
Yan Sun
Wade Trappe
K.J.R. Liu

Network-Aware
Security for Group
Communications

Network-Aware Security for Group Communications

Yan Sun • Wade Trappe • K.J.R. Liu

Network-Aware Security
for Group Communications

123

Yan Sun
Department of Electrical

& Computer Engineering
University of Rhode Island
4 East Alumni Avenue
Kingston, RI 02881
USA

K.J.R. Liu
Department of Electrical

& Computer Engineering
University of Maryland
8603 34th Avenue
College Park, MD 20740
USA

Wade Trappe
WINLAB
Rutgers University
73 Brett Road
Piscataway, NJ 08854
USA

ISBN 978-0-387-68846-6 e-ISBN 978-0-387-68848-0

Library of Congress Control Number: 2007934648

c© 2008 Springer Science+Business Media, LLC

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer soft-
ware, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Printed on acid-free paper.

9 8 7 6 5 4 3 2 1

springer.com

To Our Families

Preface

Over the past few decades, the role of computing has grown from being
used mainly for scientific purposes, into being part of our everyday life,
where it is used for purposes such as communication, entertainment, and
device control in the state-of-the-art consumer products. The ubiquity of
communication networks is facilitating the development of wireless and In-
ternet applications aimed at allowing users to communicate and collaborate
amongst themselves. Soon, group-oriented services will be customary-they
will be essential for increasing productivity in the future workplace, and
they will be integral to how we redefine our sense of community. Ultimately,
these group-oriented services will be heterogeneous in nature, bringing to-
gether a diverse clientele of users with varying amounts of computing power
and communication capabilities. However, before these group-oriented ser-
vices can materialize, technologies must be developed to guarantee that the
information and data exchanged in these group-scenarios are protected. In
short, it is necessary to develop solutions that will make multi-user services
trustworthy and secure.

Recently computing and networking research has shifted from the static
model of the wired Internet towards the new and exciting “anytime-
anywhere” service model of the mobile Internet. At the heart of the technolo-
gies facilitating such pervasive computing are recent advancements inwireless
technologies that will provide the ubiquitous communication coverage that
is so coveted by mobile services. Moreover, due to the fact that wireless
devices can seamlessly blend into users’ lives, it is easy to predict that future
wireless networks will gradually become the primary interface for consumer
applications. These group-oriented services will be popular as they will be

viii Preface

essential for increasing productivity in the future workplace. Already the
migration to mobile computing has started, and it appears that the mar-
ket for mobile services, or “m-commerce”, will succeed as recent estimates
project m-commerce to grow to involve over 1 billion subscribers. In spite
of the predicted success of the wireless market, there are several disrup-
tive challenges lurking in the future that threaten the successful adoption
of wireless services. Perhaps core amongst these challenges are two issues,
namely, platform heterogeneity, and secure and trusted communications.

The first issue points to the fact that wireless systems appear to be
shifting away from the single-platform model of the 1990’s to a free-for-
all mixture of technologies battling it out in unlicensed bands of spectrum.
Even the broad umbrella of Beyond-3G and 4G systems, along with forward-
planning 3G/WLAN interworking solutions, do not appear to be positioned
to capture the broad heterogeneity that will be introduced when completely
new classes of wireless systems, such as cognitive radios, mesh networks,
and wireless personal area networks are deployed using newly-developed
programmable radio technologies. Further, it can be expected that a di-
verse array of new media services will drive the mobile Internet, and new
multimedia delivery devices, such as wireless audio-visual devices and the
next evolution of wearable computing devices, will emerge as important new
products complementing today’s laptop computers and personal digital as-
sistants, providing a revolutionary means to communicate and collaborate
from anywhere at anytime.

The second hurdle facing wireless systems is security. Even for the existing
wireless networks, security is often cited as a major technical barrier that
must be overcome before widespread adoption of mobile services can occur.
The increasingly popular “WiFi” or 802.11 wireless local-area network was
initially based on a standard with relatively weak wireless security called
WEP, resulting in major security concerns as the equipment was deployed
in offices and homes. Further, emerging 3G cellular data services also have
limited security capabilities. Moreover, it has become clear that end-to-end
security solutions, which were originally designed for the wired Internet,
have limited applicability to the unique problems associated with wireless
networks. Add to this the foreseeable heterogeneity in devices and user
profiles that emerging wireless networks will introduce, and it is evident
that there is a need for research targeted at developing security solutions
for next-generation mobile services.

One of the most suitable technologies for delivering data to groups of
users is multicast networking. Multicasting has seen significant advance-
ments recently, in both the underlying technology as well as the deployment
of applications utilizing multicast technologies. Already there are multicast
services that stream stock quotes, and provide video and audio on demand.
The adaptation of multicast into commercial applications requires security
functionalities, such as authentication, non-repudiation, and access control.
Of these, access control is paramount as it is the first line of defense needed

Preface ix

to protect the value of an application’s data. A service provider may control
access to content by encrypting the content using a key that is shared by
all group members. The problem of access control becomes more difficult
when the content is distributed to a group of users since membership will
most likely be dynamic, with users joining and leaving the service for a
variety of reasons, and therefore necessitating the ability to update keys.

Key management is accomplished either by using a centralized entity that
is responsible for distributing keys to users, or by contributory protocols
where legitimate members exchange information to agree upon a key. Typ-
ical group key management schemes seek to minimize either the amount of
rounds needed in establishing the group key, or the size of the messages,
and treat all users as identical. However, these approaches do not factor
in the varying requirements of the users, the underlying network, or the
application, and are therefore not well suited to provide solutions efficient
for all users, for all networks, or for all types of applications. In particular,
since many applications will involve a heterogeneous clientele consisting
of group members with different computational capabilities, pricing plans,
and bandwidth resources, these network-aware factors must be considered
when designing an access control system.

The pervasiveness of computing has made it increasingly difficult to find
any aspects of computing that are unaffected by issues from the underlying
application and communication network. Applications must consider the
requirements of the users and the underlying network conditions in order
to provide a service that meets the demands of as many users as possible.
A similar approach is needed for designing the security architecture for an
application. In order to secure tomorrow’s computing systems, it is essential
to develop a network-aware framework that provides trustworthiness by
jointly considering issues of computing and communications in dynamic,
heterogeneous group environments.

Wireless multicasting will support many new multimedia applications,
ranging from the broadcasting of media content for entertainment services,
to video surveillance for remote monitoring applications, to multiparty “on-
the-go” collaborations that will increase our productivity. Securing the next
wave of wireless communications will require new strategies since traditional
multicast security solutions are not targeted at addressing issues specific to
emerging new applications such as wireless multimedia multicast services.

Before group-oriented wireless services can materialize, technologies must
be developed to guarantee that the information and data exchanged are pro-
tected. In short, it is necessary to develop solutions that will make wireless
multi-user multimedia services trustworthy and secure in the diverse wire-
less networks of the future. In order to accomplish this we have to have a
better understanding with a holistic view of security solutions that address
the following three topics:

x Preface

• Access Control and Data Confidentiality serve as the first line of de-
fense needed to protect the value of an application’s data. A service
provider may control access to content by encrypting the content
using a key that is shared by all group members. The problem of ac-
cess control for multicasts is challenging since group membership will
most likely be dynamic, with users joining and leaving-necessitating
the ability to update keys. However, traditional multicast key man-
agement schemes do not factor in the varying requirements of the
users, the underlying network, or the application, and therefore are
not adequately efficient for wireless multimedia multicast services.

• Service Authentication and Verification are important security issues
for the media service. Traditional public key authentication is not
suitable for wireless networks since many mobile devices will be low-
powered, with limited computational and storage resources. Addition-
ally, the strict delay requirements of multimedia data prevent popular
delayed key disclosure techniques from being appropriate for wireless
multimedia services. Together, these requirements necessitate the de-
velopment of new classes of delay-sensitive authentication mechanisms
for multimedia multicasting. An additional issue that is relevant for
service validation is non-repudiation. Although non-repudiation is not
typically studied in the context of multicast services, it is of particular
importance for multimedia multicast services since the combination
of advanced compression coding and best-effort wireless multicast-
ing will not provide any guarantee of the quality of service delivered.
It is important to both the service provider and the customers that
mechanisms are available to irrefutably prove the quality of service
delivered during a multimedia multicast service.

• Attack and Immunization Countermeasures are part of the security
design cycle. The development of a suite of security protocols should
involve an active phase of attacking the protocols in the suite as well
as other protocols. The lessons learned by this effort give valuable
insight into strengthening, or immunizing, the protocols to different
types of attacks.

Throughout the discussion of these topics in this book, we take the view-
point that the combination of content and wireless infrastructure introduces
unique challenges that are not adequately addressed by generic multicast
security solutions. This book presents the research results that have been
undertaken by the authors in the past decade on security and reliability
issues of group-based computing and communications. We hope our artic-
ulating point of the book– the network-aware approach toward security of
group communications– can serve as an enlightening view for future devel-
opment of wireless security.

Preface xi

Finally, we would like to acknowledge the assistance of the Army Re-
search Office, whose University Research Initiatives has helped support the
investigations behind many of the results that we present in this book. Ad-
ditionally, we would like to express our thanks to the many people who
have helped us in developing this book, including Yinian Mao, Min Wu,
Yinian Mao, Jie Song, Wei Yu, and Qing Li.

Contents

Preface vii

1 Introduction 1
1.1 Book Overview . 3

2 Centralized Multi-user Key Management 7
2.1 Basic Multicast Information Theory 7
2.2 Overview of Multicast Key Management 11
2.3 Requirements for Centralized Group Key Management . . . 13
2.4 Basic Polynomial Interpolation Scheme 15

2.4.1 Resistance to Attack 17
2.4.2 Anonymity Reduces Communication Overhead . . . 18

2.5 Extending to a Scalable Protocol 19
2.5.1 Basic Protocol Primitives 21
2.5.2 Advanced Protocol Operations 23

2.6 Architectural Considerations 26
2.6.1 Optimization of Tree Degree

for Communication 26
2.6.2 Binomial Occupancy Model 30
2.6.3 Communication Overhead 32
2.6.4 Computational Complexity 35

2.7 Chapter Summary . 36

3 Group Key Agreement Techniques
in Heterogeneous Networks 39
3.1 Introduction . 39

xiv Contents

3.2 Group DH Overview . 41
3.3 Conference Trees and the Butterfly Scheme 43
3.4 Computational Considerations 49

3.4.1 Minimizing Total Cost 49
3.4.2 Budget Constraints 51
3.4.3 Combined Budget and Cost Optimization 54

3.5 Efficiency and Feasibility Evaluation 56
3.5.1 Comparison of Total Cost 56
3.5.2 Feasibility Comparison 58

3.6 System Sensitivity to False Costs 62
3.6.1 Sensitivity to Approximate Costs 62
3.6.2 Sensitivity to Costs from Untrusty Users 64

3.7 Chapter Summary . 68

4 Optimizing Rekeying Costs in Group Key Agreement 71
4.1 Join-Exit Tree for Reducing Latency

in Key Agreement Protocols 72
4.1.1 Time-efficiency Measurement 72
4.1.2 Join-Exit Tree (JET) Topology 73
4.1.3 The Join Tree Algorithm 74
4.1.4 The Exit Tree Algorithm 80
4.1.5 Performance Analysis 83

4.2 Optimizing Rekeying Cost 85
4.2.1 Performance Metric Review 85
4.2.2 PFMH Key Tree Structure and Basic Procedures . . 87
4.2.3 PACK: an PFMH tree-based contributory group

key agreement . 97
4.2.4 Performance Evaluation and Comparison 107
4.2.5 Contributory Group Key Agreement

with Key Validation 109
4.3 Chapter Summary . 110

5 Optimizing Multicast Key Management
for Cellular Multicasting 113
5.1 Targeting Property of Rekeying Messages 114
5.2 Topology-aware Key Management 115
5.3 Topology-aware Key Management

in Cellular Wireless Network 115
5.3.1 Key Tree Design . 116
5.3.2 Performance Metrics 117
5.3.3 Handoff Schemes for TMKM Tree 118

5.4 Performance Analysis . 122
5.5 Separability of the Optimization Problem 126
5.6 Optimizing TMKM Tree Design 127

5.6.1 Dynamic membership model 128
5.6.2 ALX tree structure 129

Contents xv

5.6.3 User subtree design 132
5.6.4 BS subtree design 133
5.6.5 SH subtree design 134

5.7 Performance Evaluation . 136
5.7.1 One-SH systems . 136
5.7.2 SH subtree design methods 139
5.7.3 Multiple-SH systems 140

5.8 Chapter Summary . 142

6 Key Management and Distribution
for Securing Multimedia Multicasts 143
6.1 A Basic Key Management Scheme 145

6.1.1 Key Refreshing . 146
6.1.2 Member Join . 147
6.1.3 Member Departure 147

6.2 Distribution of Rekeying Messages for Multimedia 148
6.2.1 Media-Independent Channel 150
6.2.2 Media-Dependent Channel 152

6.3 An Improved Rekeying Message Format 155
6.3.1 Basic Message Form 156
6.3.2 Security Analysis of Residue-based Method 157
6.3.3 Achieving Scalability 163

6.4 System Feasibility Study . 166
6.5 Extensions to Multilayered Services 169
6.6 Chapter Summary . 170

7 Hierarchical Access Control for Multi-Group Scenarios 175
7.1 Hierarchical Access Control: Problem Formulation 176

7.1.1 System description 176
7.1.2 Security requirements 177
7.1.3 Data encryption and hierarchical key management . 178

7.2 Centralized Multi-group Key Management Scheme 179
7.2.1 Independent key trees for hierarchical access control 179
7.2.2 Multi-group key management scheme 179

7.3 Performance Measures and Analysis 184
7.3.1 Storage overhead . 185
7.3.2 Rekey overhead . 188

7.4 Simulations and Performance Comparison 189
7.4.1 Statistical dynamic membership model 189
7.4.2 Performance with different group size 191
7.4.3 Scalability . 192
7.4.4 Performance with different transition probability . . 192
7.4.5 Simulation of multi-service applications 196

7.5 Contributory Multi-group Key Management 196
7.6 Related Work . 199

xvi Contents

7.7 Chapter Summary . 200

8 Protecting Membership Information in Secure
Multicasting 203
8.1 GDI Disclosure in Centralized Key Management

Schemes . 204
8.1.1 Attack 1: Estimation of J(t0, t1) and L(t0, t1)

from rekeying-message format 205
8.1.2 Attack 2: Estimation of the group size

from the rekeying-message-size 206
8.1.3 Attack 3: Estimation of group size

based on key IDs . 208
8.1.4 Discussion on three attacks 211
8.1.5 GDI vulnerability in prevalent key management

schemes . 212
8.2 Defense Techniques . 213
8.3 Optimization . 218

8.3.1 The leakage of GDI 218
8.3.2 Communication Overhead 220
8.3.3 System Optimization 221

8.4 Simulations . 221
8.5 GDI Disclosure and Protection in Contributory Key

Management Schemes . 223
8.5.1 Fully and Partially Contributory Key Management

Schemes . 226
8.5.2 GDI Disclosure in Contributory Key Management

Schemes . 227
8.5.3 The Cost of Preventing GDI leakage 227
8.5.4 More on GDI Leakage Problem 228

8.6 Chapter Summary . 228

9 Reducing Delay and Enhancing DoS Resistance
in Multicast Authentication 231
9.1 Background Literature and TESLA 232

9.1.1 Related Work . 232
9.1.2 TESLA Overview . 234
9.1.3 Examination of Trust in TESLA 235

9.2 Staggered TESLA: Multi-Grade Multicast Authentication . 236
9.2.1 Format of the Packet 237
9.2.2 Multi-Grade Source Authentication 238

9.3 Reduced-Delay Multicast Authentication Schemes 243
9.3.1 Staggered TESLA with Proximity Protection 243
9.3.2 Distributed Key Distributors 245

9.4 Buffer Requirements and Tradeoffs 246
9.5 Simulations and Performance Analysis 251

9.5.1 Simulations on Multi-Grade Authentication 251
9.5.2 Performance Analysis of Staggered TESLA 252
9.5.3 Impact of the Locations of Adversaries 255

Contents xvii

9.5.4 Simulation on Reducing Authentication Delay 260
9.6 Conclusion . 262

10 An Authentication Service for Sensor
and Ad Hoc Networks 265
10.1 Introduction . 265

10.1.1 Hierarchical Sensor Network 266
10.2 TESLA and TESLA Certificates 268

10.2.1 TESLA Certs . 269
10.3 Overview of the Authentication Framework 270
10.4 Certificates . 272

10.4.1 Initial Certs . 272
10.4.2 Runtime Certs . 273

10.5 Certificate Renewal . 274
10.5.1 Access Point . 274
10.5.2 Sensor Node . 274

10.6 Entity Authentication . 275
10.6.1 Access Point . 275
10.6.2 Forwarding Nodes 275
10.6.3 Sensor Nodes . 276

10.7 Roaming and Handoff . 277
10.7.1 Forwarding Nodes 277
10.7.2 Sensor Nodes . 277

10.8 Data Origin Authentication 278
10.8.1 Sending Sensor Data in Weak Mode 278
10.8.2 Sending Sensor Data in Assured Mode 279

10.9 Evaluation . 280
10.9.1 Security Analysis . 280
10.9.2 Performance Analysis 281

10.10 Conclusion . 282

References 287

Index 301

1
Introduction

Communication technologies are rapidly maturing, and already the past
decade has witnessed new forms of communication services being deployed.
The deployment of various broadband communication technologies, such as
digital subscriber line (DSL) and fiber optical communications, has led to
a rapid price drop for bandwidth. Access networks, such as wireless local
area networks (WLAN), are now commonplace and are rapidly evolving
into metropolitan-style mesh networks.

Parallel to the rapid development of communication technologies, has
been a surge in information applications. Multimedia content has become
ubiquitous. Content editing software and hardware, such as digital cameras,
are allowing for users to easily create. The availability of the Internet and
the Web has encouraged artists, both professional and amateur, to share
their creative expressions. This combination of application and communi-
cation technologies has created opportunities for new businesses to meet
the growing global demand for information and entertainment.

Our communication infrastructures will continue to evolve. As bandwidth
increases and costs for consumers to enter into the global Internet continue
to decrease, geographical barriers will dissolve. As users are brought virtu-
ally closer to each other and made increasingly aware of each other, they
will want to interact. Whether for good or for bad purposes, they will be
able to share experiences that allow them to work or play together. Al-
ready, new commercial markets, such as interactive television and mobile
video conferences, are on the horizon and promise to take advantage of the
available bandwidth. It is no longer difficult to envision a future where users
will personalize their experiences by interacting with each other. New forms

2 1. Introduction

of marketing and sales will open up, such as geocasting to consumers based
on their location. Consumers with wireless appliances will receive messages
advertising sales as they enter shopping centers, or walk down the street.

Although we traditionally think of communication as a point-to-point
paradigm, the reality is that at many different levels communication is
inherently group-oriented. In the example above, it is unreasonable to target
a single individual with an advertisement, but instead it is far more effective
to market towards a group of potential customers. Interactive games are not
very interactive or entertaining without the social benefits of interacting
with many other players.

Even should the primary communication be between two participants,
there are many other communication operations that take place within a
network that support this primary communication, and many of these op-
erations are necessarily group-oriented. For example, in an ad hoc wireless
network, where mobile devices communicate with each other via multi-
hop routing, topology and route discovery procedures require broadcasting
network-control packets across the network.

Group-oriented communications therefore represent both an important
form of application traffic, as well as a critical form of control traffic. Such
an important and valuable mode of communication not only needs to be
reliable, but also secure. Although the effectiveness and reliability of group-
oriented communication paradigms is important, paradigms like broadcast,
multicast, gossip and flooding protocols are already well documented in a
variety of references [1, 2].

Multicast communication is the most suitable method for delivering data
to multiple entities due to its efficient usage of network resources. Over
the Internet, for example, the recipients of a group communication are
associated with a Class D IP address, and may receive messages sent to
that address [2]. A server that desires to send communication to the group
addresses messages with the group address and transmits a single copy
of the message. It is the responsibility of the network and the multicast-
enabled routers to deliver the message to the users. By sending only a single
copy of the message on the network, the usage of server-side resources such
as bandwidth and processing is reduced.

Instead of focusing on the communication protocols underlying group
communication, this book focuses on issues related to the trustworthiness
of group communications. The adaptation of multicast into commercial ap-
plications depends on the ability to control access to the communications.
For example, consider a service provider that distributes streaming content,
such as multimedia streams, to a group of paying users via a multicast tech-
nology. In such an application, the service provider must be able to ensure
the availability of multicast data to privileged members while preventing
unauthorized use of this data by non-privileged users. A service provider
may control access to content by encrypting the content using a key that is
shared by all group members. The problem of access control is made more

1.1 Book Overview 3

difficult when the content is being distributed to a group of users since the
membership will most likely be dynamic, with users joining and leaving the
service for a variety of possible reasons. Upon changes in the membership,
it is necessary to change the keys associated with the service.

Many applications will require that the communication amongst group
members be protected from unwanted eavesdroppers. Corporate confer-
ences, with members from different parts of the world, might contain in-
dustrial secrets that are in the best interests of the corporation to keep
unknown to rivals. In order to protect the communication traffic, the infor-
mation must be encrypted, requiring that the privileged parties share an
encryption and decryption key.

The most appropriate framework for securing server-oriented content dis-
tribution is by using a centralized entity that is responsible for maintaining
the integrity of the users’ keys. The problem of maintaining access control
is difficult when the content is being distributed to a group of users since
the membership will most likely be dynamic with users joining and leaving
the service. Unlike unicast communication, the departure of a group mem-
ber does not imply the termination of the communication link. In addition,
upon departing the service, users must be de-registered and prevented from
obtaining future multicasts. Similarly, when new members join the service,
it is desirable to prevent them from accessing past content.

The problem of key management for multicasts has seen recent attention
in the literature, and several efficient schemes have been proposed with
desirable communication properties. Most of these schemes, however, have
not considered application-specific or network-specific properties that might
affect the design of an access control system. As an example, multimedia
data has rich properties, such as the capability to have information invisibly
hidden in it and operate in a scalable or layered format, and these properties
may be exploited to achieve an improved design of an access control system
for multimedia multicasts.

The objective behind this book is to examine aspects of secure multi-user
communications, and to highlight the aspects needed to tune secure group
communications for a variety of future applications and networks.

1.1 Book Overview

This book focuses on secure group communication. At the most basic level,
this deals with assuring that communications between more than two par-
ties are confidential and that messages shared come from a source that is
identifiable. However, a theme throughout this book is that such secure
communication should be tailored to specific network scenarios or applica-
tions so that performance improvement can be achieved.

Looking forward, the book covers a range of topics in secure group com-
munication, ranging from contributory to centralized key management, and

4 1. Introduction

from group communication for wireless networks to group communication
for multimedia applications. A break down of the chapters is:

• Chapter 2 presents the fundamental issues associated with centralized
key management schemes for group-oriented applications. In partic-
ular, we first overview the limitation in centralized multicast key dis-
tribution, then provide a survey of several existing approaches, and
finally present a new framework for multicast key management. This
new framework can handle dynamic group environments. This frame-
work leads to efficient handling of dynamic member join, departure
and transferal of access right.

• Chapter 3 presents contributory solutions to the key management
problem for group-oriented applications. In this chapter, we first dis-
cuss the application scenarios in which contributory solutions are nec-
essary or more favorable compared to centralized solutions. Then, the
Diffie-Hellman (DH) protocol is reviewed followed by a discussion of
several existing contributory key agreement schemes that employ or
extend the DH protocol. Finally, a better approach, called butterfly
scheme, is discussed in detail. The butterfly scheme can efficiently
handle dynamic group members in a fully distributed manner. More
importantly, it can accommodate heterogeneities in group members.
When the group members have different capabilities and constrains,
the scheme we describe is able to construct an adaptive key tree struc-
ture and can achieve nearly optimal performance.

• Chapter 4 examines the problem of optimizing rekeying cost in con-
tributory key agreement protocols. Some performance lower bounds
are derived through theoretical analysis. We also discuss two key
agreement schemes that seek to achieve these lower bounds. Particu-
larly, the first method, referred to as JET, uses a special join-tree/exit-
tree topology and takes advantage of cost amortization. This method
can significantly reduce the rekeying cost for user join. Inspired by
JET, the second method consists of a new key tree structure, called
PFMH, and a key agreement protocol, called PACK. This method
only needs O(1) rounds of two-party DH to handle user join and
O(log n) rounds of two-party DH to handle user departure. This per-
formance asymptotically approaches the performance lower bounds.

• Chapter 5 examines the key management problem in cellular wireless
networks. As wireless connections become ubiquitous, consumers will
desire to have multicast applications running on their mobile devices.
In wireless environment where bandwidth is limited and transmission
error rate is high, the design of key management schemes needs to
put special attention on the transmission of the rekeying messages.
In this chapter, we first discuss the targeting property of central-
ized key agreement schemes, and then present a topology-aware key

1.1 Book Overview 5

management scheme. The topology-aware key management approach
takes advantage of the targeting property as well as the broadcast-
ing nature of the wireless media. By employing topology-awareness,
the communication overhead associated with key updating can be
significantly reduced. As a direct consequence, the reliability of key
distribution can be greatly improved.

• Chapter 6 investigates the key management solutions to multimedia
multicast applications. The demand for distributing multimedia to a
large audience is a driving force for multicast research. Different from
generic data, multimedia data has rich properties that can be used to
facilitate the distribution of keying information. In this chapter, we
examine the problem of managing keys for securing multimedia multi-
casts. Then, we show the importance of reducing the communication
overhead associated with identifying which portion of a rekeying mes-
sage is associated with each user. This communication overhead can
be reduced by using a homogenized message format from which every
user can perform a suitable operation to extract the new keying in-
formation. Finally, we identify and compare two ways to distribute
keying information: media independent and media-dependent. In the
media independent approach, keying information and multicast data
are separated. In the media-dependent scheme, the keying informa-
tion is embedded into the multimedia content, using data embedding
techniques. The advantages of the media-dependent keying distribu-
tion is discussed and evaluated.

• Chapter 7 presents the hierarchical access control problem for group
applications. Many group applications contain multiple related data
streams and group members have different access privileges. These ap-
plications are prevalent in many scenarios. For example, multimedia
applications often distribute data in a multi-layer coding format, and
commercial multicast programs can contain several related services,
such as weather, news, traffic and stock quote. In these scenarios,
group members subscribe to different data steams, or possibly multi-
ple of them. In other words, the access control mechanism needs to
supports multi-level access privilege. This is referred to as hierarchi-
cal group access control. In this chapter, we formulate the hierarchical
group access control problem and present efficient solutions in both
centralized and contributory environments.

• Chapter 8 investigates a newaspect in designing groupkeymanagement
protocols. The design of current key management schemes focuses on
maintaining key secrecy and reducing overhead associated with key
updating. However, it is found that key management can disclose
information about dynamic group membership to both insiders and
outsiders. In other words, while the content of group communication

6 1. Introduction

is protected by encryption using the secret keys, group dynamic in-
formation is disclosed through key management. Group dynamic in-
formation (GDI) is the information that describes the dynamic group
membership, including the number of users in a group as a function of
time, and the number of joining or departing users in a time interval.
In many secure group applications, group dynamic information should
be kept confidential. In this chapter, we find possible methods for an
unauthorized party to obtain GDI from key management schemes,
and then investigate how to protect GDI from insiders and outsiders
by making modifications to existing key management approaches.

• Chapter 9 addresses the multicast authentication problem, with an
emphasis on reducing authenticator delay and improving resilience
against denial of service (DoS) attacks. One security service that
has been difficult to provide for multicast is authentication. In this
chapter, we first review representative multicast source authentica-
tion schemes, and give a brief overview of the conventional TESLA
scheme. Then, we present the Staggered TESLA scheme, which can
reduce the authentication delay. We also derive theoretical guidelines
for buffer requirements and discuss the tradeoffs involved in Staggered
TESLA. The objective is to present strategies that reduce the delay
associated with multicast authentication, make more efficient usage
of receiver-side buffers, make delayed key disclosure authentication
more resilient to buffer overflow denial of service attacks, and allow
for multiple levels of trust in authentication.

• Chapter 10 represents an application of multicast authentication tech-
niques to provide important authentication services for wireless net-
works where the participating devices have resource limitations. In
particular, remote sensing applications are becoming an increasingly
important area for research and development due to the critical need
for applications that will perform environmental monitoring, provide
security assurance, assist in healthcare services and facilitate factory
automation. The authentication of the data source as well as the data
is of critical concern since adversaries might attempt to capture sen-
sors and tamper with sensor data. In this chapter, we first introduce
some basic concepts in hierarchical sensor networks, and then describe
TESLA certificates, which represent a modification of delayed-key dis-
closure multicast authentication to achieve a certificate framework.
Finally, we describe a distributed light-weight framework for authen-
tication that involves network nodes requesting trust references from
neighboring nodes in order to establish the trust relationships needed
for network authentication.

2
Centralized Multi-user Key
Management

One of the most important challenges for securing group-oriented communi-
cations is the issue of key management. As we outlined in the introductory
chapter, managing keys in a group-oriented scenario is harder than tradi-
tional key management services.

In this chapter, we explore the challenges associated with centralized
key management for group-oriented applications. We will begin with an
overview of the fundamental limits governing centralized multicast key dis-
tribution, and then provide a survey of several approaches that exist in the
literature. We then develop a new framework for multicast key management
that reduces the communication overhead associated with key management,
and show how to best tune this key management scheme to reduce commu-
nication overhead.

2.1 Basic Multicast Information Theory

We now provide a summary of information theory results relevant to mul-
ticasting. Much of this summary is based upon results that were presented
in [3, 4].

First, let U = {u1, u2, · · · , un} denote the user set consisting of n users
uj . Associated with each user uj is a private key Kj that is drawn uniformly
from a key space K. Of the n users, only a subset of them will be privileged.
We denote the set of private keys associated with privileged members by
KP , and the set of private keys associated with non-privileged users by KF .
For example, if there are n = 4 users, and users u1, u3 are privileged, then

8 2. Centralized Multi-user Key Management

KP = {K1,K3}, and KF = {K2,K4}. There is a secret S that is drawn
from a space S that the group center wishes to transmit to members of the
multicast group U . The broadcast message α is a function of the secret S, as
well as the private user information of the privileged users, α = f(S,KP).

It is useful to derive bounds on the size of the broadcast message given
the following security constraints:

• The user’s secrets KP and the secret S uniquely determine the broad-
cast message

H(α|S,KP) = 0. (2.1)

• Knowing only a user’s private key Kj does not decrease the uncer-
tainty of the secret S. That is

H(S|Kj) = H(S). (2.2)

In particular, this implies that H(S|KP) = H(S).

• No uncertainty in the secret remains if both a user’s private key Kj

and the broadcast message are available.

H(S|Kj , α) = 0. (2.3)

• The broadcast message does not decrease the uncertainty in a user’s
private key:

H(Kj |α) = H(Kj). (2.4)

• The broadcast message alone does not decrease the uncertainty in the
secret:

H(S|α) = H(S). (2.5)

The first results that we present are from Just et al. [3]. In the proofs,
we have followed the basic derivations provided in [3].

Lemma 1. The entropy of the broadcast message α is equal to mutual
information between the message and the joint random variable (KP , S):

H(α) = I(α;KP , S). (2.6)

Proof. We start by applying the chain rule to the mutual information:

I(α;KP , S) = I(α;Kj1) + I(α;Kj2 |Kj1) + · · ·
+ I(α;Kjm

|Kj1 ,Kj2 , · · · ,Kjm−1) + I(α;S|KP).

Expanding the mutual information terms yields the telescoping sum:

I(α;KP , S) = H(α) − H(α|Kj1) + H(α|Kj1) − H(α|Kj1 ,Kj2) + · · ·
+H(α|KP) − H(α|KP , S),

2.1 Basic Multicast Information Theory 9

which yields
I(α;KP , S) = H(α) − H(α|KP , S). (2.7)

However, H(α|KP , S) = 0, so that

I(α;KP , S) = H(α). (2.8)

Lemma 2. Let D ⊂ P be a subset of privileged members such that |D| ≤
m − 1, and let KD be the set of private keys associated with users in D.
Let Ki be a private key of a user ui ∈ P − D. Then for a secret S and a
broadcast message α, we have

H(Ki) − H(Ki|α,KD) ≥ H(S). (2.9)

Proof. The term H(Ki, S|α,KD) may be expanded in two different ways:

H(Ki, S|α,KD) = H(Ki|α,KD) + H(S|α,KD,Ki) (2.10)
= H(S|α,KD) + H(Ki|α,KD, S). (2.11)

Since H(S|α,Kj) = 0 for any user uj in the privileged set P , we have that
H(S|α,KD,Ki) = H(S|α,KD) = 0, and thus

H(Ki|α,KD) = H(Ki|α,KD, S). (2.12)

Observe that since I(Ki;S|α) = I(S;Ki|α) we have

H(Ki|α) − H(Ki|α, S) = H(S|α) − H(S|α,Ki)
H(Ki) − H(Ki|α, S) = H(S). (2.13)

Since H(Ki|α, S) ≥ H(Ki|α, S,KD), we may apply (2.12) to get
H(Ki|α, S) ≥ H(Ki|α,KD). Substituting this result into (2.13) gives
H(Ki) − H(Ki|α,KD) ≥ H(S).

A consequence of this lemma is the fact that each private key Ki will
have entropy greater than the entropy of secret, i.e. H(Ki) ≥ H(S). We
may now put these results together to get a lower bound on the size of the
broadcast message given the conditions stated.

Theorem 1. Suppose that the keys Kj are distributed independently of
each other, i.e. H(Kj ,Ki) = H(Kj) + H(Ki), and the conditions (2.1)-
(2.5) hold, then the following bound on the size of the broadcast message
holds:

H(α) ≥ mH(S) (2.14)

10 2. Centralized Multi-user Key Management

Proof. By Lemma 1 we have

H(α) = I(α;KP , S) (2.15)
= I(α;KP) + I(α;S|KP) (2.16)
= I(KP ;α) + I(S;α|KP) (2.17)
= H(KP) − H(KP |α) + H(S) − H(S|α,KP). (2.18)

Using the fact that H(S|α,KP) = 0 and that

H(KP) = H(Kj1 ,Kj2 , · · · ,Kjm
) (2.19)

= H(Kj1) + · · · + H(Kjm
), (2.20)

which follows from the independence of the private keys, we have

H(α) = H(Kj1) + · · · + H(Kjm
) − H(KP |α) + H(S). (2.21)

Similarly, expanding H(KP |α) using the chain rule gives

H(KP |α) = H(Kj1 |α) + H(Kj2 |α,Kj1) + · · ·
+H(Kjm

|α,Kj1 , · · · ,Kjm−1). (2.22)

Upon substitution we get

H(α) = H(Kj1)−H(Kj1 |α) +

m�
i=2

�
H(Kji)−H(Kji |α, Kj1 , · · · , Kji−1)

�
+ H(S).

(2.23)

By observing that H(Kj1 |α) = H(Kj1), and applying Lemma 2 we get the
desired result H(α) ≥ mH(S).

In summary, we have presented two main results from [3] that govern the
theoretical underpinnings of multicast key management. The first result
that was shown states that the entropy of a user’s private information
must be greater than the entropy of the secret that is to be distributed
to the group. This translates into the security terminology by implying
that the bit length of the user’s private key should be as large as the bit
length of the group secret. It was also shown, under the assumption of
independent keys, that the size of the broadcast message must be at least
as large the size of the group times the size of the secret that is to be
conveyed. This latter result gives a lower bound on the communication
requirements for rekeying. In particular, it implies that the best that can
be done is a message whose size is linear in the amount of group members
unless the key independence assumption is relaxed. As we shall see in the
later discussions, the implication of this result is that we must do away
with the independence assumption in order to reduce the message size.
Currently, the most popular family of multicast key management schemes
are those that employ a tree key hierarchy, in which the key information
that each user has is not independent of each other.

2.2 Overview of Multicast Key Management 11

2.2 Overview of Multicast Key Management

The distribution of identical data to multiple parties using the conven-
tional point-to-point communication paradigm makes inefficient usage of
resources. The redundancy in the copies of the data can be exploited in
multicast communication by forming a group consisting of users who receive
similar data, and sending a single message to all group users [1]. Access con-
trol to multicast communications is typically provided by encrypting the
data using a key that is shared by all legitimate group members. The shared
key, known as the session key (SK), will change with time, depending on
the dynamics of group membership as well as the desired level of data pro-
tection. Since the key must change, the challenge is in key management–
the issues related to the administration and distribution of keying material
to multicast group members.

In order to update the session key, a party responsible for distributing
the keys, called the group center (GC), must securely communicate with
the users to distribute new key material. The GC shares keys, known as key
encrypting keys (KEKs), that are used solely for the purpose of updating
the session key and other KEKs with group members.

As an example of key management, we present a basic example of a mul-
ticast key distribution scheme. Suppose that the multicast group consists
of n users and that the group center shares a key encrypting key with each
user. Upon a member departure, the previous session key is compromised
and a new session key must be given to the remaining group members.
The GC encrypts the new session key with each user’s key encrypting key
and sends the result to that user. Thus, there are n − 1 encryptions that
must be performed, and n− 1 messages that must be sent on the network.
The storage requirement for each user is 2 keys while the GC must store
n + 1 keys. This approach to key distribution has linear communication,
computation and GC storage complexity. As n becomes large these com-
plexity parameters make this scheme undesirable, and more scalable key
management schemes should be used.

In general, during the design of a multicast application, there are several
issues that should be kept in consideration when choosing a key distribution
scheme. We now provide an overview of some of these issues.

• Dynamic nature of group membership: It is important to effici-
ently handle members joining and leaving as this necessitates changes
in the session key and possibly any intermediate keying information.

• Ability to prevent member collusion: No subset of the members
should be able to collude and acquire future session keys or other
member’s key encrypting keys.

• Scalability of the key distribution scheme: In many applications
the size of the group may be very large and possibly on the order

12 2. Centralized Multi-user Key Management

of several million users. The required communication, storage, and
computational resources should not become a hindrance to providing
the service as the group size increases.

One approach to group key management is provided by the group key
management protocol (GKMP) [5]. In this scheme, the GC uses a SK,
called a group traffic encrypting key (GTEK) in the GKMP literature, and
a group key encrypting key (GKEK). The GC updates the SK by using
the GKEK. This allows all group members to be updated using a single
encrypted message. A major disadvantage of GKMP, however, is that it is
not able to handle member departures, or the compromise of a single mem-
ber. The compromise of the GKEK means that all future communication
is compromised since an adversary can calculate future session keys.

Fiat and Naor [6] present a broadcast key distribution scheme that allows
for a single source to transmit a SK to a dynamic subset of privileged users
such that no coalition of at most k non-privileged users can acquire the
SK. The communication overhead of their scheme is not dependent on the
amount of non-privileged members, but instead on the security parameter
k and a parameter describing the probability that a coalition of at most k
non-privileged users can acquire the SK.

In Section 2.1, we summarized the theoretical work of [3,4] for the distri-
bution of secret information via broadcast messages. These results provide
an insight into the communication resources needed to achieve the above
goals. In particular, it was shown in Theorem 1 that for a key size of B
bits, the message needed to update a group of n users must be at least nB
bits to provide perfect security in the key distribution. One key result of [3]
is that in order to achieve a smaller broadcast size, it is necessary to do
away with the constraint that the private information held by each user
is mutually independent. Therefore, to reduce the usage of communication
resources, the users must share secret information.

One strategy for having users share secret information is to arrange the
keys according to a tree structure. The tree based approach to group rekey-
ing was originally presented by Wallner et al. [7], and independently by
Wong et al. [8]. In such schemes an a-ary tree of depth loga n is used to
break the multicast group into hierarchical subgroups. Each member is as-
signed to a unique leaf of the tree. KEKs are associated with all of the
tree nodes, including the root and leaf nodes. A member has knowledge
of all KEKs from his leaf to the root node. Thus, some KEKs are shared
by multiple users. Adding members to the group amounts to adding more
depth to the tree, or adding new branches to the tree [8, 9]. Upon mem-
ber departure the session key and all the internal node KEKs assigned to
that member become compromised and must be renewed. Due to the tree
structure, the communication overhead is O(log n), while the storage for
the center is O(n) and for the receiver is O(log n).

Various modifications to the tree scheme have been proposed. In [10], a
modification to the scheme of Wallner et al. is presented. By using pseudo-

2.3 Requirements for Centralized Group Key Management 13

random generators, their scheme reduces the usage of communication re-
sources by a factor of two. Similarly, Balenson et al. [9] were able to reduce
the communication requirements by a factor of two using one-way function
trees. The security of the Canetti et al. scheme can be rigorously proven,
while the security of the approach using one-way function trees is based
upon non-standard cryptographic assumptions and has therefor not been
rigorously shown. In [11] Canetti et al. examine the tradeoffs between stor-
age and communication requirements, and a modification to the tree-based
schemes of [7, 8] is presented that achieves sublinear server-side storage.
Further, in [12], it was shown that the optimal key distribution for a group
leads to Huffman trees and the average number of keys assigned to a mem-
ber is related to the entropy of the statistics of the member deletion event.

2.3 Requirements for Centralized Group Key
Management

A conditional access system for group communications must be able to
cope with the demands of the application. These demands must not only
address the security and access requirements of the service provider, but
also address the convenience and satisfaction of the client. Below we have
listed several functionalities that are desirable in a conditional access system
for dynamic group communication scenarios:

1. The solution should be able to refresh the keys used to protect content.

Due to the bulk quantities of data being multicast, it is feasible that
session keys may become compromised. Therefore, it is important
that there is a means available to refresh the session key and interme-
diate keying material in order to maintain a desirable level of content
protection.

2. The solution should provide the ability for members to join and depart
the service at will, as well as allow the content distributor to easily
revoke a member’s ability to access content.

Unlike unicast communication, the departure of a group member does
not imply the termination of the communication link. In addition,
upon departing the service, users must be de-registered and prevented
from obtaining future multicasts. Similarly, when new members join
the service, it is desirable to prevent them from accessing past content.
Additionally, situations might arise where the content provider desires
to prevent a user from accessing future content.

3. The solution should be resistant to member collusion.

No subset of the members should be able to collude and acquire keying
information of non-colluding members.

14 2. Centralized Multi-user Key Management

4. The solution should provide a means for an end-user to recover from
missed rekeying messages.

In many application environments, the connection between a client
and the server may be severed. For example, in cellular applications,
a client might move temporarily through a region of severe fading.
Adverse communication conditions and common accidents, such as
a system crash, might mean that the client misses several rekeying
messages needed to update his key database. Users might also desire
to switch from terminal to terminal, with the possibility of not being
able to receive communication while moving across terminals. It is
important to have a means that allows the client to resume access to
the service.

5. The solution should allow the user to temporarily transfer access rights
to another party.

In many business scenarios, a client will subscribe to a service where
content, such as multimedia or stock quotes, is streamed. Users may
wish to transfer their access rights to the data stream to their friends
without canceling or transferring their subscription.

6. The solution should address the issue of resource scalability for sce-
narios consisting of large privileged groups.

In many applications, the size of the group may be very large and
possibly on the order of several million users. The required commu-
nication, storage, and computational resources should not become a
hindrance to providing the service as the group size increases.

Some of these functionalities have been discussed in other tree-based key
management schemes. However, many of these objectives are not consid-
ered. For the remainder of this chapter we shall present an architecture for
the management of keys in a conditional access multicast system that is ca-
pable of achieving each of these requirements. The system that we describe
makes use of a tree-structured key hierarchy and basic primitive operations
to provide a solution that satisfies the above requirements.

Additionally, whereas most of the multicast key management schemes in
the literature do not consider the issue of flagging to the user which rekey-
ing messages are intended for them, we provide this important functionality
in our message structure and factor this additional overhead into our con-
siderations. We will focus on the usage of communication resources and
calculate the amount of communication needed to perform a member join
and a member departure operation for different tree degrees and different
amount of users. We determine the optimal tree degree for scenarios where
member join is most important, member departure is most important, and
where both operations are equally important. Then, in order to better study
the optimization of the key management scheme, we present a stochastic

2.4 Basic Polynomial Interpolation Scheme 15

occupancy model that allows one to study the mean behavior of a key tree
under different degrees of occupancy. Additionally, we compare the amount
of communication overhead needed in our scheme with the amount of com-
munication overhead that a conventional tree-based rekeying scheme, such
as [8], would need to flag users which component of a rekeying message is
intended for them.

Looking forward, in Section 2.4 we introduce a method for distributing
keys using polynomial interpolation and parametric one-way functions. This
basic scheme is used as a building block for a protocol primitive described
later in the chapter. Therefore, we present a study of its security and com-
munication features. In Section 2.5 we present some protocol primitives and
use these to construct more complex key management operations capable of
maintaining the key hierarchy in scenarios with dynamic membership. The
size of the messages needed for updating the keys is computed in Section 2.6
and are used to determine the optimal degree of the key distribution tree.
Additionally, we examine the computational requirements of the tree-based
polynomial interpolation scheme proposed in this chapter.

2.4 Basic Polynomial Interpolation Scheme

The heart of the new multicast key management scheme that we will de-
scribe involves the use of a polynomial interpolation algorithm that is ca-
pable of reducing the communication overhead needed for key management
compared with multicast key management schemes that use messages that
are concatenations of individual rekeying messages.

In this section we describe the basic scheme for distributing keys that will
be used in the scalable key management protocol of Section 2.5. The basic
key distribution scheme that we describe is a modification of the polynomial
interpolation scheme of [4]. We have introduced the use of one-way functions
and a broadcast seed to protect private user KEKs from compromise and
allow private user KEKs to be reused.

We shall use keyed (parametric) one-way functions in our work to provide
computational security. A one-way function h is a function from X×Y → Z
such that given z = h(x, y) and y it is computationally difficult to determine
x [13]. Keyed one-way functions, or parametric one-way functions (POWF)
are families of one-way functions that are parameterized by the parameter
y. Symmetric block ciphers can be used to construct POWFs. Let x ∈ X
and y ∈ Y, and consider a symmetric cipher Ex(y) : Y → Y where the
subscript denotes the key used in the encryption of the plaintext y. Thus
X is the key space of the cipher E, while Y is the space of plaintexts
and ciphertexts. Define a hash function f : Y → Z. Then the function
h(x, y) = f(Ex(y)) is a POWF parameterized by y since any reasonable
cryptosystem can withstand a known-plaintext attack, that is knowledge of
Ex(y) and y does not make it easy to determine the key x. Note that it is

16 2. Centralized Multi-user Key Management

u
1

u
n-1 nuu

2

K K K. . .K

K

K

n

s

ε

1 2 n-1

FIGURE 2.1. The basic key distribution scheme used in the polynomial interpo-
lation method.

not necessary that the hash function f have any cryptographic properties
as the required cryptographic strength is provided by E. Throughout this
chapter we shall assume the existence of parametric one-way functions that
map sequences of 2B bits into sequences of B bits.

Consider the basic key distribution scheme depicted in Figure 2.1. Each
user ui has a personal B-bit KEK Ki that is known only by the group
center and user ui. Additionally, all of the users share a B-bit root KEK
Kε(t) and a session key Ks(t) that will vary with time t.

Suppose that user un decides to depart, then we must renew the keys
Kε(t−1) and Ks(t−1) since they were shared by un and the other users. The
first step is to send the new Kε(t) to the remaining users. In the polynomial
scheme, each user ui has the distinct pair (zi,Ki) ∈ Zp × Zp, where Zp

denotes the integers modulo the prime p. The zj are public knowledge, and
are not considered as part of the secret information that the user must
store. Instead, the zj is any quantity that is used to identify the user, for
example a processor id. The GC has made available f , a POWF taking 2B
bits to B bits. The GC first broadcasts the seed µ(t) to everyone. Next, the
GC associates the following quantity with each user uj

wj = Kε(t) + f(Kj , µ(t)) (mod p). (2.24)

2.4 Basic Polynomial Interpolation Scheme 17

The GC generates a degree n − 2 polynomial p(z) that interpolates the
points (zj , wj), i.e. p(zj) = wj . The GC represents p(z) as

p(z) =
n−2∑

i=0

ciz
i (mod p) (2.25)

and transmits the message αε(t) = (c0, c1, · · · , cn−2) to update Kε(t). This
completes the action needed by the GC to update the root KEK, and the
session key is then updated using Kε(t) by transmitting αs(t) = EKε(t)

(Ks(t)).
A member uj can calculate p(zj) = wj and f(Kj , µ(t)), and hence can

recover Kε(t).

2.4.1 Resistance to Attack

There are two sources of adversaries for a key management scheme. The
first type of adversary is an external adversary. This type of adversary is
not a member of the service, but receives the encrypted content as well
as the rekeying messages. In order for the external adversary to cheat the
service, he must mount a successful attack against the rekeying messages
in order to acquire the session key, which is needed to decrypt the content.
The second type of adversary is an internal adversary, who is a member
that uses the rekeying messages and his knowledge of his keys to attempt
to acquire another user’s keys. If an internal adversary can successfully
acquire another user’s keys, he may cancel his membership to the service,
and use the compromised keys belonging to another user to enjoy the service
without having to pay.

In the polynomial scheme, an external adversary receives αε as well as
αs(t). In order for the adversary to acquire the SK, he must mount a suc-
cessful attack against the cipher used in forming the message αs(t). Careful
selection of a strong cipher algorithm that has received serious study, such
as Rijndael [14], will make a successful attack of the SK rekeying message
unlikely. Even should a successful attack of the SK rekeying message take
place, a future update of the SK would require a subsequent successful
attack of the SK rekeying message, which is equally unlikely. Hence, a suc-
cessful attack against the SK rekeying message would only be a short-lived
victory for a pirate.

A second method for acquiring the session key is to attack the message
αε. Given the message αε(t), and knowledge of a zj , it is possible that an
adversary may calculate wj . However, the adversary must either determine
Kε(t) or a user’s f(Kj , µ(t)) given wj = Kε(t)+f(Kj , µ(t)) (mod p). The
modulo operation makes wj independent of either Kε(t) or f(Kj , µ(t)).
Should an external adversary successfully attack Kε(t), then he may acquire
the session key. However, upon the next update of the session key, he must
make another successful attack upon the root KEK.

18 2. Centralized Multi-user Key Management

The only method for an external adversary to be able to repeatedly
acquire the SK is to mount a successful attack on a user’s personal key
Kj . This requires successful determination of f(Kj , µ(t)) given wj , which
requires searching a space of order p possibilities, and then successfully
attacking the one-way function to acquire Kj . The strength of the one-
way function should be as strong as the strength of the encryption used to
protect the SK rekeying message.

We now discuss the susceptibility of the original polynomial scheme of [4]
to internal attacks. In the discussion that follows, we refer the reader to
Section 3.1 of [4]. For simplicity, we shall assume that the same key K is
being distributed to all of the users. Observe that since the zj-coordinates
are public knowledge, an internal adversary may calculate wj by evaluating
the interpolating polynomial at zj . With knowledge of wj , the adversary
may use his knowledge of K to determine user uj ’s private information.
Thus, the polynomial scheme of [4] does not protect the private information
of each user, and hence cannot be used more than once. If both the zj

coordinate and the personal key Kj are kept secret, then an adversary’s
task is to search Zp for any of the n user’s zj coordinate. This is more
difficult for an adversary to attack, but also requires both the server and
the clients to store twice as much secret information.

As we shall describe in Section 2.6.3, we chose to pursue a different ap-
proach to ensuring the sanctity of each user’s private information in order
to reduce the communication overhead in our protocol. An inside adver-
sary ui who desires to calculate another user’s key information Kj can
calculate p(zj) = wj , and therefore can calculate f(Kj , µ(t)) = wj − Kε(t)
(mod p). However, it is difficult for him/her to calculate Kj given µ(t) and
f(Kj , µ(t)) since f is a parametric one-way function. Additionally, should
two or more users collude, their shared information does not provide any
advantage in acquiring another user’s Kj .

2.4.2 Anonymity Reduces Communication Overhead

The above scheme is used in constructing a protocol primitive in the fol-
lowing section. In the protocol primitive, there is a parent key Kε and a
handful of sibling keys Kj that are used to update the parent key. Unlike
the example described above, application of the protocol primitive might
not use all of the sibling keys to update the parent key. This scenario might
occur when the GC knows that a sibling key has become compromised or
invalidated.

Suppose that there are a possible sibling keys and that m of those sibling
keys are used to update the parent key. In a conventional key distribution
scheme, such as [8], the update to the parent key is performed by a rekeying
message of the form

α = {EKj1
(Kε)‖EKj2

(Kε)‖ · · · ‖EKjm
(Kε)} (2.26)

2.5 Extending to a Scalable Protocol 19

where jk denotes the sequence representing the m sibling keys used in
updating parent key, and ‖ denotes message concatenation. In addition to
the rekeying message, it is necessary to transmit the amount m of children
keys, and the user ID message {j1, j2, · · · , jm}, which specifies which portion
of the rekeying message a user needs in order to determine the new session
key.

The transmission of the user ID message in the conventional scheme
reveals which sibling keys are still valid. However, it requires that �log2 a�
bits to represent m and m�log2 a� bits to represent {j1, j2, · · · , jm}. The
total communication overhead of the conventional scheme is thus (m +
1)�log2 a� bits.

The polynomial interpolation scheme creates a composite message that
does not require any user ID message, but instead requires the broadcast of
the seed µ(t). The polynomial scheme defines the rekeying message as the
output of a function PolyInt which returns the coefficients of the interpo-
lating polynomial, thus

α = PolyInt(K, {zj1 , zj2 , · · · , zjm
}, {Kj1 ,Kj2 , · · · ,Kjm

}, µ(t)). (2.27)

The input to PolyInt is the key K that is to be distributed, the set of valid
non-secret ID parameters {zj1 , zj2 , · · · , zjm

}, the broadcast seed µ(t), and
the set of valid sibling keys {Kj1 ,Kj2 , · · · ,Kjm

}. Given a valid sibling key
and the seed µ(t), the new parent key can be determined. On the other
hand, an invalid sibling key is unable to determine the new parent key.

If the prime p used in the polynomial scheme has the same bit length as
the output of one of the encryptions EK , then the message size of the poly-
nomial scheme will be the same as the rekeying message of the conventional
scheme. If Bµ is the bit length of the broadcast seed, then a measure of
comparison between the conventional scheme and the polynomial scheme
is the difference (m + 1)�log2 a� − Bµ. For a single sibling update of the
parent node, this difference might favor the conventional approach. The
advantage of the polynomial scheme becomes more pronounced when used
in a multi-level tree as in Section 2.5.

2.5 Extending to a Scalable Protocol

In the previous section we described the basic scheme for distributing keys
during member departures. The basic polynomial interpolation scheme had
linear communication requirements during member departures. We now
describe a scalable protocol that provides renewal of security levels, handles
membership changes, provides a mechanism for reinserting valid members,
and allows for the transferal of access rights.

In order to achieve improved scalability, we use a tree-based key hierarchy
as depicted in Figure 2.2. In general, the tree can be an a-degree tree.

20 2. Centralized Multi-user Key Management

sK

Kε

K
000

0 1

0 1 0 1

0 1 0 1 0 1 0 1

K
0 1

K
00 K01

K
10 11

K
001

K
010

K
100

K
101

K
110

K
111

K
011

K

K

000
u u

001 010
u u u u u u

011 100 101 110 111

Invalidated Keys

Joining/Departing
Member

FIGURE 2.2. Tree-based key distribution.

Attached to the tree above the root node is the session key Ks. Each node
of the tree is assigned a KEK which is indexed by the path leading to itself.
Additionally, each node has a non-secret ID variable zσ which is used as
a non-secret parameter for the PolyInt function. The symbol ε is used to
denote the root node. Each user is assigned to a leaf of the tree and is
given the KEKs of the nodes from the leaf to the root node. Additionally,
all users share the session key Ks. For example, user u111 is given the keys
K111, K11, K1, Kε, and Ks.

In the protocol that follows, the GC transmits messages to the users via
a broadcast channel. It is assumed that each user has an upstream channel
with minimal bandwidth that is available to convey messages to the GC,
such as informing the GC of the intent to depart the service.

The messages that the GC broadcasts to the users must have a standard-
ized structure that is known to all receivers. There are two basic message
formats as depicted in Figure 2.3. The first contains three components while
the second has five components. The function B() is used to denote the bit
length of its operand, thus B(σ) is the amount of bits needed to repre-
sent σ. The variable Operation ID flags the user which protocol primitive
is about to be performed. Only five primitive operations are used, and we
may therefore represent Operation ID using a 3 bit string. Table 2.1 maps
the primitive operations with their corresponding ID bit string.

2.5 Extending to a Scalable Protocol 21

TABLE 2.1. Mapping between primitive operations and their corresponding ID
bit string.

bit ID primitive
000 Primitive-1
001 Primitive-2
010 Primitive-3
011 Primitive-4
100 Primitive-5

In the discussion that follows, we assume that the tree has degree a, and
that there are L levels to the tree. The amount of multicast group members
n is limited by the amount of leaf nodes on the tree. Thus n ≤ aL.

2.5.1 Basic Protocol Primitives

We have identified five basic operations needed in building a system that
allows for the update and renewal of the key hierarchy. We now describe
each case.

1. Primitive-1(Update SK): This basic operation uses the current root
KEK Kε to update the session key via the rekeying message

α = EKε(t)[Ks(t)] (2.28)

The message format is depicted in Figure 2.3(a). We assume that the
maximum size that α can be is 256 bits, and we therefore need 8 bits
to represent B(α). This choice of bit length for α would allow for the
use of encryption algorithms with a key size of up to 256 bits.

2. Primitive-2(Transmit Seed): The broadcast seed is used in the poly-
nomial scheme to provide protection of secret information. Addition-
ally, it plays a role in reducing the communication overhead associated
with flagging the users which part of the message is intended for them.
The broadcast of the seed µ(t) does not require encryption to protect
it. The message format for the transmission of the broadcast seed is
depicted in Figure 2.3(a). Here α = µ(t), and B(α) is the amount of
bits needed to represent µ(t). Again, we assume that the maximum
size of α is 256 bits, and that 8 bits are used to represent B(α).

3. Primitive-3(Self Update): It is often necessary for a node, indexed
by the a-ary symbol σ, to have its associated key updated using the
key at the previous time instant. Thus we will go from Kσ(t − 1) to
Kσ(t) by the following message

α = EKσ(t−1)[Kσ(t)]. (2.29)

22 2. Centralized Multi-user Key Management

Operation

ID
�B()�

B()� B()��
Operation

ID
�

(a)

(b)

FIGURE 2.3. The two message structures used in the protocol primitives.

In this case, we need to flag the receivers which node is being up-
dated. This requires the transmission of the a-ary representation of
the node, as well as the amount of bits needed to represent the node.
This is depicted in Figure 2.3(b) by the B(σ) and σ components of
the message. The rest of the message contains the bit length of the
message α and the actual rekeying message α. Since the maximum
depth of the tree that needs to be represented is L− 1 and the tree is
an a degree tree, the maximum amount of bits needed to represent σ
is �log2 a�(L− 1) + 1, where the addition of 1 bit was included to ac-
count for the need to represent the empty string ε as a possible choice
for ε. In order to represent B(σ), we use �log2(�log2 a�(L − 1) + 1)�
bits. The maximum bit length for α is 256 bits, and 8 bits are used
to represent B(α).

4. Primitive-4(Update Parent): It is also necessary for the children
nodes to update the key of their parent nodes. If σ is the symbol
representing the parent node to be updated, then the message

α = PolyInt(Kσ(t), {zChild(σ)(t)}, {KChild(σ)(t)}, µ(t)) (2.30)

is used. Here we have defined the function Child(σ) to denote the
set of valid children nodes of σ. For example, if we have a binary
tree and σ = 00, and both children nodes are valid, then Child(σ) =
{000, 001}. Thus, the message α uses the keys of valid children nodes
to update Kσ(t). Observe that this message requires that µ(t) has
already been broadcast using Primitive-2, or that the choice of µ(t)
is implicitly known. The message form is depicted in Figure 2.3(b),
where again we transfer the bit length of σ and the actual symbol
σ to the recipients, followed by the bit length of α and the rekeying
message α. We use the same bit allocation for σ and B(σ) as in
Primitive-3. However, the maximum length for α is aBKEK , and we
therefore need �log2 aBKEK� bits to represent B(α).

5. Primitive-5(Reaffirming Parent): In some operations, it is useful
to have a sibling node reaffirm the value of a parent node’s key. We

2.5 Extending to a Scalable Protocol 23

define a function Par(σ) to denote the symbol corresponding to the
parent of the node indexed by σ. To reaffirm the value of a parent
node’s key, we transmit the message

α = EKσ(t)[KPar(σ)(t)]. (2.31)

The message form is depicted in Figure 2.3(b), and follows the same
structure as used in Primitive-3.

2.5.2 Advanced Protocol Operations

We now describe more advanced protocol operations that can be con-
structed using the primitive operations described above. In particular, we
focus on the operations of an addition to the membership, a deletion of a
user from the membership, the reinsertion of a member into the system,
and the transferal of access rights from one user to a new user.

Before we proceed, we present a few comments about how the primi-
tive operations can be used to perform periodic renewal of keying material.
Primitive-1 provides a method for performing periodic refreshing of the ses-
sion key. Refreshing the session key is important in secure communication.
As a session key is used, more information is released to an adversary, which
increases the chance that a SK will be compromised. Periodic renewal of
the session key is required in order to maintain a desired level of content
protection, and can localize the effects of a session key compromise to a
short period of data. Since the amount of data encrypted using KEKs is
usually much smaller than the amount of data encrypted by a session key,
it is not necessary to refresh KEKs as often. However, the periodic renewal
of a KEK can be performed using Primitive-3.

Member Join

In many applications, such as pay-per-view broadcasts and video confer-
ences, the group membership will be dynamic. It is important to be able
to add new members to any group in a manner that does not allow new
members to have access to previous data. In a pay-per-view system, this
amounts to ensuring that members can only watch what they pay for, while
in a corporate video conference there might be sensitive material that is not
appropriate for new members to know.

Suppose that a new user contacts the service desiring to become a group
member. The new client sends the GC a message detailing the client’s cre-
dentials, such as identity information, billing information, and public key
parameters that the GC may use to communicate with the new client.
Mutual authentication between the new client and the GC should be per-
formed. A public key infrastructure, such as X.509 certificates [15], may be
used for this purpose. Upon verification of the new user’s information, the
GC assigns the client to an empty leaf of the key tree. For simplicity of

24 2. Centralized Multi-user Key Management

presentation, we assume that the tree has empty slots. If the tree is already
full, then the user may either be turned away, or an additional layer must
be added to the tree using a separate operation. The GC then issues the
new client his keys via a communication separate from the communications
sent to the current group members, as well as informing the new user the
time at which those keys will become valid.

Meanwhile, the GC updates the current members of the multicast group.
Suppose that the GC plans on inserting the new member into the leaf
node indexed by the symbol ω. Then the SK as well as the KEKs on the
path from the parent node of ω to the root node ε must be renewed. The
following algorithm describes how this procedure can be accomplished using
the protocol primitives. We use the notation Parj(ω) to denote the parent
function applied j times to ω. Thus Par2(ω) is the grandparent of ω.

for j = 1 : L do
σ = Parj(ω) ;
Update Kσ(t − 1) → Kσ(t) using Primitive-3 ;

end
Update SK using Primitive-1 ;

Member Departure

Members will also wish to depart the service, and must be prevented from
accessing future communication. Assume that user uω contacts the GC
wishing to depart the service. Upon authenticating the user’s identity, the
procedure that the GC enacts to remove member uω and update the keys
of the remaining members is

Generate random µ(t) ;
Broadcast µ(t) using Primitive-2 ;
for j = 1 : L do

σ = Parj(ω) ;
Determine valid children of σ: Child(σ) ;
Update Kσ(t − 1) → Kσ(t) using Primitive-4 ;

end
Update SK using Primitive-1 ;

Member Reinsertion

It might often occur that a valid member, denoted by index ω, misses the
rekeying messages needed to update the key hierarchy. The client must
notify the GC that he missed rekeying messages using an upstream (client

2.5 Extending to a Scalable Protocol 25

to server) channel. Upon verification of the user’s identity, the GC performs
the member reinsertion operation, which sends the new user the specific
keys he needs to be able to resume the service.

If the service provider has a downstream (server to client) channel avail-
able to communicate with the user, then service provider may use this
channel to send the needed keys by encrypting them with the user’s per-
sonal key Kω. In many scenarios, however, after the initial contact with
the service provider, the client has a low-bandwidth channel for upstream
communication, and only the broadcast channel available for downstream
communication. In these cases, although only a single user needs the rekey-
ing messages, the rekeying messages must be multicast. Since this user has
a valid private key Kω, the GC can start with this key to provide KPar(ω)(t)
to the user. We can then proceed up the tree, using the sibling key to con-
vey the current status of the parent key. The procedure for this operation
is as follows:

for j = 1 : L do
σ = Parj(ω) ;
Convey parent key Kσ(t) to siblings using Primitive-5 ;

end
Convey current SK using Primitive-1 ;

An added bonus of using the sibling key to convey the current status of
the parent key is that other users may observe these rekeying messages to
reaffirm the validity of some of their keys.

Transferal of Rights

Suppose that user uω wishes to give his rights to another user who is not
currently a member. We will denote this new user by uωB

to indicate that he
will take over the keys on the path from ω to the root node. For the purpose
of calculating parent and sibling relationships, ω and ωB are identical, thus
Par(ω) = Par(ωB).

In order to transfer access rights, both users must contact the GC, who
performs an authentication procedure to verify that the transferal is le-
gitimate. Then, using a secure channel, the GC gives to user uωB

its own
personal key KωB

. One method for creating a secure channel is to use pub-
lic key cryptography. KωB

replaces Kω on the key tree. All of the keys that
belonged to uω must be changed to prevent uω from accessing content that
he has given up the right to access. The procedure for transferring access
rights is as follows:

We observe that the algorithm for transferring rights is nearly identical
with the algorithm for removing a member from a group. The difference
lies in the fact that user uωB

is considered a valid user, and hence is a valid
child of its parent.

26 2. Centralized Multi-user Key Management

Generate random µ(t) ;
Broadcast µ(t) using Primitive-2 ;
for j = 1 : L do

σ = Parj(ωB) ;
Determine valid children of σ: Child(σ) ;
Update Kσ(t − 1) → Kσ(t) using Primitive-4 ;

end
Update SK using Primitive-1 ;

The procedure for user uω to reclaim his access privileges is similar.
This time, only user uω is required to contact the GC requesting that he
regain his access privileges. The GC performs an authentication procedure
to guarantee that the identity of uω is truthful, and then replaces KωB

with
Kω. The KEKs and SK are changed according to the above algorithm, with
ω replacing ωB .

2.6 Architectural Considerations

2.6.1 Optimization of Tree Degree for Communication

The amount of communication that a rekeying protocol requires affects the
speed at which the rekeying scheme can handle membership changes. It
is therefore important to minimize the size of the communication used by
the key management scheme. In particular, since the two most important
operations performed by a multicast key management protocol are mem-
bership joins and membership departures, we shall focus on optimizing the
tree degree for these two operations.

In what follows, we present a worst-case analysis of the communication
requirements for member join and member departure operations. It is ob-
served that member join and member departure operations lead to con-
flicting optimality criteria. Since a real system will have to cope with both
member joins and member departures, we jointly consider the departure
and join operations, and present optimization results when both member
join and departure operations are equally weighted.

We refer the reader to the protocol descriptions as well as the message
structure in Figure 2.3. We shall denote the degree of the tree by a, and
the number of levels in the tree by L. BSK shall denote the bit length of
session key, BKEK shall denote the bit length of the key encrypting keys,
and Bµ the bit length of the broadcast seed µ(t).

Worst-Case Analysis

It is easy to see that, for a given tree, the scenario that produces the most
communication for the member join operation occurs when one node on

2.6 Architectural Considerations 27

each level from the root to level L − 1 must be updated. In this case, all
of the KEKs on the path from one user to the root must be refreshed. We
now calculate the amount of communication needed to update the tree for
this worst-case scenario.

The member join operation consists of two types of operations: updating
the KEKs, and updating the SK. In order to update the KEKs, we use
Primitive-3 L times. Each step of the loop must send the quintuple (op-
eration ID, bit length of update node B(σ), node ID σ, bit length of the
update message B(α), update message α). The symbol σ starts near the
bottom of the tree, and through application of the Parent function moves
toward the root of the tree.

In order to represent the symbol σ during the jth iteration of the loop, we
need to convert from base a to base 2 and hence B(σ) = �log2 a�(L− j)+1
bits. In addition, we must send B(σ), which requires

�log2 (�log2 a�(L − 1) + 1)�

bits. Here the addition of 1 was to allow for the need to represent the empty
string ε as a possible choice for σ. Similarly, in each stage of the loop the
rekeying message α has bit length B(α) = BKEK and since we have fixed
the maximum key length to be 256 bits, we require 8 bits to represent
B(α). The update to the session key requires sending the ID flag, B(α)
and α. Therefore, the amount of bits needed to update the session key is
3+8+BSK . The total amount of bits needed to update the key tree during
a member join is

CMJ =

�
� L�

j=1

�
3 + �log2(�log2 a�(L − 1) + 1)� + �log2 a�(j − 1) + 9 + BKEK

���
+3 + 8 + BSK .

The amount of communication needed in the member departure case
can be similarly calculated. The main difference between member join and
member departure is that there are three operations: the broadcasting of
µ(t), updating the KEKs, and updating the SK. The most communication
occurs when a − 1 nodes on level L must be used to update the key on
level L − 1, and a nodes are used to refresh each of the remaining KEKs
on the path from the departing member to the root node. After appropri-
ately expanding and gathering terms, the communication for the member
departure can be found to be

CMD = 22 + BSK + Bµ + (La − 1)BKEK + (L)�
4 + �log2 aBKEK� + �log2 (�log2 a�(L − 1) + 1)� +

(L − 1)

2
�log2 a�

�
.

28 2. Centralized Multi-user Key Management

We calculated the worst-case amount of communication required to up-
date an a-degree key tree as a function of the number of users n with the
amount of tree levels set to L = �loga n�. In our calculations, we chose
BSK = BKEK = Bµ = 64 bits. We chose to use 64 bits as the key size since
such a key length can provide strong levels of security when used with some
ciphers, such as RC5 [13]. The amount of communication required for dif-
ferent choices of the degree of the tree a during a member join is depicted in
Figure 2.4(a). This figure shows the general trend that less communication
is required during member join operations if we use a higher degree tree. On
the other hand, Figure 2.4(b) shows the amount of communication needed
during the worst case of a member departure operation. In this case, the
larger tree degrees are definitely not advantageous. It is also evident that
a binary tree is not optimal when considering member departure. In fact,
the values of a = 3 and a = 4 appear to be the best choice, with optimal
choice fluctuating depending on n.

Joint Departure-Join Optimization

In some application scenarios the key tree might start out relatively empty,
and the amount of member join operations would be greater than the
amount of member departure operations. In this case, the membership
grows towards the tree capacity, and the communication required for the
member join operation is more critical than the communication for mem-
ber departure. On the other hand, some scenarios might start out with a
nearly full key tree, and the member departure operation would outweigh
the member join operation.

We therefore would like a communication measure that runs the gamut
between the two extremes of just the member join communication, and
just the member departure communication. This can be accomplished by
considering the convex combination of CMJ and CMD.

Let λ denote the probability of a member departure operation, and as-
sume that 1 − λ is the probability of a member join operation, then the
combined communication measure CC given by

CC = λCMD + (1 − λ)CMJ (2.32)

weights the member departure and member join operations according to
their likelihood. For example, when λ = 0 the emphasis is entirely placed on
the member join operation, while λ = 1 corresponds to when the emphasis
entirely placed on the member departure operation. The case of λ = 0.5
corresponds to equal emphasis on the two operations, which is depicted in
Figure 2.5. From this figure, we see that the choice of a = 4 stands out as
the best choice for n > 10000 when equally weighting the member join and
member departure operation.

2.6 Architectural Considerations 29

10
2

10
3

10
4

10
5

10
6

10
7

10
8

0

500

1000

1500

2000

2500

3000

Number of users

N
um

be
r

of
 b

its

Communication for Member Join

a=2
a=3
a=4
a=6
a=8
a=10

(a)

10
2

10
3

10
4

10
5

10
6

10
7

10
8

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Number of users

N
um

be
r

of
 b

its

Communication for Member Departure

a=2
a=3
a=4
a=6
a=8
a=10

(b)

FIGURE 2.4. (a) The amount of communication CMJ required during member
join operations for different tree degrees a and different amounts of users n. (b)
The worst case amount of communication CMD required during member depar-
ture operations for different tree degrees a and different amounts of users n.

30 2. Centralized Multi-user Key Management

10
2

10
3

10
4

10
5

10
6

10
7

10
8

500

1000

1500

2000

2500

3000

3500

Number of users

A
ve

ra
ge

d
N

um
be

r
of

 b
its

Communication for Average of MJ and MD

a=2
a=3
a=4
a=6
a=8
a=10

FIGURE 2.5. The average of CMD and CMJ for different tree degrees a and
different amounts of users n.

2.6.2 Binomial Occupancy Model

Since it is very difficult to calculate the amount of communication needed
during membership changes when a specific amount of users n are placed
on the tree, we have devised a stochastic model that allows one to study
the behavior of the system when there are varying amounts of occupancy.
We assume that the leaf nodes of the a-degree key tree with L levels are
occupied according to i.i.d. Bernoulli distributions with a probability of
occupancy qL. This implies that the occupancy n is modeled according to a
binomial distribution with mean occupancy qLaL and variance qL(1−qL)aL.
Hence, when qL is higher, the tree is on average at higher occupancy.

We first calculate the average amount of communication required for
member join when the probability of a node being occupied is qL. Let τa

denote the a-ary representation of the joining member. We may denote the
siblings of τa by τ1, τ2, · · · , τa−1. Define the random variable ZL−1 as

ZL−1 =
{

1 if any τk is occupied
0 if no τk are occupied .

Since the τk are occupied with a probability of qL, we have P (ZL−1 = 1) =
1 − (1 − qL)a−1, and the expected value of ZL−1 is given by E(ZL−1) =
1 − (1 − qL)a−1.

We may perform a similar procedure for the other levels. We denote the
j-siblings as those nodes τ such that Parj(τ) = Parj(τa). For level L − j,

2.6 Architectural Considerations 31

we may define the random variable ZL−j as

ZL−j =
{

1 if any j-sibling node of τa is occupied
0 if no j-sibling nodes of τa are occupied .

In this case, P (ZL−j = 1) = 1 − (1 − qL)aj−1, and the expected value of
ZL−j is given by E(ZL−j) = 1 − (1 − qL)aj−1.

The average communication requirements for member join can be derived
as

CMJ =

(
L∑

j=1

(1 − (1 − qL)aj−1)
[
12 + �log2(�log2 a�(L − 1) + 1)�

+�log2 a�(L − j) + BKEK

])
+ 11 + BSK .

We now apply the model to calculating the average amount of communi-
cation needed during member departure. Again suppose that the departing
member is indexed by the a-ary symbol τa. Label the siblings of τa by
τ1, τ2, · · · , τa−1, and define the random variable Xk by

Xk =
{

1 if τk is occupied
0 if τk is not occupied .

Let us define YL =
∑a−1

k=1 Xk, which is the random variable corresponding
to the amount of occupied sibling nodes of τa at level L. The probability
that i sibling leafs at level L are occupied is given by

P (YL = i) =
(

a − 1
i

)
qi
L(1 − qL)a−1−i. (2.33)

YL is thus a binomial random variable with expected value E(YL) = (a −
1)qL. Hence, the average number of nodes to be updated at level L is
(a − 1)qL.

At level L − 1, we know that the parent node of the departing member
will automatically be used in updating the next higher level. Since the
probability of a node at level L being occupied is qL, the probability that
a node on level L − 1, other than Par(τa), being occupied is

qL−1 = 1 − (1 − qL)a
. (2.34)

This time, we may denote the siblings of Par(τa) by τ1, τ2, · · · , τa−1. Again,
we define the random variable Xk by

Xk =
{

1 if τk is occupied
0 if τk is not occupied .

32 2. Centralized Multi-user Key Management

We now define the random variable YL−1 to be the amount of sibling nodes
of Par(τa) that are occupied, and we find that E(YL−1) = (a − 1)qL−1.
Since we must also include Par(τa) in the updating we must add one.
Thus, the expected number of nodes on level L − 1 that must be updated
is 1 + (a − 1)qL−1. We may similarly perform this calculation for level j,
where qj = 1− (1− qj+1)a, and the expected number of nodes on level j to
be updated is 1 + (a − 1)qj .

In order to calculate the average amount of communication for the mem-
ber departure operations, we must consider both the expected amount of
communication associated with the overhead and the payload of the mes-
sage. The average communication for the overhead consists of the amount
of communication needed to send the operation id, the node id, and the
bit length of the update message. This calculation can be done using the
expected value of ZL−j . The average communication for the payload is cal-
culated using the expected number of nodes on level j to be updated. The
average amount of communication for n users on an a-degree tree with L
levels is therefore given by

CMD = 22 + Bµ + BSK + qL(a − 1)BKEK +

�
�L−1�

j=1

(1 + (a − 1)qj) BKEK

�
�

+

�
	� L�

j=1

�
1 − (1 − qL)

aj−1
�

4 + �log2(�log2 a�(L − 1) + 1)�

+�log2 a�(L − j) + �log2 aBKEK�
����.

We calculated the mean message size for member join and member de-
parture operations as parameterized by q when the tree degree is a = 4
and there are 6, 8 and 10 levels. The key sizes were chosen to be BSK =
BKEK = Bµ = 64 bits. In Figure 2.6, we have indicated the mean commu-
nication as a function of q. One can see that the expected communication
rapidly increases as the probability q becomes slightly greater than 0. In the
member join operation, the communication levels off to a flat plateau as the
probability of occupancy increases. For the member departure operation,
the mean communication also increases rapidly for q < 0.1, but then grows
less dramatically for higher q. From these two curves, we can infer that a
key tree which is roughly half occupied does not have considerably different
communication requirements than the worst-case communication require-
ments, which occur when q = 1. This supports our use of the worst-case
scenarios for optimizing the tree degree.

2.6.3 Communication Overhead

Earlier we mentioned that one motivation for using the broadcast seed
is that it reduces the amount of communication overhead associated with

2.6 Architectural Considerations 33

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

900

1000

Probablity of occupancy q

B
its

Mean communication for member join

a=4, L=6
a=4, L=8
a=4, L=10

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

Probablity of occupancy q

B
its

Mean communication for member departure

a=4, L=6
a=4, L=8
a=4, L=10

(b)

FIGURE 2.6. The expected amount of communication for a degree 4 tree with
6, 8, and 10 levels as a function of the probability q that a leaf node is occupied.
(a) Member Join, (b) Member Departure.

34 2. Centralized Multi-user Key Management

notifying to the users which rekeying messages are intended for them during
member departures. We now explore this concept in the framework of a
tree-based scheme.

Consider an a degree tree with n users. In a general tree-based scheme,
when a user departs, all of the keys on the path from the departing member’s
leaf to the root key must be updated. To update a key associated with a
particular node σ, we must determine the keys associated with populated
children nodes. These keys are then used to encrypt the update, and the
rekeying message is then of the form:

α = {EKj1
(Kσ)‖EKj2

(Kσ)‖ · · · ‖EKjm
(Kσ)}. (2.35)

Here we have used the sequence {jk} to denote index the symbols of the
valid children nodes. In addition to sending the rekeying message, it is
necessary to send the number of valid children nodes m, and the sequence
{j1, j2, · · · , jm}.

The worst case scenario for communication overhead in updating a tree
is when a of the children nodes are used to update each parent node. In
this case, the communication overhead required is

CO = (a + 1)�log2 a��loga n�. (2.36)

This equation is obtained by considering both the communication needed
to send the amount of valid children nodes, and the symbols for each valid
child node.

This amount of communication overhead was calculated for different
group sizes n and different tree degrees a. The resulting amount overhead
is depicted in Figure 2.7. In this figure we have also drawn a baseline corre-
sponding to Bµ = 64 bits, which is the amount of communication overhead
required if one uses the Member Departure protocol of Section 2.5. Ex-
amining the case of a = 4, which corresponds to the optimal value of the
tree-degree as previously determined, shows that for values of n > 10000,
the Member Departure protocol described in this chapter requires less com-
munication overhead in the worst case scenario. Additionally, observe that
if we use a higher degree tree, which is better suited to scenarios where
more users are joining than departing, then the efficiency of the Member
Departure protocol is even more pronounced.

The use of a broadcast seed can gain further improvement if we choose
to use µ(t) = Ks(t−1). In this case, the broadcast seed does not have to be
sent since it is known by the remaining users. Therefore, there is no com-
munication overhead associated with updating during member departure,
and we may consider the baseline at Bµ = 0. In this case, the benefits of
using a broadcast scheme becomes even more pronounced.

2.6 Architectural Considerations 35

10
2

10
3

10
4

10
5

10
6

10
7

10
8

0

50

100

150

200

250

Number of Users

N
um

be
r

of
 B

its

Communication Overhead

a=2
a=3
a=4
a=6
a=8
Baseline

Baseline

FIGURE 2.7. The worst-case member departure communication overhead re-
quired in a conventional tree-based rekeying for different tree degrees versus
the baseline communication required when using the polynomial interpolation
scheme. The baseline communication corresponds to Bµ = 64 bits.

2.6.4 Computational Complexity

We have seen that one advantage of broadcast schemes is that they re-
duce the amount of communication overhead associated with sending flag-
ging messages. It should be apparent that a message form like equation
(2.26) takes less computation to form than a message form like equation
(2.27) assuming that calculating EK(Kσ) has comparable computation as
f(Kσ, µ(t)). Hence, to rekey using our message form requires more compu-
tation than when using a conventional rekeying message structure.

In the scheme we have described in this chapter, we have L levels of
KEKs to update. At each level of the tree we must calculate the coefficients
of a degree a−1 interpolating polynomial, except at the bottom level where
we must calculate the coefficients of a degree a − 2 polynomial.

In order to calculate the coefficients of a s-degree interpolating polyno-
mial, we use the Newton form of the interpolating polynomial [16]. Algo-
rithm 1 is a modification of the polynomial interpolation algorithm of [17],
which can be used to determine the coefficients βj of the s-degree polyno-
mial that interpolates the points (zj , gj) ∈ Zp ×Zp, where j ∈ {0, 1, · · · , s}.
The algorithm writes the βj values into the input array values gj .

This algorithm requires addition, multiplication, inversion, and modulo
operations to take place modulo p. The most intensive operation of these
is that of inverting a number. Assume that the prime p is chosen to have
B bits, then the amount of bits operations needed to calculate the inverse

36 2. Centralized Multi-user Key Management

for k=0:s-1 do
for j=s:-1:k+1 do

g(j) = (g(j) − g(j − 1))(z(j) − z(j − k − 1))−1 (mod p)
end

end
for k=s-1:-1:0 do

for j=k:s-1 do
g(j) = g(j) − g(j + 1)z(k) (mod p)

end
end

Algorithm 1: Algorithm for determining the coefficients of an interpo-
lating polynomial.

of a number modulo p using the Euclidean algorithm is O(B3) [18]. The
above algorithm requires s(s+1)

2 inversions in order to determine a degree s
interpolating polynomial. Therefore, the amount of bit operations needed
to update an L level degree a key tree using the polynomial interpolation
scheme is O(a2LB3).

2.7 Chapter Summary

In order to address the problem of managing keys for securing multicasts,
we proposed a framework that is suitable for dynamic group environments.
Advanced protocol operations that update the keys during member joins,
member departures, and the transferal of access rights were built using
basic protocol operations which we call protocol primitives.

We described several desirable features for a multicast key management
scheme, and which our scheme satisfied. In particular, our architecture pro-
vides a method for renewing session keys and key encrypting keys needed
to control access to content. By using either the basic protocol operations,
or more advanced protocol operations, the session key or key encrypting
keys can be refreshed when a key’s lifetime expires due to age or changes
in membership. It is also evident that if users were to collude, they would
not be able to figure out keys that they did not have. Users may survive
accidents or move across terminals by sending a request for reinsertion to
the server, upon which the server performs the member reinsertion proto-
col operation. We also provided a description of a protocol operation that
would allow users to transfer their access rights to other parties. The server
can revoke access to an individual by using the member departure operation
to remove the member from the key hierarchy. Finally, our protocol uses a
tree-structured key hierarchy in order to achieve desirable communication
requirements during changes in the group membership.

2.7 Chapter Summary 37

A novel feature of this scheme is that it uses polynomial interpolation
in conjunction with a broadcast seed to handle member departure opera-
tions. We studied the communication associated with performing member
join and member departure operations. It was observed that higher tree
degrees are best for member join operations, whereas a tree degree of 3 or
4 was best for the member departure operation. When equally weighting
the join and depart operations, a degree 4 tree stood out as optimal. The
communication overhead of the polynomial interpolation scheme is reduced
in comparison to a model conventional scheme. We provided a comparison
between the communication overhead of our scheme and the overhead of
an example conventional scheme that used ID messages to flag the users
which parts of the rekeying message were intended for them. As group size
and tree degree increased, the communication overhead for the conventional
scheme increases and ultimately becomes more burdensome than sending
the broadcast seed. For example, when the group size was n = 100000 and
the tree degree was a = 4, the communication overhead in the conventional
scheme was approximately 25 % more than the overhead associated with
a broadcast seed of size Bµ = 64 bits. Finally, if one uses the previous
session key Ks(t − 1) as the seed µ(t), then no communication overhead is
associated with our protocol during member departures.

We presented a study of the communication needed when using our ar-
chitecture to perform member joins and member departures. These two
operations are the most important operations that a multicast server will
have to face when operating in dynamic environments. The communication
requirements of the member join and member departure operations lead
to conflicting tree design considerations. By explicitly computing these two
quantities as functions of the degree of the tree and computing the commu-
nication overheads, we studied the tree selection criterion. From our com-
putations, the communication during a member join is reduced when using
a higher degree tree, while the optimal tree degree for a member departure
is either a = 3 or a = 4. We considered the average of the communica-
tions for the two operations, which gave strong support to choosing a = 4
as the optimal tree degree. We presented a stochastic population model
that allows one to study the mean behavior of our architecture for varying
amounts of users. It is observed that for both the join and departure oper-
ation, the amount of communication needed to update the key tree rapidly
increases as the tree approaches 10% population. Above 10% occupancy,
the communication needed for both operation stabilizes. We also examined
the computational requirements of the tree-based rekeying schemes using
polynomial interpolation.

3
Group Key Agreement Techniques
in Heterogeneous Networks

Prior to the delivery of data intended for a group of recipients, it is necessary
to initially establish keying material used to secure the group application.
In this chapter we investigate the initial key agreement problem for both
homogeneous and heterogeneous networks, whereby the members of a group
each make contributions to establishing secret information that may be used
to form a group encryption key.

3.1 Introduction

As noted earlier, key distribution can be accomplished by using a centralized
entity, who shares private keying material a priori with communication
entities and is responsible for distributing session keys to users. However, in
many cases prior keying material might not exist or it might not be desirable
to use a centralized third party. This might occur in applications where
group members do not explicitly trust a single entity, or no member has the
resources to maintain, generate and distribute information by himself. In
these cases, contributory approaches are needed, where the group members
each make independent contributions to the formation of the group key.

The classic example of a contributory scheme is the Diffie-Hellman (DH)
key establishment scheme [19], in which two parties exchange messages that
allow them to securely agree upon a key that may be used to protect their
two-party communication. Several researchers have studied the problem of
establishing a Diffie-Hellman like conference key [20–25]. Typically, these

40 3. Group Key Agreement Techniques in Heterogeneous Networks

conference key establishment schemes seek to minimize either the amount
of rounds needed in establishing the group key, or the size of the message.

As we move towards future communication scenarios, users will interact
with each other from a variety of different communication and computing
platforms, across a variety of different network types. We should thus ex-
pect that many applications will involve a heterogeneous clientele consisting
of group members with different computational capabilities, pricing plans,
and bandwidth resources. For these applications, minimizing the total band-
width or amount of rounds might not be an appropriate metric. Instead,
one should aim to minimize a cost function that incorporates the differ-
ent costs or resource constraints of each user. The key generation scheme
must therefore decide whether it is feasible to generate a key and determine
a procedure for generating the group key while minimizing the total cost
subject to resource budget constraints.

In this chapter, we discuss several methods for efficiently establishing a
Diffie-Hellman like conference key that address the heterogeneous require-
ments of the conference members. We start in Section 3.2 by reviewing the
Diffie-Hellman protocol, and presenting several conference keying schemes
that employ the Diffie-Hellman problem. In Section 3.3, we present the but-
terfly scheme, a conference keying scheme for a homogeneous group of users,
which builds the group key using the approach of [20]. The butterfly scheme
can be generalized and we show that an underlying tree, which we call the
conference tree, governs the process by which subgroup keys are formed
en route to establishing the group key. By examining different shapes of
conference trees, a family of tree-based group DH schemes can be formed.
In Section 3.4, we consider the problem of designing a conference tree that
can address cases where the users have different capabilities. We first ex-
amine the case when the users have different costs. In this case, the optimal
conference tree can be constructed using the Huffman algorithm. We then
examine the problem of choosing a conference tree when the users have
the same cost, but are subject to varying budget constraints. We present
necessary conditions for the existence of a conference tree when the users
have budget constraints, and present an algorithm that minimizes the total
cost given the budget constraints. Next, we consider the more general case
where the users have different costs as well as different budgets. A compu-
tationally efficient near-optimal algorithm is presented that determines a
conference tree whose total cost is very close to the optimal performance
achieved by conference trees determined using either full-search or integer
programming techniques. In Section 3.5, we present the results of simula-
tions comparing the cost of forming a group key using tree-based schemes
and several existent schemes. We also present simulations comparing the
likelihood that a group key can be formed given that the users’ budgets
are drawn according to different distributions. From these simulations we
conclude that the tree formulation for establishing a group key allows for
great flexibility, and can efficiently establish group keys in resource-limited

3.2 Group DH Overview 41

scenarios. Finally, in Section 3.6, we study the effects that the quantization
and clipping of user costs have upon the total cost, and then investigate the
effect that untrusty users can have upon the total cost of forming the group
key using the Huffman-based conference tree. By suitably choosing the ap-
propriate threshold level in the clipping operator, the effects of greedy user
behavior are ameliorated.

3.2 Group DH Overview

In the basic DH scheme, the operations take place in an Abelian group G,
typically chosen to be Zp (the integers mod a prime p), or the points on
an elliptic curve under appropriate laws of addition [26]. For consistency of
notation, we shall develop our results for the group Zp. A group element g is
chosen such that g generates a suitably large subgroup of G (preferably the
whole group). Both party A and party B choose a private secret αj ∈ Z∗

p

where j ∈ {A,B} and Z∗
p denotes the non-zero elements of Zp. They each

calculate yj = gαj and exchange yj with each other. Party A then calculates
the key via K = (gαB)αA = gαBαA and similarly for party B.

The problem of establishing a Diffie-Hellman like conference key has
been investigated by several others [20–22]. One of the first Diffie-Hellman
like conference key establishment schemes was proposed by Ingemarsson
et al [20]. In the Ingemarsson (ING) scheme, the group members are arr-
anged in a logical ring (e.g. A → B → C → A). In a given round, every
participant receives a message from its left-hand neighbor, raises that to
their exponent, and passes it to their right-hand neighbor. For example, in
the first round of a three person group exchange, we have A → B : gαA ,
B → C : gαB and C → A : gαC . Then, in the second round A → B :
(gαC)αA , B → C : (gαA)αB , and C → A : (gαB)αC . Finally, the shared
key is gαAαBαC , which they each can calculate by raising the final received
message to their private exponent. For n users this scheme requires n − 1
rounds.

Another notable scheme is the Burmester-Desmedt conference key es-
tablishment scheme [21]. This scheme consists of three rounds. During the
first round, each user uj generates a random exponent αj and broadcasts
zj = gαj . The second round consists of each user uj receiving zj and broad-
casts the quantity xj = (zj+1z

−1
j−1)

αj . In the final round, each user uj

calculates the shared key

K = z
nαj

j−1xn−1
j xn−2

j+1 · · ·xj−2.

It can be shown that the shared key is actually the quantity

K = gα1α2+α2α3+···αnα1 .

In [22], the GDH.1, GDH.2 and GDH.3 protocols are described that ex-
tend the two-party DH scheme to the n-party case. The distinguishing char-
acteristic of the GDH.1/2 protocols is that they consist of two stages: an

42 3. Group Key Agreement Techniques in Heterogeneous Networks

upflow and a downflow stage. For example, in the upflow stage of protocol
GDH.1 user uj receives a message of the form

{gα1 , gα1α2 , · · · , gα1···αj−1}

and computes gα1α2···αj by taking the last element of the received message
and raising it to the αj power. User uj then sends to user uj+1 the message

{gα1 , gα1α2 , · · · , gα1···αj−1 , gα1···αj}.

During the downflow stage, user un takes the output of the upflow stage,
treats gα1···αn as the key, calculates gαn and raises the first n− 2 elements
of the output of the upflow stage to the αn power. Then user un sends
user un−1 a message of the form {gαn , gα1αn , · · · , gα1···αn−2αn}. User uj

performs likewise, calculating the key gα1···αn using the last term of the
received message, and forwards to uj−1 a message formed by taking the
first j − 1 terms of the received message and raising them to the αjth
power. The GDH.3 scheme is a centralized Diffie-Hellman style scheme that
differs from GDH.1/2 in that one user gathers contributions from all users,
performs the majority of the computation for the group, and sends messages
to each user that can be used to calculate the group secret. The centralized
nature of the GDH.3 scheme is a drawback in environments where there
is no single entity with significantly more computational capabilities than
the others users. An extension to the GDH schemes that incorporates user
authentication was presented in [24].

Several measures have been proposed to gauge a conference key protocol’s
complexity [22, 23]. The amount of messages sent and received, as well as
the amount of bandwidth consumed are important measures of a protocol’s
efficiency. Another important measure that arises is the amount of rounds
that a protocol takes in order to establish a group secret. A protocol that
takes more rounds to establish a shared key is less favorable in environ-
ments where time and synchronization are precious resources. In [23], the
communication complexity involved in establishing a group key is studied.
In this work, lower bounds for the total number of messages exchanged,
as well as the amount of rounds needed to establish the group key, were
determined. They further present a key establishment scheme based upon
a hypercube structure where the amount of rounds needed to establish the
key is logarithmic in the group size.

A similar technique was proposed in [27, 28], in which the problem of
group key establishment was examined in terms of signal flow graphs. The
basic approach, called the butterfly scheme, had communication flow that
was reminiscent of the butterfly diagrams of FFT calculations. The butterfly
scheme used the ING scheme as the basic building block, and provided
a broad family of approaches in which the amount of rounds needed to
establish the group key is logarithmic in the group size. We will examine
the butterfly scheme in the following section.

3.3 Conference Trees and the Butterfly Scheme 43

3.3 Conference Trees and the Butterfly Scheme

The general butterfly scheme is built using the ING scheme. However, since
the two-party DH protocol is a special case of the ING scheme, we shall use
the two-party DH protocol to introduce the basic ideas involved and then
extend to using more general ING schemes. We refer to butterfly schemes
built using two-party DH as radix-2 butterfly schemes. The terms radix
and butterfly are borrowed from the signal processing community, and their
usage is motivated by the resemblance between the communication flow of
our butterfly scheme, and the butterfly signal flow diagrams associated with
FFT computations [29]. In our work, the usage of radix refers to the size
of the initial subgroups used in the butterfly scheme.

In order to explain the basic idea behind the radix-2 butterfly scheme,
suppose that the number of users n is a power of 2. The users are paired
up with each other to form two-person subgroups, and a key is established
for each of these two-person subgroups using the conventional DH protocol.
These subgroups are paired up with each other to form larger 4 member
subgroups, and the two-party DH protocol is used to establish a group
key for the 4 member subgroups. We may successively group subgroups to
form larger subgroups and use two-party DH to ultimately achieve a shared
group key.

A formal description of the butterfly scheme for n = 2r members is as
follows. Initially, suppose each user uj has a random secret integer αj ∈
Z∗

p. The n users are broken into pairs of users u1
j = {u2j−1, u2j}. Here

we have used the superscript in the notation to denote which round of
pairings we are dealing with, while the subscript references the pair. We also
refer to the initial secrets that each user possesses as x0

j = αj . In the first

round, the members of a pair exchange their calculated gx0
j . For example,

u1 sends gx0
1 to u2, and u2 sends gx0

2 to u1. Then, the users u2j−1 and u2j

each calculate x1
j = gx0

1x1
1 = gα2j−1α2j (mod p). Since x1

j ∈ Z∗
p, and both

members of a pair have established a conventional DH key, we may now
group the pairs u1

j into a second level of pairs, e.g. u2
1 = {u1

1, u
1
2}, and more

generally u2
j = {u1

2j−1, u
1
2j} so that the second level of pairings consists of

4 users in a pair. Each user from u1
2j−1 has an associated member of u1

2j

to whom they send gx1
2j−1 and similarly receive gx1

2j from. Every member
in u2

j can calculate x2
j = gx1

2j−1x1
2j (mod p). A third pairing, consisting of

8 users may be formed and a similar procedure carried out if needed. In
general, uk

j = {uk−1
2j−1, u

k−1
2j } and xk

j = gxk−1
2j−1xk−1

2j (mod p). Ultimately, the
procedure continues until there are only two intermediate values that can
be combined to get the group secret.

A trellis diagram depicting the communication flows between users is
depicted in Figure 3.1 (a). It is not necessary that each user perform a
communication during each round. In fact, such an operation might use
more power since many users are transmitting identical information. In

44 3. Group Key Agreement Techniques in Heterogeneous Networks

for Stage k = 1 : r do
Form subgroups uk

j = {uk−1
pk(j−1)+1, u

k−1
pk(j−1)+2, · · · , u

k−1
pkj } ;

Establish a secret xk
j for subgroup uk

j using xk−1
j as secrets in a

pk-member ING scheme ;
end

Algorithm 2: Algorithm for calculating the group key using ING
scheme when the group size is factored as n = p1p2 · · · pr.

networks, such as wireless networks, where broadcasting is available, alter-
native trellis diagrams can be constructed where one user broadcasts an
intermediate message to multiple users. An example of such a trellis is de-
picted in Figure 3.1 (b). An alternative way to view the butterfly scheme is
provided in Figure 3.1 (c), which depicts the tree associated with the but-
terfly scheme. This tree, which we refer to as the conference tree, describes
the successive subgroups and subgroup keys that are formed en route to es-
tablishing the key for the entire group. For example, there is a node on the
conference tree that is the grandparent of {u1, u2, u3, u4} and hence there
is a subgroup key that can allow {u1, u2, u3, u4} to communicate securely
amongst themselves if so desired.

When n is not a power of 2, a group key still can be established easily. In
this case, we form a subgroup with an amount of users equal to the largest
power of 2 less than or equal to n. The remaining users are further broken
down in a similar fashion, resulting in a new set of remaining users that
can be further broken down. For example, a group of 7 users will be broken
down into subgroups of 4, 2, and 1 members. Subgroup and group keys are
formed in a fashion similar to the case when n is a power of 2. The trellis
and conference tree for n = 7 users is depicted in Figure 3.2. The number
of rounds needed to complete the radix-2 butterfly scheme is �log2 n�.

We now extend the approach used above to employ the more general
ING scheme as the basic building block. Since the resulting schemes are
not built using a two-party protocol, they are termed non-radix-2 butterfly
schemes. Suppose that n = p1p2 · · · pr is the number of users, and the pj are
not necessarily prime. The general ING butterfly scheme starts by breaking
the group into subgroups of size p1 and uses the ING scheme to establish
a shared key for each of the n2 = p2 · · · pr subgroups. The n2 subgroups
are further broken down into subgroups consisting of p2 subgroups, and the
ING protocol is used to establish subgroup keys for these larger subgroups.
The process continues until a key is established for the entire group. The
procedure for this scheme is presented in Algorithm 2, where u0

j = uj and
the initial user secrets are x0

j = αj . An example is depicted for the case of
n = 9 users in Figure 3.3. The total amount of rounds is 2 log3 9 = 4, and
the amount of messages is 36. The direct use of the ING scheme for 9 users
requires 8 rounds and 72 messages. The divide and conquer strategy in the
butterfly approach improves the efficiency of the ING scheme. Additionally,

3.3 Conference Trees and the Butterfly Scheme 45

u

u

u

u

u

u

u

u

1

2

3

4

5

6

7

8

(a)
u

u

u

u

u

u

u

u

1

2

3

4

5

6

8

7

(b)

u
1

u
2

u
3

u
4

u
5

u
6

u
7

u
8

(c)

FIGURE 3.1. The radix-2 butterfly scheme for establishing a group key for 8 users.
(a) Without broadcasts, (b) Using broadcasts, and (c) the associated conference
tree.

46 3. Group Key Agreement Techniques in Heterogeneous Networks

u

u

u

u

u

u

u

1

2

3

4

5

6

7

(a)
u

u

u

u

u

u

u

1

2

3

4

5

6

7

(b)

u
1

u
2

u
3

u
4

u
5

u
6

u
7

(c)

FIGURE 3.2. The radix-2 butterfly scheme for establishing a group key for 7 users.
(a) Without broadcasts, (b) Using broadcasts, and (c) the associated conference
tree.

3.3 Conference Trees and the Butterfly Scheme 47

u

u

u

u

u

u

u

1

2

3

4

5

6

7

u
8

u
9

FIGURE 3.3. The trellis for n = 9 users using two levels of 3-party ING scheme.

the logarithmic amount of rounds needed by the butterfly scheme to estab-
lish the group key is an improvement over the linear amount of rounds
required by the GDH schemes of [22]. We further note that the hypercube
approach of [23] also requires a logarithmic amount of rounds to establish
the conference key. However, the hypercube approach does not address the
issue of using a general subgroup size as the building block for designing
a scalable conference key establishment scheme. By using the ING scheme
as the basic module in the butterfly scheme, we include the hypercube ap-
proach as a special case, and have generalized their approach. Further, the
butterfly scheme described above allows for the use of multicast channels
to improve communication efficiency.

It is not necessary to use a factorization of n in designing the non-radix-2
butterfly scheme. In fact, for prime n, this factorization would necessitate
using an n-party ING scheme, and require a large amount of rounds in
forming the group key. Rather, what is required is that the degrees pj of
the ING schemes used satisfy

∏
pj ≥ n. In this case, some positions are

left unused. For example, when n = 8 and p1 = p2 = 3 one position of a
3-party ING scheme is empty, in which case that computation simply uses
the 2-party DH scheme instead

The total number of rounds needed in the ING butterfly scheme for
n = p1p2 · · · pr users is

TR =
r∑

j=1

(pj − 1) =

⎛

⎝
r∑

j=1

pj

⎞

⎠− r. (3.1)

When choosing a factorization to represent n, the more factored represen-
tation leads to a smaller number of rounds TR. We now show that using

48 3. Group Key Agreement Techniques in Heterogeneous Networks

a binary conference tree produces the group key in the fewest amount of
rounds. To do this, we show that if one uses a pj ING scheme for round j of
the group key establishment, then the use of several two-party DH schemes
in place of the pj ING scheme either produces the same amount of rounds
or fewer in establishing the group key.

If we require that all of the computation on one level of a conference tree
is completed prior to the formation of the keys in the next level up the
conference tree, then using the two-party DH scheme as the building block
leads to trees with the least amount of rounds needed to establish the group
key. The proof for this claim is provided in the following lemma. Since using
two-party DH leads to binary trees that require the least amount of time
rounds, we shall restrict our attention to binary trees for the remainder of
the chapter.

Lemma 3. Let n be the amount of users, and suppose that we wish to
establish a conference tree where level j uses a pj ING scheme as the basis,
then a binary tree (where pj = 2) produces an optimal conference tree.

Proof. Suppose that you have an optimal set of numbers {p1, · · · , pr} that
are used to construct the conference tree for n users. Then the number
N =

∏r
j=1 pj ≥ n, and the total rounds TR =

(∑r
j=1 pj

)
− r is minimal.

We will show that if there is a pj 	= 2 then we may replace pj by a sequence
of numbers all of which have value 2. Suppose there is a j such that pj 	= 2,
then the pj contributes ∆j = pj − 1 to the total amount of rounds TR.
Define p′j = {2, 2, · · · , 2} which is a sequence of length �log2 pj�. If we use
this set of numbers in place of pj , we instead contribute ∆′

j = �log2 pj� to
the total cost. It is clear that using p′j in place of pj produces an N ′ ≥ n.
However, the incremental cost ∆′

j = �log2 pj� is less than or equal to ∆j

(in fact, if pj = 3 then equality holds, else it is strictly less). Thus, if pj > 3
then replacing pj by p′j produces a set of numbers with lesser amount of
total rounds TR, which contradicts optimality. On the otherhand, if pj = 3
then replacing pj by p′j will produce a set of numbers with an equal amount
of total rounds TR, and hence we may choose to use p′j instead of pj in the
construction of the optimal tree. By applying this argument to all pj 	= 2
we conclude that a binary tree must produce an optimal tree.

It should be pointed out, however, that the argument used above does
not produce the optimal tree, but rather only implies that the optimal tree
is binary. For example, consider n = 27. The total amount of rounds using
three levels of 3-party ING is TR = 6. If we use the above technique, we
replace each 3 by 2 · 2, and get a conference tree with 26 terminal nodes
and total cost of 6. However, the optimal tree in this case is the binary tree
of depth �log2 n�, with total rounds TR = 5.

In the butterfly schemes described above, the conference trees were al-
most balanced and full. For example, the conference tree for n = 8 users
involves 3 levels of internal nodes, and all 8 users are placed at the same

3.4 Computational Considerations 49

depth in the tree. For more arbitrary amounts of users, the users are all
roughly placed at the same depth. More general depth assignments and
conference tree structures may be given to the users. In the next section,
we shall exploit the extra freedom provided by more general binary confer-
ence trees by placing users at different depths in order to reduce the total
group cost needed to form the group key.

3.4 Computational Considerations

In many application environments users will have varying amounts of com-
putational resources available. Low-power devices, such as wireless appli-
ances, cannot be expected to expend the same amount of computational
effort as high-power devices, such as personal computers, when establishing
a group secret. It is therefore important to study the problem of efficiently
establishing a conference key while considering the varying user costs.

To accomplish the efficient establishment of a conference key in a het-
erogeneous environment, we introduce a new entity, called the Conference
Keying Assistant (CKA). The CKA is responsible for collecting the users’
costs or budgets, determining the appropriate conference keying tree, and
conveying the conference tree to the conference members if it is feasible
to establish the group key. The CKA is not responsible for performing any
computation beyond the calculation of the appropriate conference tree, and
therefore only needs to be a semi-trusted entity who will accurately convey
the conference tree to the conference members. We note that the CKA may
be a member of the conference, in which case his duties as CKA are in
addition to his role as a group member.

In this section, we present methods that the CKA can employ to design
the conference tree that is used by the group members to establish the group
secret. In particular, we study two problems: minimizing the total cost in
establishing a group key, and the feasibility of establishing the group key
in the presence of budget constraints. We present algorithms to efficiently
determine the conference keys for each of these problems separately, and
then together.

3.4.1 Minimizing Total Cost

First, assume that we have n users, and that each user uj has a cost wj ≥ 0
associated with performing one two-party Diffie-Hellman protocol. For ex-
ample, this cost might be related to the amount of battery power consumed.
Suppose we place the n users on a conference tree with n terminal nodes
in such a manner that each user uj has a length lj from his terminal node
to the root of the conference tree. Our goal is to minimize the total cost
C =

∑
wj lj of this tree.

50 3. Group Key Agreement Techniques in Heterogeneous Networks

We first address the question of what is the minimum amount of to-
tal computation necessary for establishing the group key for n users. This
problem can be addressed using coding theory. If we define pj as pj =
wj/ (

∑
k wk), then

∑
j pj lj is just a scaling of

∑
j wj lj by W =

∑
k wk.

Let us define X to be a random variable with a probability mass function
given by pj , then minimizing

∑
j pj lj is equivalent to finding a code for X

with lengths lj that minimizes the average code length. We thus infer the
following lower bound on the total cost for establishing a group key, which
follows from the lower bound for expected codelength of an instantaneous
binary code for X [30]:

Lemma 4. Suppose that n users wish to establish a group secret and each
user uj has a cost wj associated with performing one two-party Diffie-
Hellman protocol. Then the total cost C of establishing the group secret
satisfies −W

∑
j pj log2 pj ≤ C where pj = wj/W .

The observation that efficiently establishing a group key is related to
coding allows the CKA to use procedures from coding theory to determine
desirable conference trees. In particular, Huffman coding [31–34] is com-
putationally efficient and yields the optimal conference tree that minimizes
the total weighted cost. That is, if C∗ is the cost of forming the group key
using the Huffman tree, then the cost C ′ of using a different conference tree
assignment will satisfy C ′ ≥ C∗. Since Huffman coding produces an optimal
code, we know that the expected cost

∑
j wj l

∗
j satisfies the following bound

WH(p) ≤
∑

j

wj l
∗
j < W (H(p) + 1) , (3.2)

where H(p) is the entropy of the distribution p. Thus, the Huffman con-
struction of the conference key tree has a total cost that is within W of the
lower bound.

The following example demonstrates the advantage of using the Huffman
algorithm for forming the conference tree when compared to using the full
balanced tree of the radix-2 butterfly scheme.

Example 1. Consider a group of 8 users with costs w1 = 28, w2 = 25,
w3 = 20, w4 = 16, w5 = 15, w6 = 8, w7 = 7, and w8 = 5. The Huffman
algorithm yields the tree depicted in Figure 3.4. The corresponding length
vector is l∗ = (2, 2, 3, 3, 3, 4, 5, 5), and the total cost is 351. The total cost
for a full balanced tree is 372.

We now quantify the improvement that is available when using the Huff-
man code compared to the cost of using an arbitrary conference tree. For an
arbitrary conference tree, we suppose that the length assigned to user uj is
lj . If we define a probability distribution q by qj = 2−lj , then the expected

3.4 Computational Considerations 51

15

28 25

16

8

7 5

20

FIGURE 3.4. Huffman example

length under the probability pj of the code with lengths lj satisfies [30]

H(p) + D(p‖q) ≤
n∑

j=1

pj lj < H(p) + D(p‖q) + 1. (3.3)

Here D(p‖q) is the Kullback-Leibler divergence between the two probabil-
ity distributions p and q. The cost for using this tree is C = W

∑
pj lj .

We can combine the bound of Equation (3.3) with the bound for the cost
of the optimal code C∗ < W (H(p) + 1) to get C − C∗ > W (D(p‖q) − 1).
When D(p‖q) > 1, this bound is an improvement over the trivial bound
C − C∗ ≥ 0.

3.4.2 Budget Constraints

In many cases, the parties wishing to establish a conference key might have
a limited budget to spend. The optimal conference tree assignment that
results from Huffman coding might assign more computation to some users
than they are capable of performing, while assigning less computation to
other users than they are capable of performing. In these cases, rather than
minimize the total cost, one should ensure that one can first establish the
group key, and then reduce the total amount of computation as a secondary
issue.

Suppose that user uj publishes a budget bj that describes the amount
of two-party Diffie-Hellman key establishment protocols he is willing to
participate in when establishing the group key. Without loss of generality,
we assume that the users’ budgets bj satisfy bj ≤ bk for j < k. We define the
budget vector as b = (b1, b2, · · · , bn). The length vector l = (l1, l2, · · · , ln)
describes the lengths from each user’s node to the root of the conference
tree. The necessary conditions on the budget vector b for the existence
of a conference key tree with lengths lj ≤ bj is provided by the Kraft
Inequality [30]:

52 3. Group Key Agreement Techniques in Heterogeneous Networks

Lemma 5. Suppose that the budget vector b = (b1, b2, · · · , bn). Then a
conference key tree with lengths lj exists that satisfies the budget constraint
lj ≤ bj for all j if

∑n
j=1 2−bj ≤ 1.

A budget vector that satisfies the Kraft Inequality is said to be feasible.
When a budget assignment does not satisfy the Kraft Inequality and we
choose to drop a single member to generate a feasible budget vector for
the remaining users, then the best strategy is to drop the member with the
lowest b1.

Using the budget vector as the length vector does not always lead to a
full conference tree in which every node has two children. In order to get
a full tree, we must trim the budget vector to produce a length vector l
that achieves the Kraft Equality. The length vector is formed by reducing
elements of the budget vector by amounts that do not violate the Kraft
Inequality. The following lemma provides a useful approach to trimming
the length vector assignment while still satisfying the Kraft Inequality.

Lemma 6. Suppose b = (b1, b2, · · · , bn) with bj ≤ bk for j < k satisfies the
strict Kraft Inequality,

∑
2−bj < 1, then the modified budget vector c defined

by c = (b1, b2, · · · , bn−1, bn − 1) satisfies the Kraft Inequality
∑

2−cj ≤ 1.

Proof. Observe that 2bn is the least common denominator of the set 2−bj .
Thus

∑
2−bj can be expressed as

∑
2−bj =

x1 + x2 + · · · + xn

2bn
< 1 (3.4)

where xj = 2bj−bn . In particular, x1 + x2 + · · · + xn < 2bn , and as a
consequence x1+x2+· · ·+(xn+1) ≤ 2bn . However, (xn+1)/2bn = 1/2bn−1,
and so the sequence (b1, b2, · · · , bn − 1) satisfies the Kraft Inequality.

A consequence of this lemma is that if we subtract 1 from one of the bj ,
then choosing the largest bj least affects

∑
j 2−bj . Using this idea, Algorithm

3 starts with an admissible budget vector b, initializes the length vector
l = b, and produces a length assignment l = (l1, l2, · · · , ln) satisfying lj ≤ bj

such that
∑

j 2−lj = 1 and
∑

j lj is minimized over all length vectors c

satisfying
∑

j 2−cj ≤ 1. The optimality of this algorithm is discussed in
Lemma 7.

As an example of the algorithm, suppose n = 8 and that the initial budget
is b = (1, 3, 3, 4, 5, 5, 6, 8). This budget vector is feasible and performing the
algorithm gives the final assignment l = (1, 3, 3, 4, 4, 4, 5, 5).

Lemma 7. Algorithm 3 produces an optimal length assignment vector l to
the problem

⎧
⎨

⎩min
l

∑

j

lj : 1 ≤ lj ≤ bj ,
∑

j

2−lj ≤ 1, lj ∈ Z+

⎫
⎬

⎭ . (3.5)

3.4 Computational Considerations 53

Data: A length vector l satisfying
∑

2−lj ≤ 1.
while

∑
2−lj < 1 do

j = arg max{lk} ;
lj = lj − 1 ;

end
Algorithm 3: Algorithm for calculating the optimal length vector l.

Proof. We will aim to show that there is an optimal solution in which
one decreases the largest value of the budget vector by one. Let l∗ be an
optimal solution to the problem. Then by the previous lemma

∑
2−l∗j = 1.

Consider a sequence of steps that take the budget vector b to the optimal
length vector l∗ by decreasing one element by 1 during each step. We denote
by J∗ the sequence of indices involved in going from b to l∗, where J∗(k)
refers to the index of the budget vector that is decreased during kth step.
Let j0 be the index of the largest element of b, we claim there is an optimal
solution l′ with a corresponding J∗(1) = j0. If J∗(1) = j0 then we are
done. However, if J∗(1) 	= j0 then there are two cases. The first case is
that there is another element of J∗ that has value j0, in which case we
may switch that element with J∗(1) to produce a new sequence of steps
that does not alter the value of

∑
2−l∗j and maintains the optimality of∑

j lj . The second case is that j0 	∈ J∗. If there are any other elements of
b with the same value as bj0 , then indices of these may be used in place
of j0, and considered in the preceding argument. However, if there are no
bj ’s with the same value as bj0 then we seek a contradiction as to the
optimality of l∗. Choose an arbitrary element of J∗. This element, which
we denote by J∗(k), by assumption has the property that it bJ∗(k) < bj0 .
Define J−

∗ = {J∗(1), · · · , J∗(k−1), J∗(k +1), · · ·}, which corresponds to the
sequence of steps involved in J∗ excluding the kth step. Define J� = j0‖J∗−,
which describes a new sequence of steps that starts with j0 and then the
steps of J∗−. Then J� leads to a length vector l� = l∗ + eJ∗(k) − ej0 , where
ej is the vector of all zeros except in the jth index which has value 1. This
length vector has the property that

∑
2−l�j <

∑
2−l∗j since 2−l∗j0 < 2−l∗J∗(k) .

Hence
∑

2−l�j < 1. However, by the preceding lemma, this means that l� can
be used to produce a better length vector, which contradicts the optimality
of l∗.

Hence, the optimal solution may as well have the first step reduce the
largest element of the budget vector. Now the problem reduces to finding
an optimal solution to the new budget b′ = b − ej0 . By induction on the
number of steps, we therefore conclude that choosing the largest element
during each step yields an optimal solution, and hence the greediness of
Algorithm 3 is optimal.

54 3. Group Key Agreement Techniques in Heterogeneous Networks

3.4.3 Combined Budget and Cost Optimization

We have studied the problem of minimizing the total cost of establishing
a group key using a tree structure, and whether a group key can be es-
tablished in a budget-limited scenario. We now address the more realistic
scenario where users have different costs as well as budget constraints. We
are therefore interested in the problem of minimizing the total cost of the
length assignments lj for the weights wj given the budget constraint lj ≤ bj .
This problem is formally stated as:

Minimize
n∑

j=1

wj lj

subject to 1 ≤ lj ≤ bj ,

n∑

j=1

2−lj = 1, lj ∈ Z+

where Z+ denotes the non-negative integers. Once a length vector has been
determined, it can be sorted in ascending order to describe a conference
tree.

This problem is more difficult than either the minimum cost problem
or the budget-constrained problem. If the budget vector is constant, i.e.
bj = b for every j, then the methods of length-constrained source codes
may be applied [35–41]. One efficient algorithm for finding the optimal
Huffman code under the maximum codeword length constraint is presented
in [35], which is based on the algorithm of [37]. A near optimal solution
can be found using Lagrange relaxation, and an efficient implementation
is described in [38]. However, in the more general case where the budgets
vary from user to user, it is difficult to find the optimal solution since the
ordering wj ≤ wk does not imply lj ≥ lk.

Two suboptimal approaches that employ a greedy strategy were devel-
oped to tackle the general problem where the budgets vary from user to
user. The first algorithm, described in Algorithm 4, is a variant of Algo-
rithm 3, which starts with a length assignment l = b and chooses to decrease
the element lj of the length vector that most reduces the total cost

∑
wklk

at that step while maintaining the Kraft Inequality. This greedy algorithm
is not optimal, as can be seen by the example b = (2, 2, 3, 3) with costs
w = (10, 7, 6, 6). In this example, the algorithm produces the length vector
l = (1, 2, 3, 3) (which has a total cost of 60), whereas the optimal length
vector is l∗ = (2, 2, 2, 2) (which has a total cost of 58).

Algorithm 4 is a naive greedy algorithm. By slightly altering this al-
gorithm, another greedy algorithm may be developed with better perfor-
mance. Instead of decreasing the element that best decreases the total
cost, Algorithm 5 chooses to decrease the element with the largest value
wj2lj . This corresponds to choosing the element that would have the largest
change in the cost function per change in the Kraft Inequality. A similar
strategy is often used in designing incremental resource allocation schemes

3.4 Computational Considerations 55

Data: A budget vector b.
if
∑

2−bj > 1 then
No solution. ;

end
l = b ;
while

∑
2−lj < 1 do

Let δ = 1 −
∑

2−lj ;
K = −�log2 δ� ;
J = {j : lj ≥ K} ;
Let j0 = arg maxj∈J wj ;
lj0 = lj0 − 1 ;

end
Algorithm 4: Algorithm for calculating the length vector l, given bud-
get b and costs wj .

Data: A budget vector b.
if
∑

2−bj > 1 then
No solution. ;

end
l = b ;
while

∑
2−lj < 1 do

Let δ = 1 −
∑

2−lj ;
K = −�log2 δ� ;
J = {j : lj ≥ K} ;
Let j0 = arg maxj∈J wj2lj ;
lj0 = lj0 − 1 ;

end

Algorithm 5: Improved algorithm for calculating the length vector l,
given budget b and costs wj .

in operations research [42]. Algorithm 5 is also suboptimal, but exhibits bet-
ter performance than Algorithm 4 with a negligible increase in the amount
of computation needed. The optimal solution to the combined budget and
cost optimization problem can be obtained by performing either full-search,
or using the methods of integer programming [43–45]. One useful approach
is to apply the branch and bound method to the problem [43,46–48].

We now compare the near-optimal results of Algorithm 5 with the optimal
solution. We performed a simulation where each user’s budget bj was chosen
uniformly from [1, 3n], and weights wj were chosen uniformly from [1, 100].
The optimal solution, l∗, was compared with the approximate solution, l̂,
from Algorithm 5 via the relative difference

ρ =
C(l̂) − C(l∗)

C(l∗)
. (3.6)

56 3. Group Key Agreement Techniques in Heterogeneous Networks

TABLE 3.1. Comparison between the optimal solution and the approximate so-
lution of Algorithm 5 for different group sizes n.

Group size n ρ̄
5 0.0037
6 0.0046
7 0.0027
8 0.0020
9 0.0025

10 0.0020
11 0.0016

This quantity was calculated and averaged over 100 realizations to produce
the mean relative difference ρ̄, for the group sizes n = 5, 6, 7, 8, 9, 10, and
11. The results are presented in Table 3.1, which indicates that Algorithm
5 produces the group key with cost that is within 0.5% of the optimal cost.
Due to the computational complexity required to find the optimal solution
for 100 realizations, we only present results through n = 11.

Since determining the optimal solution is very computationally inten-
sive for large group sizes, it is unreasonable for the CKA to find the opti-
mal conference tree when users have both budget constraints and varying
costs. Instead, Algorithm 5, although not optimal, has very competitive
performance and its computational requirements are small compared to
full-search or the branch and bound method, and is a reasonable candidate
for the CKA to use in determining the conference tree.

3.5 Efficiency and Feasibility Evaluation

We now compare our tree-based conference key establishment schemes with
other schemes in the literature. We assume that no broadcast channels are
available, and that if one user desires to communicate amongst many, he
must establish many separate connections. There are two evaluations that
we present: first, we consider the total cost needed to establish a group key
when the users have different costs; second, we examine the feasibility of
establishing a conference key when group members have different budget
constraints.

3.5.1 Comparison of Total Cost

We simulated a scenario in which there were three classes of users. The first
class corresponds to users with a large amount of computational power (and
hence lower user cost), the second corresponds to a medium level of compu-
tational power, and the last class represents users with low-powered devices

3.5 Efficiency and Feasibility Evaluation 57

or a high cost. In order to represent this distinction, the users were assumed
to have weights drawn according to three different distributions. For every
10 users, 2 users have weights drawn according to the first distribution, 5
according to the second distribution, and 3 according to the third distribu-
tion. The first weight distribution was a discrete uniform distribution with
integer values from [1, 50], while the second was a discrete uniform distrib-
ution over [501, 550], and the third was a discrete uniform distribution over
[951, 1000].

We compared the total cost for the Huffman scheme with the cost of the
butterfly scheme, the ING scheme, the GDH.1/2 scheme, and the GDH.3
scheme. Since there are differences between the communication and com-
putational procedures of the different schemes, we assume that the user
costs are associated with the cost to perform the two modular exponenti-
ations needed in a two-party DH scheme. This means, for example, that if
a user has a cost of w to perform one round of two-party DH, then he has
a cost of 3w/2 to perform a 3-party ING scheme since there are 3 modular
exponentiations involved.

We also assume that every user in a DH scheme performs the two modular
exponentiations. For example, if the subgroup {u1, u2} share a secret x and
the subgroup {u3, u4} share a secret y, and use DH to establish a shared
key for the 4 members, then both u1 and u2 calculate gx and gyx. Similarly,
both u3 and u4 calculate gy and gxy. In actuality, however, only one member
from each subgroup must calculate and transmit the message gx or gy. The
costs for the Huffman and butterfly schemes that we report do not reflect
this possible savings, and are therefore overestimates of the actual costs.

The total cost required to establish the conference key was calculated for
different group sizes and averaged over 500 realizations. The average costs
are depicted in Figure 3.5. Examining Figure 3.5 we see that the ING and
GDH.1/2 schemes have higher total cost than the Huffman, butterfly, and
GDH.3 schemes. In this example, the Huffman scheme performs better than
the butterfly scheme by an average of 6.7%. GDH.3 has the best perfor-
mance in terms of total cost. However, GDH.3 is a centralized scheme and
cannot be categorized as a completely distributed conference keying scheme
since one user performs the majority of the computations for the group. In
contrast, the Huffman scheme and the butterfly scheme are contributory
and do not make any single user responsible for the majority of the com-
putation (although they do allot more load to some users than others). In
scenarios where it is appropriate to have one user or entity do nearly all of
the work for the remaining users the use of centralized multicast key distri-
bution schemes [8, 10, 49] will lead to more efficient distribution of keying
information than conference keying schemes.

58 3. Group Key Agreement Techniques in Heterogeneous Networks

20 40 60 80 100 120 140 160 180 200
10

4

10
5

10
6

10
7

10
8

Comparison of Total Cost, 500 realizations
T

ot
al

 C
os

t (
lo

g
sc

al
e)

Group Size

Huffman
ING
GDH.1/2
Butterfly
GDH.3

FIGURE 3.5. Cost comparison of establishing a conference key using the Huff-
man-based conference tree, the ING scheme, GDH.1/2, the butterfly scheme,
and the GDH.3 scheme. The first four schemes are contributory protocols, while
GDH.3 is a centralized protocol.

3.5.2 Feasibility Comparison

Another major concern is the feasibility of establishing a secure confer-
ence in the presence of budget constraints. When the users have different
budgets, it might not be possible for different schemes to establish a con-
ference key. We shall quantify the likelihood that a conference key can be
established in a scenario where the users’ budgets are drawn according to
a distribution by introducing the PESKY(Probability of Establishing the
Session KeY) measure.

Suppose that B denotes the set of all possible budget vectors for n users,
and that µ is a probability distribution over B describing the likelihood of
the users having a certain budget vector. Let a conference key scheme be
denoted by F , and F (B) the set of all budget vectors B which are feasible
for F . Then formally, the PESKY measure is defined as:

PESKY (F, n) =
∑

b∈F (B)

µ(b). (3.7)

For example, if we let F refer to a conference tree scheme built using Al-
gorithm 3, Algorithm 4, or Algorithm 5, then a budget vector is feasible if
it satisfies the Kraft Inequality, and therefore F (B) = {b :

∑
j 2−bj ≤ 1}.

3.5 Efficiency and Feasibility Evaluation 59

In general, it is difficult to find closed form expressions for PESKY, and
Monte Carlo methods must be used to estimate PESKY.

We used PESKY to study the likelihood that different schemes could pro-
duce a group key when the user’s budgets were drawn according to different
distributions. We assumed that the budgets bj correspond to the amount
of two-party DH schemes that a user is willing to participate in, and that
the two modular exponentiations are the most significant expense for the
user. Therefore, each value of the budget allows for 2 modular exponentia-
tions to be performed. As before, we assume that every user in a subgroup
performs both of the modular exponentiations in a DH scheme. We com-
pare the PESKY for Algorithms 3-5 with PESKY for both the GDH.1/2
and GDH.3 schemes for three different budget distributions. The PESKY
for Algorithms 3-5 are conservative estimates of the actual probability of
establishing the session key since it is not necessary that all members of a
subgroup perform the first modular exponentiation of a DH scheme.

The first budget distribution is a discrete uniform distribution with inte-
ger values from [5, 20]. The distribution is presented in Figure 3.6(a), and
the corresponding PESKY curves are presented in Figure 3.6(b). Since the
GDH schemes require that one user performs an amount of modular expo-
nentiations equal to the amount of users n, it is impossible for groups of
more than 40 users to be formed via the GDH protocols with this distribu-
tion, as can be seen in Figure 3.6(b). The PESKY plots for this distribution
demonstrate that it is more likely that a budget vector can satisfy the Kraft
Inequality than the requirements of either the GDH.1/2 or GDH.3 schemes.
In fact, it is not until the group sizes become larger than n = 200 that a
significant decrease is observed in the likelihood of forming a group key
using a conference tree.

For the second distribution, the elements of the budget vector are gener-
ated as 1+NegBin(10, 0.25), where NegBin(s, p) is the negative binomial
distribution with probability mass function q(b) given by:

q(b) =
(

s + b − 1
b

)
ps(1 − p)b for b ∈ {0, 1, · · ·}. (3.8)

The addition of 1 to NegBin(10, 0.25) was to ensure that no users had a
budget of 0. In Figure 3.7, we see that the tree-based schemes exhibit a 100%
likelihood of successfully establishing the conference key for conferences
with between 10 and 200 users. The PESKY values for GDH.3 begins to
drop off at n = 100 users while the values for GDH.1/2 drop off at n = 80
users. Since a large amount of budget values are above 20, the PESKY
curves do not drop off as quickly as they did for the uniform case.

In the third distribution, the budgets were drawn as 1 +NegBin(5, 0.3),
as depicted in Figure 3.8 (a), and the corresponding PESKY measures are
depicted in Figure 3.8 (b). This distribution describes a similar phenomenon
to the uniform distribution above, but includes a heavier tail at higher
budget values that could represent a diminishing class of more powerful

60 3. Group Key Agreement Techniques in Heterogeneous Networks

0 5 10 15 20 25 30 35 40 45
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Budget Distribution for Unif[5,20]

Budget Values

P
ro

ba
bi

lit
y

(a)

50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

Group size

P
E

S
K

Y

PESKY for budgets from Discrete Uniform [5,20]

Kraft−Inequality
GDH.1/2
GDH.3

(b)

FIGURE 3.6. (a) Budget distribution discrete uniform with integer values from
[5, 20] (b) Corresponding PESKY

3.5 Efficiency and Feasibility Evaluation 61

0 10 20 30 40 50 60 70 80
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Budget Distribution for 1 + NegBin(15,0.65)

Budget Values

P
ro

ba
bi

lit
y

(a)

20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

Group size

P
E

S
K

Y

PESKY for budgets from NegBin(10,0.25)

Kraft−Inequality
GDH.1/2
GDH.3

(b)

FIGURE 3.7. (a) Budget distribution, shifted version of a negative binomial dis-
tribution with parameters s = 10, and p = 0.25. (b) Corresponding PESKY

62 3. Group Key Agreement Techniques in Heterogeneous Networks

users. The fact that roughly 6% of this distribution corresponds to budget
values below 5 has a significant effect upon the PESKY plots. In particular,
we see that the PESKY all of the conference keying schemes drop off earlier
than in Figure 3.6 (b). For example, when there are n = 70 users there is
only an 80% chance of forming a conference key using one of these schemes
with this distribution compared to a 100% chance with the distribution of
Figure 3.6 (a). We also see that the GDH.1/2 schemes are very unlikely to
successfully establish a group key, even for group sizes of n = 20, and that
all of the GDH schemes are unable to establish a group key for groups of
more then 60 users.

Therefore, in resource-limited scenarios, the choice of which conference
keying scheme is very critical. The GDH.3 scheme, although cost-efficient,
obtains this efficiency at the expense of requiring a single user have signifi-
cantly more power and resources than the other users. In applications where
the users have a more balanced distribution of resources, the GDH schemes
have PESKY graphs that rapidly drop off and are therefore unlikely to suc-
cessfully establish a group key. In these cases, the conservative estimates
of PESKY for tree-based conference keying schemes indicate that they are
more likely to establish a group key, and Algorithm 5 is a judicious choice
for constructing the conference tree since it requires little computational
effort and has near-optimal performance.

3.6 System Sensitivity to False Costs

In this section, we examine the effect that announcing costs different from
the true user costs has upon the total cost of using the Huffman conference
tree. There are two cases that we consider. First, we consider the issue
that users announce costs that are approximations of the true costs. Next,
we examine the case where some of the users are untrusted, and announce
large costs for the purpose of reducing their individual cost. We present an
approach that controls the detrimental effect that greedy users have upon
the total cost.

3.6.1 Sensitivity to Approximate Costs

We begin by considering that the true user costs are ŵj ∈ [1, B̂], where B̂ is
a suitable upper bound placed on the exact costs. We suppose the costs that
the users announce are derived by applying an operator T to ŵj , i.e. wj =
T (ŵj). We define Ŵ =

∑
j ŵj , and p̂j = ŵj/Ŵ . If we build a code using pj

with lengths lj , then the average length under p̂ is
∑

j p̂j lj . We show that if
we design the code to minimize

∑
pj lj , then we can design the operator T

such that
∑

|p̂j lj − pj lj | is small. Since lj ≤ n, we get
∑n

j=1 |p̂j lj − pj lj | ≤

3.6 System Sensitivity to False Costs 63

0 5 10 15 20 25 30 35 40 45
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Budget Distribution for 1 + NegBin(5,0.3)

Budget Values

P
ro

ba
bi

lit
y

(a)

20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

Group size

P
E

S
K

Y

PESKY for budgets from NegBin(5,0.3)

Kraft−Inequality
GDH.1/2
GDH.3

(b)

FIGURE 3.8. (a) Budget distribution, shifted version of a negative binomial dis-
tribution with parameters s = 5, and p = 0.3. (b) Corresponding PESKY

64 3. Group Key Agreement Techniques in Heterogeneous Networks

n
(∑n

j=1 |p̂j − pj |
)
. We now derive a bound for

∑n
j=1 |p̂j − pj |:

n∑

j=1

|p̂j − pj | =
n∑

j=1

∣∣∣∣
wj

W
− ŵj

Ŵ

∣∣∣∣ (3.9)

≤ 1
WŴ

⎡

⎣
n∑

j=1

|wj(Ŵ − W)| +
n∑

j=1

|W (wj − ŵj)|

⎤

⎦ (3.10)

≤ 1
WŴ

⎡

⎣2W
n∑

j=1

|wj − ŵj |

⎤

⎦ (3.11)

=
2
Ŵ

⎡

⎣
n∑

j=1

|wj − ŵj |

⎤

⎦ . (3.12)

We consider two cases for the operator T . The first case we consider is when
T is a clipping operator, namely

TB̂(ŵ) =
{

ŵ : ŵ ≤ B̂

B̂ : ŵ > B̂
.

The clipping operator takes the true costs, ŵj , and leaves the value alone if
it is in [0, B̂], otherwise it returns B̂. Based on this, if we increase B̂, then it
is more likely that the true cost ŵj will not be clipped. Consequently, it is
clear that as B̂ → ∞, we have more wj = TB̂(ŵj) = ŵj , and thus the bound
(3.12) tends to 0 as we increase B̂. We shall examine the clipping operator
later in this section. The second operation we consider is quantization. Here
we consider the interval [1, B̂] divided into N equally sized quantization
bins. The operator T then maps ŵ to the nearest quantization value, and
|wj − ŵj | ≤ B̂/(2N). In this case, we get

n∑

j=1

|p̂j − pj | ≤
1
Ŵ

(
B̂n

N

)
(3.13)

which tends to 0 as the number of quantization bins N increases. There-
fore, in both the case of clipping and quantization, the parameters can be
adjusted to bring the probability distribution p close to p̂, and thus the de-
signed average codelength

∑
pj lj close to the average codelength of using

lj under p̂.

3.6.2 Sensitivity to Costs from Untrusty Users

We next consider the effect one user has upon the computational cost of
the remaining users. In many scenarios, there may be a user that hurts the

3.6 System Sensitivity to False Costs 65

other users by either selfishly trying to make his cost small, or maliciously
trying to make the total cost of the remaining users large. Recall that if the
weights are ordered as w1 ≥ w2 ≥ · · · ≥ wn then the lengths of the Huffman
code can be ordered as l∗1 ≤ l∗2 ≤ · · · ≤ l∗n [30]. Therefore, if a user would
like to keep his cost as small as possible, he should announce as large of a
weight as possible. Additionally, announcing a large weight causes the pj of
the other users to decrease, thereby increasing their codelengths (see [50]
for the relationship between a symbol’s codelength and its self-information).
Thus, if a malicious user wishes to adversely affect the lengths of the other
users, he should announce as large of a weight as possible.

We first derive the worst-case effect that one user can have upon the
computational cost of the other group members when Huffman coding is
used to construct the conference tree. We suppose that the malicious or
selfish user is u1, and that he publishes a large weight w1. To determine how
much extra cost does choosing a large w1 impose upon the other n−1 users,
we define W̌ =

∑n
k=2 wk and define the probability qj = wj/W̌ for j ∈

{2, 3, · · · , n}, and q1 = 0. Then qj represents the probabilities that would
be used in constructing a conference tree if user u1 were not participating.
Let l∗j denote the optimal codelengths constructed using pj , and ľ∗j be the
optimal codelengths constructed using qj . Since u1 is not involved in the
construction of ľ∗j , we have ľ∗1 = 0.

We define the following quantities:

C∗ =
n∑

j=1

wj l
∗
j , Č∗ =

n∑

j=2

wj ľ
∗
j , C∗

ex =
n∑

j=2

wj l
∗
j .

We are interested in comparing C∗
ex, which is the total cost of the remaining

n− 1 users given the probabilities pj which incorporate u1’s cost, with Č∗,
which is the total cost of the n− 1 users u2, u3, · · · , un without considering
u1’s announced cost.

Since Č∗ arises as the optimal code for the n − 1 users with costs w2,
w3, · · · , wn, we know Č∗ minimizes costs of the form

∑n
j=2 wj lj . In parti-

cular, C∗
ex must satisfy:

C∗
ex =

n∑

j=2

wj l
∗
j ≥

n∑

j=2

wj ľ
∗
j = Č∗. (3.14)

We may derive an upper bound for C∗
ex by observing that the code given by

ľ∗j can be used to construct a code for pj by taking l1 = 1 and lj = ľ∗j + 1.
The optimal code for the weights w1, w2, · · · , wn must be better than this
code, and hence

C∗ ≤ w1 +
n∑

j=2

wj(ľ∗j + 1) = Č∗ + W. (3.15)

Since C∗
ex = C∗−w1l

∗
1, we have C∗

ex ≤ Č∗+W −w1l
∗
1 ≤ Č∗+W̌ . Gathering

the results together, we get the overall bound Č∗ ≤ C∗
ex ≤ Č∗ + W̌ . The

66 3. Group Key Agreement Techniques in Heterogeneous Networks

upper bound is achieved when w1 > W̌ , and hence, in the worst case, u1

forces the other n − 1 users to spend an extra W̌ of resources.
Next, we consider the more general case where a fraction of the users

are untrusty and announce large costs. Suppose that the true costs are ŵj ,
and that the announced costs are w̃j . If the underlying statistics governing
ŵj are known, it is possible to determine which w̃j are outliers and remove
those users from the group key formation procedure. However, in many
cases, the value of the conference exists regardless of whether a few users
were untrusty, and it is desirable to have those users in the conference. In
this case, an approach must be used to reduce the detrimental effect of
these bad users upon the cost of forming the entire group key.

We suppose that the CKA applies a clipping operator to the announced
user costs w̃j to produce costs wj = TB(w̃j) that are used by the CKA in
determining the conference tree. Ideally, we would like to build the confer-
ence tree using the exact costs ŵj , but these are not available. Instead, if
the conference tree is built using wj or w̃j , the corresponding lengths lj and
l̃j are used with the exact costs ŵj , which can lead to an increase in the
total cost.

To study the amount of additional cost incurred by using a code designed
for wj when the true costs are ŵj , we shall examine the average codelength.
Hence we design codes for pj = wj/W and p̃j = w̃j/W̃ , where W̃ =

∑
w̃j .

We are interested in studying
∑

p̂j lj and
∑

p̂j l̃j . The Kullback-Leibler di-
vergence D(p̂‖p) describes the additional average codelength that different
coding schemes incur when designed for the wrong distribution p when the
correct distribution is p̂ [30, 40, 50, 51]. Given a model distribution for the
true user costs, the CKA can use D(p̂‖p) to determine the value of the
clipping parameter B that minimizes the miscoding penalty.

We calculated the divergence for n = 100 users when the original costs wj

were drawn according to 10LN(0, 1)+100, where LN(µ, σ) is the lognormal
distribution arising from a normal distribution with mean µ and variance σ.
The lognormal distribution was chosen because it has a long tail. The prob-
ability that a user is untrusty was 0.05, and untrusty users were assumed
to announce a cost w̃j = ŵj + Y , where Y = 1000 and wj = TB(w̃j). The
choice of Y = 1000 was arbitrary and chosen to represent a large bias that
an untrusty user might place on his announced costs. An example diver-
gence D(p̂‖p) for costs ŵj drawn according to this distribution is presented
in Figure 3.9. There is a minimum that appears at approximately B∗ = 150.
A system should be designed for the average case. In order to do this, the
optimal clipping parameter should be averaged over many realizations of
the costs. For costs drawn according to 10LN(0, 1) + 100, we averaged the
optimal clipping value over 10000 realizations and found the mean optimal
clipping value to be B

∗
= 150.44 and the variance of the optimal clipping

value as σB∗ = 25.60.
The relative difference between the cost of using the Huffman-based con-

ference tree using wj and ŵj are now compared. If l̂j are the optimal code-

3.6 System Sensitivity to False Costs 67

100 150 200 250 300 350 400 450 500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Clipping Parameter B

D
iv

er
ge

nc
e

Divergence between Exact and Clipped probabilities

FIGURE 3.9. An example divergence D(p̂‖p) where ŵj ∼ 10LN(0, 1) + 100, and
wj = TB(ŵj).

lengths using ŵj , l̃j are the optimal codelengths constructed using w̃j , and
lj are the optimal codelengths constructed using wj , then we are interested
in comparing

ρ =

∑
j ŵj lj − ŵj l̂j
∑

j ŵj l̂j
and ρ̃ =

∑
j ŵj lj − ŵj l̃j
∑

j ŵj l̂j
.

We calculated these values for the case when the exact costs were drawn
according to 10LN(0, 1) + 100 with Y = 1000, while the probability of
a user being untrusty was 0.05. The results were averaged over 100 real-
izations and are presented in Figure 3.10. The quantity ρ is presented for
different clipping parameter values, and we observe that there is a range
of minimal values from B = 140 to B = 220, which is roughly the region
that the divergence curves predict. The clipped relative costs show a signif-
icant improvement over the unclipped relative costs. Without performing
the clipping, the untrusty users force the entire group to spend an average
of over 5% more than if the exact user costs were used. By performing
the clipping operation, however, this detrimental effect can be significantly
lessened to less than 0.5%.

68 3. Group Key Agreement Techniques in Heterogeneous Networks

100 200 300 400 500 600 700
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Clipping Parameter B

R
el

at
iv

e
D

iff
er

en
ce

Cost Comparison between Clipped and Unclipped

Clipped
Unclipped

FIGURE 3.10. The relative costs ρ and ρ̃ are presented for when the exact user
costs are drawn as ŵj ∼ 10LN(0, 1) + 100, and that there is an 0.05 likelihood
that a user is untrusty, and Y = 1000.

3.7 Chapter Summary

In this chapter we have presented methods for establishing a conference
key that are based upon the design of an underlying tree called the confer-
ence tree. In heterogeneous environments, where users have varying costs
and budgets, the conference tree can be designed to address the user dif-
ferences. We examined the design of the conference tree for three different
cases. First, we studied the problem of minimizing the total cost of estab-
lishing the group key when the users had different costs. The problem of
designing the conference tree was related to source coding, and techniques
for designing source codes, such as Huffman coding, were employed to de-
sign the conference tree. The second case we investigated was when the
users had the same cost, but different budget requirements. We observed
that a necessary condition for a conference tree to exist for a given vec-
tor of budget requirements is that the budget vector satisfies the Kraft
Inequality. We then presented a greedy algorithm that trimmed a feasible
budget vector to achieve a length assignment that optimally reduces the
total length of the conference tree. Finally, the third case we examined is
when the users have both varying costs and budget requirements. We pre-
sented a computationally efficient near-optimal algorithm using a greedy

3.7 Chapter Summary 69

incremental resource assignment strategy that achieves a total cost within
0.5% of the optimal solution for small group sizes.

We presented simulations comparing the total cost of the butterfly and
Huffman-based schemes against the scheme of Ingemarsson et al., and the
GDH family proposed by Steiner et al. Out of the class of non-centralized
conference keying schemes, the Huffman scheme exhibited the least total
cost. In situations where no single user has an extremely large budget, cen-
tralized conference keying schemes are unlikely to successfully establish a
conference key. To investigate this phenomenon, we introduced the PESKY
measure, which describes the probability that a conference keying scheme
can establish a session key in the presence of budget constraints. We pro-
vided simulations where the user budgets were drawn according to different
distributions, and in all cases the PESKY values for different group sizes
were higher for our tree-based schemes than for either the GDH.1/2 or the
GDH.3 schemes.

Next, we examined the effect that using false user costs would have on the
total cost. It was shown that by increasing the quantization resolution, or by
increasing the threshold level, that the difference between the total cost of
using the exact and approximate costs for a given length assignment tends
to 0. We then examined the effect a subset of users who falsely announce
large costs has upon the total cost. In order to reduce the detrimental effect
of designing a conference tree for falsely announced user costs, we proposed
the use of a clipping operator to prevent untrusty users from being too
greedy and minimize the divergence to determine the optimal threshold
value. Simulations using the Huffman algorithm to construct the conference
tree show that the optimal threshold values agree with those predicted by
the divergence.

4
Optimizing Rekeying Costs in Group
Key Agreement

The early design of contributory group key agreement schemes mostly fo-
cuses the efficiency of initial group key establishment, such as in [52–54].
These schemes, however, encounter high rekeying cost upon group mem-
bership changes. Later, Steiner et al. proposed a family of Group Diffie-
Hellman (GDH) protocols by extending the two-party Diffie-Hellman (DH)
protocols [55] to the group scenarios [56–58]. The GDH protocols achieve
efficient key update upon user join, but still require high cost for member
leave. Then, logical key tree structures are used to improve the scalability of
contributory key agreements [59–61]. In tree-based contributory schemes,
the group key can be updated by performing log n rounds of two-party DH
upon any single user join or leave, where n is the group size.

What is the lowest possible cost of contributory group key agreement
schemes? The theoretical analysis in [62] indicates that for any tree-based
contributory group key management scheme, the lower bound of the worst
case cost is Θ(log n) rounds two-party DH for either user addition or dele-
tion. That is, either the cost for adding a user or the cost for deleting a
user is no less than Θ(log n). In addition, it is obvious that at least one
round of two-party DH needs to be performed for adding or deleting a user
in any circumstance. Therefore, lowest possible cost for contributory key
agreement is Θ(log n) for user join and O(1) for user leave; or Θ(log n) for
user leave and O(1) for user join.

In this chapter, we describe two contributory schemes that employ novel
tree structures and rekeying algorithms, with the aim to achieve the low
bound of rekeying cost. Particular, the first method, referred to as JET
[60, 63], uses a special join-tree/exit-tree topology and takes advantage of

72 4. Optimizing Rekeying Costs in Group Key Agreement

cost amortization. This method can significantly reduce the rekeying cost
for user join. The second method is consist of a new key tree structure,
called PFMH, and a key agreement protocol, called PACK [64, 65]. This
method only needs O(1) rounds of two-party DH upon any single user join
event and O(log n) rounds of two-party DH upon any single user leave event,
which achieves the lower bound described in the previous paragraph.

4.1 Join-Exit Tree for Reducing Latency in Key
Agreement Protocols

The JET scheme described in [60] represents an important effort to reduce
the cost in contributory key agreement. This scheme focuses on time effi-
ciency, which is measured by the processing time in group key establishment
and update. In order to participate in the group communications, a joining
user has to wait until the group keys are updated. Since computing crypto-
graphic primitives and exchanging rekeying messages are time-consuming,
such waiting time is not negligible. Similarly, the amount of time needed
to recompute a new group key reflects the latency in user revocation. Thus
from a quality of service (QoS) perspective, the rekeying time cost is di-
rectly related to users’ satisfaction and a system’s performance.

The basic idea in JET is to employ a new key tree topology that has
two small subtrees, the join and exit subtrees, located close to the root
of the key tree. The sizes of join and exit trees should be at the log scale
of the group size. With proper algorithms that handle the key update for
join and leave events, an average asymptotic time cost for a join event is
O(log (log n)), and also O(log (log n)) for a departure event when group
dynamics are known a priori.

4.1.1 Time-efficiency Measurement

The time efficiency of DH-based contributory group key agreement is usu-
ally evaluated by the number of rounds needed to perform the protocol dur-
ing a key update [52, 56, 66, 67]. However, in some schemes, the number of
operations may be different in distinct rounds. For example, in GDH.2 [56],
i modular exponentiations are performed in the i-th round. To address this
problem, the notion of “simple round” was introduced in [68], where every
party can send and receive at most one message in each round. In this sec-
tion, we apply the notion of simple round in the tree-based contributory
schemes. In each round, each user can perform at most one two-party DH
operation. With the definition of simple round, the performance metrics for
time efficiency are listed as below.

4.1 Join-Exit Tree for Reducing Latency in Key Agreement Protocols 73

Average Join/Leave Time User join time is defined as the number of
rounds to process key updates for a user join event. The average user join
time, denoted by Tjoin, is defined as

Tjoin =
Rjoin

Njoin
, (4.1)

where Rjoin is the total number of DH rounds performed for Njoin join
events. Similarly, the user leave time is defined as the number of rounds
to process key updates for a user leave event. The average user leave time,
denoted by Tleave, is defined as

Tleave =
Rleave

Nleave
, (4.2)

where Rleave is the total number of DH rounds performed for Nleave leave
events. Let N = Njoin +Nleave and R = Rjoin +Rleave. The overall average
processing time T is defined as

T =
R

N
, (4.3)

where T can also be interpreted as a weighted average of Tjoin and Tleave

as T = Njoin

N Tjoin + Nleave

N Tleave.

4.1.2 Join-Exit Tree (JET) Topology

In this section, we describe the join-exit tree (JET) topology and and the
associated key agreement algorithms.

As shown in Fig. 4.1(a), the join-exit tree consists of three parts: the
join tree, the exit tree, and the main tree. It is a binary tree built upon the
two-party DH protocol. In this section, the key tree that has the only main
tree structure is referred to as the simple key tree.

The prior works have shown that, if a user joins the group at a location
closer to the tree root, fewer number of keys need to be updated, thus the
join time will be shorter. Similar reasoning applies to user departures. So
the join tree and exit trees should be much smaller than the main tree. We
define the join tree capacity and the exit tree capacity , denoted by CJ and
CE , as the maximum number of users that can be accommodated in the
join and exit tree, respectively. The number of users in the join tree and
the main tree are denoted by NJ and NM , respectively.

In the JET scheme, a joining user will first be added to the join tree. Later
on, when the join tree reaches its capacity, all users in the join tree will be
relocated together into the main tree. In addition, when users’ departure
time is known, users who are most likely to leave in the near future will be
moved in batch from the main tree to the exit tree. The design rationale
of the join and exit trees resembles that of memory hierarchy in computer
design [69]. Furthermore, the capacities of the join and exit trees can change

74 4. Optimizing Rekeying Costs in Group Key Agreement

Main Tree

Join
TreeExit

Tree

(a)

Main Tree

Join
Tree

(b)

FIGURE 4.1. Topology for the proposed join-exit tree (a) join, exit, and main
tree. (b) join and main tree.

over time, resulting in a dynamic key tree structure. For example, when
there is no user in the exit tree, the key tree reduces to a main tree and
join tree topology, as shown in Fig. 4.1(b).

4.1.3 The Join Tree Algorithm

The join tree algorithm consists of four parts: the join tree activation, the
insertion strategy, the relocation strategy, and the join tree capacity update.
When the group has only a few members, the join tree is not activated. As
the group size increases and exceeds a threshold we activate the join tree and
choose an initial join tree capacity. Such a threshold condition is referred to
as the activation condition for the join tree. After the activation, any user
joining the group is first inserted to a node in the join tree. The insertion
node is chosen according to the insertion strategy . When the join tree is
full, the members in the join tree are merged into the leaf nodes of the
main tree. Such a process is called the batch relocation. Since the number
of users in the main tree is changed after the batch relocation, the join tree
capacity is updated according to a rule that relates the join tree capacity
to the main tree user number. According to this rule, the optimal join tree
capacity in the sense of time efficiency can be computed. We explain these
four parts in details below.

User Insertion in the Join Tree

When the join tree is empty and a new user wants to join, the root of
the current key tree is chosen as the insertion node. The insertion is done
by treating the entire existing group as one logical user, and performing a
two-party DH between this logical user and the new user. This process is
illustrated in Fig. 4.2, where the new user M5 becomes node 9, the root
of the join tree. Member M5 is paired up with the original root of the key
tree (node 1) to perform a DH key exchange and the new group key is
established as node 8. When the join tree is not empty, the insertion node
is determined by Algorithm 6, where usernumber(x) returns the number
of users under a given node x in the key tree. After the insertion node is

4.1 Join-Exit Tree for Reducing Latency in Key Agreement Protocols 75

1

2 3

4 5 6 7

M1 M2 M3 M4

1

2 3

4 5 6 7

M1 M2 M3 M4

9

8

M5

M5 join

New group
key

New
member

FIGURE 4.2. User join at the join tree root. Note that the new user M5 becomes
the root of the join tree.

found, the new member node performs a two-party DH key exchange with
the insertion node. Then the keys on the path from the insertion node to
the tree root are updated through a series of DH key exchange. Fig.4.3
illustrates the growth of the join tree from one user to eight users using the
insertion strategy.

x ← join-tree-root ;
while usernumber(x) 	= 2k for some integer k do

x ← rightchild(x);
end
insertion-node ← x

Algorithm 6: Finding the insertion node

M1 M2 M3 M4

M1

M1 M2

M1 M2

M3

M1 M2 M3 M4

M5

M1 M2 M3 M4 M5 M6 M7 M8

1 2 3 4 5 ……… 8 Join tree user #

………

FIGURE 4.3. Sequential user join strategy (only the join tree is shown).

The Batch Relocation

There are two relocation methods that differ in whether the subgroup keys
in the join tree are preserved. In the first method, all users in the join tree
are viewed as a logical user during relocation, and this logical user is inserted
into the shortest-depth leaf node of the main tree. Thus, the subgroup keys
among the users in the join tree are preserved. This process is shown in
Fig.4.4(a). Then all keys along the path from the insertion node to the

76 4. Optimizing Rekeying Costs in Group Key Agreement

Main Tree

Join
Tree

Main Tree

Join
Tree

Relocation

(a)

Main Tree

Join
Tree

Main Tree

Relocation

Join tree & main tree
users

(b)

FIGURE 4.4. Relocation methods for the join tree (a) Method 1. (b) Method 2.

TABLE 4.1. Latency of Sequential User Join

k 1 2 3 4 5 6 7 8 9 10 ...
r(k) 1 2 2 3 2 3 3 4 2 3 ...

tree root are updated, which is indicated by the dash line in Fig. 4.4(a).
The reason to choose the shortest branch leaf node in the main tree as
the insertion node is to guarantee that the relocation time is at most the
log of the main tree size (�log NM�), because the shortest branch must be
smaller or equal to the average length of the branches, which is �log NM�.
The only exception comes when the main tree is a complete balanced tree,
the relocation time is log NM + 1, because one more level of the key tree
must be created to accommodate the new logical user.

In the second relocation method, we find the NJ shortest-depth leaf nodes
in the main tree as the insertion nodes for NJ join tree user. These insertion
nodes are found so that the unbalance-ness of the key tree can be alleviated
by the relocation process. Then we relocate the join tree users simultane-
ously to the insertion nodes. The keys on the branches from all original join
tree users to the tree root are updated in parallel and finally a new group
key is obtained. This process is illustrated in Fig.4.4(b). To analyze the
time complexity, we note that this relocation may fill up the empty nodes
at the shortest-depth leaf nodes of the main tree. The maximum depth of
any relocation path would not exceed �log(NM + NJ)�. Since the join tree
is much smaller than the main tree, the relocation time is upper bounded
by �log NM� + 1.

Although the two relocation methods have similar time complexity, the
first method will generally produce a skewed main tree. Since users may
leave from a branch longer than the average depth of the key tree, an
unbalanced key tree may cause the user departure time to be longer than
the case when a balanced key tree is used. The second relocation method
helps maintain the balance of the key tree, which reduces the expected cost
of leave events [66]. We shall choose the second relocation method in this
work because it takes into consideration both the join and leave time cost.

4.1 Join-Exit Tree for Reducing Latency in Key Agreement Protocols 77

The Optimal Join Tree Capacity

Using the proposed insertion strategy, the user join latency for the k-th user
in the join tree is measured as r(k) rounds, which is listed in Table 4.1. We
observe a special property of the sequence r(k), namely,

r(2p + q) = 1 + r(q), p ≥ 0, 0 < q ≤ 2p, (4.4)

where p is a non-negative integer, and q a positive integer. For the user join
latency r(k) in (4.4), the following inequality holds for any positive integer
n, and equality is achieved when n is of power of 2:

1
n

n∑

k=1

r(k) ≤ 1
2

log n + 1. (4.5)

The proof is as follows.
Proof:

We first use induction to show that when n = 2p, p = 0, 1, 2, ..., the
equality holds.

When n = 1, Left hand side(LHS) = Right hand side(RHS) = 1.
Next, we assume the equality holds for n = 2p, namely,

1
2p

2p∑

k=1

r(k) =
1
2

log 2p + 1. (4.6)

Consider the case of n = 2p+1.

LHS =
1

2p+1

2p+1∑

k=1

r(k)

=
1

2p+1

(
2p∑

k=1

r(k) +
2p∑

k=1

(r(k) + 1)

)

=
1

2p+1

(
2 · (1

2
log 2p + 1)2p + 2p

)
(4.7)

=
1
2

log 2p+1 + 1 = RHS,

where (4.7) is obtained using the induction assumption (4.6).
We now prove the inequality for any positive integer n. It is obvious to

see that inequality is true for n = 1, 2. By induction, suppose that the
inequality is true for all 1 ≤ n < 2p + q, and we consider n = 2p + q, where
0 < q ≤ 2p.

LHS =
1
n

n∑

k=1

r(k)

78 4. Optimizing Rekeying Costs in Group Key Agreement

=
1
n

(
2p∑

k=1

r(k) +
q∑

k=1

(r(k) + 1)

)

≤ 1
n

[(
1
2

log 2p + 1)2p + q(
1
2

log q + 1) + q] (4.8)

=
1
2

{
1
n

(2p log 2p + q log q + 2q)
}

+ 1, (4.9)

where (4.8) is obtained using the induction assumption.
To prove that (4.9) ≤ 1

2 log n + 1 is equivalent to prove

2p

n
log 2p +

q

n
log(4q) ≤ log n. (4.10)

Applying the identity log k = log e · ln k and ln k =
∫ k

1
1
xdx, (4.10) can be

written as an integration form

log e

{
2p

n

∫ 2p

1

1
x

dx +
q

n

∫ 4q

1

1
x

dx

}
≤ log e

∫ n

1

1
x

dx

⇔ 2p

∫ n

2p

1
x

dx + q

[∫ n

1

1
x

dx −
∫ 4q

1

1
x

dx

]
≥ 0 (4.11)

We denote B = 2p and fix p (hence B is fixed). Thus n = B + q. It is
straightforward to see that (4.11) holds when B + q ≥ 4q, or 1 ≤ q ≤ B

3 .
When B/3 ≤ q ≤ B, (4.11) is equivalent to

2p

n

∫ n

2p

1
x

dx − q

n

∫ 4q

n

1
x

dx ≥ 0. (4.12)

Since q is the only variable in (4.12), let f(q) be the LHS of (4.12), and
consider f(q) as a continuous function of q

f(q) =
B

B + q

∫ B+q

B

1
x

dx − q

B + q

∫ 4q

B+q

1
x

dx,

where q ∈ [B/3, B]. Taking the derivative of f(q), we get

d

dq
f(q) = − B

(B + q)2

∫ 4q

B

1
x

dx < 0. (4.13)

In this proof, we have showed that the equality holds when n is power
of 2, i.e. f(B) = 0. We also showed that f(q) > 0 for 1 ≤ q ≤ B

3 . Since
f(B/3) > 0, f(B) = 0, f(q) is continuous on [B/3, B] and f ′(q) < 0, we
must have f(q) > 0 on [B/3, B]. Thus (4.11) also holds for B/3 ≤ q ≤ B.
This completes the proof.
End of Proof

4.1 Join-Exit Tree for Reducing Latency in Key Agreement Protocols 79

Consider the average join time for x users joining the group starting
form an empty join tree. These x users are inserted into the join tree one
by one, then they are relocated together into the main tree. From previous
analysis we can see that, when the main tree has NM users, the average
join tree relocation time is log NM , where we relax the integer value of the
tree height to a continuous value to simplify analysis. Taking into account
the relocation time, the average join time for these x users is

Tjoin =
1
x

(
x∑

k=1

r(k) + log NM). (4.14)

Using (4.5), one can obtain

Tjoin ≤ 1
2

log x +
1
x

log NM + 1. (4.15)

Since it is not easy to minimize Tjoin directly, we try to minimize its upper
bound over x. The optimal join tree capacity CJ that minimizes the upper
bound is given by

CJ = arg minx>0{
1
2

log x +
1
x

log NM + 1}

= 2 ln NM (4.16)

The above analysis shows that, for a given number of main tree users
NM and the insertion rule specified by Algorithm 6, the optimal join tree
capacity CJ is 2 ln NM . Since between two consecutive join tree relocations,
the main tree size is fixed at NM , the join tree capacity should also be
fixed during this time at CJ ≈ 2 ln NM and the average join time is upper
bounded by

Tjoin ≤ 1
2

log log NM +
3
2

+
1

2 ln 2
− 1

2
log log e. (4.17)

This upper bound indicates that on average, a user needs to spend only
O(log(log n)) rounds for a rekeying operation in user join, where n is the
group size. It is noted that this asymptotic performance is not affected by
the variation of the relocation time, because the relocation time of around
log NM rounds is averaged over log NM join events, contributing approxi-
mately only one round to the average join cost. This validates the use of
the approximate average relocation time log NM in the above analysis.

For the joining users, since they can start to communicate once they are
inserted into the join tree, their waiting time do not include the relocation
time of log NM rounds. The waiting time for the joining users is referred to
as user join latency. One can see that the average user join latency, Ljoin,
is also upper bounded as

Ljoin ≤ 1
2

log(log NM) − 1
2

log log e +
3
2
.

80 4. Optimizing Rekeying Costs in Group Key Agreement

The Join Tree Activation

To decide whether to activate the join tree, one should compare the average
join time with and without employing the join tree. For a key tree structure
with join tree, adding each user in the join tree incurs at most a time cost
of log CJ rounds. Consider the average user join time for CJ users when
the join tree changes from empty to full, followed by a batch relocation of
log NM rounds. The average join time for these CJ users satisfies

Tjoin ≤ log CJ + (log NM)/CJ . (4.18)

If a simple key tree with only a main tree is used, the average join time
would be at least log NM . Consequently, a reduction in time cost can be
obtained by using the join tree when the following inequality holds,

log CJ + (log NM)/CJ ≤ log NM ,

or equivalently,

log NM ≥ CJ

CJ − 1
log CJ . (4.19)

When the number of users in the group is large enough, a join tree should
be activated to reduce the average join time. It can be proved that when
CJ = 2 lnNM , the inequality (4.19) is satisfied for any NM > 8. Thus
a reasonable group size threshold is THjoin = 8. When the group size is
smaller than or equal to 8, a simple key tree is used. Otherwise, the join
tree is activated.

4.1.4 The Exit Tree Algorithm

In some group applications, users can estimate the duration of their staying
time according to their own schedule. Such information can help reduce the
time cost of rekeying operations in user departure. In the following analysis,
we assume that we can obtain accurate information about users’ duration
of stay. In later sections, the cases of inaccurate or unavailable staying time
will be discussed.

Similar to the join tree algorithm, the exit tree algorithm consists of
four parts, namely, the activation condition, the batch movement, the user
insertion in the exit tree, and the optimization of the exit tree capacity.

The Batch Movement

The batch movement refers to the operations to move the users that are
likely to leave in the near future from the main tree to the exit tree. The
group communications is not interrupted since the old group key can still
be used before the batch movement is completed.

A batch movement takes place when there is a user leaving from the exit
tree and a batch movement condition is satisfied. Denoting the number

4.1 Join-Exit Tree for Reducing Latency in Key Agreement Protocols 81

of users in the exit tree after the last batch movement as Up, and the
current number of users in the exit tree as Uc, we propose a batch movement
condition as

Uc ≤ ρUp, (4.20)

where ρ ∈ [0, 1) is the exit tree residual rate (residual rate for short), a
pre-determined parameter to control the timing of batch movement. In a
batch movement, the first B users who are most likely to leave soon are
moved to the exit tree, where B is referred to as the batch movement size.
Starting from an empty exit tree (Up = 0), the number of users in the exit
tree after the k-th batch movement will be upper bounded by

∑k−1
i=0 ρiB.

As k goes to infinity, the number of users in the exit tree converges to the
upper bound B/(1 − ρ). Therefore the exit tree capacity CE is related to
the batch movement size by

CE = B/(1 − ρ). (4.21)

A priority queue [70] can be used to keep the departure time of all the
users in the main tree. This queue is referred to as the leaving queue. The
users’ departure time is obtained from their arrival time and their estimated
staying time. The leaving queue will be update under two circumstances.
First, after a batch relocation of the join tree, the departure information of
the join tree users are added to the leaving queue. Second, after the batch
movement of the exit tree, the departure information of the moved users
are removed from the leaving queue.

User Insertion in the Exit Tree

The insertion locations for the users being moved into the exit tree are
chosen to maintain the balance of the exit tree. For each user insertion, the
leaf node with the minimum depth in the exit tree is chosen as the insertion
node.

Optimal Exit Tree Capacity

Here we derive the optimal exit tree capacity that minimizes an upper
bound of the average leaving time. Suppose that b users are moved together
into the exit tree. A batch movement of these b users will incur a time cost
of (log NM + 2), where log NM is the average height of the main tree, and
the addition of 2 refers to the additional two levels above the main tree due
to the use of the join tree and the exit tree (refer to Fig. 4.1(a)). If the exit
tree capacity is x, each user leaving from the exit tree will incur at most a
time cost of (log x + 2). Thus the average user leave time for these b users
is bounded by

Tleave ≤ 1
b
(log NM + 2) + (log x + 2). (4.22)

82 4. Optimizing Rekeying Costs in Group Key Agreement

Using (4.21), b = x(1− ρ), and minimizing the right hand side of (4.22) we
obtain

CE = arg minx

{
1

(1 − ρ)x
(log NM + 2) + (log x + 2)

}

=
ln NM + 2 ln 2

(1 − ρ)
. (4.23)

When the capacity of the exit tree is computed as in (4.23), the average
leave time is bounded by

Tleave ≤ log(log NM + 2) + δ, (4.24)

where δ = 2− log(1−ρ)+ log e− log log e. Combining (4.23) and (4.21), we
have

B = lnNM + 2 ln 2. (4.25)

A few comments should be made to provide more insights from the above
analysis. First, the batch movement size B is only determined by the num-
ber of users in the main tree, and independent of the residue rate ρ. Second,
there are actually only two parameters, B and ρ, in our system, since the
exit tree capacity is a function of B and ρ as in (4.21). Third, with perfect
departure information, the average leave time is bounded by O(log log n),
where n is the group size, and the residue rate ρ should be set to 0 to
minimize the upper bound in (4.24). However, in practice, the choice of ρ
is a tradeoff. When ρ is 0, a batch movement cannot be performed unless
the exit tree is completely vacant. If some users inaccurately estimate their
departure time and stay in the exit tree for a long period of time, no other
users can utilize the exit tree during that period. When ρ is close to 1,
batch movements are frequently performed, resulting in a large overhead.
Based on experimental heuristics, we suggest setting ρ to around 0.5.

The Activation of Exit Tree

The average leave time using a simple key tree with NM users is log NM .
Comparing this result with the upper bound in (4.22), a reduction in the
average leave time can be obtained if

1
(1 − ρ)CE

(log NM + 2) + (log CE + 2) ≤ log NM . (4.26)

Using (4.23), we simplify the above condition as

log NM ≥ log CE + log e + 2. (4.27)

Similar to the case of the join tree activation, it can be proved that
when the exit tree capacity is chosen as in (4.23), the inequality (4.27)
is satisfied for any NM > 256. Thus we have found a threshold group size
THleave = 256. When the group size is larger than this threshold, activating
the exit tree can reduce the average leave time.

4.1 Join-Exit Tree for Reducing Latency in Key Agreement Protocols 83

10
0

10
1

10
2

10
3

10
4

10
5

0

1

2

3

4

5

6

7

8
Sequential user join average time cost

Group size

A
ve

ra
ge

 jo
in

 ti
m

e

JET
Analytical upper bound for JET
TGDH

FIGURE 4.5. Average time cost for sequential user join.

4.1.5 Performance Analysis

In this section, three simulation experiments are described. The first simu-
lation focuses on group key establishment, in which sequential user join is
considered. The second and third simulation have both join and departure
activities. In each simulation, the performance of JET is compared with
that of TGDH scheme [66].

Key Establishment for Sequential User Join

For sequential user join, the JET protocol uses a simple key tree for small
group size, and activates the join tree when the group size is larger than 8.
The exit tree will not be activated. We compare the average join time for se-
quential user join using the proposed JET and TGDH [66] in Fig. 4.5. It can
be seen that JET achieves the same performance as TGDH when the group
size is small, and outperforms TGDH when the group size becomes large.
Regarding the asymptotic performance, TGDH achieves an average time
cost of O(log n), while the proposed JET scheme achieves O(log (log n)).
The dashed line in Fig. 4.5 shows the theoretical upper bound for the av-
erage time cost from (4.17).

Experiment Using MBone User Activity Data

In this experiment, three user activity log files are chosen from three Multi-
cast Backbone (MBone) multicast sessions [71] to describe user dynamics.

84 4. Optimizing Rekeying Costs in Group Key Agreement

0

1

2

3

4

5

6
Simulation Using MBone Data

 NASA1 NASA2 CBC News

A
ve

ra
ge

 J
oi

n
T

im
e

0

1

2

3

4

5

A
ve

ra
ge

 L
ea

ve
 T

im
e

JET
TGDH

1.688

4.716

1.740

5.651

2.056

4.961

2.730

3.651 3.665 4.595
3.266

3.977

FIGURE 4.6. Average join and leave time for simulations using MBone data.

Two of these three sessions are NASA space shuttle coverage and the other
one is CBC News World online test 1.

Fig. 4.6 shows the experimental results using JET and TGDH scheme.
In the figure, JET has about 50% improvement over TGDH in user join,
and about 20% improvement in user departure. It is worth noting that the
improvement in user departure is not resulted from the use of the exit tree,
since all the three sessions have maximum group size below 100 and the
exit tree is not activated. From the study of the MBone multicast sessions,
Ammeroth et al. observed that the MBone multicast group size is usually
small (typically 100-200), and users either stay in the group for a short
period of time or a very long time [72] [73]. Using the proposed JET scheme,
the exit tree will not be activated for a small group size. However, when a
user stays in the group for only a short period of time, it is highly likely
that this user joins and leaves the group in the join tree without getting to
the main tree. Thus the use of the join tree reduces both the user join time
and the user leave time.

Experiments Using Simulated User Activity Data

In this experiment, user activities is generated according to the probabilistic
model suggested in [72]. The duration of simulation is 5000 time units and is

1The sources of these MBone sessions are: (1) NASA-space shuttle STS-80 coverage,
video, starting time 11/14/1996, 16:14:09; (2) NASA-space shuttle STS-80 coverage,
audio, starting time 12/4/1996, 10:54:49; (3) CBC Newsworld on-line test, audio, starting
time 10/29/1996, 12:35:15.

4.2 Optimizing Rekeying Cost 85

TABLE 4.2. Statistical Parameters for User Behavior
Duration 0-199 200-499 500-4499 4500-5000

λi 7 5 2 1
mi 2500 500 500 500

Characteristic long stay short stay

divided into four non-overlapping segments, T1 to T4. In each time segment
Ti, users’ arrival time is modelled as a Poisson process with mean arrival
rate λi and users’ staying time follows an exponential distribution with
mean value mi. The values of λi and mi are listed in Table 4.2. The initial
group size is 0. The simulated user activities consist of about 12000 join
and 10900 leave events. The maximum group size is approximately 2800
and the group size at the end of simulation is about 1100.

In practice, users’ accurate staying time will not always be available.
More in-depth study has show that regardless of the accuracy in EST, the
join tree scheme can improve the time efficiency for join events. The overall
operation time is not very sensitive to the accuracy in EST. This is because
inaccurate EST leads to user departures from the main tree. When users
leave from the main tree, the JET scheme simultaneously relocates the users
from the join tree to the main tree. As such, part of the join tree relocation
cost can be amortized by the leave cost.

4.2 Optimizing Rekeying Cost

4.2.1 Performance Metric Review

The JET scheme in the previous section focuses on reducing time-cost as-
sociated with key agreement. In this section, the communication cost and
computation cost are put into the consideration.

Next, we briefly review the performance measures and the implementa-
tion cost of the DH protocol between two groups.

Group key management schemes must be able to adjust group secrets
subsequent to membership changes, including single user addition, single
user deletion, group merge, and group partition [59]. Single user addition
(deletion) means that one user joins (leaves) the group. Group merge (par-
tition) involves multiple users who join (leave) the group simultaneously.
The security requirements with dynamic membership include group key se-
crecy, forward secrecy, backward secrecy, and key independence [59]. Group
key secrecy, which is the most basic property, requires that it should be
computationally infeasible for a passive adversary to discover any group
key. Forward secrecy requires that a passive adversary who knows a con-
tiguous subset of old group keys cannot discover subsequent group keys,
while backward secrecy requires that a passive adversary who knows a
contiguous subset group keys cannot discover preceding group keys. Key

86 4. Optimizing Rekeying Costs in Group Key Agreement

independence, which is the strongest property, requires that a passive ad-
versary who knows a proper subset of group keys cannot discover any other
group key. According to [59], key independence can be achieved when both
forward secrecy and backward secrecy are achieved.

The overhead of group key agreement involves computation cost, com-
munication cost and time cost. Since most of the existing contributory key
agreement schemes use two-party DH protocol [55] as a basic building mod-
ule, the computation cost comes mainly from the cryptographic primitives
that are needed to perform two-party DH, such as modular exponentiation,
and the communication cost comes from sending and receiving rekeying
messages. The time cost is used to describe the latency in group key estab-
lishing and updating. In contributory group key agreement, by exploiting
possible parallelism when performing group key establishing and updating,
the time cost can be significantly reduced.

Next we introduce the implementation of two-group DH (two-party DH
among two groups), which is the basic building module for most tree-based
contributory group key agreement schemes. Let A and B denote two sub-
groups, where the users in A share a common group key KA, and the users
in B share a common group key KB . Let f(K) (which we refer to as the
blinded key of key K) denote the modular exponentiation operation, that
is

f(K) = gK mod p, (4.28)

where g is the exponential base and p is the modular base. The two-group
DH can be implemented as follows. Each subgroup elects one member as
its delegate, which will compute and send its blinded subgroup key to all
members of the other subgroup. Suppose that member A1 is the delegate
elected by the subgroup A, and member B1 is the delegate elected by
the subgroup B. To perform two-group DH between these two subgroups,
A1 and B1 need to exchange the following keying messages: A1 sends the
blinded key f(KA) to all members of subgroup B, and B1 sends the blinded
key f(KB) to all members of subgroup A. Now each member in A or B
then calculates the new group key KAB as follows:

KAB = (f(KB))KA mod p = (f(KA))KB mod p. (4.29)

In this implementation, each member needs at least one modular expo-
nentiation operation to calculate the new group key. If a delegate does not
know its own subgroup’s blinded key, one extra modular exponentiation
operation is also needed to calculate the blinded key. For the communica-
tion cost, each delegate needs to send a keying message to all the members
in the other subgroup. In this paper, we use Ccast(n,
) to denote the com-
munication cost needed to send a message with length
 to n nodes, and
use Cme to denote the computation cost of a modular exponentiation op-
eration. Thus, for each round of two-group DH with the size of subgroups
being n1 and n2 and the keying message length being
, the communication

4.2 Optimizing Rekeying Cost 87

cost is Ccast(n1,
)+Ccast(n2,
), and the computation cost is no more than
(n1 + n2 + 2)Cme.

It is worth noting that sending a message to n nodes can be implemented
in many ways. It can either be implemented through multicast communi-
cations, which we refer to as multicast-n, or be implemented through uni-
cast, which we refer to as unicast-n. In general, the communication cost
of an multicast-n operation is not the same as the communication cost of
a unicast-n operation. The former usually incurs less communication cost
than the latter. Further, the gap between the communication cost of an
multicast-n operation and the communication cost of a unicast-n operation
may vary according to the underlying network architectures. For example,
in wireless networks the gap is usually very obvious due to the broadcast na-
ture of wireless media, while in wired networks without link-level multicast
support, the gap is usually not that obvious.

In this chapter, when analyzing the communication cost of sending a
message to n nodes, both terms (multicast-n and unicast-n) will be used.
Although the communication cost of multicast-n1 and multicast-n2 with
n1 	= n2 are usually different, to simplify the illustration, we will not
distinguish them. Let Cmulticast(
) denote the communication cost of an
multicast-n operation, and let Cunicast(
) denote the communication cost
of a unicast-1 operation, where
 is the length of the message to be sent.
Further, when performing two-group DH between two subgroups, only mes-
sages exchanged are their blinded keys. Since in general all blinded keys have
the same length, without loss of generality, the message length
 will not be
explicitly stated. Besides exchanging blinded keys, a user may also need to
send messages to all of the group members when it wants to join or leave a
group. Additionally, Cbroadcast(
) is used to denote the communication cost
incurred by broadcasting a message with length
 to all group members.

4.2.2 PFMH Key Tree Structure and Basic Procedures

In tree-based contributory group key agreement schemes, keys are organized
in a logical tree structure, referred to as the key tree. In a key tree, the
root node represents the group key, leaf nodes represent members’ private
keys, and each intermediate node corresponds to a subgroup key shared
by all the members (leaf nodes) under this node. The key of each non-leaf
node is generated by performing two-party DH between the two subgroups
represented by its two children where each child represents the subgroup
including all the members (leaf nodes) under this node [59]. Since two-
group DH is used, the key tree is binary. For each node in the key tree,
key-path denotes the path from this node to the root, and co-path denotes
the sequence of siblings of each node on its key-path. Fig. 4.7 shows a simple
key tree example with 6 members, where Mi denotes the ith group member
and (l, v) denotes the vth node at level l of the tree. For example, for member

88 4. Optimizing Rekeying Costs in Group Key Agreement

M2, its key-path is the sequence of nodes {(3, 1), (2, 0), (1, 0), (0, 0)}, and
its co-path is the sequence of nodes {(3, 0), (2, 1), (1, 1)}.

(0,0)

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,4) (3,5)

h = 3

level 0

level 1

level 2

level 3

M1 M2

M3

M4 M5

M6

FIGURE 4.7. A simple key tree example

According to [59], in order to compute the group key, a node only needs
to know its own key and all the blinded keys on its co-path. In other words,
for a node being able to calculate the group key, it only needs to know its
own keys and all the blinded keys on its co-path. For example, as shown in
Fig. 4.7, M2 only needs to know its own key and the blinded keys repre-
sented by the nodes (3, 0), (2, 1) and (1, 1) in order to calculate the group
key.

A leaving user can leave from an arbitrary position in the key tree. In
fact, for user leave, when group members have similar computation and
communication capability, the best tree structure that reduces the worst-
case rekeying overhead is a balanced key tree structure2. When using a
balanced key tree structure, as in TGDH [59], the worst-case rekeying time
cost for both user leave and user join is O(log n). In order to further reduce
the rekeying time cost for user join, one way is to always insert the joining
user at the root of the key tree, and consequently the rekeying time cost
for single user join becomes O(1). However, such scheme may result in an
extremely unbalanced key tree structure and increase the rekeying cost for
user leave to O(n).

In order to achieve the lower bound for both user join and user leave
simultaneously, a novel and efficient key tree structure is designed. This key
tree structure is referred as the PFMH tree. PFMH tree is a combination of
two special key tree structures: partially-full (PF) key tree and maximum
height (MH) key tree.

In this chapter, the size of a key tree means the total number of leaf
nodes in the tree, the function log() and log2() will be used exchangeably,
and when we say a “full (key) tree”, we always mean a fully balanced binary
(key) tree with size 2k, where k is a non-negative integer.

Theorem 2 (PF key tree). Let T be a binary key tree of size n, and let
n′ = 2�log n�. T is a PF key tree if and only if it satisfies one of the following

2The case that users have varying computation and communication capabilities is not

considered in this chapter.

4.2 Optimizing Rekeying Cost 89

(0,0)

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

M7

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5)

M1 M2 M3 M4 M5 M6

(0,0)

(2,0) (2,1)

M3

M1

(3,0) (3,1)

M2

(1,0) (1,1)

M4

(a) (b)

(1,0)

(0,0)

(2,0) (2,1)

(4,0) (4,1) (4,2) (4,3)

M1 M2 M3 M4

(4,4) (4,5)

M5 M6

(3,0) (3,1) (3,2) (3,3)

M7

(1,1)

(2,2) (2,3)

M10

(3,4) (3,5)

M8 M9

Join Tree

Main Tree

(c)

FIGURE 4.8. Some examples of PF/MH/PFMH key trees (a) PF key tree. (b)
MH key tree. (c) PFMH key tree.

properties: 1) T is a full key tree; 2) the left subtree of T is a full key tree
with size n′, and the right subtree of T is a PF key tree with size (n − n′).

Theorem 3 (MH key tree). A key tree T of size n is a MH key tree if and
only if it satisfies one of the following properties: 1) n = 1, and T is a tree
with only one leaf node; 2) the right subtree of T is a leaf node, and the left
subtree of T is a MH key tree with size n − 1.

Theorem 4 (PFMH key tree). A key tree T of size n is a PFMH key tree
if and only if it satisfies one of the following properties: 1) T is a PF key
tree; 2) the left subtree of T is a PF tree, and the right subtree of T is a
MH tree.

According to the above definitions, one can see that the height of a PF
key tree with size n is �log n�, the height of a MH tree with size n is n− 1.
Without introducing ambiguity, we will use �log n� and log n exchangeably
in this chapter. Also, given a PFMH key tree T , let main tree refer to the
PF subtree of T , denoted by Tmain, and let join tree refer to the MH subtree
of T , denoted by Tjoin. It is easy to see that the height of Tmain is always
bounded by log n. Fig. 4.8 illustrates these special key tree structures. Next
two basic procedures to manage and update PFMH key trees: unite and
split, are described.

Let T = {T1, . . . , TL} be a set of full key trees. Each key tree Ti ∈ T
represents a subgroup, and each leaf node of Ti is a member of this subgroup.
If a group member belongs to Ti and Ti ∈ T , then this group member
belongs to T . The procedure unite(T) is to combine those key trees in T into
a single PF key tree through performing a series of two-group DH among

90 4. Optimizing Rekeying Costs in Group Key Agreement

these subgroups as well as the subgroups generated during this procedure.
In general, given a set of full key trees T , the result of unite(T) may not be
unique, but all of the obtained PF key trees have similar structure. In this
paper we consider a special case where the full key trees in T are ordered
and indexed according to their sizes. And, any group member in T knows
the indices and sizes of any trees in T as well as these structure of these
trees. The structure of a tree refers to the list of group members belonging
to this tree and their exact positions in this tree. Then a group member
can decide with whom it should perform two-group DH and in what order.

� T = {T1, . . . , TL}; |Ti| ≥ |Tj | for any 1 ≤ i < j ≤ L; each member in
Ti ∈ T knows the index and size of any tree Tj ∈ T as well as the
structure Tj , including the list of group members in Tj and their exact
positions in Tj .
T ′ = T ; L′ = L ;
while (|T ′| > 1) do

for (each pair of trees Ti, Ti+1 ∈ T ′) do
if ((the total number of trees in T ′ with size equal to |Ti| and
with index before Ti is even) AND (|Ti| = |Ti+1| or Ti+1 is the
tree in T ′ whose index is the largest)) then

Two delegates will be elected by subgroups Ti and Ti+1 to
perform two-group DH between them, and a new group key
K will be generated. A new key tree will be generated with
its root node representing K, with the left child of the root
node being Ti and with the right child of the root node
being Ti+1. Remove Ti and Ti+1 from T ′.

end
end
Put all newly generated key trees in this round into T ′ and let L′

be the total number of key trees now in T ′. Re-index all the key
trees in T ′ with integers ranging from 1 to L in such a way that a
tree is assigned index i (that is, this tree’s name becomes Ti) if and
only if condition 1 and condition 2 are satisfied. 1) for any tree
Tj ∈ T ′ with index j < i, all subtrees of Tj that directly come from
T have lower indices than all subtrees of Ti that directly come
from T 2) for any tree Tj ∈ T ′ with j > i, all subtrees of Tj that
directly come from T have higher indices than all subtree of Ti

that directly come from T .
end
Return the remaining tree T1 in T ′, which is the final PF key tree.
Meanwhile, each member in the final PF key tree construct the final
key tree structure locally by following the above key tree generation
procedure.

Algorithm 7: unite({T1, . . . , TL})

4.2 Optimizing Rekeying Cost 91

Procedure 7 presents one specific implementation of unite(T) for this
special case. According to Procedure 7, the whole procedure is partitioned
into many rounds. At the beginning of each round, there remains a set of
full trees (subgroups) indexed according to their sizes and their subtrees’
indices in previous rounds. The larger the size of a subgroup, the lower its
index. In each round, a remaining subgroup may either keep alone or be
paired with another remaining subgroup according to the following rule:
two subgroups Ti and Tj (i < j) will be paired together if and only if all of
the three conditions can be satisfied:

• There is no other remaining subgroup in the round with index lying
between i and j;

• The total number of subgroups with size equal to |Ti| and with index
lying before Ti is even;

• |Ti| = |Tj | or Tj is the subgroup with largest index.

It is easy to see that in each round, a subgroup will either keep alone or
be paired with one and only one other subgroup to build a larger subgroup.
Further, in each round all pairs of subgroups can perform two-group DH
between them in parallel, which can significantly reduce the time cost. If
Procedure 7 is followed by all group members, the obtained PF key tree
is unique and each member can know its location in the final PF before
starting the procedure, and each member can locally construct the final PF
tree without explicitly exchanging key tree updating information.

Given a key tree T , the procedure split(T) is to partition T into a set
of full key trees with minimum set size. Specifically, after applying the
procedure split(T), any obtained key tree is a full key tree, and no any two
or more obtained key trees comes from any full subtree of T . Procedure 8
presents a way to locally and virtually split a key tree, where “locally”
means that no inter-communication is needed among group members and
each member only needs to update the key tree structure maintained by
itself locally, while “virtually” means that no any two-group DH is needed
to perform “split”. Meanwhile, the set of obtained full key trees are also
indexed according to their size and their positions in the original key tree.

Fig. 4.9 shows two examples of key tree update when applying unite and
split procedures. The left figure demonstrates how the key tree is updated
when 5 full key trees are united into a PF key tree. The right figure demon-
strates how the key trees are updated when a PFMH key tree is split into
a set of full key trees.

In the split procedure, each group member (leaf node) only needs to
truncate the current key tree maintained by itself, so no communication
cost and negligible computation and time cost are needed. In the unite
procedure, extra cost will be incurred when performing a sequence of two-
group DH to generate the new key tree.

92 4. Optimizing Rekeying Costs in Group Key Agreement

if (T is a full tree) then
Return {T};

else if (T is empty) then
Return ∅.

else
Let Tleft and Tright be the left and right subtrees of T ; Return
split(Tleft)

⋃
split(Tright).

end
Let L be the number of obtained full key trees. Index these key trees
with the integers ranging from 1 to L in such a way that a tree is
indexed as Ti if and only if: 1) for any tree Tj ∈ T ′ with j < i,
|Tj | > |Ti| or Tj lies in the left side of Ti in T ; and 2) for any tree
Tj ∈ T ′ with j > i, |Tj | < |Ti| or Tj lies in the right side of Ti in T .

Algorithm 8: split(T)

Next we analyze the cost associated with the unite procedure described
in Procedure 7. The results will be used later to analyze the cost of those
proposed key agreement protocols.

Theorem 1: Let T = {T1, . . . , TL} be a set of full key trees with∑L
i=1 |Ti| = n and |T1| ≥ |T2| ≥ . . . ≥ |TL|, and with the subscript
 being

the index of the full tree T�. Assume that any group member in any full tree
Ti ∈ T knows the index and size of any tree Tj ∈ T as well as the structure
of Tj . Then the costs associated with the unite(T) using Procedure 7 can
be bounded as follows:

1) The time cost, which is the number of parallel rounds that needs to
executed, is upper-bounded by log n in all situations.

2) The total communication cost is upper-bounded by 2(L−1)Cmulticast

in all situations provided that the exchange of keying materials be-
tween two subgroups during performing two-group DH is implemented
using multicast.

3) Consider the special situation that |Ti| = 1 for all 1 ≤ i ≤ L, the total
computation cost is upper-bounded by n(log n+2)Cme, and the total
communication cost is upper-bounded by (n log n)Cunicast provided
that the exchange of keying materials between two subgroups during
performing two-group DH is implemented using unicast.

4) Consider the special situation that |Ti| 	= |Tj | for any 1 ≤ i 	= j ≤ L,
the total computation cost is upper-bounded by 2(n+log n)Cme, and
the total communication cost is upper-bounded by 2nCunicast pro-
vided that the exchange of keying materials between two subgroups
during performing two-group DH is implemented using unicast.

5) Consider the special situation that |T1| ≥ n/2 and for any tree Ti ∈ T
there exists no more than one other tree in T with the same size as Ti,

4.2 Optimizing Rekeying Cost 93

UNITE

(1,0) (1,1)

(0,0)

M1 M2

(1,0) (1,1)

(0,0)

M3 M4

T1 T2

(0,0)

M6

T4

(0,0)

M5

T3

(0,0)

M7

T5

(0,0)

TPF

(1,0) (1,1)

(3,1)

M2

(3,0)

M1

(3,2)

M3

(3,3)

M4

(3,4)

M5

(3,5)

M6

(2,1) (2,2)(2,0) (2,3)

M7

(0,0)

(1,0) (1,1)

(2,0)

(3,0) (3,1)

M1 M2

(2,0)

(3,0) (3,1)

M1 M2

(2,2)

(3,4) (3,5)

M4 M5

(2,2)

(3,4) (3,5)

M4 M5

(2,1)

M3

(2,1)

M3

(2,3)

M6

(2,3)

M6

T T1 T2

T3 T4

SPLIT

FIGURE 4.9. Examples of key tree update after applying unite and split proce-
dures

the total computation cost is upper-bounded by (2.5n+2L)Cme, and
the total communication cost is upper-bounded by 2.5nCunicast pro-
vided that the exchange of keying materials between two subgroups
during performing two-group DH is implemented using unicast.

6) Consider the special situation that |T1| < n/2 and for each tree Ti ∈ T
there exists no more than one other tree in T with the same size as Ti,
the total computation cost is upper-bounded by (3n+2L)Cme, and the
total communication cost is upper-bounded by 3nCunicast provided
that the exchange of keying materials between two subgroups during
performing two-group DH is implemented using unicast.

Proof of Theorem 1

1) Consider the worst-case scenario: L = n, that is, |Tl| = 1 for all l. Then
Procedure 7 works as follows: in the first round, the set of group members
are partitioned into �n/2� subgroups, with each subgroup consisting of 1 or
2 members. For any subgroup of size 2, two-group DH is performed between
the two members in this subgroup to generate a new key tree of size 2.
In the ith round, the set of existing key trees are partitioned into �n/2i�
subgroups, with each group consisting of 1 or 2 existing key trees. If there
is a subgroup consisting of only one existing key tree, then this key tree
must have the minimum size (largest index) among all the existing trees.
For any subgroup with two existing key trees, two-group DH is performed
between these two key trees to generate a new key tree with its right child
be the key tree which has smaller size (larger index). Repeat this procedure
until only one tree is left, which is the final PF key tree. Since there are

94 4. Optimizing Rekeying Costs in Group Key Agreement

only n group members, at most log n rounds are needed, so the time cost
is upper-bounded by log n. For other scenarios where there exists |Ti| 	= 1,
the time cost is always no more than log n, since in these cases Ti can be
viewed as the result of merging all the leaf nodes in Ti without introducing
any time cost.

2) Since we need and only need to perform L− 1 times of two-group DH
protocols to unite L full key trees into one PF tree, and since each two-
group DH protocol needs 2 multicast in communication cost provided that
the exchange of keying material between two subgroups during performing
two-group DH is implemented using multicast, the total communication
cost is always upper-bounded by 2(L − 1)Cmulticast.

3) According to Procedure 7 we know that at most log n rounds of two-
group DH need to be performed in this situation. At the first round each
member calculates its blinded key and a new subgroup key. At ith round
(i > 1), at most �n/2i−1� users (which are selected as delegates) need to
calculate blinded keys and at most n users need to calculate their subgroup
keys. Following this analysis one can see that the total computation cost
is upper-bounded by n(log n + 2)Cme. Further, if the exchange of keying
material between two subgroups during performing two-group DH is imple-
mented using unicast, it is easy to see that a blinded key needs to send to
a certain member if and only if this member needs to calculate a key for
a newly generated subgroup that it belongs to, which is equivalent to say
that the total communication cost is upper-bounded by (n log n)Cunicast in
this situation.

x1

x2

x3

x4

xL
T1 T2 T3 T4 TL

2m1

2m2

2m3

2m4

2mL

FIGURE 4.10. Obtained PF key tree after applying unite procedure

4) In this special situation, according to the definition of PF tree, it is
easy to check that the key tree illustrated in Fig. 4.10 is the obtained PF key
tree after applying Procedure 7. Assume that the size of each full subtree
Ti is 2mi , and let xi denote both the PF subtree and its size. According
to Procedure 7, it is seen that the PF subtrees xL, . . . , x1 are generated
sequentially with xL first (directly from T) and x1 last. Also, when xi is
generated, at most xi + 2 modular exponentiation operations are needed,

4.2 Optimizing Rekeying Cost 95

x1

x2

x4

xP

T’1 T’2 T’3 T’4 T’L

2m1

2m2

2m3

2m4

2mL

x3

x1

x2

x3

xP

T’1 T’2 TR
2 T’3 T’L

2m1

2m2

2m2-1

2m3

2mL

x1

x2

x4

xP

T’1 T’2 T’3 T’4 T’L

2m1

2m2

2m2-1

2m4

2mL

x3

TR
2

(a) (b) (c)

FIGURE 4.11. Analysis of computation cost. (a) Obtained PF key tree; (b) Create
a virtual subtree for T R

2 ; (c)Exchange T R
2 with T ′

3.

so the total computation cost is upper-bounded by

Cme

L∑

i=1

(xi + 2) = Cme(2 log n +
L∑

i=1

xi). (4.30)

Since

xi = 2mi + xi+1, (4.31)

xi ≥ 2xi+1, (4.32)
∑L

i=2 xi < x1 = n, (4.33)

the above bound is further upper-bounded by 2(n+log n)Cme. Meanwhile,
it is easy to check that the total communication cost is upper-bounded by
2nCunicast in this situation provided that the exchange of keying material
between two subgroups during performing two-group DH is implemented
using unicast.

5) In this special situation, let the key tree illustrated in Fig. 4.11 (a) be
the PF tree obtained after applying the unite procedure. Now consider the
computation cost incurred by the full subtree T ′

i :

• Case 1: If T ′
i comes directly from the original set T , the cost intro-

duced by T ′
i has been totally included in (4.30).

• Case 2: If T ′
i is the merging result of two full trees directly from the

original set T and each with size 2mi−1, compared with the first case,
extra computation cost is needed to first merge the two trees into a
single full tree. Since the total number of leaf nodes in T ′

i is 2mi , and
each leaf node needs 1 modular exponentiation to calculate the new
subgroup key associated to T ′

i , the extra computation cost introduced
by T ′

i is 2miCme + 2.

• Case 3: If T ′
i is the merging result of more than two full key trees

of the original set T , since we have assumed that for each size the
number of trees with this size in T is no more than 2, then at least
one child of T ′

i with size 2mi−1 comes directly from T . Let TL
i and TR

i

96 4. Optimizing Rekeying Costs in Group Key Agreement

be the left and right child of T ′
I , and assume that TL

i comes directly
from T . In this case, either there exists no key tree with size 2mi−1 in
the right side of T ′

i , or if there exists |T ′
i+1| = 2mi−1, then T ′

i+1 must
come directly from T in order not to violate the assumption that no
more than two key trees in T have the same size, and T ′

i+1 will not
introduce extra cost except those included in (4.30). If there exists
no subtree with size 2mi−1 in the right side of T ′

i , we add a virtual
subtree TR

i to the generated PF tree as in Fig. 4.11 (b) and move all
the cost introduced by merging smaller full trees into this subtree. If
|T ′

i+1| = 2mi−1, we can simply exchange the subtree T ′
i+1 with the

right subtree TR
i of T ′

i that is not directly from the original set T ,
as in Fig. 4.11 (c). Now the total cost is kept to be the same but the
extra cost introduced by T ′

i is the same as in case 2.

Following the above analysis and the condition that |T1| ≥ n/2 (that
is, T1 comes directly from T), the total extra computation cost that are
not included in (4.30) is upper-bounded by

∑m2
i=1 2iCme. Now the total

computation cost is upper-bounded by

2LCme + Cme(
m2∑

i=1

2i +
L∑

i=1

xi) (4.34)

By applying (4.31), (4.32), (4.33) and |T1| = 2m1 ≥ n, we have

m2∑

i=1

2i +
L∑

i=1

xi ≤ 2m2+1 + 2x1 ≤ x1/2 + 2x1 = 2.5x1 = 2.5n (4.35)

That is, the total computation cost is upper-bounded by (2.5n + 2L)Cme.
Meanwhile, we can conclude that in this situation when the exchange of
keying materials is implemented using unicast, the total communication
cost is upper-bounded by 2.5nCunicast.

6) For the special situation that |T1| < n/2 and for each tree Ti ∈ T there
exists no more than 1 other tree in T with the same size as Ti, by following
the same analysis as in (5), we can show that the total computation cost is
upper-bounded by

2LCme + Cme(
m1∑

i=1

2i +
L∑

i=1

xi), (4.36)

where the only change from (4.34) to (4.36) is that m2 is changed to m1

due to the reason that T ′
1 does not come directly from T .

By applying (4.31) one can derive that

m1∑

i=1

2i+
L∑

i=1

xi = x1+(x2+2m1)+
m2∑

i=1

2i+
L∑

i=3

xi ≤ 2x1+2m2+1+x2 ≤ 3x1 = 3n

(4.37)

4.2 Optimizing Rekeying Cost 97

That is, the total computation cost is upper-bounded by (3n + 2L)Cme.
Meanwhile, we can conclude that in this situation when the exchange of
keying materials is implemented using unicast, the total communication
cost is upper-bounded by 3nCunicast.
End of proof.

4.2.3 PACK: an PFMH tree-based contributory group key
agreement

In this section we describe the proposed PFMH tree-based contributory
group key agreement protocol suite, referred to as PACK. As a contribu-
tory scheme, in PACK each group member equally contributes its share to
the group key and this share is never revealed to the others. To satisfy the
security requirements, PACK includes a set of rekeying protocols to update
the group key upon group membership change events. Compared with the
existing tree-based contributory group key agreement schemes, PACK can
achieve minimum rekeying time cost upon membership change events in
the sense that for any single user join event, the rekeying time cost is of
order O(1), and for any single user leave event, the rekeying time cost is
of order O(log n). Meanwhile, the rekeying computation and communica-
tion cost can also be significantly reduced compared with the existing tree-
based contributory group key agreement schemes. This is achieved through
adopting the proposed PFMH tree as the underlying key tree structure and
introducing phantom nodes in the key tree to handle member leave.

In PACK, each member will maintain and update the global key tree
locally. Each group member knows all the subgroup keys on its key-path,
and knows the ID and the exact location of any other current group member
in the key tree. As to be shown next, upon group membership change event,
a group members only needs to update the global key tree maintained by
itself, which can greatly reduce the communication overhead. In PACK,
when a new user joins the group, it will always be attached to the root of
the join tree to achieve O(1) rekeying cost in terms of computation per user,
time and communication. When a user leaves the current group, according
to the leaving member’s location in the key tree as well as whether this
member has phantom location in the key tree, different procedures will be
applied, and the basic idea is to update the group key in O(log n) rounds
and simultaneously reduce the communication and computation cost.

Single User Join Protocol

When a prospective user M wants to join the group G, it initiates the single
user join protocol by broadcasting a request message that contains its mem-
ber ID, a join request, its own blinded key, some necessary authentication
information and its signature for this request message. After receiving this
user join request message, the current group members will check whether

98 4. Optimizing Rekeying Costs in Group Key Agreement

M has the privilege to join the group based on certain group access control
policies. If M has the authorization to join, the key tree will be updated by
incorporating M ’s share, and a new group key will be generated in order to
incorporate a secret share from M and to guarantee group keys’ backward
secrecy. Procedure 9 describes the single user join protocol in PACK.

triangleright T is the PFMH key tree of group G, Tmain is the main
tree of T , Tjoin is the join tree of T .

if (Tjoin is empty) then
A delegate will be elected by group G to perform two-group DH
with M , and a new group key K will be generated. A leaf node will
be created to represent M and a new root node will be created to
represent K with its right child being the node representing M and
its left child being Tmain. The node representing M becomes the
join tree of the updated key tree.

else
Round 1: A delegate will be elected by group Tjoin to perform
two-group DH with M , and a new subgroup key Kjoin will be
generated. A leaf node will be created to represent M and a new
intermediate node will be created for Kjoin with its right child
being M and its left child being the old Tjoin ;
Round 2: Two delegates will be elected separately by Tmain and
the new join tree to perform two-group DH between them, and a
new group key K will be generated. A new root node will be
created to represent K with its right child being Tjoin and its left
child being Tmain.

end
Each current member updates the key tree maintained by itself locally
according to the above key tree update procedure, and a delegate will
send an updated copy of the key tree to the new joining member M .

Algorithm 9: join(G,M)

In PACK, the rekeying upon single user join needs to perform at most
2 rounds of two-group DH. If the join tree is not empty, a new join tree
is generated by performing two-group DH between the new member and
the old join tree, with the left subtree being the old join tree and the right
subtree being the node representing the new member. If the join tree is
empty, the node representing the new member becomes the join tree. The
group key is generated by performing two-group DH between the new join
tree and the main tree. Since all the current members know the group key
tree structure and knows the location that the new member should be put
in, they can update the key tree themselves.

Fig. 4.12 shows two examples of key tree update upon single user join
events. In the first example, the join tree is empty, and the main tree consists

4.2 Optimizing Rekeying Cost 99

M5 joins

(example 1)

(0,0)

(3,0) (3,1) (3,2) (3,3)

M1 M2 M3 M4

(2,0) (2,1)

(1,0) (1,1)

M5

(0,0)

(2,0) (2,1) (2,2) (2,3)

M1 M2 M3 M4

(1,0) (1,1)

(1,0)

(0,0)

(1,1)

M5

(2,0) (2,1) M6 joins

(3,0) (3,1)

M1 M2

(3,2) (3,3)

M3 M4

(3,0) (3,1)

M1 M2

(3,2) (3,3)

M3 M4

(1,0)

(0,0)

(2,0) (2,1)

(1,1)

(2,2) (2,3)

M5 M6

(example 2)

FIGURE 4.12. Examples of key tree update upon single user join event

of 4 members. After the new member M5 joins the group, a new node is
created to act as the new root, and the node (1, 1) becomes the new join
tree which represents M5. In the second example, when M6 joins the group,
at the first round, two-group DH is first performed between M5 and M6 to
generate a new join tree, at the second round, two-group DH is performed
between the new join tree and the main tree to generate a new group key.

TABLE 4.3. Rekeying cost upon single user join event

communication cost communication cost
in term of multicast in term of unicast

case 1 2Cmulticast nCunicast

case 2 4Cmulticast (n + |Tjoin| + 1)Cunicast

time cost computation cost
case 1 1 (n + 2)Cme

case 2 2 (n + |Tjoin| + 3)Cme

Table 4.3 lists the rekeying cost upon single user join event in PACK
where n denotes the total number of leaf nodes in the new group and |Tjoin|
is the old join tree size. Case 1 considers the situation that the join tree
is empty, and the protocol only needs to perform one round of two-group
DH. Case 2 considers the situation that the join tree is not empty, and the
protocol needs to perform two rounds of two-group DH. For case 2, the term
|Tjoin| + 2 in the computation cost comes from performing two-group DH
between the new member and the old join tree. Since in general |Tjoin| � n,
this term usually can be ignored.

100 4. Optimizing Rekeying Costs in Group Key Agreement

It is worth pointing out that when calculating the time complexity, we
have not considered the extra time needed for the join user to tell the group
that it wants to join. However, this does not affect the results because in
the time complexity analysis, the “round” is used as unit. In other words,
It is not strictly require that the two messages exchanges are synchronized.
Instead, how this can be implemented is really depend on the specific im-
plementation of the two-ground DH.

Single User Leave Protocol

When a current group member M wants to leave the group, it broadcasts
a leave request message to initiate the single user leave protocol, which
contains its ID, a leave request and a signature for this message. Once M
leaves the group, the group key will be updated to remove M’s share, and all
the keys on M ’s key-path will be updated to maintain group keys’ forward
secrecy. In PACK, to reduce the rekeying cost upon single user leave event,
the concept of phantom node is introduced. This concept allows an existing
member to simultaneously occupy more than one leaf node in the key tree.
In particular, when member M leaves the group, another group member
M ′ will move to the position occupied by M in the key tree, generate a new
secret key, and all the keys on M ’s key-path will be recursively updated. It
is worth noting that here “moving” only means that each member adjusts
the location of M ′ and M in the key tree. After moving M ′ to M ’s position,
the node that M ′ previously occupied will not be deleted immediately. As a
result, now M ′ occupies two leaf nodes in the key tree. We refer to the node
associated to M ′’s previous position as the phantom node, which is known
by all group members. In order to maintain group keys’ forward secrecy, a
phantom node should be deleted no later than the associated group member
leaving the group. Procedure 10 describes the single user leave protocol in
PACK.

SCENARIO I: This scenario considers the case that the leaving mem-
ber M is in the join tree, and the size of the join tree is no larger than log n.
In this case, since the depth of the join tree is no more than log n, one can
simply remove M ’s share from the group key by removing M from the key
tree, changing one current member’s secret share (which member’s share
should be changed is described in Protocol 10), and recursively updating
all the keys on M’s key-path. Meanwhile, all members update the key tree
maintained by themselves.

Let h be M’s depth in T . Since at most h − 1 rounds of two-group DH
protocols need to be performed recursively, the time cost is upper-bounded
by h − 1. Except the last round which involves all the existing members,
in ith(1 ≤ i < h − 1) round at most |Tjoin| − h + i + 1 members are
involved. Then the total computation cost is upper-bounded by (n+h−1+∑|Tjoin|−1

k=|Tjoin|−h+2 k)Cme, where n comes from the last round, h−1 comes from
the number of blinded keys that need to be calculated, and |Tjoin|−h+1+i

4.2 Optimizing Rekeying Cost 101

� T is the PFMH key tree of G, and n is the size of T , Tmain and Tjoin

is the main tree and join tree of T .

if ((M ∈ Tjoin) AND (1 < |Tjoin| ≤ logn)) then
SCENARIO I: Let P be M’s sibling, remove M and M’s parent
from the key tree. If P has no children, change P’s secret share,
otherwise, change P’s right child’s secret share. Recursively update
all the keys on P’s key-path by applying multiple rounds of
two-group DH.

else if ((M ∈ Tjoin AND (|Tjoin| = 1 OR |Tjoin| > logn))
OR (M ∈ Tmain AND |Tjoin| > 1)
OR (M ∈ Tmain AND M is the rightmost non-phantom leaf node)
OR (M ∈ Tmain AND M has a phantom node in T)) then

SCENARIO II: First, remove all phantom nodes and M from T .
Second, apply the split procedure, and let
T = {T1, . . . , TL} = split(T). Third, change TL’s rightmost leaf
node’s secret share, and recursively update all the subgroup keys
on this left node’s key-path in TL. Fourth, apply the unite
procedure unite(T).

else
SCENARIO III: Find the rightmost non-phantom leaf node M ′ in
T . Let Pnew denote the node occupied by M , and Pold denote the
node occupied by M ′. M ′ moves to Pnew and generates a new
secret share for this location. If Pold lies in the join tree, then
remove Pold and the root of T , otherwise, let Pold be M ′’s phantom
node. Recursively update all the keys on Pnew’s key path by
applying multiple rounds of two-group DH.

end
All members update the key tree maintained by them locally
according to the above key tree update procedure.

Algorithm 10: Leave(G,M)

comes from the ith round. Since |Tjoin| ≤ log n, a loose upper-bound is
(n +

∑log n
k=1 k)Cme, or (n + 0.5(log n)2)Cme. Similarly, it is easy to check

that the total communication cost in term of multicast is upper-bounded
by 2(h− 1)Cmulticast, and the total communication cost in term of unicast
is upper-bounded by (n + 0.5(log n)2)Cunicast.

Fig. 4.13 shows one example of key tree update upon single user leave
under this scenario. In this example user M6 leaves the group where node
(1, 0) is the root of main tree and node (1, 1) is the root of join tree. Since
the size of join tree is 2, according to Procedure 10, the node representing
M6 will be directly removed from the key tree, M5 changes its secret share,
and a new group key will be generated by applying two-group DH between
M5 and the subgroup in the main tree.

102 4. Optimizing Rekeying Costs in Group Key Agreement

M6 leaves(0,0)

(1,0)

M5 M6

(2,0) (2,1)

(3,3)

M4

(3,2)

M3

(3,0)

M1

(3,1)

M2

(1,1)

(2,2) (2,3)

(0,0)

(1,0)

M5

(2,0) (2,1)

(3,3)

M4

(3,2)

M3

(3,0)

M1

(3,1)

M2

(1,1)

FIGURE 4.13. Example of key tree update upon single user leave under the first
scenario

SCENARIO II: This scenario considers the case that any of the fol-
lowing situations happens:

1. The leaving member M is in the join tree, and the size of join tree is
either larger than log n or equal to 1;

2. M is in the main tree, and the size of join tree is larger than 1;

3. M is in the main tree, and is the rightmost non-phantom leaf node;

4. M is in the main tree, and occupies a phantom node in the key tree.

In these situations, instead of removing M (as well as its phantom location)
from the key tree and recursively updating all the keys on its key-path, the
whole key tree will be reorganized to generate a new PF tree as the main
tree, and the join tree is set to be empty. This will reduce the rekeying
cost as well as maintain a good key tree structure. The basic procedure is
to first remove all the phantom nodes in the existing key tree, then apply
the split procedure to partition the remaining key tree into many small full
key trees which are indexed according to their size and their locations in
the original key tree. After changing a certain member’s secret share, the
unite procedure will be applied to combine these full key trees into a PF
key tree. Finally, all members will update the key tree structure maintained
by themselves according the above procedure.

It is worth noting that due to the special structure of the PFMH tree, the
PFMH tree structure is maintained after removing some phantom nodes:
According to Procedure 10 scenario III, only those leaf nodes on the right-
most of the tree can be phantom nodes. In other words, all phantom nodes
lie in the right-most part of the tree. It is easy to check that for any PF-tree,
after removing any number of right-most leaf nodes and those correspond-
ing non-leaf nodes, the remaining part is still a PF-tree.

Since all the remaining members (leaf nodes) know the exact structure of
key tree, after applying the split procedure the set of obtained full key trees
will be indexed in the same way by all group members. Since the total num-
ber of remaining members is less than n, according to Theorem 1 clause 1,
the total time cost is upper-bounded by log n. If situation 1, 2, or 3 happens,
the total number of full key trees after applying the split procedure is upper-
bounded by log(n) + |Tjoin|. In this case, the total communication cost in

4.2 Optimizing Rekeying Cost 103

term of multicast is upper-bounded by 2(log(n)+|Tjoin|)Cmulticast. If situa-
tion 4 happens, the total communication cost in term of multicast is upper-
bounded by 2(2 log n + |Tjoin|)Cmulticast, where the extra 2 log nCmulticast

is due to the fact that the main tree can be split into at most 2 log n full
trees.

Next we analyze the computation cost under this scenario, which is
mainly incurred by the unite procedure. After applying the split proce-
dure, for any size that is greater than 1, there exists no more than 1 full
key tree with this size when situation 1, 2, or 3 happens, and there exists
no more than 2 full key trees with this size when situation 4 happens. The
unite procedure can be implemented in two steps. In the first step all the
key trees with only one leaf node will first be combined together into a set of
full key trees with different sizes. In the second step these full key trees will
be combined together with the other full key trees obtained by applying the
split procedure to get the final PF tree. We first consider the more probable
case that T1 ≥ n/2 where T1 is the largest full key tree obtained after ap-
plying the split procedure. According to Theorem 1 clause 3 and clause 5,
in this case the computation cost is upper-bounded by Cme(2.5n+2(log n+
|Tjoin|) + |Tjoin|(log(|Tjoin|) + 1)), where the term |Tjoin|(log(|Tjoin| + 1))
comes from merging the nodes from the join tree into a set of full key
trees with different sizes. If T1 < n/2, which is a less probable case, ac-
cording to Theorem 1 clause 3 and clause 6, the total computation cost is
upper-bounded by (3n + 2(log n + |Tjoin|) + |Tjoin|(log(|Tjoin|) + 1))Cme.
Similarly, the total communication cost in term of unicast is upper-bounded
by (2.5n+ |Tjoin| log(|Tjoin|))Cunicast if T1 ≥ n/2 and is upper-bounded by
(3n + |Tjoin| log(|Tjoin|))Cunicast if T1 < n/2.

If condition 4 is satisfied, which is a very rare event, at most (n+log n)Cme

extra computation cost is needed to first combine those full key trees with
the same size into a set of larger full key trees and at most nCunicast extra
communication cost in term of unicast is needed.

Fig. 4.14 shows four examples of key tree update upon single user leave
under this scenario.

• The first example corresponds to situation 1: the leaving member M6

is in the join tree, and the size of join tree with root (1, 1) is larger than
log n. In this example, after removing M6 and applying the split pro-
cedure, 3 full key trees (subgroups) are obtained: {M1,M2,M3,M4},
{M5}, {M7}. The result of unite procedure has also been demon-
strated.

• The second example corresponds to situation 2: the leaving member
M2 is in the main tree with root (1, 0), and the size of join tree
with root (1, 1) is larger than 1. In this case after removing M2 and
applying split, three full key trees are obtained: {M3,M4}, {M5,M6},
{M1}. The result of unite has also been illustrated in the right side
of the figure.

104 4. Optimizing Rekeying Costs in Group Key Agreement

M6 leaves(0,0)

(1,0)

M7

(2,0) (2,1)

(3,0)

M1

(3,1)

M2

(1,1)

(2,2) (2,3)

(0,0)

(1,0)

(2,0) (2,1)

(3,3)

M4

(3,2)

M3

(3,0)

M1

(3,1)

M2

(3,3)

M4

(3,2)

M3

(3,5)

M6

(3,4)

M5

(1,1)

(2,2) (2,3)

M5 M7

situation 1

M2 leaves(0,0)

(1,0)

M5 M6

(2,0) (2,1)

(3,3)

M4

(3,2)

M3

(3,0)

M1

(3,1)

M2

(1,1)

(2,2) (2,3)

(0,0)

(1,0)

M1

(2,0) (2,1)

(3,3)

M6

(3,2)

M5

(3,0)

M3

(3,1)

M4

(1,1)

situation 2

M4 leaves(0,0)

(1,0)

M5 M6

(2,0) (2,1)

(3,3)

M4

(3,2)

M3

(3,0)

M5

(3,1)

M6

(1,1)

(2,2) (2,3)

(0,0)

(1,0) (1,1)

(2,0)

M5

(2,1)

M6

M3

situation 3

M6 leaves(0,0)

(1,0)

M5 M6

(2,0) (2,1)

(3,3)

M4

(3,2)

M3

(3,0)

M1

(3,1)

M6

(1,1)

(2,2) (2,3)

(0,0)

(1,0) (1,1)

(2,3)

M5

(2,2)

M1

(2,0)

M3

(2,1)

M4

situation 4

FIGURE 4.14. Examples of key tree update upon single user leave under the
second scenario

• The third example corresponds to situation 3: the leaving member
M4 is in the main tree with root (0, 0) (the join tree is empty), and
is the rightmost non-phantom leaf node, where nodes (2, 2) and (2, 3)
are phantom nodes. In this case after removing the node represent-
ing M4 and the phantom nodes and applying split, 2 full key trees
are obtained: {M5,M6} and {M3}. The result of unite has also been
illustrated in the right side of the figure.

• The fourth example corresponds to situation 4: the leaving member
M6 is in the main tree with root (0, 0) (the join tree is empty), and
has occupied a phantom node (2, 3). In this case after removing the
node representing M4 and the phantom node and applying split, 3
full key trees are obtained: {M3,M4}, {M1} and {M5}. The result of
unite has also been illustrated in the right side of the figure.

4.2 Optimizing Rekeying Cost 105

TABLE 4.4. Rekeying cost bounds upon single user leave event
communication cost communication cost (Cunicast)

(Cmulticast)

Scenario 1 O(2h − 2) O(n + 0.5|Tjoin|2)

Scenario 2 O(2 log n + 2|Tjoin|) O(2.5n + |Tjoin| log(|Tjoin|))
Scenario 3 O(2 log n) O(n + 2|Tleft|)

time cost (rounds) computation cost (Cme)

Scenario 1 O(h) O(n + 0.5|Tjoin|2)

Scenario 2 O(log n) O(2.5n + |Tjoin| log(|Tjoin|))
Scenario 3 O(log n) O(n + 2|Tleft|)

SCENARIO III: This scenario covers all the situations that neither of
the first two scenarios can cover. Specifically, this scenario considers two
situations: 1) M is in the main tree and the size of the join tree is 1; 2)
the join tree is empty, and M is in the main tree and is not the right-most
non-phantom node and does not have phantom node in the key tree. Under
scenario III, the leaving member M is removed from the key tree, and M ′,
which is the member who occupies the right-most non-phantom leaf node,
moves to M’s previous position, generates a secret share for this node, and
recursively updates all the keys on this node’s key-path. Now, M ′ occupies
two positions, and the original position is called M ′’s phantom position. It
is easy to check that the time cost is bounded by log n, the communication
cost in term of multicast is bounded by 2(log n)Cmulticast, the computation
cost is upper-bounded by (n + 2|Tleft| + log n)Cme, where Tleft is Tmain’s
left subtree, and the total communication cost in term of unicast is upper-
bounded by (n + 2|Tleft|)Cunicast.

M2 leaves(0,0)

(1,0)

M5 M6

(2,0) (2,1)

(3,3)

M4

(3,2)

M3

(3,0)

M1

(3,1)

M2

(1,1)

(2,2) (2,3)

(0,0)

(1,0)

M5 M6

(2,0) (2,1)

(3,3)

M4

(3,2)

M3

(3,0)

M1

(3,1)

M6

(1,1)

(2,2) (2,3)

FIGURE 4.15. Example of key tree update upon single user leave under the third
scenario

Fig. 4.15 shows one example of key tree update upon single user leave
under this scenario. In this example the join tree is empty and the root of
main tree is (0, 0). When user M2 leaves the group, member M6 will move
to the location (3, 1) that previously represents M2. Meanwhile, M6 will
also occupy node (2, 3) which now is a phantom node. M6 will change its
secret share and recursively update all the keys on its key-path, which is
{(2, 0), (1, 0), (0, 0)}.

Table 4.4 summarizes the rekeying cost upon single user leave events
under different situations. Usually we have |Tleft| ≥ n/2, h � 1

2 log n,

106 4. Optimizing Rekeying Costs in Group Key Agreement

|Tjoin| � n, and the average size of Tleft is about 0.75n. For the second and
third scenario, in most cases the upper bound of computation cost can be
simplified as O(2.5nCme). For the first scenario, the bound of computation
cost can be simplified as O(nCme).

Group Merge and Group Partition Protocol

PACK also has group merge and group partition protocol to handle simul-
taneously join and leave of multiple users. Although multiple user events
can be implemented by applying a sequence of single user join or leave
protocols, such sequential implementations are usually not cost-efficient.
Procedure 11 describes the group merge protocol, which combines two or
more groups into a single group, and returns a PF key tree. Procedure 12
describes the group partition protocol, which removes multiple group mem-
ber simultaneously from the current group and construct a new PF key tree
for the rest of the group members.

� T1, . . . , TK are the key trees of G1, . . . ,GK ;
Remove all phantom nodes from T1, . . . , TK ;
T = unite(split(T1)

⋃
. . .
⋃

split(TK)) ;
Return T .

Algorithm 11: merge({G1, . . . ,GK})

� T is the key tree of G ;
Remove all phantom members and members belonging to group G1

from T ;
T = unite(split(T)) ;
Return T .

Algorithm 12: Partition(G,G1)

In the group merge protocols, after removing all phantom nodes from
those key trees corresponding to different subgroups, each key tree is split
into many full key trees. The final result is obtained by unite these full key
trees into a PF tree following Procedure 7. Similar for the group partition
protocol, after removing all phantom nodes and leaving nodes, the original
key tree is split into many full key trees, and the unite procedure is then
applied on these full key trees to create a PF key tree. Since the height of the
returned tree is log n, where n is the group size after merging/partitioning,
the time cost of group merge/partition is bounded by O(log n). Obviously,
the group merge and partition protocols have lower cost than the sequential
implementations.

4.2 Optimizing Rekeying Cost 107

4.2.4 Performance Evaluation and Comparison

Forward and Backward Security

The group key secrecy means that attackers cannot obtain the group key
even if they know all blind keys, which has been proved in the random-oracle
model [74]. To show that PACK satisfies forward and backward secrecy,
similar arguments as in [59] can be used, which have provided detailed proof
for TGDH. PACK and TGDH use similar group key update procedures.
The major difference between them are the underlying key tree structures
which do not affect the security of the scheme. Therefore in this paper we
will not provide detailed proof of forward and backward secrecy. Next we
only roughly sketch the proof. We first consider backward secrecy. When
a new user M wants to join the group, M picks its secret share r. After
several rounds of two-group DH, M gets all blinded keys on its co-path,
and it can compute all secret keys on its key-path using its own secret
share and the blinded keys on its co-path. Clearly, all these keys contain
M’s secret share; hence they are independent of previous secret keys on that
path. Therefore, M cannot derive any previous keys. The forward secrecy
can be shown in a similar way. When a member M leaves the group, at
least one current member changes its share, and all the keys on M’s key
path will be updated to remove M’s secret share. Hence, M only knows
at most all blinded keys, and the group key secrecy property prevents M
from deriving any future group keys. By combining backward secrecy and
forward secrecy, we can derive the key independence.

Cost Comparison

This section compares the rekeying cost in PACK upon single user join and
leave events with two existing tree-based contributory group key agreement
schemes: TGDH [59] and DST [60]. All three types of cost are considered:
time, computation, and communication in term of multicast. Since in gen-
eral members’ leaving time is not known in advance, in DST, only join-tree
is used. Table 4.5 lists the approximate bounds of different cost for the
three schemes.

From the above comparison, we can see that PACK has the lowest cost in
terms of time, computation, and communication. For example, for user join,
only 1 or 2 rounds are needed in time cost, while DST needs 1 + log log n
rounds and TGDH needs log n rounds. Similar results can also be seen in
communication cost for user join. The total computation cost is computed
as the average of user join cost and leave cost, DST has similar cost as
TGDH, which is an order of 2n, while for PACK, the order is from n to
1.75n, with the saving ranging from 15% to 50% compared with DST and
TGDH.

108 4. Optimizing Rekeying Costs in Group Key Agreement

TABLE 4.5. Rekeying cost comparison among different schemes

time communication computation
cost cost cost

Upon Single User Join Event
PACK 1 ∼ 2 2 ∼ 4Cmulticast nCme

TGDH log n 2(log n)Cmulticast 2nCme

DST 1 + log log n (1 + log log n)Cmulticast (n + log n)Cme

Upon Single User Leave Event
PACK log n 2(log n)Cmulticast (1 ∼ 2.5)nCme

TGDH log n 2(log n)Cmulticast 2nCme

DST 1 + log n+ 2(1 + log n + log log n)· 3nCme

log log n Cmulticast

Simulation Results

In the simulations, the user activities are generated according to the follow-
ing probabilistic models: users join the group according to a Poisson process
with average arrival rate λ, and users’ staying time in the group follows an
exponential distribution with mean µ (such a model is motivated by the
user statistics in study of Mbone [72,73]). Then λµ is the average number of
users in the group, that is, the average group size. For each simulation, the
initial group size is 0, λ is fixed, and µ varies to get different average group
size configuration. For each configuration (different average group size), a
sequence of 100λµ users join the group according to the Poisson process
with rate λ, and each user’s staying time is drawn independently from an
exponential distribution with mean µ. In the simulations, the rekeying cost
of the following three schemes: PACK, TGDH [66] and DST [60], are com-
pared in all three aspects: computation, communication and time.

The simulation results are presented in Fig. 4.16. From these results we
can see that upon single user join event, PACK has the lowest cost among
all three schemes. Compared with DST, PACK has more than 10% reduc-
tion in computation cost, and more than 65% reduction in communication
cost and time cost. Compared with TGDH, the reduction is even more,
about 50% in computation cost and about 80% in time and communica-
tion cost. Upon single user leave event, compared with DST, PACK has
about 25% reduction in computation cost, about 15% reduction in time
cost, and has similar communication cost. Although PACK has slightly
higher computation and communication cost than TGDH upon single user
leave event, when averaged over both join and leave events, the reduction
is still significant, with 20% reduction in computation cost, 35% reduction
in communication cost, and 40% reduction in time cost.

4.2 Optimizing Rekeying Cost 109

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 200 400 600 800 1000 1200 1400 1600

N
um

be
r

of
 M

od
ul

ar
 E

xp
on

en
tia

tio
ns

Average Group Size

Average Computation Cost Upon Single User Join

PACK
DST

TGDH

 0

 1000

 2000

 3000

 4000

 5000

 200 400 600 800 1000 1200 1400 1600

N
um

be
r

of
 M

od
ul

ar
 E

xp
on

en
tia

tio
ns

Average Group Size

Average Computation Cost Upon Single User Leave

PACK
DST

TGDH

 0

 5

 10

 15

 20

 25

 200 400 600 800 1000 1200 1400 1600

N
um

be
r

of
 M

ul
tic

as
t

Average Group Size

Average Communication Cost Upon Single User Join

PACK
DST

TGDH

 12

 14

 16

 18

 20

 22

 24

 26

 200 400 600 800 1000 1200 1400 1600

N
um

be
r

of
 M

ul
tic

as
t

Average Group Size

Average Communication Cost Upon Single User Leave

PACK
DST

TGDH

 0

 2

 4

 6

 8

 10

 12

 200 400 600 800 1000 1200 1400 1600

N
um

be
r

of
 R

ou
nd

s

Average Group Size

Average Time Cost Upon Single User Join

PACK
DST

TGDH

 6

 7

 8

 9

 10

 11

 12

 13

 200 400 600 800 1000 1200 1400 1600

N
um

be
r

of
 R

ou
nd

s

Average Group Size

Average Time Cost Upon Single User Leave

PACK
DST

TGDH

FIGURE 4.16. Comparison of rekeying cost among PACK, TGDH and DST

4.2.5 Contributory Group Key Agreement with Key Validation

In practice, there may exist malicious or compromised group members who
do not perform key agreement protocol honestly and cause key generation
failure. One example of key generation failure is group partition where some
users share one key while the others share another different key. Therefore,
besides the four security requirements discussed in Section 4.2.1, the group
key management should also have the key validity property. That is, without
being detected by other users, malicious users cannot prevent valid group
key from being generated by providing false information. In this section,
we discuss the possible damage that untruthful users can cause and the
mechanisms to check the key validity.

When implementing the two group DH using the method described in
Section 4.2.1, an untruthful member can cause key generation failure only
if it has been elected as a delegate. In this case, an untruthful member, e.g.,
a in subgroup A, can send false blinded key f(K ′

A) to selected members
in subgroup B. As a consequence, those members in B who have received

110 4. Optimizing Rekeying Costs in Group Key Agreement

false blinded keys from a cannot obtain the valid group key KAB , that is,
these members have been implicitly revoked from the new group.

We introduce two methods to check the validity of key establishment
procedure and to detect malicious members. One is preventive and the
other is detective. In the preventive scheme, for each group, m members
are elected as delegates and broadcast the blinded key. Then each group
member checks whether these m copies of blinded keys are same. Since all
the keying messages have been signed by the senders, the member who has
sent false information can be easily detected by other group member. In the
detective scheme, after the each round of DH, m members are elected to
broadcast a common known message encrypted using the newly generated
group/subgroup key. Other members check whether they can use their new
group/subgroup key to successfully decrypt the message. If a user cannot
obtain this commonly known message after decryption, it broadcasts an er-
ror message that includes the blinded key and the messages it has received.
Again, since keying messages are signed by their senders, those malicious
members who have sent false blinded key or false encrypted messages can
be detected.

Although colluders can compromise both preventive and detective
schemes, the probability of successful collusion attack is very low because
those m delegates or m users who broadcast the encrypted message are
randomly selected. In addition, the detective method are more resistant to
collusion attacks than the preventive methods. In the preventive method,
the m delegates are selected within one subgroup, while in the preventive
method, the m users are selected from both subgroups.

Key validation requires extra cost. In each round of two-group DH, the
preventive scheme require 2m broadcast and the reactive scheme require
m broadcast, m encryption and n decryption, where n is the size of the
new subgroup after the DH round. It is noted that the extra cost due to
checking is proportional to the cost of the key management schemes without
the checking schemes. Thus, in previous analysis and comparisons, we did
not count the extra cost associated with key validation.

4.3 Chapter Summary

In this chapter, we presented two contributory key agreement schemes: JET
and PACK, which are both designed to achieve high efficiency in tree-based
key agreement schemes.

JET reduces the latency in key agreement by utilizing a join-exit-tree
structure, where the join and exit subtrees serve as temporary buffers for
joining and leaving users. To achieve time efficiency, the optimal subtree
capacity should be at the log scale of the group size. JET has an adaptive
algorithm to activate and update join and exit subtrees. JET can achieve an
average time cost of O(log(log n)) for user join and leave events in a group

4.3 Chapter Summary 111

of n users, and reduces the total time cost of key update over a system’s
life time from O(n log n) by prior works to O(n log(log n)). JET also has
low computation and communication overhead.

Inspired by JET, a better scheme called PACK was developed to fur-
ther reduce overhead. PACK reduces the communication and computation
overhead associated with key updating in two ways. First, it uses the novel
PFMH tree structure that consist of a main tree, which is optimal for user
leave, and a join tree, which is optimal for user join. Second, the concept
of phantom user location in the PFMH allows the cost amortization when
handling user leave. Upon single user join, PACK has the time cost as 1 or
2 rounds of two-group DH, the communication cost as 2 or 4 multicast, and
the average computation cost as 1 modular exponentiation per user. Upon
single user leave event, PACK takes at most log n rounds of two-group DH
in terms of time cost, O(log n) multicast in communication cost, and an
average of 2 modular exponentiations per user in computation cost, where
n is the current group size. PACK achieves the performance lower bound
derived in [62].

5
Optimizing Multicast Key
Management for Cellular Multicasting

There has been significant advancements in building a global wireless in-
frastructure that will free users from the confines of static communication
networks. Users will be able to access the Internet from anywhere at any-
time. As wireless connections become ubiquitous, consumers will desire to
have multicast applications running on their mobile devices. In order to
meet such a demand, there has been increasing research efforts in the area
of wireless multicast [75–77].

In wireless networks, where bandwidth is limited and transmission error
rate is high, the design of key management schemes need to consider the
transmission of the rekeying messages. When the design of key management
schemes can take advantage of the broadcast nature of wireless media as well
as the wireless network topology, the communication overhead introduced
by key management can be reduced. As a direct consequence, the reliability
of key distribution can be greatly improved.

In this chapter, some important properties of tree-based centralized key
management scheme will be exploited. Based on these properties, the con-
cept of topology-aware key management will be introduced. A specific de-
sign of such topology-aware key management scheme is then presented in
detail, followed by performance evaluation.

114 5. Optimizing Multicast Key Management for Cellular Multicasting

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

K000

K00

KS

Kε

u1 u2 u3 u16......

K0 K1

K01 K10 K11

K001 K010
K011 K101 K100

K110 K111

Users

Private
Keys

SK

KEKs

FIGURE 5.1. A typical key management tree

5.1 Targeting Property of Rekeying Messages

Let us revisit the tree-based centralized key management scheme described
in Chapter 2. As a reference to the rest of the chapter, a key tree with 16
leaf node is drawn in Figure 5.1.

As described previously, many centralized key management schemes em-
ploy a tree hierarchy to maintain the keying material [8, 10, 78–80]. In the
key tree example shown in Figure 5.1, each node of the key tree is associ-
ated with a key. The root of the key tree is associated with the session key
(SK), Ks, which is used to encrypt the multicast content. Each leaf node
is associated with a user’s private key, ui, which is only known by this user
and the KDC. The intermediate nodes are associated with key-encrypted-
keys (KEK), which are auxiliary keys and only for the purpose of protecting
the session key and other KEKs. To make concise presentation, we do not
distinguish the node and the key associated with this node in the remainder
of the chapter.

In this example, user 16, that possesses {u16,Ks,Kε,K1,K11,K111},
leaves the group. Due to his departure, the KDC generates new keys and
conveys new keys to the remaining users through a set of rekeying messages
as:

• {Knew
111 }u15 : user 15 acquires Knew

111 ,

• {Knew
11 }Knew

111
,{Knew

11 }Kold
110

: user 13,14,15 acquire Knew
11 ,

• {Knew
1 }Knew

11
,{Knew

1 }Kold
10

: user 9, · · · , 15 acquire Knew
1 ,

• {Knew
ε }Knew

1
,{Knew

ε }Kold
0

: user 1, · · · , 15 acquire Knew
ε ,

• {Knew
s }Knew

ε
: all remaining users acquire Knew

s ,

5.3 Topology-aware Key Management in Cellular Wireless Network 115

where the notation xold represents the old version of key x, xnew represents
the new version of key x, and {y}x represents the key y encrypted by key x.
This rekeying procedure is very similar to the procedure presented in [80].

It is seen that most rekeying messages are only useful to a subset of users,
who are always neighbors on the key management tree. This property is
referred to as the targeting property of the rekeying messages. In fact, the
first rekeying message is only useful to user 15, the second rekeying message
is only useful to users 13, 14, 15, the third rekeying message is useful to
users 9, 10, · · · , 15, and the fourth and fifth rekeying messages are useful to
all users.

It is noted that rekeying messages are usually delivered to all users
through multicast communications. Because of the targeting property,
rekeying messages do not have to be sent to every user in the multicast
group.

5.2 Topology-aware Key Management

Due to the targeting property, the KDC can deliver the rekeying messages
only to the users who need them. However, this does not necessarily reduce
the communication overhead. The users who need the rekeying messages
can randomly scatter in the network.

In order to take advantage of the targeting property, the design of the
key management tree must consider the network topology. Particularly,
the key tree need to match the network topology in such a way that the
neighbors on the key tree are also physical neighbors on the network. As
a consequence, when the KDC delivers the rekeying messages only to the
users who need them, the delivery can be localized to a small regions of the
network. Additionally, in order to achieve localized message delivery, it is
necessary to have the assistance of entities that would control the rekeying
message transmission.

Since the schemes that take advantage of the targeting property must
consider the network topology in their design, these schemes are referred to
as topology-aware key management schemes. The topology-aware key man-
agement schemes can localize the delivery of rekeying messages and there-
fore reduce the communication overhead associated with key management.

5.3 Topology-aware Key Management in Cellular
Wireless Network

In this section, the design of a topology-aware key management scheme for
cellular wireless network proposed in [81] is described in detail.

116 5. Optimizing Multicast Key Management for Cellular Multicasting

Service
Provider

Network

SH

SH

SH

Base Station

Non group members

group members

FIGURE 5.2. A cellular wireless network model

5.3.1 Key Tree Design

A cellular network model is depicted in Figure 5.2. This model, proposed
in [82], consists of mobile users, base stations (BS) and supervisor hosts
(SH). The SHs administrate the BSs and handle most of the routing and
protocol details for mobile users. The service provider, the SHs, and the BSs
are connected through high-speed wired connections, while the BSs and the
mobile users are connected through wireless channels. In this work, the SHs
can represent any entity that administers BSs, such as the region servers
presented in [83] and radio network controllers (RNCs) in 3G networks [84].

In cellular wireless networks, multicast communication can be imple-
mented efficiently by exploiting the inherent broadcasting nature of the
wireless media [85–87]. In this case, multicast data is first routed to the
BSs using multicast routing techniques designed for wireline networks [88],
and then broadcast by the BSs to mobile users.

If both the SHs and the BSs can determine whether the rekeying messages
are useful for the users under them, then the cellular wireless network has
the capability of sending messages to a subset of users. In particular, the
SHs multicast a rekeying message to their BSs if and only if the message is
useful to one or several of their BSs, and the BSs broadcast the rekeying
message to their users if and only if the message is useful to the users under
them.

The information needed to identify whether a SH or BS needs a rekey-
ing message can be sent in the rekeying message header. The size of this
overhead information is typically small compared to the size of the actual
rekeying messages.

The core of the topology-aware key management scheme is to design a
key tree that matches the network topology. The design can be carried out
in three steps.

5.3 Topology-aware Key Management in Cellular Wireless Network 117

BS BS BS BS

SH

SH

BS BS

BS

SH

……

KDC

FIGURE 5.3. A Topology -matching key management tree

• Step 1: Design a subtree for the users under each BS. These subtrees
are referred to as user subtrees.

• Step 2: Design subtrees that govern the key hierarchy between the
BSs and the SH. These subtrees are referred to as BS subtrees.

• Step 3: Design a subtree that governs the key hierarchy between the
SH and the KDC. This subtree is referred to as the SH subtree.

The combination of all subtrees is called the Topology-Matching Key Man-
agement (TMKM) tree. Figure 5.3 illustrates a TMKM tree for the network
topology shown in Figure 5.2.

Classic key management trees, such as those in [8, 10, 79, 80], are inde-
pendent of the network topology. These key trees can be referred to as the
Topology Independent Key Management (TIKM) trees.

5.3.2 Performance Metrics

For performance evaluation, the communication burden caused by rekeying
messages in the wired portion and in the wireless portion of the network
should be studied separately.

Under each SH, the wireline-message-size is defined as the total size of
the rekeying messages multicast by the SHs to the BSs, and the wireless-
message-size is defined as the total size of the rekeying messages broadcast
by the BSs. The message size is measured in units whose bit length is the
same size as the key length. It is often assumed that the network connection
between the KDC and the SHs has ample bandwidth resource and experi-
ence very low error rate. Thus, the wireline-message-size does not include
the communication overhead between the KDC and the SHs.

118 5. Optimizing Multicast Key Management for Cellular Multicasting

Let Sl
1 denote the wireline-message-size under the lth SH and Sl

2 denote
the wireless-message-size under the lth SH, where l = 1, 2, · · · , nsh and nsh

is the total number of SHs. For example, when the length of the session key
and KEKs is 128 bits each, if a 256 bit long rekeying message is multicast
by the lth SH and then broadcast by 3 BSs under the lth SH, then Sl

1 = 2
and Sl

2 = 6. Assuming that users do not leave simultaneously, then the
rekeying wireline cost, Cwire, the rekeying wireless cost Cwireless, and the
total rekeying cost CT , are defined as:

Cwire =
nsh∑

l=1

αl
1E[Sl

1] ; Cwireless =
nsh∑

l=1

αl
2E[Sl

2]

CT = γ · Cwireless + (1 − γ) · Cwire (5.1)

where E[.] indicates expectation over the statistics governing the user join-
ing and leaving behavior. Here, 0 ≤ γ ≤ 1 is the wireless weight , which
represents the importance of considering the wireless cost, and {αl

1} and
{αl

2} are the sets of weight factors that describe the importance of consid-
ering the wireline-message-size and wireless-messages-size under the lth SH
respectively. When SHs administrate areas with similar physical network
structure and channel conditions, {αl

1} and {αl
2} can be chosen as 1. In

addition, the combined-message-size is defined as

Sl
T = γ · Sl

2α
l
2 + (1 − γ) · Sl

1α
l
1. (5.2)

Thus, CT can also be expressed as CT =
∑nsh

l=1 E[Sl
T].

For a given wireless weight γ, {αl
1}, and {αl

2}, both the TMKM and
TIKM trees should be designed to minimize the total communication cost,
CT .

5.3.3 Handoff Schemes for TMKM Tree

In mobile environments, the user will subscribe to a multicast service under
an initial host agent, and through the course of his service move to different
cells and undergo handoff to different base stations. Although the user has
moved, he still maintains his subscription to the multicast group. Since the
TMKM tree depends on the network topology, the physical location of a
user affects the user’s position on the key management tree. When a user
moves from one cell to another cell, the user needs to be relocated on the
TMKM tree. In this section, the handoff scheme only refer to the process
of relocating a user on the key tree.

One solution to the handoff problem is to treat the moving user as if he
departs the service from the cell that he is leaving from and then rejoins
the service in the cell that he has moved to. This scheme, referred to as the
simple handoff scheme, is not practical for mobile networks with frequent
handoffs since rekeying messages are sent whenever handoffs occur.

5.3 Topology-aware Key Management in Cellular Wireless Network 119

If u is on WTBRj?

Put u on the branch
that is most recently
updated in cell j

Put u on his previous
position on subtree of
cell j; remove u from

WTBRj

Put u on WTBRiRemove u
from the subtree of cell i

Update keys in
keyset uj using user

join procedure

If t ujoin>t
j
update?

Send keys in
keyset uj to u

oNseY

Yes

No

FIGURE 5.4. Key update process when user u moves from cell i to cell j

A more efficient handoff scheme defers the key update associated with
handoffs until users’ departure time. During handoff, if a user remains sub-
scribed to the multicast group, it is not necessary to remove the user from
the cell where he previously stayed. Allowing a mobile user to have more
than one set of valid keys while he stays in the service does not compro-
mise the requirements of access control, as long as all of the keys that he
possesses are updated when he finally leaves the service.

In order to trace both the users’ handoff behavior and the key updating
process, a wait-to-be-removed (WTBR) list is employed for each cell. The
WTBR list of the cell i, denoted by WTBRi, contains the users who (1)
possess a set of valid keys on the user subtree of cell i and (2) are currently
in the service but not in cell i. These WTBR lists are maintained by the
KDC.

120 5. Optimizing Multicast Key Management for Cellular Multicasting

Let tiupdate denote the time of the last key update that occurs due to a
departure occurring in cell i, and let tujoin denote the time when the user
u first joins the service. In addition, keysetui is defined as the set of keys
possessed by the user u while he is in cell i.

The efficient handoff scheme in [81] is illustrated in Figure 5.4 and Figure
5.5, as:

• When user u moves from cell i to cell j,

1. Put u on the WTBR list of cell i, i.e. WTBRi, and remove him
from the user subtree of cell i.

2. If u has been in cell j before and is on WTBRj , put u back
on the branch of the subtree that he previously belonged to and
remove him from WTBRj . If u is not on WTBRj , put u on
the most recently updated branch on the user subtree of cell j.
We note that the set of keys associated with u’s new position,
keysetuj , was updated at time tjupdate.

3. If tujoin > tjupdate, the keys in keysetuj are updated using the
procedure for user join described in [80]. If tujoin ≤ tjupdate, the
keys do not need to be updated.

4. The keys in keysetuj are sent to u through unicast.

The purpose of step 3 is to prevent u from taking advantage of the
handoff process to access the communication that occurred before he
joined. To see this, let u join the service at tujoin = t0 in cell i, and
then immediately move to cell j. After relocation, user u obtains keys
in keysetuj that is updated at time tjupdate = t0 − ∆, where ∆ is a
positive number. In this case, if we do not update the keys in keysetuj
and u has recorded the communication in cell j before joining, u will
be able to decrypt the multicast content transmitted in [t0 − ∆, t0),
during which time he is not a valid group member.

• When user u leaves the multicast service from cell j:

1. The keys that are processed by u and still valid should be up-
dated. In particular, the keys in {keysetui ,∀i : u ∈ WTBRi}
and keysetuj are updated using the procedure for user departure
in [80].

2. Check other users on the WTBR lists that contain u. If u and
another user u∗ are both on WTBRi, and keysetui = keysetu

∗

i ,
remove u∗ from WTBRi. It is noted that u∗ is removed from
WTBRi when u∗ does not have valid keys associated with cell
i any more. Step 2 does not require extra rekeying messages.

3. Remove u from all WTBR lists.

5.3 Topology-aware Key Management in Cellular Wireless Network 121

i=j or u is
on WTBRi ?

Yes

No

Update keys in keyset ui using
user departure procedure

i <= total number
of cells ?

i=1

Yes

Check other users on WTBRi. If
keyset ui = keyset u*i , remove u*

from WTBRi

Remove u from WTBRi

i = i+1

End

No

FIGURE 5.5. Key update process when user u leaves the service from cell j

A user will be removed from the WTBR lists not only when he leaves
the service, but also when other users who share the same keys leave the
service. Compared with the simple handoff scheme, the efficient handoff
scheme can reduce the key updating caused by user relocation because the
number of cells that need to update keys is smaller than the number of cells
that a user has ever visited.

When the key tree matches with the network topology, handoffs result in
users’ relocation on the key tree, which inevitably introduce extra cost to
the task of key management. Since the KDC often has significant computa-
tion and storage resources, there is no much concern about the cost for the
KDC to maintain and update the WTBR lists. Instead, the major concern
is the communication cost due to the fact that more than one set of keys
may need to be updated for a departure user because of handoffs.

122 5. Optimizing Multicast Key Management for Cellular Multicasting

5.4 Performance Analysis

Matching the key management tree with the network topology has two
contrasting effects on the rekeying message communication cost. First, the
cost of sending one rekeying message is reduced because only a subset of
the BSs broadcast the message. Second, the number of rekeying messages
may increase due to handoffs. In this section, these two effects are analyzed.

To simplify the analysis, it is assumed that the system has aL0 SHs, each
SH administrates aL1 BSs, and each BS has aL2 users, where a ≥ 2, L0,
L1 and L2 are positive integers. It is also assumed that the SHs administer
areas with similar network structure and conditions. Therefore, {αl

1} and
{αl

2} are approximated by 1. The user subtrees, BS subtrees, and SH subtree
are designed as balanced trees with degree a and level L2, L1, and L0,
respectively. For fair comparison, the TIKM tree is also designed as an
a-ary balanced tree with (L0 + L1 + L2) levels. In this chapter, the level
of a tree is defined as the maximum number of nodes on the path from a
leaf node to the root excluding the leaf node. Since the SHs are usually in
charge of large areas, the probability of a user moving between SHs during
a multicast service is much smaller than the probability of handoffs that
are under one SH. In this analysis, the SH level handoffs is not considered.
The communication cost is only caused by one departure user based on the
rekeying procedure described in [8, 78,80].

As illustrated by the example in Section 5.3, rekeying messages with size
(a ·L) need to be transmitted when one user leaves from a balanced key tree
with degree a and level L. When using the TIKM tree, rekeying messages
with size a(L0 +L1 +L2) are transmitted under aL0 SHs and broadcast by
aL0+L1 BSs. Therefore, when one user leaves the service, wireline-message-
size, denoted by C̃tikm

w , and the wireless-message-size, denoted by C̃tikm
wl ,

are computed as

C̃tikm
w = (aL0 + aL1 + aL2)aL0 (5.3)

C̃tikm
wl = (aL0 + aL1 + aL2)aL0+L1 . (5.4)

The performance of the TMKM tree is affected by the user handoff behav-
ior. Let random variable I denote the number of WTBR lists that contain
the departing member when he leaves the service. The function B(b, i, a) de-
scribes the number of intermediate KEKs that need to be updated. B(b, i, a)
is equivalent to the expected number of occupied boxes when putting i items
in b boxes with repetition, where each box can have at most a items. A box
is called occupied when one or more items are put into the box. The detailed
calculation of B(b, i, a) is described as follows.

Define n(b, i, a) to be the number of non-empty boxes when randomly
placing i identical items into b identical boxes with repetition, where each
box can hold at most a items. Due to the definitions of n(b, i, a) and B(b, i, a),
B(b, i, a) is the expected value of n(b, i, a), i.e. B(b, i, a)=E[n(b, i, a)].
It is obvious that n(b, i, a) is bounded as B0 ≤ n(b, i, a) ≤ B1, where

5.4 Performance Analysis 123

B0 =
⌈

i
a

⌉
and B1 = min(i, b). An intermediate quantity w(y, i, a) is defined

as the number of ways to put i items into y boxes such that each box contains
at least 1 and at most a items. w(y, i, a) can be calculated recursively as:

w(B0, i, a) =
(

aB0

i

)
(5.5)

w(B0 + k, i, a) =
(

a(B0 + k)
i

)

−
k−1∑

m=0

(
B0 + k

B0 + m

)
w(B0 + m, i, a), (5.6)

where 0 ≤ k ≤ B1 − B0. Then, the pmf of n(b, i, a) can be expressed as:

Prob{n(b, i, a) = B0 + k} =
1
N

(
b

B0 + k

)
w(B0 + k, i, a), (5.7)

where N =
(
ab
i

)
represents the total number of ways of putting i items into

b boxes. By substituting (5.6) into (5.7), one can see

Prob{n(b, i, a) = B0 + k} =
1
N

(
b

B0 + k

)(
a(B0 + k)

i

)

−
k−1∑

m=0

(
b

B0+k

)(
B0+k
B0+m

)
(

b
B0+m

) Prob{n(b, i, a) = B0 + m}.

It can be verified that:
(

b
B0+k

)(
B0+k
B0+m

)
(

b
B0+m

) =
(

b − B0 − m

k − m

)
.

Therefore,

Prob{n(b, i, a) = B0 + k} =
1
N

(
b

B0 + k

)(
a(B0 + k)

i

)

−
k−1∑

m=0

(
b − B0 − m

k − m

)
Prob{n(b, i, a) = B0 + m}. (5.8)

By substituting (5.5) into (5.7), one can get

Prob{n(b, i, a) = B0} =
1
N

(
b

B0

)(
aB0

i

)
. (5.9)

Based on (5.8) and (5.9), one can calculate Prob{n(b, i, a) = B0+k} for k =
0, 1, · · · , B1 −B0 recursively. Then, B(b, i, a) (i.e. E[n(b, i, a)]) is calculated
as

B(b, i, a) =
B1−B0∑

k=0

(B0 + k) · Prob{n(b, i, a) = B0 + k}. (5.10)

124 5. Optimizing Multicast Key Management for Cellular Multicasting

When one user leaves the service and he is on I = i WTBR lists, one can
verify that:

• (i · L2) keys on user subtrees need to be updated. Thus, rekeying
messages with total size (iaL2−1) are transmitted under one SH and
broadcast by a single BS.

• B(aL1−m, i, am) KEKs on the level (L1 − m) of the BS subtree need
to be udpated. Thus, messages with size aB(aL1−m, i, am) are trans-
mitted under one SH and broadcast by am BSs. Here, m = 1, · · · , L1,
and the level 0 of a tree is just the root.

• (at) KEKs on the level (L0− t) of the SH subtree need to be updated.
Thus, messages with size (at+1) are sent under (at) SHs and broadcast
by (aL1 · at) BSs. Here, t = 1, 2, · · · , L0.

• In addition, one message is needed to update the session key Ks. This
message is sent to all aL0 SHs and aL0+L1 BSs.

Therefore, when the departing user belongs to i WTBR lists, the expected
value of the wireline-message-size, denoted by Ctmkm

w (i), and the expected
value of the wireless-message-size, denoted by Ctmkm

wl (i), are computed as

Ctmkm
w (i) = iaL2 +

L1∑

m=1

aB(aL1−m, i, am) +
L0∑

t=1

at+1 (5.11)

Ctmkm
wl (i) = iaL2 − 1 +

L1∑

m=1

am+1B(aL1−m, i, am)

+aL1

L0∑

t=1

at+1 + aL0+L1 . (5.12)

The performance of the TIKM tree and the TMKM tree can be compared
by examining the values of C̃tikm

w and Ctmkm
w (i), C̃tikm

wl and Ctmkm
wl (i). In

Figure 5.6, these values are plotted for different i and L0, when the other
parameters are fixed as a = 2, L1 = 3, and L2 = 6. Since the TIKM tree
is not affected by handoffs, C̃tikm

w and C̃tikm
w are constant. Figure 5.6(a)

and Figure 5.6(b) show the wireline-message-size and wireless-message-size
respectively, when the system has only one SH. Figure 5.6(c) and Figure
5.6(d) show the corresponding curves for 2 SHs, while Figure 5.6(e) and
Figure 5.6(f) depict the corresponding curves for systems with 8 SHs. It is
observed that:

• Both Ctmkm
w (i) and Ctmkm

wl (i) are increasing functions of i.

• The TMKM tree always reduces the wireless-message-size, and this
advantage becomes larger when the system contains more SHs.

5.4 Performance Analysis 125

0 2 4 6 8
0

20

40

60

80

100

120

a=2, L
0
=0, L

1
=3, L

2
=6

w
ire

lin
e−

m
eg

−
si

ze

0 2 4 6 8
40

60

80

100

120

140

160

w
ire

le
ss

−
m

sg
−

si
ze

a=2, L
0
=0, L

1
=3, L

2
=6

0 2 4 6 8
20

40

60

80

100

120
a=2, L

0
=1, L

1
=3, L

2
=6

w
ire

lin
e−

m
sg

−
si

ze

0 2 4 6 8
0

200

400

600

800

w
ire

le
ss

−
m

sg
−

si
ze

a=2, L
0
=1, L

1
=3, L

2
=6

0 2 4 6 8
0

50

100

150

200
a=2, L

0
=3, L

1
=3, L

2
=6

The number of cells that update keys (i)

w
ire

lin
e−

m
sg

−
si

ze

0 2 4 6 8
0

5000

10000

15000

The number of cells that update keys (i)

w
ire

le
ss

−
m

sg
−

si
ze

a=2, L
0
=3, L

1
=3, L

2
=6

TIKM : Ctikm
w

TMKM : Ctmkm
w

(i)

TIKM : Ctikm
wl

TMKM : Ctmkm
wl

(i)

(a) (b)

(c)

(e)

(d)

(f)

FIGURE 5.6. Comparison of the wireless cost and the wireline cost for one user
departure

• For systems containing only one SH, i.e. L0 = 0, the TMKM trees
introduce larger wireline-message-size than TIKM trees due to the
handoff effects. When there are multiple SHs, the TMKM scheme can
take advantage of the fact that some SHs do not need to transmit
rekeying messages to their BSs, and can reduce the wireline-message-
size when i is small. It should be noted that the wireline cost will be
larger than that given in (5.11) if there are SH-level handoffs.

Since TMKM trees reduce the wireless-message-size more effectively than
reducing the wireline message size, a larger wireless weight γ leads to an
improved advantage of TMKM trees over TIKM trees. Using large γ is a
reasonable scenario since the wireless portion of the network usually expe-
riences a higher error rate and has less available bandwidth when compared
to the wireline portion, which makes the wireless cost the major concern in
many realistic systems. In addition, the communication cost of the TMKM

126 5. Optimizing Multicast Key Management for Cellular Multicasting

tree increases with the number of cells that need to update keys when a
user leaves. Therefore, when handoffs are less likely to happen, the TMKM
tree has larger advantage over the TIKM tree.

Scalability is another important performance measure of key management
schemes [78]. Let N = aL0 denote the number of SHs. When N → ∞,
the scalability properties can be easily obtained from (5.3)-(5.12), and are
summarized in Table 5.1. Both Figure 5.6 and Table 5.1 demonstrate that
the communication cost of TMKM trees scales better than that of TIKM
trees when more SHs participate in the multicast.

TABLE 5.1. Scalability comparison between TMKM and TIKM trees when the
number of SHs(N)→ ∞.

wireline-message-size wireless-message-size
TIKM ∼ aN loga N ∼ aL1+1N loga N

TMKM ∼ a2 loga N ∼ aL1+2 loga N

5.5 Separability of the Optimization Problem

The TMKM tree consists of user-subtrees, BS-subtrees, and SH-subtrees.
This could make the problem of finding optimal TMKM tree structure com-
plicated. The good news is that optimizing the entire TMKM tree is equiv-
alent to optimizing those subtrees individually. A proof will be provided
in this section. This is desirable since optimizing the subtrees separately
reduces the dimension of the search space for optimal tree parameters and
significantly reduces the complexity of tree design.

In this proof, it is assumed that the users under the same SH have the
same joining, departure and mobility behavior. Thus, the user subtrees
under the same SH have the same structure. It is easy to verify that the main
results in this section still hold in scenarios where the dynamic behavior of
the users varies under different BSs.

In addition, it is assumed that the number of participating SHs and BSs
do not change during the multicast service. In order to make the presen-
tation more concise, the notation Dk,l is introduced. Dk,l represents the
situation where k users are under the lth SH and one of these users leaves
the service.

As discussed in Section 5.3, the total communication cost, CT , is ex-
pressed as

CT =
nsh∑

l=1

E[Sl
T]. (5.13)

5.6 Optimizing TMKM Tree Design 127

Based on the definition of Sl
T , one can see that

E[Sl
T] =

∑

k

pl(k)Gl(k)El(k), (5.14)

where

pl(k) : pmf of the number of users under the lth SH,

Gl(k) : probability that a user leaves from the lth SH
given that k users are under the lth SH,

El(k) : the expected value of the combined-message-
size given the condition Dk,l.

When a user leaves, the keys that need to be updated are divided into
three categories: (1) the keys on the user subtrees, (2) the keys on the
BS subtrees, and (3) the keys on the SH subtree. Under the condition
Dk,l, let Al

1(k), Al
2(k) and Al

3 denote the expected value of the combined-
message-size under the lth SH resulting from updating the keys on the
user-subtrees, BS-subtrees and SH-subtrees, respectively. We note that Al

3

is not a function of k when there are no SH-level handoffs, and that El(k) =
Al

1(k) + Al
2(k) + Al

3. Then, (5.13) becomes

CT =

nsh�
l=1

��
k

pl(k)Gl(k)Al
1(k) +

�
k

pl(k)Gl(k)Al
2(k) + Al

3 ·
��

k

pl(k)Gl(k)

��
.

The structure of the user-subtrees only affects Al
1(k), the structure of

the BS-subtrees only affects Al
2(k), and the structure of the SH-subtrees

only affects Al
3. Therefore, for the TMKM tree, the user-subtrees, BS-

subtrees and SH subtree can be designed and optimized separately. Partic-
ularly, the user-subtrees under the lth SH should be designed to minimize∑

k pl(k)Gl(k)Al
1(k), the BS subtree under the lth SH should be designed

to minimize
∑

k pl(k)Gl(k)Al
2(k), and the SH subtree should be designed

to minimize
∑nsh

l=1 Al
3 ·
(∑

k pl(k)Gl(k)
)
.

5.6 Optimizing TMKM Tree Design

Key management schemes are closely related to the key management ar-
chitecture, which describes the entities in the network that perform key
management [78]. In cellular wireless networks, the BSs are not trusted to
perform key management because they can be easily tampered with [82].
The SHs are able to perform key management if they are trusted and have
the necessary computation and storage capabilities. The trustiness of the
SHs depends on both the business model and the protection on the SHs.
Based on whether SHs perform key management, the systems can be clas-
sified into two categories:

128 5. Optimizing Multicast Key Management for Cellular Multicasting

• In the first category, each SH performs key management for a subset
of the group members who reside in the region where this SH is in
charge. Each SH can be looked at as a local key distribution center.
Without loss of generality, since the SHs are independent and may
even adopt different key management schemes, one can study systems
containing only one SH, which are referred to as one-SH systems.

• In the second category, SHs do not perform key management. Instead,
there is a KDC that manages keys for all users. This KDC can be the
service provider or a trusted third party. The systems containing many
SHs are referred to as multiple-SH systems.

In one-SH systems, the TMKM tree consists of user-subtrees and a BS
subtree. In multiple-SH systems, the TMKM tree consists of user-subtrees,
BS-subtrees and a SH subtree.

5.6.1 Dynamic membership model

Before talking about optimizing the key tree design, one must specify appli-
cation scenarios. For describing the application scenarios, a model is needed
to describe the joining and leaving behavior of the users.

Mlisten [89] is a tool that can collect the join/leave times for multicast
group members in MBone sessions. Using this tool, [90] [72] studied the
characteristics of the membership dynamics of MBone multicast sessions
and showed that the user arrival process can be modeled as Poisson and
the membership duration of short sessions (that usually last several hours)
is accurately modeled using an exponential distribution while the member-
ship duration of long sessions (that usually last several days) is accurately
modeled using the Zipf distribution [91]. Based on the population model
of short MBone sessions, the following assumptions about the membership
dynamics are made.

1. Under the lth SH, the user’s arrival process is Poisson with rate λl and
the service duration is governed by an exponential random variable
with mean 1/µl, where l = 1, 2, · · · , nsh.

2. A user’s joining and leaving behavior is independent of other users.

Based on the first assumption, the number of users under the lth SH is a
Poisson random variable with rate θl, i.e. pl(k) = θk

l

k! e
−θl , where θl = λl/µl

[92]. In addition, it can be shown that Gl(k) approximately equals to k·µl. It
is noted that the second assumption is reasonable in some types of multicast
services, such as periodic news multicast, while it may not be correct for
services such as a scheduled pay-per-view multicast, where different users
are related with each other through watching the same content.

5.6 Optimizing TMKM Tree Design 129

FIGURE 5.7. ALX tree

5.6.2 ALX tree structure

The TMKM scheme matches the key tree to the network topology by de-
composing the key tree into user subtrees, BS subtrees, and SH subtrees.
The TMKM scheme does not have constraints on the specific structure of
these subtrees. Obviously, a balanced tree with per-determined degree is a
valid choice for constructing subtrees. Another possible choice is a Huffman
tree optimized for a given user statistics [61]. In both cases, major changes
to the tree structure is expected when the group membership changes.

This section presents a new tree structure that is capable of handling
membership additions, deletions, or relocations with minimal changes to
the tree’s structure. The advantages of the ALX tree will also be described.

As illustrated in Figure 5.7 and parameterized by the triple (a, L,x), this
(a, L,x)-logical tree has L + 1 levels. The upper L levels, which comprise a
full balanced subtree with degree a, are fixed during the multicast service.
The users are represented by the leaf nodes on the (L+1)st level. A vector
x is used to describe the (L + 1)st level, where xi is the number of users
attached to the ith node of the Lth level, and i = 1, 2, · · · , aL. In the example
shown in Figure 5.7, x = [4, 2, 3, 3, 2, 4, 3, 3, 3], a = 3 and L = 3. This tree
structure is called as the ALX tree.

When using the ALX tree, the joining user is always put on the branch
with the smallest value of xi. The maximum number of users on an ALX
tree is not restricted. When a user leaves, the average rekeying message
size is (k

aL − 1 + aL), where k is the number of users on the ALX tree.
When the user’s arrival process is Poisson with rate λ, and the service
time is an exponential random variable with mean 1/µ, the probability
that a user leaves the key tree is approximately k · µ, and the pmf of k

is p(k) = θk

k! e
−θ, where θ = λ/µ. The performance of the ALX tree is

evaluated by the expected value of the rekeying message size, denoted by
Calx, and is calculated as:

Calx =
∞∑

k=1

p(k) · k · µ · (k

aL
− 1 + aL), (5.15)

130 5. Optimizing Multicast Key Management for Cellular Multicasting

It follows that the optimization problem of the ALX tree can be formulated
as:

C̃alx = min
a>1,L>0

Calx. (5.16)

Balanced trees whose degree is pre-determined, such as binary and trinary
trees, are widely used to design key trees [78,80]. These trees are referred to
as the fixed-degree trees. The ALX tree is compared with the fixed-degree
trees as follows.

Adding or removing a user from balanced fixed-degree trees often requires
splitting or merging nodes. For example, when a new user is added to the
key tree shown in Figure 5.1, one leaf node must be split to accommodate
the joining user. In this case, a new KEK is created and must be transmitted
to at least one existing user. When using the ALX tree structure, however,
no new KEKs are created during membership changes. Updating existing
KEKs for user join can be achieved without sending any rekeying messages,
as suggested in [80], because existing users can update KEKs using one-way
functions after being informed of the need to update their keys. Therefore,
the ALX tree structure allows for a key updating operation that does not
require sending any rekeying messages during user joins. In addition, the
ALX tree introduces minimal change to the tree structure with dynamic
membership and therefore is easy to implement and analyze.

On the other hand, the ALX tree is optimized over the distribution of
the group size. If we takes individual snapshots of the system when the
group size is very small or large, the ALX tree may not perform as well
as fixed degree trees that adjust themselves according to the group size.
However, the cost of ALX trees, denoted by C̃alx, is in fact very close to
the performance lower bound of fixed degree trees.

Similar to (5.15), the expected rekeying message size when using a tree
with fixed degree n, denoted by Cfix(n), is calculated as:

Cfix(n) =
∞∑

k=1

p(k) · k · µ(n − 1 + n · (P − 1)) ,

where P is the average length of branches for a tree with k leaves and degree
n. It is well known that P equals the expected codeword length of a source
code containing k symbols with equal probability. The bounds on P are
known to be logn(k) ≤ P < logn(k) + 1 [30]. Therefore,

Cfix(n) >

∞∑

k=1

p(k) · k · µ · (n logn(k) − 1). (5.17)

Based on (5.17), the performance lower bound for the fixed degree trees is
given by

C̃fix = min
n

∞∑

k=1

p(k) · k · µ · (n logn(k) − 1). (5.18)

5.6 Optimizing TMKM Tree Design 131

2 4 6 8 10 12 14 16 18 20
0

2000

4000

6000

8000

10000
ALX Tree Cost vs Lower Bound of the fixed degree tree

user join rate (λ)

A
ve

ra
ge

d
re

ke
y

m
es

sa
ge

 s
iz

e

ALX Tree
Lower Bound

2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04
Relative difference

user join rate (λ)

(
C

al
x −

 C
fix

)
/ C

fix

Relative Difference

FIGURE 5.8. Comparison between the ALX tree performance and the lower
bound for different user joining rates

It is noted that no fixed degree trees can reach this lower bound. In fact,
C̃fix would be achieved if and only if one could (1) reorganize the tree
immediately after user join or departure in such a way that the rekeying
message size for the next user join/leave operation is minimized; and (2)
reorganize the tree without adding any extra communication cost. However,
reorganizing trees, such as splitting or merging nodes, requires sending ex-
tra keying information to users. These above two conditions can never be
achieved simultaneously.

The lower bound in (5.18) is used as a reference for evaluating the per-
formance of the ALX tree. In Figure 5.8, C̃fix and C̃alx are compared for
different user joining rates, λ. In Figure 5.9, C̃fix and C̃alx are compared
for different average service duration, 1/µ. It is observed that the relative
difference between the lower bound and the performance of the ALX tree
is less than 3.5%.

The ALX tree has the advantage of maintaining tree structure as user join
and leaves, while its performance is very close to the lower bound of fixed
degree trees. Although the ALX tree is not the optimal solution amongst all
possible tree structures, its practical nature makes the ALX tree an ideal
candidate for designing the user and BS subtrees.

132 5. Optimizing Multicast Key Management for Cellular Multicasting

10 15 20 25 30 35 40 45 50 55 60
0

2000

4000

6000

8000

10000
ALX vs Lower Bound

Average user service time

A
ve

ra
ge

 r
ek

ey
 m

es
sa

ge
 s

iz
e

ALX Tree
Lower Bound

10 15 20 25 30 35 40 45 50 55 60
0

0.005

0.01

0.015

0.02

Relative difference

user join rate (λ)

(
C

al
x −

 C
fix

)
/ C

fix

Relative Difference

FIGURE 5.9. Comparison between the ALX tree performance and the lower
bound for different average service duration

5.6.3 User subtree design

The user subtrees can be designed as ALX trees. Under the lth SH, the
optimal tree parameters, a and L, solve

min
a,L

∑

k

pl(k)Gl(k)Al
1(k), (5.19)

where a and L are positive integers and Gl(k) ≈ kµl. Let Tu
w(k, i) and

Tu
wl(k, i) respectively represent the expected value of the wireline-message-

size and wireless-message-size caused by updating keys on the user subtrees,
given that k users are under the lth SH, one of them leaves and he is on i
WTBR lists. One can calculate

Tu
w(k, i) = Tu

wl(k, i) = (
k/nl

bs

aL
− 1 + aL)i.

Then, Al
1(k) is computed as

Al
1(k) =

nl
bs∑

i=1

pl
h(i)(αl

2γTu
wl(k, i) + αl

1(1 − γ)Tu
w(k, i))

= (αl
2γ + αl

1(1 − γ))(
k/nl

bs

aL
− 1 + aL)E[I l], (5.20)

where E[I l] =
∑nl

bs
i=1 pl

h(i)i, and αl
1 and αl

2 are defined in Section 5.3.
By substituting (5.20) into (5.19), the optimization problem for the user-

5.6 Optimizing TMKM Tree Design 133

subtrees under the lth SH is

min
a,L

∑

k

k · pl(k) · (k/nl
bs

aL
− 1 + aL). (5.21)

The optimum a and L can be obtained by searching the space of possible
a and L values.

5.6.4 BS subtree design

The BS subtrees can also be designed as ALX trees. The degree and the level
of a BS subtree are denoted by abs and Lbs, respectively. Let T b

w(k, i) and
T b

wl(k, i) respectively denote the expected value of the wireline-message-size
and wireless-message-size caused by key updating on the BS subtree under
the lth SH given the condition Dk,l and the condition that the departing
member is on i WTBR lists. One can calculate:

T b
w(k, i) = s · B(abs

Lbs , i, s) +
Lbs∑

m=1

abs · B(abs
Lbs−m, i, s · am

bs) (5.22)

T b
wl(k, i) ≈ s2 · B(abs

Lbs , i, s)

+
Lbs∑

m=1

abs · abs
m · s · B(abs

Lbs−m, i, s · am
bs), (5.23)

where s = nl
bs

a
Lbs
bs

. Equation (5.22) and (5.23) are derived based on the fol-

lowing intermediate results:

• On average, B(abs
Lbs−m, i, s · am

bs) keys need to be updated on level
(Lbs − m) of the BS subtree.

• To update one KEK at level Lbs, the average message size is (s) and
these messages are broadcast to an average of (s) BSs. To update one
KEK at level (Lbs − m),m > 0, the message size is (abs) and these
messages are broadcast by (am

bs) BSs.

From the definition of Al
2 and using both (5.22) and (5.23), we can see that

Al
2 =

nl
bs∑

i=1

pl
h(i)(αl

2γT b
wl(k, i) + αl

1(1 − γ)T b
w(k, i))

=
nl

bs∑

i=1

pl
h(i)

(
B(abs

Lbs , i, s)
(
s2αl

2γ + sαl
1(1 − γ)

)
(5.24)

+
Lbs∑

m=1

B(abs
Lbs−m, i, sam

bs)abs

(
am

bssα
l
2γ + αl

1(1 − γ)
)
)

,

134 5. Optimizing Multicast Key Management for Cellular Multicasting

where nl
bs is the number of BSs under the lth SH. In practice, it is difficult

to obtain an analytic expression for pl
h(i) that depends on the statistical

behavior of the users during membership joins and departures, as well as
their mobility behavior and how handoffs are addressed.

Let random variable Ĩ l denote the number of cells that a leaving user
has ever visited. Obviously, Ĩ l ≥ I l. The pmf of Ĩ l, denoted by p̃l

h(i), can
be derived from user mobility behavior and the distribution of the ser-
vice duration. For example, let tM denote the service duration, tn denote
the new cell dwell time, and th denote the previously handed-off cell dwell
time [93]. When the movement of the users follows the mobility model de-
scribed in Section 5.7, the distributions of tn and th are derived in [93].
The distribution of tM is often assumed to follow an exponential distribu-
tion. Given these distributions, one can calculates pn = Prob{tM < tn}
and ph = Prob{tM < th}. The number of cells that a user ever vis-
ited before departure, denoted by Ĩ, has the pmf as Prob{Ĩ = 1} = pn,
Prob{Ĩ = 2} = (1 − pn)ph, Prob{Ĩ = 3} = (1 − pn)(1 − ph)ph, and
Prob{Ĩ = i} = (1 − pn)(1 − ph)i−2ph.

Let Ãl
2 denote the right hand side value in (5.24) when replacing pl

h(i)
by p̃l

h(i). It can be verified that Ãl
2 is an upper bound of Al

2. This upper
bound, Ãl

2, is not a function of k.
As discussed in Section 5.5, the parameters of the BS subtree under

the lth SH should be chosen to minimize
∑

k pl(k)Gl(k)Al
2. Since Gl(k) is

not a function of abs and Lbs, minimizing
∑

k pl(k)Gl(k)Al
2 is equivalent to

minimizing Al
2. Due to the unavailability of pl

h(i), the optimization problem
of the BS subtree is formulated as

min
abs>1,Lbs>0

Ãl
2. (5.25)

5.6.5 SH subtree design

In a typical cellular network, each SH administrates a large area where both
the user dynamics and the network conditions may differ significantly from
the areas administered by other SHs. The heterogeneity among the SHs
should be considered in designing the SH subtree. Due to SH heterogeneity,
the ALX tree structure, which treats every leaf equally, is not an appropriate
tree structure to build the SH subtree. Instead, the SH heterogeneity may
be addressed by building a tree where the SHs have varying path lengths
from the root to their leaf node.

The root of the SH subtree is the KDC, and the leaves are the SHs. The
design goal is to minimize the third term in (5.15), which shall be denoted
by Csh and is

Csh =
nsh∑

l=1

ql · Al
3, (5.26)

5.6 Optimizing TMKM Tree Design 135

SH1 SH2

SH3
SH4 SH5

K0

Kε

K00

Ks

FIGURE 5.10. An example of the SH subtree

),(11 βα

),(2121 ββαα ++

),(22 βα
),(33 βα),(44 βα),(55 βα

),(5454 ββαα ++

),(5151 ββαα +⋅⋅⋅++⋅⋅⋅+

),(321321 βββααα ++++

FIGURE 5.11. The cost pairs on the SH subtree

where ql =
∑

k pl(k)Gl(k). Let βl denote the communication cost of trans-
mitting one rekeying message to all the users under the lth SH. Based
on the definition of αl

1 and αl
2 in Section 5.3, it is easy to show that

βl = (1 − γ)αl
1 + γnl

bsα
l
2.

The value of Al
3 can be calculated directly from βl where l = 1, 2, · · · , nsh.

In the simple example demonstrated in Figure 5.10, when a user under SH1

leaves the multicast service, K00, K0, Kε and Ks, need to be updated. The
communication cost of updating K00 is 2(β1+β2). The communication cost
of updating K0 is 2(β1 + β2 + β3). The communication cost of updating
Kε is 2(β1 + β2 + β3 + β4 + β5). Since the communication cost of updating
Ks does not depend on SH subtree structure, it is not counted in the total
communication cost. Then,

A1
3 = 2(β1 + β2) + 2(β1 + β2 + β3) + 2(β1 + β2 + β3 + β4 + β5).

The goal of the SH subtree design is to find a tree structure that minimizes
Csh given βl and ql. However, it is very difficult to do so based on (5.26).
Thus, Csh is computed in a different way.

Let the SH subtree have the fixed degree n. A cost pair, which is a pair of
positive numbers, can be assigned to each node on the tree. The cost pair
of the leaf node that represents the lth SH is (ql, βl). The cost pair of the
intermediate nodes are the element-wise summation of their children nodes’
cost pairs, as illustrated in Figure 5.11. The cost pairs of all intermediate
nodes are represented by (xm, ym), where m = 1, 2, · · · ,M , and M is the
total number of intermediate nodes on the tree. Then, Csh can be calculated

136 5. Optimizing Multicast Key Management for Cellular Multicasting

as

Csh = n
M∑

m=1

xm · ym. (5.27)

It is easy to verify that (5.27) is equivalent to (5.26). Based on (5.27), a
tree construction method for n = 2 is developed.

1. Label all the leaf nodes using their cost pairs, and mark them to be
active nodes.

2. Choose two active nodes, (xi, yi) and (xj , yj), such that (xi + xj) ·
(yi + yj) is minimized among all possible pairs of active nodes. Mark
those two nodes to be inactive and merge them to generate a new
active node with the cost pair (xi + xj , yi + yj).

3. Repeat step 2 until there is only one active node left.

This method, which we call the greedy-SH subtree-design (GSHD) algo-
rithm, can be easily extended to n > 2 cases. The GSHD algorithm produces
the optimal solution when β1 = β2 = · · ·βnsh

. However, it is not optimal
in general cases. Since the optimization problem for the SH-subtree is non-
linear, combinatorial, and even does not have a closed expression for the
objective function, it is not computationally partial to seek the optimal SH
subtree structure. Section 5.7 will present a comparison between the GSHD
algorithm and the optimal solution obtained by exhaustive search.

5.7 Performance Evaluation

5.7.1 One-SH systems

This section provides a performance comparison between the TMKM tree
and the TIKM tree in one-SH systems through both analysis and simula-
tions.

The simulation setup is as follows. The network topology is a homo-
geneous cellular network that consists of 12 concatenated cells. The cell
pattern is wrapped to avoid edge effects. The mobility model is set ac-
cording to [93]. R denotes the radius of the cells, and Vmax denotes the
maximum speed of the mobile users. Since the wireless connection usually
experiences a high transmission error rate and the number of users under
one BS is larger than the number of BSs, the wireless communication cost
of the multicast communication is assigned a larger weight than the wireline
communication cost, i.e. γ > 0.5.

For the purpose of fair comparison, the TIKM tree is designed as an
ALX tree, which is optimized for the statistics of the number of partic-
ipating users. The wireline cost of the TIKM tree, denoted by Ctikm

wire , is
computed using (5.15), where p(k) denotes the pmf of the number of users

5.7 Performance Evaluation 137

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

2

4

6

8

10

12

14

x 10
5

wireless weight(γ)

T
ot

ol
 c

lo
st

 (
C

to
ta

l)
R=4 miles, V

max
=50 miles/hr, 1/µ =20 min. , λ = 16 users per cell per min.

TIKM message size (exponential service time)
TIKM message size (Zipf service time)
TMKM message size (exponential service time)
TMKM message size (zipf service time)

(a)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.32

0.34

0.36

0.38

0.4

0.42

0.44

wireless weight(γ)

pe
rf

or
m

an
ce

 r
at

io
 (

η)

R=4 miles, V
max

=50 miles/hr, 1/µ =20 min., λ = 16 users per cell per min.

performance ratio(expoential service time)
performance ratio(zipf service time)

(b)

FIGURE 5.12. (a) The total message size as a function of the wireless weight; (b)
Performance ratio as a function of the wireless weight

in the multicast service. The wireless cost of the TIKM tree is computed
as Ctikm

wireless = nbsC
tikm
wire , where nbs is the total number of BSs. In one-SH

systems, the total communication cost is Ctikm
T = γCtikm

wireless+(1−γ)Ctikm
wire .

The performance ratio η is defined as the total communication cost of
the TMKM tree divided by the total communication cost of the TIKM
tree, i.e. η = Ctmkm

T /Ctikm
T . When η is less than 1, the TMKM tree has

smaller communication cost than the TIKM tree, and smaller η indicates
an improved advantage that the TMKM tree has over the TIKM tree.

Figure 5.12(a) shows the total communication cost of the TMKM tree
and the TIKM tree for different wireless weights (γ), when the cellular cells
have a radius of 4 miles, the maximum mobile speed is 50 miles/hour, and
the user joining rate is 16 users per minute per cell. The corresponding per-
formance ratio is shown in Figure 5.12(b). In this simulation, two models
are used to describe users’ join/departure behavior. The first one, repre-
senting short sessions, uses a Poisson arrival and exponential service time
duration model. The second one, representing long sessions, uses a Poisson
arrival and Zipf service time duration model. The users stay in the service
for an average of 20 minutes in both cases. Three observations are made.

138 5. Optimizing Multicast Key Management for Cellular Multicasting

4 6 8 10 12 14 16 18 20 22 24
0.34

0.36

0.38

0.4

0.42

0.44

0.46

user join rate (λ)

P
er

fo
rm

an
ce

 r
at

io
 (η

)
R=4 miles, V

max
=50 miles/hr, 1/µ = 20 min., γ = 2/3

Simulation result
Analysis result

(a)

10 20 30 40 50 60 70 80 90 100
0.32

0.34

0.36

0.38

0.4

0.42

0.44

Maximum speed of mobile users (mile/hr)

P
er

fo
rm

an
c

ra
tio

 (η
)

R=2 miles, λ = 16 users/cell.min., 1/µ = 20 min., γ = 2/3

Simulation result
Analysis result

(b)

FIGURE 5.13. (a) Performance ratio for different user join rate; (b) Performance
ratio for different users’ maximum speed.

First, the communication cost of the TMKM tree is always less than 42% of
the communication cost of the TIKM tree. Second, the performance ratio η
is smaller for larger γ, which supports the argument in Section 5.4 that the
advantage of the TMKM tree is larger when more emphasis is placed on
the wireless cost. Third, when the wireless transmission is the bottleneck
of the system, i.e. γ = 1, the TMKM tree can reduce the communication
burden by as much as 65%, i.e. η = 35%. In addition, two models yield
similar results, which indicates that the performance of the TMKM is not
sensitive to the models. For the remainder of the experiements, the short
session model is adopted.

Figure 5.13(a) shows both the analysis and the simulation results of η
for different user join rates (λ) when the radius of the cellular cells is 4
miles, the maximum mobile speed is 50 miles per hour, the average service
time (1/µ) is 20 minutes, and γ = 2/3. Since the exact expression for
the pmf of I l is not available, for the calculation of the analytical results,
an empirically estimated pmf of I l is obtained from simulations with the
same user join/departure and mobility models. Figure 5.13 shows that the
advantage of the TMKM tree is larger when the system contains more users.
This property can be verified by the cost functions derived in the previous

5.7 Performance Evaluation 139

0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

3500
C

sh

The number of SHs

Comparison of different SH−subtree Design Methods

Balanced tree
GSHD Algorithm
Optimal Tree

FIGURE 5.14. Comparison among SH subtree design methods

sections. In Figure 5.13(b), the performance ratio is shown for different Vmax

when the user joining rate is 16 users per minute per cell. The performance
ratio is an increasing function of Vmax when other parameters are fixed
since handoffs occur more frequently as users move faster.

5.7.2 SH subtree design methods

This section provides a comparison among the GSHD algorithm, the opti-
mal tree, and an alternative design. The optimal tree is obtained through
exhaustive search. The alternative design is a balanced tree that treats each
SHs equally just as in traditional key management schemes [].

In the simulation, half of the {βl} are uniformly distributed between 1
and 20, which represent rural areas, and the other half of {βl} uniformly
distributed between 101 and 120, which represent metropolitan areas. Ad-
ditionally, ql is assumed to be proportional to βl, and {ql} are normalized
such that

∑
ql = 1, where l = 1, 2, · · · , nsh. (ql is defined in 5.6.5 and

represents the probability of a user leaving.)
In Figure 5.14, the communication cost caused by updating keys on SH-

subtrees, Csh, is shown when using different SH subtrees. Results are aver-
aged over 500 realizations. Since exhaustive search is very computationally
expensive, it is only done for 10 and fewer SHs. The simulation results indi-
cate that the performance of the GSHD is very close to optimal. Compared

140 5. Optimizing Multicast Key Management for Cellular Multicasting

1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6
x 10

7
 R = 4 miles, V

max
=50 miles.hr, 1/µ = 30 min., λ = 10 users/cell/min

the number of SHs

w
ire

le
ss

 c
os

t

1 2 3 4 5 6 7 8 9
0

1

2

3

4

5
x 10

6

the number of SHs

w
ire

lin
e

co
st

TIKM wireline cost
TMKM wireline cost

TIKM wireless cost
TMKM wireless cost

FIGURE 5.15. Performance comparison in multiple-SH systems with identical
SHs

with the balanced tree, GSHD algorithm reduces the communication cost
contributed by the SH subtree by up to 18%.

5.7.3 Multiple-SH systems

When the system contains multiple SHs that do not perform key manage-
ment, the design of the TMKM tree should consider the topology of the
SHs.

In the simulations, user-subtrees and BS-subtrees are designed as ALX
trees and the SH-subtree a binary tree constructed using the GSHD algo-
rithm. Each SH administers 12 concatenated identical cells. The simulation
is performed for two cases.

In case 1, the user statistics and network conditions are identical under
all SHs. Thus, αl

1’s and αl
2’s are set to be 1. The radius of the cells is R = 4

miles, the maximum velocity is Vmax = 50 miles/hr, µl = 1/30, and λl = 10
for all SHs.

In Figure 5.15, the wireless cost and the wireline cost of the TMKM trees
and the TIKM tree are shown for different quantities of participating SHs.
It is seen that the TMKM trees have both smaller wireless cost and smaller
wireline costs than the TIKM trees when the number of SHs are equal or
greater than 2, and the advantages of the TMKM trees are more significant

5.7 Performance Evaluation 141

1 2 3 4 5 6 7 8 9
0.2

0.25

0.3

0.35

0.4
O

ve
ra

ll
P

er
fo

rm
an

ce
 r

at
io

The number of SHs

 1/µ = 30 min. , λ = 10 users/cell/min, Vmax = 50 miles/hr, R = 4 miles

simulation
analysis

FIGURE 5.16. Performance comparison in multiple-SH systems with non-identi-
cal SHs

12 BS’s

ALX
a=2
L=2

12 BS’s

ALX
a=2
L=2

12 BS’s

ALX
a=2
L=2

12 BS’s

ALX
a=2
L=2

12 BS’s

ALX
a=2
L=2

users

ALX
tree
a=3
L=1

users

ALX
tree
a=3
L=2

users

ALX
tree
a=3
L=2

users

ALX
tree
a=3
L=2

users

ALX
tree
a=3
L=3

SH1 SH2

SH3 SH4 SH5

Key Management Center

FIGURE 5.17. A TMKM tree containing 5 SHs

when the system contains more SHs, which verifies the analysis in Section
5.4. In addition, the corresponding performance ratio is drawn in Figure
5.16 for γ = 2/3. In this system, the communication cost of the TMKM
trees can be as low as 20% of the communication cost of the TIKM trees.
This indicates an 80% reduction in the communication cost.

In case 2, a more complicated system containing 5 SHs with different user
joining rates is simulated. In this scenario, the λl values for the five SHs
were set to 5, 10, 15, 20 and 25 respectively, and R = 4 miles, Vmax = 50
miles/hr, and µl = 1/20 for all SHs. The TMKM tree structure is shown in
Figure 5.17. The TIKM tree is simply an ALX tree with degree 3 and level
6. In this system, the wireless cost of the TMKM tree is 21.8% of that of
the TIKM tree, and the wireline cost of the TMKM tree is 34.0% of that of
the TIKM tree. When the wireless weight γ is set to 2/3, the TMKM tree
reduced total communication cost by 74%.

142 5. Optimizing Multicast Key Management for Cellular Multicasting

5.8 Chapter Summary

In this chapter, we described a topology-aware multicast key management
scheme for mobile wireless environment. Compared with traditional tree-
based key management schemes that are independent of network topology,
the proposed TMKM scheme achieved a significant reduction in the com-
munication burden associated with rekeying. The proposed key tree consists
of user-subtrees, BS-subtrees and SH-subtrees. We proved that the prob-
lem of optimizing the communication cost for the TMKM tree is separable
and can be solved by optimizing each of those subtrees separately. This
property greatly reduced the complexity in key tree design. The ALX tree
structure, which easily adapts to changes in the number of users, was intro-
duced to build user-subtrees and BS-subtrees. The GSHD algorithm, which
considers the network heterogeneity where the SHs administer areas with
varying network conditions, was introduced to build the SH subtree. An
efficient handoff scheme was introduced to address the consequences that
user mobility has upon the TMKM tree. Both simulations and analysis
demonstrated that the proposed TMKM scheme can significantly reduces
the communication cost. In addition, the communication cost of the TMKM
tree scales better than that of topology-independent trees as the number of
participating SHs increases.

6
Key Management and Distribution
for Securing Multimedia Multicasts

The distribution of identical data to multiple parties using the conven-
tional point-to-point communication paradigm makes inefficient usage of
resources. The redundancy in the copies of the data can be exploited in
multicast communication by forming a group consisting of users who receive
similar data, and sending a single message to all group users [1]. Access con-
trol to multicast communications is typically provided by encrypting the
data using a key that is shared by all legitimate group members. The shared
key, known as the session key (SK), will change with time, depending on
the dynamics of group membership as well as the desired level of data pro-
tection. Since the key must change, the challenge is in key management–
the issues related to the administration and distribution of keying material
to multicast group members.

In order to update the session key, a party responsible for distributing
the keys, called the group center (GC), must securely communicate with
the users to distribute new key material. The GC shares keys, known as key
encrypting keys (KEKs), that are used solely for the purpose of updating
the session key and other KEKs with group members.

As an example of key management, we present a basic example of a mul-
ticast key distribution scheme. Suppose that the multicast group consists
of n users and that the group center shares a key encrypting key with each
user. Upon a member departure, the previous session key is compromised
and a new session key must be given to the remaining group members.
The GC encrypts the new session key with each user’s key encrypting key
and sends the result to that user. Thus, there are n − 1 encryptions that
must be performed, and n− 1 messages that must be sent on the network.

144 6. Key Management and Distribution for Securing Multimedia Multicasts

The storage requirement for each user is 2 keys while the GC must store
n + 1 keys. This approach to key distribution has linear communication,
computation and GC storage complexity. As n becomes large these com-
plexity parameters make this scheme undesirable, and more scalable key
management schemes should be used.

In general, during the design of a multicast application, there are several
issues that should be kept in consideration when choosing a key distribution
scheme. We now provide an overview of some of these issues.

• Dynamic nature of group membership: It is important to effici-
ently handle members joining and leaving as this necessitates changes
in the session key and possibly any intermediate keying information.

• Ability to prevent member collusion: No subset of the members
should be able to collude and acquire future session keys or other
member’s key encrypting keys.

• Scalability of the key distribution scheme: In many applications
the size of the group may be very large and possibly on the order
of several million users. The required communication, storage, and
computational resources should not become a hindrance to providing
the service as the group size increases.

In Section 2.1, we summarized the work of [3, 4] for the distribution of
secret information via broadcast messages. These results provide a insight
into the communication resources needed to achieve the above goals. In
particular, it was shown in Theorem 1 that for a key size of B bits, the
message needed to update a group of n users must be at least nB bits to
provide perfect security in the key distribution. One key result of [3] is that
in order to achieve a smaller broadcast size, it is necessary to do away with
the constraint that the private information held by each user is mutually
independent. Therefore, to reduce the usage of communication resources,
the users must share secret information.

One strategy for having users share secret information is to arrange the
keys according to a tree structure. The tree based approach to group rekey-
ing was originally presented by Wallner et al. [7], and independently by
Wong et al. [8]. In such schemes an a-ary tree of depth loga n is used to
break the multicast group into hierarchical subgroups. Each member is as-
signed to a unique leaf of the tree. KEKs are associated with all of the
tree nodes, including the root and leaf nodes. A member has knowledge
of all KEKs from his leaf to the root node. Thus, some KEKs are shared
by multiple users. Adding members to the group amounts to adding more
depth to the tree [9], or adding new branches to the tree [8]. Upon mem-
ber departure the session key and all the internal node KEKs assigned to
that member become compromised and must be renewed. Due to the tree
structure, the communication overhead is O(log n), while the storage for
the center is O(n) and for the receiver is O(log n).

6.1 A Basic Key Management Scheme 145

u
1

u
n-1 nuu

2

K K K. . .K

K

K

n

s

ε

1 2 n-1

FIGURE 6.1. The basic key distribution scheme.

Various modifications to the tree scheme have been proposed. In [10], a
modification to the scheme of Wallner et al. is presented. By using pseudo-
random generators, their scheme reduces the usage of communication re-
sources by a factor of two. Similarly, Balenson et al. [9] were able to reduce
the communication requirements by a factor of two using one-way func-
tion trees. In [11] Canetti et al. examine the tradeoffs between storage and
communication requirements, and a modification to the tree-based schemes
of [7, 8] is presented that achieves sublinear server-side storage. Further,
in [12], it was shown that the optimal key distribution for a group leads
to Huffman trees and the average number of keys assigned to a member is
related to the entropy of the statistics of the member deletion event.

6.1 A Basic Key Management Scheme

In this section, we present a simplified key management scheme that will
be used in the discussions in Section 6.3.1 where we introduce an improved
format for the rekeying message. The key management scheme presented
here is an elementary key management scheme that consists of two layers
of KEKs, and a SK that is used to protect the bulk content.

Consider a group of n multimedia users who will share a multimedia
multicast. In the simple key distribution scheme for n users, depicted in
Figure 6.1, user uj has two key encrypting keys Kj and Kε, and the session
key Ks. The KEK Kε is the root KEK and is used to encrypt messages that

146 6. Key Management and Distribution for Securing Multimedia Multicasts

Users

Service
Contact

Key
Updating
Occurs

New Key
Becomes
Valid

t−2 tt−1

Time

FIGURE 6.2. The time intervals t − 2, t − 1 and t. The joining/departing user
contacts the service during time interval t − 2, the rekeying messages are trans-
mitted during t−1, and new key information takes effect at the beginning of time
interval t.

update Ks. The remaining keys K1,K2, · · · ,Kn are KEKs that are used to
protect updates of Kε.

Due to the dynamic nature of the group, and the possible expiration of
keying material, it is necessary to update both the SK and KEKs using
rekeying messages. The three operations involved are key refreshing, key
updating when a new user joins the service, and key updating when a user
departs the service. In the the discussions that follow, we use an integer-
valued time index to denote the time intervals during which fundamental
operations occur, and assume that there is a system-level mechanism that
flags or synchronizes the users to the same time frame. We shall always use
the time index t to denote the interval for which the new key information
will become valid. Time interval t − 1 will correspond to the time inter-
val during which the new key information is being transmitted. Further,
time interval t − 2 corresponds to the interval of time during which a new
member contacts the service provider wishing to join, or a current member
announces to the service provider his desire to depart the service. We have
depicted these cases in Figure 6.2. Observe that it is not necessary that the
time intervals have the same duration.

6.1.1 Key Refreshing

Refreshing the session key is important in secure communication. As a
session key is used, more information is released to an adversary, which
increases the chance that a SK will be compromised. Therefore, periodic
renewal of the session key is required in order to maintain a desired level
of content protection. By renewing keying material in a secure manner, the
effects of a session key compromise may be localized to a short period of
data.

The cryptoperiod associated with a session key is governed by many
application-specific considerations. First, the value of the data should be ex-
amined and the allowable amount of unprotected (compromised) data should
be addressed. For example, the broadcast of a sporting event might allow
the data to be unprotected for a short period, whereas a video conference

6.1 A Basic Key Management Scheme 147

between corporate executives would likely have stricter security require-
ments and necessitate more frequent key refreshing.

Since the amount of data encrypted using KEKs is usually much smaller
than the amount of data encrypted by a session key, it is not necessary
to refresh KEKs. Therefore, KEKs from the previous time interval t − 1
carry over to the next time interval. In order to update the session key
Ks(t− 1) to a new session key Ks(t), the group center generates Ks(t) and
encrypts it using the root KEK Kε(t). This produces a rekeying message
αs(t) = EKε(t) (Ks(t)), where we use EK(m) to denote the encryption of
m using the key K. The message αs(t) is sent to the users.

6.1.2 Member Join

In multimedia services, such as pay-per-view and video conferences, the
group membership will be dynamic. Members may want to join and depart
the service. It is important to be able to add new members to any group in
a manner that does not allow new members to have access to previous data.
In a pay-per-view system, this amounts to ensuring that members can only
watch what they pay for, while in a corporate video conference there might
be sensitive material that is not appropriate for new members to know.

Suppose that, during time interval t− 2, a new user contacts the service
desiring to become a group member. If there were n− 1 users at time t− 2
then there will be n users at time t. During time interval t−1, the rekeying
information must be distributed to the n − 1 current members. Observe
that we must renew both the SK and the root KEK in order to prevent the
new user from accessing previous rekeying messages and to prevent access
to prior content.

The first stage of the key updating procedure requires updating the root
KEK from Kε(t − 1) to Kε(t). Since all of the members at time t − 1
share Kε(t − 1), the group center may communicate the new KEK Kε(t)
securely to these members by forming and transmitting the message αε(t) =
EKε(t−1) (Kε(t)). Next, the service provider generates a new session key
Ks(t) and updates the session key using a rekeying message of the form
αs(t) = EKε(t) (Ks(t)).

Meanwhile, during time interval t−1, the new user completes registration
with the service and is given the new keys Ks(t), Kε(t), and Kn+1. This
completes the actions required during time interval t − 1, and at the start
of time interval t all of the n + 1 members have the new keying material.

6.1.3 Member Departure

Let us consider the case when user un leaves the group at time frame t− 1.
Since user un knows Ks(t − 1) and Kε(t − 1) these keys must be renewed.
First Kε is renewed. To accomplish this the GC forms a new key Kε(t) and

148 6. Key Management and Distribution for Securing Multimedia Multicasts

Multimedia Data Information
Key Multimedia Data Information

Key . . .

. . .Multimedia + Key Information Multimedia + Key Information

Time Frame t-1 Time Frame t

Key Transmission via a Media-dependent Channel

Key Transmission via a Media-independent Channel

FIGURE 6.3. Two approaches to distributing the key information in multimedia
multicasting: (a) using a media-independent channel, and (b) using a media-de-
pendent channel.

encrypts it with the keys Kj for j 	= n. A single message

αε(t) = EK1 (Kε(t)) ‖EK2 (Kε(t)) ‖ · · · ‖EKn−1 (Kε(t)) (6.1)

is formed and sent to all the users using either the media-independent or
media-dependent channel. Here we use the symbol ‖ to denote concate-
nation of bit streams. Next, the session key is updated. The GC forms a
new SK Ks(t) and encrypts using the new KEK Kε(t) to form αs(t) =
EKε(t) (Ks(t)). This message is then sent to the users.

As a final note, we observe that the size of this message agrees with
Theorem 1. Here, the message α consists of the concatenation of n − 1
smaller messages. The message α is distributed to the n − 1 remaining
users. The total length of the message is n − 1 times the block size of the
encryption algorithm employed. Since the key length is smaller than the
block size, we agree with Theorem 1.

6.2 Distribution of Rekeying Messages
for Multimedia

After the formation of the rekeying messages, they must be delivered to
the users. This issue is rarely considered in the secure multicast literature.
However, it is an integral part of a system’s design. For the transmission
of multimedia data, we have identified two distinct classes of mechanisms,
depicted in Figure 6.3, that are available for the delivery of the rekeying
messages:

6.2 Distribution of Rekeying Messages for Multimedia 149

.

.

.

.

.

.

.

.

.

A1

AN

V1

VM

X1

XL

U
X

M

= Possible Encryption Location

FIGURE 6.4. A generic multiplexing diagram depicting several audio streams
(A1 - AN), video streams (V1 - VM), and auxiliary streams (X1 - XL). Also
depicted are locations where encryption is possible.

• Media-Independent Channel: In this mode, the rekeying mes-
sages are conveyed by a means totally disjoint from the multimedia
content.

• Media-Dependent Channel: A media-dependent channel exists
when the media is capable of having a small amount of data imper-
ceptibly hidden inside the host media.

In a conventional, non-secure multimedia application, the multimedia
data consists of multiple streams. Depending on the application, these
streams may either be multiplexed together and placed onto the network,
or treated as separate layers that are passed onto a separate delivery proto-
col. For example, in MPEG-2 Systems a multiplexer operation will multi-
plex the audio and video data into either a program stream or a transport
stream [94]. As another example, MPEG-4 provides packetized elementary
streams to the Delivery Multimedia Integration Framework (DMIF) which
deals with different delivery scenarios and allows for desirable delivery tech-
niques such as unequal error protection (UEP) [95,96].

The location of the encryption operation in a multimedia application’s
design, as well as the mode that the encryption operates under, has a sig-
nificant effect on the performance of the multimedia multicast service. In
Figure 6.4, we present a generic diagram that captures the multiplexing
involved in H.324, MPEG-2 Systems program stream or transport stream,
or the operations of the DMIF in MPEG-4. Several audio streams (A1 -
AN), video streams (V1 - VM), and auxiliary streams (X1 - XL) are fed
as input into the multiplexer. Upon output is a data stream that consists

150 6. Key Management and Distribution for Securing Multimedia Multicasts

of packets that have been interlaced. With respect to this diagram, there
are two locations where encryption can be placed. Encryption can either
be located before the multiplexer or after it. If encryption is placed after
the MUX, then there are two manners in which it can encrypt the data
stream. First, it can encrypt each packet individually, thereby maintaining
the separation of the packets that was introduced by the multiplexer. The
second option is for the encryption to operate in a streaming mode, such as
cipher block chaining [97], whereby the separation between different media
packets will be lost. The disadvantage of the latter mode of operation is
that it is no longer possible to treat the layers separately, which is essential
to performing important delivery techniques like UEP. Therefore, if encryp-
tion is placed after the MUX, it should maintain the separation between
the packets.

However, it is not necessary to place the encryption after the MUX to
maintain the separation between the layers. In fact, placing the encryp-
tion before the MUX will encrypt each media or object stream indepen-
dently, and the multiplexer will interleave the various encrypted streams
into separated packets. The multiplexer and transmitter will then maintain
the separation between the different media streams, which is essential for
reliable delivery of multimedia. Therefore, there is no advantage in plac-
ing encryption after the MUX since the segregation between the different
streams should be maintained, and hence encryption should be done prior
to multiplexing. In fact, in the MPEG-4 IPMP framework IPMP control
points are located prior to the DMIF at the encoder [98].

For the remainder of this section, we shall discuss the different mech-
anisms for distributing the rekeying messages. For each method we will
discuss its advantages and disadvantages.

6.2.1 Media-Independent Channel

The first method to convey the rekeying information is to use a channel
that is independent of the multimedia content. This can be accomplished
in several different ways. First, one could have a security system that is
completely separate from the multimedia system, and the key information
is transmitted using any other channel that is available to the application.
A second manner by which this can be accomplished is through a Systems
level operation. In fact, MPEG-2 Systems (ISO/IEC 13818-1) provides the
Entitlement Control Messages (ECM) as a means to convey keys associated
with scrambling MPEG-2 multimedia streams. The ECM is transmitted as
a stream separate from the multimedia. As another example, the MPEG-4
standard also provides a Systems level data stream to convey security in-
formation. In MPEG-4, the Intellectual Property Management and Protec-
tion (IPMP) framework provides IPMP Descriptors (IPMP-Ds) and IPMP
Elementary Streams (IPMP-ESs) that can help an IPMP system decrypt
or authenticate media elementary streams [98]. Both the MPEG-2 ECMs,

6.2 Distribution of Rekeying Messages for Multimedia 151

MPEG-4 IPMP-Ds and MPEG-4 IPMP-ESs can be used to convey rekeying
information associated with a multicast service.

Further, many multimedia standards provide data fields that may be
used by the system designers to convey non-normative application-specific
parameters. For example, in MPEG-1 Video the bistream format for the
video sequence layer, the group of pictures layer, and the picture layer
provides a mechanism to convey optional user data. These fields may be
also used to convey security data, such as rekeying messages.

One of the advantages of using the media-independent channel is the
ability to assign a delivery protocol to the rekeying messages that is differ-
ent from the delivery protocols used by the other components of the data
stream. Since encryption and decryption keys must be exactly known in
order to perform decryption, rekeying messages are extremely sensitive to
errors. It is essential that all receivers completely receive a correct rekeying
message before the new key takes effect. Without a mechanism to ensure
that a rekeying message is received by all legitimate members, some users
will be unable to decrypt future content and future rekeying messages.

When the rekeying messages are transmitted using a media-independent
channel, their delivery can be performed using a reliable multicasting pro-
tocol, such as RMTP and SRM [1, 99–101]. However, in addition to using
reliable multicasting, it is necessary to add a feedback mechanism at the
application layer. In a multicast security system, it is necessary that
the server knows that all users have correctly received the rekeying message
before proceeding to the next rekeying message or encrypting the service
with the new session key. Therefore, before switching to the new key, the
server must wait for an acknowledgement message from each of the clients
announcing that they have successfully received the rekeying message.

The use of a media-independent channel can introduce a network security
weakness even if there is no cryptographic weakness in the key management
scheme. We illustrate this with the following example. When transmitting
the rekeying messages in the media-independent mode, the keying messages
will be in an encrypted format, such as depicted in (6.1), and kept sepa-
rated from the other types of data packets. It is possible for an adversary to
eavesdrop on the network and observe the presence of these rekeying mes-
sages. Even if the rekeying messages are further encrypted by the session
key Ks, an eavesdropper on the network may simply observe the rekeying
message substream to measure valuable statistical data regarding the mul-
ticast membership. For example, if an adversary knows that the key size
used is 64 bits and that the rekeying message is of the form (6.1), then when
he observes a rekeying message of 64000 bits, he may infer that there are
1000 users in the service. The leakage of statistical information regarding
the service membership is a security flaw that can be addressed by using
a media-dependent channel. In [102] other system weaknesses were iden-
tified that can occur in multicast key distribution schemes even when the
underlying cryptographic algorithm is provably correct.

152 6. Key Management and Distribution for Securing Multimedia Multicasts

6.2.2 Media-Dependent Channel

A media-dependent channel exists when small amounts of information can
be embedded invisibly in the data. In these cases, the rekeying information
may be embedded in the content and distributed to those who receive the
data [49, 103]. Data embedding, or digital steganography, techniques allow
for an information signal to be hidden in another signal, known as the
cover signal, without dramatically distorting the cover signal. Effective data
embedding techniques are those that can invisibly embed data in the cover
signal, allow for easy extraction of the embedded information, and achieve
a high embedding rate.

Multimedia data types, such as speech, image, and video are well suited
for embedding information since introducing a small amount of distortion
in their waveforms does not significantly alter perceptual quality [104–106].
Generic data structures are not well suited for hiding information. The
most popular purpose for data embedding is digital watermarking, in which
ownership or copyright information is inserted in the cover signal. In this
case, the embedding technique must also be robust to attempts to remove
or destroy the watermark. Data embedding can also be used to convey side
information, such as embedding messages in the content.

Many papers exist on embedding information and watermarks in video.
In [105], Hartung and Girod describe a method for inserting digital water-
marks into the compressed bitstream of MPEG-2 coded video. They found
that they could embed a watermark of 1.25 to 125 bytes/second in NTSC
signals. Another method for embedding information in video was presented
in [107], and applied to distributing textual information in a video confer-
encing system. As another example of a scheme with a high embedding rate,
a data embedding scheme that is compatible with standards such as H.263
and MPEG-2 was proposed in [108, 109]. This data embedding technique
uses the fractional-pel motion vector as the cover signal for the embedded
data, and is able to embed a high bitrate information signal into a video bit-
stream with an acceptable visual quality degradation. This method for data
embedding will be used later in this chapter to demonstrate the feasibility
of our multimedia multicast key distribution philosophy.

Associated with many embedding schemes is an embedding key which
governs how the information is embedded into the cover signal. The size
of the embedding key dictates the difficulty for an adversary to attack the
embedding rule. For example, in [108, 109], 2 bits of information can be
embedded per macroblock, and these 2 bits are embedded by mapping the
motion vector to one of 4 regions. There are 4! = 24 different embedding
rules possible. We may therefore associate a 5-bit embedding key Kemb

with one of these 24 different methods. If a user has the key associated
with how the data was embedded, then he may extract the information
signal in the multimedia data. An adversary, however, would have to search

6.2 Distribution of Rekeying Messages for Multimedia 153

these 24 possibilities to determine the correct embedding rule to extract the
embedded information.

It is desirable to have the size of Kemb large in order to make it diffi-
cult for an adversary to attack the embedding rule. We now describe the
method by which we extend the embedding key size of [108,109] for use in
our later simulations. Suppose that we break the information we wish to
embed into 2-bit chunks cj . We shall choose security parameter q that is
a non-negative integer. At random, we shall choose q different embedding
rules (r0, r1, · · · , rq−1), allowing for repetition in the rules selected. Each
embedding rule rk describes one of the 24 possible ways to map 2 bits to
4 regions. We assign an embedding rule rk for each chunk cj according to
k ≡ j (mod q). Thus, the 0, q, 2q, · · · 2-bit chunks use embedding rule r0,
the 1, q + 1, 2q + 1, · · · 2-bit chunks use embedding rule r1, and so on. The
embedding key is thus the concatenation of these rules, which is a key space
of 24q possibilities, and requires �q log2 24� bits to represent. For example,
choosing q = 12 yields an embedding key size of 56 bits.

The rekeying messages used in either the media-independent or media-
dependent cases are almost identical. When using the media-independent
approach, only the information needed to update the SK and KEKs needs
to be transmitted. However, when using a media-dependent approach, the
embedding key must also be updated, requiring that an additional rekeying
operation is performed.

The primary advantage of using data embedding to convey rekeying mess-
ages compared to a media-independent channel is that data embedding
provides an additional layer of security that hides the presence of rekey-
ing messages from potential adversaries. In the conventional approach of
using a media-independent channel to convey the rekeying messages, an ad-
versary can observe the external channel and determine information about
the membership dynamics of the multicast service, such as the rate at which
members join and leave the service as well as being able to infer information
about the group membership. From a security point of view, this provides
valuable information to a potential adversary. In comparison, data embed-
ding provides covert information transferral, whereby the bit rate of the
multimedia source is maintained and it is impossible for an eavesdropper
to measure information regarding the occurrence of a rekeying operation.

Another effect of the additional layer of security provided by data em-
bedding is the introduction of the embedding key, which must also be main-
tained by the service provider and stored by the user. A positive benefit of
this is that an adversary will not only have to attack the SK and KEKs, but
he will also have to attack the key governing the embedding rule in order to
acquire rekeying messages. Since the rekeying message is embedded into the
multimedia, it is encrypted by the SK, and thereby protected by the SK,
the KEK, and the embedding key. For this reason, it is therefore important
that the key length of the embedding key is sufficiently long to make it
difficult for the adversary to search the embedding key space. We note that

154 6. Key Management and Distribution for Securing Multimedia Multicasts

a similar increase in protection can be achieved in the media-independent
channel by increasing the key length of the session key or by introducing
an additional SK. However, encryption algorithms are typically designed
for a small set of specified key lengths [13] and it might not be possible to
increase the length of the session key.

Finally, when using a media-dependent channel, it is possible to maintain
the original data rate of the media without performing the additional com-
putations associated with transcoding. When using a media-independent
channel, the rekeying messages introduce additional communication over-
head that is in addition to the bandwidth needed to convey the media. In
order to keep the data rate of media and rekeying messages identical to the
data rate of just the original media, it is necessary to perform computation-
ally intensive transcoding of the media to a lower data rate. However, when
using a media-dependent approach to conveying the rekeying messages, the
original data rate is maintained, and the data embedding operation provides
a graceful degradation of media quality as more data is embedded.

When using media-dependent channels, the issue of reliability becomes
more pronounced than in the media-indpendent case since it is not possible
to send the rekeying messages through a delivery mechanism separate from
the multimedia data. Since multimedia data is delay sensitive and often
transmitted on error-prone channels using best effort delivery protocols, it
is likely that some media packets will be lost, and the rendering buffer will
be filled using the data that successfully arrives. However, when using a
media-dependent channel, the lost media packets might contain part of a
rekeying message. Since the rekeying messages are embedded in multimedia,
which is being delivered through best effort delivery protocols, it is not
possible to apply delivery protocols employing retransmissions to improve
the reliability of key delivery. There is therefore a tradeoff between covert
information transferral and reliability in delivering the rekeying message.

We noted earlier that it is important that the rekeying message is com-
pletely received by all users before using the new key. We may, however,
address the reliable delivery of the rekeying messages at the application
layer. For example, the multimedia system may employ a centralized error
recovery technique similar to the NP protocol of [110], however operating
at the application layer. The server application takes the k data packets
corresponding to a rekeying message and would form h additional parity
packets. These k + h packets would be used transmitted as the rekeying
message that would be transferred through the media-dependent channel.
At the completion of sending the k + h packets, the server would send a
message polling the clients whether they were able to successfully decode
the rekeying message. The clients would send back acknowledgement mes-
sages to the server. If not all of the clients were able to receive the complete
rekeying message, the server would employ retransmission, and the process
would repeat until all users have successfully received the rekeying message.

6.3 An Improved Rekeying Message Format 155

When all users have received the rekeying message, the server would issue
a message instructing all users that it is appropriate to use the new key.

6.3 An Improved Rekeying Message Format

We have described how a rekeying message can be formed during member
departure so that each of the remaining members can receive the new root
KEK (key encrypting key) by decrypting an appropriate segment of the
message using their private KEK. In practice this requires sending addi-
tional information that flags to all of the users which segment belongs to
which user. Not only does this mean that additional communication over-
head is required, but also that sensitive information regarding user identities
is released. In particular, adversaries who are members of the service can
collect information about other keying messages intended for other users.
In order to circumvent this potential weakness, we propose a new format for
the rekeying message that is a single, homogenized message from which each
user may extract the new root KEK. Such an approach has the advantage
that user-specific keying information is not available to other users.

The problem of distributing information simultaneously to multiple users
via a single broadcast message while maintaining user anonymity has been
previously studied in the literature. Just et al. [3] and Blundo et al. [4] each
present a method using polynomial interpolation whereby the broadcast
message does not have a partitioned structure like the message in (6.1). A
drawback of both of these schemes is that they are suitable for only one
transmission, and are not reusable. Specifically, when used to distribute
identical information to multiple recipients, each user’s secret information
is valid for only one transmission, and then is available for other group
members to acquire. This is a problem since members may acquire other
user’s secret information and use this knowledge to enjoy the service af-
ter they cancel their membership. In order to use these schemes when the
keying material must be updated multiple times, it is necessary to distrib-
ute to each user enough copies of private material to cover the amount
of updates needed. Thus, although these schemes use a composite message
structure and don’t require additional communication overhead for flagging
the users, they are not appropriate for applications that require recurrent
key distribution.

We therefore desire a scheme that allows for private keying material to
be reused while providing a homogenized message form. In Section 6.3.1,
we shall describe a new message format that makes use of one-way func-
tions and a broadcast seed to protect each user’s private information from
compromise [49]. Additionally, although our use of one-way functions can
be applied to the polynomial interpolation methods of [3, 4], our message
format only requires the use of the basic operations of large integer mul-
tiplication and modular arithmetic, and does not require the additional

156 6. Key Management and Distribution for Securing Multimedia Multicasts

functions needed to calculate interpolating polynomials. Then, in Section
6.3.3, we describe how our message format would be used in a tree-based
key management scheme to achieve logarithmic usage of communication
resources.

First, we introduce parametric (or keyed) one-way functions [97, 111],
which are the building blocks of our message form.

Definition 1. A parametric one-way function (POWF) h is a function
from X × Y → Z such that given z = h(x, y) and y it is computationally
difficult to determine x.

Parametric one-way functions are families of one-way functions [13, 97]
that are parameterized by the parameter y. The discrete logarithm provides
an example of a POWF since if p is a large prime, and x and y non-identity
elements of Z∗

p , the multiplicative subgroup of integers modulo p, it is com-
putationally difficult to determine x given z = yx (mod p) and y [13, 97].
Since symmetric ciphers are typically computationally efficient compared
to one-way functions that employ modular exponentiation, practical one-
way functions should be implemented by means of a symmetric encryption
cipher. For example, if we let g be a suitable hash function, and Ex a
symmetric cipher, then h(x, y) = g(Ex(y)) is a POWF. In this case, only
ciphers that are secure against known plaintext attacks [97], such as DES
or Rijndael, are appropriate. Further, we note that it is not necessary that
the hash function g have any cryptographic properties since the required
strength is provided by E. Throughout this chapter we shall assume the
existence of POWFs that map sequences of 2B bits into sequences of B
bits.

6.3.1 Basic Message Form

For the basic message form, we shall use the key distribution scheme de-
picted in Figure 6.1. Suppose that at time t−2 the group consists of n users
u1, u2, · · · , un. Each user ui has a personal B-bit KEK Ki that is known
only by the group center and user ui. Additionally, all of the users share a
B-bit root KEK and a session key that will vary with time.

The group center makes available a POWF h that maps a sequence (x, y)
of 2B bits to B bits. A new function f is defined by prepending a single 1
bit in front of the output of h(x, y), that is f(x, y) = 1‖h(x, y). The purpose
of prepending a bit is to ensure that the modulo operation used by each
user will yield Kε(t).

Suppose, without loss of generality, that user n decides to leave at time
t − 2, then both Kε(t − 1) and Ks(t − 1) must be updated. The root KEK
is updated first, and then used to encrypt the new session key. In order to
update Kε(t− 1), the GC first broadcasts a B-bit random seed µ(t). Next,

6.3 An Improved Rekeying Message Format 157

the GC forms Kε(t) and calculates the rekeying message as

αε(t) = Kε(t) +
n−1∏

i=1

f
(
Ki, µ(t)

)
. (6.2)

A legitimate member ui may decode αε(t) to get the key Kε(t) by calcu-
lating αε(t) (mod f(Ki, µ(t))).

We observe that the only property of µ(t) that is needed is that it is
known by all of the recipients. We can therefore achieve a different variation
of the scheme by choosing µ(t) = Kε(t− 1) or µ(t) = Ks(t− 1), which does
not require the transmission of the random seed by the system.

We now discuss how this message format reduces the communication
overhead compared to a partitioned message format, such as is depicted in
(6.1). Current multicast key management schemes, such as [7, 8, 10], focus
on the size of the payload (the rekeying information), and not on the size
of the entire message (including the rekeying message and the header). In
fact, the transmission of the messages that flag the users which portion
of the message is intended for them can add significant communication
overhead when used in conventional tree-based schemes. To illustrate this,
we consider the basic key management scheme depicted in Figure 6.1, with
n+1 users. When using the partitioned message form of (6.1), it is necessary
to send a header message that describes the user IDs associated with each
of the blocks in the payload rekeying message. Since it requires at least
log2(n) bits to describe the user IDs for n users, we need an additional
overhead of n log2(n). Therefore, the percentage of the message size that
corresponds to the communication overhead is

ρ =
n log2 n

nBk + n log2 n
, (6.3)

where BK is the bit length of the KEK Kε. For large n the communication
becomes a significant portion of the message size.

However, the message format of (6.2) is a single, homogenized message
that does not require any communication overhead. If we use µ(t) = Kε(t−
1), then it is not necessary to broadcast µ(t) and the total message size
of (6.2) is n(BK + 1), whereas the total message size from the traditional
format was n(BK + log2 n). Therefore, as long as log2 n > 1, the message
format of (6.2) is more efficient in terms of communication. This occurs
when we are providing service to a group with more than 2 users. Therefore,
we have made a tradeoff between communication and computation. The
message format of (6.2) uses less overall communication at an expense of
requiring more computation to form the message.

6.3.2 Security Analysis of Residue-based Method

The residue-based method for multicast key distribution was described in
Section 6.3. The basic form of rekeying message in the residue-based method

158 6. Key Management and Distribution for Securing Multimedia Multicasts

is

α = X +
r∏

j=1

Yj , (6.4)

where X and Yj are drawn uniformly from the set {1, 2, · · · , B}. The vari-
able X corresponds to the secret, or the key, that is being convey, while the
Yj are the user-specific shares that mask the secret.

This section describes an information theoretic investigation of the secu-
rity that this method provides for protecting X, and some motivation for
using one-way functions with a time-varying seed.

Information Theoretic Analysis

Consider the scenario where there is only one Y term, and define the random
variable Z = X + Y . In general, the entropy of Z is difficult to relate to
the entropy of two arbitrary random variables X and Y . The following
relationship holds

H(Z) ≤ H(X,Y) ≤ H(X) + H(Y), (6.5)

and in general the bound need not be met. In particular, the consider the
random variables

X = −Y =
{

1 : with probability p(1) = 1/2
0 : with probability p(0) = 1/2 (6.6)

In this example, H(X) = H(Y) = 1, while Z = 0 so that H(Z) = 0. The
following lemma places a lower bound on the entropy of Z.

Lemma 8. Suppose that Z = X + Y , then H(Z|X) = H(Y |X).

Proof.

H(Z|X) =
∑

x

p(x)H(Z|X = x)

= −
∑

x

p(x)
∑

z

p(Z = z|X = x) log p(Z = z|X = x)

= −
∑

x

p(x)
∑

y

p(Y = z − x|X = x) log p(Y = z − x|X = x)

=
∑

x

p(x)H(Y |X = x)

= H(Y |X).

Thus, H(Z) ≥ H(Z|X) = H(Y |X) = H(Y), since X and Y are assumed
independent. Similarly, H(Z) ≥ H(X).

6.3 An Improved Rekeying Message Format 159

The pdf of Z = X + Y is simply the convolution of the pdf of X and
the pdf of Y . Now, when X and Y are uniformly drawn from {1, · · · , B},
then the pdf of Z is a triangular function, and the entropy of Z may be
calculated directly. Suppose that h(k) = B2pZ(k), then the entropy of Z is

H(Z) = − 1
B2

[(
2B∑

k=2

h(k) log h(k)

)
−
(
2 log B

∑
h(k)

)]
(6.7)

= − 1
B2

[∑
h(k) log h(k)

]
+

2 log B

B2

∑
h(k) (6.8)

= − 1
B2

[∑
h(k) log h(k)

]
+ 2 log B. (6.9)

Due to the symmetry of the triangle function h(k),

2B∑

k=2

h(k) log h(k) = 2

⎛

⎝
B−1∑

j=1

j log j

⎞

⎠+ B log B. (6.10)

Thus

H(Z) = − 2
B2

⎛

⎝
B−1∑

j=1

j log j

⎞

⎠− 1
B

log B + 2 log B (6.11)

=
(

2 − 1
B

)
log B − 2

B2

⎛

⎝
B−1∑

j=1

j log j

⎞

⎠ . (6.12)

The entropy of the sum was calculated for X and Y drawn uniformly
from a range {1, 2, · · · , B}, where B = 2b and is recorded in Table 6.1.
Examining this table reveals that the difference between the entropy in Z
and the entropy of either X or Y tends toward an asymptotic limit. The
exact value and significance of this limit is currently not known.

The security of the residue-based method is measured by the uncertainty
that remains in the key given only the observation of the rekeying mes-
sage. For the case of a single term in the product, this is measured by the
entropy H(X|Z). The following lemma relates H(X|Z) to the entropies
H(X), H(Y), and H(Z).

Lemma 9. Suppose X and Y are independent, and Z = X + Y , then

H(Z|X) = H(X) + H(Y) − H(Z). (6.13)

Proof. By application of the chain rule, H(X|Z) = H(X,Z) − H(Z). Ob-
serve that there is a unique correspondence between the joint variable
(X,Z) and (X,Y). Therefore, H(X,Z) = H(X,Y) = H(X) + H(Y). Sub-
stitution gives the desired result.

160 6. Key Management and Distribution for Securing Multimedia Multicasts

TABLE 6.1. The entropy of the sum Z = X + Y , where X and Y are drawn
uniformly from integers between 1 and B = 2b.

b H(Z)
1 1.5000000000000
2 2.6556390622296
3 3.7023191426459
4 4.7159395672686
5 5.7198327831914
6 6.7209281467435
7 7.7212325045380
8 8.7213162233391
9 9.7213390603855
10 10.7213452464840
11 11.7213469122180
12 12.7213473584537

b H(Z)
13 13.7213474774632
14 14.7213475090783
15 15.7213475174478
16 16.7213475196565
17 17.7213475202379
18 18.7213475203902
19 19.7213475204300
20 20.7213475204415
21 21.7213475204434
22 22.7213475204440
23 23.7213475204448
24 24.7213475204435

Applying this lemma with the values presented in Table 6.1 gives that
H(X|Z) ≈ H(X) − 0.721347. This result implies that roughly one bit of
security is lost when there is only a single Y term. Thus, an adversary must
only search a keyspace that is half as large as the original keyspace.

If the original keyspace is sufficiently large, then this reduction might not
be significant. For example, searching a keyspace of 100 bits is effectively
as difficult as searching a keyspace of 99 bits.

The security of this scheme when more Yj terms are used remains to be
investigated. It is conjectured that the amount of bits lost will increase since
the distribution of Y = Y1Y2 · · ·Yr will no longer be uniform. Additionally,
the exact value of the 0.721347 term remains to be explored. Finally, since
direct calculation of the entropies for large B ≈ 220 takes considerable
computing effort, it would be desirable to construct bounds on the entropy
of Y = Y1Y2 · · ·Yr, as well as on the entropy of Z = X + Y .

Attacks by Insiders

We now examine the possibility for a member of the group to attack the
security of the system by gathering or inferring information not intended
for them. Suppose that the basic form of the rekeying message is

α(t) = X(t) + Y = X(t) +
r∏

j=1

Yj , (6.14)

where X(t) denotes the time-varying key that the GC is distributing to the
users. The Yj are user specific secrets that allow a user to determine X(t)
given α by performing a modulo operation. In a dynamic environment, it
is important to prevent members from acquiring other member’s secrets.

6.3 An Improved Rekeying Message Format 161

In the basic form of the rekeying message, once the user us has determined
X, he may determine

∏
j 	=s Yj by

∏

j 	=s

Yj =
α(t) − X(t)

Ys
. (6.15)

This allows user us to depart the system, receive a future rekeying α(t),
and use

∏
j 	=s Yj in the modulo operation to determine future X(t).

It is therefore necessary to make the Y term also time-varying in order
to make it more difficult to acquire X(t). An initial approach to solve this
problem was to define Y (t) = λ(t)

∏r
j=1 Yj . In this case, an inside adversary

is able to calculate

A(t) = λ(t)
r∏

j=1

Yj (6.16)

Since the λ(t) are chosen at random, one might expect that this would
introduce enough randomness to make calculating

∏r
j=1 Yj difficult. This,

however, is not the case.
Consider the probability that two random integers are relatively prime.

A non-rigorous derivation of this probability would proceed as follows. The
probability that one number is divisible by a prime pi is 1/pi. If both
numbers were chosen independently of each other, the probability that
both are divisible by pi is 1/p2

i and hence the probability that they are
not both divisible by pi is (1 − 1/p2

i). The probability that two numbers
are coprime can then be estimated by

W2 =
∏

pi

(
1 − 1

p2
i

)
. (6.17)

In order to calculate W2 it is easier to start with 1/W2.

1
W2

=
∏

pi

(1
1 − 1

p2
i

)
. (6.18)

By expanding 1
1−x into a series expansion and observing that the product

results in a term for every integer, we get

1
W2

=
∞∑

n=1

1
n2

= ζ(2) =
π2

6
(6.19)

where ζ is Riemann’s zeta function [112]. Therefore, the probability of two
numbers being relatively prime is W2 = 6

π2 . This can be extended to the
probability that s numbers are relatively prime. Let Ws be the probability
that s non-negative integers are relatively prime, then by the same idea as
before

Ws =
∏

pi

(
1 − 1

ps
i

)
(6.20)

162 6. Key Management and Distribution for Securing Multimedia Multicasts

TABLE 6.2. Probabilities of Coprimality

W2 0.608
W3 0.832
W4 0.924
W5 0.964
W6 0.983

which leads to
1

Ws
=

∞∑

n=1

1
ns

= ζ(s). (6.21)

We tabulate the first few such probabilities in Table 6.2.
This result states that an inside adversary, after gathering m observations

A(tm) has an increasingly likely chance of calculating
∏r

j=1 Yj . In fact, with
just 8 observations, there is over a 99.5% chance that he will be able to
calculate

∏r
j=1 Yj .

In a dynamic scenario, calculating
∏

j 	=s Yj does not guarantee being able
to acquire future X(t). However, the Yj of any other member who remains
in the service will do. Unlike other cryptographic methods, such as RSA,
where the factors have greater than 500 bits, each Yj is typically less than
a couple hundred bits and factoring the product

∏r
j=1 Yj will not be too

difficult [13, 97]. In this case, the adversary’s task is to reconstruct a Yj

given a list of factors of
∏r

j=1 Yj . Since there is no guarantee how many
factors each Yj will have, it is not reasonable to rely on the difficulty of
recombining factors to protect the key X(t).

Other approaches to making the Y term time-varying have been exam-
ined. In order for the time-varying form Y (t) to be secure, it must be
difficult to calculate an individual Yj term given knowledge of the rekeying
message α(t) and the key X(t). A natural approach for making it difficult to
calculate a value y given a value g(y) is to make g a one-way function. The
idea of using one-way functions provides the difficulty needed to prevent
an inside member from calculating another user’s private key Yj . However,
using one-way functions alone did not provide security for protecting X(t).
As mentioned earlier, it is necessary to make the Y term time-varying,
and based on the arguments presented above, one needs to make the prod-
uct term

∏r
j=1 Yj time-varying. This was accomplished by introducing the

time-varying broadcast seed.
By broadcasting µ(t) and using a non-reversible function f , the adversary

is instead able to calculate

Ai =
∏

j 	=i

f(Kj , µ(t)). (6.22)

Factoring Ai provides information about f(Kj , µ(t)). Since it is difficult to
acquire Kj given µ(t) and f(Kj , µ(t)), the private user information is pro-
tected. At the next time instant, when µ(t+1) is broadcast, the adversary’s

6.3 An Improved Rekeying Message Format 163

sK

Kε

K
000

0 1

0 1 0 1

0 1 0 1 0 1 0 1

K
0 1

K
00 K01

K
10 11

K
001

K
010

K
100

K
101

K
110

K
111

K
011

K

K

000
u u

001 010
u u u u u u

011 100 101 110 111

Invalidated Keys

Joining/Departing
Member

FIGURE 6.5. Tree-based key distribution.

knowledge of f(Kj , µ(t)) does not help him in calculating f(Kj , µ(t + 1)),
and he can extract Kε only if he has the needed keys assigned to him.

6.3.3 Achieving Scalability

When the multicasting group is very large, it is necessary to make efficient
usage of communication resources. Improved resource scalability can be
achieved by employing a tree-based key management scheme to update the
SK and KEKs [7,8].

A binary tree is shown in Figure 6.5, though in the general case the tree
can be an a-degree tree. Attached to the tree above the root node is the
session key Ks. Each node in the tree is assigned a KEK called an internal
key (IK) which is indexed by the path leading to itself. The symbol ε is
used to denote empty string, which is the path of the root node to itself.
Each user is assigned to a leaf and is given the IKs of the nodes from
the leaf to the root node in addition to the session key. For example, user
u111 is assigned keys K111, K11, K1, Kε, and Ks. All of the keys, with
the possible exception of the leaf keys, may vary with time to reflect the
changing dynamics of the group membership.

164 6. Key Management and Distribution for Securing Multimedia Multicasts

During periodic refreshes, only the session key needs to be updated, and
the same protocol as presented in Section 6.1.1 can be used. We will now
address how to operate during additions and deletions of members.

The GC is in charge of keeping track of the group members, and assigning
them to positions on the tree. Although it is easiest to have the membership
tree be a balanced tree, it is not necessary. For example, in [9], a non-
balanced tree employing one-way functions is used in a key management
scheme allowing member joins and departures is used. In this work, we
shall just describe the procedure for adding members to a non-full balanced
tree, and removing members from a full balanced tree. If a balanced tree
is full, meaning all of the leaf nodes have members associated with them,
then it is necessary to spawn a new layer of nodes when adding members.
Additionally, by following the example of Balenson et al. [9] one can see how
to make an approach handle member joins and departures for non-balanced
trees.

Member Join

The member join operation does not involve the message format of (6.2)
since each node of the key tree updates itself. Nonetheless, we present this
case for completeness. Consider the binary tree depicted in Figure 6.5, that
has 7 members u000 through u110. If user u111 would like to join the group,
the keys on the path from his leaf node to the tree’s root as well as the SK,
must be changed in order to prevent access to previous communications.
Thus new Kε(t), K1(t), K11(t) and Ks(t) must be generated by the GC.
The key encrypting keys can be updated from top to bottom by using
Kε(t − 1) to encrypt Kε(t), K1(t − 1) to encrypt K1(t), and K11(t − 1) to
encrypt K11(t). Thus, all users can acquire the new root KEK, while only
members u100, u101, and u110 can acquire K1(t). After updating the KEKs,
the session key is updated by encrypting with the new root KEK Kε(t).

Member Departure

When a member leaves the group, multiple keys become invalidated because
that user shares these keys with other users. For example, in Figure 6.5,
user u111 shares K11 with user u110. Thus, if user u111 departs the multicast
group, the key encrypting keys K11, K1, and Kε become invalidated. These
keys must be updated. Observe that K111 does not need to be updated
since it is a private key and is not shared with any other users.

There are two basic approaches to updating the keys during a member
departure: update the keys from the root node to leaf nodes, or from leaf
nodes to root node. In the first approach, the top-down approach, when
user u111 departs, the keys are updated in the order Kε, K1, and K11. The
second approach, the bottom-up approach, updates the keys in the order
K11, K1, and Kε. After updating the key encrypting keys, the root KEK

6.3 An Improved Rekeying Message Format 165

Kε(t) can be used to encrypt the new session key Ks(t) and a single message
may be broadcast to all members.

Let us focus on how to update these keys using the top-down approach
in conjunction with the new message form when user u111 departs. First, a
random seed µ(t) is broadcast to all members, or some shared information,
such as Kε(t − 1) is used as µ(t). Next, the root KEK Kε(t − 1) will be
updated. In order to do this, the message

αε(t) = Kε(t) + f(K0(t − 1), µ(t))f(K10(t − 1), µ(t))f(K110, µ(t)) (6.23)

is formed and broadcast. Next, K1(t−1) is updated by forming the message

α1(t) = K1(t) + f(K10(t − 1), µ(t))f(K110(t − 1), µ(t)) (6.24)

and broadcasting. The last KEK to update is K11(t− 1). This can be done
by sending the message

α11(t) = K11(t) + f(K110(t − 1), µ(t)). (6.25)

Upon updating the KEKs, the session key may then be updated. To do
this, the root KEK is used to encrypt Ks(t) and the resulting message is
broadcast.

In order to update the keys from a bottom-up approach, the random seed
is broadcast, and then K11(t − 1) is updated via

α11(t) = K11(t) +
0∏

j=0

f(K11j(t − 1), µ(t)) (6.26)

The next key that is updated is K1(t− 1). Since the two users beneath K1

share a common key that is not invalidated by the departure of member
u111, we may reduce communication and computation by using this key to
update K1. The resulting message

α1(t) = K1(t) +
1∏

j=0

f(K1j(t), µ(t)) (6.27)

is broadcast. Since K10(t− 1) is still valid, we implicitly updated K10(t) =
K10(t − 1). To update Kε(t − 1) we may use the new key K1(t) as well as
the old key K0(t) = K0(t − 1) and form the message

αε(t) = Kε(t) +
1∏

j=0

f(Kj(t), µ(t)). (6.28)

Finally, the session key is updated by encrypting the new session key Ks(t)
using the new root KEK Kε(t), and broadcasting the message

αs(t) = EKε(t) (Ks(t)) . (6.29)

166 6. Key Management and Distribution for Securing Multimedia Multicasts

The amount of multiplications as well as the communication requirements
needed to update all of the KEKs using the top-down approach and the
bottom-up approach will differ. Assume that we have n users and keys
assigned to each of these users using an a-ary tree. If the tree is a full,
balanced tree with L = loga n levels, then the amount of multiplications
needed to update the KEKs during a member departure using a top-down
approach is:

Ctd =
L∑

i=1

i(a − 1)

= (a − 1)
loga n(logan + 1)

2
. (6.30)

Similarly, the amount of multiplications needed to update the KEKs using
a bottom-up approach is

Cbu = aL − 1
= a loga n − 1. (6.31)

The amount of communication needed for each of these schemes is directly
related to the amount of multiplications performed. If each internal key is
B bits long, and a rekeying message requires M multiplications, then the
message size will be M(B + 1) bits. Therefore, the bottom-up approach to
renewing the keys requires less computation and communication. However,
if the SK needs to be updated sooner, one may wish to use a top-down
approach since it allows one to update the root KEK first, the session key
next, and finally the remaining IKs.

6.4 System Feasibility Study

In this section, we study the issues related to the feasibility of using a
key management system for multicast multimedia. When designing a cost
effective system, one must consider the balance between computation, com-
munication, and storage resources.

One of the primary advantages for using a tree-based key distribution
scheme is that it achieves good scalability in the amount of communica-
tion needed to update the network. The need for using a tree-based key
distribution scheme becomes more pronounced as the group size increases.
If the group size is small, for example less than 10 users, there might not
be any benefit from using a tree-based key distribution scheme, and one
might want to consider the simple key distribution scheme presented in
Section 6.3. However, the O(log n) communication needed by most tree-
based schemes makes the use of a tree-based scheme essential when the
group size is several thousand or more users.

6.4 System Feasibility Study 167

Another issue that should be considered is the amount of storage needed
by the GC and each individual user. If each user has extremely limited
storage, then the simple distribution scheme of Section 6.3 might be appro-
priate. However, although a tree-based scheme may require more storage
for each user, and a factor more storage for the GC, typically this is not as
important of a consideration as communication resources.

As an example, in the scheme presented in Section 6.3.3, the amount of
multiplications (computation) needed to update the KEKs for the bottom-
up approach was calculated to be Cbu = a loga n − 1. The communication
needed is proportional to the amount of computation needed. The amount
of storage needed by the GC to keep track of the KEKs is

S =
aL+1 − 1

a − 1
(6.32)

keys, while the amount of storage needed by each user is loga n + 2 keys.
Next, one must consider the channel that one is transmitting the keys

across. Whether transmitting via an external channel or an internal channel,
there is a channel rate that governs how quickly the keying information
may be distributed. For example, suppose we are transmitting the rekeying
information for the scheme of Section 6.3.3 via an internal channel. If we
denote R as the embeddable channel rate (in bits/second), BKEK to be the
key length of a KEK, Bs to be the key length of the session key, Bµ the bit
length of the random seed µ(t), and Bemb to be the key length governing
the data embedding rule, then the amount of time needed to update the
entire system of keys is

T =
CbuBKEK + Bs + Bemb + Bµ

R
. (6.33)

Since T is related to the bit size of each of the keys, it is therefore related to
the security levels protecting the service. This amount of time corresponds
to the amount of time the departing member may still enjoy the service be-
fore no longer being able to decode the video stream. If we desire to increase
the level of protection of the multimedia, then Bs must be increased, which
leads to an increase in the amount of time needed to refresh the entire set
of keys. Similarly, if we desire to increase the difficulty an adversary would
have in decoding rekeying messages, then we need to increase BKEK , which
would also increase T .

In designing a system, these tradeoffs must be weighed and considered
from a realistic point of view. Although it might be desirable to have ex-
treme protection of the content, in a dynamic group, it is not realistic that
it take an hour to update the set of keys.

To demonstrate these considerations, we present some simulation results
using the data embedding scheme proposed in [109]. The degradation of
the visual quality when different amounts of bits embedded per frame were
measured for the Foreman and Miss America QCIF video sequences. The

168 6. Key Management and Distribution for Securing Multimedia Multicasts

H.263 TMN-11 video codec was used with annexes D, I, J, F turned on [113].
The bitrate in the simulation is 64kbps with a frame rate 10f/s, and every
12th frame is INTRA coded. The peak signal-to-noise ratio (PSNR) of
luminance component with different data embedding rates are compared
with the PSNR of luminance without embedding. In the simulations, the
four cases compared correspond to when the number of bits embedded in a
P-frame is upper bounded by 20, 40, 60 and no constraint (maximal). The
PSNR differences are shown in Figure 6.6(a) for Foreman and Figure 6.6(b)
for Miss America. Their average PSNR differences are also listed in Table
6.3. In all cases, the PSNR degradation of Luminance is within 1dB for both
Foreman and Miss America, which normally cannot be detected by human
visual system for video applications. Additionally, it was shown in [109]
that data embedding at half-pel motion estimation at most degenerates the
video coding performance back to integer-pel motion estimation without
data embedding.

Using this data embedding scheme in conjunction with the bottom-up
approach to member departure discussed earlier, we calculated the amount
of time needed to refresh the entire network of keys for a tree of degree
a = 2, and n = 220 or roughly one million users. We took BKEK = 56
bits, Bs = 56 bits, Bµ = 56 and Bemb = 20 bits as the bit lengths for
the various keys. These values for BKEK , Bs and Bµ were chosen since
they correspond to the key size of the popular block cipher DES. The
resulting times needed to refresh the keys are presented in Figure 6.7.
The curves illustrate the inverse relationship with the amount of bits em-
bedded per frame. Using these curves, one can determine the necessary
embedding rate needed to refresh the keys in time T . For example, if we
have a video service of QCIF images with a frame rate of 20 frames/second,
and desire to refresh the keys during member departure in T = 5 seconds,
then 25 bits must be embedded per frame. In particular, for an embed-
dability rate of 25 bits/frame, we note that average PSNR difference of the
two test sequences is less than 1dB and therefore would introduce no no-
ticeable distortion to the video quality. Further, in video applications that
use higher-resolution video formats, such as CIF and SIF format, less dis-
tortion occurs for the same embeddability rate. Thus, for the same amount
of distortion in video with a larger image size, it becomes possible to rekey
larger group sizes, refresh keys faster, or increase the protection by using
larger key lengths.

TABLE 6.3. Average PSNR difference.

20 bits 40 bits 60 bits Maximal
Foreman 0.2002(dB) 0.3054(dB) 0.4264(dB) 0.4477(dB)

Miss America 0.0720(dB) 0.1098(dB) 0.1434(dB) 0.1602(dB)

6.5 Extensions to Multilayered Services 169

6.5 Extensions to Multilayered Services

In many application environments, the multimedia data is distributed in
a multi-layered form. For example, in an HDTV broadcast, users with a
normal TV receiver can still receive the current format, while other users
with a HDTV receiver can receive both the normal format and the extra
information needed to achieve HDTV resolution. As another example, the
MPEG-4 standard allows for multiple media streams corresponding to dif-
ferent object planes to be composited. In either of these cases, it will be
desirable for service providers to separately control access to the different
layers of media. The key management schemes must therefore be considered
separately, yet incorporate new key management functionalities that are not
present in conventional multicast key management schemes. Specifically, it
is necessary to introduce new rekeying events that allow users to subscribe
or cancel membership to some layers while maintaining their membership
to other layers. Hence multi-layered, or multi-object multimedia services
will require additional functionality added to a multicast key management
scheme.

As an example of the additional functionality needed, we use our tree-
based scheme of Section 6.3.3 and consider the problem of managing keys
for two levels of service corresponding to a low quality and high quality
service. Extensions to more layers or objects is straight forward.

Suppose the multimedia data stream consists of two layers, which are
denoted as Dl and Dh. Dl provides the low resolution service only, while
high-quality service can be obtained by receiving both the base-layer Dl

and the refinement-layer Dh. The GC will have two session keys Kl
s(t)

and Kh
s (t). Kl

s(t) is used to encrypt Dl and Kh
s (t) is used to encrypt Dh.

Similarly, each internal node in the key tree has two internal keys Kl
σ(t)

and Kh
σ (t), where σ is the index of the nodes in the tree. Group members

who want to receive the lower quality service will be assigned the low-layer
session key, as well low-layer keys from the root to the leaf which stands for
this member. Group members who want to receive high quality service will
be assigned both the low-layer and high-layer keys. The rekeying scheme
is similar to the one layer case described earlier, but requires additional
functionalities since users may switch between the different levels of service.

• Refreshing the low-quality session key: The new session key
associated with the low-quality level may be refreshed by encrypting
with the root low-quality KEK Kl

ε(t) and transmitting the message
αl

s(t) = EKl
ε(t)

(
Kl

s(t)
)
.

• Refreshing the high-quality session key: The procedure for re-
freshing of the high-quality session key is identical to the procedure
for refreshing the low-quality session key, but using Kh

s (t) and Kh
ε (t)

instead.

170 6. Key Management and Distribution for Securing Multimedia Multicasts

• New member joins low-quality service: A new member may
desire to join the low level service. In this case, the low-quality session
key and IKs must be renewed, which can be done by applying the
procedure of Section 6.3.3.

• New member joins high-quality service: A new member may
desire to join the high level service. In this case, both the low-quality
and high-quality keys must be renewed. To do this, the procedure of
Section 6.3.3 is applied twice, once for the low-quality keys, and once
for the high-quality keys.

• High-quality user leaves the group: In this case, both session key
Kl

s(t − 1) and Kh
s (t − 1) and corresponding IKs for both Dl and Dh

have to be changed. This can be done using the algorithms in Section
6.3.3 twice.

• Low-quality user leaves the group: In this case, only session key
Kl

s(t−1) and corresponding IKs for base-layer Dl needs to be changed,
which can be done using the algorithms in Section 6.3.3 once on the
appropriate low-layer keys.

• Low-quality user changes to high-quality: In this case, the high-
layer SK Kh

s (t−1) as well as the high-layer IKs must be changed has to
be changed to prevent the user from accessing the past high quality
service. The new SK Kh

s (t) and IKs keys from root to the leaf are
directly given by the GC to this user during registration to the new
level of service.

• High-quality user change to low-quality: The session key Kh
s (t−

1) and corresponding IKs for high-layer have to be changed to prevent
this user from accessing the future high quality information. This can
be done using the algorithms in Section 6.3.3 once on the high-layer
internal keys.

6.6 Chapter Summary

The secure distribution of multimedia multicasts necessitates the distribu-
tion and management of keying material. In this chapter, we have examined
the problem of managing keys needed to secure multimedia multicasts. We
presented a new format for the rekeying messages associated with multi-
cast key management, as well as described two modes of conveyance for
transmitting the rekeying messages.

We began by discussing the fundamental problem of securely distributing
information simultaneously to a group of users. This fundamental problem
is at the heart of multicast key management schemes, where the information

6.6 Chapter Summary 171

to be distributed is a new session key. We examined a simple key manage-
ment scheme to motivate the importance of reducing the communication
overhead associated with identifying which portion of a rekeying message
is associated with each user. The communication overhead is reduced by
using a homogenized message format from which every user can perform a
suitable operation to extract the new keying information. We presented a
homogenized message format, built using one-way functions and large in-
teger arithmetic, that allows for each user to perform a modular operation
to extract the new key information. We then examined the security of the
residue-based rekeying message from an information theoretic perspective,
and also showed that the residue-based rekeying message format is resistant
to attacks by members of the service attempting to acquire private keying
information of other members.

Typically, the information associated with rekeying is distributed via a
media-independent channel. However, multimedia data allows for a media-
dependent channel, such as is provided by data embedding techniques. By
embedding the keying information in the multimedia content, the key up-
dating messages associated with secure multicast key management schemes
may be hidden in the data and used in conjunction with encryption to pro-
tect the data from unauthorized access. The primary advantage of using
data embedding to convey rekeying messages compared to the traditional
use of a media-independent channel is that data embedding hides the pres-
ence of rekeying messages from potential adversaries, thereby making it
more difficult for eavesdroppers to measure information regarding member-
ship dynamics. Further, the use of data embedding allows the application
to maintain the data rate of the media without performing computationally
expensive transcoding operations.

We used our proposed message form in conjunction with a data embed-
ding technique for block-based motion compensated video compression to
illustrate that the amount of time needed to update the entire network of
keys is related to the amount of users in the service, key lengths used, and
the embeddable channel rate. For a video service providing QCIF images
with a frame rate of 20 frames/second, we observed that it was possible to
refresh the keys for a group size of roughly one million users in 5 seconds
when we used an embeddability rate of 25 bits/frame. The distortion in-
troduced to the video sequence was less than 0.8dB of PSNR and was not
perceptible. Finally, by adding extra functionality to multiple key trees,
multicast key distribution schemes can be extended to protect multiple
layers of multimedia content in an efficient manner. The additional opera-
tions needed to manage the keys for multilayered services is more complex
than traditional multicast services since users may switch between different
levels of service. We presented an example of a key management scheme
for two levels of service, and described the necessary operations needed to
allow users to drop from a high-quality service to a low-quality service, and
also upgrade their service from a low-quality to a high-quality service.

172 6. Key Management and Distribution for Securing Multimedia Multicasts

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

frame number

Lu
m

 P
S

N
R

(d
B

)
di

ffe
re

nc
e

 c
om

pa
re

d
w

ith
 n

o
em

be
dd

in
g

20 bits
40 bits
60 bits
Maximal

(a)

0 5 10 15 20 25 30 35 40 45 50
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

frame number

Lu
m

 P
S

N
R

(d
B

)
di

ffe
re

nc
e

 c
om

pa
re

d
w

ith
 n

o
em

be
dd

in
g

20 bits
40 bits
60 bits
Maximal

(b)

FIGURE 6.6. The peak signal-to-noise ratio (PSNR) difference of the luminance
components between no embedding and the embedding scheme of Song et al. with
variable embedding rate. (a) Foreman, (b) Miss America.

6.6 Chapter Summary 173

10 15 20 25 30 35 40 45 50 55 60
0

5

10

15

20

25

30

Amount of bits embedded per frame

T
im

e
to

 r
ef

re
sh

 a
ll

ke
ys

 (
se

co
nd

s)

Time to update keys during member departure

F=10 fr/s
F=20 fr/s
F=30 fr/s

FIGURE 6.7. The time needed to refresh the entire set of keys during a member
departure using the bottom-up approach with different frame rates F , and differ-
ent amounts of bits embedded per frame. The group size is n = 220, or roughly
one-million users.

sK Ks,
L H

K K,
L H

εε

0 1

0 1 0

0 1 0 1 0 1 0 1

K
0

K
1

K
00 K K

11

K
000

K
001

K
010

K
100

K
101

K
110

K
111

K
011

K
0

K

K
1, ,

, , ,00
K K

11K
10 , K1001 01

L H L H

H L H L HL HL

FIGURE 6.8. Key distribution for multi-layer multimedia multicast.

7
Hierarchical Access Control
for Multi-Group Scenarios

Many group applications contain multiple related data streams and group
members have different access privileges. These applications are prevalent
in various scenarios.

• Multimedia applications distributing data in a multi-layer coding for-
mat [114]. For example, in video broadcast, users with a normal TV
receiver can receive the normal format, while others with HDTV
receivers can receive the normal format and the extra information
needed to achieve HDTV resolution.

• Multicast programs containing several related services, such as
weather, news, traffic and stock quote.

• Communications in hierarchically managed organizations where par-
ticipants have various access authorization.

In these scenarios, group members subscribe to different data steams, or
possibly multiple of them. In other words, the access control mechanism
needs to supports multi-level access privilege. This is referred to as the
hierarchical group access control [115,116].

Traditional key management schemes are not designed to handle key
management issues associated with multiple services occurring concurrently
that have correlated memberships. Although access control for individual
data stream can be managed separately using existing key management
schemes, this leads to inefficient use of keys and does not scale well when
the number of data streams increases.

176 7. Hierarchical Access Control for Multi-Group Scenarios

In this chapter, we formulate the hierarchical group access control prob-
lem and presents the solutions [115, 116] in both centralized and contribu-
tory environments.

7.1 Hierarchical Access Control: Problem
Formulation

As the first step towards a generic solution, the hierarchical group access
control problem is formulated in this section.

7.1.1 System description

Let R = {r1, r2, · · ·} denote the set of resources in the system. In the context
of group communication, one resource is one multicast data stream.

From the resource points of view, a Data Group (DG) is defined as all
users who have access to a particular resource. It is clear that the DGs
may have overlapped membership because users may subscribe to multiple
resources.

From access control points of view, a Service Groups (SG) is defined as
a set of users who can access the exactly same set of resources. SGs do
not have overlapped membership. In this chapter, the DGs are denoted by
{D1,D2, · · · ,DM}, where M is the total number resources, and the SGs are
denoted by {S1, S2, · · · , SI}, where I is the total number SGs. It is easy to
prove that I ≤ 2M − 1.

The access relationship between the resources and the SGs can be de-
scribed by a capability list . Here are two examples illustrating typical access
relationship in group communication.
Example 1. Multimedia applications that distribute data in a multi-layered
format [114].

• Resources: {base layer (r1), enhancement layer 1 (r2), enhancement
layer 2 (r3)}.

• Service Groups: {users subscribing basic quality (S1), users subscrib-
ing moderate quality (S2), users subscribing high quality (S3)}.

• Capability lists:S1 access {r1}; S2 access {r1, r2}; S3 access {r1, r2, r3}.
Example 2. Multicast programs containing several related services.

• Resources: {news (r1), stock quote (r2), traffic/weather (r3)}.

• Service Groups: users can subscribe to any combination of the re-
sources. Thus, there are total 7 SGs, denoted by S1, S2, · · · , S7.

• Capability lists: S1 access {r1}; S2 access {r2}; S3 access {r3}; S4 access
{r1, r2}; S5 access {r1, r3}; S6 access {r2, r3}; S7 access {r1, r2, r3}.

7.1 Hierarchical Access Control: Problem Formulation 177

Besides the capability list, access matrix is also used to describe access
relationship. In particular, the element on the ith row and mth column of
the access matrix, denoted by ai,m, is

ai,m =
{

1, if SG Si can access resource rm

0, otherwise ,

where i = 1, · · · , I and m = 1, · · · ,M .
Based on those definitions, the group size of SGs and DGs must satisfy:

n(Dm) =
I∑

i=1

ai,m · n(Si), (7.1)

where n(Si) is the number of users in SG Si and n(Dm) is the number of
users in DG Dm.

7.1.2 Security requirements

In the applications containing multiple multicast sessions, users not only
join or leave service, as addressed in the single multicast session scenario,
but also may switch between the SGs by subscribing or dropping data
streams. Thus, the security requirements are more complicated than these
for a single multicast session.

Let the notation Si → Sj represent a user switching from SG Si to
SG Sj . To simplify future notations, S0 is defined as a virtual service group
containing users who cannot access any resources. Thus, S0 → Si represents
a user joining SG Si, and Si → S0 represents a user leaving the group
communication from SG Si.

Similar to the single session access control problem addressed by the tra-
ditional key management schemes [78], the hierarchical group access control
should guarantee the following security requirements.

• The users in the SG Si have and only have access to resources {rm,
∀ m : ai,m = 1}.

• When a user Si → Sj ,

– This user cannot access the future content of the resources {rm,
∀ m : ai,m = 1 and aj,m = 0}. This property is referred to as the
forward secrecy [66].

– This user cannot access the previous content of the resources
{rm,∀ m : ai,m = 0 and aj,m = 1}. This property is referred to
as the backward secrecy [66].

178 7. Hierarchical Access Control for Multi-Group Scenarios

7.1.3 Data encryption and hierarchical key management

To formulate the hierarchical access problem, the ways of encrypting multi-
ple data streams need to be clarified first. In the hierarchical access control
scenario, there are two ways to encrypt and distribute multicast data. In the
first method, resources are encrypted using separate keys, which are called
Data Group Keys. The data group key used to encrypt resource rm, denoted
by KD

m , is shared among the users in DG Dm. In this case, each resource is
distributed in a single multicast session, and the users may subscribe to one
or several multicast sessions according to their access privilege. The task of
key management is to securely update and distribute {KD

m , ∀m : ai,m = 1}
to the users in Si, where i = 1, 2, · · · , I.

In the second method, the users in each SG share a secrete key called the
Service Group Key and the multicast sessions are formed based on SGs. In
particular, the users in Si share the service group key KS

i and form one
multicast session. In this multicast session, the resources {rm,∀m : ai,m =1}
are encrypted by KS

i and transmitted to the users in Si. In this case,
one resource may be distributed in several multicast sessions while being
encrypted by different service group keys. The task of key management is
to securely distribute and update KS

i for the users in SG Si.
To illustrate these two methods, let’s re-visit Example 1 described in

section 7.1.1.
In the first method, data are transmitted in three multicast sessions.

The first session contains all users, and distributes resource r1 encrypted
by KD

1 . The second session contains users in S2 and S3, and distributes
resource r2 encrypted by KD

2 . The third session contains users in S3, and
distribute resource r3 encrypted by KD

3 . The communication overhead of a
multicast session can be described as DR(ri)G(x), where DR(ri) denotes
the data rate of resource ri, and G(x) is the cost of sending unit data to x
users through multicast. The first method has communication overhead as
CommCostmethod1 = DR(r1)G(n(S1)+n(S2)+n(S3))+DR(r2)G(n(S2)+
n(S3)) + DR(r3)G(n(S3)).

When using the second method, there are three multicast sessions also.
The first session contains users in S1, and distributes resource r1 encrypted
by KS

1 . The second session contains users in S2, and distributes resource r1

and r2 encrypted by KS
2 . The third session contains users in S3, and dis-

tribute all three resources encrypted by KS
3 . The communication overhead

is CommCostmethod2 = DR(r1)G(n(S1))+(DR(r1)+DR(r2))G(n(S2))+
(DR(r1)+DR(r2)+DR(r3))G(n(S3)). Using the fact the G(x+y) < G(x)+
G(y) in multicast communications, it can be seen that CommCostmethod2 >
CommCostmethod1 .

On the other hand, users in the second method only subscribe to one mul-
ticast session. Thus, the task of key management for the second method can
be solved by applying traditional key management for each SG separately.

7.2 Centralized Multi-group Key Management Scheme 179

We suggest to adopt the first encryption method because of its low data
communication overhead. When the first encryption method is used, in
order to guarantee forward and backward secrecy, when a user switches
from SG Si to Sj , the proposed key management scheme should

• update {KD
m ,∀ m : ai,m = 0 and aj,m = 1}, such that this user cannot

access the previous communication in corresponding DGs;

• and update {KD
m ,∀ m : ai,m = 1 and aj,m = 0}, such that this user

cannot access the future communication in corresponding DGs.

7.2 Centralized Multi-group Key Management
Scheme

Hierarchical group access control can be achieved in either centralized or
contributory manner. While the contributory solution will be discussed in
Section 7.5, this section and the following two sections will be dedicated to
the centralized schemes.

7.2.1 Independent key trees for hierarchical access control

To reduce the communication, computation and storage overhead, tree
structure is widely used in centralized key management schemes to main-
tain the keying material and coordinate the key generation [7, 8, 10, 79, 80,
117,118] (see Section 5.1).

When using tree-based schemes to achieve hierarchical group access con-
trol, a separate key tree must be constructed for each DG, with the root
being the data group key and the leaves being the users in this DG. This
approach is referred to as the Independent-tree key management scheme,
and is illustrated in Figure 7.1. This scheme does not exploit the relation-
ship among the subscribers and makes inefficient use of keys because of the
overlapped DG membership. As an extreme example, if a user who sub-
scribes all data streams leaves the service, key updating has to take place
on all key trees.

7.2.2 Multi-group key management scheme

We develop a multi-group key management scheme that employs one inte-
grated key graph accommodating key materials of all users. This key graph
consists of several subtrees, and is constructed in three steps.

Step1: For each SG Si, construct a subtree having the leaf nodes as the
private keys of users in Si and the root node as the service group key
KS

i . These subtrees are referred to as the SG-subtrees.

180 7. Hierarchical Access Control for Multi-Group Scenarios

BL
sK

BLK

EL2

EL2
EL1

EH1
sK
K

key tree for
DG EL2 DG EL1

key tree for

key tree for DG B L

sK
K

FIGURE 7.1. Independent-tree key management scheme for layered coded mul-
timedia service

7.2 Centralized Multi-group Key Management Scheme 181

DK1

Step 1:

Step 2:

SK1
SK2

SK3

}001{: 11 =VS }011{: 22 =VS }111{: 33 =VS

SK3
SK2

SK3

SK2
SK3

SK1

DK2
DK3

1SK 2SK 3SK

Step 3:

SK1
SK2

SK3

}001{: 11 =VS }011{: 22 =VS }111{: 33 =VS

DK1

DK2

)(3
DK

1SK 2SK 3SK

1211−K

1 2 3 4 5 6 7 8 9 10 11 12

21−K 43−K 65−K 87−K 109−K

FIGURE 7.2. Multi-group key management graph construction

182 7. Hierarchical Access Control for Multi-Group Scenarios

Step2: For each DG Dm, construct a subtree whose root is the DG key
KD

m and whose leaves are {KS
i ,∀i : ai,m = 1}. These subtrees are

referred to as the DG-subtrees.

Step3: Generate the key graph by connecting the leaves of the DG-subtrees
and roots of SG-subtrees.

for i = 1 : I do
Construct a tree, called SG-subtree of Si, with n(Si) leaf nodes.;
Assign users in Si to leaf nodes.;

end
for m = 1 : M do

Construct a tree, called DG-subtree of Dm, with
∑

i ai,m leaf
nodes.;
Assign key {KS

i ,∀i : ai,m = 1} to leaf nodes, and KD
m to the root

node.;
end
for i = 1 : I do

Search all leaf nodes of DG subtrees and find these are associated
with KS

i ;
Merge these nodes and the root of the SG-subtree of Si into one
node.;

end
Algorithm 13: Integrated Key Graph Generation

This 3-step procedure is formally described in Procedure 13 and illus-
trated in Figure 7.2 for the service containing 3 layers and 4 users in each
SG. In the first and the second step, there is no constraint on the tree struc-
tures that can be used for the SG- and DG-subtrees. Binary subtrees are
used to demonstrate the performance of the multi-group key management.
There is a lot of flexibility in subtree design. For example, when considering
the heterogeneity among SGs, the DG-subtrees can be designed as unbal-
anced trees. In the third step, some duplicated structures may appear on
DG-subtrees. In Figure 7.2, the DG-subtrees of D2 and D1 have the same
structures that connect KS

2 and KS
3 . Duplicated structures can be merged.

In this example, the parent node of KS
2 and KS

3 on DG-subtree of D2 are
merged with KD

2 . This merging operation can further reduce the number
of keys on the key graph, but the effect of merging is very small especially
when the group size is large. Therefore, the performance analysis in Section
7.3 does not consider the positive effect of merging, and thus provides the
performance upper bound.

This multi-group key graph can also be interpreted as M overlapped key
trees, each of which has KD

m as the root and the users in DG Dm as the
leaves. Obviously, these M key trees can be used in the independent-tree

7.2 Centralized Multi-group Key Management Scheme 183

1S 5S 4S 7S 2S 6S 3S

DK1

1SK 2SK 3SK
DK3

DK2

SK1
SK5

SK4
SK2

SK6
SK3

SK7

FIGURE 7.3. An integrated key graph for multiple service scenario (Example 2,
Section II-A)

scheme. This reveals the fact that the multi-group key graph removes the
“redundancy” presented in the independent-tree scheme. Therefore, it can
reduce overhead.

As another example, Figure 7.3 shows a multi-group key graph for the
multiple service scenario described in Example 2 in Section 7.1. It is noted
that neither the design of the DG-subtrees nor the merging operation is
unique. Although the graph between the DG keys and the SG keys can be
optimized to minimize the number of keys on the graph, this optimization
introduces little gain but high computational complexity. Therefore, the
proposed scheme does not specify how to merge the DG-subtrees. In most
cases, it is not necessary to merge the DG-subtrees.

As defined in [8], keyset refers to the set of keys associated with an edge
node on the key graph and possessed by the user located at this edge node.
In our key graph, the keyset of a user in SG Si is the keys on the pathes
from itself to the roots of the DG-subtrees of Dm for {m : ai,m = 1}. It is
noted that the keyset of users in S0 is an empty set.

Besides user join and departure, the rekey algorithm in the multi-group
key management scheme must address users’ relocation on the key graph.
The rekey algorithm for Si → Sj , which includes the cases for user join,
departure, and switching, is described as follows.

When a user switches from Si to Sj , the switching user is moved from the
SG-subtree of Si to a new location on the SG-subtree of Sj . Let φi denote
the keyset associated with the user’s previous position, and φj denote the
keyset associated with the user’s new position. Then,

• the KDC updates the keys in φi ∩φj using one-way functions, similar
to the procedure for user join described in Section 7.2.1,

• and, the KDC generates new versions of the keys in φi ∩ φj and
distributes these new keys encrypted by their children node keys from

184 7. Hierarchical Access Control for Multi-Group Scenarios

bottom to up, similar to the procedure for user departure described
in Section 7.2.1.

This rekey algorithm is illustrated based on the sample key tree shown
in Figure 4. Let user 8 switches from SG S2 to S1. The key tree is up-
dated as shown in Figure 7.4. On the SG-subtree of S1, the leaf node as-
sociated with user 4 is split in order to accommodate user 8. Then, user
4 and 8 share a new KEK, denoted by K4−8. On the SG-subtree of S2,
user 7 is moved up and occupy the node that is previously associated
with K7−8. In this case, φ2 is {K7−8,K

S
2 ,KD

2 , SK2,K
D
1 , SK1} and φ1 is

{K4−8,K3−4,K
S
1 ,KD

1 , SK1}.
The KDC generates the new keys, Knew

3−4 and KS,new
1 , from the old keys

using a one-way function, and increases the revision numbers of those new
keys. Thus, the user 1,2,3,4 will know about the key change when the data
packet indicating the increase of the revision numbers first arrives, and com-
pute the new keys using the same one-way function. No rekeying messages
are necessary for Knew

3−4 and KS,new
1 .

Then, the KDC generates new keys, Knew
4−8 , KS,new

2 , KD,new
2 , and SKnew

2 ,
and distributes them through a set of rekeying messages as:

{Knew
4−8 }u8 , {Knew

4−8 }u4 , {K
S,new
2 }K5−6 , {K

S,new
2 }u7

{KD,new
2 }KS,new

2
, {KD,new

2 }KS
3
, {SKnew

2 }KD,new
2

.

In this case, the rekeying message size is 7.
It is noted that φi ∩ φj may contain the new KEKs that are created

for accommodating the switching user. These new KEKs are encrypted by
users’ private keys and distributed through rekeying messages. In addition,
φi ∩ φj may contain KEKs that do not exist any more after the relocation
of the switching user. Obviously, these keys are discarded.

7.3 Performance Measures and Analysis

Communication, computation and storage overhead associated with key
updating are major performance criteria for key management schemes [7,
8, 78]. To measure the performance of hierarchical access control schemes,
the performance metrics are defined as follows.

• Storage overhead at the KDC : denoted by RKDC and defined as the
expected number of keys stored at the KDC.

• Rekey overhead at the KDC : denoted by MKDC and defined as the
expected amount of rekeying messages transmitted by the KDC.

• Storage overhead of users: denoted by Ru∈Si
and defined as the ex-

pected number of keys stored by the users in SG Si.

7.3 Performance Measures and Analysis 185

SK1
SK2

SK3

DK1

DK2

)(3
DK

1SK 2SK 3SK

1211−K

1 2 3 5 6

7

9 10 11 12

21−K 43−K 65−K 109−K

4 8

positionnewtheofkeyset:

positionprevioustheofkeyset:

2

1

φ
φ

84−K

FIGURE 7.4. User relocation on the key graph

• Rekey overhead of users: denoted by Mu∈Si
and defined as the ex-

pected amount of rekeying messages received by the users in SG Si.

Here, RKDC and Ru∈Si
describe the storage overhead, whereas MKDC and

Mu∈Si
reflect the usage of communication and computation resources. For

example, given the group size and network topology, MKDC is proportional
to the total amount of key management data forwarded on the network.

For the interested readers, many intermediate results and derivations in
section 7.3.1 and section 7.3.2 can be applied to analyzing other types of
tree-based key management schemes. Readers can also jump to (7.11) and
(7.14) for asymptotic storage overhead results, and (7.19) for asymptotic
communication and computation overhead results.

7.3.1 Storage overhead

The storage overhead of a single key tree is considered first. Similar to most
key management schemes [7, 8, 10, 78, 80], the key tree investigated here is
fully loaded and maintained as balanced as possible by putting the joining
users on the shortest branches.

Let fd(n) denote the length of the branches and rd(n) denote the total
number of keys on the key tree when the key tree has degree d and accom-
modates n users. Since the key tree is balanced, the length of the branches

186 7. Hierarchical Access Control for Multi-Group Scenarios

can be either �logd n� or �logd n�+1. In this chapter, we use L0 to represent
the length of the shortest branch, i.e. L0 = �logd n�, and fd(n) is either L0

or L0 + 1. Additionally,

• the number of users who are on the branches with length L0 is dL0 −
�n−dL0

d−1 �,

• and, the number of users who are on the branches with length L0 + 1
is n − dL0 + �n−dL0

d−1 �.

On the key tree, there are 1 session key, n users’ private keys, (1+ d+ d2 +
· · · + dL0−1) key encrypted keys in the upper L0 − 1 levels, and �n−dL0

d−1 �
key encrypted keys at the L0 level. Therefore, the total number of keys on
this key tree is calculated as

rd(n) = n + 1 +
dL0 − 1
d − 1

+ �n − dL0

d − 1
�. (7.2)

Using the fact that n−dL0

d−1 ≤ �n−dL0

d−1 � < n−dL0

d−1 + 1, from (7.2), one can
derive

dE[n] − 1
d − 1

+ 1 ≤ E[rd(n)] <
dE[n] − 1

d − 1
+ 2, (7.3)

where the expectation, E[.], is taken over the distribution of n(Dm) and
the length of the branches on the key trees. The left-hand-side equality is
achieved when logd(n) is an integer.

Next, we calculate E[fd(n)]. Since �logd n� ≤ logd n and fd(n) < L0 + 1,
we have E[fd(n)] < E[�logd n� + 1] ≤ E[logd n] + 1. Since logd(n) is a
concave function, E[logd n] < log E[n]. We can see that

E[fd(n)] ≤ logd E[n] + 1. (7.4)

With (7.3) representing the total number of keys and (7.4) representing
the number of keys on a branch, the storage overhead can be analyzed.
When using the separate key trees, the KDC stores all keys on total M
key trees, and users in Si store subsets of keys on the key trees that are
associated with Dm, for {m : ai,m = 1}. Thus,

Rind
KDC =

M∑

m=1

E [rd(n(Dm))] , (7.5)

Rind
u∈Si

=
M∑

m=1

ai,m (E[fd(n(Dm))] + 1) . (7.6)

In the multi-group key management scheme, the DG-subtree of Dm has
cm =

∑
i ai,m leaf nodes. Before removing the redundancy on DG-subtrees,

7.3 Performance Measures and Analysis 187

there are in total
∑M

m=1 rd(cm) keys on DG-subtrees. Also, the total num-
ber of keys on the SG-subtrees is

∑I
i=1 rd(n(Si)). Merging duplicated struc-

tures on DG-subtrees only reduces the number of keys on the key graph.
Therefore, the storage overhead at the KDC is

Rmg
KDC ≤

I∑

i=1

E[rd(n(Si))] +
M∑

m=1

E [rd(cm)] . (7.7)

A user in the SG Si stores fd(n(Si)) keys on the SG-subtree and up to∑M
m=1 ai,m(fd(cm)+1) keys on the DG-subtrees. Therefore, the users’ stor-

age overhead of the multi-group scheme is:

Rmg
u∈Si

≤ E[fd(n(Si))] +
M∑

m=1

ai,m(E[fd(cm)] + 1). (7.8)

Next, the storage overhead is analyzed in the applications containing
multiple layers, as described in Example 1 in Section 7.1.1. This is a special
application scenario for the multi-group key management schemes. In this
scenario, ai,m = 1 for m ≤ i and ai,m = 0 for m > i. It is assumed that
each layer contains the same amount of users, denoted by n(Si) = n0. Thus,
n(Dm) = (M −m+1)n0. Using (7.6) and (7.8), the users’ storage overhead
is calculated as:

Rind
u∈Si

=
i∑

m=1

(E[fd((M − m + 1) · n0)] + 1) , (7.9)

Rmg
u∈Si

≤ E[fd(n0)] +
i∑

m=1

(E[fd(M − m + 1)] + 1) . (7.10)

When the group size is large, i.e. n0 → ∞, (7.4)(7.9) and (7.10) lead to

Rind
u∈Si

∼ O(i · log(n0)), Rmg
u∈Si

∼ O(log(n0)). (7.11)

Based on (7.5) and (7.7), the storage overhead at the KDC is calculated as:

Rind
KDC =

M∑

m=1

E[rd(m · n0)], (7.12)

Rmg
KDC ≤ M · E[rd(n0)] +

M∑

m=1

E[rd(m)]. (7.13)

From (7.3), it is seen that limn→∞ rd(n) = d
d−1n. Then, from (7.12) and

(7.13), one can derive

Rind
KDC ∼ O(

d

d − 1
M(M + 1)

2
n0);

Rmg
KDC ∼ O(

d

d − 1
M · n0). (7.14)

188 7. Hierarchical Access Control for Multi-Group Scenarios

From above results, two observations are made. First, by using the in-
tegrated key graph instead of the separate key trees, the multi-group key
management scheme reduces the storage overhead of both the KDC and
the users. Second, as indicated in (7.14), the storage advantage of the
multi-group scheme becomes larger when the system contains more SGs,
i.e. requiring more levels of access control. When the number of layers (M)
increases, the multi-group scheme scales better than the independent-tree
scheme.

7.3.2 Rekey overhead

Let Ci,j denote the amount of rekeying messages transmitted by the KDC
when one user switches from Si to Sj . It is noted that the rekey over-
head, MKDC and Mu∈Si

, can be calculated from Ci,j , as long as the users’
statistical joining/leaving/switching model is given.

Switching from Si to Sj is equivalent to adding the subscription to
{Dm,∀m : ai,m = 0 and aj,m = 1} and dropping the subscription to
{Dm,∀m : ai,m = 1 and aj,m = 0}. When using the tree-based key man-
agement schemes, the rekeying message size is:

Cind
ij =

M∑

m=1

max(ai,m − aj,m, 0) · (d · fd(n(Dm))) . (7.15)

A brief explanation of (7.15) is as follows. The term (max(ai,m − aj,m, 0))
equals to 1 only when ai,m = 1 and aj,m = 0. When this term equals to 1,
keys need to be updated on the key tree of DG Dm. Recall that d messages
are needed to update one KEK and the length of the branch is fd(n(Dm)).
Therefore, d · fd(n(Dm)) rekeying messages are necessary.

In the multi-group key management scheme, when a user switches from
Si to Sj and i 	= j, the amount of messages needed to update keys on the
SG-subtree of Si is up to (d ·fd(n(Si))−1). The amount of messages needed
to convey the KEK created for accommodating the switching/join user on
the SG-subtree of Sj is no more than 2. If this user drops the subscription of
the DG Dm, i.e. (max(ai,m−aj,m, 0)) = 1, the amount of rekeying messages
that update keys on the DG-subtree of Dm is up to (d · fd(cm) + 1). If this
user remains the subscription of the DG Dm, i.e. ai,m = aj,m = 1, up to
(d ·fd(cm)) rekeying messages are needed to update keys on the DG-subtree
of Dm. Therefore, when using the multi-group scheme and i 	= j, the Cij

value is

Cmg
ij ≤

M∑

m=1

(max(ai,m − aj,m, 0) · (d · fd(cm) + 1)

+ ai,maj,md · fd(cm)) + d · fd(n(Si)) + 1. (7.16)

Similar to that in Section 7.3.1, the rekey overhead in a multi-layer sce-
nario with n(Si) = n0 is analyzed. In this application scenario, the rekeying

7.4 Simulations and Performance Comparison 189

message size for one user departure, i.e. Sj → S0, is computed from (7.15)
and (7.16) as:

Cind
0j =

j∑

m=1

d · E[fd((M − m + 1)n0)], (7.17)

Cmg
0j ≤ d · E[fd(n0)] + 1

+
j∑

m=1

(d · E[fd(M − m + 1)] + 1) . (7.18)

When n0 → ∞, it is straightforward to derive

Cind
0j ∼ O(j · d · log(n0)), Cmg

0j ∼ O(d · log(n0)). (7.19)

The comprehensive comparison between the multi-group scheme and the
independent-tree scheme will be presented later in Section 7.4.

7.4 Simulations and Performance Comparison

In this section, the multi-group key management scheme and independent-
tree scheme are compared in various application scenarios.

7.4.1 Statistical dynamic membership model

In [90] [72], it has been shown that the users’ arrival process and mem-
bership duration of MBone multicast sessions can be modelled by Poisson
and exponential distribution respectively, in a short period of time. In this
chapter, we use this Poisson arrival and exponential distribution duration
model. In addition, it is assumed that when a user switches between SGs,
the SG that he switches to depends only on his current SG.

As a result of these assumptions, the users’ statistical behavior can be
described by an embedded Markov chain [92]. Particularly, there are a total
of I + 1 states, denoted by S̃i, i = 0, · · · , I. When a user is in the SG Si,
he is in the state S̃i. After a user enters state S̃i, i.e. subscribes or switches
to SG Si, this user stays at state S̃i for time Ti, which is governed by an
exponential random variable. When time is up, the user moves to state S̃j .
The selection of S̃j only depends on the current state S̃i and is not related
to previous states.

In practice, it is usually not necessary to update keys immediately after
membership changes. Many applications allow the join/departure users re-
ceive limited previous/future communications [119]. For example, in video
streaming applications, a joining user may receive a complete group-of-
picture (GOP) [114] although partial of this GOP already been transmit-
ted before his subscription. Those situations prefer batch rekeying [119]

190 7. Hierarchical Access Control for Multi-Group Scenarios

S0
not in service
V0={0,0,0}

S1
low quality
V1={1,0,0}

S2
moderate quality

V2={1,1,0}

S3
high quality
V3={1,1,0}

Join

Departure
Switching

FIGURE 7.5. Discrete Markov chain model for multi-layer applications.

that postpones key updating such that the rekeying overhead is reduced by
adding or removing several users altogether.

Usually, batch rekeying is implemented as updating keys periodically.
The time between key updates is fixed and denoted by Bt. For the users
who join/leave/switch SGs in the time interval ((k − 1)Bt, kBt], the key
updating will take place at time kBt, where k is a positive integer. From
the key updating points of view, with batch rekeying, one can prove that the
previous continuous Markov model can be simplified as a discrete Markov
chain model [92], as illustrated in Figure 7.5. In this model,

• The transition matrix is denoted by P = [pij](I+1)×(I+1), where pij

is the probability that one user moves from SG Si to Sj in the time
interval (kBt, (k + 1)Bt] given that this user is in Si at time kBt.

• The n-step transition probability matrix is denoted by P (n), and
obviously, P (n) = PN . The element at the ith row and jth column of
P (n) is denoted by pij(n).

• The stationary state probability is a 1-by-(I + 1) vector, denoted by
π = [π0, π1, · · · , πI].

In practice, most group applications have the following properties.

• p(n)0j 	= 0 for some positive finite n and for any j because users
should be able to subscribe to any SGs.

• p(n)i0 	= 0 for some positive finite n and for any i because users should
be able to leave from any SGs.

7.4 Simulations and Performance Comparison 191

• pii > 0 because users can always stay in his current SG.

• The mean recurrence time [92] of the state S̃0 is finite because the
expected time that a user stays in the group communication is finite.

Because of these properties, this Markov chain is irreducible, aperiodic and
positive recurrent. As a result, the stationary state probability mass func-
tion (pmf) exists [92] and is the unique solution of

πP = π, and
∑

i

πi = 1 . (7.20)

7.4.2 Performance with different group size

We first study the applications containing multiple layers (see Example 1
in Section7.1.1) where users in SG Si can access DG D1,D2, · · · ,Di. In the
simulation, the transition matrix is chosen as follows.

• Users join different SGs with the same probability, i.e. P0j = α,∀j >
0.

• Users leave different SGs with the same probability, i.e. Pi0 = β,∀i >
0.

• While a user is in the service, he adds/drops only one DG at a time,
i.e. Pi,j = 0,∀i, j > 0 and |i− j| > 1. Also, users switch between SGs
with the same probability, i.e. Pi,j = γ,∀i, j > 0 and |i − j| = 1.

Thus, the transition matrix is described by only three variables. For ex-
ample, the multi-layer service with M = 3 has the transition matrix as:

P =

⎡

⎢⎢⎣

1 − 3α α α α
β 1 − β − γ γ 0
β γ 1 − β − 2γ γ
β 0 γ 1 − β − γ

⎤

⎥⎥⎦

In all simulations, batch rekeying is applied and the key trees are binary.
The initial state is chosen as the stationary state, i.e. Si contains N0πi users
at the beginning of the service.

In Figure 7.6, 7.7, 7.8 and 7.9, the multi-group scheme and the
independent-tree scheme are compared for varying group size, N0. The
results are averaged over 300 realizations, and the number of layers is 4. In
those simulations, α = 0.005, β = 0.01, and γ = 0.001.

Figure 7.6 shows that the storage overhead at the KDC, RKDC , increases
linearly with the group size. This result can be verified by (7.3)(7.5) and
(7.7). In the case when M = 4, the multi-group scheme reduces RKDC by
more than 50%.

Figure 7.7 shows that the users’ storage overhead, Ru∈Si
, increases lin-

early with the logarithm of the group size. This can be verified by (7.9)

192 7. Hierarchical Access Control for Multi-Group Scenarios

0 500 1000 1500 2000 2500 3000
0

2000

4000

6000

8000

10000
 Centralized −− Storage overhead at the KDC (4−layer)

S
to

ra
ge

 o
ve

rh
ea

d
at

 th
e

K
D

C

N0 −− total number of potential users

Multi−group KM
Independent−tree KM

FIGURE 7.6. Storage overhead at the KDC

and (7.10). The users who subscribe only one layer have the similar storage
overhead in both schemes. For the uses who subscribe multiple layers, the
multi-group scheme results in less storage overhead than the independent-
tree scheme.

The KDC’s rekeying overhead, RKDC and the users’ rekey overhead,
Ru∈Si

are shown in Figure 7.8 and 7.9, respectively. In both cases, the
multi-group scheme reduces the rekey overhead by more than 50%.

7.4.3 Scalability

Next, we change the number of layers (M) while maintaining roughly the
same number of users in the service by choosing the join probability α as
0.02/M . The values of β and γ are the same as those in Section 7.4.2.

Figure 7.10(a) and Figure 7.11(a) show the storage and rekey overhead
at the KDC, respectively. When M increases, the storage and rekey over-
head of the multi-group scheme do not change much, while the overhead
of the independent-tree scheme increases linearly with M . It is clear that
the multi-group scheme scales better when M increase. By removing the
redundancy in DG membership, the scale of the key graph mainly depends
on the group size, not the number of layers or services. On the other hand,
by constructing M separate key trees, the independent-tree scheme requires
larger storage and rekey overhead when M increases even when N0 is fixed.

Figure 7.10(b) shows that the ratio between Rind
KDC and Rmg

KDC increases
linearly with M , which agrees with (7.14). Similarly, the ratio between
M ind

KDC and Mmg
KDC increases linearly with M , as shown in Figure 7.11(b).

7.4.4 Performance with different transition probability

In the previous experiments, γ is set to be 0.1β. This means that the users
are more likely to leave the service than to switch SGs. Figure 7.12 shows
the rekey overhead with different values of γ. Remember that γ describes
the probability of user switching between SGs. In this simulation, M = 4,

7.4 Simulations and Performance Comparison 193

0 1000 2000 3000
0

5

10

15

20

25

30

35

40

Centralized −− Multi−group KM

N
0

S
to

ra
ge

 o
ve

rh
ea

d

users in S
1

users in S
2

users in S
3

users in S
4

0 1000 2000 3000
0

5

10

15

20

25

30

35

40

Centralized −− Independent−tree KM

N
0

R
ek

ey
 o

ve
rh

ea
d

FIGURE 7.7. Storage overhead at the users in each SG

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

500

600
 Centralized −− Rekey overhead at the KDC (4−layer)

N0 −− total number of potential users

R
ek

ey
 o

ve
rh

ea
d

at
 th

e
K

D
C Multi−group KM

Independent−tree KM

FIGURE 7.8. Rekey overhead at the KDC

194 7. Hierarchical Access Control for Multi-Group Scenarios

0 1000 2000 3000
0

100

200

300

400

500

600
Centralized −− Multi−group KM

N
0

R
ek

ey
 o

ve
rh

ea
d

users in S
1

users in S
2

users in S
3

users in S
4

0 1000 2000 3000
0

100

200

300

400

500

600
Centralized −− Independent−tree KM

N
0

R
ek

ey
 o

ve
rh

ea
d

FIGURE 7.9. Rekey overhead at the users in each SG

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

2

4

6

8

10
x 10

4 Storage overhead at KDC with different number of SGs(N0=15000)

 The number of layers (I)

 S
to

ra
ge

 o
ve

rh
ea

d
at

 K
D

C

Multi−group KM: Rmg
KDC

Independent−tree KM: Rind
KDC

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
1

2

3

4

 Ratio: Rind
KDC

 / Rmg
KDC

 The number of layers (I)

 R
in

d
K

D
C

 /
R

m
g

K
D

C

FIGURE 7.10. Storage overhead at the KDC with different number of SGs

7.4 Simulations and Performance Comparison 195

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
1000

2000

3000

4000

5000

 C
om

m
. O

ve
rh

ea
d

at
 K

D
C

Comm. overhead at KDC with different number of SGs(N0=15000)

 the number of layers (I)

Multi−group KM: Mmg
KDC

Independent−tree KM: Mind
KDC

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
1

2

3

4

 Ratio: Mind
KDC

 / Mmg
KDC

 the number of layers (I)

 M
in

d
K

D
C

 /
M

m
g

K
D

C

FIGURE 7.11. Rekey overhead at the KDC with different number of SGs

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

100

200

300

400

500

600

700

800
 Communication Overhead at KDC with different transition prob. (N0=1000)

 The switch probablity factor

 C
om

m
. o

ve
rh

ea
d

at
 D

K
C

Multi−group KM
Independent−tree KM

FIGURE 7.12. Rekey overhead at the KDC with different transition probability

196 7. Hierarchical Access Control for Multi-Group Scenarios

N0 = 1000, and the values of α and β are the same as those in the previous
experiments.

When γ is very small, the multi-group scheme reduces the rekey overhead
by about 50%, as we have shown in the previous simulations. When γ is
less than 2β, the advantage of the multi-group scheme decreases with the
increase of γ. This is because the multi-group scheme introduces larger rekey
overhead when users switch SGs by simply subscribing more DGs. To see
this, let a user move from SG S1 to SG S2. When using the independent-
tree scheme, this user only needs to be added to the key tree associated
with the DG D2 and no rekeying messages are necessary. When using the
multi-group scheme, we need to update keys on the SG-subtree of S1 and
the DG-subtree of D1. Therefore, the performance gain reduces when more
users tend to switch SGs.

When γ continues to increase, however, the rekey overhead of the multi-
group scheme decreases. Particularly, when γ = 0.45, which describes the
scenario where users are much more likely to switch SGs than to stay in the
current SG or leave the service, the performance gain of the multi-group
scheme is about 50% again. This phenomena is due to the fact that the size
of the SG-subtree is greatly reduced when a significant potion of users are
switching away from this SG. In this case, removing a large potion of users
from the key tree using batch rekeying requires less rekeying messages than
just removing several users.

7.4.5 Simulation of multi-service applications

The next experiment is for the multi-service scenario illustrated in Example
2 (Section 7.1.1), which contains 3 DGs and 7 SGs. The users can subscribe
any combination of DGs and switch to any SGs. Here, the transition matrix
is 8 by 8, with Pj0 = 0.01,∀j > 0 and Pi,j = 0.00017,∀i, j > 0 and i 	= j.
N0 is fixed to be 1500. The values of P0i,∀i > 0, are adjusted such that the
SGs contain varying number of users while (

∑I
i=1 P0i) is maintained to be

the same.
The horizontal axis in Figure 7.13 is the ratio between the number of

users subscribing more than one DGs and the number of users subscribing
only one DG. Larger is this ratio, more overlap is in DG membership. Figure
7.13 shows that the advantages of the multi-group scheme is larger when
more users subscribe multiple DGs.

7.5 Contributory Multi-group Key Management

The multi-group key management schemes can be extended to the contrib-
utory environment by using the same graph construction procedure pre-
sented in Section 7.2.2. Similar as in the centralized environments, separate
key trees for each DG must be constructed when using existing tree-based

7.5 Contributory Multi-group Key Management 197

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
120

140

160

180

200

220

240

 # of users subscribing >1 DGs / # of users subscribing 1 DG

 Centralized −− Rekey overhead at the KDC with unevenly loaded SGs (multi−service)
R

ek
ey

 o
ve

rh
ea

d
at

 th
e

K
D

C

Multi−group KM
Independent−tree KM

FIGURE 7.13. Rekey overhead at the KDC with unevenly loaded SGs in
multi-service applications

contributory schemes [61,66,67], and the multi-group contributory schemes
maintains one integrated key graph for all users.

The key establishment protocols are straightforward extensions from the
existing protocols in tree-based contributory schemes [61, 66, 67]. When
users join/leave/switch, the set of keys that need to be recalculated is the
same as that need to be updated in the protocols presented in Section 7.2.2.
The new keys are recalculated by applying the DH protocol between the
users who are under the left child node and the users who are under the
right child node from bottom to up.

For contributory key management schemes, the number of rounds is usu-
ally used to measure the communication, computation, and latency [120]
associated with key establishment and updating [58,66,67].

With the same simulation setup as that in Section 7.4.2, the perfor-
mance of the independent-tree and multi-group contributory key manage-
ment schemes are compared for varying group size. Figure 7.14 shows the
total number of rounds to establish the group key, which reflects the la-
tency in key establishment [120]. Figure 7.15 shows the number of rounds
performed by the users in each SG, which describes the users’ computa-
tion overhead. In each round, a user performs two modular exponentia-
tions. With the same simulation setup as that in Section 7.4.2, Figure 7.16
shows the number of rounds for key updating for with different number of

198 7. Hierarchical Access Control for Multi-Group Scenarios

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

of

 r
ou

nd
 fo

r
es

ta
bl

is
hm

en
t

N0 −− total number of potential users

Contributary −− Rekey overhead at key establishment

Multi−group KM
Independent−tree KM

FIGURE 7.14. The total number of rounds performed to establish the group key

0 1000 2000 3000
0

5

10

15

20

25

30

35

40

Contributory −− Multi−group KM

N
0

of

 r
ou

nd
s

to
 e

st
ab

lis
h

ke
y

users in S
1

users in S
2

users in S
3

users in S
4

0 1000 2000 3000
0

5

10

15

20

25

30

35

40

Contributory −− Independent−tree KM

N
0

of

 r
ou

nd
s

to
 e

st
ab

lis
h

ke
y

FIGURE 7.15. The number of rounds performed by the users in each SG for key
establishment

7.6 Related Work 199

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
10

20

30

40

50

60

70

80

90
 Contributary −− Rekey overhead for different number of SGs/Layers(N0=15000)

 The number of SGs/layers (I)

 #
 o

f r
ou

nd
s

ne
ed

 to
 u

pd
at

e
ke

ys

Multi−group KM
Independent−tree KM

FIGURE 7.16. The number of rounds performed to establish the group key with
different number of SGs/layers

layers. Compared with the tree-based contributory schemes, the multi-
group contributory scheme significantly reduces the computation and la-
tency associated with key establishment and updating. The advantage of
the multi-group contributory scheme is larger when M increases.

7.6 Related Work

In this chapter, we have presented key management for Hierarchical Group
Access Control. In the research literature, there is a similar but different
problem called key management for access hierarchy. For make the pre-
sentation concise, we use HGAC to represent Hierarchical Group Access
Control and KMAH to represent Key Management for Access Hierarchy.
Next, we briefly introduce KMAH, and describe the difference and relation-
ship between KMAH and HGAC.

In KMAC, there are a set of access classes that forms an access hierarchy.
The access hierarchy is usually represented by a directed graph where nodes
correspond to access classes and edges indicate their ordering. If a user is
entitled to have access to a certain access class, he/she is also entitled to
access the descendant classes. The key management scheme for the access

200 7. Hierarchical Access Control for Multi-Group Scenarios

hierarchy assigns keys to the access classes and distributes a subset of the
keys to users, which permits the users to access the files belonging to a
particular access class and all of the descendant classes.

In this type of key management schemes, the keys of the descendant
classes are often derived from the keys of the higher classes in the hierar-
chy. The main performance measure is the number of operations needed to
compute the keys of the descendant classes. The KMAC is often applied to
scenarios where deep access hierarchies are needed, such as in a database
where very complicated access rules are posed. Currently, all approaches
assume existence of a central authority. A nice summary of existing works
on access hierarchy can be found in [121].

We summarize the differences between KMAC and HGAC as follows.

• In KMAH, the access rules can be very complicated even for a sim-
ple database. As a result, the design of KMAH focuses on managing
keys associated with the graph that connects the access classes. This
graph represents the relationship between access classes. The major
challenge is to design an efficient way to derive keys from the descen-
dant classes. KMAH can be used for group communications, but not
mainly designed for group communications.

• In HGAC, the access relationship is represented by a set of DG-
subtrees. In group communications, the access relationship is usually
not complicated. Thus, simple structures can be used for each DG-
subtree, such as a binary tree. All DG-subtrees together can represent
the access relationship. On a DG-subtree, the nodes are the KEKs,
and edges describe the ownership of the KEKs. When the group size is
large, the overhead is mainly introduced by updating the keys on the
SG-subtree. Therefore, HGAC must consider the design of both the
DG-subtrees and the SG-subtrees. The major challenge is to design
good key tree structures and key updating protocols for the purpose
of reducing overhead when the group membership is highly dynamic.

From the above discussion, we can also see the relationship between
KMAH and HGAC. That is, some techniques in KMAH can be used to
design the DG-subtrees in HGAC. In [122], the partial order of service
groups is considered into the design of the DG-subtrees. As a consequence,
the storage overhead and rekey overhead are reduced, especially when the
group size is small. Exploiting more techniques in KMAH could result in
further reduction in the overhead of the HGAC solutions.

7.7 Chapter Summary

The focus of this chapter is formulating and solving the hierarchical access
control problem in group communications. The goal is to assure forward

7.7 Chapter Summary 201

and backward secrecy when multiple data streams are distributed to group
members with varying access privileges. Meanwhile, the overhead should
be kept low. Two solutions, the multi-group scheme and the independent-
tree scheme, are described and compared. The former outperform the later
in terms of communication, computation and storage overhead. The ex-
tensions of the two solutions in the contributory environment are also dis-
cussed.

8
Protecting Membership Information
in Secure Multicasting

Many existing key management schemes focus on maintaining key secrecy
and reducing the communication overhead associated with updating the
associated keys [78] [7] [56]. However, it is found that key management can
disclose information about dynamic group membership to both insiders
and outsiders. In other words, while the content of group communication is
protected by encryption using the secret keys, group dynamic information
is disclosed through key management. Group dynamic information (GDI) is
the information that describes the dynamic group membership, including
the number of users in a multicast group as a function of time, and the
number of joining or departing users in a time interval.

In many secure group applications, group dynamic information should be
kept confidential [123, 124]. Key management is a technology that enables
key updating in real time as group membership changes. Future commercial
multicast services, which could occur in non-traditional broadcast media
such as Internet and 3G/4G wireless networks, will allow a user to sub-
scribe to an arbitrary set of programs and change his/her subscription at
any time [125] [10]. The users can choose to pay for exactly what they get,
instead of a fixed monthly fee. This new type of services give the most flex-
ibility to users, as well as opportunities to new business models. Over the
non-traditional broadcast media, the global media giants as well as small
multimedia producers can be the service providers. The service providers
perform group management and have the knowledge of GDI, i.e audience
statistics. However, it is highly undesirable to disclose instant and detailed
GDI to competitors. Assume a competitor can monitor the audience sta-
tistics of the service provider X. Then, the competitor may broadcast its

204 8. Protecting Membership Information in Secure Multicasting

programs at different time slots and see how it affects its own and X’s au-
dience statistics. As a consequence, the competitor can develop the best
program schedule to compete with X. This example also shows that GDI
should also be concealed from insiders. A regular user, who receives the mul-
ticast content, should not know the overall audience statistics. Otherwise,
the competitor can send one of its employees to register as X’s member for
a small cost, and collect valuable audience statistics from X. In addition,
there are multicast communication scenarios where GDI represents sensi-
tive deployment information about the network. For example, in a sensor
network, the base station sends many broadcast messages to sensors. The
base station and sensors form a secure multicast group. If some sensors are
compromised, the group key should be updated such that the compromised
sensors cannot decrypt future multicast messages from the BS. One pos-
sible way to update group keys is to use group key management schemes.
In such an application scenario, GDI represents the number of sensors de-
ployed in an area, and the number of revoked sensors. In this example, if
GDI is not protected, attackers can obtain sensor deployment information
by exploiting the key management scheme.

From the above two examples, one can see that revealing GDI through
key management could be a new type of vulnerability. In this chapter, the
focus is to investigate GDI leakage problem [123, 124] and to present a
framework of protecting GDI from insiders and outsiders.

8.1 GDI Disclosure in Centralized Key
Management Schemes

In the centralized key management schemes, there exists a KDC that gener-
ates and distributes the decryption keys [78]. In this section, we investigate
the methods that can acquire GDI stealthily from the centralized key man-
agement.

The group dynamic information (GDI) particularly refers to a set of
functions as:

• N(t): the number of users in the multicast group at time t.

• J(t0, t1): the number of users who join the service between time t0
and t1.

• L(t0, t1): the number of users who leave the service between time t0
and t1.

The GDI should be kept confidential in many group-oriented applications,
yet to acquire GDI from key management can be simple and stealthy. In-
stead of trying to break encryption or compromise the key distribution
center, the adversaries can subscribe to the service as regular users. In

8.1 GDI Disclosure in Centralized Key Management Schemes 205

this case, they are referred to as insiders. Insiders can obtain very accu-
rate estimation of GDI by monitoring the rekeying messages, which are the
messages conveying new key updating information. Even if the adversaries
cannot become valid group members, they can still obtain GDI as the out-
siders as long as they can observe the rekeying traffic around a single group
member.

This section presents three methods to obtain GDI based on the key
management scheme proposed in [80], and discuss the vulnerability of other
prevalent centralized key management schemes.

Although having different rekeying procedures, most tree-based central-
ized key management schemes [7, 8, 10, 78–80] share several common prop-
erties. First, group members can distinguish the key updating process due
to user join and that due to user departure. Second, the rekeying-message-
size may be related with the group size. Third, the IDs of the keys stay
the same even if the key content changes. Because of these properties, sev-
eral methods can be used to obtain GDI stealthily from key management.
Next, those methods are presented based on the tree-based key management
scheme in [80].

8.1.1 Attack 1: Estimation of J(t0, t1) and L(t0, t1)
from rekeying-message format

To demonstrate the attacks, we consider the popular tree-based centralized
key management scheme proposed in [80]. In brief, when a user leaves the
group, all the keys on the path from this user to the root of the key tree
are updated by conveying a set of rekeying messages, that have the basic
format as one key encrypted by another key (see Section 5.1). When a user
joins the service, the KDC chooses a leaf position on the key tree to put the
joining user. The KDC updates the keys along the path from the new leaf
to the root by generating the new keys from the old keys using a one-way
function and increasing the revision numbers of the new keys. (Each key
is associated with a revision number indiating the version of the key [80].)
The joining user obtains the new keys through the unicast channel. Other
users in the group will know about the key change when the data packet
indicating the increase of the revision numbers first arrives, and compute
the new keys using the one-way function. No additional rekeying messages
are necessary.

An insider receives rekeying messages, decrypts some of the messages,
and observes the rekeying-message-size without having to understand the
content of all messages. Since the key updating process for user join and
the process for user departure are different, he can estimate J(t0, t1) and
L(t0, t1) as follows.

• When receiving the rekeying message containing Knew
s encrypted by

one of his KEKs, he assumes that one user leaves the group.

206 8. Protecting Membership Information in Secure Multicasting

• When observing the increase of the revision number of Ks, he assumes
that one user joins the group.

(The detailed rekeying message format can be found in Section 5.1.)
This strategy is effective when most users do not join/leave simultaneously

and the keys are updated immediately after each user joining/departing
event. When this method is successful, N(t) can be calculated from J(t0, t1)
and L(t0, t1) as:

N(t1) = N(t0) + J(t0, t1) − L(t0, t1). (8.1)

Even if the initial group size is unknown, the changing trend of the group
size is obtained.

8.1.2 Attack 2 : Estimation of the group size from the
rekeying-message-size

In some tree-based key management schemes [126], key tree is fully loaded
and maintained as balanced as possible by putting the joining users on
the shortest branches. In this case, the group size N(t) can be estimated
directly from the rekeying-message-size.

It is assumed that N(t) does not change much within a short period of
time. In this time period, there are W departing users who do not leave
simultaneously. Thus, W observations of the rekeying-message-size due to
single user departure are made. These observations are denoted by Msg =
{m1,m2, · · · ,mw}.

In the worst-case scenario, the insiders and outsiders know the degree
of the key tree, denoted by d. Then, they can calculate the length of the
branch where the ith leaving user was located before his departure, de-
noted by Li. Without losing information, the observed Msg is converted to
{L1 = l1, L2 = l2, · · · , LW = lW }, where li = �mi+1

d �. Then, the Maximum
Likelihood (ML) estimator of the group size is formulated as:

NML = arg max
n

Prob{L1 = l1, L2 = l2, · · · , LW = lW |N(t) = n}, (8.2)

where arg maxn g(n) represents the n value that maximizes the function
g(n). To solve (8.2), it is necessary to introduce a set of new variables:
{Sk}k=Lmin,Lmin+1,···,Lmax

, where Sk is the number of users who are on the
branches with length k, Lmax is the length of the longest branches, and
Lmin is the length of the shortest branches. It is obvious that

∑

k

Sk = n. (8.3)

In addition, the length of the branches of a key tree must satisfy the Kraft
inequality [30], i.e.

∑
j dLmax−bj ≤ dLmax , where bj is the length of the

8.1 GDI Disclosure in Centralized Key Management Schemes 207

branch on which the user j stays and j = 1, 2, · · · , n. Thus, Sk, which
equals to the number of elements in set {bj : bj = k}, must satisfy

∑

k

SkdLmax−k ≤ dLmax , (8.4)

It can be verified that the equality is achieved when all intermediate nodes
on the key tree have d children nodes. When the key tree is balanced and
fully loaded, it is reasonable to approximate (8.4) by

∑

k

SkdLmax−k = dLmax . (8.5)

When the leaving users are uniformly distributed on the key tree, and the
number of users in the system is much larger than the number of leaving
users, i.e. N(t) >> W . Then, the probability mass function (pmf) of Li is

Prob{Li = k |n, Sk} =
Sk

n
, k = Lmin, Lmin + 1, · · · , Lmax.

It is assumed that Li, i = 1, · · · ,W are i.i.d. random variables. Thus, the
probability in (8.2) is calculated as:

Prob{L1 = l1, L2 = l2, · · · , LW = lW |N(t) = n, Sk} =
∏

k

(
Sk

n

)h(k)

,

(8.6)
where h(k) denotes the number of elements in set {li : li = k} and obviously,∑

k h(k) = W . Then, the values of n and {Sk} that maximize (8.6) under
the constraint (8.3) and (8.5) are obtained using Lagrange multiplier as:

{Sk}ML =
n

W
h(k), (8.7)

NML =
W∑

k h(k)d−k
. (8.8)

Next, the performance of this ML estimator is demonstrated through a set
of simulations. The estimator is first applied to simulated dynamic group
membership changes. As suggested in [90] [72], the user arrival process
is modeled as a Poisson process, and the service duration is modeled as
an exponential random variable. In Figure 8.1(a), 8.1(b), and 8.1(c), the
estimated group size is obtained by using the estimator in (8.8), and com-
pared with the true values of N(t). These plots are for three different
simulation settings. The entire service period is divided into four sessions.
The model parameters, i.e. the user arrival rate and the average service
time, are fixed within each session and vary in different sessions. In the
ith session, described by interval [ti−1, ti), the user arrival rate is λi and
the average service time is µi. In all three cases, [t0, t1, t2, t3, t4] is chosen

208 8. Protecting Membership Information in Secure Multicasting

0 500 1000 1500 2000 2500
0

20

40

60

80

gr
ou

p
si

ze
 N

(t
)

Time (min)

0 1000 2000 3000 4000 5000
100

200

300

400

500

gr
ou

p
si

ze
 N

(t
)

0 1000 2000 3000 4000 5000
0

100

200

300

400

500

gr
ou

p
si

ze
 N

(t
)

0 1000 2000 3000 4000 5000
0

100

200

300

400

500

600

gr
ou

p
si

ze
 N

(t
)

Time (min)

real N(t)
estimated N

ML
(t)

Estimate N(t) using ML estimator

(a) (b)

(c) (d)

FIGURE 8.1. Performance of the ML estimator. (a)(b) and (c) are for simulated
multicast sessions. (d) is for a Mbone session.

to be [0, 200, 1600, 3200, 5000] minutes, and the initial group size is 0. The
parameter λi’s and µi’s as follows.

[λ1, λ2, λ3, λ4] = [µ1, µ2, µ3, µ4] =
plot(a) [0.5, 0.5, 0.5, 0.3]min−1 [1400, 800, 600, 400]min
plot(b) [0.1, 0.3, 0.2, 0.5]min−1 [1500, 1500, 1000, 800]min
plot(c) [0.3, 0.7, 0.1, 0.9]min−1 [1400, 800, 600, 400]min

Figure 8.1(d) demonstrates the performance of the ML estimator, when
it was applied to a real MBone audio session, CBC Newsworld on-line test,
started on Oct. 29. 1996 and lasted for about 5 days [127].

In all four cases, the changing trend of the group size is well captured by
the estimator. It is also observed that the estimated group size tends to be
larger than the true N(t). This is due to the approximation when replacing
(8.5) by (8.4). Although not perfect, this estimator is effective for analyzing
audience behavior and the group size changes.

8.1.3 Attack 3: Estimation of group size based on key IDs

As presented in [80], each key contains the secret material that is the content
of the key and a key selector that is used to distinguish the key. The key

8.1 GDI Disclosure in Centralized Key Management Schemes 209

KS

K0 K1

K11

K111

K1111

K110

K10

n(G0)

K00 K01

n(G1)

n(G10) n(G11)

FIGURE 8.2. Key ID based attack method

selector consists of: 1) a unique ID that stays the same even if the key
content changes and 2) a version and revision field, reflecting update of
the key. The basic format of the rekeying messages is {Ky}Kx

, representing
Ky encrypted by Kx. This message has two parts. The first part is the
key selector of Kx, which is not encrypted because otherwise a user will
not be able to understand this message. The second part is Ky and the
key selector of Ky, encrypted by Kx. Thus, in the current implementation,
everyone who can overhear the rekeying messages can see the IDs of Kx.

One can collect the histogram of these key IDs. Let P (Kx) denote the
probability of Kx’s ID appears, calculated as the number of rekeying mes-
sages containing this ID (as an encryption key ID) divided by the total
amount of rekeying messages. Define Gx as the set of users under the node
associated with Kx, and n(Gx) as the number of users in Gx. Let Kp denote
the parent node of Kx.

Based on the rekey procedure in [80], one can see that P (Kx) equals to
the probability that one or more than one users leave the subgroup Gp given
that there are users leaving the multicast group. In addition, it is reasonable
to assume that P (Kx) is proportional to n(Gp). This assumption is valid
when users are equally likely to leave and the probability of a user leaving
in one round of key updating is small.

Above discussion leads to the third attack: Key ID based attack. The
basic idea of this attack is explained using the example shown in Figure
8.2, where the attacker is marked by a triangle.

• Step 1: The attacker knows that the keys on the branch from himself
to the root are {Ks, K1, K11, K111, K1111}. Among these keys, he
also knows who is whose children node because the parent node keys

210 8. Protecting Membership Information in Secure Multicasting

are always encrypted by the children node keys. The attacker collects
P (K1), P (K11), and P (K111) by observing a sufficient number of
rekeying messages.

• Step 2: When there are users leaving G0, KDC needs to update key
K0 by sending rekeying message {K0}K00 and {K0}K01 , according
to the rekeying procedure described in Section II-A. Thus, when-
ever there are users leaving G0, the IDs of K01 and K00 will appear.
Therefore, P (K00) = P (K01) = Pr(there are users leaving G0). Sim-
ilarly, we have Pr(there are users leaving G1) = P (K10) = P (K11)
and Pr(there are users leaving Gs) = P (K0) = P (K1). Since Gs =
G0

⋃
G1 and G0

⋂
G1 = φ, it is easy to see that P (K1) is just

Pr(there are users leaving G1 or there are users leaving G0). There-
fore, P (K1) is calculated as

P (K1) = 1 − (1 − P (K11))(1 − P (K00)). (8.9)

Here, since P (K11) = P (K10) and P (K00) = P (K01), one can replace
P (K11) by P (K10) and/or replace P (K00) by P (K01) in (8.9).

In addition, as described earlier, it is reasonable to assume that

n(G0)
n(G1)

=
Pr(there are users leaving G0)
Pr(there are users leaving G1)

=
P (K00)
P (K11)

. (8.10)

Similarly, the attacker can obtain n(G10)
n(G11)

, and n(G110)
n(G111)

.

• Step 3: The attacker estimates n(G111) based on the degree of the
key tree. Then, he can obtain n(G110), n(G10), and n(G0), using the
results generated in the previous step. The group size is finally esti-
mated as n(G111) + n(G110) + n(G10) + n(G0).

The accuracy of this attack depends on the estimation error of n(K111).
In this example, n(K111) can be estimated as either 3 or 4. This results in
25% estimation error in the total group size. The accuracy also depends on
the assumption that group members are equally likely to leave and they
leave independently. Although it is not a very accurate method, key ID
based attack can reveal a large amount of GDI information.

More importantly, equation (8.9) and (8.10) do not rely on specific tree
structures. When the key tree is not balanced and/or not fully-loaded,
those equations are still valid. To see this, one can examine an example of
an unbalanced key tree, where there are N users under K1 and N/5 users
under K0. When the departuring users are randomly located on the key
tree, Pr(there are users leaving G1) ≈ 5 · Pr(there are users leaving G0).
Therefore, the ID of key K11 should appears 4 times more frequently than
the ID of key K00. Using the procedure in step 2, the attacker can know
that the number of users under K1 are approximately 4 times more than the

8.1 GDI Disclosure in Centralized Key Management Schemes 211

users under K0 by examining the key IDs. Thus, Attack 3 can be applied
to unbalanced or non-fully loaded key trees. This is the major advantage
of Attack 3. Recall that Attack 2 is suitable for balanced and fully-loaded
key trees.

8.1.4 Discussion on three attacks

An insider can jointly use all three types of attacks, and an outsider can
use AII and AIII under certain conditions. An outsider can apply AII when
he is able to observe the size of rekeying messages. It has been shown that
the rekeying messages must be delivered reliably and in a timely manner,
in order to guarantee the quality of service [128]. Therefore, it is very likely
that rekeying messages are treated differently from the regular data in terms
of error control, or even transmitted in a reliable multicast channel that is
separated from the channel used for data transmission. This provides an
opportunity for the outsiders to differentiate the rekeying messages and the
multicast content. As long as an outsider can observe the rekeying traffic
sent to one group member, he can obtain the rekeying-message-size and use
method AII to estimate the group size. It is noted that error control coding
may change the size of the rekeying messages. The coding rate is often not
a secret. Thus, the attackers can recover the original rekeying message size
before coding. In current key management schemes, the key selector of the
encryption key is not encrypted. Thus, an outsider can collect the histogram
of key IDs. One straightforward improvement is to use the session key to
encrypt the key selector, which will prevent outsiders from using AIII. This
requires additional encryption/decryption operations.

In the derivation of the ML estimator in Attack 2, it is assumed that the
key tree is fully loaded. This assumption can be violated in some imple-
mentations of key management. For example, the KDC first estimates the
maximum group size to be Nmax. Then, a key tree with Nmax leaf nodes
is constructed. This key tree will have many empty leaf nodes that are not
associated with particular users. A joining user will occupy an empty leaf
node after it joins, and a departing user will release a leaf node after it
leaves. Since there is no need to split or merge nodes when users join or
leave, these type of key trees are easy to maintain. On the other hand, they
often require higher overhead to store and update keys than what is neces-
sary. In practice, the type of key trees, referred to as non-fully loaded key
trees, are used when Nmax is not large or the difference between Nmax and
the average group size is not large. For non-fully loaded key trees, Attack
3 should be applied. Although the accuracy of Attack 3 is not as good as
other attacks, it still can provide a large amount of information about GDI.
If multiple attackers jointly estimate GDI, the results can be more accurate.

As a summary, the properties of three attacks are listed in Table 8.1.

212 8. Protecting Membership Information in Secure Multicasting

TABLE 8.1. Comparison among attack methods. (∗ when the initial group size is
known.)

applied by applied by requirement accuracy
insider outsider on key trees

A1 yes no none high∗

A2 yes possible balanced, full-loaded high-moderate
A3 yes possible none moderate-low

8.1.5 GDI vulnerability in prevalent key management schemes

While Attack 3 is only suitable for tree-based schemes, Attack 1 and 2 can
be tailored to many other key management schemes. When the insiders
can differentiate the rekeying messages for user join and those for user
departure, they use an attack similar to AI, referred to as the AI type
method. When the amount of rekeying messages largely depends on the
group size, they can use an attack similar to AII, referred to as the AII type
method, with an estimator that may be different from (8.8). In this section,
the vulnerabilities of popular centralized and decentralized key management
schemes are reviewed.

Since protecting GDI is not a part of the design goal of traditional key
management schemes, it is not surprising that some schemes reveal GDI in
a very straightforward way. For example, in the approach proposed in [129],
a security lock is implemented based on the Chinese remainder theorem and
the length of the lock is proportional to the number of users. Thus, N(t) is
obtained by measure the length of the lock, which is the simplest AII type
method.

Tree-based key management schemes have been known for their efficiency
in terms of communication, computation and storage overhead. Many tree-
based schemes, such as [7, 8, 79], are similar to that described in Section
8.1.1. In these cases, both the AI and AII methods can be applied. In
[10,117,118], another class of tree-based schemes were presented to further
reduce the communication overhead by introducing the dependency among
keys, such as in one-way function trees. In these schemes, the key updating
procedures for user join and departure are similar. Thus, AI type methods
are not applicable. Since the size of rekeying messages is closely related
with the group size, AII type methods are still suitable.

Besides the tree-based scheme described in Section 5.1, the VersaKey
framework [80] also includes a centralized flat scheme. When a user joins
or leaves the group, the rekeying-message-size equals to the length of the
binary representation of user IDs, which can be independent of N(t). Thus,
this key management scheme is resistant to both the AI and AII type
methods. This scheme, however, is vulnerable to collusion attacks. That
is, the KDC cannot update keys without leaking new key information to
the leaving user, who has a collusion partner in the group. Although the

8.2 Defense Techniques 213

GDI is protected, this scheme does not protect the multicast content when
collusion attacks are likely.

In Iolus [130], a large group is decomposed into a number of subgroups,
and the trusted local security agents perform admission control and key
updating for the subgroups. This architecture reduces the number of users
affected by key updating resulting from membership changes. Since the key
updating is localized within each subgroup, the insiders or outsiders can
only obtain the dynamic membership information of the subgroups that
they belong to or can monitor.

The idea of clustering was introduced in [131] to achieve the efficiency
by localizing key updating. The group members are organized into a hi-
erarchical clustering structure. The cluster leaders are selected from group
members and perform partial key management. Since the cluster leaders es-
tablish keys for the cluster members through pair-wise key exchange [131],
the cluster members cannot obtain GDI of their clusters. However, the clus-
ter leaders naturally obtain the dynamic membership information of their
clusters and all clusters below. In [131], the cluster size is chosen from 3
to 15. Therefore, this key management scheme can be applied only when
a large portion of group members are trusted to perform key management
and obtain GDI.

In Chapter 5, a topology-aware key management (TMKM) scheme was
presented. It reduces the communication overhead by matching the key tree
with the network topology and localizing the transmission of the rekeying
messages. In this scheme, group members receive only the rekeying messages
that are useful for themselves and their neighbors. Thus, they only obtain
the local GDI by using AI or AII type methods.

As a summary, Table 8.2 lists various key management schemes discussed
in this section. We can see that the AII type methods are effective for
obtaining GDI or local GDI from many key management schemes. Two
schemes, flat VersaKey [80] and the clustering in [131] do not reveal GDI,
but their usage are limited because they are either not resistant to collusion
attacks or must put trust in a large number of cluster leaders. Therefore, the
defense techniques that protect GDI should be compatible with a variety
of key management schemes.

8.2 Defense Techniques

The discussion on GDI attacks in this chapter does not cover all aspects
of key management schemes that can reveal group dynamic information.
New attacks may emerge in the future. Therefore, the defense mechanism
should be robust against various threats and compatible with different key
management schemes.

The rekeying process reveals GDI in two domains. In the time domain,
the insiders/outsiders observe when the rekeying messages are transmitted.

214 8. Protecting Membership Information in Secure Multicasting

TABLE 8.2. Vulnerability of prevalent key management schemes
Is AII Is AI

Centralized Key Management Schemes Effective? Effective?

Tree based

Key Graph [8] Yes Yes
Wallner98 [7]
VersaKey [80]
Embedding [79]
One-way function tree [117] Yes No
Improve key revocation [10]
ELK [118]

Flat
Security lock [129] Yes –
Flat centralized scheme No No
VersaKey [80]∗

Local security
agents

Iolus [130] Local Local
Clustering [131]∗ No No

Others TMKM [132] Local Local

In the message domain, the insiders/outsiders observe the size and/or the
format of the rekeying messages.

To protect GDI in the time domain, batch rekeying [80] [119] is an ef-
fective method. Batch rekeying postpones the updates of the keys, and
can remove the correlation between the time of key updating and the time
when users join/leave the group. In particular, batch rekeying is often im-
plemented as periodic updates of keys. The users who join or leave the
group in the time interval [(k − 1)Bt, kBt], are added to or removed from
the key tree together at time kBt, where k is an positive integer and Bt

is the key updating period. By doing so, the time-domain observations do
not contain information about when users join/leave the group. It is im-
portant to note that batch rekeying was originally proposed to reduce the
rekeying overhead. It has been shown in [80, 119, 133] that updating keys
for several users together consumes less communication and computation
resources than updating keys for the users one-by-one. The disadvantage
of batch rekeying is that the joining/departing users will be able to access
a small amount of information before/after their join/departure. Thus, the
parameter Bt must be chosen based on the group policies. In particular, Bt

should be smaller than the maximum acceptable delay between revoking a
user and sending information that should not be accessed by the revoked
user. When using batch rekeying, the notations of the GDI functions are
simplified as: J(k) = J((k − 1)Bt, kBt), L(k) = L((k − 1)Bt, kBt), and
N(k) = N(kBt).

Batch rekeying cannot protect GDI in the message domain. Figure 8.3
shows simulation results for the batch rekeying when Bt is set to be 5
minutes. Simulation setup is similar to that in Section 8.1.2. The solid
line in Figure 8.3(a), 8.3(b), 8.3(c), 8.3(d) represent the N(k), J(k), L(k)

8.2 Defense Techniques 215

0 1000 2000 3000
0

500

1000

1500

2000

2500
of users

G
ro

up
 s

iz
e

0 1000 2000 3000
0

20

40

60

N
um

be
r

of
 jo

in
in

g
us

er
s

of joining users

0 1000 2000 3000
0

20

40

60

of departing users

Time (minute)

N
um

be
r

of
 d

ep
ar

tin
g

us
er

s

0 1000 2000 3000
0

200

400

600
rekey message size

Time (minute)

R
ek

ey
 m

es
sa

ge
 s

iz
e

N(k)
N

a
(k)

J(k)
J

a
(k)

L(k)
L

a
(k)

for the real GDI
for the artificial GDI

(a) (b)

(c) (d)

FIGURE 8.3. The defense scheme using phantom users and Batch rekeying

and the rekeying-message-size, respectively. One can see that the rekeying-
message-size is closely related to L(k) and reflects the trend of N(k). A large
amount of information about N(k) and L(k) is in the message domain.

To reduce the amount of GDI in the message domain, an effective method
is to insert phantom users into the system. These phantom users, as well as
their join and departure behaviors, are created by the KDC in such a way
that the combined effects of the phantom users and the real users lead to
a new rekeying process, called the observed rekeying process.

Let Na(k) denote the total number of the real and phantom users, and
Ja(k) and La(k) denote the total number of the real and phantom users
who join/leave the group respectively. Na(t), Ja(k), and La(k) are referred
to as the artificial GDI . From the key management points of view, the
phantom users are treated just as the real users. They occupy leaf nodes on
the key tree, and they are associated with a set of KEKs that are updated
when they virtually join or leave the group. Thus, the observed rekeying
process only depends on the artificial GDI.

There are many choices for artificial GDI functions. The simplest candi-
dates are constant functions.

Ja(k) = L0, La(k) = L0, Na(k) = N0. (8.11)

If the constant artificial GDI functions could be implemented, the observed
rekeying process would not leak the information about the changing trend
of the real GDI. However, the perfect flat artificial GDI functions in (8.11)
may not be achievable. Since the real GDI functions are random processes,
it is possible that the predetermined L0 and N0 are not large enough such

216 8. Protecting Membership Information in Secure Multicasting

that the artificial GDI cannot be maintained as the straight lines. For ex-
ample, when N(k) > N0, Na(k) cannot be N0 because the number of
phantom users must be non-negative. In fact, the artificial GDI functions
must satisfies four requirements: (r1) Na(k) ≥ N(k), (r2) La(k) ≥ L(k),
(r3) Ja(k) ≥ J(k), and (r4) Na(k) = Na(k − 1) + Ja(k) − La(k).

A modification can be made to the constant functions such that (r1)-(r4)
are satisfied.

Na(k) = max{N(k), N0} (8.12)
Ja(k) = max{J(k), L(k), L0} (8.13)
La(k) = Na(k − 1) − Na(k) + Ja(k) (8.14)

When N(k) ≤ N0, L(k) ≤ L0, and J(k) ≤ L0, equation (8.12)-(8.14) are
equivalent to (8.11). The artificial GDI functions in (8.12)-(8.14) obviously
satisfy the requirement (r1) (r3) and (r4). The modified artificial GDI func-
tions also satisfy (r2). The proof is as follows.

• When N(k) > N0, using the fact that Na(k−1) ≥ N(k−1), Na(k) =
N(k), and Ja(k) ≥ J(k), one can see that La(k) = Na(k−1)−Na(k)+
Ja(k) ≥ L(k) = N(k − 1) − N(k) + J(k).

• When N(k) ≤ N0, using the fact that Na(k − 1) ≥ N0 and Ja(k) ≥
L(k), we get La(k) ≥ Ja(k) ≥ L(k).

It should be noted that there are many other ways to choose the artificial
GDI functions. Some artificial GDI functions can protect GDI better than
others. Artificial GDI functions can also be non-deterministic. In this chap-
ter, we use the artificial GDI functions in (8.12)-(8.14) to demonstrate the
defense mechanism. Searching for the better artificial GDI functions can be
an interesting future research problem.

Given the artificial GDI functions, the KDC creates phantom users and
performs key management as follows.

(1) Determine N0 and L0 based on the system requirements and the
users’ statistical behavior. The criteria for selecting N0 and L0 will
be presented in Section 8.3.

(2) Before the group communication starts, create N0 phantom users and
establish a key tree to accommodate them. Set index k = 1.

(3) While the communication is not terminated, execute the follows.

– Record user join and departure requests in the time period ((k−
1)Bt, kBt], and obtain J(k) and L(k). During this time, the
current session key is sent to the joining users such that they
can start receiving the multicast content without delay.

8.2 Defense Techniques 217

– At time kBt, the KDC creates Ja(k)−J(k) phantom users join-
ing the service, and then selects La(k) − L(k) phantom users
in the current system and makes them leave. Following the key
updating procedure presented in any existing key management
schemes, the KDC updates corresponding keys for real and phan-
tom users’ join and departure. The number of total real and
phantom users are maintained to be Na(k).

– Set k = k + 1.

Figure 8.3(a), 8.3(b), and 8.3(c) illustrate the real GDI (N(k), L(k),
J(k)) and the artificial GDI (Na(k), La(k), Ja(k)) for a simulated multi-
cast service. The simulation results of the communication overhead, i.e. the
rekeying-message-size, is shown in Figure 8.3(d). Here, the solid line repre-
sents the case with batch rekeying but no phantom users. The dashed line
represents the case when the proposed defense method is applied. It is im-
portant to note that batch rekeying technique is used for all results shown
in Figure 8.3. One can see that the observed rekeying process reveals very
limited information about the real GDI when the proposed defense scheme
is used. The rekeying message size resulting from using batch rekeying along
is still highly correlated with the group size. In addition, the communication
overhead increases, which is a disadvantage of utilizing phantom users.

Utilizing phantom users and batch rekeying is not the only solution to the
problem of GDI leakage. There are other techniques that can protect GDI
against one or several attack methods. For example, to prevent outsiders
from launch the AII type attack, the rekeying messages can be embedding
into multicast content [79] or transmitted using onion-routing [134]. Using
the same rekeying procedure for user join and departure is also a good
way to prevent the AI type attacks. In addition, the KDC can generate
fake rekeying messages to prevent the AII type methods. The fake rekeying
message could have a header indicating it is a rekeying message but the
content is random bits. This is different from the proposed defense scheme
where the key tree reserves slots for the phantom users and all rekeying
messages have meanings. Compared with other techniques, using phantom
users and batch rekeying has two major advantages. First, the proposed
defense scheme is effective against various attacks. Since the real GDI is
concealed before the rekeying messages are generated and even before key
selectors are modified, only the artificial GDI can be seen from the observed
rekeying process unless the KDC is compromised. Second, the proposed
scheme does not rely on specific rekeying algorithms and is compatible
with existing key management schemes.

218 8. Protecting Membership Information in Secure Multicasting

8.3 Optimization

The idea of employing phantom users is not complicated. The challenge is
to determine the amount of phantom users that should be inserted. In this
section, an optimization problem is formulated such that the proper amount
of phantom users, described by the parameter L0 and N0 in (8.12)-(8.14),
can be determined.

Before discussing the optimization problem, the performance criteria
must be determined. In this section, two criteria are defined. They are (a)
the amount of information leaked to the insiders and outsiders measured
by mutual information, and (b) the communication overhead introduced by
the phantom users. The tradeoff between these two metrics will be studied.

8.3.1 The leakage of GDI

For measuring the leakage of the GDI, a nature measure is mutual infor-
mation. The mutual information between two random variables X and Y
describes how much information that one can tell about X when knowing
Y .

Let T be the total number of rounds of key updates. The overall service
duration is T · Bt. Then, the real GDI is described by a set of random
variables as

R = {N(1), · · · , N(T), J(1), · · · , J(T), L(1), · · · , L(T)}, (8.15)

and the artificial GDI is

A = {Na(1), · · · , Na(T), Ja(1), · · · , Ja(T), La(1), · · · , La(T)}. (8.16)

The mutual information, I(R;A), describes the reduction in the uncertainty
of the real GDI due to the knowledge of the artificial GDI [30]. Therefore,
the leakage of the GDI can be measured by

I(R;A) = H(A) − H(A|R), (8.17)

where H(.) and H(.|.) denote the entropy and conditional entropy, respec-
tively.

Equation (8.12) - (8.14) indicate that the artificial GDI is a set of de-
terministic functions of the real GDI. Thus, the conditional entropy in
(8.17) is zero, i.e. H(A|R) = 0. Since La(k) is directly computed from
Ja(k), Na(k) and Na(k − 1) in (8.14), the terms La(1), La(2), · · · , La(T)
can be removed from the expression of the entropy of A, i.e. H(A) =
H(Na(1), · · · , Na(T), Ja(1), · · · , Ja(T)). Then, the upper bound of I(R;A)
is calculated as:

I(R;A) = H(Na(1), · · · , Na(T), Ja(1), · · · , Ja(T))

≤
∑

k

H(Na(k)) +
∑

k

H(Ja(k)). (8.18)

8.3 Optimization 219

The equality is achieved when {Na(k), Ja(k), k = 1, · · · , T} are mutually
independent. It is noted that the GDI at time kBt and the GDI at time
(k+1)Bt can be approximately independent when Bt is large and the group
is highly dynamic. In these cases, (8.18) provides a tight upper bound of
I(R;A).

Let pNk
(n) and pNak

(n) denote the probability mass function (pmf) of
N(k) and Na(k), respectively. From (8.12), one can see that

pNak
(n) =

⎧
⎨

⎩

∑N0
x=0 pNk

(x), n = N0

pNk
(n), n > N0

0, o.w.

Then,

H(Na(k)) = −(1 − εk
N) log(1 − εk

N) −
∞∑

n=N0+1

pNk
(n) log pNk

(n), (8.19)

where εk
N = 1 −

∑N0
x=0 pNk

(x). Similarly, let pJk
(x), pJak

(j), and pLk
(y)

denote the pmf of J(k), Ja(k), and L(k), respectively. Thus,

H(Ja(k)) = −
∑

j

pJak
(j) log pJak

(j), (8.20)

and,

pJak
(j) =

⎧
⎪⎪⎨

⎪⎪⎩

(1 − εk
J)(1 − εk

L), j = L0

pJk
(j)
∑j−1

y=0 pLk
(y)

+ pLk
(j)
∑j−1

x=0 pJk
(x) + pJk

(j)pLk
(j), j > L0

0, o.w.

(8.21)

where εk
J = 1 −

∑L0
x=0 pJk

(x) and εk
L = 1 −

∑L0
y=0 pLk

(y). Given the pmf
of the real GDI functions, the upper bound of I(R;A) is calculated from
(8.18)-(8.21).

Since the observed rekeying process is determined by the artificial GDI,
and the artificial GDI is only related with the real GDI, the following
Markov chain can be formed: real GDI → artificial GDI → observed rekey-
ing process. Thus, the mutual information between the observed process
and the real GDI is no more than the mutual information between the
real and artificial GDI [30]. Therefore, I(R;A) is the upper bound of the
amount of information that can be possibly revealed from the observed
rekeying process.

From (8.12)-(8.14), one can see that the artificial GDI reveals the real
GDI when N(k) > N0, L(k) > L0, or J(k) > L0. Therefore, another useful
metric is the overflow probability , defined as the probability that the arti-
ficial GDI cannot be straight lines, i.e. 1 − mink(1 − εk

N)(1 − εk
L)(1 − εk

J).

220 8. Protecting Membership Information in Secure Multicasting

Besides the mutual information, overflow probability can be a complemen-
tary measure for the leakage of the GDI. When the overflow probability is
zero, the calculation in (8.18)-(8.20) leads to the result that I(R;A) = 0,
which indicates prefect protection of the real GDI.

8.3.2 Communication Overhead

Communication overhead, measured by the rekeying-message-size, is one
of the major performance criteria of key management schemes [78] [7]. We
introduce the notation M(L,N, d) as the expected value of the rekeying-
message-size when removing L users from the key tree that contains total
N users and has degree d. We assume that the leaving users are uniformly
distributed on a fully-loaded and balanced key tree. Then, there are dl

KEKs at the lth level of the key tree for l = 0, · · · ,D−2 and D = �logd N�,
and the number of the KEKs at the (D − l)th level is s1 = �N−dD−l

d−1 �.
Let αl be the number of the KEKs need to be updated at the level l

when L users leave the group. Then, M(L,N, d) is

M(L,N, d) = E

[
D−1∑

l=0

αl

]
=

D−1∑

l=0

E[αl]. (8.22)

The expectation E(.) is taken over the statistics of user departure behavior
and the dynamic tree structure.

In Chapter 5, we have introduced the notation B(b, i, a), used to calculate
rekeying message size. With this notation, E[αl] is calculated as

E[αl] = d · B(dl, L,
N

dl
), 0 ≤ l ≤ D − 2, (8.23)

E[αD−1] = (d − 1)
L∑

x=1

(
s1

x

)(
N − s1

L − x

)/(N

L

)
B(s1, x, d). (8.24)

Using the fact that � i
a� ≤ B(b, i, a) ≤ min(b, i) (see Appendix), one can

derive the upper bound of the M(L,N, d) as:

M(L,N, d) ≤ dL logd(N). (8.25)

This upper bound indicates that the communication overhead increases
linearly with the number of departed users and with the logarithm of the
group size.

Let Cr and Ca be the average communication overhead for rekey process
based on real GDI and the artificial GDI, respectively. Then, the extra
communication overhead introduced by the proposed defense technique is:

Ca − Cr =
1
T

T∑

k=1

M(La(k), Na(k), d) − 1
T

T∑

k=1

M(L(k), N(k), d). (8.26)

8.4 Simulations 221

When the overflow probability is small, (8.26) can be approximated by:

Ca − Cr ≈ M(L0, N0, d) − 1
T

T∑

k=1

M(L(k), N(k), d). (8.27)

8.3.3 System Optimization

From the system design points of view, parameter L0 and N0 should be
chosen such that the leakage of the GDI is minimized while the extra com-
munication overhead do not exceed certain requirements. When the overflow
probability is small, the optimization problem is formulated as:

min
N0,L0

∑

k

H(Na(k)) +
∑

k

H(Ja(k)) (8.28)

subject to:
M(L0, N0, d) ≤ β, (8.29)

where β is the maximum allowed communication overhead per key updat-
ing. Additionally, H(Na(k)) in (8.20) is monotonous non-increasing with
N0; H(Ja(k)) in (8.19) is monotonous non-increasing with L0; and the
communication overhead M(L0, N0, d) in (8.22) is non-decreasing with L0

and N0. Therefore, the optimization problem is simplified as:

min
L0

(
∑

k

H(Na(k)) +
∑

k

H(Ja(k))

)∣∣∣
N0=M−1(β)|L0,d ,

(8.30)

where M−1(β)|L0,d is the largest value of N0 that satisfies (8.29) with given
L0 and d. Fortunately, the number of departed users between two key up-
dates is usually much less than the group size. Thus, the search space for
parameter L0 is not large and this optimization problem can be solved by
a full search.

8.4 Simulations

Mlisten [72], a tool developed at Georgia Institute of Technology, can collect
the join/leave time for the multicast group members in MBone [90] sessions.
The defense scheme described in Section 8.2 is applied to the data collected
in 1996 [127]. Particularly, one audio session that started on Oct. 29th and
lasted for about 5 days and 20 hours is selected. Figure 8.4 shows the values
of N(k), L(k) and J(k) of this session, where Bt is chosen to be 15 minutes.

It is suggested that the users’ statistical behavior, such as inter-arrival
and membership durations, can be modeled by exponential distribution
in a short period of time [90]. In the simulation, the entire service time
is divided into non-overlapped sections, as illustrated in Figure 8.4. The

222 8. Protecting Membership Information in Secure Multicasting

0 1000 2000 3000 4000 5000 6000 7000 8000
0

20

40

60

N
(k

)
 Group Dynamic Information of the CBC Newsworld On−Line Test on 10/29/1996

0 1000 2000 3000 4000 5000 6000 7000 8000
0

5

10

15

J(
k)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

5

10

15

20

L(
k)

Time (minute)

FIGURE 8.4. The GDI of a long audio session in MBone

length of these sessions is set to be 4 hours. To simplify the analysis, it
is assumed that N(k), L(k) and J(k) are stationary and ergodic Poisson
processes in each session. Then, we can calculate the GDI leakage using
(8.18)-(8.21).

Figure 8.5 and Figure 8.6 demonstrate the upper bound of mutual in-
formation (see (8.18)) and the communication overhead M(L0, N0, d) for
different values of L0 and N0, respectively. It is noted that these two figures
use different axis in order to show the properties of the 3D curves. It is seen
that communication overhead is a non-decreasing function with L0 and N0,
while the GDI leakage is a non-increasing function with L0 and N0.

Figure 8.7 illustrates the solution of the optimization problem. Figure
8.7(a) shows the maximum value of N0 that satisfies the communication
overhead constraint in (8.29) with fixed L0, i.e. N0 = max{N : M(L0, N, d)
≤ β}, where β is chosen to be 50 in this example. As discussed in Section
8.3, the optimal values of L0 and N0 must be on this curve. Therefore, the
upper bound of the GDI leakage,

∑
k H(Na(k))+

∑
k H(Ja(k)), is evaluated

only at (L0, N0 = max{N : M(L0, N, d) ≤ β}), which is shown in Figure
8.7(b). The optimal values of L0 and N0 are also marked in Figure 8.7(b).

The tradeoff between the communication overhead and the GDI leakage
is demonstrated in Figure 8.8. This figure shows the upper bound of the mu-
tual information as a function of the communication overhead constraint,
where the parameters L0 and N0 have been optimized. This can help the

8.5 GDI Disclosure and Protection 223

051015202530

20

40

60

80

100

0

10

20

30

40

50

60

70

80

L
0

Leakage of the GDI vs. L
0
 and N

0

N
0

U
pp

er
 b

ou
nd

 o
f G

D
I L

ea
ka

ge
 (

I(
R

;A
))

FIGURE 8.5. Upper bound of the GDI leakages (L0 and N0 are parameters in
artificial GDI functions.)

system designer to determine the proper values of β for the communica-
tion constraint in (8.29). When not using the phantom users, the artificial
process is identical to the real process and we have I(R;A) = I(R;R) =
H(R). In this case, this particular multicast session requires an average of
3.6 rekeying messages to be sent in every 15 minute interval (Bt = 15) and
has I(R;A) ≈ 137. Figure 8.8 shows that the proposed defense scheme can
reduces I(R;A) to 5.5 by increasing the communication overhead to 23.2
messages per 15 minutes. The communication overhead Ca is significantly
larger than Cr because a large amount of activities of the phantom users
must be created. However, the absolute value of the Cr is still small com-
pared with the multicast data volume. On the other hand, the leakage of
the group dynamic information is greatly reduced.

8.5 GDI Disclosure and Protection in Contributory
Key Management Schemes

In the contributory key management schemes, every group participates the
process of group key establishment. The members’ personal keys are not
disclosed to any other entities [56]. Compared with the centralized schemes,

224 8. Protecting Membership Information in Secure Multicasting

0
5

10
15

20
25

30

20

30

40

50

60

70

80

90

100
0

100

200

300

400

L
0

Communication Overhead vs. L
0
 and N

0

N
0

U
pp

er
 b

ou
nd

 o
f C

om
m

un
ic

at
io

n
O

ve
rh

ea
d

(M
(L

0,N
0,d

)
)

FIGURE 8.6. Communication overhead M(L0, N0, d) (L0 and N0 are parameters
in artificial GDI functions.)

0 2 4 6 8 10 12 14 16
10

0

10
1

10
2

10
3

L
0

The maximum N
0
 that satisfies the comm. overhead constrain, (β=50)

N
0
 = max {N : M(L

0
, N,d)} ≤ β

0 2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

L
0

Upper bound of GDI leakage vs L
0

Σ H(N
a
(k)) + H(J

a
(k))

(a)

(b) optimal Lo

optimal No

FIGURE 8.7. Illustration of selecting optimal parameters L0 and N0.

8.5 GDI Disclosure and Protection 225

15 20 25 30 35 40 45 50 55
0

5

10

15

20

25

30

35

40

Communication Overhead (# of rekeying messages in one round of batch rekeying)

G
D

I l
ea

ka
ge

 GDI leakage vs Communication Overhead for a non−active session

When not using phantom users
communication overhead: 3.6
GDI leakage: 137

FIGURE 8.8. The GDI leakage versus communication overhead for a real MBone
audio session, with and without phantom users.

50 60 70 80 90 100 110 120
0

5

10

15

20

25

30

35

40

45

50

Communication Overhead (# of rekey messages in one round of batch rekeying)

G
D

I l
ea

ka
ge

 GDI leakage vs Communication Overhead for an active session

When not using phantom users
communication overhead: 28.2
GDI leakage: 249.2

FIGURE 8.9. The GDI leakage versus communication overhead for a simulated
multicast session, with and without phantom users.

226 8. Protecting Membership Information in Secure Multicasting

the contributory schemes have the advantage of not putting full trust in a
single entity and therefore do not suffer the problem of single-point-failure.

In general, the contributory schemes are suitable for small-medium group
size applications, where group dynamics is known to group members. In
these cases, protecting GDI is not necessary. On the other hand, it is pos-
sible that some special applications use contributory key management and
require confidential GDI. In this section, we show that there are many ways
to obtain GDI and the cost for protecting GDI in contributory schemes is
very high.

8.5.1 Fully and Partially Contributory Key Management
Schemes

There are two types of contributory key agreement schemes: fully contrib-
utory and partially contributory. In the fully contributory schemes, all key
agreement operations are distributed to every group member [135]. There is
no dedicated group manager, and every participant may perform admission
control and other administrative functions [135]. Thus, group members are
naturally aware of the information about the group membership. Therefore,
the fully contributory schemes rely on the members’ knowledge of dynamic
group membership, and are not suitable for the multicast applications with
confidential GDI.

In the partially contributory schemes, one group member takes a special
role and performs some administrative operations [56, 58, 66, 67, 135]. This
special member is usually referred to as the group controller. The role of the
group controller can be assigned to a fixed member or be handed over to
other members when membership changes [135]. The group controller is dif-
ferent from the KDC in the centralized schemes. The group controller does
not hold the private keys of other members or generate the complete group
key. Instead, it performs admission control and coordinates the process of
the key formation. The original purpose of introducing a group controller is
to achieve efficient key updating [56]. In the context of protecting GDI, the
partially contributory schemes make it possible to confine dynamic mem-
bership information to the group controllers while preventing other group
members from accessing GDI. In a practical setting, multiple group con-
trollers, who are trusted to keep GDI, must be used to prevent the single
point failure problem. In addition, to protect GDI, regular users cannot
replace the group controllers even if all group controllers fail. Thus, the
reliability of the group communication may suffer.

As a summary, GDI can only be protected in partially contributory
schemes, at the expenses of utilizing trusted group controllers and the risk
of communication failure.

8.5 GDI Disclosure and Protection 227

8.5.2 GDI Disclosure in Contributory Key Management
Schemes

Utilizing a group controller is not a complete solution to the GDI protection
problem. There are many other opportunities for the insiders to acquire
group dynamic information.

The scheme presented in [52] is the earliest attempted to extend two-party
Diffie-Hellman protocol to group applications. This scheme, sometimes re-
ferred to as ING [58], arranges members in a logical ring and is executed in
(n− 1) rounds, where n is the group size. Therefore, every member obtains
the group size by simply counting the number of rounds that he performed.

Similarly, the schemes presented in [53] and [54], referred to as the STR
and BD respectively, also reveal the group size. Here, each member receives
the broadcast messages from all other members, and therefore must know
the existence of other group members.

In [66] [67] [61], logical tree structures are introduced to manage the for-
mation of the group keys. In these schemes, each member performs L rounds
and holds L subgroup keys, where L is the depth of the key tree. Since L is
proportional to the logarithm of the group size, the group members know
at least the order of the group size.

Another important set of contributory key management schemes are
GDH.1, GDH.2 and GDH.3 [56]. These schemes arrange group members
in a logical chain and accumulate the keying materials by traversing group
members one by one. In GDH.1/2, the kth member receives k or k +1 mes-
sages from the (k−1)th member. Thus, the number of the messages reveals
information about the group size. The users who are closer to the end of
the chain have more accurate information about the group size. GDH.3 is
executed in four stages [56]. In the second and the fourth stage, the last
user on the key chain broadcast n messages to the rest of the group, and n
is the group size. In all three schemes, the group size information is revealed
by the size of keying messages.

8.5.3 The Cost of Preventing GDI leakage

It is seen that hiding GDI in contributory schemes is a very difficult task.
Therefore, we suggest using the centralized key management schemes for
the applications with confidential GDI. However, if the centralized schemes
cannot be employed and GDI must be protected, which is a very rare case,
a possible solution is to use GDH.3 with two modifications. The first mod-
ification is to use the group controller. Among all contributory schemes,
GDH.3 has the strongest centrality flavor. The group members are arranged
in a logical chain, and the group member at the end of the chain takes
more responsibility than other members. If the group member at the end
of the logical chain is selected as the group controller, which performs ad-
mission control and coordinates the key formation, a regular member only

228 8. Protecting Membership Information in Secure Multicasting

needs to communication with his two neighbors on the key chain and the
group controller. The second modification is to replace broadcast messages
with multiple unicast messages. This is necessary to prevent GDI leakage
through the size of the broadcast messages. In addition, anti-traffic-analysis
techniques, such as those in [134] [136], should be used to prevent GDI leak-
age to the outsiders. This possible solution yields unbalanced load among
group members and significantly increases protocol overhead and complex-
ity. The high cost and complexity make the GDI protection not practical in
contributory environment. As a summary, contributory key management is
not suitable for applications requiring GDI protection. The centralized key
management scheme should be used for the applications with confidential
GDI.”

8.5.4 More on GDI Leakage Problem

Key management is not the only source, but is a critical source of GDI
leakage. Attacks based on key management are effective, stealthy, and easy
to launch. An attack who registers as a group member or monitors rekeying
traffic near a group member, can obtain a large amount of GDI information
without being detected.

Besides key management, monitoring multicast data delivery is another
dimension for acquiring GDI. For the purpose of debugging, management
and modeling, various tools have been developed to monitoring multicast
communications [73]. If the underlying multicast applications are “coopera-
tive”, i.e. not using any preventive methods, one can obtain GDI using these
tools. Generally speaking, the attacks based on data delivery monitoring
are less attractive than those based on key management for two reasons.
First, encryption and anti-traffic analysis tools, such as onion-routing, can
disable or significantly reduce the effectiveness of these monitoring tools.
Second, these monitoring tools involve high implementation cost. For exam-
ple, many require installing agents in multicast-enabled networks in order
to collect data delivery or group information [73].

8.6 Chapter Summary

This chapter discussed the issues of the GDI disclosure in secure group
communications. Particulary, it first presents several effective methods that
could obtain dynamic group membership information from the current cen-
tralized key management schemes. Then, it presents defense techniques that
could protect GDI, by utilizing batch rekeying and phantom users. The
fundamental tradeoff between the communication overhead and the leak-
age of GDI was studied. Finally, a brief discussion on the GDI problem
in contributory key management schemes was provided. It was argued that

8.6 Chapter Summary 229

contributory schemes were not suitable for applications in which GDI should
be protected.

9
Reducing Delay and Enhancing DoS
Resistance in Multicast Authentication

One security service that has been difficult to provide for multicast is au-
thentication. Existing solutions are either resource-intensive, or introduce
significant delay in authentication. A consequence of the delay overhead
associated with many multicast authentication schemes is that they rely on
receiver-side buffers and are therefore susceptible to denial of service (DoS)
attacks targeted at filling a receiver’s buffer with false packets. Therefore
authentication strategies that allow for less delay and more efficient utiliza-
tion of buffer resources are desirable.

One explanation for the inefficiency associated with multicast authenti-
cation stems from the underlying conceptual formulation of authentication.
Authentication is about trust, and in the context of traditional network
security services, trust is a binary concept. A binary formulation of trust
is a deviation from our natural, social understanding of trust where the
confidence we place in others is not a black-and-white concept, but rather
broken down into many shades of gray.

In this chapter, our objective is to present strategies that reduce the
delay associated with multicast authentication, make more efficient usage
of receiver-side buffers, make delayed key disclosure authentication more
resilient to buffer overflow denial of service attacks, and allow for multiple
levels of trust in authentication. Throughout this chapter, we will focus our
discussion on the popular multicast authentication scheme, Timed Efficient
Stream Loss Tolerant Authentication (TESLA), though our techniques can
apply to other authentication methods based upon the delayed key dis-
closure principle. Like other schemes based upon delayed key disclosure,

232 9. Reducing Delay and Enhancing DoS Resistance

TESLA is susceptible to DoS attacks and is not well-suited for delay-
sensitive applications.

At the heart of our approach is a modification to TESLA, which we
call Staggered TESLA, that employs several message authentication codes
(MACs) that correspond to authentication keys that are staggered in time.
Staggered MACs provide notions of partial authentication and allows for
forged packets to be more readily removed from the buffer, thereby im-
proving usage of the receiver’s buffer. A benefit of partial authentication
is that one may define security policies that allow for partially authenti-
cated packets to pass through the buffer, and thus packets will remain in
the buffer for a shorter duration. In many scenarios accepting partially au-
thenticated packets is unacceptable, and therefore we present two further
techniques that may be used to reduce the delay needed for full authen-
tication. The first strategy requires that the source has a guarantee that
there are no adversaries within a certain network distance of the source. By
having a guarantee of proximity protection, partially authenticated pack-
ets may be accepted as fully authentic. The second strategy for reducing
full authentication delay that we present involves replicating the key dis-
tribution functionality within the network, and having a set of distributed
key distributors transmit the key seeds. A benefit of all of these strategies
is that they mitigate the threat of a buffer overflow DoS attack since an
adversary must conduct a DoS attack at a higher attack rate.

The rest of the chapter is organized as follows. In Section 9.1, we re-
view the related works in multicast source authentication, and give a brief
overview of the conventional TESLA scheme. We explore partial trust and
use it in Section 9.2, where we describe the Staggered TESLA scheme. The
security requirements needed to reduce full authentication delay will be
discussed in Section 9.3. We derive theoretical guidelines for buffer require-
ments and discuss the tradeoffs involved in Staggered TESLA in Section 9.4.
We support the theoretical analysis by conducting simulations and present
the results of the simulations in Section 9.5. Finally, Section 9.6 concludes
the chapter.

9.1 Background Literature and TESLA

9.1.1 Related Work

Source authentication enables receivers to verify that the received data
originated from the claimed source and was not modified. Source authen-
tication in point-to-point communications can be solved by asymmetric
cryptography. Asymmetric cryptography, however, consumes significant
communication and computational resources that cannot be supplied by
resource-limited devices. Source authentication can also be accomplished
through symmetric cryptography by appending MACs to each packet. The

9.1 Background Literature and TESLA 233

problem of authenticating multicast is more complex than the unicast case
when there are untrusted receivers in the multicast group. Simply apply-
ing MACs does not provide source authentication in multicast. Adversarial
group members, who share the same secret key as benign group members,
can easily create packets with MACs using this shared key. Since all users
share the same key, the receivers cannot resolve the source of the packets.

Although digital signatures [13] can be applied to multicast authenti-
cation, they have prohibitive computational and communication overhead.
Gennaro [137] and Wong [138] proposed schemes to mitigate communication
overhead by amortizing a single signature across several packets. Rohatgi
[139] introduced an improved approach that employs k-time signature
schemes and has less delay. Another signature amortization scheme is based
on an information dispersal algorithm that can tolerate certain amount of
packet loss [140, 141]. Recent efforts on signature amortization for multi-
cast authentication have involved distillation codes and have focused on
resistance to denial of service attacks [142]. Another work along these lines
was presented by Lysyanskaya et. al. [143] in which a multicast authentica-
tion scheme based on a combination of digital signatures, hashes and error
correction codes is presented.

Multicast source authentication based on symmetric cryptography has at-
tracted intensive research. Canetti presented a solution to multicast source
authentication based on verifying l different MACs using l different keys
for each message [144]. Unlike the method proposed in this chapter, the
multiple MACs in [144] are calculated using independent keys that are not
temporally linked. Further, their protocol is based on the assumption that
no coalition of w bad receivers can forge packets for a specific receiver,
but fails in the presence of a coalition of more than w users. Perrig con-
structed a signature scheme using one-way functions without trapdoors for
broadcast authentication [145]. Xu and Sandhu [146] proposed two hop by
hop authentication schemes suitable for Internet multicasting that use the
multicast tree and is immune to DoS attack. A consequence of their hop-
by-hop assumption is that intermediate routers are required to be trusted
and secure.

Another popular approach uses delayed key disclosure. Delayed key dis-
closure was first introduced by Cheung [147] to achieve authentication for
link state routing, and was used in the Guy Fawkes protocol to provide
non-repudiation in unicast communication in [148]. Chained Stream Au-
thentication [149,150] and FLAMeS [151] used similar ideas for source au-
thentication in multicast. In delayed key disclosure the sender keeps the
key secret for some intervals of time after sending the data. The receivers
buffer the packets since they do not have the authentication key. A short
time later, the sender discloses the key and the receivers are able to perform
authentication. Using delayed key disclosure introduces two new issues. The
first issue is the buffer requirements at the receiver. Because the receiver
needs to buffer the received packets before it can authenticate them, an

234 9. Reducing Delay and Enhancing DoS Resistance

adversary can launch a DoS attack and fill up the receiver’s buffer with
bogus traffic. The receiver will have to drop packets due to a lack of buffer
space. Second, many applications are sensitive to delay and reducing de-
lay is critical for achieving desirable quality of service. As we shall discuss
later in this chapter, reducing delay in delayed key disclosure schemes can
be accomplished by either employing partial authentication or suitable as-
sumptions about the application’s security policy or the source’s network
neighborhood.

9.1.2 TESLA Overview

Among the many existing schemes employing the delayed disclosure prin-
ciple, the TESLA [152–155] scheme is one of the most popular. We shall
use the TESLA scheme as the basis for our discussions. TESLA is based
on initial loose time synchronization between the sender and the receivers.
TESLA divides time into intervals of equal duration, and each time slot n
is assigned a corresponding key Kn. For each packet generated during time
interval n, the sender appends a MAC that is created using the authen-
tication key Kn. Each receiver buffers the packets, without being able to
authenticate them, until the sender discloses the key Kn by broadcasting
the corresponding key-seed sn. Once sn is disclosed, anyone with sn can
calculate Kn and can pretend to be the sender by forging MACs. Thus,
the use of Kn for creating MACs is limited to time interval n, and future
time intervals use future keys. Further, sn is not disclosed until d time slots
later, where d is governed by an estimate of the maximum network delay
for all recipients.

The keys Kn are derived from sn using a publicly available one-way
function F ′, while the sn are related to each other via a reverse-time chain
of one-way functions. To create the chain of key-seeds, the sender chooses
a terminal seed sl, and generates sl−1 using a one-way function F . The
remaining seeds {s0, s1, · · · , sl} are derived via sl

F→ sl−1
F→ sl−2

F→ ...
F→

s1
F→ s0. The sender uses the seed-chain in the opposite direction (starting

with seed s0) to derive the TESLA keys by applying the one-way function

F ′ via sn
F ′
→ Kn.

When a user receives a packet, he first checks whether the packet is fresh
(i.e. it was sent in a timeslot whose TESLA-key has not been disclosed) or
dated. The receiver discards all dated packets and buffers only the fresh
ones. Once the user receives a TESLA-seed sn, he checks F (sn) = sn−1

to be sure of sn’s authenticity. He derives Kn by Kn = F ′(sn), and au-
thenticates the packets that were sent in timeslot n. The conditions needed
for the verification of the safe keys are collectively referred to as the se-
curity condition for TESLA. The use of chained key seeds also provides
resilience to packet loss. If intermediate key seeds are not received, then
a future key seed may be authenticated by applying the one-way function

9.1 Background Literature and TESLA 235

F multiple times. The one-way function chain additionally allows for the
determination of the packet’s time of creation.

Several modifications are proposed in [153], where receiver buffering is
traded-off at the expense of source buffering as well as a scheme, called con-
current TESLA, that is suitable for different receiver delays. The multiple
MACs used in concurrent TESLA corresponds to multiple instantiations
of the basic TESLA protocol, where each instantiation employs a different
disclosure delay. This differs from the use of multiple MACs that we pro-
pose in Staggered TESLA, where our multiple MACs correspond to a single
instance of TESLA using a single, assumed disclosure delay.

9.1.3 Examination of Trust in TESLA

We now examine the notion of trust in TESLA, and how it can be modified
to achieve partial trust. In TESLA, the seed si for the authentication key
Ki is released at a later time interval i + d, where d is a value greater
than the maximum number of time intervals needed for a message to travel
from the source to all of the receivers. As a result, the total time that a
packet will occupy the receiver’s buffer is approximately d intervals. Let us
now consider the objective of the adversary. The adversary seeks to replace
the content of the packets and make them pass the authentication check
at the receiver. Thus the adversary needs to know the key Ki in order to
successfully forge packets sent during interval i. Since the seed for key Ki is
released during time interval i + d, the receivers do not accept any packets
that claim to have been created during interval i after the start of time
interval i + d. Thus adversaries are unable to forge MACs for interval i.

Now, let us consider what would happen if we send out the seed si earlier
than in conventional TESLA. If si is sent at time interval i+t instead of i+d,
where t < d, then the receivers can authenticate packets sent in interval
i when they receive the first packet sent in interval i + t. Consequently,
the receivers can perform authentication sooner than they would have in
conventional TESLA, and can thus remove the packets from the buffer
earlier than in conventional TESLA. On the other hand, because the seeds
are released earlier, some adversaries can take advantage of this and forge
packets with valid MACs. Thus, authenticated packets cannot be classified
as “fully trusted” and may be viewed as partially authenticated.

Our work is based upon this concept of partial authentication, and we
therefore need to identify which entities are capable of forging packets with
valid MACs at a specific time. Consider Fig. 9.1, where S corresponds to
the sender, R depicts the receiver, and A1 and A2 are two adversaries at
different network delay distances relative to the source and the receiver.
A1 is within a distance of d − t from the source, while A2 is a distance
greater than d− t from S. The distance in the figure represents the relative
network time delay between entities for the transmission of a single key seed
packet. These network delay positions might change from packet to packet

236 9. Reducing Delay and Enhancing DoS Resistance

S

A1

R

A2

i+t

<i+d

i+d

> i+d

d-t

FIGURE 9.1. Network diagram depicting relative network distances for the source
S, and receiver R for a single packet transmission. In TESLA, the network has a
maximum network delay of d. For a single packet containing a key seed, adversary
A1 is within a radius of d − t from the source, while adversary A2 is beyond a
radius d − t.

or interval to interval based upon network conditions. For simplicity, we
assume that both adversaries do not require any time to process and forge
packets. Additionally, we assume that the link between an adversary Aj and
the receiver R is a very high-speed link (perhaps dedicated for the purpose
of performing a DoS) and thus, for discussion, we consider the adversary-
receiver links as 0-delay links. If the key is released in interval i+ t, then all
adversaries within a (d− t) radius of the source, such as A1, will receive the
key before the start of interval i+d. Since the adversaries have 0-forge time
and 0-delay links to the receiver, the receiver will receive packets forged by
A1 before the beginning of time interval i + d. The receiver will perceive
that these packets obey the security condition, and put them into the buffer.
Adversaries outside the circle of radius (d− t), such as A2, will receive the
key after the start of interval i + d. Hence, they cannot forge packets with
valid MACs. Therefore, exactly those adversaries that lie within a radius of
(d − t) delay from the source can successfully forge packets, and belong to
the forge-capable area for that key seed. Hence, if we release the key seed
at interval i + t, any packet from interval i that passes the authentication
check can only be declared as partially trusted since there is a network area
capable of forging that packet.

9.2 Staggered TESLA: Multi-Grade Multicast
Authentication

We now use the idea of releasing key seeds earlier than in conventional
TESLA to achieve multi-grade multicast authentication. We begin the same

9.2 Staggered TESLA: Multi-Grade Multicast Authentication 237

TimeInterval i Interval i+1Interval i-1

Ki Ki+1Ki-1

Disclose si-d
Disclose si-d+1Disclose si-d-1

…

Mj,i

MAC(Ki,Mj,i)

MAC(Ki-d+1,Mj,i)

si-d

…

Mj,i+1

MAC(Ki+1,Mj,i+1)

MAC(Ki-d+2,Mj,i+1)

si-d+1

…

Mj,i-1

MAC(Ki-1,Mj,i-1)

MAC(Ki-d,Mj,i-1)

si-d-1

FIGURE 9.2. Format of the jth packet sent during interval i − 1, i and i + 1 in
Staggered TESLA. There are d MACs attached to each packet, as compared to
only 1 MAC attached to each packet in TESLA.

way as TESLA by splitting time into equal length intervals and assigning
a seed sn to time interval n. The authentication key Kn for interval n
is derived from sn using a publicly available one-way function F ′. Our
motivating observation is that many TESLA authentication keys will not
be known by an adversary at an arbitrary location at an arbitrary time
since it takes time for released keys to arrive at an adversary. Thus, when
forging packets from interval i, which corresponds to key Ki being used to
create MACs, adversaries might also not know Ki−1 or Ki−2. Therefore, if
we use more than just Ki to construct MACs during time interval i, such
as using Ki−1 and Ki−2, many potential adversaries will not be able to
forge the MACs constructed using Ki−1 or Ki−2, much less the MAC that
used Ki. The idea of using MACs from successive TESLA keys leads to a
scheme, which we call Staggered TESLA.

9.2.1 Format of the Packet

In TESLA, a MAC computed by the authentication key corresponding to
the current interval is attached to each packet. Let Mj,i denotes the jth
message sent in interval i, Ki the authentication key used in interval i, and
d the key disclosure delay in units of intervals. The source will disclose the
key seed si−d in interval i. The receiver may use the seed to determine
what time interval a packet was sent. The format of the jth packet sent in
interval i is {Mj,i,MAC(Ki,Mj,i), si−d}.

In Staggered TESLA, we attach additional MACs made from previous
TESLA keys to each packet. Because the seed si−d is released in interval i,
attaching a MAC computed using key Ki−d is useless. Hence, the maximum

238 9. Reducing Delay and Enhancing DoS Resistance

number of MACs that can be attached in each packet is d, and instead of
just attaching one MAC computed by Ki to each packet, we attach up to
d MACs computed using Ki,Ki−1, · · · ,Ki−d+1, respectively. As shown in
Fig. 9.2, the jth packet sent in interval i is

{Mj,i,MAC(Ki,Mj,i),MAC(Ki−1,Mj,i), · · · ,
MAC(Ki−d+1,Mj,i), si−d}. (9.1)

Since Staggered TESLA uses consecutive, chained key seeds, it inherits the
same resilience to packet loss as conventional TESLA.

We now discuss two issues related to the Staggered TESLA packet. First,
we note that a simple and clever attack, which we shall call the shift at-
tack, may be employed on the above packet format. In the shift attack,
the adversary may take advantage of the fact that there is more than one
MAC attached to each packet, and make use of the MACs from previous
packets and shift them to forge later packets. For example, an adversary
can store packet j from interval i, as in (9.1), and use it to forge the packets
for interval i + 1 by sending

{Mj,i,MAC(K
′

i+1,Mj,i),MAC(Ki,Mj,i), · · · ,
MAC(Ki−d+2,Mj,i), si−d+1}. (9.2)

All of the MACs will be valid MACs except for the one using the fake K
′

i+1,
which the adversary could not forge. This attack, however, can easily be
addressed by incorporating interval numbers and sequence numbers, as is
typically done to prevent replay attacks [156], in the implementation when
computing the MACs. Consequently, rather than complicate the notation
in the remainder of the chapter, we stick with the above representation
and note that the additional resources needed for appropriate indexing are
minimal.

Second, the additional overhead for Staggered TESLA is minimal for
many typical multicast scenarios. In particular, since MACs are based on
symmetric cryptography, they are computationally efficient. Further, MACs
produce short message digests, and therefore, the additional computation
and communication requirements introduced by the extra MACs will not
cause significant performance degradation. Consider a typical medium qual-
ity video multicast, where the average frame size is 1300 bytes [157]. In this
case, the addition of a few 20 byte data fields, corresponding to a SHA-1
MAC, is minimal relative to the actual application data. We further note
that one may employ fewer than d MACs, depending on the application’s
security requirements as well as the bandwidth restrictions of the underly-
ing network, to reduce overhead.

9.2.2 Multi-Grade Source Authentication

In Staggered TESLA, the receiver-side buffer is a sequence of queues, as
conceptually depicted in Fig. 9.3. When the receiver receives a packet, it

9.2 Staggered TESLA: Multi-Grade Multicast Authentication 239

TimeInterval i+d-1 Interval i+dInterval i+d-2

Ki+d-1 Ki+dKi+d-2

Disclose si-1
Disclose siDisclose si-2

P

P

No

Drop

Yes

P

No

Drop

Yes

No Yes

Drop Save

FIGURE 9.3. The events in Staggered TESLA and the chained buffer at the
receiver. Partially authenticated packets graduate to lower layers of the buffer as
the key seeds arrive at the receiver.

puts the packet into the top level of the queue, and graduates the packet
to lower layers as additional key seeds arrive and the corresponding MACs
are verified. If any verification fails, the packet is dropped from the queue,
while if it passes, the packet becomes more trusted and graduates to the
next layer of the buffer. This process repeats until the final key seed in-
volved arrives and complete authentication is achieved. The chained buffer
structure is easily implemented by tracking all packets waiting for a key, and
updating which key each packet is waiting for following a partial authentica-
tion. Hence, the chained buffer we propose does not require any additional
overhead compared with the traditional receiver buffer in TESLA.

In Staggered TESLA, if an adversary forges a packet for interval i, some
of the MACs besides the normal TESLA MAC MAC(Ki,Mj,i) are likely to
be wrong. Thus, most likely the receiver will be able to discard the forged
packet before it would need to check MAC(Ki,Mj,i). Further, as a packet
successively graduates from a higher layer to a lower layer in the buffer,
the likelihood the packet is trustworthy increases. Thus, the receiver does
not have to wait for the seed si in order to start authenticating packets.
Instead, the receiver can use whatever seeds he/she has received to begin
the authentication process and can promptly remove bogus packets. As a
result, false packets are removed from the buffer quicker than in conven-
tional TESLA. By contrast, in conventional TESLA, a forged packet will

240 9. Reducing Delay and Enhancing DoS Resistance

1
2

…

d-2

d-1

A5 A4

A3

A1

A2

S

FIGURE 9.4. Adversaries at different locations pose different levels of threats.
The receiver can remove false packets from more distant adversaries, such as A5,
sooner than those from closer adversaries, such as A1. The forge-capable area
shrinks as the packets pass authentication at each layer.

have to remain in the buffer for the complete disclosure delay before its
falseness is revealed.

An individual packet that has had only some of its MACs verified is not
fully authenticated and instead is only partially trustworthy. A packet’s
trustworthiness is directly related to which MACs have been verified and
the amount of MACs employed in Staggered TESLA. Further, there is a
direct relationship between a packet’s position in the buffer and the size
of the forge-capable area. Fig.9.4 shows the location of the sender and
how the forge-capable area changes as key seeds are released. The distance
in the figure denotes the relative time delay between the hosts, and for
simplicity of discussion we consider that the network delay characteristics
are fixed. Consider a packet that is sent during interval i, which has d MACs
appended to it. These MACs are computed using keys Ki−d+1, Ki−d+2, · · ·,
Ki−1, Ki, respectively. Let’s label these MACs as the 1st, 2nd, · · ·, and dth
MAC. During time interval i+1, the seed si−d+1 is released. The receiver is
able to authenticate the 1st attached MAC after it receives the seed si−d+1.
Since we assume the adversary-receiver link has delay 0, the forge-capable
area for the 1st MAC is the circle of delay radius d − 1 from the source.
Adversary A5, which is outside the circle, cannot forge packets with a valid
1st MAC. Thus, if there were an adversary at location A5, the receiver
would be able to remove all bogus packets sent by A5 from the buffer at
this time. However, adversaries within the radius d − 1 circle, i.e A1 to
A4, are able to forge the 1st MACs for any ith interval packet. Thus, the
receiver cannot decide whether those packets are forged packets or not at
this time.

9.2 Staggered TESLA: Multi-Grade Multicast Authentication 241

At time interval i + 2, seed si−d+2 is released. Now the receiver can
perform authentication on the 2nd MACs, and similarly the forge-capable
area shrinks to a region with radius d−2. Now both adversary A5 and A4 are
outside the forge-capable area and both of them are unable to forge packets
with valid 2nd MACs. The receiver can now remove all packets sent by
adversary A4. Similarly, the forge-capable area shrinks as the packets pass
authentication at each layer of the buffer. There is progressively less area
from which an adversary could successfully forge packets. Finally, during
time interval i+d, the seed si is released, the forge-capable area has radius
0, and no adversary can forge packets with valid dth MACs. The receiver
can fully authenticate the packet.

A packet gains trustworthiness as its forge-capable area shrinks. It is
desirable to represent a packet’s trustworthiness by a numerical value γ
between 0 and 1. Such a quantification for partial authentication can allow
for new security policies to be developed whereby partially authenticated
packets are accepted if they have a threshold trust level. For example, a
multimedia application might have strict QoS delay requirements and a
security policy may be specified whereby, if the service quality provided to
the user is not acceptable, the application would release additional packets
whose γ is above a threshold set by the application designer.

The trust representation γ should be consistent across different Staggered
TESLA sessions involving different interval sizes and different amounts of
MACs. Hence, trust should be defined based on which MACs were used
and which MACs were verified. Gambetta [158] defined trust to be the
subjective probability that an agent can perform a particular action before
that action can be monitored and before it affects a decision. There will
be d or fewer MACs employed for each packet in Staggered TESLA, and
a subset of these MACs will be verified. For Staggered TESLA, trust then
corresponds to quantifying the likelihood that there are no adversaries that
could have forged a particular subset of the MACs.

If we have a priori knowledge of the distribution for the delay τ between
the source and a potential adversary, then we could take advantage of such
information to define trust. Suppose that the adversarial delay τ has distri-
bution fτ . Then, for a Staggered TESLA scheme having d disclosure delay,
which uses d MACs, and where the first t MACs have been verified, we may
define trust as

γ(t) = 1 −
∫ d−t

0

fτ (τ)dτ for t < d. (9.3)

In the absence of any a priori distribution, two natural distributions that
we may use are to choose τ to be uniformly distributed over [0, d], or to as-
sume that the network delay corresponds to propagation in two-dimensions
and place the adversaries uniformly within a circle of radius d. This sec-
ond choice is suitable for modeling delay in ad hoc networks, where a re-
lationship between geographic location and network hop counts has been

242 9. Reducing Delay and Enhancing DoS Resistance

shown [159]. This leads to a distribution

fτ (τ) =
{

2τ/d2 for 0 ≤ τ ≤ d
0 for τ > d

. (9.4)

In the case of the first distribution, our trust becomes γ(t) = t/d. On the
other hand, in the second case the trust becomes 1− (d− t)2/d2. This def-
inition of trust corresponds naturally our visualization of the forge-capable
area as a circular region. In both cases γ(d) = 1, which corresponds to
the trust level associated with full authentication of via the conventional
TESLA MAC. We note that when measuring trust, we do not need to know
the position of the adversary, but only which MACs have been verified.

To further illustrate the relationship between trust, network size and
interval length, let us look at an example. Consider a network with a 400ms
delay between the sender and the receiver, and an 800ms delay for the key
release. If the interval size is 200ms, then the key disclosure delay is 4
intervals. There are a total 5 levels of trust. However, if the interval size
is 100ms, the key disclosure delay will be 8 intervals, and there will be
9 levels of trust. There are tradeoffs between the selection of interval size
and the number of levels of trust. If the interval size is large, there are
fewer intervals and seeds needed. Hence, less communication overhead is
needed to transmit those seeds. But at the same time, there are fewer levels
of trust. On the other hand, there will be more levels of trust for smaller
interval sizes. But this requires a longer key chain and larger communication
overhead to distribute key seeds. Applications can select the interval size
according to the network condition and security requirements.

The potential damage that can be caused to the authentication buffer
is related to the adversary’s location– the closer an adversary is to the
source in terms of network proximity, the longer his forged packets will
remain in the buffer. A coalition of adversaries may attempt a collusion
attack, whereby the coalition shares key information with each other in
order to facilitate an attack. We note, however, that in a collusion attack
the adversary that is closest to the source is the most important member
of the coalition as he is the one who will acquire the key seed first. Hence,
even if there is a high-speed connection between adversaries, the strength
of a collusion attack involving L adversaries is no greater than L times
the strength of the closest adversary. Therefore, for the remainder of the
chapter we shall only consider the case of a single adversary. The impact
of the adversary’s location on the receiver’s buffer characteristics will be
further discussed in Section 9.5.3. The end result is that Staggered TESLA
allows the buffer to be more efficiently utilized and provides an advantage
against DoS buffer overflow attacks. We will explore this behavior further
in Section 9.4 and Section 9.5.

9.3 Reduced-Delay Multicast Authentication Schemes 243

1
2

…

d-2

d-1

A5 A4

A3

A1

A2

S

FIGURE 9.5. If there are guarantees that there are no adversaries located within
the dashed circle of the source, packets can be fully authenticated one interval
earlier in Staggered TESLA than in conventional TESLA.

9.3 Reduced-Delay Multicast Authentication
Schemes

In the previous section, we discussed how partially authenticated packets
can be released without waiting for the full authentication delay. We now
examine two strategies that reduce the average delay needed for full au-
thentication. The first scheme requires the assumption that the source has
a guarantee of the trustworthiness of nearby network entities, while the
second approach involves the introduction of additional key distributors,
which are synchronized with the source.

9.3.1 Staggered TESLA with Proximity Protection

Adversaries at different locations pose different threat levels. The notion
of forge-capable areas suggests that complete authentication is possible if
we combine partial authentication with complementary forms of informa-
tion assurance. One possibility, which we refer to as proximity protection,
involves a guarantee that adversaries are not located nearby the source in
network space. Proximity protection allows us to reduce the full authen-
tication delay since, a few time intervals after the receipt of a Staggered
TESLA packet, partial authentication will have reduced the forge-capable
area to a small enough region that proximity protection will provide the
remaining guarantee.

Consider, in Fig. 9.5, a source with proximity protection around his neigh-
borhood so that it is guaranteed that there are no adversaries within the
dashed circle. During interval i + d − 1, where key Ki−1 is released, the

244 9. Reducing Delay and Enhancing DoS Resistance

forge-capable area shrinks to the region within radius 1, which is included
in the dashed circle. No adversaries can forge the MACs computed using
Ki−1 successfully since they are all outside the forge-capable area of key
Ki−1. Even though there is still one MAC left to be authenticated for
each packet from interval i, the receiver can conclude that all packets that
passed the authentic check for key Ki−1 are actually fully authenticated
and release those packets now. In order to save communication overhead,
the source even does not need to attach the MACs corresponding to key
Ki for packets from interval i. The larger the area the source can protect,
the better we can reduce the full authentication delay. The amount of time
intervals that can be reduced for full authentication corresponds to the
largest forge-capable area within the protected region.

When specifying a region in network space near the source that can be
protected, it is necessary to realize that the network delay will vary from
packet to packet in a real network. Consequently, it is important to choose
the region that the source can protect based upon the minimal delay that
would be experienced by a packet traversing a portion of the network. In
particular, since the queuing component of network delay might be 0, the
region that can be protected should be decided based upon the non-variable
components composing network delay, i.e. propagation, transmission and
minimum processing delay. Another way to look at this is that the protected
area must be the intersection of the guaranteed areas for all packets.

In practice, proximity protection can be realized in different ways for
different types of networks. The relationship between network delay and
hop counts suggests that the source needs to have a guarantee that network
entities within a certain hop count are trustworthy. For networks like the
Internet, this corresponds to having a guarantee that device’s within the
same access network are trustworthy. For networks like wireless ad hoc
networks, hop counts can be related to actual physical distance from the
source [159]. Thus, in such networks, network proximity protection becomes
equivalent to physically guaranteeing that there are no adversaries within
a geographic region around the source. Additionally, proximity protection
may be achieved by appropriately employing scheduling and traffic control
at intermediate routers (e.g. an overlay network or an ad hoc network) in
order to ensure a specified level of minimum network delay.

Finally, we note that the authentication delay that can be reduced by
proximity protection is quantized to multiples of the interval length. If an
application needs to further reduce the authentication delay gap between
the protected area and the largest forge-capable area, or the guaranteed
area is too small to include any forge-capable area, it can use smaller in-
tervals at the expense of additional communication overhead. Further, it
might be necessary to shorten the interval length in order to have the reso-
lution to define protected regions on networks where the non-variable delay
component is small.

9.3 Reduced-Delay Multicast Authentication Schemes 245

9.3.2 Distributed Key Distributors

We now present a scheme for reducing full authentication that may be
used when there are no proximity guarantees. This scheme can be used
with traditional TESLA or Staggered TESLA. For simplicity, we focus our
discussion on applying distributed key distributors to TESLA.

We start by examining the total time that a packet will stay in the buffer
in conventional TESLA, then we discuss the factors we can change to reduce
delay. Consider a packet sent at time ti in interval i, which takes li time
units to arrive at the receiver. The first packet in interval i+d that contains
the key seed needed to authenticate the packets from interval i will be sent
at time ti+d. It takes li+d time units for this packet, and hence the key
seed, to be delivered. Upon receiving this packet, the receiver can start
authenticating packets from interval i. Thus, the total time that the packet
from interval i will remain in the buffer is ti+d + li+d − ti − li. Among
these four factors, ti, li and ti+d are unchangeable. We can control li+d,
the time needed for the key to cross the network, by introducing additional
key distributors in the network. These key distributors are trusted by the
source, and possess a copy of the whole set of key seeds prior to the start
of communication. The key distributors must be time-synchronized with
the source, and will send out key seeds at the same pace as the source.
Synchronization can be accomplished by employing standard methods, like
NTP [160], to synchronize a set of distributed servers. The key distributors
do not distribute content, but instead save communication overhead by
sending only one key packet for each interval. The source can be thought as
a special key distributor, which sends out keys and data at the same time.
The use of the key distributors allows us to partition the network, where
each network node belongs to the partition with minimum delay between
the key distributor and itself. This reduces the average delay needed to
receive the authentication key.

The key distributors can be placed at arbitrary locations in the net-
work, though it is desirable to evenly place the key distributors in the
network in order to better reduce the average authentication delay. If the
network topology is known and the size of the network is small, the opti-
mal locations can be obtained by exhaustive search. For larger networks,
the k-means algorithm [161] can be modified to find the optimal locations
for the key distributors. Each object is categorized in one of the k clusters
according to the nearest neighbor policy. In our key distributor problem,
the positions of the n network nodes yield k centroid points, where we place
the k key distributors. However, it should be noted that a slight modifica-
tion to the k-means algorithm is necessary since we do not have control
over the position of the source, and must therefore fix one of the centroid
positions, and determine the locations of remaining k−1 centroids in order
to minimize network delay.

246 9. Reducing Delay and Enhancing DoS Resistance

We now outline a modified k-means algorithm for placing the key dis-
tributors. As input to the algorithm, we assume that we have knowledge of
the relative network delay positioning of each network entity.

1. Begin with an initial choice of k-1 nodes, together with the source as
the centroid points.

2. Partition the whole set of objects into k clusters using the nearest
neighbor policy.

3. Compute the centroid for each cluster and obtained a new set of
centroid points, except the one with the source as it’s centroid.

4. Compute the attribute for the new partition. If it has been changed by
a small enough amount since the last iteration, then stop. Otherwise,
go to step 2.

Just as in the traditional k-means algorithm, our modified k-means algo-
rithm will converge to a local optima. In reality, network delay is variable,
and the positions of the key distributors can be achieved using the estimated
average delay.

Finally, we would like to briefly mention an alternative to distributed key
distributors. The multiple key distributors are responsible just for transmit-
ting key information. It is possible to replicate full multicast server function-
ality in the network and have the replicated servers transmit both content
and key seeds. This has the effect of cutting the network into smaller net-
works for both the content distribution and the key distribution functions.
Such a strategy is merely running multiple Staggered TESLA or TESLA
servers, and therefore we will not consider it further in this chapter.

9.4 Buffer Requirements and Tradeoffs

When using Staggered TESLA, choosing an appropriate buffer size becomes
an important issue. Too large a buffer size is a waste of resources, while
too small a buffer will result in buffer overflow. In this section we revisit
Staggered TESLA and explore the required buffer size for threat scenarios
consisting of different adversarial attack rates. By explicitly calculating
the average buffer size needed for the receivers, we provide guidelines for
designing the buffer to fit the application and threat environment.

We employ a single adversary with the same network layout as depicted
in Fig. 9.1. Let us consider d + 1 successive time intervals at the receiver.
These intervals correspond to the receipt of packets sent in d+1 consecutive
intervals, as represented in Fig. 9.6. We denote the duration of each time
interval by T , which is a constant value. Throughout our discussion, we will
assume that an adversary forges packets corresponding to the interval that

9.4 Buffer Requirements and Tradeoffs 247

…

(d-1)T

T

1st 2nd

t11

1st

t12 t3

…

(m-1)th mth

t1m

T

FIGURE 9.6. d + 1 consecutive intervals at the receiver. We depict the arrivals
from the source during the first interval using blank triangles, and denote their
interarrival times by t1j . The 1st packet received in the d + 1th interval, whether
from the source or the adversary, is depicted by the solid black triangle, and
arrives after t3 seconds after the start of the d + 1th interval.

is associated with the latest key seed the receiver knows. We will revisit
this assumption in Section 9.5.

We will break the calculation of the buffer requirements into two parts:
first, we will consider packets originating from the source, and then we will
consider adversarial packets. After completing these analyses, we combine
the two components to get the total average number of packets in the buffer.

For the first part, we assume that the packets sent by the source follow
a Poisson process with parameter λ1, and thus the interarrival times t1
are governed by an exponential distribution with parameter λ1, p(t1) =
λ1e

−λ1t1 . We assume that there are a total of m arrivals in the 1st interval
that came from the source, and we denote their interarrival times as t12,· · ·,
t1m, as depicted by the blank triangles in Fig. 9.6. Since the interarrivals are
exponentially distributed, we may use the memoryless property to define
t11 to be the time from the start of the 1st interval to the 1st arrival, in
which case t11 has the same distribution as t1.

During the d + 1th time interval, the first packet that arrives, which we
depict with a solid black triangle, may be either from the source or from
the adversary. By the memoryless property of the exponential distribution,
the time period from the boundary of the d + 1th interval to the arrival of
the 1st received packet originating from the source in the d + 1th interval
has the same distribution as t1. Similarly, if the adversary emits packets
as a Poisson process with parameter λ2, then the time period t2 from the
boundary of the d + 1th interval to the 1st received packet originating
from the adversary in the d + 1th interval has exponential distribution
with parameter λ2, p(t2) = λ2e

−λ2t2 . Hence, the time period t3 from the
boundary of the d + 1th interval to the 1st received packet in the d + 1th
interval is the minimum of t1 and t2, t3 = min(t1, t2). Assuming that t1 and
t2 are independent, then t3 has exponential distribution with parameter
λ1 + λ2, i.e. p(t3) = (λ1 + λ2)e−(λ1+λ2)t3 .

Packets originating from the source during interval i can be authenticated
when the receiver receives the first packet sent during interval i+d because
the packet contains the key seed needed to recover the authentication key
Ki. In Fig. 9.6, all packets received in the 1st interval will be authenticated

248 9. Reducing Delay and Enhancing DoS Resistance

after the receiver receives the 1st packet in the d + 1th interval. Therefore,
the total time W these packets will stay in the buffer are

1st W = dT + t3 − t11

2nd W = dT + t3 − (t11 + t12)
...

...

mth W = dT + t3 −
m∑

i=1

t1i. (9.5)

The expected value of W is

E[W] =
∞∑

m=0

E[W |M = m]pm, (9.6)

where pm is the probability of having m packets from time interval 1. The
expected value of W conditioned on the total number of arrivals that orig-
inated from the source M is the average of the total time these M packets
will stay in the buffer. Thus,

E[W |M = m]

=
∫

· · ·
∫

mdT + mt3 −
∑m

i=1 (m − i + 1)t1i

m

p(t11, · · · , t1m, t3)dt11 · · · dt1mdt3. (9.7)

Since t11, t12, · · ·, t1m are from independent exponential distributions with
parameter λ1, and t3 has exponential distribution with parameter λ1 + λ2,
the expected values are 1

λ1
and 1

λ1+λ2
, respectively. Hence, (9.7) can be

simplified as

E[W |M = m]

= dT +
1

λ1 + λ2
−
∑m

i=1(m − i + 1)
mλ1

= dT +
1

λ1 + λ2
− (m + 1)

2λ1
. (9.8)

Substituting (9.8) into (9.6) and noting that M has Poisson distribution
with parameter λ1T , yields

E[W] = dT +
1

λ1 + λ2
− λ1T + 1

2λ1

= dT − T

2
+

1
λ1 + λ2

− 1
2λ1

. (9.9)

We will let N1(t) stand for the number of packets that originated from
the source and are in the buffer at time t, while we will denote α(t) to be

9.4 Buffer Requirements and Tradeoffs 249

�tτ1 τ2

Packet 1

Packet 2
Delay W1

Delay W2

0

1

2

3

4

5

6

7

8

N ()1 τ

α τ()

β τ()

N
u

m
b

er
o

f
A

rr
iv

a
ls

(
)

α
 τ

N
u

m
b

er
o

f
D

ep
a

rt
u

re
s

(
)

β
 τ

FIGURE 9.7. Arrival and departure process, α(t) and β(t), for packets arriving
at a receiver.

the number of packets originating from the source that the receiver receives
and β(t) to be the number of packets the receiver authenticates until time
t. Further, let Wi be the time spent in the buffer by the ith received packet
originating from the source. The time average of N1 up to time t is

N1t =
1
t

∫ t

0

N1(τ)dτ . (9.10)

Usually N1t changes with time t, but it tends to a steady-state value, N1,
as t increases, N1 = limt→∞ N1t. Similarly, the steady-state arrival rate of
packets originating from the source during [0, t] is defined as

λ1 = lim
t→∞

α(t)
t

. (9.11)

The average time in the buffer spent by a packet that originated from the
source is

W = lim
t→∞

∑α(t)
i=1 Wi

α(t)
. (9.12)

The arrival and removal of the packets sent by the source is shown in Fig.
9.7. The arrival process follows a single increase model, whereas the removal
process is a multiple decrease model since many packets are flushed from
the buffer simultaneously. From Little’s Theorem [162], the relationship
between N1, λ1 and W is N1 = λ1W . Assuming ergodicity in the arrival
process, we may equate the time average W with the ensemble average
E[W] to get N1 = λ1E[W].

The derivation of the average time to remove a false packet is similar
to the above calculation. The receiver does not need to wait for the full

250 9. Reducing Delay and Enhancing DoS Resistance

disclosure delay period d to remove false packets in Staggered TESLA. Let
d′ be the number of intervals needed to remove a forged packet. Then the
expected total time W ′ that a forged packet will stay in the buffer is

E[W ′] = d′T − T

2
+

1
λ1 + λ2

− 1
2λ2

. (9.13)

From Little’s Theorem, the average number of false packets N2 can be
expressed as N2 = λ2W

′. Again from the assumption of the ergodicity of
the arrival process, we can equate W ′ with E[W ′]. Thus N2 = λ2E[W ′].

The packets in the buffer either originate from the source or from the
adversary. Hence, the total average number of packets N in the buffer is
the sum of those originating from the source and those from the adversary,

N = N1 + N2. (9.14)

We calculated the average number of packets in the buffer for different
attack rates and for varying amounts of MACs employed in Staggered
TESLA. The values were calculated according to (9.14), and are presented
in Table 9.1, where the interval length was 200ms, the delay disclosure
was 4 intervals, and the mean interarrival time from the source was 40ms.
The first line of the table corresponds to the average interarrival time of
the adversary’s packets in units of ms. An infinite adversarial interarrival
time corresponds to no adversary. If we place the adversary at a distant
location relative to the source, the single MAC case, which corresponds to
conventional TESLA, has d′ = 4 intervals. Similarly, in this scenario, when
we use 4 MACs, the number of intervals needed to purge forged packets
is d′ = 1. From this table, we see the advantage that Staggered TESLA
provides as we increase the attack rate.

One way to think of the system is as an M/G/∞ queue with two classes
of arrivals, one from the source and the other from the adversary. These
two arrivals are independent Poisson processes with different parameters
and hence their sum is simply another Poisson process with parameter
equal to the sum of the parameters of the two classes. These two classes
of arrivals, however, have different service characteristics. Forged packets
have a service time that depends on the availability of authentication keys,
while non-forged packets must wait the full disclosure delay to be fully
authenticated.

TABLE 9.1. (Theoretical) Average Number of Packets in Buffer
Rate(ms) ∞ 40 20 10 5 2

#MACs= 1 18.0 35.0 52.5 87.5 157.5 367.5

#MACs= 2 18.0 30.0 42.5 67.5 117.5 267.5

#MACs= 3 18.0 25.0 32.5 47.5 77.5 167.5

#MACs= 4 18.0 20.0 22.5 27.5 37.5 67.5

9.5 Simulations and Performance Analysis 251

S

A

R

40ms 600ms

1ms

FIGURE 9.8. The arrangement of the source (S), receiver (R), and adversary (A)
in the simulations. The connection between each pair of participants represents
the aggregate link.

9.5 Simulations and Performance Analysis

We performed a series of event-driven simulations to evaluate the perfor-
mance of Staggered TESLA, and techniques to reduce the full authentica-
tion delay. The first set of simulations, presented in Section 9.5.1 through
Section 9.5.2, study the multi-grade property of Staggered TESLA. In these
simulations, we assume there is no variability in the link delays. This allows
us to deduce the effect of the adversary’s network position on the buffering
and authentication process. The second set of experiments, presented in
Section 9.5.4, involves a more general network with variable delay links.

9.5.1 Simulations on Multi-Grade Authentication

The first set of experiments analyzes the improvement to the utilization of
the receiver’s buffer, as well as the impact that an adversary’s location has
on the buffer’s behavior. We conducted two simulations that involved one
sender, one receiver and one adversary, as shown in Fig. 9.8. In this setup,
we abstracted the possible existence of multiple hops between each entity
by representing the connection between each pair by a single, effective link.
The first simulation we conducted is designed to show the effective usage
of the receiver’s buffer and the speed at which the receiver removes forged
packets from the buffer when the adversary is at a fixed location. The
second simulation shows how the performance of Staggered TESLA changes
for specific locations of the adversary relative to the source and receiver.
In both simulations, we collected statistics for the number of packets in
the buffer and calculated the percentage of packets that actually originated
from the source. Additionally, we recorded the total time needed to purge
a forged packet from the buffer.

For both simulations, we set the length of a time interval to be T =
200ms, and the key disclosure delay to be 4 intervals. Both the source and
the adversary send out packets as a Poisson process. The source sends out
packets with an average of interarrival time of 40ms, which is a typical send-
ing rate for MPEG-4 video [157]. The average interarrival time of packets

252 9. Reducing Delay and Enhancing DoS Resistance

from the adversary is a parameter in the first simulation, and fixed at 5ms
in the second simulation. The network delay between the source and the
receiver was set to 600ms. We assumed that the adversary has a fast link
to the receiver with a delay of only 1ms. The delay between the source
and the adversary is set to 599ms in the first simulation, and varies in the
second simulation.

The objective of a DoS attack is to keep the receiver’s buffer as full
as possible. We now look at the strategic issues governing the adversary’s
attack. An adversary has to decide which interval he will attempt to forge
packets for before he transmits those packets. On one hand, an adversary
does not want to send “old” packets that have already violated the TESLA
security condition, as these will be immediately discarded by the receiver.
On the other hand, if the adversary knows the key seeds before the receiver,
he also does not want to release those seeds to the receiver because giving
new key seeds to the receiver will help the receiver free the buffer even
faster. Thirdly, the adversary also wants to make the bogus packets stay
in the buffer as long as possible. Thus, the adversary should forge packets
corresponding to the interval associated with the latest key seed that the
receiver knows.

In order to reveal the behavior of Staggered TESLA under the worst
possible threat scenarios, we empower the adversary by giving him knowl-
edge of the difference between the sender-to-receiver network delay and the
sender-to-adversary-to-receiver network delay. From the knowledge of the
network delays, the adversary can figure out the newest key the receiver will
know when he receives forged packets. The adversary should then transmit
packets from the interval that corresponds to the release of that key. If
the adversary has some of the keys to calculate the attached MACs, those
MACs will pass the authentication check. If the adversary does not have
the keys, he will fake those MACs with random bits. Those MACs will fail
in the authentication check. The closer the adversary is to the source, the
sooner he receives the key seeds and thus can attach more valid MACs to
the packets, requiring a longer time for the receiver to remove the forged
packets. In the worst case, if the adversary knows all the key seeds except
the latest, it will take the receiver the full disclosure delay to flush bogus
packets from the buffer.

9.5.2 Performance Analysis of Staggered TESLA

We now examine different sending rates for the adversary and the effect
these rates have on the performance of Staggered TESLA. In order to gauge
the efficiency of the staggered MACs to remove packets from the buffer, we
set the buffer size to be sufficiently large so that buffer overflow does not
occur for all adversarial transmission rates. We measured the number of
packets in the receiver’s buffer and calculated the proportion of packets in
the buffer that originated from the source. Additionally, we computed the

9.5 Simulations and Performance Analysis 253

0 0.5 1 1.5 2 2.5 3

x 10
4

0

100

200
Number of Packets in Buffer

M
ac

=
1

0 0.5 1 1.5 2 2.5 3

x 10
4

0

100

200

M
ac

=
2

0 0.5 1 1.5 2 2.5 3

x 10
4

0

100

200

M
ac

=
3

0 0.5 1 1.5 2 2.5 3

x 10
4

0

100

200

M
ac

=
4

Time (ms)

FIGURE 9.9. The number of packets in the buffer in the first simulation, where the
Source-Adversary link has delay 599ms. The four curves correspond to different
amounts of MACs employed in Staggered TESLA. The adversary starts the DoS
attack at 5 seconds.

total time needed to remove a false packet from the buffer. The simulation
was run for 50s, long enough for the system to achieve steady-state. We
compared the performance for different amounts of MACs in Staggered
TESLA. Since the key disclosure delay was 4 intervals in the simulation,
the maximum number of MACs that could be employed in each packet was
4. Note that when only 1 MAC is attached to each packet, the situation is
precisely conventional TESLA.

In the simulation, the adversary is set to be relatively far away from
the source (at fixed delay of 599ms). In order to demonstrate the behavior
of Staggered TESLA during a normal traffic scenario and to illustrate the
potential damage that our adversary can cause, the first 5 seconds involved
only the source, and the adversary commences his denial of service attack
after that.

Fig. 9.9 shows a realization of the number of packets in the buffer for
the first 30 seconds, when the average interarrival time of packets from
the adversary is 5ms. Before the start of the adversary’s DoS, the number
of packets in the buffer is about 18. The number of packets in the buffer
sharply increases as the adversary starts sending forged packets for all cases.

254 9. Reducing Delay and Enhancing DoS Resistance

The dashed lines depict the average number of packets in the buffer before
the start of the adversary’s DoS, while the solid lines depict the average
during the DoS. When the receiver receives a packet which does not contain
a new key seed, the packet will be put into the buffer. When a packet is
received that provides the key seed for a new key, all the packets in the
buffer with MACs claiming to have been created using the new key will
undergo authentication verification. If the adversary does not have the new
key when he forges packets, those packets are proven false in this layer’s
authentication check and are then discarded. If the new key is the last key
used to compute the MACs in a packet from the source, the packet will be
completely authenticated.

It is clear from Fig.9.9 that when multiple MACs are employed in Stag-
gered TESLA, the number of packets in the buffer is much lower during
a DoS than in the case of conventional TESLA. A full-fledged version of
Staggered TESLA (in this case employing all 4 MACs) is able to signifi-
cantly reduce the average amount of packets in the buffer, even compared
to the cases when only 2 or 3 MACs are used. In Table 9.2, we present the
averaged values of the number of packets during the DoS for a time period
of 45 seconds. The first line of Table 9.2 is the average interarrival time
of packets sent by the adversary, in units of milliseconds. ∞ corresponds
to no adversary, and can be identified with the first 5s of the simulation.
Columns further to the right represent more powerful adversaries capable of
conducting their DoS attack at higher attack rates. In all cases, the number
of packets in the buffer increases as the adversary’s sending rate increases.

The true advantage of Staggered TESLA is revealed when we examine
the results within each column. For a fixed column, i.e. when the sending
rate is fixed, the number of packets in the buffer is lower when there are
more MACs in each packet. A more enlightening phenomenon is observed
when we increase the attack rate of the adversary. For example, examining
the columns for an attack rate of 40ms and 2ms (which corresponds to an
increase in the attack rate by a factor of 20), we see that the number of
packets in the buffer increases roughly by a factor of 10 for conventional
TESLA, but only by a factor of 3 for Staggered TESLA with 4 MACs em-
ployed. Comparing the 4 cases in the table, full-fledged Staggered TESLA
has the best performance.

Staggered TESLA not only decreases the number of packets in the buffer
compared to conventional TESLA, but also improves buffer utilization

TABLE 9.2. Average Number of Packets in Buffer
Rate(ms) ∞ 40 20 10 5 2

#MACs= 1 18.1 33.5 48.6 75.0 133.1 307.1

#MACs= 2 18.1 28.3 40.7 58.8 101.9 227.1

#MACs= 3 18.1 24.8 30.5 44.1 69.8 149.2

#MACs= 4 18.1 20.1 24.3 29.4 38.9 68.8

9.5 Simulations and Performance Analysis 255

efficiency. In Table 9.3, we calculated the average percentage of packets
in the buffer that originated from the source. In all cases, the utiliza-
tion efficiency drops as the adversary’s sending rate increases. For a fixed
sending rate, the efficiency increases as we use more MACs, and shows
the improvement that full-fledged Staggered TESLA provides compared to
TESLA. Further, for full-fledged Staggered TESLA, the buffer utilization
drops slower as we increase transmission rate than it does for conventional
TESLA. Overall, these results mean that Staggered TESLA will provide
improved resilience to buffer overflow attacks.

Overall, the use of multiple, staggered MACs in delayed key disclosure
decreases the buffer requirements and more efficiently uses the buffer. These
improvements are due to the fact that the receiver removes false packets
faster in Staggered TESLA than in conventional TESLA. This can be ex-
plicitly seen in Table 9.4, where we present the average time needed to
remove a false packet from the buffer. When there is only 1 MAC attached
to each packet, it takes the receiver the full delay disclosure time to re-
move false packets. Since the key disclosure delay is 4, it takes the receiver
4 intervals to remove a false packet. Because some packets arrive earlier
in an interval and some arrive later, the average time to remove a false
packet is around 720ms. When there are 2 MACs in each packet, it takes
the receiver 3 intervals to remove a false packet and the average time to
flush false packets is around 520ms. The decrease in time is due to the fact
that the adversary does not have both Ki and Ki−1 when forging packets.
When the number of MACs increases to 3, the number of intervals needed
to remove a false packet decreases to 2. Finally, when there are 4 MACs
appended to each packet, it only takes the receiver 1 interval to remove
forged packets, which yields an average buffer time of around 120ms. In
this case, when the adversary forges the packets, he does not know any of
the keys used to compute the MACs, i.e. Ki, Ki−1, Ki−2 and Ki−3.

9.5.3 Impact of the Locations of Adversaries

We conclude from above discussion that the source should attach d MACs in
each packet to optimize the performance when the adversary is “relatively”
far away. We now examine the relationship that the adversary’s position
has upon Staggered TESLA. We emphasize that the advantages provided
by Staggered TESLA do not depend on the ability of either the source or

TABLE 9.3. Average Percentage of Trusted Packets in Buffer
Rate(ms) ∞ 40 20 10 5 2

#MACs= 1 1 0.56 0.40 0.24 0.14 0.06

#MACs= 2 1 0.64 0.47 0.32 0.19 0.08

#MACs= 3 1 0.74 0.60 0.43 0.28 0.13

#MACs= 4 1 0.88 0.80 0.68 0.55 0.34

256 9. Reducing Delay and Enhancing DoS Resistance

the receiver to locate the adversary’s relative position, nor does it depend
on the ability to formally map out a forge-capable region in the network.
Rather the performance advantages follow strictly from the use of multiple
MACs.

The second simulation was conducted to analyze the effect of the ad-
versary’s position. The adversary’s DoS behavior was fixed throughout all
simulations as a Poisson source with an average sending rate of 5ms delay
between consecutive packets. The adversary was placed at different, con-
stant network delay distances from the source. We measured the number of
packets in the buffer for different locations for the adversary. The average
number of packets in the buffer is shown in Table 9.5. The first row in the
table is the source-to-adversary-to-receiver delay in units of milliseconds. It
was assumed that the adversary had a fast connection with which to attack
the receiver, and thus the adversary-receiver delay was fixed to 1ms. Thus,
the adversary becomes progressively closer to the source as we move from
left to right on the table. The ∞ delay corresponds to no adversaries.

From this table, we see that for scenarios where the adversary is further
away from the source, there is improved buffer behavior as we use more
MACs. On the other hand, when the adversary is closer to the source,
there is little advantage to employing multiple MACs as the number of
packets for different amounts of MACs is practically the same. A second
observation that can be made from this table is that the number of packets
in the buffer for different MACs can be divided into an amount of clusters
that is roughly 1+Delay/T . For example, in the case where Delay = 1ms,
there is a single cluster centered at 150 packets, while for Delay = 400ms
there appears to be three clusters: one at 157.5, one at 116.8, and one
centered around 75. Similar observations can be made when one examines
the average time needed to purge a forged packet, as presented in Table 9.6.

As we discussed earlier, keys sent out at different times will result in
different forge-capable areas. The position of the adversary determines how
many valid MACs he can forge when he sends out the forged packets. Let
us consider a Staggered TESLA packet, sent during interval i, that consists
of 4 MACs, such as

Pi = {Mj,i,MAC(Ki,Mj,i),MAC(Ki−1,Mj,i), · · · ,
MAC(Ki−3,Mj,i), si−4}.

TABLE 9.4. Average Time to Purge a Forged Packet
Rate(ms) ∞ 40 20 10 5 2

#MACs= 1 N/A 724.5 723.5 726.4 724.1 725.5

#MACs= 2 N/A 522.8 521.2 524.0 523.8 522.7

#MACs= 3 N/A 327.5 325.8 327.4 326.9 323.7

#MACs= 4 N/A 125.1 124.7 124.3 121.9 125.8

9.5 Simulations and Performance Analysis 257

1
2

3

4

A1

A4

A3

A5

A2

S

Notable to
forge anyvalid
MACs

Forge-capable
regionof K
only

i-3

Forge-capable
regionof K
andK

i-3

i-2

Forge-capable
regionof K
K andK

i-3 ,

i-2 i-1

FIGURE 9.10. The position of different classes of adversaries, and their cor-
responding forge-capable areas for Staggered TESLA. Here, the key disclosure
delay is d = 4.

As shown in Fig.9.10, when the path from the source to the receiver via
adversary A1 is 600ms (3 intervals), A1 is just outside the forge-capable
area of Ki−3. A1 does not have any of the keys needed to compute the
MACs when he forges the packets. Thus, when there are 4 MACs attached
in the packets, the receiver can remove those forged packets from A1 when
he receives Ki−3. It takes the receiver only 1 interval to remove false packets.
We have depicted the sequence of events leading to the removal of forged
packets in this scenario in Fig.9.11 (a). During time interval i + 3, the
adversary gets Pi and has Ki−4. At the same time, the receiver has received
Pi and also has Ki−4. Recall that we assumed a powerful adversary who
knows the state of the receiver he is attacking, and that the adversary will
therefore forge packets corresponding to the interval associated with the
latest key the receiver knows. Thus, during interval i + 3, the adversary
will create forged packets P

′

i . The adversary did not know any of the keys
Ki, Ki−1, Ki−2 or Ki−3 and hence P

′

i will only stay in the receiver’s buffer
for one interval. In contrast, if only 3 MACs were used in the packets,
the receiver will only be able to remove false packets when he receives the
seed for Ki−2, and the receiver must wait for 2 intervals before removing

TABLE 9.5. Average Number of Packets in Buffer
Delay(ms) ∞ 600 500 400 200 1

#MACs= 1 18.1 133.1 156.4 157.5 158.0 157.2

#MACs= 2 18.1 101.9 115.6 116.8 118.7 148.4

#MAC= 3 18.1 69.8 78.6 77.9 109.3 146.9

#MACs= 4 18.1 38.9 53.2 71.4 110.8 150.6

258 9. Reducing Delay and Enhancing DoS Resistance

false packets. At the extreme case, for conventional TESLA, it will take the
receiver 4 intervals to remove false packets.

Consider adversary A3, whose source-adversary-receiver delay is 2 inter-
vals. He is outside the forge-capable area of Ki−2, but inside the forge-
capable area of Ki−3. If the source attaches 4 MACs, then A3 is able to
forge the 4th MAC correctly. We present the sequence of events for A3 in
Fig. 9.11 (b). A3 receives Pi during interval i + 2, but will create a forged
packet P

′

i during interval i+3. Because A3 knows Ki−3 during time interval
i + 3, the receiver will not be able to reject P

′

i until interval i + 5, when it
gets the seed to calculate Ki−2. Thus, it is actually MAC(Ki−2,Mj,i) that
provides the ability to remove forged packets, and hence MAC(Ki−3,Mj,i)
does not help to remove packets any faster. This explains why attaching
3 and 4 MACs gives roughly the same performance for an S-A-R delay of
400ms in Table 9.5.

Other locations for the adversary follow the same patterns. For adversary
A4, which is 1 interval away, attaching 2, 3 or 4 MACs gives roughly the
same result. Finally, for adversary A5, who can get the key seeds as soon
as the source releases them, only one MAC is able to authenticate packets,
and thus all cases give approximately the same result as TESLA.

An interesting observation can be made if we examine adversary A2, who
is 2.5 intervals from the source. A2 is inside the forge-capable area of key
Ki−3. At first glance, the case should be similar to the scenario for A3 and
have only 3 levels. However, since the adversary receives si−3 in the middle
of an interval, all packets forged before the adversary receives the seed will
have wrong 4th MACs. For some adversarial packets, all 4 MACs are useful
for removing packets, while for others only 3 MACs are useful. Thus, there
are 4 levels for the number of packets in the 500ms column in Table 9.5,
though the improvement of attaching 4 MACs over 3 MACs is not as large
as for the 600ms delay case.

The theoretical values in Table 9.1 are close to the simulation results
in Table 9.2 and 9.5. There are two factors affecting the differences. First,
the theoretical calculations assumed the key seed is always available at the
beginning of an interval for the adversary. In reality, this is not the case,
and this effect is more pronounced when the adversary is far away. The
adversary might receive Pi shortly into the interval, but until that time any
forged P

′

i will use an incorrect si−d and thus will be immediately dropped
by the receiver since it will fail the key seed verification. This results in

TABLE 9.6. Average Time to Purge a Forged Packet
Delay(ms) ∞ 600 500 400 200 1

#MACs= 1 N/A 724.1 707.0 704.8 705.0 704.8

#MACs= 2 N/A 523.8 507.2 504.3 504.8 664.4

#MACs= 3 N/A 326.9 307.2 303.9 461.8 663.0

#MACs= 4 N/A 121.9 177.0 262.8 464.4 666.7

9.5 Simulations and Performance Analysis 259

TimeS:

TimeA:

TimeR:

Pi Pi+1

Pi arrives

Pi arrives Pi+1 arrives

A: has Ki-4

forge Pi'

R: has Ki-4
R: has Ki-3

Time forged Pi's remain in the buffer

Security condition timeout for interval i

Pi+2

i i+1 i+2 i+3 i+4

(a)

TimeS:

TimeA:

TimeR:

Pi Pi+1

Pi arrives

Pi arrives Pi+1 arrives

A: has Ki-3

forge Pi'

R: has Ki-4
R: has Ki-3

Security condition timeout for interval i

Pi+1 arrives

A: has Ki-4

Pi+2

Pi+2 arrives

R: has Ki-2

Time forged Pi's remain in the buffer

i i+1 i+2 i+3 i+4

(b)

FIGURE 9.11. Sequence of events in Staggered TESLA. (a) The case when the
Source (S)-Adversary(A)-Receiver(R) delay is 600ms, (b) The case when the
S-A-R delay is 400ms.

the simulation having slightly lower values, as seen when comparing the
600ms cases with the values from Table 9.1. Second, the theory calculations
assumed that, during each interval, the key seed is always available in the
first packet that arrives at the receiver, though in actuality the first few
packets might fail seed verification. Consequently, packets from interval
i−d remain in the buffer for a slightly longer period of time, and this effect
can be seen in the case where 4 MACs are used. These two effects appear in
different locations in the tables. Overall the discrepancies are small, which
suggests that the theoretical calculations can serve as a good guideline for
determining buffer requirements.

260 9. Reducing Delay and Enhancing DoS Resistance

100ms Delay 200ms Delay

FIGURE 9.12. A grid network topology of 64 nodes. If the source can protect the
region left to the solid line, then the average authentication delay can be reduced
by 100ms. The dashed line is the assurance boundary of 200ms.

9.5.4 Simulation on Reducing Authentication Delay

The second set of experiments compare the full authentication delay and
communication overhead of our two schemes described in Section 9.3. The
simulations were conducted in the ns2 simulation environment with the
network configuration shown in Fig. 9.12. The network is comprised of 64
stationary nodes located on an 8 × 8 grid. The distance between adjacent
nodes is 50m, and the communication range and sensing range are set to be
50m and 100m, respectively. Thus, nodes can only communicate with their
adjacent neighbors. Node 56 is set to be the source, which sends out packets
as a Poisson source with 40ms average delay between successive packets.
For simplicity, broadcast is used as the traffic dissemination pattern in the
simulations. Each node only forwards newly received packets and discards
all old ones. There is a fixed 25ms processing delay at each node before
forwarding each packet. In addition to the variable queuing delay provided
by ns-2, we added a random delay that was uniformly distributed between
0 and 10ms to reduce collisions. The payload of each packet is 1300 bytes,
corresponding to a typical medium quality video [157]. We chose 802.11b for
the ad hoc network, and thus the link bandwidth is 11Mbps. The farthest
node, i.e. node 7, is 14 hops away via the shortest path and has a shortest
path network delay of around 400ms. The addition of queueing delay and
use of an alternative path may result in longer delay. The interval size is
100ms, and key disclosure delay is 800ms.

In Fig. 9.12, the 5-hop neighbors of the source will have delay greater
than 100ms. If the source can employ proximity protection for the region
to the left of the solid line (which denotes the 100ms delay line), then it is
not necessary for the receivers to check the authenticity of the last MAC

9.5 Simulations and Performance Analysis 261

for full authentication. Further, it is not necessary to attach the last MAC
in order to save communication overhead.

The positions of the key distributors are determined by the minimum sum
of network delay according to the partition made by the key distributors.
We placed the distributors by conducting a search to find the best locations
for up to 4 key distributors. For the case of only 1 key distributor, either
node 20 or 29 will be the solution. When 2 key distributors are placed, four
combinations give the same result, nodes 10 and 38, nodes 11 and 45, nodes
11 and 46, nodes 18 and 38. Only one choice of locations is available for 3
key distributors, namely nodes 14, 18 and 45. Either nodes 10, 22, 34, 53 or
nodes 13, 17, 43, 46 can be chosen for the 4 key distributors scenario. The
source sends out packets as a Poisson process with 40ms average interrarival
time, while the key distributors send out one key packet per interval.

The simulation results are shown in Table 9.7, where we compare TESLA,
full-fledged Staggered TESLA, and Staggered TESLA with proximity pro-
tection of 100ms and 200ms delay, and the use of distributed key dis-
tributors with up to 4 key distributors placed in their optimal positions.
The simulation was run for 50 seconds of network time, while in all cases
steady-state was achieved in only a few seconds of simulation time. The five
columns stand for the packet size in bytes, average authentication delay in
ms, maximum authentication delay in ms, packet delivery ratio and the
bandwidth consumed in bytes at each node for each data packet compared
to TESLA. Each data packet consists of 24 bytes Physical Layer Conver-
gence Protocol (PLCP) header and preamble, 24 bytes MAC header, 4 bytes
Frame Control Sequence (FCS), 20 bytes IP header, 16 bytes released key,
MACs (each of size 20 bytes), and the payload. For proximity protected de-
lay of 100ms, only 7 MACs are attached to each packet, while only 6 MACs
are attached to each packet for the proximity protection delay of 200ms.
For key packets used by the key distributors, there is no payload and no
MACs are attached, producing a key-bearing packet of size 88 bytes.

As presented in Table 9.7, both the proximity protection and distrib-
uted key distributor schemes can significantly reduce average authenti-
cation delay. The maximum authentication delay can also be reduced in
most cases. Proximity protection for 100ms/200ms can reduce the average

TABLE 9.7. Comparison of Reduced-Delay Authentication Schemes
Size Avg Max Deliver Bandwidth

TESLA 1408 780.33 1021.99 95.82% 100%

Staggered 1548 783.06 1050.44 95.39% 109.4%

100ms 1528 676.22 939.86 95.09% 107.7%

200ms 1508 580.64 842.08 95.35% 106.6%

Distributed1 1408 663.52 1009.58 95.19% 101.1%

Distributed2 1408 635.96 976.39 95.28% 101.3%

Distributed3 1408 616.61 954.54 95.61% 101.9%

Distributed4 1408 607.52 923.17 95.52% 102.0%

262 9. Reducing Delay and Enhancing DoS Resistance

authentication delay by about 100ms/200ms. With only one key distribu-
tor added in the network, the average authentication delay will decrease by
about 120ms, which is slightly better than proximity protection for 100ms.
Adding extra key distributors will further decrease the average authen-
tication delay. Due to collisions, in all cases the packet delivery ratio is
about 95%. Compared to TESLA, there is an additional 9%, 7% and 6%
communication overhead compared for full-fledged Staggered TESLA, Stag-
gered TESLA with proximity protection of 100ms, and Staggered TESLA
with proximity protection of 200ms. By comparison, there is only a 1-2%
additional communication overhead for key distributors. It should be noted,
however, that the reduced communication cost for distributed key distrib-
utors does not capture the overhead needed to maintain synchronized key
distributors, or the cost needed to install the key distribution functionality
at different locations in the network.

9.6 Conclusion

In this chapter, we have examined the concept of using multi-grade authen-
tication, whereby varying degrees of trust can be incorporated into multi-
cast authentication schemes based on delayed key disclosure. The Staggered
TESLA multi-grade multicast authentication scheme was presented. Stag-
gered TESLA employs multiple, staggered authentication keys that are used
in creating the MACs for authenticating a packet. As a result, the receiver
may partially authenticate a packet by using those authentication keys it
has prior to the arrival of new key seeds. The use of these staggered MACs
not only provides varying levels of authentication, but also reduces the delay
needed to filter forged packets, thereby resulting in more efficient utilization
of buffer resources compared to conventional TESLA. Theoretical results
were provided that yield design guidelines for determining the appropriate
buffer size. Further, theoretical and simulation results showed that the use
of multiple MACs, and hence multiple grades of authentication, allows the
receiver to flush forged packets quicker than conventional TESLA. As a
result Staggered TESLA provides an advantage against a DoS attack as it
requires an adversary to attempt a DoS at a higher attack data rate than is
necessary in conventional TESLA. With the complementary forms of infor-
mation assurance, Staggered TESLA can further reduce full authentication
delay. We also examined a second strategy for reducing full authentication
delay by introducing additional key distributors in the network. Simulations
showed that Staggered TESLA with proximity protection, as well as the use
of additional key distributors, is able to reduce authentication delay com-
pared to TESLA, with a minor increase in communication requirements.
In the next chapter we will examine an application of multicast authenti-
cation, where a delayed key disclosure multicast authentication scheme is

9.6 Conclusion 263

used to establish a certificate and authentication framework for ad hoc and
sensor networks.

10
An Authentication Service for Sensor
and Ad Hoc Networks

10.1 Introduction

Remote sensing applications are becoming an increasingly important area
for research and development due to the critical need for applications that
will perform environmental monitoring, provide security assurance, assist
in healthcare services and facilitate factory automation. In remote sens-
ing scenarios, one or more applications are connected to a sensor network
through a communication network. The sensors in the sensor network make
measurements, such as local temperature or barometric pressure, and com-
municate this data with the appropriate application via the network. Pro-
viding security mechanisms for sensor networks is of critical importance
since sensors will ultimately be used to assist in our daily lives. The au-
thentication of the data source as well as the data are critical concerns since
adversaries might attempt to capture sensors and tamper with sensor data.
Traditional authentication frameworks based on public key cryptography
are not suitable for sensor networks since the sensor network will ultimately
consist of small, low-powered devices that are mobile. The limited compu-
tational and storage resources available to sensors necessitates alternatives
to authentication based on public key certificates.

Recently, a set of security protocols for sensor networks, known as SPINS,
has been proposed [163]. SPINS addresses authentication on limited re-
source sensor networks by introducing two security protocols that rely on
the presence of a more powerful basestation and an initial shared secret
between the basestation and each participating sensor node: SNEP and
µTESLA. SNEP is a simple protocol that provides data confidentiality,

266 10. An Authentication Service for Sensor and Ad Hoc Networks

two-party data authentication, and evidence of data freshness using only
symmetric keys and counters. µTESLA is a modified version of the TESLA
protocol, which performs bootstrapping without using a public key in-
frastructure (PKI) and discloses one key each epoch independently of the
packet rate to provide broadcast authentication. Another work that focused
on authentication for ad hoc networks was presented in [164]. In this chap-
ter, a distributed light-weight model for authentication was presented that
involves network nodes requesting trust references from neighboring nodes
in order to establish the trust relationships needed for network authen-
tication. Each entity maintains a list of trusted entities, and using these
lists trusted communication paths between two arbitrary entities can be
derived. One drawback of this method, however, is its scalability. For large
networks, the size of the trust tables can become prohibitive. Another work
on authentication for ad hoc networks that addressed the issue of scalability
was presented in [165], which introduced the use of cluster heads to reduce
the amount of control packets needed. In this work, the network is divided
into cluster regions, and cluster heads are elected from the regular network
nodes within each cluster. Authentication is provided by using a public key
infrastructure that, unfortunately, is not suitable for small sensor devices.

These methods focus on ad hoc networks employing a flat topology. How-
ever, ad hoc networks have been recently shown to have capacity limita-
tions, and one approach to address this drawback is to employ a hierarchical
ad hoc network. In this chapter we will further explore the advantages of
hierarchical ad hoc networks, particularly focusing on the advantages of
the hierarchical ad hoc sensor network for performing authentication when
compared with flat ad hoc networks. Authentication in hierarchical ad hoc
networks has been essentially untouched, and we are aware of only one
work in this direction [166], which focused on a military environment. The
security of their work is based largely on the assumption that the access
points, which corresponded to unmanned aerial vehicles, are unable to be
compromised. This is an assumption that does not hold in non-military
applications, and therefore we consider a three-tier hierarchical ad hoc net-
work that is suitable for more general remote sensing applications running
on the Internet. We develop an authentication framework for our three-tier
hierarchical sensor network that addresses the hardware resources of the
three-tier network, and employs cryptographic primitives that are appro-
priate for each type of node.

10.1.1 Hierarchical Sensor Network

Mobile ad hoc networking is the ideal architecture for the wireless sen-
sor network since ad hoc networking provides a ubiquitous communication
infrastructure capable of growing and adjusting to sensor dynamics. How-
ever, despite the popularity of flat ad hoc networks for sensor applications,

10.1 Introduction 267

FIGURE 10.1. Three-tier hierarchical ad hoc sensor network.

recent information theoretic studies have indicated the limitations of the
flat topology [167].

Recently, hierarchical ad hoc networks have been proposed as an alter-
native topology to flat ad hoc topologies. Initial measurements indicate
that the hierarchical approach has better performance than flat ad hoc
network [168, 169]. In [169], a three-tier self-organizing hierarchical ad hoc
network is proposed to improve the scalability of ad hoc wireless networks.
A modified hierarchical dynamic source routing (DSR) protocol [170] is
studied. In particular, they observed, when using the same amount of sen-
sor nodes in a given coverage area for flat and hierarchical topologies, that
the system throughput capacity increases, while system delay decreases.
The main reason for these improvements is the reduced number of hops
since most sensor data are destined for the Internet, which is reachable in
a few hops in the hierarchical approach.

In this chapter, we will use the three-tier ad hoc network topology of [169].
This architecture, depicted in Fig. 10.1, consists of three classes of wireless
devices: (B) high-power access points that route packets received via radio
links to the wired infrastructure, (C) mobile medium-powered forwarding
nodes that relay information from sensor nodes to access points, and (D)
low-powered mobile sensor nodes that have limited computing capability.
We have depicted an Internet-based application (A) that is connected to the
sensor network through the access points. This network is ideal for sensor-
driven applications, where traffic flows from the sensors to Internet-based
applications.

There are several key points that differentiate the three-tier hierarchical
sensor network from conventional ad hoc sensor networks:
1. Varying levels of computational power within the sensor network : Con-
ventional ad hoc sensor networks assume all nodes are created equal. The
presence of large numbers of unreliable and energy-constrained sensors

268 10. An Authentication Service for Sensor and Ad Hoc Networks

makes the task of energy-efficient communication and security protocols
essential to the operation of a flat sensor network. However, the three-tier
sensor network consists of three types of devices with different degrees of
computational capabilities.
2. Sensors do not communicate with each other : The purpose behind a
remote sensor network is to feed data to the application, which will make
decisions based on the observations it receives. Sensor nodes route their
packets via higher-level nodes and it is therefore unnecessary for sensor
nodes to communicate and authenticate each other.
3. The forwarding node is a radio-relay : The purpose of the forwarding node
is to relay messages from the sensors to the access points. Forwarding nodes
have two wireless interfaces, one that communicates with SNs, and one that
communicates with APs. They do not necessarily perform measurements
themselves.

10.2 TESLA and TESLA Certificates

Today, the most widely used certification systems are PGP [171] and X.509
[15]. Both rely on public key cryptography, which makes them unsuitable
for devices that are low-powered, or computationally-constrained. These de-
vices should not have to verify an RSA-signature associated with a public
key certificate. Therefore, if we wish to have a certificate-based authenti-
cation system for low-powered devices, we need a certificate structure that
does not employ public key cryptography.

TESLA [152] is a broadcast authentication technique that achieves asym-
metric properties, despite using purely symmetric cryptographic functions
(namely MACs [172]) and thus enables low-powered nodes to perform source
authentication. We now briefly review TESLA. TESLA divides time into
intervals of equal duration. Time slot n is assigned a corresponding key
tKn. For each packet generated during time interval n, the sender appends
a MAC that is created using the secret key tKn. Each receiver buffers the
packets, without being able to authenticate them, until the sender discloses
the key tKn by broadcasting the corresponding key-seed sn. Once sn is dis-
closed, anyone with sn can calculate tKn and can pretend to be the sender
by forging MACs. Thus, the use of tKn for creating MACs is limited to
time interval n, and future time intervals use future keys. Further, sn isn’t
disclosed until d time slots later, where d is governed by an estimate of the
maximum network delay for all recipients.

The keys tKn are derived from sn using a publicly available one-way
function F ′. The sn are related to each other via a reverse-time chain of
one-way functions. To create the chain of key-seeds, the sender chooses
a terminal seed sl, and generates sl−1 using a one-way function F . The
remaining seeds {s0, s1, · · · , sl} are derived via sl

F→ sl−1
F→ sl−2

F→ ...
F→

10.2 TESLA and TESLA Certificates 269

FIGURE 10.2. The steps involved in using TESLA certificates.

s1
F→ s0. The sender uses the seed-chain in the opposite direction (starting

with seed s0) to derive the TESLA keys by applying the one-way function

F ′ via sn
F ′
→ tKn.

When a user receives a packet, he first checks whether the packet is fresh
(i.e. it was sent in a timeslot whose TESLA-key hasn’t been disclosed) or
dated. The receiver discards all dated packets and buffers only the fresh
ones. Once the user receives a TESLA-seed sn, he checks F (sn) = sn−1

to be sure of sn’s authenticity. He derives tKn by tKn = F ′(sn), and
authenticates the packets that were sent in timeslot n.

The framework that we propose in this chapter uses TESLA for authen-
tication of data broadcast by the application. Additionally, TESLA is used
to create TESLA certificates that support entity authentication in the sen-
sor node handoff mechanism (cf. Section 10.7.2). In contrast to the original
TESLA, our TESLA clients (i.e. all network nodes besides the forwarding
nodes) are not bootstrapped using the public key infrastructure, but by the
application sending the initial TESLA key to each network node encrypted
with the appropriate shared key.

10.2.1 TESLA Certs

In Fig. 10.2, we present the entities involved in TESLA certificates, as well
as the steps involved in using TESLA certificates. Much like conventional
public key certificates, we have a certificate authority (CA), who is re-
sponsible for creating the certificates for entity B. A low-powered device,
depicted by D, will contact B to use B’s service.

The steps involved in TESLA certificates are:

270 10. An Authentication Service for Sensor and Ad Hoc Networks

1. The CA periodically issues TESLA certificates for B. During time slot
n, the certificate authority (CA) doesn’t sign the TESLA-certificate with
its private key, but uses the non-disclosed TESLA key tKCAn

to create
a MAC that is included in the certificate. B’s public key is replaced its
authentication key aKBn

, which is encrypted by the CA using the TESLA
key tKCAn

.

CertCAn
(B) =
(IDB , {aKBn

}tKCAn
, TSA,MACtKCAn

(...))

TSA is a timestamp addressing the certificate’s expiration date. The cer-
tificate is sent to B along with the matching authentication key aKBn

:

CA → B :
(CertCAn

(B), {aKBn
}KCA,B

,MACKCA,B
(...)).

2. Sometime between time n and n+d, D contacts B requesting to use B’s
service, D → B : (request).
3. Following the request in step 2, B must prove its identity to node D.
B sends an authentication packet, which consists of the TESLA certificate
and a MAC that was created using B’s authentication key aKBn

:

B → D : (CertCAn
(B),MACaKBn

(request)).

Upon receiving the authentication packet, D measures the freshness of the
certificate by checking the timestamp of CertCAn

(B) to make sure that it
arrived before time n + d, when the CA announces tKCAn

. If CertCAn
(B)

is fresh, D buffers the authentication packet.
4. The CA discloses its TESLA key tKCAn

at time n + d. Upon receiv-
ing tKCAn

, D checks the authenticity of the TESLA certificate by check-
ing MACtKCAn

, then it decrypts B’s authentication key aKBn
and checks

MACaKBn
. User D is able to certify the identity of B as long as it receives

the TESLA certificate CertCAn
(B) before the CA revealed the TESLA key

TKCAn
.

The lifetime of a TESLA-certificate is short. It depends on the disclosure
time of the TESLA key that the certificate authority used when creating
the MAC and encrypting the subject’s authentication key. Choosing a key
that will be disclosed soon lowers the delay in the authentication process
at node D, but results in increased overhead when issuing new certificates.

10.3 Overview of the Authentication Framework

There are two primary goals for the framework: first, to ensure that the
data received by the application (A) is sent by an approved sensor node
(D); second, to verify that the data hasn’t been modified on its way to

10.3 Overview of the Authentication Framework 271

the application. To achieve these goals, an authentication service has to
be realized that authenticates incoming nodes, establishes shared secrets
among them and with the application, keeps track of changes in the network
topology and provides data origin authentication for sensor node data.

As in every authentication service, the proposed framework relies on the
presence of initial trust. It is necessary to get some trustworthy information
about an incoming node before it is allowed to join the network. Information
that is provided by the node is not trustworthy if it is not confirmed by a
trusted entity. Therefore, each node that wants to join the network must
have a personal initial certificate (iCert) that is issued by the network’s
trusted third party (TTP). The TTP is nothing more than a reliable node
that is able to perform RSA signatures, whose public key is known to all
nodes of the network that are able to verify RSA-signatures.

When an access point B or a sensor node D wants to join the network,
the node presents its iCert, which eventually will be checked by the appli-
cation A (because of their role as a radio relay, we don’t consider forwarding
nodes here– their role in the network includes authentication upon request).
If the iCert is valid, A will establish a shared secret KA,B (with B) or KA,D

(with D), which will enable the new node to access the network and com-
municate with the application. Once the node is part of the network, its
iCert becomes less important. As long as B or D doesn’t switch applica-
tions, the trust relationship with the application will last. Instead, it needs
a method to authenticate itself with other network entities that are not the
application, e.g. an access point must be able to authenticate itself with a
sensor node and vice versa. The topology of the ad hoc network may change
frequently, and thus it is desirable for nodes to perform this inter-node au-
thentication on their own, in a fast and flexible manner. The application A
enables them to do so by periodically issuing runtime certificates (cert) for
each access point and sensor node of the network. Since the computation-
ally weak sensor nodes are included in this process, these certs can’t rely
on RSA signatures. As mentioned in Section 10.2.1 a new type of certificate
will be used.

Having this network of authenticated nodes and shared secrets, we can
use the trust relationships to provide a data origin authentication service.
A sensor node D that wants to deliver data, creates a MAC using the secret
key it shares with the application and appends it to the data. The applica-
tion will use the MAC to verify the data’s origin. D creates another MAC
using the secret key it shares with its gateway access point B, which pro-
vides access to the Internet. B will use the MAC to perform access control,
by making sure that D is a valid part of the network before forwarding D’s
data. In case one or more forwarding nodes are located between B and D,
B will answer the challenge that D includes in the data-packet to assure
that the data finally reaches B. While the challenge-response mechanism
can guarantee that the data arrives at the access point, it is neither able
to tell what happened to lost data nor to provide information about who

272 10. An Authentication Service for Sensor and Ad Hoc Networks

dropped it. Since this method is unable to identify the entities involved in
the data delivery, we refer to this mode of data delivery the weak mode of
operation. However, if a sensor node wants to send sensitive data or, for any
other reason, wants each node along the path to be authenticated before
it actually starts sending the data, it can choose to use the assured mode
of data delivery, which will provide authenticated information about those
nodes at the cost of an overhead of message exchange and shared secrets.

In building our authentication framework, we assume each forwarding
node and access point has an RSA-key-pair along with its certificate. We
also assume that they know the TTP’s public key +KTTP . For reference,
at the end of the chapter, we provide a summary of the notation we use in
our framework.

10.4 Certificates

Certificates are the major tool to build an entity authentication service
since they enable entities that don’t share a secret key to establish a trust
relationship. Our framework distinguishes between initial and runtime cer-
tificates. While each node needs an initial certificate to join the network,
the runtime certificates are periodically issued by the application to during
the network’s lifetime. The forwarding nodes are an exception. A forward-
ing node needs a general certificate that is only used once a sensor node
requests assured service (cf. Algorithm 18). In this case, an access point
B checks the forwarding node’s certificate. Therefore, certificates based on
RSA can be used for the forwarding node’s certificate.

10.4.1 Initial Certs

The framework relies on certificates as a means of initial trust. Each access
point or sensor node that wants to join the network must own a certificate
(iCertTTP) issued by the network’s trusted third party.

Access Point

We assume that the access point B is a device of high computational
power and battery resources. This enables B to validate and perform RSA-
signatures. Therefore, each access point has an RSA public and private
key pair (+KA,−KA) and an X.509-certificate (iCertTTP) issued by the
Trusted Third Party TTP , binding this keypair to their identity.

Sensor Node

The sensor node D applies to the trusted third party for its initial certificate
(iCertTTP). This initial certificate is tied to a certain application A that

10.4 Certificates 273

the sensor node plans to connect to.

iCertTTP (D) =
(IDD, {iKD}+KA

, TSTTP , SIGN−KT T P
(...))

The TTP issues this iCert to the sensor node D along with the unique key
iKD. D uses this key to authenticate itself against application A. Since D’s
initialization key is encrypted with A’s public key, only A is able to obtain
the key from the certificate and proof A’s authenticity. If D plans to connect
to several applications D, it can apply for more than one certificate.

10.4.2 Runtime Certs

The purpose of runtime certificates is to maintain authenticity between the
initial authenticated nodes during the networks’s lifetime. As a result of
the forwarding node and sensor node mobility, shared keys become obsolete
and new keys have to be established. The runtime certificates use the trust
relationships between the application and the nodes of the network to create
new trust relationships among them.

Access Points

An access point runtime certificate must be readable by each sensor node
D. Therefore, RSA-based certificates cannot be used. Instead, we will fall
back on TESLA certs:

CertAn
(B) =

(IDB , {aKBn
}tKAn

, TSA,MACtKAn
(...)),

where aKBn
is the access point’s authentication key for slot n. B will use

this certificate to authenticate itself with a sensor node during handoff. The
MACtKAn

(...) proves that this certificate was issued by the application.

Sensor Nodes

The sensor node runtime certificates will be used by an access point B to
check D’s identity during handoff to establish a new shared secret. It con-
tains D’s ID, a timestamp TSA and D’s secret authentication key aKAP,D

encrypted with an ‘access point group key’ gKAP , that every access point
of the network gets during its authentication with the application.

CertA(D) =
(IDD, {aKAP,D}gKAP

, TSA, SIGN−KA
(...))

The signature SIGN−KA
(...) proves that this certificate is issued by the

application.

274 10. An Authentication Service for Sensor and Ad Hoc Networks

10.5 Certificate Renewal

During the lifetime of a network, trust relationships change. Misbehaving
nodes have to be identified and must not be allowed to remain connected
to the network. Therefore, we need a certificate renewal mechanism.

10.5.1 Access Point

The application issues a new certificate for each connected access point B
after a certain period of time. In the beginning of time slot n, A sends to
B the new certificate:

A → B : (CertAn
(B), {aKBn

}KA,B
,MACKA,B

(...)),

where aKBn
is B’s authentication key, which will prove B’s identity to

a sensor node D during handoff. Checking MACKA,B
, B can verify that

this certificate was issued by the application A. To decrease the number
of certificates that have to be issued, a certificate could contain several
authentication keys, each of them encrypted with the TESLA key of a
different time-slot, and the matching MACs at the end. However, in this
chapter we concentrate on one key in each certificate.

10.5.2 Sensor Node

The application issues a new certificate for each connected sensor node D
after a certain period of time. This period of time can be much greater than
the TESLA time slots as the sensor node runtime certificates don’t depend
on the application’s TESLA keys.

A → D : ({CertA(D), aKAP,D}KA,D
,MACKA,D

(...)),

where aKA,D is the authentication key that D uses for sensor node handoff.

10.6 Entity Authentication 275

Algorithm:Access Point Authentication
Result: Authenticity and Shared Secret KA,B

between Application A and Access Point B
B → A : (offer, SIGN−KB

(offer), iCertTTP (B))1

if (A accepts offer) then2

if (SIGN−KB
(offer) valid) then

A → B :
(ok, SIGN−KA

(ok), {KA,B , gKAP }+KB
)

else
A → B : (deny, SIGN−KA

(deny))
end

else
A → B : (LoI, SIGN−KA

(LoI))
end

Algorithm 14: Access Point Authentication Algorithm

10.6 Entity Authentication

10.6.1 Access Point

An access point B isn’t a proper mobile device, as it features a wired connec-
tion to the Internet and is installed at a certain place for a certain purpose.
In the case of a sensor network the purpose is to provide Internet-access
for sensor nodes and with that a connection to their application. There is
a need for authentication of the access point because it will provide access
control at the interface between the application and the sensors. Once an
access point B is physically connected to the wired network, it will contact
its application A and send a service-offer. We assume that B knows the ad-
dress of A and A’s public key +KA. B will sign the offer with its private key
−KB and append its certificate before sending the offer to the application
A (cf. Algorithm 14). If A accepts the offer, it will check the signature with
help of the certificate - otherwise it sends a signed lack of interest(LoI)-
message. If the validation is successful it returns an accept-message includ-
ing a shared secret key KA,B and the ’access point group key’ gKAP (that
will be used in the sensor node handoff-scenario), encrypted with the access
point’s public key +KB and signed with its private key −KA.

The application ↔ accesspoint authenticity as well as the shared secret
key KA,B are the basis for authenticity of the entire network.

10.6.2 Forwarding Nodes

Forwarding nodes are mobile devices. They don’t feature wired connec-
tions and are free to roam between different access points or entire net-
works. In contrast to an access point, a mobile node needs a more flexible

276 10. An Authentication Service for Sensor and Ad Hoc Networks

Algorithm:Sensor Node-Authentication at FN

Result: Authenticity+Shared Secret KB,D between Access Point B
and Sensor Node D;

Authenticity+Shared Secret KA,D between Application A and Sensor
Node D;

D → C : (snReq,MACiKD
(snReq), iCertTTP (D))1

C → B : (snReq,MACiKD
(snReq), iCertTTP (D))2

B → A : (snReq,MACiKD
(snReq), iCertTTP (D),3

IDB,MACKA,B
(snReq))

if (MACiKD
(snReq) valid) then4

A → B : (ok,MACKA,B
(ok), {KB,D}KA,B

,
MACiKD

(ok), {KA,D,KB,D}iKD
)

B → C : (ok,MACKB,D
(ok),

MACiKD
(ok), {KA,D,KB,D}iKD

)
C → D : (ok,MACKB,D

(ok),
MACiKD

(ok), {KA,D,KB,D}iKD
)

else
A → B : (nok,MACiKD

(nok),
MACKA,B

(nok))
B → C : (nok,MACiKD

(nok))
C → D : (nok,MACiKD

(nok))
end

Algorithm 15: Sensor Node Authentication Algorithm

authentication mechanism to support its mobility. The forwarding node is
the only kind of device in the sensor network with two wireless network
interfaces. Its task is to forward data packets sent by sensor nodes, that
can’t reach the access point directly or that can save energy by using the
forwarding node as an intermediate hop.

In the current approach, forwarding nodes only authenticate themselves
if a sensor node wants to send its data in the assured mode (cf. Algorithm
18).

10.6.3 Sensor Nodes

Sensor nodes are devices of high mobility with restricted computational
power. Our goal is to provide a flexible authentication scheme that supports
their mobility and relieves the sensors from intensive computations.

Once a sensor node enters the network, it sends its request to the ap-
plication (cf. Algorithm 15). An intermediate forwarding node C sim-
ply forwards the request. An access point B that receives an sensor node

10.7 Roaming and Handoff 277

Algorithm:Sensor node handoff

Result: Authenticity and a new shared secret KB′,D between the
senor node D and the new access point B′

B′ → D : (apHO,CertAn
(B′),MACaKB′

n
(...))1

D → B′ : (apHO,CertA(D),MACaKAP,D
(...))2

B′ → D : (hoOK, {KB′,D}aKAP,D
,MACaKB′

n
(...))3

Algorithm 16: Sensor Node Handoff

authentication request appends its IDB and a MAC that it creates using the
key it shares with the application A. Once A gets the request, it checks the
certificate. If the certificate is valid, A establishes a shared secret between
the access point B and the sensor node D by returning two instances of a
new key KB,D, one encrypted with D’s initialization key iKD and the other
encrypted with the key it shares with the access point. A also establishes
a shared secret with the sensor node by appending another new key KA,D,
which it also encrypts using iKD. Therefore, after receiving A’s answer, D
shares a secret with its gateway access point B and the application A.

10.7 Roaming and Handoff

The goal of ”roaming” is seamless connection switching. In the hierarchical
sensor network scenario, sensor and forwarding nodes switch between access
points while moving or as a result of load balancing between access points.
Roaming is a challenge for authentication mechanisms as trust-relations
can’t be reused since the network topology is changing quickly. In this
section, we address authenticity problems associated with a forwarding node
or sensor node changing their access point.

10.7.1 Forwarding Nodes

A forwarding node C doesn’t connect to an application A or an access
point B. Since C is not involved in any authentication processes, there are
no shared secrets to update when C leaves the area near an access point.
Thus, a forwarding node never has to perform handoff.

10.7.2 Sensor Nodes

During the lifetime of the network, the sensor node D will continually send
data via the access point B to the application A. When the topology of
the network changes in a way that D loses its connection to B and must

278 10. An Authentication Service for Sensor and Ad Hoc Networks

connect to a new access point B′, the data will no longer be delivered to A
but will be blocked by B′. B′ will then start the handoff-process by sending
an access point handoff request (apHO)-message to the sensor node (cf.
Algorithm 16). Appended to the message is B′’s TESLA certificate and a
MAC that will be used by D to verify the identity of B′ after A reveals
the TESLA key. Next, D answers with its own certificate and a MAC that
it creates using its authentication key aKAP,D. B′ will then send D the
new key KB′,D that is encrypted using aKAP,D, which B′ obtains from
CertCA(D) by decrypting it using the AP group key gKAP . D can obtain
the new key KB′,D.

However, before D can check B′’s identity, it has to wait until A publishes
the TESLA key tKAn

during time slot n + d. Once D receives that key, D
can check B′’s certificate and confirm the identity of B′. Subsequently, D
may resume sending its data to the application by securely sending its data
to B′ using KB′,D.

Switching between different forwarding nodes doesn’t require a sensor
node handoff, since a sensor node initially doesn’t share a secret key with
any forwarding node. However, if the the sensor node is sending data in
assured mode while it is switches forwarding nodes, the assured service can
no longer be provided. In this case the new forwarding node sends an error
message to the sensor node. If the sensor node wants to continue sending
in assured service, it has to reinitiate the service with the new forwarding
node.

10.8 Data Origin Authentication

The framework’s data origin authentication service enables the application
A to check whether the received data are sent by a valid sensor node. The
sensor node D uses the secret key that it shares with the application to
create a MAC that it appends to the data packet. Depending on the sensi-
tivity of the data or the overall trust in the network, D can decide to use the
Weak Mode or the more sophisticated Assured Mode to send the data. The
application authenticates unicast data by appending a MAC created with
the secret key it shares with the relevant node. It gains access to the wire-
less part of the network by appending another MAC that it creates using
the key it shares with the relevant access point. Access points forward only
authenticated application data to avoid Internet rendered attacks against
the wireless devices. Broadcast application data is authenticated using the
TESLA protocol.

10.8.1 Sending Sensor Data in Weak Mode

Since there are frequent changes in the network topology, the sensor node
D doesn’t know if its data will arrive directly at the gateway access point

10.8 Data Origin Authentication 279

B or will first be received by a forwarding node C, that forwards it either
to another forwarding node C ′ or to B. Therefore, the format of the data
packet must depend only on the three entities that will always be involved
in the data sending process (unless a handoff happens): the sensor node D
itself, the gateway access point B and the application A. As shown in Al-
gorithm 17, the packet contains three fields in addition to the actual data:
two MAC-fields and one encrypted random-number-field. If the forwarding
node C receives the packet, C forwards it without doing any modification
to the packet. Once the gateway access point B gets it, B checks the first
MAC. If it is valid, B removes the MAC and the random-number from the
packet, adds a new MAC using the secret key it shares with the applica-
tion and sends it on. After that, it decrypts the random number, adds one,
encrypts the result and sends it back to D. Receiving the result, D can
be sure that the data is on the right way to the application. However, this
challenge-response-mechanism does not enable D to figure out who deliv-
ered the packet to the gateway access point. There also is no certainty that
a misbehaving forwarding node copied the packet without being detected.
A sensor node that wants all nodes on the path to the application to be
authentcated has to choose the assured mode.

Upon the receipt of the data, the application A checks both MACs and,
if both are valid, processes the data. If one of them is invalid, A returns
a data-reject-message (dRej) that includes information about which MAC
caused trouble. It appends two MACs that enable B and D to verify the
application as the sender of the reject-message.

10.8.2 Sending Sensor Data in Assured Mode

The assured mode provides authenticity along the path of the packet at
the cost of additional message exchange, higher computational overhead
and less flexibility. A sensor node D that wants to send in assured mode
first sends an assured-data-request (asdReq) that contains an encrypted
secret key that will be used to install a shared secret between D and the
forwarding nodes along the path. Algorithm 18 shows a case, in which a
forwarding node C relays the packets from D to B. Once C receives the
request, it will sign the packet and append its cert before forwarding it.
The gateway access point B that gets the packet first checks the certificate,
then the signature and, if both are valid, replies with an assured-data-
confirmation (asdConf) that includes the secret key KC,D encrypted with
the forwarding node’s public key. The forwarding node extracts KC,D from
the confirmation packet and uses it to create and append a MAC to the
confirmation message before sending it on to the sensor node. Once the
packet reaches the sensor node, it will check the MAC. If the MAC is valid,
D can be sure, that its gateway access point trusts the forwarding node.

To make sure that the data takes the authenticated path, the sensor node
additionally encrypts the challenge-response random number with KC,D. In

280 10. An Authentication Service for Sensor and Ad Hoc Networks

the case that more than one forwarding node lies on the path between the
sensor node and its gateway access point, each of them appends its signature
to the request before forwarding it in the direction of the access point. The
access point will establish the additional needed shared secrets between sen-
sor and forwarding nodes. D will successively encrypt the random number
using each of the keys in the appropriate sequence before sending data.

10.9 Evaluation

In [173], L. Zhou and Z. Haas provide a general overview of security chal-
lenges and threats in ad hoc networks. In this section we provide basic
security and performance analysis for the proposed framework on the basis
of their security criteria. Throughout the evaluation we assume the TESLA
protocol to be secure and that loose time synchronization exists in the
network.

10.9.1 Security Analysis

The use of wireless links renders an ad hoc network susceptible link attacks.
Secondly, because mobile nodes may be compromised, malicious attacks
have to be considered from outside and inside the network.

Wireless Link Attacks

Since this chapter addresses authentication in hierarchical ad hoc networks,
neither application nor sensor data is protected against eavesdropping at-
tacks on the wireless links. However, installing a confidentiality service on
top of an existing authentication service is a relatively easy task and is one
of the next issues that we will address. The use of message authentication
codes in our framework protects all data against malicious modifications
and information forgery. In our framework, we address the threat of autho-
rization violation by providing an access control service at the access point
level. While we can’t prevent intruders from coming into the network and
sending packets, we can make it uninteresting for them to do so. The most
likely reason for an intruder to use the network’s resources is to connect
to the Internet, which is prevented by access control at the access point.
This access control also restricts battery-consumption attacks by making
it impossible to launch such attacks from outside the wireless part of the
network. The deletion of packets in the wired part of the network is a threat
that we haven’t addressed yet.

Compromised Nodes

Since all initial authentication is done by the application that drives the
network, compromised sensor nodes can’t inflict any damage to the network

10.9 Evaluation 281

other than feeding the application with wrong data. Because of the con-
strained battery resources, denial of service (DoS) attacks launched by com-
promised sensor nodes are unlikely to happen. Even in the case of such an
attack, the application can easily find the origin of the DoS-packets and
end the sensor node’s trust relationships in the entire network. Compro-
mised forwarding nodes don’t have any means to threaten the authenti-
cation framework because they don’t share a secret with the application.
Since the sensor data packets include a challenge-response mechanism, false
forwarding of packets or their deletion by a forwarding node will be detected
by the sensor node. The framework doesn’t provide the possibility to avoid
or detect the malicious duplication and distribution of sensor node packets.
However, any modification to the data will be detected by the access point
or the application and in case the data was sent in assured mode the mali-
cious forwarding node can be identified. If a compromised forwarding node
stops forwarding data to or from the sensor node or continuously modifies
sensor node data that then gets rejected at the access point, the sensor node
must find a different network node to connect to (i.e. another forwarding
node or its gateway access point). A compromised access point threatens
the network’s access control mechanism. It can stop forwarding packets
in both directions. While the forwarding nodes won’t detect the problem,
the sensor nodes will notice the lack of certificate renewals and application
TESLA keys. Since a sensor node is not able to distinguish between a com-
promised forwarding node and a compromised access point circumstance, it
acts exactly the same in this case. However, for an attacker it is much more
complicated to compromise an installed access point than a mobile node.
Access points should feature a high degree of physical protection. Further,
once an attacker manages to compromise the application, the authentica-
tion framework fails. However, if the application itself is compromised there
is no use in protecting the sensor devices or data.

10.9.2 Performance Analysis

We now provide basic performance analysis for our authentication frame-
work according to the major performance criteria of [173]. First, since ad
hoc networks feature a frequently changing topology, security solutions
must be highly adaptable, and secondly, because an ad hoc network may
consist of thousands of sensor nodes, the security mechanisms should be
scalable.

Adaptability

Our proposed architecture is capable of adapting to meet the authenti-
cation needs of the sensors resulting from topology changes. The handoff
procedure described in Section 10.7 facilitates the establishment of new
trust relationships as nodes move without requiring the participation of
the application. This is desirable since it does not burden the application,

282 10. An Authentication Service for Sensor and Ad Hoc Networks

and hence the application does not serve as a bottleneck. Further, our au-
thentication framework does not require the explicit participation of the
forwarding nodes in the authentication of data. We therefore do not have
to update any authentication parameters due to the mobility of the for-
warding nodes.

Scalability

Since our scenario is application-driven, the amount of resources required by
sensors to store their authentication keys remains the same as the number
of sensors increases. Although the amount of keys that must be maintained
by access points and the application will increase, these entities have more
resources to devote to security services.

We have conducted an initial evaluation the amount of time required to
a 4096-bit message authentication using SHA-1, and 2048-bit RSA signing
using the libtomcrypt library [174]. Using gprof on a Pentium-4 2GHz Linux
machine, we measured that SHA-1 required an average of 46 milliseconds to
perform, while RSA signing required an average of 2.26 seconds to perform.
Although this platform is not the same as a typical sensor node, the timing
measurements do allow us to estimate that the RSA operation requires
roughly 4900 times more power than performing SHA-1. We are currently
conducting a more thorough estimation of power consumption on Cerfcubes
[175], which is a typical sensor node device.

In our framework, we have sought to distribute the computational load
according to each layer’s capabilities. Examination of our protocols reveals
that we have not burdened sensor nodes with public key operations. Instead,
due to their use of TESLA certificates, the sensor nodes use computationally
efficient MACs to perform authentication. However, we have placed more
computational burden upon higher-powered access points by requiring them
to perform public key cryptographic operations.

10.10 Conclusion

In this chapter, we presented an authentication framework for an
application-driven hierarchical ad hoc network. Our framework authenti-
cates incoming nodes, maintains trust relationships during topology changes
through a flexible handoff scheme, and provides data origin authentication
for sensor data. Further, the presented framework treats nodes according to
their resource limitations. In particular, weak sensor nodes are not involved
with the creation or validation of public key signatures. Instead, sensor
nodes perform runtime entity authentication by the means of TESLA cer-
tificates, an alternative to the widely used PKI certificates.

10.10 Conclusion 283

Algorithm:Sending Sensor Data in weak mode

Result: The application A can be sure that the received data comes
from sensor node D

D → C : (data, {rn}KB,D
,MACKB,D

(data),1

MACKA,D
(data))

C → B : (data, {rn}KB,D
,MACKB,D

(data),2

MACKA,D
(data))

if (MACKB,D
(data) valid) then3

B → A : (data,MACKA,D
(data),

MACKA,B
(data))

B → C : ({rn + 1}KB,D
)

C → D : ({rn + 1}KB,D
)

end

if (MACKA,B
(data) valid) then4

if (MACKA,D
(data) valid) then

A processes data
else

A → B : (dRej,D,MACKA,B
(dRej,D),

MACKA,D
(dRej,D))

B → C : (dRej,D,MACKB,D
(dRej,D),

MACKA,D
(dRej,D))

C → D : (dRej,D,MACKB,D
(dRej,D),

MACKA,D
(dRej,D))

end
else

A → B : (dRej,B,MACKA,B
(dRej,B),

MACKA,D
(dRej,B))

B → C : (dRej,B,MACKB,D
(dRej,B),

MACKA,D
(dRej,B))

C → D : (dRej,B,MACKB,D
(dRej,B),

MACKA,D
(dRej,B))

end

Algorithm 17: Sending Sensor Data in weak mode

284 10. An Authentication Service for Sensor and Ad Hoc Networks

Algorithm:Sending Sensor Data in assured mode

Result: The application A can be sure that the received data comes
from sensor node D

D → C : (asdReq, {KC,D}KB,D
)1

C → B : (asdReq, {KC,D}KB,D
,

SIGN−KC
(asdReq), CertTTP (C))

if (SIGN−KC
(asdReq) valid) then2

B → C : (asdConf, {KCD}+KC
)

C → D : (asdConf,MACKC,D
(asdConf))

end

D → C : (data, {{rn}KB,D
}KC,D

,MACKB,D
(data),3

MACKA,D
(data))

C → B : (data, {rn}KB,D
,MACKB,D

(data),
MACKA,D

(data))

if (MACKB,D
(data) valid) then4

B → A : (data,MACKA,D
(data),

MACKA,B
(data))

B → C : ({rn + 1}KB,D
)

C → D : ({rn + 1}KB,D
)

end

... similar to weak mode.5

Algorithm 18: Sending Sensor Data in assured mode

10.10 Conclusion 285

Abbreviation Explanation
IDD Identification Number of node D

TSB Time Stamp issued by node B

KB,D Symmetric Key shared by the nodes

B and D

+KA RSA Public Key of application A

−KA RSA Private Key of application A

gKAP Symmetric Key shared by all access

points and the application (group key)

tKAn TESLA Key of application A, valid in

timeslot n

SIGN−KB (offer) Signature over offer by node B using

its private key −KB

SIGN−KT T P (...) Signature over the complete packet by

the TTP using −KTTP

MACKA,D (data) Message Authentication Code of data

using the key KA,D

MACKB,D (...) Message Authentication Code of the

complete packet using the key KB,D

iKD Initial Key of node D issued

by the TTP

aKBn Access Point B’s Authentication Key

disclosed in timeslot n

aKAP,D Sensor Node D’s Authentication key

needed for handoff with access point

iCertTTP (D) Initial Certificate of node D issued

by the TTP

CertAn(B) TESLA Runtime Certificate of access

point B issued by application A,

valid in timeslot n
CertA(D) Runtime Certificate of sensor node D

issued by application A

TABLE 10.1. Notation used in the protocols in Chapter 10

References

[1] S. Paul, Multicasting on the Internet and its Applications, Kluwer
Academic, 1998.

[2] S. Keshav, An Engineering Approach to Computer Networking: ATM
Networks, the Internet, and the Telephone Network, Addison Wesley,
1997.

[3] M. Just, E. Kranakis, D. Krizanc, and P. vanOorschot, “On key
distribution via true broadcasting,” in Proc. 2nd ACM Conf. on
Computer and Communications Security, 1994, pp. 81–88.

[4] C. Blundo, L.A. Frota Mattos, and D. R. Stinson, “Multiple key
distribution maintaining user anonymity via broadcast channels,” J.
Computer Security, vol. 3, pp. 309–323, 1994.

[5] H. Harney and C. Muckenhirn, “Gkmp specification,” Internet Re-
quest for Comments 2094, July 1997.

[6] A. Fiat and M. Naor, “Broadcast encryption,” Advances in Cryptol-
ogy: Crypto ’93, pp. 480–491, 1993.

[7] D.M. Wallner, E.J. Harder, and R.C. Agee, “Key management for
multicast: issues and architectures,” Internet Draft Report, Sept.
1998, Filename: draft-wallner-key-arch-01.txt.

[8] C. Wong, M. Gouda, and S. Lam, “Secure group communications
using key graphs,” IEEE/ACM Trans. on Networking, vol. 8, pp.
16–30, Feb. 2000.

288 References

[9] D. Balenson, D. McGrew, and A. Sherman, “Key management for
large dynamic groups: one-way function trees and amortized initial-
ization,” Internet Draft Report.

[10] R. Canetti, Juan Garay, Gene Itkis, Daniele Miccianancio, Moni Naor,
and Benny Pinkas, “Multicast security: a taxonomy and some effi-
cient constructions,” in IEEE INFOCOM’99, 1999, pp. 708 –716.

[11] R. Canetti, T. Malkin, and K. Nissim, “Efficient communication-
storage tradeoffs for multicast encryption,” Eurocrypt, pp. 456–470,
1999.

[12] R. Poovendran and J.S. Baras, “An information theoretic approach
for design and analysis of rooted tree-based multicast key manage-
ment schemes,” Advances in Cryptology: Crypto ’99, pp. 624–638,
1999.

[13] A. Menezes, P. vanOorschot, and S. Vanstone, Handbook of Applied
Cryptography, CRC Press, 1997.

[14] J. Daemen and V. Rijmen, “AES proposal: Rijndael,” See
http://crsc.nist.gov/encryption/aes, 2000.

[15] ITU-T Recommendation X.509 (1997), “The director: Authentica-
tion framework,” 1997.

[16] K. Atkinson, An Introduction to Numerical Analysis, John Wiley &
Sons, 2nd edition, 1989.

[17] G. Golub and C. Van Loan, Matrix Computations, The Johns
Hopkins University Press, 3rd edition, 1996.

[18] N. Koblitz, A Course in Number Theory and Cryptography, Springer-
Verlag, 2nd edition, 1994.

[19] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Trans. on Information Theory, vol. 22, pp. 644–654, 1976.

[20] I. Ingemarsson, D. Tang, and C. Wong, “A conference key distrib-
ution system,” IEEE Transactions on Information Theory, vol. 28,
pp. 714–720, September 1982.

[21] M. Burmester and Y. Desmedt, “A secure and efficient conference
key distribution scheme,” Advances in Cryptology- Eurocrypt, pp.
275–286, 1994.

[22] M. Steiner, G. Tsudik, and M. Waidner, “Diffie-Hellman key distri-
bution extended to group communication,” in Proc. 3rd ACM Conf.
on Computer Commun. Security, 1996, pp. 31–37.

References 289

[23] K. Becker and U. Wille, “Communication complexity of group key
distribution,” in 5th ACM Conf. on Computer Commun. Security,
1998, pp. 1–6.

[24] G. Ateniese, M. Steiner, and G. Tsudik, “New multiparty authen-
tication services and key agreement protocols,” IEEE Journal on
Selected Areas of Communications, vol. 18, pp. 628 –639, 2000.

[25] M. Steiner, G. Tsudik, and M. Waidner, “Key agreement in dynamic
peer groups,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 11, pp. 769 –780, 2000.

[26] V. Miller, “Use of elliptic curves in cryptography,” Advances in
Cryptology: Crypto ’85, pp. 417–426, 1986.

[27] W. Trappe, Y. Wang, and K.J.R. Liu, “Group key agreement using
divide-and-conquer strategies,” in Conference on Information Sci-
ences and Systems, The John’s Hopkins University, March 2001.

[28] W. Trappe, Y. Wang, and K.J.R. Liu, “Establishment of confer-
ence keys in heterogenous networks,” in Proceedings of the IEEE Int.
Conference on Communications, 2002, pp. 2201–2205.

[29] A. Oppenheim and R. Schafer, Discrete-time Signal Processing,
Prentice Hall, 1989.

[30] T. Cover and J. Thomas, Elements of Information Theory, John
Wiley and Sons, 1991.

[31] D. Huffman, “A method for the construction of minimum redundancy
codes,” Proc. of IRE, vol. 40, pp. 1098–1101, 1952.

[32] D. A. Lelewer and D. S. Hirschberg, “Data compression,” ACM
Computing Surveys, vol. 19, pp. 261–296, 1987.

[33] D. E. Knuth, The Art of Computer Programming, Vol. 3, Sorting
and Searching, Addison Wesley, 1973.

[34] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms,
Mc. Graw Hill, 1998.

[35] A. Turping and A. Moffat, “Practical length-limited coding for large
alphabets,” Computer Journal, vol. 38, pp. 339–347, 1995.

[36] D. C. Van Voorhis, “Constructing codes with bounded codeword
lengths,” IEEE Transactions on Information Theory, vol. 20, pp.
288–290, March 1974.

[37] L. Larmore and D. Hirschberg, “A fast algorithm for optimal length-
limited Huffman codes,” Journal of the ACM, vol. 37, pp. 464–473,
July 1990.

290 References

[38] R. Milidiu and E. Laber, “The warm-up algorithm: a Lagrangian
construction of length restricted Huffman codes,” SIAM Journal of
Computation, vol. 30, pp. 1405–1426, 2000.

[39] M. R. Garey, “Optimal binary search trees with restricted maximal
depth,” SIAM Journal of Computing, vol. 3, pp. 101–110, June 1974.

[40] E. Gilbert, “Codes based on inaccurate source probabilities,” IEEE
Trans. on Inform. Theory, vol. 17, pp. 304–314, 1971.

[41] H. Murakami, S. Matsumoto, and H. Yamamoto, “Algorithm for con-
struction of variable length code with limited maximum word length,”
IEEE Transactions on Communications, vol. 32, pp. 1157–1159, Oct.
1984.

[42] B. Fox, “Discrete optimization via marginal analysis,” Management
Science, vol. 13, pp. 210–216, 1966.

[43] L. A. Wolsey, Integer Programming, John Wiley and Sons, 1998.

[44] T. C. Hu, Integer Programming and Network Flows, Addison Wesley,
1969.

[45] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Op-
timization, John Wiley and Sons, 1999.

[46] A. H. Land and A. G. Doig, “An automatic method for solving
discrete programming problems,” Econometrica, vol. 28, pp. 497–
520, 1960.

[47] E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A sur-
vey,” Operations Research, vol. 14, pp. 699–719, 1966.

[48] D. C. Little, K. G. Murty, D. W. Sweeney, and C. Karel, “An algo-
rithm for the traveling salesman problem,” Operations Research, vol.
11, pp. 972–989, 1963.

[49] W. Trappe, J. Song, R. Poovendran, and K.J.R. Liu, “Key distribu-
tion for secure multimedia multicasts via data embedding,” in IEEE
Int. Conference on Acoustics, Speech, and Signal Processing, 2001,
pp. 1449–1452.

[50] T. Nemetz, “On the word-length of Huffman codes,” Probl. Contr.
and Inform. Theory, vol. 9, pp. 231–242, 1980.

[51] F. Fabris, A. Sgarro, and R. Pauletti, “Tunstall adaptive coding and
miscoding,” IEEE Trans. on Inform. Theory, vol. 42, pp. 2167–2180,
1996.

References 291

[52] I. Ingemarsson, D. Tang, and C. Wong, “A conference key distrib-
ution system,” IEEE Transactions on Information Theory, vol. 28,
pp. 714–720, Sep. 1982.

[53] D. G. Steer, L. Strawczynski, W. Diffie, and M. Wiener, “A secure
audio teleconference system,” in Proceedings on Advances in cryptol-
ogy. 1990, pp. 520–528, Springer-Verlag New York, Inc.

[54] M. Burmester and Y. Desmedt, “A secure and efficient conference
key distribution scheme,” Advances in Cryptology- Eurocrypt, pp.
275–286, 1994.

[55] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Trans. on Information Theory, vol. 22, pp. 644–654, 1976.

[56] M. Steiner, G. Tsudik, and M. Waidner, “Diffie-Hellman key distri-
bution extended to group communication,” in Proceedings of the 3rd
ACM conference on Computer and communications security. 1996,
pp. 31–37, ACM Press.

[57] G. Ateniese, M. Steiner, and G. Tsudik, “Authenticated group key
agreement and friends,” in ACM Conference on Computer and Com-
munication Security, 1998, pp. 17–26.

[58] M. Steiner, G. Tsudik, , and M. Waidner, “Key agreement in dynamic
peer groups,” IEEE TRANSACTIONS ON PARALLEL AND DIS-
TRIBUTED SYSTEMS, vol. 11, no. 8, pp. 769–780, Aug 2000.

[59] Y. Kim, A. Perrig, and G. Tsudik, “Tree-based group key agree-
ment,” ACM Transactions on Information and System Security, vol.
7, no. 1, pp. 60–96, Feb. 2004.

[60] Y. Mao, Y. Sun, M. Wu, and K. J. R. Liu, “Dynamic join-exit amor-
tization and scheduling for time-efficient group key agreement,” in
IEEE INFOCOM, 2004.

[61] W. Trappe, Y. Wang, and K.J.R. Liu, “Establishment of conference
keys in heterogeneous networks,” in proceedings of IEEE Interna-
tional Conference on Communications, 2002, vol. 4, pp. 2201–2205.

[62] Jack Snoeyink, Subhash Suri, and George Varghese, “A lower bound
for multicast key distribution,” in IEEE INFOCOM, 2001.

[63] Y. Mao, Y. Sun, M. Wu, and K. J. Ray Liu, “Join-exit scheduling
for contributory group key agreement,” IEEE/ACM Transactions on
Networking, vol. 14, pp. 1128–1140, Oct 2006.

[64] W. Yu, Y. Sun, and K. J. Ray Liu, “Minimization of rekeying cost for
contributory group communications,” in Proc. IEEE Globecom’05,
Nov-Dec 2005.

292 References

[65] W. Yu, Y. Sun, and K. J. Ray Liu, “Optimizing rekeying cost for
contributory group key agreement schemes,” accepted, IEEE Trans.
on Dependable and Secure Computing, 2007.

[66] G. Tsudik Y. Kim, A. Perrig, “Simple and fault-tolerant key agree-
ment for dynamic collaborative groups,” in Proceedings of the 7th
ACM conference on Computer and communications security, 2000,
pp. 235–244.

[67] L.R. Dondeti, S. Mukherjee, and A. Samal, “DISEC: a distributed
framework for scalable secure many-to-many communication,” in
Proceedings of Fifth IEEE Symposium on Computers and Commu-
nications, 2000, pp. 693 –698.

[68] K. Becker and U. Wille, “Communication complexity of group key
distribution,” in Proceedings of 5th ACM Conf. on Computer Com-
mun. Security, 1998, pp. 1–6.

[69] J. L. Hennessy and D. A. Patterson, Computer Architecture: a Quan-
titative Approach, Morgan Kaufmann publishers, second edition,
1996.

[70] T. H. Corman, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms, The MIT Press and McGraw-Hill Book Company, second
edition, 2001.

[71] “Mbone user activity data,” ftp://ftp.cc.gatech.edu/people/kevin/
release-data, 2003.

[72] K. Almeroth and M. Ammar, “Multicast group behavior in the in-
ternet’s multicast backbone (MBone),” IEEE Communications, vol.
35, pp. 224–229, June 1997.

[73] K Sara and K. C. Almeroth, “Supporting multicast deployment ef-
forts: a survey of tools for multicast monitoring,” Journal of High
Speed Networks, vol. 9, no. 3-4, pp. 191 – 211, 2000.

[74] M. Bellare and P. Rogaway, “Random oracles are practical: A para-
digm for designing efficient protocols,” in ACM Conference on Com-
puter and Communication Security, 1993.

[75] C. Diot, B.N. Levine, B. Lyles, H. Kassem, and D. Balensiefen, “De-
ployment issues for the IP multicast service and architecture,” IEEE
Network, vol. 14, pp. 78 –88, Jan.-Feb 2000.

[76] A. Acharya and B.R. Badrinath, “A framework for delivering mul-
ticast messages in networks with mobile hosts,” Journal of Special
Topics in Mobile Networks and Applications, vol. 1, no. 2, pp. 199–
219, Oct. 1996.

References 293

[77] H-S Shin and Y-J Suh, “Multicast routing protocol in mobile net-
works,” Proc. IEEE International Conference on Communications,
vol. 3, pp. 1416 –1420, June 2000.

[78] M.J. Moyer, J.R. Rao, and P. Rohatgi, “A survey of security issues in
multicast communications,” IEEE Network, vol. 13, no. 6, pp. 12–23,
Nov.-Dec. 1999.

[79] W. Trappe, J. Song, R. Poovendran, and K.J.R. Liu, “Key distrib-
ution for secure multimedia multicasts via data embedding,” Proc.
IEEE ICASSP’01, pp. 1449–1452, May 2001.

[80] M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and B. Plattner, “The
VersaKey framework: Versatile group key management,” IEEE Jour-
nal on selected areas in communications, vol. 17, no. 9, pp. 1614–1631,
Sep. 1999.

[81] Y. Sun, W. Trappe, and K. J. R. Liu, “A scalable multicast key man-
agement scheme for heterogeneous wireless networks,” IEEE/ACM
Trans. on Networking, vol. 12, no. 4, pp. 653–666, Aug. 2004.

[82] K. Brown and S. Singh, “RelM: Reliable multicast for mobile net-
works,” Computer Communication, vol. 2.1, no. 16, pp. 1379–1400,
June 1996.

[83] E. Ha, Y. Choi, and C. Kim, “A multicast-based handoff for seam-
less connection in picocellular networks,” Proc. IEEE Asia Pacific
Conference on Circuits and Systems, pp. 167–170, Nov. 1996.

[84] Universal Mobile Telecommunications System (UMTS) Techni-
cal Specification, Digital cellular telecommunications system (Phase
2+ (GSM)), “Network architecture,” 3GPP TS 23.002 version 5.9.0
Release 5, 2002-12.

[85] J.E. Wieselthier, G.D. Nguyen, and A. Ephremides, “On the con-
struction of energy-efficient broadcast and multicast trees in wireless
networks,” Proc. IEEE INFOCOM’00, vol. 2, pp. 585–594, March
2000.

[86] L. Gong and N. Shacham, “Multicast security and its extension to a
mobile environment,” Wireless Networks, vol. 1, no. 3, pp. 281–295,
1995.

[87] M. Hauge and O. Kure, “Multicast in 3G networks: employment of
existing IP multicast protocols in umts,” in Proceedings of the 5th
ACM international workshop on Wireless mobile multimedia. 2002,
pp. 96–103, ACM Press.

294 References

[88] S. Paul, Multicast on the Internet and its applications, Kluwer Aca-
demic Publishers, 1998.

[89] “Mlisten,” available at www.cc.gatech.edu/computing/Telecomm.
mbone.

[90] K. Almeroth and M. Ammar, “Collecting and modeling the join/leave
behavior of multicast group members in the mbone,” in Proc.
High Performance Distributed Computing (HPDC’96), Syracuse, New
York, 1996, pp. 209–216.

[91] G.K. Zipf, Human Behavior and the Principle of Least Effort,
Addison-Wesley Press, 1949.

[92] A. Leon-Garcia, Probability and Random Processes for Electrical En-
gineering, Addison Wesley, 2nd edition, 1994.

[93] M. M. Zonoozi and P. Dassanayake, “User mobility modeling and
characterization of mobility patterns,” IEEE Journal on Selected
Areas in Communications, vol. 15, no. 7, pp. 1239–1252, Sep. 1997.

[94] A. Puri and T. Chen, Multimedia Systems, Standards, and Networks,
Marcel Dekker Inc., 2000.

[95] U. Horn, K. Stuhlmller, M. Link, and B. Girod, “Robust internet
video transmission based on scalable coding and unequal error pro-
tection,” Image Communication, vol. 15, pp. 77–94, Sept 1999.

[96] H. Zheng and K.J.R. Liu, “Optimization approaches for deliver-
ing multimedia services over digital subscriber lines,” IEEE Signal
Processing Magazine, vol. 17, pp. 44–60, July 2000.

[97] W. Trappe and L.C. Washington, Introduction to Cryptography with
Coding Theory, Prentice Hall, 2002.

[98] C. Herpel, A. Eleftheriadis, and G. Franceschini, “MPEG-4 systems:
elementary stream management and delivery,” in Multimedia Sys-
tems, Standards, and Networks, A. Puri and T. Chen, Eds., pp. 367–
405. Marcel Dekker Inc., 2000.

[99] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang, “A reliable
multicast framework for light-weight sessions and application level
framing,” IEEE/ACM Transactions on Networking, vol. 5, pp. 784–
803, 1997.

[100] J. Lin and S. Paul, “RMTP: A reliable multicast transport protocol,”
in INFOCOM, San Francisco, CA, Mar 1996, pp. 1414–1424.

[101] S. Paul, K. K. Sabnani, J. Lin, and S. Bhattacharyya, “Reliable
multicast transport protocol (RMTP),” IEEE Journal of Selected
Areas in Communications, vol. 15, pp. 407–421, 1997.

References 295

[102] R. Poovendran and J.S. Baras, “An information-theoretic approach
for design and analysis of rooted-tree-based multicast key manage-
ment schemes,” IEEE Trans. on Information Theory, vol. 47, pp.
2824 –2834, 2001.

[103] J. Song, R. Poovendran, W. Trappe, and K.J.R. Liu, “A dynamic
key distribution scheme using data embedding for secure multimedia
multicast,” in Proceedings of SPIE 2001 Security and Watermarking
for Multimedia, San Jose, CA, 2001.

[104] I. Cox, J. Kilian, F. Leighton, and T. Shamoon, “Secure spread spec-
trum watermarking for multimedia,” IEEE Tran. on Image Proc.,
vol. 6(12), pp. 1673–1687, December 1997.

[105] F. Hartung and B. Girod, “Digital watermarking of MPEG-2 coded
video in the bitstream domain,” IEEE Int. Conf. Accostic Speech and
Signal Proc. ’97, pp. 2621–2624, 1997.

[106] C. Podilchuk and W. Zeng, “Image adaptive watermarking using
visual models,” IEEE Journal on Selected Areas in Communications,
vol. 16(4), pp. 525–540, May 1998.

[107] A. Westfeld and G. Wolf, “Steganography in a video conferencing sys-
tem,” in Proc. 2nd International Workshop on Information Hiding,
1998, pp. 32–47.

[108] J. Song and K. J. R. Liu, “A data embedding scheme for H.263
compatible video coding,” IEEE ISCAS, vol. 4, pp. 390–393, June
1999.

[109] J. Song and K. J. R. Liu, “A data embedded video coding scheme
for error-prone channels,” IEEE Trans. on Multimedia, vol. 3, pp.
415–423, Dec. 2001.

[110] J. Nonnenmacher, E. W. Biersack, and D. Towsley, “Parity-based
loss recovery for reliable multicast transmission,” IEEE/ACM Trans.
Networking, vol. 5, pp. 349–361, Aug 1998.

[111] D. Stinson, Cryptography: Theory and Practice, CRC Press, 1995.

[112] J. B. Conway, Functions of One Complex Variable, Springer-Verlag,
2nd edition, 1978.

[113] ITU-T Rec. H263, “Version 2, video coding for low bitrate commu-
nication,” Jan. 1998.

[114] A. Puri and T. Chen, Multimedia Systems, Standards, and Networks,
Marcel Dekker Inc, 2000.

296 References

[115] Y. Sun and K. J. Ray Liu, “Dynamic key graph for hierarchical access
control in secure group communications,” IEEE/ACM Transactions
on Networking, Feb 2008.

[116] Y. Sun and K. J. Ray Liu, “Scalable hierarchical access control in
secure group communications,” in Proc. IEEE INFOCOM’04, March
2004.

[117] D. McGrew and A. Sherman, “Key establishment in large dynamic
groups using one-way function trees,” Technical Report 0755, TIS
Labs at Network Associates, Inc., Glenwood, MD, May 1998.

[118] A. Perrig, D. Song, and D. Tygar, “ELK, a new protocol for efficient
large-group key distribution,” in Proc. IEEE Symposium on Security
and Privacy, 2001, pp. 247 –262.

[119] Y. R. Yang, X. S. Li, X. B. Zhang, and S. S. Lam, “Reliable group
rekeying: a performance analysis,” Proc. of the 2001 conference on
applications, technologies, architectures, and protocols for computer
communications, pp. 27 – 38, August 2001.

[120] B. Sun, W. Trappe, Y. Sun, and K.J.R. Liu, “A time-efficient con-
tributory key agreement scheme for secure group communications,”
Proc. of IEEE International Conference on Communication, vol. 2,
pp. 1159 –1163, 2002.

[121] Mikhail J. Atallah, Keith B. Frikken, and Marina Blanton, “Dynamic
and efficient key management for access hierarchies,” in CCS ’05:
Proceedings of the 12th ACM conference on Computer and communi-
cations security, New York, NY, USA, 2005, pp. 190–202.

[122] Q. Zhang and Y. Wang, “A centralized key management scheme for
hierarchical access control,” in Proceedings on IEEE Global Telecom-
munications Conference (Globecom’04), 2004.

[123] Y. Sun and K. J. Ray Liu, “Securing dynamic membership infor-
mation in multicast communications,” in Proc. IEEE INFOCOM’04,
March 2004.

[124] Y. Sun and K. J. Ray Liu, “Analysis and protection of dynamic
membership information for group key distribution schemes,” IEEE
Journal on Information Forensics and Security, June 2007.

[125] K. Almeroth and B. Quinn, “Ip multicast applications: Challenges
and solutions,” IETF Draft, November 1998, Filename: draft-quinn-
multicast-apps-00.txt.

[126] W. Trappe, J. Song, R. Poovendran, and K.J.R. Liu, “Key manage-
ment and distribution for secure multimedia multicast,” IEEE Trans.
on Multimedia, vol. 5, pp. 544–557, 2003.

References 297

[127] “http://ftp.cc.gatech.edu/people/kevin/release-data,”.

[128] Y. Amir, G. Ateniese, D. Hasse, Y. Kim, C. Nita-Rotaru,
T. Schlossnagle, J. Schultz, J. Stanton, and G. Tsudik, “Secure group
communication in asynchronous networks with failures: Integration
and experiments,” in Proceedings of IEEE ICDCS 2000, April 2000.

[129] G. H. Chiou and W. T. Chen, “Secure broadcasting using the secure
lock,” IEEE Trans. Software Eng., vol. 15, pp. 929–934, Aug 1989.

[130] S. Mittra, “Iolus: A framework for scalable secure multicasting,” in
Proc. ACM SIGCOMM ’97, 1997, pp. 277–288.

[131] S. Banerjee and B. Bhattacharjee, “Scalable secure group communi-
cation over IP multicast,” JSAC Special Issue on Network Support
for Group Communication, vol. 20, no. 8, pp. 1511 –1527, Oct. 2002.

[132] Y. Sun, W. Trappe, and K.J.R. Liu, “An efficient key management
scheme for secure wireless multicast,” Proc. of IEEE International
Conference on Communication, vol. 2, pp. 1236–1240, 2002.

[133] S. Setia, S. Koussih, S. Jajodia, and E. Harder, “Kronos: A Scalable
Group Re-keying Approach for Secure Multicast,” in 2000 IEEE
Symposium on Security and Privacy. IEEE, May 2000, pp. 215–218,
Oakland, CA.

[134] M. Reed, P. Syverson, and D. Goldschlag, “Anonymous connections
and onion routing,” IEEE journal on selected areas in communica-
tions, vol. 16, pp. 482–494, May 1998.

[135] M. Steiner, G. Tsudik, and M. Waidner, “CLIQUES: a new approach
to group key agreement,” in Proceedings of the 18th International
Conference on Distributed Computing Systems, May 1998, pp. 380–
387.

[136] R.E. Newman-Wolfe and B.R. Venkatraman, “High level prevention
of traffic analysis,” in Proceedings of Seventh Annual Computer Se-
curity Applications Conference, Dec. 1991, pp. 102–109.

[137] R. Gennaro and P. Rohatgi, “How to sign digital streams,” Advances
in Cryptology: Crypto ’97, 1997.

[138] C. K. Wong and S. Lam, “Digital signatures for flows and multicasts,”
IEEE/ACM Trans. On Networking, pp. 502–513, 1999.

[139] P. Rohatgi, “A compact and fast hybrid signature scheme for mul-
ticast packet authentication,” in 6th ACM Conference on Computer
and Communications Security, 1999, pp. 93–100.

298 References

[140] J.M. Park, E.K.P. Chong, and H.J. Siegel, “Efficient multicast packet
authentication using signature amortization,” in IEEE Symposium
on Security and Privacy, 2002, pp. 227–240.

[141] J.M. Park, E.K.P. Chong, and H.J. Siegel, “Efficient multicast stream
authentication using erasure codes,” ACM Transactions on Informa-
tion and System Security, vol. 6, no. 2, pp. 258–285, 2003.

[142] C. Karlof, N. Sastry, Y. Li, A. Perrig, and D. Tygar, “Distillation
codes and applications to dos resistant multicast authentication,” in
Network and Distributed System Security Symposium, 2004.

[143] A. Lysyanskaya, R. Tamassia, and N. Triandopoulos, “Multicast au-
thentication in fully adversarial networks,” in IEEE Symposium on
Security and Privacy, 2004, pp. 241–255.

[144] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas,
“Multicast security: A taxonomy and some efficient constructions,”
in INFOCOMM’99, 1999.

[145] A. Perrig, “The BiBa one-time signature and broadcast authentica-
tion protocol,” in Eighth ACM Conference on Computer and Com-
munication Security, November 2001, pp. 28–37.

[146] S. Xu and R. Sandhu, “Authenticated multicast immune to denial-
of-service attack,” in ACM Symposium on Applied Computing, 2002,
pp. 196–200.

[147] S. Cheung, “An efficient message authentication scheme for link state
routing,” in Proceedings of the 13th Annual Computer Security Ap-
plications Conference, December 1997, pp. 90–98.

[148] R. Anderson, F. Bergadano, B. Crispo, J. Lee, C. Manifavas, and
R. Needham, “A new family of authentication protocols,” ACMOSR:
ACM Operating Systems Review, vol. 32, no. 4, pp. 9–20, 1998.

[149] F. Bergadano, D. Cavagnino, and B. Crispo, “Chained stream au-
thentication,” in Proceedings of the 7th Annual Workshop on Selected
Areas in Cryptography, August 2000, pp. 144–157.

[150] F. Bergadano, D. Cavagnino, and B. Crispo, “Individual single source
authentication on the mbone,” in IEEE International Conference on
Mutlimedia & Expo (ICME), August 2000, pp. 541–544.

[151] B. Briscoe, “FLAMeS: Fast, loss-tolerant authentication of multicast
streams,” Technical report, BT Research, 2000.

[152] A. Perrig, R. Canetti, D. Song, J. D. Tygar, and B. Briscoe, “TESLA:
Multicast source authentication transform introduction,” IETF
working draft, draft-ietf-msec-tesla-intro-01.txt.

References 299

[153] A. Perrig, R. Canetti, D. Song, and J. D. Tygar, “Efficient and secure
source authentication for multicast,” in Proceedings of Network and
Distributed System Security Symposium, February 2001.

[154] A. Perrig, R. Canetti, J. D. Tygar, and D. Song, “The TESLA broad-
cast authentication protocol,” RSA Cryptobytes, vol. 5, no. 2, pp.
2–13, 2002.

[155] A. Perrig, R. Canetti, J. D. Tygar, and D. Song, “Efficient authenti-
cation and signing of multicast streams over lossy channels,” in IEEE
Symposium on Security and Privacy, 2000, pp. 56–73.

[156] C. Kaufman, R. Perlman, and M. Speciner, Network Security: Private
Communication in a Public World, Prentice Hall, 1995.

[157] F.H.P. Fitzek and M. Reisslein, “MPEG-4 and H.263 video traces for
network performance evaluation,” IEEE Network, vol. 15, no. 6, pp.
40–54, 2001.

[158] D. Gambetta, Trust: Making and Breaking Cooperative Relations,
Basil Blackwell, Oxford, 1988.

[159] D. Niculescu and B. Nath, “Dv-based positioning in ad hoc net-
works,” Telecommunication Systems, pp. 267–280, 2003.

[160] D. Mills, “Network time protocol (version 3) spec-
ification, implementation and analysis,” IETF RFC,
http://www.ietf.org/rfc/rfc1305.txt.

[161] A. Gersho and R.M. Gray, Vertor Quantization and Signal Compres-
sion, Kluwer Academic, 1992.

[162] D. Bertsekas and R. Gallager, Data Networks, Prentice Hall, second
edition, 1992.

[163] A. Perrig, R. Szewczyk, D. Tygar, V. Wen, and D. Culler, “SPINS:
security protocols for sensor networks,” Wireless Networks, vol. 8,
no. 5, pp. 521–534, 2002.

[164] A. Weimerskirch and G. Thonet, “A distributed light-weight au-
thentication model for ad-hoc networks,” in The 4th International
Conference on Information Securtiy and Cryptology (ICISC 2001),
December 2001.

[165] L. Venkatraman and D. Agrawal, “A novel authentiaction scheme for
ad hoc networks,” in IEEE Wireless Communications and Network-
ing Conference (WCNC 2000), 2000, vol. 3, pp. 1268–1273.

300 References

[166] J. Kong, H. Luo, K. Xu, D. Gu, M. Gerla, and S. Lu, “Adaptive
security for multi-layer ad-hoc networks,” Special Issue of Wireless
Communications and Mobile Computing, 2002.

[167] P. Gupta and P. Kumar, “The capacity of wireless networks,” IEEE
Transactions on Information Theory IT 2000, vol. IT-46(2), pp. 388–
404, 2000.

[168] P. Gupta and P. Kumar, “Internets in the sky: the capacity of
three dimensional wireless networks,” Communications in Informa-
tion Systems, vol. 1(1), pp. 33–50, 2001.

[169] S. Zhao, K. Tepe, I. Seskar, and D. Raychaudhuri, “Routing protocols
for self-organizing hierarchical ad-hoc wireless networks,” in IEEE
Sarnoff 2003 Symposium, 2003.

[170] D. Johnson, D. Maltz, and J. Broch, “DSR: The dynamic source
routing protocol for multihop wireless ad hoc networks,” in Ad
Hoc Networking, edited by Charles E. Perkins. 2001, pp. 139–172,
Addison-Wesley.

[171] P. R. Zimmermann, The official PGP user’s guide, MIT Press, 1995.

[172] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions for
message authentication,” Advances in Cryptology - Crypto ’96, vol.
1109, pp. 1–15, 1996, Lecture Notes in Computer Science.

[173] L. Zhou and Z. Haas, “Securing ad hoc networks,” IEEE Network,
vol. 13, no. 6, pp. 24–30, 1999.

[174] “Libtomcrypt,” www.libtomcrypt.org.

[175] “Intrinsyc product page,” www.intrinsyc.com/products/cerfcube.

Index

ALX Tree, 129
BS Subtree Design, 133
SH Subtree Design, 134
User Subtree Design, 132

Anonymity, 18
Assured Authentication Service, 272
Authentication

Data Origin, 278
Entity, 275
Handoff, 277

Base Station, 116
Batch Rekeying, 190
Bernoulli Distribution, 30
Binomial Occupancy Model, 30
Branch and Bound, 55
Broadcast Key Distribution, 12
Burmester-Desmedt Conference Key

Establishment, 41
Butterfly Conference Key Estab-

lishment, 43

Cellular Network, 116
Certificate

Initial, 271, 272
Renewal, 274

Runtime, 271, 273
CIF, 168
Clipping Operator, 64
Collusion, 13
Communication Optimization, 26
Conference Keying Assistant, 49
Conference Tree, 44
Contributory Key Agreement, 39
Contributory Multi-group Key

Management, 196

Delayed Key Disclosure, 233, 234
Denial of Service, 281
DES, 156, 168
Diffie-Hellman, 39, 41
Distributed Key Distributors, 245
DynamicMembershipModel, 128,

189
Dynamic Source Routing, 267

Embedded Markov Chain, 189
Entropy, 8, 159, 218
Exit Tree Capacity, 73, 81
Exit Tree Residual Rate, 81
External Adversary, 17

302 Index

Foreman Video Sequence, 167
Forwarding Node, 267
Frame Control Sequence, 261

GDH Conference Key Establish-
ment, 41

Group Center, 11, 143
Group Dynamic Information, 203

Artificial GDI, 215
Batch Rekeying, 214
Centralized Key Management,

204
Contributory Key Management

Schemes, 223
Defense Techniques, 213
Insiders, 205
Key ID Attack, 208
Leakage, 204
Maximum Likelihood Estima-

tor, 206
Observed Rekeying Process,

215
Outsiders, 205
Phantom Users, 215
Vulnerability in Prevalent Schemes,

212
Group Key Encrypting Key, 12
Group Key Management Proto-

col, 12
Group Traffic Encrypting Key, 12
Group-of-Picture, 189
Guy Fawkes Protocol, 233

H.263, 168
Handoff, 118, 277
Hierarchical Access Control

Access Matrix, 177
Capability List, 176
Data Group, 176
Data Group Key, 178
Independent Key Trees, 179
Multi-group Key Graph, 179
Rekey Overhead, 185
Resources, 176
Scalability, 192

Service Group, 176
Service Group Key, 178
Storage Overhead, 185

Hierarchical Ad Hoc Network, 267
Hierarchical Group Access Con-

trol, 175
Huffman Coding, 50
Hypercube Conference Key

Establishment, 47

Information Theory, 7, 158
Ingemarsson Conference Key Es-

tablishment, 41
Integer Programming, 55
Internal Adversary, 17
Iolus, 213

JET
Activation Condition, 74
Batch Movement, 80
Batch Relocation, 74, 75
Insertion Strategy, 74
Join Tree, 74
Leaving Queue, 81
Topology, 73

Join Tree Capacity, 73, 77
Join-Exit Tree, 72

K-means Algorithm, 245
Key Distribution Center, 114
Key Encrypting Keys, 11, 114, 143
Kraft Inequality, 51
Kullback-Leibler Divergence, 51

Lagrange Relaxation, 54
Little’s Theorem, 249

Media-Dependent Channel, 149
Media-Independent Channel, 149
Member Departure, 24, 164
Member Join, 23, 164
Member Reinsertion, 24
MessageAuthenticationCode,232
MissAmericaVideoSequence, 167
Mlisten, 128, 221
MPEG-2, 149

Index 303

Entitlement Control Messages,
150

MPEG-4, 149, 251
Delivery Multimedia Integra-

tion Framework, 149
IMPM-D, 150
IMPM-ES, 150
IPMP, 150

Multi-Level Access Privileges, 175
Multicast Backbone, 83, 189, 221
Multicast Key Management, 10
Multimedia Multicast, 143
Mutual Information, 8

Newton Form of the Interpolant,
35

One-Way Function, 15, 130, 156
Overflow Probability, 219

PACK, 97
Merge, 106
Partition, 106
User Join, 97
User Leave, 100

Perfect Security, 12
PESKY Measure, 58
PFMH

Split, 91
Unite, 91

PFMH Key Tree, 87
Physical Layer Convergence Pro-

tocol, 261
Polynomial Interpolation Scheme,

15
Public Key Infrastructure, 266

QCIF, 168
Quantization, 64

Radio Network Controllers, 116
Radix, 43
Reaffirming Parent, 22
Requirements for Group Key Man-

agement, 13
Residue Method, 157

Resource Scalability, 14
Riemann’s Zeta Function, 161
Rijndael, 17, 156
RSA, 268, 271, 272, 282

Self Update, 21
Session Key, 11, 143
SHA-1, 238, 282
SIF, 168
SNEP, 265
SPINS, 265
Staggered MACs, 232
Staggered TESLA, 236

Buffer Requirements, 246
Denial-of-Service, 236
Forge-capable Area, 236,

240–242
Multi-Grade Source Authen-

tication, 238
Packet Format, 237
Proximity Protection, 243
Shift Attack, 238
Trust, 241

Supervisor Host, 116

TESLA, 268
Key-seed, 234
One-wayFunctionChain, 234
Overview, 234
Time Slot, 234
Trust, 235

TESLA Certificates
Lifetime, 270
Procedure, 269

TMKM
Handoff, 118
Optimization Separability,

126
Wait-to-be-Removed List,

119
Topology Independent Key Man-

agement Trees, 117
Topology-Aware Key

Management, 115
Topology-Matching Key Manage-

ment Tree, 117
Transferal of Rights, 25

304 Index

Transmit Seed, 21
Tree Key Hierarchy, 10, 12
Trusted Third Party, 271

Update Parent, 22
Update SK, 21

VersaKey, 212
Weak Mode Authentication, 278
Wireless Message Size, 117
Wireless Weight, 118
Wireline Message Size, 117

X.509, 268

Zipf Distribution, 128

