. The key observation is that satisfaction of these equations
requires that Xjd ∈ S, for j = 1, . . . , k. Any d that satisfies this relationship
will imply a particular solution for α̂, and thus d must not be any vector
other than the all-ones vector for blind calibration to be possible.

Recall that by definition Xj = diag(xj). Also note that diag(xj)d =
diag(d)xj . So we can equivalently state the requirement as

diag(d)xj ∈ S, j = 1, . . . , k . (1.20)

The proof proceeds in two steps. First, A2 implies that k ≥ r signal ob-
servations will span the signal subspace with probability 1. This allows us to
re-cast the question in terms of a basis for the signal subspace, rather than
particular realizations of signals. Second, it is shown that A3 (in terms of the
basis) suffices to guarantee that the system of equations has rank n − 1.

Step 1: We will show that all solutions to (1.20) are contained in the set

D = {d : diag(d)φi ∈ S, i = 1, . . . , r}.

We proceed by contradiction. Suppose that there exists a vector d̃ that satisfies
(1.20) but does not belong to D. Since d̃ satisfies (1.20), we know that there
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exists an x ∈ S such that diag(d̃)x ∈ S. We can write x in terms of the basis,
as x =

∑r
i=1 θiφi, and diag(d̃)x =

∑r
i=1 θi diag(d̃)φi. Since by assumption

d̃ does not satisfy diag(d̃)φi ∈ S, i = 1, . . . , r, it follows that the coefficients
θ1, . . . , θr must weight the components outside of the signal subspace so that
they cancel out. In other words, the set of signals x ∈ S that satisfy diag(d̃)x ∈
S is a proper subspace (of dimension less than r) of the signal subspace S.
However, if we make k ≥ r signal observations, then with probability 1 they
collectively span the entire signal subspace (since they are jointly continuously
distributed). In other words, the probability that all k measurements lie in
a lower dimensional subspace of S is zero. Thus, d̃ cannot be a solution to
(1.20).

Step 2: Now we characterize the set D. First, observe that the vectors
d ∝ 1, the constant vector, are contained in D, and those correspond to the
global gain factor ambiguity discussed earlier. Second, note that every d ∈ D
must satisfy P diag(d)φi = P diag(φi)d = 0, i = 1, . . . , r, where P denote the
projection matrix onto the orthogonal complement to the signal subspace S.
Using the definition of MΦ given in (1.14), we have the following equivalent
condition: every d ∈ D must satisfy MΦd = 0. We know that the vectors
d ∝ 1 satisfy this condition. The condition rank(MΦ) = n − 1 guarantees
that these are the only solutions. This completes the proof.

Theorem 2:

Proof. First note again that the theorem is trivial if the signal subspace is
one-dimensional (r = 1), since in this case there is one degree of freedom
in the signal, and hence one measurement (coupled with the constraint that
α(1) = 1) suffices to calibrate the system. For the rest of the proof we assume
that 1 < r < n and thus 2 ≤ k < n.

As in the proof of Theorem 1, solutions must satisfy (1.19), or equivalently
the equations xj • d ∈ S, for j = 1, . . . , k. Let x denote an arbitrary signal
vector, and let z = x • d. We can express z in terms of the representation x
in the basis of S as

z =
r∑

j=1

θj(φmj
• d).

Recall that multiplication in the time domain is equivalent to (circular) con-
volution in the DFT domain. Let Z, X, and D be n× 1 vectors denoting the
DFTs of z, x and d, respectively (e.g., Z(�) = 1√

n

∑n
q=1 z(q)e−j 2π

n q�). Note
that X(�) =

∑r
j=1 θjδ(� − mj), � = 0, . . . , n − 1, where δ(k) = 1 if k = 0

and 0 otherwise. Then Z is the circular convolution of D and X; i.e., the �th
element of Z is given by

Z(�) =
n∑

q=1

D(q)X([� − q]n)

where [�]n is equal to � mod n. Hence, z ∈ S if and only if the support of Z
is on the set of frequencies m1, . . . ,mr.
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For each � = 1, . . . , n, let X� denote the n×1 vector with entries X�(q) =
X([� − q]n), q = 0, . . . , 1 (i.e., X� is obtained by reversing X and circularly
shifting the result by �). Then we can write Z(�) = X ′

�D. Thus, we can
express the constraint on the support of Z as follows:

X ′
�D = 0, for all � �= m1, . . . ,mr (1.21)

Notice that this places n−r constraints on the vector D. Also observe that the
n−r row vectors X ′

�, � �= m1, . . . ,mr, correspond to an (n−r)×n submatrix
of the circulant matrix

Ξ = [X ′
0;X

′
1; · · · ;X ′

n−1] (1.22)

(circulant because each row X� is a circularly shifted version of the others).
Furthermore, because signal coefficients θ1, . . . , θr are randomly distributed
according to B2, Ξ has full rank. This follows by recalling that circulant
matrices are diagonalized by the DFT, and the eigenvalues of a circulant
matrix are equal to the DFT of the first row. The first row of Ξ is X0

(indexed-reversed X). It is a simple exercise to see that the DFT of X0

reproduces the original signal x. Since the non-zero DFT coefficients of x
are randomly distributed according to a continuous density, the elements of
the x are non-zero with probability 1. This implies that the eigenvalues of Ξ
are non-zero with probability 1, and thus Ξ is full-rank. Consequently, the
n − r constraint equations in (1.21) are linearly independent. Also note that
D ∝ [1, 0, . . . , 0]′ (DFT of the constant vector) satisfies (1.21), so in addition
to the one degree of freedom due to the intrinsic ambiguity of the global gain
factor, there are r − 1 other degrees of freedom remaining in the solutions to
(1.21).

Now suppose that we make k signal observations x1, . . . ,xk, randomly
drawn according to B2. Each signal produces a system of constraints of the
form in (1.21). Let Xj,0, denote the indexed-reversed DFT of xj , j = 1, . . . , k.
These vectors generate the first row of k matrices denoted Ξj , j = 1, . . . , k
(each defined analagously to Ξ above). Note that each vector Xj,0 displays the
same sparsity pattern (since all signals are assumed to lie in an r-dimensional
DFT subspace and each vector has at most r non-zero entries). Since B2
assumes that the coefficients of each signal are uncorrelated, it follows that
any subset of no more than r of the vectors {Xj,0}k

j=1 is a linearly indepen-
dent set. Now consider the collective constraints generated by the k signal
measurements:

X ′
j,�D = 0, for all � �= m1, . . . ,mr and j = 1 . . . , k (1.23)

These constraints can be expressed in matrix notation by letting Ξ̃j be the
(n − r) × n submatrix obtained by retaining the n − r rows of Ξj satisfying
� �= m1, . . . ,mr. Then let Ξ̃ = [Ξ̃1; · · · ; Ξ̃k]. Then (1.23) can be written as

Ξ̃ D = 0 (1.24)
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We know that D ∝ [1, 0, . . . , 0]′ satisfies (1.23), so the number of linearly
independent equations above can be at most n − 1. In follows that the first
column of Ξ̃ is zero, and thus we may eliminate the first element of the
vectors D and the first column of Ξ̃. Define D̄ by removing the first element
of D, Ξ̄j by removing the first column from Ξ̃j , and Ξ̄ = [Ξ̄1; · · · ; Ξ̄k]. The
constraints can be written as

Ξ̄ D̄ = 0 (1.25)

and we wish to show that D̄ = 0 is the only solution (i.e., Ξ̄ is full rank). The
matrix dimensions imply that rank(Ξ̄) ≤ min{k(n − r), n − 1}, so choosing
k ≥ (n − 1)/(n − r) is a necessary condition. The necessity of the condition
that the integers (frequencies) m1, . . . ,mr are aperiodic (see B1) can also be
seen at this point. Suppose for the sake of contradiction that the frequencies
were not aperiodic. Then, because the support set of one row can align with
another (at a different circular shift), one of the columns of Ξ̄ is the zero
vector, and thus rank(Ξ̄) would be less than n − 1.

Now we show that k = �(n − 1)/(n − r)� + 1 signal measurements suffice
to recover the gains. To prove that Ξ̄ is full rank in this case, it suffices to
show that the nullspaces of Ξ̄j are disjoint. Without loss of generality, we
consider the case of a null vector of Ξ̄1. Let us denote this vector by v. We
will show that this vector is not in the nullspace of the other submatrices
Ξ̄j , j = 2, . . . , k. Define Ξ̄/1 = [Ξ̄2; · · · ; Ξ̄k]. The non-zero entries of the
matrix Ξ̄/1 are the (random) DFT coefficients from the k − 1 signal obser-
vations x2, . . . ,xk, and these are independent of v, which depends only on
x1. By assumption B2, these coefficients are continuous random variables.
Consider the random variable p = v′Ξ̃

′
/1Ξ̃/1v. Treating v as a fixed vec-

tor, the variable p is a quadratic polynomial function of the random DFT
coefficients of x2, . . . ,xk. There are two distinct possibilities. Either p is the
zero function, or p is a non-zero polynomial function. Suppose p is the zero
function, then the conditional expectation of p given v satisfies E[p|v] = 0.
However, note that E[p|v] = v′E[Ξ̄ ′

/1Ξ̄/1]v, and it is easy to verify that the
matrix E[Ξ̄ ′

/1Ξ̄/1] is full rank as follows. The matrix has a block structure,
with each block of having the form E[Ξ̄ ′

iΞ̄j ]. The blocks corresponding to
the same signal observation (i.e., i = j) are full rank because of the circulant
matrix property discussed above. The blocks corresponding to two different
signal observations (i �= j) are exactly zero since the signals are assumed to be
uncorrelated with each other and zero mean. Together these to observations
show that E[Ξ̄ ′

/1Ξ̄/1] is full rank. Therefore, E[p|v] > 0 for every non-zero
vector v, and it follows that p cannot be equal to the zero function. However,
if p is a non-zero polynomial function, then the probability that p = 0 is 0,
implying that Ξ̄/1v �= 0. This last argument follows from the well-known fact
that the probability measure of the set of zeros of a polynomial function of
continuous random variables is exactly zero [16]. Thus, we have shown that
with probability 1, Ξ̄v �= 0 for every v �= 0, concluding the proof.
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2.1 Introduction

In this chapter, we consider the problem of tracking a moving target using
sensor network measurements. We assume no prior knowledge of the sensor
locations and so we refer to this tracking as ‘blind’ . We use the distributed
weighted multidimensional scaling (dwMDS) algorithm to obtain estimates of
the sensor positions. Since dwMDS can only find sensor position estimates up
to rotation and translation, there is a need for alignment of sensor positions
from one time frame to another. We introduce a sparsity constraint to dwMDS
to align current time sensor positions estimates with those of the previous time
frame. In the presence of a target, location estimates of sensors in the vicinity
of the target will vary from their initial values. We use this phenomenon to
perform link level tracking relative to the initially estimated sensor locations.

Wireless sensor networks have been deployed for a number of monitoring
and control applications such as target tracking [28], environmental monitor-
ing [29], manufacturing logistics [26], geographic routing, and precision agri-
culture [44]. For many target tracking applications such as anomaly detection
[21, 45], species distribution and taxonomy [19], and surveillance [4], the main
purpose of the sensor network is to locate and track changes in remote en-
vironments. For example, species distribution and classification are currently
documented using sightings, captures, and trap locations, which involve con-
siderable manpower, time, and effort. Deploying mobile sensors with cameras
can improve remote counts of the species as they move around in the environ-
ment. For surveillance applications, the sensors must be able to locate where
the intruders or the vehicles are moving in the network. Another example is
the problem of locating equipment in a warehouse. The sensors that tag the
equipment must register their physical locations and activate an alarm if they
are about to exit the building. As another example, in secure protocol and
network routing it is critical to track anomalies such as worm activity, flash
crowds, outages, and denial of service attacks in the network.
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Automatic self-configuration and self-monitoring of sensor networks is the
key enabling technology for these tracking applications. To respond to changes
in the sensor network, it is critical to know where the changes are occurring.
Data measurements from the sensors must be registered to their physical
locations in the network in order to make optimal decisions. For dense sensor
networks, the large size makes it impractical for humans to manually enter
the physical location of the sensors and it is too expensive to attach the
GPS to every device in the network. The sensors must have the capabilities
to automatically estimate their relative positions and detect changes in the
network at low cost, e.g., with minimum battery power.

Self-localization algorithms can be broadly classified into two categories,
centralized strategies and decentralized strategies. In a centralized approach,
all the data collected by the sensors must be communicated to the fusion center
which then makes a decision based on this information. Algorithms that use
multidimensional scaling (MDS) [40], maximum likelihood estimation [30],
and convex optimization [14] have been proposed for centralized estimation
and have shown to perform well. However, this may be impractical when
the sensors operate with limited power and bandwidth. For networks with
thousands of sensors, transmission of sensor data to a fusion center overwhelm
the low-bandwidth capacity of sensor networks. Furthermore, remote sensors
are frequently battery operated and battery replacement may be infeasible or
expensive.

The need to conserve power and bandwidth has set the stage for more effi-
cient decentralized strategies for localization. Among the popular approaches
are adaptive trilateration [32, 39] and successive refinement [9, 23] algorithms.
In trilateration, each sensor gathers information about its location with re-
spect to anchor nodes, also referred to as seeds [31], through a shortest path.
Using the range estimates from the seeds, a sensor uses trilateration to es-
timate its location in the network. In successive refinement algorithms, each
sensor localizes its position in its own coordinate system based on the infor-
mation communicated from only its neighbors. Sensors refine their location
estimates iteratively using updates from neighboring sensors and finally merge
their local coordinates systems, effectively finding the solution to the local-
ization problem. Recently, there has been research emphasis on localization
based on a moving target, called a mobile in [6, 34, 42]. The mobile moves
randomly in the network while transmitting signals thereby allowing the sen-
sors to calibrate their range to the mobile. This provides a large number of
measurements with greater diversity which helps overcome environmental ob-
stacles and enables improved estimation of the sensor node locations.

Most localization algorithms assume the presence of anchor nodes, i.e., cer-
tain sensors which have knowledge of their positions in the network. In the
absence of anchor nodes, the sensor location estimates are only accurate up
to a rotation and translation. The intuition behind this result is the follow-
ing: consider an ad-hoc network of N sensors. The objective is to find the N
sensor locations given the N(N − 1)/2 inter-sensor distance measurements.
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The distance information depends only on the differences in the sensor loca-
tions so that the positions of the N sensors in the network can be rotated
and translated without changing these distances. In this chapter, we present
a sparsity constrained dwMDS algorithm, which can localize the relative po-
sitions of the sensor nodes even in the absence of anchor nodes. The dwMDS
algorithm proposed in [9] is a successive refinement method, where a global
cost function is divided into multiple local cost functions at each sensor lo-
cation and the computational load involved in finding the sensor location
estimates is divided among the sensors in a distributed fashion. The alloca-
tion of non-negative continuous weights to the measured data overcomes the
problem of combining local maps to one global map, a problem that is com-
mon to other decentralized methods [23]. We call our new algorithm sparsity
penalized dwMDS. More importantly, we explain how the anchorless sparse
dwMDS algorithm can efficiently track changes in the network.

Sensor localization is frequently viewed as an essential prelude to the mon-
itoring and tracking of active phenomena. Target tracking and detection has
been one such motivating application of sensor networks [24, 43, 1]. Most
target tracking applications assume known sensor locations or estimate the
location of sensor nodes separately before employing the tracking algorithm.
The standard model used for describing the state dynamics of a moving target
is the linear Gaussian model [37]. When the measurement model is also Gaus-
sian, the optimal tracker is given by the Kalman filter. For nonlinear state
space and measurement models, other techniques such as Extended Kalman
Filter (EKF) [24], unscented Kalman Filter (UKF) [43], and Gaussian sum
approximation [1] have been proposed. Particle filtering algorithms were then
formulated for target tracking, where the probability density of the state is
approximated by a point mass function on a set of discrete points [13]. The
discrete points are chosen through importance sampling. The advantage of
particle filtering is its applicability to a large range of densities, noise pro-
cesses, and measurement models. More recently, researchers have looked at
the simpler problem of tracking in a binary sensing modality [2, 25]. The sen-
sor outputs a high, when the target is within a sensing range and outputs a
low, when the target falls outside its range. Based on the fusion of the sensor
outputs, an approximate link level trajectory can be realized to track the tar-
get. Such a binary sensing modality has limited accuracy but requires minimal
power consumption and has the advantage of analytical tractability [41]. This
procedure can also be interpreted as a target detection problem implemented
for multiple time steps.

Distributed target detection methods have been proposed in the literature
[33] in the context of designing an optimal decision statistics at the sensor
fusion center. The detection problem has also been addressed for under com-
munication constraints, where the sensor transmitting the information needs
to send an optimal summary of the gathered information to the fusion center
[7]. In the context of anomaly detection in internet data, approximate density
of incoming traffic is constructed for each location. Distance between densities
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is then used as a similarity measure in the MDS algorithm to form a map of
the internet network. By performing MDS over time, it is shown that anoma-
lies such as network scans, worm attacks, and denial of service attacks can
be identified and classified [36, 16]. For wormhole detection in ad hoc sensor
networks, most research efforts require mobile nodes equipped with special
hardware or GPS devices [22, 5] to localize the wormhole.

In contrast to the methods proposed in the literature, we present the spar-
sity penalized dwMDS algorithm which localizes the sensor nodes in the ab-
sence of anchors and tracks multiple targets amongst the sensor links. The
principle behind our proposed algorithm is the following: in the ‘acquisition
phase’ or initialization, an initial estimate of sensor locations is acquired. Once
the sensors have been initially localized, it is only the network topology that
is critical to the problem of tracking. Hence, during the tracking phase, we
introduce a sparsity constraint to the dwMDS problem formulation, which
attempts to fix the alignment of the sensor network with respect to the align-
ment of the localized network at the previous time instance. By doing so,
we keep monitoring the network with respect to a fixed geometry obtained
by the localization algorithm at the first time instance (t = 1). The sparsity
constraint only reassigns a small fraction of the sensor locations, while main-
taining the locations of remaining sensors close to their previous estimates.
When the sensor network is then used for tracking, only the sensors affected
by the presence of a target are perturbed, while the rest of the location es-
timates remain unchanged. Based on the differences in the sensor location
estimates between two time-frames, we propose a novel perturbation based
link level tracking algorithm, which accurately localizes a target to within
a small set of sensor links. Figure 2.1 shows the localization process in the
absence of targets. The actual sensor locations are marked as circles and the
anchor nodes are highlighted using squares. The sensors communicate among
themselves and the anchor nodes to obtain location estimates indicated as
crossed circles. Figure 2.2 shows the localization process in the presence of a
target. The measurements of the sensor nodes closest to the target are affected
and the sensors appear further apart than they are in reality. This change in
the sensor location estimates can be used to perform link level tracking.

Link level tracking has many attractive features, the most important of
which is that it does not require a physical model for the target, which is fun-
damental to most tracking algorithms in the literature [3]. Moreover, the goal
of certain sensor networks is to obtain an estimate of the location of the tar-
gets, or detect changes in the network. For example, in military applications,
the sensors can locate a target relative to the network and the network can
activate the appropriate sensors to identify the target. For animal tracking in
biological research, it is sufficient to have a low resolution tracking algorithm
to monitor animal behavior and interactions with their own clan and with
other species.

We introduce the sparsity constrained dwMDS algorithm for simultaneous
sensor localization and link level tracking in this chapter. We give a flavor of



2 Sparse multidimensional scaling for blind tracking in sensor networks 43

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx
xxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx

Fig. 2.1. Localization in the absence of target. Anchor nodes (square), true sensor
locations (circle), estimated sensor coordinates (crossed circle).

Fig. 2.2. Link level tracking based on localization in the presence of target.

how the algorithm can be extended to estimate actual target coordinates using
standard tracking algorithms. Furthermore, the algorithm we present here can
be used to design optimal sensor scheduling strategies for tracking to limit
power consumption in sensor networks. We incorporate the sparsity constraint
such that the localization algorithm is still distributed in its implementation
to minimize communication and computational costs.

This chapter is organized as follows: Section 2.2 formally introduces the
problem of sensor localization. Section 2.3 introduces the classical MDS al-
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gorithm and its variations. We then present our sparsity penalized dwMDS
algorithm in Section 2.4. In Section 2.5, we explain how this algorithm can be
applied for link level tracking. Finally, Section 2.6 concludes this chapter by
discussing the extensions of this formulation for model-based multiple target
tracking and sensor management strategies.

2.2 Problem formulation

We begin by introducing the nomenclature used in this chapter. We denote
vectors in�M by boldface lowercase letters and matrices in�M×N by boldface
uppercase letters. The identity matrix is denoted by I. We use (·)T to denote
the transpose operator. We denote the l2-norm of a vector by ‖ · ‖, i.e., ‖x‖ =√

xT x. A Gaussian random vector with mean µ and covariance matrix C is
denoted as N (µ,C).

The purpose of the sparsity constrained MDS algorithm is to simultane-
ously localize and track targets. We first formally state the sensor localization
problem. Consider a network of N = n+m nodes in d dimensional space. The
localization algorithms can be applied to arbitrary d (d < N) dimensional
spaces. Since applications for localization typically occur in physical space,
we will restrict our attention to d = 2, 3 dimensions. Let {xi}N

i=1,xi ∈ �d

be the true location of the n sensors. The m sensor nodes {xi}n+m
i=n+1 are an-

chor nodes, i.e., whose locations are known. We introduce the anchor nodes
to keep the formulation as general as possible. Later, we set m = 0 for anchor
free localization. Denote X = [x1,x2, . . . ,xN ] as the d × N matrix of actual
sensor locations. Let D = (di,j)N

i,j=1 be the matrix of the true inter-sensor
distances, where di,j denotes the distance between sensor i and sensor j. It
is common that some wireless sensor networks may have imperfect a priori
knowledge about the locations of certain sensor nodes. This information is
encoded through parameters ri and x̄i, where x̄i is the sensor location and ri

is the corresponding confidence weight. If x̄i is unavailable, then we set ri = 0.
The problem setting is explained through an illustration of a sensor network
in Fig. 2.3. We assign weights wi,j for measurements between sensors i and j
to indicate the accuracy of the distance estimate. In this sensor network, each
sensor communicates to its three nearest neighbors and hence, the weights
corresponding to links between non neighboring sensors are zero.

Sensor localization is the process of estimating the location of the n sensor
nodes {xi}n

i=1 given {xi}n+m
i=n+1, {ri}, {x̄i} and pairwise range measurements

{δt
i,j} taken over time t = 1, 2, . . . ,K. The indices (i, j) run over a subset

of {1, 2, . . . , N} × {1, 2, . . . , N}. The range measurements can be obtained
by sensing modalities such as time-of-arrival (TOA), received signal strength
(RSS), or proximity.
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Fig. 2.3. Sensor localization setup: Anchor nodes (square), sensor nodes (circle),
a priori sensor locations (blocked circle). The communicating sensors are connected
using solid lines. The non neighboring sensor links have zero weight.

2.3 Classical MDS and variations

Multidimensional scaling (MDS) is a methodology for recovering underlying
low dimensional structure in high dimensional data. The measured data can
come from confusion matrices, group data, or any other (dis)similarity mea-
sures. MDS has found numerous applications in cognitive science, marketing,
ecology, information science, and manifold learning [11, 12]. In the context of
sensor localization, the goal in MDS is to discover the sensor locations (lower
dimensional embedding) from the inter-sensor distances obtained by a given
sensing method (high dimensional data).

Classical MDS [18] provides a closed-form solution to the sensor loca-
tions when the inter-sensor measurements are the inter-sensor Euclidean dis-
tances, i.e., in the absence of noise or nonlinear effects. We assume all pairwise
range measurements are available, and so we can compute the complete matrix
of distances:

di,j = ‖xi − xj‖ =
√

(xi − xj)T (xi − xj). (2.1)

Denote by D(2) the matrix of squared distances, i.e., D(2) = (d2
i,j)

N
i,j=1. Then

D(2) can be rewritten as

D(2) = ψ1T − 2XT X + 1ψT , (2.2)
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where 1 is an N -element vector of ones and ψ = [xT
1 x1,xT

2 x2, . . . ,xT
NxN ]T .

Let H = I − (1/N)11T . Multiplying on the left of D(2) by −1/2H and the
right by H, we obtain

A = −1
2
HD(2)H = HXT XH. (2.3)

Given A, one can discover the matrix X to a rotation and translation by
solving the following variational problem

min
Y

‖A − YT Y‖2
F , (2.4)

where ‖ · ‖F indicates the Frobenius norm and the search space is over all full
rank d × N matrices. The solution to X is then given by

X = diag(λ1/2
1 , . . . , λ

1/2
d )VT

1 , (2.5)

where the singular value decomposition (SVD) of A is given by

A = [V1 V2] diag(λ1, . . . , λd, λd+1, . . . , λN ) [V1 V2]T . (2.6)

The matrix V1 consists of the eigenvectors of the first d eigenvalues λ1, . . . , λd,
while the rest of the N − d eigenvectors are represented as V2. The term
diag(λ1, . . . , λN ) refers to a N ×N diagonal matrix with λi as its ith diagonal
element. Though the solution to the classical MDS is obtained in closed-form,
the algorithm has the following deficiencies:

1. MDS requires knowledge of all inter-sensor distances. Obtaining all pair-
wise range measurements is prohibitive due to the size of the sensor net-
work and the limited power of the sensors. In our problem formulation,
this implies that wi,j �= 0,∀i, j, which makes MDS fall under the category
of a centralized approach, i.e., all the information needs to be transmit-
ted to the fusion center which then performs the MDS algorithm. Due to
power and bandwidth limitations in the sensor network, this process is
infeasible.

2. The inter-sensor range measurements δi,j are corrupted by environment
and receiver noise which further degrades the quality of the measure-
ments, i.e., δi,j is only an estimate of the inter-sensor distance di,j .

3. MDS uses the squared distance matrix which tends to amplify the mea-
surement noise, resulting in poor performance.

As mentioned in Section 2.1, there has been significant effort directed towards
designing decentralized strategies for sensor localization. However, consistent
reconstruction of the sensor locations is attainable only in the presence of an-
chor nodes. If the current localization algorithms are implemented for anchor
free localization, the geometry of the sensor network assumes different align-
ments as localization is performed over various time instants. This makes it
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(a) t=1 (b) t=2

(c) t=3 (d) t=4

Fig. 2.4. Anchor free sensor localization by dwMDS. True sensor locations (circle),
estimated sensor locations (cross).

impossible to locate where the changes are occurring in the network. To il-
lustrate this phenomenon, we implement the dwMDS algorithm for sensor
localization in the absence of anchor nodes and in the absence of target. We
provide snapshots of the sensor location estimates (cross) along with their
actual locations (circle) in Fig. 2.4 as a function of time. Observe that the
geometry of the network is maintained, while the true locations are subject
to rotation and translation. Now consider a target moving through this net-
work. In this scenario, the localization process is affected by two factors: the
lack of anchor nodes and some inaccurate inter-sensor measurements in the
vicinity of the target. With anchor free localization, the process of tracking a
target becomes extremely difficult. To overcome this problem, we propose our
sparsity constrained dwMDS algorithm that aligns the current sensor location
estimates to those of previous time frames.

2.4 Sparsity penalized MDS

Consider using the MDS algorithm independently to obtain the sensor location
estimates at time t and at time t − 1. Alignment between these two sets of
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points can be performed in various ways. For example, in Procrustes analysis
[17] alignment is performed by finding the optimal affine transformation of one
set of nodes that yields the set closest to the second set of points in the least
squares sense. However, this procedure cannot guarantee that many sensor
locations estimates will remain unchanged from their previously estimated
values. The errors in the sensor location estimates between two time steps may
accumulate over time resulting in alignment errors. In contrast, we introduce
a sparseness penalty on the distances between the sensor location estimates
at time t (xi) and at time t − 1 (x(t−1)

i ) directly to the sensor localization
algorithm. Construct a vector of Euclidean distances between the location
estimates at time t and at time t − 1

g(t) =
[
‖x1 − x(t−1)

1 ‖, . . . , ‖xn − x(t−1)
n ‖

]T

. (2.7)

Define the l0-measure of a vector v = [v1, v2, . . . , vn] as the number of nonzero
elements given by

‖v‖0 �
n∑

i=1

I (vi �= 0), (2.8)

where I(·) is the indicator function. Using an l0-constraint on the distance
vector g(t) of the form ‖g(t)‖0 ≤ q, we guarantee that no more than q of the
location estimates will vary from their previous time frame values. Minimizing
a cost function under the l0-constraint requires a combinatorial search which
is computationally infeasible. Define the lp-measure of a vector v as

‖v‖p �
( n∑

i=1

|vi|p
)1/p

. (2.9)

For a quadratic cost function, an lp-constraint (0 < p ≤ 1) induces a sparse
solution. Among all lp sparsifying constraints, only p = 1 offers a convex
relaxation to the l0-constraint [15]. To promote sparsity, we next advocate
the use of the lp-constraint as a penalty term via the Lagrange multiplier in
the dwMDS algorithm to solve for the sensor location estimates. Hence the
term sparsity penalized MDS.

The cost function of the dwMDS algorithm [9] is motivated by the varia-
tional formulation of the classical MDS, which attempts to find sensor loca-
tion estimates that minimize the inter-sensor distance errors. Keeping in mind
that it is the geometry of the sensor network which is crucial for tracking, we
present a novel extension of the dwMDS algorithm through the addition of
the sparseness inducing lp-constraint. At any time t, we seek to minimize the
overall cost function C(t) given by

C(t) =
∑

1≤i≤n

∑
i≤j≤n+m

∑
1≤l≤M

w
(t),l
i,j

(
δ
(t),l
i,j − di,j(X)

)2

+
n∑

i=1

ri‖x̄i − xi‖2

+λ‖g(t)‖p
p. (2.10)
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The Euclidean distance di,j(X) is defined in (2.1). For each time t, there are M

range measurements δ
(t),l
i,j for each sensor link i, j. As in [9], the weights w

(t),l
i,j

can be chosen to quantify the accuracy of the predicted distances. When no
measurement is made between sensor i and sensor j, w

(t),l
i,j = 0. Furthermore,

the weights are symmetric, i.e., w
(t),l
i,j = w

(t),l
j,i , and w

(t),l
i,i = 0. If available,

the a priori information of sensor locations is encoded through the penalty
terms {ri‖x̄i − xi‖2}. Finally, we introduce an lp-constraint (0 ≤ p ≤ 1) on
the distances between the sensor locations at time t and the estimated sensor
locations at time t − 1. The Lagrange multiplier of the sparseness penalty is
denoted as λ. We can tune the value of λ to yield the desired sparsity level in
g(t). Later, when we apply the algorithm for tracking, the sparseness will be
advantageous as only those sensors which are highly affected by the target will
vary from their initial positions, thereby allowing for a detection of the target
through the process of relative sensor localization. To solve this optimization
problem, we propose to use the successive refinement technique, where each
sensor node i updates its location estimate by minimizing the global cost
function C(t), after observing range measurements at node i and receiving
position estimates from its neighboring nodes.

2.4.1 Minimizing cost function by optimization transfer

Unlike classical MDS for which we could obtain a closed-form expression for
the estimates, there is no closed-form solution to minimizing C(t). There-
fore, we solve the local nonlinear least squares problem iteratively using a
quadratic majorization function similar to SMACOF (Scaling by MAjoriz-
ing a COmplicated Function [20]). This procedure can be viewed as a special
case of optimization transfer algorithms through surrogate objective functions
[27], e.g., the popular EM algorithm.

A majorizing function T (x,y) of C(x) is a function T : �d × �d → �,
which satisfies the following properties: T (x,y) ≥ C(x), ∀y and T (x,x) =
C(x). In other words, the majorizing function upper bounds the original cost
function. Using this property, we can formulate an iterative minimization
procedure as follows: denote the initial condition as x0. Starting from n = 1,
obtain xn by solving

xn = arg min
x

T (x,xn−1),

until a convergence criterion for C(x) is met. We can easily observe that this
iterative scheme always produces a non increasing sequence of cost functions,
i.e.,

C(xn+1) ≤ T (xn+1,xn) ≤ T (xn,xn) = C(xn).

The first and last relations follows from the properties of majorizing func-
tions while the middle inequality follows from the fact that xn+1 minimizes
T (x,xn). Now the trick is to choose a majorizing function that can be
minimized analytically, e.g., a linear or quadratic function. We propose a
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quadratic majorizing function T (t)(X,Y) for the global cost C(t)(X). Min-
imizing C(t)(X) through the majorization algorithm is the simple task of
minimizing the quadratic function T (t)(X,Y), i.e.,

∂T (t)(X,Y)
∂xi

= 0, i = 1, 2, . . . , n. (2.11)

If we denote the estimates of the sensor nodes at iteration k as Xk, the re-
cursion for the update of location estimates for node i from (2.11) is given
by

xk
i =

1
ai

(
ci + Xk−1bk−1

i

)
, (2.12)

where bk−1
i , ai, and ci are defined in (2.32)-(2.35) respectively. The details

of the derivation of the sparsity penalized MDS algorithm can be found in
the appendix. For each sensor i, the jth element of the vector bk−1

i depends
on the weight wi,j . Since the weights of the nodes not in the neighborhood
of the sensor are zero, the corresponding elements in the vector bk−1

i are
also zero; therefore the update rule for node i in (2.12) will depend only
on the location of its nearest neighbors and not on the entire matrix Xk−1.
This facilitates the distributed implementation of the algorithm. The proposed
algorithm is summarized in Fig. 2.5. We illustrate the majorization procedure
in Fig. 2.6. The original cost function (solid) and the corresponding surrogate
(dotted) is presented for every iteration, along with the track of the estimates
at iteration k (circle). Our proposed algorithm introduces a sparseness penalty

Inputs: {w̄(t)
i,j}, {δ̄

(t)
i,j }, {ri}, {x̄i}, {x(t−1)

i }, ε, X0 (initial condition for itera-
tions).
Set k = 0, compute cost function C(t),0 and ai from equations (2.10) and
(2.34) respectively
repeat
– k=k+1
– for i = 1 to n

· compute bk−1
i from equation (2.32)

· xk
i = 1

ai

(
ci + Xk−1bk−1

i

)

· compute C
(t),k
i

· update C(t),k to C(t),k − C
(t),k−1
i + C

(t),k
i

· communicate xk
i to neighbors of sensor i (nodes for which wi,j > 0)

· communicate C(t),k to next node ((i + 1) mod n)
– end for
until C(t),k − C(t),k−1 < ε

Fig. 2.5. Description of the sparsity constrained MDS algorithm.

on the distance between estimate at time t − 1 and the current estimate. If
the sparsity regularization parameter λ is not chosen properly, many sensor
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Fig. 2.6. Majorization procedure: cost function (solid curve), surrogate function
(dotted curve), optimal location estimate at each iteration (circle). Only a single
coordinate is updated in this picture.

positions estimates might slowly vary with time, thereby creating cumulative
error in the sensor localization. An interesting way to counteract this problem
would be to penalize the distance between the current estimate and the initial
estimate at t = 1. Using such a constraint would mean that the sensors are
always compared to the fixed initial frame and errors do not accumulate over
time. The implementation of this algorithm would be straightforward as it
would simply involve changing the index t − 1 to 1 in the original algorithm
presented in Fig. 2.5. However, using the estimate from time t − 1 has the
property that it is easily adapted to the case of mobile sensors.

2.4.2 Implementation

Weights: When RSS measurements are used to compute distance estimates,
the weights are set using the locally weighted regression methods (LOESS)
scheme [8] similar to one used in the dwMDS algorithm [9]. The weight as-
signment is given by

wi,j =
{

exp (−δ2
i,j/h2

i,j), if i and j are neighbors
0, otherwise,

where hi,j is the maximum distance measured by either sensor i or j. A naive
equal weight assignment to all measurements is also shown to work well with
our algorithm.

Initialization: For the successive refinement procedure, the sensor locations
estimates must be initialized for every time frame. Though several initializa-
tion algorithms have been proposed in the literature, we use a naive random
initialization. We would like to point out that the initialization is not a critical
component to our algorithm, as we are solely interested in the alignment of
sensors in the network and not on the exact locations. Irrespective of the
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initial estimates, the sparseness penalty will ensure that the estimated sensor
locations are relatively close to those of previous time frames. Our algorithm
is found to be robust with respect to the initial estimates.

Neighborhood selection: Traditionally, the neighbors are chosen based on
the distance measure obtained from the RSS measurements, i.e., select all
sensors within a distance R as your neighbors. When the RSS measurements
are noisy, there is a significant bias in the neighborhood selection rule. This
method has a tendency to select sensors which are, on average, less than
the actual distances ‖xi − xj‖. A simple two-stage adaptive neighborhood
selection rule is proposed in [9] to overcome the effect of this bias. We use
this selection rule in our algorithm.

Range measurement models: The inter-sensor measurements can be obtained
by RSS, TOA, or proximity. Any one of these approaches can be used in our
algorithm. Our sparsity constrained MDS algorithm is fairly robust to either
of these measurement models. For the simulations in this chapter, we use the
RSS to obtain a range measurement between two sensors. It can be shown
through the central limit theorem (CLT) that the RSS is log-normal in its
distribution [10], i.e., if Pi,j is the measured power by sensor i transmitted by
sensor j in milliWatts, then 10 log10(Pi,j) is Gaussian. Thus Pi,j in dBm is
typically modeled as

Pi,j = N (P̄i,j , σ
2
0) (2.13)

P̄i,j = P0 − 10np log
(

di,j

d0

)
,

where P̄i,j is the mean received power at distance di,j , σ0 is the standard
deviation of the received power in dBm, and P0 is received power in dBm at
a reference distance d0. np is referred to as the path-loss exponent that de-
pends on the multipath in the environment. Given the received power, we use
maximum likelihood estimation to compute the range, i.e., distance between
the sensor nodes i and j. The maximum likelihood estimator of di,j is given
by

δi,j = 10((P0−Pi,j)/10np). (2.14)

Simulation of tracker without a target

The simulation parameters are chosen as follows: we deploy a 10×10 uniform
grid of sensors in a network. We consider anchor free localization, i.e., m = 0
and we assume we make a single inter-sensor measurement (M = 1). We set
the sparseness parameter λ to produce a change in the location estimates for
only a small portion of the sensors. The value of λ will depend on the size of the
network and the noise in the measurements. If the RSS measurements are very
noisy, then range estimates become inaccurate which tend to vary the sensor
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(a) t=1 (b) t=2

(c) t=3 (d) t=4

Fig. 2.7. Anchor free sensor localization by sparsity penalized MDS. True sensor
locations (circle), sensor position estimates (cross).

location estimates. Hence λ is selected to ensure that sensor location estimates
remain aligned with the previous time frame estimates. In this simulation, we
set λ = 0.1 and the noise variance σ0 = 0.15. Each sensor communicates with
its 15 nearest neighbors. The weights of the RSS measurements were chosen
based on the LOESS scheme described earlier. The weights of links for non
communicating sensors were set to zero. We demonstrate the performance of
the sparsity constrained MDS algorithm on this sensor network as a function
of time in Fig. 2.7. The true locations are denoted as circles and the estimated
locations as crosses.

2.5 Tracking using sparse MDS

Here we present an algorithm for performing link level tracking using the
sparsity constrained MDS algorithm. By link level tracking, we refer to lo-
calization of targets to within a set of inter-sensor links. Link level tracking
is attractive in the sense that there is no need to assume a physical model
for a target. However, it is important to know the effect of the target on the
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inter-sensor measurements. Researchers have proposed various models for the
signal strength measurements ranging from the traditional linear Gaussian
model to the binary sensing model. These are approximate statistical models
and the distribution of the measurements in the presence of a target remains
an open question.

To model the statistics under the setting of vehicle tracking, we conducted
experiments using RF sensors hardware in the presence of a target. We con-
structed a fine grid of locations, where the target was placed and RSS mea-
surements were recorded between two static sensors for positions on the grid.
Upon gathering the data, we fit the following statistical model in the presence
of target. The RSS measurements at sensor link i, j are distributed as

P k
i,j |P̂i,j ∼ N (P̂i,j , σ

2
0), i.i.d, k = 1, 2, . . . ,M

P̂i,j ∼ N (P̄i,j , σ
2
1), (2.15)

where P k
i,j is the kth inter-sensor measurement when the target is in the

neighborhood of the sensors. The M sensor link measurements are correlated
through the random variable P̂i,j . The values obtained from our actual ex-
periments were σ0 ≈ 0.1463dBm and σ1 ≈ 1.5dBm. The noise variance in the
measurements σ1 was roughly an order of 10 times larger than σ0. In other
words, RSS measurements tend to have a larger variance due to scattering
and attenuation of the signals in the presence of a target. A confidence mea-
sure for such a log-normal distribution of the RSS data is obtained using the
Kolmogorov-Smirnov (KS) test in [35] and the model is shown to work well
for sensor localization. We assume this statistical model for the RSS mea-
surements, when the target is within a specified distance R of the sensor link
i, j. The distance R depends on the reflectivity of the object. If the object is
highly reflective, then the variation in the RSS measurements is detected by
more links.

Given the measurement model, we formulate the optimal decision statistic
to detect a presence of a target in a particular sensor link using the likelihood
ratio test (LRT). For a fixed false alarm level α, the LRT for each link i, j is
given by ∣∣∣∣∣

1
M

M∑
l=1

P
(t),l
i,j − P

′

i,j

∣∣∣∣∣
H1

≷
H0

γ, (2.16)

where γ = (σ0/
√

M)Q−1(α/2) and P
′

i,j is the mean received power in the

sensor link estimated using an initial set of range measurements. {P (t),l
i,j }M

l=1

is the set of inter-sensor measurements made by link i, j at time t. We assume
that the sensor network is in its steady state operation mode. We do not
consider the transient effects in the measured data when it is obtained in the
absence of any target. This most powerful test of level α yields the probability
of correct detection
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β = 2Q

(
Q−1(α/2)

√
σ2

0

σ2
0 + Mσ2

1

)
. (2.17)

A derivation of the decision rule and its performance is given in the appendix.
The performance of the optimal detector is clearly dependent on the number
of samples available for the inter-sensor measurements. As the number of
measurements M becomes very large, β in (2.17) tends to 1. However, if only
few samples are available, β may not approach 1 and misdetect type errors
may become non negligible. In such a case, instead of using LRT, we can
use a test on the variation of the sensor location estimates at time t from
their estimates at a previous time. In other words, we can perform a simple
hypothesis test for each link of the form,

‖dt
i,j − dT

i,j‖
H1

≷
H0

γi,j , (2.18)

where T = 1 or T = t − 1 depending on whether the sensors are static or
mobile.

Simulation of tracker in the presence of target

We present our results by simulating moving targets in a uniform 10×10 grid of
sensors. We set m = 0, i.e., no anchor nodes. We assume no a priori knowledge
of the sensor coordinates, i.e., ri = 0. Each sensor communicates only to its 15
nearest neighbors and the weights for those links were chosen by the LOESS
strategy. The rest of the weights were set to zero. We obtain M = 50 data
measurements for each communicating sensor link in the network. We set the
sparseness parameter λ to produce a change in the location estimates for only
a small portion of the sensors. We allow any number of targets to appear
in a sensor network with probability 0.4. Though our algorithm is robust to
randomly moving targets in the network, we consider a state-space model for
the purposes of this simulation to produce a visually pleasing target trajectory.
We apply the sparsity constrained MDS algorithm as multiple targets move
through the sensor network.

The results are shown in Fig. 2.8. The true sensor locations are shown
as circles and the estimated sensor locations are indicated using crosses. The
sensors corresponding to those sensor links that declared a target present
using the distance based target localization algorithm (DBT) in (2.18) are
shown in filled circles. The target trajectories are shown as inverted triangles.
We observe that as the targets move, the sparsity constrained MDS algorithm
reconstructs sensor location estimates with the majority of them unchanged
from the previous time step. Thus, in conjunction with sparse dwMDS, the
DBT is able to localize the targets to within a small set of sensor links.
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(a) t=1 (b) t=2

(c) t=3 (d) t=4

(e) t=5 (f) t=6

Fig. 2.8. Anchor free sensor localization by sparsity constrained MDS in the pres-
ence of targets. True sensor locations (circle), estimated sensor locations (cross),
sensors localizing the target (blocked circle), target trajectory (inverted triangle).

2.5.1 Numerical Study

We analyze the performance of the localization algorithms using ROC curves.
We consider the following setup: we deploy a 10 × 10 uniform grid of sensors
in a network (see Fig. 2.11). We consider anchor free localization, i.e., m = 0
and make a single inter-sensor measurement (M = 1) at each time frame.
We assume no a priori knowledge of the sensor coordinates, i.e., ri = 0. Each
sensor communicates only to its 8 nearest neighbors and the weights for those



2 Sparse multidimensional scaling for blind tracking in sensor networks 57

links were chosen by the LOESS strategy [9]. The rest of the weights were set
to zero. Furthermore, we set noise variances σ0 and σ1 defined in (2.13) and
(2.15), respectively as σ0 = 1 and σ1 = 5σ0 = 5. Sensor links within a radius
R = 1.5 indicate the presence of a target, i.e., follow the H1 hypothesis. We
set the reference distance d0 defined below (2.13) to be d0 = 1 and the path
loss exponent η = 2. We set the sparseness parameters λ = 2.5 and p = 1 to
produce a change in the location estimates for only a small portion (< 10%)
of the sensors.

We begin by considering the case of random appearance of targets in the
sensor network, i.e., targets appear at different locations every time instant.
For the DBT, we set τ = 0 in (2.18), i.e., we compare our distance estimates
to a fixed initial frame. For every time instant, the DBT and the LRT are
performed on each active sensor link and the process is repeated for 5000
target locations. The resulting ROC curve is presented in Fig. 2.9. The ROC
for the LRT using simulations is indicated using circles and the corresponding
theoretical curve obtained from (2.17) is shown as a solid line. We observe
that the simulation and the theoretical curves match for the LRT. The ROC
for the DBT is shown using a dashed line. The DBT algorithm yields higher
probability of correct detection than the LRT for most false alarm levels. For
example, at false alarm level α = 0.3, β for the DBT is approximately 0.89
which is 5% more than that of the LRT, which yields β ≈ 0.84.

The intuition for this result is as follows: in the presence of a target, the
RSS measurements of the sensor links are spatially-correlated. The presence of
a target in a given link implies that with high probability the target is present
in neighboring sensor links. However, the RSS model in (2.15) specifies only
the distribution of the measurements independently on each link. The LRT
makes complete use of the RSS measurements but is limited in its performance
as the optimal decision statistic for each sensor link i, j is independent of other
sensor link measurements. On the other hand, the DBT finds the active sensor
links only based on the estimated distances through sparsity penalized MDS.
However, since the inter-sensor distances are computed at each sensor using
information from its nearest neighbors, this method makes an implicit use
of the spatial correlation of the measurements in its decision statistic, which
results in an improvement in performance.

Next, we consider the case of a moving target, where we assume a standard
state-space target motion model (for the purpose of a visually pleasing trajec-
tory). We repeated the same algorithms for 5000 such trajectories. The LRT
based algorithm yields the same performance curve as the test is independent
of whether the target is moving or not. The resulting ROC curve for the DBT
is presented as a dotted line in Fig. 2.9. Since we continue to base our decision
rule on the fixed initial frame (τ = 0), we observe that the performance of the
DBT is also similar to the case of random target appearances.

In the case of a moving target, the RSS measurements are also temporally-
correlated. Given a set of sensors indicating a presence of a target at a par-
ticular time, there is a high probability that the target is in the vicinity of



58 R. Rangarajan, R. Raich, and A. O. Hero III

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 

 

LRT: simulation
LRT: theoretical
DBT: τ=0, random target
DBT: τ=0, moving target
DBT: τ=t−1, moving target

Fig. 2.9. ROC curve for the LRT and the DBT link level tracking algorithm. LRT
(solid line), DBT for a random target with τ = 0 (dashed), DBT for a moving target
with τ = 0 (dotted), and DBT for a moving target with τ = t − 1 (dashed dotted).

these sensors at the next time frame. To examine the effect of the temporal
correlation, we can compare the current estimated distances to the estimated
distances from the previous time-frame rather than the initial frame, i.e., set
τ = t−1 instead of τ = 0. The temporal correlation of the RSS measurements
is captured in the DBT through the sparsity constraint used for aligning the
sensors locations estimates. In other words, with high probability the sensor
location estimates that are perturbed in the previous time-frame will also
be perturbed in the current time-frame, thereby increasing the probability of
detection.

The results for τ = t − 1 are presented in Fig. 2.9 using a dashed dotted
line. We observe that the performance gains for DBT with τ = t − 1 are
higher as compared to DBT with τ = 0 as such a decision rule incorporates
both spatial and temporal correlations of the target dynamics. For example,
for α = 0.1, β for the LRT is 0.75. The result of spatial smoothing alone
yields β ≈ 0.79. By performing both spatial and temporal smoothing, we can
obtain β ≈ 0.86 through our algorithm, which corresponds to a 15% increase
in performance.

We make the following observations for the two proposed tests:

• The DBT for link level tracking outperforms the LRT as it can account
for the spatial and the temporal correlations in the target motion.

• The LRT outperforms DBT for low false alarm levels (α < 0.01) for the
following reasons: first, the DBT we considered is suboptimal as we did not
optimize the performance over the choice of sparsity (p, λ). Furthermore,
the LRT uses an optimal decision statistic and the exact measurements
to perform the test. Currently, we are in pursuit of finding the optimal
sparsity that can yield further improvement in performance.
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• The issue of space-time sampling is key to the performance of the DBT.
Any scenario that exhibits high spatial correlations (e.g., highly reflective
targets or more sensors/unit area) can yield further improvement in per-
formance of the DBT. For example, Fig. 2.10 illustrates the performance
of the DBT for τ = 0 when the number of sensors is increased to 300.
By comparing the perturbation to the fixed initial frame, we only per-
form spatial smoothing of the sensor location estimates. We observe that
the denser sampling of sensors have resulted in better spatial smoothing,
which eliminates more false alarms resulting in an improved performance.
For example, at a false alarm level α = 0.01, the DBT with 100 sensors
yields β ≈ 0.48, while the DBT with 300 sensors yields β ≈ 0.66. If the
sampling time for the sensors and the computation time of the DBT al-
gorithm is much faster than the target motion, the DBT can yield better
performance by taking advantage of more temporal correlations.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

α

β

 

 

DBT, τ=0, 100 sensors
DBT, τ=0, 300 sensors
LRT

Fig. 2.10. ROC curve for the LRT and the DBT link level tracking algorithm with
τ = 0 for different spatial sampling. LRT (solid line), DBT for a moving target
using 10×10 grid of sensors (dotted), and DBT using 300 randomly located sensors
(dashed dotted).

• The disadvantage of LRT in this setting is that the test is performed
independently on each sensor link. Further improvements in the probability
of detection can be achieved when the LRT is derived for the full spatio-
temporal model.

• In the performance analysis, we assumed steady state operation, i.e., per-
fect knowledge of the inter-sensor distances are obtained a priori in the
absence of target. If such knowledge is unavailable and distances need to
be estimated, the LRT tracker must be modified to a generalized likeli-
hood ratio test (GLRT). The DBT can estimate the initial set of distances
more accurately from the RSS measurements by taking advantage of spa-
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tial correlations and hence can yield a higher probability of detection than
the GLRT.

Spatial localization from link level localization

Our objective is to approximately locate the target relative to the location
of the sensors. There are a number of ways in which this link level estimate
can be translated into estimated target coordinates in space. For example,
one could use as an estimate the midpoint of the convex hull generated by
the positions of those sensors that detect the target according to the LRT
or the DBT. An example of the midpoint tracking algorithm is shown in
Fig. 2.11. Another estimate can be found by the intersection of convex regions

Fig. 2.11. A simple tracking algorithm based on link level tracking. True sensor lo-
cations (circle), true trajectory of the target (diamond), estimated trajectory (plus).

corresponding to the sensor links that show the presence of the target through
the optimal decision rule. These estimates do not require a physical model of
the target trajectory. However, given a target motion model, standard filtering
techniques such as the Kalman filter or particle filter (PF) can be used to
obtain refined target position estimates from the link level data.

Future work

Given the set of tagged sensors, i.e., sensor links with high output in the LRT,
we have reduced the problem to that of binary sensing, where the knowledge
of the presence of the target is stored as the decisions made on each of the
links. For accurate estimation of targets positions, we can now use the popular
particle filtering techniques proposed on binary sensing models to perform
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multi-target tracking given a small set of anchor nodes. Moreover, most sensor
networks are remotely operated and limited in power. We can pose a power
constraint by limiting the number of inter-sensor measurements to a small
s of the n(n − 1) (s � n(n − 1)) total sensor links at each time step. The
problem of choosing s from n(n− 1) links is a combinatorially hard problem.
So we propose a convex relaxation to the problem, which chooses the set of
active links by minimizing the predicated mean square error of the state of the
target. This approach has been shown to achieve near optimal performance
in our earlier work [38].

2.6 Conclusions

In this chapter, we presented the sparsity penalized MDS algorithm for simul-
taneous localization and tracking. We are interested in tracking a target rela-
tive to the sensor coordinates. The subset selection capability of our proposed
sparsity constraint allows the algorithm to find only those which have changed
their location estimate due to the presence of a target. We use these sensors
to perform link level tracking. We formulate a model for the inter-sensor RSS
measurements in the presence and absence of a target by conducting actual
experiments in free space. Using this model, we illustrated the performance
of our algorithm for link level target tracking. Currently, we are in pursuit of
optimal sensor scheduling strategies for physical level tracking.
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Appendix: Derivation of sparsity penalized dwMDS

To simplify our derivation, we divide the global cost function into multiple
local cost functions as follows:

C(t) =
n∑

i=1

C
(t)
i + c(t), (2.19)
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where c(t) is a constant independent of the sensor locations X and the local
cost function at each sensor node i is

C
(t)
i =

n∑
j=1,j �=i

w̄
(t)
i,j (δ̄(t)

i,j − di,j(X))2 + 2
n+m∑

j=n+1

w̄
(t)
i,j (δ̄(t)

i,j − di,j(X))2

+ri‖x̄i − xi‖2 + λ‖xi − x(t−1)
i ‖p, (2.20)

where w̄
(t)
i,j =

∑M
l=1 w

(t),l
i,j and δ̄

(t)
i,j =

∑M
l=1 w

(t),l
i,j δ

(t),l
i,j /w̄

(t)
i,j . The cost function

C
(t)
i depends only the measurements made by sensor node i and the positions

of the neighboring nodes, i.e., nodes for which w
(t),l
i,j > 0; C

(t)
i is local to node

i [9]. The local cost function in (2.20) can be rewritten as

C
(t)
i (X) = c

(t)
1 + c

(t)
2 (X) − c

(t)
3 (X) + c

(t)
4 (X), (2.21)

where
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2 (X) =

n∑
j=1,j �=i

w̄
(t)
i,j d2

i,j(X) + 2
n+m∑

j=n+1

w̄
(t)
i,j d2

i,j(X) + ri‖x̄i − xi‖2

c
(t)
3 (X) = 2

n∑
j=1,j �=i

w̄
(t)
i,j δ̄

(t)
i,j di,j(X) + 4

n+m∑
j=n+1

w̄
(t)
i,j δ̄

(t)
i,j di,j(X)

c
(t)
4 (X) = λ‖xi − x(t−1)

i ‖p. (2.22)

The term c
(t)
1 is independent of xi. The term c

(t)
2 is quadratic in xi. Terms

c
(t)
3 and c

(t)
4 are neither affine nor quadratic functions of xi. A majorizing

function for the term c
(t)
3 is motivated by the following Cauchy-Schwarz in-

equality,

di,j(X) = ‖xi − xj‖ ≥ (xi − xj)T (yi − yj)
di,j(Y)

, ∀Y, (2.23)

where Y = [y1, . . . ,yn]. For c
(t)
4 , we present a quadratic majorizing function,

which can be obtained from the following relation

αp/2 ≤ α
p/2
0 +

p

2
(α − α0)(α0)(

p
2−1), ∀α, α0 > 0. (2.24)

The above inequality follows from a linear approximation to the concave func-
tion f(α) = αp/2 via Taylor series expansion. Choosing α = ‖xi −xt−1

i ‖2 and
α0 = ‖yi − xt−1

i ‖2 yields

‖xi − xt−1
i ‖p ≤ ‖yi − xt−1

i ‖p +
p

2
‖xi − xt−1

i ‖2 − ‖yi − xt−1
i ‖2

‖yi − xt−1
i ‖2−p

, (2.25)
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the majorizing function for the c
(t)
4 term. Substituting the inequalities from

(2.23) and (2.25) in (2.21), we obtain the majorizing function for the local
cost function as

T
(t)
i (X,Y) = c

(t)
1 +

n∑
j=1,j �=i

w̄
(t)
i,j d2

i,j(X) + 2
n+m∑

j=n+1

w̄
(t)
i,j d2

i,j(X) + ri‖x̄i − xi‖2

+2
n∑

j=1,j �=i

w̄
(t)
i,j δ̄

(t)
i,j

(xi − xj)T (yi − yj)
di,j(Y)

+4
n+m∑

j=n+1

w̄
(t)
i,j δ̄

(t)
i,j

(xi − xj)T (yi − yj)
di,j(Y)

+ λ‖yi − x(t−1)
i ‖p +

λp

2
‖xi − x(t−1)

i ‖2 − ‖yi − x(t−1)
i ‖2

‖yi − x(t−1)
i ‖2−p

.

(2.26)

Since T
(t)
i (X,Y) is a majorizing function to C

(t)
i (X), it is easy to verify that

the function T (t)(X,Y) =
∑n

i=1 T
(t)
i (X,Y) is a majorizing function to the

global cost function C(t)(X). The partial derivative of T (t)(X,Y) with respect
to xi is straightforward as all the expressions in (2.26) are linear or quadratic
in xi. The partial derivative of T (t)(X,Y) with respect to xi is given by

∂T (t)(X,Y)
∂xi

=
∂T

(t)
i (X,Y)

∂xi
+

∑
k �=i

∂T
(t)
k (X,Y)

∂xi
, (2.27)

where

∂T
(t)
i (X,Y)

∂xi
= 2

n∑
j=1,j �=i

(
w̄

(t)
i,j (xi − xj) − w̄

(t)
i,j δ̄

(t)
i,j

(yi − yj)
‖yi − yj‖

)

+4

⎛
⎝

n+m∑
j=n+1

w̄
(t)
i,j (xi − xj) − w̄

(t)
i,j δ̄

(t)
i,j

(yi − yj)
‖yi − yj‖

⎞
⎠

+2ri(xi − x̄i) + λp
(xi − x(t−1)

i )

‖yi − x(t−1)
i ‖2−p

(2.28)

and

∂T
(t)
k (X,Y)

∂xi
= 2

(
w̄

(t)
i,k(xi − xk) − w̄

(t)
i,k δ̄

(t)
i,k

(yi − yk)
‖yi − yk‖

)
. (2.29)

Substituting (2.28) and (2.29) in (2.27) yields,
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∂T (t)(X,Y)
∂xi

= 4

⎛
⎝

n+m∑
j=1,j �=i

w̄
(t)
i,j (xi − xj) − w̄

(t)
i,j δ̄

(t)
i,j

(yi − yj)
‖yi − yj‖

⎞
⎠

+2ri(xi − x̄i) + λp
(xi − x(t−1)

i )

‖yi − x(t−1)
i ‖2−p

. (2.30)

Setting the derivatives to zero yields the following recursive update rule

xk
i =

1
ai

(
ci +

[
x(k−1)

1 , . . . ,x(k−1)
N

]
b(k−1)

i

)
, (2.31)

where xk
i denotes the location of node i at iteration k. Furthermore, bk

i =
[bk

1 , bk
2 , . . . , bk

N ] and

bk
i = 4

⎛
⎝

n+m∑
j=1,j �=i

w̄
(t)
i,j δ̄

(t)
i,j

‖xk
i − xk

j ‖

⎞
⎠ , (2.32)

bk
j = 4

(
w̄

(t)
i,j −

w̄
(t)
i,j δ̄

(t)
i,j

‖xk
i − xk

j ‖

)
, j �= i, (2.33)

ai = 4
n+m∑

j=1,j �=i

w̄
(t)
i,j + 2ri +

λp

‖xk
i − xt−1

i ‖2−p
, (2.34)

ci = 2rix̄i +
λpx(t−1)

i

‖xk−1
i − x(t−1)

i ‖
. (2.35)

The dwMDS algorithm in [9] obtains a recursive update for location xi by set-
ting the derivatives of the surrogate to the ith local cost function (T (t)

i (X,Y))
to zero. This is equivalent to minimizing the global cost function only un-
der anchor free localization (m = 0) and no a priori information (ri = 0).
However, in our algorithm, we use the local cost functions only to derive a
majorizing function for the global cost function and not in the minimization.
Moreover, the algorithm is still decentralized in its implementation though we
minimize the global cost function with respect to the sensor locations X.

Appendix: Optimal likelihood ratio test

To test the presence of a target on a sensor link i, j, we pose the following
hypotheses testing problem

H0 : P1, . . . , PM ∼ N (P̄ , σ2
0)

H1 : P1, . . . , PM |P̂ ∼ N (P̂ , σ2
0), i.i.d, P̂ ∼ N (P̄ , σ2

1),

where P1, . . . , PM are the measurements made by a particular link i, j. We
leave out the indices i, j in the measurements for brevity. P̄ is the mean
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received power in the sensor link i, j. We assume it can be obtained during
the system setup in the absence of targets. Denote the measurements by the
M -element vector p = [P1, P2, . . . , PM ]T . Then the hypotheses can be written
as

H0 : p ∼ N (P̄1, σ2
0I)

H1 : p ∼ N (P̄1, σ2
111T + σ2

0I).

To construct the LRT, we first compute the log likelihood ratio as

Λ = log
(

f(p|H1)
f(p|H0)

)

=
1
2
(p − P̄1)T (C−1

0 − C−1
1 )(p − P̄1) +

1
2

log
(
|C0|
|C1|

)
, (2.36)

where C0 = σ2
0I, C1 = σ2

111T + σ2
0I and |C| denotes the determinant of a

matrix C. The eigendecompositions of the covariance matrices C0 and C1 can
be written as

C0 = V0D0VT
0 ,

C1 = V1D1VT
1 ,

where Di is a diagonal matrix composed of the eigenvalues λi
1, . . . , λ

i
M and Vi

is the matrix of corresponding eigenvectors. The eigenvalues of the covariance
matrix C1 are given by λ1

1 = σ2
1M + σ2

0 and λ1
i = σ2

0 , i = 2, . . . , M . The
corresponding eigenvectors are v1 = 1/

√
M,v2, . . . ,vM , where {vi}M

i=1 are a
set of orthogonal unit norm vectors. The eigenvalues of C0 are all σ2

0 and it
is easy to verify that v1, . . . ,vM are eigenvectors to C0, i.e., V0 = V1. Thus

C−1
0 − C−1

1 = V0diag
(

Mσ2
1

Mσ2
1 + σ2

0

, 0, . . . , 0
)

VT
0 =

σ2
1M

σ2
1M + σ2

0

11T

M
. (2.37)

Substituting (2.37) in (2.36) and collecting constant terms at the right hand
side yields the optimal LRT as

|p̄ − P̄ |
H1

≷
H0

γ, (2.38)

where p̄ =
∑M

i=1 Pi/M is the minimal sufficient statistics of this test. Under
H0, p̄ is distributed as N (P̄ , σ2

0/M) and under H1, p̄ is N (P̄ , σ2
0/M +σ2

1). We
find γ to satisfy a false alarm of level α, i.e.,

P
(
|p̄ − P̄ | > γ|H0

)
= 2Q

(√
Mγ

σ0

)
= α, (2.39)
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which implies γ = (σ0/
√

M)Q−1(α/2). The probability of correct decision, β
is then given by

β = P
(
|p̄ − P̄ | > γ|H1

)

= 2Q

(
γ√

σ2
0/M + σ2

1

)

= 2Q

(
Q−1(α/2)

√
σ2

0

σ2
0 + Mσ2

1

)
. (2.40)



Part II

Distributed Computation over Unreliable
Communication Networks



3

Error Exponents for Decentralized Detection
in Tree Networks ∗

Wee Peng Tay and John N. Tsitsiklis

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology
Cambridge, MA, USA
{wptay, jnt}@mit.edu

3.1 Introduction

Consider a set of sensors, one of them designated as the fusion center. We
are given two hypotheses H0 and H1, with associated probability spaces. In
this chapter, we consider only simple hypothesis testing, i.e., the probability
measures under both hypotheses are known to the network. The goal of the
network is to make a decision on the true hypothesis based on information
provided by observations made at each sensor node. This is commonly known
as the decentralized detection problem. Decentralized detection in sensor net-
works has attracted a lot of interest in recent years, because of new technolo-
gies (especially, the availability of low-cost sensing devices) and numerous
potential applications. The decentralized detection problem was first formu-
lated and studied by [3], which considers a “parallel configuration” whereby
each sensor makes an observation and sends a quantized version of that obser-
vation to a fusion center. The goal is to make a decision on the two possible
hypotheses, based on the messages received at the fusion center. The main
difference between this scenario and the classical centralized decision system
is that the fusion center has no access to the raw observation made at each
sensor. Rather, a sensor transmits a summary of its observation via a trans-
mission function to the fusion center. (When the outputs of the transmission
functions are restricted to a finite alphabet, these are known as quantizers.)
The network aims to minimize the probability of error or some other cost
function at the fusion center, by choosing optimal transmission functions and
fusion rules. Various properties and variants of the decentralized detection
problem in a parallel configuration have been extensively studied over the
last twenty-five years; examples include the following: [4, 5, 6, 7, 8] study the

∗ This chapter is an abridged version of [1] and [2], and an overview of the results
therein. This research was supported, in part, by the National Science Foundation
under contracts ECCS-0701623 and ECS-0426453.
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properties of optimal fusion rules and quantizers at sensor nodes; [9] shows
the existence of optimal strategies, and proves that likelihood ratio quantizers
are optimal for a large class of problems including the decentralized detection
problem; and [10, 11, 12, 13, 14] consider constrained decentralized detection.
The reader is referred to [15, 16] for a survey of the work done in this area.

We are interested in networks operating in a regime of limited communi-
cation capabilities. Our focus on this regime reflects an emphasis on networks
consisting of many, small, and inexpensive devices that have limited battery
life and power, and cannot afford to communicate frequently or to transmit
a lot of data. Indeed, with abundant communication capabilities, the sensors
could just share all their measurements, in which case the network aspects
become immaterial, and we are faced with much easier, classical, centralized
information processing problems.

Suppose we have n sensors dispersed in a large geographical region. If
the sensors are organized in a parallel configuration (cf. the left-hand side
in Figure 3.1), some of the sensors may have to communicate to a far away
receiver. The energy expended for communicating can be reduced significantly
if the sensors are organized in an in-tree architecture, as in the right-hand side
in Figure 3.1, with sensors sending their messages first to an intermediate
aggregator. Moreover, all sensors, except the aggregators, in the right-hand
side figure expend approximately the same amount of energy if each uses the
same transmission function. This ensures that the lifetimes of the sensors are
uniform geographically (aggregators can be special nodes that have a larger
energy supply).

Fig. 3.1. Two alternative architectures of a geographically dispersed sensor network.
The architecture on the left is known as a parallel configuration, while that on the
right is a tree configuration.
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Special cases of the tandem configuration (sensors arranged in a serial net-
work), and some specific tree configurations have been studied in [17], where
it is shown that it is optimal for sensor nodes to employ likelihood ratio quan-
tizers. Tree configurations are also discussed in [18, 6, 19, 20, 21, 22, 23].
However, the exact form of optimal strategies in tree configurations is diffi-
cult to derive. Nevertheless, to obtain necessary conditions for the optimal
transmission functions or fusion rule, one can analyze the problem using a
person-by-person (PBP) optimality approach. In such an analysis, all nodes’
transmission functions, except for one particular node, are fixed. Then, one
can derive the form of the optimal transmission function at that particular
node. Under a conditional independence assumption, and when transmission
functions are quantizers, typical results show that likelihood ratio quantiz-
ers are PBP optimal. However, finding optimal quantizer thresholds requires
the solution of a nonlinear system of equations, with as many equations as
there are thresholds. Closed form formulae for the optimal thresholds used
in the likelihood ratio quantizers at each node are known only for trees with
a small number of nodes; e.g. [6] considers configurations with at most four
sensor nodes. Therefore, characterizing the overall performance is hard, even
for networks of moderate size.

Because of these difficulties, to obtain useful insights into the detection
performance of large scale networks, we resort to asymptotics. In the Neyman-
Pearson framework, one can focus on minimizing the error exponent.

lim sup
n→∞

1
n

log βn, (3.1)

where βn is the Type II error probability at the fusion center and n is the
number of sensors, while keeping the Type I error probability less than some
given threshold. Suppose that fi(n), i = 1, . . . , N , are functions taking positive
values. Then, it is easy to see that

lim sup
n→∞

1
n

log
N∑

i=1

fi(n) = lim sup
n→∞

1
n

log max
1≤i≤N

fi(n).

Therefore, by minimizing the error exponent (3.1), we also approximately
minimize the probability of a “dominant” error event (one can think of a
Type II error event as the disjoint union of several smaller error events, one
of which has the highest probability of occurrence). In the asymptotic regime
of large n, an efficient system design strives to minimize the probability of
the most likely of the “rare” error events, and this motivates a design that
minimizes (3.1). As we will see, studying the error exponent also makes the
problem tractable, and produces elegant results that provide useful insights
into the original problem.

The rest of this chapter is organized as follows. We describe the basic
model, and introduce some concepts and notations in Section 3.2. In Section
3.3, we characterize the performance of the parallel configuration, then in
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Section 3.4, we consider more general tree networks with bounded height.
We study the impact of sensor failures and unreliable communications on
the detection performance in Section 3.5. Finally, we offer some concluding
remarks in Section 3.6.

3.2 The Basic Model

We now introduce the basic model, notations and assumptions made in this
chapter. We consider a decentralized binary detection problem involving n−1
sensors and a fusion center; we will be interested in the case when n increases
to infinity. We are given two probability spaces (Ω,F , P0) and (Ω,F , P1),
associated with two hypotheses H0 and H1. We use Ej to denote the expec-
tation operator with respect to Pj . Each node v observes a random variable
Xv taking values in some set X . Under either hypothesis Hj , j = 0, 1, the
random variables Xv are i.i.d., with marginal distribution P

X
j .

Our main goal is to characterize the optimal performance (over all trans-
mission strategies) of a tree network of sensors, under an appropriate asymp-
totic performance criterion. We consider tree configurations with a bounded
height h. The parallel configuration is a special case of a tree, with height
h = 1. We first define formally a tree network below.

3.2.1 Tree Networks

We use a directed tree Tn = (Vn, En) to represent the sensor network. Here,
Vn is the set of nodes, of cardinality n, and En is the set of directed arcs of
the tree. One of the nodes (the “root”) represents the fusion center, and the
remaining n − 1 nodes represent the remaining sensors. We use the special
symbol f to denote the root of Tn. The arcs in En are oriented so that they
all point towards the root or the fusion center.

A node u is a predecessor of node v if there exists a directed path from u to
v. In this case, we also say that v is a successor of u. An immediate predecessor
of node v is a node u such that (u, v) ∈ En. An immediate successor is similarly
defined. Let the set of immediate predecessors of v be Cn(v). If v is a leaf node,
Cn(v) is naturally defined to be empty. The length of a path is defined as the
number of arcs in the path. The height of the tree Tn is the length of the
longest path from a leaf to the root, and will be denoted by hn.

Since we are interested in asymptotically large values of n, we consider a
sequence of trees (Tn)n≥1. While we could think of the sequence as represent-
ing the evolution of the network as sensors are added, we do not require the
sequence En to be an increasing sequence of sets; thus, the addition of a new
sensor to Tn may result in some arcs being deleted and some new arcs being
added. We define the height of a sequence of trees to be h = supn≥1 hn. We
are interested in tree sequences of bounded height, i.e., h < ∞. For a tree
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with height h, we say that a node is at level k if it is connected to the fusion
center via a path of length h − k. Hence the fusion center f is at level h.

Let ln(v) be the number of leaves of the sub-tree rooted at the node v.
Thus, ln(f) is the total number of leaves.

3.2.2 Strategies

Consider a node v, other than the fusion center f . The node v receives mes-
sages Yu,n from its immediate predecessors u ∈ Cn(v). Because of capacity or
other cost constraints, node v can only transmit a summary of its received
messages and its own observation Xv, if any. It uses a transmission function
γv to form its message Yv,n = γv(Xv, {Yu,n : u ∈ Cn(v)}). Let all messages be
symbols in a fixed alphabet T . Thus, if the number of immediate predecessors
of v is |Cn(v)| = d, then the transmission function γv maps X ×T d to T . We
also assume that for each d ≥ 0, we are given a set of transmission functions
Γ (d) that the sensor v can choose from. For convenience, we denote Γ (0) by
Γ . This is the set of transmission functions available to leaf nodes. We assume
that all transmissions are perfectly reliable, unless there is a statement to the
contrary.

The role of the fusion center f is to make a decision on the true hypothesis,
based on the messages it receives from its immediate predecessors. Suppose
that it has d immediate predecessors. Recall that in centralized Neyman-
Pearson detection, randomization can reduce the Type II error probability.
Hence, we assume that the fusion center has access to a random variable,
which is uniformly distributed in [0, 1], and independent of everything else.
The fusion center uses a randomized fusion rule γf : T d × [0, 1] �→ {0, 1} to
make a decision. Let Yf,n be a binary-valued random variable indicating the
decision of the fusion center.

A strategy γ(n) consists of a collection of transmission functions, one for
each sensor, and a fusion rule for the fusion center. Strategies in which only the
leaves make observations will be of special interest to us. In such a scenario,
every other node v simply fuses the messages it has received, and forwards a
message Yv,n = γv({Yu,n : u ∈ Cn(v)}) to its immediate successor. We call a
strategy of this type a relay strategy . A tree network in which we restrict to
relay strategies will be called a relay tree. Finally, in a relay tree, nodes other
than the root and the leaves will be called relay nodes .

3.2.3 Neyman-Pearson Hypothesis Testing

In Neyman-Pearson hypothesis testing, we require that the Type I error prob-
ability P0(Yf,n = 1) be no more than a given α ∈ (0, 1). A strategy γ(n) is said
to be admissible if it meets this constraint. We define β∗(Tn) as the infimum
of P1(Yf,n = 0), over all admissible strategies. Similarly, we define β∗

R(Tn) as
the infimum of P1(Yf,n = 0), over all admissible relay strategies. Typically,
β∗(Tn) or β∗

R(Tn) will converge to zero as n → ∞. Our goal is to determine if
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such convergence takes place exponentially fast, and to characterize the Type
II error exponent, defined by

g∗ = lim sup
n→∞

1
n

log β∗(Tn), g∗R = lim sup
n→∞

1
ln(f)

log β∗
R(Tn).

For a relay tree, g∗R is defined using ln(f) instead of n due to the fact that only
the leaves make observations. Therefore, g∗R measures the rate of error decay
per observation. In the case of a parallel configuration, we use the special
notation g∗P to denote the error exponent.

For any γ ∈ Γ , let P
γ
j = P

X
j ◦ γ−1 be the probability law of γ(X), and let

the Kullback-Leibler divergences be

x̄0,γ = E0

[
log

dP
γ
1

dP
γ
0

]
, x̄1,γ = E1

[
log

dP
γ
1

dP
γ
0

]
.

It is well known that x̄0,γ ≤ 0 ≤ x̄1,γ [24]. Moreover, both inequalities are
strict as long as the measures P

γ
j are not indistinguishable. We will make the

following assumptions throughout this chapter. However, for our results to
hold, Assumption 2 can be weakened somewhat; see [25].

Assumption 1 The measures P
X
0 and P

X
1 are equivalent, i.e., they are ab-

solutely continuous w.r.t. each other. Furthermore, there exists some γ ∈ Γ
such that x̄0,γ < 0 < x̄1,γ .

Assumption 2 E0

[
log2 dP

X
1

dP
X
0

]
< ∞.

Suppose that the node v sends a message Yv,n = y to its immediate suc-
cessor. Let the log-likelihood ratio of the message sent by v be

Lv,n(y) = log
dP

(v)
1,n

dP
(v)
0,n

(y),

where dP
(v)
1,n/dP

(v)
0,n is the Radon-Nikodym derivative of the distribution of Yv,n

under H1 w.r.t. the distribution under H0. If the transmission alphabet T is
a discrete set, then this is just the ratio

log
P1(Yv,n = y)
P0(Yv,n = y)

.

We will make extensive use of the following class of transmission functions.
Recall that ln(v) is the number of leaves of the sub-tree rooted at node v.

Definition 1 A (1-bit) Log-Likelihood Ratio Quantizer (LLRQ) with thresh-
old t for a non-leaf node v, with |Cn(v)| = d immediate predecessors, is a
binary-valued function on T d, defined by
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LLRQd,t

(
{yu : u ∈ Cn(v)}

)
=

{
0, if x ≤ t,
1, if x > t,

where

x =
1

ln(v)

∑
u∈Cn(v)

Lu,n(yu).

Note that if a node v uses a LLRQ, it ignores its own observation Xv and
acts as a relay. If all non-leaf nodes use a LLRQ, we have a special case of a
relay strategy. We assume that LLRQs are available choices of transmission
functions for all non-leaf nodes. As we will see, LLRQs will play an important
role in our results.

Assumption 3 For all t ∈ R and d > 0, LLRQd,t ∈ Γ (d).

For simplicity, we define the sum of the log-likelihood ratios of the received
messages at node v, as follows:

Sn(v) =
∑

u∈Cn(v)

Lv,n(Yv,n).

3.3 The Parallel Configuration

We consider here the special case of a network with a parallel configuration.
The following proposition shows that the Type II error probability falls ex-
ponentially fast with the number of nodes n. Moreover, an asymptotically
optimal strategy consists of using identical transmission functions for each
sensor. A proof can be found in [26].

Proposition 1 If Assumptions 1-2 hold, then

g∗p = inf
γ∈Γ

x̄0,γ .

Moreover, the error exponent stays the same if we restrict all sensors to using
the same transmission function.

The quantity −x̄0,γ may be recognized as the Kullback-Leibler divergence,
which measures the “discrimination” between the two probability measures
P

γ
0 and P

γ
1 . Hence, the asymptotically optimal strategy is to choose a trans-

mission function that produces the greatest discrimination between the two
hypotheses.
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3.4 Tree Architectures

In this section, we consider general tree networks with a bounded height. Our
objective is to study g∗ and g∗R for different sequences of trees. Since the fusion
center of a parallel configuration can simulate a relay network (by carrying
out all the operations taking place at each relay node, internally in the fusion
center), we have

g∗P ≤ g∗R. (3.2)

Recall that ln(f) is the number of leaves in the network. Let

z = lim inf
n→∞

ln(f)
n

be the proportion of nodes that are leaves. By comparing the performance to
a centralized system where all raw observations are transmitted directly to
the the fusion center, and using a similar argument as above, we obtain the
first inequality in the expression below,

x̄0 = E0

[
log

dP
X
1

dP
X
0

]
≤ g∗ ≤ zg∗R. (3.3)

The second inequality follows because an optimal strategy is at least as good
as an optimal relay strategy; the factor z arises because we have normalized
g∗R by ln(f) instead of n.

In the following, we provide a method to propagate error bounds along a
tree network, and derive upper bounds similar to that in Cramér’s Theorem
for the parallel configuration [27]. We consider specifically a h-uniform tree,
defined as follows.

Definition 2 (h-uniform tree) A tree Tn is said to be h-uniform if the
length of every path from a leaf to the root is exactly h. A sequence of trees
(Tn)n≥1 is said to be h-uniform if there exists some n0 < ∞, so that for all
n ≥ n0, Tn is h-uniform.

It turns out that it is easier to work with h-uniform trees, and as shown
on page 83, a height uniformization procedure can be performed on any given
tree. Moreover, the detection performance of this height uniformized tree can-
not be better than the original tree.

3.4.1 Error Bounds for h-Uniform Relay Trees

We consider the special case of a 1-bit h-uniform relay tree, in which all
relay nodes at level k use a LLRQ with a common threshold tk. Let t(k) =
(t1, t2, . . . , tk), for k ≥ 1, and t(0) = ∅. For j = 0, 1, k ≥ 1, and λ ∈ R, we
define recursively
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Λj,0(γ;λ) = Λj,0(γ, ∅;λ) = log Ej

[(dP
γ
1

dP
γ
0

)λ]
,

Λ∗
j,k(γ, t(k)) = sup

λ∈R

{
λtk − Λj,k−1(γ, t(k−1);λ)

}
, (3.4)

Λj,k(γ, t(k);λ) = max
{
− Λ∗

1,k(γ, t(k))(j + λ), Λ∗
0,k(γ, t(k))(j − 1 + λ)

}
.

(3.5)

Here, Λ∗
j,k(γ, t(k)) is the Fenchel-Legendre transform of Λj,k−1 [27], and can

be visualized as in Figure 3.2. We will be interested in the case where

x̄0,γ < 0 < x̄1,γ , (3.6)
t1 ∈ (x̄0,γ , x̄1,γ), (3.7)

tk ∈ (−Λ∗
1,k−1(γ, t(k−1)), Λ∗

0,k−1(γ, t(k−1))), for 1 < k ≤ h. (3.8)

The reader is referred to [1] for an argument that shows the above require-
ments on the thresholds tk to be feasible.

λ0 1{
Slope=−Λ∗

1,k−1(γ, t(k−1)) Slope=Λ∗
0,k−1(γ, t(k−1))

Λ∗
0,k(γ, t(k))

Slope=tk

Fig. 3.2. Typical plot of Λ0,k−1(γ, t(k−1); λ), k ≥ 2.

Proposition 2 below shows that the Type I and II error exponents are
essentially upper bounded by −Λ∗

0,h(γ, t(h)) and −Λ∗
1,h(γ, t(h)) respectively.

Note that we recover the classical Chernoff bound when the network has
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height h = 1, i.e., the network is a parallel configuration. Let pn(v) be the
total number of predecessors of v, i.e., the total number of nodes in the sub-
tree rooted at v, not counting v itself. Thus, pn(f) = n − 1. Recall that that
for a given h-uniform sequence of trees (Tn)n≥1, there exists a n0 such that
for all n ≥ n0, Tn is h-uniform.

Proposition 2 Fix some h ≥ 1, and consider an h-uniform sequence of trees.
Suppose that Assumptions 1-2 hold. Suppose that, for every n, every leaf node
uses the same transmission function γ ∈ Γ , which satisfies (3.6), and that
every level k node (k ≥ 1) uses a LLRQ with threshold tk, satisfying (3.7)-
(3.8).

(i) For all nodes v of level k ≥ 1 and for all n ≥ n0,

1
ln(v)

log P1

(Sn(v)
ln(v)

≤ tk

)
≤ −Λ∗

1,k(γ, t(k)) +
pn(v)
ln(v)

− 1,

1
ln(v)

log P0

(Sn(v)
ln(v)

> tk

)
≤ −Λ∗

0,k(γ, t(k)) +
pn(v)
ln(v)

− 1.

(ii) Suppose that for all n ≥ n0 and for all level 1 nodes v, we have ln(v) ≥
N . Then, for all n ≥ n0, we have

1
ln(f)

log P1

(Sn(f)
ln(f)

≤ th

)
≤ −Λ∗

1,h(γ, t(h)) +
h

N
,

1
ln(f)

log P0

(Sn(f)
ln(f)

> th

)
≤ −Λ∗

0,h(γ, t(h)) +
h

N
.

3.4.2 Optimal Error Exponent

The following proposition shows that Type II error probabilities decay expo-
nentially (the error exponents are negative). The bounded height assumption
is crucial for this result. Indeed, for the case of a tandem configuration, the
error probability seems to decay at a sub-exponential rate [28]. The following
is proved in [29].

Proposition 3 Consider a sequence of trees of height h, and suppose As-
sumptions 1-3 hold. Then,

−∞ < g∗P ≤ g∗R < 0 and −∞ < x̄0 ≤ g∗ < 0.

¿From (3.2), we have g∗P ≤ g∗R, i.e., a relay network performs at best as well
as a parallel configuration. Next, we want to know when a relay network has
the same error exponent as a parallel configuration. A proof of the following
proposition can be found in [29].
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Proposition 4 Consider a sequence of trees of height h in which z = 1.
Suppose that Assumptions 1-3 hold. Then,

g∗P = g∗ = g∗R.

Furthermore, if the sequence of trees is h-uniform, the optimal error exponent
does not change even if we restrict to relay strategies in which every leaf uses
the same transmission function and all other nodes use a 1-bit LLRQ with the
same threshold.

Proposition 4 is surprising as it establishes that the performance of every
network possessing certain qualitative properties is comparable to that of a
parallel configuration. This result has important ramifications: suppose that
all nodes are restricted to be at most h hops away from the fusion center, then
a system designer can reduce the energy consumption (e.g., by employing a
h-hop spanning tree that minimizes the overall energy consumption), without
losing detection efficiency, as long as the number of nodes n is large, and
the proportion of leaf nodes is large. For example, consider the case of nodes
uniformly distributed in a square as in Figure 3.1, and suppose that the cost
of transmitting a message from one node to another is proportional to the
Euclidean distance between the nodes. It is well known that finding a h-hop
constrained Minimum Spanning Tree (MST) is NP-hard (see [30]). However,
heuristics that achieve a cost of the same order of magnitude as the h-hop
constrained MST can be employed to design a suitable network architecture
[31]. This involves dividing the square into suitable sub-squares, and it can be
verified that with high probability, as n → ∞, the network we obtain has the
property that z = 1.

If a sequence of trees is h-uniform and z = 1, it can be shown that the
following simple relay strategy ε-achieves the optimal error exponent:

1. all leaf nodes transmit with the same transmission function γ ∈ Γ , such
that x̄0,γ ≤ g∗P + ε/2;

2. all other nodes use a 1-bit LLRQ with the same threshold t = x̄0,γ + ε/2.

This is a convenient strategy since only leaf nodes need to make observa-
tions, while all the rest of the nodes act as relay nodes. Moreover, transmitting
only 1 bit is sufficient, and all relay nodes use the same 1-bit LLRQ. This may
be useful in situations where the nodes are simple, low-cost devices.

For a general sequence of trees with height h, we can perform a height
uniformization procedure to obtain an h-uniform sequence of trees as follows.
We let An ⊂ Vn be the set of nodes whose immediate predecessors include
leaves of the tree Tn.

Height Uniformization Procedure. Consider a tree Tn = (Vn, En) of
height h, and a node v that has at least one leaf as an immediate predecessor
(i.e., v ∈ An). Let Dn be the set of leaves that are immediate predecessors
of v, and whose paths to the fusion center f are of length k < h. Add h − k
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nodes, {uj : j = 1, . . . , h − k}, to Vn; remove the edges (u, v), for all u ∈ Dn;
add the edges (u1, v), and (uj+1, uj), for j = 1, . . . , h − k − 1; add the edges
(u, uh−k), for all u ∈ Dn. This procedure is repeated for all v ∈ An. The
resulting tree is h-uniform. �

It is clear that any strategy on the height uniform tree can be simulated
by a strategy on the original tree. Furthermore, it can be shown that the
height uniformization procedure preserves the property that z = 1 [29]. As
the height uniformized tree sequence cannot perform better than the original
tree sequence, using the strategy as described above for h-uniform trees is an
ε-optimal strategy for the original tree sequence.

Next, we want to consider when the sufficient condition z = 1 is also a
necessary condition for a relay network to have the same asymptotically opti-
mal performance as a parallel configuration. Non-trivial necessary conditions
for the equality g∗R = g∗P to hold are, in general, difficult to obtain, because
they depend on the nature of the transmission functions available to the sen-
sors. Suppose that sensors are allowed to simply forward undistorted all of the
messages that they receive, then the equality g∗R = g∗P holds trivially. Hence,
we need to impose some restrictions on the set of transmission functions avail-
able, as in the assumption that follows. Let Bn be the set of nodes all of whose
predecessors are leaves.

Assumption 4

(a) There exists a n0 ≥ 1 such that for all n ≥ n0, we have ln(v) > 1 for all
v ∈ Bn.

(b) Let X1,X2, . . . be i.i.d. random variables under either hypothesis Hj, each
with distribution P

X
j . For k > 1, γ0 ∈ Γ (k), and γi ∈ Γ , i = 1, . . . , k,

let ξ = (γ0, . . . , γk). Let νξ
j be the distribution of γ0(γ1(X1), . . . , γk(Xk))

under hypothesis Hj. We assume that

g∗P = inf
γ∈Γ

x̄0,γ < inf
ξ∈Γ (k)×Γ k

1
k
E0

[
log

dνξ
1

dνξ
0

]
, (3.9)

for all k > 1.

Assumption 4 holds in most cases of interest. There is no loss of gener-
ality in assuming part (a), because if in a relay tree we have ln(v) = 1 for
some v ∈ Bn, we can remove the predecessor of v, and treat v as a leaf sen-
sor. As for part (b), it is easy to see that the L.H.S. of (3.9) is always less
than or equal to the R.H.S., hence we have only excluded those cases where
(3.9) holds with equality. We are essentially assuming that when the messages
γ1(X1), . . . , γk(Xk) are summarized (or quantized) by γ0, there is some loss
of information, as measured by the associated Kullback-Leibler divergences.

Proposition 5 Suppose that Assumptions 1-4 hold. Then, g∗R = g∗P iff z = 1.
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3.5 Unreliable Networks

So far, we have assumed that all nodes are error-free, and all communications
are reliable. We next study the impact of failure-prone sensors and unreliable
communications on the detection performance.

3.5.1 Sensor Failures

We model the case of sensor failures by using a random number of nodes.
Variants of the decentralized detection problem with a random number of
nodes distributed in a parallel configuration have been studied in [32, 33,
34]. In [32] and [34], the authors consider the case of spatially correlated
signals, and analyze the detection performance of a simple but suboptimal
strategy. In [33], the objective is not to find an optimal transmission strategy.
Rather, the authors assume that nodes in a parallel configuration make i.i.d.
observations under either hypothesis, quantize their observations using some
known quantizer that is identical for all nodes, and use a special multiple
access protocol called Type-Based Random Access (TBRA) (in all problems
so far, we have implicitly assumed some sort of orthogonal multiple access
protocol in which messages from different nodes do not corrupt one another,
whereas in TBRA, messages are combined additively over the transmission
medium). In this section, our goal is to characterize the asymptotically optimal
performance for tree networks with bounded height, and to develop an optimal
transmission strategy, assuming i.i.d. observations and the usual orthogonal
multiple access protocol. The results in this section are a summary of those
in [2].

To model sensor failures, we construct a random tree as in a Galton-
Watson process, but with a limited ‘time span’ of h (which corresponds to
our tree having a height h). We start with the fusion center f , and let the
number of immediate predecessors of f be a random variable Nf = |C(f)|,
with distribution law µh. Then, we let each node v in the random set C(f)
have Nv = |C(v)| immediate predecessors, where Nv has marginal law µh−1.
We continue this process until the level 0 nodes are reached. Hence, each level
k node v (with k ≥ 1) has Nv immediate predecessors, where Nv is a random
variable with law µk. Furthermore, we also assume that all these random
variables are independent, and independent of the hypothesis. We call such a
random tree a GW-tree.

We want to model a dense network, therefore we consider the case when
each of the laws µk, k = 1, . . . , h, has asymptotically large mean. Let λk be
the mean of µk. We let λ∗ = min1≤k≤h λk increase to infinity, by allowing the
laws µk to vary accordingly. However, we require that the distributions satisfy
the following assumption.

Assumption 5 Let Ñk be random variables with distribution µk, k =
1, . . . , h. We have
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E[Ñ2
k ] = (1 + o(1))λ2

k, (3.10)

where o(1) stands for a term that goes to 0 as λk → ∞.

It is easy to check that both the Poisson distribution and Binomial dis-
tribution satisfy the above assumption. Under Assumption 5, Chebychev’s
inequality shows that the distribution of Ñk is clustered around its mean.

Lemma 1 For all η > 0, P(|Ñk/λk − 1| > η) → 0 as λk → ∞.

Let β∗
GW be the infimum of the Type II error probability, with the mini-

mization taken over all strategies (to be more precise, we have to consider a
family of strategies, see [2]), subject to the constraint that the Type I error
probability is not more than α ∈ (0, 1). Our goal is to characterize the optimal
error exponent

lim sup
λ∗→∞

1
λ(h)

log β∗
GW ,

where λ(h) =
h∏

k=1

λk is the expected number of nodes.

Let the log-likelihood ratio of the received messages at v be Sv. Motivated
by the ε-optimal strategies for non-random tree networks, it is natural to
define the following class of transmission policies.

Definition 3 A transmission function for a level k node v is called a Mean-
normalized Log-Likelihood Ratio (MLLR) quantizer at level k with threshold t
if

Yv =
{

0, if Sv/λ(k) ≤ t,
1, otherwise.

Again, we assume that MLLR quantizers are valid quantizers for each
node.

Assumption 6 Every node of level k ≥ 1 has access to MLLR quantizers.

In the case where there are no sensor failures, i.e., Nv = λk a.s. for all non-
leaf nodes v, Proposition 4 shows that the Type II error probability decays
exponentially fast with λ(h), at rate g∗P . The proposition below shows that
this remains true for a GW-tree.

Proposition 6 Suppose that Assumptions 1, 2, 5 and 6 hold. Then, for all
α ∈ (0, 1), the optimal error exponent of a GW-tree of height h is given by

lim
λ∗→∞

1
λ(h)

log β∗
GW = g∗P . (3.11)

Furthermore, for any ε ∈ (0,−g∗P ), and any large enough λ∗, the following
strategy satisfies the Type I error probability constraint, and its error exponent
is bounded above by g∗P + ε:
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(i) each leaf uses the same transmission function γ ∈ Γ , with x̄0,γ ≤ g∗P +
ε/2 < 0; and

(ii) for k ≥ 1, every level k node uses a MLLR quantizer with threshold
tk = x̄0,γ + ε/2h−k+1.

Consider the scenario where each node in the network may fail, indepen-
dently, with some probability p. A network of n failure-prone sensors cannot
be better (on the average) than a network of np failure-proof sensors. However,
in the limit of large n, Proposition 6 shows that the asymptotically optimal
performance of both networks is essentially the same.

3.5.2 Unreliable Communications

We now consider the case where each sensor in a tree of height h is constrained
to sending one bit to its immediate successor, and the channel between any two
nodes is a binary symmetric channel (BSC) with known crossover probability
η ∈ (0, 1/2). Suppose that (Tn)n≥1 is a h-uniform tree sequence. For simplicity,
we discuss only relay strategies in this section. For every non-leaf node v, we
assume that |Cn(v)| ≥ cn, for some cn → ∞ as n → ∞. This models a
dense sensor network with bounded height h. We again consider the problem
of minimizing the Type II error exponent, with the Type I error constrained
to be no larger than α ∈ (0, 1). However, in this case, the appropriate error
exponent to consider, as we will see later in Proposition 8, is

lim sup
n→∞

1
|Cn(f)| log β∗(Tn),

where we have normalized the error exponent by |Cn(f)|, the number of im-
mediate predecessors of the fusion center, instead of the total number of nodes
n.

Consider an immediate predecessor u of the node v. The node u transmits a
1-bit message Yu,n = yu over the BSC to node v. Let Ȳu,n = ȳu be the received
message at node v. We now define LLRQs as in Definition 1, but with respect
to the received messages Ȳu,n, i.e., the likelihood ratios are replaced with the
Radon-Nikodym derivative of the distribution of Ȳu,n under H1 with respect
to that under H0.

Let us first consider the simple case when h = 1, i.e., the parallel config-
uration. For each γ ∈ Γ and j = 0, 1, we define the probability measures Q

γ
j

on the space {0, 1} as follows. Let

Q
γ
j ({0}) = (1 − η)Pγ

j ({0}) + ηP
γ
j ({1}),

Q
γ
j ({1}) = (1 − η)Pγ

j ({1}) + ηP
γ
j ({0}).

Then, the following proposition is a consequence of Proposition 1.
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Proposition 7 Suppose that Assumptions 1-3 hold. For h = 1, and all α ∈
(0, 1), the optimal error exponent is

lim
n→∞

1
|Cn(f)| log β∗(Tn) = inf

γ∈Γ
EQ

γ
0
[
log

dQ
γ
1

dQ
γ
0

]
,

where EQ
γ
0 is the expectation operator under Q

γ
0 . Furthermore, there is no

loss in optimality if we restrict all the leaf nodes in Cn(f) to using the same
transmission function γ ∈ Γ .

The optimal error exponent in the case h ≥ 2 is markedly different from
that in Proposition 7. Let Bern(η) denote the Bernoulli distribution on {0, 1}
that takes the value 1 with probability η. The following proposition is proved
in [2].

Proposition 8 Suppose that Assumptions 1-3 hold. For h ≥ 2, and for all
α ∈ (0, 1), the optimal error exponent is

lim
n→∞

1
|Cn(f)| log β∗(Tn) = −

(
η log

η

1 − η
+ (1 − η) log

1 − η

η

)

= −D(η) < 0, (3.12)

where D(η) is the Kullback-Leibler divergence function of Bern(1 − η) w.r.t.
Bern(η).

Again, it can be shown that a strategy that ε-achieves the optimal error
exponent is the following:

(i) All leaves use the same transmission function γ ∈ Γ , where γ is chosen
so that P0(γ(X) = 0) �= P1(γ(X) = 0).

(ii) Every level 1 node uses a LLR with threshold 0.
(iii) All other nodes use the majority rule: send a 1 if and only if more than

half of the received messages are equal to 1.
(iv) The fusion center uses a LLR with threshold t = −D(η) + ε.

Compared to the result in Proposition 3, the above proposition shows that
the detection performance of a h-uniform relay tree network of height at least
2, in the presence of unreliable communications, is significantly worse than
that of a similar network with reliable communications. Indeed, in the case
of unreliable communications, the error probability decays exponentially fast
with |Cn(f)|, instead of n.

3.6 Conclusions

We have considered Neyman-Pearson decentralized detection in sensor net-
works with tree architectures of bounded height. Although the problem of
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finding exact optimal strategies, and hence of characterizing the optimal de-
tection performance, for a fixed number of nodes n is computationally in-
tractable, the asymptotically optimal performance is surprisingly the same
as the well-known detection performance of the parallel configuration, under
most practical cases of interest. Indeed, when the leaf nodes dominate, a tree
network with bounded height has the same error exponent as a parallel con-
figuration. Under a mild condition, the property that leaf nodes dominate
the network is also shown to be a necessary condition for achieving the same
optimal error exponent as the parallel configuration.

We have only considered the Neyman-Pearson criterion in this chapter. A
similar analysis is possible within a Bayesian framework. It is shown in [35]
that error probabilities also decay exponentially fast in a Bayesian setting.
However, the same performance as the parallel configuration can no longer be
achieved.

We also discussed the impact of sensor failures and unreliable communi-
cations on detection performance. Our results provide a useful insight into
the performance of height uniform tree sequences. Suppose that all nodes can
only send 1-bit messages, and every node, except the leaf nodes, has the same
number of immediate predecessors cn. A network can operate in two modes,
in a ‘sensor failure’ mode and in an ‘unreliable communications’ mode. In
the ‘sensor failure’ mode, if a sensor determines that its message cannot be
received reliably by its intended recipient, it remains silent instead of transmit-
ting. In the ‘unreliable communications’ mode, it transmits its 1-bit message
regardless. Our results indicate that in the ‘sensor failure’ mode, the error
probability decays exponentially with ch

n, whereas in the ‘unreliable commu-
nications’ mode, it decays exponentially with cn. Therefore, it is better for
the network to operate in the ‘sensor failure’ mode, when the height of the
tree network is greater than one.

Several issues remain outstanding, and are areas for further research. Our
results are valid in the large n regime; however, a significantly larger number
of nodes may be needed before a relay network can approximate, in a certain
sense, the performance of a parallel configuration. Another issue is that al-
though the error exponents are the same, the ratio β∗(Tn)/β∗

P , where β∗
P is

the optimal error probability of the parallel configuration, could be diverg-
ing to infinity as n increases. Therefore, it is of interest to study the exact
asymptotics of this problem. Finally, the case where sensor observations are
correlated remains a difficult problem. For the case of correlated sensor obser-
vations in parallel configurations, the reader is referred to [36, 37] for recent
results.

References

[1] W.-P. Tay, J. N. Tsitsiklis, and M. Z. Win, “Data fusion trees for detec-
tion: Does architecture matter?” in Proc. Allerton Conf. on Communi-



90 Wee Peng Tay and John N. Tsitsiklis

cation, Control, and Computing, Monticello, IL, Sep. 2006.
[2] ——, “Detection in dense wireless sensor networks,” in Proc. IEEE Wire-

less Commun. and Networking Conf., Hong Kong, Mar. 2007.
[3] R. R. Tenney and N. R. Sandell, “Detection with distributed sensors,”

IEEE Trans. Aerosp. Electron. Syst., vol. 17, pp. 501–510, 1981.
[4] Z. Chair and P. K. Varshney, “Optimal data fusion in multiple sensor

detection systems,” IEEE Trans. Aerosp. Electron. Syst., vol. 22, pp.
98–101, 1986.

[5] G. Polychronopoulos and J. N. Tsitsiklis, “Explicit solutions for some
simple decentralized detection problems,” IEEE Trans. Aerosp. Electron.
Syst., vol. 26, pp. 282–292, 1990.

[6] A. R. Reibman and L. W. Nolte, “Design and performance comparison
of distributed detection networks,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 23, pp. 789–797, 1987.

[7] P. Willett and D. Warren, “The suboptimality of randomized tests in
distributed and quantized detection systems,” IEEE Transactions on In-
formation Theory, vol. 38, pp. 355–361, Mar. 1992.

[8] W. W. Irving and J. N. Tsitsiklis, “Some properties of optimal thresholds
in decentralized detection,” IEEE Trans. Autom. Control, vol. 39, pp.
835–838, 1994.

[9] J. N. Tsitsiklis, “Extremal properties of likelihood-ratio quantizers,”
IEEE Trans. Commun., vol. 41, pp. 550–558, 1993.

[10] C. Rago, P. Willett, and Y. Bar-Shalom, “Censoring sensors: A low-
communication-rate scheme for distributed detection,” IEEE Trans.
Aerosp. Electron. Syst., vol. 32, no. 2, pp. 554–568, 1996.

[11] S. Appadwedula, V. V. Veeravalli, and D. Jones, “Energy-efficient detec-
tion in sensor networks,” IEEE J. Sel. Areas Commun., vol. 23, no. 4,
pp. 693–702, 2005.

[12] J.-F. Chamberland and V. V. Veeravalli, “Decentralized detection in sen-
sor networks,” IEEE Trans. Signal Process., vol. 51, no. 2, pp. 407–416,
2003.

[13] ——, “Asymptotic results for decentralized detection in power con-
strained wireless sensor networks,” IEEE J. Select. Areas Commun., Spe-
cial Issue on Wireless Sensor Networks, vol. 22, no. 6, pp. 1007–1015,
2004.

[14] W.-P. Tay, J. N. Tsitsiklis, and M. Z. Win, “Censoring sensors: Asymp-
totics and the value of cooperation,” in Proc. Conf. on Inform. Sci. and
Sys., Princeton, NJ, Mar. 2006, pp. 62–67.

[15] J. N. Tsitsiklis, “Decentralized detection,” Advances in Statistical Signal
Processing, vol. 2, pp. 297–344, 1993.

[16] R. Viswanathan and P. K. Varshney, “Distributed detection with multiple
sensors: part I - fundamentals,” Proc. IEEE, vol. 85, pp. 54–63, 1997.

[17] L. K. Ekchian and R. R. Tenney, “Detection networks,” in Proc. 21st
IEEE Conf. Decision Control, 1982, pp. 686–691.



3 Error Exponents for Decentralized Detection in Tree Networks 91

[18] R. Viswanathan, S. C. A. Thomopoulos, and R. Tumuluri, “Optimal
serial distributed decision fusion,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 24, no. 4, pp. 366–376, 1988.

[19] Z. B. Tang, K. R. Pattipati, and D. L. Kleinman, “Optimization of de-
tection networks: part I- tandem structures,” Systems, Man and Cyber-
netics, IEEE Transactions on, vol. 21, no. 5, pp. 1044–1059, 1991.

[20] ——, “Optimization of detection networks: part II- tree structures,” Sys-
tems, Man and Cybernetics, IEEE Transactions on, vol. 23, no. 1, pp.
211–221, 1993.

[21] J. D. Papastavrou and M. Athans, “On optimal distributed decision ar-
chitectures in a hypothesis testing environment,” IEEE Trans. Autom.
Control, vol. 37, no. 8, pp. 1154–1169, 1992.

[22] A. Pete, K. Pattipati, and D. Kleinman, “Optimization of detection net-
works with multiple event structures,” IEEE Trans. Autom. Control,
vol. 39, no. 8, pp. 1702–1707, 1994.

[23] S. Alhakeem and P. K. Varshney, “A unified approach to the design of
decentralized detection systems,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 31, no. 1, pp. 9–20, 1995.

[24] T. A. Cover and J. A. Thomas, Elements of Information Theory, 1st ed.
New York, NY: John Wiley & Sons, Inc., 1991.

[25] P.-N. Chen and A. Papamarcou, “New asymptotic results in parallel dis-
tributed detection,” IEEE Trans. Inf. Theory, vol. 39, no. 6, pp. 1847–
1863, Nov. 1993.

[26] J. N. Tsitsiklis, “Decentralized detection by a large number of sensors,”
Math. Control, Signals, Syst., vol. 1, pp. 167–182, 1988.

[27] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applica-
tions. New York, NY: Springer-Verlag, 1998.

[28] W.-P. Tay, J. N. Tsitsiklis, and M. Z. Win, “On the sub-exponential
decay of detection probabilities in long tandems,” in Proc. IEEE Int.
Conf. Acoustics, Speech, and Signal Processing, Honolulu, HI, Apr. 2007.

[29] ——, “Data fusion trees for detection: Does architecture matter?” IEEE
Trans. Inf. Theory, 2006, submitted for publication.

[30] M. R. Garey and D. S. Johnson, A guide to the theory of NP-
Completeness. New York, NY: W. H. Freeman, 1979.

[31] A. E. F. Clementi, M. D. Ianni, M. A., L. M., R. G., and S. R., “Di-
vide and conquer is almost optimal for the bounded-hop MST problem
on random Euclidean instances,” in Proc. Structural Information and
Communication Complexity, Mont Saint-Michel, France, May 2005, pp.
89–98.

[32] R. Niu and P. K. Varshney, “Distributed detection and fusion in a large
wireless sensor network of random size,” EURASIP Journal on Wireless
Communications and Networking, vol. 2005, no. 4, pp. 462–472, 2005.

[33] L. T. Animashree Anandkumar, “A large deviation analysis of detection
over multi-access channels with random number of sensors,” in Acous-



92 Wee Peng Tay and John N. Tsitsiklis

tics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006
IEEE International Conference on, vol. 4, 2006.

[34] T. Q. S. Quek, D. Dardari, and M. Z. Win, “Energy efficiency of dense
wireless sensor networks: to cooperate or not to cooperate,” IEEE J. Sel.
Areas Commun., vol. 25, pp. 459–469, 2007.

[35] W.-P. Tay, J. N. Tsitsiklis, and M. Z. Win, “Bayesian detection in
bounded height tree networks,” in Proc. of Data Compression Conf.,
Snowbird, UT, Mar. 2007.

[36] J.-F. Chamberland and V. V. Veeravalli, “How dense should a sensor net-
work be for detection with correlated observations?” IEEE Transactions
on Information Theory, vol. 52, no. 11, pp. 5099–5106, Nov. 2006.

[37] W. Li and H. Dai, “Distributed detection in large-scale sensor networks
with correlated sensor observations,” in Proc. 43rd Allerton Annual Con-
ference on Communication, Control, and Computing, Sep. 2005.



4

Function Computation in Wireless Sensor
Networks∗

Lei Ying, R. Srikant, and Geir E. Dullerud

Coordinated Science Lab
University of Illinois at Urbana-Champaign
Urbana, IL 61801

4.1 Introduction

With the wide availability of inexpensive wireless technology and sensing hard-
ware, wireless sensor networks are expected to become commonplace because
of their broad range of potential applications. A wireless sensor network con-
sists of sensors that have sensing, computation and wireless communication
capabilities. Each sensor monitors the environment surrounding it, collects
and processes data, and when appropriate transmits information so as to co-
operatively achieve a global detection objective. One important feature of
wireless sensor networks is that the network is often designed for a specific
purpose, and the sensors are required to collaborate to achieve a global objec-
tive. This is one fundamental distinction between wireless networks used for
communication and wireless networks used for sensing. In wireless communi-
cation networks, the protocols are designed so that they are not application-
specific, and therefore the network can support a constantly evolving set of
applications. Contrasting this, in sensor networks, the architecture and proto-
cols can be designed for each specific application, exploiting its structure, to
reduce the energy usage within the network. Note that the objectives of sen-
sor networks are to retrieve useful information from sensor measurements, so
many of these objectives can be regarded as a function computation of sensor
measurements. For example, counting the number of intruders or hot-spots is
equivalent to computing a “sum” function, and detecting an abnormal event
could be same as computing a threshold function. Recently there has been a
lot of interest in function computation in wireless sensor networks. For exam-
ple, in [5], the authors have designed a block coding scheme to compress the
amount of information to be transmitted in a sensor network computing some
functions. In [8], [14] and [15], energy consumption of function computation
is studied for large scale sensor networks, where the energy consumption of

∗ The research was supported by a Vodafone Fellowship and NSF Grant CNS 05-
19535.
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each bit is assumed to be same. Also, several recent works [2], [1] and [16]
have discussed using silence to convey information in sensor networks to save
energy, and indicate the potential benefit of non-traditional communication
in sensor networks.

In this chapter, we consider two different scenarios. In Section 4.2 we con-
sider a multi-hop network with noisy communication channels where the mea-
surement of each sensor consists of one bit; the goal is for the fusion center to
compute symmetric functions — those functions determined by the sum of the
observed bits. To achieve this, we would like to design a distributed algorithm
while minimizing the total transmission energy consumed by the network.
Specifically, distributed symmetric function computation with binary data,
which is also called a counting problem in this chapter, is as follows: each
node is in either state “1” or “0”, and the fusion center’s goal is to count
the number of sensors in state “1”. Since the wireless channels are unreliable,
we adopt the multi-user diversity idea introduced in [4], where the network is
divided into small cells, and the sensors in the same cell cooperate to estimate
the number of “1”s in the cell. Since energy consumption is our major concern,
we also use data-aggregation to further reduce the energy consumption. Note
that only the total number of “1”s instead of the individual measurements
of each sensor are needed at the fusion center. Our algorithm forms a tree
rooted at the fusion center, and the cell-counting results are aggregated and
transmitted along the rooted-tree in a multi-hop fashion. Assume that each
sensor uses rα units of energy to transmit each bit, where r is the transmission
range of the sensor. We first show that the transmission energy consumption

is at least Ω

((√
log n

n

)α)
, and then propose a distributed function compu-

tation algorithm whose energy consumption is O

(
n(log log n)

(√
log n

n

)α)
.

The contents of Section 4.2 are a more detailed version of the results presented
in [14].

In Section 4.3, we consider a different scenario where wireless channels are
assumed to be reliable, but sensors are densely deployed so that the sensor
measurements are highly correlated. Due to the broadcast nature of wireless
channels, a transmission from one sensor can be heard by other sensors in its
neighborhood. We consider a collocated network [5] where a transmission can
be heard by all sensors in the network, and investigate the average energy
consumption of real-time communication where the sensors send the mea-
surements at each time slot without accumulating block measurements. We
show that the exploitation of correlation can lead to a further reduction of
energy consumption, and propose a methodology to analyze and design min-
imum cost communication and computation in wireless sensor networks. The
results in Section 4.3 are somewhat preliminary since the proposed algorithm
could be computationally very expensive to implement. However, our hope is
that, by making a connection to stochastic control and dynamic programming
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(DP), one may be able to use results from the vast literature on approximate
solutions to DP problems to ease the computational burden.

4.2 Distributed Function Computation in Noisy Wireless
Sensor Networks

4.2.1 Notation

The following notation is used throughout this chapter. Given a sequence of
random variables X(n) indexed by n, and positive function f(n), we will say
that

(i) X(n) = O(f(n)), when there exists a positive constant c such that

lim
n→∞

Pr(X(n) ≤ cf(n)) = 1 holds.

(ii) X(n) = Ω(f(n)) when there exists a positive constant c such that

lim
n→∞

Pr(X(n) ≥ cf(n)) = 1 holds.

(iii) X(n) = Θ(f(n)) when both X(n) = Ω(f(n)) and X(n) = O(f(n)) hold.

Note that the above definitions also apply in the obvious way to deterministic
functions.

4.2.2 Model

We consider a random network of n sensors that are uniformly and indepen-
dently distributed on a unit square. Upon the occurrence of a certain event,
sensor k records bk, where bk can take a value either “1” or “0.” The sensors
have the capability to transmit this data over noisy wireless channels, and
based on the data transmitted by the sensors in the network, a fusion center
tries to evaluate some symmetric function f(b1, . . . , bn), i.e., a function which
has the property that

f(b1, . . . , bn) = f(σ(b1, . . . , bn)),

for any permutation σ. Symmetric functions form a large class of functions,
which includes almost all statistical functions like max, min, mean, etc. A key
property of a symmetric function is that the function value only depends on
the frequency-histogram; for the binary measurement case, the function only
depends on the total number of “1”s in the network. So in this section, we will
design algorithms to count the number of “1”s in the sensors’ measurements,
i.e., to compute

n∑
i=1

bi.
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Since counting and computation are equivalent for symmetric functions, we
will interchangeably use the terms counting and computation in this section.

Let Si denote the location of sensor i and |Si−Sj | denote the distance from
sensor i to sensor j. We use the protocol model in [7] for wireless interference
with some additional assumptions.

(1) All nodes use the same transmission radius r, and the power required to
transmit one bit is rα.

(2) A transmission from sensor i can be received at sensor j only if |Si−Sj | ≤ r
and |Sk−Sj | ≥ (1+∆)r for each sensor k �= i which transmits at the same
time, where ∆ is a protocol-specified guard-zone to prevent interference.

(3) A binary modulation scheme is used so that each transmission is either 1
or 0.

(4) Even if a transmission is received at the receiver, there is some probability
p < 1/2 with which the received bit is flipped, i.e., the channel is a binary
symmetric channel with error probability p.

Note that this model only holds when the near-field effects are negligible,
which is assumed in this section.

By a counting algorithm, we mean a set of protocols (which may depend
on n) to convey the appropriate information from the sensors to the fusion
center and a protocol at the fusion center to use the received information to
compute the number of “1”s in the network. Given an algorithm for counting,
we define the energy required by the algorithm to be the maximum energy
required for the computation over all possible values of the measurements. Our
goal is to characterize the minimum energy required subject to the constraint
that the probability of error in the computation in a random network with
n sensors goes to zero as n → ∞. We only consider the transmission energy
used for counting, and assume other energy expenditure, such as the energy
used for computation, receiving, coordination etc, is negligible.

4.2.3 A Trivial Lower Bound on the Energy Consumption

We note that, for accurate function computation, the network has to be con-
nected. Let C(n, r) denote the event that a random network with n nodes and
common transmission radius r is connected. Now, we introduce the following
two connectivity results.

Lemma 1. Suppose that r ≤ 1
6

√
log n
2n . Then given ε > 0, there exists n0 such

for any n ≥ n0, we have
Pr (C(n, r)) ≤ ε.

Proof. We divide the unit square into small cells with side length
√

log n/(2n),
and each cell is further divided into nine min-cells as in Figure 4.1. Since
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An isolated sensor

Cell

mini−cell

Fig. 4.1. An Example of An Isolated Sensor

r ≤ 1
6

√
log n
2n , it is easy to see that the sensors in the central mini-cell of a cell

can only communicate with the sensors in the same cell. If a cell contains only
one sensor and the sensor is positioned in the central mini-cell, then the sensor
is said to be isolated and the cell is said to be an isolated cell. Recall the n
nodes are uniformly, independently partitioned in the unit square. To obtain
a bound on Pr (C(n, r)) , we first pretend that the number of sensors in the
unit square is distributed according to a spatial Poisson process of intensity
n. In other words, the number of sensors in an area A is a Poisson random
variable with mean nA. Further, the numbers of sensors in non-overlapping
areas are independent. Thus, the number of sensors in a cell is a Poisson
random variable with mean log n/2 and the probability that a cell is isolated
is

1
9
× log n

2
√

n
,

where log n/(2
√

n) is the probability that the number of sensors in the cell is
one, and 1/9 is the probability that the sensor happens to be in the central
mini-cell. Note that the probability that the network is connected increases
with the number of sensors in the unit square, which we denote by Np. Thus,
we have

Pr (C(n, r)) ≤ Pr (C(Np, r)|Np ≥ n)

≤ Pr (C(Np, r))
Pr (Np ≥ n)

≤ 2 Pr (C(Np, r))

≤ 2
(

1 − 1
18

log n√
n

) n
2 log n

,
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where the third inequality holds since Pr (Np ≥ n) ≥ 1/2. It is easy to see
that (

1 − 1
18

log n√
n

) n
2 log n

goes to zero when n goes to infinity, so lemma holds.

We would like to comment that in [6], it has been shown that the
network is asymptotically disconnected if r ≤

√
(log n + c(n))/(πn) and

lim supn c(n) < ∞. This lower bound on r is tighter than the one in Lemma
1. However, Lemma 1 captures the lower bound up to the right order, and
we have presented the proof is much easier and the result is sufficient for the
purpose of the next lemma. To complement the necessary condition for con-
nectivity in Lemma 1, we next present a sufficient condition for connectivity.

Lemma 2. Suppose that the unit square is partitioned into (� n
c1 log n�)2 square

cells, and further let ni denote the number of sensors in cell i. Then, for large
enough n,

Pr
(

c1 log n

2
≤ ni ≤ 2c1 log n ∀i

)
≥ 1 − 2n(1− c1

8 )

c1 log n
, (4.1)

which implies that if r ≥ 2
√

2� n
c1 log n�, then

Pr (C(n, r)) ≥ 1 − 2n(1− c1
8 )

c1 log n
. (4.2)

Thus, if c1 > 8,
lim

n→∞
Pr(C(n, r)) = 1.

Proof. Consider cell i. Note that the probability that a particular sensor is
positioned in the cell is given by (c1 log n)/n. From the Chernoff bound [11],
we have that

Pr(ni ≥ 2c1 log n) ≤ e−c1 log n/3

and
Pr

(
ni ≤

c1

2
log n

)
≤ e−c1 log n/8,

which implies that

Pr
(c1

2
log n ≤ ni ≤ 2c1 log n

)
≥ 1 − 2e−c1 log n/8.

So from the union bound, we have

Pr
(c1

2
log n ≤ ni ≤ 2c1 log n ∀i

)
≥ 1 − 2

n

c1 log n
e−c1 log n/8 = 1 − 2n(1− c1

8 )

c1 log n
.

Assume that the common transmission radius r ≥ 2
√

2� n
c1 log n�, then nodes

in neighboring cells can communicate with each other. Thus, the network is
connected if there is at least one node in each cell, and inequality (4.2) holds.
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Note that a result slightly weaker than the one in Lemma 2 was first
obtained in [12].

It is obvious that, in the worst-case when all sensors have a “1,” each
sensor has to broadcast its value once. Thus, we have the following trivial
lower bound on the energy consumption.

Lemma 3 (A Trivial Lower Bound). The minimum total transmission
energy required to count is

Ω

(
n

(√
log n

n

)α)
(4.3)

.

Proof. Connectivity of the network is a necessary condition for correct count-
ing. To guarantee connectivity, it has been shown in Lemma 1 that the trans-

mission range of the sensors should be chosen as Ω

(√
log n

n

)
. Thus, the

energy used per sensor transmission is Ω

((√
log n

n

)α)
. There are n sensors

in the network, each of which must make at least one transmission; thus, the

total transmission energy required is Ω

(
n

(√
log n

n

)α)
.

4.2.4 An Upper Bound on the Energy Consumption

In this subsection, we propose a counting algorithm whose energy consump-
tion is only a factor of log log n more than the lower bound. We first present
two well-known results for the reader’s convenience. First, we study the error
probability win a binary symmetric channel when repetition coding is used.
Consider a binary symmetry channel with error probability p where each bit
is transmitted m times, and the receiver decodes the data using majority rule.
Then we have following well-known bound [3] on the error probability, where
the proof is provided for completeness.

Lemma 4. Suppose one bit of data is transmitted m times over a binary sym-
metric channel with error probability p, and the receiver decodes the bit using
majority rule. Then, the probability of decoding error is no greater than

(4p(1 − p))
1
2 m.

Proof. Define m independent binary random variables {Ii}, where Ii = 0 with
probability p and Ii = 1 with probability 1−p. Using the Chernoff bound, we
have

Pr

(
m∑

i=1

Ii <
m

2

)
≤ e

m
2 log(4(1−p)p) = (4p(1 − p))

1
2 m.
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We also need the following coding theorem [3] for discrete memoryless
channels for our analysis.

Theorem 1 (Gallager’s Coding Theorem) For any discrete memoryless
channel with capacity C, any positive integer N, and any positive R < C, there
exist block codes with M = 2NR codewords of length N for which the decoding
error probability of each codeword is less than 4e−NEr(R), where Er(R) is a
non-increasing function of R.

Now, we consider the counting problem in detail. We first define the routing
strategy. To transmit sensor information to the fusion center, we divide the
unit square into a regular lattice of B cells, and fix the transmission radius to
be

r =

√
8
B

, (4.4)

which guarantees that a sensor can reach any other sensors within adjacent
(common edge or corner) cells. We then adopt the hierarchical routing archi-
tecture of [5].
Routing Strategy: For each cell, we choose one sensor as the cell-center.
Designating the fusion center as the root, we form a rooted tree as in Fig-
ure 4.2, whose vertices include all the cell-centers, and whose links can only
be between cell-centers of adjacent (common edge or corner) cells. Sensors

Fusion Center

Cell-center

Fig. 4.2. A Wireless Sensor Network

first transmit data to the cell-centers, and then the data are aggregated and
transmitted along the rooted-tree to the fusion center.
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We let P (i) denote the parent of cell-center i, C(i) denote the set of the
children of cell-center i in the rooted tree, Hmax denote the depth of the tree,
and H(i) denote the depth of the cell-center i in the tree (H(fusion center) =
0).

Note that the network is connected and the routing strategy is feasible if
there is at least one sensor in each cell. It is easy to see that

E[Number of sensors in each cell] =
n

B
.

In [9, 13, 12], it has been shown that the number of sensors in each cell is n/B

with high probability when B = O
(

n
log n

)
. Further, from Lemma 2, we have

that if

B =
(⌊

n

c1 log n

⌋)2

(4.5)

and c1 > 8, then maxi ni = O(log n) and mini ni = Ω(log n) both hold.
Throughout this section, B is chosen as in (4.5) with c1 = 8, and

r = 8

√
log n

n
.

Thus, the probability that the routing strategy is feasible approaches 1 as n
goes to infinity. In the following sections, we propose a distributed algorithm
which works when each cell has at least one sensor. We assume that the
algorithms report an error if the assumption does not hold.

Note that the wireless transmissions in neighboring cells will interfere with
each other, so we adopt the cell scheduling scheme used in [7, 5].
Cell Scheduling: Without loss of generality, we assume that ∆ = 0.05. We
group every 5×5 cells into a super-cell, and index the cells within each super-
cell from 1 to 25 as in Figure 4.3. We divide each time slot into 25 mini-slots,
and at mini-slot i, the mini-cells with index i are chosen to be active, for
example, all mini-cells with index 1 (as in Figure 4.3) are active in the first
mini-slot of every time slot. When a cell is active, one sensor in the cell could
be selected to transmit. In our algorithms, transmissions will occur only within
a cell or between neighboring cells. Thus, it is easy to verify that there is only
one transmitter within a distance 1.05r for each receiver, and simultaneous
transmissions do not interfere with each other under the cell scheduling.

Now given the routing strategy and cell scheduling algorithm, we will
define protocols for intra-cell and inter-cell information processing and data
aggregation. The protocols consist of two distinct parts:

(1) Intra-Cell-Protocol: The information within cells is aggregated at the re-
spective cell-centers.

(2) Inter-Cell-Protocol: The information aggregated by cell-centers is trans-
mitted, and aggregated further, along the rooted tree to the fusion center.
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Fig. 4.3. Cell Scheduling (∆ = 0.05))

We use the idea in [4] to design an algorithm for which the energy consumed is

Θ

(
n (log log n)

(√
log n

n

)α)
. In wireless sensor networks, transmissions by a

sensor can be heard by any sensor within its transmission range. Suppose there
are ñ sensors in sensor k’s transmission range, then there are ñ independent
receptions for each bit sent by sensor k. The main idea in [4] is to use the
reception diversity to obtain a good estimate of the bit transmitted by sensor
k. But it requires additional transmissions among sensors; for example, it
takes ñ more transmissions for ñ sensors to report the bits they received from
sensor k. We will show how to use in-network processing to reduce the number
of transmissions required to exploit the reception diversity.

Recall that bk is the bit sensor k has. For cell i, define ∆i as the set of
indices of the sensors in cell i, and γi as the counting of cell-center i, so

γi =
∑

k∈∆i

bk

if the counting is correct. For easy reference, we also define
λ = − log(4p(1 − p)).

Counting-Algorithm-I:
When the a cell is active, the sensors first transmit and process measure-

ments according to Intra-cell-protocol-I, and then the counting results are
aggregated and transmitted according to Inter-cell-protocol-I.
Intra-Cell-Protocol-I (At cell i):
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(i) The sensors in cell i take turns to transmit their bits. When it is the
turn of sensor k, it broadcasts its bit

⌈
4
λ (log log n)

⌉
times. Then, all other

sensors in the cell will receive
⌈

4
λ (log log n)

⌉
bits from sensor k. Sensor j

(j �= k) sets αjk to be the majority of the bits received from sensor k, and
sets Aj to be

Aj = bj +
∑

k∈∆i,k �=j

αjk

after all sensors broadcast their bits.
(ii) Select

⌈
ni

log log n

⌉
sensors in the cell. Each selected sensor j represents Aj

using �log2 ni� bits, codes it using a block code with rate R1 such that
Er(R1)/R1 ≥ 1, and then broadcasts Aj once.

(iii) Suppose Ãj is the output of the binary symmetric channel between the
cell-center and sensor j with input Aj . Cell-center i sets γi to be any
mode of sequence {Ãj}.

Inter-Cell-Protocol-I:
Define ηi to be the aggregated information of the subtree rooted at cell-

center i. When cell-center i is scheduled, cell-center i sets

ηi = γi +
∑

j∈C(i)

η̃j ,

where η̃j is the output of the channel between cell center j and cell center
i with input ηj . Since 0 ≤ ηi ≤ n, note that ηi can be represented using
�log2 n� bits. If i is the fusion center, then γc = ηi. Otherwise, it transmits ηi

to cell-center P (i) using a block code with rate R2 such that Er(R2)/R2 > 1.

We now analyze the energy requirement of Counting-Algorithm-I. First,
in Lemma 5, we show that under Intra-Cell-Protocol-I,

Pr
(

All γi are correct
∣∣∣∣

c1

2
≤ ni

log n
≤ 2c1 ∀i

)
≥ 1 − 1

c1 log n
.

Then, in Lemma 6 and Theorem 2, we show that

Pr (γc is correct |γi is correct ∀i) ≥ 1 − 4
c1 log n

.

Finally, Theorem 2 quantifies the energy requirement of Counting-Algorithm-
I.

Lemma 5. Suppose c1
2 log n ≤ ni ≤ 2c1 log n for all i. Then, by executing

Intra-Cell-Protocol-I, the cell-centers can obtain γi with

Pr

(
γi =

∑
k∈∆i

bk ∀i

∣∣∣∣ 2c1 ≥ ni

log n
≥ c1

2
∀i

)
≥ 1 − 1

c1 log n
(4.6)

and the number of transmissions required in each cell is Θ ((log n) (log log n)) .
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Proof. In the following analysis, we assume c1
2 log n ≤ ni ≤ 2c1 log n holds for

all i. First, the number of transmissions in each cell under Intra-Cell-Protocol-I
is

ni

⌈
4
λ

(log log n)
⌉

+
⌈

ni

log log n

⌉
�log2 ni� = Θ((log n) (log log n)).

Next we investigate the probability that γi is correct, i.e., γi =
∑

k∈∆i
bk.

From Lemma 4, we have

Pr (αjk = bk) ≥ 1 − (4p(1 − p))
2log log n

λ .

Note that Aj is correct if αjk is correct for all k ∈ ∆i. From the union bound,
we have

Pr

(
Aj =

∑
k∈∆i

bk

)
≥ 1 − ni(4p(1 − p))

2log log n
λ ≥ 1 − 2c1

log n
.

Consider step (ii) of Intra-Cell-Protocol-I, from Theorem 1,

Pr
(
Ãj = Aj

)
≥ 1 − 4e−

Er(R1)
R1

log2 ni ≥ 1 − 4e− log log n,

where the last inequality holds because ni ≥ c1
2 log n. Thus,

Pr

(
Ãj =

∑
k∈∆i

bk

)
≥ 1 − 2c1 + 4

log n
.

Note that {αjk} are i.i.d. for all j ∈ ∆i, so {Aj} are identical and {Ãj}
are i.i.d.. Now define i.i.d. random variables {Ij} such that Ij = 1 if Ãj =∑

k∈∆i
bk, and Ij = 0 if Ãj �=

∑
k∈∆i

bk. Since γi is the mode of {Ãj}, from
Lemma 4, we have

Pr

(
γi �=

∑
k∈∆i

bk

)
≤ Pr

⎛
⎝∑

j

Ij <
1
2
ni

⎞
⎠

≤
(

4
(

4c1 + 4
log n

)(
1 − 4c1 + 4

log n

)) ni
2 log log n

≤ e−(log log n−log(16c1+16))
ni

2 log log n

≤ e− log n.

There are at most n
c1 log n cells in the network, so

Pr

(
γi =

∑
k∈∆i

bk ∀i

)
≥ 1 − n

c1 log n
e− log n = 1 − 1

c1 log n
,

and the lemma holds.
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Now, suppose that all γi are correct. Since ηi can be represented using
�log2 n� bits, each cell-center has �log2 n� bits to transmit under Inter-Cell-
Protocol-I.

Lemma 6. Suppose all cell-centers have the correct γi, then under Inter-
Cell-Protocol-I, the probability that the fusion center obtains the correct γc

is bounded as follows:

Pr

(
γc =

∑
k

bk

∣∣∣∣∣γi =
∑

k∈∆i

bk ∀i

)
≥ 1 − 4

c1 log n
, (4.7)

and the number of transmissions required is Θ(n).

Proof. Suppose all cell-centers have the correct γi, then γc =
∑

k bk if all ηi’s
are correctly received. From Theorem 1, there exists a block code satisfying
the conditions given in step (i) of Inter-Cell-Protocol-I. Thus, for a given i,

Pr (ηi is correctly received) ≥ 1 − 4e−
Er(R2)

R2
log2 n

≥ 1 − 4e− log n,

and from the union bound,

Pr

(
γc =

∑
k

bk

∣∣∣∣∣γi =
∑

k∈∆i

bk ∀i

)

= Pr

(
All ηi’s are correctly received

∣∣∣∣∣γi =
∑

k∈∆i

bk ∀i

)

≥ 1 − 4n

c1 log n
e− log n

= 1 − 4
c1 log n

.

¿From Lemma 5 and Lemma 6, we have shown that, under Counting-
Algorithm-I, the number of sensors in state “1” can be counted accurately
with high probability when the number of sensors is large enough. Using these
lemmas, we have following theorem, which provides an upper bound on the
energy requirement to solve our counting problem.

Theorem 2 The number of sensors in state “1” can be counted accurately
with high probability by total transmission energy consumption

O

(
n(log log n)

(√
log n

n

)α)
,

and Counting-Algorithm-I is an asymptotically correct algorithm that achieves
this energy consumption. Specifically, the probability of computation error at
the fusion center is upper bounded by 7

c1 log n .
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Proof. Recall that

c1 > max
{

8,
4
λ

}
.

From inequalities (4.1), (4.6) and (4.7), we have

Pr

(
γc =

∑
k

bk

)
≥ 1 − 7

c1 log n
,

which converges to one when n goes to infinity. So Counting-Algorithm-I is
asymptotically correct.

Further, from Lemma 5 and Lemma 6, the number of transmissions un-
der Counting-Algorithm-I is Θ(n(log log n)). Since the common transmission

range is
√

8c1 log n
n , the total energy consumption is

Θ

(
n(log log n)

(√
log n

n

)α)
. (4.8)

The theorem holds because there may exist other algorithms that consume
less energy.

A simple lower bound has been obtained in Lemma 3. Comparing it with
the upper bound in Theorem 2, we can see that the upper bound differs by
a factor of only (log log n) from the lower bound. But it is still not clear
how good our bound is. A more general computational problem than ours,
i.e., one of knowing all the bits in the network, is considered for a broadcast
network in [4]. The number of transmissions required there is also shown to
be O (n (log log n)) . This suggests that one may be able to improve our upper
bound on the energy usage since counting is easier than detecting all the bits
in the network. On the other hand, parity computation which is a simpler
problem than counting is also studied in [4], but the number of transmissions
needed is again O (n (log log n)) , the same complexity as Counting-Algorithm-
I. To the best of our knowledge, this is the best upper bound in the literature
for parity computation in broadcast networks. Further, our network with its
multihop architecture also requires more transmissions for the data from the
sensors to reach the fusion center. This suggests that our upper bound on
energy usage is quite good.

In this section, we presented the simplest case, where each sensor has
only one binary measurement to report, to demonstrate that energy savings
can be achieved by sensor collaboration and data aggregation. More gen-
eral cases can be found in [14] and [15]. In [14], besides the simplest case,
we also studied the case where each sensor has N binary measurements to
report and the symmetric function needs to be computed for each measure-
ment. We showed that the total transmission energy consumption can be

reduced to O

(
n
(
max

{
1, log log n

N

})(√
log n

n

)α)
per measurement. When
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N = Ω(log log n), the energy consumption is Θ

(
n

(√
log n

n

)α)
per measure-

ment, which is a tight bound. We also considered the case that we only want
to know roughly, i.e., how many sensors have “1.” The answer can be obtained

with the transmission energy consumption Θ

(
n

(√
log n

n

)α)
. All these re-

sults can be extended the cases where the sensor measurements taken value
from {0, . . . , m − 1}, and the details are presented in [15].

4.3 Minimum Cost Real-time Function Computation in
Wireless Sensor Networks

In the previous section, we investigated function computation in wireless sen-
sor networks, where we did not make any assumption on data correlation.
However, in the case where sensors are densely deployed, the sensor mea-
surements could be highly correlated. This additional energy savings can be
achieved by exploiting such a data correlation. Further, in the previous prob-
lem, we assumed that sensors use the same amount of energy to transmit a
“0” or “1.” In this section, we will consider the case where the sensor data is
correlated, communication costs can be different, and transmission channels
need not not be binary. For example, silence, which is a signal with zero cost,
could be used to convey information. Then to reduce the energy consumption,
we should use low-cost signals as frequently as possible. In the following sim-
ple example, we illustrate that energy savings can be achieved by exploiting
the data correlation.

4.3.1 A Simple Example

Consider a network with three sensors each with a binary measurement value.
The observations are random variables and their joint distribution is given in
in Table 4.1.

Event Probability
0 0 1 1

6

0 1 0 1
6

0 1 1 1
6

1 0 1 1
3

1 1 0 1
6

Table 4.1. Joint Distribution of Sensor Observations

An event in the table is a particular set of possible observations. For ex-
ample, the first row indicates that the probability of sensor 1 observing a “0,”
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sensor 2 observing a “0”, and sensor 3 observing a “1” is 1/6. Events not in
the table are unlikely to occur and hence have zero probability.

Assume that the sensor can use two transmission signals {S, P} to convey
the information, where S indicates silence, with cost zero; and P is some pulse
with energy cost E. Now we consider following three different cases.

(1) Now suppose the sensors are deployed far away from each other, so no
sensor can hear the others’ transmissions. Each sensor can use S to repre-
sent either 0 or 1. Let Fi denote the encoding scheme. It is easy to see the
minimum cost scheme is as in Table 4.2, and the expected cost is 4E/3.
Note that the minimum cost scheme for sensor i is obtained by computing
the probability of seeing 0 and the probability of seeing 1 at sensor i, and
using S to represent the bit with higher probability.

Sensor Encoding Scheme
Sensor 1 F1(0) = S and F1(1) = P
Sensor 2 F2(0) = S and F2(1) = P
Sensor 3 F3(0) = P and F3(1) = S

Table 4.2. Case 1 Encoding Scheme: Isolated Sensors

(2) Suppose that the sensors do not know each others’ observations, but can
hear each other. After one sensor transmits its information, all other sen-
sors can update the probability of the various possible events, and use
this information to reduce their transmission costs. The sensors cannot
simultaneously transmit, but transmit in sequential order. In this collo-
cated case, the encoding scheme of sensor 2 depends on what it hears from
sensor 1, and the encoding scheme of sensor 2 depends on what it hears
from sensors 1 and 2. The optimal transmission scheme is given in Table
4.3. It is easy to see that each event is associated with a se of distinct
transmission signals and the expected cost is E.

Sensor Encoding Scheme
Sensor 1 F1(0) = S and F1(1) = P
Sensor 2 F2(S, 0) = P, F2(S, 1) = S, F2(P, 0) = S, and F2(P, 1) = P
Sensor 3 F3(S, P, 1) = S, F3(S, S, 0) = P, F3(S, S, 1) = S

F3(P, S, 1) = S, and F3(P, P, 0) = S

Table 4.3. Case 2 Encoding Scheme: Collocated Network

We can see that, even for this simple example, significant energy savings
(25%) can be achieved. Next, we propose a stochastic control approach to ob-
tain the minimum cost transmission scheme, for a general collocated network.
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4.3.2 Model

Consider a wireless sensor network consisting of n sensors, and each sensor
has a measurement Xi where Xi takes values from X , and X is the space
of observations, and |X | = m. The network has a special node called the
fusion center whose goal is to compute some function G(X) based on sensor
observations X. We consider a collocated network [5] where a transmission can
be heard by all sensors in the network, and only one transmission is allowed
at one time. Let Xj

i denote (Xi, . . . , Xj) , xi denote a realization of Xi, xj
i

denote a realization of Xj
i , and Pr

(
xj

i

)
be the abbreviation of Pr

(
Xj

i = xj
i

)
.

In this section, we assume that sensors sequentially take turns to transmit,
and the order is fixed such that sensor 1 transmits first, then sensor 2 and so
on, as in Figure 4.4. Each sensor only transmits once, after which the fusion

Fusion Center

Sensor 1
Sensor 2

Sensor 3

Sensor 4

Sensor 5

Transmission Order 

Fig. 4.4. The Order of Sensor Transmissions

center needs to compute G(X). Note that the fusion center does not need to
recover X, it only needs to know enough information to compute the function
value. Let Ci denote the signal node i transmits, and ci be a realization of Ci.
We assume ci ∈ S, where S is the set of signals and |S| = m. For simplicity,
we let ci denote both the signal and the cost of the signal. Furthermore, it is
easy to see that Ci is a function of the transmissions before node i and the
measurement Xi of node i. Accordingly, we define an encoding function Fi

such that
Ci = Fi(Ci−1

1 ,Xi).

Further define Fi
1 such that

Fi
1(X

i
1) = (F1(X1), F2(F1(X1),X2), . . . , Fi(Fi−1

1 (Xi−1
1 ),Xi)),



110 Lei Ying, R. Srikant, and Geir E. Dullerud

and let F denote Fn
1 . An encoding scheme F is said to be feasible if

F(x) �= F(y),

for every x and y such that Pr(x) > 0, Pr(y) > 0 and G(x) �= G(y).
Let F denote the set of feasible encoding functions, and

∑
F(X) =∑n

i=1 Fi(Fi−1
1 (Xi−1

1 ),Xi). Our goal is find F∗ such that

F∗ = arg min
F

E
[∑

F(X)
]

(4.9)

subject to: F ∈ F .

4.3.3 Stochastic Control Approach

In this subsection, we propose a stochastic control approach to solve the mini-
mum cost problem (4.9). We use superscript −1 to indicate decoding functions,
for example, F−1 is the decoding function of F such that F−1(c) ∈ (2X )n is
the preimage of c. Note that decoding functions and known to all sensors and
the fusion center. The decoding process is as follows: When the fusion center
receives ci

1, it can decode ci
1 to obtain F−1

i (ci
1), which is a subset of X . After

all sensors transmit, the fusion center decodes the received information and
obtains

Y = (F−1
1 (c1), . . . , F−1

n (cn
1 )).

Then the fusion center takes G(Y) as the function computation result, which
is unique and correct if the encoding function F is feasible. Similarly, sensor i
can compute (Fi−1

1 )−1(ci−1
1 ) after receiving ci−1

1 . Note that (Fi−1
1 )−1(ci−1

1 ) ∈
(2X )i−1. Let Ai be a random variable taken values from 2X , and ai be a
realization of Ai. Note that ai is a subset of X . We can first design an encoding
scheme F̃ based on A

i−1
1 and Xi, and then obtain F as follows:

(1) First design ci = F̃i(ai−1
1 , xi) for each (ai−1

1 , xi) such that Pr(xi−1
1 ) > 0

for all xi−1
1 ∈ a

i−1
1 , and Pr(xi|ai−1

1 ) > 0.
(2) Let

Fi(Ci−1
1 ,Xi) = F̃i((F̃i−1

1 )−1(Ci−1
1 ),Xi). (4.10)

Note that we impose conditions on a
i−1
1 and xi in step (1) since we only need

to design coding scheme for events with positive probability. The relationship
between Fi and F̃i is illustrated in Figure 4.5.

We next model the coding process as a controlled Markov chain {Zi},
where Zi = (A1, . . . ,Ai−1,X , . . . ,X ). Note Zi represents the information ob-
tained at the fusion center after first i sensors transmit. Next let zi be a
realization of Zi. The transition probability of the controlled Markov chain
under strategy F̃ is defined to be

Pr
(
zi+1

∣∣∣zi, F̃i

)
= Pr

(
(a1, . . . , ai,X , . . . ,X )| (a1, . . . , ai−1,X , . . . ,X ), F̃i

)

= Pr
(
ai| ai−1

1

)



4 Function Computation in Wireless Sensor Networks 111

(Ci−1
1 , Xi)

(Ai−1
1 , Xi)

Ci

Fi

F̃i

(F̃i−1
1 )−1

Fig. 4.5. The Relation between Fi and F̃i

if the following conditions hold:

(1) Pr(xi−1
1 ) > 0 for every xi−1

1 ∈ a
i−1
1 ;

(2) ai = F̃−1
i (ai−1

1 , c) for some c ∈ S.

Otherwise Pr
(
zi+1

∣∣∣zi, F̃i

)
= 0. Note that we impose the first condition since

we only design coding scheme for events with positive probability, and impose
the second condition to guarantee that ai will be conveyed by some signal.
The cost of decision F̃i given zi−1 is

C
(
zi, F̃i

)
= E

[
F̃i

(
a

i−1
1 ,Xi

)]
.

Since the function G(X) needs to be computed accurately at the end of sensor
transmissions, we impose a cost on Zn such that

Cp(zn) =
{
∞, if ∃x,y ∈ zn s.t. G(x) �= G(y);
0, otherwise.

Thus, from the definition of cost (4.11), we can see that problem (4.9) is
equivalent to the following stochastic control problem

min
F̃

E

[
Cp(Zn) +

n∑
i=1

C(Zi, F̃i)

∣∣∣∣∣Z1

]
. (4.11)

So the minimum cost scheme F̃∗ can be obtained by solving this standard
stochastic control problem, and F∗ can be further obtained from equation
(4.10).

We would like to comment that the goal of this section is to model the
minimum cost real-time function computation as a standard stochastic control
problem, thus providing a methodology to design the minimum cost transmis-
sion scheme. Note that ai ∈ 2X , so z can take 2i|X | different values in general
and the complexity of stochastic control problem (4.11) increases exponen-
tially both in n and |X |. So to make this approach applicable to large n or
large X , we need to further reduce the complexity, which is still an open
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problem for general cases. However, for a special case where Pr(x) > 0 for
any x ∈ Xn and G(x) �= G(y) if x �= y, a simple F∗ can be obtained from
(4.11).

Theorem 3 Suppose that Pr(x) > 0 for any x ∈ Xn, G(x) �= G(y) if x �= y,
and ci > cj if i > j. Given xi−1

1 , we order xi according to Pr(xi|xi−1
1 ), from

the largest to the smallest, and let I(xi|xi−1
1 ) denote the rank of xi. Then the

minimum cost scheme is

F ∗
i (xi, ci−1

1 ) = cI(xi|(F∗i−1
1 )−1(ci−1

1 )). (4.12)

Proof. Since Pr(x) > 0 for any x ∈ Xn and and G(x) �= G(y) if x �= y, it is
easy to see that Cp(zn) = 0 if zn ∈ Xn, and Cp(zn) = ∞ otherwise. Thus F̃∗

needs to satisfy

F̃∗(x) �= F̃∗(y) if x �= y, (4.13)

which implies that

F̃ ∗
i (xi,xi−1

1 ) �= F̃ ∗
i (yi,xi−1

1 ) if xi �= yi. (4.14)

Now let F̃∗ denote the set of F̃ satisfying (4.13), and F̃∗
i denote the set of F̃i

satisfying (4.14), then problem (4.11) can be re-written as

min
F̃

E

[
Cp(Zn) +

n∑
i=1

C(Zi, F̃i)

∣∣∣∣∣Z1

]
= min

F̃∈F̃∗
E

[
n∑

i=1

C(Xi, F̃i)

]

=
n∑

i=1

∑

xi−1
1 ∈X i−1

(
min

F̃i∈F̃∗
i

∑
xi∈X

F̃i(xi,xi−1
1 ) Pr

(
xi|xi−1

1

)
)

Pr
(
xi−1

1

)
.

Given xi−1
1 , it is easy to see that the optimal F̃i is to assign the lower cost

signal to the event with higher probability, so (4.12) is the optimal scheme.

4.4 Conclusions

In Section 4.2, we investigated counting problems in multi-hop networks with
noisy communication channels. We considered the case where each sensor has
a single measurement, and showed by construction that feasible algorithms

exist whose energy consumption is O

(
n(log log n)

(√
log n

n

)α)
. In Section

4.3, we investigated minimum cost real-time function computation in single-
hop networks, and showed that the problem can be solved using a stochastic
control approach. Function computation is a fundamental problem in sensor
networks since the objectives of sensor networks are to retrieve useful infor-
mation from sensor measurements, and these objectives can be thought as
function computation problems. We demonstrated in this chapter how to de-
sign energy-efficient algorithms by exploiting the structure of functions and
by optimizing algorithms for the specific objectives of sensor networks.
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5.1 Introduction

We will address some of the problems related to storing information in multiple
storage devices that are individually unreliable, and connected in a network.
As an application consider a sensor network deployment in a remote and inac-
cessible environment where sensor nodes are taking measurements (possibly
after processing) and storing data in the network, over long time periods. A
data collector may appear at any location in the network and try to retrieve
as much useful data as possible. Another scenario is a sensor network deployed
in a time-critical or emergency situation (e.g. fire, flood, earthquake). Here,
the focus is on maximizing the amount of sensed data than can be retrieved
from a rapidly failing network. In both scenarios, many storage nodes are
expected to fail and redundancy is necessary to guarantee the required relia-
bility. This redundancy in the information representation can be introduced
either through replication or through erasure coding. It is well known that in-
formation representations that use erasure codes require far less redundancy
to provide the same level of reliability [42] and have been used in numerous ap-
plications (e.g. Reed-Solomon codes [37]). After extensive studies, essentially
optimal erasure codes exist today, with linear encoding and decoding com-
plexity [28, 40]. However, when coding is performed in an unstructured (and
possibly dynamic) network, new issues arise that have not been addressed in
classical coding theory. Specifically:

• Communication between storage and data nodes comes with a cost, since
energy is a precious resource in sensor networks. Therefore, the code should
be constructed with the minimal possible communication between nodes.
This means that sparsity in the generator matrix of the code is critical for
such applications.

• The information is sensed in multiple distributed locations and global co-
ordination is difficult to achieve. Hence the code construction should be
distributed and based on local knowledge.
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• The sensor network will be deployed in a dynamic environment and the the
encoded storage might need to evolve over time, to reflect such dynamic
changes. For example when storage nodes are failing, new encoded packets
need to be generated from existing encoded packets, naturally leading to
network coding schemes.

In this chapter we discuss these issues and various related schemes that have
been proposed in the recent literature including our own contributions. In
summary, we will be interested in distributed, scalable and energy-efficient
algorithms to generate and dynamically maintain encoded information repre-
sentations in networks.

5.1.1 The Distributed Networked Storage Problem

We will be using the abstractions of a data node which is a source of informa-
tion that must be stored, and a storage node which corresponds to a storage
device with limited memory and communication capabilities. A physical sen-
sor mote can have both sensing capabilities and sufficient memory, and hence
can be both a data node and a storage node of our abstract model. This
separation is useful because it simplifies the presentation and can be easily
mapped back to actual devices.

The classical distributed storage problem consists of having multiple (dis-
tributed) storage nodes (e.g. hard disks) for storing data which is initially
located at one single data node (see Figure 5.1).

Fig. 5.1. The classical distributed storage setup. Data which is initially centralized
is encoded and stored in distributed storage nodes.
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Fig. 5.2. Distributed networked storage. Initially distributed data stored in multiple
storage nodes.

The distributed networked storage problem arises when both the data
sources and the storage nodes are distributed (see Figure 5.2) and hence we
have multiple data and storage nodes.

We make the following assumptions:

• We assume that there are k data-generating nodes and without loss of
generality we will assume that each data node generates one data packet
containing the information of interest.

• Further, assume we have n ≥ k storage nodes that will be used as stor-
age and relay devices. Sensor nodes have limited memory, and we model
that by assuming that each node can store only one data packet (or a
combination having the same number of bits as a data packet). This is a
key requirement to the scalability of the network. A data packet contains
measurements over a time interval and can have significant size.

• The ratio k/n = R (code rate) is assumed fixed as k and n scale. For
example, we can assume that some fixed ratio (for example 10%) of nodes
in a sensor network are generating data. These assumptions are only to
simplify the presentation, and in practice the k data nodes and n storage
nodes can be any arbitrary (possibly overlapping) subsets of nodes in a
larger network.

• We are interested in schemes that require no routing tables, centralized
processing or global knowledge or coordination of any sort. We rely on a
packet routing layer that can route packets to uniformly random locations
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in the network. Constructing such random sampling algorithms which are
distributed and localized is key for the construction of codes in networks.

5.1.2 Outline

The chapter is structured as follows: in Section 5.2 we briefly present some
properties of linear coding and network coding . Section 5.3 presents decen-
tralized erasure codes and fountain codes and describes how their properties
can be useful for storage in sensor networks. We also present randomized algo-
rithms to construct such encodings with minimal coordination and knowledge.
Section 5.4 discusses how encoded representations can be used for answering
various queries other than data recovery. Finally, Section 5.5 discusses dis-
tributed network algorithms for randomly sampling sensor nodes with mini-
mal communication; a mechanism that is necessary for constructing the codes
described in this chapter.

5.2 Background

We will start with a brief survey of linear erasure codes and network coding.
One important point is how the algebraic properties of the generator matrix
of a code correspond to requirements from the network algorithm used to
construct and maintain the encoded representation.

5.2.1 Linear Erasure Codes

Nearly all the coding schemes proposed in the literature are linear codes over
finite fields. Erasure coding is a generalization of replication that divides the
initial data object into k packets (or blocks) which are then used to generate
n encoded packets of the same size. Good erasure codes have the property
that any k out of the n encoded packets suffice to recover the original k data
packets. In erasure coding we assume that the only types of errors that can
happen are erasures of packets (due to failure of the corresponding storage
node), but the packets that survive are always correct. Note also that we
will be dealing with erasures of packets, not bits within a packet. Good era-
sure codes can yield much higher reliability compared to replication schemes
for the same number of storage nodes. The most common erasure codes are
Reed-Solomon codes, which are very widely employed in numerous applica-
tions like computer network distributed storage systems, and redundant disk
arrays. Low-density parity-check (LDPC) codes and more recently Fountain
codes [27] were proposed as alternatives with randomized construction and
faster encoding and decoding times.

A toy example of a linear code over GF (28) is given in Figure 5.3. In
the example there are two data nodes X1 and X2 and three storage nodes
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Y1, Y2, Y3. We assume the data nodes have gathered a number of measure-
ments. In the example we choose u = 8 bits to represent each number in our
field which corresponds to GF (28). The bits of the data measurements are
divided into blocks of u bits which correspond to elements in GF (28) (for
example X1(1) = 002,X1(2) = 080,X1(3) = 220). The data packet X1 is
routed to storage nodes Y1, Y3 and X2 to Y2, Y3. Once a storage node receives
one or more data packets, it must select coefficients fi to multiply the re-
ceived packets and subsequently add them to construct one encoded packet.
A desired property is that the selection of the coefficients is done without any
coordination, i.e. each storage node selects them uniformly and independently
in GF (28). Each coefficient then multiplies each block independently, multiple
blocks are added (under the arithmetic of the Galois Field) and the results
are cascaded into a new block packet Yi that has exactly the same size as
all the data packets. For example Y3 has stored a packet that corresponds to
2X1 + 1X2. Using this notation we mean that Y3(i) = 2X1(i) + 1X2(i) for
i = 1, 2, 3. Each storage node will also store the coefficients fi that it selected.
This introduces an overhead storage that can be made arbitrarily small by
coding over larger blocks [18, 11].

Fig. 5.3. A simple example of a linear code over GF (28). Here k = 2, n = 3, k/n =
2/3, q = 256. The primitive polynomial of the field is D8 + D4 + D3 + D2 + 1.
Arithmetic is done by representing numbers as binary coefficients of polynomials
and doing polynomial operations modulo the primitive polynomial. For example,
70 × 3 → (D6 + D2 + D) × (D + 1) = D7 + D6 + D3 + D → 202.

Notice that in Figure 5.3 any two out of the three encoding packets can
be used to reconstruct the original data.

In general, linear codes can be represented using their generator matrix in
the form

s = mG, (5.1)
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where s is an 1×n encoded vector that is stored, m is 1×k data vector and G
is a k × n matrix with elements selected from a field GF (q). For the example
in Figure 5.3,

G =
(

1 0 2
0 3 1

)
. (5.2)

To reconstruct m the receiver must invert a k×k sub-matrix G′ of G. The key
property required for successful decoding (that is also true for the example)
is that any sub-matrix selection of G′ forms a full rank matrix. When this is
the case, decoding corresponds to solving a system of linear equations over
GF (q) (using for example, Gaussian elimination).

A matrix that has the property that all the square sub-matrices G′ are
full rank corresponds to an Maximum Distance Separable (MDS) code and
such combinatorial constructions are quite difficult to achieve.

Reed-Solomon codes [37] construct such matrices by exploiting properties
of polynomials over finite fields. The key idea is that any k interpolation
points suffice to recover the coefficients of a degree k − 1 polynomial. The
smallest field size q for which MDS codes exist is unknown, and related to
the MDS conjecture of algebraic coding theory:
(MDS Conjecture) Let G be a k × n matrix over GF (q) such that every
square sub-matrix G′ is nonsingular. Then q + 1 ≥ n + k.

A relaxation of this requirement (nearly-MDS) is that almost all the square
sub-matrices G′ are full rank, or equivalently that a randomly selected G′ will
be full rank with high probability. A random linear code over GF (q) is the
code generated by a matrix G that has each entry selected uniformly and
independently from the finite field. It is well known [1] that the probability of
a randomly selected G′ being full rank can made arbitrarily close to one, by
selecting a sufficiently large field size q.

5.2.2 Network Coding

Network coding is an exciting new paradigm for communication in networks
where data packets are treated as entities which can be algebraically com-
bined rather than simply routed and stored. The first major result [2] was a
generalization of the max-flow min-cut theorem for multicasting. If there is
one single source and multiple receivers, each receiver cannot hope to have
throughput higher than the minimum cut separating it from the source, even
if it was the only node being served. The theorem of Ahlswede et al. [2] states
that if coding in the intermediate nodes of the network is allowed, all the re-
ceivers can have throughput equal to the minimum of the min-cuts separating
each one from the source. In other words all the receivers can have the same
throughput as the one with the weakest connection to the source, without
limiting each other. It is easy to construct examples where such throughput
cannot be achieved by simply routing packets from the source to the receivers.
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Subsequently it was shown that linear coding suffices to achieve the multicast
capacity [25, 24] and that random linear coding at intermediate nodes will
suffice with high probability [18] for sufficiently large field size.

While most of the initial research on network coding focused on multi-
casting throughput, the fundamental idea of coding in intermediate nodes in
networks has been shown to have advantages in other scenarios such as min-
imizing network resources [29], network diagnosis [44] and communication in
wireless networks [23, 32, 45]. In this chapter we investigate applications of
network coding for information storage, see [15] for a general introduction and
other applications.

5.3 Coding for Networked Storage

5.3.1 Decentralized Erasure Codes

When trying to store linear combinations of data as information representa-
tions in sensor networks, new issues arise that make the existing codes un-
suitable. Both random linear codes and Reed-Solomon codes have generator
matrices that are dense, i.e. almost all the entries of G are non-zero. That
means that every data node needs to send its packet to almost all n stor-
age nodes to create the code generating Θ(n2) communicating pairs (since
k = Rn). A second desirable property is that the code can be created without
coordination, and more specifically that each data node is choosing where to
route its packet independently and also that the storage nodes are selecting
their coefficients independently. Algebraically, this corresponds to having a
code where every row of the generator matrix is created independently and
is sparse. A code with this row independence property is called decentral-
ized [11] and this property leads to stateless randomized network algorithms
to generate the encoded information.

Randomized linear codes select every entry of G independently and there-
fore are decentralized [1]. However, they are not sparse and require significant
communication to construct them. Algebraically the question is how sparse
can a matrix with independent rows be made, and still have the property that
square sub-matrices are full rank with high probability.

Decentralized erasure codes [10, 11] answer exactly this question: each data
node routes its packet to d(k) = c ln k storage nodes. Each storage node selects
random and independent coefficients fi and stores a linear combination of the
received packets. The main result of [10] is that d(k) = c ln k where c > 5n

k is
sufficient (and optimal up to constants) to ensure that randomly selected sub-
matrices will be full rank with high probability. Decentralized erasure codes
therefore have minimal data node degree and logarithmically many nonzero
elements in every row.

Any erasure code can be decoded using Gaussian elimination in O(k3),
but one can use the sparsity of the linear equations and have faster decoding.
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Fig. 5.4. Example of using linear codes for distributed storage. In this example
there are k = 4 data nodes measuring information that is distributed and n = 23
storage nodes. We would like to diffuse the data to the storage nodes so that by
accessing any 4 storage nodes it is possible to retrieve the data. Each data node is
pre-routing to 3 randomly selected storage nodes. Each storage node has memory
to store only one data packet so the ones who receive more than one packet store
a linear combination of what they have received. The data collector in the example
can recover the data by having access to (A, B+C, A+C, D).

Using the Wiedemann algorithm [43] one can decode decentralized erasure
codes in O(k2 log(k)) time on average.

Randomized Network Algorithm

There is a very simple, robust randomized algorithm to construct a decentral-
ized erasure code in a network: Each data node picks one out of the n storage
nodes randomly and routes its packet to a randomly selected storage node.
By repeating this process d(k) = c ln(k) times, we construct the decentralized
erasure code. Note that we require a network layer mechanism that can route
packets to randomly selected storage nodes in the network. Having a simple
distributed mechanism that can perform this task with localized knowledge is
key for many randomized algorithms and we discuss this issue in Section 5.5.
Each storage node multiplies (over the finite field) whatever it happens to
receive with coefficients selected uniformly and independently in F (q) and
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stores the result and the coefficients. A schematic representation of this is
given in Figure 5.5.

Fig. 5.5. Decentralized erasure codes construction. There are d(k) = c ln(k) edges
starting from each data node and landing independently and uniformly on the stor-
age nodes.

Storage Overhead

In addition to storing the linear combination of the received data packets, each
storage node must also store the randomly selected coefficients fi. The number
of coefficients can be bounded by the number of balls that land into a bin when
throwing ck ln(k) balls into n bins. It is standard problem in probabilistic
analysis of algorithms [31] that the maximum load (the maximum number of
coefficients a storage node will have to store) is O(log(k)) with probability
at least 1 − o(1). The total number of overhead bits to store the coefficients
and data packet IDs is O(log(k)(log(q) + log(k))) which can be easily made
negligible by picking larger data packet sizes. Notice that if we denote by
u = log2(q) the number of bits required to store each fi, one can reduce the
probability of error exponentially in the overhead bits.

Connections to network coding

An equivalent way of thinking of the distributed networked storage problem
is that of a random bipartite graph connecting the k data nodes with the n
storage nodes and then adding a data collector for every possible subset of size
k of the n storage nodes. Then the problem of multicasting the k data packets
to all the

(
n
k

)
data collectors is equivalent to making sure that every collection

of k storage nodes can reconstruct the original packets. This connection of
storage and multicasting was proposed independently in [10, 21].
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It has been shown that random linear network codes [25, 18] are sufficient
for multicasting problems as long as the underlying network can support the
required throughput. Decentralized erasure codes can therefore be seen as
random linear network codes [18] on the (random) bipartite graph connecting
the data and the storage nodes, where each edge corresponds to one routed
packet. One key property is that in distributed storage, the communication
graph does not correspond to any physical links but to virtual routing se-
lections that are made by the randomized algorithm. Therefore this graph
is not given, but can be explicitly designed to minimize communication cost.
Essentially, we are trying to make this random bipartite graph as sparse as
possible, while keeping the flow high enough and also allowing each data node
to act independently. All the good codes described in previous sections have
the property that they have very few edges (o(n2)) connecting the data nodes
and the storage nodes but can still guarantee very good connectivity between
the any two subsets. Such bipartite graphs are called expanders [4] and are
fundamental combinatorial objects for coding theory. It is easy to show that
if one requires all

(
n
k

)
data collectors to have k-connectivity with the data

nodes, the corresponding bipartite graph needs to be dense. It is the proba-
bilistic relaxation (a random data collector will have k-connectivity with high
probability) that makes sparsity possible. This concept leads to probabilistic
expanders that are formally defined and used for error correction in [8].

5.3.2 Fountain Codes

Fountain codes [27, 40] are linear codes over GF (2) with sparse generator
matrices and fast encoding and decoding algorithms. In particular, for LT
codes [27], each encoded packet is created by first selecting a degree d from
a carefully designed degree distribution (called the robust soliton [27]), and
then taking the bitwise XOR of d randomly selected data packets. Therefore,
fountain codes have the rateless property : every encoded packet is generated
independently and there exists no predetermined rate since they can poten-
tially generate an unbounded number of encoded packets. This corresponds
to having every column of the generator matrix being independent and sparse
(with logarithmic average degree similar to the decentralized codes). The de-
gree distribution of the encoded packets is carefully designed so that a data
collector who collects k+ε random packets (where the overhead ε is asymptoti-
cally vanishing for large k) can decode with a fast back-substitution algorithm
which is special case of belief propagation [28] . Raptor codes [40] manage to
reduce the degrees from logarithmic to constant by using an appropriate pre-
code.

In this context, one can think of the decentralized property as being the
“transpose” of the rateless property. This is because in decentralized codes, it
is the rows of the generator matrix that are independent and this corresponds
to having each data node acting independently. For sensor network applica-
tions, one implicit assumption is that it is easier for a data node to send its
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data to d(k) randomly selected storage nodes than it is for a storage node to
find and request packets from d′(k) data nodes. This is true for many practical
scenarios in which there are fewer data nodes that might also be duty-cycled
or failing.

5.3.3 Partial data recovery

So far we have been addressing the problem of recovering all k data packets by
querying k storage nodes. For this scenario, fountain codes are harder to create
in networks, since creating the robust soliton degree distribution at storage
nodes requires data node coordination. They however have the advantage of
smaller field size (only binary operations) and lower computational complexity
at the decoder (O(k log k) for LT codes versus O(k2 log k) for decentralized
codes). The pre-coding idea of Raptor codes cannot be easily performed over
a network because it requires centralized processing.

Fountain codes can be used for partial recovery problems, where one is
interested in querying fewer than k nodes and recover partial information.
Creating a fountain code over a network where the data nodes are randomly
located on a grid has been addressed in [12]. In this chapter there is no pre-
code, and the user is interested in recovering (1−δ)k data packets by querying
(1 + ε)k storage nodes. Random walks [26] can be used to create fountain en-
coded packets in sensor networks, to guarantee the persistence and reliability
of cached data.

Sanghavi [38] investigated the optimal degree distribution for fountain
codes when one is interested in recovering (1−δ)k data packets. Upper bounds
on the performance of any degree distribution and lower bounds achieved by
optimized distributions for any δ are presented in [38].

5.4 Information representations for query processing

The standard approach in query processing is to flood queries to all nodes,
and to construct a spanning tree by having each node maintain a routing ta-
ble of their parents. This is the approach currently used in both TinyDB and
Cougar [30]. Flooding can be pruned by constructing an analog to indexes in
the network, and an efficient indexing scheme is the Geographic Hash Table
(GHT), which maps IDs and nodes to a metric space [36]. These approaches
yield different tradeoffs between reliability over network changes, latency and
communication cost. Coding can be used to add storage redundancy in any
existing query processing scheme when high reliability or low latency is re-
quired.

A common type of query that can often appear in sensor network appli-
cations is an aggregate query, involving the average of a sensed quantity in a
subset of the nodes. The first problem that arises is the in-network compu-
tation of such averages. The simplest algorithm is the construction of a tree-
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structure that averages the data of interest. Ganesan et al. [16] propose the
DIMENSIONS system which uses wavelets to efficiently summarize and store
sensor data in a natural hierarchical structure. When high fault-tolerance is
required, or the complexity required to form a tree is too high, gossip and
consensus algorithms constitute very simple distributed and robust alterna-
tives [6, 13, 39]. Gao et al. [20] exploit the principle of fractionally cascaded
information to provide efficient algorithms and theoretical bounds for answer-
ing range queries.

5.4.1 Exploiting Data Sparsity

For sensor network applications, the sensed data could be highly structured
and this structure can be exploited to improve the performance. One approach
for exploiting the structure of the sensed data can be used if we assume that
the data is sparse in some basis that is known to the data collector. Recent
results (see for example [14]) show that the actual storage devices can be
ignorant of the sparse basis and simply make random projections that can be
used to reconstruct by solving a linear program. Rabbat et al. [34] showed how
gossip algorithms can be used to construct such random projections in a sensor
network. Data collectors who obtain access to enough such projections by
querying storage nodes can reconstruct the field by exploiting the underlying
sparsity. Further, Wang et al. [41] showed how sparse random projections can
be used and further guarantee a refinable approximation that improves as
more sensors are queried.

5.4.2 Distributed Source Coding

If the statistical correlation structure of the data is known (or can be learned),
distributed compression can be used to minimize the redundant information
without having to collect the data in one location. Distributed Source Coding
Using Syndromes (DISCUS) [33] is a practical means of achieving this. The
data nodes form the syndromes of the data packets they observe under suitable
linear codes. These syndromes are treated as the data which the nodes pre-
route to form the decentralized erasure codewords at the storage nodes. The
data collector reconstructs the syndromes by gathering the packets from k
storage nodes. Using DISCUS decoding, the collector can recover the original
data from the syndromes. The correlation statistics, which is required by
DISCUS can be learned by observing previous data at the collection point.
The data nodes only need to know the rates at which they will compress their
packets. This can be either communicated to them or learned adaptively in
a distributed network protocol. The syndromes can be considerably shorter
than the original data packets if the data observed by the different nodes are
significantly correlated as is usually the case in sensor networks. Note that this
approach is separating the source coding problem from the storage problem
and this may not be optimal in general as shown in [35]. See also [46] for
practical constructions.
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5.4.3 Growth codes

In sensor network applications involving catastrophic or emergency scenar-
ios such as floods, fires, earthquakes etc., the queries need to be adjusted to
network dynamics. The setup is a rapidly failing sensor network where some
nodes are sensing information that needs to reach the data collectors as soon as
possible. Kamra et al. [22] show how fountain codes can be used for such appli-
cations and how the degree distribution needs to evolve over time to maximize
the number of immediately recoverable data packets. Specifically, the authors
design a dynamically varying degree distribution for partial network recovery
to adapt to the data collector having received some data packets already and
maximize the probability that the next packet is useful immediately. Growth
codes initially create uncoded packets (since a data collector will have received
nothing at the time and only degree one packets can be immediately useful).
The degree distribution switches to pairwise XORs when the probability that
a data collector already has a randomly selected packet becomes larger than
the probability that the XOR cannot be decoded immediately.

5.4.4 The Repair problem

If the network is going to store data over long periods of time, with many
nodes being duty cycled, it might be useful to monitor the storage nodes and
actively refresh redundancy. When the number of storage nodes that actively
respond falls below a threshold, fresh nodes (which might have been sleeping
until that time) can be deployed to replace the failed ones and prolong data
lifetime. However, the problem of creating new encoded packets in response
to failures arises. When using replication, a new copy can be made from any
other, but if the existing storage nodes are storing linear combinations of data,
the problem of creating new encoded packets from encoded packets needs to
be addressed. Regenerating codes [9] minimize the communication required to
generate encoded packets from an existing encoded representation, to repair a
failing network. In the same work, the minimal bandwidth required to repair
any encoded storage scheme is computed explicitly using a flow formulation.
Pyramid codes [19] are practical code constructions which trade space for
partial recovery and efficient repair. While the repair problem has not been
addressed in detail for sensor networks, simulations for distributed peer-to-
peer storage systems suggest significant bandwidth savings over existing repair
schemes.

5.5 Network Algorithms for Random Sampling

A very useful primitive operation in sensor networks is being able to find a
(uniform) random node with small communication cost. All the coding con-
structions we have mentioned require such a mechanism, to route packets
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from data nodes to storage nodes. In addition, other applications like query-
ing average sensor battery life, estimating the number of functional nodes and
others could benefit from such a uniform sampling scheme [5].

If only local information is available at each node, it is not clear how
to perform such a sampling without global knowledge. A simple idea is to
accomplish this by performing a random walk in the network. We show that
this is very costly for most relevant network topologies like grids and random
geometric graphs. We further show that a simple greedy forwarding algorithm
can approximately sample from random nodes using only local information
and minimal communication.

5.5.1 Random Walks on Sensor Networks

Assume one wants to find a random node on a network by performing a ran-
dom walk on the network nodes with properly adjusted transmission probabil-
ities so that the invariant distribution is uniform over nodes. Clearly, after a
few steps, one will be close to where the walk started and we need an estimate
of how many hops are required before we have reached a truly random node.
The number of steps required before the sampling distribution is reasonably
close to uniform is measured by the mixing time of this Markov chain. To
simplify the presentation assume we are dealing with a finite, irreducible and
reversible Markov chain1. For two probability distributions θ1, θ2 defined on
a finite space I, define the variation distance to be

∆(θ1, θ2) =
1
2

∑
i∈I

|θ1(i) − θ2(i)|. (5.3)

At time step t, assume that the Markov chain has some probability distri-
bution of being at state j after t steps starting from state i: Pij(t). Since the
MC is irreducible and aperiodic, it will have a limiting invariant distribution
π(j) and we know that Pij(t)

t→∞→ π(j). We are interested, assuming the worst
case starting state i, to bound the distance of the distribution at time t to the
invariant distribution. Define this distance to be

d(t) = max
i

∆(Pij(t), π(j)). (5.4)

We define the mixing time (or “variation threshold time” [3]) to be

τ = min
t
{t ≥ 0 : d(t) ≤ 1

2e
}. (5.5)

It is therefore the first time where the Markov chain distribution becomes 1/2e
close to the invariant, assuming the worst case starting state. The selection of

1 Note that random walks on connected graphs are always in this class of Markov
chains since self-loops can be added to cancel any periodic behavior.
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the constant 1/2e is for algebraic convenience and any constant smaller than
1/2 would work.

Therefore, if we use a random walk to sample from a sensor network, we
need to perform Θ(τ) steps before we are ε-close to the uniform distribution.
The grid is the most simple model for a wireless sensor network topology,
where n nodes are placed on a rectangular 4-connected square of edge length√

n ×√
n.

Unfortunately, even the 2-dimensional torus grid (which mixes faster than
the regular grid) has a mixing time τGrid = Θ(n) [3]. Therefore, one needs
to perform Θ(n) random walk hops (visit approximately all the nodes in the
network) to sample one random node.

Random Geometric Graphs

A random geometric graph G(n, r) is formed as follows: place n nodes uni-
formly and independently in the unit square and connect nodes which are
within distance r of each other (see Figure 5.5.1 for an example). Note that
to simplify the analysis, some results rely on the assumption that the nodes
are placed on the surface of a unit torus. Random geometric graphs have been
established as standard models for wireless network topologies following the
fundamental work of Gupta and Kumar [17] which shows that in order to have
good connectivity and minimize interference, the transmission radius r(n) has

to scale like Θ(
√

log n
n ).

Boyd et al. [7] investigate the question of the mixing time on G(n, r) and
establish that both the natural random walk (selecting each edge uniformly
at random) and the fastest mixing reversible random walk (selecting the tran-
sition probabilities to minimize the mixing time) mix in:

τRGG = Θ(
1

r(n)2
), (5.6)

and for the critical radius r(n) =
√

log(n)
n we obtain

τRGG = Θ(
n

log n
). (5.7)

This slow mixing suggests that in random geometric graphs, it requires a
very large number of hops to sample a random node.

5.5.2 Random Geographic Routing

We will now present a simple scheme that can sample an approximately uni-
form random node using only O(1/r) hops which is equal to the diameter of
the network and therefore order optimal. The key requirement is that we as-
sume that all the nodes know their locations and the locations of their one-hop
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Fig. 5.6. Illustration of a Random Geometric Graph: solid lines represent graph
connectivity, and dotted lines show the Voronoi regions associated with each node.

neighbors. Assume that some initial starting node s wants to find a random
node in the network. The idea is to select a uniform geographic location in
the unit square (called the target) and use greedy geographic routing towards
that random target. Random geographic routing was proposed in [10] and
independently in [5]. In [5] the authors further propose a rejection sampling
scheme that can give sampling distributions that can be made very close to
uniform. The performance of random geographic routing on random geometric
graphs was analyzed in [13].

More formally, the random geographic routing scheme to sample a random
node is the following:

1. Node s chooses a point uniformly in the unit square. Call this the target t.
Node s forms the tuple ms = (l(s), t) where l(s) is the geographic location
of node s.

2. Node s sends ms to its one-hop neighbor closest to t, if any exists. If node
r receives a packet ms, it sends ms to its one-hop neighbor closest to t.
Random geographic routing terminates when a node receives the packet
and has no one-hop neighbor closer to the random target. Let v be that
node, the output node sampled by the algorithm.
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See [13] for a detailed analysis of the rejection sampling overhead for ran-
dom geometric graphs and an application of random geographic routing for
improving the convergence of gossip algorithms.

5.6 Conclusions

In this chapter we showed how erasure and network coding techniques can
be used for storage in wireless sensor networks. The main conclusion is that
sensor network applications introduce many novel challenges, mainly related
to the distributed nature, as well as the communication and coordination
constraints that naturally arise.

While some of these challenges have been addressed in the surveyed liter-
ature, numerous open problems remain. For example, the questions of com-
bining the erasure encoding with multiresolution and distributed compression
architectures, as well as faster encoding and decoding algorithms are among
the issues that need to be addressed in future work. Distributed and scalable
algorithms naturally fit with the randomized linear network coding theory
and we believe that such ideas will be useful for practical applications.
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6.1 Introduction

We study the problem of reconstructing a temporal sequence of unknown
spatial data fields in a bounded geographical region of interest at a data fu-
sion center from finite bit–rate messages generated by a dense noncooperative
network of noisy low–resolution sensors (at known locations) that are sta-
tistically identical (exchangeable) with respect to the sensing operation. The
interchangeability assumption reflects the property of an unsorted collection
of inexpensive mass–produced sensors that behave in a statistically identical
fashion. We view each data field as an unknown deterministic function over
the geographical space of interest and make only the minimal assumption that
they have a known bounded maximum dynamic range. The sensor observa-
tions are corrupted by bounded, zero–mean additive noise which is indepen-
dent across sensors with arbitrary dependencies across field snapshots and has
an arbitrary but unknown distribution but a known maximum dynamic range.
The sensors are equipped with binary analog–to–digital converters (ADCs)
(comparators) with random thresholds that are independent across sensors
with arbitrary dependencies across snapshots and are uniformly distributed
over a known dynamic range. These modeling assumptions partially account
for certain real–world scenarios that include (i) the unavailability of good
initial statistical models for data fields in yet to be well studied natural phe-
nomena, (ii) unknown additive sensing/observation noise sources, (iii) addi-
tive model perturbation errors, (iv) substantial variation of preset comparator
thresholds accompanying the mass–manufacture of low–precision sensors, (v)
significant temperature fluctuations across snapshots affecting hardware char-
acteristics, and (vi) the use of intentional dither signals for randomized scalar
quantization.

In this work, a data fusion center is any point of data aggregation and/or
processing in the sensor network and can be real or virtual. For instance, sen-
sors can be dynamically organized into clusters with different sensors assuming
the role of a fusion center at different times [1]. This work does not explic-
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itly address physical–layer network data transport issues. In particular, we
do not consider joint source–channel coding strategies. Instead, to conform
with the existing base of digital communication architectures, the effective
communication links are abstracted into a network of reliable but finite–rate
bit–pipes from each sensor to the data fusion center. In practice, sensor data
can be moved to the fusion center through a variety of physical–layer trans-
port mechanisms, example, a stationary base–station with directional antenna
arrays, a mobile data collector, and passive sensor querying mechanisms in-
volving, for instance, laser–beams and modulating mirrors [2]. We acknowl-
edge that separating the distributed field reconstruction problem into efficient
data acquisition and efficient data transport parts through a finite–rate reli-
able bit–pipe abstraction may be suboptimal [3, p. 449], [4, 5]. For instance,
in some scenarios multihop communication is not needed and the character-
istics of the field, the communication channel, and the distortion–metric are
“matched” to one another. In such a scenario, uncoded “analog” transmission
can offer huge performance gains if the synchronization of sensor transmis-
sions can be orchestrated at the physical layer to achieve beamforming gains
and the network channel state information is available to the transmitting
sensors [4]. For the joint source–channel aspects of this and related problems,
see [6, 7, 8, 9]. For networking issues such as sensor scheduling, quality of
service, and energy efficiency also see [10] and references therein.

Building upon prior results in [11, 12], and [13], we develop a simple cod-
ing and field reconstruction scheme based on noisy one–bit samples of noisy
observations and characterize the associated scaling behavior of the MSE of
field reconstruction with sensor density in terms of the local and global mod-
uli of continuity of the underlying sequence of fields for fixed, positive, and
equal sensor coding rates (bits per sensor per snapshot). These achievable
results reveal that for bounded, zero–mean additive observation noise of un-
known distribution, the MSE at every point of continuity of every field can be
made to go to zero as sensor density increases while simultaneously sending
the per–sensor bitrate and any sensing–related network rate overheads (e.g.,
sensor addresses) to zero. The rate of decay of field reconstruction MSE at a
given location is related to the local modulus of continuity of the field at the
given location and time. This is possible if the sensor placement and sampling
schedule satisfy a certain uniformity property and if the field estimate at any
given spatial location is formed using the observations from increasingly many
sensors that are located within a vanishingly smaller neighborhood of the lo-
cation. Specializing these results to the case of spatially constant fields yields
an achievable MSE decay rate of O(1/N) where N is the sensor network size.1

A Cramér–Rao lower–bound on the MSE for parameter estimation establishes
that the O(1/N) MSE scaling behavior is order–optimal. Since in our problem

1 Landau’s asymptotic notation: f(N) = O(g(N)) ⇔ lim supN→∞ |f(N)/g(N)| <
∞; f(N) = Ω(g(N)) ⇔ g(N) = O(f(N)); f(N) = Θ(g(N)) ⇔ f(N) =
O(g(N)) and g(N) = O(f(N)).
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formulation, the per–sensor bitrate is held fixed and equal across sensors, in
a scaling sense, the MSE decreases inversely with the total network rate.

These results are consistent with the information–theoretic, total network
rate versus MSE scaling results for the CEO problem which was first intro-
duced in [14] and thereafter studied extensively in the information theory lit-
erature (see [15, 16] and references therein). However, it should be noted that
information–theoretic rate–distortion studies of this and related distributed
field reconstruction (multiterminal source coding) problems typically consider
stationary ergodic stochastic fields with complete knowledge of the field and
observation–noise statistics, block vector–quantization (VQ) and binning op-
erations, and time–averaged (as opposed to worst–case) expected distortion
criteria. In VQ, sensors are allowed to collect long blocks of real–valued field
samples (of infinite resolution) from multiple field snapshots before a discrete,
finite bit–rate VQ operation. The fields are often assumed to be spatially con-
stant and independent and identically distributed (iid) across time (frequently
Gaussian) and the observation noise is often assumed to be additive with a
known distribution (frequently Gaussian) as in the CEO problem. It should
also be noted that the MSE scaling results for the CEO problem in [15] are
with respect to the total network rate where the number of agents (or sensors)
has already been sent to infinity while maintaining the total network rate a
finite value. Recent information–theoretic results for stationary fields under
zero observation noise have been developed in [17, 18].

Previous estimation–theoretic studies of one–bit distributed field recon-
struction have focused on reconstructing a single field snapshot and have ei-
ther (i) assumed zero observation noise [11, 12], or (ii) assumed a spatially
constant field (equivalent to scalar parameter estimation) with a one–bit com-
munication as opposed to a one–bit sensing constraint. Our proposed system
integrates the desirable field sensing and reconstruction properties of these
apparently different one–bit field estimation schemes and establishes the sta-
tistical and performance equivalence of these approaches. An important hard-
ware implication of this chapter is that noisy op–amps (noisy one–bit ADCs)
are adequate for high–resolution distributed field reconstruction. This should
be be contrasted with the framework in [13] which implicitly requires sen-
sors to have the ability to quantize their observations to an arbitrarily high
bit resolution. A side contribution of this chapter is the holistic treatment of
the general distributed field–reconstruction problem in terms of (i) the field
characteristics, (ii) sensor placement characteristics, (iii) sensor observation,
quantization, and coding constraints with associated sensing hardware impli-
cations, (iv) transmission and sensing–related network overhead rates, and (v)
reconstruction and performance criteria. We have attempted to explicitly in-
dicate and keep track of what information is known/available/used and what
is not.

The randomized scalar quantization model for the sensor comparators not
only captures poor sensing capabilities but is also an enabling factor in the
high–fidelity reconstruction of signals from quantized noisy observations. As
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shown in [19] in an information–theoretic setting and alluded to in [12], us-
ing identical deterministic scalar–quantization (SQ) in all sensors results in
the MSE performance being fundamentally limited by the precision of SQ,
irrespective of increasing sensor density, even in the absence of sensor obser-
vation noise.2 However, our results further clarify that having “diversity” in
the scalar quantizers, achieved, for example, through the means of an inten-
tional random dither, noisy threshold, or other mechanisms, can achieve MSE
performance that tends to zero as the density of sensors goes to infinity. Ran-
domization enables high–precision signal reconstruction because zero–mean
positive and negative fluctuations around a signal value can be reliably “aver-
aged out” when there are enough independent noisy observations of the signal
value. This observation is also corroborated by the findings reported in the
following related studies [12, 11, 13, 20, 21].

The rest of this chapter is organized as follows. The main problem de-
scription with all technical modeling assumptions is presented in Sect. 6.2.
The main technical results of this chapter are summarized and discussed in
Sect. 6.3. Sect. 6.4 describes the proposed constructive distributed coding and
field reconstruction scheme and the analysis of MSE performance. In Sect. 6.5,
we discuss the close connections between the work in [12], [13], and the present
work, and establish the fundamental statistical and performance equivalence
of the core techniques in these studies. Finally, in Sect. 6.6 we present conclud-
ing remarks and comment on ongoing work and future research directions.

6.2 Problem Setup

Fig. 6.1. Block diagram of a distributed field reconstruction sensor–network using
randomized 1–bit SQ with block–coding. Sensor i quantizes its noisy observations,
Yi1, . . . , YiT , to the binary values Bi1, . . . , BiT . The sensor then generates the mes-
sage Mi ∈ {1, . . . , 2rT } based on these quantized values. These messages {Mi} are

then relayed to the fusion center where the field estimates Ŝt are produced.

2 However, VQ with binning does not suffer from this limitation as shown in [17, 18].



6 Distributed Field Estimation with One–bit Sensors 141

6.2.1 Field Model

We consider a sequence of T discrete–time snapshots of a spatio–temporal
field. If the spatio–temporal field is temporally bandlimited then the field
values at intermediate time points can be interpolated from the estimates at
discrete time snapshots if the temporal sampling rate is (strictly) higher than
the temporal Nyquist rate of the field. The associated MSE will be no larger
than the maximum MSE of the estimates across the discrete–time snapshots
times a proportionality constant. Each snapshot is modeled as a continuous.
More generally, our results can be extended to arbitrary, amplitude–bounded,
measurable functions. For such functions the pointwise MSE bounds given in
Sect. 6.3.1 still hold. The estimates at the points of continuity will have MSE
tending to 0 as the network size scales. However, the points of discontinuity
may have a finite, but non–zero MSE floor. bounded function,

st : G → R : ∀x ∈ G, ∀t ∈ {1, . . . , T}, |st(x)| ≤ a < +∞,

where G ⊆ R
d is a known geographical region of interest in d–dimensional

real space and a is a known bound on the maximum field dynamic range.
Although the results of this chapter hold for any G which is bounded and is
the closure of its nonempty interior, for simplicity and clarity of exposition,
we will assume G = [0, 1]d, the d–dimensional unit–hypercube, in the sequel.
Distances are measured with respect to a norm3 ‖ · ‖, which for this work
will be assumed to be the Euclidean 2-norm. Since the fields are continuous
functions on the compact set G, they are in fact uniformly continuous on G
[22].

Results on the fidelity of the field reconstruction will be described in terms
of the local and global moduli of continuity associated with the field:

Definition 1. (Local modulus of continuity) The local modulus of continuity
ωt : [0,∞)×G → [0,∞) of the function st(x) at the point x ∈ G is defined as

ωt(δ, x) � sup
{x′∈G:‖x−x′‖≤δ}

|st(x) − st(x′)|.

Note that for all x ∈ G, ωt(δ, x) is a nondecreasing function of δ and that it
−→ 0 as δ −→ 0 since st(x) is continuous at each point x in G.

Definition 2. (Global modulus of continuity) The global modulus of continu-
ity ω̃t : [0,∞) → [0,∞) of the function st(x) is defined as

ω̃t(δ) � sup
x∈G

ωt(δ, x).

Again note that ω̃t(δ) is a nondecreasing function of δ and that it −→ 0 as
δ −→ 0 since st(x) is uniformly continuous over G.
3 For asymptotic results in which distance −→ 0, any norm on R

d would suffice
since all norms on any finite–dimensional Banach space are equivalent [22, The-
orem 23.6, p. 177].
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The global and local moduli of continuity of a spatial field respectively
reflect the degree of global and local spatial smoothness of the field with
smaller values, for a fixed value of δ, corresponding to greater smoothness.
For example, for a spatially constant field, that is, for all x ∈ G, st(x) =
st (a constant), we have ω̃t(δ) = 0 for all δ ≥ 0. For d = 1 and fields with a
uniformly bounded derivative, that is, for all x ∈ G, supx∈G |d(st(x))/dx| =
∆ < +∞, ω̃t(δ) ≤ ∆ ·δ. More generally, for a Lipschitz–γ spatial function (see
[11]) st(x), we have ω̃t(δ) ∝ δγ . Closed–form analytical expressions of moduli
of continuity may not be available for arbitrary fields but bounds often are.
Sometimes bounds that are tight in the limit as δ −→ 0 are also available.
From Definitions 1, 2, and the boundedness of the field dynamic range, it also
follows that for all δ ≥ 0, for all x ∈ G, and for all t ∈ {1, . . . , T}, we have

0 ≤ ωt(δ, x) ≤ ω̃t(δ) ≤ 2a < +∞.

6.2.2 Sensor Placement

We assume that we have a dense, noncooperative network of N sensors dis-
tributed uniformly over a hypercube partitioning of G = [0, 1]d. The space
G = [0, 1]d is uniformly partitioned into L = ld (where l is an integer) dis-
joint, hypercube supercells of side–length (1/l). Each supercell is then further
uniformly partitioned into M = md (where m is an integer) hypercube subcells
of side–length (1/(lm)), giving a total of LM subcells. In our distributed field
coding and reconstruction scheme, described in Sect. 6.4, the field estimate
for each snapshot is constant over each supercell and formed by averaging the
measurements from a partial set of the sensors, determined by the subcells.
This field reconstruction scheme requires knowledge of the sensor locations
only up to subcell membership. Therefore, it has some natural robustness
against sensor location uncertainty or error. The significance of the super and
subcells will become clear in the sequel (Sects. 6.3 and 6.4).

We assume that the sensor deployment mechanism is able to uniformly
distribute the sensors over the subcells. We define this uniform sensor deploy-
ment condition with:

Definition 3. (Uniform sensor deployment) We say that a sensor deployment
method is uniform if exactly n � (N/(LM)) sensors are located in each subcell.

We also assume that each sensor is aware of which subcell it is in. See
Fig. 6.2 for an illustration of the cell hierarchy and example sensor deployment
for the d = 2 dimensional case.

6.2.3 Sensor Observation and Coding Models

Sensor Observation Noise

The sensor observations are corrupted by bounded, zero–mean additive noise
which is independent across sensors, but can be arbitrarily correlated across
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Fig. 6.2. Example uniform sensor deployment and cell hierarchy over [0, 1]2 (d = 2
dimensional case) with N = 864 sensors deployed over L = 42 supercells of side–
length (1/4) and M = 32 subcells per supercell of side–length (1/(3 · 4)), resulting
in 6 sensors per subcell.

field snapshots4. Let Zit denote the noise affecting the observation of the tth

snapshot by the ith sensor, and define the Z � {Zit}N,T
i=1,t=1 (the collection of

all of the noise random variables) and Zi � {Zit}T
t=1 (the collection of all of

the noise random variables for a given sensor i). The noise Z has an unknown
joint cumulative distribution function (cdf) FZ(z) that can be arbitrary within
the zero–mean, boundedness and independence constraints already stated.
The maximum dynamic range of the noise b ∈ [0,+∞) is known. The noisy
observation of field snapshot t ∈ {1, . . . , T} made by sensor i ∈ {1, . . . , N} is
given by

Yit = st(xi) + Zit,

where xi is the location of the ith sensor and Z ∼ cdf FZ(z). We use F to
denote the set of all joint cdfs that are factorizable into N zero–mean joint
cdfs on R

T with support within [−b,+b]T , that is, FZ(z) =
∏N

i=1 FZi(zi)
where FZi(zi) is a zero–mean joint cdf (corresponding to the noise random
variables for sensor i) with support within [−b,+b]T . Note that F captures
the feasible set of joint noise cdfs for the bounded–amplitude, zero–mean, and
independence assumptions. Note that |Yit| ≤ |st(xi)| + |Zit| ≤ c � (a + b).

Randomized 1–bit SQ with Block Coding

Due to severe precision and reliability limitations, each sensor i ∈ {1, . . . , N},
has access to only to a vector of unreliable binary quantized samples Bi �
(Bi1, . . . , BiT ) for processing and coding and not direct access to the real–
valued noisy observations Yi1, . . . , YiT . The quantized binary sample Bit is
generated from the corresponding noisy observation Yit through a random-
ized mapping Qit : [−c, c] → {0, 1}: for each i ∈ {1, . . . , N} and each
4 The measurement snapshot timers of all the participating sensors are assumed to

be synchronized.
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t ∈ {1, . . . , T},
Bit = Qit(Yit),

where we assume that the mappings Qit are independent across sensors i, but
can be arbitrarily correlated across snapshots t. We denote the conditional
marginal statistics of the quantized samples by pBit|Yit

(y) � P(Bit = 1|Yit =
y). We are specifically interested in cases where pBit|Yit

(y) is an affine function
of y since it allows estimates of the fields to be made from the Bit’s without
knowledge of the noise distribution (see Appendix). Specifically we consider
the conditional distribution

pBit|Yit
(y) =

(
y + c

2c

)
.

This conditional distribution can be achieved by a quantization method
which is based on comparing the noisy observation with a random uniformly
distributed threshold given by

Bit = QTh
it (Yit) � 1(Yit > Rit), (6.1)

where the Rit’s are Unif[−c, c] random thresholds which are independent
across sensors i, but arbitrarily correlated across snapshots t, and 1(·) de-
notes the indicator function:

1(Yit > Rit) =

{
1 if Yit > Rit,

0 otherwise.

This uniform random–threshold 1–bit SQ model partially accounts for some
practical scenarios that include (i) comparators with a floating threshold volt-
age, (ii) substantial variation of preset comparator thresholds accompanying
the mass–manufacture of low–precision sensors, (iii) significant environmental
fluctuations that affect the precision of the comparator hardware, or gener-
ally (iv) unreliable comparators with considerable sensing noise and jitter.
An alternative justification is that the random thresholds are intentionally in-
serted as a random dither. Scenario (i) can be accommodated by independence
across snapshots, scenario (ii) can be accommodated by complete correlation
(fixed) across snapshots, and scenarios (iii) and (iv) can be accommodated by
arbitrary correlation across snapshots.

Each sensor i utilizes a block encoder to “compress” its vector of T quan-
tized samples Bi to a message Mi ∈ {1, 2, . . . , 2rT } before transmitting to the
fusion center. The block encoder and message for sensor i are given by

fi : {0, 1}T → {1, 2, . . . , 2rT }, Mi = fi(Bi1, . . . , BiT ),

where r is the coding rate in bits per sensor per snapshot. For r ≥ 1 compres-
sion is trivial since Bi can assume no more than 2T distinct values which can
be indexed using T bits.
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Fig. 6.3. Quantizer Hardware Example: The sensing model described by the QTh
it (·)

function in (6.1) can be implemented by a comparator with a uniformly distributed
threshold. These thresholds are independent across sensors, but arbitrarily corre-
lated across snapshots, allowing many scenarios to be accommodated.

6.2.4 Transmission and Field Reconstruction

Our problem setup abstracts the underlying transmission network of sensors
as a network of bit pipes that are capable of reliably delivering these N mes-
sages (the payloads) and the network addresses of the message origination
nodes (the headers) to the fusion center. This enables the fusion center to
correctly associate the spatial location information with the corresponding
sensor field–measurement information for reliable field reconstruction. For our
reconstruction scheme, the fusion center only needs to be able to differentiate
which subcell each message originated from. This can be achieved by having
each sensor append a log(LM) bits long label to its message. This results
in a total sensor–location rate–overhead of rohd = (N/T ) log(LM) bits per
snapshot on the network information transport costs. This overhead will be
negligible if T � N log(LM). If the underlying sequence of fields are spatially
constant, then, the sensor location information is not needed at the fusion
center (see Corollary 1 and Sect. 6.4).

The fusion center forms the estimates of the T fields based on the sensor
messages using the reconstruction functions

gt : G × {1, 2, . . . , 2rT }N → [−a, a], ∀t ∈ {1, . . . , T}.

The estimate of field t at point x ∈ G is given by

Ŝt(x) = gt(x,M1, . . . ,MN ).

Definition 4. (Rate–r DFRS) A rate–r Distributed Field Reconstruction
Sensor–network (DFRS) based on randomized 1–bit SQ with block coding is
defined by the set of rate–r encoder functions {fi(·)}N

i=1 and the set of recon-
struction functions {gt(·)}T

t=1.

Figure 6.1 depicts a rate–r DFRS using randomized 1–bit SQ with block
coding.
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Performance Criterion

Definition 5. (Pointwise MSE) The pointwise MSE of the estimate of field
t at location x ∈ G, for a given rate–r DFRS and a specific noise joint cdf
FZ(z) ∈ F , is given by

Dt(x;FZ) = E[(Ŝt(x) − st(x))2].

Since we are interested in schemes that will work for any noise cdf in
F , we consider the worst–case Dt(x;FZ) over all possible FZ ∈ F . We also
consider the maximization over all fields and all locations in G since we want
to reconstruct every point of every field with high fidelity.

Definition 6. (Worst–case MSE) The worst–case MSE D is given by

D = max
t∈{1,...,T}

sup
x∈G

sup
FZ∈F

Dt(x;FZ).

Our objective is to understand the scaling behavior of MSE with N , T ,
and r. The next section summarizes our partial results in this direction.

6.3 Main Results

6.3.1 Achievable MSE Performance

Our first result gives an upper bound on the MSE achievable through a con-
structive DFRS based on randomized 1–bit SQ with block coding for rate
r = 1/M , where M is the number of subcells per supercell. The actual scheme
will be described in Sect. 6.4. The MSE analysis appears within the proof of
the theorem detailed in Appendix. This achievable MSE upper bound can be
made to decrease to zero as sensor–density goes to infinity (see (6.2)) with-
out knowledge of the local or global smoothness properties of the sequence
of fields. Furthermore, this scheme is universal in the sense that it does not
assume knowledge of FZ(z) beyond membership to F .

Theorem 1. (Achievable MSE performance: Randomized 1–bit SQ and r =
1/M) There exists a rate–r = 1/M DFRS based on randomized 1–bit SQ with
block coding (described in Sect. 6.4) such that for all x ∈ G, t ∈ {1, . . . , T},
and FZ(z) ∈ F ,

Dt(x;FZ) ≤ ω2
t

( √
d

d
√

L
, x

)
+

(
LMc2

N

)

≤ ω̃2
t

( √
d

d
√

L

)
+

(
LMc2

N

)
.
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Proof. See Appendix.

Note that Theorem 1 holds for arbitrary fields. The modulus of continuity
terms in the local (first) and global (second) upper bounds of Theorem 1 are
due to the bias of the field estimates and the

(
LMc2

N

)
term is due to the

variance of the field estimates (see (6.4) in Sect. 6.4). From Theorem 1 and
the properties of moduli of continuity (see Sect. 6.2.1), it follows that for the
coding and reconstruction scheme of Sect. 6.4, as N −→ ∞, the estimate Ŝt(x)
uniformly converges, in a mean square sense, to st(x) for all x ∈ G, provided
that

(i)
(

N

L

)
−→ ∞, and (ii) L −→ ∞. (6.2)

It also follows that the worst–case MSE scaling behavior (see Definition 6) is
bounded by

D ≤ max
t∈{1,...,T}

{
ω̃2

t

( √
d

d
√

L

)
+

(
LMc2

N

)}
(6.3)

and that D −→ 0 as N and L scale as in (6.2).
Implications: These results allow us to make the per sensor per snapshot
bit rate r, worst–case MSE D, and sensor message ID overheads (given
by (N/T ) log(LM) bits) simultaneously smaller than any desired values
r∗,D∗, ε > 0, respectively. First, we can choose a sufficiently large number
of subcells per supercell M∗ such that the rate r = 1/M∗ < r∗. Then we can
choose a sufficiently large number of sensors N∗ and number of supercells L∗

such that the bound on D given by (6.3) is made less than D∗. Note that
both N∗ and M∗ can be further increased while keeping the ratio M∗/N∗

fixed without changing the bound on D. This corresponds to increasing the
total number of sensors N , decreasing the per sensor rate r = 1/M , but keep-
ing the total network per snapshot rate Nr = N/M and distortion D fixed.
Finally, we can look at a sufficiently large number of snapshots T ∗ such that
network message overheads (N∗/T ∗) log(L∗M∗) < ε.

In the constructive coding and field reconstruction scheme of Sect. 6.4,
the field estimates are piecewise constant over the supercells. The estimate
in each supercell is formed from only n = (N/(LM)) of the Mn = (N/L)
quantized observed values coming from the sensors located in that supercell.
Since only (1/M) of the total available quantized observed values for each
snapshot are used, the transmission rate of (1/M) is achievable by indexing
only the necessary values (see Sect. 6.4 for details). As the number of supercells
L increases, the piecewise constant estimate becomes finer and the bias is
decreased. Also, as the number of sensors per supercell is increased, more
observations are used thus decreasing the variance of the estimate.

Since the variance term LMc2

N in the upper bound of Theorem 1 can de-
crease no faster than O(1/N), the decay of the global MSE upper bound, in
the proposed constructive scheme, can be no faster than O(1/N). However,
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the decay rate of LMc2

N is hindered by the fact that L simultaneously needs to

approach infinity for the bias term ω̃2
t

( √
d

d√L

)
to decay to 0. When ω̃t(·) is not

identically zero, a bias–variance tradeoff exists and the appropriate relative
growth rate for L with N that minimizes the decay rate of the global MSE
upper bound of Theorem 1 is determined by the following condition

ω̃2
t

( √
d

d
√

L

)
= Θ

(
L

N

)
.

For certain classes of fields for which the global modulus of continuity has
a closed form, the optimum growth rate can be explicitly determined. For
instance, if d = 1 and ω̃t(δ) = ∆ · δ (Lipschitz–1 fields), Lopt(N) = Θ(N1/3)
for which MSE = O(N−2/3).

For the class of constant fields, we immediately have the following corollary.

Corollary 1. (Achievable MSE performance: Randomized 1–bit SQ, r =
1/M , and constant fields) If for all x ∈ G and all t ∈ {1, . . . , T}, we have
st(x) = st, or equivalently, for all δ ≥ 0 and all t ∈ {1, . . . , T}, ω̃t(δ) = 0,
then the result given by (6.3) reduces to

D ≤
(

Mc2

N

)
,

where we can set L = 1 to minimize the bound.

Only L = 1 supercells are needed for an accurate piecewise constant recon-
struction of a constant field. Furthermore, all snapshot–estimates given by the
scheme from Sect. 6.4 are unbiased in this case. Also, the spatial locations of
sensors are irrelevant: the MSE behavior is governed purely by the number
of sensors N regardless of how they are distributed over the subcells. The N
sensors must still be uniformly assigned to one of M groups (for the purpose of
transmission coordination to achieve the compression factor of 1/M), however
these groups do not need to have any geographical significance.

6.3.2 Order–Optimal Minimax MSE for Constant Fields

The minimax reconstruction MSE over the class of constant fields is given by

inf
{gt}t=T

t=1

sup
FZ∈F,st∈S

D,

where the infimum is taken over all possible estimators and the supremum is
taken over all noise distributions and fields from the class of constant fields
which is denoted by S. The achievable MSE result given by Corollary 1 estab-
lishes an upper bound on the minimax reconstruction MSE. Theorem 2 lower
bounds the minimax reconstruction MSE for any rate r DFRS that produces
unbiased estimates for the case of spatially constant fields.
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Theorem 2. (Lower bound on MSE: Unbiased estimators for constant fields)
For a sequence of spatially constant fields and any DFRS which produces un-
biased field estimates, there exists a joint cdf FZ ∈ F such that for noise
distributed according to FZ the MSE is lower bounded by

E[(Ŝt − st)2] ≥
(

Ct

N

)
, for all t ∈ {1, . . . , T},

where Ct is finite, non–zero, and does not depend on N . Therefore,

inf
{gt}t=T

t=1

sup
FZ∈F,st∈S

D ≥ max
t∈{1,...,T}

(
Ct

N

)
.

Proof. Since {st} → {Yit} → {Bit} → {Mi} forms a Markov chain, the
estimates based on the sensor messages {M1, . . . ,MN} cannot have a lower
MSE than estimates based on the noisy observations {Yit}. Let FZ ∈ F be
any well–behaved, non–trivial, joint cdf such that the Zit are iid and the
conditional probabilities of Yit given the fields satisfy the regularity conditions
necessary for the Cramér-Rao bound [23] to be applied. By the Cramér-Rao
bound, the MSE of each field estimate based on {Yit} is lower bounded by Ct

N
where Ct is finite, non–zero, and depends on FZ, but does not depend on N .
Note that the bound also applies to general randomized 1–bit SQ functions
Qit(·) including those based on uniform random thresholds QTh

it (·) (see (6.1)).

Combining the results of Corollary 1 and Theorem 2 establishes that the
order–optimal minimax MSE for spatially constant fields is Θ(1/N) and that
the scheme of Sect. 6.4 achieves this order optimal performance.

6.4 Proposed Constructive Distributed Coding and Field
Reconstruction Scheme

In this section we present the proposed DFRS scheme that was alluded to in
Sect. 6.3. In this scheme, sensors create the quantized binary samples {Bit}
from their observations {Yit} through comparisons with the random thresh-
olds {Rit}, as described in (6.1) of Sect. 6.2.3. The field estimates are piecewise
constant over the supercells, where the estimate formed in each supercell is a
function of only (N/(LM)) of the (N/L) quantized observed values coming
from the sensors located in that supercell. This allows fractional transmission
rates of r = 1/M through a simple time–sharing based compression method.
Note that there can be uncertainty in the sensor locations, within a degree
given by the size of a subcell, at the fusion center, since it is only necessary
for the fusion center to know which subcell each sensor is located in.

Each sensor i, instead of transmitting all of its T bits (the vector of its bi-
nary quantized observations Bi = (Bi1, . . . , BiT )), transmits only rT = T/M
of them and the remaining observations are dropped. The two–level hierarchy
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of supercells and subcells described in Sect. 6.2.2 is used in order to prop-
erly determine which bits sensors should drop or keep. Within each supercell,
each sensor i from subcell k ∈ {1, . . . , M} communicates only every M th bit
(offset by k), that is {Bi,k+Ml}l=(T/M)−1

l=0 . These rT bits can be uniquely rep-
resented by the message Mi ∈ {1, . . . , 2rT } and losslessly communicated to
the fusion center. Thus for snapshot t ∈ {1, . . . , T}, only the bits from senors
in the [((t − 1) mod M) + 1]th subcell of each supercell are communicated
to the fusion center. We will denote the set of indices corresponding to the
n = (N/(LM)) sensors belonging to the [((t − 1) mod M) + 1]th subcell of
supercell j by I(j, t). This set of indices corresponds to the sensors that are
located in supercell j and encode a bit for snapshot t.

For notational simplicity, the reconstruction Ŝt(x) = gt(x,M1, . . . ,MN )
will be described directly in terms of the available binary quantized observa-
tions5 Bit. The piecewise constant function Ŝt(x) is described in two parts.
First, the constant estimate of st(x) over supercell j is given by

Ŝtj � 2c

⎡
⎣ 1

n

∑
i∈I(j,t)

Bit

⎤
⎦− c,

which is the average (shifted and scaled into [−c,+c]) of the available quan-
tized binary observations of snapshot t from sensors located in supercell j.
The piecewise–constant estimate for st(x) is then given by

Ŝt(x) = gt(x,M1, . . . ,MN ) �
L∑

j=1

Ŝtj1(x ∈ Xj), (6.4)

where Xj ⊆ [0, 1]d is the set of points within the jth hypercube supercell and
1(x ∈ Xj) is given by

1(x ∈ Xj) =

{
1 if x ∈ Xj ,

0 otherwise.

An alternative approach is for the fusion center to use a piecewise–linear
(as used in [12]) or other higher–order interpolation algorithms such as those
based on cubic B–splines. The resulting MSE will be of the same order. We use
the former approach because its analysis is more compact. Appendix proves
that the MSE of this constructive coding and reconstruction scheme is upper
bounded by the result described in Theorem 1.

6.5 Related One-bit Estimation Problems

This section discusses the connections between the methods and results in
[12], [13], and the present work. It is shown that the apparently different
5 The set of binary quantized observations available at the fusion center is given

by {Bit}{i∈∪L
j=1I(j,t)}
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Fig. 6.4. The QTh
it (·) function in (6.1) and the Q(·) function of [13] suggest

markedly different hardware implementations. The former naturally suggests (a),
where the binary quantized value is produced by a simple comparison to a random
threshold X. The latter suggests (b), where an arbitrarily–precise ADC circuitry
probabilistically selects an arbitrary bit of the observed value. Interestingly, these
two implementations produce statistically equivalent quantized outputs B given
identical inputs Y .

randomized 1–bit field estimation schemes in these studies are in fact statisti-
cally and MSE performance equivalent. The general framework of the present
work integrates the desirable field sensing and reconstruction properties and
insights of the earlier studies and provides a unified view of the problem that
simultaneously considers unreliable binary quantization, unknown arbitrary
noise distributions, multiple snapshots of a temporally and spatially varying
field, and communication rate issues. Since the work in both [12] and [13] deal
with the reconstruction of only a single snapshot (T = 1), we will drop the
snapshot indices t in our discussion to aid comparison.

6.5.1 One–Bit Randomized–Dithering

The problem setup of [12] considers the reconstruction of a single snapshot
(T = 1) of a bounded, one–dimensional field (d = 1) from noiseless samples
(Zi = 0) that have been taken at deterministic sampling locations (xi = i/N)
and similarly randomly binary quantized by a threshold Ri that has a general
distribution, which must satisfy certain technical conditions as described in
[12, Sect. II.A]. These technical conditions include the uniform distribution
(considered in this chapter) as a special case. An important conceptual dif-
ference is that in [12] the sensor quantization noise is viewed as a randomized
dither signal which is intentionally added to the observations and that the
dither cdf is known (it need not be uniform). The reconstruction explicitly
exploits the knowledge of the dither statistics. Specifically, the noiseless ob-
servation Yi, at sensor i, and the corresponding quantized binary sample Bi

become
Yi = s(xi), Bi = Q(Yi) � sgn(Yi + Xi),
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where Xi is iid dithering noise with a known distribution pX(·) which satisfies
certain technical assumptions as given in [12, Sect. II.A]. Note that taking
the sign of the sum of the observation and random dither Xi is equivalent to
comparing with the threshold −Xi. Thus the quantization function Q(·) of
[12] is equivalent6 to a comparator with a random threshold that is distributed
according to pX(−x). The quantization function QTh

it (·) in (6.1) can be viewed
as a special case of this where pX(−x) is the uniform distribution over [−c, c].
The constructive scheme of Sect. 6.4 and the analysis of this work shows that
QTh

it (·) can in fact be used even on noisy field observations with an additive
noise of unknown distribution.

6.5.2 Parameter Estimation with One–Bit Messages

The parameter estimation problem in [13] corresponds to the special case
of a spatially constant field (s(xi) = s for all i where the index t is omit-
ted since T = 1) which is addressed by Corollary 1. We summarize below
the key features of the randomized binary quantizer proposed in [13] and
show that the randomized 1–bit SQ function Q(·) of [13] is statistically and
MSE performance–wise equivalent to the uniform random threshold quantizer
QTh

it (·) in (6.1). However, the Q(·) function of [13] implicitly requires sensors
of arbitrarily high precision, a property that is undesirable for sensor hardware
implementations.

In [13], each sensor i first shifts and scales it observation Yi into interval
[0, 1] creating the value Ỹi �

(
Yi+c
2c

)
. Next, each sensor i generates an auxiliary

random variable αi, which is iid across sensors and is geometrically distributed
over the set of all positive integers: P(αi = j) = 2−j for all j ∈ {1, 2, 3, . . . ,∞}.
The final quantized binary sample Bi reported by sensor i is given by the αth

i

bit in the binary expansion of Ỹi:

Bi = Q(Yi) � B(Ỹi, αi), where Ỹi =
∞∑

j=1

B(Ỹi, j)2−j . (6.5)

Here, B(Ỹi, j) denotes the jth bit of Ỹi. For example, if Ỹi = 0.375, then the
first four bits of its binary expansion are given by B(Ỹi, 1) = 0, B(Ỹi, 2) = 1,
B(Ỹi, 3) = 1, and B(Ỹi, 4) = 0. If αi = 3, then sensor i reports Bi = 1.
This method for generating binary sensor messages requires sensors to have
the operational ability to quantize an observed real number (the normalized
values Ỹi) to an arbitrarily high bit–resolution. Note that the binary values
Bi are iid across all sensors and that its expected value is given by

6 The sign function maps to {−1, +1} whereas a threshold comparator maps to
{0,1}. However, the replacement of the −1 symbol with the 0 symbol is unimpor-
tant from an estimation viewpoint.
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E[Bi] = EỸi
[EBi

[Bi|Ỹi]]

= EỸi

⎡
⎣

∞∑
j=1

B(Ỹi, j)2−j

⎤
⎦

= EỸi
[Ỹi] = E

[
Yi + c

2c

]
(6.6)

=
E[s + Zi] + c

2c
=

(
s + c

2c

)
. (6.7)

In sharp contrast to the Q(·) function described above, which requires
sensors to have the operational ability to resolve any arbitrary bit in the
binary expansion of their normalized observations, QTh

it (·) requires only a
noisy comparator. Despite the markedly different operational implementations
of Q(·) and QTh

it (·) (see (6.5), (6.1), and Fig. 6.4 which depicts hardware
implementations) they are in fact statistically identical: the binary quantized
values Bi generated by the two schemes have the same pBit|Yit

(·) and pB|s(·)
functions where pBit|Yit

(·) is the conditional expectation of Bi given Yi =
yi and pB|s(·) is the unconditional expectation of Bi parameterized by the
underlying field value s(xi) = s. These expectations have been evaluated in
(6.6), (6.7), (6.8) and (6.9), and we see that for both functions

E[Bi|Yi = yi] = pBit|Yit
(yi) =

(
yi + c

2c

)
, and

E[Bi] = pB|s(s(xi)) =
(

s(xi) + c

2c

)
.

This statistical equivalence allows the two quantization functions Q(·) and
QTh

it (·) to be interchanged without affecting the estimation performance.

6.6 Conclusions

The results of this work show that for the distributed field reconstruction
problem, for every point of continuity of every field snapshot, it is possible to
drive the MSE to zero with increasing sensor density while ensuring that the
per–sensor bitrate and sensing–related network overhead rate simultaneously
go to zero. This can be achieved with noisy threshold (one–bit) compara-
tors with the minimal knowledge of signal and noise dynamic ranges provided
that the noise samples are zero–mean, and independent across sensors and
the underlying field, and the sensor placement and sampling schedule satisfy
a certain uniformity property. Also, since knowledge of sensor locations need
only to be within the precision of the size of the subcells, there is an inher-
ent robustness to sensor location uncertainty. The rate of decay of MSE with
increasing sensor density is related to the the local and global smoothness
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characteristics of the underlying fields and is order–optimal for the class of
spatially constant fields. This work has further clarified the utility of random-
ization for signal acquisition in a distributed sensor network context and has
attempted to systematically account for sensor placement and hardware issues
in addition to the typical constraints encountered in related studies.
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Appendix: Proof of Theorem 1

First, note that the expected value of the binary message Bit is given by

E[Bit] = E[1(Yit > Rit)]
= EYit

[ERit
[1(Yit > Rit)|Yit]]

= EYit
[P (Rit < Yit|Yit)]

= EYit

[
Yit + c

2c

]
(6.8)

=
E[st(xi) + Zit] + c

2c

=
(

st(xi) + c

2c

)
, (6.9)

which is the value of the field st(·) at location xi shifted and normalized to
the interval [0, 1]. Note that this result holds for any FZ(z) ∈ F .

Using (6.9) we can bound the bias and the variance of the estimator Ŝt(x).
The bound on the MSE follows from the bounds on these values since, for any
estimator of a non-random parameter, we have

MSE
(
Ŝt(x)

)
= bias2

(
Ŝt(x)

)
+ var

(
Ŝt(x)

)
. (6.10)

Let j ∈ {1, . . . , L} denote the index of the supercell that x falls in. We
bound the magnitude of bias of the estimate Ŝt(x) in the following way
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∣∣∣bias
(
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1
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∑
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)
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( √
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d
√
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)
, (6.11)

where (i) follows from (6.9), (ii) and (iv) follow from Definitions 1 and 2,
and (iii) follows because the local modulus of continuity is a nondecreasing
function of its first argument for each fixed value of its second argument and
since any sensor in the supercell containing x is within distance

√
d

d√L
of x (the

length of the diagonal of a supercell).
The variance of the estimate is bounded by

var[Ŝt(x)] = var

⎡
⎣2c

⎡
⎣ 1

n

∑
i∈I(j,t)

Bit

⎤
⎦− c

⎤
⎦

=
(

4c2

n2

) ∑
i∈I(j,t)

var[Bit] (6.12)

≤
(

4c2

n2

)(n

4

)
=

(
LMc2

N

)
, (6.13)

where we used standard properties of variance and the fact that {Bit} are inde-
pendent to obtain (6.12), and we used the fact the variance of a Bernoulli{0, 1}
random variable is bounded by (1/4) and that n = (N/(LM)) to obtain (6.13).
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Combining these bounds for the bias and variance given in (6.11) and
(6.13) of the estimator and using the identity in (6.10), we get the desired
bound on the MSE for all x ∈ G, t ∈ {1, . . . , T}, and FZ(z) ∈ F .
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7.1 Introduction

Suppose M sensors are densely deployed throughout some bounded geograph-
ical region in order to sample a stationary two-dimensional random field, such
as temperature. Suppose also that each sensor encodes its measurements into
bits in a lossy fashion for transmission to some collector or fusion center where
the continuous-space field is reconstructed. We consider the following ques-
tion. If the distortion in the reconstruction is required to be D or less, what
happens to the total number of bits produced by the encoders as the sensors
become more numerous and dense? Does the increasing number of sensors
mean that the total number of bits increases without limit? Or does the in-
creasing correlation between neighboring sensor values sufficiently mitigate
the increasing number of sensors to permit the total number of bits to remain
bounded as M increases?

A key constraint is that the encoders are distributed, i.e., each encodes its
own data, without knowledge of the data from the other sensors, though with
the knowledge that the decoder will have the encoded data from the other
sensors, in addition to that from its own encoder. Without the distributed
constraint, conventional rate-distortion theory (for centralized, as opposed to
distributed coding) implies that the number of bits can remain bounded. This
fact will be reviewed in the next section.

The goal of this chapter is to review recent work providing several answers
to this question about the number of bits produced when encoding densely
deployed sensors in a distributed fashion. The existence of different answers is
due to the fact that different coding structures are assumed. We also provide
pointers to related work in which the goal is to design systems whose distortion
decreases to zero as sensor density increases.

∗ This work was supported by NSF Grants CCF-0329715 and CCF-04485115 (CA-
REER)
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The first result, described in Section 7.3, is disappointing. It indicates that
if each sensor uses an identical scalar quantizer, along with ideal distributed
lossless source coding across all sensors, plus continuous-space field recon-
struction after decoding, then the number of bits needed to attain distortion
D grows without bound as sensor density increases. For the important case
that the field is Gaussian, a bound is given on the rate at which the number
of bits increases with sensor density.

The question then arises as to whether the catastrophically bad perfor-
mance of scalar quantization and distributed lossless coding , when sensor
density is large, is a characteristic of all distributed lossy coding systems,
or just a characteristic of this type of system. And if the latter, what is it
about the scalar quantization based system that makes it bad at large sensor
densities?

Although this question has been raised in prior work, the fact that it has
an immediate answer has been overlooked (by the present authors, among
others). For one thing, the conclusion to be drawn about scalar quantization
plus distributed lossless source coding is not that it is a bad approach, but
rather that, with this approach, the density of samples should not be taken
too large. For another, it has been overlooked that scalar quantization plus
distributed lossless coding applied to samples with a given finite density can be
considered to be a special case of lossy distributed coding applied to samples
with high sensor density, albeit with subsampling embedded in the encoders.
Therefore, the fact that a scalar quantizer based system operating at a finite
sensor density can attain target distortion D while producing a finite number
of bits implies that at all sufficiently high sensor densities, the best distributed
lossy coding systems attaining distortion D produce that many bits or fewer.
That is, unlike the scalar quantizer based system, the number of bits produced
by the best distributed lossy coding systems remains bounded as sensor den-
sity increases. In a sense, the difficulty with the scalar quantization based
system at high sampling densities is that it rules out subsampling, whereas
ideal distributed lossy coding does not.

One characteristic of the aforementioned scalar quantization based dis-
tributed encoding system is that the encoders operating on each sensor pro-
duce the same numbers of bits per sensor value. This contrasts with the sub-
sampling approach sketched in the previous paragraph in which only some
of the sensors have encoders that produce bits. Thus, one may ask if it is
the equal-bits characteristic of scalar quantization with distributed lossless
coding that causes catastrophic behavior. However, this, too, is not the case,
because without affecting performance one can use time-sharing to modify
the system in such a way that all sensor encoders produce, on average, the
same number of bits – simply time-share among various subsets of sensors
in such a way that in the long run each sensor is encoded equally often. An
explicit construction is described in Section 7.3 One concludes that it is not
the equal-bits characteristic that causes catastrophic performance.
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The next logical question is: How well can distributed lossy coding systems
perform when operating on dense samples? Bounds to such performance are
discussed in Section 7.4 for the case of a Gaussian field. Though the bounds
of this section are primarily for stationary Gaussian fields, the fact that Gaus-
sian is a “worst case” implies that they also provide upper bound for other
stationary sources.

As a prologue to the main sections of this chapter, the next section intro-
duces the random process and the distributed coding frameworks, including
distortion and encoding rate performance measures, to be adopted in the
chapter. There are a number of issues considered in this section.

• Although one is primarily interested in two-dimensional fields, the re-
sults we review are for one-dimensional fields, i.e., for conventional one-
dimensional signals or waveforms. Nevertheless, it is believed that the be-
havior found for one-dimensional fields, such as whether the total number
of encoded bits remains bounded or not, reflects the behavior of two-
dimensional fields.

• Although we have so far envisioned sensors being deployed over a bounded
region, in fact we will consider both bounded and unbounded deployment
regions. One reason for the latter is mathematical tractability – nicer ex-
pressions can sometimes be obtained for the performance of a dense sensor
network with an unbounded deployment region. Another reason derives
from the fact that performance tends to improve as the deployment region
becomes larger. Thus, it is natural to want to know performance in the
limit of large deployment region. In a practical situation, the results of the
unbounded case will be relevant when a bounded region is large relative
to the maximum distance over which correlation remains significant.

• Although the encoders operate on samples of the field taken by the sen-
sors, the task of the decoder is to provide a continuous-space waveform
reconstruction. Therefore, there are two versions of the two performance
measures (distortion and encoding rate): one for the discrete-space samples
and the other for the continuous-space waveforms.

• Since the distributed coding methods considered rely on coding of temporal
blocks, we introduce a temporal dimension to the field. That is, coding is
considered in a spatio-temporal framework.

• The next section also reviews centralized theory. One reason is that we wish
to compare results for distributed coding to those for centralized coding.
Another is that the definitions and derivations of centralized theory are
a model that can be paralleled, to a considerable degree, in distributed
coding. For example, we review how, as sampling rate increases, the per-
formance of ideal centralized coding of discrete-space samples followed by
sample-and-hold waveform reconstruction approaches the performance of
ideal centralized codes for the continuous-space source from which the
samples are taken. Since this part of the section is a bit of a diversion
from the main goals, the reader may wish to skim it on first reading and
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return to it when a later section refers to it or when a later section intro-
duces parallel definitions or discussions for the distributed coding scenario.
Alternatively, the reader might appreciate the opportunity to review the
classical derivation of centralized coding limits.

We conclude the introduction by mentioning that this chapter is intended
to be tutorial, rather than to introduce new results. It focuses on key ideas,
and provides proofs and derivations, or sketches thereof, when this is feasible,
but leaves many details and proofs to references.

7.2 Random Field Model; Distributed and Centralized
Encoding

7.2.1 Random Field Model

As mentioned in the introduction, we focus on one-dimensional fields, i.e.
conventional one-dimensional signals or waveforms. As such, the model for
a random field is simply a one-dimensional, spatially stationary, ergodic ran-
dom process X = {X(s) : −∞ < s < ∞}, where X(s) is a real-valued random
variable representing the field outcome at location s. We assume its autocor-
relation function ρX(τ) and power spectral density SX(Ω) are known. We
make no assumption about it being bandlimited or not. We assume for conve-
nience that it has mean zero and variance 1. We also assume it is mean-square
continuous; equivalently ρX(τ) → 1 as τ → 0.

Given a positive integer N , we assume that sensors are uniformly spaced
1/N apart and that the nth sensor takes the sample Yn = X( n

N ) of X. Thus
N is viewed as a sampling rate, and Y = {Yn : −∞ < n < ∞} is a station-
ary discrete-space process with mean 0, variance 1, autocorrelation function
ρY (n) = ρX(n/N), and power spectral density

ΦN (ω) = N

∞∑
k=−∞

SX((ω − 2πk)N) .

Moreover, for some positive integer M , we assume we have access only to the
sensor values Y1, . . . , YM , i.e. to the sensor values in the spatial interval (0, M

N ].
We will consider what happens as the sampling rate N tends to infinity,

and either M = N or M � N . These model the situations that sensors are
deployed in bounded and unbounded regions, respectively. Note that due to
the continuity of the autocorrelation function at τ = 0, the correlation between
adjacent samples, i.e. ρY (1) = ρX(1/N), approaches one as N increases. In
addition, 1

N ΦN

(
Ω
N

)
→ SX(Ω) pointwise as N → ∞. For tractability, we often

assume that X, and consequently Y , is Gaussian.
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7.2.2 Distributed Encoding

As illustrated in Figure 7.1a, each of the M sensors has an encoder that
performs lossy encoding of the sample taken by that sensor. Viewed as a
group, these encoders perform distributed lossy encoding of the samples. On
the one hand, this is a limitation because the data at neighboring samples is
correlated, yet each encoder sees only the samples at its own location. On the
other hand, there are distributed encoding techniques that nevertheless can
exploit the correlation, to varying degrees [1, 2, 3, 4]. Such methods generally
operate on temporal blocks of samples. Accordingly, as in [5, 6, 7, 8, 9], we
hypothesize a temporal sequence of independent random processes. That is,
for each t ∈ Z+ � {1, 2, . . .}, X(t) =

{
X(t)(s) : s ∈

(
0, M

N

]}
is a random

process identical to X, and the random processes corresponding to different
times t are independent2. We think of X(t) as the snapshot of the field at
time t. The encoder for sensor n operates on the IID discrete-time sequence
{Y (t)

n : t ∈ Z+}, where Y
(t)
n = X(t)( n

N ). Note: we will generally omit the
superscript (t) when all variables under discussion correspond to the same
value of t.

In the generic distributed coding system shown in Figure 7.1b, there is a
temporal blocklength L, and for each n ∈ {1, . . . , M}, the nth sensor encodes
the first temporal block Y n = (Yn

(1), . . . , Yn
(L)) into a binary sequence Zn =

(Z(1)
n , . . . , Z

(bn)
n ) of some length bn. A single decoder receives all M binary

sequences Z1, . . . , ZM and outputs a reproduction Ŷ
(t)
n of Y

(t)
n for each t ∈

{1, . . . , L} and n ∈ {1, . . . , M}. Next, for each t ∈ {1, . . . , L}, the decoder
output Ŷ (t) is used to reconstruct a waveform X̂(t) as a reproduction of X(t).

To keep things simple and because it does not entail much loss in perfor-
mance, we will generally presume sample-and-hold waveform reconstruction,
which produces

X̂(t)(s) = Ŷ (t)
n , when

n − 1
N

< s ≤ n

N
.

Notice that X̂(t) is defined to equal the reproduction of the next sample rather
than the previous sample, as is more common, because this will simplify no-
tation a bit.

Though we focused on encoding and decoding the first temporal block,
(X(1), . . . , X(L)), clearly subsequent temporal block can be encoded and de-
coded in the same fashion.

2 In a real situation, such as measuring a temperature field, the X(t)’s would not
ordinarily be independent. However, we make the assumption for tractability.
It is not anticipated that the main conclusions of this chapter would change
significantly if this assumption were omitted.
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1
N

Y1 Y2 Y3

X(s)

(a) one sample at a time

(b) L temporal samples at a time

Fig. 7.1. Distributed encoding of sensor values
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7.2.3 Performance Measures: Rate and Distortion

For such a system we consider two performance measures: encoding rate and
distortion. As mentioned in the introduction, there are actually two versions
of each — one for the sampled process and another for the continuous-space
waveform.

The first and most important version of encoding rate or simply rate3, is
the rate per unit distance, denoted by script R. It is the sum of the average
numbers of bits produced by each of the M encoders per snapshot divided by
the length M/N of the spatial interval. The average is over time t and the
randomness in X. It will also be called the per snapshot encoding rate. The
second version of rate, called the per sample encoding rate and denoted by
the conventional R, is the average number of bits per sample produced by one
encoder in one time instant, where the average is over time t, sensor n, and
the randomness in X. The relationship between the two rates is

R = NR .

We use the terms encoding rate or rate without qualifier, when the intended
version is clear from context.

To quantify distortion, we use mean squared error (MSE). Again, there
are two versions. The sample distortion/MSE is

D =
1

LM

L∑
t=1

M∑
n=1

E(Y (t)
n − Ŷ (t)

n )2 ,

where L and M are the temporal and spatial blocklengths of the system. The
waveform distortion/MSE is

D =
1
L

L∑
t=1

∫ M/N

0

E(X(t)(s) − X̂(t)(s))2 ds .

If sample-and-hold reconstruction is used, then it is easy to argue that when
N is large

D ≈ D .

In particular, it can be shown that D - D → 0 as N → ∞. Moreover, for any
Do > 0, the convergence is uniform on the class of all systems with D ≤ Do.

While we focus mainly on sample-and-hold reconstruction, it is easy to
specify, at least in principle, optimal reconstruction: it is the minimum MSE
estimator for X(t)(s) based on Y (t), i.e. for t ∈ Z+ and s ∈

(
0, M

N

]
,

X̂(t)(s) = E
[
X(t)(s)

∣∣∣ Ŷ (t′)
n : n = 1, . . . , N, t′ = 1, . . . , L

]
.

3 Though we may sometimes use the shorter term rate we will mostly use the longer
term encoding rate to distinguish it from both sampling rate and the rate at which
encoding rate might increase as sampling rate increases.
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Another noteworthy reconstruction is the linear minimum MSE estimator of
X(t)(s) based on Ŷ (t).

Note that we will consistently use script font to denote waveform, i.e.
continuous-space, quantities, and conventional symbols for discrete-space, i.e.
per sample quantities. We will often subscript rate and distortion with the
sampling rate N , when they depend substantially upon it.

7.2.4 Benchmarks from Centralized Coding

In order to provide benchmarks for the performance of the distributed coding
systems considered in subsequent sections and exemplars for the definitions
and derivations for distributed coding systems, in this subsection we review
certain aspects of centralized coding based on sampling4. In the centralized
case, one encoder sees and encodes the outputs of all sensors, and as be-
fore, one decoder produces reproductions of all sensor outputs. The optimal
performances of such systems are determined by information theoretic rate-
distortion functions.

Given sampling rate N and another positive integer M , the lossy source
coding theorem for discrete-time processes (c.f. [11, 12]) shows that the least
per sample encoding rate obtainable by any centralized coding system ap-
plied to the discrete-time random process {Y (t)

n : n = 1, . . . ,M, t = 1, 2, . . . }
attaining sample distortion D or less is given by the M th-order rate-distortion
function of Y

RN (M,D) � inf
q: 1

M

∑M
n=1 Eq(Yn−Ỹn)2≤D

1
M

Iq(Y1, . . . , YM ; Ỹ1, . . . , ỸM ) , (7.1)

where q is a conditional distribution, called a forward test channel, on
hypothetical random variables Ỹ1, . . . , ỸM given actual random variables
Y1, . . . , YM ; Iq(Y1, . . . , YM ; Ỹ1, . . . , ỸM ) is the mutual information between
(Y1, . . . , YM ) and (Ỹ1, . . . , ỸM ) assuming test channel q; the subscript N in-
dicates the sampling rate with which Y is generated from X; and superscript
(t)’s have been omitted from the Y ’s because they would be the same for
all and because the specific value of t is immaterial. For any N,M , the per-
formance represented by (7.1) can be attained to arbitrary tolerance with
an encoder5 that encodes a spatio-temporal block {Y (t)

n : n = 1, . . . ,M, t =
1, . . . , L}, for any sufficiently large L.
4 As indicated in the introduction, one might skim this subsection and return to it

when it is referenced or when parallel discussions occur for distributed coding.
5 In conventional centralized lossy coding, where spatial, but not temporal blocks,

from the source are available, unless M is large, RN (M, D) is an unattainable
lower bound to the performance of block codes operating (only) on M spatial
samples Y1, . . . , YM . However, in the situation considered here, the presence of
temporal samples lends RN (M, D) its direct operational significance. Specifically,
one can show that performance cannot be better than RN (M, D) using conven-
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Since RN (M,D) is subadditive6 over M , taking the limit of (7.1) as
M → ∞ yields the least per sample encoding rate of any centralized coding
system with sample distortion D or less applied to the discrete-space process
Y produced by sampling X at rate N :

RN (D) � lim
M→∞

RN (M,D) , (7.2)

which is the conventional rate-distortion function of Y . This performance is
attained, approximately, by centralized coders that encode7 M × L spatio-
temporal blocks of samples, for all sufficiently large values of M and L.

The systems whose performances are characterized by (7.1) and (7.2) can
also be considered as codes for the continuous-space process X. In this case,
their performances are measured by per snapshot encoding rate and waveform
MSE. For the performance represented by (7.1), the per snapshot encoding
rate is

R = NRN (M,D) , (7.3)

and if N is large and sample-and-hold reconstruction is used, the waveform
MSE is

D ≈ D . (7.4)

For the limiting performance represented by (7.2), the per snapshot encoding
rate is

R = NRN (D) , (7.5)

and again (7.4) applies.
Now consider what happens as the sampling rate N increases. To our

knowledge, it is not known if NRN (D) is decreasing or subadditive in N .
However, by an argument sketched in the Appendix, one can show the weaker
property that for any D, 0 < D < 1, there exists No such that for all positive
integers k and N ≥ No

kNRkN (D) ≤ NRN (D) + εN (D) , (7.6)

tional approaches to deriving converses (c.f. [11, 12]), and one can show that such
performance is attainable in the same way that in conventional rate-distortion the-
ory one shows that performance at least as good as the Mth-order rate-distortion
function is attainable with a code that simultaneously encodes a large number
of spatially successive blocks of length M (c.f. [11, 12]). In the present situation,
temporal samples substitute for spatially successive blocks.

6 To say that RN (M, D) is subadditive over M is to say that

RN (M1+M2, D) ≤ M1

M1 + M2
RN (M1, D)+

M2

M1 + M2
RN (M2, D) for all M1, M2 .

It implies that RN (M, D) has a limit with respect to M and infM RN (M, D) =
limM→∞ RN (M, D), (c.f. [11], p. 112).

7 In conventional centralized lossy coding, this performance is attained by coding
a sufficiently large spatial block, i.e., the presence of a temporal sequence is not
required to attain the limiting performance in (7.2) (c.f. [12]).
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where εN (D) → 0 as N → ∞. This is sufficient to establish that
lim infN→∞ NRN (D) = infN NRN (D). Further, we make the reasonable as-
sumption8 that

lim
N→∞

NRN (D) = inf
N

NRN (D) . (7.7)

We conclude that the least per snapshot encoding rate of any centralized
coding system operating on regularly spaced samples of the continuous-space
process X and attaining waveform distortion D or less is

R(D) � lim
N→∞

NRN (D) = lim
N→∞

lim
M→∞

NRN (M,D) , (7.8)

which is called the rate-distortion function of the continuous-time process X.
Because this rate is given as a limit over N , we conclude that it can be attained
to arbitrary tolerance by encoding samples taken at any sufficiently high rate.
Moreover, because its derivation presumed sample-and-hold reconstruction, it
can be attained to arbitrary tolerance with this simple reconstruction method.

As a sidelight, we note that lossy source coding of a continuous-time source
X can also be accomplished without sampling as the first step. For example,
one might apply a linear filter to X before sampling and encoding; or one
might project X onto a set of basis functions φ1(s), φ2(s), . . ., and then en-
code the resulting projections. While it seems generally to be taken for granted
that R(D), as defined above, represents the best possible performance of any
lossy source coding system (whether based on sampling first or not) for a
continuous-time source X, the theory of such is not entirely well developed.
When X is Gaussian, it is known that R(D) defined above does indeed rep-
resent the best possible performance. Moreover, although it appears that this
also holds for nonpathological continuous-time sources, it is not clear what
characterizes the sources for which it does and does not hold. Since in this
chapter, we are focused exclusively on codes that sample first, the question
of what constitutes the best possible performance of any type of lossy source
code is not central. However, if a source is such that R(D) represents the best
possible performance, then we can also be sure that such performance can
be attained with sample-and-hold reconstruction. That is, at high sampling
rates, sample-and-hold reconstruction engenders no loss.

Gaussian Sources

For a stationary Gaussian source, the above rate-distortion function can be
reduced to the following parametric form [13] (c.f. [11, 12]):

8 Though we do not offer a proof, we believe that the mean-square continuity
of X should be sufficient to insure limN→∞ NRN (D) = infN NRN (D). An
alternative to accepting this conjecture is to replace limN→∞ NRN (D) with
lim infN→∞ NRN (D) throughout the remainder of the chapter.
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R(θ) =
1
2π

∫ ∞

−∞
max

{
1
2

log2

S(Ω)
θ

, 0
}

dΩ (7.9)

D(θ) =
1
2π

∫ ∞

−∞
min

{
S(Ω), θ

}
dΩ , (7.10)

where S(Ω) is the power spectral density of X, and θ is a free parameter,
0 ≤ θ ≤ maxΩ S(Ω). We now sketch the derivation of this result, since a
similar derivation will be needed for the distributed case.

We begin by considering the definition of RN (M,D) given in (7.1). One
can straightforwardly show that if T is an M × M orthogonal matrix, i.e.
a transform, then RN (M,D) for U = TY is the same as RN (M,D) for Y ,
where U = (U1, . . . , UM )′ and Y = (Y1, . . . , YM )′, and ′ denotes vector trans-
pose. This is because for any test channel q on Y with output Ỹ , the test
channel q̃ on U defined as having output Ũ = T Ỹ has the properties that
Iq̃(U ; Ũ) = Iq(Y ; Ỹ ) and Eq̃‖U − Ũ‖2 = Eq‖Y − Ỹ ‖2, where ‖ · ‖ denotes
the Euclidean norm. As an orthogonal matrix T , let us choose a Karhunen-
Loeve transform, which is defined as an M × M matrix whose rows are an
orthonormal set of eigenvectors of the M × M covariance matrix KN,M of
Y . As is well-known and can be easily shown, this causes the components of
U = TY to be uncorrelated. Indeed, since they inherit the Gaussianity of Y ,
they are also independent. Next, since U has independent components, one
can straightforwardly show that the inf in the definition of RN (M,D) for U
can be attained by a test channel q̃ that is memoryless in the sense that for
each n, given Un, random variable Ũn is conditionally independent of all Un′ ’s
and Ũn′ ’s, n′ �= n. In this case, Iq̃(U ; Ũ) =

∑M
n=1 Iq̃n

(Un; Ũn), where q̃n is
the nth marginal of q. It follows that one may decouple the inf’s over the M
marginal test channels and write

RN (M,D)= inf
d1≥0,...,dM≥0: 1

M

∑M
n=1dn≤D

1
M

M∑
n=1

inf
qn:Eqn (Un−Ũn)2≤dn

Iqn
(Un; Ũn)

= inf
d1≥0,...,dM≥0: 1

M

∑M
n=1dn≤D

1
M

M∑
n=1

1
2

log2

λN,M,n

dn
, (7.11)

where the second equality follows from the facts that the rate-distortion func-
tion of a single Gaussian random variable with variance σ2 is 1

2 log2
σ2

D , and
that the variance of Un is the eigenvalue λN,M,n of KN,M corresponding to
the eigenvector that is the nth row of T . Note the test channels qn that attain
the inf’s in the summand are Gaussian, as is consequently the test channel q
that attains the inf in (7.1).

We now find a parametric expression for RN (M,D). Given a parameter
φ ≥ 0, one can use the Karush-Kuhn-Tucker conditions [14] to show that the
following choices of d1, . . . , dM achieve the inf in (7.11) for some D:

dn =
{

λN,M,n, λN,M,n ≤ φ
φ, λN,M,n > φ

.
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This leads to the following parametric expressions for per sample encoding
rate and distortion that attain points on RN (M,D):

rN,M (φ) =
1
M

M∑
i=1

max
{

1
2

log2

λN,M,i

φ
, 0

}
(7.12)

dN,M (φ) =
1
M

M∑
i=1

min
{
λM,N,i, φ

}
. (7.13)

With sampling rate N fixed, we now take the limit of these parametric ex-
pressions as M → ∞. The key is the Grenander-Szego asymptotic eigenvalue
distribution theorem [15] (see also [16]), which shows that for any continuous
function g

lim
M→∞

1
M

M∑
n=1

g(λN,M,n) =
1
2π

∫ π

−π

g(ΦN (ω)) dω ,

where ΦN (ω) is the power spectral density of the discrete-space process Y
obtained by sampling X at rate N . Applying this theorem to (7.12) and
(7.13) yields per sample encoding rate and distortion

rN (φ) � lim
M→∞

rN,M (φ) =
1
2π

∫ π

−π

max
{

1
2

log2

ΦN (ω)
φ

, 0
}

dω

dN (φ) � lim
M→∞

dN,M (φ) =
1
2π

∫ π

−π

min {ΦN (ω), φ} dω .

Finally, we consider per snapshot encoding rate and waveform distortion,
and we let the sampling rate N approach infinity. With the goal of having
NrN (φ) and dN (φ) approach constants, we fix a new parameter θ ≥ 0, and
let φ = Nθ. Changing variables in the above integrals gives

NrN (Nθ) =
1
2π

∫ Nπ

−Nπ

max
{

1
2

log2

ΦN (Ω/N)
Nθ

, 0
}

dΩ (7.14)

dN (Nθ) =
1
2π

∫ Nπ

−Nπ

min
{

ΦN (Ω/N)
N

, θ

}
dΩ . (7.15)

Using the fact that ΦN (Ω/N)/N → S(Ω) pointwise and an integral conver-
gence theorem [17], one obtains (7.9) and (7.10) in the limit of large N .

We comment that sample-and-hold reconstruction is presumed in arguing
that if the per sample distortion is given by the formula (7.15) for dN (Nθ),
then as N → ∞, the waveform distortion converges to D(θ) given by (7.10).
Since one can envision better waveform reconstruction methods, one might
wonder if better performance is attainable than that expressed by (7.9) and
(7.10). However, for the Gaussian case being considered, it can be shown that
such performance expressions are the best attainable by any coding technique.
(c.f. [11, 12]). Hence, in this case there is definitely no loss in the presumption
of sample-and-hold reconstruction.
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Bounded Deployment Region

Now consider the situation in which the field X is restricted to the spatial
interval (0, 1] and, consequently, M = N . In this case, the least per sample
encoding rate obtainable by any centralized coding system applied to the
discrete-time process {Y (t)

n : n = 1, . . . , N, t = 1, 2, . . . } attaining sample
distortion D or less is given by

RN (N,D) . (7.16)

Considered as a code for the continuous-space process X, a system attain-
ing (7.16) has per snapshot encoding rate

R = NRN (N,D) , (7.17)

and when N is large, its waveform distortion is

D ≈ D . (7.18)

As with NRN (D), it is not known if NRN (N,D) is decreasing or sub-
additive in N . However, similar to (7.6), one can show straightforwardly the
weaker property9 that for any D, 0 < D < 1, there exists No such that for all
positive integers k and N ≥ No,

kNRkN (kN,D) ≤ NRN (N,D) + εN (D) , (7.19)

where εN (D) → 0 as N → ∞. This is sufficient to establish that
lim infN NRN (N,D) = infN NRN (N,D). Further, we make the reasonable
assumption10 that limN NRN (N,D) = infN NRN (N,D). We conclude that
the least per snapshot encoding rate of any centralized coding system applied
to the continuous-space process {X(t)(s) : s ∈ (0, 1], t = 1, 2, . . . } attaining
waveform distortion D or less is

R(D) � lim
N→∞

NRN (N,D) . (7.20)

While we have presumed sample-and-hold reconstruction, it is our belief that
this represents the best possible performance of any code with any recon-
struction method. Note that we will consistently use R to indicate a rate for
a bounded deployment situation.

Unfortunately, there is no name for the function R(D) in the literature, nor
is there an expression, parametric or otherwise, for evaluating it in the Gaus-
sian case, probably due to the fact that there is no analog of the Grenander-
Szego theorem when the sampling rate N changes as M increases. Instead,
9 The derivation is essentially the same as that of (7.6) sketched in the Appendix.

10 As before, an alternative to accepting this conjecture is to replace
limN→∞ NRN (N, D) with lim infN→∞ NRN (N, D) throughout the remainder of
the chapter.
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in the Gaussian case, all one can do is use (7.12) and (7.13) to estimate
NRN (N,D) for large values of N . Clearly,

R(D) ≤ R(D) < ∞ ,

where the latter follows from the fact that NoRNo
(No,D) < ∞ for some No.

Given a physical situation in which a large number of sensors are densely
deployed, the question arises as to whether R(D) or R(D) represents the
appropriate performance benchmark for centralized coding. We offer the fol-
lowing guideline. If X is such that its variables separated by unit distance or
more are nearly independent, then R(D) ≈ R(D), so either is appropriate,
but the former is more tractable, at least in the Gaussian case; otherwise to
be conservative, R(D) is appropriate.

7.3 Identical Scalar Quantization with Slepian-Wolf
Coding

7.3.1 The System

The first distributed coding scheme to consider is scalar quantization followed
by Slepian-Wolf distributed lossless coding [1], as introduced and analyzed in
[5, 6, 7] for a bounded deployment region, which as indicated previously we
model by choosing M = N . Specifically, a scalar quantization is characterized
by a finite or countably infinite set of levels C ⊂ R containing no points of
accumulation and a quantization rule Q : R → C such that for each n, t, the
sample Y

(t)
n is quantized into

Ỹ (t)
n = Q(Y (t)

n ) .

Then for some positive integer L, some rN > 0, and each n ∈ {1, . . . , N},
the nth sensor uses Slepian-Wolf encoding to encode the temporal block
(Ỹ (1)

n , . . . , Ỹ
(L)
n ) into a binary sequence Zn = (Z(1)

n , . . . , Z
(bN )
n ) of length

bN = rNL (each sensor is encoded at the same rate). A single decoder re-
ceives the N binary sequences Z1, . . . , ZN and outputs a reproduction Ŷ

(t)
n

of Ỹ
(t)
n for each t ∈ {1, . . . , L} and n ∈ {1, . . . , N}. After the decoder outputs

Ŷ
(t)
n , n = 1, . . . , N , t = 1, . . . , L, some type of waveform reconstruction is used

to reconstruct sample function approximations X̂(t) to X(t), t = 1, . . . , L.

7.3.2 Performance

Let H(Ỹ1, . . . , ỸN ) denote the entropy of (Ỹ1, . . . , ỸN ). According to the theory
of [1], if rN > 1

N H(Ỹ1, . . . , ỸN ), then for any ε > 0 and all sufficiently large
L, there exists encoding and decoding rules such that
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Pr
(
Ŷ (t)

n = Ỹ (t)
n , n = 1, . . . , N, t = 1, . . . , L

)
≥ 1 − ε . (7.21)

Accordingly, we consider the per snapshot encoding rate of this coding scheme
to be

RN = H(Ỹ1, . . . , ỸN ) ,

where the subscript N emphasizes the dependence on sampling rate and the
number of samples.

Let DN and DN denote, respectively, the per sample distortion and the
waveform distortion assuming sample-and-hold reconstruction, where N is
once again a reminder of the sampling rate. Then using stationarity, (7.21)
and the fact mentioned in Section 7.2.3 that D converges uniformly to D, it
is easy to see that one can choose rN ’s so that rN > H(Ỹ1, . . . , ỸN ) for each
N , rN − H(Ỹ1, . . . , ỸN ) → 0 as N → ∞, and

lim
N→∞

DN = lim
N→∞

DN = E(Y1−Q(Y1))2 = E(X(0)−Q(X(0)))2 . (7.22)

That is, the limiting distortion equals the distortion of the scalar quantizer
applied directly to the continuous-space process X. Later we comment on the
potential to benefit from more sophisticated waveform reconstruction meth-
ods.

We see from the above that the distortion of this system is determined
by the scalar quantizer applied to a single sample. Thus, if we wish to fix
the distortion, we need only fix the scalar quantizer. We now consider what
happens to the encoding rate RN = H(Ỹ1, . . . , ỸN ) for a fixed scalar quantizer.
It is helpful to think of this as the product of two terms:

RN = H(Ỹ1, . . . , ỸN ) = N × 1
N

H(Ỹ1, . . . , ỸN ) ,

with the first term being the sampling rate in samples/unit distance and the
second being the per sample encoding rate in bits/sample. As easily shown
in [7], the per sample encoding rate decreases to zero as N increases, due to
the increasing correlation between neighboring samples. The question is: does
it decrease rapidly enough that N × 1

N H(Ỹ1, . . . , ỸN ) remains bounded. In
[5, 6, 7], using an idea attributed to Hajek11, it is shown that

H(Ỹ1, . . . , ỸN ) → ∞ . (7.23)

The only condition (aside from purely technical ones) is that the quantizer
have a threshold that is crossed by X with positive probability, which for
example will happen in the commonly occurring case that X is ergodic and
E(X − Q(X))2 < var(X) or, equivalently, that X is ergodic and there are at
least two cells with positive probability. Note that this happens whenever the
quantizer has a nontrivial effect.
11 Professor Bruce Hajek, University of Illinois.
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The proof involves a few technicalities. However, to indicate the main
idea behind this disappointing result, let us sketch a proof under the stronger
assumption that the quantizer has a threshold u that X crosses with probability
one in the interval (0, 1], as opposed to just with positive probability. Then the
location at which X first crosses the threshold u within the interval (0, 1] is
a continuous random variable T and, consequently, has infinite entropy. As
illustrated in Figure 7.2, this crossing location T can be approximated by a
random variable T̃N that can be determined from (Ỹ1, . . . , ỸN ) in such a way
that

∣∣∣T − T̃N

∣∣∣ ≤ 1
2N . In particular, let T̃N be the average of the first pair of

adjacent sampling locations, n
N and n+1

N , such that either Ỹn < u < Ỹn+1 or
Ỹn > u > Ỹn+1. As discussed below, the fact that the infinite entropy variable
T can be approximated with increasing accuracy by the T̃N ’s, implies that
H(T̃N ) → ∞. Since T̃N is a function of (Ỹ1, . . . , ỸN ), it must happen that
H(Ỹ1, . . . , ỸN ) → ∞, as well.

Fig. 7.2. The first crossing time T of the threshold u, and the estimate T̃N derived
from the quantized samples.

There are a number of ways to argue that H(T̃N ) → ∞. For example,
using elementary information theory arguments

H(T̃N ) ≥ I(T ; T̃N ) = h(T ) − h(T |T̃N ) ,

where h(T ) and h(T |T̃N ) denote differential entropy and conditional differen-
tial entropy, respectively. Using Fano’s inequality for MSE (c.f. [18], p. 255)

h(T |T̃N ) ≤ 1
2

log2 2πeE(T − T̃N )2 → −∞ as N → ∞ .

Substituting the above into the previous equation shows that H(T̃N ) → ∞.
In addition to being disappointing, (7.23) is surprising in view of the fact

that scalar quantization with entropy coding is normally considered to have
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performance close to that of optimal centralized coding [19], which in turn
requires a finite encoding rate. In particular, the per sample encoding rate of
scalar quantization with entropy coding12 is RN (D)+εN (D) for some function
εN (D) that approaches 0.255 as D → 0, and zero as D → 1. Now consider
the effect of multiplying by N and letting N become large. According to (7.8)
the first term NRN (D) converges to R(D), the rate-distortion function of
the continuous-space process X, which is ordinarily finite. Evidently, it is the
second term NεN (D) that tends to infinity.

It is somewhat ironic that the problem with simple scalar quantization is
that it provides too much information, i.e. more than is needed simply to get
good MSE. Instead it provides enough to capture level crossing locations as
well.

As mentioned in the introduction, this disappointing result does not ac-
tually say that scalar quantization plus distributed lossless coding is a bad
approach. Rather it says that this approach should not be used with too high
a sampling rate. It also happens that the encoding rate required to attain
distortion D increases to infinity as the sampling rate decreases toward the
minimal value, denoted No, such that reconstruction from unquantized sam-
ples is possible with distortion D. Therefore, there must be a finite, nonzero
sampling rate that minimizes the encoding rate required for such a system to
attain distortion D.

7.3.3 The Rate at which Entropy Increases

Given that the entropy H(Ỹ1, . . . , ỸN ) increases without bound, it is natural to
ask about the rate at which it increases. This question has been explored in a
couple of ways, each giving partial answers. In [6, 7] an asymptotic expression
was found for H(Ỹ2|Ỹ1) for a special, but important case. This induces an
upper bound to the rate of increase since

H(Ỹ1, . . . , ỸN ) ≤ H(Ỹ1) + (N − 1)H(Ỹ2|Ỹ1) .

Specifically, the asymptotic result is for the case that X is stationary and
Gaussian with zero mean, variance one, and autocorrelation function ρX(τ),
and the scalar quantizer has uniformly spaced thresholds, separated by some
∆, with one threshold located at −θ∆, where 0 ≤ θ < 1 is the quantizer offset.
Uniform threshold quantizers are a natural choice to consider because when
distortion must be small, they have essentially minimal output entropy [19].

For this situation, a rather complex analysis showed

lim
N→∞

H(Ỹ2|Ỹ1)
−
√

1 − ρX(1/N) log2

√
1 − ρX(1/N)

=
√

2
π

∞∑
k=−∞

e−
(k−θ)2∆2

2 � S∆ .

(7.24)
12 This is entropy coding that exploits the correlation between successive quantized

samples.
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It was also shown that S∆∆ → 2√
π

uniformly in θ as ∆ → 0.

Although the above leads only to an upper bound to H(Ỹ1, . . . , ỸN ), it
is quite possible that for most autocorrelation functions it reflects the actual
rate at which entropy-rate increases.

To give examples of the rate of increase of H(Ỹ2|Ỹ1) and H(Ỹ1, . . . , ỸN ),
consider the case that ρX(τ) has well defined first and second derivatives from
the right at 0, denoted ρ

′

X(0) and ρ
′′

X(0), respectively. Then when τ is small

ρX(τ) ≈ 1 − τ
∣∣∣ρ′

X(0)
∣∣∣− τ2

2

∣∣∣ρ′′

X(0)
∣∣∣ .

On the one hand, if ρ
′

X(0) = 0, as for example when ρX(τ) = e−τ2
or sin(τ)/τ ,

then for large N

H(Ỹ1, . . . , ỸN ) ≤ H(Ỹ1) + NH(Ỹ2|Ỹ1) ≈ S∆
1√
2

√∣∣ρ′′
X(0)

∣∣ log2 N . (7.25)

On the other hand, if ρ
′

X(0) �= 0, as for example when ρX(τ) = e−|τ |, then for
large N

H(Ỹ1, . . . , ỸN ) ≤ H(Ỹ1)+NH(Ỹ2|Ỹ1) ≈ S∆
1
2

√∣∣ρ′
X(0)

∣∣√N log2 N . (7.26)

We observe that when X is bandlimited, e.g., SX(Ω) = 1, |Ω| ≤ π, and
ρX(τ) = sin(πτ)/πτ , or when the power spectral density has a sufficiently
light tail, e.g., SX(Ω) = e−Ω2

and ρX(τ) = e−τ2
, the entropy NH(Ỹ2|Ỹ1)

increases as log N . However, when ρX(τ) = e−|τ | and the spectrum has the
heavier tail 2/(Ω2+1), then NH(Ỹ2|Ỹ1) increases at the faster rate

√
N log N .

For a bandlimited process, the log N rate of increase found for NH(Ỹ2|Ỹ1)
is consistent with what Shamai [20] found for NH∞(Ỹ ) for a binary quan-
tizer with threshold at the origin, where H∞(Ỹ ) � limM→∞

1
M H(Ỹ1, . . . , ỸM ).

Since

NH∞(Ỹ ) ≤ H(Ỹ1, . . . , ỸN ) ≤ H(Ỹ1) + (N − 1)H(Ỹ2|Ỹ1) ,

one may conclude that for a bandlimited Gaussian process and a binary quan-
tizer with threshold at the origin, H(Ỹ1, . . . , ỸN ) increases as log N . That is,
in this case we know the precise rate of increase.

Order log N is also characteristic of the per snapshot encoding rates at-
tained by several coding schemes in the literature. For example, encoding rates
on this order were attained by Cvetkovic and Vetterli [21, 22] with a simple
scheme for losslessly encoding the output of a sampler and scalar quantzier
applied to a bounded, bandlimited deterministic signal. For the same class
of signals, Cvetkovic and Daubechies [23] and Ishwar et al. [24] attained or-
der log N encoding rates with schemes involving dithered scalar quantizers.
While these are not results about the entropy of the quantized samples of
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a random process, they nevertheless show comparable behavior. Finally, we
mention that Kumar et al. [25] described a similar method for bounded, non-
bandlimited deterministic signals with a encoding rate depending on the tail
of the signal spectrum. For example, if the tail decays exponentially, the en-
coding rate grows as (log N)2, which like (7.26) indicates a growth rate faster
than log N for a source that is not bandlimited.

7.3.4 Potential Improvements

We now explore various modifications to the scalar quantizer based system to
see if they might permit rate to have finite limit as N goes to infinity.

Temporal block quantization

Supposed that instead of fixing a scalar quantizer at each sensor, one fixes a
block quantizer that quantizes over a temporal block of some fixed length L >
1. Then one can make the same sort of argument that with ideal distributed
lossless coding the per snapshot rate will again grow without bound as the
sampling rate N increases. In this case the per snapshot rate is

RN =
1
L

H(Ỹ (t)
n : t = 1, . . . , L, n = 1, . . . , N) ,

and one can again show that the location T at which X(s) first crosses a
threshold u can be approximated arbitrarily well by a random variable TN

that is determined from the samples [26]. It follows as before that RN → ∞,
while the distortion DN goes to a nonzero value (under normal circumstances).
Therefore, for any positive integer L, using block quantization with block-
length L suffers the same disappointing behavior as scalar quantization.

Improved reconstruction methods

As discussed in [7], the significance of the fact that H(Ỹ1, . . . , ỸN ) grows with-
out bound rests considerably on the fact stated in (7.22) that the distortion
DN produced by sample-and-hold reconstruction approaches a nonzero limit
as N → ∞. If some other waveform reconstruction could drive DN to zero as
N → ∞, then H(Ỹ1, . . . , ỸN ) increasing to infinity would not be so significant
or disappointing, because it might be that it increases at the rate at which
R(DN ) or R(DN ) increase to infinity. We now discuss the potential for other
reconstruction methods to drive DN to zero, based on the discussion in [7].

If linear reconstruction methods are considered, then

DN ≥ DW ,

where DW denotes the minimum MSE when linearly estimating X(s) from
{Q(X(s′)) : s′ ∈ R}. Indeed, since DW is the MSE of a Wiener filter operating
on Q(X(t)), it is ordinarily nonzero. There is a well known formula for DW in
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terms of the power spectral density of Q(X(s)) and the cross power spectral
density of X(s) and Q(X(s)). However, it is difficult to use it to specify a
condition on X and Q to determine when, if ever, DW = 0. Nevertheless, we
believe that DW > 0 in all but exceptional circumstances. Therefore, generally
speaking, linear reconstruction cannot drive DN to zero.

If nonlinear reconstruction methods are considered, then as above one can
write

DN ≥ Dopt ,

where Dopt is the MSE of the optimum estimator for X(s) from {Q(X(s′)) :

s′ ∈ R}, i.e. for X̂(t)(s) = E
[
X(t)(s)

∣∣∣ Ŷ (t)
n : n = 1, . . . , N

]
. Unfortunately, we

are aware of no generally applicable method for distinguishing when Dopt is
zero from when it is not.

For bounded, bandlimited deterministic signals there are results describing
nonlinear reconstruction methods that cause the MSE of quantized samples
to approach zero as sampling rate increases [27, 28, 29]. Since these results
are based on the fact that such signals cross quantizer thresholds a minimum
number of times in a finite interval, they do not translate to statements that
bandlimited random processes can also be so reconstructed, because such pro-
cesses do not have the requisite threshold crossing property with probability
one. Thus, one would not suspect that it is possible to drive DN to zero for
most bandlimited processes. Indeed, Bar-David [30] demonstrates the exis-
tence of a bandlimited Gaussian random process for which DN cannot go to
zero.

Considering, now, nonbandlimited random processes, there are elementary
examples for which the reconstruction MSE can be made to go to zero. For
example, if Xs switches exclusively between values of plus and minus one, as in
a random telegraph process, and if the quantizer has a threshold at zero, then
X can be easily reconstructed from quantized samples with MSE approaching
zero as sampling rate increases. Indeed, linear sample-and-hold reconstruction
will suffice. On the other hand, if one adds random amplitudes to this example,
then MSE cannot go to zero. As another example, Slepian [31] has shown
that DN cannot go to zero for a Gauss-Markov (i.e. Ornstein-Uhlenbeck)
process, and Marco [32] has recently generalized this result to any Markov
process that is continuous in probability and has absolutely continuous second-
order distribution. Therefore, we believe that DN can go to zero only in very
special cases. Indeed, we conjecture that it cannot happen, for example, if
X is Gaussian with power spectral density that satisfies the Paley-Wiener
condition for a process to be nondeterministic, i.e.,

∫ ∞
−∞

| log SX(Ω)|
1+Ω2 dΩ < ∞.

In summary, we assert that the prospects for the situation to be improved
by better reconstruction methods are dim.

Adapting the quantizer to the sampling rate

Another potential improvement is to adapt the quantizer to the sampling
rate N . The idea is that as sampling rate increases, one might be able
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to use increasingly coarse quantizers, and use the increasing correlation to
maintain distortion D while decreasing entropy, perhaps to the degree that
limN→∞ H(Ỹ1, . . . , ỸN ) becomes finite. To make this concrete, note that what
can be deduced from (7.22) and (7.23) is that when 0 < D < var(X),

inf
Q:E(X−Q(X))2≤D

lim
N→∞

H(Ỹ1, . . . , ỸN ) = ∞ .

On the other hand, it was claimed in [6] (the proof was omitted) that under
some additional conditions, such as that the process is ergodic with piecewise
continuous sample functions,

lim
N→∞

inf
Q:DW≤D

H(Ỹ1, . . . , ỸN ) = ∞ ,

where, as before, DW is the distortion of minimum MSE linear estimation
of X(s) from {X(s′) : s′ ∈ R}, which is a lower bound to DN for all N
and all linear reconstruction methods. This shows that even when the scalar
quantizer is adapted to the sampling rate, the problem still exists. Although
this was derived for linear reconstruction, as before, we do not expect nonlinear
estimation to change the conclusion.

Unbounded deployment: M � N

A fourth potential improvement is to allow the Slepian-Wolf distributed loss-
less coding of the scalar quantizer output to code across M � N sensor
values, instead of requiring M = N , as so far assumed. In this case, sensors
extend over a region whose size grows with N , and in the limiting (most
advantageous) situation the per snapshot encoding rate can be taken to be

RN = NH∞(Y ) � N × lim
M→∞

1
M

H(Ỹ1, . . . , ỸM ) .

Although the analysis is not entirely complete [26], it appears that under
fairly general conditions, with this definition of encoding rate, we again have
RN → ∞. Moreover, the discussion about DN not generally converging to
zero applies here, because it was not tailored to reconstructions being based
only on Ỹn, n = 1, . . . , N . Therefore, it does not appear that allowing M � N
will remedy the situation.

Space varying quantization

A final improvement to consider is that instead of using the same scalar quan-
tizer at all sensor locations, one might use different quantizers. For example,
the quantizers at neighboring sensors, whose measured sensor values are highly
correlated and hence nearly the same, might use quantizers that are the same
except for a small shift δ of their levels and thresholds relative to one another.
Since adding δ to the levels and thresholds of a scalar quantizer is equivalent to
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subtracting δ from Y before quantizing and adding δ after quantizing, quan-
tizer shifting is essentially the same as what is often called dithering , though
the latter term is usually applied when the shifts are random or time/space
varying. In any event, shifting a quantizer Q by δ creates a quantizer with
quantization rule

Q(δ)(y) = Q(y − δ) + δ .

Now suppose, for example, that given a nominal uniform quantizer Q with
step size ∆, and given some K < N , to the nth sample Yn we apply the
quantizer

Qn(y) = Q(δn)(y) ,

where
δn =

∆

K
× (n mod K) .

If N and K are large, yet K << N , then K samples in the vicinity of Xs

are all nearly equal to Xs, and after quantizing them with the Qn’s described
above, one can obtain an estimate of Xs that is accurate to within, approxi-
mately, ± ∆

2K . From this, we see that if we let K increase appropriately with
N , then the distortions DN and DN can be made to go to zero as N in-
creases. Although it is easy to argue, again, that H(Ỹ1, . . . , ỸN ) → ∞, this is
not disappointing since distortion is going to zero. Indeed this is the nature
of the results in [21, 23, 24, 25], which describe coding techniques based on
dithered quantization for bounded deterministic signals with distortion DN

going to zero and encoding rates increasing at rates similar to the rate at
which R(DN ) increases as N → ∞ for certain random process sources. This
is the work, mentioned in the introduction, whose goal is to have distortion
decreasing to zero as sensor density increases.

However, our interest in this chapter is in fixing a target distortion D,
rather than having distortion go to zero as N increases. In this case, one
might consider a dithered quantization scheme like that just described, but
with ∆N increasing in order to keep distortion constant. Increasing ∆N with
N will reduce H(Ỹ1, . . . , ỸN ) relative to the fixed ∆ case. However, it is not
known if it will reduce it sufficiently so that it remains bounded. This is an
important open question.

7.4 Bounds to the Performance of Ideal Distributed
Lossy Coding

7.4.1 Distributed Rate-Distortion Functions

We begin by introducing rate-distortion functions that describe the best possi-
ble (i.e., ideal) performance of distributed lossy codes. Since, unlike centralized
coding, there is no information theoretic characterization of the performance
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of the best distributed codes, these are operational definitions, rather than
information theoretic definitions like (7.1), (7.2), (7.8), (7.20).

Accordingly, let Rd
N (M,D) denote the least per sample encoding rate of

any distributed lossy source code with sample MSE D or less that operates on
the discrete-time process {Y (t)

n : t ∈ Z+, n = 1, . . . ,M}, where the superscript
d stands for “distributed”, and Y

(t)
n is obtained by sampling X(t)(s) at rate

N . The performance represented by Rd
N (M,D) can be attained to arbitrary

tolerance with a distributed encoder operating on {Y (t)
n : n = 1, . . . ,M, t =

1, . . . , L} for all sufficiently large L. That is, there is a separate encoder at
each of the M sensor locations operating on a temporal block of length L. The
decoder receives the outputs from all encoders and produces reproductions
{Ŷ (t)

n : t ∈ Z+, n = 1, . . . , M} of {Y (t)
n : t ∈ Z+, n = 1, . . . , M}.

Since Rd
N (M,D) is subadditive over M , the limit as M → ∞ yields the

least per sample encoding rate of any distributed lossy source coding system
with sample distortion D or less operating on the samples taken at rate N :

Rd
N (D) = lim

M→∞
Rd

N (M,D) . (7.27)

The performance represented by Rd
N (D) can be attained to arbitrary tolerance

with a distributed encoder operating on {Y (t)
n : n = 1, . . . ,M, t = 1, . . . , L}

for all sufficiently large M and L.
Let us now consider the coding of the continuous-space process X based

on distributed coding of its samples taken at rate N . For the performance
represented by Rd

N (M,D), one attains per snapshot encoding rate

R = NRd
N (M,D) , (7.28)

and if N is large, sample-and-hold reconstruction results in waveform MSE

D ≈ D . (7.29)

For the performance represented by (7.27), the per snapshot encoding rate is

R = NRd
N (D) , (7.30)

and again (7.29) applies.
Now consider what happens as N increases. As with centralized coding, it

is not known if NRd
N (D) is decreasing or subadditive. However, as with (7.6)

and (7.19), it can be shown13 that for any D, 0 < D < 1, there exists No such
that for all positive integers k and N ≥ No

kNRd
kN (D) ≤ NRd

N (D) + εN (D) ,

13 As sketched in the Appendix, the proof is similar, but involves codes rather than
test channels.
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where εN (D) → 0 as N → ∞. This is sufficient to imply lim infN→∞ NRd
N (D)

= infN NRd
N (D). Further, we make the assumption that limN→∞ NRd

N (D)
= infN NRd

N (D). We conclude that the least per snapshot encoding rate of
any distributed coding system operating on samples of the continuous-space
process X and attaining waveform distortion D or less is

Rd(D) � lim
N→∞

NRd
N (D) , (7.31)

where Rd(D) is the distributed rate-distortion function of the continuous-
space process X. While we have presumed sample-and-hold reconstruction, it
is again our belief that this represents the best possible performance of any
code with any reconstruction method.

Bounded deployment

As with centralized coding, one can consider the performance of distributed
codes restricted to the spatial interval (0,1] and choose M = N . In particu-
lar, the least per sample encoding rate obtainable by any distributed coding
system applied to the discrete-time process {Y (t)

n : n = 1, . . . , N, t = 1, 2, . . . }
attaining sample distortion D or less is given by

Rd
N (N,D) . (7.32)

Considered as a code for the continuous-space process X, a system attain-
ing (7.32) has per snapshot encoding rate

R = NRd
N (N,D) , (7.33)

and when N is large, its waveform distortion is

D ≈ D . (7.34)

Once again, we make the reasonable assumption14 that
limN NRd

N (N,D) = infN NRd
N (N,D). We conclude that the least per

snapshot encoding rate of any distributed coding system operating on
samples of the continuous-space process {X(t)(s) : s ∈ (0, 1], t = 1, 2, . . . }
attaining waveform distortion D or less is

Rd
(D) � lim

N→∞
NRd

N (N,D) . (7.35)

While we have presumed sample-and-hold reconstruction, it is again our be-
lief that this represents the best possible performance of any code with any
reconstruction method.

14 As before, an alternative to accepting this conjecture is to replace
limN→∞ NRd

N (N, D) with lim infN→∞ NRd
N (N, D).
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7.4.2 The Finiteness of Rd(D) and Rd
(D)

Let us fix a target per snapshot MSE D > 0. In this subsection, we sketch
the simple time-sharing argument, mentioned in the introduction, that demon-
strates that Rd(D) and Rd

(D) are finite. It also shows that when the sampling
rate N is large, there exists a distributed coding scheme attaining distortion
D or less that encodes each sample at the same finite rate. This is, essentially,
a simplified version of a construction given in [9].

It suffices to consider the bounded deployment case, as it is more restric-
tive. We begin by fixing a sampling rate No such that sample-and-hold re-
construction attains a per-snapshot MSE Do < D, when applied to No un-
quantized samples taken at rate No. Since Do < D, one can design a scalar
quantizer that introduces so little distortion that when applied to the samples
taken at rate No, the overall distortion after sample-and-hold reconstruction
is again less than D. Let the outputs of the scalar quantizers be separately
losslessly encoded at some rate Ro < ∞ bits/sample. The lossless coding,
which can be of the fixed- or variable-length variety, can be viewed as a kind
of distributed coding. This leads to a per snapshot encoding rate of NoRo < ∞
bits per unit distance.

Now suppose that for some N � No, we desire a distributed scheme that
encodes samples taken at rate N with identical finite encoding rates and with
resulting per snapshot MSE of D or less. To simplify the discussion assume
N = KNo with K an integer. (An argument with a little more complexity
is needed when N is not a multiple of No.) Consider the following time-
sharing argument. For the sample function X(t) at time t, apply the scalar
quantization and the lossless encoding to the No samples at locations

τ, K + τ, 2K + τ, . . . , (No − 1)K + τ ,

where τ = t mod K. Since these samples are spaced 1
No

apart, the sample-
and-hold reconstruction will have distortion D or less. Moreover, each sample
is encoded once every K time units at rate Ro. for an average rate of Ro/K =
NoRo bits/sample, which is the same for every sensor. This completes the
construction of a distributed coding system that for a large sampling rate
N quantizes and encodes each sensor output with the same finite rate, and
attains per snapshot MSE D or less. It follows that R(D) < ∞, and, of course,
R(D) ≤ R(D) < ∞, as well.

Remark

As discussed in the first bulleted item of Section 7.3.4, for any L > 0, temporal
quantization with blocklength L has rate increasing to infinity, rather than
staying bounded as with ideal distributed lossy coding. We conclude, therefore,
that to approach the finite rates Rd

(D) or Rd(D), the temporal blocklength
L must grow without bound as the sampling rate increases.
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7.4.3 Berger-Tung Upper Bounds

This subsection describes the information theoretic upper bound to
Rd

N (M,D), known as the Berger-Tung bound. It originated in [2, 33] and
was extended in [34, 35]. For our purposes, we state it without derivation as

Rd
N (M,D) ≤ Rd,BT

N (M,D)

� inf
q,g1,...,gM :

1
M

∑M
n=1Eq

(
Yn−gn(Ỹ1,...,ỸM )

)2
≤D

1
M

I(Y1, . . . , YM ; Ỹ1, . . . , ỸM ) (7.36)

This is just like the information theoretic definition of RN (M,D) for cen-
tralized coding, except: (1) the test channel is constrained to be memoryless
in the sense that for each n, given Yn, random variable Ỹn is conditionally
independent of all Yn′ ’s and Ỹn′ ’s, n′ �= n, and (2) for each n, the MSE is
computed between Yn and a function gn(Ỹ1, . . . , ỸM ). This bound has been
shown to be tight in the case of two Gaussian random variables [36]. However,
it is not believed to be tight for more than two Gaussian random variables.

We also note that any choice of q, g1, . . . , gM satisfying the constraint in
the definition of Rd,BT

N (M,D) yields an upper bound to Rd
N (M,D), which we

will also call a Berger-Tung bound.
Since Rd,BT (M,D) is subadditive in M , its limit exists (and equals its inf)

and so
Rd

N (D) ≤ Rd,BT
N (D) � lim

M→∞
Rd,BT

N (M,D) .

Consider now the coding of the continuous-space process X based on dis-
tributed coding of its samples taken at rate N . For the performance repre-
sented by Rd

N (M,D), one attains per snapshot encoding rate

R = NRd
N (M,D) ≤ NRd,BT

N (M,D) , (7.37)

and if N is large, sample-and-hold reconstruction yields waveform MSE is

D ≈ D . (7.38)

For the performance represented by (7.27), the per snapshot encoding rate is

R = NRd
N (D) ≤ NRd,BT

N (D) , (7.39)

and again (7.38) applies.
Now consider the dependence on N . As before, it is not known if

NRd,BT
N (D) is decreasing or subadditive. However, with a proof like that of

(7.6), it can be shown that for any D, 0 < D < 1, there exists No such that
for all positive integers k and N ≥ No

kNRd,BT
kN (D) ≤ NRd,BT

N (D) + εN (D) ,
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where εN (D) → 0 as N → ∞. This implies lim infN→∞ NRd,BT
N (D)

= infN NRd,BT
N (D). Making the reasonable assumption that

limN→∞ NRd,BT
N (D) = infN NRd,BT

N (D), we conclude that the least
per snapshot encoding rate of any distributed coding system applied to the
continuous-space process X that attains waveform distortion D or less is

Rd(D) = lim
N→∞

NRd
N (D) ≤ Rd,BT (D) � lim

N→∞
NRd,BT

N (D) . (7.40)

We note that the Berger-Tung bound is clearly applicable to the bounded
deployment case.

Gaussian Sources

In the Gaussian case, the Berger-Tung bound can be used as follows to ob-
tain a parametric upper bound to Rd

N (M,D). Let us fix a parameter φ ≥ 0.
Since a Gaussian test channel is optimal when evaluating the centralized rate-
distortion function, it is natural to choose q to be Gaussian. It must also be
memoryless. To make things tractable, let us also choose q to have identical
components. In this case, the effect of q can be modeled as producing

Ỹn = Yn + Zn , n = 1, . . . ,M , (7.41)

where Z1, . . . , ZM are IID Gaussian N (0, φ). Finally, let us choose

gn(ỹ1, . . . , ỹM ) = E
[
Yn

∣∣∣Ỹ1 = ỹ1, . . . , ỸM = ỹM

]
. (7.42)

For these choices it can be shown that

rd,BT
N,M (φ) � 1

M
Iq(Y1, . . . , YM ; Ỹ1, . . . , ỸM ) =

1
M

M∑
i=1

1
2

log2

(
λN,M,i

φ
+ 1

)
,

(7.43)
and (cf [37], p. 157)

dd,BT
N,M (φ) � 1

M

M∑
n=1

Eq

(
Yn − gn(Ỹ1, . . . , ỸM )

)2

=
1
M

M∑
i=1

λN,M,i

λN,M,i + 1
,

(7.44)
where as in (7.11)-(7.13), λN,M,i is one of the M eigenvalues of the covariance
matrix KN,M of Y1, . . . , YM . It follows that for any φ ≥ 0, the performance
point (dd,BT

N,M (φ), rd,BT
N,M (φ)) lies above the Rd

N (·) curve in the sense that

Rd
N (M,dd,BT

N,M (φ)) ≤ rd,BT
N,M (φ) .

In other words, (dd,BT
N,M (φ), rd,BT

N,M (φ)) is a sample distortion and per sample
encoding rate pair that is achievable with distributed coding over M samples
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taken at rate N . When N is large, it is also an achievable waveform distortion
and per snapshot encoding rate for the continuous-space process X.

Note that this discussion has not claimed to have found the test channel
that minimizes the Berger-Tung bound. However, it has described a reasonable
upper bound to Rd

N (M,D).
Note also that if X is not Gaussian, one can upper bound Rd

N (M,D) by the
same quantity for a Gaussian process with the same power spectral density.
This follows by the same sort of argument used to show this property in the
centralized coding case.

7.4.4 Bounded Deployment Region

For a Gaussian field in a bounded deployment region, Kashyap et al. [8] used
the Berger-Tung bound in the following way. Given N and M = N , they
chose a test channel as in (7.41), parameterized by φ, and gn’s as in (7.42),
and used a bounding approach from [38] to show that for any D

1
N

Iq(Y1, . . . , YN ; Ỹ1, . . . , ỸN ) ≤ RN (N,D) +
1
2

log2

(
1 +

D

φ

)
.

Next, choosing φ = φ∗
N (D) such that dd,BT

N,N (φ∗
N (D)) = D yields

Rd,BT
N (N,D) ≤ RN (N,D) +

1
2

log2

(
1 +

D

φ∗
N (D)

)
. (7.45)

They then showed that φ∗
N (D) ≥ θN for all sufficiently large N , where θ is

the largest number such that (1) ρX(τ) is monotonic on [−θ, θ], and (2)
1− ρ2

X(θ)
4 ≤ D. Using this and ln(1 + x) ≤ x in (7.45), they found that for all

sufficiently large N

NRd,BT
N (N,D) ≤ NRN (N,D) +

1
θ2 ln 2

. (7.46)

They also showed that NRN (N,D) remains bounded as a function of N . From
this, one can conclude that NRd,BT

N (N,D), and consequently NRd
N (N,D),

remain bounded as N increases. It follows that

Rd
(D) < ∞ ,

which was one of their main goals.
In [9], the argument is strengthened by removing the assumption that the

ρX(τ) is monotonic near τ = 0.
While the bound in (7.46) and the analogous one in [9] are useful for

making the argument that Rd
(D) < ∞, they are actually rather loose. As

a result, [8] plots Rd,BT
N (N,D) instead, as given for example by (7.43) and

(7.44); [9] takes a similar approach.
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7.4.5 Unbounded Deployment Region, Gaussian Case

In [10] the authors of the present chapter relaxed the bounded deployment
assumption and used the Berger-Tung bound and the Grenander-Szego The-
orem to find a tractable parametric upper bound to Rd(D) for the Gaussian
case. We now review this result.

Applying the Grenander-Szego Theorem to (7.43) and (7.44), one finds
in the limit as M → ∞, the following per sample encoding rate and sample
distortion are achievable with distributed coding of samples taken at rate N
when coding over a block of M sensors and L time instants, when M and L
are sufficiently large:

rd,BT
N (φ) � 1

2π

∫ π

−π

1
2

log2

(
ΦN (ω)

φ
+ 1

)
dω

dd,BT
N (φ) � 1

2π

∫ π

−π

ΦN (ω)
ΦN (ω) + 1

dω ,

where as before ΦN (ω) is the power spectral density of the discrete-space
process Y .

When a system with the above performance is used to encode the
continuous-space process X, the per snapshot encoding rate is

R = Nrd,BT
N (φ) = N

1
2π

∫ π

−π

1
2

log2

(
ΦN (ω)

φ
+ 1

)
dω ,

and when N is large, the waveform distortion with sample-and-hold recon-
struction is

D ≈ dd,BT
N (φ) =

1
2π

∫ π

−π

ΦN (ω)
ΦN (ω) + 1

dω .

Finally, let the sampling rate N approach infinity. As in (7.14) and (7.15),
with the goal of having NrN (φ) and dN (φ) approach constants, fix a new
parameter θ ≥ 0 and let φ = Nθ. Changing variables, passing to the limit,
and using the facts that D → D and 1

N ΦN (Ω) → S(Ω), one finds that the
following per snapshot encoding rate and waveform distortion are achievable
with distributed coding of samples of X at high sampling rates:

Rd,BT (θ) � lim
N→∞

Nrd,BT
N (φ) =

1
2π

∫ ∞

−∞

1
2

log2

(
S(Ω)

θ
+ 1

)
dΩ (7.47)

Dd,BT (θ) � lim
N→∞

dd,BT
N (φ) =

1
2π

∫ ∞

−∞

S(Ω)
S(Ω)

θ + 1
dΩ . (7.48)
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Tightness

There were three places in the derivation of the parametric formulas (7.47),
(7.48) at which upper bounds were used that might cause the formulas to
be loose rather than tight. (1) the use of the Berger-Tung bound, (2) the
choice of q as Gaussian with identical components, and (3) the use of sample-
and-hold reconstruction. Nevertheless, it is possible that the bound is tight,
i.e., that it gives the actual form of Rd(D). Though, as mentioned earlier, the
Berger-Tung bound is not believed to be tight for N ≥ 3, it is quite conceivable
that it is asymptotically tight for large N and M � N . Moreover, the choices
of a Gaussian test channel with identical components and sample-and-hold
reconstruction might also entail no loss. One specific case in which the bound
is known to be tight is discussed below.

Rate and distortion profiles

It is interesting to compare the parametric expressions (7.47), (7.48) for the
upper bound to the distributed rate-distortion function to the parametric
expressions (7.9), (7.10) for the centralized rate-distortion function. It is cus-
tomary to interpret the integrands of (7.9) and (7.10) at frequency Ω as indi-
cating the rate and distortion, respectively, at which the component of X at
frequency Ω are encoded. (They are actually densities of such, in that they
are quantities that must be integrated to yield rate and distortion.) We call
them rate and distortion profiles, respectively.

In considering such profiles one first notices from (7.10) that with no dis-
tributed coding constraint, optimal centralized coding makes the distortion
profile as flat as possible. Then at frequencies Ω such that S(Ω) becomes too
small to support a flat distortion profile, one sees in (7.9) that optimal coding
assigns zero rate. From the derivation of the centralized rate-distortion func-
tion, one sees that such optimal shaping of the rate and distortion profiles is
made possible by the transform, which exposes frequency-like components. In
a practical system, such bandlimiting and profile shaping might also be ac-
complished by bandpass filtering X before sampling and coding. In contrast,
with distributed coding, each encoder has access to the samples from just one
sensor. As a result, no spatial transform or filtering of any type is possible.
Instead, the distortion created at one sensor will be, essentially, uncorrelated
with that at another sensor. For this reason, one can think of distributed cod-
ing as adding spatially white noise. Now, as is well known, if one estimates
a random process X from Y = X + V , where V is additive white noise with
power spectral density φ, then the optimal linear filter, i.e., the Wiener filter,
has mean squared error

1
2π

∫ ∞

−∞

S(Ω)
S(Ω)

φ + 1
dΩ . (7.49)

which is precisely the form of (7.48). Our interpretation, then, is that when
sampling rate is high, the effect of distributed coding is like adding spatially
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white noise. And unlike the centralized case, explicit shaping of the rate and
distortion profiles is not possible.

Nevertheless, there is a special case where the distributed and centralized
rate-distortion functions are easily seen to be identical. This is the case that
there is a positive constant W such that S(Ω) = 2π

W on a set of frequencies of
measure W (e.g. on the union of a finite set of finite intervals of total length
W ) and 0 elsewhere. In this case, to attain R(D), no transform or filtering
is needed since the source is already bandlimited and since the spectrum
is constant (where not zero), as are the ideal rate and distortion profiles.
Indeed one may straightforwardly verify that (7.47) and (7.48) lead to the
rate-distortion function given by (7.9) and (7.10), namely,

R(D) = Rd,BT (D) =
W

4π
log2

1
D .

Since the upper bound Rd,BT (D) equals the centralized rate-distortion func-
tion, in this case it must also equal the ideal distributed rate-distortion func-
tion Rd(D); so the upper bound is tight.

In the special case that S(Ω) = 2π
W , |Ω| < W

2 , and zero elsewhere, it
is easy to see why the distributed rate-distortion function should equal the
centralized rate-distortion function. In this case, sampling at the Nyquist rate
W
2π produces independent and identical samples, which can be independently
coded without loss, given the availability of temporal samples at each sensor
location.

Equal rates

Notice that when deriving bounds to Rd(D) for a Gaussian source, no effort
was made to require each sensor to encode with the same rate. Nevertheless,
one can see from the derivations that the performance specified by the bounds
is attainable with an equal rate strategy. On the other hand, as discussed
above, in the special case that S(Ω) = 2π

W , |Ω| < W
2 , optimal performance

can also be attained by sampling at a high rate, discarding all samples but
a subset taken at the Nyquist rate, and independently coding the Nyquist
samples. This strategy can be viewed as coding the original high rate samples
with unequal rates. Thus, for this example, optimal performance can also be
attained using very unequal sensor encoding rates.

7.4.6 Gaussian Examples

We consider two stationary Gaussian processes: (1) Markov (Ornstein-
Uhlenbeck) with autocorrelation function ρX(τ) = e−|τ | and power spectral
density

S(Ω) =
2

1 + Ω2
,

and (2) bandlimited with the flat power spectral density
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S(Ω) =
{

1 , |Ω| ≤ π
0 , else ,

with autocorrelation function ρX(τ) = sinc(τ) = sin(πτ)
πτ .

Figure 7.3 plots their rate and distortion profiles at D = 1/3 for dis-
tributed and centralized coding, where the former are based on the upper
bound given by (7.47), (7.48). Also shown are the distributed and centralized
rate-distortion functions Rd,BT (D) and R(D).

Table 7.1 gives parametric and closed form expressions for Rd,BT (D) and
R(D). For the Markov source, we give an approximate closed form expression
for R(D) that applies for small D ([12], p. 145). To facilitate concrete com-
parisons, these expressions are evaluated at D = 0.1. One can see that for
the Markov source and small distortion, the upper bound to the distributed
rate-distortion function is approximately 25% larger than the centralized rate-
distortion function (compare 1

D to 8
π2D = 0.81

D ). For the bandlimited flat spec-
trum, the distributed and centralized rate-distortion functions are the same,
as expected.

Also shown in Table 7.1 shown are numerical results for bounded de-
ployment taken from [8, 9]. Specifically, the last row for each source gives
Rd,BT

N (N,D) taken from Figure 2 of [9] at D = 0.1 and N = 100. It also
shows the computed value of RN (N,D) taken from Figure 2 of [8] for the
same D and N .

It is interesting to observe that the effect of bounded deployment on
the upper bound to distributed coding is similar to its effect on central-
ized coding. Specifically, for the Markov source, Rd,BT

100 (100,0.1)
Rd,BT (0.1)

= 2.5, while
R100(100,0.1)

R(0.1)
= 3.8. For the bandlimited source, these ratios are even closer.

It is also interesting that while we knew a priori that distributed coding is as
good as centralized for the case of unbounded deployment, we see from the
table that it is nearly as good for the bounded deployment case, as well. In-
deed, the numerical results do not rule out the possibility that for this source
distributed and centralized are equally good for bounded deployment.

7.5 Conclusions

This chapter has reviewed several recent results regarding the performance
of distributed lossy source codes operating on a dense sensor network in the
limit as density increases without bound.

The first result, in Section 7.3, showed that if identical scalar quantiz-
ers are used by each sensor, then even if followed by correlation exploiting
Slepian-Wolf distributed lossless coding, the encoding rate in bits per snap-
shot required to attain a fixed target D grows to infinity. Bounds to the rate
at which the encoding rate grows were discussed for the important special
case of a Gaussian source and a uniform scalar quantizer.



7 Encoding Densely Deployed Sensors 191

−5 0 5
0

0.5

1

1.5

2

Ω

rate profiles

−5 0 5

10−1

100

Ω

distortion profiles

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8
rate−distortion functions

D

bi
ts

−5 0 5
0

0.2

0.4

0.6

0.8

1

Ω

rate profiles

−5 0 5
0

0.5

1

1.5

Ω

distortion profiles

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
rate−distortion functions

D

bi
ts

distr.
centr.

spectrum

distr.
centr.

distr.
centr.

distr.

centr.

spectrum
distr.
centr.

distr.
centr.

Fig. 7.3. Rate profiles (top), distortion profiles (middle), and rate-distortion func-
tions (bottom) for the Markov source (left) and the bandlimited source (right). The
rate and distortion profiles are plotted for D = 1/3. For the Markov source the
corresponding encoding rates are 0.74 for centralized and 1.44 for distributed. For
the bandlimited source both encoding rates are 0.79 .
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Table 7.1. Comparison of distributed and centralized coding of Gaussian sources
at high sampling rates.

Distributed Centralized
(upper bound to optimal) (optimal)

Markov, S(Ω) = 2
1+Ω2

θ ≥ 0 0 ≤ θ ≤ 2

Dd,BT (θ) =
√

θ
θ+2

D(θ) = 1+ 1
π

√
2θ − θ2 − 2

π
tan−1

√
2−θ

θ

Rd,BT (θ) = 1
2 ln 2

(√
θ+2

θ
− 1

)
R(θ) = 1

π ln 2

(√
2−θ

θ
− tan−1

√
2−θ

θ

)

Rd,BT (D) = 1
2 ln 2

(
1
D − 1

)
R(D) ≈ 1

2 ln 2

(
8

π2D − 1
)
, for small D

Rd,BT (0.1) = 6.49 R(0.1) = 3.56

Rd,BT
100 (100, 0.1) = 16.5 R100(100, 0.1) = 13.4

Bandlimited Flat Spectrum, S(Ω) = 1, |Ω| ≤ π

θ ≥ 0 0 ≤ θ ≤ 1

Dd,BT (θ) = θ
θ+1

D(θ) = θ

Rd,BT (θ) = 1
2

log2
θ+1

θ
R(θ) = 1

2
log2

1
θ

Rd,BT (D) = 1
2

log2
1
D R(D) = 1

2
log2

1
D

Rd,BT (0.1) = 1.70 R(0.1) = 1.70

Rd,BT
100 = (100, 0.1) = 3.4 R100(100, 0.1) = 3.3

It is important to note that the result of this section does not say that
scalar quantization plus Slepian-Wolf coding is a bad approach. It merely says
that when this approach is used, sampling rate should not be taken too large.
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It was also remarked that changing from scalar to L-dimensional temporal
block quantization will not remedy the situation if L is fixed.

Section 7.4 considered bounds to the performance of ideal distributed lossy
coding, which in effect uses temporal block quantization with blocklength
growing as sensor density increases. First it is argued that with ideal coding,
the per snapshot rate can remain bounded as sensor density increases without
bound. Moreover, such performance can be attained with simple schemes that
encode each sensor output at the same rate. Next, Berger-Tung type bounds
to the performance of ideal distributed lossy coding were discussed. These
were for bounded, as well as unbounded, deployment. In the latter case, nice
parametric formulas are obtained that can be compared to the parametric
formulas for conventional centralized coding. They also show that in the limit
of high sampling rate distributed coding need not lose much relative to optimal
centralized coding. Indeed, when the source has a flat bandlimited spectrum,
there is no loss whatsoever.
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Appendix

Sketch of proof of (7.6)

Recall (7.6), namely, that for any D > 0, there exists No > 0 such that for
all positive integers k and N ≥ No, kNRkN (D) ≤ NRN (D) + εN (D), where
εN (D) → 0 as N → ∞.

The idea is that given N and k, for some D′
N < D to be chosen later,

we take M large and find an M -dimensional test channel q that approxi-
mately attains NRN (D′

N ) for sampling rate N . Then from this test chan-
nel, we create a kM -dimensional test channel q′ for sampling rate kN by
applying q to the M variables Y1, Yk+1, Y2k+1, . . . , Y(M−1)k+1 consisting of
every kth sample, and letting each of the kM − M other test channel out-
puts equal the most recent output in the aforementioned collection. The
distortion induced by q′ will be D′

N plus an interpolation error that be-
comes arbitrarily small when N is sufficiently large. Therefore, we can choose
No so large that for all N ≥ No, it is possible to choose D′

N < D so
that the test channel q′ attains distortion at most D for all k. Moreover,
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we can have D′
N → D as N → ∞. It then follows that for N ≥ No,

kNRkN (D) ≤ Iq′(Y1, . . . , YkM ; Ỹ1, . . . , ỸkM ) = Iq(Y1, . . . , YM ; Ỹ1, . . . , ỸM ) ≈
NRN (D′

N ) = NRN (D)+ εN (D), where εN (D) � NRN (D′
N )−NRN (D) → 0

as N → ∞.

Sketch of proof of (7.31)

Recall (7.31), namely, that for any D > 0, there exists No > 0 such that for
all positive integers k and N ≥ No, kNRd

kN (D) ≤ NRd
N (D) + εN (D), where

εN (D) → 0 as N → ∞.
The idea is that given N and k, for some D′

N < D to be chosen later,
we take M large and find a code with spatial blocklength M and some suffi-
ciently large temporal blocklength L that approximately attains NRd

N (D′
N )

for sampling rate N . We then use this code to create a new code with spa-
tial blocklength kM and temporal blocklength L that can be used to encode
the kM samples taken at rate kN by applying the original code to every kth
sample. At the decoder, the reproduction produced at sampling rate N is up-
sampled to sampling rate kN using sample-and-hold. The per snapshot rate
of the new system for sampling rate kN is the same as for the original code
for sampling rate N , i.e., it is approximately NRN (D′

N ). The distortion of the
new code will be D′

N plus an interpolation error that becomes arbitrarily small
as N becomes large. Therefore, we can choose No so large that for all N ≥ No,
it is possible to choose D′

N < D so that the new code attains distortion at
most D for all k. It then follows that kNRd

kN (D) ≤ rate of new code =
rate of original code ≈ NRd

N (D′
N ) = NRd

N (D) + εN (D) for all positive
integers k, where εN (D) = NRd

N (D′
N ) − NRd

N (D) → 0 as N → ∞.
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8.1 Introduction

In this chapter, we discuss information-theoretic techniques to understand
sensor network performance. From an information-theoretic perspective, sen-
sor network problems are typically joint source-channel coding problems: The
goal is to recover an approximate version of the underlying source information
(by contrast to, for example, the standard channel coding problems where the
goal is to communicate bits at the smallest possible error probability). Hence,
the overall encoding process maps a sequence of source observations into a
suitable sequence of channel inputs in such a way that the decoder, upon ob-
serving a noisy version of that sequence, can get an estimate of the source ob-
servations at the highest possible fidelity. Successful code constructions must
exploit the structure of the underlying source (and the mechanism by which
the source is observed) and the communication channel. Designing codes that
simultaneously achieve both should be expected to be a rather difficult task,
and it is therefore somewhat surprising that Shannon [27] found a very ele-
gant solution for the case of point-to-point communication (as long as both
the source and the channel are stationary and ergodic, and cost and fidelity
are assessed by per-letter criteria). The solution consists in a separation of the
overall task into two separate tasks. Specifically, an optimal communication
strategy can be designed in two parts, a source code, exploiting the structure
of the source and the observation process, followed by a channel code, exploit-
ing the structure of the communication channel. The two stages are connected
by a universal interface — bits — that does not depend on the precise struc-
ture. For the purpose of this chapter, we will refer to such an architecture as
separation-based.

Some of the most relevant communication systems of today operate in a
distributed fashion. This means that there is not just a single encoder that
makes all the observations and has direct access to the full communication in-
frastructure. Rather, there are multiple distributed terminals, each having par-
tial observations. There are certain such scenarios where again, a separation
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theorem can be established, and an optimal overall code can be implemented
separately by a source coding stage followed by a channel coding stage. We
present a non-exhaustive list of such cases in Section 8.2. However, more gen-
erally, there are counter-examples where such a design strategy fails rather
dramatically. We again present a non-exhaustive list that illustrates some of
the ways in which such failure occurs in Section 8.3. Then, in Section 8.4, we
discuss a few examples where an approximate separation theorem holds. That
is, separate source and channel code designs are not strictly optimal, but they
are close (at least in a certain sense).

It should be noted that we selected those examples for which separation
theorems can be established in a simple and elegant fashion from single-letter
mutual information expressions. There are rather straightforward extensions
of many of the examples to slightly more intricate models, but for which one
has to argue via infinite-letter information expressions.

In the final section (Section 8.5), we slightly change the focus of the dis-
cussion by asking the question of how to order such joint source-channel com-
munication problems according to their difficulty. In cases where a separation
theorem applies, this ordering follows from capacity and rate-distortion func-
tions. However, for other cases, no global ordering appears to exist. Instead,
we present some very tentative approaches of partial orderings.

8.2 Exact Separation Theorems

We first discuss Shannon’s (stationary, ergodic) source/channel separation
theorem. Then, we present a non-exhaustive list of a few examples of network
situations for which an appropriate separation theorem holds.

8.2.1 Point-to-point communication problems

In this section, we provide a brief review of the information-theoretic results
for the point-to-point source-channel communication system, illustrated in
Figure 8.1. We also use this opportunity to introduce the basic notation for
the remainder of this chapter.

�S enc �X
chan �Y

dec �̂S

Fig. 8.1. The general point-to-point source-channel communication problem.

We first need the concept of an information source, which will be a se-
quence Sn drawn randomly from a distribution p(sn). For most parts of the
chapter, this distribution will be taken to be an n-fold product of a fixed
underlying scalar distribution,
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p(sn) =
n∏

i=1

pS(sn), (8.1)

in which case we will refer to the source as being stationary and memoryless.
The second integral part of a source is the distortion measure d(Sn, Ŝn) with
respect to which the source sequence Sn must be reconstructed at the receiver.
Often, we will consider single-letter distortion measures, which means that

d(Sn, Ŝn) =
1
n

n∑
i=1

d(Si, Ŝi). (8.2)

The (stationary and memoryless) channel is characterized by a conditional
distribution PY |X(y|x). The second integral part of a channel is the cost func-
tion, which assigns, to every channel input symbol x, a cost ρ(x). The cost of
a channel input sequence xn is then simply given by

ρ(Xn) =
1
n

n∑
i=1

ρ(Xi). (8.3)

For the purpose of this brief review, we suppose that the encoder F maps a
sequence of n source symbols onto a sequence of n channel input symbols. We
also suppose that the decoder is synchronized with the encoder, and maps a
sequence of n channel output symbols onto a sequence of n source reconstruc-
tion symbols. The goal of the code (F,G) is to produce a minimum distortion,

D = Ed
(
Sn, Ŝn

)
, (8.4)

using, simultaneously, a minimum cost on the channel,

P = Eρ(Xn). (8.5)

The key problem of source-channel communication is to determine the optimal
cost-distortion pairs (P,D). We consider this problem in the information-
theoretic sense, i.e., we are interested in the optimum irrespective of the coding
complexity and delay.

To bound this trade-off, a very simple argument can be made using the
data processing inequality (see e.g. [5]), as follows: If n source symbols are
encoded into n channel inputs,1 then we must have

I(Sn; Ŝn) ≤ I(Xn;Y n). (8.6)

At this point, we will use the standard concepts of the rate-distortion func-
tion, usually denoted by R(D) (see e.g. [5, p.306ff.]), and of the capacity-cost
1 Some communication scenarios may allow the code designer to select the ratio

of source symbols to channel inputs. The arguments discussed here can be easily
extended to this case, see e.g. [7].
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function, usually denoted by C(P ) (see e.g. [6, p.108]). Specifically, the rate-
distortion theorem [5, Thm.10.2.1] implies that since our code attains a re-
sulting distortion of D, the left hand side of the previous equation is lower
bounded by nR(D). By analogy, the capacity-cost theorem [6, Thm.2.1.11]
implies that since our code uses a cost of P, the right hand side of the previ-
ous equation is upper bounded by nC(P ). Therefore, we find that any overall
strategy that attains distortion D and incurs cost P must satisfy

R(D) ≤ C(P ). (8.7)

The remaining question is whether there is indeed a communication strategy
that attains this upper bound. Shannon showed that one such strategy is
given by first compressing the source down to R(D) bits per symbol. By
the operational meaning of the rate-distortion function, this is possible and
incurs a distortion arbitrarily close to D (as n → ∞). The resulting bits are
then reliably communicated across the channel. By the operational meaning
of the capacity-cost function, it is possible to send C(P ) bits per channel use
reliably (as n → ∞). In conclusion, the following theorem was obtained by
Shannon [27, Thm.21]:

Theorem 1 (separation theorem). A (stationary, ergodic) source can be
communicated at distortion D across a (stationary, ergodic) channel incurring
cost P if and only if

R(D) ≤ C(P ). (8.8)

Simple extensions of this separation theorem apply to scenarios with side
information (in the style of Gel’fand and Pinsker, as well as of Wyner and
Ziv), see e.g. [7, 19]. Moreover, an alternative perspective on the separation
theorem has been presented recently [7, 10, 11].

8.2.2 Parallel Channels With A Common Decoder

A particularly simple extension of the point-to-point separation theorem con-
cerns parallel channels with separate encoders, but a common decoder. Specif-
ically, we consider the scenario in Figure 8.2. Note that if the encoder is also
common, then the scenario is a point-to-point communication problem. More-
over, if only the encoder is common, but the decoders separate, then we have
merely multiple separate point-to-point communication problems.

In order to state a separation theorem, we first define the source coding
problem as the problem of encoding all M sources without loss, using a rate
of Rm bit per symbol at encoder m, for m = 1, 2, . . . ,M. The region of rate
vectors (R1, R2, . . . , RM ) that permit to attain this goal will be denoted by
R, and has been found by Slepian and Wolf [28] (see also [5, ch.15]). We
also define the capacity region C of the communication network as the set
of rate vectors (R1, R2, . . . , RM ) that can be simultaneously attained in a
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�S1

�S2

�SM

encoder 1 �X1
chan 1

�Y1

encoder 2 �X2
chan 2

�Y2

...
...

...

encoder M �XM
chan M

�YM

decoder

�Ŝ1

�Ŝ2

�ŜM

Fig. 8.2. Parallel channels.

reliable fashion, where Rm is the rate at which encoder m communicates to
the receiver. Note that for the case of parallel channels, this region is of trivial
rectangular shape. Then, the following general theorem holds (a proof can be
found e.g. in [3]):

Theorem 2. The lossless communication of arbitrarily dependent sources
across parallel channels to a single receiver is feasible if and only if

R∩ C �= ∅. (8.9)

It is important to note that this is the natural extension of Theorem 1
in the sense that it also requires a source coding rates to be no larger than
the highest rates across the channel. That is, any such joint source-channel
communication problem can be understood via bits, making them a universal
currency for this special case.

The proof of the particular separation theorem given in Equation (8.9)
is entirely straightforward. Achievability follows directly from the result of
Slepian and Wolf [28], and the converse follows from a simple application of
Fano’s inequality.

8.2.3 Multiple Access with independent sources and separate
criteria

Perhaps a slightly more interesting general separation theorem for network
scenarios concerns the multiple-access channel with independent sources, as
long as these sources need to be recovered with respect to separate criteria.
More precisely, consider the scenario in Figure 8.3: There are M encoders,
each with an independent stream of source information, denoted by Sm, for
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m = 1, 2, . . . ,M. The decoder needs to recover all of these streams, either
exactly or with respect to separate distortion criteria of the form

E[dm(Sm, Ŝm)] ≤ Dm. (8.10)

�S1

�S2

�SM

encoder 1 �X1

encoder 2 �X2

...

encoder M �XM

mac
�Y decoder �Ŝ1, Ŝ2, . . . , ŜM

Fig. 8.3. Multiple access.

More precisely, for given costs P1, P2, . . . , PM at the respective inputs of
the multi-access channel, the capacity region (for the transmission of indepen-
dent messages)

C(P1, P2, . . . , PM ) (8.11)

has been found [1, 17], see e.g. [5, Thm. 15.3.1]. Moreover, since the sources are
assumed to be independent, the region of rates required to attain distortions
D1,D2, . . . , DM is given by

R(D1,D2, . . . , DM ) = {(R1, R2, . . . , RM ) : Rm ≥ RSm
(Dm)}, (8.12)

where RSm
(Dm) denotes the rate-distortion function of source m. This follows

directly from the standard rate-distortion theorem, see e.g. [5, Thm.10.2.1].
For this scenario, the following general separation theorem applies [7]:

Theorem 3 (independent sources on the MAC). The sources
S1, S2, . . . , SM can be communicated across the MAC, resulting in distortions
D1,D2, . . . , DM and incurring costs P1, P2, . . . , PM if and only if

R(D1,D2, . . . , DM ) ∩ C(P1, P2, . . . , PM ) �= ∅. (8.13)
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Proof Outline. The achievability follows immediately from the operational
meaning of the rate-distortion function and of the capacity region. For the con-
verse, suppose that our code achieves (P1, P2, . . . , PM ) and (D1,D2, . . . , DM ).
Then,

nRS1(D1)
(a)

≤ I(Sn
1 ; Ŝn

1 )
(b)

≤ I(Sn
1 ;Y n)

(c)

≤ I(Sn
1 ;Y n|Xn

2 ,Xn
3 , . . . , Xn

M )
(d)

≤ I(Xn
1 ;Y n|Xn

2 ,Xn
3 , . . . , Xn

M ),

where (a) follows from the definition of the rate-distortion function, (b) is the
data processing inequality, (c) holds because S1 and (X2,X3, . . . , XM ) are
independent and (d) is again the data processing inequality. By analogy, one
can find the following bounds:

n
∑
m∈T

RSm
(Dm) ≤ I({Xn

m}m∈T ;Y n|{Xn
m}m �∈T ),

for all subsets T of the set {1, 2, . . . ,M}. To complete the proof, one has to
argue that the information expressions on the right hand side in the above
inequality must describe a point inside the capacity region. This can be done
along the lines of the proof given in [5, p.539].

This theorem can also be extended to the case of the multiple access chan-
nel with causal feedback. For the scope of this note, we only discuss the special
case of the Gaussian MAC below in Section 8.2.5, a case for which a simple
argument can be given.

8.2.4 Modulo-Additive Multiple-Access Channels

Our next example is a particularly simple class of multiple access channels
where all input alphabets and the output alphabet are discrete, finite, and of
the same size. Moreover, there is no cost constraint in this problem, i.e., the
function ρ(x) = 0 for all x (see Equation (8.3)). Without loss of generality, we
take this alphabet to be the set {1, 2, . . . , L}, and the output of the multiple
access channel is characterized by

Y = X1 ⊕ X2 ⊕ · · · ⊕ XM ⊕ Z, (8.14)

where ⊕ denotes addition modulo L, and Z is a random variable arbitrarily
distributed over the same alphabet {1, 2, . . . , L}.
Theorem 4. Arbitrarily dependent sources S1, S2, . . . , SM , can be losslessly
transmitted across a modulo-additive MAC with arbitrary causal feedback sig-
nals if and only if

R∩ C �= ∅. (8.15)
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This theorem can be proved from a simple maximum entropy argument
(applied to the output of the multiple-access channel) and has appeared (mod-
ulo the causal feedback signals) e.g. in [25].

8.2.5 Gaussian Multiple-Access Channels

We close our multiple access examples with the special case of the Gaussian
MAC (see e.g. [5, p.544]), for which a few special cases may be of interest.
The output of the Gaussian MAC is characterized by

Y = Z +
M∑

m=1

Xm, (8.16)

where Z is white Gaussian noise of variance σ2
Z .

Under Received-Signal Constraints

The first special case may be viewed as the Gaussian equivalent of the modulo-
additive MAC. Rather than imposing a cost constraint on the transmitted sig-
nals (as in Equation (8.3)), we now impose the constraint that the transmitted
signals must be chosen in such a way as to ensure

E[Y 2] ≤ Q + σ2
Z , (8.17)

where Q is a constant, i.e., the coding must satisfy a constraint on the received
signal. This problem is discussed in detail in [8]. For example, consider the
source scenario as in Section 8.2.2, denoting the source coding rate region by
R. Then, the following theorem can be given [8]:

Theorem 5. For the Gaussian MAC under a received-power constraint, the
lossless transmission of arbitrarily dependent sources, even if arbitrary causal
feedback signals are available, is feasible if and only if

R∩ C �= ∅. (8.18)

As shown in [8], the capacity region in this case is merely a simplex,

C =

{
(R1, R2, . . . , RM ) :

M∑
m=1

Rm ≤ 1
2

log2

(
1 +

Q

σ2
Z

)}
. (8.19)

Under Fast Fading

As another case of potential interest, consider the following slight variation:
The channel output signal is now given by
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Y = Z +
M∑

m=1

AmXm, (8.20)

where Am are independent circularly symmetric complex random variables,
freshly chosen for each channel use. The decoder gets access to the augmented
channel output signal (Y,A1, A2, . . . , Am). We consider standard transmit
power constraints (see e.g. [5, Eqn. (15.134)]). For a more detailed discus-
sion of this fading model, see e.g. [29]. The following separation theorem can
be established:

Theorem 6. For the Gaussian MAC under fast fading, the lossless transmis-
sion of arbitrarily dependent sources, even if arbitrary causal feedback signals
are available, is feasible if and only if

R∩ C �= ∅. (8.21)

This theorem can be proved by noting that due to the fading, the optimal
input distribution is to select independent signals. But this is also feasible in
a distributed fashion.

With Noiseless Causal Feedback

Let us now consider the standard Gaussian MAC (see e.g. [5, p.544]) with
cost constraints imposed in the shape of the regular power constraints on
the transmitted signals (i.e., the function ρ(x) = x2, see Equation (8.3) or [5,
Eqn. (15.134)]). Moreover, we also allow noiseless causal feedback, that is, each
encoder, when generating the channel input at any time instant n, knows the
precise values of all past channel outputs up to (and including) time n − 1.
Consider two arbitrary independent sources (not necessarily with the same
statistics), S1 and S2, and suppose that they need to be reconstructed with
respect to separate distortion criteria according to Edm(Sm, Ŝm) ≤ Dm for
m = 1, 2. For this special case, we can establish the equivalent of Theorem 3,
as follows:

Theorem 7 (independent sources, Gaussian MAC with noiseless
feedback). The independent sources S1 and S2 can be communicated across
the Gaussian MAC, resulting in distortions D1 and D2 and using powers P1

and P2 if and only if

R(D1,D2) ∩ C(P1, P2) �= ∅. (8.22)

Using the same arguments as in the derivation of Theorem 3, we first find
the bound

nR1(D1) ≤ I(Sn
1 ;Y n|Sn

2 ). (8.23)
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Note that the argument is yet in terms of the source sequences, rather than
the channel input sequences, a trick that appears (e.g.) in [18]. But then, we
can further upper bound

I(Sn
1 ;Y n|Sn

2 )
(a)
=

n∑
i=1

h(Yi|Y i−1
1 , Sn

2 ) −
n∑

i=1

h(Yi|Y i−1
1 , Sn

1 , Sn
2 ,X1,i,X2,i)

(b)
=

n∑
i=1

h(Yi|Y i−1
1 , Sn

2 ,X2,i) −
n∑

i=1

h(Yi|X1,i,X2,i)

(c)

≤
n∑

i=1

I(X1,i;Yi|X2,i), (8.24)

where (a) follows because X1,i and X2,i are uniquely determined by
Y i−1

1 , Sn
1 , Sn

2 ; for (b), the first term follows again because X2,i is uniquely
determined by Y i−1

1 , Sn
2 and the second term from the assumption that the

channel is memoryless; and (c) follows by omitting conditioning in the first
term. Analogous arguments can be used for the second source, and for the
sum rate term. Then, we note that the mutual information term (8.24) and
its corresponding terms in the remaining two bounds precisely describe the
noiseless casual feedback capacity region of the 2-user Gaussian MAC (as
given in [23]), completing the argument.

8.3 Counter-Examples

As mentioned earlier, there is no general source/channel separation theorem
for networks, and as a matter of fact, the separate design of the source code
and the channel code generally leads to severe performance penalties. In this
section, we present a selection of the key counter-examples. The first is a
classical example, and the remaining three each illustrate a different aspect of
the breakdown of the separation theorem.

8.3.1 Multiple Access with correlated sources

A classical example illustrating the fact that source/channel separation does
not hold for networks was given in [4]. Here, the multiple-access channel is
the binary adder multiple access channel, taking two binary {0, 1} inputs and
providing as its output their sum {0, 1, 2}. The capacity region C of this chan-
nel has the pentagonal shape given in Figure 8.4, see [5], Fig.15.13, for more
details. Now suppose that the two transmitting terminals each observe a bi-
nary sequence, call them Sn

1 and Sn
2 . The two sequences are correlated with

each other such that for each time instant, the events (S1, S2) = (0, 0), (0, 1),
and (1, 1) are all equally likely, and (1, 0) does not occur. Clearly, at least
H(S1, S2) = log2 3 ≈ 1.58 bits per source sample are required. The full
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Slepian-Wolf rate region R is also given in Figure 8.4. The two regions do not
intersect, and hence, one is tempted to guess that these two sources cannot be
transmitted across this MAC. However, this conclusion is wrong: While there
is no separation-based architecture that achieves this, there is a simple “ana-
log” strategy: pure uncoded transmission will always permit to recover both
source sequences without error, due to the fact that the dependence structure
of the sources is perfectly matched to the channel. This illustrates that no
separation theorem applies to general networks. Considerable generalizations
of this have appeared in [2].

�

�

�
�

��
��

C

R

1

R2

R1

Fig. 8.4. Capacity region C and rate-distortion region R do not intersect in this
example.

8.3.2 Computation over Multiple Access Channels

A second counter-example appears when we drop the assumption of separate
reconstruction criteria, such as in the problem of computation. Specifically, let
us consider two binary memoryless sources S1 and S2. S1 is simply a Bernoulli-
1/2 process, and S2 can be defined as S2 = S1+E, where E is Bernoulli-p and
independent of S1. The two sources must be encoded separately for transmis-
sion over a multiple-access channel that takes binary inputs and outputs their
modulo-2 sum. The goal of the final receiver is not to obtain the actual values
of S1 and S2, but merely their modulo-2 sum, i.e., the memoryless sequence
E.

For this simple scenario, it is immediately clear what to do: simply transmit
the source outputs without any further coding. The channel output itself
will already provide the desired modulo-2 sum, and any coding is entirely
unnecessary.

The interesting question, of course, is whether this same performance can
be attained by clever separate source and channel codes. A first candidate code
may be the Slepian-Wolf construction (see e.g. [5, Thm.15.4.1]) to encode the
two sources, requiring a sum rate of

R1 + R2 = H(S1, S2) = 1 + Hb(p). (8.25)
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The multiple-access channel at hand can carry at most a sum rate of 1 bit per
channel use (since its output is binary), and hence, for any non-trivial value
of p, this code does not work.

Now, the problem with this code is that it provides the decoder with too
much information, namely enough to recover both S1 and S2. The question is
whether there is a more efficient code that indeed only retains the modulo-2
sum. Such a code was found by Körner and Marton [16].

To permit the receiver to recover the modulo-2 sum, the following rate
conditions need to be satisfied:

R1 ≥ H(S1|S2) = hb(p)
R2 ≥ H(S2|S1) = hb(p)

This strategy works only as long as p ≤ 0.11 (or equivalently, p ≥ 0.89).
The arguments in [16] imply that this is the best performance we can ever

hope to attain via the separate design of a source and a channel code. In other
words, for 0.11 < p < 0.89, uncoded transmission is strictly superior to any
separate source and channel code.

Interesting follow-up questions include whether anything can be done if
the multiple-access channel is noisy. Clearly, uncoded transmission no longer
works: It will not permit to reliably recover the modulo-2 sum of the sources.
However, more elaborate code constructions have been found in [20, 21].

8.3.3 Multiple Access with the CEO source

Let us now consider a network topology that may model a simple sensor
network: One single underlying Gaussian source of interest is observed by
many sensors, subject to independent Gaussian observation noise. The sen-
sors communicate over a standard Gaussian multiple-access channel to a fu-
sion center. The sensing task is to estimate the underlying source with respect
to mean-squared error. This example, and extensions thereof, have been dis-
cussed in [12, 13, 14]. We start the discussion with a simple riddle, illustrated
in Figure 8.5: For one and the same sensing task, namely a sequence of unit-
variance Gaussians Xn, observed three times in independent unit-variance
Gaussian noise, we have to choose between two different suggested communi-
cation networks, one of total capacity 1/2 bits per network use, the other of
total capacity 3/4 bits per network use. The network may be used on average
once per source sample, and arbitrary coding is permitted in either case. That
is, each sensor can accumulate as many observation as it needs and jointly
map them into a suitable sequence for transmission over the multiple-access
channel. Which communication infrastructure is preferable?

By now, it is perhaps not surprising anymore that the capacity does not
characterize the relevant performance. Indeed, one finds that for the commu-
nication network on the left in Figure 8.5, the smallest attainable end-to-end
mean-squared error is given by
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dec
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Fig. 8.5. A riddle. Although not explicitly drawn in the figure, each encoder has
access to an arbitrarily long sequence of observations, and is allowed to arbitrarily
map this into a suitable channel input sequence.

D =
1
2
, (8.26)

which can be found in [9], whereas for the communication network on the
right in Figure 8.5, it is

D ≥ 1
1.75

≈ 0.57, (8.27)

which follows from the rate-distortion function for the CEO problem, see
e.g. [22].

More generally, going beyond M = 3 sensors, let us now consider the sensor
network topology in Figure 8.6, where we assume that the source sequence Sn

is memoryless and unit-variance Gaussian, and so are the observation noise
sequences Wn

1 ,Wn
2 , . . . ,Wn

M as well as the communication noise sequence Wn.
Moreover, whatever code is used, it must satisfy the power constraint

M∑
m=1

Pm ≤ Ptot, (8.28)

where Pm is the average power consumed by encoder m. Finally, the goal of
the decoder is to produce a source reconstruction sequence Ŝn at the smallest
possible mean-square error D = (1/n)E[‖Sn − Ŝn‖2]. Then, we have recently
proved the following theorem:

Proposition 1. For the simple linear Gaussian sensor network, the minimum
distortion (using arbitrary encoding and decoding) is

D =
1

M + 1

(
1 +

M
M+1

2 Ptot + 1

)
. (8.29)
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Fig. 8.6. The simple linear Gaussian sensor network.

A more general version of this result was obtained in [9].
By contrast, if source code design is separated from channel code design,

we obtain the following:

Proposition 2 (no separation theorem). For the simple linear Gaussian
sensor network, the smallest distortion for a “separate” code that first com-
presses the observations into bit streams and then delivers these bit streams
reliably satisfies

Dseparation ≥ 1
log2 (1 + MPtot) + 1

. (8.30)

The most interesting aspect of this insight is the comparison between
Equation (8.29) and Equation (8.30): In the former, the distortion scales like
1/M, whereas in the latter, it scales like 1/ log M. Hence, for this simple ex-
ample, the separation-based architecture not only performs suboptimally, it
entails an unbounded penalty, exponential in the number of nodes M.

8.3.4 Single-source Broadcast

The next example we consider is initially obvious and unsurprising. Never-
theless, at a deeper level, it is one of the most difficult to understand. This
concerns broadcasting a single source to many receivers to within a fidelity
criterion. The case of two receivers is illustrated in Figure 8.7. A memory-
less Gaussian source sequence Sn of mean zero and variance σ2

S is to be
transmitted across a Gaussian two-user broadcast channel (see [5, p.570])
with power constraint P and with noise variances σ2

1 < σ2
2 . For ease of ref-

erence, denote the capacities of the two underlying point-to-point channels
by C1 = 1/2 log2(1 + P/σ2

1) and C2 = 1/2 log2(1 + P/σ2
2). To illustrate the
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point, suppose that we want the decoder with the stronger noise to decode the
source at its smallest possible distortion, i.e., D2 = D(C2) = σ2

Sσ2
2/(P + σ2

2),
where D(·) denotes the distortion-rate function of the Gaussian source (see
e.g. [5, Eqn. (10.37)]). What is the smallest achievable distortion for user 1,
denoted by D1?

�S enc
X

� ��
Z1

�Y1
dec 1

�Ŝ1

� ��
Z2

�Y2
dec 2

�Ŝ2

Fig. 8.7. Broadcasting a single source to two destinations.

For a separate source and channel code design, this means that we have
to use a capacity-achieving channel code of rate C2 to send to user 2. Can
we “hide” (e.g., superimpose) another code for user 1? The answer is no: any
superposition would be noise for user 2, and hence compromise D2. For the
example at hand, it is clear that decoder 1 can decode anything decoder 2
can, thus the smallest D1 that can be achieved with a separate source and
channel code design is D1 = D2 = D(C2).

However, it is quickly verified for this example that simply sending S
without further coding achieves the distortions D∗

1 = D(C1) and D∗
2 = D(C2).

This has inspired several interesting constructions, see e.g. [26].
At a deeper level, this example concisely illustrates that information can-

not be thought of as a discrete quantity in this context; it must be considered
as analog.

8.4 Approximate Separation Theorems

In the previous section, we considered cases where no source/channel sepa-
ration theorem applies. Specifically, as shown in Propositions 1 and 2, there
can be an exponential difference (in the number of nodes) between the best
separation-based code and the best code overall. However, for certain classes
of source-channel network problems, one can give approximate separation the-
orems, meaning that in a certain limiting sense, a source-channel separation
theorem applies, and a separation-based code performs close to the best code
overall. Hence, in those cases, bits regain some of their universal significance.
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8.4.1 The Large-Network Limit

Consider the model illustrated in Figure 8.8, and let us assume for simplic-
ity that the all sources S1, S2, . . . , SL are memoryless and Gaussian, with
covariance matrix ΣS , and all observation and communication noises are in-
dependent Gaussians of variance σ2

W and σ2
Z , respectively. A is a real- or

complex-valued matrix of dimensions M ×L, and B is a matrix of dimensions
N × M.

As before, we allow each encoder in Figure 8.8 to accumulate an arbitrary
number of source observations before jointly encoding them into a suitable
channel input sequence, but we assume that the number of channel uses equals
the number of source observations. Moreover, whatever code is used, it must
satisfy the power constraint

M∑
m=1

Pm ≤ Ptot, (8.31)

where Pm is the average power consumed by encoder m.
Our goal is to understand the behavior of the resulting reconstruc-

tion quality in terms of the mean-squared error for the underlying sources
S1, S2, . . . , SL, i.e.,

D =
1
L

L∑
�=1

D�, (8.32)

where D� is the average mean-squared error in the reconstruction of S�.
We first consider the case where the number of underlying sources is of

the same order of magnitude as the number of observations, and where these
underlying observations are sufficiently independent. This could be thought
of as an “expanding” sensor network: as more sensors are added, more ground
needs to be covered. More precisely, we can get the following theorem [15]:

Proposition 3 (“expanding sensor network”). For the general linear
Gaussian sensor network, consider the case where L = M = N, that
A = B = IM , the M -dimensional identity matrix, and that the smallest
eigenvalue of Σ

(M)
S is strictly larger than zero for all M. Then, for any coding

scheme, no matter how complex, the distortion D in Equation (8.32) can be
at best a constant, independent of M. A separation-based code design can also
attain constant distortion Dseparation, independent of M.

It is, of course, a matter of taste whether this should be considered an
approximate separation theorem. All it says is that a separate source-channel
code attains a distortion that does not blow up with M, but goes to a constant,
and that even for the best possible scheme, the distortion also goes to a
constant. However, the two constants may be arbitrarily different.
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For the proof of the first fact, namely that no coding scheme, no matter
how complex, can attain a distortion that vanishes as M increases, it suffices
to note that the rate-distortion function for jointly encoding S1, . . . , SM is
given by (see e.g. [5, Thm.10.3.3])

Rjoint =
M∑

m=1

1
2

log
Mλm

D
≥ M

2
log

Mλmin

D
,

where λm are the eigenvalues of the covariance matrix of the observations,
and λmin is their smallest (by assumption strictly larger than zero). The
maximum rate across the MIMO channel with inputs (X1,X2, . . . , XM ) and
outputs (Y1, Y2, . . . , YM ) scales no faster than M log2(1 + MPtot/σ2

Z). Hence,
we cannot ever hope to incur a distortion smaller than

D ≥ Mλmin

1 + MPtot/σ2
Z

,

which tends to a constant as M increases. To see that a separation-based
strategy can also attain a constant distortion, it suffices to note that in this
simple example, there are really M separate, parallel channels, hence each
of the observation sequences U1, U2, . . . , UM can be decoded at a constant
distortion, which implies the result.

As a second scenario derived from Figure 8.8, we now suppose that L is a
small number, and that only M increases. We further suppose that there is
no observation noise, i.e., W1 = W2 = . . . = WM = 0. Then, we obtain the
following statement [15]:

Proposition 4 (“dense sensor network, noiseless observations”). For
the general linear Gaussian sensor network, consider the case where L = N =
1 and M increases. Let A = BT = 1, where 1 is the all-ones vector, and
let σ2

W = 0, i.e., there is no observation noise. Then, the distortion for any
scheme, no matter how complex, is lower bounded by

D ≥ σ2
S

1 + MPtot
(8.33)

and a separation-based code design can attain

Dseparation =
σ2

S

1 + Ptot
. (8.34)

This proposition can be understood as an “approximate” separation theo-
rem when the total power Ptot increases at least linearly in M : In that case,
both the separation-based code and the optimal code attain a distortion that
convergence to zero as M increases, and the speed of this convergence is sim-
ilar, at least in the sense that there is no exponential difference, by contrast
to the case of noisy observations, discussed above in Propositions 1 and 2.
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For the very particular case addressed in this proposition, it is also known
that the lower bound of Equation (8.33) is attainable, simply by letting all
the encoders use exactly the same code. Extensions of this simplistic lower
bound beyond the specific case addressed in the proposition, however, are not
known to be achievable. In fact, tighter bounds could be obtained using the
lower bounding technique discussed in [9]. A further discussion of these two
propositions can be found in [15].
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Fig. 8.8. The general linear Gaussian sensor network.

8.4.2 The High-SNR Limit

A second example of an approximate separation theorem can be developed for
the standard additive white Gaussian noise M -user MAC as defined above in
Section 8.2.5. For simplicity, let us consider a sum transmit power constraint as
in Equation (8.31). Consider the problem of losslessly transmitting arbitrarily
correlated sources across this channel, and suppose that the total rate required
to encode the sources is Rtot. Then, a separation-based code works if

Rtot ≤
1
2

log2

(
1 +

Ptot

σ2
Z

)
, (8.35)

which follows from the well-known capacity region of the Gaussian MAC (for
independent sources), see e.g. [5, Sec.15.1.2]. Conversely, no code whatsoever
works if

Rtot >
1
2

log2

(
1 +

MPtot

σ2
Z

)
, (8.36)
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which follows by merging all M encoders into one “super-encoder.” Now,
suppose that M is a fixed number, and let the signal-to-noise ration (SNR)
P/σ2

Z become large. Then,

lim
P

σ2
Z
→∞

log2

(
1 + Ptot

σ2
Z

)

log2

(
1 + MPtot

σ2
Z

) = 1, (8.37)

that is, in this relative sense, the two bounds become equivalent, which may
again be interpreted as a type of an approximate separation theorem.

8.5 Elements of Partial Orderings

As explained in the introduction, the source-channel separation theorem has
a double role; on the one hand, it provides architectural guidelines (at least so
long as complexity and latency are not too constrained); on the other hand,
it provides a universal (global) ordering of all (point-to-point) communica-
tion problems. To see this, suppose that a source is given, and one needs to
choose between two channels. Clearly, the preferable channel is simply the
one with higher capacity. Conversely, suppose that a channel is given, and
one needs to decide which one of two candidate sources is less difficult to
communicate across that channel. Clearly, the preferable source can be iden-
tified simply by comparing the respective rate-distortion functions of the two
sources, evaluated at the capacity of the given channel. As discussed above
(see e.g. Figure 8.5), there is no extension of these arguments to general net-
works. In the absence of such a global ordering, other techniques may provide
at least partial orderings of communication problems. At one level, this can
be interpreted to mean that the finer structure of the source and channel
needs to be taken into account. Few such approaches have been taken in the
literature, one notable exception being [24].

In line with the spirit of this chapter, in this section, we again argue in
terms of a simple example.

8.5.1 Linear Gaussian Sensor Networks

Consider again the specific networked communication scenario illustrated in
Figure 8.8. Suppose that the channel matrix B is fixed, and that we are given
two different source matrices, A1 and A2 to choose from. This may model the
sensor network scenario where by selecting the sensing modality or technology,
the source observation process can be altered. A natural question is: Is the
overall task, again captured by the trade-off between end-to-end distortion
and sensor transmit power, easier if the source matrix is A1 or if it is A2?
What we have shown in Section 8.3.3 is that there is no full answer available
to date; we cannot universally tell which of the two matrices is preferable.
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What can be given by exploiting mostly standard arguments is the follow-
ing restricted partial ordering.

Proposition 5. Let L = N = 1, and for simplicity, suppose that B is the
all-ones vector. Then, if

‖A2‖2 <
‖A1‖2(1 − σ2

Z

σ2
Z+b(M)Ptot

)

1 − σ2
Z

σ2
Z+MPtot

+ ‖A1‖2 σ2
Sσ2

Z

σ2
W

( 1
σ2

Z+b(M)Ptot
− 1

σ2
Z+MPtot

)
, (8.38)

where

b(M) =

(
σ2

W + σ2
S‖A1‖2

)
‖A1‖2

σ2
S‖A1‖4

4 + σ2
W ‖A1‖2

, (8.39)

then A1 is strictly preferable over A2.

As an explicit witness to the fact that this does not induce a universal
ordering of all possible matrices A, one may note that the condition is not
satisfied in the special case when A1 = A2.

8.6 Conclusions

In the absence of complexity and latency constraints, the potential offered
by a noisy communication channel can be characterized by a single number,
called its capacity and often measured in bits. This number is universal in the
sense that via the so-called source/channel separation theorem, it applies to
all (stationary, ergodic) communication problems, establishing that bits are a
universal currency of information in point-to-point communication. No sim-
ilarly universal notion is known for general communication networks: there
is no general source/channel separation theorem, and bits are not a univer-
sal currency of information. In this chapter, we review some of the known
partial results available to date. Lacking a more general theory, our exposi-
tion is mostly a collection of examples and illustrations, tentatively organized
into four main sections. The first three cover, respectively, exact separation
theorems (a collection of examples of networked communication problems for
which bits are a universal currency of information), counter-examples where
bits are far from being universal, and approximate separation theorems, where
bits are somehow close to universal. The final section discusses some very ten-
tative approaches of partially ordering networked communication problems
according to their difficulty without using the notion of bits.

The underlying question that we do not attempt to answer in this chapter
is which class typical real-world sensor networks fall into — are bits good
enough? Eventually, only time can tell.
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9.1 Introduction

In a ‘classical’ control system, such as the one shown in Figure 9.1, the system
components (sensor, controller and actuator) are connected through dedicated
and reliable communication links. As we move to deploy wireless networked
control systems over a wireless communication medium, such as in Figure 9.2,
we are faced with new problems. In particular, interference and channel fading
result in unpredictable packet loss and delay. In data networks, where data
integrity is paramount, the dropped packets may simply be retransmitted
until they are successfully received. However, in control and sensor network
systems, data has a time value, and transmitting outdated data has limited
value. Instead of retransmitting the dropped data, it may be better to transmit
any new data that is available.

A second characteristic that differentiates the embedded network control
and sensor network environment from data networks is that the computational
capacities of each node, and the bandwidth available between nodes, are typ-
ically small. Hence, from a state estimation and control system perspective,

PLANTACTUATOR SENSOR

CONTROLLER

Fig. 9.1. A control system with the sensor, controller and actuator connected by
dedicated reliable communication links.
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it is useful to consider communication policies as well as system architectures
that specifically take into account the time value associated with the data, as
well as the communication and computation constraints.

In this chapter we will consider developing an appropriate application level
transport protocol for optimal state estimation for a sensor network or net-
worked control system, in which the communication channel is subject to
random packet loss. We shall consider packet losses occurring between the
sensor and controller in the control problem, and the sensor and the state
estimator in the state estimation problem. Under this arrangement, we then
pose the question:

Given that a measurement packet has been dropped and a new measurement
is available, what information should be transmitted in the following packet?

Clearly, sending both old as well as new data would convey the maxi-
mal information and would yield the best possible state estimate. However,
if multiple packets are dropped, more bandwidth is required to transmit the
outdated data. At the level that we treat this problem, we ignore the difficulty
involved in transmitting a real number and simply suppose that sending two
real numbers is twice as difficult as sending just one. Thus, since older data
is less valuable, sending both pieces of data represents an inefficient usage of
the available bandwidth. Another option is to simply send the most recent ob-
servation, and ignore the information contained in the older dropped packets.
This is the most common approach. However, there is a loss of information
under this scheme. A third option, and the one we shall investigate in this
chapter, is to form a linear combination of the two measurements and thus
create a single measurement value which is then transmitted.

In Section 9.2 we discuss related literature and provide some background
related to the issues at play in estimation and control over wireless channels.
This section also places our results in context with regard to the many assump-
tions that can be made when dealing with such problems. We formally define
the problem in Section 9.3 and then move on to present our main results in
Section 9.4. To strengthen intuition we present several examples throughout
the section. In Section 9.5 we extend the results to the case where the sensor
sampling rate is several times faster than the allowable channel transmission
rate. Section 9.6 presents some simulation results which illustrate the results

EstimatorUnreliable
Network

Sensor

Fig. 9.2. Information sent from the sensor through the network to the estimation
or control logic is subject to unpredictable loss.
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and demonstrate the performance improvement achievable. A conclusion with
directions for future work is given in Section 9.7. This work is a revision of
earlier work presented in [37].

9.2 Background

9.2.1 Related Literature

Interest in networked control systems from both a research [2, 1, 22, 44, 12]
and industry perspective [34, 24, 33] has been growing for several years. Just
as there are many benefits for deploying such networked control systems, there
are also several problems that are not addressed in classical control theory.
These problems include primarily random packet delay and random packet
loss. Other issues involve limited computational capacity and limited band-
width. These problems become even more relevant as we move into wireless
networked control systems and sensor networks.

In dealing with random packet loss, the stability of Kalman Filter-
ing [40, 27], optimal LQG controllers [19, 16, 39] and some suboptimal con-
trollers [4] have been examined. Performance issues and controller location
is considered in [36]. The critical difficulty with the control problem revolves
around the fact that packet or information loss may result in so called ‘non-
classical’ information patterns, which have been shown to make the problem
intractable [48, 32]. Generally, such information patterns arise whenever infor-
mation upon which control actions are based is not consistent throughout the
system. An example is when the controller is unaware that an actuation com-
mand was dropped enroute to the actuator. In the presence of such conditions
the separation theorem breaks down.

In the context of networked control systems, avoiding this situation
amounts to ensuring that the controller has knowledge of what control actions
have been implemented by actuator. Such difficulties are not encountered in
the estimation problem. Thus, packet delivery, or at least packet delivery sta-
tus notification, between the controller and actuator is important. To realize
such notification, a ‘TCP’ type information structure is assumed [19]. Under
TCP, packet delivery notifications are enabled, whereas in UDP they are not.

Some transport layer protocols beyond TCP and UDP have also been
developed which are of some use for networked control. TCP Friendly rate
control (TFRC) [17] attempts to avoid abrupt send rate changes associated
with TCP flows. The Datagram Congestion Control Protocol (DCCP) [21]
foregoes reliable message delivery yet still achieves congestion control, and
the Stream Control Transmission Protocol (SCTP) [41] treats transmissions
as streams, as compared to individual packets.

There are also some protocols which have been designed specifically for
control. The Controller Area Network (CAN) [9] protocol is an example is
highly popular amongst automobile manufacturers. Under the CAN protocol,
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data from a component is assigned a unique identification code and transmit-
ted on a simple two wire network. Transmission conflicts are resolved using
message priorities and random backoffs. Thus, despite harsh operating en-
vironments, access to the communication medium can be strictly controlled
and scheduled. As a result, the protocol provides reliable and timely message
delivery. Other protocols developed for control systems include DeviceNet,
BACnet, CEbus, LONWorks, ControlNet and Profibus [25, 38, 34].

The utility of these protocols, from a control and estimation perspective, is
that they account for the time value of the data being transmitted, while ad-
dressing network considerations such as congestion control, collision avoidance
and flow control. However, this importance is only addressed on a per-packet
basis, i.e., ensuring the regular, timely or dependable delivery of an individ-
ual packet. Relationships between data transmitted at different times are not
considered in the packet composition. The work we present here illustrates a
way in which a transport layer protocol may be designed so as to adapt packet
contents to meet both the control and estimation system requirements as well
as deal with the network restrictions.

The other significant problem in networked control is random packet de-
lay. Its effects (both network transmission and device computation) on per-
formance have been investigated in [20, 25, 26, 10, 31, 3]. Stability issues are
considered in [46, 29, 28]. Methodolgies for dealing with the delay include
using estimators [8], jump linear systems [49], queues [11], scheduling trans-
missions [51, 18, 45, 50, 52], and others [44, 12].

Other work on networked control systems includes analyzing limited data
rates [30, 14], using encoders on either side of the channel [42, 16] and
developing appropriate software services and abstractions [6] and Middle-
ware [5, 15, 7, 33, 43].

9.2.2 Background Material

Throughout this chapter we deal with the estimation of linear Gaussian sys-
tems. Consequently, we shall use the optimal Kalman Filter [35, 47] for pre-
diction and state estimation. For ease of reference, we gather together the
equations for a Kalman filter, for a system with state matrix A, control input
matrix B, observation matrix C, state noise covariance Qw and observation
noise covariance Rv. The time update equations are:

x̂k+1|k = Ax̂k|k + Buk, (9.1)
Pk+1|k = APk|kA′ + Qw. (9.2)

The measurement update equations are:

Kk+1 = Pk+1|kC ′ (CPk+1|kC ′ + Rv

)−1
, (9.3)

x̂k+1|k+1 = x̂k+1|k + Kk+1

(
zk − cx̂k+1|k

)
, (9.4)

Pk+1|k+1 = (I − Kk+1C) Pk+1|k, (9.5)
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where the nomenclature x̂k+1|k represents the state estimate at time k + 1
given state observations up to time k. When combined, the Kalman filter
measurement and prediction equations for the error covariance yield the dis-
crete Ricatti equation:

Pk+1 = APkA′ − APkC ′ [CPkC ′ + Rv]−1
CPkA′ + Qw, (9.6)

where by convention Pk+1 = Pk+1|k. Throughout the remainder of the chap-
ter we will deal with systems of dimension 2 and accordingly partition the
covariance matrix as:

Pk|k =

[
p1,1

k|k p1,2
k|k

p1,2
k|k p2,2

k|k

]
. (9.7)

9.3 Problem Formulation

We consider linear Gaussian scalar systems described as follows:

xk+1 = axk + buk + wk, (9.8)
yk = cxk + vk,

where the system’s state at time k is represented by xk. A noisy observation
at time k is represented by yk and has associated Gaussian noise vk with
variance rv. The variance of the Gaussian state noise wk is given as qw. Both
wk and vk are independent. We have chosen scalar systems for simplicity and
insight.

We have chosen to only consider packet loss between the sensor and con-
troller or actuator to avoid intractability problems. As a consequence, the
separation theorem is applicable, and the optimal control problem is sepa-
rated into forming an optimal state estimate and an optimal certain equiva-
lent controller. This can be explicitly illustrated by considering the standard
quadratic cost criterion for the control problem:

J = E

N∑
k=0

{x′
kQxxk + u′

kRuuk}, (9.9)

where Qx ≥ 0 and Ru > 0. By resolving the state xk into the state estimate
x̂k, and state estimation error x̃k, we can define xk = x̂k + x̃k. Conditioning
the cost on the observations yields:

J = E

N−1∑
k=0

(x̂′
kQxx̂k + u′

kRuuk) + E

N−1∑
k=0

Tr(QxPk)

︸ ︷︷ ︸
Unaffected by controls

,

where Pk is the conditional covariance of the state estimation error. Hence,
as a result of certainty equivalence, the control cost minimization problem
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reduces to that of minimizing the conditional state estimation error covari-
ance, provided an optimal certain equivalent controller is used. Hence, for
the remainder of this chapter we shall consider only the optimal estimation
problem, and not per se the optimal control problem.

9.3.1 Formulating the Reaction to Dropped Packets

The system described in (9.8) represents only the discrete time system dy-
namics and does not explicitly account for the effect of dropped packets. We
shall assume that that the communication link delivering observations to the
estimator behaves as a Bernoulli erasure channel which randomly drops pack-
ets with probability λ. During periods of dropped packets, the state estimate
will simply be a forward prediction of the most recent state estimate. This
is the so called ‘open loop’ state prediction, and corresponds to the Kalman
Filter time update equations (9.1) and (9.2). The state estimate produced by
the Kalman filter has an associated state estimation error covariance which
we are interested in minimizing so as to achieve lower cost. However, some
complexity arises as a result of the random sequence of packet losses which
result in a random state estimation covariance matrix. For our analysis we
shall assume the following sequence of events:

1. A sensor observation is taken at time k and transmitted to the estimator
through the network. The observation value is also stored at the sensor.

2. The packet may be dropped en-route to the estimator. The sensor is then
made aware of the packet drop but cannot re-transmit anything before
another observation is taken.

3. Another observation is taken at time k + 1.
4. Given the two observations, the sensor must now construct a single mea-

surement value to transmit to the estimator through the network. We will
consider a strategy where this transmitted value is a linear combination
of the old and new observations. This represents a linear temporal coding
strategy.

For simplicity, we shall, for the meantime, restrict ourselves to the case where
only a single packet is dropped. Later results extend this to the general case
of multiple packet drops. With the above sequence of events in mind we define
the following concatenated system:
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[
xk+1

xk

]
=

[
a 0
1 0

] [
xk

xk−1

]
+

[
1
0

]
uk +

[
wk

0

]
,

yk = cxk + vk, (9.10)

zk =
[
α β

] [ yk

yk−1

]
,

=
[
α β

] [ cxk

cxk−1

]
+

[
α β

] [ vk

vk−1

]
,

Qw =
[

qw 0
0 0

]
, (9.11)

Rv = (α2 + β2)rv. (9.12)

Above we have explicitly separated the measurement taken at time k, denoted
as yk, from the information that is actually transmitted at time k, which is
denoted as zk. This allows us to compose the contents of the transmitted
measurement by adjusting the relative weighting of the α and β terms in
C = (α, β). Without loss of generality we will assume c = 1. In a similar vein,
we note that it is only the ratio α

β that is of significance in constructing C,
and not the individual values of α and β. The state noise covariance in this
formulation is represented by Qw, as shown in (9.11), and the observation
noise is given in (9.12) as Rv. We have used the fact that E[vkv′

k−1] = 0 and
E[v2

k] = E[v2
k−1], since they are i.i.d. with zero mean.

If there has never been a packet loss then there is no additional benefit
obtained by retransmitting a previous observation. Hence the C matrix would
be constructed with α = 1 and β = 0, which corresponds to sending only the
most recent observation. In general, any value of α �= 0 can be used so long
as β = 0. We note that scaling (α, β) to γ(α, β) for γ �= 0 yields an equally
informative observation. Thus we only need to consider (α, β) = (0, 0) and all
other (α, β) lying on the unit circle α2 + β2 = 1. The former can be further
ruled out since is corresponds to no information at all.

We now focus on deriving conditions for the optimal composition of C
following the sequence of events described earlier. In Section 9.2 we have
presented the Kalman filter equations and defined the state error covariance
matrix in (9.7). Assume that Pk|k represents the state estimation covariance
at time k, immediately before the packet is dropped. We do not require any
assumption regarding the arrival of an observation at or before that time, and
simply state that Pk|k represents the best state estimation covariance for time
k. Thus, to move forward in time we perform a time update to create an open
loop prediction of the state at time k + 1 using (9.2) and (9.1). We focus here
on the state covariance calculations (9.2), which yield:

Pk+1|k = APk|kA′ + Qw

=

[
a2p1,1

k|k + qw ap1,1
k|k

ap1,1
k|k p1,1

k|k

]
. (9.13)
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Note that these calculations are made regardless of the arrival of an observa-
tion. If the packet at time k + 1 had been delivered, an ‘Observation Update’
calculation would have been done using (9.5). However, since it is dropped,
another time update (9.2) is performed:

Pk+2|k =

[
qw + a2(qw + a2p1,1

k|k) a(qw + a2p1,1
k|k)

a(qw + a2p1,1
k|k) qw + a2p1,1

k|k

]
. (9.14)

In the sequence of events we are considering, the sensor has created a single
combined measurement, via a linear temporal code, and transmitted it to the
estimator. On arrival, a measurement update can be performed (9.5). Since
the sensor has chosen a ratio of the ‘new’ and ‘old’ measurements, the update
will be in terms of the α and β used to construct the C matrix. This will
yield Pk+2|k+2. Recall the manner in which P can be split up as described
in (9.7) and the description of the concatenated system in (9.10). The term in
the upper left corner, p1,1

k+2|k+2, represents the variance of the state estimate
at the current time. The full expression for this term is:

p1,1
k+2|k+2 = qw + a2 (

a2 p1,1
k + qw

)

−
(
qw +

(
a2 p1,1

k + qw

) (
a2α + aβ

)) ((
a2 p1,1

k + qw

) (
aβ + a2α2

)
+ αqw

)
(
a2 p1,1

k + qw

)
(αa + β)2 + α2qw + rv(α2 + β2)

.

(9.15)

This term will incur a cost in the trace function in (9.9). We will investigate
the optimal choice of α and β so as to minimize this term.

An Example

We first present an example to show that such a linear temporal coding can
indeed provide a benefit, before proceeding further. Consider the system with
a = 2, rv = 1 and qw = 1. Suppose that p1,1

k|k = 1 at some time k. Then (9.15)
yields:

p1,1
k+2|k+2 =

21α2 + 26β2

22α2 + 20αβ + 6β2
, (9.16)

which can be minimized to a value of 13
16 with (α, β) =

(
13
5 , 1

)
. In comparison,

using only the most recent measurement corresponding to (α, β) = (1, 0)
yields a covariance of 21

22 . A plot of the cost for various values of β is shown in
Figure 9.3. This illustrates that by a linear combination of measurements one
may indeed be able to reduce the cost in comparison to just sending a new
measurement.

9.4 Analysis

The example in the previous section showed that there there can indeed be
an optimal choice of α and β which yields a lower state estimation error than



9 Toward the Design of a Transport Layer for Networked Control Systems 231

simply sending the most recent observation. However, before we proceed to
compute the optimal ratio, we need to establish that improving the state
estimate in the short term is optimal for the long term. In other words, we
need to show that choosing an optimal α and β at time k is good for all future
time, regardless of the policy implemented in the future. To do this we first
restate a well known result [23] for convenience:

Lemma 1. Monotonicity of Ricatti equation iterations. Let Pk and P̄k repre-
sent the kth iteration of (9.6) corresponding to initial conditions P0 and P̄0

respectively. Let P∞ represent the steady state solution to (9.6). If P0 ≥ P̄0 ≥
P∞ then Pk ≥ P̄k ≥ P∞ for all k.

The Lemma below establishes that there is no trade-off between present and
future estimates:

Lemma 2. Minimizing P 1,1
k|k is an optimal policy for all Pj for all j > k.

Proof. Consider the structure of P after a Kalman time update in (9.2). The
only term in Pk+1|k from Pk|k is p1,1

k|k, as illustrated in (9.13). The consequence

is that if the optimal (α∗, β∗) had been used to generate the minimal p1,1
k|k

∗
,

then Pk+1|k generated using p1,1
k|k

∗
in (9.2) is also minimal.

Now consider a second system in which some other non-optimal choice of
(α̃, β̃) was used to compute some p̃1,1

k|k, which is then used to compute P̃k+1|k.

Since p̃1,1
k|k > p1,1

k|k
∗
, we must have P̃k+1|k > P ∗

k+1|k. Then, any subsequent
choice of (α, β) by the second system can also be used by the first system,
and hence by the dominance Lemma 1, P̃j > P ∗

j for all j > k. �

This Lemma enables us to proceed directly and minimize the covariance of
the state estimate obtained at each step from the Kalman Filter. We note
however, that forming the optimal estimate for p1,1

k+2|k+2 does not yield the

optimal estimate for p2,2
k+2|k+2. An example of this is given later in the chapter

in Figure 9.4.
Our first result deals with the case when only a single packet may be

dropped and there are no consecutive packet drops. Later we will deal with
the more general case of multiple consecutive dropped packets. We will assume
throughout that qw > 0 and rv > 0.

Theorem 1. Following a single dropped observation in a system described
by (9.8), with noise process described in (9.12), the optimal linear combination
of the past (dropped) measurement with the latest (new) sampled measurement
is:

α∗

β∗ = a +
qw

arv
+

qw

a(a2p1,1
k + qw)

. (9.17)

Proof. The burden of the proof is to find conditions under which p1,1
k+2|k+2 is

minimized by a choice of α and β. Note that P 1,1
k+2|k+2 is continuous everywhere
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except at (α, β) = (0, 0). We can exclude this point since it represents no
information transfer. For all (α, β) �= (0, 0) we also note that scaling to γ(α, β)
where γ �= 0 yields no change. We shall first find the stationary points and
then check which of them represent a minimum. Necessary conditions for a

stationary point
(

dp1,1
k+2|k+2

dα =
dp1,1

k+2|k+2

dβ = 0
)

are:

−1
β

dp1,1
k+2|k+2

dα
=

1
α

dp1,1
k+2|k+2

dβ
= −2ΘΓ

Φ2
= 0, (9.18)

where

Θ =
(
a4 p1,1

k + qw + a2 qw

)
α + a

(
a2 p1,1

k + qw

)
β,

Γ =
(
a2p1,1

k + qw

) (
arvα − a2rvβ − qwβ

)
− qwrvβ,

Φ =
(
a2p1,1

k + qw

)
(aα + β)2 + (qw + rv) α2 + rvβ2.

Hence, for a stationary point we require either the numerator terms Θ or Γ
to be equal to zero, since Φ �= 0. So, Θ = 0 or Γ = 0 is a necessary condition.
Figure 9.3 illustrates the stationary points for a particular example.

To establish if the stationary points are minimizing, consider the positive
definiteness of the Hessian H which is guaranteed when all the determinant
of the principal minors are all positive. Taking the upper left term in H, and
substituting Γ = 0 yields the following condition for positive definiteness:

2Ψβ4 (∆1 + ∆2 + ∆3 + ∆4)
2
(
a4 p1,1

k + qw + a2 qw

)6

a2
(
a2 p1,1

k + qw

)2

r2
vβ6(∆1 + ∆2 + Π1 + Π2)

3
≥ 0, (9.19)

where

Ψ =
(
a4 p1,1

k r + (qw + rv)2 + a2
(
qw rv + p1,1

k (qw + rv)
))

,

∆1 = a8 p1,1
k

2
rv + qw

2 (qw + rv) ,

∆2 = a6 p1,1
k

(
2 qw rv + p1,1

k (qw + rv)
)

,

∆3 = a4 qw

(
qw rv + 2 p1,1

k (qw + 2 rv)
)

,

∆4 = a2 qw
2
(
p1,1

k + qw + 3 rv

)
,

Π1 = a4 qw

(
qw rv + 2 p1,1

k (qw + 2 rv)
)

,

Π2 = a2 qw
2
(
p1,1

k + qw + 3 rv

)
.

Closer examination of the terms in (9.19) shows that the expression is always
positive definite and only in some special cases, such as a = rv = qw = 0,
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disallowed by our assumption, is the expression positive semi-definite. Hence,
Γ = 0 is a minimizing stationary point. In a similar manner, it can be shown
that the condition Θ = 0 yields a negative definite expression, and is hence is
a maximizing solution. Note further that the local minimum corresponding to
Γ = 0 is actually a global minimum since attention can be restricted to the
circle α2 + β2 = 1. Hence, we conclude that Γ = 0 is necessary and sufficient
condition for the global minimizer. �
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Fig. 9.3. The magnitude of the error covariance p1,1
k+2|k+2 as a function of β with

α = 1, a = 2, p1,1
k|k = 1, rv = 1 and qw = 1. Note that limΦ→±∞ P 1,1

k+2|k+2 =

qw + a2
(
a2p1,1

k + qw

)
, as one expects.

The previous theorem dealt with the case where only a single packet is
dropped. The following Theorem addresses the more general case of multiple
successive packet drops.

Theorem 2. Following D successive dropped observations in a system de-
scribed by (9.8), with noise process described in (9.12), the optimal linear
combination of the most recently dropped measurement with the latest sam-
pled measurement is given by:

α∗

β∗ = a +
qw

arv
+

qw

a(a2Dp1,1
k +

∑D
i=1 a2(i−1)qw)

. (9.20)



234 C. L. Robinson and P. R. Kumar

Proof. This follows directly from the previous proof once it is noted that
a2Dp1,1

k +
∑D

i=1 a2(i−1)qw is the state estimation error covariance projected
forward by D drops, and that it simply replaces the expression for a single
drop state error covariance in (9.13).

This result establishes that regardless of the number of drops there is an
optimal combination of the two most recent measurements that can be sent
in order to minimize the estimation error covariance. We have not dealt with
the topic of creating a single measurement to be transmitted from all of the
dropped packets. This is more complex to analyze, as well as to implement,
and may not be desirable. (See also the comparison with the lower bound in
Section 9.6).

9.4.1 Interpretation of Results

The results that we have presented can be examined for a number of special
cases and interpreted in a variety of ways to provide some insight. In the
simplest case, consider a kinematic system with no process noise. There is
only noise on the observations. In this case the state will remain constant
and the optimal policy is simply to average over the two observations, which
will create a single observation with a lower variance. To see this with our
results, set qw = 0 and a = 1 in (9.17) and note that α∗ = β∗, indicating
equal weighting in the combined measurement. As we extend this example
and add system dynamics and model noise we still observe this coupling and
reduction in variance, although the past measurements have less significance.
Considering Theorem 1 we observe:

rv Taking the limit as rv → 0 represents receiving noiseless, perfect obser-
vations. In the limit, the term α

β → ∞. This ratio indicates we should
place no importance on the dropped observation, and the transmitted
measurement should comprise only the most recent observation. This is
intuitive since the observation is perfect and hence there is no need to
include past information. On the other hand, for systems that have rv

very large (i.e., high observation noise), the ratio is in fact lower bounded
by α

β ≥ a + qw

a(a2p1,1
k +qw)

. So, regardless of how ‘noisy’ an observation is, it
still has value.

a As the system dynamics disappear and the system state is continually forced
to zero (a → 0), any present control action or system noise completely
determines the future state of the system, irrespective of the current or
past states. Thus, there is no correlation between the states at observation
instants, and thus there is no advantage in communicating any information
from a past observation. This is represented by α

β → ∞ as a → 0.
qw The case where qw → 0 represents noiseless state equation updates. It is

intriguing that in this case α
β → a, for which we still have no intuitive ex-

planation. The case where qw → ∞ represents a very poor system model,
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and as one expects, more emphasis should be placed on the more recent
observation, i.e., α

β → ∞.
p1,1

k The fact that the ratio depends on the state estimation error covariance
before the packet drop is the first point of interest. The second is that the
ratio is bounded by below by a + qw

arv
for large values of p1,1

k , and from
above by a + qw

arv
+ 1

a for small values of p1,1
k . Interestingly, the tightness

of these bounds depends on the system dynamics, a.

9.5 Oversampling

In contrast to the scenarios presented earlier where packets are randomly
dropped, in this section we consider the case where a sensor can take mea-
surements more rapidly than the communication network can transmit them.
We shall start by considering the case where the state is sampled at twice
the transmission frequency and analyze what the optimal combination of the
two measurements should be to minimize the estimation error. We shall, in
the end, arrive at the same result as in the previous section. However, here
we use a slightly different approach, exploiting the fact that packets are not
dropped under this oversampling formulation. Using the model in (9.8) and
system formulation in (9.10), we consider the state equation for the next time
step:

[
xk+2

xk+1

]
=

[
a 0
1 0

] [
xk+1

xk

]
+ uk+1 +

[
wk+1

0

]

=
[

a2 0
a 0

] [
xk

xk−1

]
+

[
a 1
1 0

] [
uk

uk+1

]

+
[

a 1
1 0

] [
wk

wk+1

]
,

zk = αyk + βyk−1 =
[
α β

] [ yk

yk−1

]

=
[
α β

] [ xk

xk−1

]
+

[
α β

] [ vk

vk−1

]
.

This represents the evolution of the system between successive transmitted
observations. Since measurements are delivered regularly, we can restrict at-
tention to even k by setting k = 2n, and defining the following new terms:
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Xn :=
[

x2n

x2n−1

]
,

W̄n :=
[

w2n

w2n+1

]
� N

([
0
0

]
,

[
qw 0
0 qw

])
,

V̄n :=
[

v2n

v2n−1

]
� N

([
0
0

]
,

[
rv 0
0 rv

])
,

Zn := z2n.

This can be used to specify the system:

Xn+1 =
[

a2 0
a 0

]
Xn +

[
a 1
1 0

]
W̄n,

Qw = cov

([
a 1
1 0

]
W̄n

)
=

[
a2 + 1 a

a 1

]
qw,

Rv = cov
([

α β
]
vn

)
=

(
α2 + β2

)
rv,

Zn =
[
α β

]
Xn +

[
α β

]
V̄n.

This representation is in a more familiar linear system form, for which we
can immediately investigate the Kalman filter and Ricatti equations. A first
consideration is stability of the estimate which is guaranteed by existence
and uniqueness of the solution to the difference Riccati equation. This re-
quires stabilizability of the pair (A,Qw) and detectability of the pair (A,C),
where C = [α, β], which is true for all (a, qw) stabilizable, and (a, α) or (a, β)
detectable. Thus, there is a unique positive definite solution to the Riccati
equation.

Since packets are not dropped, a time and observation update using the
Kalman equations is equivalent to a single update of the discrete Ricatti
Equation (9.6). Note that if Pn+1|n → P as n → ∞, then Pn|n → P̃ where
P̃ is related to Pn+1|n through (9.5). Computing p1,1

n+1|n+1 and taking the
derivative with respect to β and α yields:

−1
β

dp1,1
n+1|n+1

dα
=

1
α

dp1,1
n+1|n+1

dβ
= −2ΘΓ

Φ2
.

We have seen this expression before in the proof of Theorem 1, and thus,
following the same logic as in the proof we find that Γ = 0 is the minimizer
yielding the following condition for the minimizer:

α∗

β∗ = a +
qw

arv
+

qw

a(a2p1,1
n + qw)

. (9.21)

This is exactly the expression obtained in Theorem 1.

9.5.1 Intermediate State Estimation

This section examines the optimal ratio for estimating the state at an inter-
mediate time, when an observation was taken but not transmitted, p1,1

k+1|k+2
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(or equivalently p2,2
k+2|k+2), is of importance. As would be expected, the op-

timal (α, β) ratio differs from the one for estimating the state at the most
recent time. Computing once again the first order necessary conditions for a
minimum of p1,1

k+1|k+2 yields:

α

β
=

2(a2p1,1
k + qw)2

Γ1︷ ︸︸ ︷
α(aα + β)

Γ2︷ ︸︸ ︷
(−(qw + rv)α + arvβ)

Φ2
.

Hence, potential minima are obtained at Γ1 or Γ2 equal zero. Intuition sug-
gests that any minima must depend on the observation noise, and since Γ1 is
independent of rv it can be ignored. The intuition is confirmed by computing
the second derivative of the above function and observing that Γ1 = 0 yields a
maximizing solution. Hence, the condition Γ2 = 0 yields the ratio for optimal
estimation of the state at the ‘missed’ sample instant

α

β
=

arv

qw + rv
. (9.22)

This ratio represents the optimal choice for the ‘smoothing’ problem, where
future observations are used to generate a better state estimate. The differ-
ence between the minima associated with previous estimation problem, and
this smoothing problem are shown in Figure 9.4. The analysis in this sec-
tion has focused on the case where sampling frequency was double that of
the transmission frequency. In a similar manner to the extension to multiple
packet drop in earlier sections, we now extend Theorem 2 to the general case
of multiple sample instants occurring between transmission times.

Corollary 1. When sensor observations are transmitted once every D sam-
ples, the optimal linear combination of current and previous measurements is
given by

α

β
= a +

qw

arv
+

qw

a(a2Dp1,1
k +

∑D
i=1 a2(i−1)qw)

.

Proof. Follows directly from Theorem 2.

9.6 Simulations

We demonstrate our results, with a simulation study of the example cited
throughout the chapter, i.e., a = 2, rv = 1, qw = 1 and α = 1. We use
average estimation error covariance per step as a performance metric, i.e.,
1
N

∑N
k=0 p1,1

k . One million steps were used. The results are shown in Figure 9.5
where λ represent the packet drop probability. We assume that packet drops
are i.i.d. Bernoulli random variables. In Figure 9.5 we have used a baseline for
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observation (larger β) at time k + 1 when the state covariance at that time is to be
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comparison from [36], represented with a value of 0 cost for all drop probabili-
ties. The lower bound derived in [36] represents the absolute best performance
that is achievable under any information sharing structure or drop sequence.
Consequently, the costs illustrated in Figure 9.5 represent a deviation from
achievable optimality. The linear temporal coding scheme clearly performs
very well.

9.7 Conclusions

In this chapter we have examined the problem of retransmissions in a net-
worked control or sensor network environment where sensor observations are
occasionally lost enroute to the controller or state estimator. In particular,
we address what single value should be sent following a packet drop in order
to best estimate the state. We show that sending the most recent observation
is not optimal, and derive necessary and sufficient conditions for the exis-
tence of a combination of past and present measurements that minimizes the
state error covariance. We extend the results in several directions including
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Fig. 9.5. Simulation results showing the percentage deviation in cost from the
absolute lower bound achievable as described in [36]. λ is the packet loss probability.

multiple packet drops, rapid sampling and slow transmission, and estimate
smoothing. Simulation results are presented which illustrate the performance
improvement.

These results highlight the utility of linear temporal coding, which suggests
several potential directions of further work. First, modifiying the contents of
packets before transmission, represents a viable strategy for congestion control
compared to traditional TCP type methods. This might form the basis of a
networked control specific transmission protocol that modifies packet contents
based on previous message disposition. The significance of the approach is
that it recognizes the time value of the transmitted data, as compared to
TCP which values only data integrity.

Second, the results enable better performance to be achieved in environ-
ments with limited bandwidth. This could even be achieved after system de-
ployment without requiring the network be modified. For example, transmit-
ting sensors capable of faster sampling can still use their scheduled transmis-
sion time to transmitt a combined sensor observation. Further, if bandwidth
is a limiting constraint, the sensor sampling rate could be selected so as to
achieve the performance required.

More generally, these results also show that, for network coding, realized
in this context as linear temporal codes, is indeed valuable for networked
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control systems. However, in contrast to “in-network information processing”
in sensor networks [13], this would be done at the transport layer, rather than
the network layer.

References

[1] Special edition on Networks and Control, volume 21. IEEE Control Sys-
tems Magazine, Feb 2001.

[2] Special Issue: Technology of Networked Control Systems. Proceedings of
the IEEE, Jan 2007.

[3] M. Adès, P. E. Caines, and R. P. Malhamé. Stochastic optimal control un-
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10.1 Introduction

Consider the problem of tracking multiple objects using passive sensors
mounted on the sensor heads of mobile robots as illustrated in Figure 10.1.
We are currently investigating multi-target tracking techniques on such plat-
forms, specifically, the so called REDOWL platform testbed (Robot Enhanced
Detection Outpost with Lasers [15]).

REDOWL

Fig. 10.1. Target Tracking with REDOWLs

Each REDOWL platform has acoustic arrays that can detect and analyze
individual acoustic emissions to identify the directions of sounds of interest
over time. By combining information from multiple platforms, the objective

∗ This work was supported by PECASE grant no. N00014-02-100362, NSF CA-
REER award ECS 0449194, Army grant W911NF-06-2-0040 and NSF Grants
CCF 0430983, CNS 0435353, DMI 0330171 and AFOSR FA9550-04-1-0133
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is to rapidly localize and track objects. The messages transmitted would be
broadcast using an 802.11b protocol to other REDOWLs in the vicinity. The
802.11b protocol limits the potential range of these transmissions, and intro-
duces an element of unreliability of communications and delay that needs to
be addressed. Intermittent communications may also be employed by design.
Indeed, since communication-energy/bit far outstrips computational as well
as sensing energy expenditures, we can expect that in such networked systems
successful communications will occur less frequently than measurements.

In this context a mathematical question that arises is that of distributed
tracking with a collection of such sensing platforms connected to a fusion cen-
ter by means of communication links that are subject to packet losses. Our
problem is to design efficient encoding and fusion rules to optimally track mov-
ing objects under the constraints imposed by intermittent communications.
Our emphasis in this chapter is on designing lossless protocols, i.e., protocols
which recover centralized performance.

The general problem has received significant attention (see [2, 3, 5, 7, 1,
9, 10, 8, 6, 11] and references therein). Of particular relevance to our scenario
is the recent work on Kalman Filtering with intermittent observations [9]. In
their setup the sensors directly send their local observations to the fusion cen-
ter but the arrival of these messages are subject to random packet losses. The
fusion center fuses these intermittent observations through Kalman Filtering
techniques. They study the statistical convergence properties of the estimation
error covariance, showing the existence of a critical value for the arrival rate
of the observations, beyond which a transition to an unbounded error occurs.
Moreover, beyond this critical regime the likelihood that the error remains
bounded goes to zero as well.

This strategy in the context of our problem would imply that each RE-
DOWL would intermittently broadcast raw measurements, as and when the
communication link can be established. Nevertheless, in most sensor network
applications a second option is usually available. A REDOWL could encode
its past observations and transmit the encoded observation. The dramatic
improvements in computational speed makes complex encoding schemes rou-
tine and can be practically implemented on a REDOWL system. Encoding
of measurements holds several potential advantages. It can help mitigate the
effect of packet losses. For instance, one possible encoding of measurements is
the local state estimate. In a sporadic communication environment a raw an-
gle measurement does not provide sufficient information to narrow down the
track (for example at least two measurements are required to narrow down
position and velocity) while a state estimate provides accurate track state. A
subtle point here is that encoding observations has the same effect as having
access to all the raw measurements (not just the transmitted measurement).

Motivated by these advantages we will investigate efficient encoding and
decoding rules in this chapter. Suboptimal schemes have been proposed in the
target tracking literature for fusion of tracks from multiple sensors; Chong et
al [11] provide a thorough review of these approaches. We show through ex-



10 Reliable Distributed Estimation with Intermittent Communications 247

amples in Section 10.3.2 that these schemes can lead to poor performance.
We then develop approaches that achieve optimal centralized performance
and quantify communication cost for different network topologies in Sec-
tion 10.3.2. Our problem setup elaborated in Section 10.2 is schematically
illustrated in Figure 10.2. The main difficulty arises from optimally fusing
the intermittent local statistics received at the fusion center. These difficul-
ties arise due to the lack of conditional independence and packet losses. In
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Fig. 10.2. Schematic illustration of the setup a sensor network. Any sensor or all
sensors can serve as fusion centers. Sensors are connected through lossy communi-
cations links.

Gaussian estimation problems, if the local estimates are conditionally inde-
pendent when conditioned on the underlying state, the optimal fusion rule
is a linearly weighted average of the optimal local estimates. However, when
the underlying state (or parameter) has random evolution the local estimates
are no longer conditionally independent. In the synchronous setting, when
all the sensor transmissions arrive simultaneously at each time, this difficulty
can be overcome ([2, 3], others) by either fixing a decoder (fusion) structure
and optimizing for the encoders (i.e., what each sensor must transmit) or vice
versa. However, for asynchronous settings, where the transmissions are inter-
mittent and do not arrive simultaneously these techniques do not apply. In
such scenarios, the fusion center does not have local estimates from each sen-
sor corresponding to a common time, so the local encoding and fusion rules
have to be modified. To address this issue we propose joint optimization of
both the encoder and decoder. We discuss different network architectures and
information structures for which centralized performance can be recovered.
We show in Section 10.4 that if packet arrival times are globally revealed to
each sensor then optimal centralized performance can be achieved but com-
munication message complexity is not scalable. On the other hand if optimal
estimates are desired only at appropriately chosen time instants, we show that
communication message complexity is scalable. We then discuss asymptotic
stability of the track estimates in Section 10.5 and provide necessary and suf-
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ficient conditions on communication link availability to guarantee asymptotic
stability.

10.2 Problem Statement

Consider the discrete-time system

Xt+1 = AXt + Wt, X0 ∼ N(0, Σ0), (10.1)

where A is an n × n matrix, assumed invertible to simplify the exposition,
and W = (Wt : t = 0, 1, 2, · · · ) is an IID sequence such that Wt ∼ N(0, ΣW ),
independently of X0.

We wish to estimate the sequence (Xt : t = 0, 1, 2, · · · ) causally based on
measurements taken by a collection V of sensors. The measurement of sensor
v ∈ V taken at time t is denoted by Yt(v) ∈ Rm and it satisfies

Yt(v) = Ct(v)Xt + Ut(v), v ∈ V,

where Ct(v) is an m×n matrix, and (Ut(v) : t = 0, 1, 2, · · · ) is an IID sequence
such that Ut(v) ∼ N(0, ΣU ). We assume that the sequences U(v) are mutually
independent for different sensors v ∈ V . When all measurements are immedi-
ately available to a central processor then the MMSE estimator is a Kalman
filter. Specifically, the MMSE estimate Xt|t = E[Xt|Yτ (v) : v ∈ V, τ ≤ t] of
Xt is

Xt|t = Xt|t−1 + Pt|t
∑
v∈V

CT
t (v)Σ−1

U (Yt(v) − Ct(v)Xt|t−1) (10.2)

where Pt|t = E(Xt − Xt|t)(Xt − Xt|t)T is the conditional error covariance
matrix at time t and is given by the recursion:

P−1
t|t = P−1

t|t−1 +
∑
v∈V

CT
t (v)Σ−1

U Ct(v)

The Kalman filter prediction is:

Xt+1|t = AXt|t, Pt+1|t = APt|tA
T + ΣW (10.3)

with the initial conditions P0|−1 = Σ0,X0|−1 = 0.

Communication Model

To complete the problem setup we need to describe the communication con-
nectivity model. We explore two models where the connections at each instant
of time form an IID process. In the Poisson clock model each node has an in-
dependent Poisson clock with rate γ(v). At each arrival of its local clock,
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node i broadcasts its messages to its neighbors. Two simultaneous transmis-
sions lead to collisions; such packet losses can be incorporated in this model
by modifying the clock rate. The other model is the Bernoulli model; connec-
tions between each sensor, v, and the fusion center are independent Bernoulli
processes each with parameter p.

For convenience we define the indicator function Iv(t) to denote whether or
not the sensor, v, communicates at time t and Nv(t) = max{k ≤ t | Iv(k) = 1}
to denote the last communication time of sensor v up to time t. Let Yk

v denote
sensor v’s measurement up to time k and N(t) = (N1(t), N2(t), ....N|V |(t))
the vector of arrival times. We deal with two versions of optimality.

Definition 1. A decentralized fusion strategy (i.e. encoding/decoding strat-
egy) is said to be anytime optimal if the fusion center at any time, t, can
realize the following estimate:

Xt|N(t) = E(X(t) | YNv(t)
v , ∀ v ∈ V )

By convention if no arrival occurs before t the conditioning event YNv(t)
v is

omitted.

Definition 2. Let T be a stopping time with respect to the random process,
N(t). A decentralized fusion strategy is weakly optimal with respect to T if
the fusion center can realize the following estimate at times t > T :

Xt|N(T ) = E(X(t) | YNv(T )
v , ∀ v ∈ V )

The above objectives formalize the notion of optimal performance in that
it characterizes recovery of centralized performance through decentralized pro-
cessing.

10.3 Encoding and Decoding Algorithms

In this section we outline two basic fusion algorithms for distributed esti-
mation that achieve anytime optimality. The first algorithm is designed for
dealing with the no process noise case (conditionally deterministic systems),
which is often encountered in parameter estimation problems. Unfortunately,
if process noise is not negligible these algorithms can lead to poor results. We
develop joint encoding and decoding rules to deal with situations when pro-
cess noise is not insignificant. Process noise arises naturally as a consequence
in modeling the uncertain dynamics of target tracks.

10.3.1 Conditionally Deterministic Systems

The simplest case to consider is where the process noise W (t) = 0 in Equa-
tion 10.1, so the resulting problem becomes a conditionally deterministic sys-
tem. Parameter estimation problems fall into the class of systems with A
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matrix equal to identity. In conditionally deterministic systems, the time his-
tories of past observations, i.e., YNv(t), v ∈ V are conditionally independent
given the initial state X0.

In this case, it is well-known that there are protocols that communicates
the local estimates Xv

t|t (as in [2, 3, 8]) to the fusion center. Note that each
of these estimates has in common the prior information X0 ∼ N(0, Σ0). The
local estimates are computed as

(P v
t|t)

−1Xv(t|t) = (P v
t|t−1)

−1Xv(t|t − 1) + CT
t (v)Σ−1

U Yt(v)

(P v
t|t)

−1 = (P v
t|t−1)

−1 + CT
t (v)Σ−1

U Ct(v) (10.4)

and the local predict rule as

Xv(t + 1|t) = AXv(t|t); P v
t+1|t = AP v

t|tA
T + ΣW (10.5)

In addition, define the open-loop predicted covariance (corresponding to sen-
sor v = 0) as

P 0
t|t = AP 0

t−1|t−1A
T ; P 0

0|0 = Σ0

Assume now that the fusion center has received the most recent local esti-
mates from the different sensors at the times in N(t). Let Xt|N(t) and Pt|N(t)

denote the centralized estimate and error covariance of X(t) given the infor-
mation {Ys(v), s = 0, . . . , Nv(t), v ∈ V }. Define Xv(t|Nv(t)), P v

t|Nv(t) as the
local predicted estimate and error covariance of X(t) given local observations
up to time Nv(t). Note that these local estimates can be computed at the fu-
sion center from the communications Xv(Nv(t)|Nv(t)) and knowledge of the
local covariance P v

Nv(t)|Nv(t) by applying eq. 10.5 repeatedly. Our first result
specifies the optimal algorithm at the fusion center:

Theorem 1. Assume that the fusion center has received communications
Xv(Nv(t)|Nv(t)) from sensors v ∈ V at times Nv(t) ≤ t. Then the follow-
ing decentralized fusion rule achieves anytime optimality, i.e.,

X(t|N(t)) = Pt|N(t)

∑
v∈V

(P v
t|Nv(t))

−1Xv(t|Nv(t)) (10.6)

P−1
t|N(t) =

∑
v∈V

(P v
t|Nv(t))

−1 − (|V | − 1)(P 0
t|t)

−1 (10.7)

The proof follows from the conditional independence of Ys(v), s ≤ t given
X(t) and the prior mean of X0 is 0, and is a straightforward extension of the
results in [2, 3, 8].

To highlight the advantages of the above protocol, consider two scenarios:
(a) a single sensor with guaranteed connection to a fusion center, (b) |V |
sensors with unreliable links with Bernoulli parameter, p = 1/|V |. For Case (b)
the average number of samples in time T is p|V |T = T . For the latter scenario
consider two possibilities: transmitting raw observations vs. transmitting local
MMSE estimates.
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Theorem 2. Denote the average MMSE errors (where the average is taken
w.r.t. number of samples) in these three cases are denoted as MMSEsingle,
MMSEraw, MMSElocal. Then:

E(Pt|N(t)) = MMSElocal =
1
|V |MMSEraw

t→∞−→ 1
|V |MMSEsingle

This establishes that the fusion protocols are efficient, in that they recover
the performance of having all the information centrally located.

10.3.2 Encoding & Decoding Rules with Process Noise

We first present an example to illustrate that, when there is process noise in
X(t), transmitting only the local estimates from each sensor, as in the case
of conditionally deterministic systems can lead to significant performance loss
compared to when measurements are centrally available. Several suboptimal
methods discussed in [10, 11], are based on some form of local state estimate
transmission. The example will justify our emphasis on developing lossless
encoding and decoding fusion rules.

Example 1. Consider a set of N sensors with identical measurement model
and observing a random walk:

X(t + 1) = X(t) + W (t)
Yv(2t) = X(2t) + Vv(2t)

Yv(2t + 1) = X(2t + 1), t = 1, 2, . . .

where W (t) and Vv(t) are i.i.d. Gaussian noise sequences with mean zero and
variance σ2 and x(0) is Gaussian with mean zero and variance σ2. At even
time instants, the local KF estimate at sensor v is:

X l(2t|2t) =
1
2
(Yv(2t) + Yv(2t − 1))

and the centralized KF estimate is:

X(2t|2t) =
X(2t − 1)

N + 1
+

1
N + 1

∑
v

Yv(2t)

Since local KF estimates are Gaussian, the optimal fused estimate is a lin-
ear superposition of the local estimates. By symmetry the fusion weights are
identical. Therefore,
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Xfuse(2t|2t) =
1
N

∑
v

X l(2t|2t) =
X(2t − 1)

2
+

1
2N

∑
v

Yv(2t)

The error in the fused estimate is

X(2t) − Xfuse(2t|2t) =
1
2
W (2t − 1) − 1

2N

∑
v

Vv(2t)

whereas the error in the centralized estimate is

X(2t) − X(2t|2t) =
1

N + 1
W (2t − 1) − 1

N + 1

∑
v

Vv(2t)

which shows that

MMSEcentralized ≤ 2
N + 1

MMSElocal

We consider the following simple architecture. There is a single remote
sensor, l, transmitting messages to a fusion center, which has side information
from a sensor, f , located in situ as shown in Figure 10.3.
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Fig. 10.3. One way transmission from remote sensor. y1, y2 are sensor measure-
ments respectively and p1 is communication-link rate

One can extend results from [2, 3] to construct a compensated estimate at
the remote sensor to achieve anytime optimality as we do in [13]. However, a
better approach is to use ideas from [4, 8] and we follow our approach in [14]
here. The global KF estimate can be written in the information form:

P−1
t|t Xt|t = P−1

t|t−1Xt|t−1 +
∑

v∈{l,f}
C�

t (v)(Rv)−1Y v
t

= P−1
t|t−1APt−1|t−1P

−1
t−1|t−1Xt−1|t−1 +

∑
v∈{l,f}

C�
t (v)(Rv)−1Y v

t

Let S(t) = P−1
t|t Xt|t and Ã(t) = P−1

t|t−1APt−1|t−1 to get:

S(t) = Ã(t)St−1 +
∑

v∈{l,f}
C�

t (v)(Rv)−1Y v
t (10.8)



10 Reliable Distributed Estimation with Intermittent Communications 253

The main observation is that the state evolution of the information, S(t), is
linear. Therefore, the output can be realized through superposition of each
local processed sensor output, i.e., Sv(t) = Ã(t)Sv(t − 1) + C�

t (v)(Rv)−1Y v
t

for sensors v ∈ {l, f}, where the matrix Ã(t) uses the global statistics in the
problem.

When packet losses occur, the processing is as follows: When no messages
are received from the local sensor, the fusion center can use its measurements
to update the state estimate X(t|N(t)), and also computes the fusion statistic
Sf

t . Whenever the local sensor succeeds, it transmits Sl
t to the fusion center.

The fusion center then simply computes, Pt|t(S
f
t + Sl

t) to obtain its current
state estimate. Observe that computing Sl

t, Sf
t incorporates global covariance

estimates in Ã(t). This protocol exploits the fact that the local sensor is aware
of the fusion center having uninterrupted observations.

The packet loss scenario highlights that encoding at the local sensor has
to be combined with a dynamic fusion rule in contrast to the no packet loss
case. Specifically, for time instants with Nl(t) < t the fusion center maintains
one set of recursive measurement update and predictor equations and another
set of time instants Nl(t) = t.

Due to linearity, the local sensor can reset its state Sl(t) to zero after
each successful transmission. The fusion center in this case will set the ini-
tial condition of its compensator to the the global state. Consequently, each
transmission only encodes measurements between two successful transmis-
sions. This type of encoding is related to the idea of tracklets of [12, 11]. Let
σ1, . . . , σn be a sequence of time instants of successful transmissions. Then,
for t ∈ (σj , σj+1):

Sl(t) = Ã(t)Sl(t − 1) + C�
t (l)(Rl)−1Y l

t , Sl(σj) = 0

Sf (t) = Ã(t)Sf (t − 1) + C�
t (f)(Rf )−1Y f

t

Sf (σj) = P−1
σj |σj

Xσj |σj
(10.9)

The above discussion is summarized below:

Theorem 3. The decentralized fusion strategy outlined in Equation 10.9 for
a single remote sensor achieves anytime optimality.

A Note on Channel Noise: We have primarily focused our attention on
intermittent communication links. However, the Shannon capacity of such a
channel in the absence of noise is infinite. Therefore, any meaningful technique
with wireless communication channels must account for an additive noise dis-
tortion at the fusion center. In other words, the channel operates as follows:
whenever communication is successful a noisy encoded signal is received at
the fusion center. Note that in the absence of noise one could presumably
transmit all the raw data instantaneously at the time the communication link
is active. Noise precludes this possibility and to be realistic one must look
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for techniques that gracefully degrade in performance with increasing channel
noise. The encoding and decoding rules presented above have this charac-
teristic. Specifically, if a noisy version of the compensated estimate Sl(t) in
Equation 10.9 is made available at the fusion center, the error covariance
degrades gracefully as a function of channel noise variance.

10.4 Protocols for Networks

In this section we present protocols for optimally tracking moving objects
in a networked setting with intermittent communications. We consider two
types of networks: completely connected and star networks. Our encoding
and decoding rules are based on the algorithm developed in Section 10.3.2.
Our emphasis is on designing lossless protocols, i.e., protocols which recover
centralized performance either in the sense of anytime optimality or stopping
time optimality.

10.4.1 Anytime Optimality

Two Sensor Two Way Network

This network consists of two sensors with two way communication. In this
case the decentralized algorithm of Section 10.3.2 applies directly. Concretely,
each sensor serves as fusion center and updates according to the fusion rule
outlined for the single sensor case exactly as in Equation 10.9. Both sensors
achieve anytime optimality; unfortunately, this property is hard to extend to
completely connected multi sensor networks. The following analysis for Star
Networks will clarify the underlying issues in achieving anytime optimality.

Star Networks

Assume that the central node of the star network serves as the fusion center
and that successful communication times instants for every sensor are globally
revealed by the fusion center.

We illustrate the protocol and the accompanying difficulties here by means
of a timing diagram for two sensors as in Figure 10.4. Assume that the system
starts at time zero. Let σi, τi with σi < τi be time instants of successful
transmission from Sensor 1 and Sensor 2 respectively and s, t be two time
instants as shown in Figure 10.4. For achieving anytime optimality we need

�
�

�
��

�
�
�

� �

Fig. 10.4. Two sensor timing diagram
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to ensure that optimal “centralized” estimates can be formed at any time by
the fusion center. At time s Sensor 1 is the only sensor that has successfully
communicated. Therefore, it must transmit the statistic that allows the fusion
center to predict the track based only on data observed at Sensor 1. However,
since there is a possibility that Sensor 2 transmission will arrive next, at time
τ1, at the fusion center. Consequently for time instant t, Sensor 1 must also
transmit a compensated statistic that allows the fusion center to optimally
combine data from Sensor 1 up to time σ1 and up to time τ1 from Sensor 2.
Generally, these two statistics require different encodings of the observation.
This can be observed from Equation 10.9 where one notes that Sensor 1 must
process its information using two different Ã(t) matrices. For track estimation
at time s the Ã(t) matrix is based only on the local error covariance (because
this is the global covariance matrix as well) matrix. For time t, however, the
Ã(t) matrix should be based on information received from both sensors.

The above discussion establishes the existence of an anytime optimal pro-
tocol, but with some limitations. Specifically, for an N sensor star network,
the number of statistics computed and communicated by each sensor scales
as 2N−1, the number of possible combinations of successful transmission from
other sensors.

Completely Connected Network:

Here we consider a completely connected network in a federated architecture
with each sensor serving as a fusion center. We assume a broadcast protocol,
i.e., if any sensor communicates it communicates the same information to all
its neighbors. The main advantage of a completely connected network is that:
(a) Estimates from each sensor are globally known; (b) the event times of
successful transmissions are globally known. We can utilize the second aspect
in designing a scalable protocol but with increased delay. In particular we
consider a round robin protocol where the order in which sensors attempt
to communicate is fixed. After a successful transmission, each sensor node
waits until all sensors have transmitted in the correct order before transmit-
ting again. For this protocol the number of statistics that each sensor must
compute scales as O(N) to achieve anytime optimality. This is because the
order of successful communications is fixed. Let t1 < t2 < t3 . . . < tN corre-
spond to message arrivals from the N different sensors. At time t1, sensor 1
transmits N different estimates for fusion: One for times t ∈ (t1, t2), one for
t ∈ [t2, t3), . . . , one for t ∈ [tN−1, tN ) and one for t ≥ tN . The fusion center
propagates these estimates for fusion at the appropriate times assuming no
further measurements from Sensor 1, achieving anytime optimality.

10.4.2 Weak Optimality at Stopping Times

We consider weaker versions of optimality for star and completely connected
networks as a means to obtain scalable protocols. We are specifically interested
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in optimality at stopping times. Recall from Section 2 that a protocol is weakly
optimal for a stopping time T if the centralized performance is achievable at
T .

Star Networks

As before assume that the successful communication instants are revealed to
sensor nodes by the fusion center. Let L(t), t > 0 be a renewal process with
renewal periods corresponding to an interval where at least one message has
been received from each sensor and the last transmit time corresponds to the
only message for some sensor in that interval.

Denote the renewal times as 0 < T1 < T2 < . . .. These renewal instants are
stopping times where we will achieve weak optimality. First, we determine the
mean renewal time. This problem is the so called coupon-collector’s problem.
The problem here is that there are N coupons which arrive i.i.d. and the
problem is to estimate the minimum time when all coupons have arrived. It
turns out [16] that

E(Tj+1 − Tj) =
N log N

Nλ
where λ is the mean arrival rate for each coupon. We have the following result
for message scaling per sensor:

Theorem 4. There is a protocol with a maximum of N − 1 estimates per
sensor message such that centralized performance can be achieved at each
renewal time Tj. Furthermore, the expected number of messages transmitted
by each sensor in a renewal period is N .

The proof is as follows: Suppose Sensor 1 is the first to arrive in the interval
(Tj , Tj+1), it encodes a single estimate by accounting for all future N − 1
arrivals from all other sensors. The second sensor if distinct from the first
transmits two estimates: one is for fusion of N − 2 future arrivals and the
second estimate accounts for the possibility that the first sensor arrives again
before the next renewal time. If the first sensor arrives again after the second
but before the third sensor, it becomes the second sensor and again transmits
two estimates. The protocol is extended so that the N − 1 sensor in the
sequence transmits N −1 estimates. To find the expected number of estimates
transmitted per sensor we proceed as follows: Divide the renewal period in
epochs, where epoch i begins with i-th (distinct) sensor arrival and ends with
(i+1)th distinct sensor arrival. Suppose Ri denotes number of sensor arrivals
in the ith epoch. Observe that each sensor arriving in the ith epoch must
transmit i estimates. This implies that the expected number of estimates, M ,
per sensor transmission in a renewal interval is:

E(M) =
1
N

E

N−1∑
i=1

iRi ≈ Θ(N)

Thus weak optimality provides exponential reduction in number of estimates
transmitted per message over anytime optimality.
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Completely Connected Network

As before we consider the case where sensors control transmission of messages,
i.e., the messages are transmitted in order in a round robin protocol. In this
case one obtains O(1) scaling to achieve weak optimality.

Theorem 5. For the round robin protocol weak optimality adapted to the time
instant of arrival of last sensor can be achieved with a single estimate in each
sensor transmission.

10.5 Asymptotic Results

In the previous sections we focused on encoding and decoding rules along with
various protocols for achieving anytime and weak optimality. In this section
we present asymptotic results for error covariances.

First, we consider weak optimality for Bernoulli channels. The result is
similar in spirit to the asymptotic results established in [9] for time-invariant,
extended to the multi-sensor case:

Theorem 6. Consider an ad-hoc protocol with the Bernoulli channel model.
Suppose the stopping time are time instants when all sensors transmit syn-
chronously. Then there is a weakly optimal algorithm satisfying:

Prob{lim inf Pt|N(t) = P∞} = 1

where, P∞ is the asymptotic covariance when all the sensor measurements are
centrally available at all instants of time.

The proof of this result follows from several properties: For Bernoulli commu-
nication channels, there is positive probability that all sensors communicate
at the same time. At those times, the error covariance is equivalent to the
centralized error covariance, as this corresponds to the synchronous commu-
nications protocol. These time instants can be thought of as renewal periods,
and the probability that an infinite number of such time instants exist is 1,
which establishes the lim inf property claimed above.

The above result implies that irrespective of the message loss probabil-
ity there exists time instants when the error covariance of the decentralized
scheme is arbitrarily close to that of a fully centralized filter. In contrast if
local raw measurements are transmitted and are subject to random losses, the
error covariance is always arbitrarily large and may not approach the central-
ized covariance. However, this does not guarantee that the expected value of
the fusion center error covariance is bounded, since the expected length of the
renewal intervals can be large. Consider first the case of a single remote sensor
communicating its statistics: the following result characterizes the behavior
of the expected error covariance
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Theorem 7. Assume that the [A,C] is detectable and [A,Q1/2] is stabilizable.
Then, for the ad-hoc protocol with the Bernoulli channel model and a single
remote sensor,

lim
t→∞

E[‖PtN(t)‖] < ∞ (10.10)

if and only if (1 − p)1/2|λmax(A)| < 1.

To show this, assume t is large, so that the local estimate generated by a
sensor has steady state error P∞. If t was a successful communication time,

Pt|N(t) = P∞ (10.11)

If t was not a successful communication time, let τ(t) denote latest successful
communication time prior to time t. Then,

Pt|τ(t) = At−τ(t)P∞(AT )t−τ(t) +
t−τ(t)−1∑

k=0

AkQ(AT )k

Note that Prob(t − τ(t) = n) = p(1 − p)n because of the Bernoulli model.
Then,

E[Pt|σ(t)] = pP∞

+ p
∞∑

j=1

(1 − p)j [AjP∞(AT )j +
j−1∑
k=0

AkQ(AT )k]

Thus,

‖ E[Pt|N(t)] ‖ ≤ p ‖ P∞ ‖

+ p ‖
∞∑

j=1

[((1 − p)1/2A)jP∞((1 − p)1/2AT )j

+
j−1∑
k=0

((1 − p)1/2A)kQ((1 − p)1/2AT )k ‖

Note that detectability and stabilizability guarantee that 0 <‖ Σ∞ ‖< ∞.
The second term is the limiting solution of the linear equation

P (t + 1) = ((1 − p)1/2A)P (t)((1 − p)1/2AT ) + Q,P (0) = P∞

which has a bounded solution whenever |λmax((1 − p)1/2A)| < 1 and has
an unbounded solution whenever |λmax((1 − p)1/2A)| ≥ 1 because of the
detectability assumption on [A,Q1/2], establishing the theorem.

The above results can be generalized to the N sensor case as follows.
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Theorem 8. Assume that the [A,C(v)] is detectable for each sensor v and
[A,Q1/2] is stabilizable. Then, for the ad-hoc protocol with N sensors,and the
Bernoulli channel model with identical success probabilities p

lim
t→∞

E[‖ PtN(t) ‖] < ∞ (10.12)

if and only if (1 − p)N/2|λmax(A)| < 1.

The proof follows the above discussion. Assuming t is large, the errors
associated with the local estimates at each sensor v approach steady state
error covariance P v

∞ > 0. Note that, for any successful communication time t
where sensor v communicates,

Pt|N(t) ≤ P v
∞

because the fusion center will fuse the estimate from sensor v optimally with
additional information from other sensors.

If t is not a successful communication time for any sensor, let τ(t) denote
latest successful communication time prior to time t, and let j(τ(t)) denote
the index of a sensor with successful communication at time τ(t). Then,

Pt|N(t) = At−τ(t)Pτ(t)|N(t)(AT )t−τ(t) +
t−τ(t)−1∑

k=0

AkQ(AT )k

Note that both τ(t) and Pτ(t)|N(t) are event-dependent. Note that Prob(t −
τ(t) = n) = (1 − (1 − p)N )(1 − p)Nn because of the Bernoulli model and the
independent access across all sensors. Note also that

Pt|N(t) ≤ At−τ(t)P v
∞(AT )t−τ(t) +

t−τ(t)−1∑
k=0

AkQ(AT )k

for any v that communicated successfully at τ(t). Then, conditioned on know-
ing v,

E[Pt|N(t)|v] ≤ (1− (1− p)N )P v
∞(t)

+ (1− (1− p)N )

∞∑
j=1

(1− p)Nj [AjΣopt(t− j)(AT )j +

j − 1∑
k=0

AkQ(AT )k]

‖ E[Pt|N(t)|v] ‖ ≤ (1 − (1 − p)N ) ‖ P v
∞ ‖

+ (1 − (1 − p)N ) ‖
∞∑

j=1

[((1 − p)N/2A)jΣi
∞((1 − p)N/2AT )j

+
j−1∑
k=0

((1 − p)N/2A)kQ((1 − p)N/2AT )k ‖
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Detectability and stabilizability guarantee that 0 <‖ P v
∞ ‖< ∞. The sec-

ond term is the limiting solution of the linear equation

P (t + 1) = ((1 − p)N/2A)P (t)((1 − p)N/2AT ) + Q,P (0) = P v
∞

which has a bounded solution whenever |λmax((1 − p)N/2A)| < 1. Since the
existence of a bounded solution does not depend on the choice of v, this
establishes the sufficiency of the condition.

To show necessity, let P∞ denote the steady-state error of a centralized
estimator. For t not a successful communication time, we have

Pt|N(t) ≥ At−τ(t)P∞(AT )t−τ(t) +
t−τ(t)−1∑

k=0

AkQ(AT )k

and for a successful communication time,

Pt|N(t) ≥ P∞

Hence,

‖ E[Pt|N(t)] ‖ ≥ (1 − (1 − p)N ) ‖ P∞

+ (1 − (1 − p)N )
∞∑

j=1

[((1 − p)N/2A)jΣ∞((1 − p)N/2AT )j

+
j−1∑
k=0

((1 − p)N/2A)kQ((1 − p)N/2AT )k ‖

The second term sum is the limiting solution of

P (t + 1) = ((1 − p)N/2A)P (t)((1 − p)N/2AT ) + Q,P (0) = P∞

which has an unbounded solution whenever |λmax(ρN/2A)| ≥ 1 because of
the detectability assumption on [A,Q1/2]. This establishes the necessity of
the condition.

The above result characterizes the effect of having additional sensors in
the distributed system. The mean value of the error covariance can be kept
bounded provided that the probability that at least one sensor gets through
is sufficiently high relative to the maximum unstable eigenvalue of the system
dynamics.

10.6 Simulation Results

To illustrate the behavior of our asynchronous distributed estimation algo-
rithms, we conducted experiments using a target tracking model with 2-
dimensional motion. The target dynamics were defined as
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⎛
⎜⎜⎝

x
vx
y
vy

⎞
⎟⎟⎠ (t + 1) =

⎛
⎜⎜⎝

1 ∆ 0 0
0 1 0 0
0 0 1 ∆
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x
vx
y
vy

⎞
⎟⎟⎠ + w(t) (10.13)

where ∆ was set to 1 as the sampling time, and w(t) was an iid zero-mean
Gaussian process with covariance

Q = q ∗

⎛
⎜⎜⎝

∆3/3 ∆2/2 0 0
∆2/2 ∆ 0 0

0 0 ∆3/3 ∆2/2
0 0 ∆2/2 ∆

⎞
⎟⎟⎠

The first set of experiments included two sensors, each of which observed
orthogonal subspaces. The measurement model was

(
y1

y2

)
(t) =

(
x(t)
y(t)

)
+

(
v1(t)
v2(t)

)

where v1(t), v2(t) are iid, zero-mean Gaussian process with variance Σ. In
our experiments, we set the process noise variance at q = 0.01, and the mea-
surement noise variance at Σ = 900, so that accurate estimation requires
integration of measurements at multiple different times. This is typical of sys-
tems where local sensors are observing phenomena at faster rates but with
less accuracy.

Figure 10.5 shows the results of an experiments with two sensors commu-
nicating to a fusion center. Sensor 1 observes only y1(t) and sensor 2 observes
only y2(t). The orthogonal observability subspaces make this case simple. In
this case, each sensor has a probability p of communicating successfully inde-
pendently, which is varied over a range of values from 0.05 to 1. Figure 10.5
shows the trace of the expected steady state error covariance, averaged over
50 Monte Carlo simulations, for the case where sensors communicate their
most recent measurements and the case where they communicate their local
estimates. Note the reduction in error as the probability of successful commu-
nication decays. Since the state dynamics are not exponentially unstable, the
filters reach an average steady state error for low p.

The second set of experiments used the same two sensor case, but using the
Poisson communication model where one and only one sensor communicates
at a time, and we use the anytime optimality protocol. In this case, Figure
10.6 shows the trace of the fusion center error covariance as a function of
time. for both measurement communications and estimate communications,
averaged over 30 Monte Carlo simulations. The results in Fig. 10.6 illustrate
the advantages of communicating estimates versus observations: a reduction in
33% on the sum of the eigenvalues of the average error covariance. The last set
of experiments consists of a set of two identical sensors, both of which measure
both x and y with independent additive measurement noises. Again, we use the
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Fig. 10.5. Trace of steady state error covariance versus communication success
probability. Upper curve is measurement transmission, lower curve is estimate trans-
mission.
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Fig. 10.6. Trace of average error covariance versus time. Upper curve is measure-
ment transmission, lower curve is estimate transmission.
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anytime optimal protocols that allow the fusion center to reconstruct optimal
estimates from asynchronous communications . Figure 10.7 shows the trace of
the average steady state covariance as a function of the Bernoulli probability of
communication p for each sensor, for the case where individual measurements
are communicated and the case where our distributed estimation protocols
are used. The results illustrate the advantage of our distributed protocols
in situations with unreliable communications. As noted before, the expected
steady state covariance remains bounded, as the maximum eigenvalue of A is
1.
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Fig. 10.7. Trace of steady state error covariance versus communication success
probability for two identical sensors. Upper curve is measurement transmission, lower
curve is estimate and compensator transmission.

10.7 Conclusions

In this chapter, we have developed algorithms for optimal distributed estima-
tion for linear Gaussian models in networks of sensors subject to intermittent,
random communications. We developed local processing strategies, communi-
cation protocols and fusion algorithms that guarantee that the fusion center is
able to reconstruct the optimal estimate of the state, given all of the available
measurements at each sensor up to their last communication times. However,
unlike the case where all sensors communicate synchronously, the presence
of asynchronous communication requires increased local processing and com-
munications as the number of sensors increases. Our theoretical results and
experiments show the advantages of including local estimates instead of raw
measurements when unreliable communication is present.
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The focus of this chapter was on the development of optimal distributed es-
timation algorithms in asynchronous communication environments. It is pos-
sible to generate alternative fusion algorithms that trade off computation and
communication complexity versus estimation performance. Furthermore, for
nonlinear estimation models, the asynchronous algorithms discussed in this
chapter will require approximations, as the local compensation processes will
no longer have access to the required statistics. Such problems remain as
challenges for future investigations.
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11.1 Introduction

Advances in technology are enabling the deployment of vast sensor networks
through the mass production of cheap wireless sensor units with small bat-
teries. Such sensor networks can be used in a variety of application areas –
indeed any application where there are signals to be detected. Our focus in
this chapter is on applications of sensor networks that involve tracking, e.g.,
surveillance, wildlife studies, environmental control, and health care. More
specifically, due to the use of battery power in these networks we concern
ourselves with energy efficiency in tracking applications.

Many researchers have examined energy efficiency in the context of track-
ing using sensor networks. In this research, the problem is typically to decide
which sensors should participate in the tracking procedure at each time step.
The rest of the sensors in the network are then allowed to conserve energy
by entering a sleep mode. Some previous research has focused on the design
of protocols for sensor networks (e.g., [1, 3, 2, 5, 4]). Other research has ap-
proached the problem more analytically (e.g., [7, 8, 6, 9, 11, 10, 13, 12]),
however the analysis often takes a myopic view where it is assumed that the
actions at one time step do not impact future time steps.

We wish to formulate the problem of energy-efficient tracking in sensor
networks in a systematic framework that takes into account the impact of
current actions on future time steps. There has been some recent research
that has posed the problem in this manner (e.g., [14, 16, 17, 18, 15, 20, 19]).
However, whereas previous research has assumed it is possible to wake up
sleeping sensors externally, our formulation does not make this assumption.
The result is a more realistic, albeit more complicated, framework for energy
efficient tracking in sensor networks.

A straightforward sleeping strategy when external wake-ups are not al-
lowed is to have each sensor enter and exit the sleep mode using a fixed or a
random duty cycle. A more intelligent, albeit more complicated, approach is
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to use information about the object trajectory that is available to the sensor
from the network to determine the sleeping strategy. In particular, it is easy
to see that the location of the object (if known) at the time when the sensor is
put to sleep would be useful in determining the sleep duration of the sensor;
the closer the object, the shorter the sleep duration should be. We take this
latter approach in designing sleeping policies for the sensors.

11.1.1 Notation

In this chapter, we will use the following notational conventions:

• Scalars are written in lower case (e.g. c).
• Matrices are written in upper case (e.g. P ).
• All vectors are row vectors and are written in bold face (e.g. p).
• The vector ei is a vector with a one in the ith position and zeros elsewhere.
• The vector e is a vector with a one in every position.
• The indicator function of the set A is written as 11A.
• Let p be a probability vector length n, let S ⊆ {1 . . . n} be a set of integers,

and suppose pi > 0 for some i ∈ S. Then define [p]S to be a probability
vector formed by setting all components pi such that i /∈ S to zero and
then normalizing the vector so that the sum of the components is 1.

• We will also have occasion to reference [·]i where i is an integer and the
expression in brackets evaluates to a vector. In this case, we are simply
referring to the ith component of the vector in brackets.

11.2 A General Problem Formulation

The system of interest is a sensor network designed to track one or more ob-
jects in discrete time. Such a system is depicted in Figure 11.1. We consider
a sensor network with n sensors. These sensors are equipped with hardware
that allow them to perform two primary functions. First, each sensor is able
to make observations about objects according to a sensing model. Second,
each sensor is able to communicate with other sensors (or perhaps with an-
other controller node, defined in subsequent sections) in order to combine
observations and exchange control information.

The sensor nodes typically need to operate on limited energy budgets. In
order to conserve energy, the sensors may be put into a sleep mode. A sensor
that is sleeping cannot make observations about objects or communicate. The
inability to communicate implies that a sleeping sensor cannot be awoken
by external means. Note that this is in contrast to some previous research
that has assumed the presence of a low-power wakeup radio used for waking
the sensor (see, e.g., [7, 9, 8, 1, 12]). Our reason for not using the wakeup
radio approach is that we understand it is not feasible to design a receiver
that requires negligible power for operation. Our method for waking sensors
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Central
Controller

Fig. 11.1. Depiction of system operation. Sensors in active mode are opaque while
are sensors in sleep mode are not opaque. The curve indicates a possible object
trajectory through the network.

involves the use of a sleep timer at each sensor. A sensor entering sleep mode
sets its sleep timer to an initial value (a sleep time). The sleep timer counts
down as the sensor sleeps and the sensor comes awake only when this timer
reaches zero.

It is clear that having sleeping sensors in the network that cannot be wo-
ken up could result in reduced tracking performance. Thus there is a tradeoff
between energy savings and tracking performance that results from the sleep-
ing at the sensors. The selections of the sleep times (i.e., the sleeping policies)
at the sensors should be designed to optimize this tradeoff.

Although we have defined our design problem quite generally, we can state
that this problem fits quite naturally into the framework of a partially observ-
able Markov decision process (POMDP). Such problems are typically easy to
formulate mathematically but difficult to solve either analytically or numer-
ically. The ease of solution depends on the assumptions we make about the
particulars of our system. Examples of these particulars include the following:

• Whether we have distributed or centralized control.
• The number of objects being tracked.
• The sensing model.
• The model for object movement.
• The tracking cost structure.
• The energy cost structure.
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In what follows, we first examine a formulation where these particulars are
chosen to simplify the analysis. As we shall see, difficulties are still encoun-
tered. We then go on to discuss how with less restrictive formulations we can
continue to design effective policies.

11.3 A Particular Problem Formulation

We now turn our attention to the system depicted in Figure 11.2. In this

Controller
Central

Fig. 11.2. Depiction of system operation. Sensors in active mode are opaque while
are sensors in sleep mode are not opaque. The curve indicates a possible object
trajectory through the network.

setup, we have for simplicity assumed that the sensing ranges of the sensors
completely cover the region of interest with no overlap. In other words, the
region can be divided into n cells with each cell corresponding to the sensing
range of a particular sensor. Moreover, we also constrain the movement of
the object so that the object can take on exactly one possible location per
cell. Note that the sensors and cells need not follow a regular topology as in
Figure 11.2; this depiction is only for convenience.

While we discuss the main results of our research on this problem in this
section, we omit some details for the sake of brevity. For a more complete
treatment, the reader is invited to examine [21].
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11.3.1 Mathematical Description

The state of our system consists of two parts. The first part of the state is
the current location of the object at time k, denoted bk. The object location
can take on one of n possible locations corresponding to the number of cells.
However, we also append a special absorbing terminal state, denoted as T ,
that occurs when the object leaves the network. Thus, there are n+1 possible
states for the object and we will refer to the terminal state as both T and
n+1. The statistics for the object movement are described by a (n+1)×(n+1)
probability transition matrix P such that Pij is the probability of the object
being in state j at the next time step given that it is currently in state i. Since
the problem remains in the terminal state once the object leaves the network,
we can write P as

P =
[

Q 1 − QeT

0 0 . . . 0 1

]
(11.1)

where Q is a n × n matrix. We assume there is a path from every state to
the terminal state, which is equivalent to having limk→∞ Qk = 0. Let bk

denote the location of the object at time k. Having described the evolution
of the object location in words, we note that we can write the evolution more
compactly as

bk+1 ∼ ebk
P (11.2)

The second part of the state of our system consists of the residual sleep
times. Let rk,� denote the value of the sleep timer of sensor � at time k. Then
the n-vector rk is the residual sleep times of the sensors at time k. Also,
let uk,� denote the sleep time input supplied to sensor � at time k. We can
describe the evolution of the residual sleep times as

rk+1,� = (rk,� − 1)1rk,� > 0 + uk,�1rk,� = 0 (11.3)

We see that we have a discrete-time dynamical model that describes our
system, with state xk = (bk, rk) and control input uk. The state evolution
equations are given in (11.2) and (11.3). Unfortunately, not all of xk is known
to the central unit at time k since bk is known only if the object is currently
being tracked perfectly. Thus we have a dynamical system with incomplete
(or partially observed) state information.

At each time k, an n-vector yk of observations is generated by the sensors.
The sensing model for these observations is described by the rule

yk,� =

{
� if bk = � and rk,� = 0
E else

(11.4)

where E denotes an erasure. However, we also assume that if the object leaves
the network that this becomes known to the central controller immediately.
We therefore specify that there should be a unique value for yk that occurs if
the object has left the network.
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As stated earlier, our state xk is only partially observable. We therefore
need to know what information at each time step is a sufficient statistic for
optimal decision making. It can be shown that a sufficient statistic for such
decision making can be written as vk = (pk, rk), where

pk,� = P(bk = �|y0, . . . ,yk) (11.5)

The task of recursively computing pk for each k is a problem in nonlinear
filtering. Although in many contexts nonlinear filtering is a difficult problem,
in the present context the solution is quite straightforward. One reason for this
is our simple model for the movement of the object which allows us to update
a discrete-space probability vector rather than a continuous-space probability
distribution. A second reason is our simple, deterministic sensing model. We
can write the evolution of pk as

pk+1 = eT 1bk+1 = T + ebk+11rk+1,bk+1 = 0
+ [pkP ]{j:rk+1,j>0} 1rk+1,bk+1 > 0

(11.6)

where rk+1 is defined through (11.3) and bk+1 (conditioned on pk) is dis-
tributed as

bk+1 ∼ pkP (11.7)

To understand (11.6), note that if the object is observed at time k + 1, pk+1

becomes a point-mass distribution with all the probability mass concentrated
at bk+1. If the object is not observed, we eliminate all probability mass at
sensors that are awake (since the object is known to not be at these locations)
and renormalize. Thus, all information from observations is incorporated.

We now identify the two costs present in our tracking problem. The first
is an energy cost of c ∈ (0, 1] for each sensor that is awake. The second is a
tracking cost of 1 for each time unit that the object is not observed by the
sensor at the current object location. Note that this means that we may incur
a tracking cost even if the object location is known due to all other possible
object locations being eliminated by other sensors. Despite this drawback,
we use our definition of tracking cost to simplify the formulation, with the
understanding that it is a good approximation to the actual tracking cost. If
the object leaves the network (i.e., bk enters the terminal state), we assume
the problem terminates and no further cost is incurred. In reality, there will
be n additional wakeups that occur once the object leaves the network but
since this energy cost is fixed, we do not include it in the formulation. Thus,
the total cost at time k is given by

g(xk) = 1bk �= T
(

1rk,bk
> 0 +

n∑
�=1

c1rk,� = 0

)
(11.8)

Note that c is the parameter used to tradeoff energy consumption and tracking
errors.
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The sleep time inputs k are allowed to be a function of vk, i.e.,

uk = µk(vk) (11.9)

The vector-valued function µk is the sleeping policy at time k. The total cost
(over a possibly infinite horizon trajectory) for the system is given by

J(v0, µ0, µ1, . . .) = E

[ ∞∑
k=1

g(xk)

∣∣∣∣∣v0

]
(11.10)

The goal is to compute the solution to

J∗(v0) = min
µ0,µ1,...

J(v0, µ0, µ1, . . .) (11.11)

The solution to this optimization problem for each value of c yields an optimal
sleeping policy.

11.3.2 Performance Gains of Our Approach

We comment now on what can be gained through our approach. For the
purposes of comparison, we consider a sleeping policy that does not use infor-
mation about the location of the object, which we call the duty cycle scheme.
In this sleeping policy, each sensor is awake for a fixed fraction π of the time
slots. Whether the time slots where a particular sensor is awake are chosen
deterministically or randomly is immaterial since the resultant performance is
the same. For a duty cycle scheme, we see that in order to ensure zero track-
ing errors (an “Always Track” sleeping policy) we must use a value of π = 1,
which means that every sensor is awake in every time slot. In contrast, our
scheme uses information about the location of the object. Thus, for a sparse
P matrix, our Always Track policy will allow many sensors in the network
to remain asleep since it will be known that the object could not be at those
locations. Note that P will in fact be sparse if the range of the object move-
ment over a single time step is limited. Thus we surmise that using location
information in this fashion will result in a tradeoff curve between energy and
tracking costs that is significantly better than those for a duty cycle scheme.
These suppositions will be confirmed in Section 11.3.5.

We also note that our approach can result in better asymptotic behavior
as the size of the network becomes large. Note that as n becomes large, the
number of sensors awake per unit time for an Always Track duty cycle scheme
grows as O(n). In contrast, it can be shown that when the movement of the
object per time step is bounded, the number of sensors awake per unit time
for our Always Track policy grows at most as O(log(n)) for one-dimensional
networks and at most as O(

√
n) for two-dimensional networks [21].
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11.3.3 Suboptimal Solutions to the Problem

Having formulated our optimization problem, we seek a solution using the
tools of dynamic programming. It can be shown via standard arguments (see,
e.g. [22]) that there exists a stationary optimal policy for our problem (i.e.
µ0 = µ1 = · · · = µ∗). Such a policy and the optimal cost J∗ can be found by
solving the Bellman equation given as

J(v) = min
µ

E [g(x1) + J(v1)|v0 = v,u0 = µ(v)] (11.12)

with µ∗ being the minimizing value of µ in this equation. Note that there
are multiple functions J∗ that satisfy this equation since adding a constant
to a particular J∗ yields another solution. We are interested in J∗ such that
J∗(v) = 0 when v = (eT , r).

There are two main approaches to solving (11.12). The first approach
is to solve (11.12) analytically. However, we are unable to do this due to
the complexity of the expressions involved. The second approach is to solve
the equation using an iterative technique such as value iteration or policy
iteration. However, even if we truncate the state space to a finite set, the
number of states still grows exponentially with the number of sensors. The
result is that such numerical methods are intractable except for the most
trivial cases. We conclude that we cannot find an optimal solution to our
problem and that we need other approaches to finding near-optimal solutions.

Much of the complexity of our problem stems from the complicated evo-
lution of pk given in (11.6). In deriving suboptimal solutions to our problem,
we will make assumptions about the observations that will be available in the
future. These assumptions will allow us to simplify the evolution in (11.6)
considerably. In fact, the evolution of pk will no longer be affected by the
sleeping actions of the sensors. Furthermore, each sensor will only be able to
affect the energy and tracking costs that occur at its location. The result is
that the optimization problem easily separates into n simpler problems, one
for each sensor. In each of these simpler problems, we will be able to eliminate
the residual sleep times rk from the state since the only times of interest will
be those when the sensor comes awake. It will then be possible to solve each
of the n simpler problems to find a cost function and policy.

The assumptions we make will be inaccurate. However, the usefulness of
our assumptions must be measured in terms of how well the resultant solutions
approximate optimal performance. Of course, we have no idea as yet what
optimal performance may be. Fortunately, in the course of our derivations we
will obtain a lower bound on optimal performance that will be useful in later
performance analysis.

Our first suboptimal solution is the first cost reduction (FCR) solution.
Here we assume that we will have no future observations. In other words, we
are replacing (11.6) with

pk+1 = pkP (11.13)
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Note that this does not mean that it will be impossible to track the object; we
are simply making an assumption about the future state evolution in order to
generate a sleeping policy. The Bellman equation to generate a sleeping policy
for sensor � is

J (�)(p) = min
u

⎛
⎝

u∑
j=1

[
pP j

]
�
+

n∑
i=1

c
[
pPu+1

]
i
+ J (�)(pPu+1)

⎞
⎠ (11.14)

To understand this equation note that within the main parentheses we have
three terms. The first term represents the expected tracking cost for times 1
to u, the second term represents the expected energy cost at time u + 1, and
the third term represents the expected future cost that will be incurred when
the sensor comes awake at time u + 1.

It is easy to verify that

J∗(�)(p) =
∞∑

j=1

min

{
[
pP j

]
�
,

n∑
i=1

c
[
pP j

]
i

}
(11.15)

is indeed a solution to (11.14). In other words, at each time step we incur a
cost that is the minimum of the expected tracking cost at sensor � and the
expected energy cost at sensor �. The policy is to come awake at the first time
such that the expected tracking cost exceeds the expected energy cost. This
is why this solution is called the first cost reduction solution.

Our second suboptimal solution is the QMDP solution. In the POMDP
literature (see, e.g., [23]), a QMDP solution is one in which it is assumed that
the partially observed state becomes fully known after a control input has
been chosen. In our problem, this means assuming that we will have perfect
future observations, i.e., the location of the object will be known in the future.
In other words, we are replacing (11.6) with

pk+1 = ebk+1 (11.16)

Note that this does not mean that it will be impossible to incur tracking
errors; we are simply making an assumption about the future state evolution
in order to generate a sleeping policy. The Bellman equation to generate a
sleeping policy for sensor � is

J (�)(p) = min
u

⎛
⎝

u∑
j=1

[
pP j

]
�
+

n∑
i=1

c
[
pPu+1

]
i
+

n∑
i=1

[
pPu+1

]
i
J (�)(ei)

⎞
⎠

(11.17)
This equation is identical to that in (11.14) except the term representing the
future cost has changed due to the different state evolution.

Unfortunately, we are unable to find an analytical solution to (11.17).
However, note that if we can solve (11.17) for p = eb for all b ∈ {1, . . . , n},
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then it is straightforward to find the solution for all other values of p. We
therefore concern ourselves with finding values of J∗(�)(eb) and µ∗(�)(eb) that
satisfy (11.17) for all b ∈ {1, . . . , n}. This can be achieved through policy
iteration.

Policy iteration proceeds as follows:

1. Set µ(�)(eb) = ∞ and J (�)(eb) =
∑∞

j=1

[
pP j

]
�

for all b ∈ {1, . . . , n}.
2. Compute a new value for µ(�)(eb) as

µ(�)(eb) = arg min
u

⎛
⎝

u∑
j=1

[
ebP

j
]
�
+

n∑
i=1

c
[
ebP

u+1
]
i
+

n∑
i=1

[
ebP

u+1
]
i
J(�)(ei)

⎞
⎠

(11.18)

for all b ∈ {1, . . . , n}, with the additional caveat that if there are multiple
minimizing values of u, the smallest should be chosen.

3. Solve a set of linear equations to find new values for J (�)(eb) for all b ∈
{1, . . . , n}. Using the shorthand ub = µ(�)(eb), the linear equations are
given as

J (�)(eb) =
ub∑

j=1

[
ebP

j
]
�
+

n∑
i=1

c [ebP
ub ]i +

n∑
i=1

[ebP
ub ]i J (�)(ei) (11.19)

for all b ∈ {1, . . . , n}.
4. If µ(�)(eb) is different from the previous value for µ(�)(eb) for at least one

value of b, return to step 1. Otherwise, terminate and set J∗(�) = J (�) (of
course, we will then have that µ∗(�) = µ(�)).

There are portions of this algorithm that warrant further discussion. Note
that the minimization in step 2, although well defined, is nontrivial since we
are minimizing a non-convex function over a countably infinite set. Although
we could restrict the set of sleep times to a finite set, this could lead to loss
in optimality. A better approach is to start with an initial guess of u = ∞ for
the minimizing u and a minimum value equal to the limit of the function to
be minimized as u → ∞. We then start at u = 0 and search for a minimum
by repeatedly increasing u by 1. At each step, we can compute a lower bound
on the function to be minimized over all values of u′ such that u′ ≥ u. If
the minimum found so far is less than or equal to this lower bound, then a
global minimum has been found and the search terminates. This procedure
will work as long as the lower bound we compute becomes appropriately tight
as u → ∞. It is frequently possible to find such lower bounds, so this is an
attractive approach. Turning our attention to step 3 of the policy iteration
algorithm, it is easy to establish that the set of linear equations described does
have a unique and nonnegative solution. It is also clear that if the algorithm
terminates, a solution to the Bellman equation has been found. Although we
can apply policy iteration to any particular tracking problem and hope for
termination, we would like to know if there are any conditions under which
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termination is assured. It can be shown that one such condition is for Q (the
previously defined submatrix of P in (11.1)) to be primitive, i.e., a square
matrix with nonnegative elements that has a unique maximal eigenvalue (see
[24]). Note that constructing the lower bounds discussed for step 2 of the policy
iteration algorithm is made relatively simple if Q is primitive because the cost
function to be minimized becomes an exponential function asymptotically.

Note that for the QMDP solution, we are assuming more information than
is actually available. Thus, the cost function obtained under the QMDP is a
lower bound on optimal performance. We will use this lower bound when we
present our numerical results.

11.3.4 Point Mass Approximations

The suboptimal policies derived in the preceding sections are considerably
easier to compute than the optimal policy and can be computed on-line after
some initial off-line computation has been completed. However, such on-line
computation requires sufficient processing power and could introduce delays.
It would be convenient if the suboptimal µ∗ could be pre-computed and stored
either at the central controller or distributed across the sensors themselves.
The latter option is particularly attractive since it could potentially allow for
a distributed implementation of the sleeping strategy without the need for a
central controller. But the set of possible distributions p is potentially quite
large — even if quantization is performed — and could make the storage
requirements prohibitive.

To make the storage requirements feasible, we consider approximating p
with a point mass distribution. The number of sleep times to be stored is then
only n per sensor. We consider two options for the placement of the unit point
mass when computing the sleep time for sensor �: (i) the centroid of p, and (ii)
the nearest point to sensor � on the support of p. Note that the latter option
allows for the implementation of policies without detailed information about
the statistics of the random walk – only the support of the random increment
at each time step is required.

11.3.5 Numerical Results

In this section, we give some sample simulation results that illustrate the
performance of the policies we derived in previous sections. We will present
simulation results for a one-dimensional sensor network with 41 sensors where
the object moves with equal probability either one to the left or one to the
right in each time step. In each simulation run, the object was initially placed
at the center of the network and the location of the object was made known to
each sensor. A simulation run concluded when the object left the network. The
results of many simulation runs were then averaged to compute an average
tracking cost and an average energy cost. To allow for easier interpretation of
our results, we then normalized our costs by dividing by the expected time the
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Fig. 11.3. Cost per unit time comparisons as a function c.

object spends in the network. We refer to these normalized costs as costs per
unit time, even though the true costs per unit time would use the actual times
the object spent in the network (the difference between the two was found to
be small).

In Figure 11.3 we plot cost curves as a function of c for our network. In this
figure three curves are shown. The first curve is the lower bound on optimal
performance discussed in Section 11.3.3. The second and third curves are the
costs for the QMDP and FCR policies respectively. From these data we can
see that the QMDP policy consistently outperforms the FCR policy. Moreover,
the cost for the QMDP policy is extremely close to the lower bound on optimal
performance except at a few data points. We therefore suspect that the QMDP

policy is a near-optimal policy.
In Figure 11.4, we now examine the tradeoff curves between energy cost

and tracking cost for our network. From these data, we again see that the
QMDP policy outperforms the FCR policy, although the difference does not
appear as large. This does not contradict our previous results since it is pos-
sible that if one policy achieves certain values of energy and tracking costs at
a particular value of c, it is possible for another policy to achieve these same
energy and tracking costs at a somewhat different value of c. Note that the dif-
ference between the performance of the QMDP policy and the lower bound on
optimal performance becomes small as the number of tracking errors becomes
small. This makes sense since when there are few tracking errors, the QMDP
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Fig. 11.4. Tradeoff curves.

assumption (that we will know the object location in the future) becomes
realistic.

For the moment, consider the duty cycle scheme discussed earlier where
each sensor is awake in a fraction π of the time slots. As π is varied, we
achieve a tradeoff curve that is a straight line between the points (0, 1) and
(n, 0) (where n is the appropriate number of sensors) in the coordinate systems
used in Figures 11.4. When compared with this policy, the schemes we have
proposed result in significant improvement.

In Figure 11.5 we explore the impact of using the point mass approxi-
mations discussed in Section 11.3.4 on the performance of the QMDP policy
for our network. Four curves are shown in the figure. The first two are the
lower bound and QMDP tradeoff curves already seen. The third and fourth
curves are the tradeoff curves for the QMDP policy using the centroid and
nearest point mass approximations respectively. It can be seen that there is
indeed some loss in performance when using point mass approximations, but
this loss becomes small as the number of tracking errors becomes small. This
makes sense since when tracking errors are infrequent, the object location is
usually known exactly and so the distribution is usually already a point mass
distribution.
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11.4 Removing the Restrictions

Having met with some success in our treatment of the problem of Section 11.3,
we wish to examine problems with less restrictive assumptions. In particular,
we wish to make more general assumptions about the particulars mentioned
at the end of Section 11.2.

11.4.1 A New Formulation

In [25], we consider a modified version of the problem of Section 11.3. In this
formulation, we dispense with the notion of cells around each sensor and thus
return to the setup in Figure 11.1. Although there are still n senors, we now
allow for m possible object locations with m possibly not equal to n. The
object still moves according to a probability transition matrix at each time
step, although the matrix is now of size (m + 1)× (m + 1). However, a major
change to the formulation is that the sensing model for the observations is
generalized to be described by a conditional distribution as

yk ∼ pY |X(y|xk) (11.20)

with the addition of two restrictions. First, we dictate that if bk = T then
the observation vector takes on a unique value that signals that the object
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has left the network. Second, we dictate that if the object has not left the
network and a sensor is not awake at time k, its observation is an erasure.
Mathematically, we say that bk �= T and rk,� > 0 imply yk,� = E .

In addition to changing the sensing model, we also change the tracking cost
structure. At each time step k, we make an estimate of the object location.
Denoting this estimate as b̂k, we write the tracking cost at time k as d(bk, b̂k).
If the object leaves the network (bk enters the terminal state), we assume the
problem terminates and no further cost is incurred. Thus, the total cost at
time k is given by

g(xk) = 1bk �= T
(

d(bk, b̂k) +
n∑

�=1

c1rk,� = 0

)
(11.21)

Although we can think of b̂k as a new control input that only affects the cost,
the selection of the optimal choice of b̂k is known a priori. It can be shown
that the optimal choice is

b̂k = arg min
b

Epk
[d(bk, b)] (11.22)

where Epk
denotes an expectation with respect to the distribution pk. Thus

we do not need to add a new control input to our design problem.
In generating suboptimal solutions to this new problem formulation, we

cannot directly apply the previously used methods. The main reason for this
is the generalization of the sensing model. Since it is now possible for multiple
sensors to simultaneously make nonerasure observations about the object, it is
necessary to combine these observations in a meaningful way to help pinpoint
the object. This process is referred to as cooperative localization. Note that the
nonlinear filtering framework still provides the optimal method for performing
this localization. The reason for the additional complexity is that since there
is now cooperation among the sensors, the problem does not nicely decouple
into a simple problem for each sensor.

We choose to generate suboptimal policies by performing two key steps.
The first step is to assume that after the sleep times have been selected,
the object location becomes known. Furthermore, we assume that at each
subsequent time step the object location becomes known after the observations
have been made and the costs have been incurred. Note that this is similar to
the assumption made in the QMDP solution discussed in Section 11.3.3. The
second key step taken to simplify the problem is to artificially separate the
problem into a set of n subproblems, one for each sensor. In each of these
subproblems, the task is to select the sleep time for that sensor as a function
of pk alone; in other words, rk is ignored. We can think of this artificial
separation of the problem as restricting the class of policies considered. While
there will likely be loss in optimal performance due to this restriction, we can
still seek an optimal within this class.

Because our tracking costs do not in general separate due to cooperation
among the sensors, we define two matrices that will act as tracking costs in
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our suboptimal solutions. The performance of our suboptimal solutions will
depend on the selection of these matrices. We define TS to be an m×n matrix
such that TS

b,� is the expected tracking cost given that sensor � is forced to be
asleep and the object was known to have been in location b in the previous
time step. Similarly, we define TW to be an m × n matrix such that TW

b,� is
the expected tracking cost given that sensor � is forced to be awake and the
object was known to have been in location b in the previous time step. We
use TS

� and TW
� to denote the �th columns of TS and TW respectively. We

can write the Bellman equation for the subproblem for sensor � as

J (�)(p) = min
u

⎛
⎝

u∑
j=1

pP j−1TS
� + pPuTW

� +

m∑
i=1

c
[
pPu+1

]
i
+

m∑
i=1

[
pPu+1

]
i
J (�)(ei)

) (11.23)

Note that if we can solve this equation for p = eb for all b ∈ {1, . . . , m},
then we can solve it for arbitrary p. These solutions can be found via policy
iteration as in Section 11.3.3 .

Note that in computing TS
b,� or TW

b,� , the action of sensor � is fixed. The
values of these elements therefore depends on the assumed actions of the
other sensors in the network. We identify three possible assumptions for these
actions in [25] and the result is three candidate policies. In Policy 1, when we
compute a particular element of TS or TW , we assume that all other sensors
are asleep. Thus, this policy assumes no cooperation among the sensors in
reducing the tracking cost. In Policy 2, when we compute a particular element
of TS or TW , we assume that other sensors will be awake if they belong to a
particular set. This set is found by searching over all 2n possible sets of sensors
that could be awake and finding the set that minimizes the expected cost.
Note that finding this optimal set could be difficult. In our simulation results,
however, we will consider a case where this set is easy to find. This policy
does model cooperation among the sensors but the cooperation it assumes
may not be representative of the behavior of the other sensors. In fact, this
policy in effect assumes that other sensors can be woken up externally, which
is of course not the case. Finally, in Policy 3 we iteratively solve for the
cooperation among the sensors. We start with an initial estimate of TS and
TW and compute an initial policy. For an initial distribution for the object
location of p0, it is possible to use this policy to compute the probability
that a given sensor will be awake given that the object was at a location b at
the previous time step. New values for the TS and TW matrices can then be
computed by conducting Monte Carlo simulations in which the behavior of
the other sensors is governed by these probabilities of being awake. We then
continue to generate new policies and values of TS and TW until convergence
is achieved in the cost functions defined in (11.23).
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Fig. 11.6. Cost per unit time as a function of c for each policy.

We now give some numerical results. We again consider a 41-sensor line
network with an object following a symmetric random walk (in this case m =
n). The sensing model used was a lognormal shadowing model. The tracking
cost function was a Hamming cost with a cost of 0 being incurred if the
object location was tracked correctly and 1 otherwise. We plot cost curves and
tradeoff curves for our three policies in Figures 11.6 and 11.7, respectively.

We see that there is a strict ordering in the performance of the three poli-
cies. We therefore conclude that modeling the cooperation among the sensors
is crucial to policy design. However, further study is needed to determine if
further gains in performance can be achieved or if any bound on performance
can be proved.

11.4.2 Further Extensions

Further modifications could be made to our problem formulation to make it
even more general. There are three major areas for exploration.

The first area is dealing with distributed control. In other words, we would
like to eliminate the need for a central controller, and have the sensors that
are awake communicate directly with each other. An example of previous re-
search that has examined distributed control can be found in [17], where it
is assumed that sensor can be woken up externally. In this work, one of the
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Fig. 11.7. Tradeoff curves for each policy.

sensors that is awake during each time step is designated the leader node and
other sensors forward their observations to this leader node. The leader node
is then responsible for determining which sensors should come awake at the
next time step, which sensor should be the leader node, and also for forward-
ing the state of the system to the next leader node. A similar framework could
be adopted in our formulation, and in particular, techniques such as the point-
mass approximation described in Section 11.3.4 would facilitate the exchange
of state information between the sensors. However, our assumption that sen-
sors cannot be woken up externally adds a complication. In particular, it may
be possible that there are no sensors in common among the ones that awake
during one time step and the ones that are awake during the next. Whether
the additional constraints needed to retain this system state can arise natu-
rally from the problem formulation or whether more ad hoc constraints are
needed remains to be seen.

A second area for further research is the setting where the statistics for
the object movement are unknown or partially known. In this case, learning
approaches such as one described in [26] for the multi-armed bandit problem
with unknown statistics may be useful in generating useful solutions. We also
noted in Section 11.3.4, for our simple sensing and object movement model,
that the nearest-point point mass approximation to the system state required
only information about the support of the random increment at each time
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step. It may be possible to extend such schemes to more general tracking
problems.

The third major area for exploration is the tracking of multiple objects.
Multi-target tracking (MTT) is a nontrivial extension of single target track-
ing since a sensor making an observation may not necessarily know which
object(s) contributed to that observation. In practice, this additional com-
plexity becomes most problematic when objects cross paths. A recent survey
of MTT with resource constraints is provided in [27]. It is of interest to see
how some of the MTT techniques described in [27] can be extended to the case
where the sensors are allowed to sleep and cannot be woken up externally.

11.5 Conclusions

In this chapter we have examined the problem of energy-efficient tracking in
sensor networks. A key feature of our work that distinguishes it from other
research on the problem is the realistic assumption that it is not possible wake
up sleeping sensors externally. We have formulated a basic version of the prob-
lem as a POMDP and found that while finding optimal solutions is intractable,
good suboptimal policies can be designed. We have also discussed extensions
of our formulation to accommodate more general assumptions about the un-
derlying sensor network and the objects we wish to track. Further research on
this problem should result in policies that will allow real-world sensor networks
to track objects in an energy efficient manner.
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12.1 Introduction

Sensor networks and multi-agent robotic systems have been receiving increas-
ing attention in recent times. This is due in no small part to the remarkable
advances made in recent years in the development of small, agile, relatively
inexpensive sensor nodes with mobile and networking capabilities. These sen-
sor nodes are envisioned to be the basic components of complex networks
intended to perform a wide variety of tasks. These include search and res-
cue, exploration, environmental monitoring, location-aware computing, and
the maintaining of structures. The potential advantages of employing arrays
of robotic sensors are numerous. For instance, certain tasks are difficult, if
not impossible, when performed by a single agent. Further, a group of agents
inherently provides robustness to failures of single agents or communication
links.

The existence of such motion-enabled sensing devices and the anticipated
development of still more advanced versions raise compelling questions. A par-
ticularly important issue is whether large numbers of such small autonomous
devices will be successfully deployed as a search team to cooperatively carry
out a prescribed task reliably, robustly and adaptively, without a centralized
controller and with limited communications among its members.

Motivated by these future scenarios, this chapter focuses on algorithms
for visually-guided agents, i.e., mobile robotic agents with line-of-sight
sensing and communication capabilities, to solve a distributed version of the
Art Gallery Problem. In the remainder of the introduction, we describe
the problem in its original context, broadly highlight the characteristics of
visually-guided agents and reformulate the original problem with respect to
visually-guided agents.
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Art Gallery and Illumination Problems

The classic Art Gallery Problem, was introduced by Klee and first analyzed
by Chvátal, see [1, 2]. This combinatorial and geometric problem is stated as
follows:

Imagine placing guards inside an art gallery in the shape of a non-
convex polygon with n vertices: how many guards are required and
where should they be placed in order for each point in the gallery to
be visible by at least one guard?

The Art Gallery Theorem [1] states that �n/3� guards are sufficient and some-
times necessary to guard any polygon with n vertices. An elegant “triangu-
lation + coloring” proof was proposed by Fisk [3]. The proof is constructive,
i.e., it includes an efficient placement algorithm; an illustration is provided in
Figure 12.1.

Red

Red

Blue

Blue

Green

Green

Red

Fig. 12.1. Fisk’s Algorithm: 1: triangulate the polygon (see dashed lines). 2: three-
color the vertices so that each triangle has all three colors (possible because the
“dual graph” is a tree). 3: select the color with smallest cardinality and place guards
at the corresponding vertices (see the two guards in right picture).

Fisk’s solution is, however, centralized, that is, it assumes that a cen-
tral processor has global knowledge of the environment and that guards can
be placed in desired locations without accounting for sensor-based and/or
communication-based deployment.

Networks of visually-guided agents

Taking the Art Gallery Problem as a starting point, we consider a novel sce-
nario where the guards are robotic agents in a simple nonconvex environment
and are equipped with “line-of-sight” sensing and communication capabili-
ties. In other words, our version of the Art Gallery Problem is different from
its classic counterpart by the use of distributed feedback and communication
protocols, rather than open-loop centralized computation.

We consider agents moving in a nonconvex planar or spatial environ-
ment, and make the following assumptions: (A1) Each agent is equipped
with an “omnidirectional sensor.” By this we mean a device or combi-
nation of devices (omnidirectional cameras, range and proximity sensors)
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Inter-agent

communication graph

that sense distance to the environment boundaries
and to other agents within unobstructed lines of
sight; (A2) The agents do not know the entire en-
vironment and their positions in it; (A3) Depend-
ing on the problem at hand, the guards are also al-
lowed to exchange information with agents within
line-of-sight through an asynchronous communica-
tion channel with delays and packet losses. This
communication graph is depicted on the side; (A4)
The agents are assumed to evolve asynchronously,
i.e., a different sensing/communication/control schedule is allowed for each
agent; (A5) For simplicity’s sake, we model these agents as point masses with
first-order dynamics. Assumptions (A1) through (A5) characterize what we
refer to as visually-guided agents.

Illuminating art galleries via incremental partition and deployment

Combining the discussion in the earlier subsections, we obtain the following
version of the Art Gallery Problem: starting from arbitrary positions, how
should the agents move (and what should they communicate) in order to reach
final positions such that each point of the environment is visible to at least one
agent. This is what we refer to as the distributed art-gallery deployment
problem. Remarkably, the difficulty of this problem is inherently due to the
communication and sensing constraints: the agents are not given a map of the
environment and no central entity controls them.

The proposed algorithms allow for sensor-based, distributed, asynchronous
execution and guaranteed visibility is achieved when the number of agents is
at least �n/2�. The algorithm is organized in three steps:

[Geometric Structure]: first, we show that any simple nonconvex polygon can
be partitioned into star-shaped polygons in an incremental distributed
way. This induces a graph, the vertex-induced tree, as follows: every star-
shaped polygon in the partition is a node and edges between nodes exist
only when the corresponding polygons are contiguous;

[Distributed Information Processing]: second, we design appropriate distrib-
uted algorithms to manage the geographic information obtained by the
network of agents. This entails deciding what information needs to be
stored by what agent and how it needs to be transmitted and updated;

[Local Navigation and Global Exploration]: third and final, we devise nav-
igation algorithms for two purposes: (i) to traverse edges of the vertex-
induced tree, i.e., to move individual agents between contiguous polygons,
and (ii) to explore and deploy a group of agents over the nodes of the
vertex-induced tree.

This combination of “geometric structure + information management + nav-
igation algorithms” is the key idea that allows individual agents to explore
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and traverse the nonconvex polygon only based on local sensing and commu-
nication. We refer to solutions of this form as incremental partition and
deployment algorithms.

The rest of the chapter is organized as follows. In Section 12.2, we present
the literature related to our current work. Section 12.3 contains preliminaries
and notation. In Section 12.4, we present the algorithm details. Finally, we
present our conclusions in Section 12.5.

12.2 Related Work

The content of this chapter is related to the works on map building and explo-
ration, deployment of robotic networks, illumination and geometric optimiza-
tion problems, and distributed algorithms. In the following, we cite the works
that are relevant, by subject or by the tools therein, to either the problem or
the approach in this chapter or both.

Map building and exploration

The robotics literature is abound in works on map building and exploration of
unknown environments. However, the most relevant to the problem at hand
include topological exploration of graph-like environments by single and mul-
tiple robots. In [4], a single robot with a marker explores such an environment
via a depth-first linear time algorithm. While at a node of the graph, the robot
has the ability to identify the neighboring nodes, order them in a consistent
way, remember the last node visited and drop a marker to designate that a
given node has already been explored. Topological exploration with multiple
robots is the subject of [5]. Multiple robots, each equipped with a marker, ex-
plore the map independently. They communicate with robots located at the
same node. The robots start at the same node, plan partition of work and
rendezvous schedule (by exchanging messages), explore a portion of the envi-
ronment and return to a predetermined location where they merge their maps.
The process is repeated till the maps with each of the robots is isomorphic
with the the world map. Multi-robot exploration of an unknown environment
while reducing the odometry error has also been studied [6]. Here, explo-
ration proceeds via constructing partitions of the environment into triangles
or quadrilaterals, depending on whether the diameter of the environment is
large compared to the range of the sensor, and then moving along the dual
graph of the partition.

Deployment of robotic networks

Some related works on deployment include [7], where an incremental heuristic
for deployment is proposed, [8] where distributed algorithms for coverage con-
trol based on Voronoi partitions are designed, and [9], in which the relevance of
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random walk on graphs is discussed (the environment and its graphical repre-
sentation are assumed known a priori, and general strategies are evaluated via
Monte Carlo simulation). Coordinated deployment of multiple heterogeneous
robots has also been studied in [10]. Deployment locations are user-specified
after an initial map of the unknown environment has been built.

Illumination problems and geometric optimization

Illumination and art gallery problems are classic topics, e.g., see [11, 12, 13].
Coverage algorithms (for systems with binary, limited-range sensors) are sur-
veyed in [14]. Next-best-view problems are discussed in [15]. Geometric op-
timization is a vast and exciting avenue of current research, see for exam-
ple [16, 17]. Here, by geometric optimization, we mean an optimization prob-
lem induced by a collection of geometric objects. For example, in facility
location problems service sites are spatially allocated to fulfill a specified re-
quest [18, 19]. These approaches mainly rely on centralized computation for
a known static environment and are not applicable in a distributed, asyn-
chronous, adaptive setting.

Distributed algorithms

The study of distributed algorithms is concerned with providing mathematical
models, devising precise specifications for their behavior, and formally prov-
ing their correctness and complexity. Via an automata-theoretic approach,
the reference [20] treats distributed consensus, resource allocation, communi-
cation, and data consistency problems. Numerical distributed asynchronous
algorithms as networking algorithms, rate and flow control, and gradient de-
scent flows are discussed in [21]. All these references do not typically address
algorithms over ad-hoc dynamically changing networks. The recent work [22]
proposes a model of distributed robotic network.

In addition, the proposed work is related to visibility-based pursuit-evasion
problems, see [23, 24], although these works focus on single agents and not on
distributed policies for groups of agents.

The sensing and communication abilities of each agent is attuned to the
coordination problems at hand. The study of vision as a sensor in coordination
problems is in its infancy; beside our work described below, only few prelimi-
nary references are available [24, 25]. Vision and, more generally, sensor-based
coordination is instead a key interaction modality for animal networks.

12.3 Preliminaries and notation

We begin by introducing some basic notation. If p is a point in the polygon
Q, we let V (p) denote the set of visible points from p. A set S is star shaped if
there exists p ∈ S such that S ⊂ V (p); if S is star shaped, we let ker(S) be its
kernel, i.e., the set of points k ∈ S such that S ⊂ V (k). Finally, a diagonal of
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a polygon Q is a segment inside Q connecting two vertices of Q (and therefore
splitting Q into two polygons). A vertex of a polygon Q is nonconvex when
the internal angle is strictly greater than π.

We consider a group of robotic agents modeled as point masses, moving
in a simple nonconvex polygonal environment, Q. Each agent has a unique
identifier UID, say i. Let pi refer to the position of agent i. Each agent is
equipped with an omnidirectional line-of-sight range sensor. Thus, the agent
can sense its star-shaped visibility set V (pi). It can communicate with any
other agent within line-of-sight and less than a certain distance r. The quantity
r can be adjusted by the agent but is upper bounded, say by R > 0.

Each agent has access to some memory Mi. By memory, we refer to all
the necessary information that is not accessible via local sensing and commu-
nication. An agent i can broadcast its UID together with its memory contents
to all agents inside its communication region. Such a broadcast is denoted by
BROADCAST(i,Mi). It can also receive broadcasts from other agents. We
also assume that there is a bounded time delay, δ > 0, between a broadcast
and the corresponding reception.

Every agent i repeatedly performs the following sequence of actions begin-
ning at a time instant, say T i

l :

(i) send repeated BROADCAST(i,Mi) after δ time intervals, until it starts
moving;

(ii) LISTEN for a time interval equal to at least 2δ before processing the
information;

(iii) PROCESS the necessary information. Also continue to LISTEN during
this interval;

(iv) MOVE to a desired point.

T i
l

T i
l+1

LISTEN

PROCESS MOVE

BROADCAST(i,Mi) BROADCAST(i,Mi)

δ δ δ δ δ

≥ 2δ

Fig. 12.2. Sequence of actions for agent i beginning at time T i
l . Instantaneous

BROADCAST(i,Mi) events are represented by vertical pulses. The MOVE interval
might be empty if the agent does not move.The subsequent instant T i

l+1 is the time
when the agent stops performing the MOVE action and it is not predetermined.

Agent i, in the MOVE state, is capable of moving at any time t according
to the following discrete-time control system:
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pi(t + ∆t) = pi(t) + ui,

where the control is bounded in magnitude by 1. The control action depends on
time, on the memory Mi(t), and on the information obtained from communi-
cation and sensing. The subsequent wake-up instant T i

l+1 is the time when the
agent stops performing the MOVE action and it is not predetermined. This
model of visually-guided agents is similar in spirit to the partially asyn-
chronous network model described in [21].

Given this model, the goal is to design a provably correct discrete-time
algorithm which ensures that the agents converge to locations such that each
point of the environment is visible to at least one agent. This is the dis-
tributed art-gallery deployment problem for visually-guided agents.

12.4 Distributed Art Gallery Deployment Problem

In this section we detail the incremental partition and deployment al-
gorithms described in the introduction. We begin by describing a partition of
a given simply connected nonconvex environment into star-shaped polygons
and the graph that such a partition induces.

12.4.1 The vertex-induced partition and tree

Given a nonconvex polygon Q without holes and a vertex s of it, we compute
a list {P1, . . . , Pm} of star-shaped polygons composing a partition of Q and a
list {k1, . . . , km} of kernel points for each star-shaped polygon {P1, . . . , Pm}.
The computation of these quantities is discussed in the following algorithm
and is illustrated in Figure 12.3.

s

Q

(a)

s

Q

(b)

s

Q

k_2

(c)

s

Q

(d)
Q

s

(e)

Fig. 12.3. Computation of the vertex-induced partition and tree in 5 steps.

Vertex-Induced Partition and Tree Algorithm

1: set k1 = s, and collect all vertices of Q visible from k1 (see Fig. 12.3(a))
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2: let P1 be the polygon determined by these vertices (by definition k1 ∈
ker(P1)) (see Fig. 12.3(b))

3: identify the edges of P1 that are diagonals of Q; call them gaps. For all
gaps, place a new point, say k2, across the gap at a new vertex of Q such
that k2 sees the gap (see Fig. 12.3(c))

4: repeat last three steps for new point k2, until all gaps have been crossed
(see Fig. 12.3(d))

5: define edges starting from s going to all kernel points and crossing all
edges (see Fig. 12.3(e))

We refer to the list {P1, . . . , Pm} computed in the algorithm as the vertex-
induced partition. The algorithm computes not only the partition and a list
of kernel points, but also a collection of edges connecting the kernel points. In
other words, we also computed a directed graph, the vertex-induced tree,
denoted by GQ(s): the nodes of this directed graph are {k1, . . . , km} and an
edge exists between any two vertices ki, kj if and only if Pi ∩ Pj is a diagonal
of Q. Note that k1 = s; we refer to this node as the root of GQ(s). We now
state some important properties of the vertex-induced tree.

Proposition 1. Given a polygon Q without holes and a vertex s, the following
statements hold:

(i) the directed graph GQ(s) is a rooted tree;
(ii) the maximum number of nodes in the vertex-induced tree is less than or

equal to �n
2 �, where n is the number of vertices in Q.

Proof. The fact that GQ(s) is a tree is a consequence of the fact that Q has
no holes. Since s is designated as the root, GQ(s) is a rooted tree. This proves
statement (i). To prove statement (ii), notice the set of nodes of GQ(s) belong
to the vertices of Q. Also, by construction no two adjacent vertices of Q can
both belong to the node set {k1, · · · , km}. Since the number of vertices of Q
is n, it follows that number of nodes of GQ(s) is less than or equal to �n

2 �.

It is clear from the construction of the vertex-induced tree that, if we
design a distributed algorithm to place agents on each node of the tree, then
we will have solved the distributed art-gallery deployment problem.

Remark 1. If we can deploy the agents over the kernel points, then we will
have solved the art-gallery deployment problem requiring �n/2� agents in the
worst case, which is in general more than the �n/3� number required if the
entire environment were known a priori. This is not surprising considering
the weaker assumption of no global knowledge that we make while posing the
problem.
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Local node-to-node navigation algorithms

Note that by virtue of the constructions in the previous section, we have con-
verted the original problem into a graph “navigation and deployment” prob-
lem. We now describe algorithms to plan paths between neighboring nodes of
the vertex-induced tree. In a rooted tree, every neighbor of a node is either a
child or the parent. Therefore, we present two simple informal descriptions.

Move-to-Child Algorithm

1: compute the mid-point of the gap between the node and the child
2: go to the mid-point
3: compute the nearest vertex from which the entire gap is visible and which

is across the gap
4: go to that vertex

Move-to-Parent Algorithm

1: compute the mid-point of the gap between the node and the parent
2: go to the mid-point of the gap
3: from the mid-point, go to the vertex representing the parent node

Figure 12.4 shows paths between parents and children as computed by the
previous two algorithms. It is easy to see that navigation is very simple if
sufficient information is available to the agents. We address this aspect in the
next subsection.

s s

Fig. 12.4. Left figure: a vertex-induced tree and partition in a prototypical floor-
plan. Right figure: the planned paths between neighboring nodes.

12.4.2 Distributed information processing

¿From the previous discussion we know that the following information must
be available to an agent to properly navigate from node to node. If the node
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is executing the Move-to-Child Algorithm, then it needs to know what gap
to visit, i.e., what child to visit. If the node is executing the Move-to-Parent
Algorithm, then it needs to know where the parent node is located.

This geographic information is gathered and managed by the agents via
the following state transition laws and communication protocols. At this time,
we make full use of the computation, communication and sensing abilities of
visually-guided agents mentioned in Section 12.3.

(i) The memory content M of each agent is a quadruple of points in Q labeled
(pparent, plast, g1, g2). All four values are initialized to the initial location
of the agent. During any broadcast, these values are sent over together
with the agent’s UID.

During run time, M is updated to acquire and maintain the following mean-
ing: pparent is the parent kernel point to the current agent’s position, plast is
the last way point4 visited by the agent, and (g1, g2) is the diagonal shared
between the current cell and the parent cell, i.e., the gap toward the parent
node. This is accomplished as follows:

(ii) After an agent moves from a kernel point ki to a child kernel point kj

through a gap described by two vertices v′, v′′, its memory M is updated
as follows: pparent := ki, plast = kj and (g1, g2) := (v′, v′′).

(iii) After an agent moves from a kernel point kj to the parent kernel point
ki, its memory M is updated as follows: first, plast := w, where w is the
way point on the path between kj and ki, and second, the agent acquires
updated values of {pparent, g1, g2} by listening to the incoming message
with the highest UID.

Remark 2. At any time, at any occupied node, pparent corresponding to the
agent with the highest UID refers to the location of the parent of the current
node. Also, (g1, g2) refers to the gap between the current node and the parent
node. To see this, we argue as follows: Given any node ki of GQ(s) that is
occupied by one or more agents, let l be the highest UID among all agents.
Then, we claim that the last node visited by l is the parent of ki. We prove this
by contradiction. Let the last node visited by l be a child of ki. To visit that
child, it must have first visited ki. Then, by the Depth-First Navigation
Algorithm, it must have moved from ki because of the presence of an agent
with a UID greater than l. Therefore, the maximum UID at ki must be greater
than l which is a contradiction. Hence, the last node visited by l is the parent
of ki. Now according to (ii) above, the quantity pparent for l refers to the parent
of ki. Also, (g1, g2) refers to the gap between ki and its parent.

No common reference frame

In the description of the memory update laws, we have used a global reference
frame to refer to the contents of M. However, this assumption can be easily
4 A way point is a mid-point of the gap between two nodes (Figure 12.4 right)
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relaxed by storing the variables in M in a different way. For example, instead
of storing the location of the parent node as a point pparent relative to some
global frame, the location of the parent can be stored as an integer dparent,
as shown in Figure 12.5. Note that such a representation does not depend
on the orientation of the reference frame of an agent. The location of the

6

7

ki

g1+g2
2

3

2

Q

kj

1

44

5

Fig. 12.5. Illustration of how the relative location of the parent of a node can be
stored without the use of a common reference frame. The polygon is the environ-
ment Q. The graph with the directed edges is the vertex-induced tree in Figure 12.3.
The node ki is the parent of kj and the point g1+g2

2
denoted by the white disc refers

to the mid-point of the gap between kj and ki. The shaded region is the set of all
points visible from g1+g2

2
on the side of the diagonal (g1, g2) not containing kj . The

vertices of Q in this visibility set are enumerated (1, · · · , 7) in counter-clockwise or-
der, the vertex 1 being one of the vertices {g1, g2}, say g1, and with g2 being the last
vertex in the ordering. The location of the parent can now be stored as dparent = 6.

gap (g1, g2) can be stored in a similar fashion. The point plast can be stored
with respect to the local reference frame. We do not store pparent and (g1, g2)
in terms of local coordinates since these variables may be used as updates
by other collocated robots. This would necessitate that the robots be aware
of the relative orientations of their local coordinate frames or, equivalently,
be equipped with compasses. By storing pparent and (g1, g2) according to the
scheme in Figure 12.5, the use of compasses is eliminated.

Remark 3. If the number of vertices of the environment visible from any point
of the environment is bounded, then the amount of memory required to store
pparent and (g1, g2) is also bounded. Also if the diameter of the environment
is bounded, then the memory required to store plast is bounded. Thus, un-
der the aforesaid assumptions, the memory M is constant irrespective of the
complexity of the environment.
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Depth-First Navigation Algorithm

All agents are initially located at root s
During each PROCESS action, each agent executes:

1: Find maximum UID received during the LISTEN action
2: If maximum received UID is less than its own UID
3: then stay at current kernel point
4: else
5: If there are no children of the present kernel point
6: then Move-to-Parent Algorithm towards pparent via {g1, g2}
7: else
8: Order the children in a suitable way
9: If plast in memory is the parent of the present node,

then Move-to-Child Algorithm towards the first child in the ordering
10: If the last node visited is a child that is not the last in the ordering,

then Move-to-Child Algorithm towards next child in the ordering
11: If (the last node visited is a child that is the last in the ordering) AND

(current node is not the root),
then Move-to-Parent Algorithm towards pparent via {g1, g2}

12: If (the last node visited is a child that is the last in the ordering) AND
(current node is the root),

then Move-to-Child Algorithm towards the first child in the ordering

Table 12.1. Depth-First Navigation Algorithm.

12.4.3 Global exploration and deployment algorithms

At this time, we have all the elements necessary to present a global naviga-
tion algorithm that leads the agents to deploy themselves over the nodes of
the vertex-induced tree. We term this algorithm Depth-First Navigation
Algorithm, see Table 12.1.

Note that the instruction 5: through 11: in Depth-First Navigation
Algorithm essentially amount to a depth-first graph search. Alternatively, it
is fairly easy to design randomized graph search algorithms, where the nodes
select their motion among equally likely children/parent decisions.

The following Figures 12.6 and 12.7 show the results of the simulations
of the depth-first search and randomized search algorithms respectively. The
nodes of the vertex-induced tree of the environment in the simulations are
precisely the locations where the agents in Figure 12.6 are located at the end
of the simulation. In Figure 12.7, there are more agents than the number of
nodes in the vertex-induced tree. Hence, the extra agents keep exploring the
graph without coming to rest.

12.4.4 Convergence and run time analysis

In this section, we provide the results on convergence of the algorithm and
we also characterize the time taken for the task to be completed. Given a
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Fig. 12.6. From left to right, evolution of a network implementing depth-first search.
The number of vertices of the environment is n = 46 and the number of agents is
N = 13 < 	 46

3

. Each point of the environment is visible at the end of the simulation.

Fig. 12.7. From left to right, evolution of a network implementing randomized
search. While the polygon is the same as above and therefore the vertex-induced
tree still has only 13 nodes, the number of agents is 15; after each node of the tree
is populated, the 2 extra agents continue to explore the vertex-induced tree.

polygon Q without holes and a vertex s, we define the following length: For
each edge (ki, kj) of GQ(s), let dedge(ki, kj) be the path length between ki and
kj . The length of the vertex-induced tree GQ(s) is defined by

Lvit(GQ(s)) =
∑

e∈ edges of GQ(s)

dedge(e).

With these notions we can state the next result.

Theorem 1 (Convergence and Run Time Analysis). Given a polygon
without holes Q, assume that N visually-guided agents begin their motion from
a vertex s of Q. Assume Q has n vertices and the vertex-induced tree GQ(s)
has m nodes. Assume also that there exists a bound λmax on the LISTEN
interval for any agent i. Then the following statements hold:

(i) In finite time t∗ there is at least one agent on min{m,N} nodes of GQ(s).
(ii) If N ≥ �n/2�, then the art-gallery deployment problem is solved in finite

time by the Depth-First Navigation Algorithm.
(iii) assuming unit speed for any agent, the time taken for task completion,

t∗, obeys the following:

t∗ = Tmotion + Tnodes,

where Tmotion ≤ 2Lvit(GQ(s)) − min {dedge(e)| e ∈ edges of GQ(s)} and
Tnodes ≤ 2(m − 1)λmax.

Proof. We first prove statement (i). Let us first see that at any time t, any
agent is either at a node of GQ(s) or on the path between two nodes. Ac-
cording to the Depth-First Navigation Algorithm, an agent always moves



302 Anurag Ganguli, Jorge Cortés, and Francesco Bullo

according to either the Move-to-Child Algorithm or the Move-to-Parent
Algorithm. By the memory update laws in Section 12.4.2, during any
PROCESS interval, an agent at a node always has in its memory the loca-
tion of the parent node and the gap between the current node and its parent.
Therefore, an agent at a node always has enough information to compute the
locations of the parent and the children and, thus, always is either at a node
of GQ(s) or on the path between two nodes.

Now, from step 2 of Depth-First Navigation Algorithm, an agent stays
at a node unless there is an agent with a higher UID collocated at the same
node. It also follows that once a node is occupied by an agent, it continues to
be occupied by at least one agent for all future times. Therefore, the number
of occupied nodes is non-decreasing. Since the number of nodes are finite,
there exists a finite time τ1 such that for all time t ≥ τ1, exactly w nodes
are occupied. Also, the highest UID at any occupied node is non-decreasing.
Since the number of agents are finite, there exists a finite time τ2 such that
for all time t ≥ τ2, the highest UID at all w occupied nodes is constant. Now,
let τ ≥ max{τ1, τ2}. Now, if w ≥ N , then we are done. If w < N , then at any
time t ≥ τ , there are N − w agents that either belong to w occupied nodes
or belong to the paths between two nodes of GQ(s). Since the UID at any
occupied node is constant, this implies that the N − w agents are the ones
with the lowest UIDs. From the Depth-First Navigation Algorithm, each
of the N − w agents perform a depth-first search on GQ(s) spending at most
λmax time at any node. If w ≥ min{m,N}, then we are done. If w < N ≤ m,
there is at least one node that is unoccupied. Therefore, each of the N − w
agents will reach an unoccupied node of GQ(s) in finite time. Thus, the number
of occupied nodes increases which is a contradiction. Therefore, w ≥ N . If on
the other hand, w < m ≤ N , then again there is at least one node that is
unoccupied. By a similar argument as before, it follows that the number of
unoccupied nodes increases.

Statement (ii) follows from statement (i) and from Proposition 1 (ii) which
states that m ≤ �n

2 � .
To prove statement (iii), let us assume that kl be the last node to be

occupied at time t∗. Clearly, kl has to be a leaf. Let the agent first occu-
pying kl be j. To travel from the root to any leaf via a depth-first search,
an agent traverses each edge at most twice except for the edge incident to
the leaf, which has to be traversed only once. Thus, agent j travels at most(∑

e∈ edges of GQ(s) 2dedge(e)
)
− min {dedge(e)| e ∈ edges of GQ(s)} distance.

Since the agent is assumed to move with unit speed, the time taken to travel
this distance, Tmotion, is 2Lvit(GQ(s)) − min {dedge(e)| e ∈ edges of GQ(s)}.
Also, while travelling from the root to kl, agent j stops at each of the remain-
ing m − 1 nodes at most twice. At each node, agent j spends at most λmax

time. Thus, the time spent at the nodes, Tnode, is 2(m − 1)λmax. The total
time, t∗ is equal to Tmotion + Tnode and the result follows.
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12.5 Conclusions

In this chapter, we pose a distributed version of the classic Art Gallery Prob-
lem for mobile robotic agents. Under assumptions of line-of-sight communi-
cation and sensing on the agents, we design a provably correct Depth-First
Navigation Algorithm that solves the problem given that the agents are
initially collocated at a vertex of the environment. The algorithm is robust
to arbitrary but bounded communication delays. Under the assumptions of
bounded environment diameter and bounded number of vertices visible from
any point in the environment, the memory required by the agents is constant
irrespective of the environment complexity. An early version of this algorithm
appeared in [26].
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