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Preface

In recent years, as part of the increasing “informationization” of industry and the
economy, enterprises have been accumulating vast amounts of detailed data such as
high-frequency transaction data in financial markets and point-of-sale information
on individual items in the retail sector. Similarly, vast amounts of data are now avail-
able on business networks based on interfirm transactions and shareholdings. In the
past, these types of information were studied only by economists and management
scholars. More recently, however, researchers from other fields, such as physics,
mathematics, and information sciences, have become interested in this kind of data
and, based on novel empirical approaches to searching for regularities and “laws”
akin to those in the natural sciences, have produced intriguing results.

This book is the proceedings of the international conference THICCAPFA7 that
was titled “New Approaches to the Analysis of Large-Scale Business and Eco-
nomic Data,” held in Tokyo, March 1–5, 2009. The letters THIC denote the Tokyo
Tech (Tokyo Institute of Technology)–Hitotsubashi Interdisciplinary Conference.
The conference series, titled APFA (Applications of Physics in Financial Analysis),
focuses on the analysis of large-scale economic data. It has traditionally brought
physicists and economists together to exchange viewpoints and experience (APFA1
in Dublin 1999, APFA2 in Liège 2000, APFA3 in London 2001, APFA4 in Warsaw
2003, APFA5 in Torino 2006, and APFA6 in Lisbon 2007). The aim of the confer-
ence is to establish fundamental analytical techniques and data collection methods,
taking into account the results from a variety of academic disciplines.

The workshop was supported by the Research Institute of Economy, Trade and
Industry (RIETI); IAA; the Physical Society of Japan; the Japanese Economic
Association; the Information Processing Society of Japan; the Japanese Society for
Artificial Intelligence; and the Japan Association for Evolutionary Economics. We
would like to acknowledge the following companies for their financial support:
Monex Group, Inc.; Kao Corporation; Nikkei Digital Media, Inc.; Kakaku.com,
Inc.; ASTMAX Co., Ltd.; Sony Computer Science Laboratories, Inc.; and CMD
Laboratory Inc.
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Tsutomu Watanabe

Hideki Takayasu

Editors
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Part 1
Financial Market Properties



Trend Switching Processes in Financial Markets

Tobias Preis and H. Eugene Stanley

Abstract For an intriguing variety of switching processes in nature, the underlying
complex system abruptly changes at a specific point from one state to another
in a highly discontinuous fashion. Financial market fluctuations are characterized
by many abrupt switchings creating increasing trends (“bubble formation”) and
decreasing trends (“bubble collapse”), on time scales ranging from macroscopic
bubbles persisting for hundreds of days to microscopic bubbles persisting only for
very short time scales. Our analysis is based on a German DAX Future data base
containing 13,991,275 transactions recorded with a time resolution of 10�2 s. For a
parallel analysis, we use a data base of all S&P500 stocks providing 2,592,531 daily
closing prices. We ask whether these ubiquitous switching processes have quantifi-
able features independent of the time horizon studied. We find striking scale-free
behavior of the volatility after each switching occurs. We interpret our findings as
being consistent with time-dependent collective behavior of financial market par-
ticipants. We test the possible universality of our result by performing a parallel
analysis of fluctuations in transaction volume and time intervals between trades. We
show that these financial market switching processes have features similar to those
present in phase transitions. We find that the well-known catastrophic bubbles that
occur on large time scales – such as the most recent financial crisis – are no outliers

T. Preis
Center for Polymer Studies, Department of Physics, Boston University, 590 Commonwealth
Avenue, Boston, MA 02215, USA
and
Institute of Physics, Johannes Gutenberg University Mainz, Staudinger Weg 7, 55128 Mainz,
Germany
and
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e-mail: mail@tobiaspreis.de

H.E. Stanley (�)
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M. Takayasu et al. (eds.), Econophysics Approaches to Large-Scale Business Data
and Financial Crisis, DOI 10.1007/978-4-431-53853-0 1, c� Springer 2010
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4 T. Preis and H.E. Stanley

but in fact single dramatic representatives caused by the formation of upward and
downward trends on time scales varying over nine orders of magnitude from the
very large down to the very small.

1 Introduction

In physics and in other natural sciences, it is often a successful strategy to ana-
lyze the behavior of a complex system by studying the smallest components of that
system. For example, the molecule is composed of atoms, the atom consists of a
nucleus and electrons, the nucleus consists of protons and neutrons, and so on. The
fascinating point about analyses on steadily decreasing time and length scales is
that one often finds that the complex system exhibits properties which cannot only
be explained by the properties of its components alone. Instead, a complex behavior
can emerge due to the interactions among these components [1]. In financial mar-
kets, these components are comprised by the market participants who buy and sell
assets in order to realize their trading and investment decisions. The superimposed
flow of all individual orders submitted to the exchange trading system initiated by
market participants and, of course, its change in time generate a complex system
with fascinating properties, similar to physical systems.

One of the key conceptual elements in modern statistical physics is the concept
of scale invariance, codified in the scaling hypothesis that functions obey certain
functional equations whose solutions are power laws [2–5]. The scaling hypothesis
has two categories of predictions, both of which have been remarkably well verified
by a wealth of experimental data on diverse systems. The first category is a set of
relations, called scaling laws, that serve to relate the various critical-point exponents
characterizing the singular behavior of functions such as thermodynamic functions.
The second category is a sort of data collapse, where under appropriate axis nor-
malization, diverse data “collapse” onto a single curve called a scaling function.

Econophysics research has been addressing a key question of interest: quantify-
ing and understanding large stock market fluctuations. Previous work was focussed
on the challenge of quantifying the behavior of the probability distributions of large
fluctuations of relevant variables such as returns, volumes, and the number of trans-
actions. Sampling the far tails of such distributions require a large amount of data.
However, there is a truly gargantuan amount of pre-existing precise financial market
data already collected, many orders of magnitude more than for typical complex
systems. Accordingly, financial markets are becoming a paradigm of complex sys-
tems, and increasing numbers of scientists are analyzing market data [6–11,13–19].
Empirical analyses have been focused on quantifying and testing the robustness of
power-law distributions that characterize large movements in stock market activity.
Using estimators that are designed for serially and cross-sectionally independent
data, findings thus far support the hypothesis that the power law exponents that
characterize fluctuations in stock price, trading volume, and the number of trades
[20–27] are seemingly “universal” in the sense that they do not change their val-
ues significantly for different markets, different time periods, or different market
conditions.
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In contrast to these analyses of global financial market distributions, we focus
on the temporal sequence of fluctuations in volatility, transaction volume, and inter-
trade times before and after a trend switching point. Our analysis can provide insight
into switching processes in complex systems in general and financial systems in par-
ticular. The study of dramatic crash events is limited by the fortunately rare number
of such events. Increasingly, one seeks to understand the current financial crisis by
comparisons with the depression of the 1930s. Here we ask if the smaller financial
crises – trend switching processes on all time scales – also provide information of
relevance for large crises. If this is so, then the large abundance of data on smaller
crises should provide quantifiable statistical laws for bubbles on all scales.

2 Financial Market Data

To answer whether smaller financial crises also provide information of relevance
to large crises, we perform parallel analyses of bubble formation and bursting
using two different data bases on two quite different time scales: (1) from �101

to �106 ms, and (2) from �108 to �1010 ms.

2.1 German Market: DAX Future

For the first analysis, we use a multivariate time series of the German DAX Future
contract (FDAX) traded at the European Exchange (Eurex), which is one of the
world’s largest derivatives exchange markets. A so-called future contract is a con-
tract to buy or sell at a specified price at a specific future date an underlying asset
– in this case the German DAX index, which measures the performance of the 30
largest German companies in terms of order book volume and market capitaliza-
tion.1 The time series comprises T1 D 13,991,275 transactions of three disjoint
3-month periods (see Table 1). Each end of the three disjoint periods corresponds
to a last trading day of the FDAX contract, which is ruled to be the third Friday of
one of the quarterly months March, June, September, and December, apart from the
exceptions of national holidays. The data base we analyze contains the transaction
prices, the volumes, and the corresponding time stamps [32–35], with a large liq-
uidity and inter-trade times down to 10 ms, which allows us to perform an analysis
of microtrends.

The time series analysis of future contracts has the advantage that the prices are
created by trading decisions alone. In contrast, stock index data are derived from a
weighted sum of a bunch of stock prices. Furthermore, systematic drifts by inflation

1 More detailed information about German DAX index constituents and calculation principles can
be found on http://www.deutsche-boerse.com.

http://www.deutsche-boerse.com
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Table 1 Three disjoint 3-month periods of the German DAX Future contract (FDAX) which we
analyze. Additionally, the mean volume per transaction Nv and the mean inter-trade time N� is given

Contract Records Time period Nv N� (s)

FDAX JUN 2007 3,205,353 16 March 2007 – 15 June 2007 3:628a 2:485b

FDAX SEP 2008 4,357,876 20 June 2008 – 19 September 2008 2:558a 1:828b

FDAX DEC 2008 6,428,046 19 September 2008 – 19 December 2008 2:011a 1:253b

a
Measured in units of contract

b
Including overnight gaps

are eliminated by construction. The theory of futures pricing based on arbitrage
states that for an asset that can be stored at no cost and which does not yield any
cash flows, the futures price F has to be equal to the spot price S plus the cost of
financing the purchase of the underlying between the spot date and the expiry date
[36,37]. This theoretical futures price can be referred to as fair value. In the case of
the German DAX index, the underlying purchase can be financed till expiry with a
loan rate. Using a continuously compounded rate r , the fair value equation can be
written as

F.t/ D S.t/ert; (1)

whereas t denotes the remaining time till expiry. The theoretical futures price ex-
pression – see (1) –, which simply reflects the cost of carry, compensates interest
rate related effects of the underlying. At expiry time t D 0, the future’s price and
underlying price are identical.

2.2 US Market: S&P500 Stocks

For the second analysis, which focuses on macrotrends, we use price time series
of daily closing prices of all stocks of the S&P500 index. This index consists of
500 large-cap common stocks, which are actively traded in the United States of
America.2 The time series comprises T2 D 2,592,531 closing prices overall of those
US stocks which were constituent of the S&P500 until 16 June 2009. Our oldest
closing prices date back to 2 January 1962. The data base of closing prices we
analyze contains the daily closing prices and the daily cumulative trading volume.
As spot market prices undergo a significant shift by inflation over time periods of
more than 40 years, we study the logarithm of stock prices instead of the raw closing
prices. Thus, the results between the two different data bases on two quite different
time scales become more comparable.

2 More detailed information about S&P500 constituents and calculation principles can be found on
http://www.standardandpoors.com.

http://www.standardandpoors.com
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3 Renormalization Method

Less studied than the large fluctuations of major national stock indices such as the
S&P500 are the various jagged functions of time characterizing complex financial
fluctuations down to time scales as short as a few milliseconds. These functions
are not amenable to mathematical analysis at first sight, because they are charac-
terized by sudden reversals between up and down microtrends (see Figs. 1 and 2a),
which can also be referred to as microscopic bubbles on small time scales. On these
small time scales, evidence can be found [11,12] that the three major financial mar-
ket quantities of interest – price, volume, and inter-trade times – are connected in
a complex way, overburdening standard tools of time series analysis such as lin-
ear cross-correlation functions. Thus, more sophisticated methods are necessary
in order to analyze these complex financial fluctuations creating complex financial
market patterns.

We do not know how to characterize the sudden microtrend reversals. For ex-
ample, the time derivative of the price p.t/ is discontinuous. This behavior is
completely different from most real world trajectories, such as a thrown ball, for

Dt

t

0 1 2
e

Dt

Dt Dt

b

a p(t)

pmax

pmin

t min t max

Fig. 1 Visualization of a microtrend in the price movement p.t/. (a) Positive microtrend starting
at a local price minimum pmin of order �t and ending at a local price maximum pmax of order
�t . The hatched region around pmax indicates the interval in which we find scale-free behavior of
related quantities. This behavior is consistent with “self-organized” [28] macroscopic interactions
among many traders [29], not unlike “tension” in a pedestrian crowd [30, 31]. The reason for
tension among financial traders may be found in the risk aversions and profit targets of financial
market participants. (b) Renormalized time scale " between successive extrema, where " D 0

corresponds to the start of a microtrend, and " D 1 corresponds to the end. The hatched region is
surprisingly large, starting at " D 0:6 and ending at " D 1:4
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Fig. 2 Visualization of the quantities analyzed. (a) A small subset comprising 5,000 trades
(0.04%) of the full T1 D 13,991,275 trade data set analyzed, extracted from the German DAX
future time series during part of one day. Shown as circles and triangles are the extrema of order
�t , defined to be the extremum in the interval t � �t � t � t C �t . We performed our analysis
for �t D 1; 2; : : : ; 1000 ticks; in this example, �t D 75 ticks. Positive microtrends are indicated
by black bars on the top, which start at a �t -minimum and end at the next �t -maximum. A neg-
ative microtrend (black bars on the bottom) starts at a �t -maximum and ends at the consecutive
�t -minimum. (b) Time series of the corresponding inter-trade times �.t/ reflecting the natural
time between consecutive trades in units of 10 ms, where t D 1; 2; : : : ; 5000 is the transactions
index. (c) The volume v.t / of each trade t in units of contracts

which the time derivative of the height is a smooth continuous function of time.
Here, we find a way of quantitatively analyzing these sudden microtrend rever-
sals, which exhibit a behavior analogous to transitions in systems in nature [2, 38],
and we interpret these transitions in terms of the cooperative interactions of the
traders involved. A wide range of examples of transitions exhibiting scale-free be-
havior ranges from magnetism in statistical physics to heartbeat intervals (sudden
switching from heart contraction to heart expansion) [39], and to macroscopic social
phenomena such as traffic flows (switching from a free to a congested traffic) [40].

To focus on switching processes of price movements down to a microscopic
time scale, we first propose how a switching process can be quantitatively
analyzed. Let p.t/ be the transaction price of trade t , which will be treated as
a discrete variable t D 1; : : : ; T . Each transaction price p.t/ is defined to be
a local maximum pmax.�t/ of order �t , if there is no higher transaction price
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in the interval t � �t � t � t C �t . Thus, if p.t/ D pmax.t; �t/, then p.t/

is a local maximum pmax.�t/, where

pmax.t; �t/ D maxfp.t/jt � �t � t � t C �tg: (2)

Analogously, each transaction price p.t/ is defined to be a local minimum
pmin.�t/ of order �t , if there is no lower transaction price in this interval.
With

pmin.t; �t/ D minfp.t/jt � �t � t � t C �tg; (3)

it follows that p.t/ is a local minimum pmin.�t/ if p.t/ D pmin.t; �t/. In this
sense, the two points in the time series in Fig. 1 marked by circles are a local
minimum and a local maximum, respectively. Figure 2a shows a short subset
of the FDAX time series for the case �t D 75 ticks.

For the analysis of financial market quantities in dependence of trend frac-
tion, we introduce a renormalized time scale " between successive extrema
as follows: Let tmin and tmax be the time (measured in units of ticks) at which
the corresponding transactions take place of a successive pair of pmin.�t/ and
pmax.�t/ (see Fig. 1). For a positive microtrend, the renormalized time scale
is given by

".t/ � t � tmin

tmax � tmin
; (4)

with tmin � t � tmax C .tmax � tmin/, and for a negative microtrend by

".t/ � t � tmax

tmin � tmax
; (5)

with tmax � t � tmin C .tmin � tmax/. Thus, " D 0 corresponds to the beginning
of the microtrend and " D 1 indicates the end of the microtrend. We analyze
a range of " for the interval 0 � " � 2, so we can analyze trend switching
processes both before as well as after the critical value " D 1 (Fig. 1). The
renormalization is essential to assure that microtrends of various lengths can
be aggregated and that all switching points have a common position in the
renormalized time scale.

3.1 Volatility Analysis

First we analyze the fluctuations �2.t/ of the price time series during the short
time interval of increasing microtrends from one price minimum to the next price
maximum (see Fig. 3a) and decreasing microtrends from one price maximum to
the next price minimum (see Fig. 3b). The quantity studied is given by squared
price differences, �2.t/ D .p.t/ � p.t � 1//2 for t > 1, and can be referred to
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Fig. 3 Renormalization time analysis of volatility �2 for microtrends. (a) The greyscaled volatility
profile, averaged over all positive microtrends in the German DAX future time series and nor-
malized by the average volatility of all positive microtrends studied. The greyscale key gives
the normalized mean volatility h�2

posi."; �t/=N�pos. The greyscaled profile exhibits the clear link
between mean volatility and price evolution. New maximum values of the price time series are
reached with a significant sudden jump of the volatility, as indicated by the vertical white regions
and the sharp maximum in the volatility aggregation �2�."/ shown in the top panel. Here, �2�."/

denotes the average of the volatility profile, averaged only for layers with 50 � �t � 100. After
reaching new maximum values in the price the volatility decays and returns to the average value
(top panel) for " > 1. (b) Parallel analysis averaged over all negative microtrends in the time se-
ries. New minimum values of the price time series are reached with a pronounced sudden jump
of the volatility, as indicated by the vertical dark gray regions in the volatility aggregation �2�."/

shown in the top panel. (c) The volatility (50 ticks � �t � 1000 ticks) before reaching a new
maximum price value (" < 1, circles) and after reaching a new maximum price value (" > 1, tri-
angles) aggregated for increasing microtrends. The straight lines correspond to power law scaling
with exponents ˇ

C

�2 D �0:30 and ˇ�

�2 D 0:01. The shaded interval marks the region in which
this power law behavior is valid. (d) Log–log plot of �2�."/ for negative microtrends. The straight
lines correspond to power law scaling with exponents ˇ

C

�2 D �0:54 and ˇ�

�2 D 0:04. The left
border of the shaded region is given by the first measuring point closest to the switching point
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as local volatility. For the analysis of �2.t/ in dependence of the trend fraction,
we use the renormalization time scale ". In Fig. 3, the greyscale key represents
the mean volatility h�2i."; �t/ in dependence of " and �t , normalized by the
average volatility N� , where the brackets denote the average over all increasing
microtrends (see Fig. 3a) or all decreasing microtrends (see Fig. 3b) in the full time
series of T1 D 13,991,275 records. If one can find Npos.�t/ positive microtrends
and Nneg.�t/ negative microtrends, each of order �t in the time series, and of
�2

i ."/ denotes the local volatility at position " in the i -th positive or i -th negative
microtrend, then the mean volatility is given by

h�2
posi."; �t/ D 1

Npos.�t/

Npos.�t/X

iD1

�2
i ."/ (6)

for positive microtrends and

h�2
negi."; �t/ D 1

Nneg.�t/

Nneg.�t/X

iD1

�2
i ."/ (7)

for negative microtrends. The mean volatility can be normalized by the average
volatility N� , which is determined by

N�pos D "bin

"max�tmax

"max="binX

"D0

 
�tmaxX

�tD0

h�2
posi."; �t/

!
(8)

and

N�neg D "bin

"max�tmax

"max="binX

"D0

 
�tmaxX

�tD0

h�2
negi."; �t/

!
; (9)

where "max is the maximum value of the renormalization time scale " studied, which
is fixed to "max D 2, and "bin denotes the bin size of the renormalization time scale.
The maximum value of the extrema order �t which we analyze is given by �tmax.
The bin size is related to �tmax by

"bin D "max

�tmax
(10)

for reasons of convenience. The absence of changes of the greyscaled volatility
profiles in Fig. 3 is consistent with a data collapse for �t values larger than a cer-
tain cut-off value �tcut. Thus, we calculate the volatility aggregation �2�."/. This
volatility aggregation �2�."/ is the average of the mean volatility h�2

negi."; �t/, av-
eraged only for layers with �tcut � �t � �tmax. It is given by

�2�
pos."/ D 1

�tmax � �tcut

�tmaxX

�tD�tcut

h�2
posi."; �t/

N�pos
(11)
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and the equivalent definition

�2�
neg."/ D 1

�tmax � �tcut

�tmaxX

�tD�tcut

h�2
negi."; �t/

N�neg
(12)

for negative microtrends. Note that, in order to improve the readability, the sub-
scripts “pos” and “neg” are removed if the context assures whether positive or
negative microtrends are considered.

The greyscaled volatility profiles (see Fig. 3) provide the mean volatility
h�2i."; �t/ averaged over all increasing or all decreasing microtrends in the full
time series of T1 D 13,991,275 records, and are normalized by the average volatil-
ities of microtrends studied in both cases. In order to remove outliers, only such
microtrends are collected in which the time intervals between successive trades �.t/

[41] (Fig. 2b) are not longer than 1 min, which is roughly 60 times longer than the
average inter-trade time (�0.94 s without overnight gaps), and in which the trans-
action volumes are not larger than 100 contracts (the average transaction volume is
2.55 contracts, see Table 1). This condition ensures that time t , which is measured
in units of ticks, runs only over the working hours of the exchange – removing
overnight gaps, weekends, and national holidays. Furthermore, the analysis is only
based on those microtrends which provide a reasonable activity. The greyscale
profiles exhibit a very clear link between volatility and price evolution. A new local
price maximum is reached with a significant sudden jump of the volatility (top panel
of Fig. 3a). After reaching new local maximum values in the price, the volatility de-
cays and returns to the average value for " > 1. The reaching of a maximum causes
obviously tension among the market participants. A local price maximum can stoke
the expectations that higher prices are possible and thus stimulate purchases. How-
ever, this development can also raise fears of traders to find an optimal price for
selling their assets. Additionally, it is possible that market participants holding a
short position, which means that they benefit from falling asset prices, have to cut
their losses by reaching new maximum values. For negative microtrends, the reach-
ing of local minimum values in the price coincides with a more pronounced sudden
jump of the volatility (see Fig. 3b). A negative asset price evolution seems to create
a situation in which market participants act in a more dramatic way after the end of a
trend in comparison to the end of positive microtrends. One can conjecture that they
are driven by tension at least or even by “panic” if they try to cut their losses. But
of course, also the opposite situation should become relevant: A market participant
who has no inventory is looking for entry opportunities. As asset prices are rising
after reaching a local price minimum (" D 1), a financial market actor, who has the
intention to enter into the market, has to deal with the tension to find the “right”
time – the optimal entry level is already missed at this time: the local price minimum.

This qualitative effect is intuitively understandable and should be obvious for
market actors. In contrast, the shape of the volatility peak around extrema is sur-
prising. The peak is characterized by asymmetric tails, which we analyze next. For
this analysis, we use the volatility aggregation �2�."/, which is the mean volatility
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h�2i."; �t/ averaged for layers from �tcut D 50 ticks to �tmax D 1000 ticks.
Figure 3c shows the aggregated average volatility �2�."/ for positive microtrends
on a log–log plot. Surprisingly, the evolution of the volatility before and after reach-
ing a maximum shows up as straight lines and thus are consistent with a power law
scaling behavior

�2�.j" � 1j/ � j" � 1jˇ�2 (13)

within the range indicated by the vertical dashed lines. Over one order of magnitude,
we find distinct exponents, ˇ�

�2 D 0:01 before a price maximum and ˇC
�2 D �0:30

after. Figure 3d shows the aggregated average volatility �2�."/ for negative mi-
crotrends on a log–log plot. Over more than one order of magnitude, we find for
negative microtrends a qualitatively consistent behavior to positive microtrends with
distinct exponents, ˇ�

�2 D 0:04 before a price minimum and ˇC
�2 D �0:54 after.

Next we test the possible universality of our results by performing a parallel anal-
ysis for trends on long time scales, using the daily closing price data base of S&P500
stocks. In this sense, universality means that our renormalized market quantities do
not change their values significantly for different markets, different time periods, or
different market conditions.

Note that for our parallel analysis on macroscopic time scales, the order of a
extremum �t is measured in units of days, and that h�2i."; �t/ is averaged ad-
ditionally over all closing price time series of all S&P500 components. In order to
avoid biased contributions for the rescaled averaging caused by inflation based drifts
over more than 47 years as described in Sect. 2.2, the analyzed price time series p.t/

contains the logarithm of the daily closing prices. Figure 4a shows the mean volatil-
ity h�2i."; �t/ for positive microtrends averaged for layers from �tcut D 10 days
to �tmax D 100 days. Figure 4b shows the mean volatility h�2i."; �t/ for neg-
ative microtrends averaged for the same layers’ range. As already uncovered for
microtrends, the sudden volatility rise is more dramatic for negative macrotrends
than for positive macrotrends. The aggregated average volatilities �2�."/ for posi-
tive and negative macrotrends on a log–log plot show surprisingly again distinct tail
exponents around the switching point " D 1. For positive macrotrends, we obtain
ˇ�

�2 D �0:05 before a price maximum and ˇC
�2 D �0:40 after. For negative mi-

crotrends, we obtain ˇ�
�2 D �0:09 before a price minimum and ˇC

�2 D �0:50 after,
which is both similar to the values obtained for our study of positive and negative
microtrends.

3.2 Volume Analysis

To test the possible universality of these results obtained for volatility, we perform
a parallel analysis of the corresponding volume fluctuations v.t/, the numbers of
contracts traded in each individual transaction (see Fig. 2c) in case of microtrends
for the German market and the cumulative number of traded stocks per day in
case of macrotrends for the US market. In Fig. 5a, the greyscaled volume profile
provides the mean volume averaged over all increasing microtrends in the time
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Fig. 4 Renormalization time analysis of volatility �2 for macrotrends. (a) The greyscaled volatil-
ity profile, averaged over all positive macrotrends in the daily closing price time series of all
S&P500 stocks and normalized by the average volatility of all positive macrotrends studied. The
stylized fact that new maximum values of the price time series are reached with a significant sud-
den jump of the volatility can also be found for macrotrends. Note that �t is measured in units
of day for macrotrends. (b) Parallel analysis performed for all negative macrotrends in the daily
closing price time series of all S&P500 stocks. As already uncovered for microtrends (see Fig. 3),
the sudden jump of the volatility at " D 1 is more pronounced for negative trends than for posi-
tive microtrends. (c) The volatility (10 days � �t � 100 days) before reaching a new maximum
price value (" < 1, circles) and after reaching a new maximum price value (" > 1, triangles)
aggregated for increasing macrotrends. The straight lines correspond to power law scaling with
exponents ˇ

C

�2 D �0:40 and ˇ�

�2 D �0:05. (d) Log–log plot of �2�."/ for negative macrotrends.

The straight lines correspond to power law scaling with exponents ˇ
C

�2 D �0:50 and ˇ�

�2 D �0:09
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Fig. 5 Renormalization time analysis of volume for microtrends. (a) The greyscaled volume pro-
file, averaged over all positive microtrends in the FDAX time series and normalized by the average
volume of all positive microtrends studied. New maximum values of the price time series coincide
with peaks in the volume. (b) Parallel analysis performed for all negative microtrends in FDAX
time series. (c) The volume (50 ticks � �t � 1000 ticks) before reaching a new maximum price
value (" < 1, circles) and after reaching a new maximum price value (" > 1, triangles) aggregated
for increasing microtrends. The straight lines correspond to power law scaling with exponents
ˇC

v D �0:20 and ˇ�

v D �0:14. (d) Log–log plot of v�."/ for negative microtrends. The straight
lines correspond to power law scaling with exponents ˇC

v D �0:17 and ˇ�

v D 0

series of the German market and is also normalized by the average volume of all
microtrends studied. Analogously, Fig. 5b shows the mean volume averaged over
all decreasing microtrends in the time series. In order to remove outliers in this
analysis, we consider only those microtrends which include inter-trade times not
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longer than 1 min and transaction volumes not larger than 100 contracts. As ex-
pected, new price extrema are linked with peaks in the volume time series but,
surprisingly, we find that the usual cross-correlation function between price changes
and volumes vanishes. Thus, one can conjecture that the tendency towards increased
volumes occurring at the end of positive microtrends is counteracted by the tendency
towards increased volumes occurring at the end of negative microtrends. The cru-
cial issue is to distinguish between positive and negative microtrends, realized by
the renormalization time " between successive extrema.

For positive microtrends, a significant increase of volumes can be found already
before the local maximum price is reached. After reaching the local maximum value,
the volatility falls dramatically back to values close to the average value. For neg-
ative microtrends, the opposite characteristic is observable. The reaching of a local
price minimum causes a sudden jump of the transaction volume, whereas after the
local price minimum the volume decays and returns to the average value for " > 1.
In the top panel of Figs. 5a,b, we show the volume aggregations v�."/, obtained by
averaging �t “slices” between �tcut D 50 and �tmax D 100. Figure 5c shows v�."/

versus j" � 1j as a log–log histogram supporting a power law behavior of the form

v�.j" � 1j/ � j" � 1jˇv (14)

with exponents ˇ�
v D �0:14 before, and ˇC

v D �0:20 after a price maximum –
v�."/ is obtained by averaging �t “slices” between �tcut D 50 and �tmax D 1000.
For negative microtrends, straight lines can be fitted to the log–log histogram as
well with exponents ˇ�

v D �0:17 before, and ˇC
v D 0 after a local price minimum

(Fig. 5d).
A parallel analysis for the US market on large time scales (Figs. 6a,b) provides

evidence that the volume peaks are symmetrically shaped around the switching point
" D 1 and that the characteristics are similar for positive and negative macrotrends.
The power law exponents for positive microtrends are given by ˇ�

v D �0:04 before,
and ˇC

v D �0:08 after a local price maximum (Fig. 6c). The similar behavior of
negative microtrends is supported by exponents ˇ�

v D �0:05 before, and ˇC
v D

�0:15 after a local price minimum as shown in Fig. 6d.

3.3 Inter-trade Time Analysis

In order to verify a possible universality, we analyze additionally the behavior of
the inter-trade times �.t/ of the German market during the short time interval from
one price extremum to the next (see Fig. 2b). The linear cross-correlation function
between price changes and inter-trade times as standard tool of time series analysis
exhibits no significant correlation values as well. Thus, one can again conjecture
that the tendency towards decreased inter-trade times at the end of positive mi-
crotrends is counteracted by the tendency towards decreased inter-trade times for
the end of negative microtrends. It is of crucial importance to distinguish between
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Fig. 6 Renormalization time analysis of volume for macrotrends. (a) The greyscaled volume pro-
file, averaged over all positive macrotrends in the daily closing price time series of all S&P500
stocks and normalized by the average volatility of all positive macrotrends studied. Consistent
with our results for microtrends maximum values of the price time series are reached with a peak
of the volume. Note that �t is measured in units of day for macrotrends. (b) Parallel analysis
performed for all negative macrotrends in the daily closing price time series of all S&P500 stocks.
Minimum values of the price time series coincide with peaks of volume as for positive macrotrends.
(c) The volume (10 days � �t � 100 days) before reaching a new maximum price value (" < 1,
circles) and after reaching a new maximum price value (" > 1, triangles) aggregated for increasing
macrotrends. The straight lines correspond to power law scaling with exponents ˇC

v D �0:08 and
ˇ�

v D �0:04. (d) Log–log plot of v�."/ for negative macrotrends. The straight lines correspond
to power law scaling with exponents ˇC

v D �0:15 and ˇ�

v D �0:05
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positive and negative microtrends realized by the renormalized time " between suc-
cessive extrema. In Figs. 7a and 7b, the mean inter-trade time h�i."; �t/= N� is shown
for positive and negative microtrends, respectively, mirroring the clear link between
inter-trade times and price extrema. Far away from the critical point " D 1 the mean
inter-trade time starts to decrease. After the formation of a new local price maxi-
mum the mean inter-trade times increase and return to the average value in a very
symmetrical way. Negative microtrends obey the same behavior with one exception.
The reaching of a local price minimum (" D 1) coincides with a temporary sudden
increase of the inter-trade times. For both types of trends, the dip of the inter-trade
times can be interpreted in terms of “panic”. Already before reaching local price
extreme values market participants try to participate in the forming trend or try to
correct their trading decision which was caused by the hope to participate in an
opposite trend formation. After reaching the local price extreme value, the tension
persists but becomes steadily smaller.

In the top panels of Figs. 7a,b, the aggregation of the inter-trade time profile ��."/

is shown calculated for all values of �t between �tcut D 50 and �tmax D 100.
Figure 7c shows ��."/ versus j" � 1j as a log–log histogram supporting a power law
behavior of the form

��.j" � 1j/ � j" � 1jˇ� (15)

for positive microtrends with exponents ˇ�
� D 0:10 before, and ˇC

� D 0:12 after a
local price maximum. For negative microtrends, we obtain exponents ˇ�

� D 0:09 be-
fore, and ˇC

� D 0:15 after a local price minimum (see Fig. 7d). A log–log histogram
of a parallel analysis for the US market on large time scales is not obtainable as the
inter-trade times between successive closing prices are given by the constant value
of 1 day (exceptions are weekends and general holidays).

3.4 Random Shuffling

To confirm that our results are a consequence of the exact time series sequence and
thus sensitive to the time ordering of the original time series of volumes and inter-
trade times, we randomly shuffle �T pairs of data points of both the volume time
series and inter-trade time series in order to weaken their connection with the price
evolution. We find that the clear link between volumes fluctuations and price evolu-
tion (see Fig. 8a) and between inter-trade times and price evolution (see Fig. 8b)
disappears with increasing � and entirely vanishes for � � 1 for microtrends.
The dip of the inter-trade times at " D 1 becomes less pronounced with increas-
ing � and, correspondingly, the peak of the volume maximum decreases. For the
S&P500 data set (Fig. 8c), the volume peak disappears with increasing � obeying
the same characteristics. These shuffling induced processes can also be character-
ized by power law relationships which support our result that a fluctuating price time
series passes through a sequence of distinct transitions with scale-free properties.
The disappearance phenomenon follows a power law behavior. The maximum value
of v�."/� at " D 1 scales with exponent ˇs

v D �0:12 for microtrends (Fig. 8d).
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Fig. 7 Renormalization time analysis of inter-trade times for microtrends. (a) The greyscaled
inter-trade time profile – averaged over all increasing microtrends in the German DAX Future
time series and normalized by the average inter-trade times of all positive microtrends studied
– is performed analogously to our study of volatility and volume. New maximum values of the
price time series are reached with a significant decay of the inter-trade times. (b) Parallel analysis
performed for all negative microtrends in the FDAX price time series. Minimum values of the price
time series coincide with a dip of inter-trade times. In contrast to increasing trends, we observe for
exactly " D 1 an interim increase of the inter-trade times. (c) Inter-trade times (50 ticks � �t �
100 ticks) before reaching a new maximum price value (" < 1, circles) and after reaching a new
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correspond to power law scaling with exponents ˇC
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Fig. 8 Stability test of power law dependence. (a) If one shuffles randomly �T pairs of volume
entries in the multivariate time series, the significant link between volume and price evolution starts
to disappear as � increases. (b) If �T pairs of inter-trade time entries are randomly shuffled the
inter-trade time dip starts to disappear. (c) We find an identical behavior for the volume peak on
long time scales using daily closing prices of S&P500 stocks. (d) The disappearance phenomenon
also follows a power law behavior. The maximum value of v�."/� at " D 1 scales with exponent
ˇs

v D �0:115 ˙ 0:005. (e) The minimum value of ��."/� at " D 1 scales with exponent ˇs
v D

0:094 ˙ 0:004. (f) In the case of the maximum of v�."/� at " D 1 for the S&P500 stocks, the plot
provides a power law with exponent ˇs

v D �0:095 ˙ 0:008

The minimum value of ��."/� at " D 1 scales with exponent ˇs
v D 0:09 as shown

in Fig. 8e. In the case of the maximum of v�."/� at " D 1 on large time scales, the
log–log plot provides a straight line with a power law exponent ˇs

v D �0:10 for the
S&P500 stocks which is consistent with the underlying data set. In fact, deviations
can be observed for macrotrends which are caused by the limited number of closing
prices in the S&P500 data base (T2 � T1).
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3.5 Universality of Power Law Exponents

Thus far, we distinguished between positive and negative trends on small and large
time scales. In order to emphasize the possible universality of our results we present
in this section a direct comparison of microtrends and macrotrends for our three
financial market quantities of interest – volatility, volume, and inter-trade times.
Figure 9 shows the renormalization time analysis of volatility �2, trade volumes v,
and inter-trade times � for all increasing and decreasing microtrends in the German
DAX Future time series. The greyscaled volatility profile exhibits the clear link
between mean volatility and price evolution. New extreme values of the price time
series are reached with a significant sudden jump of the volatility, as indicated by
the vertical dark gray regions and the sharp maximum in the volatility aggregation.
After reaching new extreme values in the price, the volatility decays and returns
to the average value for " > 1 as observed in Sect. 3.1 for positive and negative
microtrends, respectively. The greyscaled volume profile exhibits that the volume is
clearly connected to the price evolution: new extreme values of the price coincide
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Fig. 9 Renormalization time analysis of volatility �2, trade volumes v, and inter-trade times �

for all microtrends – increasing and decreasing microtrends. (a) The greyscaled volatility profile,
averaged over all microtrends in the time series and normalized by the average volatility of all mi-
crotrends studied. We analyze both positive and negative microtrends. The greyscale code gives the
normalized mean volatility h�2i."; �t/= N�2. The greyscaled profile exhibits the clear link between
mean volatility and price evolution. New extreme values of the price time series are reached with
a significant sudden jump of the volatility, as indicated by the vertical dark gray regions and the
sharp maximum in the volatility aggregation �2�."/ shown in the top panel. Here, �2�."/ denotes
the average of the volatility profile, averaged only for layers with 50 � �t � 100. After reaching
new extreme values in the price the volatility decays and returns to the average value (top panel)
for " > 1. (b) The greyscaled volume profile, averaged over all microtrends in the time series and
normalized by the average volume of all microtrends studied. The greyscale code gives the nor-
malized mean volume hvi."; �t/=Nv. The volume is connected to the price evolution: new extreme
values of the price coincide with peaks in the volume time series, as indicated by the vertical dark
gray regions close to " D 1. The top panel shows the volume aggregation v�."/, where v�."/ is the
average over layers with 50 � �t � 100. The sharp maximum in v�."/ is shown in the top panel.
(c) The greyscaled inter-trade time profile – averaged over all microtrends in the time series and
normalized by the average inter-trade times of all microtrends studied – is performed analogously
to our study of volatility and volume. New extreme values of the price time series are reached with
a significant decay of the inter-trade times
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with peaks in the volume time series, as indicated by the vertical dark gray regions
close to " D 1. The greyscaled inter-trade time profile shows that new extreme
values of the price time series are reached with a significant decay of the inter-trade
times. The log–log plots of all these quantities can be found in Fig. 10. Additionally,
the time scales which we study are visualized for both the German market and the
US market. For the analysis of microtrends, we use the German DAX future data
base which enables us to analyze microtrends starting at roughly 106 ms down to
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(a) Visualization of time scales studied for both the German market and the US market. For the
analysis of microtrends, we use the German DAX future data base which enables us to analyze
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the smallest possible time scale of individual transactions measured in multiples of
10 ms. The log–log plots of quantities with scale-free behavior on short time scales
are shown in the left column. For the analysis of macrotrends, we use the data base of
daily closing prices of all S&P500 stocks which enables us to perform an equivalent
analysis of macrotrends on long time scales which are shown the right column. Thus,
our analysis of switching processes ranges over nine orders of magnitude from 10
to 1010 ms. Surprisingly, the region around an extreme value in which the power
law scaling can be found is large, especially for inter-trade waiting times on small
time scales (see Fig. 10f) and volumes on long time scales (see Fig. 10c). This range
around a local extreme price value is marked as hatched region in Fig. 1. Far away
from the switching point a tension among market participants is established and
propagates steadily until the critical point is reached – the switching point changing
from an upward to a downward or from a downward to an upward trend.

4 Summary and Conclusions

The straight lines in Fig. 10 offer insight into financial market fluctuations: (1) a
clear connection between volatility, volumes, inter-trade times, and price fluctua-
tions on the path from one extremum to the next extremum, and (2) the underlying
law, which describes the tails of volatility, volumes, and inter-trade times around ex-
trema varying over nine orders of magnitude starting from the smallest possible time

J
Fig. 10 (continued) microtrends starting at roughly 106 ms down to the smallest possible time
scale of individual transactions measured in multiples of 10 ms. The log–log plots of quantities
with scale-free behavior on short time scales are shown in the left column. For the analysis of
macrotrends, we use the data base of daily closing prices of all S&P500 stocks which enables us to
perform equivalent analysis of macrotrends on long time scales which are shown the right column.
Thus, our analysis of switching processes ranges over nine orders of magnitude from 10 to 1010 ms.
(b) The volatility (50 ticks � �t � 1000 ticks) before reaching a new extreme price value (" < 1,
circles) and after reaching a new extreme price value (" > 1, triangles) aggregated for microtrends.
The straight lines correspond to power law scaling with exponents ˇ

C

�2 D �0:42 ˙ 0:01 and
ˇ�

�2 D 0:03 ˙ 0:01. The shaded interval marks the region in which this power law behavior is
valid. The left border of the shaded region is given by the first measuring point closest to the
switching point. (c) The volatility aggregation of macrotrends determined for the US market on
long time scales (10 days � �t � 100 days). The straight lines correspond to power law scaling
with exponents ˇ

C

�2 D �0:46 ˙ 0:01 and ˇ�

�2 D �0:08 ˙ 0:02 which are consistent with the
exponents determined for the German market on short time scales. (d) Log–log plot of the volume
aggregation on short time scales (50 ticks � �t � 1000 ticks) exhibits a power law behavior
with exponents ˇC

v D �0:146 ˙ 0:005 and ˇ�

v D �0:072 ˙ 0:001. (e) Log–log plot of the
volume aggregation on long time scales (10 days � �t � 100 days) exhibits a power law behavior
with exponents ˇC

v D �0:115 ˙ 0:003 and ˇ�

v D �0:050 ˙ 0:002 which are consistent with our
results for short time scales. (f) Log–log plot of the inter-trade time aggregation on short time scales
(50 ticks � �t � 100 ticks) exhibits a power law behavior with exponents ˇC

� D 0:120 ˙ 0:002

and ˇ�

� D 0:087 ˙ 0:002. An equivalent analysis on long time scales is not possible as daily
closing prices are recorded with equidistant time steps
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scale, is a power law with a unique exponents which quantitatively characterize the
region around the trend switching point. As a direct consequence of the existence of
power law tails, the behavior does not depend on the scale. Thus, we find identical
behavior for other sub-intervals of 50 � �t � 1000. With a decreasing value of
�t , the number of local minima and maxima increases (see Fig. 1), around which
we find scale-free behavior, for exactly the same " interval 0:6 � " � 1:4. The peaks
in �2."/ and v."/ around " D 1 and the dip of �."/ around " D 1 offer a challenge
for multi-agent based financial market models [42–48] to reproduce these empirical
facts. The characterization of volatility, volume, and inter-trade times by power law
relationships in the time domain supports our hypothesis that a fluctuating price time
series passes through a sequence of “phase transitions” [49, 50].

Before concluding, we may ask “what kind of phase transition” could the end
of a microtrend or macrotrend correspond to, or is the end of a trend an altogether
different kind of phase transition that resembles all phase transitions by displaying a
regime of scale free behavior characterized by a critical exponent. It may be prema-
ture to speculate on possible analogies, so we will limit ourselves here to describe
what seems to be a leading candidate. Consider a simple Ising magnet characterized
by one-dimensional spins that can point North or South. Each spin interacts with
some (or even with all) of its neighbors with positive interaction strength J , such
that when J is positive neighboring spins lower their energy by being parallel. The
entire system is bathed in a magnetic field that interacts with all the spins equally
with a strength parametrized by H , such that when H is positive the field points
North and when H is negative the field points South. Thus, when H is positive, the
system lowers its energy by each spin pointing North. Thus, there are two compet-
ing control parameters J and H . If, e.g., the system is prepared in a state with the
majority of spins pointing North yet the field H points South, the competition will
be between the relative effects of J and H : the J interaction motivates the spins to
point North but the H interaction motivates the spin to point South. Such a system
is termed metastable since if each North-pointing spin suddenly flips its state to
point South, the system can achieve a lower total energy. This flipping will occur
in time in a fashion not unlike the trading frequency near the end of a trend: first
one or two spins will randomly switch their state, then more, and suddenly in an
“avalanche” the majority of spins will point South. The phase transition is termed a
spinodal singularity, characterized by its own set of exponents. Why should the end
of microtrends or macrotrends have a parallel with the metastable physical system?
Presumably near the end of a positive trend, all the market participants watching the
market begin to sense that the market is metastable and that if they do not sell soon,
it could be too late to make any profit because the price will drop. First a few traders
sell, pushing the market imperceptibly lower. Then additional traders, sensing this
microscopic downturn, may decide that now is the time to sell and they too sell.
Then an “avalanche” of selling begins, with traders all hoping to protect their profits
by selling before the market drops. Thus, the set of N market participants “holding
their position” are in this sense analogous to the set of N mostly North-pointing
spins, bathed in a South-pointing magnetic field.
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The above analogy may not be the best and it will be future challenge to find a
coherently convincing explanation for why the end of a microtrend or macrotrend
displays such striking parallels to a phase transition. In any case, the set of interact-
ing spins surely is analogous to the set of interacting traders.

The end of the negative microtrend or macrotrend is the same mechanism but
with everything reversed. The N Ising spins point mostly South, the magnetic field
is North, and the spins flip from South to North one by one and the conclude in
an avalanche corresponding to the spinodal singularity. Analogously, the N traders
begin to suspect that the market is becoming metastable, so they one by one start to
buy and as all the traders witness the price increasing, they jump in to buy before
the price becomes too high.

In summary we have seen that each trend – microtrend and macrotrend – in a fi-
nancial market starts and ends with a unique switching process, and each extremum
shares properties of macroscopic cooperative behavior. We have seen that the mech-
anism of bubble formation and bubble bursting has no scale for time scales varying
over nine orders of magnitude down to the smallest possible time scale – the scale of
single transactions measured in units of 10 ms. On large time scales, histograms of
price returns provide the same scale-free behavior. Thus, the formation of positive
and negative trends on all scales is a fundamental principle of trading, starting on
the smallest possible time scale, which leads to the non-stationary nature of financial
markets as well as to crash events on large time scales. Thus, the well-known catas-
trophic bubbles occurring on large time scales – such as the most recent financial
crisis – may not be outliers but in fact single dramatic events caused by the scale-
free behavior of the forming of increasing and decreasing trends on time scales from
the very large down to the very small.
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Nonlinear Memory and Risk Estimation
in Financial Records

Armin Bunde and Mikhail I. Bogachev

Abstract It is well known that financial data sets are multifractal and governed by
nonlinear correlations. Here we are interested in the daily returns of a financial asset
and in the way the occurrence of large gains or losses is triggered by the nonlinear
memory. To this end, we study the statistics of the return intervals between gains
(or losses) above a certain threshold Q. In the case of i.i.d. random numbers the
probability density function (pdf) of the return intervals decays exponentially and
the return intervals are uncorrelated. Here we show that the nonlinear correlations
lead to a power law decay of the pdf and linear long-term correlations between
the return intervals that are described by a power-law decay of the corresponding
autocorrelation function. From the pdf of the return intervals one obtains the risk
function WQ.t I �t/, which is the probability that within the next �t units of time
at least one event above Q occurs, if the last event occurred t time units ago. We
propose an analytical estimate of WQ and show explicitly that the proposed method
is superior to the conventional precursory pattern recognition technique widely used
in signal analysis, which requires considerable fine-tuning and is difficult to imple-
ment. We also show that the estimation of the Value at Risk, which is a standard tool
in finances, can be improved considerably compared with previous estimates.

1 Introduction

In the past years, the occurrence of rare (extreme) events has attracted much
attention [1–3]. Usually, rare events with magnitudes considerably exceeding the
average magnitude, have been considered as independent, since the typical time span
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between them is very large. In recent years, however, there is growing evidence, that
this assumption is not always true. In particular, in financial markets large volatili-
ties seem to cluster [4], and in paleoclimate records a clustering of large river flows
or high temperatures has also been observed [5]. To quantify the occurrence of rare
events one usually considers the time interval between successive events above (or
below) some threshold Q. One is interested in the probability distribution function
(PDF) of these return intervals as well as in their long-term-dependencies (auto-
correlation function, conditional return periods, etc.). In numerical treatments, one
usually considers not too large thresholds Q where the statistics of the return inter-
vals is good, and then tries to extrapolate the results towards very large threshold
where the statistics, by definition is poor.

For independent data sets, the return intervals are independent and (according to
the Poisson statistics) exponentially distributed. Clustering of rare events indicates
a certain memory in the return intervals, and indeed, recent studies have shown that
this kind of memory is a consequence of long-term dependencies in the time series
itself [5–8], which occur, for example in climate [5, 9] and physiological records
[10–12] as well as in time series demonstrating human behavior, including economic
records [13–15], teletraffic in large networks [16], and crowd behavior [17].

Long-term memory can be either (1) linear, (2) nonlinear, or both (3) linear and
nonlinear. In the first case, which is often referred to as “monofractal” the (lin-
ear) autocorrelation function Cx.s/ of the data decays with time s by a power law,
Cx.s/ � s�� ; 0 < � < 1, and the exponent � fully describes the correlations within
the record. In this case, the return intervals are long-term correlated in the same
way as the original record, and its distribution is characterized at large scales by
a stretched exponential with exponent � , and at short scales by a power law with
exponent � � 1 [5–7]. It was shown that those features can be observed in long cli-
mate records [5] as well as in the volatility of financial records [4], even though the
volatility also contains nonlinear memory and thus belongs to the case (3).

In the second case, where the record is “multifractal”, the linear autocorrelation
function Cx.s/ vanishes for s > 0 and nonlinear (multifractal) correlations that can-
not be described by a single exponent, characterize the record. In this article we
are solely interested in this second case, since financial data fall into this category.
Since the asset prizes Pi are usually nonstationary, one considers usually the re-
turns Ri after the i -th unit trading period (which might differ from minutes to years)
defined as

Ri D Pi � Pi�1

Pi�1

: (1)

We will concentrate on daily closing prices Pi , where i denotes subsequent bank
days. By definition, positive returns characterize gains, negative returns character-
ize losses. Figure 1 shows representative examples of arithmetic returns of the daily
closing prices for (1) indices, (2) stocks, (3) exchange rates, and (4) commodities ob-
tained from Yahoo! Finance (http://finance.yahoo.com/), The Federal Reserve Bank

http://finance.yahoo.com/
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Fig. 1 Examples of the arithmetic returns between daily closing prices: (a) Dow Jones index
(1928–1948), (b) IBM stock price 1962–1981, (c) British Pound versus US Dollar exchange rate
(1970–1989), and (d) Brent crude oil price (1987–2006). Selected fragments of 5,000 data points
starting from the beginning of the available data set are shown. Estimates of distribution densities
for each of the data series are shown in the relevant insets. Dashed lines show the positive and
the negative thresholds Q corresponding to the mean return times RQ D 10 and dotted lines
for RQ D 70, in particular (listed in ascending order): Dow Jones (�0.0284, �0.0106, 0.011,
0.0266), IBM (�0.0365, �0.0166, 0.0183, 0.0405), GBP (�0.0147, �0.0064, 0.0064, 0.0134)
and Brent (�0.0512, �0.0243, 0.0254, 0.0543). The RQ values have been estimated from the
whole record length (from the beginning of the record by 2007), while the examples contain only
the first 20 years of each record

of St. Louis (http://research.stlouisfed.org/), and US Department of Energy, Energy
Information Administration (http://www.eia.doe.gov/).

The figure displays the bursty behavior characteristic for multifractal records
with nonlinear memory and shows also the distribution of the data.

In order to learn what are the consequences of the nonlinear memory on the
statistics of the return intervals and how it can be used for risk estimation, we first
describe two multifractal models that are able to capture the essential features of
financial data sets.

http://research.stlouisfed.org/
http://www.eia.doe.gov/
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2 Generation of Multifractal Data Series

The first algorithm is a variant of the multiplicative random cascade (MRC) process,
described, e.g., in [18–21]. In this process [8], the data set is obtained in an iterative
way, where the length of the record doubles in each iteration. We start with the zero-
th iteration n D 0, where the data set .xi / consist of one value, x

.nD0/
1 D 1. In the

n-th iteration, the data x
.n/
i , i D 1; 2; : : : ; 2n, is obtained from

x
.n/

2l�1
D x

.n�1/

l
m

.n/

2l�1
and x

.n/

2l
D x

.n�1/

l
m

.n/

2l
; (2)

where the multipliers m are independent and identically distributed (i.i.d.) random
numbers with zero mean and unit variance (see Fig. 2).

The second algorithm is the multifractal random walk (MRW) proposed in [22].
In this algorithm, first we generate a record ai ; i D 1; : : : ; N whose power spectrum
decays as 1=f (“1=f -noise”). Next, we exponentiate these numbers and multiply
them by Gaussian random numbers bi , providing the resulting multifractal series xi

(see Fig. 3)

xi D .eai /bi : (3)

Both models create data series with a symmetric distribution characterized by
lognormal tails (see Fig. 4), and both kinds of data sets are characterized by a van-
ishing autocorrelation function, i.e., Cx.s/ D 0 for s > 0 [8].

In the following, we will focus on the MRC model, but like to note that similar
results can be obtained also for the MRW model [23].
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Fig. 2 Illustration of the iterative random cascade process. After each iteration the length of the
generated records is doubled and after n D 21 iterations the multifractal set consists of L D 221

numbers. A subset is shown in the bottom panel
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Fig. 4 PDFs of the simulated data series, created by (a) MRC and (b) MRW models. The open
symbols provide a numerical estimate, the full symbols are the best lognormal fits for the tails of
the distribution

3 Multifractal Analysis

There are several ways to characterize multifractal data sets. Here we chose the
multifractal detrended fluctuation analysis (MF-DFA), introduced by Kantelhardt
et al. [24]. In the MF-DFA one considers the profile, i.e., the cumulated data series
Yj D Pj

iD1.xi � hxi/, and splits the record into Ns (non-overlapping) segments
of size s. In each segment k a local polynomial fit yk.j / of, e.g., second order is



32 A. Bunde and M.I. Bogachev

estimated. Then one determines the variance F 2
k

.s/ D .1=s/
Ps

j D1.YŒ.k�1/sCj � �
yk.j //2 between the local trend and the profile in each segment k and calculates a
generalized fluctuation function Fq.s/,

Fq.s/ �
(

1

Ns

NsX

kD1

�
F 2

k .s/
�q=2

) 1=q

: (4)

In general, Fq.s/ scales with s as Fq.s/ � sh.q/. The generalized Hurst exponent
h.q/ is directly related to the scaling exponent �.q/ defined by the standard parti-
tion function-based multifractal formalism, via �.q/ D qh.q/�1. For a monofractal
record, h.q/ is independent of q. For stationary records, h.2/ is related to the auto-
correlation function Cx.s/. In the absence of linear correlations (where Cx.s/ D 0

for s > 0), h.2/ D 1=2.
In general, h.q/ depends on both, the distribution of the data and their correlation

structure [24]. To eliminate the dependence on the log-normal tailed distribution,
and thus to elucidate the contribution of the non-linear correlations on h.q/, we
have first ranked the N numbers in the multifractal data set, and then exchanged
them rankwise by a set of N numbers from a Gaussian distribution. Now the de-
viations of the resulting h.q/ from h.2/ depend only on the non-linear correlations
and therefore can be used to characterize them. Figure 5 displays Fq.s/=s1=2 for
q D 1; 2 and 5. The double-logarithmic plot shows that Fq.s/ follows the antici-
pated power-law scaling, with different exponents for the different values of q. For
q D 2, Fq.s/=s1=2 has reached a plateau, i.e., h.2/ D 1=2, indicating the absence
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Fig. 5 Analysis of the multifractal cascade model: MF-DFA fluctuation function for q D 1 (cir-
cles), 2 (squares), and 5 (diamonds). The autocorrelation function Cx.s/ of the data is shown in
the inset
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of linear correlations in the data. To show this feature explicitly, we also calculated
directly the autocorrelation function Cx.s/. The inset in Fig. 5 shows that (as ex-
pected) Cx.s/ fluctuates around zero for all s � 1.

4 Return Intervals in the MRC Record

In the following, we are interested in the statistics of the interoccurrence times, or
return intervals ri , between events above some threshold Q both in the MRC and
in the MRW models. For the illustration of the procedure of extracting the return
interval series from a data series, see Fig. 6.

For a given record, there is a one-by-one correspondence between the threshold
Q and the mean return interval (or return period) RQ, RQ D 1=

R1
Q

P.x/dx, where
P.x/ is the distribution of the data. By fixing RQ instead of Q, return interval statis-
tics remain unchanged, when the rankwise exchange procedure described above is
applied. Accordingly, return interval statistics depend solely on the memory inher-
ent in the data, and hence can be used as an effective instrument of quantifying such
memory, independently of a multifractal analysis of the data.

Figure 7a shows the pdf of the return intervals for RQ D 10, 70, and 500. For all
return periods, we find a pronounced power-law behavior

PQ.r/ � .r=RQ/�ı.Q/; (5)

in marked contrast to the uncorrelated or long-term correlated monofractal data sets.
The exponent ı (shown in Fig. 7b) depends explicitly on RQ and seems to converge
to a limiting curve for large data sets. When shuffling the multifractal data set, the
non-linear correlations are destroyed and the scaled pdfs collapse (as expected) to a
single exponential (also shown in Fig. 7a).

Next, we study the way the return intervals are arranged in time. Figure 7c shows
the autocorrelation function CQ.s/ [25] of the return intervals for RQ = 10, 70, and
500. While Cx.s/ � 0 for s � 1, CQ.s/ decays by a power law,

CQ.s/ � s�ˇ.Q/; (6)

13130 13330 13530 13730 i
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0.001

0.002
... Q2
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Xi

rj rj+1 rj+2

ri ri+1

Fig. 6 Extraction of the return interval sequences of events above thresholds Q1 and Q2 from a
data series
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for return periods RQ D 10 (circles), 70 (squares), and 500 (diamonds). To avoid overlapping,
symbols were shifted downwards by a factor of 10 (squares), and 100 (diamonds). The relevant
filled symbols show the corresponding pdfs for the shuffled data, shifted downwards by a factor of
104. (b) Exponents ı.Q/ versus RQ, for different systems sizes N D 216 (circles), 221 (triangles),
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indicating long-term correlations among the return intervals. Figure 7c shows that
the exponent ˇ increases monotonically with RQ, ˇ D 0:47, 0.56, and 0.7 for
RQ D 10, 70, and 500, respectively. Obviously, these long-term correlations have
been induced by the nonlinear correlations in the multifractal data set. Extracting
the return interval sequence from a data set is a nonlinear operation, and thus the
return intervals are influenced by the nonlinear correlations in the original data set.
Accordingly, the return intervals in data sets without linear correlations are sensitive
indicators for nonlinear correlations in the data sets.

To further quantify the memory among the return intervals, we consider the con-
ditional return intervals, i.e., we regard only those intervals whose preceding interval
is of a fixed size r0. In Fig. 7d the conditional return period RQ.r0/, which is the
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average of all conditional return intervals for a fixed threshold Q, is plotted ver-
sus r0=RQ (in units of RQ). The figure demonstrates that, as a consequence of the
memory, large return intervals are rather followed by large ones, and small intervals
by small ones. In particular, for r0 values exceeding the return period RQ, RQ.r0/

increases by a power law,

RQ.r0/ � r
�.Q/
0 for r0 > RQ; (7)

where the exponent � approximately decreases logarithmically with increasing
value of RQ. Note that only for an infinite record the value of RQ.r0/ can in-
crease infinitely with r0. For real (finite) records, there exists a maximum return
interval which limits the values of r0, and therefore RQ.r0/. As well as for PQ.r/

and CQ.s/, there is no scaling, and accordingly, the occurrence of extreme events
cannot be deducted straightforwardly from the occurrence of smaller events. When
shuffling the original data, the memory vanishes and RQ.r0/ � RQ, indicated by
the filled symbols.

5 Return Intervals in Financial Records

To show that the effects found in the MRC model can be also observed in financial
data sets, we have analyzed several stocks (IBM, GM, GE, Boeing), several ex-
change rates versus the US Dollar (Danish crone, British pound, Deutsche mark,
and Swiss frank), several commodities (Rotterdam gasoline, Singapore gasoline,
Brent, and WTI oil crude prices) and integral market indices (Nasdaq, FTSE, Dow
Jones and S&P 500), with qualitatively identical results.

As representative examples we focus on the Dow Jones index, the IBM record,
and the GBP versus USD exchange rate. First, to compare the MF-DFA results
with the simulated data, we exchange the returns by Gaussian data by conserving
the rank ordering, as we did for the model data. For the IBM record, the result
is displayed in Fig. 8a. The dashed lines correspond to the simulated data, with a
record length comparable to the length of the IBM data set. The inset shows the
(vanishing) autocorrelation function for the IBM returns.

The figure shows that the nonlinear correlations measured by Fq.s/, are mod-
eled quite well by (2). Thus we expect that the return intervals will show a similar
behavior, too. This is shown in Figs. 8b–d, where for several values of RQ the
pdf PQ.r/, the autocorrelation function CQ.r/ and the conditional return periods
RQ.r0/ of the return intervals are shown and compared with the model data of
similar length (shown as dashed lines) averaged over 500 configurations each. The
agreement between observed and model data is striking. As in Fig. 7a the pdfs decay
approximately by a power law, with different exponents for different values of RQ.
Due to the comparably short data set of the IBM data set, finite size effects are con-
siderably stronger than for the model data, leading to deviations from the power law
at smaller return intervals than in Fig. 7a. Also the autocorrelation function CQ.s/
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versus r0=RQ for the same RQ values as in (c). The curve for RQ D 30 was raised by a factor of
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behaves qualitatively the same as the model data (see Fig. 7c) but due to less statis-
tics finite-size effects are more pronounced. The conditional return periods shown
in Fig. 8d agree very well with the model data, but due to less statistics very large
values of r0=RQ cannot be tested. A similar behavior can be observed for all records
we analyzed. Two more examples (Dow Jones index and the GBP versus USD ex-
change rate) are shown in Figs. 9 and 10. We like to note that PQ.r/ and RQ.r0/ for
several financial data sets for negative thresholds Q have been studied by Yamasaki
et al. [26], but different conclusions regarding scaling and functional forms have
been drawn.
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monds). The autocorrelation function Cx.s/ of the IBM returns is shown in the inset. (b) Scaled
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(symbols correspond to those in (b)). (d) Conditional return periods RQ.r/ in units of RQ versus
r=RQ for the same RQ values as in (c). The curve for RQ D 30 was raised by a factor of 10 to
avoid overlapping symbols

6 Risk Estimation

6.1 Return Interval Approach

In the return interval approach (RIA), the central quantity for risk evaluation is the
probability WQ.t I �t/ that within the next �t units of time at least one extreme
event (above Q) occurs, if the last extreme event occurred t time units ago [27].
This quantity is related to the probability density function (pdf) PQ.r/ of the return
intervals by
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and 30 (symbols correspond to those in (b)). (d) Conditional return periods RQ.r/ in units of RQ

versus r=RQ for the same RQ values as in (c). The curve for RQ D 30 was raised by a factor of
10 to avoid overlapping symbols

WQ.t I �t/ D
Z tC�t

t

PQ.r/dr

�Z 1

t

PQ.r/dr: (8)

As a consequence of the algebraical decay of PQ.r/, WQ.t I �t/ D .ı.Q/ � 1/

�t=t for �t � t . To obtain by numerical simulation a more general expression for
WQ.t I �t/ valid for all arguments, we have employed the MRC model.

Figures 11a,b show, for the MRC record, the risk function W.QI �t/, for
RQ D 10 and 70, respectively. In the inset, the related pdf of the return intervals
PQ.r/ is shown. Since W.t I �t/ is bounded by one for t=RQ ! 0, the power law
behavior can only be valid for t=RQ > .ı.Q/ � 1/�t=RQ. For large t=RQ, strong
finite size effects occur in PQ.r/ which become more pronounced for large RQ val-
ues. Since these finite size effects decrease with decreasing RQ and increasing data
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length L, they underestimate the denominator in (8) and thus lead to an artificial
overestimation of WQ. To account for the proper short and large time behavior, we
are thus led to the ansatz

WQ.t I �t/ D .ı.Q/ � 1/�t=RQ

.t=RQ/ C .ı.Q/ � 1/�t=RQ

; (9)

which for the MRC yields the correct behavior for both small and large arguments
t=RQ (shown in Fig. 11 with full lines). We will use (9) for the risk estimation.

Figure 12 shows WQ.t I 1/ for the price returns of three representative financial
records (Dow Jones index, IBM stock, British Pound vs. US Dollar exchange rate)
for (a) RQ D 10 and (b) RQ D 70. The corresponding pdfs of the return intervals
are shown, as in Fig.1, in the insets. Since the data is short, finite size effects are
more pronounced than in the simulated data of Figs. 11a,b. For comparison, the
results for the simulated data (hmi D 0 and �m D 1) of comparable system size
L D 214 are also shown (dashed lines). The model pdfs represent slightly better
the observational data for RQ D 70 than for RQ D 10, in agreement with the
conclusions from [23]. The risk functions from the model and from the observational
data agree remarkably well. Due to the short record length and no averaging, the
finite size effects are comparable in the simulated and in the observational data.

6.2 Pattern Recognition Technique

In conventional signal analysis, the standard strategies are based on finding precur-
sory patterns yn;k W yn�k ; yn�kC1; : : : ; yn�1 of k events that typically precede an
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extreme event yn > Q. The strategies are mainly based on two approaches. In the
first approach, one concentrates on the extreme events and their precursory patterns
and determines the frequency of these patterns. In the second approach, one consid-
ers all patterns of k events yn;k W yn�k ; yn�kC1; : : : ; yn�1 that precedes any event
in the record and determines the probability that a given pattern is a precursor for an
extreme event yn > Q [28, 29]. This pattern recognition technique (PRT) appears
more profound, since it considers information about precursors of all events, thus
providing additional information on the time series studied, as has been confirmed
recently for short- and long-term correlated data [30, 31].

The PRT is illustrated in Fig. 13. To estimate the risk probability in this approach,
one can either use the “learning” observational record itself or use a model repre-
senting the record (here the MRC model, where we based our estimations on 150
MRC records of length L D 221). First we choose a pattern length k and create a
digital database of all possible patterns yn;k of length k. To this end, we divide the
total range of the possible data yi into l windows such that there is the same num-
ber of values in each window. Accordingly, there exist lk different patterns. Next we
determine how often each pattern is followed by an event above Q which after nor-
malization yields the desired probability P.yn > Qjyn;k/ that the following event
yn exceeds Q.

The major disadvantage of the PRT (compared with the RIA) is that it needs a
considerable amount of fine-tuning for finding the optimum parameters l and k that
yield the highest prediction efficiency. For transparency, we have kept the total num-
ber of patterns lk D const and concentrated on five pattern lengths k D 2,3,4,5 and
6. For the predictions in the MRC record, we have chosen lk D 106 and obtained the
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best result for k D 2. Smaller and larger values of lk did not improve the prediction
efficiency. For predictions based on the observational records where the statistics is
limited, it is usually not possible to exceed lk D 102 for obtaining ROC curves (see
below) that cover the whole area between zero and unit sensitivity. We obtained the
best performance for k D 1 and 2.

7 Decision-making Algorithm and the ROC-Analysis

The common strategy for a decision-making algorithm is to seek for that pattern
which has the highest probability to be followed by an extreme event and give an
alarm when this pattern appears. In nonlinear complex records (e.g., in finance,
geophysics, climate and physiology), this pattern may not be representative, since
many other patterns may have comparable probabilities to be followed by an ex-
treme event. In this case, a better approach is to give an alarm when the estimated
probability for an extreme event to occur exceeds a certain threshold QP . The (ar-
bitrary) selection of QP is usually optimized according to the minimal total cost of
false predictions made, including false alarms and missed events, after a certain cost
of a single false alarm and of a single missed event has been specified, see, e.g., [29].

In order to illustrate the decision-making algorithm, we show in Fig. 14a a rep-
resentative fragment of the Dow Jones returns record (multiplied by (�1) such
that large positive values now represent large losses), where we have indicated a
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WQ.t I 1/ estimated by (9). (c) The same risk probabilities obtained by the precursory pattern recog-
nition with k D 2 and l D 10. All quantities are given for RQ D 70. An alarm is given, when the
probabilities exceed a certain decision threshold QP

threshold Q corresponding to the mean return time RQ D 70 between large nega-
tive returns. Figure 14b illustrates the estimated probabilities WQ.t I 1/ from (9) for
the above record. Figure 14c illustrates the same probabilities estimated by the PRT
with k D 2 and l D 10.

The decision threshold QP is shown as dashed lines in Figs. 14b,c. When the
estimated occurrence probabilities exceed QP , an alarm is activated. For a certain
QP value, the efficiency of the algorithm is generally quantified by the sensitivity
Sens, which denotes the fraction of correctly predicted events, and the specificity
Spec, which denotes the fraction of correctly predicted non-events. The larger Sens
and Spec are, the better is the prediction provided by the algorithm. The overall
quantification of the prediction efficiency is usually obtained from the “receiver
operator characteristic” (ROC) analysis, where Spec is plotted versus Sens for all
possible QP values. By definition, for QP D 0, Sens D 1 and Spec D 0, while
for QP D 1, Sens D 0 and Spec D 1. For 0 < QP < 1, the ROC curve connects
the upper left corner of the panel with the lower right one. If there is no memory
in the data, Spec C Sens D 1, and the ROC curve is a straight line between both
corners (dashed lines in Fig. 15). The total measure of the predictive power PP,
0 < PP < 1, is the integral over the ROC curve, which equals one for perfect
prediction and equals one half for the random guess.

Figures 15a,b show the ROC-curves for a single MRC record of length L D 221

for RQ D 10 and 70. The figure shows that in this case, where the statistics is
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Fig. 15 ROC-curves quantifying the prediction efficiency obtained in the linearly uncorrelated
MRC record, (a) for RQ D 10 and (b) for RQ D 70, based on the PRT for k D 2 (filled circles),
3 (filled squares) and 6 (plus symbols) as well as on RIA, (9) (filled triangles). Similar curves are
presented in (c,d) for the Dow Jones returns, in (e,f) for the IBM stock and in (g,h) for the British
Pound vs. US Dollar exchange rate. In (c–h) ROC-curves are shown for k D 1 (filled circles) and
2 (filled squares) for pattern database obtained from the MRC model and for k D 1 (open circles)
and 2 (open squares) for the pattern database obtained directly from the observational record

excellent (compared with observational records), the prediction efficiency of both
the RIA and the PRT approach, is quite high and comparable with each other.
Figures 15c–h show the equivalent curves for the Dow Jones Index (c,d), the IBM
Stock (e,f) and the exchange rate between the British Pound and the US Dollar (g,h).
In these figures, we have also added the corresponding PRT results obtained from
the observational records, where we “learned” from the precursors of large positive
returns (gains) to predict large negative returns (losses). This is reasonable since the
behavior of large positive returns is in quantitative agreement with that for negative
returns [23], see also [32]. For both RQ D 10 and 70, “learning” on the MRC model
generally yields a higher prediction efficiency than “learning” on the observational
records. The figure shows that for the three financial records, the ROC curves for the
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RIA are systematically above the curves from the PRT, especially close to Sens D 1.
Accordingly, for the same high sensitivities the RIA yields considerably less false
alarms than the PRT. The superiority of the RIA approach increases with increasing
return period RQ when the finite size effects in the observational records become
increasingly important. We like to note that we have obtained similar conclu-
sions for all representative records analysed, consisting of four indices (DJ, FTSE,
NASDAQ and S&P 500), four stocks (BOEING, GE, GM and IBM), four currency
exchange rates (DKK, GBP, GM and SWF vs. USD) and four oil prices (Brent, WTI,
Rotterdam and Singapore).

8 The Value-at-Risk

Finally, we use the RIA to estimate the Value-at-Risk (VaR), which is probably
the best-known risk estimation technique in finances. The VaR is defined as the loss
that, in a given time interval, can only be exceeded with a certain small probability q.
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Fig. 16 Value-at-Risk estimates for the Dow Jones index. (a) A fragment of the DJ daily returns
sequence from 09/10/1934 until 04/10/1940. (b) Value-at-Risk (VaR) estimates for the exceedance
probability q D 1=100 for each day, obtained from (10) by using the global distribution (straight
line) or the local distribution of the last 100 days (diamonds). (c) VaR estimates based on the return
interval approach (circles)
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In the following, we consider as time interval 1 day. In a first order approximation,
when memory effects are being neglected, the VaR can be simply determined from
the (global) distribution P.r/ of the daily returns via

Z �1

�Q

P.r/dr D q: (10)

By solving this equation, which is identical to 1=R�Q D q, one can obtain the re-
turn �Q and the corresponding VaR. In order to take into account the fact that the
fluctuations in the return vary in time, one often does not consider the global distri-
bution to estimate �Q, but rather a local distribution of the returns based, e.g., on
the last 100 days. This technique, which allows to distinguish between volatile and
less volatile times, is usually a better estimator of the VaR. For a further improve-
ment of the VaR, recently a method based on the return interval between the last two
events below �Q has been suggested [26].
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Here we show how the RIA can be used to further improve the estimations of the
VaR by using explicitly (9) for the risk function WQ, which is a symmetric function
of Q [33].

To obtain the VaR within the RIA, we proceed iteratively:

(1) In the first step, we choose q and determine from 1=R�Q D q the corre-
sponding loss �Q in zero-th order approximation. Next we determine the time
t D t�Q that has been elapsed after the last return below �Q and use (9) to
determine the new probability W�Q.

(2) (a) If W�Q is within a certain confidence interval �q around q, the algorithm
is stopped. (b) If W�Q is above the confidence interval we multiply �Q by
1 C �Q and determine the new elapsed time t�Q.1C�Q/ after the last event
below �Q.1 C �Q/. If W is still above the confidence interval, we repeat this
step until, in the n� step, W�Qn�.1C�Q/ is either within or below the confidence
interval. Then we stop the algorithm and choose, as the estimate of the VaR,
�Q� D �Qn�.1 C �Q/. (c) If W�Q is below the confidence interval, we
proceed as in (b), but with a negative increment �Q < 0 until we are within or
above the confidence interval.
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Figures 16–18 show the VaR for the three assets discussed in the preceding
figures. Each figure consists of three panels. In panel (a), we show the negative re-
turns �Ri . For transparency, we only highlight those negative returns with a return
period above 10. We consider as extreme events returns with return period above
100 which is shown as straight line in the figures. In panel (b) we show an estimate
of the VaR for each day i . We employ (4) with q D 1=100 and choose the (local)
distribution of the returns from the last 100 days. In this case, the VaR for day i is
identical to the maximum negative return between day i � 100 and i � 1. In panel
(c), we show the estimate of the VaR by the RIA, obtained by he iterative procedure
described above. The confidence interval was chosen between 0.0099 and 0.0101,
and the size of the Q-increments was chosen as j�Qj D 0:025.
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Microstructure and Execution Strategies
in the Global Spot FX Market�

Anatoly B. Schmidt

Abstract Modern global inter-bank spot foreign exchange is essentially a
limit-order market. Execution strategies in such a market may differ from those
in markets that permit market orders. Here we describe microstructure and dynam-
ics of the EBS market (EBS being an ICAP company is the leading institutional spot
FX electronic brokerage). In order to illustrate specifics of the limit-order market,
we discuss two problems. First, we describe our simulations of maker loss in case
when the EUR/USD maker order is pegged to the market best price. We show that
the expected maker loss is lower than the typical bid/offer spread. Second, we dis-
cuss the problem of optimal slicing of large orders for minimizing execution costs.
We start with analysis of the expected execution times for the EUR/USD orders
submitted at varying market depth. Then we introduce a loss function that accounts
for the market volatility risk and the order’s P/L in respect to the market best price.
This loss function can be optimized for given risk aversion. Finally, we apply this
approach to slicing large limit orders.

1 Introduction

Modern inter-bank spot foreign exchange is conducted primarily via two electronic
broking systems, EBS and Reuters. EBS being an ICAP business dominates the
EUR/USD and USD/JPY exchanges. In January – September 2008, the average
daily transacted volume in the EBS market has reached 225 billion USD. As a result,
EUR/USD and USD/JPY rates posted on the EBS trading screens have become the
reference prices quoted by dealers to their customers worldwide [1].
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Early empirical research of the high-frequency FX markets was overwhelmingly
based on the Reuters indicative rates (see [2, 3] and references therein). The dis-
advantages of such rates, as compared to the “firm” rates at which the inter-bank
currency transactions are done, are well documented [4]. In recent years, several
studies of the high-frequency FX market based on the EBS data have been reported
[1, 5–10].

In the known publications on the FX trading strategies, it is usually assumed that
when a trading model generates a signal to trade, the order is executed instantly
at the current market price (see, e.g. [11–13] and references therein). While this
assumption may be sufficient for analysis of low-frequency trading (e.g. for daily
returns), it is not valid for the institutional high-frequency market where only limit
orders are accepted and the bid-offer spread plays an important role in the realized
P/L. While the trading strategies answer the question “When to trade”, the execution
strategies answer the question “How to trade”.1 Two typical problems to be solved
prior to submitting an order are: how to split a large order into smaller pieces in
order to prevent an adverse market impact, and where to place an order in respect
to the current best price. Understanding of the order book dynamics is critical for
implementing efficient execution strategies. Microstructure effects in equity mar-
kets have been discussed in [15–20] and references therein. In this work we review
some findings on the EBS market microstructure and related execution strategies
[6, 21–23].

This report is structured as follows. Description of the EBS market specifics
is given in the next section. The work’s relevant empirical findings are described
in Sect. 3. In particular, we present the EUR/USD price distribution within the or-
der book and the expected execution times for EUR / USD orders of various sizes
and distances from the market best prices. We also describe the distributions of
the EUR/USD order book volume at best price and its depletion rate. We conclude
Sect. 3 with discussion of the memory processes in the FX order flows. In particu-
lar, we show that autocorrelations in FX order flows decay much faster than those
in equity markets [24, 25].

In Sect. 4, we offer a theoretical framework for trading large amounts in a limit-
order market by slicing them into smaller orders. Our approach is similar to that of
suggested for slicing the market order in that it minimizes utility function compris-
ing of volatility risk and execution cost [26,27]. The main specific of our approach is
that the execution cost for market orders is determined primarily by their market im-
pact while the cost of a limit order can be expressed in terms of the distance from its
price to the market best price.

In Sect. 5, we describe our simulations of maker loss for limit orders submitted at
current best price. According to our strategy, if price moves in the adverse direction
before the order is executed, the order is canceled and resubmitted at a new best price
[22, 23]. Our goal is to check whether such a strategy may lead to a loss exceeding

1 With proliferation of alternative trading systems, dark liquidity pools, etc., another important
problem for institutional trading has become answering the question “Where to trade” [14].
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the taker loss (the bid/offer spread). We describe three models that differ in their
calibration with the market data and show that all three models yield a maker loss
below the bid/offer spread.

We offer concluding remarks in Sect. 6.

2 The Specifics of the EBS Market

The EBS system only accepts the limit orders. There are two types of orders: quotes
and hits. Quotes (bid/offer orders) are submitted at a price specified by the trader.
Quotes stay in the order book until they are filled or canceled by their owners. Hits
(buy/sell orders) are submitted at the best price existing at the submission time: buy
orders and sell orders are submitted at the current best offer and best bid prices,
respectively. If the best price worsens by the time a hit arrives in the market, (e.g.
the best offer price gets higher) or, in other words, the hit misses its counterparty,
this hit is automatically canceled. A hit is always a taker order while a quote may
be either a maker or a taker order. Namely, when one quote matches another quote
on the opposite side of the market, the maker quote is the quote which arrived in the
market earlier while the taker order is the quote that arrived later. A match between
a maker order and a taker order is called a deal.

The EBS system has a distributed architecture with three matching engines
(called arbitrators) in London, New York, and Tokyo that are responsible for re-
gional trading in Europe, Americas, and in Asia, respectively. Orders arrive first at
their local regional arbitrator. If a quote (or its part) is not immediately filled with
the orders present in the order book, it is placed in all three regional order books
according to its price/arrival time priority. Since the orders arrive at the remote re-
gional arbitrators with some delays due to the finite light speed, the regional order
books may be not fully identical.

An important feature of the EBS market is that trading can only be conducted
between those counterparties that have bilateral credit. Every EBS customer estab-
lishes a credit limit with other EBS customers and can change it at any time. This
implies that the EBS best prices (highest bid and lowest offer) may or may not be
available to an EBS customer, depending on whether this customer has bilateral
credit with the maker(s) of the best prices. As a result, a taker order may sometimes
match a maker order that is not on the top of the order book. The credit constraints
may be the cause of the power-law asymptote in the distribution of the quote life
time on top of the order book [6].

Orders in the EBS market are submitted in units of millions (MM) of the base
currency (the first currency in the name of the currency pair, e.g. USD in USD/JPY
and EUR in EUR / USD). Exchange rates are usually quoted with five significant
digits and two junior digits are named pips. For example, the difference in pips for
EUR / USD rates 1.2345/1.2347 and for USDJPY rates 101.23/101.25 is the same:
two pips.
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3 The Microstructure and Dynamics of the Global FX Market

3.1 The Structure of the Order Book

Choosing an order price is always a compromise between the execution speed and
cost. If a trader wants to quickly execute an order with amount higher than the
amount available at the current best price (which is visible on the trader screen), he
should place an order at a price better than the current best market price (e.g. a bid
order at a price higher than the current best offer). On the other hand, a patient trader
may submit an order at a price worse than the current best market price (e.g. a bid
order at a price lower than the current best bid). Then in case of favorable market
price move, execution cost will be lower. The very event of execution of such an
order is not guaranteed, though.

Let P , BB, and BO be the order price, the best bid, and the best offer, respectively.
We define the bid-side distance (in pips) from best price as D D BB � P and the
offer-side distance as D D P � BO . An example of the distribution of the number
of orders for different distances D and for several quote sizes (V ) is presented in
Fig. 1. This distribution is clearly skewed to negative values of D as limit orders are
more often placed inside the order book in expectation of a favorable price move.

3.2 Dynamics of the Top of the Order Book

Generally a quote submitted at best price on its side of the market (e.g. a bid order
submitted at a current best bid price) must reach the top of the order book before it
can be filled.2 Important characteristics of the order book are the distributions of its
size at best price and its depletion rate. Often these distributions can be described
with the gamma distribution (see Fig. 2)

P.x/ D x˛�1 exp.�x=ˇ/

�.˛/ˇ˛
: (1)

The gamma parameters f˛; ˇg that describe the order book volume at best price and
its depletion rate in Fig. 2 are equal f1:82; 5:96g and f2:90; 0:76g, respectively. The
expected values of the order book volume at best price and its depletion rate equal
11.3 and 2.2 MM EUR per second, respectively.

Note that the global FX market (at least its most liquid instruments, EUR / USD
and USD/JPY) never sleeps and the probability for a zero-size or static order book
is practically zero.

2 Recall, however, that the credit constraints may violate this rule (see Sect. 2).
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Fig. 1 Price distribution for EUR/USD orders. Data for 7:00–17:00 GMT, week ending 28 Apr
2006
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3.3 Order Execution Dynamics

Estimates of the expected quote execution time (T ) are very important for imple-
menting trading strategies. In general, T depends on the order size, its distance to the
best price, and market volatility (�). Estimating T .V; D/ for given time period (as-
suming � D const) is complicated since limit orders are often cancelled before full
or even partial filling. An example of order execution statistics is given in Table 1.
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Table 1 Filling ratios of the
EUR/USD quotes. Data for
week ending 24 Apr 2006

Order size (MM EUR) 1 5 10 20

Partially filled (%) – 6.5 3.0 41.3
Fully filled (%) 27.6 29.6 39.7 31.3

Table 2 Expected execution time, T .V; D/, (in seconds) for EUR/USD quotes. Standard error
estimates are shown in parentheses. Data for the time window 7:00–17:00 GMT, 24 Apr 2006 to 2
Jun 2006

T .V; D/ Distance from best price, D (pips)

Order size, V (MM EUR) �2 �1 0 1 2

1 0.322 (0.005) 1.08 (0.02) 12.8 (0.1) 42.4 (0.6) 101 (2)
5 0.586 (0.036) 2.80 (0.11) 16.5 (0.5) 58.2 (2.7) 103 (7)
10 0.939 (0.080) 4.73 (0.47) 17.9 (0.9) 74.8 (9.5) 161 (26)
20 1.83 (0.25) 6.44 (0.71) 21.4 (2.7) 125 (50) 137 (30)

There may be different reasons for canceling unfilled or partially filled quotes.
Order cancellations may be triggered by the algorithmic trading strategies reacting
at changing market conditions. A trader may have firm belief that price will not
revert within the accepted time horizon (e.g. due to some news), or may merely
have lack of patience. Sometimes a trader may cancel a partially filled order if the
trading terminal is set with a default order amount exceeding current trader’s need.
There have been attempts to censor cancelled orders using simple assumptions on
the cancellation process [17, 20]. In this work, we have chosen to consider only
those quotes that were fully executed. An example of estimates T .V; D/ for fully
executed orders during the time window are given in Table 2.

It should be noted that the expected execution time is very sensitive to the return
volatility, which for the entire period from Apr 2006 to 2 Jun 2006 on 1-s grid
averaged to �0:5 pip. The quote execution time can be partitioned into the time for
reaching the top of the order book (which does not depend on the order size), and the
order filling time. The data in Fig. 3 demonstrate that the inverse time for reaching
the top of the order book grows linearly with volatility.

3.4 Autocorrelations in FX Order Flows and Deal Flows

Long-range autocorrelations have been reported for signed order flows in equity
markets in several studies (see [24, 25] for recent analysis and references therein).
Note that the signed order flow is defined as the difference between the buy or-
der volume and the sell order volume. In particular, autocorrelations of the signed
order flow with values of approximately 0.05 or higher may last up to 100 five-
minute intervals (see Fig. 4 in [24]). These autocorrelations may be explained with
order slicing, which is widely used to prevent price impact of large market or-
ders. In known research of FX markets, weak autocorrelations of the signed deal
flow (decaying below 0.05 within about 5 min) were described for the interval of
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1999–2003 [5]. Recall that a deal is a match between a maker order and a taker
order. Our calculations of autocorrelations for EUR / USD in 2006 confirm fast de-
cay of autocorrelations in the signed deal flow (see Fig. 4).

There is significant difference between autocorrelations in the hit flows and the
quote flows. Namely, autocorrelations in the signed hit flows are practically non-
existent. However, the signed quote flow autocorrelations decay significantly slower
than the signed deal autocorrelations: they remain above 0.1 for at least ten 5-min
intervals. It would be interesting to derive a model in which the deal flow is treated
as a product of two stochastic processes: a maker order flow with a long memory
and a taker order flow with a short memory.

The FX quote autocorrelations are much shorter than the order autocorrelations
in the equity markets. This may be caused by a less frequent usage of the order
slicing in the EBS market due to the restriction on the minimal order size.

4 Algorithmic Trading of Large Limit Orders

In this section we show how the estimates of the order execution time can be used
in algorithmic trading, namely in slicing large limit orders into small orders for
minimizing trading loss. Optimal slicing of large equity orders is widely discussed
in the literature (see [26–28] and references therein). In equity algorithmic trading,
market orders are usually used, and the main focus is placed on analysis of the
order impact on price. Indeed, a large market order can wipe out significant part of
the order book and hence move price in the adverse direction (so-called slippage).
However, a limit order can absorb only a small part of the order book. In this case,
potential losses are determined primarily by the distance between the order price
and the market best price.

Obviously, our estimates of the expected order execution time do not imply that
every order is executed within the estimated time interval. A trader who locks his
capital in a limit order is exposed to market risk as price may move in the adverse
direction and may not revert within an accepted time horizon. To reduce market risk,
one has to submit a more aggressive order than those already in the order book (e.g.
a bid order at a price higher than the best offer). This, however, incurs immediate
losses.

Here we follow the current literature on the optimal execution strategies [26–28]
and introduce a “Risk C Cost” loss function L1.V; D/ for an order of size V placed
at distance D from the best price [21]:

L1.V; D; �/ D 100V
h
��
p

T .V; D/ � D
i

: (2)

The first term within the brackets of (2) is an estimate of potential losses due to
the return volatility, � (similar to value-at-risk estimates often used in risk manage-
ment); T .V; D/ is the expected execution time and � is the risk aversion coefficient.
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Table 3 The loss function (2) for � D 0:47 and data for T .V; D/ from Table 2

L1.V; D; �/

� D 1 � D 2

D D

V �2 �1 0 1 2 �2 �1 0 1 2

1 2.31 1.53 1.72 2.12 2.89 2.62 2.05 3.45 5.24 7:78

5 2.36 1.79 1.92 2.61 2.81 2.72 2.58 3.83 6.21 7:61

10 2.46 2.02 2.02 3.12 4.03 2.92 3.03 4.04 7.25 10:06

20 2.64 2.19 2.18 4.25 3.50 3.27 3.39 4.35 9.51 9:00

The second term is the order P/L based on the order price distance to the current
market best price. Hence in our approach, the cost of executing a bid (offer) order
at current best bid (offer) price is assumed to be zero. While the bracketed value
is measured in pips, V is given in millions of the base currency (i.e. EUR in case
of EUR / USD) and the scaling factor outside the brackets, 100 V , presents the loss
function in the local currency units (i.e. USD in the case of EUR / USD). Other
utility functions used in optimal portfolio management, such as CARRA (see, e.g.
[29]), can be also applied within this approach.

In Table 3, we provide an example of calculations of the loss function for
T .V; D/ taken from Table 2 and � D 0:47 (the EUR/USD volatility during the
week ending 28 Apr 2006). This example shows that there may be an optimal value
of D for given � that minimizes the value of the loss function.

This approach can be applied to the algorithm of trading a large amount N by
consecutively placed n small orders of amount V.N D nV / so that every new small
order is submitted right after the former one is filled. Within our approach, the nth
order is locked during the time it takes to execute .n � 1/ previous orders as well as
the nth order itself. Therefore the potential loss, Ln, for the nth order is

Ln.V; D; �/ D 100V
h
��
p

nT .V; D/ � D
i

: (3)

As a result, the loss function for the total amount, N , is the sum of the individual
loss functions L1 through Ln:

L.N /.V; D; �/ D 100V

"
��

nX

kD1

p
kT .V; D/ � nD

#
: (4)

Expression (4) can answer the question whether for a chosen value of � it is
preferable to trade N D 100 with say n D V D 10 or with n D 20 and V D 5,
etc. Our estimates with T .V; D/ taken from Table 2 show that if � D 1, the loss
function monotonically decreases with growing V (see Table 4). However for � D 2

and D D �2, there is a marginal minimum at V D 10.
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Table 4 The loss function L.N / for N D 100 calculated using values
of T .V; D/ from Table 2

L.N / � D 1 � D 2

V D D �1 D D 0 D D �1 D D �2

1 46,932 120,754 83,864 63,649
5 35,416 61,611 60,832 43,012
10 33,843 47,341 57,685 41,461
20 30,847 38,037 51,693 42,225

5 Simulations of Maker Loss

In a limit-order market, a trader assuming a long position can submit a maker order
at a price equal to (or lower than) the current best bid. Another option is to submit
a taker order at a price equal to (or higher than) the current best offer price. A taker
order has a much higher probability of fast filling yet has a loss in respect to a maker
order. Here we describe simulations of a strategy in which a maker order is pegged
to the best price until the order is executed [22, 23]. If price moves in the adverse
direction before the maker order is executed, this order is canceled and resubmitted
at a new best price. These simulations allow for estimating the expected maker loss
in respect to the bid/offer spread.

We assumed that trading on the buy and sell sides of the market is symmetric and
considered only the bid orders with the size of 1 MM. We used three models that
differ in their calibration with the market data. The simulation process for Model A
is shown in Fig. 5.

First, we simulated the order book volume at the best bid price and placed our
order in the end of the order queue. The order book volume at best price and its
depletion rate were simulated using the distributions shown in Fig. 2. Then we
simulated the new best price. In Model A, we used a random trinomial tree func-
tion in which price may increase or decrease by one pip with probability � � 0:5, or
price may remain the same with probability .1�2�/. The standard deviation for this
price model equals

p
2� . The standard deviation for our data set equals 0.37 pips;

hence we used � D 0:068. If the new price was lower than the current best bid, we
assumed that entire order book at the best bid price including our order had been
filled. If the new price was the same, we decreased the order queue by the simulated
depletion rate. If the resulting order volume was lower than zero, we assumed that
our order had been filled. Finally, if the new price was higher than the current best
bid, we simulated a new order book volume at best price and its depletion rate, and
resubmitted our order at the new price.

The simulations can be made more realistic if the model employs the real best
prices and order book volumes at best price (which are observable to the EBS
traders). Then only the order book depletion rate, R, (which is not observable)
must be simulated. In Model B, empirical prices were used while both the order
book volume at best price and its depletion rate were simulated. Unfortunately, the
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Fig. 5 Flow chart for simulations of maker loss

simulated and real order book volumes may become inconsistent. Let denote the
empirical order book volume at best price in the beginning of the current simulation
with Ve.0/. If price remains unchanged for n time steps, then the simulated order
book volume equals Vs.n/ D Ve.0/ � nR (note that R D const within simulation
of a given maker order). The case with Vs.n/ < Ve.n/ can be explained with new
orders arriving in the queue after our order. However the case with Vs.n/ > Ve.n/

shows inconsistency between the simulated and empirical data. Model C differs
from Model B in that the simulated order book volumes are defined as

Vs .0/ D Ve.0/; Vs .n/ D min ŒVs .n/ � R; Ve .n/	 : (5)

The convergence of simulations for all three models is shown in Fig. 6. The ex-
pected loss simulated with all three models is listed in Table 5. These data show
that all three models yield very close results of less than one pip (i.e. less than the
bid/offer spread). This implies that the maker strategy may be statistically more
advantageous than the taker strategy.
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Table 5 Expected maker loss for EUR/USD, week ending 16 Nov 2007

Model A B C

Expected maker loss (pips) 0.41 0.46 0.36

6 Concluding Remarks

The results presented in Sects. 4 and 5 should be treated primarily as illustrations
of concepts on how high-frequency market data can be used for back-testing the
trading strategies in a limit-order market. Adequate calibration of trading model re-
mains a challenge for every practitioner. In particular, there is a fine line in choosing
a sample for the model calibration. On one hand, econometricians strive for long
data samples to satisfy the law of large numbers. However, if a time series is not
stationary (which may be the case for high-frequency market data sets), averaging
upon a long sample may be not helpful for calibrating the model to specific market
conditions (e.g. to given volatility). More generally, data snooping remains a real
problem in analysis of performance of trading strategies [30]. Resampling with the
bootstrap and Monte Carlo simulations has been a promising approach in this field
[31, 32].
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Temporal Structure of Volatility Fluctuations

Fengzhong Wang, Kazuko Yamasaki, H. Eugene Stanley,
and Shlomo Havlin

Abstract Volatility fluctuations are of great importance for the study of financial
markets, and the temporal structure is an essential feature of fluctuations. To explore
the temporal structure, we employ a new approach based on the return interval,
which is defined as the time interval between two successive volatility values that are
above a given threshold. We find that the distribution of the return intervals follows
a scaling law over a wide range of thresholds, and over a broad range of sampling
intervals. Moreover, this scaling law is universal for stocks of different countries,
for commodities, for interest rates, and for currencies. However, further and more
detailed analysis of the return intervals shows some systematic deviations from the
scaling law. We also demonstrate a significant memory effect in the return intervals
time organization. We find that the distribution of return intervals is strongly related
to the correlations in the volatility.

1 Introduction

Understanding financial markets attracts many researchers in both economics and
physics [1–10]. A key topic of economics and econophysics is fluctuations in
price movement. Due to the recent development of electronic trading and data
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storing, huge financial databases have become available, enabling the analysis of
the dynamic properties of financial fluctuations. The fluctuations can be evaluated
by the absolute value of logarithmic price change (“volatility”). One of the most
fundamental problems is the temporal structure in the volatility time series. A new
approach to analyze the temporal structure is to study statistics and organization
of the time interval (“return interval”) between two successive shocks larger than
a threshold.

Recently Bunde and his colleagues [11–15] studied the return intervals for
climate records and found scaling in the distribution and long-term memory. Anal-
ogous to the climate, one can use the return intervals approach to study financial
fluctuations. The first effort was conducted by Yamasaki et al. who studied the daily
data of currencies and US stocks and found scaling in the return intervals distribu-
tion and the long-term memory in the time series of the return intervals [16, 17].
Later, Wang et al. studied the intraday data of 30 stocks which constitute the Dow
Jones Industrial Average (DJIA) index, Standard and Poor’s 500 (S&P 500) index,
currencies, interest rates, and commodities (oil and gold). They found similar be-
havior for all quantities studied [18, 19]. A similar analysis has been done for the
Japanese [20] and Chinese [21,22] stock markets. To compare between models and
empirical data, Vodenska-Chitkushev et al. examined return intervals from two well-
known models, FIGARCH and fractional Brownian motion (fBm) and showed that
both models capture the memory effects, but only fBm yields the scaling features
[23]. Bogachev et al. related the nonlinear correlations in volatilities to the multi-
scaling behavior in the return intervals. They also showed that the return intervals
distribution follows a power law for multifractal data sets [24]. Recently, Wang et al.
systematically studied 500 components of the S&P 500 index, and demonstrated a
systematic deviation from the scaling. They showed that this multiscaling behav-
ior is related to the nonlinear correlations in the volatility sequence [25]. Further,
Wang et al. analyzed the relation between multiscaling and several essential factors,
such as capitalization and number of trades, and found a systematic dependence
[26]. The multiscaling behavior was also found in the Chinese stock market [27].
A comprehensive review of the return intervals studies can be found in [28]. These
studies help us to better understand the volatility and therefore may lead to better
risk estimation and portfolio management [1–4, 29, 30]. Return intervals have also
been studied in many other fields (see [31] and references therein). It is calculated in
similar ways but with different names, such as waiting times, interoccurrence times
or interspike intervals.

2 Data Analyzed

In this paper we analyze the volatility return intervals of the US stock market by
analyzing the Trades And Quotes (TAQ) database from the New York Stock Ex-
change (NYSE). The period studied is from Jan 2, 2001 to Dec 31, 2002 (500 trading
days). TAQ records every trade for all securities in the US market. To avoid many
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Fig. 1 Illustration of the return interval time series. Panel (a) is the stock price and (b) is the cor-
responding volatility for the stock GE on Jan 8, 2001. The two dashed lines in panel (b) represent
two arbitrary thresholds q D 2 and q D 3. The time intervals �qD2 and �qD3 are between the
volatility values that exceed these thresholds which form two time series. Note that the volatility is
in units of its standard deviation

missing points in 1-min resolution, we choose to analyze only the 1,000 most-traded
stocks. Their numbers of trades range from 600 to 60,000 per day. The volatility is
defined the same as in [18]. First, we compute the absolute value of the logarithmic
change of the 1-min price, then remove the intraday U-shape pattern [5–7], and fi-
nally normalize the series with its standard deviation. Therefore, the volatility is in
units of standard deviations. With 1-min sampling interval, a trading day has 390
points (after removing the market closing hours), and each stock has about 195,000
records over the 500 trading days analyzed.

To illustrate the generation of the return interval time series, we plot the price and
corresponding volatility of a typical stock, General Electric (GE), for a typical day,
in Figs. 1a,b. We identify all volatility values above a certain threshold q, and we
calculate the sequence of time intervals �q between them, as shown Fig. 1b. These
time intervals form the return interval time series. The only free parameter in this
procedure is the threshold q. The return interval time series reflects the temporal
structure of the volatility time series at different size scales by choosing different
thresholds q.

3 Scaling and Universality

Two important conceptual advances in statistical physics are scaling and univer-
sality. A system obeys a scaling law if its components can be characterized by the
same power law form over a certain range of scales (“scale invariance”). A typical
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behavior for scaling is data collapse: all curves can be “collapsed” onto a single
curve, after a certain scale transformation. In many systems, the same scaling func-
tion holds, suggesting universality laws.

We begin by examining the scaling and universality in the distribution of the re-
turn intervals. The distribution can be characterized by a probability density function
(PDF) or cumulative distribution function (CDF). Previous studies [16–28] sug-
gested that P.�/, the PDF for the return interval � , can be well approximated by
a scaling law if � is scaled by its average h�i,

P.�/ D 1

h�if

�
�

h�i
�

: (1)

Here h	 	 	 i stands for the average over a data set. The scaling function f does not
depend explicitly on the threshold q, but only through the mean interval h�i. If
P.�/ is known for one value of q, (1) can make predictions for other values of q –
in particular for very large q (extreme events), which are difficult to study due to the
lack of statistics.

Our first task is to examine the universality of this scaling behavior. There are
several determining characteristics associated with the return interval. A unique re-
turn interval time series is determined by the threshold q. Previous studies shown
that the scaling is valid for a broad range of thresholds [16–22]. As an example, we
plot in Fig. 2a the return interval distributions of stock GE for thresholds q D 2 to 6.
Clearly, the distributions show scaling and similar results are found for many other
stocks [16–22].

The second characteristic is the sampling interval �t . To test whether the system
exhibits diverse behaviors at different time resolutions, we examine the distributions
over various sampling intervals �t , from �t D 1 min to �t D 30 min, as shown
in Fig. 2b. Remarkably, all curves collapse onto a single curve, demonstrating the
persistence of the scaling over a wide range of �t . The scaling can even be extended
to one trading day [19].

The next question is, how about different stocks? Is the same scaling still valid?
To answer this question, we study the return interval distributions of 30 component
stocks, which consist of the benchmark DJIA index, and plot all of them for q D 2

in Fig. 2c. Again we find that all curves collapse onto a single curve, suggesting that
the same scaling holds for different stocks.

Until now all the results have been for equity markets. To test the scaling for
different financial markets, we plot in Fig. 2d the distributions of the return interval
for two typical commodities, one typical interest rate, two currencies, as well as a
stock and a stock index (see [19] for a detailed description of the data sets). We can
see that all symbols clearly fall onto a single curve, indicating the scaling of these
distributions.

In conclusion, Fig. 2 strongly suggests the universality of the scaling in return
interval distributions, which is valid over four characteristics: thresholds, sampling
intervals, stocks, and markets.
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Fig. 2 Scaling in the return interval distributions for (a) stock GE for 500 trading days with thresh-
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component stocks of the DJIA index, and (d) four different markets: stock, commodity, interest
rate, and currency. Note that stock GE is only a representative example; other stocks have similar
features. In all four panels we find good scaling, consistent with universality. The solid lines fit
to the data are stretched exponential fits – i.e., the scaling function is consistent with a stretched
exponential, exp.�x� /, with � � 0:3

One question naturally arises, what is the form of the scaling function f ? As
shown by the solid lines in Fig. 2, the function was suggested to be in a good ap-
proximation to a stretched exponential [16–28],

f .x/ � e�.x=x�/�

: (2)

Here x� is the characteristic scale and � is the shape parameter, which is related
to the correlations in the volatility sequence and thus called “correlation exponent”
[11–14]. For an uncorrelated time series, � D 1 and f reduces to the exponential
function. This is confirmed by shuffling the original volatility time series and ex-
amining the corresponding return interval [16–19]. Later we will further discuss the
relation between the distribution of the return intervals and the correlations in the
volatility.

From (2), the PDF function can be rewritten as

P.�/ � e�.�=a/�

; (3)
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where a is the characteristic time scale. The two parameters in (3) are related, by
the definition of a PDF and h�i [25, 31],

a D h�i
 .1=�/


 .2=�/
: (4)

Here 
 .a/ � R1
0

ta�1e�t dt is the Gamma function. To simplify the calculation
and without loss of generality, we assume �=a is continuous, then the corresponding
CDF, C.�/, is the integral of the PDF,

C.�/ �
Z 1

x

P.�/d� � 
 .1=�; .�=a/�/; (5)

where 
 .a; x/ � R1
x ta�1e�t dt is the incomplete Gamma function.

Since the CDF accumulates the information of the time series and has better
statistics than the PDF, we obtain the correlation exponent � by fitting the CDF with
(5).1 In this way, we calculate � values for the 1,000 most-traded stocks. In Fig. 3,

Correlation exponent γ

100

10-1

P
D

F

q=2

q=3

q=4

q=5

q=6

0.1 0.2 0.3 0.4 0.5

Fig. 3 PDF of the correlation exponent � for the 1,000 most-traded US stocks (see Footnote 2).
The results for five thresholds, q D 2 to 6, are displayed. Interestingly, all have similar distribu-
tions. Moreover, the PDF for q D 3, 4, and 5 collapse onto an approximate single curve, indicating
a scaling over the entire equity market

1 To avoid the discreteness for small � (Eichner et al. [15] suggested a power law function for this
range) and large fluctuations for very large � , we choose the range of 0:01 � CDF � 0:50 and
also use a as a free parameter to perform the stretched exponential fit.
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we plot the PDF of � values for five thresholds, q D 2 to 6.2 All five distributions
have similar shapes, with the range from 0 to 0:6 and the peak around 0:3. Note,
the differences between the curves of q D 3, q D 4, and q D 5 are in the range of
their error bars. This significant similarity supports the validity of scaling for a wide
range of thresholds for the entire equity market.

The distributions of returns and volatilities of many financial time series have
power law tails [1–10]. As for the return interval, Yamasaki et al. suggested that the
scaling function is also consistent with a power law tail for large intervals [16, 17].
Moreover, Bogachev and Bunde have shown that for multifractal time series the
PDF of return intervals are governed by power laws [24]. Wang et al. comprehen-
sively examined and compared the fittings of the stretched exponential PDF and
power law tail for the 1,000 most-traded stocks [28]. They found that the power law
tail can not be ruled out, though the stretched exponential function seem to better
describes the PDF of return intervals.

Although the scaling is remarkably universal for the return interval distributions,
we can see some systematic deviations from a single universal scaling law. As an
example, the PDF for larger threshold has a lower probability in medium intervals,
as shown in Fig. 2a. Also, the probability of larger � values is increasing with the
increasing of the threshold, as shown in Fig. 3. To explicitly examine the scaling
features of the return intervals, Wang et al. studied the moments for 500 component
stocks of the S&P 500 index. They found that the moments have certain tendencies
with h�i, indicating multiscaling in the return interval distribution [25]. Ren and
Zhou found similar behavior for two Chinese indices [27].

To find the origin of the differences in � values, and to further understand the
complexity of the market, we study the dependence of the � values on four char-
acteristics of stocks, the market capitalization, the risk (measured by the standard
deviation of logarithmic price changes), the number of trades, and the return (loga-
rithmic price change). In Fig. 4, we plot these relations for four thresholds q D 2,
3, 4, and 5. We can see that the curves have a similar tendency and for each panel
they are closer to each other for larger thresholds. For the capitalization (Fig. 4a),
� increases and then shows a slight decrease, suggesting that companies of a cer-
tain size have the smallest correlations. For the risk, there is no crossover but a
negative dependence, as shown in Fig. 4b. Larger risk means that the probability
of larger volatilities is higher and the corresponding correlations are stronger. Price
movement is realized by trades and the temporal structure of the volatility probably
relates to the size of the trades. Counterintuitively, � is almost insensitive to market
activity, as shown in Fig. 4c. A possible reason for this is that many investors do not
change their strategies just because of a dramatic change of trading frequency. In
Fig. 4d we show that the dependence on the return has similar shape as that of the

2 To obtain the error bars for each point in the distribution, we produced 1,000 bootstrap resamples
from the empirical data set, then compute the probability density of each of these resamples, and
calculate the average and standard deviation (as shown as points and error bars in Figs. 3 and 6)
for each point in the distribution. For the parameter C1 and C2 in (8), we use a similar method to
obtain the error bars.
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and (d) average daily return. Shown are curves of four thresholds q D 2, 3, 4, and 5. Dashed lines
are logarithmic fits to the q D 2 curve (except in (d) where the fit is linear)

capitalization, but the peak is located around zero. This behavior suggests that the
return is related to the size of the risk. For returns with large magnitude representing
high volatilities, the corresponding risk is relatively high and therefore � is small
(see Fig. 4b). All these findings support the multiscaling nature of the return interval
distributions, since except for Fig. 4c that the data are not horizontal.

4 Long-Range Correlations

Many financial time series are auto-correlated, where a value in the sequence “re-
members” the previous values therefore the time series has a memory. Previous
studies have shown that the return does not exhibit any linear correlations extending
over more than a few minutes, but the volatility exhibits long-term correlations (see
[3] and [5–7]). This leads to long periods of high volatility as well as other periods
where the volatility is low (“volatility clustering”). The return intervals, generated
from the volatility time series, consist of a time series. Thus, the temporal structure
in the return interval time series itself is also of interest. To test the memory effect
in the return interval time series, first we employ a direct method, the mean interval
conditional on the immediate earlier value of the return intervals h� j�0i. Here we
use a subset of values �0 instead of a single �0 value, since the statistics for the latter
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three different thresholds q D 2, 3 and 4. To compare with the original data results (filled symbols),
we also plot the corresponding results for shuffled records (open symbols). The distinct difference
between the two records implies the memory effect in the original return interval

is poor. If there is no correlation among return intervals, h� j�0i should be indepen-
dent on �0 and identical to h�i, or the quantity h� j�0i=h�i should be independent on
�0=h�i (to compare return intervals for different thresholds, we normalize �0 with
h�i). Interestingly, we find a power law relation between h� j�0i=h�i and �0=h�i with
exponent 0:4˙0:1, as shown in Fig. 5. Note that large (small) � tend to follow large
(small) �0. To find the origin of this dependence, we shuffle the original volatility
sequence, then generate the return interval time series. We find that the correspond-
ing mean conditional return intervals are almost constant, as plotted in Fig. 5 (open
symbols). This behavior suggests that the memory effect in the return intervals is
due to the long-range power law correlations in the volatility time series.

To further study the correlations in the return interval, we employ the detrended
fluctuation analysis (DFA) method [32–39]. After removing trends, DFA computes
the root-mean-square fluctuation F.`/ of a time series within windows of ` points,
and determines the Hurst exponent ˛ from the scaling function,

F.`/ � `˛: (6)

The correlation is characterized by the Hurst exponent ˛ 2 .0; 1/. If ˛ > 0:5, the
records have positive long-range correlations. if ˛ D 0:5, no correlation (white
noise), and if ˛ < 0:5, it has long-range anti-correlations.

Similar to the volatility [5–7], there is also a crossover in the DFA curves of
the return intervals. Thus, the entire regime can be split into two regimes, ` < `�
and ` > `�, where `� is approximately 390 min or one trading day [18]. Without
loss of generality, we investigate the return intervals of the 1,000 most-traded stocks
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for a threshold q D 2. The distributions of the Hurst exponent ˛ for these two
regimes are displayed in Fig. 6. There is a significant difference between them, for
the short time scales the ˛ values are centered around 0:6, and for the long time
scales around 0:8. Remarkably, this behavior is also consistent with that for the
volatility, suggesting a common origin for the strong persistence of correlations in
both volatility and return interval records. In fact the clustering in return intervals is
related to the known effect of volatility clustering [8–10]. However, the correlations
in the return intervals suggest also that long return intervals tend to follow long
return intervals which is not trivially revealed by the correlations in the volatility.

We already know that the distribution of the return interval depends on the corre-
lations in the volatility. What is the exact relation between the Hurst exponent ˛ and
the correlation exponent �? Based on studying artificial long-term linear correlated
sequences, Bunde et al. suggested it to be [11–14]

˛ D 1 � �

2
: (7)

To test this relation in real data, we plot in Fig. 7 the ˛ values for the volatility vs.
the � values for the return intervals. Here the ˛ values are obtained for the long time
scale. There is an apparent dependence between the two exponents, which can be
expressed as

˛ D C1 � C2 �: (8)
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Fig. 7 Scatter plot for the 1,000 most-traded US stocks showing the dependence of the Hurst
exponent ˛ on the correlation exponent � . The exponent ˛ is obtained from the long time scales
for the volatility, and � is obtained from the stretched exponential fit of the CDF of the return
intervals. Without loss of generality, the return intervals are for the threshold q D 2. Clearly, there
is a significant dependence between the two exponents, suggesting that the distribution of return
intervals is strongly related to the correlations in volatility. The regression line is the function
˛ D 0:93 � 0:19 � (cf. (8))

We find that C1 D 0:93 ˙ 0:01 and C2 D 0:19 ˙ 0:02 (see Footnote 2), which
are not the same as that in (7). As we know, both the volatility correlations and
the return interval PDF are complicated and non-linear process exist. Nevertheless,
Fig. 7 shows a relation between ˛ and � . This relation of (8) may help us understand
the non-linearities in the volatility, which will be the subject of a future study.

5 Summary

In summary, to study the temporal structure in the volatility, we analyzed the proper-
ties of the volatility return interval for the 1,000 most-traded stocks in the US equity
market. We found that there is good scaling in the distribution, which can be approx-
imated by a stretched exponential (although the power law tail can not be ruled out).
Importantly, the scaling is persistence for a wide range of thresholds, a broad scale
of sampling intervals, many stocks, and diverse financial markets. Further analysis
showed that the return interval distribution has a systematic tendency away from a
single scaling law, and the correlation exponent � has a weak dependence on the
company size, risk and return. We also showed a significant memory effect in the
return intervals time series. Furthermore we showed that the correlation exponent �

significantly depends on the Hurst exponent ˛, indicating that the distribution of the
return intervals is strongly related to the correlations in the volatility.
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Theoretical Base of the PUCK-Model
with Application to Foreign Exchange Markets

Misako Takayasu, Kota Watanabe, Takayuki Mizuno, and Hideki Takayasu

Abstract We analyze statistical properties of a random walker in a randomly
changing potential function called the PUCK model both theoretically and numer-
ically. In this model the center of the potential function moves with the moving
average of the random walker’s trace, and the potential function is given by a
quadratic function with its curvature slowly changing around zero. By tuning sev-
eral parameters the basic statistical properties fit nicely with those of real financial
market prices, such as power law price change distribution, very short decay of au-
tocorrelation of price changes, long tails in autocorrelation of the square of price
changes and abnormal diffusion in short time scale.

1 Introduction

The first random walk model was introduced by Bachelier in 1900 as a model
of market price fluctuations [1]. Independently Einstein proposed a random walk
model for the motion of colloid particles [2]. In the case of Einstein’s theory the
driving force of random walker is random collision of molecules in thermal equilib-
rium, while in the case of Bachelier’s theory the driving force is mass psychology
of fickle traders who are predicting the future price individually. Mathematical
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formulation of Bachelier’s theory was developed into highly sophisticated manner
after his death in the field of financial technology and it is now widely accepted in
the real world finance.

Earnest scientific verification of random walk assumptions for market price
fluctuations started in the middle of 1990s with the advent of the new field,
Econophysics, until that time high frequency tick-by-tick market data was not ac-
cessible for scientists. Roughly speaking the amount of tick-by-tick data is about
ten thousand times denser than traditional daily market data, and intensive analysis
of high quality financial market data from physicists’ view has clarified that mar-
ket price fluctuations are not simple random walks [3]. Empirically stylized facts
which clearly deviate from a naive random walk model can be summarized by the
following four characteristics:

1. The distribution of price change in a unit time has nearly symmetric long tails
approximated roughly by power laws. This property was firstly pointed out by
Mandelbrot [4]. A typical value of the power law exponent is 3, however, it seems
not to be a universal constant but depends on market conditions [5].

2. The autocorrelation of price change decays quickly to zero often accompanied
by a negative correlation for very short time [3].

3. The magnitude of price changes called the volatility, defined by the square of
price changes, is known to have a long correlation often approximated by a power
law [3].

4. For large time scale the diffusion property of market price generally follows the
normal diffusion in which the variance is proportional to time, however, for short
time scale abnormal diffusion is observed, i.e., the variance is approximated by
a fractional power of time. The estimated exponent of the power is not universal,
but it seems to depend on the market condition and it is closely related to the
Hurst exponent of market price fluctuations [6].

There are many variants of random walk models of market prices, however, it
is not easy to reproduce all of these characteristics. For example, the Nobel prize
laurelled ARCH model [7] roughly satisfies characteristics 1, 2 and 3, however, it
misses the abnormal diffusion characteristics 4.

The present authors already proposed a new type of random walk model in which
random walker moves in a quadratic potential function whose center is given by the
moving average of the random walker’s trace [8]. This model is named as PUCK
model from the abbreviation of Potentials of Unbalanced Complex Kinetics. As the
potential function moves according to the motion of the random walker the statis-
tical properties are very different from the case of a fixed potential function, i.e.,
the Ornstein–Uhlenbeck process. We show that the characteristic 4 becomes acces-
sible by the effect of such moving potential function. Also considering the case that
the coefficient of the potential function is changing randomly, the price change dy-
namics is approximated by a random multiplicative process and the distribution of
price changes follows a power law satisfying the characteristic 1. Long correlation
of volatility is also satisfied by taking into account the effect that the coefficient of
the potential function fluctuates with a long correlation.
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In the next section we introduce the PUCK model and analyze its basic properties
with a fixed potential coefficient in Sect. 2.1. In Sect. 2.2 we consider the case that
the coefficient fluctuates randomly and show that the above four characteristics are
roughly satisfied in some parameter ranges. In Sect. 3 we analyze real market data of
Dollar–Yen exchange rates and confirm the above basic characteristics comparing
with the PUCK model’s results. The final section is devoted for discussion.

2 The PUCK Model

We consider the following form of random walk in a moving potential function
UM .xI t/:

x.t C 1/ � x.t/ D � d

dx
UM .xI t/jxDx.t/�xM .t/ C f .t/; (1)

UM .xI t/ � b.t/

M � 1

x2

2
; (2)

xM .t/ � 1

M

M�1P
kD0

x.t � k/; (3)

where f .t/ is a random external noise, b.t/ is the coefficient of the quadratic po-
tential, M is the size of moving average to define the center of potential function,
xM .t/. This model has been used as a new type of time series data analysis charac-
terizing time-dependent stability of markets. Here, we analyze its basic properties
both numerically and theoretically.

2.1 The Case of Constant b

Let us first consider the simplest case of a constant b.t/ D b. The case of b D 0

corresponds to the simplest random walk. For b > 0 the random walker is attracted
to the moving average of its own traces, so that the diffusion becomes slower than
the case of b D 0. On the other hand when b < 0 the random walker is pushed away
from the moving average of its traces and the walker diffuses faster than normal ran-
dom walk. This property can be confirmed in Fig. 1a in which traces for different
values of b are plotted for the same random number seed. For larger value of M

the behaviors of x.t/ are smoother as shown in Fig. 1b. There is a sharp transition
in diffusion property at b D �2. For 0 > b > �2 the diffusion is faster than the
normal case of b D 0, however, its long time behavior follows the normal diffusion
law, that is, the variance is proportional to the time as shown later. When b � �2

the repulsive force from the center of the potential function is larger than the ef-
fect of additive random force, f .t/, and the motion of x.t/ is approximated by an
exponential growth as shown in Fig. 1c. These cases are considered to be related to
crashes or bubbles in markets. In such a case the direction of growth, either going up
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Fig. 1a Examples of x.t/ for b D �1:5; �0:5; 0; 1:0 with M D 10 in (3). f .t/ is a Gaussian
random number with the mean value 0 and the standard deviation unity

Fig. 1b Examples of x.t/ in the case of b D �1:0 for M D 10; 100 and 200

Fig. 1c An example
of b-dependence around
b D �1:9. For b D �2:0

and �2:1 the value of x.t/

diverges. Here, the curves
look smooth as the scale
of the vertical axis is about
20 times larger

or down, is determined by the initial value condition or by the external noise, f .t/,
as long as the potential function is symmetric. On the other hand for positive large
number of b the potential force is so strong that the motion becomes a diverging
oscillation as shown in Fig. 1d.
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Fig. 1d An example
of oscillating divergence
observed in the case of
b D 18:2 with M D 10

The threshold value, b D �2, of this exponential divergence can be analyzed the-
oretically in the following way by representing the basic equation (1)–(3) in terms
of the velocity defined by the price difference v.t/ � x.t/ � x.t � 1/;

v.t C 1/ D �b

2

M�1X

kD1

!kv.t � k C 1/ C f .t/; (4)

where the weight function !k is given by

!k � 2.M � k/

M.M � 1/
;

M�1X

kD1

!k D 1: (5)

As (4) can be viewed as an Auto-Regressive process, the condition for realization
of statistically steady state can be determined by the condition that all solutions of z
of the following equation is within a radius 1 in the complex plain:

zM�1 D �b

2

M�1X

kD1

!kzM�k�1: (6)

From this analysis it is shown that the stochastic process governed by (4) is non-
stationary when b � �2. At the boundary case of b D �2 with M D 2 it is
confirmed that the velocity satisfies the basic random walk instead of x.t/,

v.t C 1/ D v.t/ C f .t/: (7)

Therefore, in this case that the velocity is a non-stationary variable and the diffusion
of x.t/ is much faster than that of normal diffusion.

Next we observe the basic statistical properties of PUCK-model with a constant
b when the external noise follows a white Gaussian noise. It is easy to show that
the first moment, < v.t/ >, is always zero from (4). For the second order moments
such as the variance, < v.t/2 >c , we have the following Yule–Walker equation:

< v.t C T /v.t/ > D
M�1X

kD1

�
�b

2

�
!k < v.t C T � k/v.t/ > C F ıT ; (8)
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where F is the variance of the white noise, < f .t/f .t 0/ > D F ıt�t 0 , and ıT is the
Kronecker delta which is 1 when T D 0 and is 0 otherwise. For given b and M the
variance, < v.t/2 >, is obtained for T D 0 in (8). In the special case of M D 2,
the solution is given as follows:

< v.t/2 > D F

1 �
�

b

2

�2
: (9)

This representation is valid for �2 < b < 2. In this special case it is easy to
prove that the distribution of v.t/ follows a Gaussian with the variance given by (9).
Figure 2a shows a typical example of numerical result of distribution of price dif-
ference �x.T I t/ � x.t C T / � x.t/ for a general case of b and M , in each case
the distribution is well approximated by a Gaussian distribution.

The autocorrelation of v.t/, Cv.T / � < v.t CT /v.t/ >c=< v.t/2 >c , is obtained
directly from (8). In the case of M D 2 the solution is given as,

Cv.T / �
�

�b

2

�T

: (10)

For 0 > b > �2 this is an exponential damping, and it is an exponential damping
with oscillation for 2 > b > 0. In Fig. 2b the autocorrelations for some combina-
tions of b and M are plotted. As confirmed from this figure, the autocorrelation is

Fig. 2a Log-log plot
of the cumulative distribution
of price difference. M D 10,
b D 1:5 with
T D 1; 5; 15; 50

Fig. 2b The autocorrelation
function for v.t / with
M D 10,
b D �1:5; �0:5; 0:0; 1:5
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always positive and decay exponentially for any negative b-value. On the other hand
for a positive b-value we can find an oscillatory behavior in general.

The volatility time series is defined by fv.t/2g and its autocorrelation is also
analyzed theoretically using (8). Here, we show analytical result for M D 2. In
this case we have the following equation by taking a square of (8), and multiplying
v.t � T C 1/2, then taking average over ff .t/g:

< v.t C 1/2v.t C 1 � T /2 > D b2

4
< v.t/2v.t C 1 � T /2 >

C < f .t/2 >< v.t C 1 � T /2 > : (11)

From this equation we have the following solution for the volatility autocorrelation:

Cv2.T / � < v2.t C T /v2.t/ >c =f< v.t/2 >g2 D
�

b

2

�2T

: (12)

Examples of general cases are numerically estimated as shown in Fig. 2c. As known
from this result the autocorrelation of volatility always decays exponentially like the
case of theoretical solution of M D 2, and no long-correlation can be observed as
far as the value of b is a constant.

The diffusion property can be characterized by observing the time evolution of
variance �2.t/ � < fx.t/ � x.0/g2 > as numerically obtained in Fig. 2d. For b > 0

Fig. 2c The autocorrelation
of v.t /2 with M D 10,
b D 1:5; 0:5; 0:0; 1:5

Fig. 2d Log-log plot
of the variance of price
diffusion for M D 10,
b D 1:5; 0:5
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the diffusion is slower than the case of b D 0 for short time scale, and for large time
scale the slope becomes 1 which is equivalent to the normal diffusion. In the case of
M D 2 we can obtain an exact solution also for this quantity. By solving (4) with
M D 2, we have the following exact representation:

v.t/ D
�

�b

2

�t

v.0/ C
tX

sD1

�
�b

2

�s�1

f .t � s/; (13)

x.t/ � x.0/ D
1 �

�
� b

2

�t

1 �
�
� b

2

� v.0/ C
t�1X

sD0

1 �
�
� b

2

�t�s�1

1 �
�
� b

2

� f .s/: (14)

Then, taking average over the square of (14), we have the solution for t � 1:

< fx.t/ � x.0/g2 > D

�
1 �

�
� b

2

�t
�2

�
1 C b

2

�2
< fv.0/g2 >

C F
�
1 C b

2

�2

8
<̂

:̂
t C b

1 �
�
� b

2

�t�1

1 C b
2

C b2

4

1 �
�

b2

4

�t�1

1 � b2

4

9
>=

>;
:

(15)

We have the diffusion constant for large t as follows [9]:

Dx D 4F

.2 C b/2
: (16)

Abnormal diffusion at small t can be approximated by assuming the following frac-
tional power law,

< fx.t/ � x.0/g2 >/ t˛ ; (17)

where ˛ can be determined approximately from small t . As an extreme case we can
evaluate ˛ from t D 0, 1 and 2:

˛ D logf< x.2/2 >=< x.1/2 >g
log 2

D 1 C
log

�
1 � b

2
C b2

8

�

log 2
: (18)

For b close to 0 we have the abnormal diffusion exponent as

˛ � 1 � 0:72b: (19)
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Fig. 2e Numerically
estimated value of ˛ for
small t . The dotted line shows
the theoretical value given
by (18)

This approximation holds for the range of �0:5 < b < 0:5 as shown in Fig. 2e.
For larger value of M the behavior of estimated ˛ deviates from (18), however,
qualitative behaviors are the same, i.e., slower abnormal diffusion for b > 0 and
faster abnormal diffusion for b < 0.

2.2 The Case of Random b.t/

Next we consider the case that the potential coefficient value changes randomly
with time. As empirically estimated value of b.t/ is known to be fluctuating around
0 [10], we assume that b.t/ follows a random walk in a fixed potential function, i.e.,
an Ornstein–Uhlenbeck process as follows:

b.t C 1/ � b.t/ D �c0b.t/ C g.t/; (20)

where c0 is a positive constant in the range of [0,1] and g.t/ is a normal Gaussian
noise with zero mean and the variance G. By this effect the value of b.t/ fluctuates
spontaneously and the statistics of x.t/ changes accordingly. Examples of the set
of time evolutions of b.t/, x.t/ and the volatility jv.t/j are shown in Fig. 3a–c for
typical values of G and c0. The parameters G and c0 plays the central role for the
statistical properties of x.t/ and v.t/.

In the case that the value of c0 is relatively large compared with the variance of
the noise term G as typically shown in Fig. 3a, fluctuation of the value of b.t/ is
concentrated around 0, then the behavior of x.t/ looks similar to the simple normal
random walk (Fig. 3a). In this case the statistical properties of prices are confirmed
to be nearly equivalent to the case of normal random walk, i.e., a normal distribution
of the price difference, quick decay of the autocorrelations for both the market price
and the volatility, and no abnormal diffusion of prices.

As shown in Fig. 3b when the value of c0 is intermediate, it is confirmed that
the volatility clustering caused by the fluctuation of b.t/ can be observed. When
the value of c0 is close to 0 like the case of Fig. 3c the fluctuation amplitude of b.t/

becomes very large, and there is a finite possibility that the value of b.t/ falls into the
parameter range of non-stationary condition b.t/ � �2. In such a case the behavior
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Fig. 3a Simulation results
based on (20) with
parameters c0 D 0:02

and G D 0:000784. Value
of b.t/ (top), market prices
(middle), volatility (bottom)

Fig. 3b Simulation results
based on (20) with
parameters c0 D 0:0015

and G D 0:000784. Value
of b.t/ (top), market prices
(middle), volatility (bottom)

Fig. 3c Simulation results
based on (20) with
parameters c0 D 0:0001 and
G D 0:000784. Value of b.t/

(top), market prices (bottom).
The plot of volatility is
skipped as the price changes
in the encircled period in
which b.t/ < �2 are too
large compared with the other
periods

of x.t/ switches between random walk phase and exponential growth phase in a
random manner and the whole process becomes quite unstable and non-stationary.

The steady distribution of b.t/ is solved analytically just like the case of v.t/

with M D 2 and it is given by the following normal distribution when the random
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Fig. 3d Log-log plot of the
cumulative distribution of
price difference. The
parameters are
c0 D 0:02; 0:0015; 0:0001

with G D 0:000784

noise g.t/ is an independent Gaussian distribution with variance G:

p.b.t// D 1p
2��b.c0/

e
� b.t/2

2�b.c0/2 ; �b.c0/2 D G

2c0 � c2
0

: (21)

As known from this solution the probability of occurrence of b.t/ � �2 always
takes a finite value, therefore, theoretically there is a finite possibility that the market
price moves nearly monotonically for a finite period. However, in the following
discussion we consider the case that c0 is not so small compared with G that the
probability of realization of such non-stationary behavior is negligibly small.

In Fig. 3d a typical distributions of v.t/ is plotted for different values of c0.
Contrary to the case of constant b it is confirmed that the distributions are well-
approximated by power laws in any case. Such power law like behaviors can be
understood by considering the case of M D 2. As mentioned above the distribution
of v.t/ in the case of fixed b.t/ D b is given by a normal distribution with the vari-
ance given by F=.1 � b2=4/. Assuming that the change of b.t/ is slow enough and
we can evaluate the distribution of v.t/ by superposition of such normal distributions
with the weight of the distribution of b.t/:

p.v/ �
Z 2

�2

p
1 � b2=4p

2�F
e� 1�b2=4

2F
v2

p
2c0 � c0

2

p
2�G

e� 2c0�c0
2

2G
b2

db: (22)

By introducing a new variable B D 1 � b2=4, we have the following form,

p.v/ �
p

2c0 � c0
2

2�
p

FG
e�2

2c0�c0
2

G

Z 1

0

p
Bp

1 � B
e

�
�

v2

2F � 2c0�c0
2

2G

�
B

dB: (23)

Evaluating the integral with respect to B , the asymptotic behavior for large jvj is
estimated as

p.v/ �
p

2c0 � c0
2

2�
p

FG
e�2

2c0�c0
2

G

8
<

:0:88

�
v2

2F

�� 3
2

C 0:66

�
v2

2F

�� 5
2

C 	 	 	
9
=

; :

(24)
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We have symmetric power law tails in the distribution of v.t/. In this case the cu-
mulative distribution is approximated by the following power law form with ˇ D 2.

P.� jvj/ / jvj�ˇ : (25)

Another limit case is solved theoretically when the change of v.t/ is very fast
in the case of M D 2. Applying the formula of random multiplicative noise [11]
for (4), the power law exponent ˇ of the steady state cumulative distribution of v.t/

is given by solving the following equation for ˇ:

1 D <

ˇ̌
ˇ̌b
2

ˇ̌
ˇ̌
ˇ

> D 1p
2ˇ �

�

�
ˇ C 1

2

��
G

2c0 � c0
2

�ˇ

; (26)

where �
�

ˇC1
2

�
is the gamma function. In view of this limit the power law exponent

is given by the parameters G and c0 characterizing the distribution of b.t/. Empiri-
cal values of ˇ are known to lie mainly in the range 2 < ˇ < 4, which is realizable
by (26) by tuning the value of G and c0.

The autocorrelations of v.t/ in the case of random b.t/ are plotted in Fig. 3e.
It is confirmed that the autocorrelations decay always rapidly to zero. This vanish
of autocorrelation is not trivial as the autocorrelation for a fixed b.t/ is not zero as
mentioned above. Accumulation of various values of b.t/ with 0 mean causes this
phenomenon.

The volatility autocorrelation is plotted in Fig. 3f. We can find that the tail part
becomes longer for smaller value of c0. In the case that non-stationary price motion
is included, the autocorrelation tends to converge to a non-zero value for large time
difference.

Fig. 3e The autocorrelation
function for v.t /. The
parameters are
c0 D 0:02; 0:0015; 0:0001

with G D 0:000784

Fig. 3f The autocorrelation
of v.t /2 . The parameters are
c0 D 0:02; 0:0015; 0:0001

with G D 0:000784
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Fig. 3g Log-log plot of the
variance of price diffusion.
The parameters are
c0 D 0:02; 0:0015, 0:0001

with G D 0:000784

The diffusion properties are analyzed in Fig. 3g. We can find abnormal diffusion
for small time scales, however, for large time scales the normal diffusion property
is retained in any case.

3 Statistical Properties of a Real Financial Market

In this section we compare the model’s properties with the real market data of
US-dollar Japanese-yen exchange rates. This is the price of 1 dollar paid by Yen
in the electronic broker system provided by ICAP. In this broker system major inter-
national banks are dealing continuously 24 h excepts weekends with the minimum
unit of a deal 1 million dollar. The observation period is 2006 with time stamp in
second. The number of total data points is about 3 million ticks. In the data there
are four kinds of prices, deal-ask, deal-bid, best-ask and best-bid. Here, we apply
deal prices which are actually transacted prices taken on the bid-side and ask-side,
namely, offered orders to buy and sell.

For given time series of market prices, the PUCK analysis is done in the
following procedures [8]: Firstly, we calculate the autocorrelation of price changes
from the raw time series, and we apply the noise separation process based on
Yule–Walker method to derive the optimal moving average [12]. After this proce-
dure the smoothed market price time series fx.t/g is used to define the super-moving
average xM .t/ by (3) with a fixed value of moving average size M . Then, we
plot x.t C 1/ � x.t/ vs. fx.t/ � xM .t/g=.M � 1/ for N data points using
fx.t � N � M C 2/; x.t � N � M C 1/; 	 	 	 ; x.t C 1/g, where the data num-
ber N is typically 500. The slope of the best-fit line for these scattered points gives
the value of �b.t/, the curvature of the potential force.

By numerical tests using the artificial random data produced by the PUCK model
with a constant value of b.t/, the magnitude of estimation error of b.t/ is estimated
to be less than 0.3 and the occurrence probability of b.t/ < �1 or b.t/ > 1 are less
than 0.1% in the statistical test [10].
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Fig. 4a An example of Dollar–Yen exchange rate time series in 2006

Fig. 4b The estimated values of b.t/ for Fig. 4a

Figure 4a shows an example of Dollar–Yen exchange rate time series, and Fig. 4b
gives an estimated time series of b.t/ for the time series of Fig. 4a. As known from
these figures, it is found that the value of b.t/ is always fluctuating in various scales
in the market.

Here, we apply (20) as a numerical model of time evolution of b.t/. For the
time sequence shown in Fig. 4b, we can approximate the dynamics by (20). Using
such empirically estimated potential function of �.b/, the time evolution of b.t/

can be simulated by applying a Gaussian white noise for g.t/ [13]. Figure 5a is a
simulated variant for real data version Fig. 4b. Figure 5b gives a simulated Dollar–
Yen exchange rate fluctuation corresponding to the real data of Fig. 4a.

In Figs. 6a–d the basic statistics of this empirical model are compared with the
real data [13]: The distribution of price difference, the autocorrelation of price
change, the autocorrelation of volatility and the diffusion properties. It is confirmed
that basic properties are roughly satisfied in all cases.

As demonstrated in these figures our model can reproduce most of the basic
market properties. However, it should be noted that the basic statistics of markets
are not universal in quantitative sense. For example, the slopes of the distribution
or the functional forms for different observation periods may be slightly different.
In the case of material systems non-stationary properties of this type rarely appear
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Fig. 5a An example of simulated time series of b.t/

Fig. 5b An example of time series of market price assuming the fluctuation of potential coefficient
b.t/ shown in Fig. 5a

Fig. 6a Log-log plot of the cumulative distribution of Dollar–Yen rate changes, j�x.20I t /j=� , in
2006. The line with black circle shows the real data and the line with diamond shows the model

in general and we can expect permanent properties, however, for modeling human
systems like the financial markets it is important to prepare a model with a wide
variety and flexibility to cope with such non-stationary phenomena. In this sense
the PUCK model and its generalized variants are flexible enough for description of
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Fig. 6b The autocorrelation function for Dollar–Yen rate changes

Fig. 6c The autocorrelation of volatility, �x.20I t /^2, of Dollar–Yen exchange rates. The line
with black circle shows the real data and the line with diamond shows the model

Fig. 6d Log-log plot of the variance of exchange rate diffusion. The line with black circle shows
the real data, the line with diamond shows the model and the dotted line shows the case of normal
diffusion
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Fig. 7a Dollar–Yen exchange rates on September 11, 2001

Fig. 7b Estimated value of b.t/ for Fig. 7a

markets as it can represent normal random walk, slower diffusion, faster diffusion
and even an exponential growth by tuning the parameter, b.t/, and its statistics.

Figure 7a gives the special example of Dollar–Yen rate in which the market con-
dition changed suddenly by an external news, the 9/11 terrorism in 2001, and Fig. 7b
shows the corresponding value of b.t/. Before the terrorism Dollar–Yen market was
calm and the value of b.t/ was larger than 1, the attractive stable state. A little before
9 a.m. in New York time, the first airplane hit the World Trade Center. The market
price did not respond to this event clearly, however, the market became a neutral
state, namely, the estimated value of b.t/ became close to 0. Right after the sec-
ond airplane crashed the World Trade Center, the Dollar rate sharply dropped and
accordingly the b.t/ value went into a negative region as clearly seen from Fig. 7b.
The market kept a highly turbulent state for several hours.

As known from this example the response of b.t/ value is rather quick, about
a few minutes delay. This quick response is non-trivial as the value of b.t/ is
calculated using several hundreds data points which is about a few hours in real time.
The reason for this sharp response is that when the market price changed suddenly
the super moving average shifts certain amount and this shift causes change of the
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plot of x.t C1/�x.t/ vs. fx.t/�xM .t/g=.M �1/. This example clearly shows that
the market is reflecting the external news sensitively. Generally speaking any mar-
ket model neglecting the effect of real time external news has only limited ability of
description of real market.

4 Summary and Discussions

In this paper we theoretically analyzed the detail statistical properties of the new
type of random walk model with a moving potential force, the PUCK model. As
the center of the potential force is given by the moving average, the model with
a constant potential curvature shows peculiar characteristics. When the curvature
b.t/ is positive the random walk is slower than the case of simple random walk and
when �2 < b.t/ < 0 the random walk shows abnormally fast diffusion in short
time scale, however, the large scale diffusion properties are the same as the case
of simple random walk. When b.t/ � �2 the system no longer shows a random
walk behavior, rather it follows a dynamical exponential movement. Considering
the generalized case with random autoregressive motion of b.t/ the basic statistical
properties of this stochastic system becomes similar to that of real market price
fluctuations as demonstrated in this paper.

From empirical point of view this PUCK model reproduces the major four sta-
tistical properties of market price fluctuations. Power law of price difference is
explained by the effect of temporal change of b.t/. The quick decay of autocor-
relation of price changes is realized by the statistical property that the average of the
curvature is nearly zero, < b.t/ > � 0. The long time autocorrelation of volatility is
caused by the long time correlation in the changes of b.t/. The abnormal diffusion
in small time scale is a direct reflection that the value of b.t/ takes non-zero values.
The normal diffusion property in large time scale is due to the effect that most of
the values of b.t/ satisfies the stationary condition, jb.t/j < 2.

From a theoretical view point the appearance of market’s potential force has
already been analyzed by our group using the theoretical dealer model [14]. It is
shown that when dealers are all trend-followers who predict the near future price
by a linear trend of latest market price changes, then, there appear a negative cur-
vature in the potential function, b.t/ < 0, in the market price fluctuations. On the
contrary when the dealers are contrarians who predict that the market trend will
turn in the near future, then, there appears a positive potential force in the market.
Namely, the moving potential reflects the averaged response of the dealers to the
market price changes. The value of b.t/ also depends both on the number of dealers
and on other characteristics, so that the market potential function slowly changes
in the real market spontaneously and sometimes very quickly by news like the case
of 9/11 terrorism.

The PUCK model can be generalized in various ways. One direction of general-
ization is taking into account higher order terms in the potential function, UM .xI t/

in (2). In the case that this potential function includes odd order terms of x such
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as x3, it implies that the potential force works either up or down in uneven way caus-
ing a directional motion of market price [15]. It is already shown that in the special
case that an asymmetric potential function changes its sign randomly at every time
step, the PUCK model is reduced to the ARCH model in financial technology [10].

Another direction of generalization is the continuum limit and macroscopic limit
of the PUCK model [16]. In this paper we consider discrete tick-by-tick time as a
standard of time, however, we can consider a continuous time version of the model.
In the continuum limit it is shown that the PUCK model is described by a Langevin
type stochastic equation with time dependent mass and viscosity. In the case of
stable potential function the corresponding mass is negative and the viscosity is pos-
itive. In the special case b.t/ D 0 the corresponding mass is 0 and the price follows
an ordinary diffusion equation. In the case �2 < b.t/ < 0 both the mass and viscos-
ity are positive, a situation similar to colloid particles in water. For b.t/ < �2 the
mass is positive and the viscosity takes a negative value, hence any small fluctuation
is magnified indefinitely.

Macroscopic limit can be considered by applying renormalization to the PUCK
model [16]. It is shown that the PUCK model becomes a macroscopic inflation
equation by a renormalization limit. Applying such renormalization technique to
the PUCK model we may expect to bridge the microscopic market phenomena and
macroscopic social behaviors.

The potential forces in the market are expected to be strongly related to the distri-
bution of demand and supply in the market called the order book. We hope to apply
our model to market data with full order book information.

Interaction with other market prices is also an interesting open problem. It is
well accepted that each market superficially look changing independently, how-
ever, in the case of foreign exchange market any three combination of currencies
are interacting through so called the triangular arbitrage. Triangular arbitrage is the
chance of getting more money by simply circulating currencies, for example, buy
US dollar with Yen, buy Euro with US dollar, and buy Yen with Euro [17]. If each
combination of currency exchange is done independently there occurs situation that
such circulation of money causes an increase of dealer’s asset. Then, those arbitrage
transactions will change the market prices so that the arbitrage opportunity vanishes
quickly. Also, many market prices are intuitively interacting with many others, how-
ever, mathematical description of such interaction is yet to be done.

Finally, as known from the mathematical formulation the applicability of the
present model is not limited to market data only, but also to any time sequential data
for finding hidden potential dynamics by analyzing the motion of moving averages
in various scales. We hope that this method will contribute to analyze complicated
dynamics from given data in wide field of science.

Acknowledgement The authors acknowledge Professors Takatoshi Ito and Tsutomu Watanabe
for helpful discussions.
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Part 2
Financial Crisis and Macroeconomics



Financial Bubbles, Real Estate Bubbles,
Derivative Bubbles, and the Financial
and Economic Crisis

Didier Sornette and Ryan Woodard

Abstract The financial crisis of 2008, which started with an initially well-defined
epicenter focused on mortgage backed securities (MBS), has been cascading into a
global economic recession, whose increasing severity and uncertain duration has led
and is continuing to lead to massive losses and damage for billions of people. Heavy
central bank interventions and government spending programs have been launched
worldwide and especially in the USA and Europe, with the hope to unfreeze credit
and bolster consumption. Here, we present evidence and articulate a general frame-
work that allows one to diagnose the fundamental cause of the unfolding financial
and economic crisis: the accumulation of several bubbles and their interplay and
mutual reinforcement have led to an illusion of a “perpetual money machine” allow-
ing financial institutions to extract wealth from an unsustainable artificial process.
Taking stock of this diagnostic, we conclude that many of the interventions to
address the so-called liquidity crisis and to encourage more consumption are ill-
advised and even dangerous, given that precautionary reserves were not accumu-
lated in the “good times” but that huge liabilities were. The most “interesting”
present times constitute unique opportunities but also great challenges, for which
we offer a few recommendations.
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1 Diagnostics, Proximate and Systemic Origins
of the Financial Crisis

At the time of writing (first half of April 2009), the World is suffering from a major
financial crisis that has transformed into the worst economic recession since the
Great Depression, perhaps on its way to surpass it. The purpose of the present paper
is to relate these developments to the piling up of five major bubbles:

1. The “new economy” ICT bubble starting in the mid-1990s and ending with the
crash of 2000.

2. The real-estate bubble launched in large part by easy access to a large amount
of liquidity as a result of the active monetary policy of the US Federal Reserve
lowering the Fed rate from 6.5% in 2000 to 1% in 2003 and 2004 in a successful
attempt to alleviate the consequence of the 2000 crash.

3. The innovations in financial engineering with the CDOs (collateralized Debt
Obligations) and other derivatives of debts and loan instruments issued by banks
and eagerly bought by the market, accompanying and fueling the real-estate
bubble.

4. The commodity bubble(s) on food, metals and energy.
5. The stock market bubble peaking in October 2007.

Since mid-2007, the media have been replete with news of large losses by ma-
jor institutions and by operational and regulatory mishaps. One big question is:
how deep will be the losses? Another one is: how severe could be the ensuing
recession(s)?

These questions are stupendous because financial markets have transformed over
the past decades from thermometers and liquidity providers of the real economy
(tail moving with the dog) into “the tail wagging the dog,” that is, financial markets
now seem to drive the economy. To mention just one example, there are numerous
indications that the corporate strategy of a given firm is significantly influenced by
the value of its stock quoted in the capital markets. This is due to many different
factors, including incentives (stock options held by CEOs and other top managers),
and the financing channels for firm growth offered by higher market valuation, such
as during mergers and acquisition operations [9].

Our starting point is that financial markets play an essential role in fostering the
growth of economies in developed as well as in emergent countries. This impact of
financial markets has been growing so much that it is not any longer an exaggeration
to suggest that the economy has become in part controlled by a kind of “beauty
contest,” to paraphrase John Maynard Keynes, where one of the rules of the game
for a firm is to appear “beautiful” to the financial analysts’ eyes and to the investors,
by meeting or even beating analysts’ earning expectations. In this context, bubbles
and crashes exemplify the resulting anomalies.
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1.1 Nature of the Financial and Economic Crisis

Better than one thousand words, Fig. 1 compares the estimated losses for three asset
classes [5]:

� Losses of US subprime loans and securities, estimated as of October 2007, at
about $250 billion

� Expected cumulative loss in World output associated with the crisis, based
on forecasts as of November 2008, estimated at $4,700 billion, that is, about
20 times the initial subprime loss

� Decrease in the value of stock markets, measured as the sum, over all markets,
of the decrease in stock market capitalization from July 2007 to November 2008,
estimated at about $26,400 billion, that is, 100 times the initial subprime loss!

While emphasizing dramatically the cascade from a relatively limited and local-
ized event (the subprime loan crisis in the United States) to the World economy
and the World stock markets, this starting point is deceptive in many ways, as will
become clear below. The main misconception from our viewpoint is reducing the
discussion to just the last few years. The present essay builds an argument that the
present turmoil has its roots going back about 15 years in the past.

Figures 2 and 3 provide additional insights on the extraordinary character of
the developments of the present crisis. First, Fig. 2 shows the total amount of

Fig. 1 Initial subprime losses (almost invisible on the left of the figure) and subsequent declines up
to November 2008 in World GDP and World stock market capitalization (in trillions US dollars).
Source: IMF Global Financial Stability Report; World Economic Outlook November update and
estimates; World Federation of Exchanges. Reproduced from Blanchard [5]
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Fig. 2 Non-borrowed reserves of depository institutions from the late 1950s to April 2009. The
vertical scale is expressed in billions of dollars. Source: Board of governors of the Federal Reserve
system (2008 Federal Reserve Bank of St. Louis, http://research.stlouisfed.org)

Fig. 3 Money multiplier M1 defined as the ratio of M1 to the St. Louis adjusted monetary
base (http://research.stlouisfed.org/publications/mt/) from 1983 to March 2009. Source: Board
of governors of the Federal Reserve system (Federal Reserve Bank of St. Louis, http://research.
stlouisfed.org)

http://research.stlouisfed.org
http://research.stlouisfed.org/publications/mt/
http://research.
stlouisfed.org
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non-borrowed reserves of depository institutions (savings banks which are regulated
by the Federal Deposit Insurance Corporation [FDIC]) from the late 1950s to April
2009. Notice the almost vertical drop from a level of slightly above C40 billion dol-
lars to almost (minus!) �350 billion dollars that occurred in the last quarter of 2008,
followed by a dramatic rebound to C300 billion dollars. In the last quarter of 2008,
under-capitalized banks continued to hemorrhage money via losses and write-downs
of over-valued assets. These banks had to borrow money from the Federal Reserve
to maintain their reserves and their viability. What is striking in Fig. 2 is the excep-
tional amplitudes of the drop and rebound, which represent variations completely
beyond anything that could have been foreseen on the basis of the previous 60 years
of statistical data. Elsewhere, we refer to events such as those shown in Figs. 2 and 3,
which blow up the previous statistics, as “outliers” [33, 36] or “kings” [44].

Figure 3 shows the time evolution of the M1 multiplier, defined as the ratio of
M1 to the Adjusted Monetary Base estimated by the Federal Reserve Bank of St.
Louis. Recall that M1 is defined as the total amount of money1 in a given country
(here the data is for the USA). Figure 3 again exhibits an extraordinary behavior,
with an almost vertical fall to a level below 1! This reveals clearly the complete
freezing of lending by financial institutions. Normally, the M1 multiplier is larger
than 1 since money put on a checking account is used at least in part by banks
to provide loans. The M1 money multiplier has recently slipped below 1. So each
$1 increase in reserves (monetary base) results in the money supply increasing by
$0.95. This expresses the fact that banks have substantially increased their holding
of excess reserves while the M1 money supply has not changed by much. This
recent development in the M1 multiplier is another illustration of the extraordinary
occurrence that is presently unfolding.

This concept of “outliers” or “kings” is important in so far as it stresses the
appearance of transient amplification mechanisms. As we will argue below, the oc-
currence of the crisis and its magnitude was predictable and was actually predicted
by some serious independent economists and scholars. They were not taken seri-
ously at a time when everything seems rosy, leading to what we refer to as an
illusion of the “perpetual money machine.” Of course, we are not claiming deter-
ministic predictability for the specific unfolding scenario of the crisis, only that it
was clear that the last 15 years of excesses have led to an unsustainable regime that
could only blow up. In a series of papers to be reviewed below, our group has re-
peatedly warned about the succession of bubbles and their unsustainable trajectories
[34, 64, 65, 71–73].

1 Currency in circulation C checkable deposits (checking deposits, officially called demand de-
posits, and other deposits that work like checking deposits) C traveler’s checks, that is, all assets
that strictly conform to the definition of money and can be used to pay for a good or service or to
repay debt.
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1.2 Standard Explanations for the Financial Crisis

Before we construct our arguments and present the evidence, let us review briefly
the standard proximal explanations that have been proposed in the literature. They
all share a part of the truth and combine to explain in part the severity of the crisis.
But, the full extent of the problem can only be understood from the perspective
offered in Sects. 2 and 3.

1.2.1 Falling Real Estate Values

It has been argued that the immediate cause for the financial crisis is the bursting
of the house price bubble principally in the USA and the UK and a few other coun-
tries, leading to an acceleration of defaults on loans, translated immediately into
a depreciation of the value of mortgage-backed security (MBS) [18]. After a peak
in mid-2006 (see Sect. 3.3), the real-estate market in many states plateaued and then
started to decrease. A number of studies have shown indeed a strong link between
house price depreciation and defaults on residential mortgages (see [16] and refer-
ences therein). In particular, Demyanyk and van Hemert [17] explain that all along
since 2001 subprime mortgages have been very risky, but their true riskiness was
hidden by rapid house price appreciation, allowing mortgage termination by refi-
nancing/prepayment to take place. Only when prepayment became very costly (with
zero or negative equity in the house increasing the closing costs of a refinancing),
did defaults took place and the unusually high default rates of 2006 and 2007 vintage
loans occurred.

The explanation of the crisis based on falling real estate prices is both right and
wrong: right mechanically as understood from the previous paragraph; wrong be-
cause it takes as exogenous the fall in house prices, which would suggest that it
comes as a surprise. In contrast, Sect. 3 will argue that the fall in real estate value
occurred as part of a larger scheme of events, all linked together.

1.2.2 Real-Estate Loans and MBS as a Growing Asset Class
Held by Financial Institutions

A mortgage-backed security (MBS) is a pool of home mortgages that creates a
stream of payments over time paid to its owner. The payments are taken from those
produced by borrowers who have to service the interests on their debts. Figure 4
summarizes the network of agents interacting to give life to the MBS.

Developing along with the real-estate bubble, the explosive exponential growth
of the nominal market value of all MBS issued from 2002 to 2007, together
with its subsequent collapse, justifies referring to it as a “bubble.” According to
the Securities Industry and Financial Markets Association, aggregate global CDO
(collateralized Debt Obligations) issuance grew from US $150 billion in 2004, to
close to US $500 billion in 2006, and to $2 trillion by the end of 2007. From 0.6
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Fig. 4 Securitization, a form of structured finance, involves the pooling of financial assets, es-
pecially those for which there is no ready secondary market, such as mortgages, credit card
receivables, student loans. The pooled assets are transferred to a special purpose entity and serve
as collateral for new financial assets issued by the entity. The diagram shows the many involved
parties

trillion dollars, the cumulative notional value of CDOs grew to 26 trillion dollars
at the end of 2006. This bubble was fueled firstly by the thirst for larger returns
for investors in the USA and in the rest of the World. It was made possible by a
wave of financial innovations leading to the illusion that the default risks held by
lenders, principally banks, could be diversified away. These innovations in financial
engineering include the CDOs and other derivatives of debts and loan instruments
eagerly bought by insurance companies, mutual fund companies, unit trusts, invest-
ment trusts, commercial banks, investment banks, pension fund managers, private
banking organizations and so on. Since 2007, large losses by major institutions and
often related operational and regulatory mishaps have been reported.

The sheer size of the nominal value of MBS held in the books of banks, insur-
ance companies and many other institutions explains in part the amplitude of the
crisis: when the deflation of the real-estate bubble started, the rate of defaults sky-
rocketed and the holders of MBS started to suffer heavy losses. As a consequence,
many financial institutions have found themselves with insufficient equity and cap-
ital, leading to bankruptcies, fire sale acquisitions or bailouts by governments.

While compelling, this explanation is incomplete because it does not address
the question of why did the MBS bubble develop. The underlying mechanisms for
bubble formation are addressed in Sect. 2. This will help us understand the kind of
inevitability associated with the current crisis.
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1.2.3 Managers’ Greed and Poor Corporate Governance Problem

It is clear to all observers that banks have acted incompetently in the recent MBS
bubble by accepting package risks, by violating their fiduciary duties to the stock-
holders, and by letting the compensation/incentive schemes run out of control.

From executives to salesmen and trading floor operators, incentive mechanisms
have promoted a generalized climate of moral hazard. Justified by the principles
of good corporate governance, executive compensation packages have a perverse
dark side of encouraging decision makers to favor strategies that lead to short-term
irreversible profits for them at the expense of medium and long-term risks for their
firm and their shareholders. Even if the number of CEOs facing forced turnover has
increased three- to four-fold during the past 20 years while, simultaneously, most
contractual severance agreements require the forfeiture of invested options, lump-
sum payments and waiving forfeiture rules often compensate for such losses. There
is something amiss when the CEOs of Citibank and of Countrywide walk out of
the mess they created for their firms with nine figure compensation packages. It is
often the case that firms finally turn out losing significantly more when the risks
unravel than their previous cumulative gains based on these risky positions, while
the decision makers responsible for this situation keep their fat bonuses. As long as
the risks are borne by the firm and not equally by the decision makers, the ensuing
moral hazard will not disappear. It is rational for selfish utility maximizers and it
will therefore remain a major root of future financial crises.

Herding effects amplify the moral hazard factor just discussed. Indeed, perfor-
mance is commonly assessed on the basis of comparisons with the average industry
performance. Therefore, each manager cannot afford to neglect any high yield in-
vestment opportunity that other competitors seem to embrace, even if she believes
that, on the long run, it could turn out badly. In addition, herding is often ratio-
nalized by the introduction of new concepts, e.g. “the new economy” and new “real
option” valuation during the Internet bubble. And, herding provides a sense of safety
in the numbers: how could everybody be so wrong? Evolutionary psychology and
neuro-economics inform us that herding is one of the unavoidable consequences of
our strongest cognitive ability, that is, imitation. In a particularly interesting study
using functional magnetic resonance imaging on consumption decisions performed
by teenagers, Berns et al. [4] have recently shown that the anxiety generated by the
mismatch between one’s own preferences and others’ motivates people to switch
their choices in the direction of the consensus, suggesting that this is a major force
behind conformity.

Greed, anxiety, moral hazard and psychological traits favoring risk taking in fi-
nance were prevalent in the past and are bound to remain with us for the foreseeable
future. Therefore, the question whether greed and poor governance was at the origin
of the crisis should be transformed into the question of timing, that is, why these
traits were let loose to foster the development of anomalous excesses in the last few
years.
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1.2.4 Poor Lending Standards and Deteriorating Regulations
and Supervision

Philippon and Reshef provide an informative view on the question posed by the
title of this section, based on detailed information about wages, education and oc-
cupations to shed light on the evolution of the US financial sector from 1906 to
2006 [51]. They find that financial jobs were relatively skill-intensive, complex,
and highly paid until the 1930s and after the 1980s, but not in the interim period.
They find that the determinants of this evolution are that financial deregulation and
corporate activities linked to IPOs and credit risk increase the demand for skills in fi-
nancial jobs, while computers and information technology play a more limited role.
Philippon and Reshef’s analysis shows that wages in finance were excessively high
around 1930 and from the mid 1990s until 2006 [51]. It is particularly interesting
to note that these two periods have been characterized by considerable excesses in
the form of many bubbles and crashes. The last period is particularly relevant to our
arguments presented in Sect. 3 over which a succession of five bubbles developed.

Evidence of deteriorating regulations abounds. Keys et al. [40] found that
(observed) lending standards in the subprime mortgage market did deteriorate;
and the main driving force of the deterioration was the securitization of those loans.
Poser [52] provides important clues on the failures of the US Securities and Ex-
change Commission. Its most visible fault was its inability or reluctance to detect
the alleged Madoff Ponzi scheme. But Poser [52] points out that the decline in
SEC’s regulatory and enforcement effectiveness began three decades ago. While
in part explained by insufficient resources and inadequate staff training, the main
cause of the SEC decline can probably be attributed to the growing prevalence of
the ethos of deregulation that pervaded the US government [52].

This ethos is well exemplified by the failure to pass any legislation on financial
derivatives. Going back to the 1990s, Alan Greenspan, supported successively by
then Treasury Secretaries Robert Rubin and Laurence Summers, convinced the US
Congress to make the fateful decision not to pass any legislation that would have su-
pervised the development and use of financial derivatives, notwithstanding various
attempts by legislators and the call from expert financiers of the caliber of Warren
Buffet and Georges Soros who warned years before the present crisis about these
“weapons of financial mass destruction”. After being one of the most vocal sup-
porters of the self-regulation efficiency of financial markets, Alan Greenspan is now
writing in his memoirs that the villains were the bankers whose self-interest he had
once bet upon for self-regulation.

The story would remain incomplete without distinguishing between the banking
system which is highly regulated and the parallel or shadow banking system which
is much less so [42]. In a speech in June 2008, T.F. Geithner (US Treasury secretary
since January 26, 2009) said:

The structure of the financial system changed fundamentally during the boom, with dra-
matic growth in the share of assets outside the traditional banking system. This non-bank
financial system grew to be very large, particularly in money and funding markets. In
early 2007, asset-backed commercial paper conduits, in structured investment vehicles, in
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auction-rate preferred securities, tender option bonds and variable rate demand notes, had a
combined asset size of roughly $2.2 trillion. Assets financed overnight in triparty repo grew
to $2.5 trillion. Assets held in hedge funds grew to roughly $1.8 trillion. The combined
balance sheets of the then five major investment banks totaled $4 trillion.

Given the coexisting two banking systems, the regular system being explicitly
guaranteed with strict capital requirements and the shadow system being implicitly
guaranteed with looser capital requirements, wealth utility maximizing bankers and
investors have been naturally attracted to the second, which provided new ways
to get higher yield [42]. Here, the implicit guarantee is that Bear Stearns, AIG
and Merrill Lynch, while not protected by the FDIC, were protected – as the facts
showed – by the belief that some firms are too big to fail.

1.2.5 Did the Fed Cause the Housing Bubble?

As a logical corollary of the previous subsection, several notable economists have
blamed the Federal Reserve and the US government for failing to recognize that
the shadow banking system, because it was serving the same role as banks, should
have been regulated [42]. Stanford economist J.B. Taylor goes further by point-
ing out the errors that the Federal Reserve made in creating and fueling the crisis
[67, 68], starting with the incredible monetary expansion of 2002–2003 (described
more in Sect. 3.2), followed by the excesses of the expansion of government-
sponsored Fannie Mae and Freddie Mac who were encouraged to buy MBS. These
errors continued with the misguided diagnostic that the crisis was a liquidity prob-
lem rather than one fundamentally due to counter-party risks.

Actually, A. Greenspan, the former Chairman of the Federal Reserve stated on
October 23, 2008 in a testimony to the US Congress, in reply to questions by
Congressman H.A. Waxman: “I made a mistake in presuming that the self-interests
of organizations, specifically banks and others, were such as that they were best ca-
pable of protecting their own shareholders and their equity in the firms.” Referring to
his free-market ideology, Mr. Greenspan added: “I have found a flaw. I don’t know
how significant or permanent it is. But I have been very distressed by that fact.”
Mr. Waxman pressed the former Fed chair to clarify his words. “In other words, you
found that your view of the world, your ideology, was not right, it was not working,”
Mr. Waxman said. “Absolutely, precisely,” Mr. Greenspan replied. “You know, that’s
precisely the reason I was shocked, because I have been going for 40 years or more
with very considerable evidence that it was working exceptionally well.” Greenspan
also said he was “partially” wrong in the case of credit default swaps, complex
trading instruments meant to act as insurance against default for bond buyers, by
believing that the market could handle regulation of derivatives without government
intervention.

However, in an article in the Wall Street Journal of March 11, 2009, A. Greenspan
responded to J.B. Taylor by defending his policy on two arguments: (1) the Fed
controls overnight interest rates, but not “long-term interest rates and the home-
mortgage rates driven by them”; and (2) a global excess of savings was “the
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presumptive cause of the world-wide decline in long-term rates.” Neither argu-
ment remains solid under scrutiny. First, the post-2002 period was characterized
by one-year adjustable-rate mortgages (ARMs), teaser rates that reset in, say, two
or three years. Five-year ARMs became “long-term” money. The overnight federal-
funds rate that the Fed controls substantially influences the rates on such mortgages.
Second, Greenspan offers conjecture, not evidence, for his claim of a global savings
excess. Taylor has cited evidence from the International Monetary Fund (IMF) to
the contrary, however. Global savings and investment as a share of world GDP have
been declining since the 1970s, as shown by the data in Taylor’s book [68].

1.2.6 Bad Quantitative Risk Models in Banks (Basel II)

Since mid-2007, an increasing number of economists, policy-makers and market
operators have blamed the Basel II framework for banks’ capital adequacy to be a
major cause for the subprime financial crisis.

Basel II is the second of the Basel Accords, which provide recommendations on
banking laws and regulations issued by the Basel Committee on Banking Supervi-
sion. Basel II was initially published in June 2004, with the purpose of creating an
international standard that banking regulators can use when creating regulations on
how much capital banks need to put aside to guard against the types of financial
and operational risks banks face. The specific goals of Basel II are to ensure that
capital allocation is more risk sensitive, to separate operational risk from credit risk,
to quantify both types of risks, and to synchronize economic and regulatory capital.

First, one should point out that the implementation of Basel II was delayed by
different revisions announced on September 30, 2005 by the four US Federal bank-
ing agencies (the Office of the Comptroller of the Currency, the Board of Governors
of the Federal Reserve System, the Federal Deposit Insurance Corporation, and the
Office of Thrift Supervision) [3]. Second, describing the actual role played by the
new prudential regulation in the crisis and discussing the main arguments raised in
the current debate, Cannata and Quagliariello [12] discriminate between more con-
structive criticisms and weaker accusations and conclude that there are no sound
reasons for abandoning the philosophy underlying the Basel II framework.

The dotcom and housing bubbles as well as the development of an inflated finan-
cial sphere were actually apparent to many people. While imperfect, the so-called
failure of models has played a relatively limited role in the unraveling of the crisis.
More important is the desire of economists to think “things are different this time.”
This is reminiscent of the “new economy” mantra of the 1920s preceding the crash
of Oct. 1929, the “new economy” claim of 1962 during the tronic boom preced-
ing a severe downturn of the stock market and the “new economy” sentiment of the
1990s during the ICT bubble. Things change, but some things remain the same, such
as greed and the belief that something fundamentally new is happening that calls for
a downward revision of risk assessment. Herding is further amplified by the po-
litical difficulties in acknowledging independently what data tells us. B. DeLong,
P. Krugman and N. Roubini are among those prominent vocal economists who
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have been worried about the development of the economy and the unsustainable
succession of bubbles over the last decade, but they did not have the influence to
make a significant impact on the US Congress or on Main Street (not to speak of
Wall Street). Unfortunately, few see any pressing need to ask hard questions about
the sources of profits when things are doing well. And even fewer will accept the
“pessimistic” evidence that the “dancing” is going to stop, when all (superficial) evi-
dence points to the contrary. Furthermore, one little discussed reason for the present
crisis was the lack of adequate education of top managers on risks in all its dimen-
sions and implications. How does one expect a CEO without risk culture to act on
the face of the contradictory evidence of, on the one hand, a negative recommenda-
tion of the director of its risk management department and, on the other hand, great
short-term potential gains in a global exuberant market? These factors, more than
the “bad” models, were probably the problem with the use of quantitative models.

1.2.7 Rating Agency Failures

Credit rating agencies have been implicated as principal contributors to the credit
crunch and financial crisis. They were supposed to create transparency by rating
accurately the riskiness of the financial products generated by banks and financial
actors. Their rating should have provided the basis for sound risk-management by
mortgage lenders and by creators of structured financial products. The problem is
that the so-called AAA tranches of MBS have themselves exhibited a rate of default
many times higher than expected and their traded prices are now just a fraction of
their face values.

To provide the rating of a given CDO or MBS, the principal rating agencies –
Moody’s, Fitch and Standard & Poor’s – used quantitative statistical models based
on Monte Carlo simulations to predict the likely probability of default for the mort-
gages underlying the derivatives. One problem is that the default probabilities fed
into the calculations were in part based on historical default rates derived from the
years 1990–2000, a period when mortgage default rates were low and home prices
were rising. In doing so, the models could not factor in correctly the possibility of
a general housing bust in which many mortgages are more likely to go into default.
The models completely missed the possibility of a global meltdown of the real es-
tate markets and the subsequent strong correlation of defaults. The complexity of
the packaging of the new financial instruments added to the problem, since rating
agencies had no historical return data for these instruments on which to base their
risk assessments. In addition, rating agencies may have felt compelled to deliber-
ately inflate their ratings, either to maximise their consulting fees or because the
issuer could be shopping for the highest rating.

Recently, Skreta and Veldkamp [69] showed that all these issues were amplified
by one single factor, the complexity of the new CDO and MBS. The sheer com-
plexity makes very difficult the calibration of the risks from past data and from
imperfect models that had not yet stood the test of time. In addition, the greater
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the complexity, the larger the variability in risk estimations and, thus, of ratings
obtained from different models based on slightly different assumptions. In other
words, greater complexity introduces a large sensitivity to model errors, analogous
to the greater sensitivity to initial conditions in chaotic systems. If the announced
rating is the maximum of all realised ratings, it will be a biased signal of the asset’s
true quality. The more ratings differ, the stronger are issuers’ incentives to selec-
tively disclose (shop for) ratings. Skreta and Veldkamp think that the incentives for
biased reporting of the true risks have been latent for a long time and only emerged
when assets were sufficiently complex that regulation was no longer detailed enough
to keep them in check. Note that the abilities of ratings manipulation and shopping
to affect asset prices only exist when the buyers of assets are unaware of the games
being played by the issuer and rating agency. This was probably true until 2007,
when the crisis exploded.

While these elements are important to understand the financial crisis, they treat
the occurrence of the triggering real estate meltdown as exogenous. In addition, the
extension of the leveraging on the new MBS and CDO derivatives is not explained.
Overall, we need much more to fully grasp the full underpinning factors of the
financial crisis.

1.2.8 Underestimating Aggregate Risks

As explained above, the wave of financial innovations has led to the illusion that
the default risks held by lenders, principally banks, could be diversified away. This
expectation reflects a widely spread misconception that forgets about the effects of
stronger inter-dependencies associated with tighter firm networks.

Recent multidisciplinary research on self-organizing networks [6, 29, 55, 59] has
shown unambiguously that loss of variety, lack of redundancy, removal of compart-
ments, and stronger ties are all recipes for disaster. This is all the more so because
the medium-sized risks are decreased, giving a false impression of safety based on
the illusion that diversification works. And there is the emergence of an extremely
dangerous collective belief that risks have disappeared. This led to the so-called
“great moderation” in the fluctuations of GDP growths of developed economies and
to absurd low risk pricing in financial markets in the last decade.

Due to globalization and the intricate networks of bank interdependencies (thou-
sands of banks borrow and lend to each other every day in a complex ballet) [7,23],
the explosively growing losses on their MBS books and the realization that other
banks were in the same situation have led to a flight for safety. As a consequence,
banks have basically stopped inter-bank lending for fear of defaults of their finan-
cial counterparties. Correlatively, banks have made more rigid their previously lax
lending practices into ridiculously stringent procedures offered to firms and pri-
vate customers, basically threatening to freeze the real economy, which is becoming
strangled by cash flow problems.
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1.3 The Illusion of the “Perpetual Money Machine”

The different elements described above are only pieces of a greater process that can
be aptly summarized as the illusion of the “perpetual money machine.” This term
refers to the fantasy developed over the last 15 years that financial innovations and
the concept that “this time, it is different” could provide an accelerated wealth in-
crease. In the same way that the perpetual motion machine is an impossible dream
violating the fundamental laws of physics, it is impossible for an economy which ex-
pands at a real growth rate of 2–3% per year to provide a universal profit of 10–15%
per year, as many investors have dreamed of (and obtained on mostly unrealized
market gains in the last decade). The overall wealth growth rate has to equate to
the growth rate of the economy. Of course, some sectors can exhibit transient accel-
erated growth due to innovations and discoveries. But it is a simple mathematical
identity that global wealth appreciation has to equal GDP growth.

However, in the last decade and a half, this identity has been violated by an ex-
traordinary expansion of the financial sphere. Consider first the evidence given in
Fig. 5, which shows the total household net worth in the USA. expressed as a frac-
tion of GDP from 1952 to March 2009. This ratio was relatively stable between
300% and 350% for more than 40 years. Since 1995, two major peaks towering
above 450% can be observed to be followed by their collapse. The last rightmost
arrow points to the peak attained in the third quarter of 2007, which is followed
by a drastic drop. The figure suggests that the drop may have to continue for an-
other 50–100% of GDP to come back to historical values. This could occur via a
combination of continuing house value depreciation and stock market losses.

The second peak to the left coincides with the top of the dotcom bubble in 2000
that was followed by more than two years of strong bearish stock markets. The
two other arrows to the left, one in 1962 and the other one in 1987 also coincide
remarkably with two other bubbles previously documented in the literature: in 1962,
the tronic “new economy” bubble collapsed with a cumulative loss of about 35% in

Fig. 5 Household Net Worth as a percent of GDP from 1952 to March 2009. This includes
real estate and financial assets (stocks, bonds, pension reserves, deposits, etc.) net of liabilities
(mostly mortgages). The data is from http://www.federalreserve.gov/releases/z1/Current/z1r-5.pdf
(11 Dec. 2008). Adapted from http://www.calculatedriskblog.com

http://www.federalreserve.gov/releases/z1/Current/z1r-5.pdf
http://www.calculatedriskblog.com
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Fig. 6 Share of wages and of private consumption in Gross Domestic Product (GDP) for the
United States C European Union C Japan. Source of data and graphics: Michel Husson (http://
hussonet.free.fr/toxicap.xls)

3 months; on 19 October 1987, the famous Black Monday crash occurred that ended
a strong spell of stock market appreciation over the previous few years.

The two Figs. 6 and 7 provide another vantage to appreciate fully the impact of
the past financial sphere expansion on the global USA, European Union and Japan
economies. First, Fig. 6 compares the time evolution of private consumption in the
USA, European Union and Japan expressed in percentage of the GDP to the total
wages. One can see that, until 1981, wages funded consumption. After 1984, the
gap between consumption and wages has been growing dramatically. This means
of course that consumption had to be funded by other sources of income than just
wages. Figure 7 suggests that this other source of income is nothing but the increas-
ing profits from investments, while the diminishing level of savings only partially
covered the increased consumption propensity. The gap widens between profit and
accumulation (gray zones) shown in Fig. 7, so as to compensate for the difference
between the share of wages and the share of consumption (gray zones) shown in
Fig. 6. In a nutshell, these two figures tell us that households in the USA, European
Union and Japan have increased their overall level of consumption from about 64%
of GDP to almost 72% of GDP by extracting wealth from financial profits. Figures
for the USA alone confirm and amplify this conclusion. The big question is whether
the financial profits were translated into real productivity gains and, therefore, were
sustainable. It seems obvious today to everybody that financial innovations and their
profits, which do not provide productivity gains in the real economy, cannot consti-
tute a source of income on the long-term. This evidence was, however, lost as several
exuberant bubbles developed during the last 15 years.

http://hussonet.free.fr/toxicap.xls
http://hussonet.free.fr/toxicap.xls
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Fig. 7 Rate of profit (left scale) and rate of accumulation or savings (right scale) for the United
States C European Union C Japan. The rate of accumulation is defined as the rate of growth rate
of the net volume of capital � rate of profit D profit/capital (base: 100 in 2000), Source of data and
graphics: Michel Husson (http://hussonet.free.fr/toxicap.xls)

The impact of financial profits on the wealth of households is well-illustrated by
Fig. 8. This graph demonstrates the very strong correlation between US household
wealth and the level of the stock market proxied by the Dow Jones Industrial Aver-
age. This supports the concept that financial profits have played a crucial role in the
increase of household consumption discussed above. The component of wealth due
to real estate appreciation during the housing bubble may have actually played an
even bigger role, as it is well documented that the so-called wealth effect of house
value is about twice that of the financial markets [11].

As long as the incomes drawn from financial assets are re-invested, the fortunes
increase independently of any material link with the real sphere and the variation
can potentially increase without serious impediment. But, financial assets represent
the right to a share of the surplus value that is produced. As long as this right is
not exercised, it remains virtual. But as soon as anyone exercises it, they discover
that it is subject to the law of value, which means one cannot distribute more real
wealth than is produced. The discrepancy between the exuberant inflation of the
financial sphere and the more moderate growth of the real economy is the crux of
the problem.

The lack of recognition of the fundamental cause of the financial crisis as stem-
ming from the illusion of the “perpetual money machine” is symptomatic of the
spirit of the time. The corollary is that the losses are not just the downturn phase
of a business or financial cycle. They express a simple truth that is too painful to
accept for most, that previous gains were not real, but just artificially inflated values

http://hussonet.free.fr/toxicap.xls
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Fig. 8 The stock market level (left scale) and household wealth in the United States (right scale).
The Dow Jones Industrial Average is shown with base 100 in 1960. The net wealth of households
is given as a multiple of their current income. The five vertical grey zones outline five significant
events, which are from left to right: the crash of 1987, the Iraq war of 1991, the Russian crisis of
1998, the crash and aftermath of the Internet bubble and the final subprime episode. Source of data
and graphics: Michel Husson (http://hussonet.free.fr/toxicap.xls)

that have bubbled in the financial sphere, without anchor and justification in the
real economy. In the last decade, banks, insurance companies, Wall Street as well
as Main Street and many of us have lured ourselves into believing that we were
richer. But this wealth was just the result of a series of self-fulfilling bubbles. As
explained in more details below, in the USA and in Europe, we had the Internet
bubble (1996–2000), the real-estate bubble (2002–2006), the MBS bubble (2002–
2007), an equity bubble (2003–2007), and a commodity bubble (2004–2008), each
bubble alleviating the pain of the previous bubble or supporting and justifying the
next bubble.

The painful consequence of this brutal truth is that trying to support the level
of valuation based on these bubbles is like putting gas in the “perpetual money
machine.” Worse, it misuses scarce taxpayer resources, increasing long-term debts
and liabilities, which are already at dangerous levels in many countries.

A vivid example is provided by the market valuation of funds investing in brick-
and-mortar companies often observed to be much higher at times of bubbles than
the sum of the value of their components. Objective measures and indicators can
be developed to quantify the ratio of wealth resulting from finance compared with
the total economy. For instance, when it is measured that, on average, 40% of the
income of major US firms result from financial investments, this is clearly a sign
that the US economy is “building castles in the air” [47].

http://hussonet.free.fr/toxicap.xls
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2 General Framework for Bubbles and Crashes in Finance

2.1 Introduction

Before reviewing the unfolding of the five bubbles over the 15 years that led to the
mother of all crises, we review our approach to the diagnostic of bubbles and the ex-
planation of crashes. A general review on models of financial bubbles encompassing
much of the literature can be found in [39].

Consider the seven price trajectories shown in Fig. 9. They are seven bubbles that
ended in very severe crashes. This figure illustrates the common future that crashes
occur after a spell of very strong value appreciation, following a similar pattern.
This suggests a common underlying mechanism.

According to the consecrated academic view that markets are efficient, only the
revelation of a dramatic piece of information can cause a crash, yet in reality even
the most thorough post-mortem analyses are typically inconclusive as to what this
piece of information might have been. This is certainly true for the seven cases
shown in Fig. 9 (see [59] for a detailed discussion).

Most approaches to explaining crashes search for possible mechanisms or ef-
fects that operate at very short time scales (hours, days, or weeks at most). Here, we

price

time

Fig. 9 Seven bubbles that ended in severe crashes. The bubble examples include stock market
indices, individual companies, currencies, and for different epochs in the twentieth century. Each
bubble has been rescaled vertically and translated to end at the time of the crash on the right of
the graph. The horizontal axis covers approximately 2.5 years of data. The legend for each of the
seven bubbles indicates the name of the asset supporting the bubble and the year when the crash
occurred
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build on the radically different hypothesis [59] that the underlying cause of the crash
should be found in the preceding months and years, in the progressively increasing
build-up of market cooperativity, or effective interactions between investors, often
translated into accelerating ascent of the market price (the bubble). According to
this “critical” point of view, the specific manner by which prices collapsed is not the
most important problem: a crash occurs because the market has entered an unstable
phase and any small disturbance or process may reveal the existence of the insta-
bility. Think of a ruler held up vertically on your finger: this very unstable position
will lead eventually to its collapse, as a result of a small (or an absence of adequate)
motion of your hand or due to any tiny whiff of air. The collapse is fundamentally
due to the unstable position; the instantaneous cause of the collapse is secondary. In
the same vein, the growth of the sensitivity and the growing instability of the market
close to such a critical point might explain why attempts to unravel the proximal
origin of the crash have been so diverse. Essentially, anything would work once the
system is ripe.

What is the origin of the maturing instability? A follow-up hypothesis underlying
this paper is that, in some regimes, there are significant behavioral effects underlying
price formation leading to the concept of “bubble risks.” This idea is probably best
exemplified in the context of financial bubbles, such as the recent Internet example
culminating in 2000 or the real-estate bubble in the USA culminating in 2006. Many
studies have suggested that bubbles result from the over-optimistic expectation of
future earnings (see, for instance, [56]), and many works have argued contrarily for
rational explanations (for example, [24]). History provides a significant number of
examples of bubbles driven by unrealistic expectations of future earnings followed
by crashes. The same basic ingredients have been documented to occur repeatedly
[59]. According to this view, fuelled by initially well-founded economic fundamen-
tals, investors develop a self-fulfilling enthusiasm by an imitative process or crowd
behavior that leads to the building of castles in the air, to paraphrase Malkiel [47].
Our previous research suggests that the ideal economic view, that stock markets are
both efficient and unpredictable, may be not fully correct. We propose that, to un-
derstand stock markets, one needs to consider the impact of positive feedbacks via
possible technical as well as behavioral mechanisms, such as imitation and herding,
leading to self-organized cooperativity and the development of possible endogenous
instabilities. We thus propose to explore the consequences of the concept that most
of the crashes have fundamentally an endogenous, or internal, origin and that ex-
ogenous, or external, shocks only serve as triggering factors. As a consequence,
the origin of crashes is probably much more subtle than often thought, as it is con-
structed progressively by the market as a whole, as a self-organizing process. In this
sense, the true cause of a crash could be termed a systemic instability.

By studying many empirical historical examples, C. Kindleberger has identified
the universal scenario associated with the development of bubbles [41] as follows
(see also [59]):

displacement ! credit creation ! euphoria ! critical financial distress

! revulsion: (1)
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The upswing usually starts with an opportunity (“displacement”) – new markets,
new technologies or some dramatic political change – and investors looking for
good returns. The scenario proceeds through the euphoria of rising prices, par-
ticularly of assets, while an expansion of credit inflates the bubble. In the manic
euphoric phase, investors scramble to get out of money and into illiquid things
such as stocks, commodities, real estate or tulip bulbs: a larger and larger group
of people seeks to become rich without a real understanding of the processes in-
volved. Ultimately, the markets stop rising and people who have borrowed heavily
find themselves overstretched. This is distress, which generates unexpected failures,
followed by revulsion or discredit. The final phase is a self-feeding panic, where
the bubble bursts. People of wealth and credit scramble to unload whatever they
have bought at greater and greater losses, and cash becomes king. The sudden fall,
first in the price of the primary object of speculation, then in most or all assets,
is associated with a reverse rush for liquidity. Bankruptcies increase. Liquidation
speeds up, sometimes degenerating into panic. The value of collateral (credit and
money) sharply contracts. Then, debt deflation ends as productive assets move from
financially weak owners (often speculators or the original entrepreneurs) to finan-
cially strong owners (well capitalized financiers). This provides the foundation for
another cycle, assuming that all the required factors (displacement, monetary ex-
pansion, appetite for speculation) are present.

2.2 Conceptual Framework

Let us now focus on the empirical question of the existence and detection of financial
bubbles. But what are really bubbles? The term “bubble” is widely used but rarely
clearly defined. Following Case and Shiller [13], the term “bubble” refers to a situ-
ation in which excessive public expectations of future price increases cause prices
to be temporarily elevated. For instance, during a housing price bubble, homebuy-
ers think that a home that they would normally consider too expensive for them is
now an acceptable purchase because they will be compensated by significant fur-
ther price increases. They will not need to save as much as they otherwise might,
because they expect the increased value of their home to do the saving for them.
First-time homebuyers may also worry during a housing bubble that if they do not
buy now, they will not be able to afford a home later. Furthermore, the expectation
of large price increases may have a strong impact on demand if people think that
home prices are very unlikely to fall, and certainly not likely to fall for long, so that
there is little perceived risk associated with an investment in a home.

What is the origin of bubbles? In a nutshell, speculative bubbles are caused by
“precipitating factors” that change public opinion about markets or that have an im-
mediate impact on demand, and by “amplification mechanisms” that take the form
of price-to-price feedback, as stressed by Shiller [57]. Consider again the example
of a housing bubble. A number of fundamental factors can influence price move-
ments in housing markets. On the demand side, demographics, income growth,
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employment growth, changes in financing mechanisms or interest rates, as well
as changes in location characteristics such as accessibility, schools, or crime, to
name a few, have been shown to have effects. On the supply side, attention has
been paid to construction costs, the age of the housing stock, and the industrial or-
ganization of the housing market. The elasticity of supply has been shown to be a
critical factor in the cyclical behavior of home prices. The cyclical process that we
observed in the 1980s in those cities experiencing boom-and-bust cycles was caused
by the general economic expansion, best proxied by employment gains, which drove
demand up. In the short run, those increases in demand encountered an inelastic sup-
ply of housing and developable land, inventories of for-sale properties shrank, and
vacancy declined. As a consequence, prices accelerated. This provided an amplifi-
cation mechanism as it led buyers to anticipate further gains, and the bubble was
born. Once prices overshoot or supply catches up, inventories begin to rise, time
on the market increases, vacancy rises, and price increases slow down, eventually
encountering downward stickiness. The predominant story about home prices is al-
ways the prices themselves [57, 59]; the feedback from initial price increases to
further price increases is a mechanism that amplifies the effects of the precipitating
factors. If prices are going up rapidly, there is much word-of-mouth communication,
a hallmark of a bubble. The word-of-mouth can spread optimistic stories and thus
help cause an overreaction to other stories, such as ones about employment. The
amplification can also work on the downside as well.

Another vivid example is the proposition offered close to the peak of the Inter-
net bubble that culminated in 2000, that better business models, the network effect,
first-to-scale advantages, and real options effect could account rationally for the high
prices of dot-com and other New Economy companies [50]. These interesting views
expounded in early 1999 were in synchrony with the bull market of 1999 and preced-
ing years. They participated in the general optimistic view and added to the strength
of the herd. Later, after the collapse of the bubble, these explanations seemed less
attractive. This did not escape US Federal Reserve chairman Alan Greenspan, who
said [27]:

Is it possible that there is something fundamentally new about this current period that would
warrant such complacency? Yes, it is possible. Markets may have become more efficient,
competition is more global, and information technology has doubtless enhanced the stability
of business operations. But, regrettably, history is strewn with visions of such new eras that,
in the end, have proven to be a mirage. In short, history counsels caution.

In this vein, as mentioned above, the buzzword “new economy” so much used in the
late 1990s was also hot in the 1960s during the “tronic boom” before a market crash,
and during the bubble of the late 1920s before the Oct. 1929 crash. In this latter case,
the “new” economy was referring to firms in the utility sector. It is remarkable how
traders do not learn the lessons of their predecessors!

Positive feedback occurs when an action leads to consequences which themselves
reinforce the action and so on, leading to virtuous or vicious circles. We propose the
hypotheses that (1) bubbles may be the result of positive feedbacks and (2) the dy-
namical signature of bubbles derives from the interplay between fundamental value
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investment and more technical analysis. The former can be embodied in nonlinear
extensions of the standard financial Black–Scholes model of log-price variations
[2, 14, 30, 61].

The mechanisms for positive feedbacks in financial markets include (1) techni-
cal and rational mechanisms (option hedging, insurance portfolio strategies, trend
following investment strategies, asymmetric information on hedging strategies) and
(2) behavioral mechanisms (breakdown of “psychological Galilean invariance” [60],
imitation). We stress here particularly the second mechanism which, we believe,
dominates. First, it is actually “rational” to imitate when lacking sufficient time, en-
ergy and information to make a decision based only on private information and
processing, that is, most of the time. Second, imitation has been documented in
psychology and in neuro-sciences as one of the most evolved cognitive processes,
requiring a developed cortex and sophisticated processing abilities. It seems that
imitation has evolved as an evolutionary advantageous trait, and may even have
promoted the development of our anomalously large brain (compared with other
mammals) [19]. Furthermore, we learn our basics and how to adapt mostly by
imitation all through our life. Imitation is now understood as providing an ef-
ficient mechanism of social learning. Experiments in developmental psychology
suggest that infants use imitation to get to know people, possibly applying a like-me
test (people who I can imitate and who imitate me). Imitation is found in highly
social living species which show, from a human observer point of view, intelli-
gent behavior and signs for the evolution of traditions and culture (humans and
chimpanzees, whales and dolphins, parrots). In non-natural agents such as robots,
imitation is a principal tool for easing the programming of complex tasks or en-
dowing groups of robots with the ability to share skills without the intervention
of a programmer. Imitation plays an important role in the more general context of
interaction and collaboration between software agents and human users.

Humans are perhaps the most social mammals and they shape their environment
to their personal and social needs. This statement is based on a growing body of re-
search at the frontier between new disciplines called neuro-economics, evolutionary
psychology, cognitive science, and behavioral finance [10,15,25]. This body of evi-
dence emphasizes the very human nature of humans with its biases and limitations,
opposed to the previously prevailing view of rational economic agents optimiz-
ing their decisions based on unlimited access to information and to computation
resources.

Imitation, in obvious or subtle forms, is a pervasive activity of humans. In the
modern business, economic and financial worlds, the tendency for humans to imitate
leads in its strongest form to herding and to crowd effects. Imitation is a prevalent
form in marketing with the development of fashion and brands. We hypothesize
that financial bubbles are footprints of perhaps the most robust trait of humans and
the most visible imprint in our social affairs: imitation and herding (see [59], and
references therein).
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2.3 Finite-Time Singular Behavior of Bubbles

This understanding of imitation and herding has led us to propose that one of the
hallmarks of a financial bubble is the faster-than-exponential growth of the price
of the asset under consideration. It is convenient to model this accelerated growth
by a power law with a so-called finite-time singularity [63]. This feature is nicely
illustrated by the price trajectory of the Hong-Kong Hang Seng index from 1970
to 2000, as shown in Fig. 10. The Hong Kong financial market is repeatedly rated
as providing one of the most pro-economic, pro-entrepreneurship and free market-
friendly environment in the world, and thus provides a textbook example of the
behavior of weakly regulated liquid and striving financial markets. In Fig. 10, the
logarithm of the price p.t/ is plotted as a function of the time (in linear scale), so
that an upward trending straight line qualifies as exponential growth with a constant

Fig. 10 Trajectory of the Hong-Kong Hang Seng index from 1970 to 2000. The vertical log-
scale together with the linear time scale allows one to qualify an exponential growth with constant
growth rate as a straight line. This is indeed the long-term behavior of this market, as shown by the
best linear fit represented by the solid straight line, corresponding to an average constant growth
rate of 13.8% per year. The eight arrows point to eight local maxima that were followed by a drop
of the index of more than 15% in less than 3 weeks (a possible definition of a crash). The eight
small panels at the bottom show the upward curvature of the log-price trajectory preceding each of
these local maxima, which diagnose an unsustainable bubble regime, which culminates at the peak
before crashing. Reproduced from [62]
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growth rate equal to the slope of the line: the straight solid line corresponds indeed
to an approximately constant compounded growth rate of the Hang Seng index equal
to 13.8% per year. However, the most striking feature of Fig. 10 is not this average
behavior, but the obvious fact that the real market is never following and abiding to a
constant growth rate. One can observe a succession of price run-ups characterized by
growth rates . . . growing themselves: this is reflected visually in Fig. 10 by transient
regimes characterized by strong upward curvature of the price trajectory. Such an
upward curvature in a linear-log plot is a first visual diagnostic of a faster than
exponential growth (which of course needs to be confirmed by rigorous statistical
testing). Such a price trajectory can be approximated by a characteristic transient
finite-time singular power law of the form

lnŒp.t/	 D A C B.tc � t/m; where B < 0; 0 < m < 1; (2)

and tc is the theoretical critical time corresponding to the end of the transient run-
up (end of the bubble). Such transient faster-than-exponential growth of p.t/ is
our working definition of a bubble. It has the major advantage of avoiding the co-
nundrum of distinguishing between exponentially growing fundamental price and
exponentially growing bubble price, which is a problem permeating most of the pre-
vious statistical tests developed to identify bubbles (see [46] and references therein).
The conditions B < 0 and 0 < m < 1 ensure the super-exponential acceleration of
the price, together with the condition that the price remains finite even at tc . Stronger
singularities can appear for m < 0 [26].

Such a mathematical expression (2) is obtained from models that capture the
effect of a positive feedback mechanism. Let us illustrate it with the simplest ex-
ample. Starting with a standard proportional growth process dp=dt D rp (omitting
for the sake of pedagogy the stochastic component), where r is the growth rate,
let us assume that r is itself an increasing function of the price p, as a result of
the positive feedback of the price on the future returns. For illustration, let us as-
sume that r is simply proportional to p (r D cp, where c is a constant), so that the
proportional growth equation become dp=dt D cp2. The solution of this equation
is of the form (2) where lnŒp.t/	 is replaced by p.t/, with m D �1 and A D 0,
corresponding to a divergence of p.t/ at tc . Many systems exhibit similar transient
super-exponential growth regimes, which are described mathematically by power
law growth with an ultimate finite-time singular behavior: planet formation in so-
lar systems by runaway accretion of planetesimals, Euler equation of inviscid fluids,
general relativity coupled to a mass field leading to formation of black holes in finite
time, Zakharov equation of beam-driven Langmuir turbulence in plasma, rupture
and material failures, nucleation of earthquakes modeled with the slip-and-velocity
weakening Ruina–Dieterich friction law, models of micro-organisms interacting
through chemotaxis aggregating to form fruiting bodies, Mullins–Sekerka surface
instability, jets from a singular surface, fluid drop snap-off, the Euler rotating disk,
and so on. Such mathematical equations can actually provide an accurate descrip-
tion of the transient dynamics, not too close to the mathematical singularity where
new mechanisms come into play. The singularity at tc mainly signals a change of
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regime. In the present context, tc is the end of the bubble and the beginning of a new
market phase, possible a crash or a different regime.

Such an approach may be thought at first sight to be inadequate or too naive
to capture the intrinsic stochastic nature of financial prices, whose null hypothesis
is the geometric random walk model [47]. However, it is possible to general-
ize this simple deterministic model to incorporate nonlinear positive feedback on
the stochastic Black–Scholes model, leading to the concept of stochastic finite-time
singularities [2, 21, 22, 61]. Still much work needs to be done on this theoretical
aspect.

Coming back to Fig. 10 , one can also notice that each burst of super-exponential
price growth is followed by a crash, here defined for the eight arrowed cases as
a correction of more than 15% in less than 3 weeks. These examples suggest that
the non-sustainable super-exponential price growths announced a “tipping point”
followed by a price disruption, i.e., a crash. The Hong-Kong Hang Seng index pro-
vides arguably one of the best textbook example of a free market in which bubbles
and crashes occur repeatedly: the average exponential growth of the index is punc-
tuated by a succession of bubbles and crashes, which seem to be the norm rather
than the exception.

More sophisticated models than (2) have been proposed to take into account the
interplay between technical trading and herding (positive feedback) versus funda-
mental valuation investments (negative mean-reverting feedback). Accounting for
the presence of inertia between information gathering and analysis on the one hand
and investment implementation on the other hand [30] or between trend followers
and value investing [20], the resulting price dynamics develop second-order oscilla-
tory terms and boom-bust cycles. Value investing does not necessarily cause prices
to track value. Trend following may cause short-term trend in prices, but also cause
longer-term oscillations.

The simplest model generalizing (2) and including these ingredients is the
so-called log-periodic power law (LPPL) model ([59] and references therein). For-
mally, some of the corresponding formulas can be obtained by considering that the
exponent m is a complex number with an imaginary part, where the imaginary part
expresses the existence of a preferred scaling ratio � describing how the continuous
scale invariance of the power law (2) is partially broken into a discrete scale invari-
ance [58]. The LPPL structure may also reflect the discrete hierarchical organization
of networks of traders, from the individual to trading floors, to branches, to banks,
to currency blocks. More generally, it may reveal the ubiquitous hierarchical orga-
nization of social networks recently reported [74] to be associated with the social
brain hypothesis [19]. The simple implementation of the LPPL model that we use
in Sect. 3 reads

lnŒp.t/	 D A C B.tc � t/m Œ1 C C cos .! log.tc � t/ C �/	 ;

with 0 < m < 1; and B < 0: (3)

The constant A is by construction equal to lnŒp.tc/	. The two key parameters are the
exponent m, which characterizes the strength of the super-exponential acceleration
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of the price on the approach to the critical time tc , and !, which encodes the discrete
hierarchy of accelerated “impulse-retracting” market wave patterns associated with
the super-exponential acceleration. Specifically, the preferred scaling ratio encoding
the accelerated oscillations is given by � � e

2�
! [58].

Examples of calibrations of financial bubbles with one implementation of the
LPPL model are the eight super-exponential regimes discussed above in Fig. 10:
the eight small insets at the bottom of Fig. 10 show the LPPL calibration on the
Hang Seng index on the bubble phase that preceded each peak. Preliminary tests
suggest that the LPPL model provides a good starting point to detect bubbles and
forecast their most probable end [59]. Rational expectation models of bubbles a la
Blanchard and Watson implementing the LPPL model [32, 37, 38] have shown that
the end of the bubble is not necessarily accompanied by a crash, but it is indeed
the time where a crash is the most probable. But crashes can occur before (with
smaller probability) or not at all. That is, a bubble can land smoothly, approximately
one-third of the time, according to preliminary investigations [37]. Therefore, only
probabilistic forecasts can be developed. Probability forecasts are indeed valuable
and commonly used in daily life, such as in weather forecasts.

3 A 15-Year History of the 2007–???? Financial
and Economic Crisis

Using the general framework for bubbles and crashes outlined in Sect. 2, we now
present the evidence on the five successive bubbles that developed over the last
15 years. We suggest that these five bubbles reveal the belief in the “perpetual money
machine” that characterized this epoch, as discussed in Sect. 1.3.

Each bubble excess was thought and felt as “solved” by the following ex-
cess. . . leading to a succession and combination of mutually reinforcing unsustain-
able financial bubbles, preparing the ground for the instabilities that have been
unravelling since 2007. The evidence presented in this section is useful to fully
appreciate that the present crisis and economic recession are to be understood as the
“hangover” and consolidation phase following this series of unsustainable excesses.

One should conclude that the extraordinary severity of this crisis is not going
to be solved by the same implicit or explicit “perpetual money machine” thinking,
that still characterize most of the proposed solutions. “The problems that we have
created cannot be solved at the level of thinking that created them.” said Albert
Einstein.

We start by presenting the analysis using the LPPL model (3) presented in
Sect. 2.3 of a global index obtained as follows. Starting from time series of emerging
market equity indices, freight indices, soft commodities, base and precious metals,
energy, and currencies, a principal component analysis (PCA) yields a set of prin-
cipal components that are thought to correspond to common factors acting on these
time series. The first principal component, which explains the largest fraction of
the covariance of these time series, is shown in Fig. 11, together with its fit with
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Fig. 11 First component obtained from a principal component analysis performed on a data set
containing emerging markets equity indices, freight indices, soft commodities, base and precious
metals, energy, and currencies. Source: Peter Cauwels, Fortis Bank – Global Markets

the LPPL model (3). It is striking to observe the overall super-exponential behavior,
with a clear change of regime occurring mid-2008. The following subsections al-
lows us to decompose this overall process into bubble components.

3.1 First Phase: The ITC “New Economy” Bubble (1995–2000)

The nature of the ITC bubble is striking when comparing the price trajectories of two
indices constructed on the 500 companies forming the S&P 500 index. The Internet
stock index is an equally weighted portfolio of 100 firms related to the Internet. The
non-Internet stock price index is an equally weighted portfolio made of the remain-
ing 400 “brick-and-mortar” companies. Figure 12 shows that the non-Internet stock
price index remained basically flat from 1998 to 2002, while exhibiting fluctuation
of roughly ˙20% over this period. In contrast, the Internet stock index was mul-
tiplied by a factor 14 from 1998 to its peak in the first quarter of 2000, and then
shrunk with a great crash followed by a jumpy decay to below its initial value at the
end of 2002. The contrast between the behavior of these two indices over the same
4-years interval cannot be more shocking.

The super-exponential nature of the Nasdaq composite index allows us to diag-
nose this period before 2000 as an unambiguous bubble as first reported by Johansen
and Sornette [34], according to the definition presented in Sect. 2.3. Figure 13
shows that the logarithm of the Nasdaq composite index indeed increased with an
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Fig. 12 The Internet stock index and non-Internet stock index which are equally weighted as
explained in the text. Comparison of the index levels of the Internet index and the non-Internet
Stock index for the period 2 Jan. 1998 to 31 Dec. 2002. The two indexes are scaled to be 100 on
2 Jan. 1998. Courtesy of Taisei Kaizoji

Fig. 13 Calibration of the LPPL model (3) to the Nasdaq Composite Index from early 1997 to the
end of 1999. Reproduced from [34]
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Fig. 14 Foreign capital inflow in the USA during the ICT bubble, illustrating the growth of the
euphoria phase in scenario (1) of Sect. 2.1. The smoothed curve shows the fit of the net capital in-
flow by an extension of the LPPL model (3) using higher-order log-periodic components presented
in [65]

overall upward curvature, signaling a super-exponential growth. The calibration of
the LPPL model (3) to the Nasdaq index is excellent (see [34] for details and statis-
tical tests).

As explained in the scenario (1) in Sect. 2.1, a typical bubble goes through a
period of euphoria. This euphoria is characterized by an irresistible attraction, in par-
ticular, to foreign investors, who cannot wait to be part of the celebration. This
pattern is vividly observed in the case of the ICT bubble in Fig. 14, which shows
the flux of foreign capital inflow to the USA. This inflow almost reached 400 billion
dollars per year at the peak. A significant part of this foreign capital was invested
in the US market to profit from the return opportunities it provided until 2000. The
smoothed curve shows that the net capital inflow can also be well-fitted by the LPPL
model (3), yielding values for the exponent m and log-frequency !, which are con-
sistent with those obtained for other bubbles [31].

3.2 Second Phase: Slaving of the Fed Monetary Policy
to the Stock Market Descent (2000–2003)

To fight the recession and the negative economic effects of a collapsing stock
market, the Fed engaged in a pro-active monetary policy (decrease of the Fed rate
from 6.5% in 2000 to 1% in 2003 and 2004). Figure 15 shows this decrease of the
Fed rate and compares it with the behavior of two US market indices, the S&P 500
and the Nasdaq composite indices.
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Fig. 15 Comparison of the Federal funds rate, the S&P 500 Index x.t/, and the NASDAQ com-
posite z.t /, from 1999 to mid-2003. To allow an illustrative visual comparison, the indices have
been translated and scaled as follows: x ! 5x � 34 and z ! 10z � 67. Reproduced from Zhou
and Sornette [71]

It is quite apparent that the Fed rate decreased in parallel to the US stock market.
But did it lead it or lag behind it? According to common wisdom, the Federal Re-
serve control of the leading rate indicator is supposed to influence the stock markets.
A decrease of the Fed rate makes borrowing cheaper, giving more leverage to firms
to invest for the future. As a consequence, this should lead to anticipations of larger
future growth, and hence to larger present market values. Hence, logically, the Fed
rate drops should precede the market losses.

We check this prediction by showing in Fig. 16 the cross-correlation between the
returns of the S&P 500 index and the increments of the Federal funds rate as a func-
tion of time lag. The remarkable result is that the Fed rate decreased with a robustly
determined lag of about 1–2 months behind the on-going loss of the S&P 500. This
reverse causality suggests that the Fed monetary policy has been influenced signifi-
cantly by (or “slaved” to) the vagaries of the stock market.

In 2003, Fed Chairman A. Greenspan argued that the Fed needed to set low inter-
est rates to prevent the US economy from deteriorating so much that it would follow
a deflationary spiral, often referred to as a “liquidity trap” [43], a situation in which
conventional monetary policy loses all traction. Greenspan’s critics continue to de-
bate about the influence of the exceptionally low Fed rates in 2002 and 2003 that
are thought to have caused an extraordinary real estate bubble. . . that led eventually
to the 2007–???? crisis and recession.

Recently, economist Nick Rowe presented a piece of evidence [54] that is re-
produced in Fig. 17, which illuminates this debate. The growth rate of the non-farm
business productivity is compared with the real Federal fund rate. It is apparent that
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Fig. 16 “Causal Slaving” of the US Treasury Bond Yield by the Stock Market Antibubble of
August 2000. The cross-correlation coefficient C.n/ between the increments of the logarithm of
the S&P 500 Index and the increments of the Federal funds rate is shown as a function of time lag n

in days. The three curves corresponds to three different time steps used to calculate the increments:
weekly (noisiest curve), monthly and quarterly (curve showing the largest peak). A positive lag n

corresponds to having the Federal funds rate changes posterior to the stock market returns. The
arrow points to this lag. Reproduced from Zhou and Sornette [71]

Fig. 17 Growth rate of the non-farm business productivity compared with the real Federal fund
rate. Reproduced from [54]
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the Fed rate was pushed down at the time of a surge of productivity gains, not really a
deteriorating economy. This combines with the previous evidence of Fig. 16 to sup-
port the view that the Federal Reserve has been too obnubilated by the stock market
signals. This is additional evidence that, even in the higher spheres of finance, the
stock market is taking over in shaping economic and strategic decisions. We men-
tioned in the introduction of Sect. 1 that the impact of financial markets has been
growing to basically dominate strategic decision at the firm level (see also [9] for a
dramatic example of this trend for the case Royal Ahold firm in the Netherland). It
seems that the monetary authorities are also infected by the same stock market virus.

3.3 Third Phase: Real-Estate Bubbles (2003–2006)

The pro-active monetary policy of the Federal Reserve described in the previous
subsection, together with expansive Congressional real-estate initiatives, fueled
what can now be rated as one of the most extraordinary real-estate bubbles in his-
tory, with excesses on par with those that occurred during the famous real-estate
bubble in Japan in the late 1980s.

As Alan Greenspan himself documented in a scholarly paper researched during
his tenure as the Federal Research Chairman at that time [28], the years from 2003
to 2006 witnessed an extraordinary acceleration of the amount of wealth extracted
by Americans from their houses as shown in Fig. 18, which parallels the acceler-
ated house price appreciation shown in Fig. 19. The negative effects on consumption
and income due to the collapse of the first ICT bubble were happily replaced by an
enthusiasm and a sense of riches permeating the very structure of US society.

In June 2005 (proof from the arXiv submission http://arxiv.org/abs/physics/
0506027), Zhou and Sornette [72] issued a diagnostic that about two-fifths of the
states of the USA were developing real estate bubbles. Zhou and Sornette predicted
a peak for most of the US real estate bubbles in mid-2006 [72]. The validity of this
prediction can be checked in Fig. 20.

It should be noted that the real estate bubble has not been confined to the USA
but was active in many (but not all) countries. Exceptions include Germany, Japan,
Switzerland and The Netherlands. But the critical time of the peak of the bubble
has been different in different countries. For instance, it was mid-2004 for the UK
bubble [70] compared to mid-2006 for the US bubble.

3.4 Fourth Phase: MBS, CDOs Bubble (2004–2007)

Concomitantly with the real estate bubble, both the public and Wall Street were the
(sometimes unconscious) actors of a third bubble of subprime mortgage-backed se-
curities (MBS) and complex packages of associated financial derivatives, as already
described in Sect. 1.2.2 and now shown in Figs. 21 and 22.

http://arxiv.org/abs/physics/0506027
http://arxiv.org/abs/physics/0506027
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Fig. 18 Quantification of gross equity extraction by homeowners from their houses, showing the
accelerated growth that spilled over to the economy by fueling consumption. This figure shows
that, over the past decade and a half, equity extraction has been closely correlated with realized
capital gains on the sale of homes. Source: Greenspan and Kennedy [28]

Fig. 19 (Color online) Quarterly average HPI (house price index) in the 21 states and in the district
of Columbia (DC) that were found to exhibit a clear faster-than-exponential growth. For better
comparison, the 22 house price indices have been normalized to 100 at the second quarter of 1992.
The corresponding states symbols are given in the legend. Reproduced from Zhou and Sornette [72]



134 D. Sornette and R. Woodard

Fig. 20 (Color online) Year-over-year price changes for the Case–Shiller composite 10 and 20
indices (through February 2008), and the Case–Shiller and OFHEO National price indices (through
Q4 2007). Adapted from http://calculatedrisk.blogspot.com. The pictures of the two books are put
here to emphasize the dominating sentiment in each phase (see [53] for a study of how book sales
reflect market bubbles)

Fig. 21 Total holdings of US home mortgages by type of financial institution. Source: Hyun Song
Shin, Princeton University

http://calculatedrisk.blogspot.com
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Fig. 22 New issuance of asset backed securities in previous three months. Source: JP Morgan

The growth of the MBS derivatives is exemplified in Figs. 21 and 22, which
respectively show (1) the total holding of mortgage related securities of different
financial institutions and (2) the accelerated rate of new issuance of asset backed
securities (ABS) until the peak in March 2007, when the first signs of accelerating
loan payment defaults started to be felt on the MBS.

These two Figs. 21 and 22 clearly illustrate the MBS bubble and its bursting. In
addition, as pointed out by many astute observers, many of the MBS were “fragile”
as they were linked to two key unstable processes: the value of houses and the loan
rates. The “castles in the air” of bubbling house prices promoted a veritable eruption
of investments in MBS, these investments themselves pushing the demand for and
therefore the prices of houses – until the non-sustainability of these mutually as well
as self-reinforcing processes became apparent.

But to be clear; these financial instruments were great innovations which, in
normal times, would indeed have provided a win-win situation: more people have
access to loans, which become cheaper because banks can sell their risks to the
supposed bottomless reservoirs of investors worldwide with varying appetites for
different risk-adjusted returns.

The problem is that the MBS and collateral debt obligations (CDO) consti-
tuted new types of derivatives. Their complexity together with the lack of historical
experience may have provided the seed for unrealistic expectations of low risks
and large returns. Actually, this is part of a larger debate on the role of financial
derivatives.

Many financial economists hold that derivatives serve a key role of making mar-
kets more complete, in the sense that more states of the world can be hedged by a
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corresponding asset. As a consequence, financial markets become more efficient and
stable. Perhaps the most influential proponent of this view has been Alan Greenspan
himself. For more than a decade, Greenspan has fiercely objected whenever deriva-
tives have come under scrutiny in Congress or on Wall Street. “What we have found
over the years in the marketplace is that derivatives have been an extraordinarily
useful vehicle to transfer risk from those who shouldn’t be taking it to those who
are willing to and are capable of doing so,” Mr. Greenspan told the Senate Bank-
ing Committee in 2003. “We think it would be a mistake” to more deeply regulate
the contracts, he added. “Not only have individual financial institutions become less
vulnerable to shocks from underlying risk factors, but also the financial system as a
whole has become more resilient.” – Alan Greenspan in 2004.

Others disagree. The well-known financier G. Soros avoids using derivatives
“because we do not really understand how they work.” Felix G. Rohatyn, the in-
vestment banker whose action was instrumental during New York financial turmoils
in the 1970s, described derivatives as potential “hydrogen bombs.” And, in the 2002
Berkshire Hathaway annual report, Warren E. Buffett observed that derivatives were
“financial weapons of mass destruction, carrying dangers that, while now latent, are
potentially lethal.”

These statements have recently been given theoretical support in new out-of-
equilibrium models of financial markets in which it is found that, paradoxically, on
the one hand the proliferation of financial instruments tends to make the market
more complete and efficient by providing more means for risk diversification, while
at the same time this proliferation of financial instruments erodes systemic stability
as it drives the market to a critical state characterized by large susceptibility, strong
fluctuations and, enhanced correlations among risks [8, 48, 49].

3.5 Fifth Phase: Stock Market Bubble (2004–2007)

The exuberant real-estate market and MBS bubbles spilled over to the stock market.
Figure 23 shows the S&P 500 index (in logarithmic scale) as a function of time.
A clear upward overall upward curvature can be observed, which is characteristic of
a super-exponential growth. The LPPL calibration confirms the existence of bubble
characteristics.

3.6 Sixth Phase: Commodities and Oil Bubbles (2006–2008)

As explained in Sect. 3.3 and shown in Fig. 18, the growth of the real-estate bubble,
of the MBS bubble, and of the stock market bubble led to a huge extraction of wealth
or, in other words, the creation of a lot of wealth and of money. Both money creation
and wealth increase led to higher demand in all things that can be consumed. In fact,



Financial, Real Estate, and Derivative Bubbles 137

Fig. 23 S&P 500 index (in logarithmic scale) shown as dots as a function of time. The dashed
vertical line shows the last observed time tlast used to perform the calibration of the LPPL model (3)
and the different smoothed curves correspond to different estimations obtained with distinct time
windows extending no later that tlast. The grey zone corresponds to the 80% confidence interval
for the predicted critical time tc of the end of the bubble. The inset shows the probability density
function of the predicted tc’s

the demand has been accelerating on basic commodities, which developed clear
bubble characteristics, as shown in Figs. 24 and 25.

Oil prices exhibited a record rise, whose starting phase can be traced to 2003
according to our analysis [64], followed by a spectacular crash in 2008. The peak of
$145.29 per barrel was set on July 3, 2008 and a recent low of $40.81 was scraped on
December 5, 2008, a level not seen since 2004. On May 27, 2008, we addressed the
question of whether oil prices were exhibiting a bubble-like dynamics, which may
be symptomatic of speculative behavior, using our techniques based on statistical
physics and complexity theory [64]. Thorough analysis of our May 27, 2008 exper-
iment predicted a peak within a 80% confidence interval between May 17, 2008 and
July 14, 2008. The actual observed “crash”, where prices began a long downward
trend, began on the last day of this period.
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Fig. 24 Calibration of the LPPL model (3) to the time series of four commodities (corn, gold,
soybean and wheat) expressed in US dollars

4 Thoughts on Resolution of the Crisis and Its Aftermath

4.1 Summary

We have presented evidence that the fundamental cause of the unfolding financial
and economic crisis lies in the accumulation of at least five bubbles whose in-
terplay and mutual reinforcement has led to an illusion of the “perpetual money
machine” allowing financial institutions to extract wealth from an unsustainable ar-
tificial process.

The path from MBS problem to a global World recession and to potentially even
higher risks can be outlined as follows: drop in confidence ! drop in demand !
major recession ! interaction between a deep recession and a weakened financial
system ! increased risk of trade wars ! collapse of global commodity prices and,
thus, revenues for low-income countries ! global instability.

In March 2007, the first visible signs of a worrisome increase in default rates
appeared, followed in the summer of 2007 by the startling realization by the finan-
cial community that the problem would be much more serious. In parallel with an
acceleration of the default of homeowners and a deteriorating economic outlook,
the second part of 2007 and first part of 2008 saw a rapid increase, punctuated by
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Fig. 25 Typical result of the calibration of the simple LPPL model to the oil price in US dollars in
shrinking windows with starting dates tstart moving up towards the common last date tlast D May
27, 2008. Reproduced from Sornette et al. [64]

dramatic bankruptcies, in the estimated cumulative losses facing banks and other
investment institutions; from initial guesses in the range of tens of billions, to hun-
dreds of billions, then to more than a trillion of US dollars. The US Federal Reserve
and US Treasury stepped up their actions in proportion to the ever-increasing sever-
ity of the uncovered failures, unaware of the enormity of the underlying imbalances,
or unwilling to take the measures that would address the full extent of the problem,
which only now (one hopes) has revealed its enormous systemic proportions. Let us
be blunt: Government has been blissfully unaware of the predictable effect of the
piling up these bubbles, as each one appeared to displace the problems induced by
the previous one. Monetary easing, the injection of liquidity, successive bailouts –
all address symptoms and ignore the sickness.

The sickness is the cumulative excess liability present in all the sectors of the
US economy: debts of US households as a percentage of disposable income at
around 130%, those of US banks as a percentage of GDP currently around 110%,
US Government debt at 65% of GDP, corporate debts at 90% GDP, state and lo-
cal government debts at 20% GDP, unfunded liabilities of Medicare, Medicaid, and
Social Security in the range of three to four times GDP. Such levels of liabilities
in the presence of the bubbles have produced a highly reactive unstable situation
in which sound economic valuation becomes unreliable, further destabilizing the
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system. This sickness has only been worsened by measures that disguise or deny it,
like the misapplied innovations of the financial sector, with their flawed incentive
structures, and the de facto support of an all-too willing population, eager to believe
that wealth extraction could be a permanent phenomenon. On the sustainable long
term, the growth of wealth has to be equal to the actual productivity growth, which
is about 2–3% in real value on the long term in developed countries.

Acting on the “theory” that crises can be stopped if confidence is restored by
stopping the hemorrhage of MBS losses, and on the basis of the diagnostic that the
financial crisis was a “liquidity” problem, central banks and governments have ac-
tively intervened to combat the observed swing in risk taking shown by banks. One
set of measures amount basically to attempt stopping the devaluation of the MBS
assets held by financial institutions. Another set of measures tries to remove the so-
called “toxic” assets and park them in vehicles mainly owned by the government and
the Federal Reserve, until their values rebound, one hopes. Most measures attempt
to encourage more consumption and spending.

The evidence discussed above suggests strongly that this approach constitutes a
fundamental error because it misses the crucial point about the cause of the “losses.”
The losses are not just the downturn phase of a business cycle or the liquidity re-
sponse to an unlucky exogenous shock. They express a simple truth that is too
painful to accept for most, that previous gains were not real, but just artificially
inflated values that have bubbled in the financial sphere, without anchor and justi-
fication in the real economy. In the last decade, banks, insurance companies, Wall
Street as well as Main Street – we all have lured ourselves into believing that we
were richer. But this wealth was just the result of a series of self-fulfilling bubbles:
in the USA and in Europe, we had the Internet bubble (1996–2000), the real-estate
bubble (2002–2006), the MBS bubble (2002–2007), an equity bubble (2003–3007),
and a commodity bubble (2004–2008), each bubble alleviating the pain of the previ-
ous bubble or supporting and justifying the next bubble. In a word, the overgrowth
of the “financial economy” compared with that of the real economy is reminiscent of
the fabled frog seized by a jealous desire to equal the ox in size [1].

The painful consequence of this brutal truth is that trying to support the level of
valuation based on these bubbles is tantamount to continue supporting the “perpetual
money machine”, which was the cause of the problem. Worse, it misuses scarce
taxpayer resources, increasing long-term debts and liabilities, which are already at
dangerous levels in many countries.

Encouraging over-spending to solve a crisis due to over-spending is an ill-advised
approach.

There are no silver bullets, but the following concepts should constitute part of a
basis for a pragmatic approach to the crisis.

4.2 Trust! Why It Has Been Lost and How to Regain It

The on-going credit crisis and panic shows that financial price and economic value
are based fundamentally on trust; not on fancy mathematical formulas, not on subtle
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self-consistent efficient economic equilibrium; but on trust in the future, trust in
economic growth, trust in the ability of debtors to face their liabilities, trust in finan-
cial institutions to play their role as multipliers of economic growth, trust that your
money in a bank account can be redeemed at any time you choose. Usually, we take
these facts for granted, as an athlete takes for granted that her heart will continue
to pump blood and oxygen to her muscles. But what if she suffers a sudden heart
attack? What if normal people happen to doubt banks? Then, the implicit processes
of a working economy – all we take for granted – starts to dysfunction and spirals
into a global collapse.

Because of the failed governance, the crisis has accelerated, now in a burst of
such intensity that it has forced coordinated actions among all major governments.
While their present involvement may restore short-term confidence, much more is
needed to address the depth of the problem. At one level, the loss of trust between
financial institutions stems from the asymmetric information on their suddenly es-
calading counter-party risks, making even the most solid bank be perceived as a
potential candidate for default, leading to credit paralysis. This can be addressed by
financial measures and market forces. At a deeper level, people in the street have
lost confidence, by observing a succession of problems, timidly addressed by de-
cision makers proposing ad hoc solutions to extinguish the fire of the day (Bear
Stearns, Fannie, Freddie, AIG, Washington Mutual, Wachovia), with no significant
result and only more deterioration.

Nothing can resist loss of trust, since trust is the very foundation of society and
economy. That people haven’t yet made a run on the banks is not, given today’s
insurance policies against the catastrophes of the past, sufficient indication to the
contrary. In fact, there has been already invisible run on the banks, as electronic and
wire transfers have been accelerating in favor of government-backed Treasury bills.
A significant additional impediment to the restoration of public trust is that the Fed,
Treasury and concerted government actions are perceived as supporting the notion
that “gains are private while losses are socialized.”

Present actions attempt to stabilize the financial sector by making governments,
therefore taxpayers, the lenders and buyers of last resort. But collectively people are
more intelligent than governments and decision makers think. They know that gov-
ernments, in particular in the West, have not saved (counter-cyclically a la Keynes)
during the good years,2 and they thus wisely doubt their prudence during the bad
ones. They suspect that their governments will eventually extract the needed capital
from them. They suspect intuitively that the massive measures taken to support the
financial world will do little to help general economies of the USA, Europe and the
rest of the world.

2 In this respect, note the information from Reuters, Santiago, March 27, 2009, reporting that
Chile’s President Michelle Bachelet unwittingly embarrassed British Prime Minister Gordon
Brown when she said Chile had put aside money during good economic times to help it through the
downturn. “I would say that because of our decision during . . . the good times in copper prices, we
decided to save some of the money for the bad times and I would say that policy today is producing
good results.”
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How to restore trust? This is a long, tedious and fragile process. We suggest
that governing bodies must for once play to the intelligence of the crowd. What
needs to be done is to explain truthfully (is this possible?) the true cause of the
problems: the more than one decade of excesses and the successive and inter-related
bubbles, the fact that the liabilities are enormous and that the budget has in the end
to be balanced, that accelerating borrowing on the future cannot be a sustainable
strategy. As humans, we are more inspired to trust when failures are acknowledged
than when blame is shifted to someone else. This is the core reason why going to
the fundamental source of the problems may be part of the solution in restoring
confidence in the existence of a solution at minimal cost.

Second, the issue of fairness is essential for restoring confidence and support.
There is an absolute need to rebuild that confidence, and this applies also to the reg-
ulators. This requires new strong regulations to deal with conflicts of interest, moral
hazard, and to enforce the basic idea of well-functioning markets in which investors
who took risks to earn profits must also bear the losses. For instance, to fight the ram-
pant moral hazard that fueled the bubbles, share-holders should be given “clawback”
permission, that is, the legal right to recover senior executive bonus and incentive
pay, that proved to be ill-founded. In addition, many of the advisors and actors of the
present drama have vested interest and strong conflict of interests. This particularly
the case in the USA, for the Fed, the Treasury and the major banks acting on behalf
or with the approval of the Treasury. An independent (elected?) body would be one
way to address this problem, ensuring separation of interest and power.

4.3 Short-term: Melting the Cash Flow Freeze

The most immediate issue is to address the cash flow freeze imposed by banks, with
their newfound overly restrictive lending rules, on companies and households. This
cash flow problem bears the seed of a spiraling recession of catastrophic amplitude,
which has no fundamental reason to develop, except as an unwanted consequence
of pro-cyclical feedbacks aggravating a necessary correction that should only be
confined to the financial sphere. Here, the central banks and governments should
show creativity in ensuring that small and medium size companies have access to
monthly liquidity, to allow them to continue producing and hiring. This is the issue
that has been by far the most under-estimated and which requires a fast and vigorous
solution.

In addition to providing lending facilities to banks conditional on serving their
natural multiplier role in the economy, special governmental structures could be cre-
ated with a finite lifetime, with the mandate to provide liquidity to the real economy,
bypassing the reluctant banks. Note that this procedure should not necessarily be
used to bailout some large badly managed companies in some industry sectors,
when in obvious need of restructuring. Crises are often opportunities for restruc-
turing, which provide increased benefits in the future as some cost in the present.
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B. Lietaer has proposed a different approach based on the use of a complemen-
tary currency to help make the network of financial interactions between companies
more robust [45], in analogy with ecological networks which derive their resilience
from the multiple network levels they are built on. As a first candidate for this com-
plementary currency could be a professionally run business-to-business system of
payments on the model of the WIR system,3 which has been successfully opera-
tional for 75 years in Switzerland, involving a quarter of all the businesses in that
country. This system has been credited by J. Stodder as a significant counter-cyclical
stabilizing factor that may contribute to the proverbial stability of the Swiss econ-
omy [66].

4.4 Long-term: Growth Based on Returning to Fundamentals
and Novel Opportunities

Long-term economic stimulation programs are needed on a large scale, probably
a few percent of GDP, with pragmatic adaptive tuning as the crisis unfolds. They
should focus on the fundamentals of wealth growth: infrastructure, education and
entrepreneurship, with the goal of promoting productivity growth and the creation
of new real economic sources of wealth. Many studies demonstrate for instance a
direct impact of machinery equipment on economic growth.

Similarly, by many metrics, the quality of education in the USA and to a lesser
degree in Europe has been degrading in the recent decades. This crisis is an oppor-
tunity to go back to the fundamentals of the roots of long-term sustainable wealth
creation. These stimulation programs offer an opportunity to adapt and develop new
infrastructure which are more energy and pollution efficient, thus promoting the de-
velopment of new industry sectors such as wind energy, electricity storage, nuclear
waste processing and recycling and so on.

Given growing evidence that mankind is facing global challenges for its sus-
tainability on the finite Earth, the financial-rooted crisis offers a chance for using its
associated political capital to make bold choices to steer an environmentally friendly
economic development. Governments are best in their role of risk takers investing in
long-term R&D projects that provide the support for innovations that industry can
build upon to provide increased prosperity in the future.

3 The Swiss Economic Circle (Wirtschaftsring-Genossenschaft or WIR) is an independent com-
plementary currency system in Switzerland that serves small and medium-sized businesses. It
was founded in 1934 by businessmen Werner Zimmermann and Paul Enz as a result of cur-
rency shortages after the stock market crash of 1929 and the great recession. “Its purpose is to
encourage participating members to put their buying power at each other’s disposal and keep it cir-
culating within their ranks, thereby providing members with additional sales volume.” Cited from
Wikipedia.
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4.5 The Financial Sphere, Bubbles and Inflation

One has to accept the need for an abrupt deflation of the financial sphere. And for the
future, mechanisms should be designed to control the over-growth of the financial
economy to ensure better stability. When functioning properly, the financial world
provides many services such as efficient access to funding for firms, governments
and private people. Furthermore, it works as an effective storage of value, which
should reflect the “real economy.” But the extraordinary growth of the component
of wealth associated with the financial world has been artificial and based on multi-
pliers amplifying the virtual fragile components of wealth. Objective measures and
indicators can be developed to quantify the ratio of wealth resulting from finance
compared with the total economy. For instance, when it is assessed that, on average,
about 40% of the income of major US firms result from financial investments, this
is clearly a sign that the US economy is “building castles in the air.” In the academic
literature, this is related to the concept of “financialization”,4 according to which
profit making occurs increasingly through financial channels, and shareholder value
tends to dominate corporate governance.

The way we think of inflation also needs to be re-evaluated. For instance, a house
price appreciation does not just mean that you are more wealthy as a homeowner;
it also implies that you need more dollars or euros to buy one unit of habitation
compared to units of food, vacation or university tuition. From this vantage, it is part
of inflation. While already considered in present measure of the so-called consumer
price index (CPI), its weight and impact need to be re-evaluated. We propose that
real-estate and equity indices should be incorporated as constituents of inflation
metrics, of course with adequate consideration for the hedonic gains.5 A financial
ratio index could be created to follow a broader definition of inflation useful for
central bank monitoring, which includes the growth of total fixed assets, working
capital, excess supply of money and so on.

With such tools, monetary policy with inflation targets will provide natural partial
control over some of the asset bubbles at the origin of the present financial crisis.
Guidelines could be drawn to flag warning signals to central banks and govern-
ments when the ratio of the financial wealth compared with the real economy value
grows above a bracket that could be defined from a consensus among economists
and actions could be taken to moderate the growth of this ratio. These indicators
should be the key targets of modern central banks.

Central banks and governments should step in to support financial institutions,
but only under fair conditions that ensure that stockholders and lower priority debt
holders support the consequences of the losses, avoiding the privatization of gains
and socialization of losses. Different technical mechanisms have been proposed by
financial economists, which serve this goal, safeguarding the interest of the taxpay-
ers on the long term.

4 See http://en.wikipedia.org/wiki/Financialization.
5 Governments use so-called hedonic regression in computing their CPI to take quality changes
into account.

http://en.wikipedia.org/wiki/Financialization
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As a final point on the issue of the size of the financial sphere, the first author is
a happy professor teaching financial economics to a growing corpus of students in a
World-renowned technical university. We are however worried by the growing flood
of civil, mechanical, electrical and other engineers choosing to become “defectors”
and work in finance: Is this another bubble in the making? Finance will not solve
the many problems mentioned above. Creativity and entrepreneurship occurring in
the real economy and the real world need to be better rewarded.

4.6 Recipes for a More Robust and Sustainable World

The present crisis is illustrating the accelerating fragility of society. We believe that
this is just a foreshock of much more serious jolts to come on times scales of just one
or two decades. In this respect, we refer to Johansen and Sornette [35] and Sornette
[59, Chap. 10], in which the analysis of Earth’s human population, its economic
output and global stock market capitalization suggest a transition to a completely
new regime circa 2050, over a time scale of several decades around that date.

However, now is an opportunity to build a more resilient World. Recipes are
known. They involve the need for variety, redundancy, compartments, sparseness
of networks and understanding the consequences of the unavoidable delays and
synchronization of actions. This “robustness” approach is well exemplified by a
conservative investment approach based on (1) understanding the vehicles and firms
in which one invests (which contrasts with the opaqueness of the MBS investments)
and (2) keeping capital even under extraordinarily adverse conditions. This strongly
contrasts with standard financial practices based on estimated likelihoods for meet-
ing obligations and short-term gains. This requires fundamentally new design in
infrastructures and in regulations. The task is complex, but realizing and formulating
it is a major step that should be followed by a vigorous program at the international
level, based on multidisciplinary task forces that are well-funded and empowered
with authority. Leading countries should start at their domestic level to nucleate the
process internationally.

Beyond the immediate concerns, we need to keep in mind the big picture, that
this time is a unique opportunity for change and improvement. The present crisis
should be exploited to start developing a genuine culture of risks, which should be
obligatory training for managers in governments, in regularity bodies, and in finan-
cial institutions. One little discussed reason for the present crisis was indeed the lack
of adequate education of top managers on risks in all its dimensions and implica-
tions. This is also the time that a culture of risk should start permeating the public
at large. In the twenty-first century, “linear” and “equilibrium” thinking should be
replaced by a growing appreciation of the inter-connectivity and feedbacks of the
complex systems we deal with, which creates shocks – with opportunities.
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Global and Local Approaches Describing
Critical Phenomena on the Developing
and Developed Financial Markets

Dariusz Grech

Abstract We define and confront global and local methods to analyze the financial
crash-like events on the financial markets from the critical phenomena point of view.
These methods are based respectively on the analysis of log-periodicity and on the
local fractal properties of financial time series in the vicinity of phase transitions
(crashes). The log-periodicity analysis is made in a daily time horizon, for the whole
history (1991–2008) of Warsaw Stock Exchange Index (WIG) connected with the
largest developing financial market in Europe. We find that crash-like events on
the Polish financial market are described better by the log-divergent price model
decorated with log-periodic behavior than by the power-law-divergent price model
usually discussed in log-periodic scenarios for developed markets. Predictions com-
ing from log-periodicity scenario are verified for all main crashes that took place
in WIG history. It is argued that crash predictions within log-periodicity model
strongly depend on the amount of data taken to make a fit and therefore are likely
to contain huge inaccuracies. Next, this global analysis is confronted with the local
fractal description. To do so, we provide calculation of the so-called local (time de-
pendent) Hurst exponent Hloc for the WIG time series and for main US stock market
indices like DJIA and S&P 500. We point out dependence between the behavior of
the local fractal properties of financial time series and the crashes appearance on the
financial markets. We conclude that local fractal method seems to work better than
the global approach – both for developing and developed markets. The very recent
situation on the market, particularly related to the Fed intervention in September
2007 and the situation immediately afterwards is also analyzed within fractal ap-
proach. It is shown in this context how the financial market evolves through different
phases of fractional Brownian motion. Finally, the current situation on American
market is analyzed in fractal language. This is to show how far we still are from the
end of recession and from the beginning of a new boom on US financial market or
on other world leading stocks.
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1 Introduction

One believes that the analogy of the financial market with complex dynamical
systems could be a very fruitful idea in description of various financial events in-
cluding crashes (see, e.g. [1–17]). The similarity between financial crashes and
phase transitions in complex systems has a long history. This idea, mentioned by
Mandelbrot already in [1], was further developed more than a decade ago [2, 3].
Since then many authors have been analyzing crashes in financial world with the
use of phase transition language. The main aim of this article is to present, review
and discuss in some details two main philosophies developed so far to apply com-
plexity in finance.

The first approach we call the global one. Its aim is to observe well defined,
repeatable structure in financial time series before the phase transition point occurs.
This point will be denoted on time axis as tc (the crash point). Complexity may help
to find some candidate functions to fit this repeatable structure. If p.t/ is the price
of a given stock (or the market index value) at time t and � D tc � t is the time left
to the crash (tc > t), one expects that p.t/ should explode at tc according to known
complexity law

dp.�/

d�
� ��˛ (1)

with some positive, real exponent ˛.
The above equation is not the only one we may consider,1 but it is the simplest

one describing the price evolution at large time scales. It has two qualitatively dif-
ferent solutions. If ˛ ¤ 1 one arrives with the power-law divergent solution

p.t/ D A � B.tc � t/m; B > 0 (2)

with four free parameters (A; B; tc ; m � 1 � ˛). This approach was originally in-
troduced in finance by Sornette et al. [2, 9].

Another point of view is presented by Vandewalle et al. in [10]. The latter paper
suggests to take the particular value ˛ D 1 what leads to log-divergent solution
of (1)

p.t/ D A � B ln.tc � t/; B > 0 (3)

instead of power-law divergent solution shown in (2).
The latter approach was shown to be very successful in determination of crash

point in October 1987 and October 1997 on US market [11]. The same authors
proposed also in [10] to apply the log-divergent fit not to the pure p.t/ signal itself
but to the exponentially detrendedep.t/ signal, where:

ep.t/ D p.t/ � D exp.rt/: (4)

They considered the background signal Cbg D D exp.rt/ subtracted from p.t/ as
the “natural evolution” of the stock market out of any euphoric phenomena. Such

1 Sornette proposed recently faster than exponential, bubble-like growth of price, replacing the
RHS of (1) by pd , d > 0.
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subtraction is a classical step used in phase transitions if one searches for critical
exponents of the unbiased complex system. In the case of economic index, Cbg has
the meaning of long-lasting natural increasing trend with a rate r � 1 per annum.

Once one approaches the critical time (t ! tc), the short scale behavior of
complex systems close to the phase transition point should be revealed. It makes
the formulae in (2) or in (3) a bit more complicated. The relative change of price

p.�/=p.�/, according to critical system behavior, should be independent on the
chosen time scale. Thus


p.�/

p.�/
D Ref

�

�

�

�
; (5)

where the function f is an arbitrary (also complex in general) function of 
�=� (in
the case of complex function one takes its real part as it is shown on RHS of (5)).

Expanding the RHS of (5) into Taylor power series in 
�=� and leaving only
leading linear term, we arrive with


p.�/

p.�/
D .m C i!/


�

�
; (6)

where m; ! are real constants.
The solution of (6) leads to so called generalized power-law:

p.�/ �
�

�

�0

�m

cos

	
! ln

�
�

�0

�
C '



(7)

with some constants �0 and '.
The full price evolution comes then as a long-time scale behavior decorated with

short-time scale solutions, i.e. we get the form of power-law terms decorated with
so called log-periodic oscillations:

p.t/ D A � B.tc � t/mŒ1 C C cos.! ln.tc � t/ C '	 (8)

or the form of log-divergent terms decorated with log-periodic oscillations:

p.t/ D A � B ln.tc � t/Œ1 C C cos.! ln.tc � t/ C '	: (9)

It is straightforward to show that the subsequent moments tn .n D 1; 2; 3; : : :/ when
the signal is in the same phase, satisfies the following relation

tn�1 � tn

tn � tnC1

D �; (10)

where � is some constant. Thus, the period of the signal is not constant any longer
and it decreases geometrically with time.

An alternative explanation for log-periodicity in financial time series may come
out also from the so called discrete scale invariance (DSI) [18] observed for
some complex systems. Let ˚.t/ is an observable near a critical point tc . Under
the change of time scale t ! �t , one expects the power-law behavior
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˚.�t/ D �m˚.t/: (11)

However, in the case of DSI, it happens only for infinite but countable set of �0s.
Such condition can be justified for the general solution of (11) written as

˚.t/ D tmP

�
ln.t/

ln.��/

�
; (12)

where P is an arbitrary periodic function and �� is the parameter characteristic for
the system. Indeed, one gets (11) satisfied under the time rescaling transformation
t ! �t only if

P

�
ln.�t/

ln.��/

�
� P

�
ln.�/

ln.��/
C ln.t/

ln.��/

�
D P

�
ln.t/

ln.��/

�
(13)

what requires � D k 
 �� with k D 1; 2; : : : and P of period 1. The solution given
by (7) is then obtained directly as a first order Fourier expansion of RHS of (12)
with ! D 2�= ln.�/.

There is a number of papers suggesting that �� parameter should be unique for all
complex financial systems. There are empirical arguments that for well established
and grown financial markets there exists the preferential scaling �� � 2 [15,17,19].
It should apply both to the leading pattern in the signal (called a bubble) as well
as to the related substructures (called sub-bubbles) the main pattern is decorated
with due to the fractal nature of the signal. Moreover, the scenario of (12) enables
to generalize periodicity replacing cosine by other simple periodic functions, e.g.
cosine modulus, saw-like functions, etc. They sometimes give better description of
oscillations departure from the average trend [15].

Other mechanistic founded global approaches to periodicity in finances have also
been developed. It is especially worth to mention, e.g., those based on the analogy
with viscoelastic materials properties [20]. The periodic evolution of a stock in-
dex before and immediately after the crash is described within this approach by
Mittag-Leffler generalized exponential function superposed with various types of
oscillations.

The global approach seems to be interesting and encouraging. The main difficulty
in its application lies in the fractal structure of financial time series. Due to this
fractal nature we never know if oscillations or even the leading shape of the price
index described theoretically by (8) and (9) are connected with the main bubble (i.e.
the structure of time series being formed from the beginning of increasing trend till
the crash point tc) or with some mini-bubbles appearing as second order or higher
order corrections to these equations. Usually, it is difficult to separate data connected
with the main bubble and its mini-bubble corrections before an extreme event (crash)
happens. Such distinction becomes explicitly clear only after the event already had
happened.

The other philosophy of complex phenomena applied to finances is therefore
to study the local scaling properties of financial time series in order to distinguish
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whether the involved stochastic process can be long-memory correlated or not.
Several techniques have been proposed in literature to attack this problem. Their
common aim is to calculate the Hurst exponent H [21,22] of the system. It is known
that for long-memory correlated process called fractional Brownian motion (fBM),
the value of H exponent ranges from 0 < H < 1=2 for negative persistence (neg-
atively autocorrelated signal) to 1=2 < H < 1 for positive persistence (positively
autocorrelated signal). The particular case H D 1=2 corresponds to the signal with
fully uncorrelated increments called integer Brownian motion or shortly Brownian
motion.

The Hurst exponent is related to the fractal dimension Df of one dimensional
time series by the well-known relation Df D 2 � H , so the search for H is equiva-
lent to the search for fractal properties of time series. There are various techniques
to calculate H exponent for the given time series. Let us mention the Rescaled
Range Analysis (R/S) [21], Detrended Fluctuation Analysis (DFA) [23], Detrended
Moving Average Analysis (DMA) [24, 25] or the power spectrum analysis [26].
The accurate and fast algorithm enabling to extract H from the given time series
is served by DFA, applied in the following chapters of this article. DFA is very
well described in the literature (see, e.g. [27–31]) with detailed discussion of vari-
ous effects on DFA results like the effects of trends [31], non-stationarities [32], or
nonlinear filters [33]. So far, the technique was widely applied to various topics –
from DNA structures [23, 34], through stellar X-ray binary systems [35], up to fi-
nances [27,36–40]. Briefly, the method contains the following steps: (1) time series
of length N is divided into non-overlapping boxes of length � each, (2) in each box
the linear trend (found within this box) is subtracted from the signal, (3) in each box
the root-mean-square fluctuation F 2.�/ of the detrended signal is calculated and
then F 2.�/ is averaged over all boxes of size � , (4) the procedure is repeated for all
box sizes � (1 < � < N ).

The edge part of time series is usually not covered by any box. We propose to
overcome this difficulty as follows. If the remaining part of time series has the length
�=2 � 
L < � , we cover it by an additional box of size � partly overlapping the
preceding data. If 
L < �=2, we do not take the part of data contained in 
L into
account. Such recipe is particularly useful in the “local” version of DFA described
later on in this chapter.

The power-law relation

F.�/ � �H (14)

is expected from DFA, where H stands for the Hurst exponent. The maximal scale
�? for which the scaling holds, indicates the length (time-scale) of correlation in the
system or the scaling range.

It turns out that the “local” version of DFA is very promising. It has been applied
for the first time in financial crash analysis in [16]. The “local” DFA is nothing else
but DFA applied to small subseries of a given set of data. We expect positive au-
tocorrelations in time series if financial system relaxes (i.e., just after the critical
moment tc). Thus H.t/ should reach then the value H > 1=2 corresponding to the
persistent signal. It means however, that for some time before the crash (t < tc)
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the system is antipersistent in order to reproduce the observed mean Hurst exponent
value hH i � 1=2 for large time limit. Therefore, H.t/ called also the “local” Hurst
exponent Hloc, fluctuates between H < 1=2 and H > 1=2 revealing some struc-
ture. This structure should be well recognized and compared with real events on
the financial market, with hope to make possible predictions just from its form. The
alternative explanation for such fluctuation of H and for its drop before a crash is
based on market psychology. As far as the financial market approaches closer and
closer the crash regime, investors become more nervous and sceptic about index
or price rise in forthcoming sessions. Therefore, the stock index starts to fluctuate
more and more around its mean drift. Such fluctuations can be translated quantita-
tively as substantial decrement of “local” H value. Financial time series becomes
more “jagged”.

The time evolution of Hloc is shown in a case of WIG signal in its 1991–2007
history at the bottom part of Fig. 1. The local H exponent calculated for part of the
Dow Jones (DJIA) index is shown in Fig. 2. The latter figure shows also how the
Hloc evolution changes for various length of time subseries (time-window lengths)
the Hurst exponent is calculated for. In particular, the effect of trends in Hloc starts
to be seen if it is calculated over small enough time-window (around 210 trading
days). Once the time window length is bigger, only statistical fluctuations in Hloc
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local Hurst exponent evolution (bottom). The time-dependent Hurst exponent has been calculated
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(marked as dots) calculated for one trading month back (21 sessions). Three main crash periods
discussed in the main text are marked within the vertical lines (a), (b), (c), and correspond to the
crashes or rupture point described in Table 1. (Taken from [41])



Approaches to Critical Phenomena on Financial Markets 155

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5000 5050 5100 5150 5200 5250 5300 5350 5400

February 1913 trading days  
1914

June

H
lo

c

10

20

30

40

50

60

70

80

90

D
JI

A
 In

d
ex

L  = 210

L = 350

L= 420

DJIA

Fig. 2 An example of time dependent Hloc evolution for three choices of time-window length
N D 210, 350, 420 calculated for DJIA signal in the period: Feb. 1913 – June 1914. Hloc values
are artificially multiplied by 2 and then displaced along the vertical axis with a shift 0:5, 1:5, 3:0

respectively to make the differences in Hloc evolution in different time windows more noticeable.
DJIA index values are also shown on the top. (Taken from [16])

signal are visible. We may expect that advantage in using Hloc over other methods
is that it actually measures the temporal fluctuations on the market. Therefore, the
local method seems to be more precise or at least more adequate to apply in open
complex systems with rapidly changing boundary conditions. It is just a case of
financial market.

The Hloc values are usually widely spread out so one needs to use some kind
of data filter to extract information from these values and to eliminate statistical
fluctuations. The easiest choice for such a filter is the moving average. We applied in
this article the moving average hH i5 of last five sessions (one trading week) and the
moving average hH i21 of last 21 sessions (one trading month) to limit the possible
statistical noise. It turns out that although fluctuations in Hloc do depend on the time-
window length N for which DFA is applied, the main pattern of Hloc containing its
time evolution trends, does not depend on N [42]. The optimum choice of N seems
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to be a matter of intuition, statistics and (or) economic regards. If N is too large
Hloc loses its “local” character, if N is too small we deal with not sufficient statistics
causing huge fluctuations in Hloc values what makes Hloc data hardly readable. For
such reasons we suggested in [16] to take N < 240, i.e. the time-window length less
than one trading year. The good choice for N was suggested in [16] to be around
10 trading months (215 daily sessions). This warranties the statistical uncertainty in
Hloc below 10% and at least 15–20 different box sizes � within the scaling range
(see [42]). For smaller N we are stuck with bigger statistical uncertainty in Hloc

values, mainly because of insufficient (�10) number of points in the scaling range
of (14) used to make a regression fit.

The Polish market represented by the full WIG index accommodating around 300

companies is a good example of large but still emerging European stock market.
The criticality based methods described above have not been compared so far for
such emerging markets. On the other hand, we would like to know if local, fractal
approach based on the calculation of Hloc values may give us a signal of forthcoming
extreme events in finance. The latter question should be asked for developed as well
as for developing markets. The following chapters of this article deal with the above
problems and review main findings published in literature so far.

2 Log-Periodicity of Developing Markets: The Case
of WIG Index

The most interesting extreme financial events on the Polish stock market are shown
between the vertical lines in Fig. 1 (top part) and are also described in more details
in Table 1. Some of them are real crashes, while others, like the event of July 1998,
terminate the long-lasting increasing trend on the market. The events of the latter
kind are sometimes called rupture points. They are also interesting for practical
purposes for obvious reasons.

We shall pay attention at one big crash in March 1994 and several minor crashes
that had taken place in the WIG history (1991–2007): in July 1998 and May 2006.
The reverse of long-lasting increasing trend on the stock market in July 2007 will
also be analyzed.

Table 1 The main crashes on the Polish financial
market. The total percentage drop in WIG and its du-
ration time is shown as well as the percentage drop in
the first three sessions after the critical point tc . All
dates indicate the beginning of a trend reverse event

Date
Initial 3 sessions
drop

Total relative drop
(duration time)

17.03.94 11% 65% (41 sessions)
22.07.98 4% 39% (30 sessions)
12.05.06 5% 21% (24 sessions)
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Let us examine first the log-periodicity indicated by (8) and (9). We have pre-
formed fits according to [12], using initially only the power-law (2) or log-divergent
(3) functions and thus establishing A; B; tc ; m parameters. These parameters were
used in the next step to fit other ones included in log-periodic oscillations ((8), (9)).
The nonlinear fit performed as the minimization of the variance of the signal with
respect to the assumed log-periodic function was also done, as suggested in [2]. The
latter one allows to express A; B; C as a function of other parameters, so the number
of free fitting parameters drops twice. The fit was done for the signal containing at
least �95% of the data points before any of the crashes (rupture points). Two men-
tioned fitting methods have shown agreement in results of the fit. The difference
between two methods in fitted critical time tc can be found as 
tc � 5 trading days.

One may consider exponentially detrended signal according to (4) recipe as well
as the pure not detrended WIG signal. Below are the results of our findings.

The first discovery was that the exponentially detrended signal (see (4)) does not
work at all for developing stocks. One gets for the 1994 crash the log-divergent
and power-law fits with goodness only R2 � 0:5. The fit is much better (R2 �
0:9 � 0:95) if the pure (not detrended) signal is considered. The same happens for
the May 2006 rupture point.

The 1994 crash turns out to be very well predicted by the critical phenomena
approach – equally well by power-law shaped signal (8) with the critical exponent
m � 0:08 and by log-divergent solution (9) (see Fig. 3 and Table 2). Contrary,
the second crash in July 1998 has not been detected at all by log-periodicity phase
transition methods. This probably should not be very surprising. In fact, the 1998
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Table 2 Log-periodic oscillation fit to data preceding major crash-like events on the Polish stock
market with assumed power-law divergent and logarithm divergent prices. Dates for all events are
scaled in sessions numbers (trading days), tc is the predicted and t real

c is the real date of event.
Scaling factor � for all crash-like events is also pointed out

Power-law div. fit Log. div. fit

Beginning of event t real
c tc t real

c � tc tc t real
c � tc �

March 17, 1994 322 321 ˙ 2 1 ˙ 2 323 ˙ 2 �1 ˙ 2 2.08
July 22, 1998 1,362 Not detected Not detected Not detected Not detected Not detected
May 12, 2006 3,320 3,278 ˙ 1 42 ˙ 1 3,272 ˙ 3 48 ˙ 3 1.53

without 1st event 3,379 ˙ 5 �59 ˙ 5 3,331 ˙ 2 �11 ˙ 2 1.23

drop in WIG was rather a long-lasting decreasing trend what can be interpreted as
the relaxation of the system without going through the phase transition state itself.

The third (mini) crash of May 2006 is predicted to happen (see Table 2) two
trading months before the actual event took place if the log-periodic pattern was
fitted to all available data including the first crash. Once we have made a fit only
to data after the first crash relaxation period, i.e. since February 2005, the predicted
phase transition moment tc was behind the actual event (see data in Table 2). More
precise determination of tc is offered in this case by the log-divergent fit (2 trading
weeks difference between predicted and actual event) than by power-law fit (see
the last row in Table 2). The power law fit leads to almost 60 trading days error.
The goodness of fit was found better for m D 0, what additionally favors the log-
divergent fit over the power-law one. This conclusion agrees with the statement of
[11] for developed stock markets.

It is also interesting to calculate the scaling factor � in order to see whether it
is unique as for developed markets. The calculated � varies between 1:2 and 2:1

what does not support the idea of its universality on the Polish stock market. This
also indicates that the same common scenario of log-periodic oscillation for already
developed and yet developing stock markets is a very rough approximation. An
analysis of far-east emerging markets leads to similar conclusions (see, e.g [43]).

Finally, we may look at the last main rupture point in WIG index that took place
on July 6, 2007. The log-periodic fit to this bubble is shown in Fig. 4. The best
result is served by log-divergent curve (see Fig. 4 and Table 3) predicting very pre-
cisely the date of extreme event. However, the fitting results were found to be very
sensitive to the number of data (the final input data length) one takes into account
(see Fig. 5). The similar event was predicted to happen earlier when smaller num-
ber of data was available. The predicted transition point tc tends to increase with
the number of input data and has no clear stability region, so this prediction seems
to be rather accidental. The further analysis is here more than welcome – also for
more developed financial systems than the Polish developing stock exchange mar-
ket. Therefore, one may conclude that minor crashes on the Polish market, contrary
to big events (only one such event took place so far, i.e. March 1994 crash), are
not very precisely predicted by the critical phenomena description based on the
log-periodicity assumption. It is interesting to check how much other methods like,
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Table 3 Log-periodic fit to the recent major rupture point in WIG data. Shown are results of
analysis including first crash data (i.e. from the beginning of WIG quotations) and without first
crash data (i.e. when analysis starts in Feb. 1995 after relaxation of the system connected with the
first crash). Power-law-divergent (8) and log-divergent (9) cases are studied

Without 1st crash With 1st crash
Data analysed till Power-law div. fit Log. div. fit Power-law div. fit Log. div. fit

3,575 (May 19, 2007) 3,741 ˙ 28 3,579 ˙ 2 3,580 ˙ 3 3,580 ˙ 4

3,600 (June 28, 2007) 3,700 ˙ 10 3,609 ˙ 3 3,659 ˙ 11 3,620 ˙ 2
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data analyzed after the first crash relaxation of the system, i.e. from Feb. 1995 till tf . (Taken from
[41])
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e.g. the one based on Mittag-Leffler generalized exponent function decorated with
periodicity, proposed in [20], are sensitive to the number of data a fit is made to.
However, it is beyond the scope of this article.

3 Local Fractal Properties of Financial Time Series
in the Vicinity of Crashes and Rupture Points

Let us proceed now to analyze extreme events on the stock market, looking at the
local fractal properties of financial time series. All the events considered in the pre-
ceding chapter for Polish WIG index as well as main crashes on US market in its
whole history will be investigated now looking at Hloc evolution properties around
the critical point tc .

Let us first focus our attention on the most important events in US market history.
These are crashes in September 1929, October 1987, July 1998 and the termination
of long-term prosperity in September 2001.

Let us start with the 1929 crash shown in details with its local fractal character-
istic in Fig. 6. The DJIA signal was in clear increasing mode for about 4 months –
from session ]9760 up to ]9840. Simultaneously, a very clear decreasing trend in
Hloc values is visible. It had started about 1 month before the DJIA index reached
its maximal value on September 3, 1929. The Hloc reached a deep and clearly seen
local minimum Hloc � 0:45 two weeks before the crash.

To see if it was a chance we may check other crashes in US. The fractal scenar-
ios of crashes in 1987 and 1998 are shown in Figs. 7 and 8, respectively. The 1987
crash reveals also clear decreasing trend in Hloc for the 1-year period preceding the
crash moment (see Fig. 7), despite DJIA signal was still rising at that time. These
two contradicting trends seem to indicate that investors were gradually more sceptic
about the market future, despite the market index was rising. The Hloc gains again
deep minimum Hloc ' 0:43 just before the October crash. The percentage drop be-
tween maximal and minimal Hloc value in decreasing trend was about the same as
for 1929 crash.

The same phenomena occurs for 1998 crash illustrated with its fractal evolu-
tion in Fig. 8. The market was much more “nervous” at that time what is reflected
by more jagged index plot and smaller Hloc values forming decreasing trend. Hloc

reaches its deep minimum Hloc � 0:35 � 0:4 in the half of 1998. The crash actually
occurred on July 17, 1998.

Finally, the total display of the period 1995–2003 for DJIA signal history with
corresponding evolution of Hloc values is shown in Fig. 9. Some important events are
marked here like: the beginning of 1998 crash (July 17, 1998), the end of the longest
economic boom in US history after 107 months of stock market expansion (January
14, 2000), or the terrorist attack in New York (September 11, 2001). The decreasing
trend in Hloc exponents is being observed from January 2000 till September 10,
2001 – just one day before terrorist attack. The local Hurst exponent gets values as
low as Hloc � 0:4 just before this attack with average values around 0.45. If one
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believes that previous findings were not accidental then we should state that the
huge drop in DJIA signal on September 11, 2001 would have occurred, even if the
terrorist attack did not take place!

It is interesting to see if the characteristic pattern of Hloc evolution before a
crash will be repeated for developing markets. We did this task for WIG signal
[41,42] analyzing crashes investigated in the previous chapter with log-periodic sce-
nario. The zoomed evolution of time dependent Hloc.t/ for these crashes is shown
in Figs. 10–13, respectively. The decreasing trend of Hloc before the critical point
tc is also evident from these plots. It lasts for many sessions before the extreme
event occurs. One may summarize the common characteristic pattern of Hloc plots
before the crash moment in the form of the following necessary conditions to be
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simultaneously satisfied (signal to sell) if the rupture point in the increasing index
signal is expected soon, i.e. usually within one to two trading weeks [42]:

1. Hloc.t/ is in decreasing trend (hence hHloci5 < hHloci21 except for small
fluctuations).

2. hHloci21 . 0:5.
3. hHloci5 . 0:45.
4. Minima of Hloc.t/ (for not necessary consecutive sessions) satisfy

H min
loc .t/ . 0:4.

Contrary, we expect the strong signal to buy on the market if all the above conditions
are not satisfied.
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One may obviously ask if the characteristic pattern in Hloc is truly related to
autocorrelations in marked signal. This can be done by random shuffling the log-
arithmic returns ri D ln.Pi =Pi�1/ where Pi is the index value in the end of i -th
session. We did the shuffling of the return signal for all crashes discussed in this
article for US and Polish markets. The time dependent Hurst exponent did not reveal
its previous structure after shuffling. An example is seen in Fig. 14 for March 1994
crash in WIG. The similar results were obtained also for German DAX index in
[44]. It is worth to stress that July 1998 crash, previously not seen by log-periodicity,
could have been detected by well developed Hloc crash structure described above.
This Hloc crash pattern was visible as early as one week before the event took place
(see Fig. 11).
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Finally, let us notice that the main rupture point of increasing trend of WIG signal
in July 2007 had also Hloc pattern indicating the extreme event is coming. However,
the decreasing trend in Hloc did not terminate on July 6, 2007 (see Fig. 13). In other
words the relaxation of the system did not started yet and one could have expected
the major crash is still ahead. We predicted in [42] that it should happen no later
than mid-September 2007 if the Hloc was still in decreasing mode with the same
dropping rate.

The reason for such statement was that hHloc.t/i average was calculated to reach
�0.4 value at that time (see Fig. 8 in [42]). What happened next is an interesting
problem to be discussed within local fractal approach, because for the first time one
could notice how exterior influence on the market is seen from the fractal point of
view. It is the subject of next chapter.
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4 Exterior Interventions and the Current Situation Seen
in Fractal Analysis of Stock Indices

The crash pattern conditions (1)–(4) for WIG signal were indeed fully formed in the
first trading week of September 2007 as seen in Fig. 13. This should have caused the
crash formation no later than within two trading weeks. However, the first signatures
of difficulties with US economy and dangerous situation at that time on US mort-
gage credits market forced the intervention of the US Federal Reserve central bank
(Fed). Fed decreased significantly the credit rate levels and pushed therefore the
US stock exchange up. Other leading world financial markets obviously followed
this trend. This intervention is a good example of exterior influence on the financial
complex dynamical system. We will see in this chapter how this influence is visible
in the case of WIG, DJIA and S&P 500 behavior and in their fractal structures.

If the intervention did not take place, the crash in WIG signal should have started
in our opinion [42] no later than in the third trading week of September 2007, i.e.
about two weeks from the moment the described above crash pattern was formed.
We observe (Fig. 13) that the Hloc exponent changed its trend immediately after
Fed intervention from decreasing to horizontal one. Looking at the particular values
of the local Hurst exponent one recognizes that Fed intervention led market into
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Brownian-like integer motion with 0:45 � H � 0:55. This kind of Brownian
evolution was continuing for about 6 trading weeks (Sept. 18 – Oct. 30, 2007). How-
ever, the external action did not prevent the crash-like event. It postponed only the
major rupture point in time. Indeed, the main rupture point took place on Oct. 30,
2007 instead of �Sept. 20, 2007 suggested by Hloc pattern. The financial market
started then to relax what can be confirmed just by looking at the increasing post-
intervention trend of Hloc. It is likely the first observation of changes in local fractal
properties of financial stock time series caused by the external influence on the com-
plex financial system.

Notice that even if stock market is in decreasing trend (bearish period), an appear-
ance of strong consecutive minima in Hloc pattern indicate moments when positive
corrections in market index values terminate. In the case of WIG signal it happened
twice after Fed intervention: on Oct. 30, 2007 and on Jan. 2, 2008. These phenomena
are marked as vertical thin lines in Fig. 13. Both corrections were followed by the
substantial drop of WIG index (14% and 20% respectively) in three trading weeks
after each rupture point and were linked to Hloc � 0:4.

One observes also that minima of Hloc in bearish period seem to be slightly
higher than in bullish period (compare with previous figures). Thus the condition
(4) virtually works even in the bearish phase, and may help to predict the interior
structure (rupture points) during relaxation of the system.

It is interesting to see the hypothetical simulated evolution of the WIG index if
the Fed intervention in September 2007 did not take place, by simple cut-off the
data corresponding to Brownian motion phase in WIG signal (i.e. between Sept. 18,
2007 and Oct. 30 2007). Indeed, the Hloc pattern can be calculated (see Fig. 15)
for such simulated signal, and compared with the one previously found for the real
WIG evolution (Fig. 13). We see that the system relaxes now immediately. The Hloc

pattern does not reveal the Brownian motion intermediate phase and Hloc enters the
increasing trend with Hloc > 0:5 just after Sept. 18, 2007 what can be translated
as the beginning of the relaxation phase on the market. Such immediate relaxation
after crash was also very significant for other typical crashes in WIG history (see
Figs. 10, 12).

The similar phenomenon can be found for developed stocks. Let us look at DJIA
and S&P 500 behavior and corresponding fractal structure of these indices during
and just after the Fed intervention. This is shown in Figs. 16, 17, respectively. The
moment of Fed intervention stops for several months the decreasing trend in Hloc

(up to May 2008). However, both markets are still in antipersistent mode after inter-
vention (hHloci5;21 are below 0.5), contrary to Brownian motion revealed by WIG.
Simultaneously, DJIA index seemed to be closer to Brownian motion generated dy-
namics (Hurst values were closer to 0:5) than S&P 500 index. The latter one revealed
some antipersistency at the same time (Hurst exponents closer to 0:45).

Finally, we may consider how far markets are still from the end of recession.
One possible view at this question is to consider the actual fractal structure of
leading financial time series in the world – e.g. DJIA or S&P 500 indices. The
long-lasting increasing trend on stocks corresponds to long-range memory (persis-
tence) of financial time series. Thus Hloc > 0:5 is expected for the established
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Fig. 17 The same as in Fig. 16 but for S&P 500 index

bullish phase on stocks. Looking at actual Hloc values for DJIA and S&P 500 indices
in Figs. 16, 17, based on data taken up to June 2009, one observes, however, that
local Hurst exponents are on the average still below 0:4 indicating antipersistence.
A time-distance 
T when Hloc should pass to �0:5 region is then quite significant.
It can be roughly estimated as


T � 1=2 � hHloci21

�
(15)

where � is the average (15) increasing rate of hH.t/loci21 in last few months and
hH.t/loci21 is the actual value of monthly moving average for Hloc. Substituting
actual data at the moment this article is being written (August 2009), one estimates
the beginning of boom at least 10 months ahead, i.e. late spring 2010, of course
under condition that the average increasing rate of � remains unchanged.

5 Conclusions

Concluding, we state that with the use of local Hurst exponent one is able to identify
various phases of financial market evolution in the language of complex system phe-
nomena. We can generalize these pattern into repeatable scheme revealing the major
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forthcoming events, particularly interesting for investors like, e.g. crashes, rupture
points, beginning of bullish periods, etc. It seems there exists a rather straightfor-
ward connection between the Hloc pattern and phase transitions (crashes or rupture
points) on the market. This connection is caused by the intrinsic organization of the
complex system. The presented scheme works equally well for the developed and
for the developing markets. Recently, an interest in application of local H values to
establish actual trends on financial markets is more and more encouraging [45–47].

Contrary, the log-periodicity does not work so well for emerging markets.
Especially, it cannot be used as the well confirmed phase transition indicator for
the young stock markets in the same way as for the old ones. It suffers also from
the problem of dependence on the number of data one takes backward in time into
account. Further research is more than welcome in this subject, particularly related
to, e.g. multi-fractal and multi-scaling properties of financial time series in the
vicinity of crash points.
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Root Causes of the Housing Bubble

Taisei Kaizoji

Abstract In this chapter we investigate root causes of the recent US housing bubble
which has been caused a serious downturn in US economic growth since autumn of
2008. We propose a simple model of housing markets in order to indicate the possi-
ble determinants of recent housing prices. Utilizing the model, we verify a number
of hypotheses which have been proposed in the recent literature on the housing bub-
bles. We suggest that the main causes of the housing bubble from 2000 to 2006
are (1) non-elastic housing supply in the metropolitan areas, and (2) declines in the
mortgage loan rate and the housing premium by the massive mortgage credit ex-
pansion. We also suggest that these factors were strongly influenced by policies that
governments and the Federal Reserve Board performed.

1 Introduction

The principal cause of the current financial and economic crises is the housing
bubble. The housing bubble in USA was the biggest financial bubble in the recent
history in USA. The unprecedented US housing bubble began to inflate in the first
quarter of 1998 and continued till the second quarter of 2006. Then the housing
prices began falling, and as of July 2009 the housing price still has been falling. The
housing market meltdown was triggered by a dramatic rise in mortgage delinquen-
cies and foreclosures for subprime residential mortgage loans.

Figure 1 shows the nominal housing price index and the real housing price index
which is adjusted for inflation from 1890 to 2009. From 1998 to a peak in 2006, the
nominal housing price index increased by 130% and the inflation adjusted housing
prices index increased by 80%. The growth rate of the nominal housing price index
had averaged 2.9% between 1890 and 1997, and averaged 9.3% between 1998 and
2007. The real housing price index increased by an average of 6.8% a year from
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Fig. 1 The US housing price index (data was provided by Shiller [15] as updated by the author)

1997 to 2006 while the index increased by an average of 0.086% a year from 1890
to 1997. The nominal housing price index decline by 4.2% from the first quarter of
2007 to the first quarter of 2009 while the real housing price declines by 4.9% per a
quarter for the same period.

The housing bubble had an immeasurable negative impact on the US economy
because they caused misallocation of resources, and furthermore, the housing mar-
ket crash destroyed a large amount of wealth. What is most important things that we
learned in order to prevent the disaster? This chapter investigate the reasons why the
housing bubble was caused through verifying hypotheses which have been proposed
in the recent literature on the housing bubbles. To give a theoretical background of
the determinants of housing prices, we propose a simple model of housing markets
which is based on the classical economics.

2 A Simple Model of Housing Markets

In this session we propose a simple of housing markets and derive a theoretical
housing price. We formalize the price-to-rent ratio in the framework of the house-
hold’s utility maximization. We assume that the household makes a optimal decision
regarding consumption of goods and housing services for the present. The utility of
the household who owns a house is given by the following form:

U H
�
cH ; sH

�
D ˛ log cH C ˇ log sH ; (1)
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where ˛ and ˇ are the parameters which express the household of preference. The
household’s budget constraint is

cH C QpsH D yH : (2)

cH denotes a homeowner’s consumption, sH his demand for housing, and yH his
real disposable income. Qp denotes the user cost of home ownership, known in the
housing literature as the imputed rent (see [8, 12, 13]). It is defined as follows:

Qp D p.i C � C f � �/; (3)

where:

(i) i is the after-tax nominal interest rate.
(ii) � is the property tax rate on owner-occupied houses.
(iii) f is the recurring holding costs.
(iv) � is the expected capital gain (or loss).
(v) p is the house price.

i is the cost of foregone interest that the homeowner could have earned on an al-
ternative investment. f consists of depreciation, maintenance and the risk premium
on residential property.

Hence, the household’s utility maximization problem is formulated as

max U
�
cH ; sH

�
;

s:t: cH C QpsH D yH :

The problem is solved by forming the Lagrangian

L
�
cH ; sH ; �

�
D U

�
cH ; sH

�
C �

h
yH � cH � QpsH

i
: (4)

The first-order conditions to find the critical points of the Lagrangian function are

@L

@cH
D ˛

cH
� � D 0;

@L

@sH
D ˇ

sH
� � D 0;

@L

@�
D yH � cH � QpsH D 0:

Consumption c and the demand for housing services s are obtained as

cH D ˛yH ; sH D ˇ
yH

Qp : (5)



176 T. Kaizoji

Secondly, let us consider the utility maximization problem of the household who
rents a house. We assume that the household, who rents a house, has the same utility
function as that of the household who owns a house.

U R
�
cH ; sH

�
D ˛ log cR C ˇ log sR: (6)

The renter’s budget constraint is

cR C wsR D yR: (7)

Solving the first-order conditions, consumption cR and the demand for housing ser-
vices sR by the household who rents a house are obtained as

cR D ˛yR; sR D ˇ
yR

w
: (8)

cR denotes a renter’s consumption, sR his demand for housing, and yR his real
disposable income. Aggregate demand for purchasing houses is

n1X

iD1

sH
i D ˇyH

Qp n1; (9)

where n1 denotes the number of households who own a house. The aggregate de-
mand for leasing houses is

n2X

j D1

sR
j D ˇyR

w
n2; (10)

where n2 denotes the number of households who rent a house.
We assume that the supply of housing for owing and renting is constant: N1 and

N2. In equilibrium, the demand has to be equal to supply,

ˇyH

Qp n1 D N1; and
ˇyR

w
n2 D N2: (11)

Arranging (11), the price-to-rent ratio is written as

p

w
D n1

n2

N2

N1

yH

yR

1

.i C � C f � �/
: (12)

We introduce the new variable,

s D .n1 � n2/

2N
D 1

2N

2NX

j D1

sj ; .�1 � s � 1/; (13)
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where n1 C n2 � 2N . The variable s, indicates the homeownership rate. Then we
can rewrite the price-to-rent ratio as follows:

p

w
D .1 C s/

.1 � s/

N2

N1

yH

yR

1

.i C � C f � �/
: (14)

As many literatures show, when the following conditions are hold: n1 D n2,
N1 D N2 and yH D yR, the expected annual cost of owning a house equals
that of renting at an equilibrium in the housing market, that is, p D w (see
[9, 12]).1

2.1 The Price-to-Rent Ratio

The price-to-rent ratio is a measure which is commonly used to get an indication of
over- or under-valuation in terms of the cost of owning versus renting a house. If
this ratio rises above its long-term average, then it could be an indication that prices
are overvalued.

Figure 2 shows the ratio of price to rent from the first quarter of 1960 to the first
quarter of 2009. The figure shows that the price-to-rent ratio ranged between 16.5
and 20 times between 1960 and 1995, but the price-to-rent ratio rapidly increased
after 1995, and reached an historic high of 32 times by year-end 2006. Since the
first quarter of 2007, the price to rent ratio decreased from its historical high, and
the latest data suggest that the ratio has continued to decrease [3].

A related finding is that price-to-rent ratio differs across cities and the differ-
ences are persistent over time: cities with high price-to-rent ratios tend to remain
high, and cities with low price-to-rent ratio remain low (see [9]). The price-to-rent
ratios in 2006 are substantially above their long-term averages. In the metropolitan
areas with the largest house price increases, these ratios exceed their long-term av-
erages significantly. The unprecedented and steep increase in the price-to-rent ratio
lead us to conclude that the housing markets in the metropolitan areas experienced
a sizeable bubble over the 1995–2006 period. Davis et al. [3] forecasts that assum-
ing nominal rents were to increase by 4% per year, about the average since 2001, a
decline in nominal house prices of about 3% per year would bring the price-to-rent
ratio up to its historical average, 5%, by mid-2012.

1 They implicitly assume low-cost arbitrage between owning and renting and the supply of housing
were perfectly elastic. In reality, mortgage origination fees, broker commissions and moving costs
make it expensive to switch back and forth between owning and renting. As we show below, the
housing supply is often regulated by the local governments.
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Fig. 2 The price-to-rent ratio for the aggregate stock of owner-occupied housing (data was pro-
vided by Davis et al. [3])

3 Determinants of Housing Prices

Although rapid derivation of the price-to-rent ratio from the long-term average is
necessarily evidence of overvaluation of housing price, the ratio of prices to rent by
itself is not a sufficient metric to indicate possible causes of the housing bubble. To
address this issue, it is necessary to relate the price-to-rent ratio to their underlying
determinants in the right-hand side of (14). We focus attentions on the following:
(1) income, yH , (2) housing supply, N1, (3) the user cost of home ownership, Qp,
and (4) homeownership rate, s.

3.1 Price-to-Income Ratio

Another measure that is commonly used to assess whether housing prices are unsus-
tainably high is the price-to-income ratio, which provides a measure of local housing
costs relative to the local ability to pay (see, for examples, [4] and [9]). Himmelberg
et al. [9] investigates the price-to-income ratio computed as the OFHEO price index
divided by an index of median per-capita income based on data from the US Bureau
of Economic Analysis. They show that at the national level the growth in real house
prices was outpaced by the high growth in incomes (see also [10]). However, at
the metro area level, price-to-income ratios have generally increased the most in
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cities where house price growth has been highest such as Boston, New York, San
Francisco and San Diego. Price-to-income in 2004 is above its peak value in many
of these cities, and as much as 40–50% above its 25-year average. But in Houston,
Dallas and other southern cities, price-to-income is well below its 25-year average.
Gyourko et al. [7] refers to cities with high long-run rates of house price growth
such as San Francisco, Boston, New York, and Los Angeles as superstar cities, and
show that differences in house price and income growth rates across metropolitan
areas have led to an ever-widening gap in housing values and incomes between the
typical and highest-priced locations. They argue that the new home buyers in su-
perstar cities are high-income households who have moved from other parts of the
country, so that those cities can experience above-average house price growth over
a very long horizon under tight supply constraints.

3.2 Elasticity of Housing Supply

In principle, if the housing market is perfect competitive, and the supply of hous-
ing is perfectly elastic, house prices would be determined solely by construction
costs [11]. In practice, the housing prices have derived from the housing cost in
many metropolitan area over the long-run period. Glaeser et al. [6] investigates the
ratio of the average house price to the estimated physical construction cost for 102
metropolitan areas in each Census year from 1950–2000. They found that house
prices grew relative to construction costs in most of the metropolitan statistical ar-
eas. The rise in the gap between price and construction cost throughout parts of
the Northeast and the West coast over the past three decades. Therefore, changes
in construction costs explain neither the overall rise in real house prices nor cross-
sectional differences in appreciation rates across markets. Several studies on the US
regional housing markets have found that the low supply elasticity of housing units
is an important factor behind the recent larger price increases in some urban mar-
kets, and have argued that housing supply regulation is an important determinant
of house prices [5–7]. Glaeser et al. [6] argue that differences in appreciation rates
of housing across metropolitan areas reflect tight housing supply regulation com-
bined with an increasing number of households who want to live in the area. They
also point out that US homebuilders have faced increasing difficulty in obtaining
regulatory approval for the construction of new homes in some states, (for no-
table examples, California, Massachusetts, New Hampshire, and New Jersey) and in
Washington, DC. An additional factor has been the increased ability of established
residents to block new projects. The supply constraint on new construction have
push up prices relative to construction cost, and this is considered to be able to ex-
plain partially house price overheating in housing markets in the metropolitan area.
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3.3 The User Cost of Home Ownership

Campbell et al. [2] uses Campbell and Shiller’s [1] dynamic Gordon growth model
to decompose the log rent-price ratio, �t , into three components: the expected
present value of real interest rates (the real 10-year Treasury), Qrt , and the expected
present value of the housing premium, �t , and the expected present value of real
rent growth, Qwt :

�t D � C Qrt C �t � Qwt : (15)

which is an alternative to the rent-to-price ratio proposed by Portaba [12]. Campbell
et al. [2] shows that both of real interest rates and housing premia have fallen from
1997 to 2005 in almost all the metropolitan areas, and almost all of the decline in
the rent-to-price ratio (inversely, increase in the price-to-rent ratio) is attributable
to a steep decline in the risk premium paid to housing over and above a 10-year
Treasury bond, and a decline in the expected present values of real interest rate.
Especially they indicate that the housing premium plays a relatively more important
role, and can explain about 65% of the recent run-up of house prices relative to rents
since 1997.

3.4 Policies

Why did both of the real interest rate and the risk premium paid to housing declined
sharply over the 1997–2005 period?

First, the Federal Reserve Board sharply lowered its sort-term interest rates in
response to the recession caused by bursting internet bubbles in 2000. The Fed
Funds rate dropped from 6.5% at the end of 2000 to 1% in mid-2003. The Federal
Reserve’s monetary policy in this period was overly accommodative compared to
the optimal policy suggested by the so-called Taylor rule [16, 17]. Banks, other fi-
nancial institutions eagerly expanded credit through loans and investments in debt
and derivative securities. As a result, monetary policy also helped hold mortgage
rates at a low level. Taylor [17] argue that this significant deviation may have been
a cause of the boom and bust in US housing market.

Second, federal policymakers have promoted home-ownership as the fulfillment
of the American dream. Especially the Clinton administration encouraged home-
buying among financially marginal and minority households. To purse this aim, the
administration performed the following policies: (1) enacting preferential income
tax policies to reduce the cost of home ownership relative to renting, (2) pressing de-
pository institutions and mortgage banks to lower their credit standards and reduce
down payment requirements, and (3) promoting exotic alternatives to traditional
fixed-rate fully amortizing residential mortgage loans, such as interest-only resi-
dential mortgage loans and negatively amortizing residential mortgage loans. (For
a detailed documentation, see Saxton [14].) These policies were intended to help
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financially marginal and minority households that could not qualify for traditional
mortgage loans under normal credit standards to buy homes. The Bush administra-
tion left these Clinton administration policies in place.

3.5 Home Ownership Rate

The federal government’s policies encouraged many households to buy housing dur-
ing the bubble. Thereby, the home ownership rate increased to a peak of 69.0% in
2004 while the rate had averaged 64.3% of all households from 1982 to 1997. These
policies also designed to help financially marginal and minority households gener-
ated many households who buy homes through unaffordable subprime residential
mortgage loans. However, many of these new home owners had poor credit histo-
ries, and were unprepared or unable to discharge their mortgage obligations.

4 Concluding Remarks

In this chapter we study the reasons why the housing price was inflated excessively
in USA. To this aim, we propose a simple model of housing market. The main causes
of the housing bubble are summarized as

1. Non-elastic housing supply in the metropolitan areas
2. Declines in the interest rate and the housing premium

First, inflation of the housing prices in highest-price areas, especially New York
City and California does not reflect physical costs of construction, but zoning strict-
ness and other restrictions on building by government regulations. These findings
suggests that policy makers of local governments possibly prevented the housing
bubble through appropriate zoning reform in the metropolitan area.

Second, Federal policymakers adopted a number of policies to promote home
ownership and help financially marginal and minority households to buy homes with
unaffordable subprime residential mortgage loans. After all, these policies made
households vulnerable to foreclosure after the housing bubble burst, and caused a
serious downturn in US economic growth.

Finally, the Federal Reserve’s monetary policy which was overly accommodative
from the second quarter of 2002 through the third quarter of 2006 lowered the cost of
funds for financial institutions, and encouraged them to expand credit aggressively
by extending loans. The policies created a massive credit expansion and stimulated
the demand for housing among households, so that US housing prices soared. In
conclusion, Federal policymakers could also have adopted a number of policies to
preventing housing bubble.
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Reconstructing Macroeconomics
Based on Statistical Physics

Masanao Aoki and Hiroshi Yoshikawa

Abstract We believe that time has come to integrate the new approach based on
statistical physics or econophysics into macroeconomics. Toward this goal, there
must be more dialogues between physicists and economists. In this paper, we ar-
gue that there is no reason why the methods of statistical physics so successful
in many fields of natural sciences cannot be usefully applied to macroeconomics
that is meant to analyze the macroeconomy comprising a large number of economic
agents. It is, in fact, weird to regard the macroeconomy as a homothetic enlargement
of the representative micro agent. We trust the bright future of the new approach to
macroeconomies based on statistical physics.

1 Introduction

Macroeconomics has gone astray. In the past 30 years, macroeconomics has become
less relevant. Events in the world economic crisis since fall 2008 have unmistakably
demonstrated this fact.

The mainstream macroeconomics today begins with optimization of the rep-
resentative consumer. The “optimum” growth theory once meant to be a guide
for government policy is now being taught as a theory which describes the ac-
tual working of our market economy (see, for example, a major macroeconomics
textbook [7]). It is the neoclassical equilibrium theory. By construction, it broadly
underlines the efficiency of market albeit with mild admission of the so-called
“market failures”. In reality, far from being efficient, most of the time, the econ-
omy must move on a bumpy road. It is simply misleading and wrong to analyze
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such problems as business cycles, unemployment, deflation, and financial turmoil –
the subject matters of macroeconomics – with the neoclassical equilibrium theory.

Nevertheless, many economists still believe that the first principle of economics
is the optimization of economic agents such as household and firm. This principle
and the notion of equilibrium, namely equality of supply and demand, constitute the
core of the neoclassical theory. To some, this is the only respectable economic theory
on earth. For example, a Nobel laureate Lucas [19] concluded his Yrjo Jahnsson
Lectures as follows:

The most interesting recent developments in macroeconomic theory seem to me describ-
able as the reincorporation of aggregative problems such as inflation and the business cycle
within the general framework of ‘microeconomic’ theory. If these developments succeed,
the term ‘macroeconomic’ will simply disappear from use and the modifier ‘micro’ will
become superfluous. We will simply speak, as did Smith, Ricardo, Marshall and Warlras, of
economic theory. If we are honest, we will have to face the fact that at any given time there
will be phenomena that are well-understood from the point of view of the economic theory
we have, and other phenomena that are not. We will be tempt, I am sure, to relieve the dis-
comfort induced by discrepancies between theory and facts by saying that the ill-understood
facts are the province of some other, different kind of economic theory. Keynesian ‘macroe-
conomics’ was, I think, a surrender (under great duress) to this temptation. It led to the
abandonment, for a class of problems of great importance, of the use of the only ‘engine
for the discovery of truth’ that we have in economics. Now we are once again putting this
engine of Marshall’s to work on the problems of aggregate dynamics. [19, pp. 107–108]

Thus, over the last 30 years, economics has attempted, in one way or another,
to build maximizing microeconomic agents into macroeconomic models. To incor-
porate these agents into the models, the assumption of the representative agent is
usually made. By and large, these exercises lead us to the neoclassical macroe-
conomics. The real business cycle (RBC) theory (e.g. [18]) praised so highly by
Lucas [19] is the foremost example.

We maintain that this “micro-founded” macroeconomics represented by RBC is
misguided, and that a fundamentally different approach is necessary to analyze the
macroeconomy. Such an approach is based on the method of statistical physics. It
is commonly used in physics, biology and other natural sciences when one studies
a system consisting of a large number of entities.

The basic idea of statistical physics is explained in every textbook. Here is an
example:

Many systems in nature are far too complex to analyze directly. Solving for the behavior of
all the atoms in a block of ice, or boulders in an earthquake fault, or the nodes on the In-
ternet, is simply infeasible. Despite this, such systems often show simple, striking behavior.
Statistical mechanics explains the simple behavior of complex system. [33, p. 1]

Thus, statistical physics begins by giving up the pursuit of the precise behavior
of individual units, and grasps the system as a whole by statistical methods. This
approach, which is nothing but common sense in natural sciences, is indeed in stark
contrast to the modern micro-founded macroeconomics. The latter analyzes the pre-
cise behavior of the representative micro agent, and regards the macroeconomy as
a homothetic enlargement of such a micro unit. We will shortly argue that there is
no fundamental reason why the method so successful in natural sciences cannot be
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applied to economics. Contrary to Lucas’ assertion, to study the macroeconomy, we
do need “some other, different kind of economic theory”.

A new approach to macroeconomics based on statistical physics has gradually
emerged. Meanwhile, a closely related research area has come to be broadly dubbed
econophysics. We can safely acknowledge that econophysics has established itself
in finance. (See, for example, [24], [25], and [37].) However, we must recognize
that there is still a significant gap between econophysics-based finance and the tra-
ditional finance theory.

For example, following a seminal work by Mandelbrot [22],1 econophysicists ap-
pear to have established a stylized fact that probability distributions of (changes in)
most asset prices are power laws. There is also a good consensus among economists
that distributions in question are not Gaussian, and that they have heavy tails.
However, traditional economists are not quite happy with the statement that the
distributions of changes in asset prices are power laws. In fact, in an extreme case
where the second moment or variance does not exist, the mean-variance analysis, ar-
guably the most important framework in finance would not make sense. Also to the
extent that real economic activity like consumption follows a different probability
distribution from asset prices, the standard consumption-based capital asset pricing
model (CAPM) breaks down (see [3]). We will later discuss the problems in finance
in detail.

In contrast to finance, the research in the areas of economics is still in its in-
fancy. To be sure, econophysicists have made important empirical findings that just
as financial variables such as stock returns, many real economic variables such as
personal incomes and the size of firms also obey the Pareto distribution, or the
power-laws in their tails. The size distribution of firms and cities has, in fact, a
long research history in economics [16]. Let alone Pareto [31], personal incomes
have also been studied by many researchers [10].

Despite their importance, so far the impact of these empirical studies on eco-
nomics has been rather limited, to say the least; they were often ignored by a
majority of economists. The reason is that their relation to the mainstream economic
theory is by no means clear. Discussing the Gibrat Law, a particular type of power
law allegedly found for many economic variables, Sutton [38] argues as follows:

It seems to have been widely felt that these models might fit well, but were “only stochas-
tic”. The aim was to move instead to a program of introducing stochastic elements into
conventional maximizing models. [38, p. 45]

This trend is certainly in accordance with the motto of modern micro-founded
macroeconomics. However, as the system under investigation becomes larger and
more complicated, the importance of stochastic elements increases. In fact, it is
almost the definition of macro-system to which the basic approach based on statis-
tical physics can be usefully applied.

1 Mandelbrot’s related works are collected in [23].
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2 Is the Statistical Approach Applicable to Economics?

The fundamental method based on statistical physics has been extremely successful
in natural sciences ranging from physics to biology. Because the macroeconomy
consists of a large number of economic agents, typically of the order of 106 to 107,
we can expect that this method should show the same analytical power in macroe-
conomics as in natural sciences.

A common argument to the contrary is, however, that natural science analyzes
system comprising inorganic particles such as atoms or molecules whereas eco-
nomics analyzes the economy in which agents with brains purposefully pursue their
respective goals. This understandable skepticism on the applicability of the method
based on statistical physics to economics is actually not warranted. The truth is the
method can be fruitfully applied to the analysis of system comprising a large number
of micro units regardless of the nature of micro unit. A good example is analysis of
traffic jams on turnpike. Here, micro unit is a driver, a purposeful human being with
brains! And yet, traffic jams have been beautifully analyzed by the method based on
statistical physics (see, for example, [27]).

It is not essential for studying macro system whether micro units comprising the
macro system under investigation are human beings with brains or inorganic parti-
cles. The point is that because the number of micro units is large, it is impossible and
meaningless to pursue precise behavior of each micro unit. Every economist knows
that the economic agent who does intertemporal optimization maximizes the Hamil-
tonian. Likewise, every physicist knows that the inorganic particle in Newtonian
motion also minimizes the Hamiltonian. Thus, in this respect, sophisticated human
being pursuing intertemporal optimization and inorganic particle are on an equal
footing. The issue is not whether micro unit is human utility/profit maximizer or
not. Rather it is whether the method based on the representative micro unit makes
sense or not. We believe that it is incorrect to analyze macro-system by the method
based on the representative micro unit. That is what natural sciences have demon-
strated time and again. The main-stream micro-founded macroeconomics, however,
clings to utility/profit maximization of the representative agent. It is useful to con-
sider concrete examples.

3 The Standard Approach Based on the Representative
Agent: Some Examples

It is well recognized that stock market is volatile. It is indeed one of the major find-
ings econophysics has made. Rather than accepting that stock prices are too volatile
to be consistent with the standard capital asset pricing model (CAPM), a majority



Reconstructing Macroeconomics Based on Statistical Physics 187

of economists have attempted to reconcile the alleged volatility with efficiency or
“rationality” of market.2

A seminal work of Shiller [34] and subsequent studies have shown us that volatil-
ity of stock prices cannot be properly explained only by volatility of dividends or
profits. One way to explain volatility of stock prices is to allow significant changes
in the discount rate or the required return on stocks. In fact, in the neoclassical
macroeconomic theory, the following relationship between the rate of change in
consumption, C , and the return on capital, r must hold in equilibrium (see, for ex-
ample, [7]):
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Here, the elasticity of intertemporal substitution � is defined as
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> 0:

In general, � depends on the level of consumption, C Equation (1) says that
the rate of change in consumption over time is determined by � and the difference
between the rate of return on capital, r and the consumer’s subjective discount rate, ı

This equation, called the Euler equation, is derived as the necessary condition of the
representative consumer’s maximization of the Ramsey utility sum.

The return on capital, r in (1) is the return on capital equity or stocks, which
consists of the expected capital gains/losses and dividends. Thus, according to the
neoclassical macroeconomics, the return on stocks must be consistent with the rate
of change in consumption over time in such a way that (1) holds.

To explain volatility of stock prices, consumption must be volatile enough to
make the return on stock, r volatile. However, we know that in reality, consump-
tion C is not volatile. If anything, it is less volatile than dividends or profits. Thus,
given equation (1), the volatility of stock prices or their rate of return r must be
explained ultimately by sizable fluctuations of the elasticity of intertemporal substi-
tution � which depends on consumption. Consequently, on the representative agent
assumption, researchers focus on the “shape” of the utility function in accounting
for the volatility of stock prices [13]. It is not an easy task, however, to reconcile the
theory with the observed data if we make a simple assumption for the elasticity of
intertemporal substitution, �; � must change a lot despite of the fact that changes in
consumption are small.

A slightly different assumption favored by theorists in this game is that the utility,
and therefore, this elasticity � depend not on the current level of consumption Ct

but on its deviation from the “habit” level, OCt , namely, Ct � OCt . By assumption,
the habit OCt changes much more slowly than consumption Ct itself so that at each
moment in time, OCt is almost constant. The trick of this alternative assumption is that

2 For extensions of CAPM in the field of finance, see [21]. Here, we focus on problems in macroe-
conomics.
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although Ct does not fall close to zero, Ct � OCt can do so as to make the elasticity
of intertemporal substitution �, now redefined as

1

�
D �u00.C � OC /.C � OC /

u0.C � OC/
> 0; (2)

quite volatile. Campbell and Cochrane [8] is a primary example of such an approach.
Though ingenious, the assumption is not entirely persuasive. Why does the con-
sumer’s utility become minimal when the level of consumption is equal to the habit
level even if it is extremely high? In any case, this is the kind of end point we are
led to as long as we keep the representative agent assumption in accounting for the
volatility of stock prices.

The above analysis is typical of micro-founded macroeconomics in that it at-
tempts to explain macro phenomenon – volatility of stock prices in relation to
consumption – by way of the behavior of the representative consumer. In the case
of consumption based CAPM, researchers attribute volatility of stock prices to a
particular type of preference of the representative consumer.

Mehra and Prescott [26] is another example of the representative agent model for
asset prices. They considered a simple stochastic Arrow–Debreu model. The model
has two assets, one the equity share for which dividends are stochastic, and the other
the riskless security. Again, on the representative agent assumption, the “shape” of
the utility function and the volatility of consumption play the central role for prices
of or returns on two assets. For the reasonable values of �, which may be more
appropriately called the relative risk aversion in this stochastic model, and the US
historical standard deviation of consumption growth, Mehra and Prescott calculated
the theoretical values of the returns on two assets. The risk premium, namely the
difference between the return on the equity share and the return on the riskless se-
curity implied by their model, turns out to be mere 0.4% In fact, the actual risk
premium for the US stock (the Standard and Poor 500 Index, 1889–1978) against
the short-term security such as the Treasure bill, is 6% Thus, the standard model
with the representative consumer fails to account for such high risk premium that
is actually observed. Mehra and Prescott posed this result as a puzzle. Since then, a
number of authors have attempted to explain this puzzle: see [8].

The “puzzles” we have seen are, of course, puzzles conditional on the assumption
of the representative-agent. Indeed, Deaton [11] laughs away the so-called “puzzles”
as follows:

There is something seriously amiss with the model, sufficiently so that it is quite unsafe to
make any inference about intertemporal substitution from representative agent models . . .

The main puzzle is not why these representative agent models do not account for the evi-
dence, but why anyone ever thought that they might, given the absurdity of the aggregation
assumptions that they require. While not all of the data can necessarily be reconciled with
the microeconomic theory, many of the puzzles evaporate once the representative agent is
discarded. [11, pp. 67, 70]
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We second Deaton’s criticism. Having said that, here, we note that the standard
analyses all focus on the variance or the second moment of asset prices or returns;
see [9], for example, and the literature cited therein. Econophysicists recognize that
the variance or standard deviation may not be a good measure of risk.

To repeat, micro-founded macroeconomics attempts to explain macro phenom-
ena – volatilities of consumption and stock price in this particular case – in terms of
the micro behavior of the representative agent. According to micro-founded macroe-
conomics, the key of understanding macro phenomena lies in behavior of micro
agent. To grasp precise behavior of intertemporally maximizing economic agent,
economist must make a crucial assumption of the representative agent whose behav-
ior mimics macro dynamics. Econophysicists may not be so interested in the games
economists play, and may simply laugh them away. However, to make progress in
macroeconomics, both physicists and economists must make every effort to under-
stand each other.

4 The Approach Based on Statistical Physics

The approach based on statistical physics is in stark contrast to micro-founded
macroeconomics. In this approach, on purpose, we give up pursuit of detailed behav-
ior of micro unit. Instead, we make as simple an assumption as possible of behavior
of micro unit. In this respect, we follow the spirit underlying the model of ideal
gas where behavior of molecule is assumed to be extremely simple to the extent
that taken literally it is actually unrealistic. This assumption is justified because
proper statistical aggregation is much more important for the purpose of under-
standing macro system than detailed behavior of micro unit. In their discussion of
stock prices and financial risks, Malevergne and Sornette [21] state as follows:

The understanding of the large-scale organization as well as the sudden macroscopic
changes of organization due to small variation of a control parameter has led to power-
ful concepts such as “emergence”: the macroscopic organization has many properties not
shared by its constituents. For the markets, this suggests that its overall properties can only
be understood through the study of the transformation from the microscopic level of indi-
vidual agents to the macroscopic level of the global market. [21, p. 22]

It is our view that the same approach is called for not only in finance but also
in economics. Perhaps, we can regard Slutzky’s [35] early work on business cycles
entitled “the summation of random causes as the sources of cyclic processes” as
such an attempt.3

To persuade economists that the new approach is necessary in macroeconomics,
we need good examples. Here, we take up Yamada et al. [40] as an example. It is
a market model meant to explain power laws observed for asset prices. The model

3 For business cycles, see [1] and Chap. 6 of [4]. Nirei [29] is a good example of the combination
of “statistical” and traditional approaches to business cycles.
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consists of two traders whose reservation prices for “buy” and “sell” are assumed to
be random walks. When the “buy price segment” of one trader and the “sell price
segment” of the other overlap each other, one unit of asset is traded, and at the
same time, the market price is determined as the mid point of reservation prices of
buyer and seller. Obviously, this assumption on micro behavior is extremely simple,
perhaps, too simple if it is literally taken. However, it is not a defect of the model, but
is actually its merit because such a simple model with a little modification (model 3
in the paper) can beautifully account for the power law distribution of price changes
as well as the distribution of transaction interval.

The results obtained in such a simple model strongly suggest that proper statis-
tical aggregation is indeed much more important for the purpose of understanding
macro system – the probability distribution of price changes in this case – than de-
tailed behavior of micro agent, and that the approach based on statistical physics is
very promising in macroeconomics. Thus, the challenge for economics is not to cre-
ate sophisticated models of micro optimization, but rather to pin down a particular
stochastic process for the problem under investigation (see [15], for example).

5 Productivity Dispersion

One of the major insights statistical physics provides to economics is that
equilibrium is not a point in space but a distribution. Instead, the general equi-
librium theory, the hard core of the main stream neoclassical economics, regards
equilibrium as a solution of simultaneous equations or a fixed point of mapping.
Foley [12] is a seminal work which challenges the standard notion of equilibrium by
means of the method of statistical physics. It advances new notions of equilibrium
and efficiency.

Here, we explain productivity dispersion in relation to Keynesian economics
[17].4 In the Walrasian general equilibrium theory, the marginal products of pro-
duction factor such as labor are equal in all the sectors and firms. This is required
for the Pareto efficiency, and constitutes the concept of the equilibrium. The equality
of productivities across sectors/firms is the fundamental reason why demand does
not matter in determining the aggregate output. Demand affects only composition
of outputs. Conversely, the existence of underemployment, which is equivalent to
inequality of value marginal product across sectors, means that total output (GDP)
can be increased by changing demand.

Traditionally, the presence of (involuntary) unemployment has been taken by
many economists as the essential condition for Keynesian economics to make
sense. However, (involuntary) unemployment is merely a particular form of un-
deremployment, and that underemployment defined as differences in productivity of
production factors is more essential for the relevance of demand in the determination

4 For Keynesian economics and the development of macroeconomics, see [42].
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of total output than unemployment. To repeat, for demand to play an essential
role in the determination of aggregate output, the inequality of productivity across
sectors/activities, or underemployment is the generic condition [41].

In the real economy, labor productivity, in fact, differs across firms and indus-
tries [6, 28].5 Why and how does the inequality of productivity persist? One might
think that differences in productivity across sectors imply unexploited profit oppor-
tunities, and therefore, contradict equilibrium. However, heterogeneous economic
agents actually have different thresholds for a change in their strategies. Therefore,
we cannot suppose that all the economic agents and production factors instanta-
neously move to the sector with the highest productivity. We must describe their
behavior by the transition rate in the jump Markov process. Consequently, at each
moment in time, we have a distribution in productivity. Aggregate demand affects
the aggregate output because it affects the transition rate of production factors across
sectors/firms with different productivities.

To the extent that the economy is incessantly subject to sectoral demand
shocks, and that demand affects productivity, differences in productivity across
sectors necessarily persist. Tobin [39, p. 9] proposes a notion of “stochastic
macro-equilibrium”. He argues that it is “stochastic, because random intersec-
toral shocks keep individual labor markets in diverse states of disequilibrium;
macro-equilibrium, because the perpetual flux of particular markets produces fairly
definite aggregate outcomes.” The concept of equilibrium which we propose is very
similar to what Tobin called “a theory of stochastic macro-equilibrium”. By way
of affecting the transition rate of production factors, the aggregate demand affects
“stochastic macro-equilibrium” or, more precisely, distribution of productivity in
the economy, and, therefore, the level of total output.

What would be a distribution of productivity in the economy? And how does it
depend on the aggregate demand? Here come the methods of statistical physics with
which physicists are familiar.

Suppose that there are K different levels of productivity in the economy, x1 <

x2 < 	 	 	 < xK . The number of production factors or simply workers working in the
sector with productivity xi is ni . The total number of workers N is given

KX

i

ni D N: (3)

Given the aggregate demand D, the endowment N , and a vector of productivities
.x1; : : : ; xK/, we must have

KX

i

xi ni D D: (4)

5 Houthakker [14] and Sato [32] explore how productivity dispersion across firms can be aggre-
gated to macro production function. We believe that econophysics can shed new lights on this old
problem.
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Then, following the general principal in physics, Yoshikawa [41] conjectures that
given a large number of economic units/production factors and randomness, the
distribution of productivity is the Boltzmann distribution:

P.xi / D exp.�xi =kD/
ıX

i

exp.�xi =kD/ .k > 0/;

where P.xi / is the probability or share of workers working with productivity xi .i D
1 	 	 	K/, namely ni =N , and D is the aggregate demand.

Let us explain it briefly. First, we observe that the possible number of a particular
configuration .n1; : : : ; nK/ under constraint (3) is

N Š

KQ
iD1

ni Š

:

Because the total number of configurations is KN , the probability of occurrence of
such a configuration, P.n/, on the assumption of equal probabilities for all config-
urations, is given by

P.n/ D 1

KN

N Š

SQ
iD1

ni Š

: (5)

Following the fundamental principle of statistical physics we postulate that the
configuration fn1; n2; : : : ; nsg that maximizes P.n/ under two constraints (3) and
(4) is realized in equilibrium. This postulate is similar to the method of maximum
likelihood in statistics or econometrics. Then we obtain the Boltzmann distribution.6

Note that the aggregate demand D (relative to N ) in economics corresponds
to temperature in physics. When D rises, this distribution becomes flatter. That is,
when the aggregate demand is high, economic units/production factors are mobi-
lized to higher productivity. Okun [30] makes a similar point saying that workers
climb up a ‘ladder’ of productivity in a ‘high pressure economy’. Yoshikawa [41]
and Aoki and Yoshikawa [4] argue that this is the proper microeconomic founda-
tion for Keynes’ principle of effective demand. This theory also provides precise
definition of Tobin’s [39] “stochastic macro-equilibrium”.

Meanwhile, Aoyama et al. [6] demonstrates that the empirical distribution of la-
bor productivity is actually not the Gibbs (exponential) distribution but the power
distribution. Their paper not only explores the empirical distribution, but also
suggests a theoretical framework for understanding the obscured power-law. The
framework is called superstatistics in which the level of aggregate demand is al-
lowed to fluctuate rather than is simply assumed to be constant.

6 Unlike particle in physics, production factor in economics differs in size. However, we can sup-
pose that apparently ‘large’ production factor actually consists of a large number of the ‘basic’
units all of a size, and, therefore, we can basically apply the same method of physics to economics.
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Because we observe productivity dispersion, plainly, the Walrasian equilibrium
theory cannot be literally applied to the real economy. Search theory allegedly
fills this gap by encompassing apparent “disequilibrium” phenomena such as
productivity dispersion in the neoclassical equilibrium framework. Aoki and
Yoshikawa [5] take up Lucas and Prescott [20] as an example, and argue that
the observed productivity dispersion cannot be explained within the framework
of the standard equilibrium search theory. Our argument rests on the concept of
non-self-averaging.

6 Non-self-averaging: A Key Concept for Macroeconomics

Non-self-averaging is little known to economists. It is an important concept that
undermines micro-founded macroeconomics. Consider a sequence or a group of
random variables Xn.n D 1; 2; : : :/. If the coefficient of variations, namely the
standard deviation of Xn divided by its mean, approaches zero as n goes to infinity,
then Xn is said to be self-averaging. If not, Xn is non-self-averaging.

The Gausian normal distribution and the Poisson process so commonly assumed
in economic analysis are self-averaging. However, these cases of self-averaging
cannot be actually taken as the norms. Put it differently, non-self averaging is not
pathological case to be left only for mathematical curiosity, but rather quite naturally
emerges and is generically present in nature (see, for example, [36, p. 369]).

Suppose, for example, that n random variables form Kn clusters. Clusters may
be the subsets of firms or sectors/industries to be distinguished from each other by
their respective characteristics. Now, in a two-parameter model in which one pa-
rameter, � , affects the probability existing clusters grow while the other parameter,
˛, influences the probability a new cluster (of initial size one) is born. This model
is known as the Poisson–Dirichlet two-parameter process, PD .˛; �/. In this model,
the number of clusters, Kn, is self-averaging with ˛ D 0, but is non-self-averaging
for ˛ > 0; see [2]. In other words, if the number of clusters is given, we obtain
self-averaging, but when the number of clusters stochastically grows, we obtain
non-self-averaging. Note that the standard Poisson process is nothing but a special
case of ˛ D 0. Aoki and Yoshikawa [5] demonstrate that non-self-averaging quite
naturally emerges in a simple model of economic growth.

Now, non-self-averaging means that we cannot ignore the fluctuations around the
mean even if n (typically, the number of agents in the model) becomes large. This,
in turn, means that optimization exercises in the standard micro-founded macroe-
conomics do not make much sense because such analyses are meant to capture the
dynamics of the means.
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7 Conclusion

We believe that time has come to integrate the new approach based on statistical
physics or econophysics into macroeconomics. Toward this goal, there must be more
dialogues between physicists and economists. On one hand, economists must show
physicists where the crucial problems lie in macroeconomics, and how relevant or,
in certain cases, irrelevant the findings made by econophysicists are to economics.
Physicists, on the other, should pay more attention to economic theory. For exam-
ple, the mathematical models which generate power-laws have been much studied
(see [36] and references cited therein). The basic question is then how we interpret
such models as economic models (see [3], for example). To this end, we cannot do
without the knowledge of economic theory.

In this paper, we argued that there is no reason why the methods of statistical
physics so successful in many fields of natural sciences cannot be usefully applied
to macroeconomics that is meant to analyze the macroeconomy comprising a large
number of economic agents. It is, in fact, weird to regard the macroeconomy as a
homothetic enlargement of the representative micro agent. We trust the bright future
of the new approach to macroeconomies based on statistical physics.
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How to Avoid Fragility of Financial Systems:
Lessons from the Financial Crisis
and St. Petersburg Paradox

Hideki Takayasu

Abstract Firstly, I point out that the financial crisis occurred in 2008 has many
analogous points with a physical phenomenon of brittle fracture in the sense that it
is a highly irreversible phenomenon caused by concentration of stress to the weakest
point. Then, I discuss distribution of gain–loss of continuous transactions of options
which can be regarded as a source of stress among financial companies. The his-
torical problem of Saint Petersburg paradox is reviewed and it is argued that the
paradox is solved by decomposing the process into a combination of a fair gamble
and an accompanied financial option. By generalizing this fair gamble it is shown
that the gain–loss distribution in this problem is closely related to the distribution
of gain–loss of business firms in the real world. Finally, I pose a serious question
to the ordinary way of financing money to business firms with compound interest
rates. Instead we introduce a new way of financing business firms without applying
prefixed interest rates, in which financial stress is shared by all involved firms. This
method is expected to reduce the risk of both financial firms and business firms, and
is applicable even in the non-growing society.

1 Financial Crisis Viewed as Brittle Fracture

A bankrupt occurs when a firm can not pay its debt by the due date. This situation
occurs when the sum of firm’s cash and bank balance is smaller than the debt. This
rule applies independent of the size of the firm, and the information of bankruptcy
is immediately announced to all financial companies. As a result all bank accounts
related to this firm are shut down immediately after the breach of contract, so even
a big firm having huge amount of assets and huge number of employees can be
bankrupted instantly. This phenomenon is characterized by a highly nonlinear ir-
reversible dynamics as shown in Fig. 1a. The activity of the firm does not change
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Fig. 1 (a) Threshold dynamics characterizing bankruptcy (left). (b) Threshold dynamics charac-
terizing brittle fracture (right)

much when the sum of cash and balance is not negative, however, once this sum
goes into a negative region by trying to pay a debt, the activity of the firm is forced
to be 0, meaning the death of the firm.

It is interesting that a purely physical phenomenon of brittle fracture is also de-
scribed by a threshold dynamics. Assume the situation that we bend a brittle material
such as glass bar by gradually adding force. The elasticity of the bar is nearly con-
stant when the stress of the bar stays below a threshold value [1]. When the stress
goes beyond the threshold then fracture occurs suddenly and the elasticity becomes
0 in an irreversible manner.

Similarity between bankrupt and brittle fracture is not limited to this elemen-
tary process. In the case of brittle fracture of non-uniform materials such as a rock,
the first fracture can cause successive breakdowns as the accumulated stress is re-
distributed to the neighbors resulting excess of the fracture threshold at some new
points. In the case of financial breakdown debts play the role of stress and they
are re-distributed when a firm is bankrupted in the form that the scheduled money
flows are cancelled and the debts remain at the lenders. By this re-distribution all
the lenders’ balances are lowered by the amount of the debts, so there is a possibil-
ity that some of the lenders fall into the situation that the sum of cash and balance
becomes negative resulting successive bankrupts.

Another similarity between the brittle fracture and financial bankrupt is the ten-
dency of accumulation of stress to the weakest point. In the case of brittle fracture
stress accumulates nearly uniformly when the applied external force is gentle, how-
ever, as the force becomes stronger there is a tendency that stress concentrates on
a weakest point where deformation is largest. In the case of finance there is a ten-
dency that interest rates of the debts are higher for weaker firms. This is realized as
a result of competition: For a strong firm whose financial situation is good and the
risk of bankrupt is small, many banks will offer lending money with lower interest
rates so the firm can choose the lowest interest rate. On the other hand for a weak
firm which has a big risk of bankrupt, no bank will offer lending money with low
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interest rate, as a result the firm has to accept a loan with high interest rate. By this
effect financial stress tends to concentrate on weak firms.

In September 2008 a big and long-lived financial company Lehman Brothers
bankrupted suddenly due to the increase of financial stress caused by the decay of
value of financial products related to the subprime loan. By this breakdown financial
stresses of debts are distributed to those firms which lent money to this firm. As the
information of borrowing and lending money between financial firms is not open to
public, so the risk of bankrupt seemed to be increased for all financial firms which
might have business relation to Lehman Brothers. By this increase of potential risk
of bankrupt the interest rates between financial firms jumped up in the short-term
money market. This practically means that money flows among financial firms al-
most stopped and it became difficult for all financial firms to make ends meet. This
situation was quite analogous to the physical situation that wind blew a window
glass and a crack appeared at a point, and the whole glass was almost broken into
pieces.

Facing with this crisis of financial systems the governments of major countries
immediately supplied money to money markets to lower the interest rates and to
keep ordinary money flow among financial firms. This prompt action was effec-
tive and the worst scenario of successive failure of financial firms which actually
occurred in 1929 had been avoided. Using the above analogy of window glass,
the government treatment was similar to an emergency treatment of taping the
cracked glass.

2 Diverging Loss in Continuous Trading of Options

Options are financial products for markets originally designed to reduce the risk of
market price fluctuations. For example, a European put-option for a stock market
is the right of selling stocks at price K on T days in the future. Assuming that the
market price at the T -th day is y, then an investor who already has a stock can surely
get money of amount not less than K at T -th day by buying one-unit of put-option
with premium S : If K � y he can sell the stock in the market, and if K > y he
can use the option and can get K . From the viewpoint of a financial firm selling this
option the income is the premium U , and it pays K to the option holder if K � y is
positive. In this case the stock can be sold immediately in the market with the price
y, so the loss of the seller is K � y.

The fair value of premium of this option, which is sold at time t when the market
price is x, can be estimated by the expectation value of loss of the seller. As the
payment of the seller appears only when y is less than K and the loss is K � y, the
fair premium is given by the following equation:

U.x; t I K; t C T / �
Z K

0

.K � y/p.x; t I y; t C T /dy; (1)
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where p.x; t I y; t CT / denotes the market price probability density to take the value
y at time t CT . By assuming the time evolution rule of market price the option price
can be determined either theoretically or numerically by estimating the future price
probability.

Nowadays options are quite popular because they can be used both as insurance
and as speculation. However, here, I point out that continuous transaction of options
increase the risk of financial firms severely by the following reasons.

Firstly, as often mentioned the pricing formulation such as Black–Scholes equa-
tion neglects the effect of so-called long-tails [2]. This means that if an event with
large deviation occurs, then gain or loss will become extremely large. This risk is
already noticed and many researchers are working on revising the estimation of the
future price density.

Secondly, it is less pointed out but there is a severe problem on duration time of
payment for option. In the above notation the option seller must pay K � y when
K > y. The time interval which satisfiesK > y for a fixed value of K is given by
the time interval of level-set as schematically shown in Fig. 2, in this case the option
seller with the contract price K should pay during the period Œt; t C s	.

In an idealistic case that y.t C T / follows a Brownian motion, the time interval
of such level set is known to follow a power law with an exponent �1=2 [3].

W.> s/ / s�1=2; (2)

where W.> s/ denotes the cumulative distribution that an interval is longer than s. It
should be noted that the mean value of this period is infinite, and there is a possibility
that such losing period continues even an infinite time.

This phenomenon can be characterized also by an autocorrelation. From the
viewpoint of option seller, let us assign C1 for the moment of winning, that is,
K � y.t C T /, and assign �1 for the other case of losing situation, then the auto-
correlation of this signal becomes

C.T / / T �1=2: (3)

time

price

K

t t+s

Fig. 2 A schematic graph showing the period that the option seller must pay K � y.t/
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Namely, winning or losing in this option trade is strongly auto-correlated. In the case
of ordinary gambles in which win or lose occurs independently at every time step,
the whole risk will decrease by repeating such gamble continuously due to the cen-
tral limit theorem. However, in the case of strongly correlated gambles like the case
of this option, the risk increases for more deals.

In order to understand this situation more clearly, let us consider the gross loss
during one interval of K > y which is proportional to the area surrounded by the
dotted line and the price curve in Fig. 2. The cumulative distribution of this area is
known to follow the next power law [4].

P.> m/ / m�1=3: (4)

From the value of the exponent, �1=3, it is easy to show that both the variance and
average diverge in this gross loss distribution. This fact implies that even if we can
estimate the right option price of (1) for each time step, the cumulative loss in each
interval of K > y, m0 � m � sU , also follows the same distribution as (2), so
the loss of a financial firm can become extraordinarily large. It should be noted that
this accumulation of risk can not be lowered by a pair-trading of selling call-options
simultaneously, it simply doubles the risk.

The third risk of option dealing is caused by non-stationarity. Option pricing is
always based on the assumption of stationary statistics, so if there occurs an unusual
event that changes the basic statistics of the market, then, the option sellers might
suffer a huge risk. Also, in the process of option pricing a trend term is usually
neglected theoretically, however, in the real markets trends can be found in various
scales, which enhance the risk of option sellers. Volatility is the square of price
changes and is known to have a long autocorrelation. Long correlation in volatility
is practically quite similar to the case of non-stationary statistics, so the risk of
estimation of option pricing is always very large.

As a summary of this section it is mentioned that the more option deals the more
risk financial firms will have. A single deal of an option can be insurance, however,
continuous deals of options make a dangerous gamble.

3 The Saint Petersburg Paradox: Another Solution by Options

In 1738 Daniel Bernoulli wrote a paper on risk of a lottery posing a serious question
on a diverging mean value [5]. He considered a simple coin-toss gamble: “You can
toss a coin repeatedly until a tail appears. In the case the number of heads is n, you
can get 2n dollars as reward. Then, what is the fair entrance fee of this gamble?”
The probability of getting 2n dollars reward is 2�n�1, so the normal answer to this
question is given by the following expectation value of reward.

E D
1X

nD0

2n2�n�1 D 1

2

1X

nD0

1 D 1: (5)
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This divergence makes a paradox, as this result sounds ridiculous: The reward of
this gamble is not so big, 1 dollar with probability 0.5, 2 dollars with probability
0.25, 4 dollars with probability 0.125, . . . , so, intuitively no one will pay entry fee
higher than 100 dollars.

Bernoulli’s answer to this paradox was to introduce the concept of utility. He
considered that human impression of economical value is a nonlinear function of the
quantity of money such as a logarithmic function, so the above expectation should
be replaced by the utility which takes a reasonable finite value. Bernoulli’s idea at-
tracted economists’ interest 200 years later [6] and the concept of utility became
one of the key concepts in economics [7]. Also, he discussed about probability
weighting, that is, human tendency to neglect rare events with very low but finite
possibility. An extension of this idea developed as the work on prospect theory by
Kahneman and Tversky [8].

There are other ways of solving this paradox. Samuelson discussed that such
lottery with infinite expectation will not be held in general simply because the
host of the lottery will have infinite loss [9]. Also it is easy to consider finite-
ness of the host’s finance and re-formulate using with only finite numbers [10].
It should be noted that even if the host introduces the upper limit of the re-
ward as the whole GDP of the world, the fair entry fee becomes only 24 dollars
(http://en.wikipedia.org/wiki/St. Petersburg paradox). This means that any entry fee
above this value is practically non-sense.

Here, I show a new solution of this paradox by applying a kind of option to this
lottery. Let us start with a simple fare gamble: A gambler bets money and tosses a
coin, if it is head then the reward is the doubled value of bet, and if it is tail then he
loses everything. He repeats this gamble betting all the assets. The time evolution
of this gambler’s asset at the t-th trial, x.t/, is described by the following simple
probabilistic rule,

x.t C 1/ D
(

2x.t/ prob 1=2;

0 prob 1=2:
(6)

It is obvious that this gambler will lose everything sooner or later, if he does not
stop at some time, as known generally by the name of gambler’s ruin. However, it is
easy to show that the mathematical value of expectation is a constant for any t.

< x.t/ >D x.0/: (7)

It should be noted that a kind of serious deviation between expectation and intuition
appears in this simplest version of gamble, which may be also called a paradox.

As this simplest gamble is too dangerous for gamblers, the host can introduce a
kind of insurance. It is an option, Op.t0; t1/, the right to reverse one time step valid
during the time steps from t0 to t1. For example, in the case that a gambler had a
successive 10 heads and a tail at the 11-th trial, he can get the maximum asset, 210

dollars, instead of 0, if he had bought an option which is valid at the 11th time step.
As known from this example, the Saint Petersburg lottery is the special case that
x.0/ D 1 and the option is automatically included for any number of t, Op.0; 1/.
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Now, the problem of the Saint Petersburg paradox becomes a simpler question for
evaluation of the price of this option.

The fair price of this option can be calculated easily by estimating the expected
increase of asset by this reversion of one time step. In the above simplest gamble
described by (6), the asset at time step t is either x.0/ 
 2t or 0 with the probability
of occurrence 2�t or 1 � 2�t , respectively. The case that Op.t; t/ works is the sit-
uation that x.t � 1/ D x.0/ 
 2t�1 and x.t/ D 0, which realizes with probability
2�t . Therefore, the expectation of gain by this option is x.0/=2. Generalizing this
we have the fair price of option,

Op.t0; t1/ D .t1 � t0 C 1/ 
 x.0/=2: (8)

In the case of the Saint Petersburg lottery this option price actually diverges,
so the entrance fee of this lottery diverges. Now, the reason of divergence becomes
apparent, the lottery has too much insurance. We can consider the cases with reason-
able insurance. For examples, if the gambler buys Op.1; 20/, which is 10 dollars,
then he can start the gamble by betting 1 dollar. The maximum asset value during
the gamble does not vanish up to t D 20 protected by this option, namely, he can
get at most 220 � 1 million dollars in the lucky case.

The gambler can choose any option he likes at the start of this gamble with a
fair price. Also, from the viewpoint of host of this gamble, it is required not to sell
too much insurance which the host can not cover. It is now clear that no paradox
remains in this problem from both sides, the gambler and the host.

4 A New Way of Financing Firms: An Alternative Proposal
for Financial Firms

The simple fair gamble introduced in the preceding section captures an essential
property. Here, we consider the situation that a gambler is repeating a generalized
gamble adding a dollar at every trial without using the option. The time evolution of
the asset in this situation is described by the following stochastic equation.

x.t C 1/ D b.t/x.t/ C f .t/; (9)

where b.t/ is a random variable which takes either 2 or 0 with equal probabilities,
and f .t/ D 1. This process can be solved exactly and the distribution of x.t/ is
obtained as,

P.� x/ D 2=.1 C x/: (10)

As known from this functional form the mean value and the standard deviation are
both diverging in this distribution which belongs to the so-called Zipf’s law.

Stochastic processes described in the form of (9) with general b.t/ and f .t/ are
called the random multiplicative processes and the basic statistical properties are
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Fig. 3 Log-log plot of distributions of firm sizes measured by sale, income, employee and profit
(positive and negative) [14]

studied [11]. It is known that Zipf’s law realizes whenever the following equation
holds independent of f .t/,

< b.t/ >D 1: (11)

For examples, in the cases that the distribution of b.t/ is symmetric around b.t/ D 1

we always have a Zipf’s law, such as the case of b.t/ D 0:9 or 1.1 with probabilities
both 0.2, and b.t/ D 1 otherwise. This case, 10% growth or decay, is not the level
of gambles, it is closer to business firms’ annual growth rate fluctuation.

As for real firms’ statistics it is known that firms’ sales and incomes in the real
world generally follow a Zipf’s law or a similar power law with the exponent close
to �1 [12], and time evolutions of sales or incomes are modeled by a kind of mul-
tiplicative processes [13]. Figure 3 shows the distributions of sales and income for
about 800,000 Japanese firms in 2005 which are based on an exhaustive database
provided by Tokyo Shoko Research covering practically all active firms in Japan
[14]. From the lines in this figure we can confirm that Zipf’s laws are actually valid
for sales, incomes and profits.

Growth rates of firms have been also intensive recent studies. It is found that
growth rates are fairly independent of the past and other quantities, and the distribu-
tion of annual growth rate of sales can not be approximated by a normal distribution
but the tail parts are approximated by power laws [15]. Figure 4 shows distributions
of real growth rates of firms for sales and incomes using the same data as Fig. 3
[14]. As known from this plot the growth rates are concentrated sharply around 1
and the distributions are nearly symmetric, namely, (10) and (11) can be used for
real business firms’ growth phenomenon. In this plot a normal distribution is given
by a parabolic curve, and we can confirm that the real firm growth rates scatter
much wider than the normal distribution. And, this wide distribution is the target of
proposing new financing method.
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Fig. 4 Log-log plot of probability densities of growth rates measured by sale, income and
profit [14]

In general financing business firms is the most important role of financial firms.
Now it is a commonsense to lend money with a prefixed interest rate under free
competition, namely, a borrower asks interest rate for several banks and chooses
the bank which proposes the lowest interest rate. However, as mentioned in the first
section interest rates produce a kind of continuous stress among business firms, and
free competition makes the whole economic system fragile. Here, we propose a new
financing method that does not use interest rate.

Instead of fixing an interest rate before financing, we consider a new loan sys-
tem in which the amount of repayment is determined after the financing period by
evaluating the growth of the firms. The policy is to share the luck, that is, highly
grown firms repay larger amount and non-growing firms repay just the amount they
borrowed.

In order to realize this loan system it is necessary to make a contract which
determines the relationship between growth rate of sales during the loan period and
the amount of repayment. Let the rate of repayment at growth rate b be h.b/, and
assume a function which satisfies h.b/ D 1 for b < 1, meaning that the borrower
should return just the borrowed amount if the firm unfortunately could not make
its sales bigger at the end of loan period compared with the amount of sales of the
starting point. The expected profit rate of gross income of the lender J is given as,

J D
Z 1

0

h.b/j.b/db � Q � 1; (12)

where j.b/ is the probability density of growth rate of sales of a firm at the end of
loan period, and Q is the probability of bankruptcy of borrowers implying direct
loss of the lender. Here, we assume the normalization, 1 D R1

0
j.b/db C Q.
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As a typical example we can assume the following type of function:

h.b/ D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

1; 1 > b � 0I
1:02; 1:1 � b � 1I
1:1; 2 � b � 1:1I
1:5; b � 2:

(13)

In this situation the value of J is estimated from the distribution of j.b/ from the
empirical results given in Fig. 4 for rsale as

J D 0:036 � Q: (14)

Namely, the lender can get a positive profit even if the bankrupt rate is about 3%
which is higher than ordinary bankrupt rate which is less than 2%. This is just an
example, and we can design other profiles for h.b/, for example, by a continuous
function.

The profit of lender by this new method is not so high compared with ordinary
interest rate system, however, the merit is that this system can be managed in a
non-growing society where the GDP keeps a constant value.

5 Summary and Discussions

In the first section we showed that the present financial system has a fragility that is
quite similar to fragility of glass against external force. The corresponding force in
the financial system is caused by the mismatch of interest rate and actual growth rate.
The stress accumulates to weaker firms which failed growing, and once a breakdown
or a bankrupt occurs successive failure tends to continue to firms having business
connections. In the second section we showed that financial derivatives such as op-
tions are enhancing the risk of financial firms, especially, it is proved that the bankers
with diverging mean value if the firm is continuously selling options. In the third sec-
tion we solved the classical problem of Saint Petersburg paradox by showing that the
paradox is a composite of a fair gamble of no average growth and a kind of option
of which price diverges if it covers the infinite number of trials. We generalize this
fair gamble and consider the situation that artificial firms are repeating fair gambles
adding unit of money at every time step. It is shown that the distribution of asset of
such firms follows the so-called Zipf’s law, which is also the distribution of sales or
incomes of real firms. In the fourth section we introduced a new financing method
which does not assume a pre-fixed interest rate, instead the amount of repayment is
determined by the growth rates at the end of loan period.

The new financing method may not sound so attractive for those people who
are keen about earning money with high interest rate under competition, however,
the world with competitive interest rates is considered to have fragility and stresses
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are accumulated by the difference of interest rates and the real growth rate. So,
the present financial system, if it goes without any reformation, will meet another
financial crisis like that of Lehman shock in 2008 in the near future.

In the proposing new financing system only successful firms return money more
than loaned amount, so stresses do not accumulate to unlucky firms. It is shown
that the lender can get positive profit even the whole society is non-growing and the
effect of bankrupt is taken into account.

This new financing system is expected to be compatible with the present financ-
ing method. However, in that case the lender should check carefully the possibility
of large growth of the borrower. If there is no possibility of making the sales two
times bigger at the end of loan period, the lender should not lend money to the can-
didate firm. Because this new system is sustained by firms with high growth rate
whose occurrence probability is rather small, for example about 2% in real data.

Another point that the lender should pay much attention is to check the correct-
ness of the treasurer’s report of the borrower. There are cases that firm’s accounting
is not honestly calculated, in such a case the repayment could be lowered. As the
system is similar to progressive taxation, honest report is strictly requested.
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Part 3
General Methods and Social Phenomena



Data Centric Science for Information Society

Genshiro Kitagawa

Abstract Due to rapid development of information and communication technolo-
gies, the methodology of scientific research and the society itself are changing.
The present grand challenge is the development of the cyber-enabled methodol-
ogy for scientific researches to create knowledge based on large scale massive data.
To realize this, it is necessary to develop a method of integrating various types of
information. Thus the Bayes modeling becomes the key technology. In the latter
half of the paper, we focus on time series and present general state-space model and
related recursive filtering algorithms. Several examples are presented to show the
usefulness of the general state-space model.

1 Change of Society and Scientific Research

By the progress of information and communication technologies (ICT), large-scale
massive heterogeneous data have accumulated in various fields of scientific re-
searches and society. As examples, we may consider the microarray data in life
science, POS data in marketing, high-frequency data in finance, all-sky CCD im-
age in astronomy, and various data obtained in environmental science and earth
science, etc.

These rapid developments changed the society and the research methodologies
in science and technology. In the information society, the information became as
worthy as the substances and the energy, and the quantity of information was the
crucial factor for the success in the society. However, in this twenty-first century, the
so-called ubiquitous society is becoming widespread, where everybody can access
to huge amount of information anywhere and anytime. If such ubiquitous society
is actually realized, the value of information itself will be depreciated, because
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everybody can share most information in common. Therefore, the interest in the
development of the methods and technologies for information extraction and knowl-
edge creation has grown, because the success and failure in the ubiquitous society
depends on whether one can extract essential information from massive data.

2 Data Centric Science: A Cyber-Enabled Methodology

2.1 Expansion of Research Object and Change in Scientific
Methodology Based on ICT

The scientific research until the nineteenth century has developed basically under
Newton–Descartes paradigm based on a mechanic view of the world. In this deduc-
tive approach, i.e., in theoretical sciences, mathematics played an important role as
the language of science.

However, the evolutionism advocated by C. Darwin in mid-nineteenth century
concluded that every creature in real world evolves and changes with time. Moti-
vated by such changes of view on the real world, K. Pearson declared in 1891 that
everything in the real world can be an object of scientific research, and advocated
the grammar of science [15]. The mathematical statistics has been developed as a
tool to realize the grammar of science. By the establishment of the method of ex-
perimental sciences, not only biology but also many stochastic phenomena in real
world such as economy and psychology, became the objects of scientific research.

In the latter half of the twentieth century, by the progress of the computers, com-
puting science has been developed, and numerical computation and Monte Carlo
method were applied to the nonlinear dynamics, complex systems, and intertwined
high degree of freedom systems that have been difficult to handle by the conven-
tional analytic approach based on theoretical science.

The development of the information technology resulted in accumulation of
large-scale massive data in various fields of scientific researches and society, and
a huge cyber-world is being created. It is not possible to talk about future develop-
ment of the science and the technology without establishing methods of effective
use of large-scale data. In this article, the cyber-enabled methodology based on the
large-scale data set will be called the data centric science.

The computing science and the data centric science are newly establishing cyber-
enabled deductive and inductive methods while the conventional methodologies,
theoretical science and experimental science, relies on the researcher’s expertise and
experiences. Now having been developed the computing science, it is indispensable
to promote this data centric science strategically to realize well-balanced scientific
researches in the information era (Fig. 1).
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Fig. 1 Four methodologies that drive scientific researches

2.2 Active Modeling

In the area of statistical science, the role of a model is changing along with the
change of the scientific methodology and the image of the knowledge. In the con-
ventional setting of the mathematical statistics, by assuming that the data is obtained
from the true distribution, we aimed at performing an objective inference concern-
ing the true structure. However, in the statistical modeling for information extraction
or knowledge creation, it is rather natural to consider that the model is not true or
close replica of the truth but is a “tool” for information extraction.

Once the statistical model is considered like this, a flexible standpoint of model-
ing is obtained. Namely, in statistical modeling we should use not only the present
data but also the knowledge on that subject, empirical knowledge, and any other
data that have been obtained so far, and even the objective of the modeling. Once
the model is obtained, the information extraction, knowledge discovery, prediction,
simulation, control, and management, etc., can be achieved straightforwardly or
deductively (Fig. 2). Needless to say, the result of knowledge acquisition using the
model leads to refine modeling. In this article, such a process will be called active
modeling.

To enhance and promote the data centric approach, the technologies for the
knowledge integration and for the personalization are needed. However, in the mod-
eling for personalization, ultimate conditioning is required, and the difficult problem
called “new NP problem” arises, in which the number of variables is much more
than the number of observations.

Anyways, the technology that becomes a key to achieve information integration
and an ultimate conditioning is the Bayes modeling. It is because various prior in-
formation from knowledge, experiences and data can be integrated by the use of the
Bayes model. Although the Bayes’ theorem was discovered in the mid-eighteenth
century, and the superiority of the inference based on the Bayes’ theorem was
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Fig. 2 Active modeling and the use of identified model

well-known, application to real problems was rather rare, due to philosophical
controversy, difficulty in determining the prior distributions, and the difficulty in
computing the posterior distribution, etc. However, owing to the development of
statistical science such as the change in the viewpoint of modeling, the develop-
ment of model evaluation criterion [1,13], and statistical computing methods such as
MCMC and sequential Monte Carlo methods [4,9], now the Bayes method becomes
the main tool in information extraction, information integration, and information re-
trieval, etc. [14].

Although the Bayes modeling is becoming of practical use, there still remains one
difficulty in the modeling. Namely, there is no established methodology to derive ap-
propriate class of models for particular problem. Therefore, the researcher’s art is
still demanded in the most important part of statistical modeling, i.e., the presenta-
tion of a good family of models. The raison d’etre of the researchers, in particular
of the statisticians in a cyber world can be found here.

3 Time Series Modeling

Hereinafter, we restrict our attention to time series and consider the data centric
approach in time series analysis. Here the state-space model plays an important role
as a unified tool.

3.1 State-Space Model and the Kalman Filter

Consider the linear Gaussian state-space model for the time series yn,

xn D Fnxn�1 C Gnvn; (1)

yn D Hnxn C wn; (2)



Data Centric Science for Information Society 215

where xn is an unknown state vector, vn and wn are the system noise and the
observation noise with vn � N.0; Qn/ and wn � N.0; Rn/, respectively. The ini-
tial state x0 is assumed to be distributed as x0 � N.x0j0; V0j0/. Equations (1) and
(2) are called the system model and the observation model, respectively. The state-
space model has been used in the modeling of various types of time series, such as
the nonstationary time series in the mean, the variance or the covariance [5, 11].

The set of information from the observations up to time j is denoted by Yj ,
namely, Yj � fy1; : : : ; yj g. The problem of state estimation is to evaluate
p.xnjYj /, the conditional density of xn given the observations Yj and the ini-
tial density p.x0jY0/ D p.x0/: For n > j; n D j and n < j , the problem is called
the prediction, filtering and smoothing, respectively. The state estimation problems
are important because many problems in time series analysis, such as increasing
horizon prediction, interpolation, parameter estimation and signal extraction, can
be solved using the estimated state vector.

It is well known that for linear-Gaussian state-space model, the conditional den-
sity p.xnjYm/ also becomes Gaussian and the mean vector xnjm and the variance
covariance matrices Vnjm can be obtained by the Kalman filter and the fixed interval
smoothing algorithms [3].

3.2 Smoothness Priors Modeling of Time Series

The state-space model provides a power tool for approaching to the so-called new
NP problems, where the number of unknown parameters is equal to or larger than
that of the observations. To exemplify the problem, consider the problem of fitting
a curve ffng to the data fyng

yn D tn C wn; n D 1; : : : ; N; (3)

where wn is the noise at time n. Here, if we assume a parametric function for fn,
then we can estimate it by the least squares method or the maximum likelihood
method. However, in the modeling of massive data, parametric models are sometime
too rigid and cannot extract useful information from data. In this situation, if we
consider fn as an unknown parameter, then we can get a very flexible method of
expressing arbitrary function. However, in estimating the unknown parameters, we
face to the simplest version of the new NP problem, since the number of unknown
parameters fn is the same as the number of observations.

Even in this situation, it is well-known that we can get a reasonable estimates of
fn by the penalized least squares method that minimizes

NX

nD1

�
yn � fn

�2 C �2

NX

nD2

�
ıkfn

�2
: (4)
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The crucial problem here was the selection of the trade-off parameter �2. Akaike [2]
gave a solution from a Bayesian interpretation of the problem and proposed the
ABIC criterion.

It is very interesting that, in time series context, the use of the penalized method
is equivalent to assume the following two simple time series models

tn D tn�1 C vn;

yn D tn C wn: (5)

We notice that these models are a special case of the state-space model and that
the trade-off parameter �2 is naturally determined as the signal-to-noise ratio, i.e.,
�2 D �2=�2. This means the so-called trend estimation problem can be easily solved
by the state-space model. Further, since the above model is the simplest case of the
state-space model, it suggests that by using the state-space model, we can perform
more sophisticated nonstationary time series modeling. Actually, for example, sea-
sonal adjustment and various signal extraction problems can be performed by using
the state-space model [11].

As an example of the use of the state-space model for time-varying structure
modeling, we shall briefly show estimation of time-varying AR model and changing
spectrum. Let yn be nonstationary time series with time-varying spectrum. Since
the spectrum of a stationary time series can be reasonably approximated by an AR
model with constant coefficients, if the characteristics of the series changes with
time, it is natural to consider an AR model with time-varying parameters

yn D
mX

j D1

aj;nyn�j C wn; wn � N.0; �2
n/; (6)

where aj;n is an AR coefficient of order j at time n and �2
n is the innovation variance

at time n. Once the estimators of these parameters, aj;n and �2
n , are obtained from

data, instantaneous spectrum of nonstationary time series is obtained by substituting
the estimates to the formula of AR spectrum [7]. This time-varying AR model of
order m has n 
 m AR coefficients for n observations and thus estimation of this
model is a typical example of a new NP problem. The estimation can be realized
by introducing a proper model for time evolution of the AR coefficients such as the
k-th order random walk model for the AR coefficients with respect to time n,


kaj;n D vj;n; vj;n � N.0; �2/: (7)

Then the AR model (6) and the model for the evolution of the coefficients (7) can
be combined into a state-space model form. Therefore, by the Kalman filter and the
smoothing algorithm, we can estimate the time-varying coefficients aj;n [11].
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4 General State-Space Modeling

Although the above mentioned state-space model is very useful in time series mod-
eling, there are many situations where the linear-Gaussian state-space model is
inadequate. For such situations, generalization of the state-space model has been
proposed. Consider a nonlinear non-Gaussian state-space model for time series yn,

xn D Fn.xn�1; vn/; (8)

yn D Hn.xn; wn/; (9)

where xn is an unknown state vector, vn and wn are the system noise and the ob-
servation noise with densities qn.v/ and rn.w/, respectively. The initial state x0 is
assumed to be distributed according to the density p0.x/. Fn.x; v/ and Hn.x; w/

are possibly nonlinear functions of the state and the noise inputs. Obviously, this
model is a generalization of the linear-Gaussian state-space model considered in the
previous section.

The above nonlinear non-Gaussian state-space model specifies the conditional
density of the state given the previous state, q.xnjxn�1/, and that of the observation
given the state, r.ynjxn/. These are the essential features of the state-space model,
and it is sometimes convenient to express the model in the general form based on
the conditional distributions

xn � Qn. 	 jxn�1/; (10)

yn � Rn. 	 jxn/: (11)

Note that, with this model, it is possible to treat the discrete process as well.

4.1 Non-Gaussian Filter and Smoother

For general state-space models, the conditional distributions become non-Gaussian
and their distributions cannot be completely specified by the mean vectors and the
variance covariance matrices. Therefore, in general, the Kalman filter cannot be
applied to the general state-space model and various algorithms have been proposed
so far for state estimation [3], e.g., the extended Kalman filter and the Gaussian-sum
filter.

In particular, the following non-Gaussian filter and smoother [8] can yield an
arbitrarily precise posterior densities.

[Non-Gaussian Filter]

p.xnjYn�1/ D
Z

p.xnjxn�1/p.xn�1jYn�1/dxn�1;
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p.xnjYn/ D p.ynjxn/p.xnjYn�1/

p.ynjYn�1/
; (12)

where p.ynjYn�1/ D
Z

p.ynjxn/p.xnjYn�1/dxn.

[Non-Gaussian Smoother]

p.xnjYN / D p.xnjYn/

Z
p.xnC1jxn/p.xnC1jYN /

p.xnC1jYn/
dxnC1: (13)

However, the direct implementation of these formulas require computationally
very costly numerical integration and can be applied only to lower dimensional
state-space models.

4.2 Monte Carlo Filter and Smoother

To mitigate the computational burden, Monte Carlo (particle) methods have been
developed. In the Monte Carlo filtering [4,9], we approximate each density function
by many particles which can be considered as realizations from that distribution.
Specifically, assume that each distribution is expressed by using m (m D 10,000,

say) particles as
n
p

.1/
n ; : : : ; p

.m/
n

o
� p.xnjYn�1/,

n
f

.1/
n ; : : : ; f

.m/
n

o
� p.xnjYn/

and
n
s

.1/

njN ; : : : ; s
.m/

njN
o

� p.xnjYN /. Then it can be shown that a set of realizations

expressing the one-step-ahead predictor p.xnjYn�1/ and the filter p.xnjYn/ can be
obtained recursively as follows ([4, 9], Fig. 3):

Prediction

x
S
ta

te
 s

p
a
ce

n=n+1

resampling

X perish

X perish

Filtering

likelihood

Data yn
p(xn-1|Yn-1)

(xn
( j )=f (xn-1,vn)

p(vn)

p(xn|Yn-1) p(xn|Yn-1)p(xn|Yn)

( j ) ( j )(an
( j )=r(yn,|xn  )

Fig. 3 One step of the Monte Carlo filter algorithm
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[Monte Carlo Filter]

1. Generate a random number f
.j /

0 � p0.x/ for j D 1; : : : ; m.
2. Repeat the following steps for n D 1; : : : ; N :

(a) Generate a random number v.j /
n � q.v/ for j D 1; : : : ; m.

(b) Compute p
.j /
n D F

�
f

.j /
n�1; v.j /

n

�
, j D 1; : : : ; m.

(c) Compute ˛
.j /
n D p

�
ynjp.j /

n

�
for j D 1; : : : ; m.

(d) Generate f
.j /

n for j D 1; : : : ; m by the resampling of p
.1/
n ; : : : ; p

.m/
n .

An algorithm for smoothing is obtained by replacing the Step 2(d) of the algo-
rithm for filtering by

(d-L) For fixed L, generate


�
s

.j /

n�Ljn; 	 	 	 ; s
.j /

n�1jn; s
.j /

njn
�T

; j D 1; : : : ; m

�
by

the resampling of


�
s

.j /

n�Ljn�1
; 	 	 	 ; s

.j /

n�1jn�1
; p

.j /
n

�T

; j D 1; : : : ; m

�
with

f
.j /

n D s
.j /

njn.

This is equivalent to applying the L-lag fixed lag smoother. The increase of lag,
L, will improve the accuracy of the p.xnjYnCL/ as an approximation to p.xnjYN /,

while it is very likely to decrease the accuracy of
n
s

.1/

njN ; 	 	 	 ; s
.m/

njN
o

as representatives

of p.xnjYnCL/. Since p.xnjYnCL/ usually converges rather quickly to p.xnjYN /,
it is recommended to take L not so large, e.g., L D 30.

5 Applications of General State-Space Modeling

5.1 Automatic Change Point Detection

As a simple example of the general state-space modeling, we consider the trend
estimation with a state-space model with non-Gaussian system noise [11]:

tn D tn�1 C vn;

yn D tn C wn; (14)

where wn is a Gaussian white noise wn � N.0; �2/ but vn is not necessarily Gaus-
sian. Specifically, we consider the following two cases, vn � N.0; �2/ or C.0; �2/.
The parameters of the model, �2 and �2 can be estimated by the maximum likeli-
hood method.

Figure 4 shows the marginal posterior distributions of the smoother with Gaus-
sian noise (left) and Cauchy noise (right) models, respectively [11]. The estimates
by the Gaussian model is wiggly and cannot clearly detect the jumps. On the other
hand, by the Cauchy noise model, the jumps of the trend are clearly detected and
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Fig. 4 Posterior distributions of the trend component. Left: Gaussian model, Right: Cauchy model

the estimated trend between the jumps is very smooth. This example shows that
by properly selecting the noise distribution, the jump of the trend, and structural
changes in general, can be detected automatically.

5.2 Nonlinear Filtering and Smoothing

The Monte Carlo filtering and smoothing algorithm can be used for filtering and
smoothing for nonlinear state-space model. A test data was generated by the non-
linear state-space model [11]

xn D 1

2
xn�1 C 25xn�1

x2
n�1 C 1

C 8 cos.1:2n/ C vn;

yn D x2
n

10
C wn; (15)

where yn is the observation, xn is unobservable state and vn � N.0; 1/, wn �
N.0; 10/, v0 � N.0; 5/. Here, we consider the problem of estimating the unknown
state xn based on 100 observations, yn, n D 1; : : : ; 100. Because of the nonlinearity
and the sinusoidal input in the system model in (15), the state xn occasionally shift
between the positive and negative regions. However, since in the observation model,
the state xn is squared, and the x2

n contaminated with an observation noise wn is
observed, it is quite difficult to discriminate between positivity and negativity of the
true state.

It is well-known that the extended Kalman filter occasionally diverges for this
model. Figure 5 shows the posterior distributions p.xnjYm/ for m D n � 1; n; n C 1

and n C 2, obtained by the Monte Carlo filter and smoother. Two cases for n D 30

and 43 are shown. It can be seen that by the nonlinear filtering, the predictive
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Fig. 5 Fixed point smoothing for n D 30 (left) n D 43 (right). From top to bottom: predictive
distributions, filter distributions, 1-lag smoothers and 2-lag smoothers (from [12])
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Computing
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Data centric
science

Data

assimilation
merge

Fig. 6 Data assimilation

distributions and filter distributions are usually bimodal, and that as the observations
increases in smoothing, the distributions converge to either positive or negative side.
On the other hand, the extended Kalman filter approximates the distribution by a sin-
gle Gaussian distribution, and thus cannot yield the sudden jump of the distributions.

5.3 Data Assimilation

Data assimilation emerged in the field of global simulation in meteorology and
oceanography. In ordinary global simulation, “simulation model” is solved numer-
ically under properly specified initial condition and boundary condition. However,
in actuality, the model, the initial condition, the boundary condition and even the
phenomena themselves contain various uncertainty. On the other hand, recently be-
cause of the development of ICT, huge amount of data are obtained from various
sensors such as satellite. The data assimilation is a methodology to integrate simu-
lation model and observed data. By the integration of two types of information, or
two types of methodologies, we expect that we will be able to improve the model
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and the simulation (Fig. 6). The data assimilation is becoming popular not only in
earth science, but also in the areas of space science and life science, etc.

Typically the data assimilation can be realized by using the general state-space
model with nonlinear system model and linear observation model

xn D F.xn�1; vn/;

yn D Hxn C wn: (16)

Therefore, the data assimilation problem can be handled within the framework of
the general state-space model. Significant difference from other problems is the di-
mension of the state and the observation. In a typical problem, the dimensions of
the state xn and the observation yn are 104 � 106 and 102 � 105, respectively. So
the computational difficulty occurs in the application of the filter and the smoother
and various modified algorithms such as the ensemble Kalman filter and the merging
particle filter are developed [14].

5.4 Self-Organizing State-Space Modeling

In this subsection, we consider a method of simultaneous estimation of the state xn

and the unknown parameter � of the state-space model. To realize the simultaneous
estimation, we define an augmented state vector as

zn D
	

xn

�



: (17)

Then the state-space model for this augmented state vector zn is given by

zn D F �.zn�1; vn/;

yn D H �.zn; wn/; (18)

where the nonlinear functions F �.z; v/ and H �.z; w/ are defined by F �.z; v/ D
ŒF .x; v/; �	T , H �.z; w/ D H.x; w/.

Assume that we obtain the posterior distribution p.znjYN / given the entire ob-
servations YN D fy1; 	 	 	 ; yN g. Since the original state vector xn and the parameter
vector � are included in the augmented state vector zn, it immediately yields the
marginal posterior densities of the parameter and of the original state. It was a com-
mon understanding that “Although this extended Kalman filter approach appears
perfectly straightforward, experiences has shown that with the usual state-space
model, it does not work well in practice” [3, p. 284]. However, by using precise
nonlinear filter and smoother, we can actually perform simultaneous estimation of
the state and the parameters [10].
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This method of Bayesian simultaneous estimation of the parameter of the
state-space model can be easily extended to a time-varying parameter situation
where the parameter � D �n evolves with time n. Also, if the self-organizing state-
space model is implemented by the Monte Carlo filter, the original formulation
of the self-organizing state-space model without system noise for the parameter
does not work well in practice. In this case, inclusion of the system noise enables
application of the Monte Carlo filter/smoother [10].

5.5 Semi-Markov Switching Model

In the analysis of economic or financial time series, we sometimes notice the trend
switches from upward to downward and vice versa. Obviously for such series, the
ordinary stochastic trend model such as the random walk model is inappropriate.
Markov switching model has been investigated extensively for such cases [6]. How-
ever, in many cases, once the switching occurs it usually stay in the regime for a
while. This phenomenon cannot be properly expressed by a simple Markov chain.
The semi-Markov switching slope model is developed to cope with this problem.

Consider a model for time series yn, yn D tn Cwn, where tn is an unknown trend
component and wn is a Gaussian observation noise with mean 0 and the variance
�2. We assume that the trend component can be expressed as tn D tn�1 C 
tn. The
distribution of the slope 
tn .D tn � tn�1/ depends on its previous value 
tn�1 and
a bivariate Markov chain Sn. In the semi-Markov switching model, the switching
(transition) occurs according to a probability distribution Pk . Here k is the sojourn
(duration) time in the new regime. If K is the realization of the distribution Pk at
time n, then we have Sn D SnC1 D 	 	 	 D SnCK and

p.SnCk D i jSnCk�1 D 	 	 	 D Sn D j / D pij: (19)

The semi-Markov chain does not possess the Markovian property but the semi-
Markov switching model can be expressed in general state-space model form by
defining the state vector as xn D .tn; 
tn; Sn; Rn/T , where Rn denotes the time that
the semi-Markov chain has stayed in the current regime since the previous switch-
ing. The transition of Rn is given by

Rn D



0 with probability ˇ�1PRn�1C1;

Rn�1 C 1 with probability 1 � ˇ�1PRn�1C1;
(20)

where ˇ D P1
j DRn�1C1 Pj .

As a parametric model for the sojourn time probability, we may, for example, use
the negative binomial distribution (Fig. 7)

PkC`.`; p/ D
�

k C ` � 1

k

�
pk.1 � p/`: (21)
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Fig. 7 Distribution of
switching time by the Markov
model and semi-Markov
model
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Fig. 8 Regime switching estimated by the semi-Markov switching model: from top to bottom,
observed IIP data, estimated slope and the posterior probability of the upward and downward
regimes

Under these assumptions, we can define the joint conditional distribution of the state
xn given xn�1, and therefore define a general state-space model.

Note that Pk.`; p/ D 0 for k D 0; : : : ; `. In the ordinary Markov switching
model, the probability of sojourn time k is given by pk

jj .1 � pjj / if S0 D j . There-
fore the probability of sojourn time is a monotone decreasing function of time k. On
the other hand, that of the semi-Markov process with the negative binomial distri-
bution attains its maximum at k D P �1

0 .` � 1/.
Figure 8 shows the original IIP (index of industrial production) series and

the posterior mean of the trend, EŒtnjN 	, (top plot), the posterior mean of the
slope, EŒ
tnjN 	, (middle plot), and the posterior mean of the semi-Markov chain,
EŒSnjN 	, respectively. Vertical lines show the switching times detected from the es-
timated slope and the mean of the semi-Markov chain, respectively. The gray lines
indicate the detected depression periods.
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Symbolic Shadowing and the Computation
of Entropy for Observed Time Series

Diana A. Mendes, Vivaldo M. Mendes, Nuno Ferreira, and Rui Menezes

Abstract Order, disorder and recurrence are common features observed in complex
time series that can be encountered in many fields, like finance, economics, bi-
ology and physiology. These phenomena can be modelled by chaotic dynamical
systems and one way to undertake a rigorous analysis is via symbolic dynamics, a
mathematical-statistical technique that allows the detection of the underlying topo-
logical and metrical structures in the time series. Symbolic dynamics is a powerful
tool initially developed for the investigation of discrete dynamical systems. The
main idea consists in constructing a partition, that is, a finite collection of disjoint
subsets whose union is the state space. By identifying each subset with a distinct
symbol, we obtain sequences of symbols that correspond to each trajectory of the
original system. One of the major problems in defining a “good” symbolic descrip-
tion of the corresponding time series is to obtain a generating partition, that is, the
assignment of symbolic sequences to trajectories that is unique, up to a set of mea-
sure zero. Unfortunately, this is not a trivial task, and, moreover, for observed time
series the notion of a generating partition is no longer well defined in the presence of
noise. In this paper we apply symbolic shadowing, a deterministic algorithm using
tessellations, in order to estimate a generating partition for a financial time series
(PSI20) and consequently to compute its entropy. This algorithm allows producing
partitions such that the symbolic sequences uniquely encode all periodic points up
to some order. We compare these results with those obtained by considering the
Pesin’s identity, that is, the metric entropy is equal to the sum of positive Lyapunov
exponents. To obtain the Lyapunov exponents, we reconstruct the state space of the
PSI20 data by applying an embedding process and estimate them by using the Wolf
et al. algorithm.
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1 Introduction

There are several phenomena in the surrounding world that simply we cannot
explain, or then we are able explain only parts of its observed behavior. This
is because nature is neither regular nor easily predictable due to its extreme
complexity.

The basic idea of classical complexity was to differentiate between regular,
chaotic and stochastic behavior. Nowadays, there are several techniques and
algorithms to distinguish between the main characteristics of these dynamic pro-
cesses. Chaos is a technical word which intends to describe an extremely complex
and irregular structure in time and space, in a fully deterministic dynamic frame-
work. The complexity of the dynamics in a chaotic model arises from within the
very internal structure we are modelling. On the contrary, in a stochastic process, its
dynamics and the associated potential complexity has nothing to do with its internal
structure but with the external random part that is added to the model, and therefore
the deterministic component of such models has an irrelevant role to play in the
underlying dynamics.

There are few similarities between these two kind of processes and the most ob-
vious and tricky one is to be found in the geometry of the time series associated with
each process. However, by placing stochastic and deterministic processes under the
same analytical framework, the researchers have established a connection between
the two scientific areas, which were usually regarded as mutually exclusive and, as
a consequence, they may obtain more powerful models to analyze reality.

In the fields of finance and economics, there is widespread evidence that non-
linear dynamics should play a significant role in generating the data that we are
able to observe. For example, why there are systematic financial bubbles despite the
lack of any credible big shock that would explain those bubbles in a fully stochas-
tic framework? Or as Cochrane [9] argues in a classic paper “we haven’t found
large, identifiable, exogenous shocks to account for the bulk of output fluctuations”
(p. 296).

In the last years, the application of tools from nonlinear analysis, in particular
from chaos theory, to the study of complex economic and financial time series,
seems to be quite relevant and has generated extensive research programs (see
[1,6,7,23,30,34,37–39], among others). In particular, chaotic dynamics can provide
appealing techniques for the analysis of financial time series, not only because both
systems exhibit irregular and apparently random behavior, but also because financial
data is largely available even in extremely high frequencies. However, before exam-
ining the data with the purpose of searching for deterministic nonlinear dynamics,
one should note that while chaotic systems are typically low dimensional, financial
markets may be characterized as high dimensional structures. With the main aim
focused on understanding the complexity associated with financial markets, it is im-
portant to carefully analyze the basic structures of the data and to have significant
contextual knowledge of the evolution of the markets over time, in order to take into
account possible complementary information (e.g., a major shock that has occurred
in a particular point in time).
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It is well known that topological and metric invariants like entropy, Lyapunov
exponents, information and correlation dimensions, are fundamental in the local and
global characterization of the behavior of a nonlinear dynamical system. Many of
these invariants are related to each other. For example, the Lyapunov exponents are
related to the Kolmogorov–Sinai entropy via the Pesin identity, and the information
dimension and Lyapunov exponents seem to be related (at least under some con-
ditions) through the Kaplan–Yorke conjecture [25]. On the other hand, the entropy
which is considered one of the most powerful invariant was already successfully ap-
plied to quantify information and uncertainty in financial data (see, e.g. [11,12,31]).

The relationship between Shannon and Renyi entropies and the generalized cor-
relation integral has also been pointed out by a number of authors [28, 36]. It was
demonstrated that, by using this relationship, more accurate estimates of many
information theoretic statistics can be obtained, as compared to conventional box-
counting methods.

Time-delay embedding theorem [40] is a remarkable and very useful result, that
can be applied to time series, in order to obtain information about the underlaying
dynamics and to estimate some invariants. The former works very well when data
has a significant deterministic component. When data is noisy these measures and
invariants are often difficult to compute. The method of surrogate data [24, 38] has
been proposed as a sanity check on these estimates. Surrogate data may be applied
to confirm that the estimates of the dynamic invariants obtained from the data are
distinct from what one would obtain from linear noise processes. By doing this, we
can be sure that the data is not linear noise, and also that the obtained value for
the correlation dimension (for example) is an accurate measure of the deterministic
nonlinearity exhibited by the data.

More recently, the techniques and ideas of symbolic dynamics [29] have also
found significant applications. The theory of symbolic dynamics arose as an attempt
to study systems by means of discretization of space and time. The basic idea is to
divide the set of possible states into a number of pieces. Each piece is associated
with a symbol, and in this way the evolution of the system is described by a sequence
of symbols. This leads to a symbolic dynamical system that helps us to understand
the dynamical behavior of the original system.

The paper of Milnor and Thurston [33] sets up an effective method for describing
the qualitative behavior of the successive iterates of a piecewise monotonic map and
has been applied with significant success to the study of one-dimensional difference
equations. A properly constructed symbolic dynamics, being a coarse-grained de-
scription, provides a powerful tool to capture global and topological aspects of the
dynamics. The success of symbolic dynamics depends on how the coarse-graining
is performed on the partition of the phase space and significant efforts were concen-
trated on the question of choosing an adequate partition [4, 13, 17, 21, 26].

When we already have a generating partition and in consequence a trustful sym-
bolic dynamics, by using the ordering of the symbolic sequences, we can easily
locate all allowed periodic orbits up to a certain order. Over the last few years, sev-
eral papers have been devoted to provide some generalization of these techniques
to two-dimensional dynamics with some success [10, 17, 32]. This extension from
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one-dimensional to two-dimensional maps is by no means trivial, and there are
several open problems related to this subject. Nowadays, symbolic dynamics rep-
resents a rapidly growing and essential part of dynamical systems theory, and can
be also encountered in nonlinear data analysis, in particular reflected in several ap-
plications in scientific areas, such as, physiology, engineering, economy and biology
(see [3, 22, 23, 37, 39, 41], among others).

The concept of shadowing [27,35] is of great importance when one wants to ver-
ify, in a rigorous mathematical sense, the existence of complicated behavior detected
via numerical experiments. The shadowing problem is that of finding a determinis-
tic orbit as close as possible to a given noisy orbit. Farmer and Sidorowich [15]
presented an optimal solution to this problem in the sense of least-mean-squares,
which also provides an effective and convenient numerical method for noise reduc-
tion for data generated by a dynamical system. More recently, Hirata et al. [21] have
combined symbolic dynamics and shadowing in order to obtain a very powerful
algorithm to detect a generating partition from a time series.

In the remain of the paper we study the Portuguese Stock Index (PSI20) data with
the purpose of detecting whether determinism can be accepted as a fundamental
ingredient of the time series. We begin by performing some descriptive statistics of
the data and then we embed the scalar time series in order to obtain the attractor
of the underlying dynamics. We employ the Hirata et al. [21] algorithm to search
for a good partition of the reconstructed phase space to be used when defining the
symbolic dynamics for the data. Finally, we numerically compute the entropy, as
the sum of the Lyapunov exponents and as defined by the frequency of patterns in
the symbolic sequences.

2 Symbolic Dynamics and Shadowing

In what follows, suppose that we observe a noisy time series fyt g ; t D 1; 2; : : : ; N;

that can be decomposed as
yt D xt C nt ;

where xt is the desired (or deterministic) part of the series and nt is the noise. The
main objective is to get rid off the noise; that is, instead of considering the noisy
signal yt , we wish simply to highlight the pure signal xt : Furthermore, we assume
that the time series fxt g is a trajectory of a known (or unknown) invertible dynamical
system f , i.e.,

xtC1 D f .xt / ;

and the noise fnt g might also be a trajectory of a different dynamical system g:

We have now that the noisy orbit yt evolves according to a mixture of known (or
unknown) deterministic dynamics and noise, with a dynamic equation defined by

yt D f .xt / C � nt :
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In this case we call the noise as dynamical noise, since it is coupled to the dynamics.
The noise due to measurement errors that are independent of the dynamics are called
observational noise. We intend to find a deterministic orbit xtC1 D f .xt / that stays
close to yt ; or in other words, a deterministic orbit that shadows the noisy orbit.

The problem of shadowing and noise reduction are closely related. On one hand,
shadowing is not a noise reduction problem de per se, since the shadowing orbit x

is an artificial construction. On the other hand, if once we have found the former we
can trivially write

yt D xt C Qnt ;

where Qnt D yt �xt is the effective noise. Conversely, if we intend that observational
noise is dynamical noise, then the true orbit x is automatically a shadowing orbit.

The shadowing property of dynamical orbits (periodic and chaotic) was inves-
tigated by many authors (see [15, 19, 20, 27, 35] and references therein) but was
initially proved by Anosov [2] and Bowen [5]. Assume that f is everywhere hyper-
bolic, and the noise is bounded, i.e., knt k < ", where " > 0: Anosov and Bowen
demonstrated that for every ı > 0 there is an " such that every noisy orbit yt of f is
shadowed by an orbit xt with kyt � xt k < ı for all t: The Anosov–Bowen construc-
tion depends on the fact that stable and unstable manifolds are never parallel where
they intersect. The distance between two trajectory segments xt and yt is defined as

D .x; y/ D
vuut 1

N

NX

tD1

kyt � xt k2;

where kyt � xt k is the Euclidean distance between the vectors xt and yt :

Recently, some generic results about of the periodic orbital shadowing property
in the space of discrete dynamical systems of a compact topological manifold of
dimension at least 2 have been presented [27], and so we may give a valuable guar-
antee for the applicability of this method to the embedded data. The shadowing
property is of great importance to the problem of verifying, in a rigorous mathemati-
cal sense, the existence of complicated behavior detected via numerical experiments.

In most practical applications, f is unknown and must be learned directly from
the data. We begin by embedding the data in a state space and then attempting to
approximate the graph of a function that maps present states into future states. We
use an iterative procedure: first we approximate f and apply the noise reduction
algorithm, and then approximate f again using the smoothed data, repeating this
until the results stop to improve. If we use a sufficiently large approximation neigh-
borhood, the learned representation of f averages over the behavior of neighboring
points, providing an initial noise reduction. Application of the noise reduction al-
gorithm averages together points from other regions as well, including those from
distant parts of the state space, thus amplifying the initial noise reduction (for more
technical details see for example [15]). The ability to reduce noise is ultimately
limited by the accuracy of the approximation to the true dynamics of f: Nowadays,
performing software and trustful algorithms in discrete dynamical system are mainly
based on the shadowing property, when searching for orbits in models and data.
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The theory of symbolic dynamics [29] is a powerful tool for the investigation
of discrete dynamical systems and time series, more recently see e.g. [3, 4, 6, 41].
Symbolic time series analysis involves the transformation of the original data into
a sequence of discretized symbols that are processed to extract useful information
about the state of the system that generates the process. The application of symbolic
time analysis requires a partition of the signal, that is, a finite collectionP of disjoint
subsets whose union is the state space. The choice of a partition is the starting point
to symbolize the original time series data. If we identify each A 2 P with a unique
symbol, then, we have a sequence of symbols that correspond to each trajectory of
the original system – the sequence is produced as the evolving state visits different
regions of the partition. This idea is extremely powerful when the partition is chosen
to be a generating partition, that is, when the assignment of symbol sequences to
trajectories is unique, up to a set of measure zero.

As might be expected, to find a generating partitions is a very difficult task. When
the dynamical system is defined by a known map, there are methods to find gener-
ating partitions by using primary tangencies and also by considering the unstable
periodic orbits [10, 13, 17, 18, 25]. In cases where the dynamical system is not fully
known, for example, in cases where only a time series of observations is available,
there appears to be no general methods for obtaining a generating partition. A sub-
optimal partition induces improper projections or degeneracies [4], where a single
observed symbolic orbit may correspond to more than one topologically distinct
state space orbit. This leads to finding the wrong topological entropy, because some
distinct transitions are improperly merged. In short, under these circumstances there
is no satisfactory general theory saying how to find a generating partition, except for
one dimensional maps where the partition is defined by the critical points (minima,
maxima, or discontinuities).

However, Kennel and Buhl [26] have recently proposed a method for finding a
generating partition from a time series which uses symbolic false nearest neighbors
to localize the region specified by a finite block of symbols and Hirata et al. [21]
presented a method for estimating a generating partition from a time series were
they approximate the generating partition by tessellations of state space and use
certain fundamental properties of generating partitions observed by Eckmann and
Ruelle [13].

In what follows, we describe the symbolic shadowing process presented by
Hirata et al. [21]. Let f W X ! X be a continuous map defined in X � R

n:

For any initial condition x0 2 X; the iterations of the map f .x0/ give way to a
unique discrete trajectory

: : : ; x�1; x0; x1; : : : 2 X;

satisfying xtC1 D f .xt /. We suppose that P is a partition of the phase space
X and A is the alphabet associated with the partition P , where A consists of n

symbols if the partition has n subsets. To any numerical trajectory (time series)
: : : ; x�1; x0; x1; : : : 2 X we can associate a symbolic sequence : : : s�1s0:s1s2 : : : ,
where st D � .xt / and � W X ! A. Moreover, since the initial point determines the
symbolic sequence, we can define another map ˚ W X ! AZ , which assigns to x0

the symbolic sequence ˚ .x0/ D : : : s�1s0:s1s2 : : :. We define the fullshift
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AZ D ˙n D f: : : s�1s0:s1s2 : : : where si 2 Ag

to be the set of all possible infinite symbolic strings of symbols from the alphabet A.
Then, any given infinite symbolic sequence is a singleton in the fullshift space. The
map � W AZ ! AZ is called the shift map and is defined by

� .: : : s�1s0:s1s2 : : :/ D : : : s�1s0s1:s2 : : : :

In general, not all symbolic sequences correspond to the trajectory of an initial
condition x0: Restricting the shift map to a subset of ˙n consisting of all the
itineraries that are realizable, yields the subshift ˙ � ˙n: It can be observed that
˚ .f .x0// D � .˚ .x0// ; and we say that P is a generating partition if ˚ is one-
to-one, that is, the original dynamics and the symbolic dynamics are conjugate. So,
the key is to choose a partition where neighbors in the symbolic representation are
neighbors in continuous state space. To do this we need to define what we mean
by neighbors in the symbolic space and then optimize the partition to satisfy this
criterion as best as possible.

The Hirata et al. [21] algorithm defined to find a generating partition is presented
below (for further details we refer to the same paper):

(1) Prepare an initial partition and find unstable periodic points from a time
series. Assign to each unstable periodic point a substring of length l of type
SŒ�m;n� D S�mS�mC1 : : : S�1:S0S1 : : : Sn, m D Œl=2	 and n D Œ.l � 1/ =2	; over
alphabet A so that the unstable periodic points are encoded uniquely. Let each un-
stable periodic point be the representative1 rSŒ�m;n�

of the substring SŒ�m;n� 2 Al .
(2) For each observed point xt , find its closest representative rS�mS�mC1:::S�1

:

S0:::Sn
. Then make st to be S0.

(3) Classify xt depending on its substring sŒt�m;tCn�, and let

CS D ˚
xt W sŒt�m;tCn� D S; m C 1 � t � N � n

�
:

Set CS as the set of points whose currently allocated substring is S .
(4) For each substring S 2 Al , update its representative:

rS D
X

y2CS

y

jCS j :

1 The representatives can be chosen so that

sup
x2X

��x � r˚Œ�k;k	.x/

�� ! 0; k ! 1;

where ˚Œ�k;k	 .x/ is the set of all possible subsequences of length 2kC1 and ˚ is localizing, that is

sup
z

diam
�
˚�1

Œ�k;k	
.z/
�

! 0; k ! 1:

Following Eckmann and Ruelle [13], localizing is a sufficient condition for P being a generating
partition.
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(5) Return to step (2) until the set of representatives and the symbolic sequence
are no longer subject to change, or until they cycle.

(6) Increase the length of the substrings by l ! l C 1; m ! Œl=2	 and n !
Œ.l � 1/ =2	. Return to step (3) until a stopping criterion is achieved.2

The partition is approximated by tessellating state space with representatives,
that is, points in state space, each of which has a distinct substring of a certain
length. Using this scheme, Hirata el al. [21] stated the problem of finding a generat-
ing partition as finding the minimum discrepancy between a series of points in the
data and one specified by a symbol sequence and representatives. By solving this
minimization problem approximately, using an iterative algorithm, an estimate for a
generating partition can be found.

If the dimension of embedding is high, it is advisable to keep some doubts about
the geometry of the generating partition. In this case, and in other inconclusive cases,
we can symbolize the data directly from the original time series, choosing the par-
tition in the state space of the given signal by trial and error. Several approaches
have been used to symbolize the time series (see [6, 41]), and the most common
approach is to divide the time series in two bins and assign the value 1 or 0 to each
bin according to its occurrence.

Given a time series xt the approach to transform the time series into symbols
may be:

st D
(

1 if xt � threshold;

0 if xt < threshold;

or may be defined like

st D
(

1 if jxtC1 � xt j � threshold;

0 if jxtC1 � xt j < threshold;

or by many other ways, depending on data, partition and context (see, e.g. [41]
and [3]).

After symbolization, the next step is the construction of symbolic strings from
the series by collecting groups of symbols together in temporal order. This pro-
cess typically involves a definition of a finite-length template that can be moved
along symbolic series one step at a time, each step revealing a new sequence.
If each possible sequence is represented in terms of a unique identifier, the end
result will be a new time series often referred to as a code series.

2 The algorithm can be stopped when the length of substrings reaches a certain length, or when the
discrepancy is sufficiently small.

The discrepancy is defined by

N �nX

iDmC1

���xi � rsŒi�m;iCn	

���
2 ı

.N � m � n/:
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However, for the analysis of financial time series a more pragmatic approach is
required. A main problem is to find an appropriate transformation into symbols.
It has to be chosen in context-dependent and in this way some information about the
system is lost, however, the coarse graining of the behavior can be analyzed. For this
reason, some measures of complexity can be developed n the basis of such context-
dependent transformations, which have a close association to economic phenomena
and are relatively easy to interpret.

Symbolic sequence analysis depends on quantitative measures of symbolic string
frequencies. These measures can be based on information theory. The information
theoretic measures of the symbolic sequence analysis include Shannon and general-
ized Renyi entropy of order q and are defined, respectively, as

H D �
X

pi log2 pi and H q D � 1

1 � q
log2

X
p

q
i ;

where p is the histogram of the symbolic sequence frequencies and q ¤ 1 is a real
number: Usually we can estimate information theoretic measures by using empirical
probabilities, but these estimates are affected by random error in numbers and also
by a systematic error or bias.

Let x D fxi ; i D 1; : : : ; N g be a given time series that can be transformed into a
symbolic sequence

s˛ D fs˛
i ; i D 1; : : : ; N g

having a fixed number of ˛ values, labelled from 0 to ˛ � 1: By using quantization
level 2 (symbols 0 and 1) the original time series can be transformed into a symbolic
sequences defined by

s˛ D
8
<

:

1 jxi � Nxj � �;

0 jxi � xj < �;

where � is the threshold and Nx is the mean value of the time series. The symbolic
sequence can be divided to make word sequences (blocks) of length L of three or
more symbols

s˛
L;i D ˚

s˛
i ; s˛

i�1; : : : ; s˛
i�LC1

�
:

Finally, the code series is generated as

wi D
n
s˛

i ˛L�1; s˛
i�1˛L�2; : : : ; s˛

i�LC1˛0
o

:

For a symbolic sequence of length L the number of all possible words is ˛L;

where ˛ is the quantization level.
Shannon entropy of order L is defined by

SE .L; ˛/ D �
X

p
�
s˛

L

�
log2 p

�
s˛

L

�
;
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where p
�
s˛

L

�
is the probability of s˛

L being the pattern. The Corrected Shannon
Entropy [14] can be obtained as

CSE .L; ˛/ D SE .L; ˛/ C CR � 1

2M ln 2
;

where M is the total number of words and CR is the number of occurring words
among all possible words. The value of Corrected Shannon Entropy will be maxi-
mum for a certain word length L and quantization level ˛ when all M words occur
with a uniform distribution in a data series. Hence, it will be given by

CSEmax .L; ˛/ D � log2

�
1

M

�
C M � 1

2M ln 2
:

Since it is not possible to compare two values of the Corrected Shannon Entropy for
two different word length at same threshold level, one can introduce the Normalized
Corrected Shannon Entropy for such purpose, that is:

NCSE .L; ˛/ D CSE .L; ˛/
�� log2

�
1

M

�C �
M�1

2M ln 2

�� :

The value of Normalized Corrected Shannon Entropy will vary between 0 to 1 for
any word length and quantization level.

The word length L is important in unfolding the dynamics of the system in the
underlying time series. By quantizing the same time series and dividing the former
into a sequence of symbols of a certain word length, one can get a coarse grained
description of the system. Using word length L is similar to embed the time series
in L dimensions. As the word length is increased, one can obtain a larger degree
of complexity based on the larger size of patterns in the time series. In order to get
the best estimate of complexity, the size of word length should be optimized. But
the selection of the optimal word length is constrained by the number of data points
available in the data, and, as a consequence, the size of word length L should be
much smaller than the total number of data points N in the time series.

3 Data

The time series considered in this paper is given by the Portuguese Stock Market
Index (PSI20) and consist of 4,789 daily observations; 5 days per week (see Fig. 1),
from February 1990 to December 2008. The data was taken from DataStream and
it is clearly non-stationary, with high skewness and kurtosis, and non-normal distri-
bution, as can be observed from Fig. 2. By considering the log-difference data, the
time series became stationary and its shape is also illustrated in Fig. 1.
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Fig. 1 The time series corresponding to the Portuguese Stock Market Index and to the log-
difference data
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Fig. 2 Descriptive statistics of the Portugal Stock Market Index time series

The BDS test was first defined by Brock, Dechert and Scheinkman in 1987 [8]
and is a powerful tool for detecting serial dependence in time series. The BDS
statistics tests the null hypothesis of independent and identical distribution (i.i.d.)
in the data against an unspecified departure from i.i.d. A rejection of the i.i.d. null
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hypothesis in the BDS test is consistent with some type of dependence in the data,
which could result from a linear stochastic system, a nonlinear stochastic system, or
a nonlinear deterministic system. Under the null hypothesis, the BDS test asymp-
totically converges to a standard normal distribution. The BDS statistics cannot test
chaos directly, only nonlinearity, provided that any linear dependence has been re-
moved from the data.

For our time series, the BDS statistics clearly shows that there is no linear depen-
dence in the data (see Fig. 3). We applied the BDS test to our data for embedding
dimensions of m D 2; 3; 4; 5 and 6. We use the quantiles from the small sample
simulations reported by Brock et al. [8] as approximations to the finite-sample criti-
cal values of our BDS statistics. The i.i.d. null hypothesis is rejected in all cases for
yield changes.

All testes and numerical analysis were initially done for the original non-
stationary data and later extended to the log-difference data. We would like to stress
that all the initial parameters and the algorithms implemented are the same for the
original and for the log-difference data.

Fig. 3 BDS statistics for Portuguese Stock Market time series
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4 Numerical Results

The study of a irregular signal measured experimentally represents in most cases a
serious challenge to the analyst. These signals are more difficult to model than reg-
ular ones, and, if a prior model exists, we have to be very careful when comparing it
to the data. Moreover, we should not expect that the output of the model should nec-
essarily conform exactly with the observed data. Usually, for observed time series,
instead of proceeding to a direct comparison, we should reconstruct the underlying
dynamics from the scalar data, and later, compare the obtained output to the model
if this is available.

The first step, before trying to find a partition, is to choose a proper embedding
space for the time series. If the embedding dimension de is not correctly chosen,
then a generating partition may not be found. For example, if de is chosen too low,
then we will have a large number of false nearest neighbors in the state space (further
details in [1]). These false neighbors are part of different regions of the attractor
and thus should have completely different symbolic sequences. Therefore, the map
defined from the state space to the symbolic space is no longer a homeomorphism
and the methods for finding a good partitions will fail.

Let fxt gtD1;2;:::;N be a time series of scalar observations. According to the
Takens embedding theorem [40], we can determine an embedding dimension de

and reconstruct the vector time series fzt gtD1;2;:::;N: of N points with

zt D �
xt ; xt�1; xt�2; : : : ; xt�.de�1/�

�
;

where � is the time lag (delay). The time lag was introduced with the purpose of ob-
serving, for example, the noise level in the time series and to avoid the perturbations
in the dynamics. In ideal conditions, it has been shown that for de and � sufficiently
large, the evolution of zt is topologically equivalent to the underlying dynamic flow
[1,40]. A flow itself is not topologically conjugate to a symbolic dynamics; rather it
is some embedded map, such as a Poincaré map or a constant time-step map, that is
topologically conjugate to a symbolic dynamics.

In order to capture the nonlinear correlations, and in particular the optimal time
lag, � , we use the first local minimum of the mutual information function [16] I.T /;

which is defined by

I.T / D
X

P.xt ; xtC� / log 2
P.xt ; xtC� /

P.xt /P.xtC� /
;

and where, P.xt ; xtC� / is the probability of observing xt and xtC� , and P.xt / is
the probability of observing xt .

Further, we use the method of false nearest neighbors to obtain the embedding
dimension. This method is based on the idea that the vectors can be very close if a
small embedding dimension is considered. Thus, the embedding dimension is esti-
mated as the lowest value of de for which the number of neighbors remains constant
[1]. This criterion gives a correct value of de if the data follows deterministic chaotic
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dynamics, but if the time series correspond to a stochastic process then the size of
the embedding can be very large unless the system presents low correlations.

We can also determine the minimum embedding dimension by measuring some
invariants on the attractor. This alternative method consists in increasing the em-
bedding dimension, de; used for the computation until we note that the value of the
invariant stop changing.

Figures 4 and 5 illustrate the embedding process and the reconstructed attractor
for the original data and for the stationary log-difference time series. The embedding
dimension is given by the first kink in the graphic (Cao method), namely de D 3 in
both cases (we also analyzed the case de D 2 and 4 for the two time series). The
optimal time delay, estimated as the first local minimum of the mutual information
function, is � D 10 for the first time series and � D 7 for the second. Therefore,
one can easily conclude that the data in our case obeys to some of the fundamental
characteristics of nonlinear deterministic processes, since the embedding dimension
of the reconstructed space is low and the attractors are limited in a small region of
the phase space.

Two other major features which have emerged as classifiers of determinis-
tic dynamical systems are the fractal dimensions (information and correlation
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Fig. 5 Embedding dimension, reconstructed attractor and Lyapunov exponents for the log-
difference stationary time series

dimensions) and the Lyapunov exponents. Fractal dimensions are representative for
the geometric shape of the attractor and are related to the way the points on the
attractor are distributed in the de-dimensional space. Lyapunov exponents show
how orbits on the attractor move apart (or together) under the evolution of the
dynamics and can be numerically approximated by using, for example, the Wolf
et al. algorithm [42].

In our case, the largest positive Lyapunov exponent was estimated as the slope
of the curve in the lower right-hand panel of Figs. 4, 5 and was given by 0.19 for
the original data and 0.89 for the log-difference data. This suggests that we are in
the presence of sufficient conditions to accept (under some confidence) the evidence
of chaotic motion in the underlying dynamics of the financial time series under
discussion [1, 42].

The time series exhibits a complex structure and the reconstructed attractor is
limited, and looks as strange enough. For given r , we obtain the correlation integral
value based on the following formula

C .r; m/ D 1

N .N � 1/

NX

i;j D1.i¤j /

�
�
r � ��zi � zj

���;
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where � is the Heaviside function

� .y/ D



0 if y < 0;

1 if y > 0;

zi is a phase point in the de-dimensional embedding space and r is a critical distance
between two phase points. The correlation integral measures the fractions of pairs
of points that are closer than ": Then, the correlation dimension is given by

D2 D
ˇ̌
ˇ̌ ln .C2 .r; de//

ln .r/

ˇ̌
ˇ̌

and captures the power-law relation between the correlation integral of an attractor
and the neighborhood radius of the analyzed hyper-sphere.

The embedding dimension de is not increased until de is up to dec (the saturation
embedding dimension), and

D2 .dec/ D D2 .dec C 1/ D D2 .dec C 2/ D 	 	 	 :

Hence, we have that D2 D D2 .dec/ and then the value D2 .dec/ is the correspond-
ing fractal dimension of the attractor. If dec does not reach the saturation level,
then D2 .dec/ ! 1; which means that no attractor exists, and then the time series
should be considered as produced by a stochastic process. If D2 .dec/ is up to sat-
uration, then we would be dealing with a chaotic system. Moreover, a non-integer
correlation dimension is a necessary condition for chaos.

The scaling of the correlation dimension is represented in Fig. 6. By using the
Takens estimator, we obtain the following fractional correlation dimension (correla-
tion sum approach) for the original and log-difference time series: D2 D 1:6977 and
D2 D 2:8103 respectively. In order to check the dimension of the embedding, the
Takens estimator about the correlation dimension (D2) was computed. The choice of
the minimum embedding of the signal occurs when the fractal dimension saturates
for increasing the embedding. The values of de estimated by both methods are very
similar (we recall that we initially found de D 3). Moreover, Fig. 6 reveals deriva-
tive correlation sum curves very close up to medium-larger scales (log r > �3:0

and log r < 0), and slightly different for low scales (log r < �3:0/.
The algorithm proposed by Hirata et al. [21] gives useful results for noisy time

series. Comparing different kinds of symbolic transformations, we found that the
strategy of two symbols (0 and 1), as explained above, is most appropriate for
the analysis of the financial time series. Instead of detecting the unstable periodic
points, we initialized the algorithm in the following way. We start with a generic
partition for the time series state space; we label each piece of the partition by a
symbol and convert the original time series into a symbolic sequence. A threshold
value (mean, median, or other) � is defined. We experiment the algorithm with sev-
eral threshold values, and the best choices was � ' 60: For a quantization level of 2

(symbols 0 and 1), all the data values of mean subtracted absolute time series above
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Fig. 6 Correlation dimensions for original data and for log-difference data

the threshold value are converted to 1 and the rest to 0. This process will generate
the symbolic series that is illustrated in Fig. 7. After defining a word length L D 10

(since the embedding dimension was considered up to 2), the symbolic series is
converted into code series. We start now the algorithm from step (3) by classifying
points of the time series using their substrings of length 2. We stopped the algorithm
when it converged with substrings of length 10. The histogram generated from this
code series can be used to calculate the Normalized Corrected Shannon entropy.
Moreover, if we introduce a metric distance between two symbolic time series we
can derive a hierarchical organization. Figure 8 shows the output of the numerical
approximation of a two-symbol generating partition for the PSI20 time series.

The metric entropy can be compared with the sum of the positive Lyapunov ex-
ponents under the assumption that Pesin’s identity holds. So, we compute the sum
of the Lyapunov exponents and estimate the entropy from the obtained symbolic
structure of the data. The numerical value for the sum of positive Lyapunov expo-
nent of the time series is known to be � ' 0:19, for de D 3, as shown earlier, and
� ' 0:21 for de D 2. For the topological entropy (which is the supremum of the
metric entropies), we obtained the theoretical value using the numbers of unstable
periodic points, that is, by considering that N.p/ is the number of fixed points for the
p-time map, the topological entropy is then approximated by 1=p log N.p/. Aver-
aging over those values obtained for periods between 1 and 10, we get the following
estimate for the topological entropy: h ' 0:2931. Of course, if we consider a larger
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number of periods, we will obtain a more appropriate entropy estimation. These
similarities between the values of the estimated entropy and the sum of Lyapunov
exponents lead us to suggest that determinism is present in the characterization of
the financial time series under consideration; or at least to guarantee that linear de-
pendences and high amount of noise are not sufficient to characterize the data.
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6. Brida JG, Gómez DM, Risso WA (2009) Symbolic hierarchical analysis in currency markets:

an application to contagion in currency crises. Expert Syst Appl 36:7721–7728
7. Brock WA (1986) Distinguishing random and deterministic systems: abridged version.

In: Grandmont J-M (ed) Nonlinear economic dynamics. Academic, New York, pp 168–195
8. Brock WA, Dechert W, Scheinkman J (1987) A test for independence based on the correlation

dimension. Working paper, University of Winconsin at Madison, University of Houston, and
University of Chicago

9. Cochrane J (1994) Shocks. Carnegie-Rochester Conf Ser Public Policy 41:295–364
10. Cvitanovic P, Gunaratne GH, Procaccia I (1988) Topological and metric properties of Hénon-
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What Can Be Learned from Inverse Statistics?

Peter Toke Heden Ahlgren, Henrik Dahl, Mogens Høgh Jensen,
and Ingve Simonsen

Abstract One stylized fact of financial markets is an asymmetry between the most
likely time to profit and to loss. This gain–loss asymmetry is revealed by inverse
statistics, a method closely related to empirically finding first passage times. Many
papers have presented evidence about the asymmetry, where it appears and where
it does not. Also, various interpretations and explanations for the results have been
suggested.

In this chapter, we review the published results and explanations. We also ex-
amine the results and show that some are at best fragile. Similarly, we discuss
the suggested explanations and propose a new model based on Gaussian mixtures.
Apart from explaining the gain–loss asymmetry, this model also has the potential
to explain other stylized facts such as volatility clustering, fat tails, and power law
behavior of returns.

1 Introduction

For years, time series analysis has been a central research topic in many disciplines
within physics, economics and finance. In finance the time series are directly observ-
able from stock indices, individual stock quotes, interest rates, exchanges rates, etc.
In physics, on the other hand, time series typically appear as a result of delicate ex-
perimental measurements. One notable physical system where such measurements
have been of importance in more than a century is in the motion of fluids, like boiling
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water. Here the fluid (water) molecules move among each other in an apparently
random fashion, very often showing short, violent “spikes” in their motion. This
phenomenon is called turbulence and represents one of the oldest unsolved prob-
lems in physics [1]. To date, there is only one possible, although incomplete, theory
for turbulence proposed by Kolmogorov in 1941. In this theory, the relative velocity
difference between two neighboring fluid elements is estimated and averaged over
time and space, for a given distance between the fluid elements. This analysis results
in so-called structure functions, that is how the averaged velocity difference scales
as the distance between the fluid elements is varied, and these functions have been
the central element of turbulence research over half a century [1].

In our terminology, we call this kind of analysis forward statistics, and such
statistics have been thoroughly applied to financial time series: Choosing a given
time scale (i.e. an investment time span) what is the typical, average return over that
period? With a varied time scale, distributions of returns have been obtained which
show non-normal behavior with “fat tails” of high probability [2, 3]. This is com-
pletely analogous to the situation observed in turbulence where the statistics of the
velocity differences described above, for a given distance between fluid elements,
also show fat tails, and it is well known that these tails are related to the spiky nature
of the fluid motion, also termed intermittency. Spikyness is also very well known in
financial time series and also here results in fat tails. Even though the fat-tail distri-
butions are well established facts both in finance and turbulence, there is basically
no theoretical frameworks for such behavior; it is simply difficult to integrate fat-
tail distributions as compared to normal distributions. A decade ago Jensen therefore
suggested that in turbulence one could ask an “inverse” question: For a given veloc-
ity difference between two fluid molecules, what is the typical, averaged distance
where such velocity difference is obtained for the first time [4]? Performing the
statistics and studying the averaged distance versus the velocity differences leads
to the so-called inverse structure functions. Whereas the forward structure func-
tions typically measure the spikes, the inverse structure functions measure the quiet,
laminar states and thus provide alternative information about the temporal behav-
ior. This type of inverse structure function were subsequently related to exit time
statistics [5, 6].

The inverse statistics idea was taken over and applied to financial data in a series
of papers [7–10]. The idea is precisely to ask the inverse question: For a given return
of an investment, what is the typical, average time span needed to obtain this return
(which could be a gain or a loss)? This question is obviously related to the question
of first passage time. Starting at a fixed value, when is a given threshold passed for
the first time? The subtle difference to first passage time statistics is that for inverse
statistics any given starting point in a financial time series is considered, i.e. many
different starting levels are used in performing an average over every point in the
series. Applying this technique in particular to the Dow Jones Industrial Average
(DJIA) index, distributions were obtained which exhibited a sharp maximum1 fol-
lowed by a long “fat” (i.e. power law) tail [7]. Again this is very similar to what is

1 The maximum of these distributions was given the name optimal investment horizon.
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observed in turbulence [4]. For financial indices it was furthermore found that while
the maximum of the inverse statistics for a given positive return occurs at a specific
time, the maximum of the inverse statistics for the same negative return appears
much earlier. This is the origin of the Gain–Loss Asymmetry (GLA) of financial
indices, which is the main topic of the present chapter.

The chapter is organized as follows: In Sect. 2 we introduce the concept of inverse
statistics and discuss the GLA phenomenon. Moreover, in this section the existing
literature on inverse statistics is also reviewed. In Sect. 3 we put most of these earlier
findings to the test and in Sect. 4 we go further into the properties of financial time
series that may cause the GLA. We present an alternative and in our opinion very
credible explanation of the phenomenon in Sect. 5. Finally we conclude in Sect. 6
by outlining how the proposed explanation also has consequences for the world of
financial statistics we use daily.

2 Inverse Statistics and Gain Loss Asymmetry in Financial
Indices: A Review

In this section we revisit the development of inverse statistics in finance from its in-
troduction in 2002. In particular, we will define and explain the concepts of inverse
statistics and the gain–loss phenomenon. Moreover, we will review the current lit-
erature on the topics up to the present day.

2.1 Inverse Statistics

Traditionally the performance and risk of holding a certain stock is gauged from
the properties of the probability distribution of returns calculated from historic data
over a fixed time window, i.e. from what we refer to as the forward statistics. Let
S.t/ denote the (dimension-less) price of a stock at time t . The logarithmic return
at time t and over time window 
t can be defined as [11, 12]

r�t .t/ D s.t C 
t/ � s.t/; (1)

where s.t/ D ln S.t/ is the logarithmic asset price. Hence, traditional forward statis-
tics study the historic variations of r�t .t/ over time, but for a given time window
size 
t .

Contrary to the forward statistics where the length of the time window is constant,
in inverse statistics one keeps the return level fixed, here called �, and searches for
the shortest waiting time after t , �˙	.t/, needed to obtain a logarithmic return above
(below) a predefined level C� (��). Consult Fig. 1 for a schematic overview of
the inverse statistics method. Note that in this notation � is the return level while a
positive (negative) sign corresponds to a gain (loss). The waiting times, �˙	.t/, also
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Fig. 1 The figure shows a
schematic overview of the
inverse statistics procedure
performed on a time series
(the solid curve). Being at t0
one asks how long it takes to
earn a return of C�

respectively ��. The analysis
yields the times �C� and ���,
the first moments in time
following t0 where C�,
respectively ��, is reached.
Figure taken from [13] time
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known as first passage times, can be mathematically defined as

�˙	.t/ D



inf f
t j r�t .t/ � C�g ;

inf f
t j r�t .t/ � ��g :
(2)

The inverse statistics, here denoted p
�
�˙	

�
, are simply the two distributions of the

waiting times for gains, �C	, and losses, ��	 , for fixed return level �. In the following
we will omit the sign in front of � when regarding quantities that do not depend on
the direction of the price movement.

2.2 Geometrical Brownian Motion Approximation
to Inverse Statistics

To better understand how the inverse statistics distribution depends on the return
level, �, it is illustrative to adapt the classic assumption that the asset price S.t/

constitutes a geometrical Brownian motion [14]. Under this assumption, and when
using logarithmic returns,2 we see that the inverse statistics distribution is nothing
but the standard first passage probability of an unbiased3 random walker [15–17].
The distribution of waiting times, �	, or in our language the inverse statistics, for a
random walker to cross a barrier at distance � above (or below) its starting point is
given by the density [15, 16]

f .�	/ D �
q

4�D�3
	

exp

�
� �2

4D�	

�
; (3)

2 In this context, using logarithmic returns makes it possible to map the inverse statistics problem
onto the first passage problems of diffusion.
3 Analytic results for biased random walks are known, and the results can be found in, e.g. [16],
see also Sect. 5.2.
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where D denotes the diffusion constant (for the random walker) given by D D
�2=2
t . Here � is the standard deviation of walker’s step size distribution and 
t

is the (discrete) time interval between two consecutive jumps (here 
t D 1). The
distribution (3) is often referred to as the “first passage probability density” [16], and
it belongs to the family of inverse Gamma and inverse Gaussian distributions.4 For
� D 0, (3) predicts a pure power-law decay for the inverse statistics, p.�	/ � �

�3=2
	 ,

a result well known from random walk theory under the name of the first return
probability [16, 17]. However, whenever � ¤ 0 the distribution p.�	/ will first go
through a maximum before asymptotically reaching the power-law decay regime of
exponent �3=2 for long waiting times (similar to that for � D 0). It is readily shown
that the maximum of the distribution (3) is located at

��
	 D �2

6D
D 
t

3

�2

�2
; (4)

so that the maximum of the inverse statistics distribution should scale with the return
level � as a power-law of exponent two. Note also that it is the barrier, �, renormal-
ized by the fluctuations, � , that enters into the expression for ��

	 and p.�	/.
From (3) it is important to realize that the sign of the return level does not influ-

ence the inverse statistics. In other words, under the assumption used to derive (3)
the waiting times and therefore the resulting inverse statistics for gains or losses of
the same magnitude are identical. We shall shortly see that this is not necessarily
true for real financial data, which can instead show a gain–loss asymmetry.

2.3 Empirical Results

It is well documented that empirical financial fluctuations are not fully consistent
with the geometrical Brownian motion assumption for price fluctuations [11,12,14].
It is therefore important to study the inverse statistics based on empirical stocks and
index data.

The first study of inverse statistics within finance was conducted by Simonsen
et al. [7] in 2002. These authors in particular focused on the DJIA, Fig. 2, one of
the major US financial indicators. A result for the inverse statistics of return level
�=� D 5 is shown in the main panel of Fig. 3. Moreover, it was demonstrated in [7]
that the empirical inverse statistics distributions (for the DJIA) could not be well
fitted to the analytic form (3). In particular, the position of the maximum, ��

	 , was
shifted towards longer waiting times relative to what was predicted by (4). More-
over, it was found empirically that the scaling ��

	 ��� with �D2 (cf. (4)) did not
hold true empirically. Instead, the data seemed to indicate that � should depend on
� in some unknown way, a dependence that seemed to become less pronounced

4 These distributions are also known as Wald distributions.
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Fig. 2 The DJIA from May 1896 to July 2009 on logarithmic scale. This choice of axis corre-
sponds to the geometrical Brownian motion assumption where one assumes the logarithm of the
price process to perform a regular Brownian motion
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Fig. 3 The inverse statistics p.��/ vs. �� for the DJIA obtained on the basis of the empirical,
daily close data covering its entire history. The squared data points describe losses while circles
represent gains, both with a level of �=� D 5. The distributions are normalized. Note the clear
asymmetry between the loss and the gain statistics. The full curves are fits using (5). The inset is
the distribution obtained from using the same procedure on the individual stocks of the DJIA, and
subsequently averaging over the stocks. Note that the asymmetry is essentially absent for individual
stocks. The plot is taken from [7]

(and maybe vanish) as � increased. If a scaling regime existed, the data seemed to
favor � < 2 [7, 18]. It has also been reported that the exponent � depends on the
market [18]. For these and other reasons, a shifted and more flexible version of (3)
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(also containing more parameters) was introduced for fitting the empirical inverse
statistics distributions. The proposed generalized inverse Gamma distribution has
the form

p.t/ D �



�

˛
�

� ˇ2˛

.t C t0/˛C1
exp

(
�
�

ˇ2

t C t0

��
)

; (5)

which, since 
 .1=2/ D p
� , reduces to (3) in the limit of ˛ D 1=2, ˇ D �=

p
4D,

� D 1, and t0 D 0. The form (5) seems to be a good approximation to the empirical
inverse statistics distributions, and to the best of our knowledge it has been able
to fit all such empirical distributions originating from finance well. The curves in
Fig. 3 show maximum likelihood fits of the empirical data to (5), and the agreement
is observed to be satisfactory.

Since the publication of [7], empirical inverse statistics studies have been per-
formed for a number of financial systems from all over the world. They include the
major US indices NASDAQ and the SP500 [9, 18], as well as stock markets from
Poland [19,20], Austria (Austrian ATX index) [20], Korea (Korea Composite Stock
Price Index) [21], and 40 indices from numerous countries around the world [18].
Moreover, also non stock market data have been analyzed. They include, e.g., for-
eign exchange data [10] and mutual funds [22].

2.3.1 Gain–Loss Asymmetry

One of the most interesting (and probably surprising) features that can be observed
from the main panel of Fig. 3 is the apparent difference between the inverse statistics
curves corresponding to gains and losses. This empirical finding contrasts what was
derived in Sect. 2.2 within the geometrical Brownian motion approximation which
predicted that two similar return levels of opposite signs should give rise to the
same inverse statistics curve. In particular, it is empirically observed (Fig. 3) that
the loss inverse statistics curve is shifted towards shorter waiting times relative to
the gain curve, for an equal level of �=� D 5. This difference is known as the
gain–loss asymmetry which was first observed for the DJIA in 2003 [8]. In this
publication it was also found that the difference ��C	 ����	 > 0 is increasing with the
return level, �, before it seemed to saturate at a more or less constant value. Since
the publication of [8], the GLA has been observed in several major stock indices
including SP500 and DJIA [9]. It is consistently found that stock indices belonging
to mature and liquid markets exhibit the gain–loss asymmetry with ��C	 > ���	. The
gain–loss asymmetry has also been observed for emerging markets [19], however,
here there seems to be little consensus on the sign of the asymmetry since both
positive (as for mature markets) and negative values for ��C	����	 have been reported
in the literature [19].

One particularly interesting and peculiar aspect of the GLA phenomenon has
been reported for the individual stocks constituting indices showing GLA. Some
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findings show that individual stocks do not show GLA, or if they do, this effect
is substantially harder to observe empirically, as can be seen in the inset, Fig. 3.
Naively one would expect that a potential asymmetry should be reduced by con-
structing the index since the index essentially is an (typically weighted) average of
the individual stocks. It has also been speculated that the GLA is caused by the so-
called leverage effect [23], but it has been shown, based on modeling, that the effect
can exist with and without the leverage effect [24].

2.4 Possible Causes of the Gain–Loss Asymmetry

How can we rationalize these findings? It was already speculated in the original
publication reporting the GLA [8] that the phenomenon could be due to collective
effects between the individual stocks. It is well documented in financial literature
that markets respond asymmetrically to positive and negative stimuli. In particular, it
was speculated if negative signals, caused by, e.g. external events, could synchronize
the price drops of individual assets, causing the index to show more pronounced
drops.

To investigate this in more detail, a simple model termed the fear factor model
was constructed [13]. In this model the prices of all individual assets are modeled
by the standard geometrical Brownian motion for simplicity. The main idea is the
introduction of a fear factor, q, so that with probability q all stocks drop simultane-
ously (due to fear), while with probability 1 � q they would move independently.
Due to the synchronous drops introduced by the fear factor, the remaining moves
are given a slight positive q-dependent bias in order to satisfy the assumptions re-
garding the individual stock price process. The interested reader is encouraged to
consult [13] for additional details. From the simplified fear factor model, it has
been shown that the GLA can indeed be caused by single stock synchronization.
To obtain these results and to be able to compare them with empirical findings, it is
important to measure the return level � in units of the volatility, � , of the index and
stocks [13, 25]. This is easily realized by inspection of (3), when remembering that
the diffusion constant is defined as D D �2=2
t . Hence, the quantity of interest is
the ratio �=� , which is also the case for this model. Later extensions of this model
has been published in [24] and [26].

Quite recently, empirical results have seemed to support the main idea behind the
fear factor model [27]. In particular, it has been demonstrated by an empirical study
that during market drops the correlations between individual stocks are stronger than
during market rises [27].

However, other studies in the literature seem to suggest alternative mechanisms
behind the gain–loss asymmetry. It is therefore fair to say that the origin under-
lying the GLA phenomenon is still debated in the literature, and more work is
needed to clarify and settle the issue. The remainder of this chapter is devoted to
this discussion.
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3 Test of Earlier Results

As described in Sect. 2.3.1 there is no full consensus in the literature as to where
GLA is actually found except for mature market indices where GLA is consistently
found. Since there is consensus about mature markets, we shall only focus on areas
where results have not been consistent. For example both inverted and regular GLA
have been reported for emerging markets. In the following, we will analyze inverse
statistics on a large pool of data with the intention once and for all to clarify the
stylized facts of GLA.

3.1 Emerging Markets

To study the general properties of emerging markets we have chosen a major pool of
the indices from MSCI-Barra (Morgan Stanley Capital International). The series are
all calculated in local currency, represent total returns5 and cover 27 countries.6 For
all countries, the daily data cover January 1999 to July 2009. Applying the inverse
statistics method to each of 27 countries and constructing the average gain and loss
distributions respectively give us general information on GLA in emerging markets.

As can be seen from Fig. 4, we find a not very pronounced GLA for emerging
markets. The individual GLA statistics are summarized in Table 1. This reveals
that approximately one-third of the indices show a gain–loss asymmetry similar
to that consistently reported for mature market indices. Only two have an inverted
asymmetry as has been speculated to be a general feature of emerging markets [19],
while the rest, more than half, have no GLA.

The conclusion is that emerging markets in general do not possess a pronounced
GLA and that earlier speculation about the existence of an inverted asymmetry is
indeed not supported by data. On the contrary, if any asymmetry is present it resem-
bles that found in mature markets.

3.2 Individual Stocks

As discussed in Sect. 2.3.1, earlier studies have found insignificant GLA in individ-
ual stock price series. The puzzle that led to the invention of the fear factor model
was how single stocks possessing no significant GLA suddenly show a highly sig-
nificant GLA when merely averaged in an index.

5 Total return price series are series where dividends, splits, mergers, etc., have been taken into
account and are included in the price series.
6 The 27 countries are Argentina, Brazil, Chile, China, Colombia, Czech Republic, Egypt, Hungary,
India, Indonesia, Israel, Jordan, Malaysia, Mexico, Morocco, Pakistan, Peru, Philippines, Poland,
Russia, South Africa, South Korea, Sri Lanka, Taiwan, Thailand, Turkey, and Venezuela.
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Fig. 4 Inverse statistics for MSCI emerging market indices covering 27 countries from January 1,
1999, to July 30, 2009. Circles show the gain distribution, while squares are used for the loss
distribution. In both cases the chosen return level is �=� D 5

Table 1 Findings of GLA in emerging market indices. Examining the sign of the difference ��

C� �
��

�� a “C” indicates an asymmetry similar to the one found for mature markets, “�” is the inverted
asymmetry while “0” symbolizes indices with no significant GLA

Country GLA Country GLA Country GLA

Argentina C Indonesia C Poland C
Brazil 0 Israel 0 Russia C
Chile 0 Jordan � South Africa 0
China C Malaysia 0 South Korea C
Colombia 0 Mexico C Sri Lanka 0
Czech Republic 0 Morocco 0 Taiwan 0
Egypt 0 Pakistan 0 Thailand 0
Hungary 0 Peru C Turkey 0
India C Philippines 0 Venezuela �

Many of the explanations of GLA in indices do not necessarily disqualify as
explaining the dynamics of the single stocks. Why should single stocks not have
faster losses than gains? Of course synchronous stock behavior will amplify the
effect but is not necessarily the only plausible explanation of the empirical GLA.

As with emerging market indices, Sect. 3.1 we observe the average of a large
pool of series. We perform inverse statistics analysis for each of them and calculate
the average gain and loss distributions, respectively.

We have chosen 1,123 stock time series for this analysis. The search for series
has been conducted within the universe of leading regional and world indices within
mature markets in order not to confuse with the mature markets-emerging markets
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Fig. 5 The average of the inverse statistics of 1,123 different stocks each belonging to mature
markets. The graphs represent the probability of receiving a gain or a loss of �=� D 5, �� days
after an investment. Circles indicate gains and squares losses. The maxima of the two distributions
are found at 	10 days for the loss distribution and 	16 days for the gain. These numbers support
the idea that individual stocks also have faster losses than gains, but contradict earlier reported
findings [8] that single stock constituents of mature market indices do not possess any significant
GLA

discussion. Only series with more than 1,000 daily observations have been used.
After taking splits and mergers into account, the final list of 1,123 stocks remained.
Results for a return barrier of �=� D 5 are depicted in Fig. 5. The maxima of the
two distributions are found after �10 and �16 days for the loss and gain curve
respectively. This asymmetry amounts to more or less the same as what has been
found for the DJIA, Fig. 3. Here the maxima are located at �8 and �14 days.

We conclude that individual stocks in general do possess GLA.

3.3 Bond Prices

We also find GLA in bond prices. Choosing 16 government bond total return series7

we perform an analysis similar to the emerging markets analysis, Sect. 3.1, and the
individual stock analysis, Sect. 3.2. The underlying bond indices are all calculated
at 10-year maturity and range from January 1986 to July 2009. The average GLA of

7 The chosen countries are Australia, Belgium, Canada, Denmark, Finland, France, Germany,
Ireland, Italy, Japan, Netherlands, New Zealand, Spain, Sweden, United Kingdom and United
States.
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Fig. 6 GLA showing the result for an average of 16 government bond return series calculated
from January 1986 to July 2009. The curves represent the probability of receiving a gain or loss of
�=� D 5, �� days after an investment. Circles indicate gains where as squares show losses

the 16 countries is shown in Fig. 6. Also here we find a difference between the most
probable loss and gain waiting time of a factor about 2. The maxima are found at
�10 for losses and �17 days for gains at �=� D 5.

As was the case with the analysis of emerging markets and individual stocks, this
is to our knowledge the first bond price analysis of its kind and size.

There is a difference between finding GLA in indices and GLA in individual
stocks and bond price series. For indices there is a clear notion of what the underly-
ing driving mechanisms are, namely the constituents. In this case it is natural to use
correlations between constituents when explaining the presence of GLA. For series
obtained from individual stocks or bond prices, there is no clear analogy.

4 The Anatomy of GLA

GLA is usually explained by indices moving faster down than up, an explanation
that fits well with general investment experience. Mostly it takes time before an
investment decision pays off, and following the usual interpretation of GLA one
would further expect potential losses to arrive before a potential profit. This is a
mere consequence of large market moves being mostly negative and fast in contrast
to big gains that are rare and not as vivid as large losses.
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4.1 A Contradiction

One might consider using GLA to attempt to make money in the stock market.
Take the DJIA, Fig. 3, as an example. The density peaks at 8 days for losses and
at 14 days for gains. Selling the index now, buying it back in 8 days, and selling it
again in 14 days should be a successful strategy: After 8 days the stock price has
gone down by 5� whereas it has gone up by 5� in 14 days. From 8 to 14 days, one
should make a profit of 10� .

Apart from being too good to be true, this is also a self-contradiction. First, the
probability for this to actually happen is very small (c.f. the scale of the y axis).
Second, the above trades amount to owning the stock for 6 days in the future. But
inverse statistics make no distinction about when a 6-day period occurs. Therefore,
we can look at the density of first passage times and see that 6 days is very close
to the 8 days where a loss is more likely than a profit. We therefore see that a trade
designed to maximize profits will actually maximize losses.

Since this trading strategy reveals nothing but a contradiction we must ask how
GLA is related to the dynamics of financial time series. Whereas the principles of
time varying correlations contained in the fear factor model, Sect. 2.4, may serve
as a partial explanation for indices, the fact that single stocks also show GLA, c.f.
Sect. 3.2, we have to go further into the emergence of the asymmetry.

4.2 Extreme Dynamics

As most other financial indices DJIA has positive but uncertain mean returns. The
mean price return is 0.017% per day, or about 4.5% per year, in the period from 1928
to 2009. The standard deviation of price returns is 1.16% per day, corresponding to
about 18% per year. We find a skewness of daily price returns of �0.60 and an excess
kurtosis of about 25. Hence the DJIA has non-zero skewness and kurtosis. It would
be reasonable to expect a connection between GLA and higher order moments, and
as stated in Sect. 2, several papers focus on asymmetric behavior of extreme events
as the main explanation of the phenomenon.

4.2.1 Fat Tails and Special Events

Although kurtosis is taken as a regular measure of the fat tails and therefore the
degree of extremeness of a distribution, it is not a pure extreme event measure. To
directly investigate whether GLA originates from extreme events we simply remove
these from series initially exhibiting GLA. In the case of the DJIA, the asymmetry
disappears when as few as the 2% most extreme absolute returns are removed. Since
the removed events belong to many different periods in the series, one changes the
small scale localized dynamics of the time series. We also change the skewness and
kurtosis of the series by this procedure.
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Having seen that GLA depends on the extreme events in the series, one might
think that GLA is ultimately connected to higher order moments. However through
simulations of t-distributions, skewed Levy distributions, etc., we find that this is
not the case: GLA is not a pure result of non-zero skewness and/or kurtosis in return
distributions. None of these simulations show any GLA at all.

4.2.2 Volatility Scaling of Time

A comparison of the inverse statistics of several series should be based on a scaling
of the return barrier � with the realized volatility of each single series. This ensures
that first passage times are comparable. Otherwise, a high volatility asset will be
more likely to pass the barrier quickly than a low volatility asset.

However, financial markets tend to exhibit periods of relative calm development
and others of high volatility. It has therefore been suggested that not only the assets
but also the metric we use changes with time, for example supported by [10,28]. It is
not unreasonable to say that time runs fast in highly volatile periods. If we gain � in
a market characterized by low volatility this is less risky than in a strongly volatile
market. In that sense the time it takes to reach a given level should be seen relative
to the level of local volatility.

To study the dependence of GLA on volatility variations, we simply scale time
with daily measures of volatility. As a simple proxy of local daily volatility, the
absolute value of the daily return has proved successful [11]. We choose a new unit
of time, c
t.t/, as a function of the original time unit 
t.t/

c
t.t/ � jr�t .t/j: (6)

With this definition it is easy to scale every step so that the total duration of the series
is preserved. Measuring time this way we find that GLA disappears independently
of the return barrier �.

Similar results are found when we use wavelet filtering to remove short time
scale dynamics from the studied time series. When short-term effects up to 32 days
are removed, there is no GLA in stock indices.

This is no mere technical observation. There are subperiods of DJIA where we
find no GLA using the raw data. These subperiods can even be very long. For exam-
ple, the period from 1968 to 1981 shows no significant GLA. This proves that GLA
is not a constant phenomenon. Sometimes it is there, sometimes it has disappeared,
but it is always found when considering the entire series. This suggests that GLA
could be the result of changing market conditions on a large scale rather than being
a local phenomenon.

5 Regimes

An intriguing property of financial systems is their temporal change of states. Calm,
positive trending and seemingly uncorrelated markets suddenly drop in value, and
correlations rise close to unity. As we have seen above, the results of performing
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Fig. 7 The DJIA on a logarithmic price scale as in Fig. 2. In solid black, a set of coarsely divided
regimes are shown as straight lines. Although some regimes can be found with negative drift, the
dominant behavior of the system is either flat with no drift, or increasing with positive drift. Due to
the fractal-like structure of financial time series, this observation applies irrespective of the zoom
level

inverse statistics within the realm of finance touches deeply upon this feature. To
better understand the importance of the temporal changes of financial systems, ob-
serve Fig. 7, depicting the DJIA on a logarithmic price scale. One easily finds flat,
volatile regimes and steep but calmer regimes. Although some negative trending
periods can be found, these are relatively short and not dominant over time. As a
consequence of the close to fractal structure of financial time series, one could find
new similar regimes when zooming in. The notion of regimes does not depend on
the chosen scale.

5.1 A Simple Non-Mathematical Model

To appreciate how GLA might only represent a series as a whole and not every
single time step, imagine a time series with a length of 20 years. The first 10 years
have no trend while the next 10-year period shows a strong positive trend. Consider
an arbitrary day from the first, flat, period. Since there is no bias, it is equally likely
to get a crossing of the negative as well as positive barrier, both of absolute size �.
Hence the distributions of waiting times are identical for gains and losses.

Now, consider the second period. With a large positive drift one could observe
no crossings of the negative barrier, but many of the positive. If volatility is low
enough, this period only produces observations for the positive barrier and none for
the negative.

Finally, consider the entire period of 20 years. For the negative barrier, all ob-
servations stem from the first 10 years, meaning that the final GLA result only
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represents this period for the loss distribution. If we observe from the last part of
the series, the GLA result does not represent the loss statistics.

For the positive barrier it is different. The gain statistics will be an average of
observations from both periods and since both periods contribute, the gain curve
represents the entire period. Although it is a very simple extreme non-stationary
model, it suggests that we can get GLA from mixing the statistics of the two different
states. Thus, the final result does not represent every given moment in time but only
the series a whole.

The lesson is that we should be careful when analyzing data, and mixing ob-
servations from different states can lead to all sorts of misunderstanding because
of confusing conditional and unconditional probabilities, and because of non-
stationarity. We shall formalize this using the following mixture model.

5.2 A Mixture Model

We shall now show that a model built from nothing but the existence of regimes is
capable of reproducing GLA without any relation to turbulence, small-scale effects
or the like. We assume that, at any moment in time, the market can be in only one of
two states: In state 1, the return generating process is flat but volatile, and in state 2,
returns are generally positive and less volatile than in state 1. This corresponds well
with the dominant regimes in the DJIA shown in Fig. 7. To keep things simple we
stick to the geometrical Brownian motion presented in Sect. 2.2. For each states, i ,
this means that the logarithmic changes, dsi , are normally distributed described by
the diffusions

dsi D �i dt C �i dWi : (7)

The assumptions imply that �1D 0, �2 > 0 and �1 > �2. Every day there is some
probability q that the market is in state 1 and a probability 1 � q that the market is
in state 2. We assume that returns are uncorrelated across states, relaxing the strict
non-stationary constraint introduced into the model in Sect. 5.1.

Naively, it appears that this model could never produce GLA. We do not ex-
pect any skewness or excess kurtosis, since returns are always normally distributed.
Nothing in the model has to do with synchronous, extreme behavior or reflects the
presence of correlations. All in all it is as “normal” as can be.

Since we have chosen the simple diffusions above, we can use well-known results
to compute the first passage time densities for each state. All we need is to extend
(3) to the case with non-zero drift. For state i we find that the density of reaching a
return of C� after waiting � is

f C
i .�/ D �

�i

p
2��3

exp

�
� .� � �i �/2

2�2
i �

�
: (8)
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Similarly, the density for reaching �� is

f �
i .�/ D �

�i

p
2��3

exp

�
� .� C �i �/2

2�2
i �

�
D exp

�
�2��i

�2
i

�
f C

i .�/: (9)

Three things are worth noticing about these densities. First, for each state, the den-
sity for losses is a constant times the density for gains. Hence none of the states
exhibits GLA, only a constant scaling factor distinguishes the densities. Second, be-
cause of this scaling factor, the probability of ever hitting the gain barrier is not the
same as hitting the loss barrier, except when the drift is zero. In the case of zero
drift, both the gain and loss barrier are hit in finite time with probability 1. However,
in the case of positive, non-zero drift, the gain barrier is hit in finite time with prob-
ability 1, whereas the loss barrier is hit with the probability P � D exp

��2��=�2
�
.

For state 2, with �2 > 0, P � < 1. Third, each density has a single peak

��
1 D �2

3�2
1

; (10)

��
2 D

�3�2
2 C

q
4�2�2

2 C 9�4
2

2�2
2

; (11)

where the expression for ��
1 , (10), is the same as (4). We can show that the peak

for state 1 occurs earlier than the peak for state 2 if, and only if, �1>�2 and � <

3 �1


2

q
�2

1 � �2
2 . We assume that this is satisfied.

Summing up, in state 1, there is no GLA and the first passage time densities
are identical for gains and losses, with density peaks at ��

1 . In state 2, there is no
GLA, and the first passage time densities peaks at ��

2 > ��
1 . However, whereas

the probability of reaching C� in finite time is 1, it is only P � < 1 for reaching
�� in finite time. These observations are conditional on being in either of the two
states.

If we do not know which state we are in, the situation is different. Now there
is a probability q of being in state 1 and a probability 1 � q of being in state 2.
Assuming that states are persistent, we can neglect the effect of mixed states in the
inverse statistics results. We can now calculate an unconditional first passage time
density for reaching the gain barrier, C�, of

gC	.�/ D qf C
1 .�/ C .1 � q/f C

2 .�/: (12)

Similarly, the unconditional first passage time density for reaching �� is8

g�	.�/ D qf �
1 .�/ C .1 � q/f �

2 .�/ D qf C
1 .�/ C .1 � q/P �f C

2 .�/ ¤ gC	: (13)

8 To keep the usual convention within inverse statistics one should normalize (13) by dividing by
q C .1 � q/P �.
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5.2.1 A Numerical Example

We will now illustrate the model with a numerical example. Observing Fig. 7, we
choose representative parameter values of q D 0:5, �=� D 5, �1D 0, �2 D 0:1=250,
�1 D 0:15=

p
250, and �2 D 0:08=

p
250,9 and each state has a persistence of

20 days. In this case, the conditions for ��
1 < ��

2 are satisfied. For these param-
eter values we find that ��

1 D 9:3 days, and ��
2 D 30:6 days. Furthermore, one finds

that the probability of reaching the negative barrier in state 2 is P � D 0:21, so only
21% of down targets are reached in finite time.

The results of simulating the model using these parameter values are shown in
Fig. 8. The probability distribution describing losses is seen to peak earlier and with
a higher amplitude than the gain distribution. Thus, we have found something very
similar to the typical GLA result. Other parameter values would be able to more
closely replicate empirical findings.

Varying � parallel shifts the two curves on a logarithmic time scale so that peak
locations remain roughly in a ratio of 2:1. This is in accordance with the stylized
facts of GLA as presented in Sect. 2.3.1.

It is worth noticing that all we do is mix two normal distributions, which have no
GLA. Neither do they possess any skewness or excess kurtosis. But for the mixture
as a whole, we find a skewness of �0.04 and an excess kurtosis of 0.93. Thus, by
simply mixing two normal distributions, we get negative skewness and fat tails. Not
to mention GLA.
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Fig. 8 The figure shows inverse statistics for a Gaussian mixture with two states alternating every
20 days. With squares, the loss density curve shows a maximum at 	7 days, whereas the circles
show the gain density, peaking at 	13 days. Thus, a simple Gaussian mixture model is capable
of producing GLA. A better fit would be possible if more than the two states were allowed and
parameters were optimized to capture the empirically found GLA curves

9 Considering the logarithmic price changes without unit, the drift, �, is measured in units of

.day�1/, while volatility, � is measured in units of .
p

days
�1

/.
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5.3 Empirical Findings for the DJIA

Everything presented so far in this section relies on the assumption that there are
regimes in the series with apparent GLA. It is reasonable to believe that this is actu-
ally the case just from at quick look at Fig. 7. Below, we shall put this observation
to the test by fitting a Gaussian mixture model to daily Dow Jones price returns
since 1928.

5.3.1 Three States that Explain the DJIA

We find that three states best describe historical price returns. The parameters for
each state are shown in Table 2. We see that the majority of points are driven by
two of the three processes. One flat, � D 0%, with middle volatility, �D18%, and
the other with positive drift, � D 15%, and low volatility, � D 8%, all values
are pr. annum. This is as described in the above models. The third and last process
only appears with 5% probability and has large negative returns but also extreme
volatility. This state appears to be responsible for the large negative and positive
single day returns described as the synchronous fear step incorporated in the fear
factor model described in Sect. 2.4.

As above, each mixture component has no skewness or excess kurtosis. However,
the mixture as a whole has a skewness of �0.29 and an excess kurtosis of 10.5. by
comparison, daily Dow Jones price returns exhibit a skewness of �0.6 and an excess
kurtosis of 25.0. This indicates that the mixture model captures most of the realized
behavior of Dow Jones.

5.3.2 Comparing Apples and Oranges

We have now validated the assumptions behind the mixture model presented in
Sect. 5.2. Besides verifying our work so far they should alert us. Could it be that
the GLA and perhaps many other stylized facts of financial time series are sim-
ply due to mixing measurements from processes that are really non-comparable? If
some observations come from one distribution and others from another, we compare
apples with oranges. This can lead to all sorts of spurious conclusions.

Table 2 Empirical parameters for a Gaussian mixture model fitted to the
DJIA from 1928 to 2009. States 1 and 2 represent 95% of all dynamics
verifying the assumptions underlying the models presented here. Only 5%
of all time steps are driven by state 3, i.e. the only state with negative drift.
Both drift and volatility are quoted as yearly numbers

State 1 State 2 State 3

Probability (%) 43 52 5
Mean annualized return (%) 0 15 �54
Annualized standard deviation (%) 18 8 53



266 P.T.H. Ahlgren et al.

To test whether this hypothesis applies to the actual DJIA data, we can find the
most likely data generating process responsible for each point. Using the parameter
values presented in Table 2, we classify historical daily returns according to which
state generated them. We invoke Bayes’ theorem to find the state i that most likely
generated a given observation x. Bayes’ theorem tells us that

P.i jx/ D P.xji/P.i/

P.x/
� N.x; �i ; �i /qi : (14)

We classify each observation according to the highest state probability. We then
select the observations that appear to be derived from state 1 and apply inverse
statistics on them. We do the same for observations belonging to states 2 and 3.
In all cases, there is no GLA. In the series as a whole, there is GLA, but not for data
generated by the single components.

What about the fact that GLA disappears when we filter out small time scale
behavior? It turns out that all we need to do is introduce ordering of states. This
corresponds to state autocorrelation. In a simple example we can neglect state 3, but
alternate between states 1 and 2 every six months. Using wavelet trend filtering, we
find that GLA disappears just as found empirically.

Thus, a very simple autocorrelation structure in state occurrences can generate re-
sults that are fully consistent with empirical findings. As a pleasant side effect, state
auto correlation by definition generates volatility clustering, an important stylized
fact that is usually taken as a common key feature between financial and turbulent,
chaotic systems.

5.4 Correlations

Let us return to the original explanation of GLA being a result of a collapsing mar-
ket where time varying correlations suddenly approach unity. Since we have shown,
Sect. 3.2, that it is not a general empirical fact that individual stocks have insignifi-
cant GLA, we should check whether the synchronous behavior incorporated in the
fear factor model is enclosed and captured by the mixture setup.

We choose five stocks all being constituents of the DJIA. The stocks are IBM,
Johnson and Johnson, 3M, Disney and Intel. We use a subset to clarify results and
have chosen specific stocks on the basis that they belong to different industrial
sectors. With daily price return series we use an expectation maximization algorithm
to find underlying multivariate Gaussian mixtures. The results are shown in Table 3.
Again, a subset of processes dominates most of the time. Ninety-six percent of all
data points arise from not very significantly correlated processes. Only state 2 is
characterized by collective market behavior where correlations are relatively large.
The probability of this state is 4%, which corresponds very well with the fear factor
model results described in Sect. 2.4. Here, a fear step probability of 5% replicated
the empirical DJIA GLA. In this perspective the findings of [13] are enclosed in the
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Table 3 Empirical parameters for a Gaussian multivariate mixture model
fitted to IBM, Johnson and Johnson, 3M, Disney and Intel from 1986 to
2009. Besides the probability of every state, its drift and the average and
maximum of the absolute value of the off-diagonal correlations between
the five stocks are shown. Being the only process with negative drift and
significant correlations, only state 2 qualifies as a fear scenario. The ex-
pected appearance of state 2 corresponds well with the fear factor model,
where 5% of all steps should belong to the fear state, in order to fit the
GLA empirically found in the DJIA

State 1 State 2 State 3 State 4

Probability (%) 48 4 44 4
Mean annualized return (%) �9 �62 26 �32
Average off-diag. corr. 0.36 0.55 0.33 0.17
Max. off-diag. corr. 0.47 0.74 0.48 0.37

empirical results for the fitted mixture model. But as shown in Sect. 5.2 a fear state
characterized by large correlations and negative drift is not needed to produce GLA.
The only thing needed to observe GLA in a time series is the existence of more than
one underlying process.

5.4.1 Other Stylized Facts

Let us finally investigate whether other stylized facts can be replicated by the mere
assumption that the driving process can be split into two or more sub-processes.
So far we have argued that two Gaussian processes with some transition probabil-
ities are all that is needed to produce skewness, kurtosis, volatility clustering and
GLA. What about findings like the power law distribution of returns and the lever-
age effect?

Returning to the empirical findings from Sect. 5.3.1, we simulate a time series
of the same length as the DJIA and with three states identical to the ones found
empirically with properties as shown in Table 2. The absolute return distribution is
shown in Fig. 9. Also here the Gaussian mixture model produces results very similar
to those found for the DJIA itself. Remember that these parameter values are found
by fitting a 3-state Gaussian mixture to the DJIA to capture drift and volatility.
Clearly, the parameters of the three states can be tuned to better fit the power law
distribution. Furthermore, it is a coarse approximation to allow only three states.
Nevertheless, the results highly resemble the empirical findings.

We find that the only well-known stylized fact that the 3-state mixture is not
capable of reproducing is the leverage effect. Simulations show that very sophis-
ticated correlation structures are necessary to create the specific relation between
negative returns and future volatility. This indicates that the leverage effect is a rare
stylized fact in the sense that it does not measure the universal character, but in-
stead gives valuable information about the special local dynamics of financial time
series.
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Fig. 9 The absolute return distribution of the DJIA (circles) and a simulation (squares) of a
Gaussian mixture with three states with properties as found empirically for the DJIA and shown in
Table 2

6 Conclusion

We have reviewed the existing literature and tested what researchers have not
reached consensus about so far. This leads us to the conclusion that emerging
markets possess a regular but weak GLA and that single stocks do exhibit GLA.
Furthermore we have found that GLA is also a stylized fact of government bond
price series. To our knowledge this asset class has not earlier been the subject of
inverse statistics. We have shown that a simple data generating mechanism can repli-
cate many stylized facts. Out of distributions with no skewness or excess kurtosis,
we get both skewness and excess kurtosis. And although there is no GLA in individ-
ual components, there is GLA in the series resulting from mixing the components.
Our finding is that GLA could well be an effect of the analysis method alone if
multiple data generating mechanisms are present. The same is not necessarily true
for skewness and kurtosis, because even a single data generating mechanism can
generate skewness and kurtosis. A simple example is the log-normal distribution.

This calls for caution in analyzing and interpreting data. If data are generated by
different distributions, they are non-stationary. This is not new knowledge, but it is
important to understand the meaning. We should be aware that comparing apples
and oranges could lead to artifacts that may be interpreted until doomsday but are
ultimately meaningless.

This has important consequences for many financial applications. The empirical
multivariate mixture model created from a subset of DJIA constituents, Sect. 5.4,
shows that correlations are state dependent with important implications for risk
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computations, asset allocation and many other financial applications. Similarly,
since correlations vary with state, factor analysis may be biased due to market state
changes.

We believe that conditions do indeed change but do not insist that components are
necessarily Gaussian. For the present work they have served as useful tools explain-
ing why much of the work on financial time series might not be very successful
when applied in real life situations. Nevertheless, we find that even the very sim-
ple Gaussian mixture model accounts surprisingly well for the many stylized facts
known from financial systems.

For the econophysics society, the most important message that follows from this
work is that we might be very successful contributors to the financial community
if focus turned away from the study of universal properties that still – after many
years – constitute the main part of econophysics. Instead, it would not only be in-
structive but also very useful to learn more about the local properties of the dynamics
in these systems. For example, for a financial practitioner, it is useful to know that
on a day to day basis, there may be no fat tails, no skewness, no GLA, and no power
laws, as long as the regime does not change. However, when the regime changes,
all these stylized facts can emerge. It would be even more useful to understand how
and why regimes change. If econophysics could even predict regime changes, true
value would be added. For now we have to question the methods and stylized facts
we use in our daily work.
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Communicability and Communities in Complex
Socio-Economic Networks

Ernesto Estrada and Naomichi Hatano

Abstract The concept of communicability is introduced for complex socio-
economic networks. The communicability function expresses how an impact
propagates from one place to another in the network. This function is used to
define unambiguously the concept of socio-economic community. The concept of
temperature in complex socio-economic networks is also introduced as a way of ac-
counting for the external stresses to which such systems are submitted. This external
stress can change dramatically the structure of the communities in a network. We
analyze here a trade network of countries exporting ‘miscellaneous manufactures of
metal.’ We determine the community structure of this network showing that there
are 27 communities with diverse degree of overlapping. When only communities
with less than 80% of overlap are considered we found five communities which are
well characterized in terms of geopolitical relationships. The analysis of external
stress on these communities reveals the vulnerability of the trade network in critical
situations, i.e., economical crisis. The current approach adds an important tool for
the analysis of socio-economic networks in the real world.

1 Introduction

There is no doubt that we live in a networked world. We live our lives connected
by our family, friend and workmate ties. These social networks connect us to other
people in other parts of the world to which we are only a few steps apart. In fact,
we live in a “small world.” We also live surrounded by infrastructures which form
their proper networks, such as supply networks, transportation networks, etc. The
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economic world in which we also live does not look very much different from
this picture. Banks, corporations, industries and even universities and governmen-
tal institutions are interconnected forming a complex network of economical and
political interrelations. Then, our lives are very much influenced by the structure
of these complex networks and by the dynamics of processes taking place on them
[1]. In this chapter we are interested in a tiny part of these complex worlds, namely
in the analysis of the communicability and community structure of socio-economic
networks.

There are different kinds of networks that can be analyzed in a socio-economic
context. In general, economics is based on the activity of economic entities in busi-
ness networks in which such entities are related by business relationships, such as
the ones existing between companies and banks [2]. On a macroeconomical scale,
world economies are becoming more and more interrelated as a consequence of
the globalization, which implies control of capital flow and liberalization of trade
policies [3]. Consequently, the study of the international trade network in which
countries are represented by the nodes of the network and their commercial trades
by the links is an important tool in understanding the interaction channels between
countries [4].

The representation of socio-economic systems as networks gives us the pos-
sibility of analyzing theoretically how these interrelations are organized and how
they influence the dynamics of processes taking place on them. For instance, net-
work analysis permits us to understand how economic perturbations in one country
can spread to the whole world. In a complex network the nodes represent the
entities of the system and the links their interactions [5]. Then, we consider socio-
economic networks represented by simple graphs G WD .V; E/. That is, graphs
having jV j D n nodes and jEj D m links, without self-loops or multiple links
between nodes. Let A.G/ D A be the adjacency matrix of the graph whose ele-
ments Aij are ones or zeroes if the corresponding nodes i and j are adjacent or
not, respectively. In the next sections we introduce the concept of communicability
between the entities in a complex socio-economic network and then analyze how to
determine the community structure of such networks.

2 The Concept of Communicability

It is known that in many situations the communication between a pair of nodes
in a network does not take place only through the optimal route connecting both
nodes. In such situations, the information can flow from one node to another by
following other non-optimal routes. Here we consider that a pair of nodes has good
communicability if there are several non-optimal routes connecting them in addi-
tion to the optimal one. The optimal route can be identified in the case of a simple
network with the shortest path connecting both nodes. A path is a sequence of dif-
ferent nodes and links in connecting both nodes. Let s be the length of this shortest
path. Then, the non-optimal routes correspond to all walks of lengths k > s which
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connect both nodes. A walk of length k is a sequence of (not necessarily different)
vertices v0; v1; : : : ; vk�1; vk such that for each i D 1; 2; : : : ; k there is a link from
vi�1 to vi . Consequently, these walks communicating two nodes in the network
can revisit nodes and links several times along the way, which is sometimes called
“backtracking walks.” We assume that the shortest walks are more important than
the longer ones [6]:

The communicability between a pair of nodes p; q in the graph is defined as
a weighted sum of all walks starting at node p and ending at node q, giving
more weight to the shortest walks.

It is well known that the .p; q/-entry of the kth power of the adjacency matrix,
.Ak/pq , gives the number of walks of length k starting at the node p and ending at
the node q [7]. Then, the communicability function can be expressed by the follow-
ing formula [6]:

Gpq D
1X

kD0

ck

�
Ak
�

pq
: (1)

The coefficients ck need to fulfill the following requirements: (i) make the series
(1) converges, (ii) giving less weight to longer walks, and (iii) giving real positive
values for the communicability. For the sake of simplicity we select here ck D 1=kŠ

[6], which gives the following communicability function:

Gpq D
1X

kD0

�
Ak
�

pq

kŠ
D �

eA�
pq

: (2)

The right-hand side (RHS) of the expression (2) corresponds to the non-diagonal
entry of the exponential adjacency matrix. Let �1 � �2 � 	 	 	 � �n be the eigen-
values of the adjacency matrix in the non-increasing order and let �j .p/ be the pth
entry of the j th eigenvector which is associated with the eigenvalue �j [7]. Then,
using the spectral decomposition of the adjacency matrix the communicability func-
tion can be written as [6]

Gpq D
nX

j C1

�j .p/ �j .q/ e�j : (3)

In order to understand the communicability function in the context of complex
socio-economic networks let us consider the following examples. First, let us con-
sider a series of corporations having business relationships in such a way that they
form a linear chain as the one depicted below:

p qr s
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The communicability between the corporations p and q, which are the endpoints of
the chain is given by the following mathematical expression:

Gpq D 1

n C 1

X

j

�
cos

j� .p � q/

n C 1
� cos

j� .p C q/

n C 1

�
e

2 cos
�

j�
nC1

�

; (4)

where we have used p and q to designate the number of these nodes in the chain
starting by 1. For instance, if the chain is formed by only 4 companies then p D 1

and q D 4. In this case, the communicability between the corporations p and q

tends to zero when the number of corporations is very large. That is, Gpq ! 0

when n ! 1.
A completely different picture emerges when we consider that all corporations

are interrelated to each other forming a compact cluster as the one illustrated
below:

p

q

s

r

In this case it is easy to show that the communicability between any pair of nodes is
given by the following expression:

Gpq D 1

ne
.en � 1/ : (5)

Consequently, when the number of corporations is very large the communicability
between any pair of them tends to infinity, i.e., Gpq ! 1 when n ! 1.

These results indicate that a simple linear interdependence between the cor-
porations gives rise to very poor communicability between the entities involved.
On the other hand, a fully interconnected network of corporations is quite effec-
tive for the communicability between the entities involved. However, this kind of
fully interconnected organizations is very rare at large scales due to infrastructural
and cost–benefit reasons. In general, socio-economic networks display complex
organizational structures which are neither linear nor fully connected. Then, the
communicability function allows us to study the patterns of communication hidden
in such structures.
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3 Communicability and Socio-Economic Communities

A community in a complex socio-economic network can be understood as a set
of entities displaying large internal cohesion. This means that the members of the
community are more “tightly connected” among them than with the outsiders of the
community. The concept of communicability introduces an intuitive way of finding
the structure of communities in complex networks. In this context a socio-economic
community is a subset of entities that have larger communicability among the mem-
bers of the community than with the rest of the entities in the network.

In order to define a socio-economic community we first carry out an analysis
of the communicability function (3). The term �j .p/�j .q/e�j can be positive or
negative on the basis of the signs of the pth and qth components of the correspond-
ing eigenvector. A better understanding of this sign pattern can be obtained using
the following physical analogy. Suppose that the nodes of the network in question
are balls and the links are springs. We argued [6] that the adjacency matrix A is
equivalent to the Hamiltonian of the spring network and the communicability (3) is
equivalent to the Green’s function of the spring network. Then, the eigenvectors of
the adjacency matrix represent vibrational normal modes of the network. The sign
of the pth component of the j th eigenvector indicates the direction of the vibration,
say up or down. If two nodes, p and q, have the sign for the j th eigenvector it indi-
cates that these two nodes are vibrating in the same direction. In Fig. 1 we illustrate
the directions of the vibrational modes for the nodes in a simple network. According
to the Perron–Frobenius theorem [7] all the components of the principal eigenvector
'1 has the same sign. Consequently, it represents the translational movement of the
whole network.

j2 for l2 = 2.952552... j3 for l3 = 2.651093...

Fig. 1 Illustration of the vibrational modes of the nodes in a network corresponding to the second
and third largest eigenvalues
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Using this physical analogy we can decompose the communicability function (3)
as follows [6]:

Gpq D
h
�1 .p/ �1 .q/ e�1

i

C
2

4
X

2�j �n

CC�j .p/ �j .q/ e�j C
X

2�j �n

���j .p/ �j .q/ e�j

3

5

C
2

4
X

2�j �n

C��j .p/ �j .q/ e�j C
X

2�j �n

�C�j .p/ �j .q/ e�j

3

5 : (6)

The first bracketed term on the right-hand side of the Green’s function (6) repre-
sents the movement of all the nodes (the balls) in one direction after an impact on
one node, as if they were part of a giant cluster formed by the whole. In the sec-
ond bracketed term on the right-hand side of (6), the nodes p and q have the same
sign of the corresponding eigenvector (positive or negative); if we put an impact
on the ball p, the ball q oscillates in the same direction as the ball p. We thus re-
gard that p and q are in the same cluster if there are more than one cluster in the
network. Consequently, we call this second term of (6) the intracluster communica-
bility. The last bracketed term of (6), on the other hand, represents an uncoordinated
movement of the nodes p and q, i.e., they have different signs of the eigenvector
component; if we put an impact on the ball p, the ball q oscillates in the oppo-
site direction. We regard that they are in different clusters of the network. Then,
we call this third term of (6) the intercluster communicability between a pair of
nodes.

As we are interested in the community structure of the network which is deter-
mined by the clustering of nodes into groups, we leave out the first term from (6)
because we are not interested in the translational movement of the whole network
and thereby consider the quantity

�Gpq D
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ˇ̌
ˇ̌
ˇ̌
interclusterX

j D2

�j .p/ �j .q/ e�j

ˇ̌
ˇ̌
ˇ̌ ; (7)

where in the last line we used the fact that the intracluster communicability is posi-
tive and the intercluster communicability is negative [6]. Now, we are in conditions
of defining a socio-economic community in an unambiguous way:
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A socio-economic community is a group of entities C � V in the network
G D .V; E/ for which the intracluster communicability is larger than the
intercluster one, �Gp; q.ˇ/ > 0 8.p; q/ 2 C .

Using this definition we can generate algorithms that identify the communities
in a network without the use of any external parameter. This is the topic of the next
section.

3.1 Communicability Graph

In order to find communities in a complex network we need to identify all pairs of
nodes having �Gp; q > 0 in the network. Let us start by representing the values
of �Gp; q as the non-diagonal entries of the matrix �.G/, for which the diagonal
entries are zeroes. We are interested only the positive entries of this matrix, which
correspond to the pairs of nodes having larger intra- than inter-cluster communica-
bility. Then, let us introduce the following Heavyside function,

‚.x/ D
(

1 if x � 0;

0 if x < 0:
(8)

If we apply this function in an elementwise way to the matrix �.G/ we obtain a
symmetric binary matrix having ones for those pairs of nodes having �Gp; q.ˇ/ > 0

and zero otherwise. This matrix can be represented as a new graph, which we call
the communicability graph ‚.G/. The nodes of ‚.G/ are the same as the nodes of
G, and two nodes p and q in ‚.G/ are connected if, and only if, �Gp; q.ˇ/ > 0

in G. Now, a community can be identified as a locally maximal complete subgraph
in the network. We recall that a complete subgraph is a part of a graph in which
all nodes are connected to each other. If this complete subgraph is maximal it is
known as a clique. The following immediately gives us the method for identifying
communities in a complex network [8].

A community is a clique in the communicability graph.

In Fig. 2 we illustrate the communicability graph for the simple network dis-
played in Fig. 1. There are three 4-nodes cliques and two 2-nodes cliques in this
communicability graph, which are also illustrated in this figure.
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Fig. 2 The communicability graph (left) of the network displayed in Fig. 1 and the cliques existing
in this communicability graph, which correspond to the communities of the network in Fig. 1

3.2 Overlapping Communities

As can be seen in Fig. 2 there are some nodes that are in more than one community
at the same time. Then, the corresponding communities overlap with each other in
certain degree. Here we deal with the overlapping of communities and how to merge
them to form larger communities.

Two communities are overlapped if they share at least one common node. We
can use this information in order to analyze the degree of overlapping between two
communities, which can be related to the similarity between the communities in
question. Then, we propose the following index as the overlap between the commu-
nities A and B in a network [8]:

SAB D 2 jA \ Bj
jAj C jBj ; (9)

where the numerator is the number of nodes in common in the two communities
and the denominator gives the sum of the number of nodes in both communities.
This index is known in the statistical literature as the Sørensen similarity index [9]
and is used to compare the similarity between two samples in ecological systems
in particular. The index is bounded as 0 � SAB � 1, where the lower bound is
obtained when no overlap exists between the two communities and the maximum
is reached when the two communities are identical. We can calculate the similarity
index SAB for each pair of communities found in the network and represent all
results as an overlapping matrix S. If we are interested in identifying only those
communities that have an overlap lower than a certain value ˛, SAB < ˛, we merge
those communities for which SAB � ˛ into simpler communities.

We have proposed the following general algorithm for the mergence of commu-
nities in a complex network [8]:
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1. Find the communities in the network following the approach described in the
preceding sections

2. Calculate SAB for all pairs of communities found in the previous step and build
the matrix S

3. For a given value of ˛, build the matrix O, whose entries are given by OAB D(
1 if SAB � ˛;

0 if SAB � ˛; or A D B

4. If O D 0, go to the end; else go to the step (5)
5. Enumerate the cliques in the graph whose adjacency matrix is O. Every clique in

O represents a group of communities with overlaps larger than or equal to ˛

6. Build the merged communities by merging the communities represented by the
nodes forming the cliques found in the step (4) and go to the step (2)

7. End

4 Socio-Economic Communities Under External “Stress”

Complex networks in general and their communities in particular are exposed to
external “stress,” which are independent of the organizational architecture of the
network. For instance, the web of social relations between actors in a society de-
pends on the level of “social agitation” existing in such society in the specific period
of time under study. The network of economic relations between industries and/or
banks is affected by the existence of economical crisis, which can change the archi-
tecture of such interdependences. The challenge is to capture these external stresses
into a quantity that allows us to model the evolution of communities in a complex
socio-economic network.

We have proposed to consider the following physical analogy to study this prob-
lem [10]. Let us consider that the complex network is submerged into a thermal bath
at the temperature T . The thermal bath represents the external situation which af-
fects all the links in the network at the same time. Then, after equilibration all links
in the network will be weighted by the parameter ˇ D .kBT /�1. The parameter ˇ

is known as the inverse temperature.
Then, the communicability between a pair of nodes in a network at the inverse

temperature ˇ is given by

Gpq .ˇ/ D
nX

j D1

'j .p/'j .q/eˇ�j : (10)

The expression (10) tells us that the structure of the communities depends on the
external stress at which the network is submitted. For instance, as ˇ ! 0 (T ! 1),
the communicability between any pair of nodes in the graph vanishes as

Gpq .ˇ ! 0/ D
nX

j D1

'j .p/'j .q/ D 0 (11)



280 E. Estrada and N. Hatano

b ® ¥ b = 1 b ® 0

Fig. 3 Illustration of the effect of external stress, accounted for by the inverse temperature, on the
structure of communities in a complex network

for p ¤ q. In other words, when the external stress is very large, such as in a crisis
situation there is no communicability between any pair of entities in the network.
This situation resembles the case where any individual or corporation is discon-
nected from the rest in a globally individualistic behaviour.

On the other extreme as ˇ ! 1 .T ! 0/, the communicability between any
pair of nodes in the graph is determined by the principal eigenvalue/eigenvector of
the adjacency matrix,

Gpq .ˇ ! 1/ D '1 .p/ '1 .q/ eˇ�1 ! 1 (12)

which means that all entities in the complex network form a unique community.
This situation resembles the case where there is an ideal stability in the system
which allows all entities to be interrelated to each other forming a unique club in the
network. In Fig. 3 we represent these extreme situations for the network represented
in Fig. 1.

5 A Social Network Illustration

As an illustration of the concepts explained in the previous sections we consider
a friendship network known as the Zachary karate club, which has 34 members
(nodes) with some friendship relations (links) [11]. The members of the club, after
some entanglement, were eventually fractioned into two groups, one formed by the
followers of the instructor and the other formed by the followers of the administra-
tor. This network is illustrated in Fig. 4 in which the nodes are divided into the two
classes observed experimentally by Zachary on the basis of the friendship relation-
ships among the members of the club.

The first step in identifying the communities in this network is to obtain the
communicability graph. In doing so we need to calculate the matrix 
.G/ and then
dichotomize it using the function ‚.G/. This matrix is the adjacency matrix of the
communicability graph, which for the Zachary karate club is illustrated in Fig. 5.
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Fig. 4 Network representation of the Zachary karate club with the nodes represented as squares
and circles according to the experimental classification made by Zachary

Fig. 5 Communicability graph corresponding to the Zachary karate club network

By finding the cliques in this communicability graph, we detected the following
communities [8]:

A W f10; 15; 16; 19; 21; 23; 24; 26; 27; 28; 29; 30; 31; 32; 33; 34gI
B W f9; 10; 15; 16; 19; 21; 23; 24; 27; 28; 29; 30; 31; 32; 33; 34gI
C W f10; 15; 16; 19; 21; 23; 24; 25; 26; 27; 28; 29; 30; 32; 33; 34gI
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Fig. 6 Illustration of the overlapped communities found in the Zachary karate club network

D W f1; 2; 3; 4; 5; 6; 7; 8; 11; 12; 13; 14; 17; 18; 20; 22gI
E W f3; 10g:

These communities display a large overlapping between them as can be seen in
Fig. 6.

The large overlapping between these communities can be observed in the
community-overlap matrix S for this network, which is given below:

S D

2

666664

1:000 0:938 0:938 0:000 0:111

1:000 0:875 0:000 0:111

1:000 0:000 0:111

1:000 0:111

1:000

3

777775
: (13)

If we consider only those communities having less than 10% of overlap we find only
two communities in the network: C1 D A[B [C [E and C2 D D [E . These two
communities match perfectly the two factions found experimentally by Zachary in
his study for the karate club. These two larger communities are illustrated in Fig. 7
(top-left graphic).

In Fig. 7 we also illustrate the effect of the temperature on the structure of com-
munities in the network. As the temperature increases the communities start to be
fractioned until all nodes are forming individual communities. The case ˇ D 0
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b = 1.0

b = 0.2 b = 0.1

b = 0.3

Fig. 7 Illustration of the effect of the temperature on the structure of communities in the Zachary
karate club network. The links between individuals have been removed for the sake of simplicity

represents a high level of stress, like a large social agitation. At this temperature
the network structure is destroyed and every individual behaves independently. As
the value of ˇ increases the stress at which the network is subjected decreases
and several organizations of the society start to appear. In an ideal situation of no
stress, ˇ ! 1, there is only one community in the network. Consequently, the
consideration of the parameter ˇ permits us to analyze the characteristics of the
community structure of a network under different external conditions by consider-
ing that such conditions affect homogeneously to the nodes of the network.

6 Trade Miscellaneous Manufactures of Metal

Here we study a real-world dataset on a trade network of miscellaneous manu-
factures of metal among 80 countries in 1994. The data was compiled [12] for
all countries with entries in the paper version of the Commodity Trade Statistics
published by the United Nations. For some countries the authors used the 1993 data
(Austria, Seychelles, Bangladesh, Croatia, and Barbados) or the 1995 data (South
Africa and Ecuador) because they were not available for the year 1994. Countries
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which are not sovereign are excluded because additional economic data were not
available: Faeroe Islands and Greenland, which belong to Denmark, and Macau
(Portugal). Most missing countries are located in central Africa and the Middle East,
or belong to the former USSR.

The network compiled by de Nooy [12] represents a weighted directed network.
The arcs represent imports by one country from another for the class of commodi-
ties designated as “miscellaneous manufactures of metal” (MMM), which represents
high technology products or heavy manufacture. The absolute value of imports (in
1,000 US$) is used but imports with values less than 1% of the country’s total im-
ports were omitted.

In general, all countries that export MMM also import them from other coun-
tries. However, there are 24 countries that are only importers and have no export of
MMM at all. They are: Kuwait, Latvia, Philippines, French Guiana, Bangladesh,
Fiji, Reunion, Madagascar, Seychelles, Martinique, Mauritius, Belize, Morocco,
Sri Lanka, Algeria, Nicaragua, Iceland, Oman, Pakistan, Cyprus, Paraguay,
Guadalupe, Uruguay, and Jordan. If the degree of the nodes is analyzed it is
observed that the countries having the larger number of exports are (in order):
Germany, USA, Italy, UK, China, Japan, France, Belgium/Luxemburg, Netherlands
and Sweden. When an undirected version of this network is considered the same
countries appear as the larger exporters, with only tiny variations in the order: Ger-
many, USA, Italy, UK, Japan, China, France, Netherlands, Belgium/Luxemburg,
Sweden. On the other hand, the in-degree is practically the same for every country.
For instance, the average in-degree is 12.475 and its standard deviation is only
3.15. Then, we can consider here only the undirected and unweighted version of
this network. Here, the nodes represent the countries and a link exists between two
countries if one of them imports miscellaneous manufactures of metal (MMM)
from the other. The undirected network is depicted in Fig. 8.

We first calculated the communicability for every pair of countries in the dataset
and then computed the �.G/ matrix. Using this information we determined the
number of cliques in the communicability graph, which correspond to the over-
lapped communities in the trade network. We found 27 communities with diverse
degrees of overlapping. The overlapping matrix is illustrated in Fig. 9.

In order to obtain more valuable information for the analysis of this network
we study the communities having less than 80% of overlap. In doing so, we have
merged the communities with more than 80% of overlap following the procedure
described in Sect. 3.2. Using this approach we reduced the number of communities
to only 5, which will be analyzed in the following section.

6.1 Analysis of the Communities

The first community found is formed by 34 countries, 64.7% of which are located in
America and 29.4% in Asia. Only two European countries, Germany and Spain, ap-
pear in this community. The second community is formed by 32 countries basically
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Fig. 8 Trade network of miscellaneous manufactures of metal (MMM). Nodes represent countries
and a link exists between two countries if one exports MMM to the other

Fig. 9 Overlap matrix among the 27 communities found on the basis of the communicability for
the trade network of MMM. Overlap increases from white to black in a scale from 0 to 1

from Asia, as 62.5% of them are in this continent. The third community is formed
by 39 countries, 61.54% of them are located in Europe. The fourth community is
formed by 21 countries, one third of them are in Europe and the rest in Asia and
Africa. The fifth community is the smallest one, which is formed by only eight coun-
tries in Europe and the Caribbean (Italy, Greece, Spain, Sweden, Cyprus, French
Guiana, Guadeloupe and Martinique). Four of these five communities are repre-
sented in Fig. 10.
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Fig. 10 Graphical representation of the countries forming four of the five communities having less
than 50% of overlap in the trade network of miscellaneous manufactures of metal

A more detailed analysis of these communities reveals some interesting facts
about the trade between these countries. The first community is dominated by the
trade in and between America and Asia. It is not unexpected that Spain appears
in this community instead of in the European one due to its historical relations
with Latin-America. The reason why Germany is in this community is not clear.
The second community reveals the trade between Anglo-Saxon countries (UK,
USA, Canada and Australia) with Asian countries. The European community (C3
in Fig. 10) is mainly based on trade within them and with African and Middle-
East countries. This community does include neither Spain nor Germany, which
are instead included in the America-Asia community. This result reflects clearly the
geopolitical nature of the trade clustering between countries. The fourth community
reveals the trade between some European countries and some former African/Asian
colonies of these European nations.

6.2 Trade Under External Stress

We study here the effect of the external stress on the community structure of the
trade network analyzed. The external stress is simulated here by the inverse temper-
ature ˇ. At the “normal” temperature ˇ D 1 we have found 27 communities with
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Fig. 11 Effect of external stress, represented by the inverse temperature, on the community struc-
ture of the trade network

diverse degrees of overlapping, as described above. These communities form a con-
nected component. That is there is not any community which is isolated from the
rest. As the temperature is increased (ˇ decreased) we start to observe the evolution
of these communities under the effect of an external stressing factor. At ˇ D 0:017

the first disconnection occurs in this trade network. The disconnection of other coun-
tries from the main connected component is very fast as the temperature increases.
For instance, at ˇ D 0:008 there are 37 isolated clusters of countries, which are dis-
connected from each other. At this point global trade is impossible and only some
local exchanges between very few countries are possible. In Fig. 11 we display the
progress of this evolution as the temperature tends to infinity (ˇ ! 0).

7 Conclusions

We have introduced the concept of communicability in complex socio-economic
networks. This concept allows a series of analysis from which we have selected
the one related to the communities in socio-economic networks. The method for
finding communities based on this concept permits the unambiguous identification
of all communities in a network without the use of any external parameter. These
communities display different level of overlapping, which can be managed a poste-
riori to merge communities according to specific necessities of the problem under
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analysis. The method is also unique in the sense that it permits to study the influ-
ence of external factors, like economic crisis and social agitation, by considering a
network temperature.

We analyze here a trade network of miscellaneous metal manufactures in 80
countries. The communicability analysis revealed the existence of 27 communities
with different level of overlapping. By considering only those communities with
less than 80% of overlapping we have identified the existence of certain clusters
that reflect the geopolitical relationships in the trade of such manufactures. Another
important point is the analysis of the resilience of these communities to external
stresses. It has been shown that as the external “temperature” increases there are
several countries which separate from the main trading network. This represents the
vulnerability of the trade network in situations of critical external influences, such as
deep economical crisis. In closing, we hope that the communicability function and
the method presented here for studying the identification and evolution of commu-
nities can add some valuable information to the study of complex socio-economic
networks in the real world.
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On World Religion Adherence
Distribution Evolution

Marcel Ausloos and Filippo Petroni

Abstract Religious adherence can be considered as a degree of freedom, in a
statistical physics sense, for a human agent belonging to a population. The distri-
bution, performance and life time of religions can thus be studied having in mind
heterogeneous interacting agent modeling. We present a comprehensive analysis of
58 so-called religions (to be better defined in the main text) as measured through
their number of adherents evolutions, between 1900 and 2000, – data taken from
the World Christian Trends (Barrett and Johnson, “World Christian Trends AD 30 –
AD 2200: Interpreting the Annual Christian Megacensus”, William Carey Library,
2001): 40 are considered to be “presently growing” cases, including 11 turn overs
in the twentieth century; 18 are “presently decaying”, among which 12 are found to
have had a recent maximum, in the nineteenth or the twentieth century.

The Avrami–Kolmogorov differential equation which usually describes solid
state transformations, like crystal growth, is used in each case in order to obtain the
preferential attachment parameter introduced previously (Europhys Lett 77:38002,
2007). It is not often found close to unity, though often corresponding to a smooth
evolution. However large values suggest the occurrence of extreme cases which we
conjecture are controlled by so-called external fields. A few cases indicate the likeli-
ness of a detachment process. We discuss a few growing and decaying religions, and
illustrate various fits. Some cases seem to indicate the lack of reliability of the data,
but others some marked departure from Avrami law. Whence the Avrami evolution
equation might be surely improved, in particular, and somewhat obviously, for the
decaying religion cases.

We point out two major difficulties in such an analysis: (1) the “precise” original
time of apparition of a religion, (2) the time at which there is a maximum number of
adherents, both information being necessary for integrating reliably any evolution
equation.
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1 Introduction

Barrett and Johnson [1] have surveyed the number of adherents to religions between
1900 and 2000 and publish abundant tables. We have considered that some evo-
lution could be studied according to physics laws [2]. Indeed, religion like sex,
age, wealth, political affiliation, language, . . . can be considered to characterize a
group or an individual status. Whence religion or sex, age, wealth, political affilia-
tion, language distributions can be studied as a function of time and space, as well
as auto-correlated, or correlated with any other variable or “parameter” character-
izing a population. Thus it may find a role in socio-economic studies pertaining
to attitudes, behaviors, opinion formations [3], etc. Several interesting considera-
tions well known in statistical physics can be found in most sociological systems:
the role of nucleation, growth, aging, death, criticality, self-organization, epidemic
spreading, and subsequent avalanches. If some geometric-like transition or some
thermodynamical-like transition exists then some human degree of freedom fluctu-
ations should be observed and discussed.

Recently the dynamics of world’s languages, especially their disappearance due
to competition with other languages [4] has been of interest [5] in such a re-
spect. A set of similar questions though on religions, within a statistical physics
framework, can be raised when attempting to quantify some religion dynamics as
measured from individual adherence distribution functions [2]. We emphasize that
we are not interested here neither in any religion’s fundamental origin or content
history nor in finding any hierarchy, but rather in the statistical physics-like aspects
of a complex non-equilibrium biological agent based system [6, 7].

Notice the interesting fact when strong fluctuations arise: history is full of exam-
ples of individuals or entire groups of people changing their religion, – for various
reasons: following the “leader”, e.g. Constantinus, Clovis, or not changing at all
under “external pressure”, leading to martyrdom, or like at inquisition time, or
following a fatwah, but also cases of “internal pressure” (Khazars, maybe) or so-
called adaptation under proselytism action, e.g. sun worshipping Incas in presence
of catholic missionaries, zoroastrian Persians in presence of muslim arabs, etc. Such
a competition through agent interactions or under “external field conditions” exist in
many cases indeed. Thus, the number of adherents can evolve drastically due to such
various conditions [8], independently of the population growth size. We do empha-
size that external field conditions can be rather more drastic in the religious domain
than in language history.1 See also Appendix A for some discussion outlining a few
aspects, i.e. “differences” between languages and religions, from a physics point of
view, perspective or input into modeling such sociological features.

1 However one can recall the case of “Brugse Metten”, May 18, 1302, when flemish “klauwaerts”
killed the french “leliaerts”, recognized as such, because they could not pronounce correctly “schild
en vriend”. Another case is that of the red khmers, in Cambodia, killing Vietnam educated in-
tellectuals. Finally remember that Gileadites killed Ephraimites, selected because they could not
pronounce Shibboleth, at a Jordanford (Judges 12:5–6).
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In the following we consider as the fundamentally relevant variable the number
of adherents of each religion.2 Only this number is treated as the physics ob-
ject/measure. Thus a religion is hereby considered as a (socially based) variable,
like a language or wealth, to be so studied like any other organizational parame-
ter for defining a thermodynamic-like state. We recognize that a religious state3 is
more individualistic than a linguistic state. Thus, in some sense one can better define
the religious adherence of an agent than the linguistic one. Indeed one can hardly
be multi-religious but one can be a polyglot. Of course one can switch easily, i.e.
through “conversion”, from one religious denomination to another, not so in lan-
guage cases. Thus the observation time of a religious state needs careful attention in
surveys.

From another time point of view, one can notice that a religion can seem to appear
rather instantaneously, often as a so-called sect, at the beginning, and its number of
adherent can grow steadily (see the recent Mormon or Rastafarianism case) or not.
The notion of nucleation through homogeneous or heterogeneous fluctuations could
be thought of. A religion can also rather quickly disappear, like the Antoinists in
some coal mine regions of Western Europe, because its social role or its feeding
ground disappears. Both cases though quite interesting are actually outside the realm
of this paper. Yet the life time, or aging, of a religion can be studied, through the
number of adherents, surely for modern times.

In so doing several pertinent questions can be raised, e.g. from a “macroscopic”
point of view: (1) How many religions exist at a given time? (2) How are they
spatially distributed ? . . . From a “microscopic” view point: (3) How many adherents
belong to one religion? (4) Does the number of adherents increase or not, and how?
And maybe why? (5) Last but not least is there some modelization, through some
agent based model possible?

First, let us recognize that the definition of a religion or an adherent (or adept)
might not be accepted univocally, but the same can be said about language definition
and language knowledge or practice (see Appendix A). We recognize that there are
various denominations which can impair data gathering and subsequent analysis;
like many, we admit to put on the same footing religions, philosophies, sects and
rituals. Idem, we do not distinguish between adherents or adepts; there are also
agnostics, atheists or “not concerned”. In fact, a similar set of considerations exists
when discussing languages and dialects, slangs, etc. There are, e.g. three definitions
of a language [9]. Similarly one could “weight” the level of adherence to a religion,
one could try as for languages to define a religion through its rituals, and quantity of
practitioners. Many other indicators are possible (see Appendix B). To consider such
variants would lead us too far away from the main stream of the present research
and is left for further investigations when possible.

2 It is sometimes hard to know or to be sure whether an adherent, a disciple, . . . is truly a member
of a religious denomination or church. However this caveat pertains to usual problems encountered
in sociological investigations.
3 . . . Admitting indifference, atheism, agnosticism, . . . as a sort of religion, from our point of view.
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Thus to address some of these issues, we have followed classical scientific steps
as in physics investigations [2]. We have accepted as such and subsequently ana-
lyzed “empirical” data on the number of adherents of religions. We have discussed
in [2] two different freely available data sets. The exactness of both data sets from
an experimental (laboratory or naturally based) physics point of view is debatable.
Some discussion will be rejuvenated in Sect. 2. Yet, it has been found in [2] that
empirical laws can be deduced for the number of adherents, i.e. the probability dis-
tribution function (pdf ). Two quite different statistical models were proposed, both
reproducing well the data, with the same precision, one being a preferential attach-
ment model [10], like for heterogeneous interacting agents on evolving networks,
e.g. it is more likely that one has the religion of one’s mother or neighbor. . . (leading
to a log-normal distribution), another based on a “time of failure” argument (leading
to a Weibull distribution function), as in [11]. Another approach, based on a truly
biological evolution consideration, has been presented by Hashemi [12].

Moreover, a population growth-death equation has been conjectured to be a plau-
sible modeling of the evolution dynamics in a continuous time framework, i.e. the
time evolution of several “main” religions, from a microscopic interpretation is plau-
sible along the lines of the growth Avrami–Kolmogorov equation describing solid
state formation in a continuous time framework, the solution of which is usually
written as

f .t/ D 1 � expŒ�Ktn	; (1)

where f .t/ is the volume fraction being transformed from one phase to another;
K and n are adjustable parameters (Fig. 1). For n D 1, this equation reproduces
the loading of a capacitance in series with a resistance R, for which the differential
equation for the voltage V.t/ across the capacitance C reads

d

dt
V.t/ D E � V

RC
(2)
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Fig. 1 Logistic map or Verhulst law (2) (left) and theoretical behavior of the solution of an Avrami
Equation as (5) in reduced units for various typical h values (right)
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in terms of the electromotive force E , and for which one remembers that one
interprets RC as a relaxation time � . It is also the behavior of the Verhulst logistic
map above the inflection point; indicating that this Avrami equation is of interest for
so-called late stage growth, i.e.

Of .t/ D 1

1 C expŒ�Kt	
: (3)

For n ¤ 1, (1) can correspond to complex non linear electronic circuits con-
taining an infinity of elements, or also to an infinite combination of springs and
damping elements (R. Kutner, private communication after and during an invited
talk at FENS07, Wrocław, Poland) in classical mechanics.

A priori, in analogy with crystal growth studies [13, 14], we have considered
that a microscopic-like, continuous time differential equation can be written for the
evolution of the number of adherents, in terms of the percentage with respect to the
world population, of the world main religions, as for competing phase entities in an
Avrami sense, i.e.

d

dt
g.t/ D � t�hŒ1 � g.t/	: (4)

It can be solved easily giving the evolution equation for the fraction g.t/ of religion
adherents

g.t/ D 1 � � exp
h
� �

1 � h
t1�h

i
: (5)

where, adapting to our case (4), � is related to the initial condition, � is a (positive
for growth process) rate (or scaling) parameter to be determined, see discussion in
Sect. 3, and h is a parameter to be deduced in each case, measuring the attachment-
growth (or death) process in this continuous time approximation. The relaxation
time �n, since n � 1 � h, of this stretched exponential growth is

�n D
� �

1 � h

��1=.1�h/

(6)

which is markedly rate (K) dependent. For further consideration, let us explicitly
write the “very (infinitely) slow” growth case h=1, i.e.

d

dt
g.t/ D � t�1Œ1 � g.t/	; (7)

whence
g.t/ D 1 � ˇt�� ; (8)

where ˇ, being positive (negative) for a growth (decay) case, is set by initial con-
ditions; for h D 1, there is no “relaxation time”, but a scaling time �1 = ˇ1=� , or
ˇ D �

�
1 .
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The h-cases which can be illustrated through an Avrami equation are shown in
arbitrary time units in Fig. 1 for various h values, for � D 1 and � D 1 � h. They
are compared to the (generalized, i.e. n ¤ 1) logistic map.

What should be emphasized is the fact that religions have appeared at some time
t0 which is somewhat unknown, or to say the least, loosely defined, due to a lack
of historical facts but also due to the inherent process of the creation (nucleation, in
physics terms) of a religion. This initial time is a parameter intuitively much more
important than in crystal growth, but less well defined. Therefore we rewrite the
Avrami equation as

g.t/ D 1 � exp

"
�
�

t � t0

t1

�1�h
#

; (9)

thereby allowing also for a time scaling through t1 related to some growth (or death)
rate process. Notice or so that the maximum in such theoretical laws occurs at zero
or C=� infinity, – a time information on which there is not much data in the case
of religions. Moreover when the number of adherents presents a maximum or a
minimum which can be recognized to occur, in the forthcoming analyzed data,
during the present or a recent century we will use a second order polynomial like
y D A C Bt C C t2 for the fit.

If .t � t0/=t1 is much smaller than 1, (9) can be expanded in Taylor series, taking
only the first order, and gives

g.t/ D ˛ C
�

t

t1

�1�h

; (10)

where we have chosen t starting from 0 (instead of 1900, as in our data, being this
completely arbitrary and purely conventional) and ˛ representing the initial condi-
tion, i.e. the value of the number of adherents for t D 0. These are obviously the
most simple non linear expressions, i.e. with three unavoidable parameters, which
can be used in such a data analysis.

A few examples of religions for which the number of adherents is increasing
(e.g., Islam), decaying (e.g., Ethnoreligions) or rather stable (e.g., Christianity and
Buddhism) is already shown in Fig. 4 of [2]. In such cases we have found that h

'�1.8, 6.9, 1.5 and 1.4, respectively in the time range of interest (1900–2050).
However in [2] the main denominations were “loosely grouped”. To be more spe-
cific: Christians in [2] were the results of grouping together 12 denominations;
similarly we grouped 15 denominations as “Muslims”.

Here we present a more complete and somewhat more detailed analysis of
the values of h and its meaning for 58 “time series”, where 58 results from:
“55” C “1” C “2” (religions). More precisely there are 56 data sets for specific
“large” religions, in the World Christian Encyclopedia (WCE) and World Christian
Trends (WCT) reference books [1,15], most of them being in the main denomination
brackets, i.e. in the upper part of the pdf as obtained from the surveys taken between
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1900 and 2000. The “1” refers to some data containing 3,000 religions which are
put together, as “other religions” in the WCT tables. The “2” is due to the set of
data about atheists and nonreligious persons, as mentioned in Tables 1–2 of [1].
Thereafter for conciseness, we will also identify/call these three sets as “religions”.

Emphasis will be on distinguishing between growing and decaying cases,
discussing our “theoretical” fit, comparing to the forecasting in [1], for 2025
and later, and observing diverse anomalies, thus raising questions to be further
investigated.

The remainder of the paper is organized as follows: in Sect. 2 the data bank is
briefly discussed, – and criticized, though accepted for further research and subse-
quent analysis along the theoretical and methodological tools used here which we

Table 1 Values of the parameters h, ˛, and t1, used for fitting the data of “increasing religions”
with a power law formula; see (10); religions are hereby ranked based on the size of the attachment
parameter h which can be negative or positive but �1; the result of a visual conclusion concerning
whether our fit over five data points overshoots (O), undershoots (U) or is approximately the same
(D) as the forecasting from WCT is given; reference to the corresponding figure is made

Religion h ˛ t1 Predict. Fig.

Shaivites �5:32 0.032 239 O 2
Hanbalites �4:66 0.000305 527 O 3
Hanafites �3:84 0.0629 211 O 2
Zoroastrians �3:64 3:29e � 005 530 O 3
Kharijites �2:88 0.000196 1,150 O 3
Afro-Caribbean religionists �2:75 �5:06e � 007 1,800 O 3
Black Muslims �2:36 �8:06e � 006 1,110 O 3
Pentecostals/Charismatics �2:19 �0.00186 208 O 2
Independents �1:61 0.00427 288 O 2
Shafiites �1:49 0.024 528 O 2
Afro-American spiritists �1:32 6:87e � 005 4,990 O 3
Ithna-Asharis �1:26 0.0137 812 U 4
Afro-Brazilian cultists �1:21 5:52e � 005 2,610 O 3
Zaydis �1:10 0.000741 3,450 D 4
Alawites �1:09 0.000154 7,560 D 4
Ismailis �1:04 0.00142 1,870 O 4
Yezidis �1:01 1:84e � 005 2:23e C 004 O 4
High spiritists �0:83 2:33e � 005 5,690 O 3
Sikhs �0:792 0.00182 3,130 O 3
Ahmadis �0:789 4:32e � 005 4,170 D 4
Baha0is �0:368 4:87e � 006 1:38e C 004 D 4
Druzes �0:366 4:38e � 005 8:85e C 004 D 4
Neo-Hindus �0:212 6:19e � 005 1:28e C 004 O 2
Marginal Christians �0:206 0.000569 1e C 004 D 4
Mandeans �0:0667 5e � 006 3:17e C 007 U 5
Malikites 0:0566 0.0167 63,803 D 5
Other sectarian Muslims 0:0929 0.000311 2:62e C 006 U 5
Crypto-Christians 0:230 0.0022 1:8e C 004 D 6
Reform Hindus 0:384 0.000154 1:78e C 007 O 6
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Table 2 Values of the parameters h, t0, and t1 used for fitting the data on “decreasing religions”
with (9); h is in this case 
1; the result of a visual conclusion concerning whether our fit over five
data points overshoots (O), undershoots (U) or is the same (D) as the forecasting from WCT is
given; reference to the corresponding figure is made

Religion h t0 t1 Predict. Fig.

Chinese folk-religionists 1.07 �3:36e � 007 3:49e � 015 O 7
Orthodox 1.14 �0.821 1:06e � 008 O 7
Theravada 1.81 �242 3.27 O 8
Mahayana 2.04 �321 16.2 O 8
Karaites 2.09 �99.3 0.00226 D 8
Lamaists 2.77 �614 29.7 O 8

adapt to the considered time series set. The results are largely presented and dis-
cussed in Sect. 3 under the form of tables and graphs for various groups of religions,
grouping according to the apparent behavior. Some concluding remarks are done in
Sect. 4.

2 Data Bank: Theoretical and Methodological Framework

The data analyzed here were taken from the World Christian Trends (WCT)
book [1].4 It is fair to say that this is a remarkable compilation work. Their tables
give information on the number of adherents of the world’s main religions and their
main denominations: 55 specific (“large”) religious groups C atheists C nonreli-
gious, plus a set called other religionists made of 3,000 religions which however
contains, Yezidis and Mandeans which we consider also, so that we examine
53 C 2 D 55 (truly recognized) religions. From this data set we have also infor-
mation on changes during one century of the number of adherents of each religion
from 1900 till 2000 (information in the data set are given for the following years
1900, 1970, 1990, 1995 and 2000) – with a forecast for 2025 and 2050. Let us point
out that it is not understood (or barely understandable) how such a forecast is made
in the data bank.

4 Data Source Information: The sources used in the WCT database were so numerous and diverse
that we only mention here few of them, for a more exhaustive discussion the readers are referred
to the WCE. The major physical collections of data built up may be summarized here: around
5,000 statistical questionnaires returned by churches and national collaborators over the period
1982–2006; field surveys and interviews on the spot in over 200 countries conducted by the au-
thors, who over the years 1965–2006 visited virtually every country in the world; the collection
of 600 directories of denominations, Christian councils, confessions and topics; a collection of
4,500 printed contemporary descriptions of the churches, describing denominations, movements,
countries and confessions; officially published reports of 500 government-organized national cen-
suses of population each including the question on religion, in over 120 countries, covering most
decades over the period 1900–2005; bibliographical listings from searches (including computer-
ized enquiries on key-words) in a number of major libraries including those of the British Library
(London), Library of Congress (Washington), Propaganda (Rome), Missionary Research Library
(New York), and a score of universities.
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A critical view of this data has to follow: we have already [2] noticed a
break at 107 adherents, in the pdf, indicating in our view an overestimation of
adepts/adherents in the most prominent religions, or a lack of distinctions between
denominations, for these, – as can be easily understood either in terms of propa-
ganda or politics, or because of the difficulty of surveying such cases precisely. Yet
one paradoxical surprise stems in the apparent precision of the data. E.g., the data
in [1] seems to be precise, in several cases, up to the last digit i.e., in mid-2000,
there are 1,057,328,093 and 38,977 Roman Catholics and Mandeans respectively. In
strong contrast there are 7,000,000 and 1,650,000 Wahhabites and Black Muslims
respectively, numbers which are quite well rounded. Thus a mere reading of the
numbers warns about the difficulty of fully trusting the data. Nevertheless the
analysis is pursued bearing this caveat here below.

3 Results

Results of the h-fit to Avrami equation of the WCT surveys [1] are summarized in
Tables 1, 2 and 3: the 58 “denominations” of interest are given. The parameters are
obtained by a least-square best fit of the data (not considering the WCT forecast) to
the equations mentioned in each table caption for the various cases. The ranking in
the tables is according to the fit parameter h or A.

The parameter h values and their meaning deserve some short explanation and
discussion here. According to the standard growth (Avrami) process h should be
positive and less than 1, since n � 1 � h; if it is greater than 1, this is indicating the
possibility for detachment. We consider that if jhj is outside the .0; 1/ interval, we
have to imagine that the nucleation growth process is heterogeneous and/or conjec-
ture that it is due to external field influences. Moreover notice that when h is greater
than 1, the Avrami equation solution decays, . . . from a maximum at the time t0.
However it is hardly difficult to know when a religion has attained its maximum
number of adherents. Thus the time scale or the initial appearance time of a religion
are questionable points. Another point is obvious from Fig. 1. The theoretical ex-
pressions do not allow a fit in the vicinity of either a maximum or a minimum. We
should expect deviations, if such a case occurs, whence other empirical functions
should be considered to be of interest.

3.1 Intermediary Comments

In order to read the figures, let us point out the way we have here chosen for the
displays. It seems somewhat obvious, from a mathematical or physics point of view
that one should consider (1) strictly increasing or decreasing cases, (2) cases of
decay after a maximum, or (3) of growth after a minimum. This hints also to con-
sider in future work the curvature as a relevant indicator as for other (financial)
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time series [16]. Therefore we have grossly ranked the figures and data according
to whether the number of adherents seems to be increasing (Table 1), with h � 0,
starting from the lowest value and increasing, in a power law fit. Next we display
the “decreasing” cases along an Avrami law, again ranking in order of increasing h,
corresponding to fits with parameters given in (Table 2).

Sometimes it is readily observed from the WCT tables that there are “presently
growing” religions but for which a minimum is observed during the twentieth cen-
tury, or a few are decaying after some recent maximum. For such “religions” the
number of adherents can be in a first approximation fitted with a second order
polynomial y D A C Bx C Cx2, as mentioned in the Introduction, for which
the parameters are given in Table 3.

In all cases, each fit has been made over 5 points, represented by dark squares in
the figures. The WCT forecasts are indicated by a square with a cross inside.

Table 3 Values of the parameter used for fitting data on 12 “decreasing” and 11 “increasing”
religions with the polynomial equation Cx2 C Bx C A; for a warning on the six “central” (in the
table) religions, see text; the result of a visual conclusion concerning whether our fit over five data
points overshoots (O), undershoots (U) or is the same (D) as the forecasting from WCT is given;
reference to the corresponding figure is made

Religion C B A Predict. Fig.

Nonreligious �2:61e � 005 0.103 �102 U 12
Atheists �1:31e � 005 0.0514 �50.3 U 12
Unaffiliated Christians �4:38e � 006 0.017 �16.5 U 12
Roman Catholics �4:2e � 006 0.0165 �16 U 12
New-Religionists

(Neoreligionists) �3:88e � 006 0.0153 �15 U 12
Shamanists �4:87e � 007 0.00185 �1.74 U 12
Confucianists �2:11e � 007 0.000831 �0.815 U 12
Wahhabites �5:53e � 008 0.000215 �0.208 U 12
Taoists �4:4e � 008 0.000174 �0.171 U 12
Other religionists

(in 3,000 religions) �3:81e � 008 0.00015 �0.148 U 13
Ashkenazis �2:46e � 008 4:26e � 005 0.0149 U 11
Oriental Jews �3:23e � 009 1:22e � 005 �0.0112 O 11
Samaritans 7:14e � 012 �3:01e � 008 3:18e � 005 U 14
Sefardis 6:52e � 010 �2:8e � 006 0.00315 O 14
Jains 8:97e � 009 �3:61e � 005 0.0371 U 14
Shintoists 2:05e � 007 �0.000836 0.853 D 14
Saktists 2:12e � 007 �0.000824 0.806 O 9
Protestants 7:66e � 007 �0.00306 3.11 U 10
Anglicans 9:75e � 007 �0.00386 3.83 O 9
Vaishnavites 1:25e � 006 �0.00487 4.82 O 9
Sufis 2:34e � 006 �0.00921 9.11 D 10
Animists 2:77e � 006 �0.0111 11.2 O 9
Evangelicals 5:95e � 006 �0.0233 22.8 O 9
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3.2 Growing Religions

In this subsection, we show cases of small or large size religions which are strictly
increasing (Figs. 2–6). The illustrations are sufficiently readable and understandable
that we do not convey much more hereby than in the figure captions. The fits over 5
points are usually rather good (Figs. 2–4), but we emphasize that the extrapolation
either often overshoots or sometimes underestimates the WCT forecast for 2025
and thereafter, except for several cases in Fig. 4, cases for which 0 � h � �1. This
disagreement is partially due to the lack of saturation implied by the Avrami model.

We observe (Fig. 5) that there are three cases where the growth appears to be
linear; in these cases we underestimate the WCT forecast. We emphasize that growth
does not mean lack of saturation, as it should be appreciated: this is illustrated by
two cases in Fig. 6, i.e. Crypto-Christians and Reform Hindus. Notice that for these
last two cases the slope at the origin, i.e. looks infinite, and h is �1. However one
should recall that the infinite slope is occurring during the existence of the religion.
The number of data points does not allow us to observe the date of the religion birth.

We suggest to the reader to compare the figures with the h values in the tables,
and observe that the y-scales are evidently quite different from figure to figure de-
pending on the rank of the religion. Notice that t1 ranges from 200 to ca. 2:0 
 107.
Negative ˛ values naturally result from the fit lack of precision.
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Fig. 2 Six illustrative cases of actually increasing religions, . . . with h � 0. Observe the over-
shooting in the forecast with respect to WCT in all cases
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Fig. 3 Six illustrative cases of actually increasing (small size) religions . . . with h � 0; our empir-
ical law does not confirm the WCT forecast in the next years, but overshoots the WCT value

3.3 Decaying Religions

Turning to the apparently decaying religions (Figs. 7–8), the same classification can
be made: either there are strongly or smoothly decaying cases, with remarkable fits,
over 5 points, even though there is no a priori knowledge of the time when the
number of adherents is maximum. The empirical forecast resulting from an extrap-
olation of the fit over 5 points overshoots the WCT prediction in the twenty-first
century in almost all cases. This is again due to the lack of saturation implied by
the Avrami model. Notice the very small values of t1, and the negative ones for t0,
pointing out to the presence of a maximum before 1900. The sharp decay of the
cases shown in Fig. 7 will be commented upon below.
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Fig. 4 Six illustrative cases of actually increasing (small size) religions . . . ; our empirical law
confirms the WCT forecast
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Fig. 5 Three small size religions, with increasing number of adherents; decreasing h from left to
right, with h close to 0; see Table 1; our empirical law underestimates the WCT forecast
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Fig. 6 Two illustrative cases of actually increasing (indicated) religions, with saturating like fore-
cast. Observe the rather good fits, parameters in Table 1, h positive and �1, and even a rather good
confirmation of the WCT forecast
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Fig. 7 Two sharply decaying religions, with very small t1 and h 
 1

3.4 Cases with Presently Observed Extremum

Sometimes there are “presently decaying” (“growing”) religions for which a maxi-
mum (minimum) is observed during the present centuries (Figs. 9–14). Notice that
these are rather large size religions. For such “religions” the number of adherents
can be fitted with a second order polynomial y D A C Bx C Cx2; the relevant pa-
rameters for these cases are given in Table 3. For the presently decaying (increasing)
number of adherents, A and C are negative (positive), B being positive (negative),
since for this fit the origin of time is in 0, at the beginning of the christian era.
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Fig. 8 Four smoothly decaying religions with h much larger than 1; our forecast being similar to
that predicted in WCT

In the presently increasing cases we overshoot the WCT forecast (Fig. 9), or not
(Fig. 10). For the presently decaying cases as in:

1. Figure 11, the maximum occurs much before 1900; apparently there is a strong
prognosis for the collapse of these two religions, Oriental Jews and Ashkenazis,
in contrast to the WCT forecast.

2. Figure 12, we underestimate the WCT forecast; the latter being thus more opti-
mistic than the twentieth century data evolution indicates.

In some (3) cases (Fig. 12) the collapse seems rather obvious, though the tail of
the evolution law has a (sometimes large) error bar, not shown for data readability.
Observe that the “other religions”, containing 3,000 or so smaller denominations
(Fig. 13) present also a parabolic convex shape. As for the Roman Catholics (see
Fig. 12a) and the Jains (Fig. 14a), the WCT is forecasting a marked turn over in the
twenty-first century, i.e. somewhat expecting an increase in “small denominations”,
though it is unclear whether their forecast includes an increase in the number of
religions.
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Fig. 9 Five large size religions indicating a turn over with a minimum in the twentieth century; the-
oretical forecast with respect to WCT is debatable though our fit slightly overshoots the WCT data
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Fig. 10 Two large size religions indicating a turn over with a minimum in the twentieth century;
our theoretical forecast slightly underestimates the WCT data

Religions with extreme values of parameters, see Table 3, are illustrated in
Fig. 14. they indicate complex situations. It might happen that such religions will
disappear, but whether it might be through a long tail or sharp cut-off evolution
remains a question. More data should be of interest in such cases.
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Fig. 11 Two cases of religions having a markedly predicted collapse after having had a maximum
in the nineteenth century
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Fig. 12 Nine religions having had a maximum during the twentieth century; the parabolic forecast
undershoots the WCT expectation
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Fig. 13 Case of so-called
3,000 other religions for
which a decreasing behavior
is observed; notice the
marked underestimate of our
forecast with respect to
WCT – predicting an increase
in this twenty-first century
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Fig. 14 Four cases of equivalent size, but rather small, religions having a relatively complex
behavior, apparently decaying during the twentieth century, but with debatable forecasting with
respect to WCT for the twenty-first century
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4 Discussion and Conclusions

First, let us warn that we consider that the religious practice is more likely more
diverse than WCE and WCT surveys indicate. The data is over a limited quite fi-
nite time span. Yet understanding the difficulty of such surveys, and accepting the
interest of the data per se we suggest to let religious adherence to be a degree of
freedom of a population, and follow through with some statistical physics consid-
erations for our enlightenment. Therefore we have analyzed 58 cases of growing
and decaying (so-called) religions, observing several groups through their analyti-
cal behaviors. We indicate that with an Avrami law the fit can be quite often good,
in particular for the growing cases. Physically speaking that gives some support
to the conjecture of religions growing like crystals (http://physicsweb.org/articles/
news/11/1/1/1). However we cannot expect that the Avrami equation holds true for
ever; the system should saturate at some point, except if only a few religions are
excessively predominating, and not “allowing” the probability of existence (in a
thermodynamic sense) of others. The evolution of the number of adepts over the life
time of a religion cannot be expected to be so smooth either. Indeed most of the fits
seem often to indicate an exponential behavior. This is clearly wrong on the long
term. Whence it would be of interest to develop an alternative set of fits and con-
siderations through the logistic map approach, recalled in the introduction (Fig. 1).
In this way the growth of the population due to the inherently limited resources
would be more realistically taken into account. However this introduces an extra
parameter. In the same self-criticism of our approach and recognizing that more so-
phisticated ones can be though of, let us mention that beyond the simple analytical
forms here above presented, one can imagine describing the number of adherents
evolutions as in a Lotka–Volterra approach [17–21]. However when complexifying
the description, see also [22, 23], it is not obvious that one can easily quantify or
calibrate the parameters.

The same is true for the parabolic fit, which either indicates a quite quickly forth-
coming disappearance of a religion or allows for infinite growth. We recognize that
these are approximations.

It seems that we often overestimate/underestimate the WCT theoretical trend in
the decaying cases and in several growing cases, though we sometimes agree in the
latter cases. Again we claim that the WCT trends can be quite arbitrary, supposedly
predicting a linear evolution from the last three data points in the surveys. It might
be interesting to use other types of statistical analysis to conclude whether the fore-
casts so much differ from one another. . . . As well perform detailed analyses taking
into account error bars in the original data. For example, the case of Zoroastrians
(in Fig. 3) indicates an anomalous point corresponding to 1975, while other cases
seem to indicate major (but unknown) error bars (like in Fig. 5) on the data from the
surveys. To resolve such questions is outside the scope of this report.

Turning to the data displayed on different figures, a “high” growth is seen for
Hanfites, Shafiites and Malikites which are all Sunnists. Maybe we should not need
to add a comment based on “political considerations” here, but we may consider that
the meaning of h makes sense again. In fact this is emphasized when considering

http://physicsweb.org/articles/news/11/1/1/1
http://physicsweb.org/articles/news/11/1/1/1
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two of the highest growth rates, i.e. as found for Charismatics and Independents,
though a strict late growth stage theory might be debated upon. One case where one
case trust the data points is likely that of the black muslims (Fig. 3) since they hardly
existed before 1900, whence for which an Avrami equation would hold. It would be
very interesting to check soon the number of adherents in such a case.

Finally observe that the “non religion” adherent data finds a remarkable position
as the fourth growing “denomination”. Observe the maximum in the number of
“adherents” in such a case near 1970, rendering the theory (or the data!) to be
debated upon.

Last but not least, it might considered that the growth in many cases only re-
flect the population growth in several countries (a comment by J.J. Schneider and
D. Stauffer). It is true that it would be interesting to recount the number of adepts,
and their rate of adherence, per religion and per country, and to correlate the evolu-
tion to the birth rate in the examined country with the religion(s) growth rate, and
in particular the attachment parameter value. The latter might not be a constant as
assumed here above. Such an approach is presently attempted [21].

In conclusion, here above we have shown that we can attempt to make a statistical
physics like analysis of the number of adherents in religions, going beyond our first
paper [2] on the subject. However the data seem sometimes barely reliable.

Nevertheless one can, expecting better surveys, at a more limited scale, suggest
further lines of research. One could suggest agent based models like for languages,
including the role of external fields. One could try to have a Langevin equation
connexion to Avrami equation; of course we need to define a hamiltonian H and
a current: that implies interactions thus competitions between entities; what we do
not see here yet. However the hamiltonian can be obtained following standard ideas,
like turning over the pdf into its log and defining some temperature. Religions seem
to be an interesting field of study for statistical mechanics!

Appendix A: Languages Vs. Religions

Through this Appendix A we wish to outline what we consider are a few interesting
aspects, i.e. “differences”, between languages and religions, from a physics point of
view, perspective or input into modeling their sociological features. In particular one
could consider their origin or mode of nucleation [24–29], number (see the orders
of magnitude), variety and types of agents, define their opinion leaders, observe the
range of time scales, and the relevance of applied fields; see Table 4, as a summary
of considerations of interest.

We insist that in physics one should study the response of the system to intrinsic
or extrinsic fields. Recall that we may describe the population of agents through a
free energy F , Hamiltonian formalism or Langevin equation. In such a way, one
would develop the quantity of interest as a series in terms of clusters, e.g., ordered
along the increasing size of the cluster according to the number of spin Si in the
cluster < : : : >, as in
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Table 4 Comparison: similarities and differences between languages and
religions seen from a statistical physics point of view

Languages Religions

Origin [24–26]: Physiology [27–29]: Myths
Number More than 6,000 More than 3,000
Huge variety Dialects, slangs Denominations, sects
Speaker distribuion Log-normal Log-normal (?)
Agents Multilingual (frequent) Polyreligious (rare)
Opinion leaders Authors, teachers Priests, witches, shamans
Time scales Nucleation: slow Nucleation: fast

Growth: slow Growth: fast (avalanches)
Decay: fast Decay: slow

Tags Grammar, vocabulary Images, rituals
Impact factor Libraries Worship sites
Diffusion Slow Fast
Applied fields Rare Many, strong

exp

	
�F � F0

kT



D �˙iHi Si � ˙<ij >Jij Si :Sj � ˙<ijk>KijkSi :Sj :Sk � 	 	 	 ;

(11)

in obvious notations, i.e. each spin representing an adept in an external field Hi and
interacting with another adept through some interaction Jij , etc., or similarly

@˚i

@t
D Aij ˚j C Bijk˚j ˚k C Cijkl˚j ˚k˚l C 	 	 	 ; (12)

for some information flux ˚i . A vector generalization is immediately thought of.
In the same spirit one can write down many terms and differential equations in
a Lotka–Volterra approach, taking into account some interaction and competition
between religions [21].

Appendix B: Indicators of Religion Status

The time dependence of the number of adherents can be considered to be a very
restrictive way to “measure” the evolution of a religion. One could also “weight”
the level of adherence to a religion. For example, one could try as for languages
to define a religion through its quantity of practitioners, rituals, . . . . Many other
indicators are possible. One can measure diverse quantities related to the religious
effect. As in physics one can search for the relation between causes and effects, the
response to internal or/and external fields.

As there are several definitions of a language [9], similarly one could also define
what a religion “is” in different ways [30].
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First let us list a few definitions of religions from the conventional literature, see
http://www.religioustolerance.org/rel defn.htm:

1. Barns & Noble (Cambridge) Encyclopedia (1990): “. . . no single definition will
suffice to encompass the varied sets of traditions, practices, and ideas which con-
stitute different religions.”

2. The Concise Oxford Dictionary (1990): “Human recognition of superhuman con-
trolling power and especially of a personal God entitled to obedience.”

3. Webster’s New World Dictionary: Third College Edition (1994): “any specific
system of belief and worship, often involving a code of ethics and a philosophy.”

4. Merriam-Webster’s Online Dictionary: http://www.m-w.com/dictionary/religion:
“a cause, principle, or system of beliefs held to with ardor and faith.”

5. Christian Apologetics & Research Ministry (CARM), http://www.carm.org/: “An
organized system of belief that generally seeks to understand purpose, meaning,
goals, and methods of spiritual things. These spiritual things can be God, people
in relation to God, salvation, after life, purpose of life, order of the cosmos, etc.”

In fact, we can admit that:

Religion is any specific system of belief about deity, often involving rituals, a code of ethics,
a philosophy of life.

as in http://www.religioustolerance.org/var rel.htm. Notice that a notion about the
worldwide view seems presumptuous or exaggeratedly aggressive. We are accept-
ing that those not included in the above are “non religious”; among them, atheists,
agnostics, non-interested ones, etc., can be distinguished. On the other hand, we
could distinguish between adepts and adherents. An adept definition can be found
in http://en.wikipedia.org/wiki/Adept:

An adept is an individual identified as having attained a specific level of knowledge, skill,
or aptitude in doctrines relevant to a particular (author or) organization.

As W. Gibbs wrote/said that Mathematics is a language, one could conclude from
the above that Physics is a religion. It is indeed clear that a religious adherent in-
stead of being an analog of an up or down spin, is rather a vector for which each
element can be a quantity measuring some value like one of those considered in soci-
ology, i.e. a “quality”. The adept attaining an extreme value of one or several vector
components. Next we may imagine Potts vector or ferroelectric type (Hamiltonian)
models for describing an ensemble of religious agent state or evolution; recall Ap-
pendix A. Quantitative and qualitative dynamical evolutions of agents and groups
(“denominations”) can also find some theoretical source in many competition and
organization physics models.

Moreover, we recommend that one should consider religions from another en-
semble of point of views (also sometimes called indicators; going to press we found
recent and similar considerations, see [31]) among others:

1. Number of groups, sects
2. Number of parishes
3. Number of chapels, churches, worship sites
4. Number of “priests”, (clergy)

http://www.religioustolerance.org/rel_defn.htm
http://www.m-w.com/dictionary/religion
http://www.carm.org/
http://www.religioustolerance.org/var_rel.htm
http://en.wikipedia.org/wiki/Adept
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5. Number of adherents, like “believers”, taking into account sex, age, wealth,
language, . . .

6. Intensity of participation, in rituals, and in practicing the principles
7. Wealth and financing
8. Type of hierarchy, . . .

No need to say that physicists are not the first ones to reflect on variability in
religion distribution or adherence level. We may find already such considerations in
books and papers by specialists of the history or sociology of religions [30].
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