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Preface

With much excitement and great enthusiasm I introduce this thorough treatise

on the major aspects of domain and domain wall phenomena in ferroics, mostly

ferroelectrics, a major achievement for which there has been a long-standing

need.
Ferroelectric materials possess spontaneous electrical polarization which is

stable in more than one orientation and can be reoriented (switched) by an

applied electric field. This property and its typical derivative characteristics,

e.g., high piezoelectric response and large permittivity, make ferroelectrics

exceedingly useful in diverse applications such as non-volatile memories, ultra-

sonic medical imaging, micro-electromechanical systems, and reconfigurable

high-frequency electronics.
Typically, a ferroelectric material is divided into domains, which are regions

in the material that are polarized in one of the symmetry-permitted polarization

directions. The interfaces between adjacent domains, the domain walls, have a

typical thickness of 1–2 unit cells. The behaviors of domains and domain walls

are fundamental to ferroelectrics and dominate their properties: poling of

ferroelectric ceramics, namely electrical aligning of the polar direction of ferro-

electric domains, is essential for piezoelectric activity; periodically poled crys-

tals are used as nonlinear optic materials for which the width of the inverted

domains controls the desired wavelength of operation. The high permittivity of

ferroelectrics widely used in capacitors is dominated by domain wall contribu-

tions, and domain wall dynamics is responsible for some 50% of the piezo-

electric response in standard transducers and actuators.
Considering the vital role of domains and domain walls, the substantial body

of data, and the resultant theoretical knowledge, it is surprising how limited is

the space given to this subject in the classical books on ferroelectric materials.

Even recent books rarely dedicate entire chapters to this topic. Meanwhile the

importance of domains and domain walls is growing. Thus the study and

manipulation of domain walls can be achieved with much enhanced detail

using new techniques such as piezoelectric force microscopy; new thin-film

growth techniques allow the control of their position, spacing, and response,

and new computation methods aid in revealing their further potential.
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It is therefore very timely for the ferroelectric community and for students
and researchers interested in the field of ferroelectrics that the three most
prominent authorities in the field have united to write this major book on
ferroelectric domains in single crystals, ceramics, and thin films, covering all
the important aspects of the field: basic theoretical descriptions of structural
phase transitions that emphasize the symmetry and phenomenological aspects
of their classifications, an overview of typical ferroic materials, a survey of
experimental methods used to visualize domain patterns, aspects of domain
formation and their typical shapes, and the static properties of domain walls are
all addressed. A large section of the book covers theoretical and experimental
aspects of switching and polarization response and overviews comprehensively
domain-related properties of ferroelectric thin films.

This book will be of central importance to anyone interested in ferroelectrics
and their applications: graduate students of materials science, physics, chemistry,
mechanical and electrical engineering, as well as scientists and engineers, whether
new to the field or simply in need of a systematic and thorough review of the vast,
useful, and fascinating field of ferroic domains.

Nava Setter
7.2009, Lausanne
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Chapter 1

A Preview of Concepts and Phenomena

This book covers a large area of material properties and effects connected with
static and dynamic properties of domains. These are relevant to materials
referred to as ferroics. In textbooks on solid state physics, one large group of
ferroics is customarily covered, namely those in which magnetic properties play
a dominant role: magnetically ordered materials which include ferromagnetics
and antiferromagnetics. Numerous books are specifically devoted to such
materials and cover a wide spectrum of magnetic domain phenomena which
also incorporate essential practical aspects such as magnetic memories. In
contrast, in the present monograph attention will be concentrated on domain-
related phenomena in nonmagnetic ferroics. These materials are still only
inadequately represented in solid state physics textbooks—even those which
offer the most interesting properties, namely ferroelectrics. Therefore before
starting with a systematic description of domain phenomena, in the present
chapter we wish to offer the reader an introduction into what this book is all
about.

Domains are a special sort of crystal twins and a few general remarks on
twinning seem appropriate.

The phenomenon of growth twinning in crystals has been a subject of interest
for crystallographers since crystallography started to develop as a scientific
branch. The obvious reasons are the beauty of external shapes of some of the
twinned crystals as well as evident and challenging symmetry relations between
their constituents. Essentially, we speak about a twin when two or more indivi-
dual crystals of the same species intergrow in a crystalline aggregate. Such parts
of the aggregate are referred to as twin components and it is obvious that the
symmetry operation (referred to as twinning operation) which brings one crystal
into coincidence with the other cannot be a symmetry operation of the crystal
itself. Twins are often just the result of an accident during crystal growth: Ions
newly arriving at the surface layer of the growing crystal may have a choice of
sites in which to settle, and one or more of these choices may represent the
nucleus of the same crystal species growing in a different orientation. We then
speak about the growth twins and these were often classified according to the
physical appearance of the twinned crystal. The concepts of penetration twins
(in which components may be of irregular size and shape) and lamellar twins
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(composed of uniform alternating layers and not infrequently named polysyn-

thetic twins) are almost self-explanatory. The boundary separating two consti-

tuents of the twinned crystal is referred to as the twin boundary or composition

plane. Figure 1.1 shows an example of a twinned as-grown crystal. Description
and understanding of growth twins presented many challenges to mineralogy

and crystallography but some of them were and still are also of practical

concern. A good example is offered by crystals of quartz, SiO2: When twinned,
its useful piezoelectric properties are deteriorated. This is because the piezo-

electric responses in different twin components may partly compensate each

other.
Twin components may differ in the orientation of crystallographic axes.

Then, their unit cell dimensions would also differ with reference to the labora-

tory frame. Under applied mechanical force, therefore, the energies of two

neighboring twin components may differ and if this is so one of the components
may grow at the expense of the other. In fact, the applied force may lead even to

nucleation of the more suitably oriented twin component, that is, to the forma-

tion of a twin starting from a single homogeneous crystal. This phenomenon is
calledmechanical twinning. It has been known for a long time, especially in some

metals where twins can be relatively easily formed by gliding movement of a

part of the crystal against the other, under a shear stress.
Whether we deal with growth twins or mechanical twins, their crystallo-

graphic description includes two essential issues: What are the symmetry rela-

tions between the twin components and what orientations the composition

Fig. 1.1 Example of a
twinned as-grown crystal
(Rutil TiO2)
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planemay take. Detailed considerations lead to different classifications of twins

and the topic has been treated in detail in a number of books onmineralogy and

review articles (see, e.g., Cahn, 1954; Wadhawan, 1987; Shuvalov, 1988).
In this book we are concerned in the description of properties of a special

kind of twins, traditionally referred to as transformation twins. Their essential

feature is that the mentioned symmetry relations between their components are

fully defined by specifying two crystal structures, say SG and SF, with two

prominent properties: (i) the symmetry of SF is lower than that of SG and

(ii) SF arises from SG by small distortions of the latter, for instance by small

shifts of some of the ions. In a large number of crystalline compounds, the

structure changes spontaneously from SG to SF at a certain phase transition

temperature TTR, simply to obey the rule that such structure is realized which, at

a given temperature, corresponds to lower free energy of the material. Consider

the simple example illustrated in Fig. 1.2. The structure SG has a tetragonal unit

cell. At the phase transition, this structure undergoes changes: The central ion

shifts along the vertical c-axis. The actual displacements of particles may be

very small (typically of the order of 10�2�10�3 nm, i.e., a very small fraction of

the unit cell dimension), but even so they violate some of the symmetry opera-

tions of SG and the resulting structure SF has a lower symmetry. The shift of the

central ion can have either sign so that two structures SF (A) and SF (B), denoted

further on as SA and SB, can form. When no external forces are applied they

have the same energy and therefore in an ideal sample it is unpredictable which

of them will appear. These two structures, resulting from the phase transforma-

tion from a phase with the structure SG to that with the structure SF, represent

transformation twins. Herein we will refer to these phases as G and F, respec-

tively. The material undergoing a phase transition such as this one or similar to

it is referred to as a ferroic. Twin components in a real sample which are formed

due to a phase transformation in ferroics are called domains. To avoid mis-

understandings, we stress already at this point that while in this hypothetic

ferroic material only two domain states can exist, with structures SA and SB, in a

sample of it we may have any number of twin components, i.e., any number of

domains each of which represents either SA or SB.

Fig. 1.2 Simple case of two ferroelectric domain states formed in a crystal lattice
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Several thousands of crystalline materials are known to undergo phase

transitions at which the symmetry is lowered, typically on cooling (Toma-

shewski, 1992a,b) or when the ambient hydrostatic pressure is changed (Tonkov,

1992). In all of them, domains may exist and there are manifold reasons for their

occurrence. Static mechanical and electrical boundary conditions of a finite

sample may lead to domain formation, in particular during the phase transfor-

mation process. Presence of defects incorporated into the crystal lattice during

the crystal growth may prefer the coexistence of two domains next to each

other. Metastable domain patterns may exist in a sample as remnants of

dynamic processes which took place in it in the past. And, perhaps most

important of all, domains can be formed intentionally by applying properly

oriented mechanical and/or electrical forces.
Size of domains varies in wide limits, from tens of nanometers to millimeters;

however, if a narrower region should be quoted as typical, linear dimension

between 1 and 100 mm would seem a reasonable hint for the bulk materials,

however, much smaller values are typical for thin films. While the number of

domains is virtually unlimited, a very different rule applies to the count of

‘‘kinds of domains.’’ It is obvious from the Fig. 1.2 that, starting from a

tetragonal cell, the shift of the central ion along the vertical axis can proceed

in two ways only: upward or downward. This leads to just two possible struc-

tures, SA and SB; these represent the only two possible domain states. Generally,

the number of domain states may be larger than two. We shall show in the

following chapter how it can be determined by simple symmetry considerations.
Compared to growth twins, domains excel in one aspect: The number of

domain states and the symmetry relationship between them can be exactly

formulated, knowing the symmetries of crystal structures SG and SF. We shall

consider these symmetry aspects in some detail in the next chapter.
A phase transition between phases G and F can also be associated with a

change of the form of the unit cell as illustrated in Fig. 1.3, where the unit cell in

F phase becomes orthorhombic. Here the two possible structures of SF phase,

Fig. 1.3 Simple case of two ferroelastic domain states formed in a crystal lattice
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SA and SB, differ from SG by the sign of shear deformation in the plane normal

to the fourfold axis of G phase.
What was a twin boundary or a composition plane in the general twinning

narrative becomes a domain wall or domain boundary in the case of domains. But

the concept of twin boundary is also frequently used, especially when speaking

about two neighboring domains which differ in the shape of their unit cells, as

illustrated in Fig. 1.3. Typically, having in mind nonmagnetic ferroics, the

domain wall is an extremely thin region, its thickness ranging from one to

several tens of lattice units. We wish to mention already at this point that, in a

sample of a ferroic material, both phases (with the structures SG and SF) may

coexist, usually within a restricted temperature interval around the phase

transition temperature TTR. In this book we shall reserve the term phase

boundary for a narrow transition region separating these two structures.
Figure 1.4 shows an example of real domains. It is a microscopic image of

domains in a plate of barium titanate; the sample surface was etched (Fousek

and Safrankova, 1965). Here, dark and white stripes, which are several micro-

meters wide, correspond to domains representing two possible domain states.

The photograph clearly demonstrates that domain walls are much thinner than

the domain size.
It is obvious from what has been said that, under ideal conditions (perfect

crystal lattice, no applied forces) the energy density of the crystal in the two

domain states (or in any domain state allowed by symmetry), is the same. These

are the ground states of the crystalline system in phase F, degenerate in energy.

But within the domain wall—however thin it may be—the structure must be

distorted, providing a passage between the two structures SA and SB. Therefore

the wall is characterized by some extra energy; since the wall is very thin we

consider it as a surface energy. It plays a significant role: What size and in

particular what shape domains have largely depend on its magnitude and on the

extent it varies with the wall orientation. If asked for a typical number, the wall

energy density is usually estimated to be of the order between 1 and 10 erg/cm2.

Fig. 1.4 Microscopic picture
of domains in a c-plate of
barium titanate; the sample
surface was etched and
observed in reflected light
(Fousek and Safrankova,
1965)
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Up to this point, domains and growth twins seem to have many similar

properties. What makes domains unique are two features. First, the structural

change from SG to SF is accompanied by fully predictable macroscopic tensor

properties of the crystal. As a consequence, the difference in the tensor proper-

ties of different domain states (with structures SA and SB in our example) is well

defined. Second, forces may be applied to the ferroic sample, which remove the

energy degeneracy of domain states; again the nature and orientation of these

forces are fully predictable. Often they can be easily realized and are capable of

transforming the crystal from one domain state to another. This process is

referred to as domain state reorientation but many alternative terms are

employed such as switching.
Ferroic crystals, because of the existence of domains and possibility of

reorientation, thus offer qualitatively new properties and effects which cannot

be achieved with ‘‘normal’’ crystalline compounds that exist in one state only.
A simple and at the same time a very realistic illustration of what has been

just said can be based again on the previous simple model. Assuming the central

ion is positively charged, its shift is connected with formation of a dipole. Its

dipole moment, when integrated over a unit volume, defines the polarization

variation associated with the phase transformation. This polarization variation

is customarily termed as spontaneous polarization PS, associated with the phase

transition from SG to SF. Thus the structures SA and SB differ in the sign of PS.

It is obvious that an applied electric field E pointing downward prefers the

structure SA while the structure SB is more favorable in the field of opposite

sign. We expect that domains with structures preferred by the applied field, say

SA, will grow at the expense of domains with structures SB. As a characteristic

of this process, mapping average polarization vs. field results in the hysteresis

loop. An example of such loop observed in a slowly varying field applied to a

crystal of Gd2(MoO4)3 (abbr. GMO) is shown in Fig. 1.5a (Kumada et al.,

1970). It illustrates the process of polarization reversal. A ferroic with this

property is said to be ferroelectric. Other ferroelectric crystals which serve as

model materials for many aspects of domain properties are barium titanate,

BaTiO3, and (CH2NH2COOH)3_H2SO4 (triglycine sulfate—abbr. TGS).
Similarly, applying a properly oriented shear stress to the system illustrated

in Fig. 1.3 we will make favorable one of the structures SA and SB, having

different signs of the shear deformation of the unit cell. In practice, the shear

stress is realized as a compressive stress along an axis making an angle of 458
with the crystal axes and its sign is reversed when compression is applied

perpendicularly to the previous one. In this way we can achieve a hysteretic

dependence of strain on stress, such as shown in Fig. 1.5b (Gridnev et al., 1990).

A ferroic with this feature is called ferroelastic. Here we come very close back to

the concept of mechanical twins but— since we now base our approach on the

existence of the original unperturbed structure SG—families of materials offer-

ing mechanical twins and ferroic materials are not identical. A model ferroe-

lastic crystalline material is lead phosphate, Pb3(PO4)2.
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Definitions given above are to a certain extent approximate. We shall pay

more attention to this terminology in the following chapter where also other

kinds of ferroics will be introduced.
The mentioned properties appear even more interesting when we look at

some numerical values. In a normal dielectric like mica or rutile, with the

relative permittivity value say 40, an electric field of 1 kV/cm induces polariza-

tion, equal to the surface charge density, in the amount of about 40 mC/m2. The

same field can bring about polarization reversal in a ferroelectric sample with

spontaneous polarization of 20 mC/cm2 and this leads to the surface charge

change of 40�104 mC/m2, a value 10,000� higher. For a normal elastic material,

whether sodium chloride or copper, the elastic compliance is of the order of

10�11 m2/N so that an applied stress say 2�104 N/m2 induces deformation

Fig. 1.5 (a) Ferroelectric hysteresis loop: hysteretic dependence of polarization on applied
electric field (at a frequency of 1 mHz) in a crystal of gadoliniummolybdate (GMO) (Kumada
et al., 1970). (b) Ferroelastic hysteresis loop: hysteretic dependence of deformation on applied
stress in a crystal of KH3(SeO3)2 (Gridnev et al., 1990). (c) Hysteretic dependence of deforma-
tion on applied electric field in a crystal of GMO (Kumada et al., 1970). (d) Linear birefrin-
gence of a GMO crystal as a function of applied electric field or mechanical shear stress
(Kumada et al., 1970)
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2�10�7. The same strain can cause reversal of spontaneous strain of a ferroe-
lastic crystal in the amount of 2�10�3. For this impressive ‘‘amplification’’ of
effects by a factor of 104, however, we pay a price in terms of nonlinear and
hysteretic behavior.

Appearance of the spontaneous polarization in F phase, depending on the
symmetry of G phase, can lead to the deformation of the unit cell of the crystal.
In the case of the structure shown in Fig. 1.2 this does not happen. However,
adding more atoms to the unit cell of this structure thus lowering its symmetry,
one can obtain a structure where the appearance of the spontaneous polariza-
tion along the c-axis will be entailed with a shear deformation in the perpendi-
cular plane as shown in Fig. 1.3. It is obvious that in such structure, changing
polarization by electric field may lead to reversing the shear strain at the same
time. We thus observe a hysteretic dependence of strain on applied field. It is
represented in Fig. 1.5c. This phenomenon can exist in ferroics which are
simultaneously ferroelectric and ferroelastic. Barium titanate and GMO are
well-studied representatives.

The two domain states in GMO differ also in birefringence and this fact
manifests itself in yet another characteristic of domain reorientation, repro-
duced in Fig. 1.5d. Thus ferroics offer a large variety of characteristic macro-
scopic phenomena.

The hysteresis loop is often considered a defining feature of ferroics and of
ferroelectrics in particular. The stability of either of two states when the applied
force is zero is the basis of a memory device. Switching times of the order of tens
or hundreds of nanoseconds are typically achieved in good single crystals at
high fields. It has been established that domain walls can move faster than the
velocity of sound. In thin films, switching times are not far from hitting the
picosecond limit. A remarkable feature of a ferroelectric loop is that together
with polarization a number of other ‘‘coupled’’ properties are switched, as we
have just demonstrated. This opens a way to alternative methods of detecting in
which state the memory device dwells at any given moment, as well as to many
other application aspects. On the other hand, the polarization reversal is
coupled with behavior of free charge carriers, making processes complicated;
in ferromagnetics, this issue does not exist.

While the states on the hysteresis loop are transient, multidomain states can,
of course, exist also in static conditions, often representing metastable states
with a long lifetime. Multidomain structures which can live for very long time
can also be created artificially. Figure 1.6 gives an example of an artificial
regular domain pattern in a crystal of LiNbO3 (Feisst and Koidl, 1985) ‘‘engi-
neered’’ for nonlinear optical applications.

Because domain states differ in the orientation of crystallographic axes, there
exist a large number of methods to observe domain structures, ranging from
surface etching and decoration techniques, polarized light microscopy, and
nonlinear optical scattering to high-resolution electron microscopic methods.

Domain reorientation phenomena as well as characteristics of samples in
multidomain states offer manifold applications. Though, in this book, we are
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not going to address practical applications of ferroic domain, let us shortly

mention some of them. Domain reorientation is an absolutely essential process

when preparing piezoelectric ceramics; note that a ceramic sample containing

chaotically oriented grains of a typical piezoelectric material would reveal zero

or negligible piezoelectric response. Only when grains are subject to ferroelec-

tric poling which is just the process of domain reorientation pertinent to the

P(E) hysteresis loop, the sample becomes piezoelectric. Most of today’s electro-

acoustic devices utilize such ceramics. Behavior of domain walls in low electric

fields greatly enhances dielectric and piezoelectric response of multidomain

systems, which allows reaching values of material coefficients like permittivity

or piezoelectric constants, which cannot be realized within homogeneous

samples. One of the most characteristic applications of ferroelectric hysteresis

is non-volatile random access memory. Domain processes in ferroelectric

ferroelastics make it possible to electrically control light propagation in the

material, with a number of practical aspects. Engineered domain structures

such as the one shown in Fig. 1.6 offer nonlinear optical elements with greatly

enhanced efficiency of second harmonic generation. Many promising applica-

tions are in the research or development stages. For example, controlled

polarization reversal makes it possible to fix holograms in photorefractive

ferroelectrics. Fast switching processes are often accompanied by bursts of

emitted electrons or light and these phenomena promise several practical

aspects.
The goal of the preceding paragraphs was to give a qualitative and intro-

ductory overview of some of the topics to be discussed in detail in this book. In

Fig. 1.6 Artificially
produced periodic domain
pattern serves to enhance
optical second harmonic
generation. Etched surface
of a LiNbO3 crystal imaged
by a scanning electron
microscope. Reprinted with
permission from Feisst and
Koidl (1985). Copyright
(1985), American Institute
of Physics
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what follows we start with introducing basic theoretical approaches to struc-
tural phase transitions, emphasizing the symmetry and phenomenological
aspects of their classifications (Chapter 2) and give an overview of typical
ferroic materials (Chapter 3). After a survey of experimental methods used to
visualize domain patterns (Chapter 4) we shall review a number of aspects of
domain formation and what their typical shapes are (Chapter 5). Chapter 6 will
address the static properties of domain walls. The short Chapter 7 will be
devoted to the experimental characterization of switching. The largest chapter
of the book, Chapter 8, will cover the theoretical and experimental aspects of
the polarization response of ferroelectrics. In Chapter 9, we have attempted to
give a comprehensive overview of the domain-related properties of ferroelectric
thin films. Originally, we planned to include the book chapters on domains in
bulk ceramics, on domain issues in ferroics revealing an incommensurate phase
and relaxors, and one which would cover practical applications of domain
phenomena in ferroic; however, the time factor urged us to limit the scope of
the book. These issues are only briefly mentioned in places.

This book is intended for students and researchers who are familiar with just a
small part of the whole field or who are beginners. When writing it we have tried
to follow a ‘‘bi-modal’’ approach. If something can be explained or derived in a
relatively simple way, we present a detailed explanation or derivation. On the
other hand, if the relevant story was, in our opinion, complicated, we present only
the results referring the reader to the original papers for the explanations.

Perhaps we can end this chapter by referring to other literature, in the book
form, on domain phenomena in nonmagnetic ferroics. The more recent books
on ferroelectrics include works by Smolenskii et al. (1984), Xu (1991), Strukov
and Levanyuk (1998), Wadhawan (2000), and by Rabe et al. (2007). In all of
them the various domain issues are well treated, of course without going into
details and using quite different approaches. Recently published books edited
by Hong (2004), Alexe and Gruverman (2004), and Kalinin and Gruverman
(2006) offer a wealth of information on domains on nanoscale and their
characterization with Scanning Probe Techniques. The theoretical work of
Toledano and Toledano (1988) provides the reader with the background
required to analyze domain states on the basis of symmetry and thermody-
namics. A small but very informative monograph on some aspects of ferro-
electric domains has been published by Fesenko et al.(1990). Ferroelastic
domain phenomena are treated extensively in Salje’s book (1990) on ferroelas-
tics. A very informative book on the theory of domain-related phenomena was
published by Sidorkin (2006). Close attention was paid to domain phenomena
in several older monographs on ferroelectricity (Jona and Shirane, 1962;
Fatuzzo and Merz, 1966; Lines and Glass, 1977; Burfoot and Taylor, 1979).
There also exist a number of relevant review papers. They will be pointed out
later in the corresponding chapters.
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Chapter 2

Fundamentals of Ferroic Domain Structures

2.1 Structural Phase Transitions and Domain States: Basic

Concepts and Classifications

2.1.1 Structural Changes at Phase Transitions: Ferroics

In this section we introduce the basic concepts required to discuss structural

phase transitions in crystals on the basis of a symmetry approach. The latter is

in fact closely connected with the Landau theory of phase transitions, to which

we come later in this chapter. However, for the reader who is more oriented

toward domain properties without studying the nature of phase transitions

themselves, it may be practical to become acquainted with the symmetry

approach in the first place. The analysis of domain states on the basis of

symmetry gives essential information on the number of domain states and on

how they can be distinguished. It is this information that forms the background

of any considerations about domain reorientation processes, about domain

walls, as well as about properties and applications of multidomain samples.
Speaking about a structural phase transition, we always compare two dif-

ferent crystal structures SG and SF between which the transition is realized. The

difference between SG and SF is not trivial: We have in mind changes in the

crystal structure, which cannot be described by a mere thermal expansion (due

to change of temperature) or by a mere compression (due to change of hydro-

static pressure). Our structural changes are more dramatic, although they are

also brought about by change of temperature or pressure. Such transitions are

known to occur in several thousands of crystalline substances (Tomashewski,

1992a,b; Tonkov, 1992). They can be classified according to a number of

different criteria.
On the first level of categorization we have to distinguish between distortive

and reconstructive transitions (Gränicher and Müller, 1971). In the latter case,

the structures SG and SF have nothing in common except for chemical composi-

tion. A reconstructive transition requires indeed a complete reconstruction of

the atomic structure so that chemical bonds are broken and because of that the

process itself usually involves formation of dislocations and proceeds

A.K. Tagantsev et al., Domains in Ferroic Crystals and Thin Films,
DOI 10.1007/978-1-4419-1417-0_2, � Springer ScienceþBusiness Media, LLC 2010
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sluggishly. Figure 2.1.1 (in part reproduced from the book of Rao and Rao

(1978)) shows schematically atomic arrangements in four different crystal

structures. Transformation from the structure (a) to any of the other structures

requires breaking of first coordination bonds and would represent a reconstruc-

tive transition. Well-known examples of such transitions include that between

sphalerite- and wurtzite-type structures in ZnS, one between arsenolite and

clandetite structures of As2O3, or that between the b-phase (body-centered

cubic) and hexagonal or rhombohedral modifications of titanium. Domain

states as they are presented in this book do not concern reconstructive phase

transitions.
In contrast, at a distortive transition the spatial system of crystal bonds

forming the structure SG becomes systematically distorted, without disrupting

the linkage of the network. Thus, in Fig. 2.1.1, the structure (c) or (d) can be

conceived as a slightly changed structure (b), due to coordinated shifts of atoms.

By these distortions the crystal structure goes over into SF and it is obvious that

by doing so the crystal symmetry also changes, from symmetry group G to

symmetry group F. Here G and F stand for the symbol of 32 point groups. As it

is usual, we shall always use the symbol G or SG when referring to the higher

Fig. 2.1.1 Models of possible distortions of crystal structure
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symmetry phase and F or SF when referring to the lower symmetry phase. Thus

for distortive transition the group—subgroup relation holds, namely

F � G: (2:1:1)

This is one of the essential features of distortive phase transitions and offers
different ways for their further classifications. Logically now, the phase with the

symmetry G (or shortly the phase G) is referred to as the parent or prototypic or
high-symmetry phasewhile the phase with symmetry F (or shortly the phase F) is

called distorted or low-symmetry phase.1 Since the transition between the two
phases is often monitored as a function of temperature (at some transition

temperature TTR) and, as a rule, the symmetry is lowered on cooling, phases G
and F are often mentioned as high-temperature and low-temperature phases,

respectively.
Before pursuing further the symmetry issues, however, we mention one

further classification of distortive transitions. Depending on the basic type of

thermal motion of the structural units related to the transition, one distin-
guishes displacive and order–disorder transitions. Speaking about the symmetry

of a crystal, one considers the symmetry of the structure formed by the average
positions of atoms involved in thermal motion. If the atoms controlling the

symmetry change at the transition perform small harmonic oscillations2 around
their average positions, one classifies the transition as displacive. In this case,

physically, the symmetry change at the transition is controlled by displacements
of bottoms of the potential wells, where the atoms oscillate. If the atoms

controlling the symmetry change at the transition perform thermally activated
jumps between two or more equilibrium positions, one classifies the transition

as order–disorder. In this case, the symmetry change is controlled by the dis-

tribution of the atoms between these positions: In the high-symmetry phase the
atoms are equally distributed between them, whereas in the low-symmetry

phase, this distribution becomes asymmetric resulting in a displacement of the
average positions of atoms.

In real systems, both types of transitions are represented as well as more

complicated cases with mixed behavior. To illustrate the modifications of a
structure accompanying a real displacive phase transition, we will consider

below the cubic–tetragonal transition in BaTiO3. Here we will follow the
classical scenario of this transition; however, more complicated scenarios of it

are also under discussion (Stern, 2004).
Figure 2.1.2a illustrates the perovskite-type structure of BaTiO3, in the cubic

phase. On cooling, at TTR ffi 1268C it transforms into the tetragonal phase.

Choosing as a reference the positions of barium ions, what happens at TTR (cf.

1 Coupling a parent together with something distorted or low symmetry is somewhat ungrace-
ful. Indeed Wadhawan’s (1982) daughter phase would be more elegant.
2 Since these oscillations occur around the equilibrium positions that are temperature depen-
dent, it would be more rigorous to call such oscillation quasi-harmonic.
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Fig. 2.1.2b) is that all titanium ions undergo a small shift along one of the cubic
axes, say ‘‘upward.’’ There are two kinds of oxygen ions in nonequivalent
positions, OI and OII; both shift ‘‘downward,’’ though by different amounts.
It is obvious that these shifts violate several symmetry operations of the original
cell: center of symmetry, mirror plane (001), the twofold axis [010], to name a
few which are obvious from this two-dimensional projection onto the (100)
plane. Considering now the situation in three dimensions, as a result of these
ionic displacements the point group symmetryG ¼ m�3m is lowered to F=4mm
which of course is a subgroup of G.

A classical example of an order–disorder transition is provided by sodium
nitrite, NaNO2. This crystal undergoes the order–disorder transition from G =
mmm to F = mm2 at about TTR = 1638C (at this moment we disregard the
intermediate phase which exists in a narrow temperature interval). In Fig. 2.1.3a,
its unit cell is shown schematically in its ferroelectric phase. Here we assume that
the NO2 groups are fully ordered, their dipole moments all pointing along the
direction of the b-axis. In fact there is partial disorder, since the probabilities of
finding theNO2 groups oriented against the b-axis is not zero so that the net dipole
moment is less than maximum. Above TTR the probabilities of finding the NO2

groups in two symmetric positions become equal (Fig. 2.1.3b) so that the structure
acquires an additional symmetry element—a mirror plane. Thus the net dipole
moment disappears, and the average symmetry of the lattice becomes higher.

The difference between displacive and order–disorder transitions is vital
when studying lattice dynamics and temperature dependences of some macro-
scopic properties. It does not seem to have a significant bearing on domain
phenomena. On the other hand, properties of domains, their shapes, and
dynamic behavior are closely related to the G–F relations. In this book, there-
fore, we shall base our classifications and many approaches on symmetry
considerations. The symmetry approach is usually based on considering the
point symmetries G, F but also on the possible change of the unit cell volume.
Any phase transition fulfilling relation (2.1.1) is called a ferroic transition and F
itself is the point group of the ferroic phase. Looking at the number of atoms in
the unit cell, there are two possibilities. First, the number of molecular units in
the primitive unit cell, or— less exactly—volume of the unit cell may not change.
That is, the translational symmetry is preserved. Then we speak about a
ferrodistortive ferroic. The phase transition from (b) to (c) in Fig. 2.1.1
obviously fulfills this requirement and the previously mentioned example of
BaTiO3 belongs to this category. Alternatively, even the translational symmetry

Fig. 2.1.2 Perovskite-type
structure of BaTiO3: (a) unit
cell in the cubic phase and
(b) atomic displacements at
cubic to tetragonal
transition
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may change at the phase transformation, as it is obvious in a hypothetical
transition from (b) to (d) in Fig. 2.1.1. The crystal of lead zirconate PbZrO3

provides a well-known example. In its parent phase, its cubic structure is identical
with that of barium titanate shown in Fig. 2.1.2a and its unit cell contains just one
formula unit. At temperature TTR ffi 2308C the atomic structure undergoes
changes primarily characterized by shifts of lead ions along one of the original
[110] directions which becomes the a-axis of the new orthorhombic phase of
symmetrymm2. In neighboring cubic cells these shifts are antiparallel. This is an
example of a phase transition which is referred to as antiferrodistortive. This type
of distortion will be accompanied by an increase of the number of formula units
in the primitive unit cell (from one to eight in the case of PbZrO3). Naturally, this
is the same as saying that the translational symmetry has changed. To describe
the unit cell multiplication one introduces the factor

n ¼ ZG=ZF ffi VG=VF; (2:1:2)

where ZA is the number of formula units and VA is the volume of the primitive
unit cell (neglecting the effect of thermal dilatation) in the phase of group

Fig. 2.1.3 Atomic structure
of NaNO2. Projection along
the a-axis: (a) ferroelectric
phase. The NO2 groups are
planar and lying in the bc
plane. The groups with the
clear oxygen circles are in the
plane of the figure; those
with the shaded oxygen
circles are displaced by a half
of the lattice constant along
the a-axis. The clear sodium
circles are in the plane of the
figure; those with the shaded
sodium circles are displaced
by a half of the lattice
constant along the a-axis.
(b) Paraelectric phase. NO2

groups and Na ions are
equally distributed between
two positions shown with
solid and dashed lines
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symmetryA. Materials are known in which the phase transition is accompanied
only by a change of the translational symmetry while the point symmetry
remains the same: G = F but n > 1. These are referred to as nonferroics and
in this book their properties will not be considered. As examples, we can
mention potassium cyanide, KCN, (n = 2) or CH3NH3CdCl4 (n = 4). In
some cases, such a transition is characterized by a change of the space symmetry
group but in others even that remains the same in both phases. Tolédano and
Tolédano (1982) performed a symmetry analysis of all possible nonferroic
phase transitions and gave a number of concrete examples.

In the following three sections we shall categorize ferroics according to
macroscopic properties absent in the parent phase but newly revealed in the
ferroic phase, which is the most significant aspect in understanding domain-
related phenomena.

2.1.2 Ferroelectric Phase Transitions

In a way, ferroelectrics are the simplest ferroics since domain states in them
differ in the orientation of a tensor of the lowest possible rank, a vector. Let us
discuss the definition of a ferroelectric phase transition by which is usually
meant a transition from a nonferroelectric phase G into a ferroelectric phase F.
In an uncomplicated approach it is said that the phase transition is ferroelectric
when, as a result of it, there exists spontaneous polarization PS in the phase F. In
many cases this ‘‘PS definition’’ is fully satisfactory from most points of view
and we shall be using it—as almost everyone—as a shorthand. However, it
does not respect the problem of determining the notion of polarization itself and
fails to provide an appropriate basis for describing transitions from a phase
which is already polar. We shall, therefore, discuss this point in more detail.

Polarization is customarily defined as the dipole moment per unit volume of
the system of charges in the material. However, as it was recently realized
(Tagantsev, 1987, 1991, 1993; Resta, 1994), for a medium with a periodic
distribution of charge, the dipole moment density cannot be unambiguously
introduced as a bulk property of the system. Clearly, for any finite and electro-
neutral part of this structure, one can calculate, using the charge distribution,
the average dipole moment density. However, the fact that the result of the
calculation depends on the way in which the part was specified shows that this
result does not represent a bulk property of the structure. On the other hand, a
variation of the dipole moment density resulting from small changes of charge
positions is defined unambiguously, not suffering from the aforementioned
dependence. This enables an unambiguous definition of variation of polariza-
tion as that of the dipole moment density. Thus, any rigorous definition of the
ferroelectric phase transition should deal with changes of polarization or its
derivative with respect to other physical variables rather than with the polariza-
tion itself.
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One possibility of such a definition is based on the pyroelectric effect. One
considers the pyroelectric coefficient p, a vector defined as the derivative of
polarization with respect to temperature, at zero electric field in the material. Its
components are

pi ¼
@Pi

@T

� �
E¼0

: (2:1:3)

Clearly, p is a polar vector. The experimental manifestation of the pyro-
electric effect is a change dQ of bound charge density on the surface of a plate-
like sample cut obliquely to p when its temperature is changed by dT. Since
dQ ¼ dDn ¼ "odEn þ dPn, where dDn, dEn, and dPn are changes of components
(normal to the plane of plate) of the electric displacement, electric field, and
polarization, respectively, the condition E = 0 implies p = dQ/dT.

The symmetry of a material puts serious restrictions on the existence and
orientation of p. It can only have nonzero components in samples of materials
represented by one of the point symmetry groups 1, 2,m,mm2, 4, 4mm, 3, 3m, 6,
6mm, or Curie groups1 and1m. These are referred to as polar groups. While
point groups describe symmetries of crystalline media, the Curie groups1 and
1m have been included since they play a role in nonuniform ferroelectric
systems such as ceramics or polymers. If the group F is polar while G is not,
we speak about a ferroelectric phase transition; F is then the symmetry of the
ferroelectric phase. It may, however, happen that alreadyG is a polar group and
that on transforming from G to F the vector p just acquires new components.
We believe that it is reasonable to call the latter transition ferroelectric to have
uniformity in the definition of all nonmagnetic phase transitions. Thus, we
arrive at the following definition of a ferroelectric transition:

A phase transition is called ferroelectric if it results in a lower symmetry phase
in which the vector of pyroelectric coefficients acquires new components which
were zero, by symmetry, in the high-symmetry phase.

A convenient variable for a description of the properties of material in the
ferroelectric phase is the vector of spontaneous polarization PS. At a given tem-
perature Tf in the ferroelectric phase we define it as the change of polarization
during cooling from a temperature in the paraelectric phase Tp down to Tf, i.e.,

PSðTfÞ ¼
ZTf

Tp

pðTÞ dT: (2:1:4)

Concerning the accepted definition of spontaneous polarization the follow-
ing remarks should be made.

First, as we will see in the section of this chapter devoted to the thermo-
dynamic description of the phase transitions, this definition is in perfect corre-
spondence with that accepted in phenomenological theories.3 Second, though

3 Spontaneous polarization at TTR may appear discontinuously. This is so for transitions of
the first order, as discussed in detail in Sect. 2.3. Then the corresponding component of p at
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Eq. (2.1.4) unambiguously defines the variablePS(Tf) called spontaneous polar-
ization at temperature Tf, the values ofPS, in general, cannot be associated with
the average dipole moment density calculated on the basic of the charge density
in the material at this temperature. The reason is that it is not possible to
introduce the dipole moment density unambiguously as a bulk property of
the material as has been discussed at the beginning of this section. Thus, one
should consider the definition given by Eq. (2.1.4) as a convention.

The magnitude of spontaneous polarization depends on temperature. In a
typical case it increases with decreasing T. Several tens of degrees below TTR it
acquires a value which is characteristic for the given class of materials but
greatly varies for different kinds of materials. For most ferroelectrics this
value lies within limits 10–3–1 C/m2 (0.1–100 mC/cm2).

One should mention that the direct application of the above definition of the
spontaneous polarization does not provide a convenient method of experimen-
tal determination of PS. However, based on this definition a much more
practical method can be formulated. As we will see later, in principle, in the
low-symmetry phase, the direction of vector p can be changed by application of
a pulse of electric field or mechanical stress, the absolute value of p being
unchanged. This procedure is called switching. In a typical case, the switching
can result in changing the sign of p. Then, as seen from Eq. (2.1.4), the switching
will result in a change of sign of polarization PS defined according to this
equation. Thus, in this case, measuring the change of polarization which
accompanies the switching, one gets the values of 2PS and finally determines
a value of PS without integration of the pyroelectric coefficient.

A definition which is very often employed states that the phase transition is
ferroelectric when, as a result of it, there exists in the phase F spontaneous
polarization PS whose direction can be reversed by applied electric field (the
‘‘reversal definition’’). It is based on the fact that if the field is applied, the free
energy of the material is minimum when PS directs along the field. This defini-
tion works well inmany real cases. For instance, in a simple example ofG=2/m
and F= 2, it is obvious that PS may have either sign in F without changing the
symmetry of this phase and can be reversed since it interacts with electric field.
The ‘‘reversal definition’’ has two positive features. First, it stresses the fact that
the medium in the phase F can exist in several states (domain states). Second, it
points to the essential fact that the magnitude and direction of PS can be
determined by measuring the charge, i.e., by integrating the electric current,
when the direction of PS is changed by external forces. This is an alternative to
the method based on pyroelectricity and if the material allows it, it represents a
much more practical option.

TTR is represented by a d-function and this must be respected in integral (2.1.4). In real
experiments, every component of P emerges continuously, be it because of even slightly
inhomogeneous distribution of temperature in the measured sample or because a phase
front between the two phases travels across the sample. Thus integrating the electric current
gives a correct information on PS.
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However, this definition is not general enough to cover all possibilities. First,
the symmetry requirements imposed by condition (2.1.1) may not allow for
reversibility ofPS, i.e., for the change of its sign; rather than that ofPS may exist
in several directions which need not include antiparallel pairs of polarization
vectors, as it will be discussed later in detail. This hindrance can be easily
corrected by replacing ‘‘reversibility’’ by ‘‘reorientability.’’ Second and more
important, for a particular material and under given conditions, an experimen-
talist may not be capable of inducing the change ofPS direction. This possibility
is a major setback for the ‘‘reversal definition’’. It would eliminate from the
family of ferroelectrics many materials in which the change of PS direction has
not yet been experimentally accomplished although by symmetry requirements
and structural considerations it should be possible. In crystals of lithium
niobate, which undergoes the G ¼ �3m to F = 3m, the change of PS direction
was not realized for many years and yet it was clear that the material is ferro-
electric; in fact in grown crystals the existence of regions with antiparallel
polarization was well established. We can conclude that the ‘‘reversal defini-
tion’’ describes the sufficient but not necessary condition for ferroelectricity.

In view of the above discussion it appears practical to stress the symmetry
aspect in the definition of a ferroelectric. The phase transition is ferroelectric if
as a result of the transition the pyroelectric vector p acquires new components in
F which were zero, by symmetry, in G. The material in the phase of symmetry F
is ferroelectric if at some temperature and pressure it undergoes a ferroelectric
phase transition from G to F. In some cases, however, even this definition
cannot be literally applied: Some materials, like guanidinium aluminum sulfate
hexahydrate (abbr. GASH), reveal all features typical for a ferroelectric (hys-
teresis loop, domains) at room temperature but on heating they decompose
before the temperature TTR is reached. Then the phase G remains hypothetical;
however, should the phase F be ferroelectric, it must be possible to construct the
SG structure of higher symmetry by small distortions of the structure SF.

One more remark concerning the use of pyroelectric coefficient in the defini-
tion of ferroelectrics should be made. This use, besides the conceptual aspect,
could be of practical interest when determination of polarization change during
switching is experimentally hindered. This situation has been recently encoun-
tered in polymer–ferroelectric thin films, where switching of the sign of the
pyroelectric coefficient has been used for the attribution of the materials’ ferro-
electric character (Bune et al., 1998).

When treating the domain issues, symmetry considerations play an essential
role. In most cases, therefore, we shall stick to the ‘‘symmetry definition’’.

2.1.3 Ferroelastics and Ferrobielectrics

2.1.3.1 Ferroelastic Phase Transition

In the previous section we have seen that the change of crystal symmetry fromG
to F may result in a change of symmetry requirements imposed on the
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pyroelectric coefficient p, a polar vector, and that this leads to the definition of a
ferroelectric phase. Now we shall show that changes in a second-order (sym-
metric) tensor can be treated in a similar way and lead to the definition of
another kind of ferroic. Consider the thermal dilatation tensor which is a
symmetric second-rank tensor with components aij. The requirements on its
nonzero components and on possible relations between them are the same for
all crystallographic classes which belong to the same system. Thus, for instance,
in all tetragonal classes axx = ayy and azz are two independent nonzero compo-
nents while ayz = azx = axy = 0; this describes thermal dilatation of a tetra-
gonal cell characterized by two lattice parameters a, c. If, as a result of a phase
transformation, the symmetry requirements on the tensor aij change, such a
phase transition, as well as the resulting phase F, is referred to as ferroelastic
(Aizu, 1969; Toledano and Toledano, 1988). The quantitative form of this
definition can be given as follows: A transition is called ferroelastic if it results
in a low-symmetry phase in which the thermal dilatation tensor changes the
number of its independent components with respect to those in the high-
symmetry phase. The low-symmetry phase is referred to as ferroelastic as
well. It is obvious that the tensor aij change is connected with the change of
the unit cell shape.

If this requirement is not met, the phase F and the transition are called
nonferroelastic. It is useful to remark that, since the thermal dilatation tensor
of materials belonging to different groups of the same crystalline class has the
same number of independent components (Nye, 1992), no ferroelastic transi-
tion are possible between G and F belonging to the same class. The same holds
for transitions from a hexagonal G phase to a trigonal phase F. Sometimes the
concept of crystal family of a point group P is defined as including all point
groups belonging to the same crystal system as P with the exception of the
trigonal groups which are attributed, together with the hexagonal groups, to the
hexagonal family. Using this concept, the phase transition is said to be ferroe-
lastic if G and F belong to different crystal families.

2.1.3.2 Natural Spontaneous Strain

Considering a ferroelastic phase F, it is evident that since the shape and size of
the unit cell has changed, this change can be expressed as a deformation
impressed upon the unit cell in G. If we have in mind a uniform sample or
infinite medium, rotations which are a part of the distortion tensor are not
essential (Nye, 1992) and the strain we are interested in can be described by a
symmetric second-rank tensor. Thus, it looks reasonable to use this strain to
characterize material in the ferroelastic state by introducing the concept of
spontaneous strain tensor. It may be defined in different ways, depending on
the purpose for which it should be used. In this section we shall define natural
spontaneous strain, eS. Its components "Sij describe precisely how the unit cell in
the parent phase has to be deformed to reach the unit cell in the ferroic phase.
To make this definition exact we specify that when evaluating "Sij at a given

20 2 Fundamentals of Ferroic Domain Structures



temperature, the parameters of the unit cell of the parent phase are linearly
extrapolated to this temperature. The natural spontaneous strain can be linked
to the dilatation tensor in a similar way as spontaneous polarization was linked
to the pyroelectric coefficients in the previous section, namely, for a given
temperature Tf in the ferroelastic phase

"Sij
ðTfÞ ¼

ZTf

Tp

ðaijðTÞ � aijðTpÞÞ dT; (2:1:5)

where Tp is a temperature in the parent phase.4

Considering a particular transition, the task of evaluating "Sij is twofold.
First, we wish to determine which components of "S are nonzero or what
relations between them are fulfilled; second, we may be interested in the numer-
ical values of the "S components.

Let us start with the first question. Consider a particular transition from
cubic G ¼ m�3m to orthorhombic F= mm2. The answer, naturally, depends on
the mutual orientation of the symmetry elements ofG and F. Let us fix the cubic
reference frame for both structures (with the z-axes parallel to a fourfold axis of
G and to the twofold axis of F, respectively). Figure 2.1.4a shows the orientation
of the relevant mirror planes inG. There are two possibilities for the orientation
of mirror planes in F, which can be specified as mxmy2z and mxym�xy2z. We will
use further in the book this self-evident way of notation of the orientation of the
elements in F. In the first case illustrated in Fig. 2.1.4b, the spontaneous strain
tensor has three independent components"Sxx , "Syy , "Szz . A possible temperature
dependence of the unit cell parameters is shown schematically in Fig. 2.1.5a.
The change of the unit cell in the second case, for F ¼ mxym�xy2z, is illustrated in
Fig. 2.1.4c. In this case, clearly, the nonzero natural strain components are

Fig. 2.1.4 Two possible transitions from G ¼ m�3m to F = mm2 result in different
spontaneous deformation components: (a) orientation of mirror planes passing through the
z-axis in the point group m�3m; (b) and (c) schematic representations of changes of the cubic
unit cell (dashed) into the orthorhombic unit cell at transitions m�3m�mxmy2z and
m�3m�mxym�xy2z, respectively

4 In case of the first-order phase transition the reader should consider a remark similar to that
connected with Eq. (2.1.4).
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"Sxx ¼ "Syy , "Sxy ,"Szz . In this case, a possible temperature dependence of the cell

parameters is shown in Fig. 2.1.5b. These two examples are simple enough

that the components of natural spontaneous strain can be guessed. In more

complicated cases we have to express the dilatation tensor in the phase F in

the coordinate system of G and compare the result with the dilatation tensor

of G, we see immediately which new components appear in F. According to

Eq. (2.1.5) these new components define the tensor of natural spontaneous

strain.
Table 2.1.1 illustrates how matrices of natural spontaneous strain compo-

nents are determined for the two just mentioned and two additional transitions.

The symbols d"kl or "kl stand for symmetry-allowed changes of the unit cell,

induced by a change of temperature in the phase of symmetry G or F. These

matrices have the same structure as that of the thermal dilatation tensors.

Table 2.1.1 Thermal strain matrices for four ferroelastic species with the m�3m parent phase

G ¼ m�3m F ¼ mxmy2z F ¼ mxym�xy2z F ¼ mz F ¼ mxy

d"xx
d"xx

d"xx

d"xx
d"yy

d"zz

d"xx "xy
"xy d"xx

d"zz

d"xx "xy
"xy d"yy

d"zz

d"xx "xy �"yz
"xy d"xx "yz
�"yz "yz d"zz

Fig. 2.1.5 Temperature dependence of unit cell parameters in theXY plane, schematically: (a)
and (b) apply to (b) and (c) in Fig. 2.1.4, respectively. Dotted lines show the cubic lattice
constant linearly extrapolated to the low-symmetry phases, aG. Angle a measures small
rotation of the cubic axis a due to the shear "xy. In (a), arrows show natural spontaneous
strains. In (c), arrows show Aizu spontaneous strains for the species illustrated in (a). The
dashed line in (c) corresponds to the conter term in Aizu’s definition of strain

22 2 Fundamentals of Ferroic Domain Structures



However, compared to customary tables given in textbooks on crystal physics,
for each subgroup F they are expressed in the reference frame of G. Each
nonzero component for a given F represents a nonzero component of natural
spontaneous strain. Let us again pay attention to the transition from G ¼ m�3m
to F ¼ mxym�xy2z. We see that the strain component "Sxy appears newly in the
phase F. It was forbidden by symmetry in the parent phase G and is, therefore,
referred to as the symmetry-breaking strain component. In the table such
components are given without the prefix d. But there is one more feature in F
which is new as compared toG, namely, that d"zz 6¼ d"xx. Thus, also the nonzero
difference "Szz � "Sxx has the property of breaking the symmetry of G. The
reader can easily recognize other symmetry-breaking components of strain for
the transition from G ¼ m�3m to F = mxy.

Later we shall present a table of all possible ferroelectric transitions in which
natural spontaneous strain tensor will be given in the just described manner.

The next question is how the components of eS can be determined numeri-
cally. Here, the answer is easier compared to the situation we faced with the
problem of determining P0 since the unit cell is well defined already in the
parent phase and its shape and dimensions can be determined by X-ray
diffraction. The newly appeared components of eS, are always nondiagonal
components; their real values at a temperature T1 < TTR equal their sponta-
neous values.

Consider now strain components which when standing alone are not sym-
metry breaking. Obviously, what characterizes their newly acquired magnitude
is the difference between the value of the unit cell dimension say aG in the phase
G and that at the considered temperatureT1 in the phase F. In order to eliminate
the influence of ‘‘normal’’ thermal dilatation, however, the value attributed to
the phase G should be extrapolated to temperature T1. This is schematically
represented in Fig. 2.1.5a which shows the meaning of the cell parameter aG in
the cubic phase (or extrapolated to the F phase) and parameters aF and bF in the
phase F=mxmy2z. In this phase, obviously, all three components of the natural
spontaneous strain can be written as

"S11 ¼
aF � aG

aG
; "S22 ¼

bF � aG
aG

; "S33 ¼
cF � aG

aG
(2:1:6)

where cF is the lattice constant along the Z-direction in this phase.
In a general case, the natural spontaneous strain at a given temperature Tf in

the ferroelastic phase F can be defined as

"SijðTfÞ ¼ "Fij
ðTfÞ � "Gij

ðTfÞ; (2:1:7)

where "Fij
ðTfÞ and "Gij

ðTfÞ denote the strain in the phase F and the strain in the
phase G extrapolated to Tf, respectively. Clearly, as defined the natural sponta-
neous strain is independent of the reference states employed for calculations of
"Fij
ðTfÞ and "Gij

ðTfÞ.
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One can realize that, far from TTR, where the linear extrapolation of thermal

dilatation of the parent phase is losing its accuracy, the natural spontaneous

strain cannot be unequivocally determined from the data on temperature

dependence of the unit cell parameters. However, any modification of the

extrapolation law for "Gij
ðTfÞ results in a variation of the natural spontaneous

strain tensor by a constant symmetric second-rank tensor. As we shall see later

in this book, this uncertainty by a constant tensor manifests in no measurable

phenomena, since whenever the spontaneous strain is involved, it is the differ-

ence between its values in different domain states that counts.5

Though the uncertainty in direct experimental evaluation of the values of the

natural spontaneous strain far from TTR may be considered as a certain incon-

venience, this definition of spontaneous strain has clear advantages compared

to alternative Aizu’s definition of spontaneous strain considered later in this

section. First, the variable, which yields the thermodynamic theory of a struc-

tural phase transition, is exactly the natural spontaneous strain. This will be

discussed in the section devoted to the thermodynamic theories. Second, as we

will see later, a certain type of the ferroelastic problems can be treated in terms

of the natural spontaneous strain whereas it cannot be treated in terms of Aizu’s

definition.
To offer an idea about the magnitude of diagonal components of natural

spontaneous strain we quote values for BaTiO3 (Wadhawan, 1982; Landolt-

Börnstein, 1990). The crystal has the point symmetry F = 4mm at room

temperature. This phase is ferroelastic as well as ferroelectric, resulting from

the parent phaseG ¼ m�3m. At room temperature a=3.992 Å and c=4.036 Å

and natural spontaneous strain components are "S11 ffi �3:64� 10�3 and

"S33 ffi 7:36� 10�3.
The case of the transition m�3m�mxym�xy2z is slightly more complicated

because the conventional axes of the two phases do not coincide and when

investigating the ferroelastic phase by X-ray diffraction, orthorhombic para-

meters aF(ort), bF(ort) are determined, measured along axes which make an

angle of 458 with the cubic axes. Then simple geometry gives for the symmetry-

breaking shear strain the relation

"Sxy ¼
aFðortÞ � bFðortÞ

2aG
: (2:1:8)

In many ferroelastic crystals a typical value for symmetry-breaking off-

diagonal components of natural spontaneous strain is within the limits of 3 �
10–3–10–2.

5 If the elastic compatibility problem between the parent and ferroelastic phase is considered,
within the framework of natural spontaneous strain approach, zero spontaneous strain
should be ascribed to the parent phase.
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2.1.3.3 Aizu’s Definition of Spontaneous Strain

One of the key properties of ferroelastics is that, in the low-symmetry phase,
there exist at least two states of material, which differ in the orientation of the
tensor of spontaneous strain. These states called domain states will be discussed
later in this chapter. This property of ferroelastics has been used by Aizu
(1970a) for a definition of spontaneous strain, which does not face the problem
of equivocal determination from the data on the temperature dependence of the
parameters of the unit cell mentioned in the previous section. He introduced a
modified tensor of spontaneous strain, which we shall refer to asAizu strain and
denote by eAizuS , as follows:

" Aizu
Sij
¼ "Sij �

1

q

Xq
k¼1

"Sij kð Þ (2:1:9)

where "SijðkÞ is the natural spontaneous strain in the k’s domain state, q being
the total number of the domain states in the low-symmetry phase F. As seen
from Eq. (2.1.9) the Aizu strain is independent of the reference used for the
calculation of the spontaneous strain since any change in the reference state
results in adding the same tensor to all "SijðkÞ. This gives to the Aizu strain an
advantage of being unequivocally defined from the experimental data on the
temperature dependence of the parameters of the unit cell. That has determined
a wide use of the Aizu strain in the literature.

It is essential to stress that, for any problems sensitive to the values of
spontaneous strain when the whole sample is in the same ferroic phase F, only
the difference between the spontaneous strains in different domain states mat-
ters. Since the two definitions of spontaneous strain, natural and Aizu, differ
only by a constant tensor which is the same for all domain states of F, for
problems of this kind, spontaneous strains introduced by them can be used in
the calculations and provide the same result.

As an example of both natural and Aizu strains we consider the ferroelastic
species �42m� P"ds� 2 with four domain states. Table 2.1.2 shows both forms
of strain; here a= (1/2)(d"yy–d"xx), b= "xy. Aizu (1970a) listed the matrices of
" AIZU
S for all ferroelastic species and we show some of them in a slightly

modified form in Table 2.1.3.
It is instructive to compare the physical meaning of the spontaneous strains

introduced according to these definitions. Let us do it for the transition dis-
cussed above, from cubic G ¼ m�3m to orthorhombic F= mxmy2z (for features
of the transition, see Fig. 2.1.4). The first conclusion to be drawn is that the
conter term in Aizu’s definition, i.e., the term 1

q

Pq
k¼1 "SijðkÞ, is a second-rank

tensor of a cubic symmetry, which can be presented as Adij, where dij is the
Kronecker symbol. Taking the trace and comparing these two expressions one
finds A ¼ Trð"SÞ �

P3
m¼1 "Smm

, we note that the subtracted term, namely
1
3 dij

P3
m¼1 "Smm

, has the meaning of the strain in a hypothetical cubic structure,
which changes with decreasing temperature with the same variation of the
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Table 2.1.2 Matrices of natural spontaneous strain and Aizu strain for four domain states of
species �42m� P"ds� 2z

"S(Si) "SAizu
ðSiÞ

S1 d"xx "xy 0
d"yy 0

d"zz

0
@

1
A �a b 0

a 0
0

0
@

1
A

S2

d"xx �"xy 0
d"yy 0

d"zz

0
@

1
A �a �b 0

a 0
0

0
@

1
A

S3

d"yy �"xy 0
d"xx 0

d"zz

0
@

1
A a �b 0

�a 0
0

0
@

1
A

S4

d"yy "xy 0
d"xx 0

d"zz

0
@

1
A a b 0

�a 0
0

0
@

1
A

Table 2.1.3 Tensors "Aizu
S for domain states Si in selected species

432–422, 3m–2m, m3m–4/mmm

"Aizu
S ðS1Þ ¼

�2b 0 0
b 0

b

0
@

1
A; "Aizu

S ðS2Þ ¼
b 0 0
�2b 0

b

0
@

1
A; "Aizu

S ðS3Þ ¼
b 0 0

b 0
�2b

0
@

1
A

23–"ds–222, m3–"s–mmm

"Aizu
S ðS1Þ ¼

a 0 0
b 0

c

0
@

1
A; "Aizu

S ðS2Þ ¼
c 0 0

a 0
b

0
@

1
A; "Aizu

S ðS3Þ ¼
b 0 0

c 0
a

0
@

1
A where a + b + c = 0

432–"ds–2x2y2z, 3m–"ds–222, m3m–"s–mxmymz

"Aizu
S ðS1Þ ¼

a 0 0
b 0

c

0
@

1
A; "Aizu

S ðS2Þ ¼
a 0 0

c 0
b

0
@

1
A; "Aizu

S ðS3Þ ¼
c 0 0

b 0
a

0
@

1
A

"Aizu
S ðS4Þ ¼

b 0 0
a 0

c

0
@

1
A; "Aizu

S ðS5Þ ¼
c 0 0

a 0
b

0
@

1
A; "Aizu

S ðS6Þ ¼
b 0 0

c 0
a

0
@

1
A

432–"ds–2yz2z2x, 3m–P"ds–myzmz2x, m3m–"s–myzmzmx Designations of these species differ in indices from those

in Table B.1, because here the orthorhombic axis is taken parallel to the cubic x.

"Aizu
S ðS1Þ ¼

�2b 0 0
b d

b

0
@

1
A; "Aizu

S ðS2Þ ¼
�2b 0 0

b �d
b

0
@

1
A; "Aizu

S ðS3Þ ¼
b 0 d
�2b 0

b

0
@

1
A

"Aizu
S ðS4Þ ¼

b 0 �d
�2b 0

b

0
@

1
A; "Aizu

S ðS5Þ ¼
b 0 d

b 0
�2b

0
@

1
A; "Aizu

S ðS6Þ ¼
b 0 �d

b 0
�2b

0
@

1
A

422–222, 4mm–mm2, �42m� 222, �42m�mm2, 4/mmm–mmm

"Aizu
S ðS1Þ ¼

0 a 0
0 0

0

0
@

1
A; "Aizu

S ðS2Þ ¼
0 �a 0

0 0
0

0
@

1
A
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unit-cell volume as that which actually occurs in the F phase. Thus, the Aizu
strain can be interpreted as the spontaneous strain calculated with respect to
this hypothetical structure. Now we recall that, for the considered system, the
natural spontaneous strain is evaluated as spontaneous strain calculated with
respect to a cubic structure that evolves according to the extrapolated thermal
expansion of the parent phase. This is the basis of the difference between the
definitions of spontaneous strain. Thus, for the considered system, the Aizu
strain can be calculated from the equation for the natural spontaneous strain,
Eq. (2.1.6), in which we substitute aGðextÞ by ðaFbFcFÞ1=3. The difference
between these two definitions can also be seen by comparing Fig. 2.1.5a and c.

It is of importance to note that a certain convenience in using the Aizu’s
modified definition of spontaneous strain is not free of charge. The point is that
the subtraction of the conter term in Eq. (2.1.9) results in losing the information
required for solving a certain class of ferroelastic problems. We have in mind,
e.g., the problem of the elastic compatibility between two ferroelastic phases
F1�G and F2�G which could coexist near the morphotropic boundary of the
material, the situation of high practical importance, e.g., in Pb(Zr,Ti)O3 ferro-
electric (Jaffe et al., 1971). This problem requires information on the difference
in spontaneous strains "Sij in both F1 and F2 phases. If this difference, using
definition (2.1.5), is expressed in terms of natural spontaneous strain, one finds
that it need not be identical to the difference of Aizu strains in the two phases.
The reason is that the conter term in Eq. (2.1.9) is, in general, different in the F1

and F2 phases. For example, if the parent phase is cubic the difference in the
spontaneous strain of these phases can be written as follows:

ð"SijÞF1
� ð"SijÞF2

¼ "Aizu
Sij

� �
F1

� "Aizu
Sij

� �
F2

�dij
VF1
� VF2

VG
(2:1:10)

Table 2.1.3 (continued)

4–2, �4� 2, 4/m–2/m

"Aizu
S ðS1Þ ¼

�a b 0
a 0

0

0
@

1
A; "Aizu

S ðS2Þ ¼
a �b 0
�a 0

b

0
@

1
A

622–222, 6mm–mm2, m2–mm2, 6/mmm–mmm

"Aizu
S ðS1Þ ¼

a 0 0
a 0

0

0
@

1
A; "Aizu

S ðS2Þ ¼
a=2 �

ffiffiffi
3
p

a=2 0
�a=2 0

0

0
@

1
A; "Aizu

S ðS3Þ ¼
a=2

ffiffiffi
3
p

a=2 0
�a=2 0

0

0
@

1
A

32–2, 3m–m, m–2/m

"Aizu
S ðS1Þ ¼

a 0 c
a 0

0

0
@

1
A; "Aizu

S ðS2Þ ¼
a=2

ffiffiffi
3
p

a=2 �c=2
�a=2

ffiffiffi
3
p

c=2
0

0
@

1
A; "Aizu

S ðS3Þ ¼
a=2 �

ffiffiffi
3
p

a=2 �c=2
�a=2

ffiffiffi
3
p

c=2
0

0
@

1
A

222–2, mm2–2, mm2–m, mmm–2/m

"Aizu
S ðS1Þ ¼

0 0 b
0 0

0

0
@

1
A; "Aizu

S ðS2Þ ¼
0 0 �b

0 0
0

0
@

1
A
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where V stands for the unit cell volume. We see that, since, in general,
VF1
� VF2

6¼ 0, the consideration of the problem of elastic compatibility
between two different ferroelastic phases in terms of Aizu stress would lead to
an erroneous result.

Aizu strain is not the only alternative to the natural spontaneous strain.
Another definition of it, denoted here as " W

Sij
, has been proposed byWadhawan

(1982), namely

" W
Sij
¼ " Sij �

1

3
dij
X3
m¼1

" Smm
: (2:1:11)

We just note that when discussing compatibility problems involving domain
states in one phase only, the use of this definition is legitimate on the same level
as the use of the Aizu strain. If the parent phase is cubic, both Aizu and
Wadhawan’s spontaneous strains are identical.

2.1.3.4 Ferrobielectrics

Formal aspects of describing properties of crystals by tensors do not distinguish
between differences in the physical nature of phenomena. We can, therefore,
expect that what was said for strain will apply also to other physical properties
characterized by a second-rank symmetric tensor. In addition, the well-known
precept of crystal physics states that if something is allowed by symmetry, it is
there. Thus for ferroelastics we expect that, in the phase F, the spontaneous
(subscript S) components wSij of susceptibility or kSij of permittivity will also
occur. To stress this point, the term ferrobielectric was coined (Newnham and
Cross, 1974a,b) to denote such phases or phase transitions: Any ferroelastic
sample which is also characterized by its dielectric properties (i.e., sample of a
nonmetallic material) is also a ferrobielectric sample. The same argumentation
applies to the reverse tensor of relative permittivity, namely, the tensor @Ei/@Dj

which is used to characterize the response of the crystal at optical frequencies.
Therefore any ferroelastic phase transition is accompanied by the occurrence of
spontaneous birefringence. Components of tensor properties forbidden by
symmetry in the parent phase but allowed in the ferroic phase are sometimes
referred to as symmetry-breaking properties. The designation ‘‘morphic’’ is often
used in the same sense. Thus any ferroelastic material is also characterized by a
morphic birefringence. We shall discuss it in some detail when treating methods
of observing domains.

2.1.4 Higher Order Ferroics

In the previous two sections we have considered ferroelectric and ferroelastics,
which are also conveniently referred to as primary ferroics. On the basis of this
consideration, we could now easily construct tables showing phase transitions,
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specified byG and F, which are ferroelectric and ferroelastic. Before doing that,

however, we should finish the classification of phase transitions used in this

book. After introducing vectors (polarization) and second-rank tensors (strain)

as characteristic quantities for some phase transitions, we can go further up in

tracking the behavior of other tensors as the symmetry changes from G to F.

The reader is reminded that even if we limit ourselves to tensors of fourth-rank

maximum, we know that useful and observable properties of crystals are

described by more than 20 tensors differing in rank and symmetry (Sirotin

and Shaskol’skaya, 1979). So we could in fact classify phase transitions accord-

ing to criteria based on the occurrence of new components of any of these

tensors and invent names for them, and one might go higher as well. However,

to stay practical we introduce just two more specific kinds of ferroics.
Ferroelastoelectric phase transitions are those characterized by the occur-

rence of new components of the piezoelectric tensor dijk in the phase F compared

to the phase G. By analogy, ferrobielastic transitions are those characterized by

the occurrence of new components of the tensor of elastic compliance tensor sijkl
in the phase F compared to the phaseG. Both these represent secondary ferroics

(Newnham and Cross, 1974b) or second-order ferroics (Aizu, 1973b).
It can be easily seen that in any ferroelastoelectric phase also new compo-

nents of the electrooptic coefficient rijk develop, as well as those of tensors

describing nonlinear optical properties like second harmonic generation.
Thus, specifying point group F as a subgroup of G one can unambiguously

determine to which category phase F belongs; whether this phase is ferroelectric

or ferroelastic, ferroelastoelectric or ferrobielastic. All we need is to compare

simple summaries of nonzero components of tensors in point groups (Sirotin

and Shaskol’skaya, 1979). At this point, a question arises. Is it possible to find

such pairsG, F that the corresponding transition would not fall into any of these

four categories? The answer is positive. There are four such pairs and we shall

specify them in Table B.1 of ferroic species. In these cases the lowest rank of a

tensor acquiring new components in phase F is higher than four. Materials that

belong to any of these categories have been named tertiary ferroics (Amin and

Newnham, 1980).
In this book we based the classification of ferroics mainly on one of their

features, namely, on the genesis of new components of tensors in the phase F

which were necessarily 0 in phase G. There is another significant inference,

namely, that the domain states in the phase F inevitably differ in just these new

tensor properties. It is on this basis that higher order ferroics can be optionally

defined (Aizu, 1972; Aizu, 1973b; Newnham and Cross, 1974a,b).
It is obvious that one and the same material (one and the same phase

transition) can be (but need not to be) simultaneously ferroelectric, ferroelastic,

and any higher order ferroic. Actually this is rather a rule than an exception. In

particular when the symmetry G is relatively high and the symmetry F is much

lower, all measurable tensors may acquire new components. Then we usually

ascribe the material into the category corresponding to the lowest rank tensor.
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As an illustration of the tensor changes induced by a phase transition we
consider the transition from G ¼ �42m to F = mm2. Several well-investigated
ferroic materials undergo such a transition: potassium dihydrogen phosphate
(KH2PO4, abbr. KDP), gadolinium molybdate (Gd2(MoO4)3, abbr. GMO),
and tanane.We have inmindmacroscopic properties which are described by the
following material relations:

"n ¼ snmsm þ dinEi þ anDT (2:1:12)

Di ¼ dimsm þ "0kijEi þ piDT (2:1:13)

DS ¼ amsm þ pjEi þ
C

T

� �
DT: (2:1:14)

Here the Einstein summation convention was applied with i and j changing
from 1 to 3, n and m changing from 1 to 6. The system of 1–6 indexing for the
elastic variables can be found in Nye’s book (Nye, 1992); for reference it is given
in Appendix F. For the variables and material parameters in these expressions,
the following notations have been accepted:

"n—mechanical stress,
Di—electric displacement,
DS—change of the entropy density,
sn—elastic strain,
Ei—electric field,
DT—temperature change,
snm—elastic compliance taken at constant electric field and temperature,
dim—piezoelectric moduli at constant temperature,
an—coefficient of thermal dilatation,
kij—relative dielectric permittivity at zero stress and constant temperature,
pi—pyroelectric coefficients at constant stress,
C—heat capacity at zero electric field and stress,
"0—permitivity of vacuum.

It is convenient to represent these coefficients as a matrix which has the
general form shown in Fig. 2.1.6a (valid for the point group 1) and which is
particularized for the group �42m in Fig. 2.1.6b. Figure 2.1.7a and b shows
orientation of the symmetry elements for the aforementioned point groups
with respect to their conventional reference frames. Figure 2.1.8a shows the
matrix of nonzero components of tensors in the conventional coordinate system
of F. However, this matrix cannot be directly used for characterization of the
phase transition. As already mentioned to evaluate the genesis of new compo-
nents of tensors when passing from phase G to F one should compare the
matrices of the tensor properties in the same reference frame. Customarily
one uses the reference frame of the G phase. Thus, as the next step one should
transform the matrix given by Fig. 2.1.8a to reference frame of G phase to find
matrix given by Fig. 2.1.8b. (The information necessary for such kind of
transformation is provided in Appendix F.) Finally, comparing matrices
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shown in Figs. 2.1.6b and 2.1.8b leads to the conclusion that in this case the

phase F is ferroelectric, ferroelastic, ferroelastoelectric, as well as ferrobielastic.
Thus, the mentioned crystals of KDP and GMO and many isomorphs have

attributes of both primary and secondary ferroics, but routinely they are

referred to as ferroelectrics and ferroelastics.6

Fig. 2.1.6 Matrix of tensor properties (Nye, 1992): (a) in its general form applicable to the
point group 1 and (b) for the point group �42m. Here larger points show nonzero components;
the values corresponding to the linked points are equal

Fig. 2.1.7 (a) Symmetry elements for the group �42m. Symmetry elements for the subgroup
mm2 � �42m shown in (c) differ in orientations from those in the conventional reference frame
of group mm2 shown in (b)

6 It is amusing how lavishly we throw around the prefix ferro, although nothing here has to do
with iron. But this goes well back in history (Fousek, 1994). The Schrödinger’s proposal of the
concept of a ferroelectricmaterial was forgotten by the time Rochelle salt (Seignette salt) was
discovered as the first ferroelectric material. Then the concept Seignette electric became
common, to be later replaced first by the term ferro-dielectric and then ferroelectric. Quoting
Megaw (1957) ‘‘. . . perhaps the real reason for its [i.e. of the term Seignette-electricity]
rejection . . . is its failure to fit comfortably into the English language. As an adjective,
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At the end of this section we wish to remind the reader that here we did not
pay attention to magnetic properties. But in fact when the concept of ferroics
was coined, for both primary (Aizu, 1970) and secondary (Newnham and
Cross, 1974a,b) ferroics, tensor properties related to magnetization were
included in the classification.

2.1.5 Relation Between the Symmetries G and F: Order Parameter

We shall now investigate the relation between point groups G and F in more detail
with the aimof introducing the concept of the order parameter of a phase transition,
which will open a practical way to analyze domain states in the distorted phase.

Let us first recall the well-known Curie principle of crystal physics (Sirotin and
Shaskol’skaya, 1979). This self-evident principle states: ‘‘If certain causes end up in
certain consequences, the symmetry elements of the former should manifest
themselves in the latter. If some dissymmetry is observed in any phenomenon,
then this dissymmetry should manifest itself also in the causes which lead to this
phenomenon. Statements opposite to these are incorrect, at least on a practical
level; in other words, the consequences may possess a higher symmetry than the
causes which resulted in them.’’ The present authors would like to point out that
nowadays it is generally accepted that the last statement does not hold if one takes
into account tensor properties of high enough order. With this reservation the
Curie principle can be formulated in the following way: ‘‘If an object of certain
symmetry is subjected to a perturbation, the operations of symmetry of the

>ferroelectric< is euphonius, while >Seignette-electric< grates on the ear.’’ Here the
Russians seem to stick more to facts than to sounds: their ‘segniettoelektrichestvo’ survives
and no one pretends to deal with iron when investigating barium titanate.

Fig. 2.1.8 (a) Matrix of tensor properties (Nye, 1992) for the group mm2 in its conventional
orientation. (b) The same in the orientation satisfying the relation mm2 � �42m. Here larger
points show nonzero components; the values corresponding to the linked points are equal
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resulting object are the common operations of symmetry of the original object and
the perturbation.’’ Thus, we see that unless the perturbation is a scalar, its
application should result in loss of some symmetry elements of the object. Recal-
ling that any ferroic phase transition results in a loss of symmetry elements one can
pose a reasonable question what is the perturbation which is standing behind the
phase transition? The answer to this question is the objective of this section.

2.1.5.1 Transition Without Multiplication of the Unit Cell

Consider the simplest case: a ferroelectric phase transition. Suppose that the occur-
rence of spontaneous polarization PS can be considered as its cause. Which sym-
metry elements have PS, a polar vector? They are represented by the continuous
Curie group1m; its set of symmetry elements includes the symmetry axis of infinite
order (allowing for any rotation around it) along the direction of PS and all mirror
planes containing this axis. Should, therefore, the occurrence of PS be held respon-
sible for the transition from G to F, we have to determine the symmetry operations
which are common to both groups G and1m and check whether the relation

F ¼ 1m \ G (2:1:15)

holds, when the axis 1 is properly oriented in the coordinate system of G. The
symbol \ designates the intersection of both groups on its sides. Examining the
foregoing example of the transition from =G ¼ �42m to F = mm2 we see imme-
diately that this relation is satisfied. Thus, in this particular case polarization can be
regarded as fully responsible for the change of symmetry. Groups F satisfying
relation (2.1.15) are calledmaximum polar subgroups ofG. All pairs (G,F) fulfilling
this condition, with specifying the orientation of Fwith respect toG, were found in
the early stages of investigating ferroelectrics (Zheludev and Shuvalov, 1956).

In the discussed case, the physical quantity which appears in the phase F and
is fully responsible for the symmetry change from G to F is called the order
parameter of the transition. Often it is denoted by Z and we shall use this
designation throughout this book. We also use the notation H for the group
of symmetry of the order parameter. Thus, in the foregoing case where the point
group symmetry change from G ¼ �42m to F = mm2 fully characterizes the
transition, withH=1m, the order parameter transforms as a polar vector and
we feel justified to consider it polarization.

The considered casewas, in a sense, a simple one, namely, in theG ¼ �42m group,
one can find only one maximum polar subgroup of the symmetry F = mm2. In
general this is not necessarily the case, e.g., in G ¼ m�3m group one finds three
maximum polar subgroups of the type F = 4mm according to the three possible
orientations of the fourfold axis and three possible orientations of the order para-
meter (polarization) axis. To distinguish the orientations of the order parameter Z
and its group H, we attach to them an index i: Zi and Hi. Thus, the reduction of
symmetry due to the phase transition at which Zi occurs can be described as follows:

Fi ¼ Hi \ G: (2:1:16)
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This relation states that the symmetry group Fi of the distorted phase is the
maximal subgroup of the symmetry group G of the parent phase, which leaves
the order parameter Zi invariant.

The situation discussed above corresponds to ferroelectrics classified as
proper ferroelectrics7 (Dvorak, 1974). However, it is possible to imagine a
ferroelectric transition where polarization does not play the role of the order
parameter. This is, for example, the case of the transition from G ¼ �42m down
to the monoclinic phase with F = 2z. In this case, the symmetry reduction is
more severe than that required by the symmetry1m of the polarization so that
the latter cannot play the order parameter role. This kind of ferroelectrics is
classified as improper ferroelectrics (Dvorak, 1972).

It is clear that the approach used for definition of proper and improper
ferroelectrics can readily be applied to the situation with the order parameter Z
of any symmetry. An important example of this kind is the classification into
proper and improper ferroelastics. In this case, the approach is applied with
H = mmm, the symmetry of the elastic deformation.

2.1.5.2 Transition with Multiplication of the Unit Cell

In the case where numbers of formula units in the unit cells of G and F phases
differ as a result of the transition, i.e., n 6¼ 1 in Eq. (2.1.2), the order parameter of
the transition should be introduced as a physical quantity which appears in the
phase F and is fully responsible for the change in the spatial group symmetries
between the phases G and F. For such transitions the F phase can be both
ferroelectric and ferroelastic. However, since neither polarization vector nor
deformation tensor is connected with any translational symmetry they cannot
play roles of the order parameters. Thus, we again arrive at the situation of
improper ferroelectrics and ferroelastics just discussed above where the ferro-
electric or ferroelastic phases are results of the phase transition controlled by an
order parameter different from polarization vector or deformation. The exis-
tence of improper ferroelectrics was predicted by Indenbom (1960) from the
point of view of symmetry. A Landau theory approach for the description of
improper ferroelectrics was developed by Levanyuk and Sannikov (1968).
Cross et al. were the first to recognize that crystals of gadolinium molybdate
(GMO) exhibit properties indicating that this material cannot fall into the
category of ‘‘normal’’ proper ferroelectrics (Cross et al., 1968). Dvorak (1971,
1974) then determined the true symmetry of the order parameter in this material
as well as in the boracite Fe3B7O13I (Dvorak, 1972). Both of them belong to the
second mentioned category, undergoing transitions which are ferroelectric but
not equitranslational, with n 6¼ 1.

7 In the chapter devoted to the thermodynamic theory we shall point out that there may be
reasons for further and finer classification which includes proper ferroelectrics in contrast to
pseudoproper or weak ferroelectrics. But this is of little importance for understanding
domains on the basis of symmetry.
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Could a material be proper ferroelectric and proper ferroelastic at the same
time? Yes, it can and, in fact, the transition from G ¼ �42m to F = mm2 without
unit cell multiplication, i.e., with n=1, provides us with an example. Indeed, we
have already seen that the occurrence of a polar vector parallel to the z-axis in the
phaseG ¼ �42m removes all symmetry elements with the exception of the twofold
axis which is parallel to �4 and ofmirror planes parallel to it; thus, according toEq.
(2.1.15), the phase F=mm2 is proper ferroelectric. Alternatively, we can imagine
that the unit cell whose symmetry corresponds to the groupG ¼ �42m is deformed
by a shear strain "xy, whose symmetry is that of a rhomb-based prism, i.e., H=
mmmwith twomirror planes shared withG. In this case, we see fromEq. (2.1.16)
that what is left are again symmetry elements representing the group F=mm2. If
for a given material with the considered transition from G ¼ �42m to F = mm2
there is no change in translational symmetry (i.e., n = 1), the transition is both
proper ferroelectric and proper ferroelastic. This is the case of KDP. If n > 1, it
would represent an improper ferroelectric and an improper ferroelastic; this is the
case of GMO for which n = 2.

2.1.6 Overview of Different Kinds of Phase Transitions: Species

Various classifications of structural phase transitions, which we introduced in
the preceding sections, proved useful in practice. Correct assignment of the
category, to which a particular material (transition) belongs, makes it possible
to predict a multitude of properties, including domain phenomena. Partial
summary of different kinds of phase transitions, which have been described
up to now, is shown in Fig. 2.1.9. Some of their designations contain symbols P,
", d, or s. Pmeans that this kind of transition is ferroelectric; ", d, and s denote
ferroelastic, ferroelastoelectric, and ferrobielastic transitions, respectively.

We may wish to assign a particular material a symbol which would show
most of the information we have already discussed. This symbol contains the
groups G and F. However, as we have seen above specifying these groups by
their normal crystallographic notationmay not be sufficient. Let us consider the
phase transition from G ¼ �42m to F = 2. Here, we should discriminate the
transition where the twofold axis along z survives (this axis is parallel to the
former �4 axis) from that where the twofold axis along x does. We distinguish
these two crystallographically nonequivalent possibilities bymarking themwith
F=2z and F=2x, respectively. Specification ofG and F, and, when necessary,
with designation of their mutual orientation, defines the species of the phase
transition. To make the notations more informative we shall include, between
the symbols of G and F, also characters denoting newly acquired properties.

The simplest species is �1� Pd� 1. Here G ¼ �1, F = 1 and on transforming
from G to Fwithin the triclinic system the crystal loses only the inversion center
and acquires spontaneous polarization (symbol P) as well as the piezoelectric
tensor (symbol d). Thus, the phase F is ferroelectric and ferroelastoelectric. A
crystal representing the species m�3m� d� 23 stays cubic and becomes
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piezoelectric; thus the phase F of symmetry 23 and the transition itself are
ferroelastoelectric. In these cases there is no need to specify the orientation of F
because all of them are equivalent. The two species of the preceding paragraph
are now designated as �42m� P"ds� 2z and �42m� P"ds� 2xy. Both represent
phase transitions which are simultaneously ferroelectric, ferroelastic, ferroelasto-
electric, and ferrobielastic. The symbol gives no information about the possible
change of translational symmetry. We shall present a table of all species; but
before doing that it is practical to introduce the concept of domain states.

2.1.7 Domain States

2.1.7.1 Basic Concepts

We have practically completed the classification of phase transitions to the
degree that is useful in this book and can now proceed to its vital concept, that
of domain states. Let us start with a simple example. Consider a material

Fig. 2.1.9 Classification of structural phase transitions. Shaded items correspond to ferroic
transitions
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classified as a proper ferroelectric and revealing a transition from G ¼ m�3m to

F = 4mm. For this species polarization plays the role of the order parameter

and the vector PS is directed along a fourfold axis of the point group F. Let it be

the y-axis direction (see Fig. 2.1.10). Now, let us apply to this state of the crystal

with this orientation of PS all symmetry operation of G. Clearly, the operations

which are common with those of F leave the state unchanged whereas the rest of

them will produce, as one can easily check, five additional states which differ in

the directions of PS. The states of the crystal obtained by this procedure are

called ferroelectric domain states of this species. Using this method we can

define ferroelectric domain states of any ferroelectric species. In the considered

case one can easily count the number of them (six). As it will be shown in the end

of this section, the number q of domain states of a given species can be

determined without performing the transformations by the symmetry opera-

tions of G, namely, it holds

q ¼ jGj=jFj (2:1:17)

where |A| is the order of the point group A, defined as the number of its

symmetry operations including the identity transformation. We can easily

check this equation for the considered case: |G|=48 and |F|=8, implying

q=6. For the reader’s convenience, Table A.2 makes it possible to find quickly

relations between point groups and their subgroups. The ratio q = |G| / |F| is

also called index of F in G.
This approach can be generalized for any kind of the order parameter Z

responsible for a ferroic transition. States of the crystal in the ferroic phase

Fig. 2.1.10 Six possible
orientations ofPS for species
m�3m� P"ds� 4mm
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differing in the orientation of ZS are referred to as domain states. The expression
for the number of domain states in terms of the orders of point groups of the
parent and low-symmetry phases, Eq. (2.1.17), applies to the general case as
well, for transitions at which the number of formula units in the primitive unit
cell remains constant (n = 1 in Eq. (2.1.2)).

A simple example demonstrating the importance of identifying the true order
parameter when evaluating the number of domain states is provided by the
species �43m� P"ds� 3xyz. This is a ferroelectric species and one may be
tempted to proceed by the ‘‘geometrical’’ method mentioned above. This
would lead to four orientations of PS and might erroneously conclude that
there are four domain states. However, in fact q = 24/3 = 8. This is because
here the order parameter transforms as a third-order tensor d, so that the
transition is improper ferroelectric. This is an example when all domain states
can be grouped into pairs. States in each pair have the same vector PS but differ
in the orientation of tensor d. To describe this situation we say that the two
domain states in one pair are degenerate domain states with respect to PS. The
concept of degenerate domain states can be applied to any tensor properties.
For degenerate domain states, several other terms have been proposed like that
of improper domain states (Janovec, 1972) in contrast to proper domain states.
A physical quantity which is newly acquired in the ferroic phase and its
particular value is common to several domain states but not to all is sometimes
referred to as secondary order parameter.

In complicated ferroics, this degeneracy of domain states is rather a rule than
an exception and its understanding may be vital for practical aspects. This
motivates us to consider the question of the degree of degeneracy of domain
states with respect to a given tensor property, denoted here byU.We can answer
this question in a simple way, using the knowledge developed when treating the
problem of number of domain states which differ in the orientation of the order
parameter. We recall that Eq. (2.1.17) determines the number of domain states
which can be obtained from a given state by applying operations of the groupG
and which differ in orientations of a tensor property invariant with respect to a
group F�G. Clearly, this equation is valid for any tensor property, not only for
the order parameter. Thus, if we set the group F equal to the group FU�G that
leaves the property U unchanged, then Eq. (2.1.17) will yield the number qU of
domain states differing in this property, namely,

qU ¼ jGj=jFUj: (2:1:18)

Let us come back to the previous example of species �43m� P"ds� 3xyz and
consider the number of domain states which differ in spontaneous polarization.
The appropriate subgroup ofG leaving polarization invariant is FU=3m. Since
|FU| = 6 and |G| = 24, Eq. (2.1.17) gives qU=4 as the number of domain states
differing in the direction of PS.

The obtained results enable us to evaluate the degree of degeneracy of
domain states with respect to a given tensor property U, i.e., to determine is
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the number dU of domain states differing in the order parameter but having the
U property unchanged. We call dU the degeneracy factor. Evidently

dU ¼ q=qU: (2:1:19)

By introducing the degeneracy factor we have opened the way to a very useful
additional classification of ferroics which was pioneered by Aizu (1970b). If q= qP
we speak about a full ferroelectric species, in which all domain states differ in
polarization. On the contrary, when the species is ferroelectrics (i.e., qP> 1) but the
degeneracy factors q/qP > 1, the material (or species or phase transition) is partial
ferroelectric. Similarly, the conditions q = q" and q/q" > 1 at q" > 1 define full
ferroelastic and partial ferroelastic, respectively. The classical transition in
BaTiO3—fromG ¼ m�3m to F=4mmwithout unit cell multiplication—provides
an example of a full ferroelectric and partial ferroelastic species. Indeed, we have
checked the ferroelectric feature at the beginning of this section by finding that all
six domain states differ in polarization, i.e.. q= qP= 6. As for strain, the subgroup
of G, which keeps it invariant is F" = 4/mmm. This group contains twice as many
symmetry operations as the group 4mm. That implies q" = 3 and q/q"=2 > 1.8

At this point one should notice that to give an exhaustive presentation of
domain states, the equation for the number of possible domain states, Eq.
(2.1.17), is to be generalized for the case of transitions with multiplication of
unit cell volume (n > 1). Simple arguing enables us to do that. Let us recall that
Eq. (2.1.17) deals with the indices of the point groups F andG, i.e., this equation
takes into account only the orientation symmetry of the problem. Thus, this
equation gives the number of domain states that differ in the orientation of
crystallographic axes, i.e., of orientational domain states. If both point group
and translational symmetry change at the phase transition, the crystal can
transform into any of the q0 = |G| / |F| orientational domain states but each
of them can be subdivided into n translational domain states where n is defined
by Eq. (2.1.2). Thus the total number of domain states is then

q ¼ q0n ¼
Gj j
Fj j

ZG

ZF
: (2:1:20)

8 As one can notice, the pair of notions of full and partial is very close to that of proper and
improper; however, a comprehensive analysis show that these pairs are not identical (Janovec
et al., 1975). For equitranslational transitions proper–improper and full–partial are not
exactly identical concepts: here all proper ferroelectrics (ferroelastics) are necessarily full
and all partial ferroelectrics (ferroelastics) are necessarily improper. However, there exist
species which are full ferroelectrics (ferroelastics) in Aizu’s wording but may represent
materials which must be classified as improper ferroelectrics (ferroelastics). The species no.
032 (see Table B.1 or C.1), i.e., m3m� P"ds� 1, provides an example. Here the order
parameter can transform as a polar vector, as indicated by the symbol Px, Py, Pz in the fourth
column of Table C.1. Clearly, in this case the material is proper ferroelectric. Alternatively
(Janovec et al., 1975), the order parameter can transform as a third-rank tensor and polariza-
tion arises as a secondary effect, as indicated by the symbol (Px, Py, Pz) in Table C.1. In this
case the material is an improper ferroelectric. In either case, this species is a full ferroelectric
since all domain states can be distinguished by polarization.
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The translational domain states are identical in the orientation of tensor

properties but differ from the point of view of translational symmetry.
Let us illustrate the notions of orientational and translational domain states

by an example of a simple two-dimensional hypothetical structure. In the parent

phase, the structure consists of a square lattice of A atoms with B atoms in the

centers of the squares (see Fig.2.1.11a). In the low-symmetry phase, the B atoms

are shifted by the same distance either in the x-direction or in the y-direction,

the sign of the shifts in neighboring cell being opposite. This transition corre-

sponds to a change of the point group symmetry from G containing eight

symmetry operations (identity, rotations by 908, 1808, and 2708, as well as

mirror planes) to F containing four operations (identity, rotation by 1808 and
two mirror planes). The unit cell doubles at the transition, so that n= 2. Thus,

using Eqs. (2.1.20) and (2.1.2) we find that within the q = 4 domain states one

can distinguish q0 = 2 orientational domain states, with n = 2 translational

states in each of the latter.

As an illustration, Fig. 2.1.11b shows the lattice distortions in a two-dimen-
sional sample containing two different orientational domain states while
Fig. 2.1.11c represents the lattice distortions in a two-dimensional sample
containing two translational domain states. Geometrically, the latter is a chess-
board cut into two pieces along a straight line passing between the cells, shifted
by one cell along the line, and glued back. Comparing these drawings we infer a
key difference between the translational and orientational domain states. The
orientational states can be distinguished either when being in an intimate
contact as shown in the figure or by monitoring the bulk properties of the
sample during a domain reorientation process. In contrast, the translational
states can be distinguished only when being in an intimate contact like shown in
Fig. 2.1.11c; no tensor properties of a sample offer direct information about the
coexistence of translational domain states in it. Thus, although the notion of
translational domains is of conceptual importance, usually it does not play a
substantial role in the macroscopic properties of a multidomain sample. For

Fig. 2.1.11 (a) Parent unit cell of an imaginary two-dimensional structure. A structural
transition corresponding to either vertical or horizontal shifts of B atoms is considered.
(b) Low-symmetry structure containing two orientational domain states in intimate contact.
(c) Low-symmetry structure containing two translational domain states in intimate contact.
Squares in (b) and (c) represent original unit cells.Dashes indicate orientations of shifts of the
B atoms. In shaded squares the signs of these shifts are opposite to those in non-shaded squares
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this reason, in this bookwe shall bemostly concerned about orientation domain
states since it is these that determine, to a large extent, macroscopic properties
of ferroic samples. When no confusion could arise, we shall omit the adjective
orientational (and use the notation q instead of qo) while it will be always
stressed when it is the translational domain states that are addressed in the
given context.

An important issue to be mentioned in this section is related to the definition
of ferroics. The general definition of a ferroic adopted in this book was based on
the symmetry relation (2.1.1) and definitions of particular breeds of ferroics
presented above in Sects. 2.1.2, 2.1.3, 2.1.4, 2.1.5, and 2.1.6 were based on the
appearance of new spontaneous quantities in the distorted phase which were, by
symmetry, nonexistent in the parent phase. But there also exist widely used
alternative definitions, which are based on the differences of these quantities in
different domain states. Quoting Aizu (1970b), ‘‘A crystal is provisionally
referred to as being ‘ferroic’ when it has two or more orientation states in the
absence of magnetic field, electric field, and mechanical stress and can shift from
one to another of these states by means of a magnetic field, an electric field, a
mechanical stress or a combination of these.’’ A similar definition of primary
and higher order ferroics was used by Newnham and Cross (1974a,b). It is a
direct consequence of the symmetry arguments presented above that both of
these two definitions are equivalent to that adopted in this book: If Z is the order
parameter responsible for the G-to-F symmetry lowering, the number of
domain (orientation) states given by Eq. (2.1.17) is necessarily larger than 1.
As to the ‘‘shifts’’ (not italicized in quoting Aizu), we shall see that in practice
they may be only theoretically achievable.

For completeness, one remark can be made at this point. For a given ferroic
material and in a sufficiently wide temperature range, there may exist more than
one distorted phases fulfilling relation (2.1.1), of different symmetry groups F1,
F2, . . ., with no group–subgroup relationship between different groups Fi.
Again, the classical example is the sequence of phases in barium titanate: The
parent phase m�3m is followed, on decreasing temperature, by phases with
symmetries 4mm, mm2xy, and 3m. Attempts have been made (Guymont, 1981,
1991) to analyze domain states in these cases taking into account the Fi–Fj

transition but without involving the G � Fi relationship. It was shown (Tole-
dano and Toledano, 1988) that some evidently reconstructive transitions, with
nonexistent parent phase, can be treated by group theory assuming that both
phases have originated from a phase with a higher symmetry corresponding to
the maximum superstructure common to both observed phases; recently an
attempt has been made to introduce the concept of domains into this category
(Tolédano and Dmitriev, 1997).

2.1.7.2 Left Coset Approach

The considerations of the previous chapter left postponed an important point,
namely, the derivation of formula for the number of orientational domain
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states of ferroic species, Eq. (2.1.17). This problem can be solved by using the
approach of left cosets we now discuss.

The procedure described below employing left cosets may seem superfluous
for proper ferroelectrics since it is so easy to apply point group symmetry
operations to vectors just by imagining. If the transition is proper ferroelastic
and the deformation is simple, the number q can still be guessed. But for more
complicated strains, and for order parameters corresponding to higher rank
tensors, to proceed bymere geometrical visualization is hardly possible. The left
coset approach has the advantage that it can be used quite generally, for any
symmetry of the order parameter. It was first suggested by Aizu (1970b, 1972)
and then discussed in more detail by Janovec (1972, 1976). The procedure is
now routinely employed (Zikmund, 1984; Flack, 1987) and we shall give a short
outline of it.

GivenG and F�G, one particularly oriented subgroup F1 is singled out. We
know already that—because of the Curie principle— symmetry operations of
F1 are all those from operations inGwhich do not change (leave it invariant) the
order parameter in its selected particular orientation Z1. Now we choose one
symmetry operation, denoted as say g2, which is contained in G but not in F1

and specify the set of operations g2F1. We continue by choosing an operation g3
which is contained inG but neither in the group F1 nor in the set g2F1 and form a
new set g3F1. This procedure goes on till all operations of G have been used up.
One can show that these sets have no common elements. Thus we have divided
the groupG into disjoint subsets consisting of the same number of operations as
they are in F; we have decomposed the group G into left cosets of the subgroup F1.
Formally this is written as

G ¼ F1 þ g2F1 þ g3F1 þ � � � þ gqF1: (2:1:21)

The number q of left cosets in this decomposition is called index of F in G.
Clearly, the index of F in G equals |G|/|F|, where |A| is the order of the point
group A, namely, the number of its symmetry operations. None of the opera-
tions of group F1 changes one particular orientation of the order parameter, all
of them leave it invariant. On the other hand, any operation in the set g2F1

changes it into a new orientation and each of them to the same one. This
property of the set g2F1 holds for all remaining left cosets. Thus, we see that
the number of orientational domain states qo for the order parameter Z is just
equal to the index of F in G. That implies

qo ¼ jGj=jFj (2:1:22)

and brings us back to Eq. (2.1.17). To understand the decomposition in left
cosets can be rewarding since it enables one to single out symmetry operations
that relate order parameters corresponding to different domain states. As an
example, Table 2.1.4 shows the decomposition in left cosets for the ferroelectric
species m�3m� P"ds�m

xy
mz2xy, based on the analysis of Janovec (1976). This
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is a phase transition exhibited by barium titanate and several other perovskites,

with q= 48/4 = 12. The analysis starts by choosing PS along [110] of the cubic
phase. This choice is in fact arbitrary but, since we have prescribed the subgroup
m�xymz2xy � G as the group F, it makes sense to choose this particular PS vector.

Symmetry operations for this subgroup F1 are shown in the first row. Now we
choose �1 as the operation denoted by g2 above. Any of symmetry operations in a

left coset g2F1 (assembled in the following row) changes the orientation of the
chosen vector [110] into ½�1�10�, its orientation is shown in the column ‘‘PS

direction.’’ Each of the following rows shows one of the left cosets whose total
number is 12. We need just one operation from each left cosets to obtain all the

orientations of PS vectors, i.e., all domain states, starting from the vector [110]
characterizing the chosen domain state.

2.1.8 Ferroic Species

Now we are prepared to present an overview of all possible ferroics taking into

account relationship (2.1.1), that is, we pay attention to point symmetries of the
parent and ferroic phases only and assume that we deal with equitranslational

transitions (n = 1). In the foregoing sections we did not go into details char-
acterizing the symmetry of the order parameter Z. The thermodynamic theories

of distortive phase transitions are based on the theory of Landau who showed
that the construction of a thermodynamic potential with one order parameter

Table 2.1.4 Decomposition of m�3m into left cosets of m�xymz2xy

j Left cosets PS direction eS
1 1 2xy m�xy mz 110 "Sð1Þ
2 �1 mxy 2�xy 2z �1�10 "Sð1Þ
3 2x 43z

�4z my 1�10 "Sð2Þ
4 2y 4z �43z mx

�110 "Sð2Þ
8 2xz 3x�y�z

�3xyz �43y 0�1�1 "Sð3Þ
6 2�xz 3�xy�z

�3xyz �43y 0�1�1 "Sð4Þ
11 2yz 32�xy�z

�35�x�yz
�43x

�101 "Sð5Þ
10 2�yz 32x�y�z

�35xyz
�43x

�10�1 "Sð6Þ
7 mxz

�3x�y�z 3�x�yz 4y 01�1 "Sð3Þ
5 m�xz

�3�xy�z 3xyz 43y 011 "Sð4Þ
12 myz

�35�xy�z 32�x�yz 43x 10�1 "Sð5Þ
9 m�yz 35x�y�z 32xyz 4x 101 "Sð6Þ
The number j denotes the domain state (cf. Fig. 2.3.5b). Four symmetry operations for each j
define a left coset. Subscripts indicate the orientation of axes in the group G. Symmetry
operations assembled on one line represent one left coset and all of them transform the vector
PS chosen along [110] into one and the same alternative vector of PS, which is given in the
column ‘‘PS direction.’’ There are six different tensors of spontaneous deformation "S, which
are not specified here; the aim is only to demonstrate how domain states defined by PS are
degenerate in strain. After Janovec (1976).
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puts a restriction on the possible symmetry of Z, namely, that the latter trans-
forms according to an irreducible representation of the group G. (The reader
can find an excellent introduction into the concept of representations in con-
nection with the Landau theory in the Toledanos’ monograph (1988)). This
requirement on the symmetry of Z imposes a further restriction on the possible
pairs of G and F, in addition to the simple relation (2.1.1). Aizu (1973a) was the
first to come with a list of all conceivable transitions connected with order
parameters transforming according to irreducible representations. However, it
was pointed out (Holakovsky, 1973) that this requirement may not be abso-
lutely essential and that in fact phase transitions can exist where Z transforms
according to a reducible representation. Analyses of several materials (summar-
ized by Toledano and Toledano, 1988)) showed that this is indeed the case.
Lifting the condition of irreducible representation on the symmetry of the order
parameter leads to an increase of the number of possible species since now the
only condition is the group–subgroup relation (2.1.1).

The full list of equitranslational ferroic species, partially based on the work
by Janovec et al. (1975), is presented in Table B.1. Some data concerning
ferroelastoelectric and ferrobielastic domain states were completed by Litvin
(Database of ferroic species; unpublished). We use the species assignment as it
was introduced in Sect. 2.1.6. The table should enable the reader to reach the
basic information on domain states once the species of a material has been
established.

In this chapter we yield just a selection of the full table, to exemplify its
system; see Table 2.1.5. The species are ordered according to the point groupsG
and, for each G, according to the point groups F, always starting at the high-
symmetry end and progressing toward lower symmetries. The first column gives
the sequential number of the species, which will also be used later in the table of
ferroelectric species. The second column contains the symbol of the species
using the above introduced pattern G–(spontaneously occurring quantities)–F.
The symbol of the point group F is often provided with subscripts specifying the
orientation of symmetry elements inG, which define the group F; here we follow
the notation of Janovec et al. (1975). This specification is particularly essential
when components of newly acquired tensors are to be itemized, as we shall do it
later for polarization and strain in the table of ferroelectric species. Another
reason for indexing is that in one particular material we may have two differ-
ently oriented phases F belonging to the same species but existing at different
temperature intervals. However, very often it is sufficient to specify the F group
as such without indication of its orientation.

In column 3 we give the number of equivalent subgroups F. Practically, this
number gives the number of possible domain states which differ in the orienta-
tion of the order parameter but not in its sign. In column 4, the total number of
domain states q is shown. We stress again that on the adopted level of point
groups no information is contained about translational domain states and the
given number is simply the index of F inG (see Eq. (2.1.17)). Column 5 gives the
number qP of ferroelectric domain states. Here 0 means that F is nonpolar while
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1 means that F is pyroelectric with only one orientation of PS (or better to say,
of the pyroelectric coefficient) and therefore nonferroelectric. Column 6 indi-
cates the number q" of ferroelastic domain states. Here 0 does not appear.
Number 1 means that F is nonferroelastic: the shape of the unit cell is not
changed; the thermal dilatation tensor has no new components. Column 7 gives
the number qd of domain states differing in the piezoelectric tensor or, more
generally, in the tensor of symmetry V[V2] or [V2]V (see text to Table 2.2.2 or
Appendix F for notation of tensor symmetries). Here number 0 means that F is
not piezoelectric while 1 means that F is piezoelectric but has no new compo-
nents of the appropriate tensor. Column 8 shows the number qs of ferrobielastic
domain states. Here again 0 cannot occur while number 1 means that the
compliance matrix has no new components in the distorted phase.

Four species have neither of the symbols P, ", d, s in their designation
meaning that they are higher order ferroics. In these cases we show in column
9 the symmetry of the lowest order tensor in which some domain states are
distinguished (Amin and Newnham, 1980).

Species exist for which the group F may take two different orientations, say
F 0 and F 00, which are crystallographically equivalent but once the axes in a
particular material have been chosen they are clearly distinguishable. These
have been named by Aizu ‘‘minor species.’’ For us it is essential that left cosets of

Table 2.1.5 Selection of ferroic species (full content see Table B.1)

1
Species no.

2
Species designation

3
nF

4
q

5
qP

6
q"

7
qd

8
qs

9

001 m�3m� d� �43m 1 2 0 1 2 1

002 m�3m� 432 1 2 0 1 0 1 "[V2]

003 m�3m�m3 1 2 0 1 0 1 {V2V2}

004 m�3m� d� 23 1 4 0 1 2 1 RR

005 m�3m� "s� �3xyzm�xy 4 4 0 4 0 4

006 m�3m� P"ds� 3xyzm�xy 4 8 8 4 8 4

009 m�3m� P"ds� 3xyz 4 16 8 4 16 8 RR

011 m�3m� "ds� �4z2xymx 3 6 0 3 6 3 1

012 m�3m� "ds� �4z2xmxy 3 6 0 3 6 3 1

013 m�3m� P"ds� 4zmxmxy 3 6 6 3 6 3

022 m�3m� P"ds�m�xymz2xy 6 12 12 6 12 6 RR

025 m�3m� "s� 2xy=mxy 6 12 0 12 0 12 2 IRs

026 m�3m� "s� 2z=mz 3 12 0 12 0 12 RR

032 m�3m� P"ds� 1 1 48 48 24 24 24 2 IRs

071 6/mmm–6/m 1 2 0 1 2 1 "V[V2]

082 6/mmm–"ds–222 3 6 0 3 6 3

108 622–ds–3z2x 622–ds–3z2y 1 2 0 1 2 2

208 2=m� "s� �1 1 2 0 2 0 2

209 2=m� P"ds� 1 1 4 4 2 4 2

210 m� P"ds� 1 1 2 2 2 2 2

211 2� P"ds� 1 1 2 2 2 2 2

212 �1� Pd� 1 1 2 2 1 2 1
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F0 and F00 in G contain the same symmetry operations which are, however,
differently oriented with respect to the coordinate system of G. Therefore
domain properties are identical. In the present table minor species occupy just
one row (see, e.g., the species 076).

On the other hand, some pairs of species have the same F but their elements
have crystallographically nonequivalent orientations; an example is, for
instance, the species 161 as distinguished from both minor species 160.

We have stressed that Table B.1 (as well as its selection, Table 2.1.5) is based
on the analysis of equitranslational phase transitions. However, as long as we
seek information on orientational domain states, all information remains valid
even for a transition with unit cell multiplication (n 6¼ 1).

In a few cases the last column 9 contains some additional information
reserved for readers familiar with the theory of presentation of point groups.
As shown by Janovec et al. (1975), the phase transitions represented by some
species can be achieved by two different irreducible representations and the
ferroic can be either proper or improper ferroelectric (ferroelastic); these cases
are indicated as ‘‘2 IRs.’’ This has little to say about domain states but plays an
essential role in temperature dependences of material coefficients as well as of
spontaneous quantities. Further, the symbol ‘‘RR’’ is added to those species in
which the order parameter does not transform according to an irreducible
representation. Its transformation properties would be given by a combination
of such representations, defining a reducible representation. This fact again
would reflect itself in the temperature dependences of some spontaneously
acquired properties. Both symbols ‘‘2 IRs’’ and ‘‘RR’’ are included to warn the
reader that materials representing these species may reveal unusual properties.
We note that the information indicated by symbols ‘‘RR’’ or ‘‘2 IRs’’ becomes
superfluous for transitions at which the translational symmetry also changes.
Finally, the symbol ‘‘1’’ attached to species 011 and 012 stresses that for them the
order parameter transforms according to different irreducible representations
and therefore they are considered as separate species (Janovec et al., 1975).

It is obvious that this table provides straightforward information about
degeneracy of domain states. The degeneracy factors defined by Eq. (2.1.19),
in particular dP = q/qP, d"=q/q", dd = q/qd, and ds = q/qs, can be immediately
obtained from data in columns 4–8.

Let us show, on a few examples chosen from Table 3.2.1 of selected ferroic
materials, how Tables 2.1.5 and B.1 can be used to obtain useful information.

Consider crystals of quartz, species no. 108, 622–ds–32. We see that in the
ferroic phase the material is nonferroelectric and nonferroelastic. The total
number of domain states is 2 and the symmetry elements of both represent
just one point group. These states, which in fact represent the well-known
Dauphiné twins, differ in the newly acquired forms of both piezoelectric and
elastic compliance tensors. We have no domain degeneracy.

Crystals of PbZrO3 represent the species no. 005, m�3m� "s� �3m. This
particular material changes eight times the unit cell volume as a result of the
transition and so the information available concerns orientational domain
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states only. It becomes neither ferroelectric nor ferroelastoelectric, no polariza-
tion or piezoelectric effect result from the transition. The point group of each of
the four domain states is differently oriented. All of these states differ in some
components of spontaneous strain (or permittivity) as well as in some compo-
nents of elastic compliance.

Crystals of a specific kind of BaTiO3 which is hexagonal in its parent phase
belong to the species no. 082, 6/mmm–"ds–222. All of the six domain states
differ in the piezoelectric (or electro-optic, for this matter) tensor. They are
nonferroelectric but ferroelastic and ferrobielastic. Each ferroelastic or bifer-
roelastic domain states is doubly degenerate with respect to the domain states
differing in the piezoelectric tensor. Thus, for example, a domain state which is
characterized by one single permittivity tensor is degenerate with respect to
states differing in their piezoelectric response.

Properties of domain states in the ferroelectric phases of ‘‘normal’’ barium
titanate which have been discussed as examples earlier in this chapter are
immediately obvious from data for species no. 013 m�3m� P"ds� 4mm, no.
022 m�3m� P"ds�mm2, and no. 006 m�3m� P"ds� 3m.

In the adopted classification of ferroics no attention is paid to tensor proper-
ties transforming as axial tensors. The occurrence of new components of such
tensors in the phase Fmay be of great importance for distinguishing nonferroe-
lastic domain states. These cases will be dealt with later in connection with the
so-called twin laws and listed in Tables 2.2.1 and 2.2.2.

Table B.1 offers no detailed information on the transformation properties of
the order parameter and the interested reader is referred to the papers by Aizu
(1973a) or Janovec et al. (1975). In the following section we shall include
another table of ferroelectric transitions alone, with some additional data.

2.1.9 Ferroelectric Species

We have already defined ferroelectric phase transitions as those at which the
vector describing pyroelectric properties acquires a new component which was
not allowed by symmetry in the parent phase. Accordingly, such a phase
transition results in the development of spontaneous polarization components.
Also, some classifications have been introduced in the preceding sections:
proper and improper ferroelectrics, full and partial ferroelectrics. All ferro-
electric species and their full–partial attributes in accompanying ferroelastic,
ferroelastoelectric, and ferrobielastic properties can be easily determined from
Table B.1. However, because ferroelectrics represent the most attractive family
of ferroics and one which receives considerable attention from the point of view
of applications of domain properties, we shall now incorporate some additional
information about their particular species.

Classifications of ferroelectrics on the basis of symmetry approach provided
an attractive subject for crystallographically oriented researchers and can be
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found in many original papers. The first approach to their determination
offered by Zheludev and Shuvalov (1956, 1959) was based on the idea of F
being the maximum polar subgroup of G, which includes proper ferroelectrics
only. Aizu introduced the concept of species and worked out tables of ferroics
(Aizu, 1966, 1970b, 1973a) whose later versions covered both proper and
improper ferroelectrics. Shuvalov (1970) in his classification of proper ferro-
electrics introduced an interesting designation for species which represents a
modification of symbols proposed by Aizu (1965, 1966).

Speaking about the possible behavior of a particular ferroelectric material,
the most fundamental information contains three items: the symmetry groupG,
direction of PS specified with respect to the symmetry elements of G, and the
symmetry group F. We remind the reader again that, generally, F may not
follow from the simple relation (2.1.15), because in improper ferroelectrics the
symmetry reduction may be more severe.

Information on ferroelectric species is presented in Table C.1 (as well as in its
selection, Table 2.1.6). The number of a species is identical with that in Table
B.1, as well as its designation given in the second column. The third column
indicates the total number q of orientational domain states. This is the total
number of domain states if n= 1 but it is n times smaller than the total number
of domain states if n 6¼ 1. In the fourth column are shown nonzero components
of polarization in the phase F. They are specified for the subgroup orientation
shown in the symbol. Here dPk stands for the change of polarization component
which was already permitted by symmetry in the parent phase (i.e., a nonzero
component pk of the pyroelectric coefficient was permitted in G). Pk stands for
the newly acquired component of spontaneous polarization. More information
about polarization is included that can be obtained on the basis of analysis of
order parameter transformation. Pk without brackets means that this is the
‘‘proper’’ component of polarization (assuming n = 1). This means that Pk

serves as the order parameter (fully explaining the symmetry change). If the
symbol is in brackets, (Pk) or [Pk], that means that this is an ‘‘improper’’
polarization component, arising as a secondary effect. If both proper and
improper scenarios can be responsible for the development of polarization,
two lines are given in the table, indicating both possibilities. The distinction
between (Pk) and [Pk] is reserved for a reader familiar with the theory of
representations of point groups: (Pk) means that the component of polarization
transforms according to an irreducible representation whereas [Pk] means that
its transformation law is more complicated. From the point of view of domain
crystallography there is no difference between Pk, (Pk), and [Pk]. But there may
be substantial differences in other physical properties, e.g., in temperature
dependence of spontaneous polarization.

The following fifth column shows the number qP of domain states differing in
the direction of spontaneous polarization.

Any component Pk except that designated by dPk is ‘‘symmetry breaking,’’
meaning that it is not allowed in the phase G. In most cases (nine nonpyro-
electric parent phases), G does not allow for any component of polarization.
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In Table C.1 we give information about natural spontaneous strain defined in
Sect. 2.1.3. For this purpose the whole table is divided into six sections according
to the crystal families (cubic, hexagonal, tetragonal, orthorhombic, monoclinic,
and triclinic) of the phaseG. At the top of each section we give strain components
d"kl which are compatible with the symmetry of that crystal family, in the
sequence d"xx, d"yy, d"zz, d"yz, d"zx, d"xy. In fact, these can be understood as
components of the thermal dilatation tensor. For each species, column 6 specifies
strain components d"kl which are compatible with the symmetry of the phase F
specified in the species symbol. The sequence of components is the same as before.
It should be stressed again that all these data refer to the coordinate system ofG.
If the particular component itself is ‘‘symmetry breaking’’ (not allowed inG), it is
written as "kl. If it is already allowed in G, it has the prefix d. In contrast
to polarization, the situation is complicated by the fact that two components
d"kl, d"mn compatible with the symmetry ofG, which are equal inG, may become
different in the phase F. It is then the difference d"Skl � d"Smn

between themwhich
‘‘breaks’’ the symmetry, as already explained in Sect. 2.1.3. Column 7 gives the
number of domain states differing in spontaneous deformation, i.e., the number
of ferroelastic domain states q".

The last column of the table shows the alreadymentioned symbol proposed by
Shuvalov (1970) which has been used by some lecturers and can be found very
practical. The original Shuvalov’s table included proper ferroelectrics only and
for them the symbol is just reproduced here, including the original designation of
cubic phasesm3m andm3 (in keeping with the newer crystallographic standards,
otherwise we employ the designation m�3m and �3m in this book). For species in
which F is not the maximal polar subgroup as in Shuvalov’s listing, we have
designed his symbol following the original rules; such a symbol is preceded by an
asterisk (*). The symbol starts with the designation of point group G. This is
followed by the number of axes (in the parenthesis) in the group G along which
spontaneous polarization can be directed (‘‘ferroelectric axes’’). If there is just a
single number in the parentheses it indicates that PS can have two orientations
along each of these axes. If this number is divided by two it indicates that PS can
have only one of these orientations; it is not reversible. Next is the symbol
specifying the information about the orientation of the ferroelectric axis (axes).
D2,D3, etc., signify that the axis is parallel to the twofold axis or threefold axis in
G, respectively. Dm means that the ferroelectric axis is perpendicular to the
mirror plane in G. In contrast, A2, A3, etc., indicate the ferroelectric axis to be
perpendicular to the twofold or threefold axis, respectively, but otherwise with a
general orientation. Am indicates an arbitrary orientation parallel to the mirror
plane. The next symbol F just stands for ‘‘ferroelectric’’ and is followed by the
symbol of the point group in the ferroelectric phase. Finally, many species are
provided with either= or 6¼ symbol. Here= indicates that the crystal lattices for
domain states with antiparallel polarization are collinear. In other words, they do
not differ in spontaneous deformation. In contrast, 6¼ means that domain states
with antiparallelPs vectors differ in "S. Obviously, any of these symbols ismissing
when PS is not reversible.
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The information contained in the table also enables classification of ferro-
electrics according to a scheme introduced in the very early stages of their
investigations, namely, uniaxial ferroelectrics are those where PS can be
oriented along one axis only and have two antiparallel directions; in multiaxial
ferroelectrics with reversible polarization there are more than one such axes,
along each axis PS can have either sign; in multiaxial ferroelectrics with reor-
ientable polarization PS can be oriented along more than one axes of the parent
phase but has no equivalent antiparallel direction.

Assigning the correct species to a ferroelectric material contains a wealth of
usable information and we shall give two examples to indicate just a part of it.

Consider one of the bismuth oxide ferroelectrics with a layer structure,
SrBi2Ta2O9 (abbr. SBT), which we assume to represent the species 4/
mmm–P"ds–mymz2x (no. 155). We see from the table that there are four domain
states, all differing in the direction of PS which is reversible. The orientation of
the polar axis in the ferroelectric phase tells us that the angle between any two
PS vectors is either 908 or 1808. There are only two ferroelastic domain states;
changing the sign of PS does not result in any change of the unit cell shape.
However, all domain states are distinguishable also in the piezoelectric and
compliance tensors. Thus (using Tables B.1 and C.1), the sign of PS can be
assessed indirectly by monitoring the piezoelectric response.

As another example, consider the species no. 027. The symmetry changes from
cubic m�3m to monoclinic mz. The mirror in the phase F is perpendicular to the
fourfold axis of the cubic lattice in the phaseG. Spontaneous polarization has two
components in the x, y plane of the group G and the transition can be either
proper or improper. There are altogether 24 domain states and all of them differ
in polarization. However, there are only 12 domain states differing in sponta-
neous strain, ferroelastic domain states. The species is a full ferroelectric and
partial ferroelastic one: Each domain state characterized by a particular strain
can have two alternative (antiparallel) directions of spontaneous polarization.
For a particular domain state corresponding to the indicated subgroupFwhich is
mz, the symmetry-breaking deformations are "xy, d"yy–d"xx, and d"zz–d"yy. The
latter statement follows from the comparison of d"kl tensors given for this species
and those given for G at the top of the ‘‘cubic’’ section of the table.

We stress again that all these considerations are made on the level of point
symmetries. More detailed classifications have been proposed based on the
changes of space groups (Toledano and Toledano, 1988).

2.2 Coexisting Domain States

In Sect. 2.1.7 we have introduced the concept of domain states and treated them
as independently existing states of a crystal lattice in the phase F. A crystalline
sample whose total volume represents just one of the domain states is a single
domain sample. However, there are a number of factors which make a real
sample multidomain. In it, domains defined as regions whose structures
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represent different symmetry-permitted domain states coexist. Their linear sizes
depend on many factors but, if some often encountered number should be
given, they could range (in bulk samples) between 1 and 100 mm. However, to
quote just one number is misleading since in a prevailing majority of cases the
domain shapes are strongly anisotropic, being close to cylinders or slabs.
Domains are separated by domain walls whose thickness is typically much less
than the linear dimensions of domains. The formation of domains may be due
to a large number of factors. These are connected with the crystal growth, with
the process of the phase transformation from the parent phase, with the pre-
sence of defects. We shall discuss these mechanisms in some detail later. What
makes, of course, ferroics particularly attractive materials is the fact that
properly designed and oriented externally applied forces can bring a ferroic
sample from a domain state i to another domain state j. In practice, it is rather a
rule than an exception that the reorientation is accomplished only in some parts
of the sample and we end up again with a multidomain sample.

When no forces are applied or arise due to boundary conditions, a multi-
domain sample of an ideal crystal is not in the ground state of its energy; this is
because of the existence of domain walls separating domains in which crystal
lattices representing the phase F are perturbed. Thus domain walls are in fact
crystal defects.

In this section we wish to discuss properties of a pair of coexisting domain
states, referred to as a domain pair. In a sense, domain pairs actually play the role
of elementary units of the polydomain states. In the following sections, based on
symmetry approach, we will primarily address two questions: (i) how the elements
of a domain pair (i.e., domains) can be distinguished and (ii) how these elements
can coexist in physical contact. In these considerations wewill not pay attention to
internal properties of domain walls, which will be discussed in Chap. 6.

2.2.1 Twinning Operations

Consider two domain states resulting from a ferroic phase transition of a G–F
species. Let us denote the order parameter in these states as Zi and Zj. As we have
seen in Sect. 2.1, among the symmetry operations of G there are some which
transform Zi into Zj. These operations are referred to as twinning operations of
the ordered pair (Zi, Zj). One such operation is denoted as Tij. The whole
ensemble of all twining operations of an ordered pair represents the twinning
complex of the ordered pair.9 Generally, it holds that the twinning complex of
the ordered pair (Zi, Zj) is not identical with that of the ordered pair (Zj, Zi).

10

9 We remark that our twinning operations are what in Aizu’s analyses of domain states (or
simply states in his terminology) has been referred to as F operations (Aizu, 1969, 1970b,
1972), a term used by other authors as well (Wadhawan, 1982).
10 This interesting situation may have many practical consequences; some are connected to
structures of domain walls, others relate to macroscopic phenomena.
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The knowledge of a twinning operation Tij of an (Zi, Zj) pair enables us to
compare a given tensor property of the two domain states involved. As we
already discussed in Sect. 2.1, the application of the operation Tij onto a tensor
property in the Zi-state determines the former in the Zj-state. This procedure
makes it possible to determine those macroscopic properties which could be
used for experimental distinction of the two domain states in the pair. Clearly,
these properties are those which change under the application of Tij.

Another utilization of the approach outlined above reveals a situation sub-
stantially different for ferroelastic domain pairs (domain states which differ in
tensor properties described by a symmetric second-rank tensor) and those
which are nonferroelastic.

First, domains forming ferroelastic pairs in transparent crystals can be rela-
tively easily distinguished by optical methods, as we shall discuss in detail in
Chap. 4. Observation methods are more restricted when the domain pair is non-
ferroelastic and there we may be interested in knowing in detail in which macro-
scopic properties the two domains differ. In addition, nonferroelastic domain pairs
receive special attention as domain states carrying information in memory devices.
We shall, therefore, consider them in more detail in the next section.

Second, when two ferroelastic domain states are in physical contact, the
twinning operations as defined above describe the relative orientation of tensor
properties of the two adjacent domains only approximately. This issue deserves
further discussion andwe shall come back to it in Sect. 2.2.5 where the necessary
background will be available.

2.2.2 Twin Laws for Nonferroelastic Domain Pairs

This section is devoted to differences in tensor properties of domain states
forming a nonferroelastic domain pair. As we have just mentioned, this issue
is of importance for experimental distinction of such pairs which is often a
difficult task. The information provided in this section enables the reader to
determine tensor properties which can be used to distinguish the states forming
a given pair. We present this information in Tables 2.2.1 and 2.2.2 which are
based on related tables (Janovec et al., 1993; Litvin and Janovec, 1997). The
approach used in these papers can be outlined as follows.

Generally, as indicated in the previous section, the twinning complex of the
ordered pair (Zi, Zj) is not identical with that of the ordered pair (Zj, Zi). When
the twinning complexes of pairs (Zi, Zj) and (Zj, Zi) are identical, the pair of
domain states is referred to as an ambivalent pair (Janovec, 1972; Janovec et al.,
1993). It can be shown that the pair (Zi, Zj) is ambivalent if there exists at least
one symmetry operation gij 2 G which serves as a twinning operation for both
pairs (Zi, Zj) and (Zj, Zi) at once, i.e.,

Tij ¼ Tji ¼ gij: (2:2:1)
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Table 2.2.1 Twin laws for nonferroelastic and partially ferroelastic phase transitions

G G F Jik

m�3m �43m m3m

m�3m 432 m3m

m�3m m�3 m3m

m�3m 23 m3

432

43m

m�3m �3 3m

m�3m �4 �42m

4=m

m�3m 4 4=m

422

4mm
�43m 23 43m
�43m �4 42m

432 23 432

432 4 422

m�3 23 m�3

6/mmm �6m2 6/mmm

6/mmm 6mm 6/mmm

6/mmm 622 6/mmm

6/mmm 6/m 6/mmm

6/mmm �6 6m2

6/m

6/mmm 6 622

6mm

6/m

6/mmm �3m 6/mmm

6/mmm 3m �3m

6mm
�6m2

6/mmm 32 �3m

622
�6m2

6/mmm �3 �3m

6/m

6/mmm 3 �3

32

3m

6
�6

�6m2 �6 �6m2
�6m2 3m �6m2
�6m2 32 �6m2
�6m2 3 32

3m
�6
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Table 2.2.1 (continued)

G G F Jik

6mm 6 6mm

6mm 3m 6mm

6mm 3 3m

6

622 6 622

622 32 622

622 3 32

6

6/m �6 6/m

6/m 6 6/m

6/m �3 6/m

6/m 3 6
�3
�6

�6 3 �6

6 3 6
�3m m�3m 3m �3m
�3m m�3m 32 �3m
�3m �3 �3m
�3m m�3m 3 �3

32

3m

3m �43m 3 3m

32 432 3 32
�3 m�3 3 �3

4/mmm m�3m m�3m 4/mmm

4/mmm m�3m 4mm 4/mmm

4/mmm m�3m 422 4/mmm

4/mmm m�3m 4/m 4/mmm

4/mmm �4 4/m
�42m

4/mmm 4 4/m

422

4mm
�42m �4 �42m

4mm 4 4mm

422 4 422

4/m �4 4/m

4/m 4 4/m

mmm 4/mmm, 6/mmm, m�3, m�3m 222 mmm

mmm 4/mmm, 6/mmm, m�3, m�3m mm2 mmm

2/m mmm, 4/m, 4/mmm, �3m, 6/m, 6/mmm, m�3, m�3m 2 2/m

2/m mmm, 4/m, 4/mmm, �3m, 6/m, 6/mmm, m�3, m�3m m 2/m
�1 2/m, mmm, 4/m, 4/mmm, �3, �3m, 6/m, 6/mmm, m�3, m�3m 1 �1
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Table 2.2.2 Numbers of distinct tensor components for nonferroelastic twin laws. The mean-
ing of symbols is specified below the table

F Jik " V "[V2] V[V2] "V[V2] [[V2]2] [V2]2 [V2]V2

1 �1 1 3 6 18 0 0 0 0

2 2=m 1 1 4 8 0 0 0 0

m 2=m 0 2 2 10 0 0 0 0

222 mmm 1 0 3 3 0 0 0 0

mm2 mmm 0 1 1 5 0 0 0 0

4 4/m 1 1 2 4 0 0 0 0

4 4/m 0 0 2 4 0 0 0 0

4 422 0 1 0 3 3 1 3 6

4 4mm 1 0 2 1 3 1 3 6

4 42m 0 0 1 2 3 1 3 6

4/m 4/mmm 0 0 0 0 3 1 3 6

422 4/mmm 1 0 2 1 0 0 0 0

4mm 4/mmm 0 1 0 3 0 0 0 0

42m 4/mmm 0 0 1 2 0 0 0 0

3 �3 1 1 2 6 0 0 0 0

3 32 0 1 0 4 4 1 4 8

3 32 0 1 0 4 4 1 4 8

3 3m 1 0 2 2 4 1 4 8

3 3m 1 0 2 2 4 1 4 8
�3 �3m 0 0 0 0 4 1 4 8

3 �3m 0 0 0 0 4 1 4 8

32 �3m 1 0 2 2 0 0 0 0

3m �3m 0 1 0 4 0 0 0 0

3 6 0 0 0 2 2 2 4 6

3 �6 1 1 2 4 2 2 4 6
�3 6/m 0 0 0 0 2 2 4 6

6 6/m 1 1 2 4 0 0 0 0
�6 6/m 0 0 0 2 0 0 0 0

32 622 0 0 0 1 1 1 2 3

6 622 0 1 0 3 3 0 2 5

3m 6mm 0 0 0 1 1 1 2 3

6 6mm 1 0 2 1 3 0 2 5

32 �6m2 1 0 2 1 1 1 2 3
�6 �6m2 0 0 0 1 3 0 2 5

3m �6m2 0 1 0 3 1 1 2 3
�3m 6/mmm 0 0 0 0 1 1 2 3

6/m 6/mmm 0 0 0 0 3 0 2 5

622 6/mmm 1 0 2 1 0 0 0 0

6mm 6/mmm 0 1 0 3 0 0 0 0
�6m2 6/mmm 0 0 0 1 0 0 0 0

23 m�3 1 0 1 1 0 0 0 0

23 432 0 0 0 1 1 0 1 2

23 �43m 1 0 1 0 1 0 1 2
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It can be shown that any nonferroelastic domain pair is ambivalent. The
symmetry group of such a pair can be written as

Jik ¼ Fik þ gikFik (2:2:2)

where Fik = Fi \ Fk is the intersection of groups Fi and Fk. The group Jik
specifies in a way the relation between the two domain states i, k and has been
named twin law of the ambivalent pair. Now, suppose we are interested in a
tensor material property T. We can then easily find the number m1 of indepen-
dent components ofT in the group Jik as well as their numberm2 in the group F.
The difference m2–m1 then gives the number of independent components that
are different in domain states i and k.

Tables 2.2.1 and 2.2.2 enable one to find quickly in which tensor properties
two domain states in a nonferroelastic domain pair differ. In addition, they also
give the numbers of components of tensors up to the fourth rank including two
axial tensors which distinguish these two states. These tables can be used in the
following way. The groups G and F being given, we first determine the corre-
sponding twin law Jik in Table 2.2.1. The twinning complex of a pair is shown as
underlined symmetry operation(s) in the symbol of its twinning law. When G
(for the G, F pair in question) is found in the first column, the transition to F on
the same line is nonferroelastic. When G is given in the second column, the
species G–F is a partial ferroelastic species: For this species only some domain
pairs are nonferroelastic and it is these pairs that we investigate. Next, knowing
Jik and Fwe turn to Table 2.2.2 and find the numbers of components for tensors
of different ranks and symmetries, in which the two domain states differ. In
addition, information is added as to the possible enantiomorphism of structures
representing the two domain states. Understandably, any of this information
can also be found by treating each case individually and employing matrices of
tensors and twinning operations.

Table 2.2.2 (continued)

F Jik " V "[V2] V[V2] "V[V2] [[V2]2] [V2]2 [V2]V2

m�3 m�3m 0 0 0 0 1 0 1 2

432 m�3m 1 0 1 0 0 0 0 0
�43m m�3m 0 0 0 1 0 0 0 0

F: symmetry of the ferroic phase; Jik: twin law; ": the structures of the two domain states are
enantiomorphous; V: polar vector (spontaneous polarization); "[V2]: axial symmetric second-
rank tensor describing optical activity; the tensor V[V2] describes piezoelectric effect, linear
electrooptic effect, or linear photogalvanic effect; "V[V2]: describes electrogyration; [[V2]2]:
stands for elastic compliance tensor; [V2]2: describes electrostriction and piezooptic (photo-
elastic) effects and also the effect of spatial dispersion. The tensor of symmetry [V2]V2

characterizes the flexoelectric effect. For formal definition of the symbols used for the
symmetry of tensors see Appendix F. Number 0 means that the two domain states cannot
be distinguished by a tensorial property represented by the column, be it because the property
is not allowed by symmetry in the ferroic phase or because the two domain states do not differ
in it. Nonzero numbers stand for the count of components of the given tensor by which the
two domain states can be distinguished.
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Let us give a few examples to indicate the practical significance of the informa-
tion contained in these two tables. Generally, the presence of enantiomorphism
indicates a possibility of employing optically active etchants differing in handed-
ness for distinguishing domains. In crystals of Bi4Ti3O12 which is a partial ferroe-
lastic (species 4/mmm–P"ds–mz) there are eight directions of PS and domains with
antiparallel polarizations have collinear lattices. This material was intensively
studied in connection with ferroelectric memories and recently switching proper-
ties of thin films of this material have been of interest. Table 2.2.1 shows that
domain states with antiparallel polarization differ in 10 components of the piezo-
electric tensor; this points to possible importance of stresses on the polarization
reversal process as well as the possibility of accomplishing domain reorientation
based on ferroelastoelectric properties. Possibility of differences in electrogyration
is indicated for many materials like for quartz (species 622–ds–32) or Pb5Ge3O11

(species �6� Pd� 3). In the low-temperature monoclinic phase of NaH3(SeO3)2
(probable species 2/m–Pd–m) gyration might be interesting as a tool to observe
domains. In CsCuCl3 crystals (species 6/mmm–d–622) domains, not yet observed,
should be distinguished by optical activity.

These are just a few examples illustrating how the tables of twin laws can give
fast useful information. Others, which, e.g., might concern nondestructive
reading possibilities of ferroelectric non-volatile memories, could also be easily
extracted from these tables.

2.2.3 Domain Wall Orientation: Electrical Compatibility

By introducing the concept of twinning operations in Sect. 2.2.2 we addressed one
of the key problems of ferroics, namely, the question as to what are the relations
between two selected domain states and how their characteristics differ when
related to a single reference system. These are the essential issues when one is
interested in macroscopic properties of multidomain samples. However, these
propertieswill also be codetermined by other factors, in particular, by the size and
shapes of domains, which in turnwill depend on the orientation and properties of
intermediate regions separating domains and domain walls.

In this and the next sectionwewill be discussing the orientation of domainwall
separating a domain pair. In general one can specify four factors controlling the
orientation of a wall: (i) the state of the crystal with the wall of a given orientation
should correspond at least to a local energy minimum; (ii) electrostatic energy
related to differently oriented PS vectors in the neighboring domains; (iii) elastic
energy related to differently oriented spontaneous strains in neighboring
domains; and (iv) energy of the wall itself. In most practical situations, factors
(ii) and (iii) play the decisive role. Factor (iii) is usually referred to as electrical
compatibility problem. It will be discussed together with factor (i) in this section;
factor (iii), usually referred to as the mechanical compatibility problem, will be
treated in the next section. We postpone the discussion of factor (iv) to Chap. 6
where the necessary background will be available.
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An arbitrarily oriented domain wall between ferroelectric domains, in general,
carries bound charge whose density, according to the Poisson equation, equals

rb ¼ �divP : (2:2:3)

The existence of this charge is not energetically favorable. In principle, it can
be compensated by free carriers. If this is not the case, the energetically prefer-
able orientation of the wall corresponds to its electrically neutral state. It is
determined by Eq. (2.2.3) with rb = 0. For a wall with normal vector n, which
separates two domains characterized by spontaneous polarization vectors PSA

and PSB, the condition of wall neutrality reads

ðPSA � PSBÞn ¼ 0: (2:2:4)

If possible compensation of the bound charge on the wall by free carriers can
be neglected and if the domain pair is nonferroelastic, electrical neutrality plays
the key role in the wall orientation. Two typical situations for mutual orientation
of a planar wall and polarization vectors in neighboring domains apply for the
species m�3m� P"ds� 4mm which represents the tetragonal phase of BaTiO3.
They are illustrated inFig. 2.2.1a and b. The former shows the so-called 1808wall;

Fig. 2.2.1 (a) 1808 ferroelectric domain wall. (b) 908 ferroelectric domain wall. (c) Involved
domain patterns typical for multiaxial ferroelectrics. Here the 1808 walls are assumed nonferroe-
lastic so that the whole domain configuration is mechanically compatible. Head-to-tail coupling
of spontaneous polarization avoids bound charge and is believed to be typical for the geometry of
nonferroelastic 1808 ferroelectric structures in coexistence with ferroelastic walls. (d) Electrostatic
energymay also be reduced by dense antiparallel ferroelectric domainswhich couple head to head
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its electroneutrality is maintained due to the absence of polarization component
normal to the wall. The latter represents the so-called 908 wall which again is
neutral because the polarization component normal to the wall is continuous on
crossing the wall. It is clear that, with 1808walls, domains themselves should have
the shape of slabs or cylinders.We shall see in a later chapter that this is consistent
with experimental observations: It can be considered typical that ferroelectric
domains tend to be elongated along the polar axis.

Domain structures in the given species containing both types of electroneu-
tral walls are possible as well. A structure of this type is shown in Fig. 2.2.1c.
Here one sees that in order to avoid the existence of bound charge we expect that
1808walls will proceed continuously throughout the 908wall and that, on the 908
wall, PS will be coupled ‘‘head-to-tail.’’ Such arrangements are observed in single
crystals of BaTiO3 (Merz, 1954; Hooton and Merz, 1955). However, as it was
pointed out (Arlt, 1990), it is reasonable to consider the condition of electroneu-
trality on the average. A configuration with head-to-head coupling where the 908
walls are electroneutral only on average is illustrated in Fig. 2.2.1d. It is worth
mentioning that, being dense enough, this configuration may be realistic because
of relative ease of compensation of the bound charge by free carriers.

Understandably, in many ferroelectric species domain pairs can exist in
which the PS vectors make an angle g differing from 1808 or 908; such domain
pairs are occasionally referred to as g-pairs.11

The above consideration naturally suggests another question.We have based
our analysis on the fact that the uncompensated bound charge of an electrically
incompatible wall substantially increases the energy of a sample. For an infinite
sample containing one charged domain wall, the additional electrostatic energy
when recalculated to a unit area of the wall results in an infinite increase of its
surface energy density. In this situation the condition of electroneutrality
should be strictly fulfilled. However, in any finite sample the violation of the
wall neutrality results just in an increase of the effective wall energy and may be
compensated at the expense of another contribution to the energy of the system.
Thus, one could conclude that, in principle, a ferroelectric wall might carry any
charge density up to its maximal possible value of 2PS. However, it turns out
that this statement does not hold.12 The reason is that the field created by a
charged wall not only contributes to the energy of the system but also may
suppress ferroelectricity in the neighboring domains. Thus, there is a limit to the
maximum value of surface charge density beyond which the wall cannot exist.
Applied to the problem of wall orientation, as was pointed out by Chervono-
brodov and Roytburd (1988), this implies a limit to the possible deviation of the
wall from its electroneutral orientation.

11 In everyday language, researchers in ferroelectricity often refer to g pairs as to g domains.
But the plural is essential; sometimes one can see that just one domain is designated as a 908
domain or 1808 domain, a ridiculous specification.
12 This relates to the case of proper ferroelectrics only; see Sect. 2.1 for definition of proper
and improper ferroelectrics.
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We will illustrate this problem considering a 1808 wall in an infinite sample,
whose plane makes an angle c with the direction of the ferroelectric axis Z. To
check the ferroelectric stability we write down the Landau theory equation of
state for the polarization components lying in the plane which contains the
ferroelectric axis and perpendicular to the plane of the wall (we consider the
second-order transition so that az < 0 and b > 0)

azPz þ bP3
z ¼ Ez; (2:2:5)

Px ¼ "0ðkx � 1ÞEx: (2:2:6)

Here Px, Pz, Ex, and Ez stand for the corresponding components of the
polarization and electric field; kx is the relative dielectric permittivity in the
direction normal to the spontaneous polarization and "0 is the vacuum permit-
tivity. The electrostatic boundary conditions at the wall require the continuity
of the tangential component of the electric field and the continuity of the
normal component of the electric displacement (Di ¼ "0Ei þ Pi). Because of
the symmetry of the problem, these conditions can be met only if these compo-
nents are equal to zero. This requirement together with Eq. (2.2.6) enables us to
find the Z-component of the electric field created by the bound charge of the
wall in the form

Ez ¼ �
Pz

"o

sin2 c

sin2 cþ kx cos2 c
: (2:2:7)

Then Eq. (2.2.5) gives

az þ
"�1o sin2 c

sin2 cþ kx cos2 c

� �
Pz þ bP3

z ¼ 0: (2:2:8)

The condition to have spontaneous polarization in the sample (otherwise

there is no wall!) requires that in the crystal az þ "�1o sin2 c
sin2 cþkx cos2 c

50. Thus, we

arrive at the conclusion that the ferroelectricity can stand the field of the tilted
wall only if the angle c meets the condition

c5c0; tanco 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"okx azj j

p



ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kx=2kz

p
: (2:2:9)

Here kz ¼ 1þ 1=ð"o2 azj jÞ is the relative dielectric permittivity along the
polar axis of the material. When deriving Eq. (2.2.9), it has been taken into
account that usually kz441.

The walls with c > co cannot exist. It can be shown that if a ‘‘single-
standing’’ wall is forced to exceed the critical angle co it will decay into a zigzag
wall pattern (Chervonobrodov and Roytburd, 1988). As clear from Eq. (2.2.9),
this angle is sensitive to the dielectric anisotropy of the material. In uniaxial
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ferroelectrics where typically kz44kx, this criterion makes impossible any
strong deviation of the walls from their electro-neutral configurations. At the
same time, in materials close to the morphotropic boundary where the opposite
relation takes place, kz55kx, condition (2.2.9) does not strongly limit such
deviation. Qualitatively13 this statement applies to BaTiO3 where at room
temperature kx=kz420.

Another situation which can occur in ferroelastic ferroelectrics will become
apparent in the following section. It will be seen that in a number of species
domain walls satisfying the mechanical compatibility conditions are necessarily
charged. And on the contrary, in these cases, the walls that are electrically
neutral do not satisfy elastic requirements of compatibility. It then depends
on the ratio between the enhancement of mechanical and electrical energies
which wall should be realized.

2.2.4 Domain Wall Orientation: Mechanical Compatibility

For a ferroelastic domain pair the requirement of mechanical compatibility
usually imposes severe restrictions on the orientation of the domain wall. A
generally oriented wall between domains having different spontaneous strain
tensors induces a very substantial level of additional elastic strains. The condi-
tion that the latter does not arise can be expressed as follows. Let the sponta-
neous strain in the domains be eS(A) and eS(B); then the transformation of any
geometrical figure, which lies in the plane of the wall, due to deformations eS(A)
and eS(B) should be identical up to a rigid body motion. Domain walls oriented
so that this condition is met are called permissible walls or alternatively stress-
free walls, since no additional elastic strains are involved. Mathematically, the
mentioned condition requires (Fousek and Janovec, 1969; Sapriel, 1975) that
any vector ds within the permissible wall fulfills the condition

Dij:dsidsj ¼ 0; (2:2:10)

where14

Dij ¼ "SijðAÞ � "SijðBÞ (2:2:11)

is a symmetric tensor with up to six independent components. Further mathe-
matical treatment of the problem has been performed by Janovec (1976).

13 In BaTiO3, the theory should be slightly modified making allowance for the first-order
phase transition.
14 One comes across in the literature the use of condition (2.2.10) withmatrixDij defined as the
difference between the squares of the spontaneous strain tensors in the domains. This condi-
tion is not justified unless it leads to results identical to those derived with the use ofDij defined
by Eq. (2.2.11).
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Here one can distinguish four different cases mainly controlled by the rela-
tions between the principal components of symmetric matrix Dij: D

(1), D(2), and
D(3). Since the volumes of the unit cell in the domains are the same, the trace of
Dij should be equal to zero, so that D(1) + D(2) + D(3) = 0.

(A) If none ofD(i) equals zero and therefore detDij 6¼ 0, then Eq. (2.2.10) has no
non-trivial solutions and the two domains cannot be separated by a stress-
free wall. These situations are referred to as R cases.

If detDij ¼ 0, permissible domain walls between the considered domain
states can exist. Condition detDij ¼ 0 can take place if either all principal
components are zero or if only one principal component is zero.

(B) If all principal components are zero, which means Dij=0 for any i, j, we are
dealing with a nonferroelastic domain pair so that any wall is permissible,
as expected. A wall that from the point of view of mechanical compatibility
conditions may acquire any orientation will be referred to as a W1 wall.
The index points to the arbitrariness of the orientation.

(C) If only one principal component of Dij is zero, say Dð1Þ ¼ 0, then
Dð2Þ ¼ �Dð3Þ and in the principal axis of the matrix Dij, Eq. (2.2.10) reads

ds22 ¼ ds23 (2:2:12)

defining two permissible walls which are mutually perpendicular. Here, if,
in addition, in the crystallographic reference frame matrix Dij is already
diagonal, then the wall has a crystallographically prominent orientation.
This case is referred to as a Wf wall, the subscript ‘‘f’’ indicating that the
orientation is fixed with respect to the symmetry elements of the lattice.

(D) If the conditions of the previous case are met except for the non-diagonal
form the matrix Dij in the crystallographic reference frame, the orientation
of the walls is controlled by a relation between the components of the
matrix. In this case, the permissible wall has a general orientation which in
fact can depend on temperature due to temperature development of spon-
taneous strain. Permissible walls of this kind have been denoted as S
walls.15 At the time of their prediction (Fousek and Janovec, 1969) it was
generally believed that any permissible wall must be crystallographically
prominent and the prefix S stood for strange.

The situation covered by cases (C) and (D) can also be identified without
diagonalizing matrix Dij. In this situation, detDij ¼ 0 coexist with the condition
I2 6¼ 0 where I2 is a scalar invariant of the matrix (Janovec, 1976):

I2 ¼
D11 D12

D12 D22

				
				þ D11 D13

D13 D33

				
				þ D22 D23

D23 D33

				
				: (2:2:13)

15 In the paper of Sapriel (1975) the S walls have been renamed to W0 walls. Here we shall
adhere to the original notation.

2.2 Coexisting Domain States 63



We thus may encounter three different kinds of permissible walls, namely

W1,Wf and S. In addition, it is possible that no permissible walls may exist. In

ferroelectrics, in view of Eq. (2.2.3) some of Wf - and S-type walls should be

charged; sometimes we shall add the superscripts C and N to distinguish

between charged and neutral walls.
Which of the cases A, B, C, or D applies to a particular domain pair can be

also found on the basis of symmetry arguments (Fousek and Janovec, 1969;

Janovec, 1976). For instance, if the twinning complex contains a center of

symmetry, walls are of the type W1; if it contains a mirror plane, this very

plane constitutes a Wf wall. Table 2.2.3 contains all symmetry criteria.
The information on domain wall orientation specified in Table D.1 will be

illustrated in Sects. 2.2.6 and 2.2.7 where we will give examples of how wall

orientations in particular materials are determined and we will compare the

predictions based on electrical and mechanical compatibilities with the avail-

able experimental data.
The approach presented in this section has been developed and mainly used

for the problem of orientation of a boundary separating two domains of a

ferroic phase. However, it is quite clear that Eq. (2.2.10) can also be applied to

the problem ofmechanical compatibility of a boundary separating two different

Table 2.2.3 Relation between twinning operations and permissible walls

If the twinning complex gjF contains Types of permissible walls are

Inversion �1 W1
Two non-perpendicular diadsa W1
More than two diadsa of different directions W1
Diad and rotation of higher order about the same
direction as the diad

W1

Just two perpendicular diads; here for
F ¼ 4; �4; 4=m; 3; �3 the twinning complex gjH
must be considered where H is the
holosymmetric point group of F

Wf, Wf both perpendicular to the diads
and thus also mutually perpendicular

Just one diad but no rotations about an axis
perpendicular to this diad; here for
F ¼ 4; �4; 4=m; 3; �3 the twinning complex gjH
must be considered where H is the
holosymmetric point group of F

Wf, S mutually perpendicular; Wf is
perpendicular to the diad

Only rotations of a order higher than 2, about the
same direction; at least two of them are not
related by �1

S, S mutually perpendicular

One operation of higher order than 2 or two such
operations related by �1

R case

Operations of higher order than 2 about different
axes

R case

a The term diad signifies here a twofold rotation axis or a twofold inversion axis, i.e., a mirror
plane with a normal parallel to the diad. The holosymmetric point group within a crystal
system is one of the highest order (with the largest number of symmetry operations). After
Janovec (1976).
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phases of a ferroic. It could be a boundary between the parent and distorted

phases in the vicinity of a ferroic first-order phase transition or it could be a

boundary between two ferroic phases. The latter situation is actually of prac-

tical importance when one is dealing with a system like Pb(Zr, Ti)O3 in the

vicinity of the tetragonal–rhombohedral morphotropic phase boundary (Jaffe

et al., 1971). However, if Eq. (2.2.10) should be applied to the problem of

mechanical compatibility of a heterophase boundary, an important reservation

should be made. When dealing with domain walls, both natural spontaneous

strain and Aizu strain can be used for calculation of the difference Dij since, as it

was stressed in Sect. 2.1.3,Dij is the same when expressed in terms of any of these

definitions. In contrast, in the case of a boundary between two different phases

of a ferroic, only the natural spontaneous strains16 can be used in the calcula-

tions whereas the Aizu strain would lead to erroneous results. The point is that,

in general (cf. Sect. 2.1.3), the difference Dij is not equal to the difference

between Aizu’s strain of the two phases.
When applying the criterion of mechanical compatibility one should realize

that how stringent it is depends on the domain pattern addressed. The point is

that the additional elastic energy associated with its violation is roughly pro-

portional to the typical domain volume in the pattern. Thus, for a single domain

wall in a macroscopic sample, the criterion should be absolutely fulfilled

because, in this case, the additional elastic energy can be considered as infinite.

At the same time, in a fine multidomain pattern, local violations of the mechan-

ical compatibility may take place when the possibly moderate (in this case)

additional elastic energy may be compensated by other factors.
Though the above consideration has addressed only the case of mechanical

matching of two domain states, it can be readily extended to the case of

matching of two systems of lamella domain patterns. In this case, the average

over the pattern of spontaneous strains should be used in Eq. (2.2.11) instead of

the true spontaneous strains. The situations with this ‘‘mechanical matching on

average’’ will be discussed later in the book.
Before proceeding to the next topic, we wish to add several remarks. First,

coming back to walls of theW1 type, it has to be stressed that in this section we

only considered mechanical compatibility. For this type of walls, the lattices of

the two neighboring domains adhere smoothly to each other along a wall of any

orientation. In contrast, the order parameter changes abruptly. The energy

associated with this change may be a function of the wall orientation. This

should influence the orientation of the W1 wall. We shall come back to this

aspect in Chap. 4.
The following remark concerns the S walls. As we pointed out, the orienta-

tion of S walls specified in the reference frame of the parent phase can be

temperature dependent. This rotation of S walls with temperature may involve

16 Or, obviously, any strain, which differs from it by a tensor identical for all phases of the
ferroic.
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a redistribution of volumes pertinent to the two domain states separated by the
S wall and was termed thermal switching (Fousek and Janovec, 1969; Fousek,
1971). We shall give a few examples of this effect in Sect. 2.2.7.

2.2.5 Ferroelastic Domains in Physical Contact

In the preceding paragraphs we investigated mutual relations and domain wall
orientations between two domain states but did not really take fully into
account possible disarrangement of lattices in both neighboring domain states.
For a ferroelastic domain pair, twinning operations are the operations that
exactly relate the crystal structures of different domain states only if sponta-
neous strain is neglected. However, once one makes allowance for the sponta-
neous strain, these operations need not be the symmetry operations relating
crystal structures of two domains which coexist in a sample and are separated
by a permissible wall.

As an example, let us consider species m�3m� P"ds� 4mm describing the
tetragonal phase of BaTiO3. A particular pair of domain states with polariza-
tion vectors [100] and ½0�10� can be separated by any of the two crystallographi-
cally prominent walls Wf; Table 2.2.4 specifies their orientations as (110) and
ð1�10Þ, in the coordinate system of the parent phase. As the spontaneous strains
Da/a0 and Dc/a0 (see Fig. 2.2.2) develop in the distorted phase with decreasing
temperature, the orientations (in the coordinate system of the parent phase) of
the composition planes ð1�10Þ carried by two domain states depart from each
other. If the c-axes were kept fixed in space parallel to the original cubic axes,
the ð1�10Þ planes in both domains will make an angle 2j where j =
458–arctan(a/c). To keep the domains in physical contact, each of them must
be rotated by an angle j toward the other one (Fig. 2.2.2). Since spontaneous
strains are small in magnitude, also the angle j is small. From simple geometry
we obtain

2j 
 Dc� Da
a0

: (2:2:14)

In this particular case, the twinning operation for the given pair of domain
states is a rotation by 908 about the [001] axis. However, when we are interested
in the mutual relation of tensor properties of two coexisting domains, the
rotation which brings into coincidence the principal axes of the tensors is
908–2j. The angle 2jwill be referred to as the ‘‘clapping angle’’; it can be looked
upon as the angle of mutual rotation of two physically existing single domain
samples required for keeping them in physical contact. Values for the clapping
angle depend on the ‘‘degree of ferroelasticity’’; for BaTiO3 at room tempera-
ture 2jffi 340 (Jona and Shirane, 1962), but for PbTiO3 the value is much larger,
2jffi 3.58 (Surowiak et al., 1993). In YBa2Cu3O7 the clapping angle is 30

0 (Salje
and Chrosch, 1996).
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Table 2.2.4 Clapping angles required to keep domains in physical contact

Domain pair Permissible walls Clapping angles

Species with cubic parent phase and tetragonal distorted phase 432–422, �43m� �42m,m3m–4/
mmm

S1 – S2 x = y, x = –y j3 = � 3b

S1 – S3 z = x, z = –x j2 = �3b
S2 – S3 y = z, y = –z j1 = �3b

Species with tetragonal parent phase and orthorhombic distorted phase 422–222, 4mm–mm2,
�42m� 222, �42m�mm2, 4/mmm–mmm

S1 – S2 x = 0, y = 0 j3 = � 2a

Species with tetragonal parent phase and monoclinic distorted phase 4–2, �4� 2, 4/m–2/m

S1 – S2 x = py, x = –y/p j = � (a2+b2)1/2

p = b + (a2+b2)1/2/a

Species with hexagonal parent phase and orthorhombic distorted phase 622–222, 6mm–mm2,
�6m2�mm2, 6/mmm–mmm

S3 – S2 x = 0, y = 0

S1 – S2 x ¼
ffiffiffi
3
p

y, y ¼ �
ffiffiffiffiffiffi
3x
p

j ¼ �
ffiffiffi
3
p

a

S1 – S3 x ¼ �
ffiffiffi
3
p

y, y ¼
ffiffiffiffiffiffi
3x
p

Species with trigonal parent phase and monoclinic distorted phase 32–3, 3m–m, �3m� 2=m

S2 – S3 y = 0, z = –(a/c)x

S1 – S3 y ¼
ffiffiffi
3
p

x, að
ffiffiffi
3
p

yþ xÞ � 2cz ¼ 0 j ¼ �
ffiffiffi
3
p
ða2 þ c2Þ1=2

S1 – S2 y ¼
ffiffiffi
3
p

x, að
ffiffiffi
3
p

yþ xÞ � 2cz ¼ 0

Species with orthorhombic phase and monoclinic distorted phase 222–2, mm2–2, mm2–m,
mmm–2/m

S1 – S2 x = 0, z = 0 j = � 2b

From Dudnik and Shuvalov (1989). Symbols a, b, c denote components of Aizu’s strains for
these species which are shown in Table 2.1.3.

Fig. 2.2.2 If the directions of the c-axis in the domains remain parallel to fourfold axes in the
parent phase then, in order to keep the domains in physical contact, each of them must be
rotated by an angle j (clapping angle) toward the other one. The clapping angle shown in this
figure is strongly exaggerated
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To discuss the problem of the clapping angle in the general case, Vagin and
Dudnik (1983) and Shuvalov et al. (1985b), who coined a term of ‘‘spontaneous
rotation’’ for this phenomenon, made use of a general theory of transformation
twinning. The clapping angle j was shown (in the approximation for small
angles) to be given by

2j ¼ �ðI2Þ1=2 (2:2:15)

where I2 is defined by Eq. (2.2.13). This approach can be used for domains
separated by both Wf walls and S walls. Because it is the difference tensor Dij

that is involved, both the natural and Aizu spontaneous strains can be used in
these calculations. Table 2.2.4 shows results for the permissible wall orienta-
tions and clapping angles for several ferroelastic species; here the variables a, b,
c are defined in Aizu strain matrices shown in Table 2.1.3. Obviously, these
results can be used for a number of partially ferroelastic species as well. For
instance, the rotation angle j = 3b for the species m3m–4/mmm agrees with
that calculated above by simple geometry for BaTiO3 which represents the
species m�3m� 4mm with the same spontaneous strains.

An approach where the clapping angles are neglected is called parent clamp-
ing approximation. Considering a real polydomain sample beyond this approx-
imation, one can come back to the question how many domain states can be
really observed in a sample? Consider the situation in a KH2PO4 crystal that
represents species �42m� P"ds�mm2. We see from Tables 2.1.3 and 2.2.4 that
there exist two domain states differing in spontaneous strain "S12 . Correspond-
ing domains can be separated by permissible walls of either (100) or (010)
orientation. The parent clamping approximation corresponds to the situation
close below the transition temperature when spontaneous strain is negligible.
The transition in this particular crystal is close to second order, but clearly
discontinuous. Thus there is no reason why domain systems with walls of both
permissible orientations should not be nucleated in different parts of the crystal.
As the value of "S12 grows with decreasing temperature, rotations of the two
permissible walls by �j have to take place. Thus, in the sample, four different
orientations of crystal lattices may develop, as shown schematically in
Fig. 2.2.3. Each domain state splits into two whose lattices make an angle 2j.
Dudnik and Shuvalov (1989) suggested that such domains in ferroelastics be
designated as suborientational domains. The effect can be easily observable
when j is not extremely small. It can be said, therefore, that due to mechanical
compatibility conditions the number q" (real) of ferroelastic domain states
observed in a real sample may exceed that given by Eq. (2.1.17) or (2.1.18),
whichever is applicable; in the given example q"(real) = 4 while q" = 2. The
increase of the number of observable domain states can be calculated in a
general way based on the concept of the stabilizer of domain pairs, as suggested
by Janovec et al. (1989). However, it is easy to see that simultaneous existence of
mutually perpendicular domain walls of the W or S type is by itself not
mechanically compatible: Inevitably, in a large enough sample they would
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intersect each other and in that region compatibility conditions would be
violated. Therefore, while in a real sample domain pattern with q" (real) > q"
may indeed develop, regions must simultaneously form in which the crystal
lattice is highly strained andwhose structure corresponds to none of the domain
states of the material (Afonikova et al., 1987). An overview of theories of such
additional strain fields has been given by Salje (1990).

2.2.6 Examples of Domain Wall Orientations:
Nonferroelastic Walls

How reliable are the predictions concerning the domain wall orientations or the
nonexistence of walls in particular materials? In order not to sojourn only in
abstract speculations we shall now give at least partial answers to this question.
First, let us consider crystals with nonferroelastic domain pairs where mechan-
ical compatibility plays no role and domains are to be separated by W1 walls.
Without attempting to introduce some rigid categorization we single out three
cases: W1 walls separating ferroelectric nonferroelastic domain pairs, W1 in
higher order ferroics, and W1 representing antiphase walls between transla-
tional domain states (cf. Sect. 2.1.7).

In ferroelectrics, only 1808 walls can be nonferroelastic. As already men-
tioned, the claim of electrical neutrality requires that these walls be parallel to
the ferroelectric axis. Indeed the observations indicate this tendency of 1808
walls, so that the domains themselves attain usually the form of slabs or
cylinders of various cross-sections with walls parallel to PS and such elongated
domains can be considered typical for 1808 walls in nonferroelastic ferroelectrics.
Figure 2.2.4 shows two opposite etched surfaces of a plate-like flux-grown

–

–

Fig. 2.2.3 Formation of
four suborientational
domains ðSþA;S�A;SþB ;S�B Þ
form two domain states (SA,
SB) with the spontaneous
shears of opposite sign. The
share strain shown in this
figure are strongly
exaggerated
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BaTiO3 crystal (Hooton and Merz, 1955). The perfect mirror image attests to

the cylindrical domain shape. Figure 4.7.7 shows such cylindrical domains in

large top-seeded solution-grown crystals of the same material.
However, often cylindrical-shaped domains do terminate inside the sample so

that some sections of domain walls violate the condition of electrical neutrality.

This may have some localized rationale (crystal defects) or it may just reflect the

situation reached by a growing domain (due to applied electric field, for example).

Information about such ‘‘internal’’ domains is not extremely rare but still rather

limited since tomake them visible requires either observations of surfaces parallel

to the polar axis, which are rarely performed, or much more sophisticated

methods allowing to see inside the sample. Internal domains were revealed in

crystals of BaTiO3 by X-ray topography (Akaba et al., 1979). Figure 2.2.5 shows

the etched surface of a TGS crystal parallel to the ferroelectric b-axis; the internal

domain is clearly visible. A similar observation was made for LiTaO3 (Kuroda

et al., 1996).
In a static case like this we expect that the bound charge rb = div PS is

compensated by free carriers. Let us estimate in a simplified way the order of

magnitude of free carrier density required for such a compensation. Consider-

ing a maximum value of PS in a ferroelectric to be 50 mC/cm2 (applicable to

LiTaO3), the maximum surface charge to be compensated is 100 mC/cm2. This

would require the surface density of electrons of the order of 6 � 1014 cm–2 or,

taking the unit cell parameter as 4 Å, 1 electron per unit cell area of a wall

Fig. 2.2.4 Etched opposite surfaces of a BaTiO3 plate perpendicular to the polar axis.
Reprinted with permission fromHooton andMerz (1955). Copyright (1955) by the American
Physical Society
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perpendicular to PS. Many ferroelectrics carry PS which is by one or two orders

of magnitude lower. Compensation may be easier to achieve in crystals of

semiconductive ferroelectrics like SbSI. Indeed in this material domain struc-

tures with head-to-head arrangements were frequently observed (Grekov et al.,

1976; Kliya and Lyakhovitskaya, 1970b).
Domain situations with charged domain walls must necessarily occur as

transient states during processes of polarization reversal. Figure 2.2.6 shows

growing 1808 domains in BaTiO3 single crystal (Kobayashi, 1967); this is an

optical micrograph and the origin of contrast in this case is not simple. The

Fig. 2.2.5 ‘‘Internal’’
domains revealed on the side
of a single crystal of TGS
parallel to the ferroelectric
axis by powder decoration.
Reprinted with permission
from Chynoweth (1960).
Copyright (1960) by the
American Physical Society

Fig. 2.2.6 1808 domains in
BaTiO3 crystal seen in
polarized light during their
growth. The polar axis is
parallel to the wedges. The
width of wedges at their base
is about 6 mm. Reprinted
with permission from
Kobayashi (1967)].
Copyright (1967), Wiley-
VCH Verlag GmbH & Co.
KGaA
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bound charge carried by the head-to-head (tail-to-tail) 1808 wall in this tran-
sient event is probably not compensated.

Because of the existence of free charge carriers the electrical neutrality need
not be a decisive factor in shaping domains. Compositional inhomogeneities
occurring involuntarily during the crystal growth process can lead to the for-
mation of domain walls violating the neutrality condition. This was first rea-
lized in case of LiNbO3, whether as-grown doped or undoped (Nassau et al.,
1965; Peuzin and Tasson, 1976). Systems of antiparallel domains with walls
prevailingly perpendicular to the polar direction have been observed in several
materials with growth layers connected with composition inhomogeneities. In
as-grown crystals of lead germanate the existence of domain systems with
charged walls was suspected on the basis of dielectric response (Cross and
Cline, 1976); indeed such arrangements were visualized by cleaving (Shur
et al., 1993a).

Later, in connection with producing periodic lamellar domain patterns in
crystals of LiNbO3 and LiTaO3 methods were mastered to create 1808 walls
with head-to-head coupling. As an example we may mention the use of yttrium
periodic doping for this purpose (Chen et al., 1989). It is understood that,
during the crystal growth, the bound charge is automatically compensated by
the charge associated with the modulation of concentration.

Luh et al. (1986) brought attention to yet another possible mechanism of
creating charged walls. They produced crystalline fibers of LiNbO3 in which the
polar c-axis is perpendicular to the fiber. During the growth process a tempera-
ture gradient is present. It is argued that the temperature gradient leads to an
appreciable electric field in the material due to the thermoelectric effect. This
field is spatially oriented so that it can explain the head-to-head antiparallel
domains in the fiber, which are separated by a domain wall parallel to the fiber
axis. Again, compensation of rb by free carriers is assumed to take place.

The condition of electrical neutrality does not limit the orientation of W1
walls as long as they remain parallel to the ferroelectric axis. Inmany cases, 1808
domains with walls fulfilling this condition show a tendency to form particular
characteristic shapes. Most of such observations apply to quasistatic condi-
tions. Figure 2.2.7 shows domains of lenticular cross-sections which are typical
for crystals of TGS. Figure 2.2.8 gives cross-section of domains in Pb5Ge3O11

(Dougherty et al., 1972). These shapes cannot be explained on the level of the
present discussion. However, it is usually observed that contours of these cross-
sections do reflect the crystal symmetry in the ferroelectric phase. This points to
the fact that the wall orientations forming such shapes are connected with the
crystal structure rather than with macroscopic aspects of the sample. It can be
expected that nonferroelastic walls with different orientations will have differ-
ent internal structures. If so, the surface wall energy will depend on the wall
orientation. This issue will be discussed later in Chap. 6.

It was further observed that nonferroelastic 1808 domains can acquire dis-
tinctive shapes during the process of growth or shrinking under the influence of
an electric field. We will discuss this effect later in Chap. 8.
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Let us now turn to nonferroelectric ferroics. Table B.1 shows that there are a
number of species which are nonferroelectric and nonferroelastic, so that W1
walls would be expected to exist. The best known representant for which
abundant data are available are crystals of quartz which conform with species
622–ds–32. They may exist in two domain states which are known as electrical
twins and also referred to as Dauphiné twins. Since the ferroic phase is neither
ferroelectric nor ferroelastic the criteria given by Eqs. (2.2.4) and (2.2.10) pose
no restrictions on wall orientations. Etching surfaces of quartz plates revealed
(Willard, 1947) that in fact domain walls show large planar sections with well-
defined indices. This is also true (Aizu, 1973b) when domain state reorientation
is brought about by applied elastic stress; on the other hand, however,
highly localized stress produced domains of very irregular shapes (Indenbom,

Fig. 2.2.7 Cleavage surface
perpendicular to the polar b-
axis of TGS reveals 1808
domains with lenticular
shapes typical for this
material, which may be seen
in reflected light using a
differential interference
microscope. Reprinted with
permission from Nakatani
(1989a,b). Copyright (1989),
Taylor & Francis

Fig. 2.2.8 1808 domains in a plate of Pb5Ge3O11 perpendicular to the polar c-axis viewed in
polarized light: (a) and (b) analyzer rotated by 2.58 from the crossed Nichol position antic-
lockwise and clockwise, (c) Nichols prism precisely crossed (Dougherty et al., 1972)
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1979). While we may suspect again that the wall energy anisotropy plays a role,
it is also possible that spatial inhomogeneity of applied stresses may be the
decisive factor for determining the shape of a new ferrobielastic domain and
thus also for the orientation of walls.

Crystals of NH4Cl represent higher order ferroic species m�3m� d� �43m.
Pique et al. (1977) found that here the W1 domain walls have the orientation
(111). Again the interpretation was based on the wall energy anisotropy. As an
alternative possibility it was suggested that wall orientation can be somehow
connected with the phase boundary existing for the first-order phase transitions.

Finally we turn to the antiphase domain walls. These occur solely in materi-
als with multiplication of the unit cell volume (n 6¼ 1) and separate domains
which do not differ in any macroscopic property; for n=2 they represent just a
mutual shift of the distorted structures by one unit cell parameter of the parent
structure. Therefore as in the preceding case, requirements (2.2.4) and (2.2.10)
are ineffective. Observations made with crystals of Gd2(MoO4)3 (abbr. GMO)
(Barkley and Jeitschko, 1973) revealed that antiphase walls form irregular
shapes. However, close to the intersections with Wf walls, antiphase walls
show a tendency for preferential orientation. This has been interpreted by
wall ‘‘reactions’’ (Janovec, 1976).

2.2.7 Examples of Domain Wall Orientations: Ferroelastic Walls

Now we shall discuss some real data on the orientations of domain walls of the
type Wf and S, separating ferroelastic domain pairs. In most cases, their
orientation was determined by polarized light microscopy.

The predictions for the orientations of Wf walls satisfying requirement
(2.2.10) are unambiguous and accurate. It appears that in all known cases the
predicted orientations of Wf walls agree with observations. This is true in
particular when in the sample a system of only one of the two permissible
walls in the conceived pair WfWf, WfS, or SS is realized. Then a laminar
ferroelastic domain system occurs. An example is shown in Fig. 2.2.9a; this is
a micrograph of a system of domains separated by Wf walls in a ferroelastic
sample of NdP5O14 (Huang et al., 1995). Systems of parallel walls with less
regularity have been observed in many ferroelastic crystals of good quality,
such as KH2PO4 or Gd2(MoO4)3.

Such an ideal situation, however, does not occur very often. We shall men-
tion two factors which often complicate the real wall orientations. First, the
mechanical compatibility criterion as discussed above applies to an infinite
crystal. There its nonfulfillment is impossible since it would result in an infinite
elastic energy. In a finite and often defective sample, on the other hand, it can be
expected that the actualWfwalls may be slightly misoriented from the predicted
planes; the smaller the sample volume, the larger the possible tilt. Very oftenWf

walls form wedge-shaped domains or rather narrow domains confined by two
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parallel properly oriented Wf walls which meet inside a crystalline sample to

form a narrowing tip. Figure 2.2.9b shows a system of such wedges, again in

neodymium pentaphosphate. The wedged domain pattern can also be induced

artificially, e.g., by applying non-uniform stress. In Gd2(MoO4)3 wedges have

been formed by bending a sample (Fousek et al., 1976) and in NdP5O14 by

repeated application of shear stress (Meeks and Auld, 1985). In ferroelectric

ferroelastics the application of properly oriented electric field also produces

wedge-shaped 908 domains. In common samples of ferroelectric perovskites

wedge-shaped domains occur very frequently.
The application of strong electric field can also lead to local deviation on

ferroelectric walls from the permissible orientation. This behavior has been

documented by Fousek and Brezina (1960) in small crystals of tetragonal

BaTiO3, where such deviation up to 220 has been observed. This effect has

been explained by high non-uniformity of pressure acting on the wall due to

dielectric anisotropy.
Let us now move on to S walls. The prediction of their existence in ferro-

electrics (Fousek and Janovec, 1969) was believed to be confirmed by earlier

observations of walls in some of the boracite crystals, in Mg3B7O13Cl in parti-

cular (Schmid, 1967). Similarly, the prediction of such walls in nonferroelectric

ferroelastics (Fousek and Janovec, 1970) was substantiated by earlier research of

NaNbO3 (Wood et al., 1962). The first targeted experimental study of Swalls in a

ferroelectric ferroelastic was performed for KNbO3 crystals (Wiesendanger,

1973). Since that time they have been observed in a number of materials. Several

observations identified S walls of relatively large areas, with just two domain

states present. This includes the study of twinning in the mineral Na-feldspar

(species 2=m� "s� �1) (Salje, 1990) in which theWf and Swalls offer two types of

transformation twins, albite and pericline. In other experiments S walls were

parts of complicated domain patterns involvingWf walls as well. The latter case is

represented in Fig. 2.2.10 which shows S walls in the orthorhombic phase of

KNbO3 (Wiesendanger, 1973), speciesm�3m� P"ds�m�xymz2xy. It is interesting

Fig. 2.2.9 (a) Ferroelastic plate-like domains, (001) oriented, in a b-plate of neodymium
pentaphosphate seen in polarizing microscope (Huang et al., 1995). The period is about
20 mm. (b) Systems of wedge-shaped domains in the same material, with periods ranging
from 6 to 20 mm. Reprinted with permission fromMeeks and Auld (1985). Copyright (1985),
American Institute of Physics
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to observe that here a system of S walls comfortably intersects a system of 908Wf

walls, although at their crossings elastically stressed regions must form.
We shall represent the procedure of determining orientations of Swalls at the

ferroelastic phase transition in CsHSeO4, following the paper of Yokota (1982).

This example illustrates how determining wall orientation may help resolve

symmetry of the crystal. Crystals of CsHSeO4 at room temperature are mono-

clinic with the space group P21/c and the unit cell parameters am = 7.972 Å,

bm = 8.427 Å, cm = 7.811 Å, and b = 101.58. Above 1288C it becomes

tetragonal with unit cell parameters at = bt = 4.18 Å and ct = 7.20 Å. Below

TTR CsHSeO4 has a structure with the cell dimensions doubled along the a- and

b-axes. Thus we have n = 4, the transition is improper ferroelastic. For experi-

mental reasons it was difficult to determine the symmetry of the parent phase and

data were consistent with either of point groups 4/mmm and 4/m. Let us inves-

tigate the species 4/mmm–"s–2x/mx. There are four ferroelastic domain states

S1–S4 characterized by symmetric spontaneous strain tensors

"SðS1Þ ¼
d"xx 0 "xz

d"yy 0

d"zz

0
B@

1
CA; "SðS2Þ ¼

d"yy 0 0

d"xx �"xz
d"zz

0
B@

1
CA;

"SðS3Þ ¼
d"xx 0 �"xz

d"yy 0

d"zz

0
B@

1
CA; "SðS4Þ ¼

d"yy 0 0

d"xx "xz

d"zz

0
B@

1
CA:

(2:2:16)

Using definition (2.1.9) and denoting

a ¼ ð"22 � "11Þ=2; b ¼ "13 (2:2:17)

Fig. 2.2.10 Ferroelastic domains in the orthorhombic phase of KNbO3 as seen in a (001) plate
(Wiesendanger, 1973): (a) etch pattern, (b) scheme of the corresponding domain pattern. The
arrows represent PS vectors. Two differently shaped vertical arrows indicate PS pointing
downward and upward with respect to the plane of the drawing, respectively. The orientations
of the walls are specified with Miller indices
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we come to Aizu’s strains

"Aizu
S ðS1Þ ¼

�a 0 b

a 0

0

0
B@

1
CA; "Aizu

S ðS2Þ ¼
a 0 0

�a �b
0

0
B@

1
CA;

"Aizu
S ðS3Þ ¼

�a 0 �b
a 0

0

0
B@

1
CA; "Aizu

S ðS4Þ ¼
a 0 0

�a b

0

0
B@

1
CA:

(2:2:18)

The parameters a, b are related to the monoclinic cell parameters by

a ¼ ð"22 � "11Þ=2 ffi ðbm � amÞ=2bm;

b ¼ 1

2
tan�1

ðam � 2cm cos bÞ
2cm sin b

;
(2:2:19)

which give

a ¼ 2:40� 10�2; b ¼ 7:94� 10�2: (2:2:20)

Using Eq. (2.2.10), Yokota obtained permissible wall orientations (the parent
phase reference frame) listed in Table 2.2.5. Since optical study of wall orienta-
tions have been performed at room temperature and related to the monoclinic
axes, it is useful to rewrite them into the coordinate system of the ferroic phase,
taking into account the relation between the unit cells in both phases (Yokota,
1982; Komukae et al., 1990). The crystallographically nonequivalent permissible
walls have then the following indices:Wf walls ð22�1Þ, ð20�1Þ, ð 221Þ, and (001); S
walls ð11�nÞ and ð�11nÞ. Here n = 1/2 + (cm/bm)(b/a) sin b. Inserting unit cell
parameters at room temperature it is found that n=3.04. Optical observations of
crystals confirmed the existence of four domain states which can be optically
distinguished. In untreated crystalline samples walls were detected with indices
(113) and ð�113Þ, which obviously correspond to the calculated Swalls. By applied
compressive stress new domains with boundaries ð22�1Þ, ð�221Þ, and ð20�1Þ could be
easily introduced. Thus only walls (001) were not observed.

Table 2.2.5 Permissible wall in species 4/mmm–"s–2x/mx

Domain pair Permissible walls

S1, S2 x = –y a(x – y) – bz = 0

S2, S3 x = y a(x + y) + bz = 0

S3, S3 x = –y a(x – y) + bz = 0

S4, S1 x = y a(x + y) – bz = 0

S1, S3 x = 0 z = 0

S2, S4 y = 0 z = 0
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Analogous analysis was also performed assuming that the parent phase is of
symmetry 4/m. This leads to the prediction of only two walls which are different
from any walls observed. Thus domain observations together with the analysis of
their permissible orientations may help determine the correct species of the crystal.
The conclusion of this analysis has been confirmed by later observations by Bala-
gurov et al. (1986), which pointed to the space group I41/amd for the parent phase.

PbZrO3 is a perovskite-type material with orthorhombic symmetry mmm at
room temperature and with a cubic phase above 2178C. The two phases are
separated by a trigonal phase extending over a narrow temperature range only.
At room temperature it represents the species m�3m� "s�mxym�xymz. Another
perovskite-type crystal is NaNbO3; it is cubic above 6408C and has the orthor-
hombic symmetry mmm at room temperature; this phase can be treated as
representing the same species as in PbZrO3 although here the phases G, F are
separated by other two, also nonpolar phases (Cross and Nicholson, 1955).
Analysis of spontaneous strain in NaNbO3 led to the prediction of S walls with
indices {1a1} where a may be temperature dependent (Fousek and Janovec,
1970). Full examination (Dec, 1988; Miga et al., 1996) is based on the Aizu
strain tensor for the two domain states making the wall:

"Aizu
S ðS1Þ ¼

c d 0

c 0

�2c

0
B@

1
CA; "Aizu

S ðS2Þ ¼
�2c 0 0

c d

c

0
B@

1
CA: (2:2:21)

Here b, d can be evaluated from the parameters a, b, b of the monoclinic
pseudoperovskite cell:

c ¼ 1

3a0
ða� bÞ; d ¼ tan

b� 90�

2
(2:2:22)

where a0 ¼ ½a2b cosðb� 90�Þ�1=3. From Eq. (2.2.10) we find that in addition to
Wf walls also S walls are permissible described by the relation

3cðxþ zÞ þ 2dy ¼ 0: (2:2:23)

From here we obtain data specifying the wall orientation. Dec (1988) and
Miga et al. (1996) identified Swalls in both PbZrO3 andNaNbO3. Figure 2.2.11a
shows a photograph in which an inclined S wall projects onto the (001) crystal
surface. The orientation of this wall is explained in Fig. 2.2.11b. For the angle a,
Eqs. (2.2.22) and (2.2.23) yield

tan a ¼ 3c=2d (2:2:24)

which can also be rewritten as

a ¼ arctan
a� b

2½a2b cos g�1=3 tanðg=2Þ
; g ¼ b� 90: (2:2:25)
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At room temperature, the two crystals are characterized by the following

data given in Table 2.2.6. The agreement is more than satisfactory.
Now, all lattice parameters depend on temperature and so should the orien-

tation of the Swall. The first observation of this effect in NaNbO3 was reported

by Zhelnova and Fesenko (1985). In Fig. 2.2.11c we reproduce the temperature

Fig. 2.2.11 An S wall in the orthorhombic phase mmm of NaNbO3 at room temperature:
photograph of the projection onto (001) plane (a) and schematic explaining its position in the
sample. (b) In the photograph, the scale of one division is 1.9 mm. (c) Temperature dependence
of the wall orientation: the results of direct observations and calculations using Eq. (2.2.25)
(Miga et al., 1996)

Table 2.2.6 Calculated and measured orientations of S walls in PbZrO3 and NaNbO3

c d a (calcul.) a (measured)

NaNbO3 0.002989 0.00625 358200 338260–388250

PbZrO3 0.003982 0.0008 828400 798550–848440
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dependence of the angle a as calculated from Eq. (2.2.25) by Dec (1988) and

Miga et al. (1996), together with their experimental data. Thus the effect of

thermal switching in ferroelastics envisaged by Fousek and Janovec (1969) is

real and in multidomain samples it can couple to several other phenomena.

Thermal hysteresis and jumpwise behavior seen in the inset of the figure give

evidence that local structure rearrangement accompanying the rotation of the

domain wall may require overcoming large energy barriers.
Crystals of NaNbO3 offer another example of interesting behavior con-

nected with S walls. While the room temperature phase is nonpolar, it was

found (Wood et al., 1962) that a properly oriented electric field transforms the

crystal into a state which can be treated as a ferroelectric with the symmetry

mm2; this would correspond to the species m�3m� P"ds�mxym�xy2z. This indi-

cates that free energies of the original mmm and field-induced mm2 phases are

close to each other and it is one of the reasons why NaNbO3 (and PbZrO3 as

well) is referred to as an antiferroelectric. Now let us consider a domain

arrangement as shown in part (a) of Fig. 2.2.12 (Fousek and Janovec, 1970);

the lines indicate the orientation of c-axis in the domains. Compatibility analy-

sis shows that in the phase mmm the planes (110) and ð1�10Þ represent permis-

sible walls. When the transformation into the polar phasemm2 is accomplished,

the spontaneous polarization along the c-axis develops as shown by the arrows

in Fig. 2.2.12b. The analysis shows that, in the ferroelectric phase, the previous

domain walls are still permissible. However, the 608 Wf wall (110) does not

satisfy the neutrality condition (2.2.4). The same domain states can now be

separated by electrically neutral S walls (1a1) and ð1�a1Þ which would then form

an arrangement shown in Fig. 2.2.12c. The arrangement of such zigzag walls

was indeed observed byWood et al. (1962). It can be concluded that S walls can

result from a field-induced transition into a ferroelectric phase.

Fig. 2.2.12 Rearrangement of domain patterns (a) in antiferroelectric NaNbO3 when a ferro-
electric phase is induced by applied field (this process corresponds to an mmm to mm2
transformation). Formation of electrically neutral Swalls in (c) avoids the presence of charged
Wf walls shown in (b) (Fousek and Janovec, 1970). The orientations of the walls are specified
with Miller indices
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2.3 Thermodynamic Approach

In the previous sections, we introduced in terms of the symmetry approach the
basic notions related to ferroic domains. This approach gives a very good over-
view of the problem and often provides the answers to various questions, actually
without any calculations. On the other hand, when one is interested in quantita-
tive manifestations of the domain structures of a ferroic, one finds that the pure
symmetry arguments do not suffice. For instance, to find the orientation of an S
wall, it is essential to know the temperature dependence of spontaneous strain
which cannot be specified from purely symmetry considerations. Another exam-
ple is domain patterns in ferroelectric thin films: In many cases even the type of
the domain pattern is conditioned by the values of material parameters and here
again we needmore than just information on the symmetry of the system. Thus it
is appropriate to combine the symmetry and thermodynamic arguments. In this
approach, often referred to as the thermodynamic approach, all results of the
purely symmetry consideration (though often at the expense of rather compli-
cated calculations) are reproduced. But in addition, it enables a description of
quantitative issues of the problem such as the temperature dependence of para-
meters of domain states, the structure of domain walls. In this book, we discuss
neither conceptual aspect of this approach nor its technical aspect, referring the
reader to an exhaustive coverage of this area in the books by Strukov and
Levanyuk (1998) and by Toledano and Toledano (1988). In the following sec-
tions we will highlight the key points of the approach and illustrate them by using
examples of some favorite ferroics. First, the basic idea of the Landau approach
will be explained in terms of single-component order parameter. Then examples
of Landau theory treatment will be presented for some cases which will be
essentially addressed in the book, specifically uniaxial proper nonferroelastic–-
ferroelectric, uniaxial proper ferroelastic–ferroelectric, multiaxial proper ferroe-
lectric–improper ferroelastic, and the uniaxial improper ferroelectric–improper
ferroelastic.

2.3.1 Single-Component Order Parameter

In this section we outline the thermodynamic description of a phase transition
in its simplest possible form. Consider a proper ferroelectric phase transition
where the order parameter is a single component of dielectric polarization; in
other words, we will be dealing with a uniaxial proper ferroelectric. On the basis
of Landau theory of phase transitions, this transition can be described by using
an expansion of a thermodynamic potential with respect to the order para-
meter; in our case, with respect to the mentioned component of polarization,
which we specify as Py. This expansion should be written taking into account
the symmetry of the order parameter and the resulting potential should be
invariant with respect to the symmetry of the parent phase. One can use
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different thermodynamic potentials for this purpose. In many situations the
choice is a matter of convenience. However, for a certain class of problems,
which we will address later, the proper choice is mandated. Here we use a
thermodynamic potential F, called the Gibbs energy, which is a function of
polarization Pi and stress tensor sij as independent variables. Its differential
reads

dF ¼ EidPi � "ijdsij; (2:3:1)

where Ei stands for the electric field and "ij for the strain tensor. (We recall that
the differential of a potential, by definition, is a function of the differentials of
its independent variables.) This expression implies the following equations,
referred to as equations of state:

@F
@Pi

� �
s
¼ Ei (2:3:2)

@F
@sij

� �
P

¼ �"ij: (2:3:3)

The expansion of F with respect to the order parameter Py, in general, reads

F ¼ Fo þ
1

2
aP2

y þ
1

4
bP4

y þ
1

6
gP6

y þ � � � ; (2:3:4)

where F0 is the Py-independent part of the potential. The expansion contains
only even powers of the order parameter. This corresponds to the fact that, in
the parent phase, the y-direction is nonpolar. The key point of the Landau
approach is that if one assumes that the parameter a is small and changes its sign
as a function of external parameters (e.g., temperature T and pressure), the
equation of state related to the order parameter, Eq. (2.3.2), describes the
appearance of the order parameter at the transition as well as its evolution as
a function of external parameters. Let us follow this logic for a temperature-
driven transition, i.e., we set

a ¼ a0ðT� T0Þ; a040: (2:3:5)

For the description of the second-order phase transition not close to a
tricritical point, which we are interested in at this moment, one sets b > 0 and
keeps only the first two terms in this equation, putting g = 0. Thus we have

F ¼ F0 þ
1

2
aP2

y þ
1

4
bP4

y (2:3:4a)

and via Eq. (2.3.2) we arrive at the equation of state for the order parameter,
namely,

Ey ¼ aPy þ bP3
y (2:3:6)
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The solution to this equation describes the appearance of spontaneous
polarization at Ey = 0 and T < T0. Indeed, it yields

Py ¼ 0 at T4T0; (2:3:7)

implying that the parent phase is nonpolar. For T < T0, the two solutions
fulfilling the stability condition are

Py ¼ �Ps ¼ �ða0ðT0 � TÞ=bÞ1=2: (2:3:8)

One easily checks that at T < T0 the solution Py = 0 corresponds to the
maximum of the Gibbs energy (see Fig. 2.3.1) and is unstable. Thus, in the
distorted phase the order parameter may attain two values and these corre-
spond to two domain states already introduced in Sect. 2.1. For both domain
states the Gibbs energy in the ferroic phase is the same, namely,

FF ¼ F0 �
a20
4b
ðT0 � TÞ2 (2:3:9)

so that they are degenerate in energy. Both of them correspond to the ground
state of the system and the transition into either of them occurs with the same
probability. From Eqs. (2.3.5), (2.3.6), (2.3.7), and (2.3.8) we further obtain for
the dielectric susceptibility w = @Py/@Ey

w ¼ 1

a0ðT� T0Þ
� "0C

T� T0
for T4T0; (2:3:10)

w ¼ "0C=2

T0 � T
for T5T0: (2:3:11)

–

–

Fig. 2.3.1 Ferroelectric second-order phase transition. Schematics for the characteristic
temperature dependences: (a) thermodynamic potential and (b) spontaneous value of the
order parameter PS and susceptibility w
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Figure 2.3.1 demonstrates schematically how the Gibbs energy function
F(Py) depends on temperature as well as the resulting dependences of P2

S and
w. Equation (2.3.10) is the well-known Curie–Weiss law in which C denotes the
Curie–Weiss constant.17

The important feature of the considered problem is that, in the presence of
electrical field coupled to the order parameter, the two domain states become
energetically nonequivalent. Though it is obvious from the symmetry point of
view, the thermodynamic approachmakes it possible to calculate the energies of
these states. At this point one should specify the thermodynamic potential used
for calculations. Up to now the choice of the potential was only a matter of
convenience since we have been using only the equation of state, which is
independent of the thermodynamic potential used. On the basis of general
thermodynamics, relations between the coefficients of different thermodynamic
potentials are determined by the condition that the potentials lead to identical
equations of state for given variables. However, when addressing the question
which of the states (or phases) is energetically more favorable at given fixed
macroscopic variables, one must use the thermodynamic potential in which
these variables play the role of independent variables. Thus, to compare the
‘‘energy’’ of two domain states in a mechanically free sample (sij = 0) at a fixed
magnitude of electric field we should use a potential based on stress and field as
independent variables. The potential ~F ¼ F� PiEi possesses this property.
Indeed, one readily finds its differential as

d~F ¼ �Pi dEi � "ij dsij : (2:3:12)

Now the energies of the two domain states when a fixed fieldEy is applied can
be found from the expression

~F ¼ F0 þ
1

2
aP2

y þ
1

4
bP4

y � PyEy (2:3:13)

where the two stable solutions to Eq. (2.3.6), P+ and P– (corresponding to the
two domain states with the polarization parallel and antiparallel to the field,
respectively), should be used for the values of Py. If the applied field is small
enough so that |P+| – Ps<< Ps and Ps – |P–|<< Ps, the energies of these states
can be presented as

~Fþ ¼ FF � PsEy and ~F� ¼ FF þ PsEy (2:3:14)

respectively, whereFF comes from Eq. (2.3.9). For higher values of the field one
would arrive at more cumbersome expressions.

17 Note that the phenomenologically introduced quantity Ps exactly corresponds to sponta-
neous polarization introduced via the pyroelectric coefficient in Sect. 2.1.2 since, first, the
temperature derivative of Ps defined according to Eq. (2.3.8) equals the newly acquired
component of the pyroelectric coefficient (by definition), second, the value of the spontaneous
polarization is opposite for two of the domain states.
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We see that one of the domain states is more energetically favorable than the

other. Thus, it is favorable when the volume of the former increases at the

expense of that of the latter. That means that, in a poly-domain sample, a

volume originally occupied by the unfavorable domain state can be, in princi-

ple, switched to that favorable. (‘‘In principle’’ means that in reality this is

possible if the domain wall mobility is high enough.) However, if the magnitude

of the field exceeds a critical value Ecrit, called thermodynamic coercive field, the

switching is inevitable. The physical meaning of this situation is that, at |Ey| >
Ecrit, the energetically unfavorable domain state loses its stability. The magni-

tude of Ecrit can be determined from the condition of infinite permittivity w (or

1/w(Ey) = 0, i.e., dEy/dPy = 0). Applying this condition to Eq. (2.3.6) one

readily obtains

Ecrit ¼
2

3
ffiffiffi
3
p a30

b

� �1=2

ðT0 � TÞ3=2 ¼ 1

3
ffiffiffi
3
p PS

w
ffi 0:2

PS

w
(2:3:15)

where w comes from Eq. (2.3.11). The meaning of the thermodynamic coercive

field is also specified in Fig. 2.3.2, in terms of the P(E) curve.
At this point an important feature of the considered system should be

stressed: In the ferroelectric phase, there exists a certain interval of values of

the field, in which the system exhibits two stable solutions. In principle this

interval can be as large as from –Ecrit to+Ecrit. Thus, as any bistable system the

ferroelectric should exhibit hysteresis phenomena. In the case of the discussed

P(E) curve one speaks about ferroelectric polarization-field hysteresis loop. The

stable parts of the P(E) curve (with @P=@E40) linked by the dashed lines as

shown in Fig. 2.3.2 make an example of such a loop.
All the above considerations of this section have been dealing with the case of

a second-order (continuous) phase transition. However, in most ferroics the

Fig. 2.3.2 Dependence of polarization on electric field at three different temperatures in a
ferroelectric with the second-order transition. The stable parts of the curve (with positive
slope) for T < TC together with vertical dashed lines represent a ferroelectric hysteresis loop.
Its central part (with negative slope) corresponds to unstable states.Dashed vertical lines show
transitions from metastable to stable states, ‘‘polarization reversal’’ occurring at critical fields
equal to �Ecrit
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phase transition is discontinuous, i.e., the spontaneous value of the order
parameter, in contrast to Eq. (2.3.8), does not grow from zero but acquires a
finite value at the transition temperature. Such transitions can be well described
in terms of the Gibbs function given by Eq. (2.3.4) where b< 0 and g> 0. In this
case the equation of state yields the solutions

Py ¼ 0; (2:3:16)

Py ¼ �PS with PS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ag

q
� b

2g

vuut
: (2:3:17)

Solution (2.3.16) is stable above the temperature T0 but it is energetically
favorable only at temperatures higher than TC defined as

TC ¼ T0 þ
3b2

16a0g
: (2:3:18)

The nonzero solutions (2.3.17) are energetically favorable below TC and
stable up to T 	0 defined as

T 	0 ¼ T0 þ
b2

4a0g
: (2:3:19)

Thus, in the temperature interval between T0 and T	0 the parent phase with
Py = 0 and the ferroic phase with Py 6¼ 0 can coexist, one of them being
metastable. The genuine transition temperatureTTR, therefore, may lie anywhere
between T0 and T 	0 , depending on the experimental conditions. The ideal transi-
tion point is TC, at which the energies of solutions (2.3.16) and (2.3.17) are equal.
Of importance is that at whatever temperature between T0 and T 	0 the transition
takes place, the polarization undergoes a discontinuous change between the two
solutions (2.3.16) and (2.3.17). Figure 2.3.3 shows schematically temperature
dependences of the Gibbs energy, polarization, and susceptibilities.

Fig. 2.3.3 Ferroelectric first-order phase transition. Schematics for the characteristic tem-
perature dependences: (a) thermodynamic potential, (b) spontaneous value of the order
parameter PS, and (c) susceptibility w
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The dielectric anomaly above the first-order phase transition still obeys
Eq. (2.3.10), whereas in the single domain ferroelectric phase, the temperature
dependence of the dielectric susceptibility can be readily found in the form

w ¼ 1

2P2
Sðbþ 2gP2

SÞ
: (2:3:20)

where P2
S comes from Eq. (2.3.17). Concerning this formula, two issues are

worth mentioning. First, it is also applicable to the case of a second-order
ferroelectric phase transition. Second, it is strictly valid only for the case of
isothermal and free mechanical conditions. Typical experimental ac measure-
ments of the dielectric susceptibility correspond to the adiabatic thermal con-
ditions whereas the mechanical conditions depend on the measuring frequency
and the dimensions of the sample. Thus, the measured susceptibility of a single-
domain sample may differ from the value given by Eq. (2.3.20); depending on
the parameters of the material the difference may be appreciable. This problem
has been treated based on the general results of the equilibrium thermodynamic
(see, e.g., book by Smolenskii et al. (1984)).

In the case of a first-order phase transition, similarly as for a second-order
transition, the application of electric field which is linearly coupled to the order
parameter (polarization) results in lifting the degeneracy in energy between the
two domain states. The logic of calculation of their energies is straightforward.
Of importance is that in the limit of small applied fields the difference between
the energies of the two domain states obeys the same expression in terms of the
spontaneous polarization independently of the type of the transition, namely,

~F� � ~Fþ ¼ 2PsEy: (2:3:21)

Similar to the case of a second-order phase transition, the hysteretic P(E)
dependence is expected, however, enriched with new features. Now, in a certain
temperature range close to T0, the system has three stable states generically
related to the states with Py = 0, Py =+Ps, and Py = –Ps at Ey = 0. Thus, in
this range, amore complicatedP-–E hysteresis behavior involving three states is
expected. Figure 2.3.4 illustrates this behavior in the temperature interval up to
T0* and in the interval T 	05T5T 		0

T 		0 ¼ T0 þ
9b2

20a0g
(2:3:22)

where the ferroelectric state can be induced by a large enough dc electric field.
From Figure 2.3.4 one concludes that, in case of a first-order phase transition
not only a simple P(E) hysteresis loop in the ferroelectric phase is expected but
also a double hysteresis loop in the parent phase just above the transition
temperature.

Possibility of phase coexistence in the temperature range between T0 and T 	0
is the most essential difference between continuous and discontinuous
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transitions. First, in ferroics with first-order phase transition, this will result in a
temperature hysteresis of all properties of the material. Second, of importance
from the point of view of domain structures is that on cooling down through a
first-order phase transition on the way to a poly-domain state one can pass
through an intermediate heterophase state: In the sample, both the parent and
distorted phases can coexist. This intermediate state can strongly influence the
resulting domain structure of the material.

At this point we stop our discussion of the general (and most simple) scheme
of the thermodynamic description of ferroics. What we are missing at this
moment (to have a proper overview of the problem) is, first, examples of
extension of this scheme to cases of more complicated order parameters and,
second, a discussion of the thermodynamic description of tensor properties, in
which at least some of the domain states differ but which are not identical to the
order parameter itself. In the following sections we will discuss these issues
using examples of various ferroics.

2.3.2 Uniaxial Proper Ferroelectric (Nonferroelastic)

Consider the phase transition in crystals of triglycine sulfate
(NH2CH2COOH)3H2SO4 (abbr. TGS). This transition is relatively simple and
can provide an illustrative example of many aspects of domain behavior. In this
book we refer to many experiments and theories concerning domains in TGS. It
represents the species 2/m–Pd–2 with n = 1 and the transition is continuous.
X-ray diffraction and neutron scattering studies revealed structural details of
the phase transformation (see, e.g., Xu, 1991). There are two formula units in
the unit cell. Out of three glycine groups in the molecule, the glycine group II is
of a non-planar type. Its nitrogen atom moves in a double potential well along

Fig. 2.3.4 Dependence of polarization on electric field at four different temperatures for a
ferroelectric first-order phase transition: (a) T < T0, (b) T05T5T	0, (c) T

	
0
5T5T		0 , and

(d) T		0 5T
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the b-axis, with a random distribution above TC = 49.58C and acquiring some
degree of ordering below it. Thus the transition is of disorder–order nature and
the average displacement of this atom represents the order parameter Z. The
value of Z is found proportional to the spontaneous polarization of the crystal
and therefore polarization Py can be, alternatively, taken as the order para-
meter. Thus, we can apply the analysis developed in the previous section for the
description of the critical dielectric behavior of TGS, i.e., the behavior related to
the component of polarization taken for the order parameter. Equation (2.3.8)
gives the temperature dependence of spontaneous polarization with a0 =
3.5�107 m/F/K, b =7.5 � 1011 J/C4m5 (Hoshino et al., 1957). Equation
(2.3.10) describes the dielectric anomaly of wyy in the parent phase. Using Eq.
(2.3.15) one can evaluate the value of the thermodynamic coercive field Ecrit. At
TC – T = 30 K we find Ecrit = 150 kV/cm, which is much greater than typical
values (
0.1 kV/cm) of the experimentally observed coercive field in TGS
(Pulvari and Kuebler, 1958b). Thus, we see that, in reality, the switching takes
place at much smaller fields than those needed to make the unfavorable domain
state unstable. This demonstrates a limitation of the considered thermodynamic
approach: The switching is out of its reach and requires making allowance for
the kinetics of the phenomenon. This is the basic issue for this book and we
return to it later.

Looking at the notation of the species 2/m–Pd–2 corresponding to the phase
transition in TGS, we see that the thermodynamic description of this transition
in terms of Py only is not complete enough: We miss information on the piezo-
electric tensor of the domain states. A simple way to get this information is to
take into account in the Gibbs energy all the components of polarization and
the mechanical stress sij (or in the Voigt notation sn with n = 1–6). For the
symmetry G =2/m, using the results of Fousek (1967) we find

F ¼F0 þ
1

2
aP2

y þ
1

4
bP4

y þ
1

2
axP2

x þ
1

2
azP2

z þ axzPxPz

� 1

2
s11s21 �

1

2
s22s22 �

1

2
s33s23 � s12s1s2 � s13s1s3 � s23s2s3

� 1

2
s44s24 �

1

2
s55s25 �

1

2
s66s26 � s15s1s5 � s25s2s5 � s35s3s5

� s46s4s6 � Q12s1P2
y � Q22s2P2

y � Q32s3P2
y � Q52s5P2

y

� 2Q46s4PxPy � 2Q66s6PxPy � 2Q64s6PzPy � 2Q44s4PzPy:

(2:3:23)

Recalling the expression of the strain in terms of the Gibbs energy one easily
finds the so-called b-piezoelectric coefficients, which relate the change of polar-
ization to the strain, "n, i.e., "n=binPi (i = 1–3; n = 1–6), as

bin ¼ �
@F

@Pi@sn
: (2:3:24)

2.3 Thermodynamic Approach 89



Now, using Eqs. (2.3.23) and (2.3.24) and taking into account that in the

parent phase Py = 0 and in the ferroelectric phase Py = Ps or Py = –Ps,

depending on the domain state, we see that while the phase G is non-piezo-

electric, in the ferroelectric phase all the eight piezoelectric coefficients allowed

by its point symmetry 2 are formed, namely, for the domain state where Py =

PS, we have b21 = 2Q12PS, b22 = 2Q22PS, b23 = 2Q32PS, b25 = 2Q52PS, b14 =

2Q46PS, b16 = 2Q66PS, b36 = 2Q64PS, and b34 = 2Q44PS. For the other domain

state, the signs of b’s are opposite.
It is important to stress that the newly acquired piezoelectric coefficients b

for the two domain states differ in sign and the same, of course, is true for any

alternative piezoelectric coefficients coupling P, E, e, and s. Therefore TGS is a

fully ferroelastoelectric material. We shall see later that this property can be

advantageous when the sign of spontaneous polarization of a sample is to be

determined in an alternative way: determining the sign of d21, e.g., allows one to

resolve also the sign of PS.
According to the notation of the species 2/m–Pd–2 TGS is not ferroelastic

and this is an obvious result of the thermodynamic treatment. First, based on

Eq. (2.3.3) we define the components of strain associated with the transition as

"nS ¼ �
@ðF� F0Þ

@sn

� �
P

: (2:3:25)

One can easily check that the strain components defined in this way corre-

spond to natural spontaneous strain introduced18 in Sect. 2.1.3. Second, using

Eqs. (2.3.23) and (2.3.25) we find that, in TGS, the spontaneous strain

components

"1S ¼ Q12P
2
s ; "2S ¼ Q22P

2
S; "3S ¼ Q32P

2
s ; "5S ¼ Q52P

2
s (2:3:26)

are the same for both domains states. In addition, such deformations are

consistent with the symmetry of the phase G where these occur due to thermal

expansion (this can be checked by using Table C.1). In other words, there are no

‘‘symmetry breaking’’ strain components. The absence of ‘‘symmetry-breaking’’

strain components and identical spontaneous strain in both domain states

shows that TGS is not ferroelastic.

18 We recall that natural spontaneous strain at a given temperature was defined as a deforma-
tion that should be imposed on the unit cell of the parent phase (real or extrapolated to this
temperature) to get the unit cell of the ferroic phase. In the used thermodynamic approach the
thermal expansion of the parent unit cell is described by the strain "n ¼ �ð@F0=@snÞP. Thus
one sees that the strain difference given by Eq. (2.3.25) does correspond to natural sponta-
neous strain.
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2.3.3 Uniaxial Proper Ferroelectric–Ferroelastic

As the second example we choose the phase transition in a family of crystals of
the KH2PO4 type (abbr. KDP) which corresponds to the species
�42m� P"ds�mm2 with n = 1. This is a first-order transition occurring at
123 K, close to continuous in most members of the family. Here again the
polarization, namely, its component Pz, can be considered the order parameter
so that the results of Sect. 2.3.1 are applicable for the z-axis-related dielectric
properties of these materials. However, the fact that the parent phase is non-
centrosymmetric dramatically affects their mechanical and electromechanical
properties. A full thermodynamic treatment of the phase transition in KDP-
type crystals would be rather cumbersome. Since we are mainly interested in the
qualitative features of phenomena distinguishing domain states we shall make
several simplifying assumptions: We shall include in the Gibbs energy only two
components of stress and keep only the critical component of polarization,
namely, Pz. This will lead us to the following expansion of the Gibbs energy

F ¼F0 þ
a0
2
ðT� T0ÞP2

z þ
b
4
P4
z þ

g
6
P6
z

� 1

2
sP33s

2
3 �

1

2
sP66s

2
6 � b36Pzs6 �Q33P

2
zs3:

(2:3:27)

The first conclusion to be drawn from this expansion is that KDP is ferroe-
lastic. Indeed, making use of the equation of state (2.3.3) we get

"6 ¼ sP66s6 þ b36Pz; (2:3:28)

"3 ¼ s33s3 þQ33P
2
z : (2:3:29)

Equation (2.3.28) implies that, in a mechanically free sample (sn=0),
domain states differ in the sign of the shear spontaneous strain: "6S ¼ b36PS

in the domain state with Pz =+PS and "6S ¼ �b36PS in the domain state with
Pz =–PS, where PS is given by Eq. (2.3.17). Then, the fact that this component
of strain and Pz taken for the order parameter are linked by the linear relation
(2.3.28) means that KDP is a proper ferroelastic, so that, in principle, this
transition could be described using "6 as the order parameter. It is instructive
to demonstrate this in another way. If "6 also plays a role of the order para-
meter, then according to the general theory of the phase transition the corre-
sponding susceptibility, in this case the elastic compliance s66, should manifest a
trend to an unlimited increase forT!T0. Let us evaluate this compliance in the
parent phase in the absence of electric field, which we denote as sE66. To do it we
use Eq. (2.3.28) and the equation of state (2.3.2) calculated for the Gibbs energy
(2.3.27)

a0ðT� T0ÞPz � b36s6 ¼ 0: (2:3:30)
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This equation has been linearized since we are interested in a small-signal
response. Eliminating Pz between Eqs. (2.3.28) and (2.3.30), we find the sought
anomaly of the compliance:

sE66 �
@"6
@s6

� �
E

¼ sP66 þ
b236

aoðT� ToÞ
(2:3:31)

The interesting feature of KDP as proper ferroelectric–ferroelastic is that a
domain state can be made unstable not only by application of the field Ez but
also by application of the shear mechanical stress s6. By analogy with the
thermodynamic coercive field of mechanically free crystal, Ecrit, treated in
Sect. 2.3.1 one introduces thermodynamic coercive stress of a short-circuited
sample, scrit. In the considered case, these parameters are linked by the relation
Ecrit = b36scrit, which is obvious from the comparison of the equations of states
corresponding to these two conditions, namely,

Ez ¼ a0ðT� T0ÞPz þ bP3
z þ gP5

z ; (2:3:32)

0 ¼ a0ðT� T0ÞPz þ bP3
z þ gP5

z � b36s6; (2:3:33)

where we set s3 = 0 for simplicity.
The last thing we would like to demonstrate is that KDP is also ferroelasto-

electric. This follows from Eq. (2.3.29) which shows that, in the low-symmetry
phase, there appears a new piezoelectric coefficient b33, which acquires in the
two domain states values of 2Q33Ps and –2Q33Ps, respectively, depending on the
orientation of spontaneous polarization. The same is true for all other newly
acquired piezoelectric coefficients.

According to the notation of the species �42m� P"ds�mm2 KDP-type crys-
tals are also ferrobielastic, i.e., the domain states differ in compliance matrices.
Obviously, the thermodynamic approach can reproduce this feature as well.

A practically important point is that the thermodynamic treatment always
gives a description of the properties of the low-symmetry phase in the conven-
tional reference frame of the parent phase. In the case of the species
�42m� P"ds�mm2, as it often happens, this frame is different from that of
the low-symmetry phase: The conventional axis z of the phase F = mm2 is
parallel to that in the phase G ¼ �42m but the axes x, y are rotated by 458 (see
Fig. 2.1.7). Thus, matrices of tensor properties of the low-symmetry phase
obtained from the thermodynamic potential are, in general, different from
those given in reference books where, for a given symmetry, the conventional
reference frame is always used (see Fig. 2.1.8).

2.3.4 Multiaxial Proper Ferroelectric–Improper Ferroelastic

The thermodynamic theory of a particular material has probably achieved its
greatest success in the treatment of BaTiO3 developed by Devonshire (1949,
1951). The specially remarkable accomplishment was that his thermodynamic
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approach provided an excellent basis for understanding the sequence of four
phases. On decreasing temperature, the material transforms sequentially from
the parent cubic paraelectric phase into phases of tetragonal, orthorhombic,
and rhombohedral symmetry. All the three transitions are discontinuous and all
the three ferroic phases are proper ferroelectric. In the symmetry-based treat-
ments of phase transitions we just consider two phases G and F, while the
transitions between ferroic phases which do not fulfill the group–subgroup
symmetry relation are not dealt with. Thus in the symmetry approach discussed
in the preceding chapters, we identify each of the three distorted phases of
barium titanate with its own species, namely, m�3m� P"ds� 4mm,
m�3m� P"ds�m�xymz2xy, and m�3m� P"ds� 3m. In contrast, in the thermo-
dynamic approach based on a properly constructed potential, one can compare
the energies of all involved phases and determine which phase at a given
temperature is energetically most favorable.

Conceptually, the thermodynamic treatment of perovskite ferroelectrics like
BaTiO3 is very close to those given above so that we will pay our attention
mainly to the newly appearing features of the system. We consider the expan-
sion of the Gibbs energy with respect to the polarization vector P (order
parameter) and stress tensor s . According to the m�3m symmetry of the parent
phase the Gibbs energy reads (Haun et al., 1987)19
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s44ðs24þs25þs26Þ�Q11ðs1P2
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zÞþs3ðP2
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xÞ��2Q44½s4PyPzþs5PxPzþs6PyPx�:

(2:3:34)

Equation of state (2.3.2) at E = 0 gives a set of equations for the
components of polarization in a mechanically free crystal. One finds that
possible stable solutions20 to this set of equations falls into the following
four types:

19 The factor of 2 multiplyingQ44 is introduced in this energy to respect the Voigt notation, as
defined in Landolt–Bornstein (1993), where Qijkl = Qmn for n = 1,2,3 and 2Qijkl = Qmn for
n=4, 5, 6. In many papers where this energy is used (see, e.g., Haun et al., 1987), the factor in
front of Q44 is omitted; therefore, their Q44 is twice the Q44 defined in the textbooks.
20 The stability condition in this case can be formulated as the requirement that all eigenvalues

of the matrix @2F
@Pi@Pj

calculated at the state be positive.
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cubic phase: Px = Py = Pz = 0,
tetragonal phase: Px = Py = 0, Pzj j ¼ PS and possible permutations of Px,

Py, and Pz,
orthorhombic phase: Pz = 0, Pxj j ¼ Py

		 		 ¼ PS=
ffiffiffi
2
p

and possible permuta-
tions of Px, Py, and Pz,

rhombohedral phase: Pxj j ¼ Py

		 		 ¼ Pzj j ¼ PS=
ffiffiffi
3
p

.

Each type corresponds to a possible phase of the system, namely to the

parent phase m�3m and three ferroelectric phases, 4mm, mm2, and 3m, respec-

tively. The constant PS is, in general, different for different phases and has the

meaning of absolute value of spontaneous polarization in the given phase. For

ferroelectric phases, the solutions of each type are degenerate in energy. Solu-

tions belonging to the same type correspond to different domain states. It is easy

to count that in the three phases there exist 6, 12, and 8 domain states,

respectively, differing in the direction of the polarization (see Fig. 2.3.5). For

each phase, the absolute value of spontaneous polarization PS can be found

looking for the solutions to the equation of state in the corresponding form

specified above. In this way Eq. (2.3.34) can be simplified down to the form

identical to Eq. (2.3.4) so that Eq. (2.3.17) can be applied for calculation of PS.

As the next step we can find the energies of all stable phases. Finally, comparing

these energies we find the energetically most favorable phase and finally arrive

at the equilibrium phase diagram of the system.
The approach outlined above has been applied for the description of several

ferroelectric perovskites, e.g., BaTiO3 and PbTiO3 (speciesm�3m� P"ds� 4mm).

For these materials we give in Table 2.3.1, for reference, the full list of coefficients

in the expansion equation (2.3.34) often employed in thermodynamic

calculations.21

A new feature of the considered system is that it is ferroelastic though there is

no linear coupling between polarization playing the role of the order parameter,

and deformation, i.e., it is an improper ferroelastic. Let us illustrate this point

for the 4mm phase which has six domain states. Using the Gibbs energy,

Eq. (2.3.34), and the definition, Eq. (2.3.25), we readily find that the sponta-

neous strain does not ‘‘feel’’ the sign of polarization but it is sensitive to its

orientation. Thus, we can distinguish only three ferroelastic domain states

where the tensors of spontaneous strain are

Q11

Q12

Q12

0
B@

1
CAP2

S;

Q12

Q11

Q12

0
B@

1
CAP2

S;

Q12

Q12

Q11

0
B@

1
CAP2

S: (2:3:35)

21 The information on b and g coefficients for BaTiO3 available in the literature is contra-
dictory, e.g., the coefficients given in the classical book of Jona and Shirane (1962) correspond
to a situation where the 4mm phase is always energetically favorable compared to themm2 and
3m phases..
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Similar situation takes place in the mm2 and 3m phases, where 6 and 4

ferroelastic domain states can be distinguished, respectively. Thus, we see that

we are dealing with a partial ferroelastic.
Similar to all ferroelectrics discussed above perovskite ferroelectrics like

BaTiO3 are full ferroelectroelastics. For example, using Eqs. (2.3.24) and

(2.3.34), we find that, in a tetragonal domain state where Px = Py = 0, Pz =

PS, five piezoelectric coefficients acquire nonzero values, namely, b15 = b24 =

2Q44PS, b31 = b32 = 2Q12PS, b33=2Q11PS. For reference we give a table of d-

piezoelectric coefficients for all domain states of the three ferroelectric phases of

BaTiO3 (Table E.1).

Fig. 2.3.5 Domain states of BaTiO3 represented in the order parameter space: (a) tetragonal
phase 4mm, (b) orthorhombic phasemm2, and (c) rhombohedral phase 3m. Vectors associated
with points corresponding to domain states represent the PS vectors. Representative domain
pairs are customarily characterized by angles between the respective PS vectors: (a) 1808 pair
(1,2), 908 pair (1,3); (b) 1808 pair (1,2), 908 pair (1,3), 608 pair (11,5), 1208 pair (11,7); and (c)
1808 pair (1,2), 718 pair (1,3), 1098 pair (1,4)
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The P6-thermodynamic Landau expansion addressed above in this section is
presently considered as classical. At the same time, the recent development in
the field has raised a question of upgrading this expansion with the P8 terms. Li
et al. (2005) have demonstrated that the expansionmodified by theP8 terms can
provide a good description of most of the thermodynamic priorities of the
material, however, in contrast to the classical scheme, using a temperature
independent set of anharmonic polarization coefficients. Alternatively, Wang
et al. (2006, 2007b) have documented a very important role of the P8 terms for
the adequate description of the cubic–tetragonal phase transition in material.

It is worth mentioning that all perovskite ferroelectrics like BaTiO3 exhibit
first-order ferroelectric phase transitions under the free mechanical conditions.
In the Gibbs thermodynamic potential, this corresponds to the negative sign of
the appropriateP4 terms. However, even a partial mechanical clamping leads to
a change of the type of the transition to the second order (see Sect. 9.3.2). This
implies that the negative sign of the P4 terms controlling the order of the
transition in mechanically free ferroelectric perovskites is due to a strong
electrostrictive coupling between the polarization and strain.

2.3.5 Uniaxial Improper Ferroelastic–Ferroelectric

In both preceding examples only such variables were involved in thermody-
namic potentials, to which the conjugate forces, namely, electrical field and
mechanical stress, can be realized in the laboratory. Experimentally, this means
that treating the crystal in the parent phase, one can induce a nonzero value of
the order parameter either by inducing the phase transition or, without doing
that, by amere application of the mentioned ‘‘forces.’’ From the point of view of
thermodynamic description, this means that the problem can be treated in terms
of an expansion of the thermodynamic potential with respect to the macro-
scopic variables only (e.g., polarization and stress have been used above).
However, we have already seen in this chapter that, in many materials, phase
transitions occur whose order parameter Z is conjugate to no macroscopical
variable. In this case, a thermodynamic description of the transition requires
including in the potential variables corresponding to the order parameter Z and
macroscopic variables. Below we will give an example of thermodynamic
description of such a situation. We shall briefly discuss the thermodynamic
theory of the phase transition in Gd2(MoO4)3 (abbr. GMO), perhaps the best-
known example of an improper ferroelectric.

Within the description by point group symmetries, this material can be
attributed to the same species as KDP, namely, �42m� P"ds�mm2. However,
the number of unit cells doubles at the ferroic phase (n = 2). The order
parameter describing this phase change has two components, Z1 and Z2
(Dvorak, 1971). They correspond to the amplitudes of two waves of atomic
shifts, whose wavelengths equal to the double lattice period in the direction of
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the modulation. Clearly, no macroscopic field is conjugate to this order para-

meter. Thus, a thermodynamic potential expansion describing this transition

should contain the order parameter components (Z1 and Z2) as well as macro-

scopic electrical (P or E) and mechanical (e or s) variables. The simplest

mathematical description of basic properties of a mechanically free crystal of

GMO can be obtained in terms of a thermodynamic potential havingE and s as

independent variables. We shall use this kind of potential. The full expansion of

any thermodynamic potential of GMO is rather cumbersome (Dvorak, 1974;

Smolenskii et al., 1984) and we are not going to analyze it in detail. In what

follows we focus on comparison of features of proper and improper ferro-

electrics corresponding to the same ferroic species. To do that we keep the

minimal number of terms that make such a comparison possible and to simplify

the treatment we consider the case of a second-order phase transition instead of

the real first-order transition in GMO. We use the following thermodynamic

potential, which is consistent with the symmetry of the order parameter

(Dvorak, 1974; Smolenskii et al., 1984) and with that of the parent phase:

~F ¼ ~F0 þ
1

2
aðZ21 þ Z22Þ þ

1

4
b1ðZ41 þ Z42Þ þ

1

2
b2Z

2
1Z

2
2

þ gðZ21 � Z22ÞEz þ dðZ21 � Z22Þs6 þ lðZ21 � Z22ÞEzs3

� w33
2

E2
z �

1

2
s33s23 �

1

2
s66s26 � d36Ezs6:

(2:3:36)

Here as usual we assume that all coefficients are temperature independent

except for a=a0(T – T0). We also set b1 > 0 and b2 > b1.
We start with finding the domain states in a mechanically free and short-

circuited sample. Order parameters defining the domain states can be found

from the condition of minimum of ~F. It is convenient to illustrate these states

with points or vectors on the (Z1, Z2) plane (see Fig. 2.3.6). The structure of the
fourth-order invariants in Eq. (2.3.36) and the condition b2 > b1 immediately

suggest that minima of ~F belong to lines (Z1 6¼ 0, Z2 = 0) or (Z2 6¼ 0, Z1=0) (see

the same figure). Indeed, the Z terms of the expansion can be rewritten as
1
2 aðZ21 þ Z22Þ þ 1

4 b1ðZ21 þ Z22Þ
2 þ 1

2 ðb2 � b1ÞZ21Z22. One sees that the first two

terms are independent of the orientation of the (Z1, Z2) vector, whereas the

last term does make the directions (Z1 6¼ 0, Z2 = 0) and (Z2 6¼ 0, Z1 = 0)

energetically favorable. The positions of the minima on these directions are

controlled by conditions @ ~F=@Z1 ¼ 0 and @ ~F=@Z2 ¼ 0. Finally, one finds the

four domain states depicted in Fig. (2.3.6): (Z1= ZS, Z2= 0), (Z1= –ZS, Z2= 0),

(Z1 = 0, Z2 = ZS), and (Z1 = 0, Z2 = –ZS), where ZS ¼ ð�a=b1Þ
1=2.

Now, let us test the macroscopic properties of the obtained domain states.

Using equations of state following from Eq. (2.3.12), @ ~F=@Ei ¼ �Pi and

@ ~F=@sn ¼ �"n, we find
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Pz ¼ w33Ez þ d36s6 � gðZ21 � Z22Þ;

"6 ¼ d36Ez þ s66s6 � dðZ21 � Z22Þ;

"3 ¼ s66s6 � lðZ21 � Z22ÞEz:

(2:3:37)

First, from these equations we conclude that the domain states that differ

only by the sign of the order parameter (like the pair of states (Z1 = 0, Z2 = ZS)
and (Z1 = 0, Z2 = –ZS)) are identical in their macroscopic properties. These are

translational domain pairs discussed in Sect. 2.1.7. It is of importance to stress

that, in accordance with the symmetry analysis, these states are macroscopically

undistinguishable in any approximation on which the thermodynamic expan-

sion is based.
Second, we see that the stateswhich differ in the alignment of the (Z1, Z2) vector

(like the pair (Z1= 0, Z2= ZS) and (Z1= ZS, Z2= 0)) differ also in the sign of the

spontaneous polarization PzS, spontaneous strain "6S, and piezoelectric coeffi-

cient d33; for these states, Eq. (2.3.37) yields PzS ¼ gZ2S, "6S ¼ gZ2S, d33S ¼ lZ2S and
PzS ¼ �gZ2S, "6S ¼ �gZ2S, d33S ¼ �lZ2S, respectively. That means that these

states are orientational states (according to the terminology of Sect. 2.1.7)

and that GMO itself is ferroelectric, ferroelastic, and ferroelastoelectric.

Comparing the set of newly acquired macroscopic properties of GMO

with that of KDP (see Sect. 2.3.3) we see these are identical as one expects

for two examples of the same species�42m� P"ds�mm2; we remind the

reader that our definition of ferroic species is based on point symmetry

only, not taking into account possible changes of translational symmetry.
Third, and this of course is connected with the just mentioned reminder,

thermodynamics reveals a tremendous difference in the temperature depen-

dences of the thermodynamic parameters of proper and improper ferroelec-

tric–ferroelastics. In contrast to the properties of KDP, the equation of state

(2.3.37) reveals no singularity in the temperature dependence of dielectric and

elastic responses. In addition, the temperature dependence of spontaneous

polarization for proper and improper ferroelectrics is basically different.

According to Eq. (2.3.37), in the latter case PzS / Z2S / TC � T instead of the

Fig. 2.3.6 Order parameter
plane for an improper
ferroelectric of GMO
symmetry. Points represent
domain states
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classical square root behavior expected for a second-order proper ferroelectric
phase transition.

2.3.6 Limitation of Traditional Thermodynamic Approach:
Pseudo-proper and Weak Ferroelectricity

In the presented above examples of application of Landau theory to the
description of proper ferroelectric phase transitions, we have based our con-
sideration on expansions of the thermodynamic potential in terms of a macro-
scopic variable—polarization. This approach is widely used providing a good
qualitative description for many properties of proper ferroelectrics. However,
when employing this approach, i.e., Landau theory expansion in terms of a
macroscopic variable, one should keep in mind its limitations. Basically this
approach suffers from two intrinsic limitations. First, the Landau theory
ignores the order parameter fluctuations. This limitation is duly discussed in
the literature, e.g., an excellent discussion of the issue can be found in the book
of Strukov and Levanyuk (1998). In our book we are not going to touch this
issue since it is basically essential for the critical behavior of ferroics, which goes
out of the scope of the book. The other limitation is related to the use of a
macroscopic variable as the order parameter. We will address this limitation
below.

Generally speaking, the use of macroscopic polarization as a variable for the
Landau expansion is not fully justified from the point of view of themicroscopic
theory. To evaluate the impact of this issue on the applicability of the tradi-
tional phenomenological approach we should remind the reader of the funda-
mentals of the microscopical approach.

On the microscopic level, the polarization of any ferroelectric can be divided
into two parts. The first so-called critical part is related to the so-called critical
displacements of ions, which are responsible for the enhanced dielectric
response and the appearance of spontaneous polarization. In the case of per-
ovskite ferroelectrics these are relatively simple displacements of the ions,
whereas in the case of materials like KDP this is a complex distortion of the
unit cell. The essential point is that these displacements are correlated so that all
of them can be expressed in terms of one amplitude Zf, the so-called normal
coordinate of the ferroelectric soft mode. Due to this fact, the critical contribu-
tion to polarization can be presented as

Pf ¼
1

V
efZf; (2:3:38)

whereV stands for the unit cell volume and ef is the so-called soft-mode effective
charge. In this section, for simplicity, we consider the case of a uniaxial ferro-
electric; the logic of this consideration can be readily translated to the general

100 2 Fundamentals of Ferroic Domain Structures



case. Accordingly, Eq. (2.3.38) is written for the projection of the polarization
on the ferroelectric axis of the material. We will keep only this component of
polarization without specifying this further.

The second so-called non-critical part, Pr, is the contribution of the other
polar distortions of the unit cell.22 This part can be presented as the sum of the
contributions from the other polar optical modes (systems of correlated dis-
placements of the ions) so thatPr can be written as a sum of terms like that given
by Eq. (2.3.38) with the corresponding effective charges and normal coordinates
of these modes. To further simplify the discussion we will keep only the con-
tribution of one of these modes, which hereafter will be called the hard mode.
This way we will arrive at the following expression for the non-critical part of
polarization: Pr ¼ erZr=V, er and Zr being the effective charge and normal
coordinate of the hard mode. Finally, the total polarization P can be written
as a sum:

P ¼ Pr þ Pf ¼ ðerZr þ efZfÞ=V: (2:3:39)

The essential point is that the two components of the polarization and the
normal coordinates are introduced as decoupled by definition so that there
should be no contribution to the energy of the crystal proportional to their
product.

Using Eq. (2.3.39) let us address the microscopic justification of the Landau
theory. Any microscopic theory operates with microscopic variables. The
microscopic theory of ferroelectrics operates with the soft-mode normal coor-
dinate, Zf, as the order parameter and yields as a result an expansion for the free
energy in terms of this variable. Clearly, in terms of the polarization, this leads
to an expansion with respect to the critical part of the polarization, Pf, which is,
strictly speaking, not equivalent to that in terms of the total polarization P. On
the other hand, we know that the expansion with respect to the total polariza-
tion often works effectively. This disparity usually does not puzzle workers
dealing with this expansion even if they realize the existence of non-critical
contributions to the polarization. In this case, it is usually said that this
contribution is relatively small so that neglecting this contribution does not
substantially affect the results. However, this is not always the case. Thus, when
dealing with the traditional ‘‘P expansion’’ one should be aware of situations
where the use of this expansion leads to quantitatively erroneous results. These
situations will be discussed below as well as ‘‘improved’’ phenomenological
schemes, namely, the pseudo-proper and weak ferroelectric approaches.

To prepare this discussion we will start with the analysis of two situations
where one can neglect the difference betweenP andPf and ‘‘safely’’ work with the
traditional ‘‘P expansion.’’ Consider the polarization response of a proper

22 For simplicity we are not discussing here the purely electronic contribution to the polariza-
tion; the incorporation of this contribution into the considerationwould affect neither its logic
nor the final conclusions.
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ferroelectric to an external electric field. The latter couples with critical and non-
critical displacements, Zf and Zr, via the corresponding effective charges, ef and er.
The values of the field-induced displacements are controlled by two factors: the
restoring force constants of the hard and soft modes and their effective charges.
In the standard situation, the values of these charges are of the same order of
magnitude (about the charge of electron), whereas the restoring constant of the
soft mode is much smaller than that of the hard one by definition. That implies
Zf44Zr and finally Pf44Pr for the polarization responses to the external electric
field. Thus, in this situation the difference between P and Pf can be neglected.
However, we also see that this may not be justified if the effective charge of the
soft mode is small compared to that of the hard mode, i.e., ef55er. In this case,
the smallness of the soft-mode restoring constant may be ‘‘compensated’’ by the
smallness of its effective charge so that the polarization response may not be
dominated by the critical contribution Pf, while the non-critical part Pr may be
appreciable in the total polarization. A similar situation occurs for the calculation
of the spontaneous polarization. If the order parameter Zf acquires a spontaneous
value of Zf0 , the corresponding spontaneous value of the critical part of polariza-
tion, Pf0 ¼ efZf0=V, is not, strictly speaking, equal to the produced value of the
spontaneous polarization PS. The latter differs from Pf0 by the contribution of
the non-critical displacements. However, since the linear coupling between Zf and
Zr is absent by definition, the spontaneous value of the hard mode Zr0 appears
only due to a weak non-linear coupling and therefore it is small, i.e., Zf044Zr0 . In
the standard situation where ef ffi er, that clearly implies Pf044Pr0 justifying the
neglect of the difference between P and Pf. However, clearly this may not be
justified if the effective charge of the soft mode is small compared to that of the
hard mode. Thus, we have revealed a situation where not making difference
betweenP andPf is not justified, namely, the situations where the effective charge
of the soft mode is small. However, this situation is not the only one where not
differentiating between P and Pf is illegitimate. The problem of the depolarizing
effect treated below is also the case.

Consider a phase transition in a plate capacitor of a proper ferroelectric. We
are interested in the situation where the spontaneous polarization is normal to
the electrodes, a transition into a single-domain state occurs, and the electrodes
are not short circuited (no screening of the spontaneous polarization). Using the
traditional approach we start with the thermodynamic potential,23 Eq. (2.3.13),

~F ¼ F0 þ
a
2
P2 þ b

4
P4 � PE; (2:3:40)

where b > 0, a ¼ a0ðT� T0Þ, a0 ¼ ð"0CÞ�140, C being the Curie–Weiss con-
stant, and E the component of the electric field parallel to the ferroelectric axis

23 It is useful to note that, for the considered problem, this potential does not reach the
minimum at equilibrium; however, as far as we are interested in the equation of state any
potential can be employed for its derivation.
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of the material. This leads, via the condition @ ~F=@P ¼ 0, to the equation of
state of the ferroelectric:

E ¼ aPþ bP3: (2:3:41)

.
In our system, the electric fieldE is not zero due to the depolarizing effect and

can be determined from the Poisson equation which in our one-dimensional
case implies D ¼ E"0 þ P ¼ 0, i.e.,

E ¼ �P="0: (2:3:42)

Eliminating E between Eqs. (2.3.41) and (2.3.42) we arrive at the equation of
state for the polarization in the system:

a0ðT� T0 þ DTÞPþ bP3 ¼ 0; (2:3:43)

where DT = C. Thus, starting from the traditional ‘‘P expansion,’’ we have
found that the depolarization effect results in a shift of the transition tempera-
ture down by a value of the Curie–Weiss constant. However, one can show that
this result is wrong. An adequate treatment of the problem yields a shift which is
many times smaller, namely, DT = C/kb where kb is the background dielectric
permittivity of the ferroelectric (in terms of our simple model kb is the contribu-
tion of the hard mode to the permittivity). Let us show it.

First, let us re-expand the thermodynamic potential in terms of the real order
parameter Zf or, equivalently, in terms of the critical part of polarization Pf =
efZf/V, which is proportional to it:

~F ¼ F0 þ
a
2
P2
f þ

b
4
P4
f � PE: (2:3:44)

Note that the last term of this equation, which is related to the electrostatic
work, still contains the total polarization P = Pf + Pr. Then, the condition of
minimality of the potential with respect to the order parameter, @ ~F=@Pf ¼ 0,
yields

E ¼ aPf þ bP3
f (2:3:45)

Now attributing the background dielectric response to the hard mode, i.e.,
setting Pr = (kb – 1)"0E, and using Eqs. (2.3.39) and (2.3.42) we readily arrive at
the equation of states given by Eq. (2.3.43) with

DT ¼ C=kb: (2:3:46)

The factor kb can readily be about 10. That makes a 10 times difference
between the result obtained by using the ‘‘P expansion’’ and that of the com-
prehensive consideration. One should stress that this happens even in the case
where the contribution of the background susceptibility is not essential in the
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overall dielectric susceptibility w. In terms of the developed approach, the latter

can be found as

w � @P
@E
¼ "0

C�
T� T0j j þ kb � 1

� �
; (2:3:47)

where C� equals C at T > T0 and C/2 at T < T0.
Thus we see that in the situation where the depolarizing effect is involved the

use of the total polarization in the expansion can lead to essentially wrong

results. In this context it is useful to mention that in this situation the error

introduced by the use of the P expansion’’ may vary. Here an instructive

example is a realistic ferroelectric capacitor, where the regions adjacent to the
ferroelectric/electrode interfaces effectively behave as layers of a low-dielectric-

constant insulator. In contrast to an ideal capacitor, when short circuited in a

single domain state with the spontaneous polarization normal to electrodes,

such capacitor still contains some depolarizing field. This field in turn leads to a

shift of the Curie–Weiss temperature down by (see, e.g., Sherman et al., 2006)

DT ¼ C
d

dkb þ hkd
; (2:3:46a)

where kd and d are the dielectric constant and thickness of the effective dielectric
layer associated with the ferroelectric/electrode interfaces; h is the thickness of

the ferroelectric. At d44h, the system becomes formally equivalent to an

isolated ferroelectric plate and, accordingly, Eq. (2.3.46a) transforms into Eq.

(2.3.46). While in the opposite case, Eq. (2.3.46a) becomes independent of the
background permittivity, which means that the difference between the predic-

tions of P and Pf expansions disappear.
The scheme presented above is not the only one that provides a description of

the effects related to the background dielectric permittivity. This can also be

done in terms of the so-called pseudo-proper ferroelectric approach introduced

by Petzelt et al. (1974) andDvorak (1970). This approach deals with the Landau

expansion in terms of an order parameter Z which is not the polarization but a

variable linearly coupled with it. In this case instead of Eq. (2.3.44) we use the
expansion

~F ¼ F0 þ
a0ðT� T00Þ

2
Z2 þ b

4
Z4 þ fPZþ w�1b

2"0
P2 � PE; (2:3:48)

where wb = kb – 1. Now, using the two conditions, @ ~F=@P ¼ 0 and @ ~F=@Z ¼ 0,

we readily arrive at the equation for the dielectric susceptibility, Eq. (2.3.47),

where the Curie–Weiss constant C and the transition temperature T0 are

C ¼ f 2w2b"0
a0

and T0 ¼ T 00 þ
C

wb
; (2:3:49)
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This approach also leads to the correct expression for the depolarizing-
effect-induced shift of the transition temperature, Eq. (2.3.46).

Comparing the pseudo-proper phenomenological scheme with the tradi-
tional proper one, we should distinguish two situations: materials with ‘‘nor-
mal’’ values of the Curie–Weiss constant (ffi105 K for the displace type ferro-
electrics and ffi103 K for those order–disorder) and material with anomalously
small values of the Curie–Weiss constant. On the microscopic level these situa-
tions correspond to the case of ‘‘normal’’ values of the soft-mode effective
charge (about the charge of an electron) and to those where this charge is
anomalously small.

In the first case, the only new element introduced by the pseudo-proper
approach is an adequate treatment to the background dielectric permittiv-
ity. This is the case of the KDP crystals (C = 3,250 K). It was argued
(Dvorak, 1970) that, for this material, the pseudo-proper approach
brought about qualitatively new features to the phenomenological descrip-
tion. However, one can be shown that as far as the value of the Curie–-
Weiss constant is ‘‘normal’’ all these features are beyond the accuracy of
the Landau theory.

In the second case, we find quite a different situation. It was treated by
Petzelt et al. (1974) for (NH4)SO4 (C= 30 K). In this case, the pseudo-proper
approach enables the interpretation of a weak dielectric anomaly as a result of
weak coupling between the polarization and the order parameter (small values
of the f coefficient in Eq. (2.3.48)). In contrast to the first case, now this
approach can also describe qualitatively new features. An example is the
electrostriction effect. In terms of this approach the order parameter/stress
coupling corresponds to the Z2s terms (in the thermodynamic potential)
instead of the P2s terms. One can show that this difference substantially
affects the temperature behavior of the electrostriction coefficients of the
system.

Though the pseudo-proper approach provides an adequate description of the
depolarizing effect and is more advanced, than the traditional approach, in the
description of the properties of the proper ferroelectrics with anomalously small
value of the Curie–Weiss constant, it is still limited. It can be revealedwhen trying
to describe the unusual features of the proper ferroelectrics with yet smaller
values of C = 2–5 K, e.g., the change of sign of the spontaneous polarization
in Li2Ge7O15. The reason for that is the use of the total polarization in the
expansion. As we have already pointed out in the beginning of this section, the
polarization does not represent a proper variable for the expansion of the
thermodynamic potential unless the polarization itself is dominated by a con-
tribution of a single mode. Thinking in terms of microscopic justification of the
Landau theory we see that the corresponding polar displacement of the ions, or,
at best, the corresponding normal coordinates, should be used for the expansion.
A phenomenological description which is free from the aforementioned draw-
back is offered by the so-called weak ferroelectric approach (Tagantsev, 1987,
1988; Tagantsev et al., 1987).
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For the simplest case of the model introduced in the beginning of this section,
the basic thermodynamic potential for such a two-mode description reads

~F ¼ F0 þ
af
2
Z2f þ

bf
4
Z4f þ

ar
2
Z2r þ gZrZ

3
f � PE; (2:3:50)

where P ¼ ðerZr þ efZfÞ=V, af ¼ af0ðT� T0Þ55ar, and ef55er. Note that the
ZrZf term is absent according to the definition of Zr and Zf. Thus, the expansion is
made in terms of two modes: a soft mode which carries a small charge and a
hard one that carries a ‘‘normal’’ charge.

Comparing the weak-ferroelectric approach with two discussed above one
finds that it, on one hand, reproduces all the results of those obtained in their
range of applicability and, on the other hand, enables description of qualitatively
new features. For the dielectric response in the paraelectric phase, via conditions
@ ~F=@Zf ¼ 0 and @ ~F=@Zr ¼ 0, we readily arrive at the standard Curie–Weiss
anomaly appended with the background dielectric susceptibility, Eq. (2.3.47),
with

C� ¼ C ¼ e2f
V2"0af0

; kb ¼
e2r

V2"0ar
þ 1 : (2:3:51)

However, in the ferroelectric phase, the weak ferroelectric scheme predicts a
possibility of essential deviation of the temperature dependence of the critical
part of the susceptibility from the classical Curie–Weiss behavior (Tagantsev,
1987, 1988; Tagantsev et al., 1987). This temperature dependence (calculated
based on Eq. (2.3.50)) can be formally described by Eq. (2.3.47) with a tem-
perature-dependent parameter C�:

C� ¼
C

2

T� T0 þ d
d

� �2

; (2:3:52)

where d ¼ 1
3
ar
af0

ef
er

b
g. In addition, this relation controls the temperature depen-

dence of the oscillator strength of the soft mode. The scheme also provides an
expression for the temperature dependence of the spontaneous polarization:

PS ¼
ef
V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
af0ðT0 � TÞ

b

s
1� T0 � T

3d

� �
: (2:3:53)

It is seen that, in the case where the effective charge of the soft mode ef is
small enough to make the absolute value of d comparable to T0 – T, the above
expression corresponds to very unusual temperature dependences of the para-
meters of the system. Figure 2.3.7 illustrates the temperature dependences of the
spontaneous polarization expected in this case. Of special interest is the
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situation where d> 0 where the spontaneous polarization changes its sign at the
temperature

Tp ¼ T0 � 3d: (2:3:54)

One can show that, under the same conditions, the oscillator strength of the
soft mode also vanishes but at a different temperature

TIR ¼ T0 � d: (2:3:55)

This means that the soft mode is expected to disappear from the infrared
absorption spectrum at some temperature below the transition.

These and other predictions of the weak ferroelectric scheme are compatible
with ferroelectric and dielectric properties of a number of materials in which the
effective charge of the soft mode has been shown to lie in the range of 10–2–10–3

of an electron charge. A good example of this kind of material is Li2Ge7O15,
where both the change of the sign of the spontaneous polarization and the
disappearance of the soft mode from the infrared spectrum have been docu-
mented (Bush and Venevtsev, 1986; Kadlec et al., 1995). In addition, this
approach has been extended to relate the symmetry of the parent phase with
the anomalously small charge of the soft mode (Tagantsev, 1986b, 1987, 1988;
Tagantsev et al., 1987).

Thus, the discussion given in this section clearly demonstrates that, though
the symmetry aspect justifies the selection of the polarization for the order
parameter of Landau theory of proper ferroelectrics, the theory developed
this way may fail in the description of certain phenomena. At the same time,
the descriptive ability of such theory can be essentially improved when using
properly selected order parameters of the same symmetry.

–

Fig. 2.3.7 Temperature
dependence of the
spontaneous polarization in
the weak ferroelectric model
for d = 50 K(1) and d =
–50 K(2). The standard
square root law is also
shown (3)
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Chapter 3

Ferroic Materials

3.1 Sources of Information and Statistics

Classifying phase transitions on the basis of point symmetry changes, Tables B.1

and C.1 show that altogether we can distinguish 212 ferroic species out of which

119 are ferroelectric. Because of the existence of domain states, they offer a huge

variety ofmacroscopic properties and onemaywonder howmany of these species

are really represented by presently known crystalline materials. The exact answer

to this question has not and hardly could have been given, but in this chapter we

wish first to give the reader somehintswhere to look for information onparticular

kinds of transitions, quote some results of Tomaszewski’s research, and then

present a table of ferroics whose domain properties have been extensively studied

and which are mentioned in this book in different contexts.
Almost any book on ferroelectrics contains a table of crystals possessing

ferroelectric phases; the contents widely vary and depend, of course, on the date

when the book was written. We can refer to the monographs by Jona and

Shirane (1962), Lines and Glass (1977), Smolenskii et al. (1984), and Xu

(1991) as helpful sources of assembled information on materials, but of course

the most valuable collection of data, including data on symmetry, is offered in

the volumes III/3 (1969), III/9 (1975), III/16a (1981), III/16b (1982), III/28a and

III/28b (1990) of Landolt�Börnstein New Series. An extensive table of almost

200 ferroelastics (including ferroelectric ferroelastics), specifying both space

groups when known, transition temperature, and giving several references for

each compound, has been included in Salje’s monograph (1990). Several extre-

mely useful tables of different kinds of ferroics are presented in the book by

Toledano and Toledano (1988); their data are classified according to the

symmetry of the order parameters, include space groups in both parent and

ferroic phases and thus also information on basic macroscopic properties.

Cummins (1990) worked out a compilation of those ferroics which reveal an

incommensurate phase (a phase where the order parameter is spatially modu-

lated) and most of them possess also a ferroic phase in the sense defined above.

As for higher order ferroics, the original list was compiled by Amin and

Newnham (1980).

A.K. Tagantsev et al., Domains in Ferroic Crystals and Thin Films,
DOI 10.1007/978-1-4419-1417-0_3, � Springer ScienceþBusiness Media, LLC 2010
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With a few exceptions, in this book we pay attention to phase transformations
occurring as a result of the change of temperature at constant ambient pressure.
However, considerable attention has also been paid to transformations induced
by pressure. The most complete collection of data is due to Tonkov (1992).

Speaking about ferroics in general, the most voluminous available database
appears to be that presented by Tomaszewski (1992a). His compilation, pub-
lished in 1992, specifies the chemical formula or name of the crystalline material,
transition temperature, and bothG and F symmetries in terms of space groups, if
known. He also gives one basic reference for each compound. No information is
included as to changes of translational symmetry, with the exception of incom-
mensurate phases.

Tomaszewski analyzed his database in another publication (1992b) and it is
worthwhile to point to some of his conclusions. Altogether 3,446 phase transi-
tions are included which were reported to occur in 2,242 crystalline materials;
out of the latter, 128 are organic. From the total number of 2,242, two transi-
tions were reported to occur in 492 crystals, three phase transitions in 208
crystals, and more than three in 80 other crystalline materials. Available data,
understandably, were not complete and only for 2,480 transitions the symme-
tries of both neighboring phases were known. Table 3.1.1 gives more detailed
information about numbers of these well-documented transitions, as they
depend on point symmetries of the high-temperature and low-temperature
phases. The horizontal designation of point symmetries applies to the high-
temperature phase while the vertical column of symbols applies to the low-
temperature phase. Thus the field above the broken line refers to phase transi-
tions at which the point symmetry is lowered on cooling (here represented only
by the change of the crystal system, e.g., from monoclinic to triclinic). The
transitions specified below the line correspond to the opposite case. The analy-
sis presented in the previous chapter is applicable to these cases. Maximum
numbers represent transitions with both G and F orthorhombic phases (255,
i.e., 10.3% out of 2480) and transitions with cubic phaseG and tetragonal phase
F (269 cases, i.e., 10.8%). Some symmetry reductions are hardly represented at
all (0 for G hexagonal and F triclinic, 0.5% for G cubic and F triclinic).

Out of the 2,480 well-described transitions, 265 are ferroelectric and a
corresponding overview is included in Table 3.1.2. Here again the horizontal
designation refers to the paraelectric phase. The most frequently represented
ferroelectric transitions are those with tetragonal paraelectric and orthorhom-
bic ferroelectric phase (19%) or with bothG,F phases orthorhombic (18%). The
meaning of the broken line in this table is the same as in Table 3.1.1

3.2 Table of Selected Ferroic Materials

Most of those ferroic materials whose domain or related properties are referred
to in this book are shown in Table. 3.2.1; we also include several compounds
whose domain properties might appear interesting but have not been studied
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yet. The table is intended to give the reader a quick reference for all these

crystalline materials, but at the same time its aim is to illustrate the diversity

of ferroic phase transition materials from the point of view of symmetry.

Materials are listed according to the symmetry of the appropriate species,

with no regard of chemical composition, roughly following the sequence used

in Table B.1 of ferroic species. This, of course, brings together materials of a

Table 3.1.1 Number of materials with well-documented phase transitions

tricl mon orth tetr rhomb hex cub

tricl 22 50 21 8 26 0 13

mon 6 171 211 130 63 36 71

orth 5 43 255 176 63 69 151

tetr 0 12 33 74 6 10 269

rhomb 0 22 6 3 48 30 199

hex 2 2 11 5 11 34 65

cub 0 15 9 14 7 29 74

After Tomaszewski (1992a). Columns are specified by the crystal system of the parent phase
given in the uppermost row. Rows represent crystal system of the ferroic phase, as given in the
first column.

Table 3.1.2 Number of materials with well-documented ferroelectric transitions

tricl mon orth tetr rhomb hex cub

tricl 2 3 1 0 1 0 2

mon 0 34 13 6 4 3 9

orth 0 5 49 51 0 0 25

tetr 0 0 0 23 0 0 17

rhomb 0 1 0 0 4 2 8

hex 0 0 0 0 0 2 0

cub 0 0 0 0 0 0 0

After Tomaszewski (1992a). Columns specify crystal system of the parent phase given in the
uppermost row. Rows represent crystal system of the ferroelectric phase shown in the first
column.
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very different chemical composition but, at the same time, it points to simila-
rities we may expect in their macroscopic behavior connected with domains.

In many materials there exist a sequence of phase transitions and often each
of the ferroic phases can be treated, as far as its symmetry-related domain
properties are concerned, separately as if it arose from a common parent
phase. Then the symmetry G is given only once; but the temperature TTR

indicates the approximate temperature of the transition from the neighboring
phase at higher temperature, in Kelvin. BaTiO3 offers the best known example.
The three consecutive rows refer to the sequence of three ferroelectric phases as
temperature is lowered. In terms of symmetry, each phase can be treated
separately as if it arose from the parent cubic phase m�3m. The real transition
from 4mm to mm2 occurs at 278 K and domain properties in phase mm2
correspond, symmetry-wise, to those of the species m�3m� P"ds�mm2.

When well established, the order (first or second) of the transition is shown
but the table includes no information about thermal hysteresis if the transition
is of first order; temperaturesTTR show approximately transition temperatures.
Reported values of these temperatures often vary greatly, being dependent on
crystal quality, thermal hysteresis effects, and boundary conditions. The sym-
bol IC stands for a phase with incommensurate modulation.

When well established, information is also included on whether the transla-
tional symmetry in F differs from that in G (NEQ for non-equitranslational,
n 6¼ 1) or it does not (EQ for equitranslational, n = 1).

Some remarks about particular materials are given in the footnotes to the
table.
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Chapter 4

Methods for Observation of Domains

4.1 Introductory Remarks

Splitting of a ferroic sample into domains strongly influences most of its
averaged macroscopic properties. Thus by measuring these properties we can
obtain indirect information about the representation of individual domain
states; perhaps the simplest example is the magnitude of macroscopic polariza-
tion of a sample of a uniaxial ferroelectric crystal. In the present chapter we wish
to give an overview of methods which lead to a more detailed knowledge about
shapes and sizes of individual domains. The number of delineating techniques is
large and continuously increases, the push behind this progress being improved
spatial resolution, speed, and possibility to distinguish small domains from
lattice defects which have no relation to the order parameter. We need to detect
small changes in domain shapes to understand phenomena like fixing of photo-
refractive holograms in ferroelectrics based on partial switching. Of particular
interest are domains in ferroelectric thin films.

When imaging domain structures, the symmetry relations between domain
states and real domains which are to be distinguished play a crucial role. All
possible techniques are based on the differences of crystal structures in neigh-
boring domains and can be classified into three broad categories. First, a
number of methods are based on the surface properties of samples; they give
essentially two-dimensional pictures of domains as they terminate on sample
surface. Sometimes these methods can even feel the presence of domains hidden
inside the sample. Surface observations may also provide useful information
about domain walls. Classical etching procedures, manifold decoration meth-
ods, and observations in reflected light belong to this category. More recently,
modern techniques like atomic force microscopy or environmental scanning
electron microscopy are increasingly employed. Second, a large group of meth-
ods are based on the differences in tensor properties of domains. Polarized light
microscopy is the most powerful technique of this kind, nowadays supplemen-
ted with a growing number of methods based on nonlinear optical properties.
Finally, we have methods based directly on the structural differences, including
X-ray and electron diffraction, transmission electron microscopy, and X-ray
topography.

A.K. Tagantsev et al., Domains in Ferroic Crystals and Thin Films,
DOI 10.1007/978-1-4419-1417-0_4, � Springer ScienceþBusiness Media, LLC 2010
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In this chapter we address most methods used for observation of ferroic
domains. For some of them we present short outlines, whereas for the other,
only the basic ideas are mentioned.We will not go into details which would help
the reader to immediately apply any of the methods discussed. However, the
material of the chapter will provide the reader with the basic knowledge and
references needed to get the detailed information on the subject.

4.2 Surface Etching Techniques

Surface etching is usually used to obtain information on domains which cannot
be distinguished by microscopy in polarized light, in particular to reveal ferro-
electric domains with antiparallel polarization in nonferroelastics and to deline-
ate antiphase domain boundaries. Basic domain shapes in nonferroelastic ferro-
electrics were studied by etching. The method also enables the identification of
centers for the reverse domain nucleation. Repeated etching of the same surface
was successfully used to study shapes of growing or shrinking domains as well
as velocities of advancing domain walls.

The etching process is a complex phenomenon involving interactions of ions
of the etching agent with the surface structure of the ideal crystal lattice as well
as with the defect structure of the sample. Etching rates may be different for
neighboring domains, depending on the orientation of crystal structures with
respect to the surface. We expect that two surfaces arising when a crystal is cut
perpendicularly to a polar direction will have different etching rates. The polar
direction is one whose two ends are not related by any symmetry operation of
the point group. It may be one of several polar directions exhibited by a piezo-
electric crystal or it may be unique. Etching rates are also expected to be
different at crystal defects and thus to have the potential of revealing outcrops
of dislocation lines, small-angle grain boundaries, impurity precipitates. Corre-
sponding etch pits or etch hillocks are known to reflect the crystal symmetry
and so again the study of their shapes can distinguish particular domain states.
Domain walls are in a sense also lattice defects and indeed a sensitively engi-
neered etching experiment can visualize walls and give information about their
width at the surface. While the ‘‘art and science’’ of etching crystals have been
reviewed (see, e.g., Heimann, 1982), it appears that particular aspects of etching
multidomain ferroic crystals have not yet been thoroughly discussed from the
point of view of the symmetry of the crystal and of symmetry relations (includ-
ing enantiomorphism) between the etched material and the etching reagent.

Etched surfaces are usually observed in reflected light using a metallographic
microscope. Much higher resolution can be achieved when the etched relief is
accentuated by shadowing and replica techniques are employed for electron
microscopic investigations of the patterns formed in the evaporated film. First a
small quantity of metal (Cr, CrO2, Au are often used) is evaporated onto the
sample in vacuum, under an angle of 308 or less. The purpose is to emphasize
details of the profile by casting shadows. The decorated surface is then covered
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by an evaporated carbon layer and may be further strengthened by another
layer, e.g., of a solution which after evaporation leaves a film of organic
material. This combined surface film is then removed mechanically from the
crystal or simply made free by dissolving the crystal. The film, now offering a
replica of the crystal surface, is then observed in a transmission electron micro-
scope. The resolving power far exceeds that of optical microscopy and details of
domain shapes of size several hundred angstroms can be easily distinguished as
well as exact shapes of etch pits and hillocks.

Probably the first effort when an etching technique was employed in connec-
tion with domains was to visualize twins in quartz. These crystals are usually
etched in commercial 48% hydrofluoric acid for up to several hours at room
temperature. In quartz, ‘‘electrical’’ (Dauphiné) twins can be classified as ferroe-
lastoelectric domain pairs. In addition, quartz crystals may also contain ‘‘optical’’
twins which have the character of growth twins. All can be distinguished by the
type of etch pits on surfaces perpendicular to the crystallographic axes, as dis-
cussed in detail by Cady (1946). A unique overview of all possible etching figures
of this material was obtained by etching a hemisphere made of quartz and taking
36 pictures from various angles, showing different etching figures (Bond, 1938).

We now present a selected survey of methods used for three ‘‘model’’ ferroic
materials and of issues which could be addressed by etching.

Barium titanate.Antiparallel ferroelectric domainswere first revealed by etching
in single crystals of BaTiO3 (Hooton andMerz, 1955). As-grown plate-like samples
are immersed for several minutes in concentrated HCl at room temperature, then
rinsed in water, and washed in ethyl alcohol (the ‘‘dip technique’’). When observed
in reflected light, using magnification from 100� to 200�, domains with antipar-
allel polarization vectors perpendicular to the surface are visible on both sides of
the plates. (An example of the image obtained this way is shown in Fig. 2.2.4.) This
is because the positive end of PS etches faster than the negative end while the
etching rate of a-domains is intermediate between the two. The mechanism pro-
posed to explain the differences in etching rates (Sawada and Abe, 1966) assumes
that the ions Ba2+ and Ti4+ are decisive for the etching rate. The ion diffusing into
the etchant must overcome a potential barrier which, due to electrostatic interac-
tion, will be lower near the positive end of PS than at the negative end. Therefore,
ions at the positive ends will diffuse more easily, increasing the etching rate.

Many other studies were performed using different etchants. A series of
alternating steps involving the application of an electric field for a given period
of time, removing the electrodes, and etching in a 0.5% aqueous solution of HF
for about 10 s, made it possible to follow the growth of one particular antiparallel
domain and measure domain wall velocity (Miller and Savage, 1958). Repeated
etching in KCl made it possible to monitor how the shape of a domain changes
when it grows or shrinks (Husimi, 1960). Alternatively, one can observe the
domain pattern (Campbell, 1962) and the formation of nuclei of antiparallel
domains (Stadler and Zachmanidis, 1964a) produced by incomplete poling of the
sample. Etching successively first a sample with ‘‘aged’’ domains and then the
same sample in a poled state brings up hillocks aligned along the original domain
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walls and illustrates the interaction between defects and domain walls (Stadler,

1963). A sequence of etching events in a 4% solution of concentrated HCl and

HF taken during a long period of time gave evidence about the coarsening of

antiparallel domains (Rapoport and Dontsova, 1970). An 85% solution of

H3PO4 was claimed to be a slow-etching agent revealing only domain boundaries

and dislocations (Eknadiosyants et al., 1978).
Etching was proved useful to provide information on domains even in

BaTiO3 ceramic samples; some of the most lucid and informative pictures of

domain patterns were obtained by Arlt and Sasko (1980) by etching polished

surfaces in HCl and HF solutions (Kulcsar, 1956).
Etched surfaces of BaTiO3 crystals were also studiedwith transmission electron

microscopy (TEM). Following the etching procedure, plates were shadowed by

chromium (Spivak et al., 1958) or chromium oxide (Beudon et al., 1988) and

carbon replicas were made. This made it possible to observe in detail complex

1808–908 domain structures (Spivak et al., 1958) as well as individual 1808 domain

walls and etched hillocks (Stadler, 1963). Direct TEM observations of domains,

both ferroelastic and nonferroelastic, in very thin BaTiO3 crystals were presented

by Cameron (1957). Checkerboard patterns observed in the orthorhombic phase

on both sides of thin plates testified that these domains penetrate the whole

thickness of the plate. An example of such observation is shown in Fig. 4.2.1.

Fig. 4.2.1 Pattern of ferroelastic domains with three different directions of polarization in the
orthorhombic phase of BaTiO3. The sample surface was etched; this is an electron
microscopic picture of a replica. In the smoothest and roughest areas, the negative and
positive ends of polarization are at the surface, respectively. In the area of intermediate
roughness, PS is parallel to the surface. The real horizontal dimension of the pictured area is
about 4mm. After Cameron (1957). Reprint courtesy of International Business Machines
Corporation, copyright 1957 # International Business Machines Corporation
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Triglycine sulfate. TGS is a crystal soluble in water and represents a model

material for etching methods. This is a uniaxial ferroelectric exhibiting two

nonferroelastic domain states. Its domain structure was visualized for the first

time (Pearson and Feldmann, 1959) by a simple rub technique. A few drops of

water were put at one corner of a thin cloth placed on a flat plane. The (010)

surface of the crystal was rubbed in circular motions; a few passes suffice to

delineate the domain structure. Microscopic observations in reflected light

show that the positive domains have smooth surfaces while the negative

domains correspond to pebbled areas. The etching rate on the positive domains

is higher than on the negative domains (Nakamura and Nakamura, 1962;

Sawada and Abe, 1967).
Using the dip technique, the sample, usually a plate with (010) major surfaces,

is simply immersed in water; at the end of the required etching period it is

quickly transferred to a bath of ethyl alcohol and dried (Chynoweth and

Feldmann, 1960). This method has several advantages compared to the rub

technique: It does not create pebbled surfaces and has a higher resolution. Even

more important, it can be used even at elevated temperatures. The disadvantage

is that the solubility of TGS in water is rather high and increases with tempera-

ture. Therefore, repeated etching in water with the aim to follow some kinetic

domain processes would mean a considerable loss of material.
A number of alternative etchants were investigated with the aim to slow

down the etching rate or to selectively reveal domains, domain walls, and

dislocations; some of these experiments are included in Table 4.2.1.

Table 4.2.1 Additional information on revealing domains by etching

Compound Method Remark Ref.

BaTiO3,
ceramics

Highly polished
samples. Several
drops of 48% HF to
100 ml of 5% HCl,
several minutes at
Troom

Replica technique,
revealed 908
domains

Kulcsar (1956), Cook
Jr (1956), and Arlt
and Sasko (1980)

PbTiO3 HCl or H3PO4, at
elevated T up to TC

Thin film r.f. sputtered
on MgO. Revealed
908 walls and
surface relief, not
1808 walls

Surowiak et al.
(1993) and
Sviridov et al.
(1984)

PbZrO3,
ceramics

Polished and etched in
diluted HCl. Shaded
replicas observed in
electron microscope

Revealed 908 domains.
In poled samples
dense stripe pattern
believed to be
antiparallel
domains

Goulpeau (1969)

Ba1–xSrxTiO3 HCl or H3PO4, in a
large interval of
temperatures

Films sputtered on
MgO; both 1808 and
908 domain pairs
revealed

Surowiak et al.
(1993)
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Table 4.2.1 (continued)

Compound Method Remark Ref.

YMnO3 H3PO4, several
minutes at
130–1608C

Safrankova et al.
(1967)

LiNbO3 See text Shadowing with Ge
and using replica
technique reveals
hillocks on negative
surfaces (010)

Stadler (1963)

LiNbO3 See text Revealed artificial
domain patterns on
(001) or Y-surfaces

Ming et al. (1982),
Feisst and Koidl,
(1985). Baron et al.
(1996), and
Nakamura (1991)

LiTaO3 As for LiNbO3 Makio et al. (1992)

KNbO3 Solution of KHF2 and
HNO3, 20 min at
1008C

Negative domain
etches faster,
1–5 mm/min.
Domains differ in
characteristic etch
pits

Wiesendanger (1973)

Pb(ZrxTi1–x)O3 15 s in 5% HCl
solution with 5
drops of HF per
100 cm3 of solution

Cleaved faces.
Pt-carbon replicas.
Magnification up to
14,000�

Eknadiosiants et al.
(1990)

Pb5Ge3O11 Antiparallel domains
visible on nonpolar
faces

Shur et al. (1989)

BiFeO3 HCl and H2O 1:1 Tabarez-Muñoz et al.
(1985)

Bi4Ti3O12 HNO3 and HF 250:1,
3–5 min at room
temperature

Polycrystalline
samples

Eknadiosyants et al.
(1987)

Bi5(Ti3Fe)O15 HCl conc. at Troom for
5 min or boiling
diluted HNO3,
5 min

Analysis of etch pits
gives information
on possible
direction of PS

Kubel and Schmid
(1992)

Gd2(MoO4)3 2–20% HCl Revealed antiphase
boundaries in
domains of both
polarities

Barkley and
Jeitschko (1973)
and Meleshina
et al. (1974)

SbSI HCl at 18–208C Etching of (110)
surface probably
revealed 1808
domains

Kliya and
Lyachovitskaya
(1970)

TGS CH3COOH with
addition of metallic
Zn and 0.7% H2O
for 1.5 min

Delineates domain
walls. When
0.3–0.7% of
ethylene alcohol or
of HNO3 is added,
also domains are
revealed

Konstantinova
(1962)
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A detailed study of etching TGS in water gave more insight into the etching

mechanism (Sawada and Abe, 1967). When crystal surfaces with different

orientations with respect to the polar axis were etched under identical condi-

tions, the slope of the area representing the domain wall (i.e., the step in height

divided by the apparent width of wall) was found to be constant, equal to 0.05.

Changing the degree of saturation of the etchant (by adding glycine or sulfuric

acid or by changing temperature) it was established that undersaturation is

essential for revealing domains and high undersaturation for forming disloca-

tion pits. Rapid removal of dissolved ions from the surface is favorable for

Table 4.2.1 (continued)

Compound Method Remark Ref.

TGS 30 ml CH3COOH with
0.04 ml HNO3 and
0.0236 g of a-alanine

Reveals both walls and
dislocations, has a
good definition of
etch pits. Includes a
table of many
etchants showing
etching rates of
domains and
dislocations

Meleshina (1964)

TGS CH3COOH with
addition of 1.4%
H2O and 0.7%
HNO3

Delineates
dislocations without
revealing domains

Konstantinova
(1962)

NaNO2 Ethanol with 10% of
water. Rubbing on
‘‘deer’s buff’’ gave
high resolution

3D domain pattern
and its field-induced
changes revealed by
successive etching
and polishing.
Observed
antistripples and
their development

Nomura et al. (1961)

Ca2Sr
(C2H5CO2)6

Methyl alcohol for 30 s Cleavage steps and
domain walls
observed optically

Chaudhari and
Krishnakumar
(1989)

KTiOPO4 H3PO4 plus small
amount of HF,
30–60 min at 1308C

Replicas by
evaporation of Pt
and carbon; fixed by
a gelatine solution

Ivanov et al. (1994)

KTiOPO4 2:1 molar mixture of
KOH/KNO3 at
2208C for 2 s

Houé and Townsend
(1995) and Gupta
et al. (1993)

(NH4)2SO4 H2O, Troom Revealed lines believed
to be antiphase
boundaries

Tomek et al. (1978)

La2Ti2O7 Boiling aqueous
solution of nitric
acid

Revealed both
domains and etch
pits

Nanamatsu et al.
(1974)
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revealing dislocation pits but not for revealing domains. Finally, glycine ions
which are positive were found to play a major role in revealing domains while
negative sulfate ions play a minor one.

Based on these findings, Sawada and Abe developed a model which explains
the difference in etch rates of positive and negative domains as a result of the
difference in the height of the potential barrier, and therefore as consequence of
the difference in rates with which positive ions are removed from the just
dissolving step on the crystal surface.

Several investigators used the dip technique to investigate time changes
occurring in the domain structure after the TGS sample was cooled from the
paraelectric phase to room temperature (Moravec and Konstantinova, 1968;
Dabrowska et al., 1977; Konstantinova and Stankowska, 1971). Repeated
etching shows the time development of a particular domain. Elaborated are
the studies intended to find out how the domain structure of TGS changes with
temperature, which are complicated by the fact that it is often required anneal-
ing and cooling samples in amediumwith defined electrical conductivity, air, or
mercury being the extremes. Therefore, to etch the sample at the required time
and temperature it is necessary to transfer it from this medium into the etchant.
On the other hand, the domain structure in TGS was shown to be very sensitive
to thermal shocks (Chynoweth and Feldmann, 1960). Care must be therefore
taken to eliminate any change of sample temperature during its transfer; also it
must be fast since domain patterns develop with time. These requirements could
be met by sophisticated setups (Safrankova, 1970a,b; Strukov et al., 1972a).
An interesting alternative solution consists of irradiating the TGS sample by
X-rays in the required state (i.e., at a given temperature and time) (Gilletta,
1972). It was shown that this ‘‘freezes’’ the domain pattern at the time of
irradiation (Chynoweth, 1959). The sample can be then cooled, shelved, and
observed at one’s convenience. While in all these studies it was the (010) faces
perpendicular to PS that were etched, it was shown (Chynoweth, 1960) that by
etching sides of a TGS sample parallel to the polar axis it was possible to reveal
‘‘internal’’ domains, not intercepting the surfaces (cf. Fig. 2.2.5).

Similarly as for BaTiO3, etching figures of TGS are usually observed in
reflected light by an optical microscope. But it is also possible to prepare
shadowed negative replicas of the etched surface relief, e.g., by depositing a
germanium layer (Toyoda et al., 1959).

These etching methods were used for a number of studies on equilibrium
domain patterns in TGS, their spontaneous evolution with time, and even for
measuring wall velocities. Some of these results will be discussed in the corre-
sponding chapters.

Lithium niobate. LiNbO3 is another uniaxial ferroelectric in which antipar-
allel domains cannot be optically distinguished by customary methods. When
the polished surfaces (001) are etched for a few minutes in a mixture of one part
HF and two parts HNO3 (by volume) at the boiling point (about 1108C),
adjacent domains etch at very different rates, with negative ends being etched
much faster (Nassau et al., 1965; Niizeki et al., 1967). They also show different
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surface structures. Other etchants based on alkalies gave similar etch rates.
Antiparallel domains were also visualized by etching the (010) surface which is
parallel to the ferroelectric axis.

Table 4.2.1 gives information on some additional experiments. Etching has
proved to be powerful. Itmade possible to obtain information on static structures
but surprisingly it was this classical method which provided data on some slow
dynamic processes like domain wall velocities in barium titanate (Miller and
Savage, 1959b) or the time evolution of antistripples (special kind of antiparallel
domains) in crystals of NaNO2 (Hamano et al., 1996, 1995). It has a fairly good
resolution and can be employed for both transparent and nontransparent mate-
rials. It can reveal either domains or just walls including antiphase boundaries; it
can selectively visualize walls or dislocations. In its basic form it is inexpensive for
its simplicity, the only sophisticated instrument being a microscope suitable for
observations in reflected light. The disadvantage is that it gives only surface
picture and is in a sense a destructive method although it can be used repeatedly.
Its limitation is the temperature range in which it can be employed since etching
rates depend on temperature and generally it is difficult to etch at very different
temperatures. The latter problem has been avoided by quenching the slowly
evolving domain structure (Hamano et al., 1995) or by more involved methods
allowing etching at elevated temperatures mentioned above.

4.3 Other Methods Based on Surface Relief

Etching is not the only way in which a relief on the surface of a crystal or ceramic
grain can be achieved. It is obvious that when a domain pair is ferroelastic, a
surface profile will be formed naturally on properly oriented surfaces when the
transition temperature is passed, due to the differences in orientations of unit
cells. This property has not received much attention for an obvious reason,
namely that in most cases a ferroelastic domain pair can be also distinguished
in polarized light. Obtaining some information about ferroelastic domains by
studying surface deformations would be advantageous for nontransparent crys-
tals or for ferroelastics in the form of films deposited on substrates. Using replica
technique, very minute surface details due to domains, inaccessible by optical
methods, can be visualized even for transparent crystals, but real data are scarce.
The surface relief of a BaTiO3 crystal containing 908 domains wasmapped in this
way (Spivak et al., 1958) and observed with magnifications up to 25,000.

There is one point to consider when preparing a sample for the observation of
surface profiles due to ferroelastic domains. If the sample is polished flat in the
multidomain state in the ferroic phase and then transformed—usually by heat-
ing—into the parent phase, its surface will become deformed due to the disappear-
ance of spontaneous deformation and seemingly domains will be detected when
they do not exist anymore. This could lead to erroneous conclusions. Repeated
cycling through a phase transition can then lead to a superposition of ‘‘living’’ and
‘‘fossil’’ domains, both detectable on the surface at the same time (Schmid, 1993).
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The depth of surface profile can be determined by evaluating stereoscopic

pictures (Igras, 1959). Bhide and Bapat (1963) developed an alternative approach

based on interferometric methods which offers fairly high resolution. The sample

is vacuum coated with a highly reflecting Ag layer and matched against a

correspondingly silvered optical flat. When illuminated by a collimated beam,

multiple beam Fizeau fringes form between the crystal and the flat, which are

microscopically examined. Any changes in level of the crystal surface are depicted

as fringe shifts and a well-adjusted setup can distinguish level changes of several

angstroms (Bhide and Chilmulgund, 1965). This multiple beam interferometry

makes it possible to collect data on surface profile of a BaTiO3 crystal due to 908
domains. Figure 4.3.1a shows schematically the profile due to one c-domain in an

a-domain environment. Obviously, the angle a is related to the tetragonal lattice

parameters a and c by tan a¼ (c–a)/a. At room temperature the measured value

(a)
(b)

(c) (d)

Fig. 4.3.1 (a) Surface deformation due to tetragonal spontaneous strain. (b) The domain
configuration in deformed BaTiO3 plate with 908wedges. Interferograms of the upper (c) and
lower (d) surface of the plate with the domain configuration shown in (b). Rreprinted with
permission from Bhide (1963). Copyright (1963), American Institute of Physics
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was a¼ 320 which agrees well with the known lattice constants. Figure 4.3.1c,d
shows interferograms of both surfaces of a BaTiO3 plate. Figure 4.3.1b illustrates
how the plate is deformed due to 908wedge-shaped domains. This methodmakes
it even possible to observe minute dynamic changes of domains induced, e.g., by
electric field in real time.

Using an interference reflection microscope to observe properly oriented
faces of an as-grown crystal, fringes arranged in interference patterns (giving
evidence about the geometry of domain pattern) could be observed in multi-
domain crystal of any ferroelastic. Weber et al. (1975) showed that domains in
NdP5O14 differing in the sign of spontaneous shear can be well visualized in this
way.

Surface relief corresponding to the geometry of nonferroelastic domains can
be produced in some materials without etching. It was found that even by mere
polishing of the c-face of LiNbO3 antiparallel domains are revealed (Nassau
et al., 1965), due to a slight difference in hardness.

A unique situation occurs in TGS. It is known that its most pronounced
cleavage plane is perpendicular to the polar b-axis. However, when a TGS
crystal is cleaved in a way that the cleavage crack propagates along the c-axis,
the cleavage planes in neighboring domains with opposite polarization can be
slightly inclined with respect to each other (Nakatani, 1989a; Konstantinova,
1962; Nakatani, 1975). Alternatively, the cleavage planes can be differently
curved in different domains (Nakatani, 1979). Thus the polar surface of the
crystal is spatially modulated in a way corresponding to the domain structure at
the time of cleaving. When the surface is coated with evaporated silver, this
pattern can be seen in reflected light or in a differential interference microscope.
This method of visualizing domains in TGS can be used also at elevated
temperatures and was employed to study domains close below TC (Nakatani,
1989a) when, in an early stage of their evolution, they are too small to be
delineated by liquid crystal decoration (see next sections). The smallest domains
observable with this method are only 20 nm wide.

The cleavage process as a tool to delineate nonferroelastic domains was
found functional also in crystals of Pb5Ge3O11 (Shur et al., 1993a,b). Here the
pronounced cleavage planes are f10�10g parallel to the polar axis. However,
when the cleavage propagates under a small angle to this plane, the cleaved
surfaces show a relief which can be seen in a microscope under oblique illumi-
nation and corresponds to the domain structure.

4.4 Surface Decoration Techniques

Surface decoration techniques are based on interactions between a decorating
agent and the substrate which is a multidomain crystal. Differences in these
interactions, leading to domain revealing, depend on the microscopic atomic
surface structure and its orientation. These techniques led to many useful
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observations but, with the exception of decoration with nematic liquid crystals,
no theoretical attempts seem to have been undertaken to explain the interac-
tions underlying these phenomena.

Decoration methods have a wide range of resolving power, depending on the
size of decorating particles. The latter may be quite large, up to several micro-
meters in diameter. Most of such recipes are nondestructive and require rela-
tively simple observation in reflected light. The other extreme is a resolution of
several nanometers achieved, e.g., by evaporation of thin oriented films. These
methods require that a replica is formed, to be observed in a transmission
electron microscope. Often the substrate, i.e., the crystal under study, has to
be dissolved to free the replica film, which makes the method fatally destructive.

Surface decoration methods usually require carefully prepared surfaces.
Therefore again, as with the etching methods, the frequently studied materials
are those with well-developed cleavage planes (TGS, GASH) or compounds
crystallizing in the form of flat platelets (flux-grown BaTiO3).

4.4.1 Colloidal Suspensions

Particles in a colloid may acquire a double-layer charge when brought in
contact with a liquid. Depending on the orientation of their dipole layers,
they may be attracted to the negatively or positively charged objects. This
idea was developed into a simple decoration technique for visualization of
ferroelectric domains (Pearson and Feldmann, 1959). Powders of sulfur and
lead oxide were used to prepare colloidal solutions in hexane. A few drops of
one colloid solution placed on a cleaved polar surface of TGS, GASH, or
GUSH (guanidinium uranyl sulfate trihydrate) crystal result immediately in
coloring the appropriately charged domain. The yellow powder in the sulfur
colloid deposits on negative domains, leaving positive domains vacant. After
the solution evaporates, positive domains may be colored red by depositing the
lead oxide colloid. Colored domain pattern stays so indefinitely. The resolution
in these experiments was limited by the particle size between 3 and 4 mm.

This method, often referred to as powder deposition, provided information
on domain shapes in TGS, nucleation of new domains, and even on lateral
growth of domains in applied field (Chynoweth and Abel, 1959a,b). It was also
shown (Chynoweth, 1960) that decoration of polar faces can reveal spike-
shaped domains which stop not reaching the crystal surface and, even more
interesting, that such internal domains can be revealed by decorating nonpolar
faces of the crystal.

Several colloidal solutions were tested to reveal domains in Ca2Sr(C2H5

COO)6 crystals (Mochizuki and Futama, 1967) but with an unsatisfactory
resolution.

In the most successful reported modification of this technique a commercial
liquid developer diluted by n-hexane was used (Hatano et al., 1973). The sample
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is immersed in the diluted developer and then rinsed in n-hexane. Carbon

particles are positively charged in the developer and deposit on negative

domains. This method offers a higher spatial resolution; carbon particles

about 0.1 mm in diameter coagulate to clusters with the diameter of about

0.5 mm. Figure 4.4.1 shows domains on the opposite sides of a TGS sample

revealed by this method by Hatano et al. (1973). The figure indicates the

presence of small domains within the large island-shaped domains. These

authors also showed that the method can be employed at low temperatures by

using n-pentane instead of n-hexane; domains in Rochelle salt were revealed at

–208C and in thiourea at –1308C. Suda et al. (1978a) showed, observing

domains in GASH, that even large crystal areas can be visualized concurrently

when the decorated surface is projected on a photographic film.

This technique was successfully employed for investigations of domain

shapes in TGS (Hatano et al., 1978), even at different stages of polarization

reversal (Nakatani, 1989b), and in TGS doped by alanine (Nakatani, 1991b); it

served to establish that cleaving TGS may result in a domain-related surface

profile (Nakatani, 1975). The method also proved useful for investigating the

patterns due to screw dislocations on the polar faces of GASH crystals (Shur

et al., 1982; Hatano et al., 1985b) which are also connected with charge

distribution.
A remarkable alternative of decoration was proposed quite early (Pearson

and Feldmann, 1959). When a colloid of fine barium titanate powder in hexane

was used, particles deposit at domain boundaries. This may be understood on

Fig. 4.4.1 The 1808 domains in TGS imaged on opposite sides of a plate by powder pattern
technique. Lines are scratches on the cleaved surfaces. Small dots correspond probably to a
large number of small domains. After Hatano et al. (1973)
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the basis of high permittivity of these particles which are attracted into locations
with high electric field gradient. Interestingly enough, this method does not
seem to have been developed and used any further.

In addition to the just described ‘‘powder’’ methods, other procedures using
somewhat related techniques were suggested. Thus domains on nonpolar faces
of ferroelectric SbSI were visualized by selective crystallization of SbI3 (Kliya
and Lyakhovitskaya, 1970b).

Laurell et al. (1992) pointed out that liquid toners are currently available,
which contain either negatively or positively charged black particles. They can
be easily used for domain decoration with a resolution of several micrometers.
This was demonstrated by visualizing an artificially produced domain pattern
in plate-like samples of ferroelectric KTiOPO4. This technique was also success-
fully used to picture domains in TGS byOzaki et al. (1996); their studies pointed
to the important possibility the method offers in studying bound charge com-
pensation phenomena.

4.4.2 Decoration by Sublimation and Vacuum Evaporation

We have already discussed how decoration by deposition in vacuum helps
visualize the surface profile; this shadowing technique is based on the geometry
of the surface. Now we wish to pay attention to decoration techniques in which
the surface relief is nonexistent or not significant. They are based directly on the
interaction between the multidomain sample as a target and landing particles
which are formed by sublimation or vacuum evaporation. Domains are distin-
guished by differences in size or density of deposited particles or by the oriented
epitaxial crystallites.

TGS crystals—what else!—serve to verify the usefulness of sublimation techni-
ques. Sublimated anthraquinone (Kobzareva et al., 1970) produced needle-shaped
crystals with linear dimension of 20–80 mm; the deposited texture distinguished
between the domains but with a resolution corresponding to this size. A better
resolution was achieved with auramin (Shenyavskaya and Distler, 1976). Particles
formed on the TGS surface have a higher density on positive domains; they even
decorate domain walls. Still, their size of 2 mm in diameter is not satisfactory.

A considerably higher resolution is offered by methods employing vacuum
evaporation. Particles in the evaporated decorating layer are principally of much
smaller size than particles in colloids or those achieved by sublimation and the
resulting patterns is worth of investigating by electron microscopy. The method
was pioneered by decorating polar surfaces of TGS (Takagi and Suzuki, 1966;
Takagi et al., 1967; Distler et al., 1967, 1968) and NaNO2 (Takagi and Suzuki,
1966; Takagi et al., 1967) crystals with silver. Electron microscopic observations
of replicas showed that the density of particles formed on the surface was
considerably higher on negative domains (of the order of 2 � 1011 cm–2), where
also their size, generally a very small fraction of a micrometer, was somewhat
larger. Thus domains were revealed with a submicron resolution.
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The method, often referred to as electron microscope decoration technique

(Hilczer et al., 1981, 1989), has been used repeatedly to delineate nonferroelastic

domains in several ferroelectric materials. Understandably, high-quality smooth-

ness of the surface is required to avoid decoration of artifacts; for this reason, by

now investigations have been reported only for cleaved surfaces or crystals

growing in form of smooth plates. The method was considerably improved by

cleaving the crystals when already in high vacuum to avoid contamination of

surfaces, and by fine tuning of the film thickness which can be measured during

the evaporation process by a quartz oscillator. The resolving power under normal

conditions is about 0.1 mm but with special care in the decoration process and

using low electron densities in TEM observations of replicas a much higher

resolution may be achieved, assessed to 5 nm (Hilczer et al., 1981, 1989). The

method was shown to be practical at both elevated and low temperatures (Distler

et al., 1967; Gonzales and Serna, 1984; Hetzler and Würfel, 1978).
Very good results were reported with AgCl layers; the optimum thickness

appears to be 8 nm for TGS and 20 nm for GASH and LAS (NH4LiSO4)

(Szczesniak et al., 1976; Hilczer et al., 1989; Schmid et al., 1988b). The contrast

revealing the domain structure appears to be in most cases due to the differences

in density and size of the evaporated particles. The amount of information on the

epitaxial relations of deposited particles is still scarce. The diffraction analysis

(Hilczer et al., 1989) showed that, on both domains inTGS, theAgCl particles are

crystallographically oriented in the same way, namely that the direction [100] of

AgCl is parallel to the direction [001] of TGS. On the other hand, on the polar

surface of GASH the epitaxial relations of the deposited particles with respect to

the lattice of the substrate are very different for both domains (Meyer, 1988;

Hilczer et al., 1989; Stasyuk et al., 1997); the analysis of the diffraction patterns

showed that, on positive domains of GASH, the AgCl particles have the (012)

plane as the contact plane while on negative domains the contact plane is (001)

(Meyer, 1988). Figure 4.4.2 shows domains on the surface of a GASH crystals

decorated by AgCl (Szczesniak et al., 1976), imaged soon after the crystal had

been grown. The contrast deteriorates for crystals several years old.

Fig. 4.4.2 TEM picture of a
carbon replica of 1808
domain structure on the
polar face of a GASH
crystal, decorated by AgCl.
Reprinted with permission
from Szczesniak (1976).
Copyright (1976), Wiley-
VCH Verlag GmbH & Co.
KGaA
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The mechanism of decoration is not yet well understood and there are also
many controversies.

In addition to numerous experiments performed with the model and well-
cleavable materials TGS (Szczesniak et al., 1995; Weidmann and Anderson,
1971; Hilczer et al., 1981) and GASH (Szczesniak et al., 1976, 1985,1988; Hilczer
et al., 1989; DeWainer et al., 1980), some other crystals were also investigated by
this method. Thus antiparallel domains in BaTiO3 can be visualized by evapora-
tion of Cd, but onlywhen the crystal has been ‘‘presensitized’’ by immersion into a
solution of AgNO3 in ethyl alcohol (Sawada and Abe, 1966). In the crystals of
LAS, AgCl decoration works well on polar (010) as well as nonpolar (305)
surfaces, both cleaved (Schmid et al., 1988b; Hilczer et al., 1989).

As an alternative to the evaporation of metals or alkali halides the use of
polymers as decorating agents was suggested (Wicker et al., 1990, 1989); how-
ever, the achieved resolution was lower than for the decoration methods
described above.

4.4.3 Deposition in Liquids

Related to the employments of colloids and having some features common with
depositing epitaxial layers are methods in which the crystal is simply immersed
in an appropriate liquid. This was tested for visualizing 1808 domains in BaTiO3

(Sawada and Abe, 1966): The crystal is put into concentrated HCl saturated
with PbCl2. Fine crystals of PbCl2 are rapidly formed whose density strongly
depends on polarity of the substrate. The resolution is in the range of a few
micrometers.

Another technique was used (Bhalla and Cross, 1977; Cross and Bhalla, 1978;
Bhalla and Cross, 1981) for delineating ferroelectric domains in Gd2(MoO4)3. A
polished (001) plate is dipped for a few seconds into dilute HF. In reflected white
light the sample now exhibits brilliant colors which are markedly different on
opposite domains. The analysis showed that a closely adhering film of GdF3 is
deposited with thickness—of the order of 200 nm—differing for opposite
domains. Because of large difference between refractive indices of the film and
of the substrate strong interference colors occur in reflected light.

4.4.4 Condensation of Vapor

It was suggested by Toshev (1963a,b) and Strukov andToshev (1964) that domain
walls could be decorated by condensation of vapor. The technique, often referred
to as solid dew method, consists of cooling down a plate-like ferroelectric sample
to the temperature of liquid nitrogen; the sample is then quickly transferred onto
the microscope stage and observed in reflected light.Water molecules from the air
condense on the surface, preferentially decorating domain walls. The mechanism
is believed (Toshev, 1966) to be connected with the dipole moment of H2O
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molecules which carries them toward the region of high electric field gradients at
the intersections of domain walls with the sample surface. The method gives
quickly basic information about domains in crystals with low transition tempera-
tures and was employed to reveal domain patterns in crystals of KDP,
(NH4)2BeF4, (NH4)2SO4, and thiourea (Koptsik and Toshev, 1965; Toshev,
1966) but is very damaging in subjecting the samples to thermal shocks.

This method of vapor condensation can be made more gentle when the
condensed particles are in liquid state (Fousek et al., 1966; Safrankova et al.,
1966). A ferroelectric crystal is placed in a closed chamber into which at a
required moment saturated vapor of a suitable liquid is sucked, having the
temperature slightly higher than the crystal temperature. On its surface conden-
sation takes place whose intensity can be finely adjusted. The chamber is pro-
vided with a window so that the pattern of condensed droplets can be observed in
a metallographic microscope. With butyl alcohol vapor domains in TGS and
TGFB were visualized in this manner (Fousek et al., 1966; Safrankova et al.,
1966). In some cases the condensation took place preferably on domain walls
while in others the density of tiny droplets was different on antiparallel domains.
The resolution of this method in its original version did not exceed 5 mm.

4.4.5 Decoration by Liquid Crystal Layers

The alignment of liquid crystals (LC) on surfaces of solids was investigated
nearly a century ago when it was found (see, e.g., Mauguin, 1911) that on
cleaved surfaces of various minerals nematic LCs can form homogeneous layers
with distinct orientations of optical axes which are in simple relations to the
symmetry of the crystalline substrate. Furuhata and Toriyama (1973) were the
first to succeed in using this principle to visualize domains in a ferroelectric
crystal and as so often triglycine sulfate served as the model material. The
method was further developed by Tikhomirova with coworkers and its princi-
ples were discussed in detail also by Glogarová et al. (1979), Glogarová (1981),
andNakatani andHirota (1981). For a long time it was used to study properties
of domains in TGS and it was even possible to investigate some of their dynamic
properties in real time. Later the technique has been shown to be applicable to a
number of ferroelectrics, often under different conditions. Basically, in this
method one uses optical microscopy to observe the result of surface decoration
and thus it is mainly useful for domains which do not enable a contrast based on
intrinsic optical properties of the crystal.

In the basic experimental arrangement, a thin layer of a nematic liquid
crystal (NLC) is inserted between a plate-like sample with a cleaved upper
surface and a glass cover plate. Typically, the layer thickness ranges from a
fewmicrometers to several tens of micrometers. The NLCmolecules may orient
differently above different domains and this leads to an optical contrast in
polarizing microscope. Obviously, the sample itself has to be transparent.
More advanced setups are shown schematically in Fig. 4.4.3. In case (a) bottom
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surfaces of the sample and of the cover glass are provided with transparent
electrodes (e.g., SnO2 layers); thus a voltage can be applied to the system
NLC+ crystal and field-induced changes of domains can be observed (Tikho-
mirova et al., 1985a). In case (b) the upper electrode is located on a small side
part of the sample so that simultaneously with optical observations in zero field,
capacitance of the sample can also be measured (Nakatani, 1985). For ferro-
electric sample, this makes it possible to determine with high accuracy the
distance of the current temperature from the transition point. The setup is
observed on a microscope stage and can be heated using an appropriate cham-
ber. In yet another modification, NLC layers are inserted between both surfaces
of the sample and glass plates so that the domain pattern corresponding to
either surface of the sample can be observed by proper focusing. In all cases,
typical thickness of the LC layer is a fewmicrometers while the sample thickness
can reach the order of millimeters.

With only few exceptions, nematic LCs have been used for domain visuali-
zation. In particular, MBBA (p-methoxybenzylidene-p0-n-butylaniline) or a
mixture of MBBA and EBBA (p-ethoxybenzylidene-p0-n-butylaniline) is
often employed. For the ratio 1:3 of these two, the nematic phase is stable
between 22 and 708C and this makes it practical for observations of TGS
crystals (Nakatani, 1985). For imaging domains in NaNO2, the ratio 3:2 was
employed (Hatano and Le Bihan, 1990), but also mixtures of other NLCs such

Fig. 4.4.3 Typical experimental setups for domain decoration by LC layers
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as pentyl- and heptyl-cyano-biphenyl in the ratio 59:41. For high-temperature
observations of the same material alkylphenyl-cyclohexylbenzoate was used
which is nematic between 90 and 1858C (Hatano et al., 1990a).

A very useful setup was designed by Tikhomirova et al. (1991a,b): In a
specially developed cell the sample can be cooled and maintained at a given
temperature to within �0.058C for a long time using the method of constant-
rate evaporation of nitrogen. This made it possible to investigate domains in
crystals of Li2Ge7O15 whose transition temperature is 283K. The LC usedwas a
mixture of cyanodiphenyles which does not crystallize down to temperature of
–658C.

As an example of the possibilities this method offers, Fig. 5.4.2 shows the
time development of domains in TGS (Nakatani, 1985), visualized in the setup
of Fig. 4.4.3b. After keeping the specimen, a plate perpendicular to the polar
direction, well above TC for 1 h, it was slowly cooled and in the phase
transition region the cooling rate was reduced to 0.0068C/min. Domain struc-
ture was observed simultaneously with measuring the capacitance and the
temperature of its maximum defined TC. Microphotographs were taken just
below TC¼ 49.688C at intervals of 4 min. Until the temperature reaches TC, no
patterns are visible. Immediately below at DT¼TC – T¼ 0.028C lamellar pat-
terns narrower than 0.5 mm appear. With further decreasing temperature
and increasing time domains become clear and coarse. Figure 5.4.3 shows that
even if T is then kept constant, the evolution of domains does not cease. Such
observations are unique and hardly another method could provide similar data.
Here the evolution process is rather slow; generally, several authors estimated
that the LC decoration can, in the best case, offer a response time of the order
of milliseconds.

To understand the alignment effect on TGS, we have to realize that NLC
molecules are optically uniaxial rods, long compared to their diameter, with
optic axes parallel to the long axes. They have a permanent dipole moment m
and their anisotropy leads to dielectric anisotropy Dk ¼ kjj � k? of the mate-
rial, where kjj and k? are permittivities in fields parallel and perpendicular to the
long axis of the molecules, respectively. A layer formed by aligned molecules is
birefringent. Since the underlying crystal is also birefringent, the analysis of
optical properties of the whole system may not be simple.

The first qualitative interpretation (Furuhata and Toriyama, 1973) con-
nected the alignment effect with the electric field above the crystal surface,
whose directions may be opposite above domains of opposite polarities. How-
ever, as noticed by Tikhomirova et al. (1978), if long axes of molecules are
parallel to the surface, orienting m up and down would not result in optical
differences of molecules. These authors investigated the behavior of four dif-
ferent NLCs with different dielectric anisotropies, Dk ¼ �0:3, –5, +10, and
+0.05. In all cases opposite domains are revealed by black/white contrast.
However, changing the sign of Dk results in reversing the contrast: black
domains appear white and vice versa. On freshly cleaved surfaces and on
surfaces cleaved several years ago and exposed to air the contrast is the same.
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On polished or etched surfaces of TGS the static domain structure is not
revealed.

The authors pointed out that there are three essential factors influencing
the LC orientation above the TGS surface. (1) Based on the fact that positive
ends of domains dissolve much faster, it is concluded that in these regions
the screening radius rD is reduced and thus above positive domains the field
extends over a smaller distance from the surface. (2) Because the van der Waals
interactions between NLC molecules and crystal surface are anisotropic,
NLC molecules will have the tendency to be oriented along crystallographic
directions on the cleavage face of TGS. This is true particularly on ‘‘–’’ domains
whose surfaces are poorly soluble. (3) The adsorbed water film may also have
an ordered structure which in turn may induce corresponding orientation
of LC.

Glogarová (1980, 1981) investigated the situation by completing the experi-
mental setup with a cover glass on whose surface an ‘‘easy direction’’ was
produced by rubbing; this direction tends to the orient long axes of LC mole-
cules. Perfect pictures of domains were obtained with nematics with Dk50
(MBBA or MBBA+EBBA), while nematics with Dk40 (a mixture of cyano-
biphenyls) offered pictures disturbed by many defects and changed with time.
The analysis of optical observations led to the conclusion that LC molecules
make planar alignment on the surfaces of both domains, however, with differ-
ent easy directions. On minus domains the director is along the [001] direction;
on plus domains it is along one of the [508] or ½70�2� directions. It is natural to
assume that the observed alignment is due to anisotropic surface anchoring and
one can look for easy directions provided by channels in the surface structure of
the ferroelectric crystal. The analysis of TGS structure indicated (M. Glogar-
ová, unpublished) that there exist cleavage planes whose simplified electron
maps indicate the existence of structural channels clearly pronounced along the
c-axis; this would explain the LC orientation on negative domains. However, no
channels were found which could provide the other easy direction [508] or ½70�2�;
this orientation might originate in an anisotropic interaction between MBBA
molecules and those parts of TGS molecules which change at switching, i.e.,
mainly NH3 groups.

Using the mixture MBBA+EBBA, Glogarová (1981) reached a very inter-
esting result, namely that some domains in TGS remain visible even at tem-
peratures far above TC where they do not exist; the contrast of some of them is
fading but these remain encircled by loops. This contrast may be relevant twist
disclinations in the liquid crystal. Lejcek (1983) showed theoretically that above
a domain wall such objects can form, being stable when the ferroelectric is
transformed into the paraelectric phase. The issue of liquid crystal molecule
orientation on TGS surface has been also discussed by several authors (Naka-
tani and Hirota, 1981; Tikhomirova et al., 1978) who suggested alternative
scenarios.

We have discussed in some detail models that have been developed to explain
the mechanism of domain visualizing; all of them applied to TGS since it is for
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this material that reliable data could be obtained most easily. However, the
method itself was used for a number of other ferroelectric materials. Hatano
et al. (1990a) applied the method to crystals of NaNO2. It has perfect cleavage
planes (101) and ð10�1Þ which are parallel to PS and on such surfaces two kinds
of contrast were observed: dark-bright on domains of opposite polarities and
domain wall contrast. Domains on nonpolar surfaces of ferroelectric crystals
were also visualized for LiH3(SeO3)2 by Anisimova et al. (1984) and for
KTiOPO4 by Ivanov et al. (1993, 1994).

As already mentioned, in the arrangement shown in Fig. 4.4.3a, it is possible
to apply a voltage to the system crystal–LC layer and observe dynamic proper-
ties of domains. Konstantinova et al. (1978) were probably the first to perform
such experiments, with MBBA layer on TGS. They observed slow switching
processes and estimated that the response time of LC reorientation was less
than 0.1 s. Since then a number of authors employed this method to study
specific dynamic characteristics of ferroelectric switching and domain wall
motion. However, it has to be borne in mind that in this regime the distribution
of electric field is complicated and time dependent: We have a two-layer system
and as the wall moves it creates a layer of bound charge which then is compen-
sated in a not well understood way. Therefore, the obtained data are difficult
to interpret. Indeed Dontsova et al. (1982) and Tikhomirova et al. (1985b)
showed that if the gap between the electrode and sample surface is filled with
an NLC layer, the velocity of sidewise motion of walls is considerably smaller if
metallic electrodes are applied on the sample surface or if electrodes are made of
various electrolytes. This indicates that an NLC layer with low conductivity
produces intermediate conditions for compensation of the formed bound
charge compared to conducting electrodes or to a dielectric gap. The layer
serves as a medium for the transport of charges (its electrical resistivity is of
the order of 108–109 Om), which are either inherent charges or charges injected
from electrodes.

To mention some examples, we refer to the work of Dontsova et al. (1981,
1982, 1994) or Tikhomirova et al. (1985b, 1980b) who investigated laws of
domain dynamics in polarization reversal of TGS crystals. It was at these
experiments that an interesting new feature was observed. In most investiga-
tions performed in the earlier stages, TGS crystals had to be cleaved in order
that domains could be visualized by the discussed technique: For cut and
polished samples no contrast was observed under normal conditions, probably
because of the existence of a degradation layer at the surface. However, if an ac
electric field is applied to the NLC-sample system, contrast appears for any
surface. Thus moving domain walls in polished deuterated TGS were visualized
(Tikhomirova et al., 1985b) when in addition to the switching field also a weak
high-frequency ac field was applied. The possible explanation (Tikhomirova,
private communication) is that if a domain wall is moving, the impedance of the
crystal in the region of the wall changes. Therefore, the voltage drop in the LC
layer above the moving wall also changes and this induces local electrohydro-
dynamic instabilities in the LC layer. Yet the contrast origin may be different
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(Tikhomirova et al., 1980a): On polished samples there is no contrast between
domains but domain walls are well visible in both polarized and unpolarized
light as dark lines whose thickness is of the order of the NLC layer thickness. A
large amount of switching or wall velocity data have been collected by this
method; however, because of the presence of the LC layer, the boundary
conditions are relatively complex and evaluation of these data is complicated.

Dynamic observations are not limited to the TGS family of crystals. Hatano
et al. (1990a) as well as Galtsev et al. (1990) visualized moving domain walls in
crystals of NaNO2. Polomska and Jakubas (1990) observed the growth of 1808
domains in (CH3NH3)5Bi2Br11. Sakata and Hamano (1992, 1993) investigated
plates of K2ZnCl4 with NLC layers on both surfaces, sandwiched between two
transparent electrodes. The microscope could be focused on either surface of
the sample. In zero field no domains were visible while moving domain walls
when a dc field is applied became visible. Thus the polarization reversal process
can be observed in situ and recorded by a video camera. Vysochanskii et al.
(1992) made similar observations on crystals of ferroelectric semiconductor
Sn2P2S6.

4.5 Scanning Force Microscopy-Based Techniques

Rapid development of electronic devices based on ferroelectric thin films gen-
erated a strong need for studies of ferroelectric properties at the nanoscale.
Fortunately, this need appeared at the same time as new techniques became
available, which enable materials characterization which has a spatial resolu-
tion of a few nanometers. Specifically, scanning force microscopy (SFM) has
emerged as a powerful tool for high-resolution characterization of virtually all
types of materials, such as metals, semiconductors, dielectrics, polymers, and
biomolecules. A number of papers and books on scanning probe methods have
already been published, which can be used as an introduction to the principles
of scanning force microscopy (see, e.g., Bonnell, 2000). In the field of ferroelec-
tricity, the application of the SFM technique resulted in a real breakthrough
providing an opportunity for nondestructive nanoscale visualization of domain
structures. The employment of SFM made possible nanoscale mapping of the
surface potential, evaluation of local electromechanical properties, and dielec-
tric constant measurements. In other words, characterization by means of SFM
provides crucial information on the dielectric properties of ferroelectrics with
unprecedented spatial resolution.

Scanning force microscopy can be considered as a combination of a surface
force apparatus and a surface profilometer as it is based on local monitoring of
the interaction forces between a probing tip and a sample. The forces acting on
the tip after it has approached the sample surface cause a deflection of the
cantilever to which the tip is attached. This deflection can be detected optically
or electrically with sub-angstrom accuracy and is controlled by a feedback
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device, which regulates the vertical position of the tip as it scans the sample
surface. Scanning is realized by placing the sample on a piezoelectric scanner,
which allows for lateral and vertical positioning of the sample relative to the tip
with nanometer precision. By keeping the cantilever deflection constant during
scanning, a three-dimensional map of the surface topography can be obtained.
Besides this method, called the constant force mode, many other modes have
been developed. The response of the cantilever to the externally modulated
force (for example, due to an applied ac bias) can be used to map such physical
properties as mechanical stiffness, friction, electric fields, and density of elec-
tronic states.

Depending on the type of tip–sample force interaction—attracting or repelling—
the SFM can operate in two different regimes: non-contact or contact. In the
non-contact regime, the tip is scanned over the surface at a distance of 10–100 nm,
which is controlled, for example, by monitoring the resonant frequency of the
cantilever (Martin et al., 1987). The tip–sample interaction in this regime is
dominated by the long-range electrostatic forces. Because of this feature, non-
contact SFM can be used for ferroelectric domain imaging by detecting the
electrostatic field of the surface polarization charges. This mode of SFM is called
electrostatic force microscopy (EFM) (Stern et al., 1988). Quantitative informa-
tion on local surface potential related to spontaneous polarization can be obtained
by means of scanning surface potential microscopy (SSPM) (also called Kelvin
probe forcemicroscopy (KPFM) (Martin et al., 1988; Nonnenmacher et al., 1991;
Barrett and Quate, 1991), a technique complementary to EFM. General disad-
vantages of non-contactmethods include sensitivity to screening effects, sensitivity
to sample surface conditions, and low resolution in ambient air.

In the contact regime, the probing tip is in mechanical contact with the sample
surface and senses repulsive short-range forces. The difference in mechanical,
structural, electrochemical, dielectric, and piezoelectric properties of ferroic
domains can provide domain contrast in the SFM contact regime. Contact SFM
methods of domain imaging include a topographic mode of atomic force micro-
scopy (AFM), lateral (friction) force microscopy (LFM), piezoresponse force
microscopy (PFM), and scanning nonlinear dielectric microscopy (SNDM).

A general feature of all scanning force microscopy-based techniques to be
mentioned is their sensitivity solely to the properties of the material in interface-
adjacent areas, except for the ‘‘electrode through’’ version of PFM.

4.5.1 Electrostatic Force Microscopy (EFM)

Imaging of ferroelectric domains in the non-contact mode is based on the
detection of the modulated electrostatic interaction force between the probing
tip and polarization charges. Figure 4.5.1 shows a typical setup used for this
kind of imaging. Using this approach, a pioneering work on SFM domain
imaging has been performed by Saurenbach and Terris (1990) in a single crystal
of gadolinium molybdate. In EFM, the cantilever is made to oscillate near its
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resonant frequency using a piezoelectric bimorph.When the tip is brought close

to the surface, the attractive force gradient acting on the tip @F/@z alters the

force constant k0 of the cantilever as k
0 ¼ k0 � @F=@z. This, in turn, leads to the

change in the resonant frequency and in the vibration amplitude. This change is

a key in the EFM domain imaging.
In the non-contact mode of operation two techniques can be used: amplitude

modulation (AM) and frequency modulation (FM). In the AM method, the

cantilever is oscillated at a fixed frequency and a change in its vibration

amplitude, which is caused by the tip–sample interaction, is detected. In the

FM mode, the feedback loop adjusts the tip–sample distance so as to maintain

the amplitude of oscillation constant at the new frequency. In this case the

frequency change, which reflects the force gradient acting on the tip, is detected.

Obviously, in the case of the ferroelectric sample, there is an electrostatic

contribution to the attractive force due to the Coulomb interaction between a

surface polarization charge and an image charge (charge induced in the tip by

the surface charge) Qt in the probing tip. In the Saurenbach and Terris experi-

ment, as the tip crossed the wall, it experienced a change in the force gradient

and the feedback loop altered the tip–sample distance so as to keep the gradient

and the vibration amplitude constant. This produced a variation of contrast in

the feedback signal image, which could be interpreted as an image of the

domain wall (Lüthi et al., 1993a,b; Lehnen et al., 2000). Since the Coulomb

force is proportional to the product of the polarization and image charges, the

force gradient signal provides information only on the polarization magnitude

and not the sign. This implies that the contrast of opposite 1808 domains will be

the same and that only domain walls will be visible due to the spatial variation

of the charge density in the vicinity of a 1808 domain boundary.

Fig. 4.5.1 Schematic of a setup for electrostatic force microscopy. 1, sample; 2, SFM tip; 3,
piezoelectric bimorph actuator; 4, piece of insulator used for fixing the cantilever to the actuator;
5, input for additional voltage (used only in dual modulation scheme). After Lüthi (1993)
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A rather wide image of the domain wall (about 10 mm while the actual wall
thickness is of the order of several lattice constants) obtained by Saurenbach
and Terris had been attributed to the tip–sample separation and the finite size of
the tip, which broadened any sharp changes in the force gradients. Later works
of Lüthi et al. (1993a, 1994a,b) and of Eng et al. (1996, 1997, 1999c) demon-
strated that lateral resolution in EFM can be significantly improved: In single
crystals with cleaved polar surfaces, such as GASH and TGS, the width of the
walls measured in EFM was in the range from 8 to 80 nm.

However, this method of domain imaging may suffer from the cross-talk with
other sources of the force gradient, for example, van derWaals forces. As a result,
the force gradient image is usually a superposition of domain and surface topo-
graphic features. In the case of domains of irregular shape and complex surface
topography, the interpretation of the EFM images could be quite difficult. One of
the ways to alleviate this problem is to use a lift-mode technique (tapping mode),
which combines the contact and non-contact modes. In this approach, the tip
scans each line twice: first, recording the topography in the contact regime, and
second, retracing the topographic line at the predetermined height while detecting
the variations in the vibration amplitude. In this case, since the tip–sample
distance is kept constant during the second scan, the force gradient is related to
the surface charge.

Another method to circumvent the cross-talk effect is to use a dual modulation
scheme, developed for the detection of static surface charges (Terris et al., 1989;
1990). In this approach, also used by Saurenbach and Terris, the cantilever is
additionally modulated by an ac voltage Vt ¼ Vac cos ot applied between the
probing tip and the bottom electrode. The frequency of the electrostatic modula-
tion is chosen so that it is well below the resonant frequency of the cantilever. Thus,
the force gradient acting on the tip becomes modulated with frequencieso and 2o
so that the resonance frequency of the cantilever (which ismuchhigher thano) also
becomesmodulatedwith these frequencies. One can show that the signal at the first
harmonics is sensitive to the value and sign of the charge located at the surface. For
the case where a permanent chargeQS is located in the area which is much smaller
than the tip–sample spacing, this is clear from the analysis performed by
Saurenbach and Terris. In this case, the force acting on the tip can be written as

F ¼ Fcap þ Fcoul ¼
1

2

@C

@z
V2

t þ
QsQt

4pe0z2
; (4:5:1)

where C is the tip–surface capacitance and z is the tip–surface separation. The
total charge induced in the tip will be Qt ¼ �ðQs þQeÞ ¼ �ðQs þ CVtÞ. Here
Qe is the charge on the surface induced by the applied voltage. The force
gradient can be expressed as

@F

@z
¼ V2

ac

4

@2C

@z2
þ Q2

s

2pe0z3

� �
þQsVac cos ot

2pe0z2
C
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� 1
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@C

@z

� �
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ac

4

@2C

@z2
cos 2ot (4:5:2)
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Three terms in Eq. (4.5.2) represent a dc component and first and second

harmonics of the force gradient. It is seen that the first harmonics component is

proportional to the charge located at the surface. Such analysis when being

generalized to the case of the continuous distribution of the surface charge (like

in the situation with the bound charge of the spontaneous polarization) leads to

the conclusion that the first harmonics amplitude (measured in the controlling

circuit with a lock-in amplifies at frequency o) reflects the sign and magnitude

of the bound charge density at the sample interface under the tip. Thus, through

the first harmonics monitoring, the information on the surface charge distribu-

tion becomes available. This method of domain imaging has been used by a

number of groups (Blinov et al., 2001; Luo et al., 2000; Hong et al., 1999a; Eng

et al., 1999a; Tsunekawa et al., 1999b; Hong et al., 1998a,b; Bluhm et al., 1997;

Ahn et al., 1997; Zavala et al., 1997).
Figure 4.5.2 illustrates an application of this technique to domain imaging in

a tetragonal Pb(Zr,Ti)O3 (abbr. PZT) film. Prior to the imaging, a small part of

the film was polarized by scanning with a positively biased tip and two lines

were written across this area with a tip under a negative bias. The positively and

negatively polarized domains appear as bright and dark areas in Fig. 4.5.2,

respectively, due to uncompensated polarization charges of newly switched

domains. At the same time, this image illustrates one of the limitations of the

EFM method. Namely, an unwritten area shows only slight variation of the

contrast, although it contains as-grown domains with polarization normal to

the film surface, which was confirmed by another SFM method. Furthermore,

the contrast of the written structure gradually fades and almost disappears

within several hours. This behavior is due to the accumulation of surface charge

on the film surface, which neutralizes polarization charges and causes a uniform

contrast over the surface due to zero net charge. Therefore, although the EFM

charge detection mode has the advantage of distinguishing between

Fig. 4.5.2 EFM charge
image of a PZT film. Bright
and dark areas correspond
to positively and negatively
poled regions, respectively.
Courtesy of Alexei
Gruverman
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topographic features and the electrostatic signal, the domain contrast in this
mode can be easily obscured. In addition, a surface contamination layer always
present on the sample surface under ambient conditions can change or even
conceal the image of real domain structure. Conducting experiments in vacuum
or in inert atmosphere can eliminate these detrimental effects andmake possible
detailed investigation of the spatial distribution of polarization charges and
stray electric fields at ferroelectric surfaces.

4.5.2 Scanning Surface Potential Microscopy (SSPM)

In this method, in contrast to the EFM, the cantilever is not exited mechanically
but a combination of an ac and a dc voltage is applied between the sample and
the tip and the force acting on the tip at the modulation frequency, rather than
its gradient, is monitored. The SSPM method is mainly applied to domain
imaging based on detection of a surface potential associated with spontaneous
polarization. Let us elucidate this method for the case where the spontaneous
polarization is fully screened. Even being fully screened the bound charge of the
polarization will produce a double electric layer modifying the surface potential
of the sample VS. Thus, the electrostatic force acting on the tip, which depends
on difference between the tip potential Vt ¼ Vdc þ Vac cos ot and the surface
potential, can be written as

F ¼ 1

2
ðVt � VsÞ2

@C

@z
: (4:5:3)

This leads to the three components of the electrostatic force:

Fdc ¼
1

2
ðVdc � VsÞ2 þ

1

2
V2

ac

� �
@C

@z
; (4:5:4)

F1o ¼ ðVdc � VsÞVac
@C

@z
cos ot; (4:5:5)

F2o ¼
1

4
V2

ac

@C

@z
cos 2ot: (4:5:6)

The absolute value of the surface potential can be measured using the so-
called nulling method (Hong et al., 1998b). In this method, the first harmonic of
the electrostatic force is nullified by adjusting the constant bias on the tip so that
Vdc ¼ Vs. By detecting the nullifying Vdc value during scanning, a surface
potential image can be obtained. This approach has been extensively used by
Kalinin and Bonnell to study polarization screening processes in ferroelectrics
(Kalinin and Bonnell, 2001a,b; Kalinin et al., 2002). Figure 4.5.3 shows a
simplified schematic diagram of domain structure (a), surface topography (b),
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(a)

(b)

(c)

Fig. 4.5.3 Imaging of
domain pattern in barium
titanate single crystal:
(a) simplified schematic
diagram of domain
structure; (b) surface
topography image;
(c) SSPM image of the same
area as in (b). After Kalinin
and Bonnell (2001a)
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and surface potential (c) in a single crystal of barium titanate. Corrugated

surface topography is an indication of a- and c-domain regions (with in-plane

and out-of-plane spontaneous polarization, respectively). SSPM image pro-

vides additional information on the domain structure: Inverted potential

contrast within the c-domain region indicates the presence of antiparallel

c-domains (not shown in (a)).
For a comprehensive discussion of EFM and SSPM methods, we refer the

reader an excellent paper by Kalinin and Bonnell (2001a).

4.5.3 Contact Domain Imaging

Figure 4.5.4 shows the block diagram of a possible setup for the contact mode

(Eng et al., 1997). A sharp probing tip mounted on a spring-type cantilever is

brought into mechanical contact with the sample surface. The interaction of the

tip with the sample surface causes bending of the cantilever. In the most

frequently used setup a collimated laser beam is focused on its rear side and

reflected onto segment photodiode which acts as a displacement sensor. Using a

four-quadrant detector one can apply this setup for detection of both vertical

deflections or torsions of the cantilever. Thus, when scanning the sample sur-

face with the tip the vertical and lateral displacements of the tip can be

monitored.

Fig. 4.5.4 Setup for the
contact mode of scanning
force microscopy (after Eng
et al., 1997). The force F
acting on the cantilever has a
lateral and a normal
components
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Contact domain imaging can be divided into static and dynamic, or voltage-
modulated, methods. Static imaging methods, such as a topographic mode of
SFM and lateral force microscopy (LFM), make use of the surface domain-
dependent properties of ferroelectrics, such as surface corrugations associated
with the presence of different domains, difference in structure of polar faces of
opposite domains, and variations in friction forces. Dynamic methods, which
include PFMand SNDM, are based on voltage modulation and detection of the
electrical and mechanical response of opposite ferroelectric domains to the
applied ac voltage. The contact SFM imaging methods provide significant
advantages, such as high lateral resolution (well below 10 nm), a possibility of
the three-dimensional reconstruction of domain structure and effective control
of nanodomains. However, interpretation of the domain images could be
complicated by cross-talk between different mechanisms involved in the
domain contrast formation.

4.5.4 Lateral Force Microscopy (LFM)

In this technique, one monitors the lateral friction force acting on the tip during
scanning. The first imaging of antiparallel domains via LFM has been per-
formed by Lüthi et al. (1993a,b). Using this approach, domain structure has
been revealed on freshly cleaved surfaces of single crystals of GASH and TGS
(Eng et al., 1996; 1999c; Gruverman et al., 1996; Correia et al., 1996; Bluhm
et al., 1998). In most of the papers, the imaging mechanism is attributed to the
permanent charging of the probing tip by a ferroelectric surface. The electro-
static tip–sample interaction causes an additional contribution to the lateral
force acting on the tip and results in different torsion of the cantilever when the
tip is scanning surfaces of opposite 1808 domains. Consequently, electrostatic
interaction results in different lateral forces acting on the tip from opposite 1808
domains. The lateral resolution has been reported to be about 8 nm. The image
contrast depends on the scanning direction and can be reversed by switching
from forward to backward scan as illustrated in Fig. 4.5.5. This is an indication
of the effect associated with the atomic structure of the surface rather than of
the surface morphology. Figure 4.5.6 shows topography and friction images of
a cleaved surface of TGS crystal recorded simultaneously by Eng et al. (1997).
Ferroelectric domains of typical lenticular shapes are visible in the friction
mode but not in topography.

A complementary mechanism of the domain contrast in LFM can be the
difference in surface structure of opposite domains which gives rise to different
friction coefficients of the regions occupied by these domains (Bluhm et al.,
1995, 1996). One of the greatest limitations of this method is that it is extremely
sensitive to the surface conditions affecting sample tribological properties:
adhesion layers, interfacial wetting, contamination, and roughness. As a result,
its application is mainly limited to crystals with atomically flat surfaces of
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cleavage planes, such as GASH and TGS. On atomically flat terraces of the
freshly cleaved surfaces, even small variations in the friction forces can be easily
detected. However, even in these crystals, friction images exhibit a wide diver-
sity and should be interpreted with caution. For example, due to the different
orientation of molecules on the chemically homogeneous terraces comprising
the surface of individual domains, frictional contrast can occur not only
between opposite domains but also inside individual domains (Bluhm et al.,
1995). Long exposure to ambient environment could lead to deterioration of
surface quality and to degradation of the domain contrast.

4.5.5 Domain Imaging via Surface Topography

The conventional topography mode of SFM has been used for domain studies
via investigation of the domain-related surface morphology of ferroelectrics.

Fig. 4.5.5 Friction force
micrograph of a GASH
cleavage surface. An
imbedded domain exhibits
opposite contrast compared
to the surrounding due to
the difference in tip–surface
friction forces. Scan
direction: (a) left to right;
(b) right to left. Courtesy of
Alexei Gruverman

Fig. 4.5.6 Images of a TGS crystal surface simultaneously recorded in two contact modes,
topography (a) and friction. (b) The covered area is 40 � 40 mm2. Ferroelectric domains are
visible in the friction mode while the topography mode emphasizes cleavage steps. After Eng
et al. (1997)
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There are several mechanisms which can provide morphological contrast of
ferroelectric domains: (1) topographic steps at domain boundaries due to the
structural difference between positive and negative ends of domains (Nakatani,
1979); (2) inclination of the cleaved surfaces according to the polarity of
domains and the direction of cleavage propagation (Nakatani, 1979; Shur
et al., 1992, 1993b); (3) surface corrugation at the junction of a- and c-domains
in perovskite ferroelectrics (Lüthi et al., 1993b; Eng et al., 1996; Jona and
Shirane, 1962; Seifert et al., 1995; Munoz Saldana et al., 2001; Eng and
Güntherodt, 2000; Takashige et al., 2000; Gruverman et al., 1998b; Wang
et al., 1998; Ganpule et al., 2002; Gruverman et al., 1997b).

The topographic steps of several angstroms in height have been observed at
the 1808 domain boundaries on the cleaved surface of TGS crystals by Bluhm
et al. (1996) and Eng et al. (1999a,b). This effect was explained by the relative
shift of atom positions in opposite domains. An additional factor which can
affect the surface topography and reveal domain structure is the different
etching behavior of positive and negative domains. Selective etching with sub-
sequent topographic imaging has been used to reveal nanoscale domains in
LiNbO3 crystals (Bluhm et al., 1997; Shur et al., 2000b). For hydrophilic
materials, such as TGS and GASH, exposing a sample to humid atmosphere
can reveal domains due to selective surface etching by the water vapor.

Topographic imaging of the etched surface can be used for identification of
domain polarity (Lüthi et al., 1994a; Correia et al., 1996; Bluhm et al., 1996).
At the same time, this feature of TGS could be a complicating factor: Fine
morphological structures of ferroelectric domains on opposite cleavage faces of
TGS vary strongly even for domains of equal polarity. Etching of positive
domains can result both in etch hole formation and recrystallization of islands
from the saturated solution at the surface, depending on which molecular layer
is exposed to ambient air after the cleavage. Etch patterns can be easily confused
with domain structure.

Another mechanism which can lead to domain topographic contrast is
surface corrugation at the 908 domain walls separating domains with in-plane
polarization (a-domains) and out-of-plane polarization (c-domains). Using this
approach, a- to c-domain structure has been observed in BaTiO3 and PbTiO3

crystals and PZT thin films (Lüthi et al., 1993b; Wang et al., 1998; Ganpule
et al., 2002; Gruverman et al., 1997b; Eng et al., 1999b; Shur et al., 2000; Wang
et al., 2000b; Cho et al., 1997b; Cho et al., 1999). A difference between a and c
lattice constants of the tetragonal cell produces a lattice distortion at the
junction of a- and c-domains and surface inclination as was discussed above
in Sect. 4.3 and illustrated in Fig. 4.3.1a. This inclination can be monitored with
SFM. Thus, SFM can provide a simple and non-destructive method for study-
ing domain patterns in epitaxial ferroelectric films by topographic imaging of
their surfaces. Figure 4.5.7 shows a topographic image of a Pb(Zr0.20,Ti0.80)O3

film deposited by laser ablation on a LaAlO3 substrate. The a- to c-domain
arrangement appears as a rectangular structure with height variations in
the range of 1.5–3.5 nm, occurring as a result of twinning between a- and
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c-domains. A value of surface tilting of approximately 28 was measured at the
908 domain boundaries, which is consistent with the c/a ratio of the unit cell of
the film at room temperature.

There are obvious limitations on the applicability of the SFM topographic
mode for domain imaging. Any treatment of the surface during sample prepara-
tion inevitably eliminates the fine structure of morphological steps associated
with domain patterns. Therefore, only crystals with cleavage planes, like TGS
and GASH, are suitable for SFM topographic studies. Also, since formation of
1808 domains cannot be reliably detected on the rather rough surfaces of most
ferroelectric thin films (surface variations associated with the presence of the
domains are much less than surface morphology variations), this method is not
applicable for imaging of domain structure consisting of antiparallel c-domains,
which is of direct interest for investigation of the polarization reversal processes
in ferroelectrics.

4.5.6 Domain Imaging via Nonlinear Dielectric Response
(SNDM)

A purely electrical dynamic method of domain delineation has been developed
by Cho and his coworkers (Cho et al. 1997a,b; 1999; 2002; Odagawa and Cho,
2002). This method, termed scanning nonlinear dielectric microscopy (SNDM),
is based on the detection of the capacitance variation with an alternating electric
field. To measure the capacitance variation, Cho et al. developed a special
lumped constant resonator probe using an electrolytically polished tungsten
needle and a LC resonance circuit operating in the microwave frequency range.
Figure 4.5.8 shows a setup used for SNDM imaging. Application of the mod-
ulation voltage (in the range of 100–1,000 Hz) across the sample leads to the

Fig. 4.5.7 Topographic
image of a PZT film on a
LaAlO3 substrate showing a
rectangular structure of a-
and c-domains. Courtesy of
Alexei Gruverman
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oscillating change DCs in the capacitance between the needle and the bottom
electrode due to the nonlinear dielectric response of the sample with the first

harmonic component proportional to the nonlinear dielectric constant k333:

DCs

Cs
¼ k333

k33
E3 cos ot; (4:5:7)

where Cs and k33 are a static capacitance and a linear dielectric constant,
respectively; the X3 axis is taken normal to the sample surface. The change in

the capacitance is measured by detecting the modulated high-frequency signal

(around 1.3 GHz) of the oscillator using a demodulator and a lock-in amplifier.

The sign of an even rank tensor, such as the linear dielectric constant, does not
depend on the polarization direction. On the other hand, the nonlinear dielec-

tric constant k333 is a third-rank tensor, similar to the piezoelectric constant, so

the sign of k333 changes with inversion of the spontaneous polarization. There-

fore, a map of the polarization sign can be obtained by point-to-point detection
of the field-induced changes in the nonlinear dielectric constant. This method,

as it is designed, allows nanoscale detection of antiparallel 1808 domains in the

surface layer with a thickness much smaller than the probe size (<10 nm).
According to Cho and Ohara (2001) sub-nanometer lateral resolution can be

obtained by detecting the higher order nonlinear dielectric constants. However,

in this case the image reflects the state of the material in a yet thinner interfacial

layer. Figure 4.5.9 shows a two-dimensional SNDM image of a- to c-domain
structure in barium titanate single crystal. The sign of k333 in the +c domain is

negative, whereas it is positive in the –c domain. Furthermore, the magnitude of

k333 is zero in the a-domain (where the spontaneous polarization has no out-of-

plain component so that the k333 component is not induced). It is possible to
measure ferroelectric polarization parallel to the sample surface by detecting

k331 constant (X1 axis is chosen and directed among the spontaneous

Fig. 4.5.8 Probe
configuration in SNDM
(after Cho et al., 1997). The
needle makes capacitor CS

with backing electrode. The
source of the microwave
signal (OSC) is connected
with the ring by a lumped
inductance
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polarization in the a-domain) using different configuration of electrodes, which
makes SNDM suitable for three-dimensional domain structure reconstruction.

Closely related near-field scanning microwave techniques have been used
for domain imaging and dielectric constant measurements in single crystals
of LiNbO3, BaTiO3, and deuterated triglycine sulfate and thin films of
Ba0.6Sr0.4 TiO3 (Gao et al., 1998; Lu et al., 1997; Steinhauer and Anlage,
2001; Steinhauer et al., 1999). However, the lateral resolution has been just
below 1 mm due to the size of the inner probe of the resonator.

4.5.7 Domain Imaging via Static Piezoresponse

The next domain imaging method makes use of the piezoelectric properties of
ferroelectrics and therefore is often referred to as piezoresponse. It is based on
the detection of local piezoelectric deformation of the ferroelectric sample
induced by an external electric field. Since all ferroelectrics exhibit piezoelectric
properties, application of an external voltage results in a deformation of the
ferroelectric sample. Depending on the relative orientations of the applied field
and the polarization vector, the sample deformation can be in the form of
elongation, contraction, or shear. For the converse piezoelectric effect, the
field-induced strain eij can be expressed as:

eij ¼ dkijEk; (4:5:8)

where dkij is the piezoelectric coefficient and Ei is the applied field.

Fig. 4.5.9 SNDM image: (a) a sketch of the visualized domain structure and (b) two-dimen-
sional image of the 908 a–c domain structure in a BaTiO3 single crystal. Reprinted with
permission from Cho et al. (1999). Copyright (1999), American Institute of Physics
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On the other hand, using the thermodynamic approach it can be shown (see
Chap. 2) that the appearance of the spontaneous polarization Ps induces piezo-
electricity or induces new components of the piezoelectric tensor if the para-
electric phase is piezoelectric. Thus, in the ferroelectric phase, one finds

dkij ¼ d 0
kij þ 2wknQnlijPSl ; (4:5:9)

where wkn is the susceptibility, Qnlij is the electrostriction coefficient, and d 0
kij is

the piezoelectric coefficient in the paraelectric phase. In the common experi-
mental situation one deals with centrosymmetric paraelectric phase having
d 0
kij ¼ 0. In this situation, the electric field applied normal to the sample surface

(along X3 axis) will lead to the tip displacements due to three piezoelectric
coefficients d33, d35, and d34 (we use a reverence frame with X3 axis directed
along the normal to the sample surface).1 As seen from Eq. (4.5.9), for general
orientation of the sample surface, all these coefficients can, in general, have
contributions from all components of the spontaneous polarization. For a
simple case of a BaTiO3 type crystal of tetragonal symmetry with the surface
oriented along a cubic axis of the paraelectric phase the aforementioned coeffi-
cients in the reduced matrix notation can be written as

d33 ¼ 2w33Q33PS3; (4:5:10a)

d35 ¼ 2w33Q55PS1; (4:5:10b)

d34 ¼ 2w33Q44PS2: (4:5:10c)

The d33, or longitudinal piezoelectric coefficient, represents an expansion or
contraction of the sample along the direction of the applied field (normal to the
sample surface). The d34 and d35 coefficients describe field-induced shear defor-
mations of the ferroelectric sample.

The linear relation between the values of the piezoelectric constants and
spontaneous polarization infers that the domain polarity can be determined
frommeasuring the field-induced strain. In the simple aforementioned case, the
domain polarity can be associated with the sign of the latter. As it follows from
Eq. (4.5.10a), the application of the electric field along the polar direction
results in the elongation of the domain with polarization parallel to the applied
field and in the contraction of the domain with opposite polarization, since
typically Q33>0. The field-induced strain in this case can be written as

DL
L
¼ d33E; (4:5:11)

1 The deformations of the sample surface due to d31 and d32 piezoelectric coefficients will not
lead to any tip displacement as far as they are homogeneous in the region sensed by the electric
field of the tip. In principle, these deformations may lead to tip displacements close to domain
walls and grain boundaries.
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where DL is the sample deformation and L is the sample thickness. Equation
(4.5.11) can be rewritten as

DL ¼ �d33V; (4:5:12)

where V is an applied voltage. Note that, in this expression, the sign of the
piezoelectric coefficients is correlated to that of the spontaneous polarization in
the domains. Thus as we see, in the considered case of tetragonal ferroelectric,
antiparallel domains with the polarization normal to the crystal surface can be
visualized by monitoring their voltage-induced surface displacement. In general
case, the interpretation of the field-induced surface requires a more cumber-
some analysis in terms of Eq. (4.5.9). The situation can be especially compli-
cated in the case of ferroelectrics exhibiting piezoelectric effect in the para-
electric phase. In this case, if d 0

kij is appreciable, the antiparallel domain may not
differ in the sign of the field-induced strain but only in its amplitude.

Due to its extremely high vertical sensitivity, nanoscale topography varia-
tions can be routinely measured in SFM. However, domain imaging based on
detecting the static piezoelectric deformation is difficult to implement unless a
sample has a very smooth surface. In a sample with an average surface rough-
ness of several nanometers per square micron, the static cantilever deflection
due to the piezoelectric deformation (typically of the order of several ang-
stroms) will be superimposed on the much larger deflection signal due to the
surface roughness which will make domain imaging very problematic.

FromEq. (4.5.12) it follows that increasing the imaging voltage can enhance the
contrast between opposite c-domains. However, there is a strict limitation imposed
on this parameter: To perform nondestructive visualization of domain structure,
the imaging voltage should be kept below the coercive voltage of the ferroelectric
sample. In addition, a high imaging voltage will lead to an increased contribution
of the electrostatic signal to the tip–sample interaction, which in some cases can
obscure the domain image. Given that a typical value of the coercive field in a
200 nm thick Pb(Zr,Ti)O3 ferroelectric film is approximately 50 kV/cm, the
imaging voltage should not exceed 1 V, otherwise the imaging process will change
the domain structure by inducing the polarization reversal. In a PZT filmwith a d33
constant of about 200 pm/V the surface displacement induced by an external
voltage of 1 V will be only 0.2 nm. Obviously, such a displacement could not be
reliably detected in ferroelectric films where topographic features can be of the
order of several nanometers. The static approach can be applied in some limited
cases, for example, to ferroelectric samples with relatively high values of piezo-
electric constants and coercive fields. Wang et al. (2000b) used this approach to
delineate domains in a doped crystal of Sr0.61Ba0.39Nb2O6 (SBN) known for a high
concentration of the pinning centers which gives rise to increased local coercive
fields. Due to this feature of the SBN sample, even under an applied voltage of
200 V there exist non-switched c-domains antiparallel to the external field. At the
same time, this voltage is high enough to produce surface indentation of about
2 nm due to contraction and elongation of opposite domains, which makes them
discernible in the topographic mode.
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4.5.8 Domain Imaging via Dynamic Piezoresponse (PFM)

A problem of low sensitivity of a static piezoresponse mode has been circum-
vented by employing a dynamic piezoresponse imaging method based on the
voltage-modulation approach, which increases sensitivity by three orders of

magnitude. In this approach, known as piezoresponse force microscopy (PFM),
an acmodulation (imaging) voltageV ¼ V0 cos ot is applied to the ferroelectric
sample and surface displacement is measured using a standard lock-in techni-
que. In the simplest implementation of PFM technique, one monitors the
vertical vibration of the cantilever, which follows sample surface oscillation.
A domain map can be obtained by scanning the surface while detecting the first
harmonic component of the normal surface vibration (vertical piezoresponse):

DL ¼ DL0 cosðotþ jÞ (4:5:13)

where DL0 ¼ d33V0 is a vibration amplitude and j is a phase difference between
the imaging voltage and piezoresponse. As it follows from Eq. (4.5.9), in ferro-
electrics which are not piezoelectric in the paraelectric phase, the PFM signals
from antiparallel domains differ in the phase by 1808. In the case of tetragonal
crystal described by Eq. (4.5.10), since usually Q33 is positive, the signal phase
can be directly related to the domain orientation. With the modulation voltage
applied to the probing tip, positive domains (polarization vector oriented

downward) will vibrate in phase with the applied voltage so that jðþÞ ¼ 0�,
while vibration of negative domains (polarization vector oriented upward) will
occur in counter phase because of the d33 sign jð�Þ ¼ 180�. However, as clear
from Eq. (4.5.9), in ferroelectrics which exhibit the piezoelectric effect in the
paraelectric phase, the sign of d33 may be the same in antiparallel domains. In
this case, they cannot be delineated by the phase of the PFM signal, and the
information on its amplitude is needed.

The dynamic piezoresponse mode has been developed for detection of polar-
ized regions in ferroelectric copolymer films of vinylidene fluoride and trifluor-

oethylene (Güthner and Dransfeld, 1992) and quickly became one of the most
widely used methods for nanoscale characterization of ferroelectrics. The pio-
neering studies performed by Franke et al. (1994), Gruverman et al. (1996,
1998a), and Hidaka et al. (1996) demonstrated the applicability of PFM for
high-resolution visualization and modification of domain structure in PZT thin
films.

One of the significant advantages of the PFM method is that it also allows
delineation of domains with polarization parallel to the sample surface (a-
domains) (Ganpule et al., 2002; Eng et al., 1999d; Roelofs et al., 2000). In the

lateral PFM approach (Eng et al., 1999d) a-domains are visualized by detecting
the torsional vibration of the cantilever. Application of the modulation voltage
across the sample generates sample vibration in the direction parallel to its
surface due to the piezoelectric shear deformation. This surface vibration,
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translated via the friction forces to the torsional movement of the cantilever,
can be detected in the same way as the normal cantilever oscillation in vertical
PFM. The PFM amplitudes of the in-plane oscillations (lateral piezoresponse)
are given by

DX01 ¼ d35V0; (4:5:14a)

DX02 ¼ d34V0: (4:5:14b)

As it follows from Eqs. (4.5.10b) and (4.5.10c), in the case of tetragonal
crystal described by these equations, the phase of the lateral PFM signals
directly provides information on the polarization direction in the a-domains.
The information on the vertical and two lateral components of PFM response
can be, in principle, used for the three-dimensional reconstruction of the
domain arrangement. In the case of a BaTiO3-type crystal of tetragonal sym-
metry with the surface oriented normally to a cubic axis of the paraelectric
phase, this can be readily done using relations Eq. (4.5.10). In this simple case,
each component of PFM response controls one component of the spontaneous
polarization. In a more complicated case of an arbitrary sample orientation, a
more involved analysis in terms of Eq. (4.5.9) is required.

It should be noted that to obtain a complete picture of the in-plane distribu-
tion of polarization, X1 and X2 components of the lateral piezoresponse image
should be recorded by physically in-plane rotating the sample by 908, in addi-
tion, the quantitative analysis of the lateral piezoresponse signal is rather
difficult due to the complexity of the friction mechanism involved.

Figure 4.5.10 presents experimental results on simultaneous acquisition
topographical, vertical piezoresponse, and lateral piezoresponse images of a
BaTiO3 single crystal (a–c) (Abplanalp et al., 1998) and PbTiO3 multigrain film
(d–f). In both cases the surface normal of the sample is oriented parallel to a
cubic axis of the paraelectric phase of the materials. In image (a), we see a
shaded representation of surface topography, clearly demonstrating a system of
908 domains leading to a surface profile. Dark stripes represent c-domains (PS is
perpendicular to the surface) and bright stripes correspond to a-domains (PS

lies in the surface plane). The irregularly shaped regions image topographical
steps in as-grown crystals but could also represent etching figures of previously
existing domains. In (b) the irregular regions are antiparallel c-domains. The
contrast is due to the opposite sign of the longitudinal piezoelectric coefficient.
The gray stripes correspond to a-domains. In (c) dark and bright regions are a-
domains with antiparallel PS vectors; here the contrast is due to the opposite
sign of the shear piezoelectric coefficients. From images (d–f), it is seen that the
grains of the PbTiO3 are mainly single domain. Because of the grained structure
of the film its surface is not flat enough to enable a delineation of in-plane and
out-of-plane orientations of the polarization from a topographical image (d).
Grains in the central part of the image exhibit a strong vertical piezoresponse
signal (bright contrast in (e)), while their lateral piezoresponse signal is rather
weak (gray contrast in (f)), suggesting predominantly out-of-plane orientation
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of the polarization vector. On the other hand, grains in the lower part of the
image exhibit gray contrast in (e) and bright contrast in (f), which is an indica-
tion of in-plane polarization.

In terms of exciting the piezoelectric vibration of the sample, there are two
main approaches in PFM. In one approach, the vibration is generated locally by
applying a modulation voltage between the bottom electrode and the conductive
SFM tip, which scans the bare surface of the film without a deposited top
electrode. A great advantage of this approach is a possibility of establishing
correlation between domain configurations and film microstructure (grain struc-
ture). In addition, this method can be used for nanoscale domain writing and
direct investigation of domain wall interaction with microstructural features,
such as defects and grain boundaries, for local spectroscopy measurements and
investigation of electrical and mechanical coupling between adjacent grains.
Furthermore, this approach offers extremely high resolution, potentially allow-
ing investigation of the microscopic mechanism of the domain wall motion.

Fig. 4.5.10 Experimental results on simultaneous acquisition topographical, vertical
piezoresponse, and lateral piezoresponse images of a BaTiO3 single crystal (a–c) (after
Abplanalp et al., 1998) and PbTiO3 multigrain film (d–f). In topography image (a), dark
stripes represent c-domains (PS is perpendicular to the surface), bright stripes correspond to
a-domains (PS lies in the surface plane). The irregularly shaped regions image topographical
steps in as-grown crystals but could also represent etching figures of previously existing
domains. In (b) the irregular regions are antiparallel c-domains. The gray stripes correspond
to a-domains. In (c) dark and bright regions are a-domains with antiparallel PS vectors. From
images (d–f), it is seen that the grains of the PbTiO3 are mainly single domain. The roughness
of the film surface impedes observation of a- and c-domains in topographical image (d).
Grains in the center have bright contrast in (e) and gray contrast in (f) suggesting out-of-plane
polarization. Grains in the lower part of the image exhibit gray contrast in (e) and black–white
contrast in (f), which is an indication of the in-plane polarization. The scanning area is 0.9 �
0.9 mm2. Courtesy of A. Gruverman and B. Rodriguez
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However, the electric field generated by the SFM tip in this configuration is
highly inhomogeneous, which makes quantitative analysis of the field-dependent
parameters difficult. This problem is exacerbated by the likely presence of a con-
tamination layer at the film surface, which increases the resistance of the tip–sample
electric contact.As a result, an increased time constant of the electric circuitrymakes
it difficult to extend the experiments on switching behavior to the micro- and
nanosecond range, which is of direct application interest. In an alternative PFM
approach, domain structure can be visualized through the top electrode of a ferro-
electric capacitor (Auciello et al., 1997; Colla et al., 1998a; Hong et al., 1999b;
Gruverman et al., 2003). In this case the piezoelectric vibration is generated in a film
region underneath the deposited top electrode which is much larger than the
tip–sample contact area. The modulation voltage can be applied either by using
an external wire attached to the top electrode or, in the case of a micrometer size
electrode, directly through the conductive SFM tip. In both cases the piezoelectric
displacement is probed locally by the SFM tip. In such a configuration, a homo-
geneous electric field is generated throughout the ferroelectric film, which allows
quantitative treatment of domain wall dynamics and investigation of polarization
reversal mechanism in ferroelectric capacitors. Due to the reduced time constant,
fast pulse switching and transient current measurements can be accomplished in
submicron capacitors, thus making PFM suitable for memory device testing. A
more detailed discussion of this technique, which is of primary interest for monitor-
ing switching in thin film capacitors, can be found inSect. 9.8which is devoted to the
SFM investigations of polarization reversal in ferroelectric films.

4.6 Polarized Light Microscopy Based on Unperturbed Linear

Optical Properties

Now we address the question how to distinguish domains by polarized light
microscopy usingmethods based on linear optical properties of a ferroic crystal:
birefringence, optical activity, and anisotropic light absorption. It is assumed
that the crystal or its parts are not subjected to any external forces or to fields
arising due to the presence of the domain structure itself; these issues will be
mentioned in the subsequent section.

4.6.1 Birefringence

If a ferroic material is transparent, the most natural thing to do is to place a
plate-like sample on the stage of a microscope and observe it in transmitted
polarized white light.2 Parameters that can be easily changed are mutual

2 Having made this statement, one has to wonder why this was not done in the earliest stages
of investigations of crystalline plates of Rochelle salt—in particular when dielectric hysteresis
was discovered (Valasek, 1921). The more so, that later Valasek demonstrated his very high
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orientations of polarizer, analyzer, and the crystal itself. In order to obtain

information on domains, the domain states must be distinguishable by their

optical properties and in this section we have in mind unperturbed properties:

Those determining propagation of light falling onto an ideal crystal to which no

forces of mechanical or electrical character are applied—not even forces which

could be generated by boundary conditions. To each domain state a symmetric

polar tensor of second rank Bij determining the optical indicatrix is ascribed.

Distinguishing domains by their indicatrices is possible mainly for ferroelastic

domain pairs only, since both strain and optical permittivity are represented by

symmetric second-rank tensors with the same transformation properties.

Exceptions are offered by materials which allow for the spatial dispersion

effects discussed in Sect. 4.6.2. Except for these rather special cases, the number

of states distinguishable by optical indicatrix in a given ferroic species equals the

number of ferroelastic domain states and Tables B.1 and C.1 and tables of

Appendix D can be used for its determination. The mentioned tables enable one

to find quickly such cases. As always, tensors describing both the mentioned

optical properties should be expressed in one coordinate system common to all

domain states to be distinguished and obviously the system of the phaseG is the

most practical. To determine the best conditions for obtaining optical contrast

delineating the domains in question is then the task of linear crystal optics. The

latter is a classical topic highly developed in optical mineralogy on which there

are a number of excellent monographs (see, e.g., Bloss, 1961;Wahlstrom, 1979).

Here we will not go into any details but include a number of remarks specific to

the task of resolving domains.
Spatial resolution is of the order of half a wavelength of visible light, and

optical microscopy can successfully compete with a number of methods which

may be more demanding as for conditions of sample preparation. Here we

require properly oriented transparent samples with optically flat surfaces.

These conditions can be usually met with single crystals but not with samples

of ceramic materials. There, the presence of grain boundaries, pores, and

generally a large density of ferroelastic domains are complicating factors lead-

ing to pronounced light scattering effects. The need to understand the behavior

of domains under applied electric field in some ceramics used for electromecha-

nical applications has made optical studies of ceramic samples desirable (Oh

et al., 1994). One possibility is to isolate a large enough single crystalline grain in

a thin sample; then the conditions come close to those for a crystal. Targeted

manufacturing processes and a careful sample preparation are required

(Schmid, 1993). The other possibility which has been yet very little utilized is

observations in reflected light.

level in optics by many papers, as well as by his valuable book Introduction to Theoretical and
Experimental Optics (JohnWiley & Sons, 1960). Perhaps lack of equipment, or preparation of
sample surfaces . . ..... By performing such observations, ferroelectrics could have ‘‘beaten’’
ferromagnetics by 10 years (Fousek, 1994).
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The basic required instrument is a good-quality optical microscope for
polarized light, equipped with a calibrated compensator of either Berek or
Sénarmont type to measure retardation. It may be of advantage if the stage or
the sample holder is more universal, allowing for tilting of the crystal plate.
Many optical studies are performed at elevated or at low temperatures, using
heating stages or optical cryostats. Data can be obtained for temperatures up to
several hundred degrees centigrade or down to the liquid helium temperature;
then objectives are used with long working distance of up to several centimeters.
Sample holders can be equipped with electrical contacts or devices which make
it possible to apply electric field or uniaxial stress on the sample. Periodic
dynamic domain processes can be observed using stroboscopic illumination
(Fousek and Brezina, 1960; Brezina et al., 1961), and this method allows one to
achieve maximum spatial resolution together with outstanding time resolution
when very short light pulses are used. Instead of observations by naked eye the
use of CCD cameras is now becoming widespread; a high-resolution CCD
microscope (Oh et al., 1994) makes it possible to reveal details and to monitor
and record dynamic domain processes and proceed later with their analysis.

In most cases the optical contrast originates from the fact that in different
domains the optical indicatrix is differently oriented. Let us recall some basic
concepts. The behavior of light propagating through a nonabsorbingmedium is
customarily described by the indicatrix

Bijxixj ¼ 1; (4:6:1)

where Bij¼ dEi/dDj are components of optical impermittivity. In the principal
coordinate system, the equation of this ellipsoid simplifies to

B1x
2
1 þ B2x

2
2 þ B3x

2
3 ¼ 1; (4:6:2)

where Bi ¼ 1=n2i ; ni are the principal refractive indices and their differences

Dijn ¼ ni � nj (4:6:3)

define the values of principal birefringence. Polarized light microscopy is cus-
tomarily performedwith plate-like samples. Intersection of the indicatrix (4.6.1)
with the major plane of the sample is an ellipse whosemain axes are xk, xl; in this
coordinate system it is described by

Bkx
2
k þ Blx

2
l ¼ 1: (4:6:4)

Propagation of the light beam perpendicularly to the plate is governed by
refractive indices nk, nl given by Bi ¼ 1=n2i , i¼ k, l. The difference

Dkln ¼ nk � nl; (4:6:5)
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i.e., the birefringence for the given orientation of the plate, determines the
phenomenon of double refraction. Now we are interested in the case where
the plate contains domains representing two domain states 1, 2 of the given
ferroic crystal, whose indicatrices differ in orientation:

B
ð1Þ
ij xixj ¼ 1 and B

ð2Þ
ij xixj ¼ 1: (4:6:6)

The tensor Bij transforms in the same way as strain. Therefore, observation
methods based on differences in birefringence can only be used for ferroelastic
domain pairs. Tensor components are related by the transformation

B
ð2Þ
ij ¼ aikajlB

ð1Þ
kl ; (4:6:7)

where aik is the matrix of direction of cosines corresponding to one of the
twinning operationswhich brings domain state 1 into domain state 2. Intersecting
both indicatrices with one plane representing the crystal plate results, in a general
case, in two ellipsoidal sections differing in both the orientation of main axes as
well as in the value of birefringence. Both these quantities may play a vital role in
distinguishing the two domain states and this is in fact the whole essence of
optical methods based on double refraction. They have two applications. If the
symmetry groupsG and F are known, we also know the matrix aij and our task is
to design the arrangement so that these two indicatrices provide a good optical
contrast. If we see domains but the information about G, F is limited, we try to
analyze mutual relation of the indicatrices to determine the twinning operations.

Consider a birefringent crystal plate of thickness dwhosemajor plane is parallel
to the xk, xl axes placed between crossed polarizers. When illuminated by mono-
chromatic light of wavelength l and intensity I0, the transmitted intensity is

I ¼ I0 sin2 2y sin2ðpdDnkl=lÞ; (4:6:8)

where y is the angle between the vibration plane of the polarizer and the
vibration direction of the larger of refractive indices nk, nl. If the crystal plate
contains domains representing a ferroelastic domain pair, the optical contrast,
i.e., the difference in intensities I, may be of one or more of several origins. The
domains may differ in their extinction directions (i.e., angles y), in the values of
Dnkl or in the sign of the latter. Rotating the sample between crossed polarizers
is usually sufficient to establish contrast in the two first-mentioned cases while a
compensator, adding a path difference, is required in the last case. Which of
these cases are realized depends on the first place on the transformation (4.6.7).
However, we have to recall that when the ferroelastic species is given, the
transformation matrices aij are defined in the parent clamping approximation;
to ensure coexistence of two domains representing two ferroelastic domain
states, a small rotation given by the clapping angle must be added. We shall
illuminate this point on two examples discussed below.

What has been said in the preceding paragraph refers to the bulk of neigh-
boring domains. If they are separated by a wall which is inclined with respect to
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the plate normal, the light beam hitting the wall propagates successively
through the two domains. In this case in the region on which the inclined wall
projects, we may observe interference effects connected with the wedge-shaped
form of both domains above each other. But sometimes a ferroelastic wall
perpendicular to the plate is often visible by itself, even in nonpolarized light.
The apparent thickness of a 908 wall in tetragonal BaTiO3 is several tenths of a
micrometer (Little, 1955). Theoretically, there is a possibility to distinguish
optically domain boundaries themselves since obviously because of the
deformed crystal lattice they differ in optical permittivity from the surrounding
domains. However, most data indicate that domain walls have thickness
far below optical resolution. Thus the direct visibility of a ferroelastic wall has
little to do with its real width. It is mediated by reflection and refraction of light
beam which is not perfectly parallel to the wall. Corresponding refraction
phenomena have been studied for several materials (Tsukamoto et al., 1982,
1984; Koralewski and Szafranski, 1989).

Before giving several examples of typical situations, we wish to discuss the
so-called spontaneous birefringence, a very often used concept. Let the indicatrix
in the parent phase be

B
ðpÞ
ij xixj ¼ 1 (4:6:9)

and that in domain state 1 of the ferroelastic phase be

B
ð1Þ
ij xixj ¼ 1; (4:6:10)

which can be considered as the indicatrix in the parent phase which has been
‘‘deformed’’ due to the phase transition. This deformation can be described by
the spontaneous changes of impermittivity, namely

dSB
ð1Þ
ij ðTÞ ¼ B

ð1Þ
ij ðTÞ � B

ðpÞ
ij ðextrap:Þ; (4:6:11)

where the last term denotes the value extrapolated to temperatureT. It is easy to
realize that dSB

ð1Þ
ij ðTÞ is in fact the exact analogue of natural spontaneous strain

eSij . Since Bij and eij transform in the same way, Table C.1 and Appendix D,
which provide information on eij, can be used to specify components of dSBij for
all ferroic species. Some components B

ðpÞ
ij can equal zero by symmetry; then the

components dSB
ð1Þ
ij ðTÞ are newly acquired in the ferroic phase and we call them

‘‘morphic’’ components. It can be shown (Fousek and Petzelt, 1979) that there
are five different possible types of how the indicatrix of the parent phase is
deformed due to the phase transformation. They fall into three categories:

1. The indicatrix equation contains only diagonal terms in both phases so that
dSB

ð1Þ
ij ¼ 0 for i 6¼ j. Both phases belong to cubic, optically uniaxial, or

orthorhombic systems. Changes dSB
ð1Þ
ij in diagonal components lead to the
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changes of refractive indices dSni ¼ �ð1=2Þn3i dSBii and corresponding
change of birefringence

dSDiju ¼ dSui � dSuj (4:6:12)

is referred to as the spontaneous birefringence. Note that because of relation
(4.6.11) it may only represent the difference between the actual birefringence
at the given T and the extrapolated birefringence. If in the parent phase the
given component is zero, we speak about the morphic birefringence.

2. One of the nondiagonal components dSB
ð1Þ
ij 6¼ 0 (i 6¼ j). To be specific, let us

take dSB
ð1Þ
12 6¼ 0; other choices would lead to analogous conclusions. Now,

three cases are possible. (2a) n1¼ n2 and dSB
ð1Þ
11 ¼ dSB

ð1Þ
22 . Then the main

indicatrix axes in the ferroic phase make a fixed angle of 458 with the old
axes. In this new coordinate systemwe have three differentmorphic principal
birefringence values for cubic to orthorhombic transitions (n1¼ n2¼ n3 in the
parent phase) and one principal morphic birefringence dSDn12 for the tetra-
gonal to orthorhombic transition (n1¼ n2 in the parent phase). (2b) n1¼ n2
and dSB

ð1Þ
11 6¼ dSB

ð1Þ
22 . Now the indicatrix rotates about the axis 3. For cubic to

monoclinic transitions three morphic principal birefringence values occur;
for tetragonal to monoclinic transition only dSDn12 is nonzero. (2c) n1 6¼ n2.
Since only one nondiagonal dSB

ð1Þ
12 6¼ 0, this is the case of orthorhombic to

monoclinic or monoclinic to monoclinic transitions. No birefringence is
morphic; the indicatrix rotates about the c-axis. For monoclinic to mono-
clinic transitions, this rotation is already allowed by symmetry in the parent
phase and the definition of ‘‘spontaneous’’ rotation is similar to that given by
Eq. (4.6.11).

3. In the general case all dSBij are nonzero. This would correspond either to
transitions into a triclinic ferroic phase or to transformations in which the
indicatrix axes rotate by a fixed spatial angle, changing, e.g., into body
diagonals of the parent cubic cell.

It should be pointed out that since transformation properties of strain eij and
optical impermittivity Bij are the same, most of what was said about sponta-
neous strain can be transferred into the realm of optics. However, in practice the
two tensor properties are dealt with in a different way. This is true in particular
when the concept of spontaneous birefringence is used, since it refers to the
coordinate system of the phase F.

We now give several examples of typical situations illustrating how optical
contrast can be achieved between two domain states based on Eq. (4.6.8). Let us
first consider the species m�3m� 4mm. The spontaneous changes of Bij can be
extracted from Table C.1 for the subgroup 4zmm. We have in mind a crystal
plate perpendicular to the cubic z-axis of the parent phase, in which two domain
states SA, SB represent equivalent subgroups 4xmm and 4ymm, respectively. For
the domain state SA the nonzero spontaneous changes of the Bij tensor are
obviously dBxx ” a and dByy¼ dBzz ” b. The twinning operation is a rotation by
908 about the c-axis so that for the domain state SB we have dBxx¼ dBzz ” b and
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dByy” a.While in the cubic phase the equation of the indicatrix wasB0 (x
2+ y2+

z2)¼ 1, for the two domain states we now have the following cross-sections of the
indicatrices:

SA : ðB0 þ bÞx2 þ ðB0 þ aÞy2 ¼ 1; (4:6:13a)

SB : ðB0 þ aÞx2 þ ðB0 þ bÞy2 ¼ 1: (4:6:13b)

The principal axes for both domain states will be identical with the cubic axes
while the birefringence values

DnxyðSAÞ ¼ nx � ny ¼ �ð1=2Þn30ðb� aÞ; (4:6:14a)

DnxyðSBÞ ¼ nx � ny ¼ ð1=2Þn30ðb� aÞ (4:6:14b)

differ only in sign. Because of this and since the principal axes are the same, the
transmitted light intensity given by Eq. (4.6.8) will be the same for both domain
states. This is, of course, only true in the parent clamping approximation. In
fact the extinction orientations differ by the clapping angle j. The geometry of
this case is shown schematically in Fig. 4.6.1a. The clapping angle is usually too
small to become essential in standard observations. The situation changes when
an additional birefringent plate is inserted adding the value D to the optical
paths for both domain states. Then the total optical paths will be D+ [(1/2)n0

3

(b – a)]t and D – [(1/2)n0
3 (b – a)]t, respectively, where t is the thickness of the

sample and a high contrast in intensity of the transmitted light will be achieved.
This is how 908 domains in BaTiO3 and other tetragonal perovskites can be
easily distinguished.

Fig. 4.6.1 Schematic representation of indicatrix sections for different domain pairs. See text.
The sections of the indicatrix ellipsoids specify the symmetry of the observed planes of
neighboring domains. j is the clapping angle, a is the extinction angle
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When in the given crystal plate one of the domain states is SC corresponding
to the subgroup 4zmm, the domains will be easily distinguishable as shown in
the Fig. 4.6.1b.

As a second example we consider the species 23–2, the case of lagbeinites. We
start again with the isotropic indicatrix B0 (x2 + y2 + z2)¼ 1 of the parent
phase. Consider two domain states SA, SB corresponding to positive and
negative spontaneous polarization along the z-axis, i.e., the subgroup 2z. Here
the twinning operation is the twofold axis along x. From the form of sponta-
neous strain specified in Table C.1 we easily deduce that for both domain states
dBxx ” a, dByy ” b, dBzz ” c while dBxy ” d for the state SA but dBxy¼ –d for the
state SB. Their indicatrices now read

SA : ðB0 þ aÞx2 þ ðB0 þ bÞy2 þ ðB0 þ cÞz2 þ 2dxy ¼ 1; (4:6:15)

SB : ðB0 þ aÞx2 þ ðB0 þ bÞy2 þ ðB0 þ cÞz2 � 2dxy ¼ 1:

.
We now have in mind a plate perpendicular to the z-axis. Principal axes of

the indicatrix sections for the two domain states make an angle a with the
original axes x, y given by

tan a ¼ � 2d

a� b
: (4:6:16)

Thus the difference in extinction angles is 2a and both domain states can be
easily distinguished between crossed polarizers. The clapping angle j adds to
the value of a, as shown in Fig. 4.6.1c.

Spontaneous birefringence is given by (Glogarová and Fousek, 1972)

Dn012 ¼ �n3o dþ a2 � b2

8d

� �
¼ �n30jdj 1þ

1

2ðtan 2aÞ2

" #
; (4:6:17)

where the prime symbol emphasizes that birefringence is measured with respect
to the new principal axes. Plates perpendicular to the z-axis containing other
pairs of domain states in this species which involve subgroups 2z, 2x or 2z, 2y
differ in the value of birefringence only. These pairs actually correspond to the
R cases defined in Sect. 2.2.4. Figure 4.6.1d portrays this situation.

It is essential to note that in this case mutual rotation of the two indicatrices
is independent of the clapping angle which is determined by spontaneous strain.
Both effects may add up. This situation occurs often and bymeasuring the angle
between extinction positions alone the shear component of spontaneous strain
cannot be reliably determined. The problem was addressed by Koralewski and
Szafranski (1989) who specified the angles between extinction positions as well
as the clapping angles for two materials. In Rochelle salt (species 222–2x) at
T¼ 280 K j¼ 30, 2a¼ 28300. In lithium ammonium tartrate (species (222–2y) at
about 80 K j¼ 28180, 2a¼ 68.
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Let us finally inspect the species �42m�mm2, the case of KH2PO4 or
Gd2(MoO4)3 crystals. Using the designation of the previous example, we have
in this case a¼ b so that in the parent clamping approximation the principal
axes of both indicatrices make an angle of 458 with the tetragonal axes. In this
approximation the extinction orientations of both domain states coincide but
again as in the first quoted example, the indicatrix cross-sections are rotated by
908 with respect to each other. To achieve a good contrast a compensator
adding an optical path has to be used. In addition, the clapping angle may
also contribute to the contrast. The situation is depicted in Fig. 4.6.1e.

Analysis of birefringent properties of individual domain states and orienta-
tional relations between the indicatrices together with the orientations of
domain walls represent powerful methods for determining the species of a
particular ferroic, even before a thorough X-ray structural analysis could be
performed. Out of many available examples we mention the determination of
the species pertinent to Bi4Ti3O12. It was the optical analysis (Cummins and
Cross, 1967, 1968) of coexisting domain states observed in two mutually per-
pendicular plates that led to the recognition of the species 4/mmm–Peds–mxy.

All that has been said in this section was formulated as if we had in mind
static observations. Very often the most valuable information about domains
can be obtained by monitoring the differences in domain structures when
external forces are or are not applied. Fast kinetic domain processes induced
by periodic forces are conveniently investigated by microscopic observations in
polarized light with a stroboscopic illumination. Motion of ferroelectric–fer-
roelastic domain walls in an ac electric field (Stadler, 1966; Fousek and Brezina,
1960; Shur et al., 1989a) was studied in this way. The method makes it easily
possible to attribute particular domain events to their macroscopic manifesta-
tions such as Barkhausen pulses (Brezina et al., 1961). An alternative to strobo-
scopy is a CCD microscope (Mulvihill et al., 1997).

Optical distinction of domains based on birefringent properties may have a
number of practical applications in displays, optical valves, or as a background
for nondestructive reading of ferroelectric memories.

4.6.2 Spatial Dispersion

In short we wish to mention a special case where domain states can be distin-
guished also by a linear optical property which is different from the simple
linear birefringence discussed above. Additional possibilities for optical deli-
neation of domains occur when the effect of spatial dispersion is taken into
account, i.e., when one takes into account that the optical polarization at a
given point of the crystal depends not only on the local electric field at that point
but also on its value in the surroundings, i.e., on its spatial derivatives:

PiðrÞ ¼ aijEjðrÞ þ gijk
@EjðrÞ
@xk

þ bijkl
@2EjðrÞ
@xk@xl

: (4:6:18)
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Here the term containing the first derivatives is responsible for the phenom-
enon of optical activity, which will be addressed in detail in the next section. The
term containing the second derivatives describes an effect of spatial dispersion
different from optical activity (often shortly called spatial dispersion). The
tensor controlling this effect, bijlm, is of the same symmetry [V2]2 as the tensor
of photoelastic constants. This effect contributes to optical permittivity of the
material with a term proportional to bijlmklkm, where ki are the components of
the light wavevector. This means that, in some experimental situations, the
natural birefringence can be observed in cubic crystals, which is induced by
effect of spatial dispersion.

From the point of view of domain observation, this effect can enable deli-
neation of the domains which differ by a tensor of [V2]2 symmetry. Species
where this effect could become essential are evident from Tables 2.2.1 and 2.2.2.
Crystals undergoing a phase transition within the cubic system, e.g., those
representing species 432–23 are the best candidates. We know of no cases
where the spontaneous birefringence based on spatial dispersion has been
used for domain observation. However, low-angle twins in cubic crystals of
Ni3B7O13I with the symmetry �43m have been delineated on the basis of this
effect (Pastrnak and Cross, 1971).

4.6.3 Optical Activity

We now come to one additional tensor property which may serve for distin-
guishing domains in a polarizing microscope, namely optical activity. As was
mentioned in the previous section, in terms of the constitutive equation, the
effect of optical activity is associated with the lowest gradient term in it. Taking
into account this effect results in a modification of the evolution of polarization
of light when it travels across a crystal. Customarily, this effect is treated in
terms of the so-called gyration tensor gij that can be expressed in terms of the
third-rank tensor gijk from Eq. (4.6.18) (see, e.g., Nye, 1992; Agranovich and
Ginzburg, 1979). The gyration tensor is an axial one. Therefore, its components
in two domain states (A), (B) are related by the transformation

g
ðBÞ
ij ¼ �aikajlg

ðAÞ
kl (4:6:19)

in which the sign depends on whether the hand of the axial systems is retained
(sign +) or changed (sign –). In fact, the sign depends on whether the twinning
operation contains reflection or if it is a pure rotation. Gyration tensor has
nonzero components in 15 crystal classes, and in ferroic phases with these
symmetries the optical activity might be useful for optical distinction of
domains if the corresponding domain states differ in gij. For species of proper
ferroelectrics, Shuvalov and Ivanov (1964) performed a crystallographic ana-
lysis of effects connected with gyration.
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It is important to realize that if, in a crystal, light propagates in a general
direction with respect to the principal indicatrix axes, the effects of optical
activity are superimposed onto the effects of birefringence and can be regarded
as a small perturbation of the latter (Nye, 1992). The task of determining the
gyration tensor components for such propagation directions is difficult and in
fact there are many controversies in literature concerning the validity of pub-
lished data for a number of ferroelectrics. Therefore, in practice, when we face
the task to optically distinguish domains in a ferroelastic domain pair,
obviously the simple method will be based on differences in the indicatrices,
even if the two domains differ also in the tensor gij.

If the domain pair is nonferroelastic, optical activity may become important.
Tables 2.2.1 and 2.2.2 enable one to see immediately in which ferroic species
nonferroelastic domain pairs can be distinguished by optical activity and to
show howmany components of the gyration tensor can be used. Note that if the
two domain states differ in enantiomorphism, they also differ in the optical
activity tensor, but not vice versa. Again, however, for a general propagation
vector the birefringence effects will be overwhelming. We shall see later that
changes of optical activity due to domain reorientation have been observed for
a number of biaxial crystals (see, e.g., Kobayashi, 1991) but the effect is not
suitable for imaging domains, being overshadowed by birefringence effects. A
qualitatively different situation arises when the light propagates along an optic
axis for which birefringence is zero, i.e., we have in mind a crystal plate oriented
so that nk¼ nl in Eq. (4.6.5). Then the incident linearly polarized light wave
splits into two circularly polarized waves, one right-handed and the other left-
handed (see Heising, 1947 for definitions of handedness and Otko et al., 1989
for more general discussion of optical activity), which propagate with velocities
c/nright and c/nleft, respectively. On leaving the crystal plate of thickness t they
combine in a linearly polarized wave whose vibration plane is rotated with
respect to that of the incident plane by the angle

f ¼ pt
l0
ðnleft � nrightÞ (4:6:20a)

or

f ¼ pt
l0n

G0; (4:6:20b)

where l0 is the wavelength in vacuum and n is the refractive index that the
crystal would have in the absence of optical activity. The ratio of j=t is often
referred to as the rotatory power r for the given orientation. The value of G0

depends on the direction cosines lk of the optical wave normal. It is defined by

G0 ¼ gijlilj; (4:6:21)

where gij¼ gji is the gyration tensor.
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While optic axes with general orientations can be found even for optically
biaxial phases, the real strength of the effect will manifest itself in cases of
optically uniaxial crystals when plates with crystallographic prominent orienta-
tions are not birefringent but can be optically active.

Crystals of Pb5Ge3O11 representing the species �6� Pd� 3 offer the best
known example of the effect. The two domain states have the same uniaxial
indicatrix with the optical axis z but differ in sign of the gyration tensor compo-
nents g11¼ g22 and g33 and can be easily distinguished in polarizing microscope
on the basis of Eqs. (4.6.20) and (4.6.21). The effect can be observed for crystals of
good quality (Dougherty et al., 1972; Shur et al., 1985b); an example is shown in
Fig. 2.2.8.

Related observations weremade even earlier for crystals of quartz. However,
there it is not domains (‘‘electrical twins’’) which can be distinguished by optical
activity but rather growth twins (‘‘optical twins’’) existing already in the parent
phase.

4.6.4 Optical Absorption and Observation in Reflected Light

In the preceding discussion the concept of optical absorption has not been
mentioned at all. But in fact the optical impermittivities are complex quantities
whose imaginary parts reflect absorption phenomena. Strictly speaking, a
complex refractive index n*¼ n – ik should be used to characterize a material.
Here k is the extinction coefficient which determines the ratio of intensities I and
I0 of transmitted and incident light, respectively:

k ¼ l
4pt

ln
I0
I

� �
: (4:6:22)

Here l and t are the light wavelength and the sample thickness, respectively.
In some materials and depending on the light wavelength, the extinction coeffi-
cient and thus optical absorption may be strongly anisotropic, the phenomenon
of linear dichroism. Turmaline provides a well-known example of linear dichro-
ism. In some ferroics—for instance in those containing transition metal ions
with incomplete d-shells—the effect of anisotropic dichroism is superimposed
on the effect of linear birefringence and may contribute to optical distinguish-
ability of ferroelastic domains. Propagation of light in such a system has been
discussed by Rivera (1993). The effect was found to give a contribution to
domain distinction in ferroelastic K3Fe5F15 (Ishihara et al., 1993).

Domains can also be observed in reflected light. The real strength of these
observations manifests itself when ferroelastic domains in nontransparent
materials are investigated. Ferroelastic domains in crystals of YBa2Cu3O7–x

were investigated in this way by Schmid et al. (1988) and others (Vlasko-Vlasov
et al., 1988; Rabe et al., 1989); particularly appealing color plates of domain
patterns in this material have been published (Rabe et al., 1993). It was observed
that for complexes of small domains the analysis of reflected patterns may not
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be simple. When investigating stacks of lamellar domains with a high density of
domain walls such that the domain width is close to or below the resolution of
the microscope, the reflectivity may mimic a symmetry inconsistent with the
X-ray results. One of possible interpretations refers to the possibility that the
domain wall itself is characterized by a complex refractive index which is
slightly different from that of the bulk crystal (Rabe et al., 1990; Schmid, 1993).

4.7 Optical Methods Based on Higher Order Optical Properties

In the previous section we dealt with optical differences of domains, most of
which could be observed under a microscope using linearly polarized light. It was
assumed that the employed optical properties were such as given by basic tensor
properties of individual domain states, the only exception being the existence of
the clapping angle to bring domains into physical contact. No external forces
were assumed to be applied. Therefore, the choice of tensor properties available
to distinguish domains was relatively narrow. If, however, domains are placed
into an electric field or are mechanically stressed, additional properties may lead
to optical contrast if the two domain states differ in some components of electro-
or elasto-optic tensors. Such fields may be applied intentionally but very often
they may be present due to boundary conditions of the sample or due to defects.
The basic information—which fields can be helpful to image domains—is subject
to a similar analysis as for unperturbed properties. We ask, for example, how the
electro- or elasto-optic tensors are transformed from one domain state to the
other and which field component, when applied, would cause differences in
induced birefringence. Twinning operations are helpful in performing this task.
Methods based on perturbed optical properties can be very useful and in the
following paragraph we mention several examples of such approaches.

Still other optical methods for domain visualization rely on nonlinear optical
characteristics. Even more involved optical attributes represent photorefractive
properties of crystals. Both of them require fairly advanced experimental setups
and will be treated in the subsequent sections.

4.7.1 Perturbed Linear Optical Properties: Electro-optics
and Elasto-optics

An illustrative example of the approach based on linear electro-optic effect was
given by Pique et al. (1977). In crystals of NH4Cl (species m�3m� d� �43m) the
two domain states differ in the sign of the electro-optic coefficient r63. When an
electric field is applied along the [001] direction, the Bij tensor is modified as

dB6 ¼ �r63E3; (4:7:1)

where the sign depends on the domain state. A laser beam propagating along
[110] direction experiences optical retardation which is of opposite sign in the

4.7 Optical Methods Based on Higher Order Optical Properties 173



two domains. This produces optical contrast similarly as if the domains would
differ in spontaneous birefringence. Clear pictures of domain patterns were
obtained in fields of 20 kV/cm.

The application of properly oriented electric field was used to visualize domains
also in several classical ferroelectrics. Borodina and Kuznetsov (1984) applied the
field normally to the c-axis of tetragonal BaTiO3 crystals. This leads to an inclina-
tion of the indicatrix by an angle whose sign differs for domains with antiparallel
PS. In crossed polarizers, domains cannot be distinguished when the light beam is
strictly parallel to the c-axis. However, inclining the sample so that the beam
propagates along the optical axis in domains of one sign, the indicatrix of the
other domain becomes inclined with respect to the beam and optical contrast is
obtained. Otko et al. (1993a) used the same method to image domains in LiNbO3.
These authors have also shown that the required electric fields can also arise due to
the pyroelectric effect. Domain walls which are not parallel to PS carry bound
charge which can be expected to be compensated by trapped free carriers. A fairly
quick cooling of lithium niobate sample results in an increase of PS so that
compensation is violated and the excess bound charge induces strong internal
field. This in turn reduces the symmetry of optical indicatrix (‘‘pyroelectrooptical
effect’’) and domains become visible in polarized light. In lithium niobate, these
internal fields can survive for several days. These observations show several
characteristic features. The distribution of visible anomalies is extremely uneven,
dependent on the domain shape and observation conditions. Induced optical
anomalies are strongly concentrated in the close vicinity of domain walls so that
one can see the visualized domains as shining transparent envelopes. Superim-
posed on these images are complicated interference patterns. Otko and coworkers
(Otko and Stasyuk 1995; Otko et al., 1997) worked out a theoretical analysis and
computer simulation of such domain images based on the assumption that all
refractive index anomalies are concentrated within a thin layer near domain walls
while the bulk of the domains remains in an undisturbed optically uniaxial state.

The electro-optical method was also employed to map domain patterns in
KTiOPO4 (Bierlein andAhmed, 1987; Ivanov et al., 1994); while such studies do
not offer a very high resolution compared to surface techniques used for this
material (etching, LC decoration), they have the advantage of providing some
information about the representation of domain states along the optical path of
the propagating light beam.

Another remarkable example of employing perturbed linear optical proper-
ties was offered by Aizu (1973b) for quartz. In the species 622–ds–32, the two
domain states (we have in mind Dauphiné twins) differ in components of the
elastic compliance matrix and therefore also in components of the elasto-optic
tensor pmn defined by

dBm ¼ pmnsn; (4:7:2)

which is of the same rank but of lower symmetry. The component p42 is of
opposite sign for different domains. This makes possible the delineation of
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domains. A crystal plate with (011) faces is observed in polarized light. The

uniaxial pressure applied along [011] causes rotation of the indicatrix whose

sign differs for the two domains, leading to a pronounced optical contrast.

Dolino (1975) employed a similar technique and described in detail the experi-

mental setup which could also be combined with observing domains on the

basis of their electro-optical properties.
It is obvious that in addition to these engineered experiments, fields in a

multidomain sample may be present due to a number of natural causes. In the

early stages of domain investigations it was frequently noticed that domains

were seen in polarized light when they should not have been. The most often

encountered examples are those of 1808 domains in tetragonal BaTiO3. Merz

(1952, 1954) observed dense patterns of them contained between parallel 908
walls, in light propagating nearly perpendicular to the polar c-axis. There are

many possible sources of such effects. Even slight changes of temperature may

produce an enormous electric field in an isolated ferroelectric crystal if pyro-

electric coefficients of the particular material are high. Alternatively, the field

may result from freshly formed domain patterns containing walls with uncom-

pensated bound charge or simply from the charge –divPS located at the crystal

surface. Similarly, complicated ferroelastic domain patterns necessarily result

in stress fields. All these fields may lead to on optical contrast between domains

which is not compatible with their unperturbed properties.
We now mention observations of domains or domain walls under dynamic

conditions. The real breakthrough in studying polarization reversal process in

BaTiO3 was the discovery made by Miller and Savage (1959a) who found that

1808 domains produce an optical contrast when placed between crossed

polarizers and viewed along the polar direction in white light. These and the

later data (Merz, 1956; Miller and Savage, 1961; Brezina and Fotcenkov,

1964) relate to observations of domains which have been recently formed or

modified by an applied electric field. Being observed through transparent thin

evaporated gold or liquid electrolyte, the reversed domains generally

appeared darker than the surrounding regions. Nakamura et al. (1963)

obtained very distinct pictures of antiparallel domains in the same geometry;

again, these were only visible for a short time after they had been formed by

applied field. Similarly, Kobayashi (1967) observed narrow 1808 domains

during their growth process in an applied electric field in a crystal free of 908
domains, in light propagating nearly perpendicular to the c-axis. Later, simi-

lar observations were reported by Sinyakov et al. (1972) in samples about 2 mm
thick. All these observations corroborates with the X-ray diffraction data for

BaTiO3, which suggest that the freshly switch areas are optically biaxial,

probably of monoclinic symmetry (Kobayashi et al., 1963).
The lesson that can be deduced from the described experiments is that even if

the simple symmetry analysis indicates that domain pairs in a particular mate-

rial could not be optically observed directly, there may be many ways how to

circumvent this obstacle and still use the basic optical equipment.
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4.7.2 Nonlinear Optical Properties

We have seen that restricting ourselves to ‘‘unperturbed’’ optical properties,
linear optics can give information on nonferroelastic domains only in rare cases
when spatial dispersion effects can be applied. New possibilities are offered by
nonlinear optical properties and we first give a very brief introduction to the
topic. Noncentrosymmetric classes allow the existence of nonzero components
of the nonlinear susceptibility wNL

ijk in the relation

PNL
i ¼ wNL

ijk EjEk: (4:7:3)

Considering electric field at optical frequencies, this nonlinear dependence
leads to a number of phenomena depending on the frequencies of the fields.
Here we are interested in just one of them, generation of the second optical
harmonics (SH). It is governed by tensor wNL

ijk ð2oÞ which is symmetric in the
indices j, k so that its symmetry is the same as that of the piezoelectric coefficient
dijk. Assume that the incident light beam propagates along the z-axis, i.e.,

EðoÞ ¼ E0 cosðot� q1zÞ; (4:7:4)

with velocity o/q1¼on/c. For simplicity we omit indices. To avoid diffraction
from the edges, the beam cross-section must be smaller than the entrance face of
the sample; in turn, the thickness of the latter must be small enough to avoid
broadening of the beam due to diffraction. By virtue of nonlinear properties of the
material at each location the second harmonic polarization wave (‘‘source wave’’)

P ¼ wNLð2oÞE2
0 cosð2ot� 2q1zÞ (4:7:5)

is generated. It serves as a source of a field wave at a frequency 2o

Eð2oÞ ¼ E1 cosð2ot� q2zÞ; (4:7:6)

whose amplitude E1 is proportional to wNL. Because of the dispersion, n(2o) 6¼
n(o) this wave propagates with a velocity different from the source term, i.e., q2
6¼ 2q1. Harmonics generated at different parts of the crystal interfere. This
interference is destructive when the propagating wave covers a distance which
is an even multiple of the coherence length

lc ¼
p

q2 � 2q1
¼ l

4½nð2oÞ � nðoÞ� ; (4:7:7)

while after an odd number of coherence lengths the second harmonic intensity is
maximum. Here l is the free-space wavelength of the fundamental wave.
Typical values of lc are between 1 and 20 mm. Since the crystalline medium is
anisotropic, inmany cases a propagation direction of the fundamental wave can
be found for which n(2o)¼ n(o) so that lc becomes infinite; it is understood that
the fundamental and second harmonic waves can be differently polarized. This
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situation is referred to as phase matching. Understandably, the phase matching
direction depends on the wavelength of the fundamental wave.

Consider crystals of TGS, species 2/m–Pd–2. It is apparent from this symbol
or fromTables 2.2.1 and 2.2.2 that domains with oppositePS directions differ in
the sign of their nonlinear optical coefficients. This fact was used by Dolino
(1973) for their imaging. A plate-like crystal cut perpendicular to the ferro-
electric axis and provided with transparent liquid electrodes is illuminated by a
laser beam along the phase-matching direction. The cross-section of the beam
scans the whole area of the plate. Figure 4.7.1 shows schematically the situation
with two domains present. Rays such asAB orCD are in phase. But if a ray such
as EG crosses a domain wall there is a destructive interference between the rays
produced in the EF and FG sections since they are of opposite phase. Thus in
projection the wall will appear black. Rotating the sample away from the phase-
matching direction reverses the contrast. This is because the interference of
second harmonic waves is more destructive in the single domain regions than
across the boundary.

The same method was used to image the topography of Dauphiné twins in

quartz (Dolino et al., 1973), based on the same symmetry arguments. The

resolution is not high; domains are supposed to be large compared to the

wavelength and complicated situations arise when the beam is crossing more

than one domain wall.
Data on scattering of a SH wave provide an alternative indirect tool for

obtaining data on domain shapes and sizes. Dolino et al. (1969) were the first to

investigate the case where the fundamental wave hits many domains differing in

the sign of the susceptibility wNL and is scattered. A laser beam hits a TGS plate

with ferroelectric axis b in the major plane. The angular dependence of the SH

scattered light intensity is measured in a plane perpendicular to b. The scattering

Fig. 4.7.1 Origin of the
contrast of 1808 domains
(large compared to the light
wavelength) in TGS in
second harmonic light. See
text. After Dolino (1973)

4.7 Optical Methods Based on Higher Order Optical Properties 177



curve narrows when domains are removed by an applied field. If the funda-

mental wave propagates in the phase-matching direction, formation of domains

decreases the SH intensity for reasons apparent from the preceding paragraph.

In a later work (Dolino et al., 1970) the situation was theoretically analyzed in

detail and further generalization of the theory (Dolino, 1972) offered analysis of

scattering patterns in TGS so that the presence of domains of different shapes

can be identified.
Weinmann and Vogt (1974) measured the angular distribution of the scat-

tered SH intensity for different wave vectors of the incident wave, analyzing the

situation in crystals of NaNO2 where similar arguments apply. In both cases

pronounced maxima of I2o are found in multidomain crystals. With T

approaching TC these maxima disappear. Theoretical analysis was done based

on the previous knowledge that domains are lamellae perpendicular to a. It is

concluded that with rising T the lamellar geometry stays but domains become

narrower, from 30 to 50 mm at room temperature (showed by etching and being

consistent with scattering data) down to 2 mm near the transition point.
An alternative study was performed by Cudney et al. (1997) for crystals of

tetragonal BaTiO3 containing only antiparallel domains. Figure 4.7.2a shows

the experimental setup; the sample is oriented with its c-axis perpendicular to

the plane of the drawing. The polarizer blocks the fundamental laser beam but

lets the perpendicularly polarized SH wave through. The crystal is first poled

and then depolarized by an applied field; the degree of depolarization is mon-

itored by measuring the charge. Figure 4.7.2b shows scattering patterns for

poled and 40% depoled sample. The scattered line is structured along the

y-direction while the width along z-direction remains the same; this gives

evidence that domains stretch from one surface to the other. As in the case of

TGS, the nonlinear susceptibility tensor in antiparallel domains differs in sign.

The SH field amplitude Ei(2o) is a function of the wave vector mismatch 2q1–q2

Fig. 4.7.2 (a) Experimental setup for the analysis of domains by second harmonic scattering.
f¼ 100 mm, pulse intensity 3 MW/cm2, sample dimensions �2.5 � 5 � 5 mm. (b) Far-field
scattering patterns for a single domain crystal (left) and for a crystal depoled by 40% (right).
After Cudney et al. (1997)
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where q1 is the wave vector of the first harmonics and q2 stands for that of the

second harmonics. An involved analysis of the situation results in a formula for

the total SGH intensity I2o(2q1–q2) which is a function of the number of domains

of width a and which predicts the angular variation of the intensity of the

scattered SH wave for a given distribution of domain width g(a). Thus the latter

can be obtained by fitting the scattering profile. The result for a sample with 80%

volume of positive and 20% of negative polarization is shown in Fig. 4.7.3.

To summarize, direct observations using SH are limited to very simple
domain structures. Second harmonic scattering may be a useful method
where others fail. However, to analyze data correctly, the domain geometry
has to be assumed or already known from other studies. Then SH scattering
may give additional information on what the domain size distribution is or how
it depends in such factors as temperature. Understandably, the resolution of the
method is limited by the wavelength.

4.7.3 Photorefractive Properties

Some of the ferroelectric materials exhibit photorefractive properties; BaTiO3,
LiNbO3 and KNbO3 represent well-investigated examples. The photorefrac-
tion may serve as an auxiliary tool for imaging domain structures. Here we
briefly address its basic principles. Photorefraction has been covered in detail in
several monographs (Sturman and Fridkin, 1992; Günter and Huignard, 1988).

Photorefractive effects can occur in crystals which contain suitable impu-
rities and exhibit electro-optic properties. A sample is nonuniformly illumi-
nated; the electrons or holes which are excited from the impurity centers by light
of suitable wavelength migrate and are trapped at other locations. They will be
reexcited and retrapped until they drift out of the illuminated region. Together
with the ionized impurities they form a spatial distribution of charge, which
results in a spatially nonuniform electric field. Via the electro-optic effect,
refractive indices of thematerial are spatiallymodulated. Figure 4.7.4 illustrates
this phenomenon for the case where the spatial modulation of the light intensity
is sinusoidal. Since in many ferroics (whenever the species designation contains

Fig. 4.7.3 Example of the
analysis of SH scattering
experiment with a BaTiO3

sample depoled by 20%:
number g(a) of 1808
domains (assumed to have
square cross-sections) vs.
domain width a. After
Cudney et al. (1997)
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the symbol –..Pd..–) the electro-optic tensor can be different in different
domains, the photorefractive pattern can provide information on the domain
pattern in the material.

The idea of implementation of this technique is as follows. When a single
domain crystal is exposed to spatially modulated light intensity (e.g., created by
two interfering beams of light), a homogeneous grating of the refractive index is
formed due to the photorefractive effect. If a ferroic sample contains domains
differing in electro-optical coefficient, the grating becomes spatially modulated
according to the domain pattern revealing it.

Kahmann et al. (1990) have suggested the use of this phenomenon for imaging
antiparallel domains in ferroelectrics by a method named beam coupling topo-
graphy. This method is based on the self-diffraction effect when the two incident
interfering beams cross in a crystal, i.e., diffraction of the beams on the grating
that they have created. The photorefractive grating results in energy transfer from
one beam to the other. In a single domain sample, the sense of the energy transfer
is controlled by the sign of a certain linear combination reff of electro-optic
coefficients of the medium. Thus, in a multidomain sample, the antiparallel
domains can be delineated by the sense of the energy transfer as it is illustrated
in Fig. 4.7.5. The method was first applied to crystals of BaxSr1–xNb2O6:Ce
(Kahmann et al., 1990, 1992, 1994). It is obvious that if the beam mixing takes
place in two or more domains located behind each other, the contrast would
become diffuse or lost. This feature was overcome by Grubsky et al. (1996).
Figure 4.7.6 shows their experimental arrangement. A sample consisting of
antiparallel domains is illuminated with one beam (signal beam) along its polar
axis whereas the second beam (pump beam) is focused to a thin slice which is
perpendicular to it. As a result only within this slice the energy transfer occurs so
that the domain geometry in this slice only is represented in the intensity pattern
of the transmitted signal beam, which is resisted by a CCD camera. When the

Fig. 4.7.4 Basic scheme of
the photorefractive effect.
Non-uniform illumination
causes charge transport (a).
This results in charge
redistribution r(z) (b); it is
assumed that the phase of
r(z) corresponds to
diffusion as the prevailing
transport mechanism.
Resulting electric field
(c) modulates the refractive
index (d)
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slice is scanned across the crystal along the polar axis, a three-dimensional picture

of antiparallel domains can be constructed. The idea was applied to top-seeded

solution-grown crystals of BaTiO3. Figure 4.7.7 shows an example of domain

pattern in a crystal 6.6 mm long (in this picture the polar-axis length has been

artificially compressed to make the distant domains visible). The resemblance of

the pictures in individual slices to slices of ‘‘Emmentaler’’ tempted some research-

ers to refer to the method as the Swiss cheese technique (Grubsky et al., 1996).

Independently, Grabar et al. (1997) used the same method to image domains in

crystals of Sn2P2S6. Such pictures are unique in their 3D character but the

resolution is limited as in any other optical method. In its present form the

method is suitable for visualizing static patterns.

Fig. 4.7.5 Domain contrast formation by beam-coupling topography. A space charge grating
is generated by interfering beams IR0

and IS0 , independent of domains. In antiparallel domains
(denoted � and 	), the refractive index grating is shifted by l/2. The interference of
transmitted and refracted beams amplify the intensity I�R and diminish the intensity I�S . The
opposite holds for the domain 	. After Kahmann et al. (1992)

Fig. 4.7.6 Experimental setup for 3D imaging of domains using the Swiss cheese technique.
After Grubsky et al. (1996)
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4.8 Electron Microscopy

The present section gives an overview of several methods used for studying
domains in ferroics based on the interaction of electron beams with a multi-

domain ferroic sample. These techniques may differ essentially in their princi-
ples as well as in the required equipment. It is beyond the scope of this book to

go into a detailed description of the techniques used and rather we shall restrict
ourselves to a discussion of the basic principles of domain imaging in these

techniques, the information they offer, and their limitations.
In any electronmicroscope, the sample is exposed to an electron beam. There

are two principal imaging techniques in electron microscopy corresponding to

the detection of the electrons emitted back from the sample surface and the
detection of the electrons that have passed through the sample. The first

technique is called scanning electronmicroscopy (SEM), the second—transmission
electron microscopy (TEM). The application of these techniques for domain

imaging will be addressed in the two following sections. Later we will briefly
discuss one more using electron beam for domain imaging, namely electron

mirror microscopy.

4.8.1 Scanning Electron Microscopy

We have already mentioned that scanning electron microscopy (SEM) is being
used to visualize domains on surfaces of decorated multidomain crystals. There

its advantage is high resolution in distinguishing the density or arrangement of
decorating particles. However, a considerable effort was made to employ SEM

for direct domain observations. After the examination in a scanning electron
microscope the sample may be used again in another experiment since its

Fig. 4.7.7 Antiparallel
domains in tetragonal
BaTiO3 imaged by the Swiss
cheese technique. Optical
slices spaced 250 mm apart.
After Grubsky et al. (1996)
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surface has not been damaged. Further, SEM allows for direct observations at
different temperatures as well as for observing slow kinetic processes.

There is a fact that next to all these promising features the method has as its
major setback: Most of the ferroic crystals of interest are good insulators and
samples may get charged during a SEM observation. This charging may impact
the domain pattern of the sample. This was documented by observations such
as of polarization reversal (Sogr and Kopylova, 1995), domain growth (Naka-
tani, 1973), or domain nucleation (Abboud et al., 1993) in crystals of TGS due
to the electron beam itself. In addition, the accumulation of charge may deflect
the electron beam on subsequent scans and so negatively influence the method
itself.

For observation of ferroic domains, two basic modes of operation can be
used. One of them is associated with the secondary electrons and the other with
backscattered electrons. These modes can be elucidated as follows. The cath-
ode which is the electron source is on a high negative potential –V0 relative to
the grounded anode; V0 is typically between 1 and 50 kV. The electrons of the
incoming beam accelerated to the energy eV0 hit the sample surface. As a
result of inelastic scattering processes secondary electrons are produced, with
energy much lower than that of the electrons in the primary beam, typically
below 50 eV. As a result of multiple elastic scattering of the incoming elec-
trons, backscattered electrons emerge from the sample, with a wide distribu-
tion of energies below that of the primary beam. By choosing the electron
detector and its potential, secondary or backscattered mode of observation
can be selected. In a typical SEM setup the sample is in vacuum 10–5–10–6

Torr.
For nonmagnetic dielectrics there are two principally different sources of

contrast: spatial variations of topography and surface electrical potential.
Both these factors will influence the number of detected electrons and in
general we may expect that both of them also lead to contrast between
domains. We have already discussed in detail in connection with other meth-
ods that surface topography relief can be expected to exist for ferroelastic
domains and, as a result of sample preparation, for nonferroelastic domains as
well. In fact one of the earliest observations of ferroelastic domains by SEM
was performed for etched crystals of BaTiO3 (Robinson andWhite, 1967), the
contrast being purely of topographic origin. However, for all ferroelastic
domain pairs one can also expect that contrast arises due to the channeling
effect (Unruh, 1963; Sogr and Kopylova, 1996); the latter reflects the fact that
the mutual orientation of the primary electron beam and the crystal lattice is
different in neighboring ferroelastic domains. On the other hand, for non-
ferroelastic– ferroelectric domains the surface relief in the electric potential
and the topographic relief can be expected to control imaging rather than the
channeling effect.

For ferroelectrics in particular the problem of charge accumulation is ser-
ious. This was why the first attempt to observe ferroelectric domains was
performed with WO3 crystals which are semiconductive. Le Bihan and Cella
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(1970) succeeded to observe both 1808 and 908 domains as well as surface

topography due to hillocks and found that the domain contrast was the same

in both modes, e.g., with secondary and backscattered electrons, respectively.

However, for a metallized sample the domain contrast disappeared, a clear

indication that domains were visible not due to topography but rather due to

differences in surface potential. This can be understood as differences in the

work function. In fact the difference of work function for antiparallel domains

in TGSwas later measured and found to be about 1 eV in samples aged for a few

days after preparation (Le Bihan and Abboud, 1989).
Later experiments with crystals of TGS and other ferroelectrics (Maussion

and Le Bihan, 1976; Le Bihan and Maussion, 1974) showed that the contrast is

always seen in the secondary mode and this mode is now generally employed

with rare exceptions (Oleinik and Bokov, 1975). In fact, when the detector is

typically at a potential of +10 kV all emitted electrons are detected, but the

secondary electrons constitute the main part of the detected current. The

simplest model of contrast formation is shown schematically in Fig. 4.8.1

(Le Bihan, 1989). A surface layer is formed at antiparallel domains in which

adsorbed molecules also play a role. It is assumed that in this layer electric field

exists correlated with the direction of PS underneath. This field controls the

intensity of emitted secondary electrons. The layer thickness is usually esti-

mated to be of the order of nanometer to tens of nanometers (Kokhanchik,

1993).

It has thus become customary to investigate ferroelectric domain structures
with nonmetallized samples. As was mentioned above, since few ferroelectrics
are appreciably conductive the surface charging may pose a problem with
domain delineating based on the surface bound charge of the spontaneous
polarization. The problem of surface charging of weakly conductive samples
was addressed by Le Bihan and Maussion (1971) and by Le Bihan (1989); they
demonstrated possibility of essential suppression of this effect. This possibility
is based on the observation that the ratio of the electron current emitted back by

Fig. 4.8.1 Scheme of
secondary electron emission
from ferroelectric
antiparallel domains as
suggested by Le Bihan
(1989). The detection of the
field E in the surface layer
controls the intensity of
emitted electrons
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the sample to the electron current received by it, the so-called yield d, can be
larger than unity in a certain range of the accelerating potential. Thus there exist
two values V1 and V2 of the acceleration potential (V2 > V1), at which d¼ 1 so
that at these values the electron beam does not charge the sample surface. The
analysis, taking into account the capacitance and the resistance of the sample,
shows that the value V2 of the accelerating potential can correspond to a stable
state of the system (Le Bihan, 1989). Thus working close to this value enables a
substantial suppression of the sample charging, which makes it possible to
successfully read the surface bound charge of ferroelectric domains. In practice,
the condition d¼ 1 is not exactly met. In this case, as follows from the approach
developed by Le Bihan and Maussion (1971) and by Le Bihan (1989), in the
stationary state the sample surface will carry the charge density associated with
the incident electron beam

ssur ¼ JptMðd� 1Þ; (4:8:1)

where Jp is the current density of the primary electrons reaching the sample and
tM is the Maxwell relaxation time. Thus, at long exposition time the surface
charging leading to a loss of the contrast between domains typically occurs.
However, even in this regime, domain walls are still contrasted as was reported
for TGS (Le Bihan, 1989), NaNO2 (Hatano and Le Bihan, 1990), and Mn-I
boracite (Castellanos-Guzmán et al., 1995). This is believed (Le Bihan, 1989) to
be connected with the fact that there is a large potential drop across the wall
creating an intense electric field above it, of the order of 105 V/cm, which
deviates both primary and secondary electrons; thus domain walls remain
uncharged and retain their contrast. However, Aristov et al. (1983, 1984) have
proposed another interpretation suggesting that domain boundaries might have
excess electrical conductivity, whereas Sogr (1989) connected the wall contrast
with the small shifts of domain walls due to the incoming beam.

As an example, Fig. 4.8.2 reproduces the SEM picture of 1808 domain walls
in a crystal of GASH (Szczesniak et al., 1995).

While it is generally accepted that the contrast in domains is connected with
the surface potential, observations are available indicating that other mechan-
isms may be involved. It was established (Aristov et al., 1984) that antiparallel
domains in LiNbO3 can be made visible even on theY-planes which are parallel
to the polarization vector. On repeated irradiation the contrast first inverts but
finally disappears.

In fact, most of the published data on ferroelectric domains obtained by
SEM at non-metallized sample do not excel in spatial resolution. Typically,
pictures of areas are presented with linear dimension of one to several hundreds
of micrometers. This is related to the limitation on the accelerating voltage,
which, in turn, limits the achievable level ofmagnification. Applying conductive
coatings makes it possible to reach higher magnifications and at the same time
to apply external electric field to the sample in order to influence its domain
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structure. The growth of domains in TGS crystals was observed in such a way
(Grandet et al; 1981). Some other interesting results obtained by SEM include
the influence of pyroelectric charge produced by a small temperature change on
the domain contrast (Averty and Le Bihan, 1993; Ozaki et al., 1996), simulta-
neous observations of domains on perpendicular crystal faces (Maussion et al.,
1986), and higher resolution observations of etched domains (topographic
contrast) formed in LiNbO3 due to the pyroelectric effect (Pendergrass, 1987).

The SEM method has found increasing applications in evaluating periodic
domain structures for optical applications in crystals of KTiOPO4 (Skliar et al.,
1997) and LiNbO3 (Ishigame et al., 1991; Le Bihan et al., 1995). Of practical
importance is the use of environmental SEM which operates at pressures by
four orders of magnitude higher than conventional SEM (Zhu and Cao, 1998).
It was reported that, by using this technique, domains were delineated in
LiTaO3 crystals while the images were found stable with no contrast change
over a period of several hours.

4.8.2 Transmission Electron Microscopy

A transmission electron microscope (TEM) is an electron-optical device where
the electrons passed through the sample are used to obtain the information on its
structure. The focusability and short wavelength of electron beams are respon-
sible for the high resolving power of the TEM. The principles of generation of
the electron beam are the same as for SEM. The electrons are emitted from the
cathode by either thermal emission or field emission and focused on the sample
by electromagnetic lenses. The vacuum (that permits the propagation of the

Fig. 4.8.2 Left: SEM picture of domain walls surrounding egg-shaped domains on (0001)
surface of GASH crystal taken in the secondary electron mode at an accelerating voltage of
1 kV (Szczesniak et al., 1995).Right: the same areas, domains decorated by AgCl. Courtesy of
L. Szczesniak. Magnification 440�
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electron beam) at the sample is in the range of 10–6 Torr. Specially designed
sample holders allow not only tilting the sample in order to control the diffraction
conditions but also to heat or cool the sample for in situ observation of phase
transitions. Modern TEM allow the observation of the atom columns and have a
resolution which has just recently broken the 1 Å barrier (O’Keefe et al., 2001).

In this section we introduce the basic principles of TEM and describe the
concepts of bright field imaging, dark field imaging, weak beam dark field
imaging, and high-resolution transmission electron microscopy (HRTEM). We
will also illustrate the application of these methods to visualize ferroic- and
compositional-ordering domains and domain walls. For a complete introduc-
tion to transmission electron microscopy, the reader is referred to specialized
books (e.g., Williams and Carter, 2004).

In a conventional transmission electron microscope, a thin specimen is
irradiated with an electron beam of uniform current density. For HRTEM,
5–20 nm thick samples are used, for other TEMmethod sample thinness may be
up to 100 nm. The electron energy is most commonly in the range between 100
and 300 keV. Electrons are extracted from a tip or filament in the electron gun
by thermoelectronic or field effect emission. A condenser–lens system permits
variations of the illumination and the area of the specimen illuminated. The
electrons travel through the specimen where they are scattered by various elastic
and inelastic scattering processes. The electrons passed through the sample are
focused by the objective lens and a diffraction pattern is produced in its back
focal plane. This diffraction pattern, where the diffraction spot corresponds to
differently diffracted beams, is the base for different imaging techniques. The
diffraction pattern can be projected onto a viewing screen with further record-
ing on a CCD camera or by direct exposure of a photographic emulsion.
Alternatively, one or all of the transmitted and diffracted beams can be selected
by an aperture introduced in the diffraction plane (back focal plane of the
objective lens) to form an image of the sample. If only one of the beams
(spots of the diffraction pattern) is used, then bright field, dark field, and
weak beam dark field images are obtained. The HRTEM image is obtained
when the result of the interference of many (ideally all) diffracting beams with
the transmitted one is observed at high magnifications.

4.8.2.1 Bright Field Imaging, Dark Field Imaging, Weak Beam Dark Field

Imaging, and Selected Area Electron Diffraction

Figure 4.8.3 explains the selection of the spots of the diffracting pattern to
obtain bright field, dark field, and weak beam dark field images. Diffraction
conditions are best illustrated using the Ewald sphere (locus of all elastically
scattered beams) shown in this figure. The intensity of diffracted beams is
maximal for all reciprocal lattice points that are intersected by the sphere, i.e.,
for which the Bragg condition is satisfied:

~kg ¼ ~k0 þ~g (4:8:2)
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~kg and ~k0 are, respectively, the wave vectors of the diffracted and the trans-

mitted beam and ~g is a reciprocal lattice vector. Due to the particularly small

thickness of TEM samples, the reciprocal lattice points appear as small rods

oriented in the direction of the foil normal. This makes the intersection between

the Ewald sphere and the reciprocal lattice points readily achievable.
The bright field image is obtained by using the transmitted beam (Figs. 4.8.3a

and 4.8.4b). In this case, the image contrast is formed on a uniformly bright

background (therefore bright field). A perfect crystalline lattice produces a

uniform image contrast depending on the diffraction conditions (diffracted

beams are stopped by the objective aperture). Any lattice imperfection will

modify the local diffraction conditions and change the diffracted intensity

resulting in a change of image contrast.
In the case of dark field image, only one diffraction spot is used correspond-

ing to a certain well-chosen orientation of the crystalline lattice (Figs. 4.8.3b

and 4.8.4b), e.g., corresponding to the orientation of one domain when two (or

many) domains with different orientations are in view. Then only areas which

are in diffraction condition for the selected diffraction spot contribute to the

image formation. They will be seen as bright objects on a dark background

(therefore dark field).

Fig. 4.8.3 The selection of
the spots of the diffracting
pattern to obtain bright
field, dark field, and weak
beam dark field images. Due
to the small thickness of
TEM samples, the reciprocal
lattice points appear as small
rods oriented in the
direction of the foil normal.
The directions of the
transmitted beams are
shown with arrows pointing
at 0. For getting images, the
electrons propagating along
the optical axis are collected
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For getting a weak beam dark field image, a diffraction direction is chosen

that is slightly out (a well-defined amount) of the exact Bragg condition for a

given reciprocal lattice vector ~g (Fig. 4.8.3c). This configuration where the

Bragg condition is exactly fulfilled for a farther (3~g in this figure) lattice point

and the selected diffraction spot is weakly (therefore weak beam) excited is

favorable for the comprehensive and quantitative study of lattice defects and

interfaces. Because of the involvement of the two Bragg points, the method is

often referred to as two-beam diffraction conditions.
In the case of the dark field imaging in contrast to the bright field imaging,

the incident electron beam is inclined with the respect to the optical axis of the

electron microscope as shown in Fig. 4.8.4b so that the diffracted beam is

centered on the optical axis of the microscope after diffraction.
The area of which an electron diffraction pattern is obtained with a parallel

illumination can be selected using an aperture in the image plane of the objective

lens. This technique is called selected area electron diffraction (SAED). The

diffraction pattern is then obtained by the electrons passing through this area

only. SAED pattern enables the identification and analyzes crystallographic

orientations of objects (domain or grains) in the selected area.
Figure 4.8.5 shows the bright field image (a) and SAED pattern (b) taken

from a thin (010) PbTiO3 film containing of 908 domains with the spontaneous

polarization lying in the plane of the film (the so-called a/a domain pattern).

The SAED pattern observed is the superposition of the diffraction patterns of

the two domains separated with a ð�101Þ domain wall seen in the selected area in

Fig. 4.8.5a. The splitting of the spots in the image is caused by the misalignment

of the crystalline planes (100) and (001) in the neighboring domains. At the

same time there is no splitting for (202) spots as expected from the mechanical

compatibility conditions.
Figure 4.8.6 shows the dark field and weak beam dark field images taken from

an area of a PbTiO3 film containing of 908 domains with the spontaneous

Fig. 4.8.4 The selection of the spots of the diffracting pattern to obtain bright field, dark field,
and high-resolution (interference) images. FP, focus plane of the objective lens; IP, image
plane of the objective length
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polarization either normal or parallel to the plane of the film (the so-called c/a

domain pattern). Only one set of domains is close to Bragg conditions and appears

bright in the dark field image, the other set of domains remains dark (Fig. 4.8.6a).

At the domain boundary, which is slightly inclined with respect to the viewing

direction a fringe pattern is observed. This is the result of multiple scattering at the

inclined walls. In the weak beam dark field image (Fig. 4.8.6b) multiple scattering

is reduced and the well-defined diffraction conditions can be used to numerically

simulate the interference pattern. From comparison of the images with the result

of image simulations one can evaluate the domain wall thickness.
In general, the weak beam dark field imaging (two-beam diffraction condi-

tions) makes a very important tool of domain imaging. It has been extensively

Fig. 4.8.6 Dark field (a) and weak beam dark field (b) images taken from an area of a PbTiO3

film containing 908 domains with the spontaneous polarization either normal or parallel to the
plane of the film. Reprinted with permission from Foeth et al. (1999a). Copyright (1999),
Elsevier

Fig. 4.8.5 Bright field image (a) and SAED pattern (b) taken from a thin (010) PbTiO3 film
containing 908 domains with the spontaneous polarization lying in the plane of the film.
Reprinted with permission from Foeth et al. (1999a). Copyright (1999), Oxford University
Press
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used from starting the first studies of domain walls in ferroelectrics. We will

address this topic in detail when discussing the experimental investigations of

domain walls in Sect. 6.1.6.
The dark field imaging technique can also be used for detection of domains of

chemical ordering in disordered ferroelectrics. Such work has been performed

(Akbas andDavies, 1997) for mixed perovskite Pb(Mg1/3Ta2/3)0.95Zr0.05O3 where

the occupation of the B-site with Mg or Ta can be progressively tuned from fully

disordered to ordered with the doubling of the lattice parameter. The ordered

areas can be visualized by dark field imagingwhich is produced for the diffraction

spot 3/2(111) specific for the structure with the doubled period (Fig. 4.8.7). Only

the ordered regions which scatter the electrons into the 1/2(111) direction con-

tribute to the image contrast. It is seen that the ordered regions form domains of

up to 100 nm in size separated by the disordered matrix (dark contrast).

4.8.2.2 High-Resolution Transmission Electron Microscopy

In high-resolution transmission electron microscopy (HRTEM) many diffracted

beams are used to get the image. Technically this is done by selecting many

diffraction spots in the back focal plane of the objective lens using a suitable

objective aperture. The image contrast is formed by the interference of the

selected reflections. Figure 4.8.4 illustrates the difference in the selection of the

diffraction spots in the bright field imaging, dark field imaging, and HRTEM.
HRTEM readily provides atomic level resolution. Figure 4.8.8 shows a typical

high-resolutionmicrograph of a 908 domain wall in PbTiO3 taken using a Philips

CM-300 FEG microscope with a point-to-point resolution of 0.17 nm.

Fig. 4.8.7 B-site
ordered areas in
Pb(Mg1/3Ta2/3)0.95Zr0.05O3

visualized by dark field
imaging which is produced
for the diffraction spot
3/2(111), specific for the
structure with the doubled
period. Reprinted with
permission from Cantoni
et al. (2004). Copyright
(2004), American Institute
of Physics
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The theory of the HRTEM imaging is quite involved and goes out of the

scope of this book. Here, we would like to comment the point that it is not

obvious to determine the position of the atomic columns just by contemplating

the experimental micrographs. It can be understood in the simplest approxima-

tion where the electron absorption in the sample is neglected. In this approx-

imation, the diffracted electron wave exhibits only a phase shift after passing

through the sample. The phase shift reflects the crystal potential of the material,

Vðx; yÞ, where x and y are the Cartesian coordinates in the plane of the thin

sample. However, the former does not affect the intensity of the diffracted wave

in the x� y plane of the image. The information hidden in the phase of the

diffracted electron wave can be developed after the interference of the diffracted

wave with the un-scattered wave. However, in a real TEM the correspondence

between the crystal potential of the material, Vðx; yÞ, and the intensity of the

sum of the diffracted and un-scattered wave, Itotðx; yÞ, is not straightforward
because of additional phase shifts acquired by the diffracted wave in the device

(defocusing, spherical aberration of the magnetic lens being the most important

ones). This implies that additional tuning, which compensated these shifts is

needed to get the HRTEM which reproduce truly the crystal potential of the

material (specifically the atomic arrays in it). The situation becomes more

complicated when multiple scattering occurs and when the electron absorption

cannot be neglected (for thicker crystals or for crystals containing heavy

atoms). In this case one has to make use of the full dynamical theory of electron

diffraction and imaging in order to quantify the experimental micrographs

(Cowley, 1975; Ishizuka and Uyeda, 1977).

Fig. 4.8.8 Typical high-
resolution micrograph of a
908 domain wall in PbTiO3

taken using a Philips CM-
300 FEG microscope with a
point-to-point resolution of
0.17 nm. Reprinted with
permission from Foeth et al.
(1999a,b). Copyright (1999),
Oxford University Press
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HRTEM observations have been used for characterization of domain walls
in various ferroelectrics, the structure, thickness, and roughness of the walls
being addressed. Useful information of this kind has been reported for KNbO3

(Bursill et al., 1983), BaTiO3 (Shiojiri et al., 1992; Floquet et al., 1997), and
PbTiO3 (Stemmer, 1995; Foeth et al., 1999b).

HRTEM has also been applied of the identification of the type of chemical
ordering in mixed perovskite ferroelectric Pb(Mg1/3Ta2/3)0.95Zr0.05O3 already
discussed above in the context of the dark field imaging. The latter method, as
was mentioned, enables the detection of the B-cite ordered domains in the
disordered matrix. However, the information provided by this technique is
not enough to determine the microscopical type of ordering. This delicate
identification has been performed by Cantoni et al. (2004) by comparing the
HRTEM images taken for a specially selected setting with the results of com-
puter simulations. Because of its nature (interference contrast) the contrast in
HRTEM images varies strongly with the imaging conditions (focus) and the
specimen thickness. Therefore, an unambiguous identification of the occupa-
tion of atom columns and the measurement of the column spacing is only
possible for special cases where all of the parameters are known and can be
taken into simulations. In these cases, however, HRTEM is a very powerful tool
of direct verification of the microstructure on an atomic level.

4.8.3 Electron Mirror Microscopy

Electron mirror microscopy like SEM provides information on the surface
potential of the material but in contrast to the latter, in this technique the
electrons do not enter the sample but are just reflected by its surface potential.
To achieve this in an electron mirror microscope the sample is kept at a
potential which is slightly more negative then the cathode. The reflected elec-
trons carrying information on the surface potential are collected by the anode.

For visualization of ferroic domains, this method was first used by Spivak
et al. (1959) and theoretically analyzed by Someya et al. (1970). It allowed the
observation of 908 domains in partially electroded BaTiO3 crystal plates as well
as their nucleation in an applied field (English, 1968a). English (1968b) showed
that the method can also be used at elevated temperatures and employed for
observations of boundaries between paraelectric and ferroelectric phases in
grains of PZT ceramics. Maffit (1968) performed interesting experiments when
observing the same spot of a multidomain BaTiO3 crystal grown by the Remeika
method,whichwas either bare or coveredwith an electrically conducting layer. In
the former case both surface topography and surface potential contribute to
image contrast. In the latter case only the surface topography is visualized.

The method can be used to observe domain wall motion. This was shown by
Kobayashi et al. (1972) who investigated motion of domain walls in GMO in
real time. The domain observation was relied on the surface topography.
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The spatial resolution as judged by available data is not high. Perhaps one of
the most rewarding ways of utilizing this method was suggested by Le Bihan
and Chartier (1977) and by Le Bihan et al. (1977). In a modified arrangement,
the quantitative electron mirror microscope allowed to determine the difference
in the surface potential of two antiparallel domains; for TGS crystals the value
of about 1 V was obtained.

4.9 Methods Based on Interactions with X-Rays

One can distinguish two principal ways of getting information on ferroic
domains using X-ray radiation: X-ray topography and X-ray diffraction. In
this section we will address the conventional X-ray topography as well as the
synchrotron radiation topography. The X-ray diffraction-based methods will
be discussed in Chap. 9 in the context of domains in ferroelectric thin films.

The concept of X-ray topography covers a number of methods whichmake it
possible to use the diffraction of X-rays with the aim of imaging a crystal in such
a way that a particular spot in the crystal is assigned a location on its image—
topogram. In X-ray topograms, one distinguished domain bulk contrast and
domain wall contrast. In the first case, different domains are imaged with
different intensities. In the second, alternatively, only domain walls are imaged
with intensity, which is different from those identical for the domains. Topo-
grams represent crystal images which are notmagnified; magnification has to be
performed in a photographic manner.

There are a number of topographic methods which differ in experimental
arrangements. The incident X-ray beam may be parallel or divergent, mono-
chromatic or continuous. The diffracted beam can be observed in transmission
or reflection geometries. Sometimes transmission topographs are taken to
observe domains inside the specimen while surface reflection topographs serve
to observe domains near the surface.

The most common technique for the observation of domains is the Lang’s
method. A typical setup is shown in Fig. 4.9.1. By choosing the angle of
incidence of the monochromatic beam the required reflecting plane in the
crystal is selected. The main slit S1 is narrow, adjusted so that the horizontal
divergence of the incident beam is smaller than the difference in Bragg angles of
the chosen reflecting plane (hkl) for the radiation used. The height of the
incident beam allows that the whole vertical dimension of the sample be
irradiated. The receiving slit S2 blocks the primary beam. The crystal and the
photographic plate, usually a nuclear emulsion, can be shifted to obtain the
image of the whole sample.

The spatial resolution of the method is not high, typically 1–3 mm. Dense
lamellae of thickness even far above this limit (say 20 mm) can only be separated
under optimal projection conditions. Overlapping of lamellae and walls leads to
complicated contrast patterns which are difficult to interpret. Combining
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transmission topographs with observations in reflection in which the penetra-
tion depth may be only several micrometers (Kawata et al., 1981) may allow for
deciphering some details in domain shapes.

The use of X-ray topography to image domains in ferroics was pioneered by
Čáslavsky and Polcarová (1964) who investigated the contrast of ferroelastic
domains in BaTiO3 and by Lang (1965) who succeeded to image bothDauphiné
(ferroelastoelectric) and Brazil (growth) twins in quartz crystals. Possible
mechanisms of the origin of contrast were discussed in detail by a number of
researchers (see, e.g., Petroff, 1969; Parpia, 1982a,b; Takahashi and Takagi,
1978b; Suzuki and Takagi, 1971; Capelle et al., 1982) and reviewed by Klapper
(1987).

One distinguishes three situations where the domain bulk contrast appears
(Klapper, 1987): (i) orientational contrast, (ii) structure factor contrast, (iii) and
anomalous dispersion contrast.

In the case of orientational contrast, crystal lattices of the two domains are
not parallel to each other. This is the case of ferroelastic domains. Here the
crystal is imaged in the corresponding reflection, the contrast depends on the
angular divergence of the primary beam; in the Lang’s method, the radiation
with a primary beam divergence of typically 2–5 min is used. If the tilt between
the reflecting planes of the two domains is larger than the beam divergence, only
one domain reflects and we have full-and-zero contrast. In this way domains in
GdDy(MoO4)3 were imaged (Capelle andMalgrange, 1982). However, if the tilt
angle is comparable or smaller than the primary beam divergence, a faint
domain image is obtained or the contrast is completely lost.

If the lattices of the two domains are parallel, the reciprocal lattice points
coincide but generally they differ in the moduli of structure factors. Because of

Fig. 4.9.1 (a) Experimental
arrangement for X-ray
topography. S1, main slit; S2,
receiving slit; P, nuclear
photographic plate; C,
crystalline sample. (b)
Correspondence between
the crystal section (abcd) and
its image (a0, b0, c0, d0) on the
photographic plate (Suzuki
and Takagi, 1971)
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that the two domains reflect with different intensities and appear by structure

factor contrast. On this mechanism was based imaging of Dauphiné twins in

quartz (Lang, 1965; McLaren and Phakey, 1969).
Finally, if the domains do not differ in the structure factors either, they still can

be distinguished due to the so-called effect of anomalous dispersion. This is the

case of the anomalous dispersion contrast. Imaging of antiparallel domains in

BaTiO3 (Niizeki and Hasegawa, 1964; Akaba et al., 1979; Takagi et al., 1979),

NaNO2 (Suzuki and Takagi, 1971), and CsH2PO4 (Ozaki et al., 1997) were based

on this mechanism. Figure 4.9.2 shows antiparallel domains inNaNO2 as imaged

in two different 0kl reflections: (011) and (031) (Suzuki and Takagi, 1971).

Klapper (1987) has formulated a set of practical rules for the selection of
reflections to achieve good domain contrast in case of domains with parallel
lattices.

In real crystals, the domain contrast can be also due to lattice distortions in
the interface adjacent layers. Thus the visibility of 1808 domains in thin plates of
BaTiO3 was attributed to slight misorientations of polarization vectors near the
surfaces (Kawata et al., 1981).

In many cases the domain bulk contrast is absent and it is the domain walls
which are imaged by X-ray topography.Much effort was devoted to the domain
wall contrast with the aim to obtain data on domain wall thicknesses and
structures. This will be discussed in some detail in Chap. 6.

X-ray topography makes it possible to easily recognize changes in domain
structures induced by applied electric field or stress; such observations were
performed for instance for BaTiO3 (Takagi et al., 1979) and NaNO2 (Suzuki
and Takagi, 1972). However, the limited spatial resolution makes it difficult to
use this method for solving sensitive issues like nucleation or small modulation
of ferroelectric domain walls due to the presence of free charges. In general,
the significance of X-ray topography is not so much in mapping of domains
but in the investigation of domain walls and the lattice distortions in their
neighborhood.

Fig. 4.9.2 X-ray sectional topographs of a NaNO2 crystal taken by CuKa radiation with two
of several 0kl reflections which give the best domain contrast (Suzuki and Takagi, 1971)
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It may be pointed out that X-ray topographical observations may not be
totally harmless. It is known that irradiating some ferroelectrics by even small
X-ray radiation doses may lead to profound changes in their switching beha-
vior, indicating a different response of domain walls. Petroff (1969) indicated a
loss of contrast during topographical observations of TGS crystals and Polcar-
ová et al. (1970) detected changes of lattice parameters.

Synchrotron radiation sources are characterized by a high-intensity X-ray
beam with continuous distribution of wavelengths and natural collimation.
When used for topography they offer several advantages as compared to classical
X-ray methods (Robert and Lefaucheux, 1983; Schlenker and Baruchel, 1994).
Exposure times can be greatly reduced, allowing for rapid sequences of topo-
graphs to be taken, whichmakes it possible to record changes in domain structures
and phase transformations in real time. Because the beam divergence is small,
precise measurements with a quasi-plane wave can be performed. The synchro-
tron technique allows one to select, from the white spectrum, a more suitable
range of wavelengths or even a monochromatic radiation with the chosen wave-
length. This may be found useful for materials with high absorption at wave-
lengths of conventional X-ray sources but also for selecting the origin of contrast.

The method was used to image ferroelastic domains (Aleshko-Ozhevskij
et al., 1985; Aleshko-Ozhevskij, 1983; Jiang et al., 1993; Zhao et al., 1991;
Scherf et al., 1997) and also phase boundaries between parent and ferroic
phases, in wide temperature ranges. Both static imaging and dynamic imaging
have been demonstrated. Studies of ferroelastic domain pairs in the monoclinic
phase of NdP5O14 and other pentaphosphates performed by the Nanjing group
(Huang et al., 1994a,b; Jiang et al., 1993; Hu et al., 1994) offer typical examples
of the orientational bulk and domain wall contrasts.

Because ferroelastic domains can be observed optically with higher resolution,
the real strength of synchrotron radiation topographymight rather be in the area
of nonferroelastic domain pairs where the contrast will be based on anomalous
dispersion. Crystals of CsH2PO4 were studied in this way (Ozaki et al., 1997).
Nonferroelastic domains have also been imaged in other ferroelectrics like
KTiOPO4 (Wang et al., 1993), KNbO3, and BSN (Jiang et al., 1993).

4.10 Pyroelectric Mapping

Domain imaging method utilizing pyroelectric effect is based on the relation

DDi ¼ k0ksijDEi þ pE;si DT; (4:10:1)

where pE,s is the pyroelectric coefficient at constant field and stress. It is
applicable to ferroelectrics since domain states can differ in components of
pE,s in them. This equation is to be considered a relation describing the situation
at a certain point in the sample. Local change of temperature causes a local
change of PS due to the pyroelectric effect; redistribution of polarization leads
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to the change of electric field which again influences polarization. Figure 4.10.1
shows the very basic arrangement for measuring the pyroelectric properties
(Hadni et al., 1976). Assuming low-level thermal excitation, the sample itself
can be ascribed a linear capacitanceCx and resistanceRx. In a real experiment it
is connected to an external circuit with input impedance CL, RL. The sample
temperature is changed by DT. The magnitude of time constant t¼RC where
C¼Cx + CL and 1/R¼ 1/Rx + 1/RL determines the value of the pyroelectric
voltage DV (Hadni et al., 1976). In the simplest case of a single domain sample
the situation is homogeneous, described by a certain value of pE,s. If the
temperature change is fast compared to t

DV ¼ ApDT
C

exp � t

RC

� �
; (4:10:2)

while for slow rate of change of temperature

DV ¼ �ApR dT

dt
1� exp � t

RC

� �n o
: (4:10:3)

Here A denotes the illuminated area of the sample and p is the component of
pE,s normal to the electroded surface of the sample. This voltage leads to an
electric current flowing through the external resistorRL, with the corresponding
time constant. Its sign is determined by the sign of p; for a single domain
ferroelectric sample p / dPS/dT and correspondingly its sign depends on the
polarity of PS. Chynoweth (1956) was the first to demonstrate that the pyro-
electric signal in barium titanate reveals the sign of PS.

If the sample is multidomain, the contributions from volume elements to the
change of the surface charge have to be summed up. The total charge is obtained

Fig. 4.10.1 Basic scheme for
detecting the pyroelectric
response (a) and its
equivalent circuit (b). After
Lines and Glass (1977)
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by integrating over the sample volume, accounting for the temperature gradient
and depolarizing field. Thus measuring the pyroelectric effect of the whole
sample gives evidence on the average value of spontaneous polarization; it
can be used even in the dynamic regime to investigate slow processes of PS

reversal (Latham, 1967).
The same principle can be employed to obtain information about spatial

distribution ofPS, i.e., about the domain structure. The sample surface is heated
only locally and the size of the region of elevated temperature determines the
spatial resolution of the method. Scanning the sample surface gives evidence on
the geometry of domains. In the first experiments of Burfoot and Latham
(1963), local heating of barium titanate crystals was produced by a focused
electron beam of 4 mm radius. Pyroelectric voltage showed peaks related to
optically visible 908 domain walls.

The method was then fully developed byHadni et al. (1965) and brought to a
high level in speed, resolution, and insight into the sample. Some of the results
obtained for TGS crystals are unique such as data on nucleation processes and
domain wall velocity (Hadni and Thomas, 1975), domain maps during slow
switching processes (Hadni and Thomas, 1976), or writing microdomains by
heated spots (Hadni et al., 1973).

One of the successful setups of the method, which is often referred to as the
pyroelectric probe technique, was described by Hadni et al. (1976). A He–Ne
laser spot is focused on the crystal plate and displaced in successive lines. The
sweeping device is essentially made of two fast galvanometers with their mirrors
oscillating around two perpendicular axes; the driving frequencies are 3 kHz for
the vertical axis mirror and 20 Hz for the horizontal axis mirror. Both polar
surfaces of the sample are gold plated and connected through a resistorRL. The
laser beam is modulated by a Pockels cell and gives a sine wave illumination at
frequencies from 104 Hz to 2 � 105 Hz. Due to the pyroelectric effect, a sine-
wave current flows through RL. A phase detector measures the signal whose
amplitude is proportional to the pyroelectric coefficient. It modifies the inten-
sity of a spot on the oscilloscope. The spot is swept in synchronization with the
laser beam. Phase detection determines the sign of the response. Up to 20
images per second could be taken (Hadni and Thomas, 1976; Tran et al.,
1981) and with an Argon blue laser surface resolution of 1 mm was achieved
(Hadni, 1993). Figure 4.10.2 offers an example of pyroelectric domain map
(Hadni et al., 1976). The process has been analyzed theoretically, partly analy-
tically, and partly by simulation (Hadni et al., 1976; Kirpichnikova et al., 1993).
Experiment and modeling have also covered complex situations, for example,
where repeated illumination leads to nucleation—on the opposite crystal sur-
face—and growth of domains with opposite polarity.

The pyroelectric mapping method was used to visualize domains in crystal-
line plates of TGS, BaTiO3 (Clay et al., 1974), KTiOPO4 (Bierlein and Ahmed,
1987; Ivanov et al., 1994), and also in NaNO2 (Tran et al., 1981; Krug et al.,
1993b). For TGS and sodium nitrate, data about domain wall velocities were
also obtained (Tran et al., 1981) by measuring wall positions repeatedly after
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successive application of a dc field. An interesting modification of this
method was offered by Ungar et al. (1981) and Pradhan et al. (1984) who
showed that it can also be used to visualize domains in plates parallel to the
ferroelectric axis.

It was shown byKrug et al. (1993b) that the same experimental approach can
also be used to visualize domains in nonpyroelectric materials. The response in
the alternatively named ‘‘laser scanning microscope’’ is then due to photoelec-
tricity or thermoelectricity. Krug et al. (1993a,b) described in detail also another
modification of such experimental system. The apparatus was completed with
an optical system allowing monitoring simultaneously the image of the optical
reflection of the sample surface.

4.11 Scanning Optical Microscopy

Discovery of tunneling/atomic force microscopy which is essentially based on
high precise positioning of the sample has also resulted in the development of
scanning optical microscopy. In this technique an optical signal is collected
from a small spot on the surface of the sample, the position of the spot being
scanned with the help of a micro-positioning device. The yield is a map of the
scattering intensity of the sample surface. In this method, as in the classical
optical techniques, the domain contrast is mainly due to the difference of the
optical indicatrices in the domains. In the case of nonferroelastic domains,
where their optical indicatrices are the same, such difference is induced by
application of additional dc electric field. Customary, the informative optical
signal is additionally modulated and lock-in technique is used to increase the
sensitivity of the method and to suppress the unwanted background. In this
section, not going into detail of technical implementations of the method, we
will outline the ideas of its different modifications, illustrate its performance

Fig. 4.10.2 Pyroelectric
image of domains in a TGS
plate 10 mm thick. The size of
the image is 130 mm.
Reprinted with permission
from Hadni and Thomas
(1976). Copyright (1976),
Taylor and Francis

200 4 Methods for Observation of Domains



with some images, and indicate its limitations.We will discuss confocal scanning

optical microscopy (CSOM), near-field scanning optical microscopy (SNOM3),

and one more relevant technique.
In confocal scanning optical microscopy (CSOM) a laser light is focused to a

diffraction-limited spot on the sample surface, the light reflected back from this

spot is detected using conventional optics. This method has been used for

imaging natural domain patterns in (Ba,Sr)TiO3 films (Hubert et al., 1997)

and artificial domain patterns in LiNbO3 crystals (Tikhomirov et al., 2000).

The submicron spatial resolution is readily achievable with this method.
Near-field scanning optical microscopy (SNOM) (Betzig and Trautman,

1992) goes beyond the diffraction limit of the l=2 ffi 200 nm where l is the

wavelength of the visible light. This method is based on the fact that the classical

diffraction limit of optical resolution is applicable if the detection element or the

light source are located at a distance many wavelengths from the observed

object. If, however, the detector is scanned laterally across the sample surface

in its close proximity, an image of the surface can be created at a resolution

which depends on the size of the light source or the detector and the distance

from them to the surface. The subwavelength resolution can be achieved if the

source having the size smaller than l is placed closer than l to the surface or,

alternatively, if the equally small detector is placed as close to the surface. This

happens due to the so-called near-field effects. SNOM is used in two modifica-

tions: with aperture (a-SNOM) and apertureless (s-SNOM4). The latter mod-

ification is also called scattering SNOM.
A-SNOM itself can function in two modes: excitation mode and collection

mode. In the excitation mode, a metal-coated optical fiber with an open tip is

used to make a light spot on the sample surface and the classical far-field optics

is used for the detection of the scattered light.
In the collection mode, the sample is illuminated with a classical optics

source but a metal-coated optical fiber with an open tip is used for the detection

of the scattered light. In both modes, the spatial resolution of 100 nm is

routinely obtained, which in principle may by improved up to 20 nm (Levy

et al., 2000). The resolution of a-SNOM is fully controlled by the apertures

diameter at the tip, which, for several reasons, cannot be made smaller than

50 nm (Levy et al., 2000; Setter et al., 2006). This technique has been applied for

imaging of domain patterns in BaTiO3, PZT (Smolyaninov et al., 1999, 2001),

and LiTaO3 (Smolyaninov et al., 1999, 2001; Yang et al., 1997). Figure 4.11.1

shows an example of a-SNOM image of a domain pattern in a LiTaO3 crystal.
The apertureless SNOM circumvents the problem of the aperture diameter

and opens a way to further improvement of the resolution. The idea of this

technique is, while using classical optics light source and detector, to introduce a

subwavelength scatter (e.g., an AMF tip) in the light spot in the close vicinity of

3 NSOM is also used as abbreviation.
4 Abbreviation ANSOM is also in use.
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the surface. Now if the light, which passes through the scatter, can be distin-
guished from the unwanted background, the scatter itself can play a role of the
light source or detector of a subwavelength size. This technique has been
successfully applied to domain imaging in the samples (Ba, Sr)TiO3 (Hubert
and Levy, 1998; Levy et al., 2000) and TGS (Orlik et al., 2000), the spatial
resolution up to 30 nm being reported. Figure 4.11.2 shows an example of
s-SNOM image of 1808 domain pattern in a TGS sample plate cleaved perpen-
dicular to the polar axis.

An optical scanning technique conceptually close to s-SNOM has been
recently developed by Eng and coworkers (Otto et al., 2004). In this technique,

Fig. 4.11.1 SNOM
(aperture 60 nm) image 1808
domains in Z-cut of LiTaO3

after domain inversion at
room temperature.
Resolution of the image
200 nm. Reprinted with
permission from Yang et al.
(1997). Copyright (1997),
American Institute of
Physics

Fig. 4.11.2 Apertureless SNOM image of 1808 domain pattern in a TGS sample plate cleaved
perpendicular to the polar axis. Image pixel size is 35 nm. Reprinted with permission from
Orlik et al. (2000). Copyright (2000), American Institute of Physics
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the optical properties of the sample are affected via the electro-optic effect
produced by the electric field of a fully metal-coated AFM tip. If the tip radius
is small and positioned close enough to the surface, the optical properties of the
sample will be modified only in a small area. Thus, if the signal from this area
can be distinguished from the background, by scanning the tip, one gets themap
of the electro-optical coefficient of the sample surface. This information, as in
standard optical techniques, can provide an image of the domain pattern in the
material. This technique has been applied to domain visualization in BaTiO3

with a 250 nm spatial resolution controlled by the confinement of the electric
field of the tip.

4.12 Additional Methods and Concluding Remarks

In the preceding sections we attempted to offer a fairly comprehensive survey of
methods used to visualize ferroic domains or to obtain some information
concerning the distribution of their sizes and shapes. But the list is not and
cannot be complete: new techniques are constantly appearing based either on
improved technical methods or on new physical principles. We shall mention
very shortly some of those which have not yet been mentioned.

When a laser beam propagates through a multidomain ferroic crystal, a
diffraction pattern can be observed bringing information of the domain struc-
ture in the material. This has been demonstrated for KDP (Salomon, 1981),
LiNbO3 (Blistanov et al., 1984), and TGS (Shapiro et al., 1966) crystals. A
somewhat related technique, named ‘‘laser tomography’’ by Ratcliffe (1982),
consists essentially of scanning, with an extremely fine beam of light from a
laser, through the specimen and viewing the scattered light in a perpendicular
direction, the specimen being immersed in a fluid chosen so as to match the
appropriate refractive index. A theoretical model relevant to these observations
was addressed by Laikhtman and Petrov (1977a,b).

Scanning acoustic microscopy is customarily applied as a method to study
elastic nonhomogeneities. In this method, leaky surface acoustic waves which
propagate along the interface between a specimen and a liquid coupler are
excited. The reflection of the waves at any texture gives information both on
the location of the latter and on the variation of acoustic impedance. Kojima
(1989, 1983) showed that a commercial scanning acoustic microscope can be
used to obtain some information about ferroelastic domains. When reflected
acoustic waves are analyzed, evidence about the geometry of ferroelastic
domains in Gd2(MoO4)3 and NdP5O14 crystals was obtained.

The scanning electron acoustic microscopy is a method designed specifically
to observe ferroic domains. The apparatus by Zhang et al. (1996) was based on a
commercial scanning electron microscope. The electron beam injected into the
sample is intensity modulated, typically at a frequency of 40–400 kHz. The
resulting acoustic signal is detected by a piezoelectric transducer, coupled to the
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rear surface of the sample. The obtained acoustic signal is processed to form
electron-acoustic image on an oscilloscope. Yin et al. (1998) succeeded in using
themethod to observe domains in BaTiO3 ceramics and PMN–PT single crystals.
Liao et al. (1999a,b) observed simultaneously a secondary electron image and
succeeded in using the method to identify changes in domain structures of
BaTiO3 crystals due to the application of electric field. Jiang et al. (1999) applied
this method to crystals of NdP5O14 and Bi4Ti3O12 and discussed the phenomena
involved in generating and detecting acoustic waves due to the interaction
between the primary electron beam and the sample. Different mechanisms such
as thermo-elastic effect, piezoelectric, and electrostrictive effect as well as excess
carrier coupling may contribute to the acoustic signal generation depending on
the specimen under investigation. Spatial variations of these properties influence
the reflected signal and give rise to image contrast. Yin et al. (1999) pointed
out that the ‘‘thermal wave coupling mechanism,’’ i.e., local heating leading to
acoustic waves, could also play a role at low-modulation frequencies.

Considerable attention had been paid by the Grenoble group to the g-ray
diffractometry method. Bastie et al. (1976) and Bastie and Bornarel (1979) used
the following system to study domains in ferroelectric–ferroelastic KDP: A
collimated beam of g-rays (l¼ 0.03 Å) from a radioactive source enters the
investigated crystal and is diffracted; the transmitted beam is eliminated by a
lead stop. Rotating the sample makes it possible to obtain rocking curves, i.e.,
intensity of the diffracted beam plotted against the angle o corresponding to a
Bragg peak. The integrated reflecting power of each Bragg peak is proportional
to the corresponding diffracted region of the sample. Scanning the sample and
taking rocking curves at different positions give information about the domain
distribution in the sample. This may be proved useful, e.g., for opaque crystals.
At a particular spot of the sample and applying successively electric field,
hysteresis curve can be obtained showing how the two domain states are
represented in the diffracting region during the hysteresis cycle. An improved
version is the differential g-ray diffractometry offered by Bornarel and Bastie
(1980). It permits a study of the effects of applied electric field, which result in
deformations of different sign in domains of opposite polarity.

Some information on ferroelectric domain pattern can be obtained using the
electron emission effect. The mechanism was discussed in some detail by Kugel
et al. (1995), Kugel and Rosenman (1996), Rosenman (1993), and Rosenman
and Rez (1993). The spatial distribution of the emitted electron flux reflects the
domain pattern. Electron flux generated from the sample is amplified and
transferred to a luminescent screen. The spatial resolution of the method is
low, about 10 lines per millimeter. The method was applied to LiNbO3, TGS,
and LiTaO3 crystals.

Several authors studied electron paramagnetic resonance (EPR) spectra of
selected ferroic crystals, paying attention to the influence of domains. Hartmann
and Windsch (1972) were probably the first to observe domain-related EPR
phenomena: They showed that changing the domain pattern of vanadyle-
doped TGS by a thermal shock or electric field application, which results in an
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expected increase of permittivity due to domain wall contribution, is also
reflected by an additional EPR spectrum whose intensity decreases with time.
Up to now this effect was not utilized to reach some new information on changes
in domain patterns. Fujimoto and Sinha (1983) studied EPR spectra of impurity
ions VO2+ embedded in (NH4)3H(SO4)2 crystals (species �3m� es� 2=m) and
showed how the three domain states can be identified. Interesting results were
obtained byZapart et al. (1997) for crystals ofKSc(MoO4)2 (at low temperatures,
species �3m� es� 2=m). By measuring EPR spectra and their line shapes, it was
deduced that the domain width is just twice the domain wall thickness so that the
relative volumes of domain walls and domains are comparable.

Li et al. (1992) showed that the micro-Raman spectroscopy can be used to
identify ferroelastic switching. The changes of spectra due to compression of
PbTiO3 and BaTiO3 crystals were interpreted as due to 908 domain reorientation.

Nuclear magnetic resonance (NMR) spectra can also be used to obtain some
information about domain states represented in ferroic crystals containing ions
with corresponding properties. As an example wemention the study of CsPbCl3
(species m�3m� es� 2=m) by Lim and Jeong (1999); the presence of domains
was detected on the basis of NMR signals of 133Cs.

It is obvious that neutron diffraction and X-ray diffraction can be used to
obtain data on the relative volumes occupied by different ferroelastic domain
states. Jex et al. (1982) studied crystals of RbCaF3 (species m�3m� 4=mmm) by
neutron diffraction, using a four-circle diffractometer. The full set of (311) and
(331) superlattice points was observed as a function of temperature and it was
shown how from their intensities the relative volumes of the three ferroelastic
domain states can be determined. Tietze et al. (1981) solved the same problem
by X-ray diffraction for crystals of KMnF3 (the same species). The method
employed utilized the intensity distribution from symmetrically equivalent
superlattice Bragg peaks. Measured were intensities of properly selected
Bragg reflections from which relative volumes of the three domain states are
calculated.5

From the preceding sections of this chapter as well as from the above
paragraphs it is evident that the number of domain observation methods is
very large; and new methods are still being offered, one a year at least. For a
ferroic species of any symmetry several experimental approaches are available
to obtain information about domains in a particular sample. Yet we could not
state that the extent of this information is always satisfactory. Many of avail-
able methods do not offer a high enough spatial resolution. In addition, a
prevailing number of methods are those which provide information just about
domains which reach the sample surface. Thus shapes and sizes of domains
embedded inside a sample are mostly unknown, especially when domains in
question are nonferroelastic. In particular, the question of built-in nuclei

5 Interestingly enough, in both cases it was found that the relative volumes of the three
ferroelastic domain states differ substantially well below the transition temperature but
approach 1/3 close to the transition temperature.
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remains an important unsolved problem of ferroelectric switching. Similarly,
available information on domains inside ceramic grains is rather incomplete,
for obvious reasons. Methods offering the highest and fully satisfactory resolu-
tion are limited to samples of unrealistic thickness, where domain properties
may significantly differ from those in bulk samples.

A very unsatisfactory situation is in the field of dynamic processes. While
classical methods described above can give information about single domain
wall velocities, we have still no reliable way to obtain direct information about
particular dynamic processes which take place during switching of nonferroe-
lastic ferroelectrics or higher order ferroics.
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Chapter 5

Static Domain Patterns

5.1 Introductory Remarks and Scheme of the Chapter

After discussing in some detail the theoretical aspects of properties of domain
states and after describing a number of methods to observe domains, we now
wish to deal with some real domain structures in single crystals. Several thou-
sands of papers have been published on observations of domain patterns in
different kinds of ferroics,1 offering a large amount of interesting data for
materials listed in Chap. 3 andmany others. Some of them are just observations
as it stands, others were performedwith the aim to create situations correspond-
ing to theoretically defined conditions.

When treating properties of domain patterns in real ferroic samples, it is
necessary to distinguish features of stable domain structures from those of
dynamic domain phenomena. In the present chapter we have primarily in mind
static and quasistatic domain patterns which can be observed in the absence of
intentionally applied external forces that would tend to change their geometry or
sizes. We define static or quasistatic domain patterns arbitrarily as those which
do not appreciably change on the time scale of hours. These are the patterns
whichmay correspond to the thermodynamic equilibrium of the sample or which
are metastable with long lifetimes because of large energy barriers that would
have to be overcome to reach more stable configuration.

Available data on domain patterns can be, in some approximation, classified
into three categories. First, we can observe domains in a sample as it stands,
meaning that its history (sample preparation, thermal record, applied forces) is
not known. Second, and perhapsmost often, the sample has been treated in away
which has been planned or which at least is known. Third, the sample quality and
the external conditions (e.g., thermal history) are well defined and carefully
prepared so that we may expect the resulting domain structure to correspond
to minimum energy harmonizing with its intrinsic properties and external condi-
tions; this is often referred to as the ‘‘equilibrium domain pattern.’’

1 We have in mind nonmagnetic ferroics; in the authors’ catalogue of references some 6000
papers are listed. Surely the number of publications dealing with ferromagnetic domains
would be higher by a factor between 50 and 100.

A.K. Tagantsev et al., Domains in Ferroic Crystals and Thin Films,
DOI 10.1007/978-1-4419-1417-0_5, � Springer ScienceþBusiness Media, LLC 2010
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In the present chapter we first discuss, in Sect. 5.2, theoretical aspects of the
last mentioned case, paying attention to the simplest example of equilibrium
domain pattern in ferroelectric samples containing only domains with antipar-
allel orientation of PS vectors (‘‘1808 domains’’). Such patterns have been
studied extensively in ferroelectrics, both nonferroelastic and ferroelastic,
with the aim to obtain regular patterns corresponding to thermodynamic
equilibrium. This research was, in its early stages, inspired by successful treat-
ments of equilibrium domain structures in ferromagnets. The role of the energy
of demagnetizing field has its electrical counterpart treated in some detail in the
following section. However, in ferroelectrics the situation is different because of
the existence of free charge carriers that may contribute in a decisive way to the
reduction of depolarization energy. This issue will be addressed in Sect. 5.2 as
well.

In Sect. 5.3 we shall discuss another factor influencing the domain patterns:
Formation of the latter during a first-order transition, when the boundary
separating the parent and ferroic phases, may strongly influence the formation
of domains. The origin of this effect is connected with the elastic and electric
compatibility conditions.

In the most extensive Sect. 5.4, some real domain patterns will be described,
which have been observed in different kinds of ferroics. In fact, compared with
the vast amount of available data, this selection is—due to the lack of space—
rather short. Here we restrict ourselves to single crystals representing different
kinds of species; some observations of domains in thin films will be given in
Chap. 9. In Sects. 5.4.1, 5.4.2, and 5.4.3, we will give examples of patterns in
some ‘‘typical’’ ferroics. In Sect. 5.4.4 we shall present some examples of R cases,
those when no ideal elastically compatible domain walls exist, and will show
how in samples representing such species the problem of multidomain states is
solved in reality. Only marginal attention will be paid to domains in ferroelasto-
electrics, in the Sect. 5.4.5, while the so-called tweed pattern will be shortly
discussed in Sect. 5.4.6.

The present chapter will not address elastic effects on formation of ferroic
domain patterns. This issue will be discussed in Chap. 9 devoted to thin films,
the systems where these effects are often of crucial importance.

5.2 Equilibrium 1808 Domain Patterns in a Ferroelectric Plate:

Theories

In this section we deal with theoretical approaches to equilibrium domain
patterns, considering the classical situation of 1808 domain structures: A sample
of uniaxial ferroelectric or of a multiaxial ferroelectric in which only domains
with antiparallel polarization exist. Here we will address this problem for the
ideal case where no external means (like short-circuited electrodes) are used
to set the electric field in the sample to zero. In the case of a ferroelectric in a
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short-circuited capacitor, in the first approximation, the splitting into domain

of the sample is not expected. However, more rigorous analysis reveals that this
may not be always the case, especially in ferroelectric thin films. This special

problem with be addressed later in Sect. 9.4.
In Sect. 2.3, the thermodynamic theory considers ferroelectrics for a specified

value of themacroscopic electric field and, in the absence of the latter, a uniform

single-domain state was found energetically favorable. However, such state can
readily cease to be energetically favorable as far as a finite free-standing piece of

the ferroelectric is considered. In this case, the bound chargers of the sponta-
neous polarization on the surface of the sample will create the depolarizing
electric field which will increase the energy of the system. The energy of

depolarizing electric field can be reduced, if the sample is split into domains.
At the same time, the domain formation will increase the energy of the system

by the energy of the appeared domain walls. All in all, the balance between these
two contributions to the energy will decide whether the material splits into

domains or not and determines the parameters of the domain pattern if its
formation is favorable. It is clear from electrostatic arguments that if the sample

is elongated along the polarization direction, the energy of the depolarizing field
can be rather small and a single-domain state may be readily favorable whereas

in a plate—like a sample with the polarization normal to the plate—the energy
of the depolarizing field is larger and a multidomain state is expected.

In this section we will discuss the latter case. We have in mind a plate of
thickness h of a ferroelectric cut perpendicularly to the ferroelectric axis z; the

plate thickness is assumed to be much smaller than its linear dimensions. The
simplest domain pattern expected in such a system (and often experimentally

observed) is schematically shown in Fig. 5.2.1. In real system, this pattern
usually possesses no net polarization, i.e., the fractions of the opposite domains

are equal, and it is dense, i.e., its period W is much smaller that the plate
thickness h. When corresponding to energy minimum, the period of the pattern

W follows the square root law of h:

W /
ffiffiffi
h
p

; (5:2:1)

which is known as the Kittel law in magnetic system; for ferroelectrics, this law
has been obtained by Mitsui and Furuichi (1953). We will come across this law

again in Chap. 9, when discussing the elastic effect on domain formation in
ferroelectric thin films. Below in this section we present the analysis by Mitsui

Fig. 5.2.1 Schematics of a
ferroelectric plate with
lamella domain structure.
I and III—free space,
II—ferroelectric
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and Furuichi and discuss different aspects of 1808 domain structures as well as
different theories dealing with these structures. However, before doing so we
would like first to elucidate the basic origin of the Kittel–Mitsui–Furuichi law.

The Kittel–Mitsui–Furuichi law results from the balance between the energy
of the created domain walls FW and the electrostatic energy Fdep. The former is
evidently proportional to the plate thickness and domain density (/ 1=W), thus

FW / h=W: (5:2:2)

At the same time, the electrostatic energy obeys a relation

Fdep /W: (5:2:3)

This relation is due to the fact that, in the dense domain pattern, there is a
strong reduction of the electric field at the distances larger than W from the
sample surface; at such distances the contributions from the stripes of positive
and negative bound charges on the surface efficiently compensate each other.
Thus, only the approximatelyW-thick surface-adjacent layers contribute to the
electrostatic energy of the system. Minimizing the sum of the contributions
given by Eqs. (5.2.2) and (5.2.3) readily leads to the sought law. One can check
that similar reasoning can be applied to magnetic and elastic systems leading to
the same law for the domain period. Form the above arguments, one can also
conclude that the Kittel–Mitsui–Furuichi law should fail at the point when it
starts predicting the domain period larger than the plate thickness since at this
point the arguments justifying Eq. (5.2.3) fails. This issue will be addressed later
in this section and in Sect. 9.4.

Let us now address the Mitsui and Furuichi theory. To determine equili-
brium domain structures the thermodynamic potential of the plate-like sample
should be minimized, taking into account all electrical and mechanical bound-
ary conditions. This is a complicated task which in the Mitsui and Furuichi
approach is simplified by assuming that the sample behaves as a ‘‘hard’’ ferro-
electric, its dielectric properties being adequately described by the following
linear relations:

Pzðx; y; zÞ ¼ �PSðx; yÞ þ e0ðkc � 1ÞEzðx; y; zÞ;
Px ¼ e0ðka � 1ÞExðx; y; zÞ;
Py ¼ e0ðka � 1ÞEyðx; y; zÞ;

(5:2:4)

where E is the local macroscopic field and ka,c denotes the diagonal component
of the permittivity tensor. Thus we assume the existence of spontaneous polar-
ization with a given magnitude and with two possible orientations along the
z-axis, but neglect nonlinear effects. The plate (medium II) is surrounded by
vacuum (media I and III) as shown in Fig. 5.2.1. This approach is equally
applicable to both proper and improper ferroelectrics although it is approximate
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only and we shall discuss its limitations later. TheMaxwell equations require for
the dielectric displacement D in medium II

divDII ¼ rf; (5:2:5)

here rf is the density of free charge in the dielectric. The boundary conditions
for the interface I/II read

ðDI �DIIÞn ¼ sf; (5:2:6a)

ðEI � EIIÞt ¼ 0; (5:2:6b)

where n is the unit vector along the normal pointing from II to I and t denotes
the unit tangential vector; sf stands for the surface free charge density. Similar
conditions hold for the interface II/III. At this stage, we do not allow for the
existence of any free charge carriers so that rf = sf = 0.

Let us first assume that the crystal is single domain with positive sponta-
neous polarization. Then, by symmetry, the involved quantities can depend on z
only. From Eqs. (5.2.5) and (5.2.6a) we find that an electric field Edep exists in
the plate, of magnitude

Edep ¼ �P0=kce0; (5:2:7)

which is directed against spontaneous polarization and is therefore called
depolarizing field. In general this field can be very large. For a crystalline
BaTiO3 plate at room temperature, e.g., with PS ffi 0.26 cm–2 and kc ffi 150
one readily finds Edep ffi 2�108 V/m. The electrostatic energy of this field is
referred to as depolarization energy, which can also be substantial. Its spatial
density is generally given by the relation

Fdep ¼
1

2
EðD� PSÞ ¼

1

2
e0kijEjEi: (5:2:8)

For our purpose it is useful to integrate it so as to obtain the depolarization
energy Udep per unit area of the plate. From the two preceding relations we
obtain

Udep ¼ P2
S h=2e0kc: (5:2:9)

By formation of domain structure this value can be essentially reduced. Let
us find the depolarizing energy for a periodic domain pattern (W is its period),
in which domains of alternating polarization are lamellae of the widthW+ and
W– (Wþ þW� ¼W), with walls perpendicular to the x-axis, as shown in
Fig. 5.2.1. For this geometry, the spontaneous polarization in medium II can
be written in the form of Fourier series

PSðxÞ ¼ PS
Wþ �W�
Wþ þW�

þ
X1
n¼1

4PS

pn
sin

pnWþ
Wþ þW�

cos nkx: (5:2:10)
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It is useful to introduce the following abbreviations:

c �
ffiffiffiffiffiffiffiffiffiffiffiffi
ka=kc

p
; g � ffiffiffiffiffiffiffiffiffi

kakc
p ¼ ckc; (5:2:11a)

k ¼ 2p=W; A ¼ ðWþ �W�Þ=W; (5:2:11b)

R ¼ pch=W: (5:2:11c)

To calculate the depolarization energy for this case we first have to determine
the spatial field distribution. In region II, the potential jII(x, z) must satisfy the
Laplace equation:

ka
@2fII

@x2
þ kc

@2fII

@z2
¼ 0: (5:2:12)

Similar equations hold for jI and jIII in regions I and III, however, with
the permittivity equal to 1. The boundary conditions include the potential
continuity

fIðz ¼ 0Þ ¼ fIIðz ¼ 0Þ; fIIðz ¼ �hÞ ¼ fIIIðz ¼ �hÞ; (5:2:13)

and the continuity of tangential components of the field which can be written as

@fI

@x
ðz ¼ 0Þ ¼ @fII

@x
ðz ¼ 0Þ; (5:2:14a)

@jII

@x
ðz ¼ �hÞ ¼ @jIII

@x
ðz ¼ �hÞ: (5:2:14b)

The potentials fulfilling these requirements are

fI ¼
1

4pe0

X1
n¼1

1

n2
8PSch

R
sin np

Aþ 1

2

1

1þ g coth nR
cos nkxexpð�nkzÞ; (5:2:15a)

fII ¼
PSA

e0kc
zþ 1

4pe0

X1
n¼1

1

n2
8PSch

R
sin np

Aþ 1

2

sinhðnRþ nkczÞ
sinh nRþ g cosh nR

; (5:2:15b)

fIII ¼�
PSAh

e0kc
� 1

4pe0

X1
n¼1

1

n2
8PSch

R
sin np

Aþ 1

2

cos nkxexp½nkðzþ hÞ�
1þ g coth nR

: (5:2:15c)

Using these results one can calculate the electrostatic energy of the system,
which comprises the energy of the field inside the plate, given by Eq. (5.2.8), and
the energy of the field outside it. Thus, for the domain pattern one finds for the
electrostatic energy per unit area of the plate

Udep ¼
1

2

P2
S h

e0kc
A2 þ 8 g

p2R

X1
n¼1

1

n3
sin2 np

Aþ 1

2

� �
1

1þ g coth nR

 !
:

(5:2:16)
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When looking for domain pattern which minimizes the total energy, one
readily checks that the structures with zero net polarization, i.e.,withA=0, are
always more advantageous than electrically unbalanced structures with A 6¼ 0.
Thus, we continue consideration for the case where W+ = W– = W/2. In the
approximation where the electrostatic interaction between the plate surfaces
can be neglected, expression (5.2.16) can be simplified down to the form

Udep ¼
0:13P2

S W

e0 1þ ffiffiffiffiffiffiffiffiffi
kcka
p� � : (5:2:17)

As can be shown from analysis of series (5.2.16), this approximation is
valid if

W5h

ffiffiffiffiffi
ka
kc

r
: (5:2:18)

We will call this situation dense domain pattern. This can be considered as
generalization of the notion of dense domain pattern (defined above by the
relation W < h) to the case of materials with strong dielectric anisotropy.

Now the period of the equilibrium domain structure can be found by mini-
mizing the total energy of the system per unit area of the plate

Utot ¼ Udep þUW; (5:2:19)

where UW denotes the energy of domain walls per unit surface of the plate,
which relates to the wall energy per unit area sw as

UW ¼ 2sW
h

W
: (5:2:20)

Now, minimizing total energy with respect to W we obtain for the equili-
brium domain width

Weq=2 ¼
ffiffiffiffiffiffiffiffiffi
hMh

p
; (5:2:21)

where the characteristic length reads

hM ¼ 3:7e0ð1þ
ffiffiffiffiffiffiffiffiffi
kakc
p ÞsW=P2

S: (5:2:22)

This result was first obtained by Mitsui and Furuichi who discussed domain
patterns in Rochelle salt crystals. With this domain structure, the total energy
per unit area of the plate attains the value

Umin ¼ 2
0:26sw

e0 1þ ffiffiffiffiffiffiffiffiffi
kcka
p� �

" #1=2
PSh

1=2: (5:2:23)
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Using relations (5.2.18) and (5.2.21) one finds the obtained results are valid

for sample thicker than the critical thickness2

hcrit ¼ 4

ffiffiffiffiffi
kc
ka

r
hM: (5:2:24)

Some estimates for hcrit for a number of ferroelectrics have been performed
by Kopal et al. (1997). Taking sw = 10 erg/cm2 = 10–2 J/m2 it is found that at

room temperature for TGS hcrit ffi 10–5 cm, for BaTiO3 hcrit ffi 10–8 cm, for
Pb5Ge3O11 hcrit = 6 � 10–7 cm, for Gd2(MoO4)3 hcrit = 4 � 10–5 cm, for
KH2PO4 (at 100 K) hcrit = 10–6 cm, and for Rochelle salt (at 273 K) hcrit = 3 �
10–5 cm. Common single crystalline ferroelectric samples prepared in the labora-
tory by cutting and polishing have usually thicknesses 100–500 mm; for these, the

dense pattern approximation is fully justified.
These estimates apply to temperatures rather far below the phase transition

points. One might argue that domain structures are usually formed on cooling
at temperatures TC. It is therefore interesting to estimate how hcrit may depend

on temperature (Kopal et al., 1997). Let us consider ferroelectrics with a second-
order phase transition. For a proper uniaxial ferroelectric material we expect

P2
S / ðT0 � T Þ; kz / (T0 – T )–1, and we recall that sw / (T0–T )3/2 (see Sect.

6.2.1). Thus hcrit scales like (T0 – T )–1. For an improper ferroelectric, on the
other hand, we expect PS/ (T0 – T ), kz = const., and again sw/ (T0 – T )3/2 so

that hcrit scales like (T0 – T )�1/2. For the case of cubic ferroelectrics, one can
readily check that hcrit also scales like (T0 –T )–1/2. Thus, the value of hcrit may be

quite large close to the phase transition point. Also for ferroelectric transitions
which are discontinuous but close to second order, we may expect that hcrit will
increase as TC is approached from below. However, it practically occurs that it

is in ferroelectric thin films where the dense pattern approximation may not be
valid. This situation will be discussed in Sect. 9.4.

One should note that Eqs. (5.2.21), (5.2.22), and (5.2.23) have been repeat-

edly used to discuss observed domain patterns and their time developments. In
particular, many estimates for the energy densities sw were based on observa-
tions of quasi-regular lamellar domain structures and Eqs. (5.2.21) and (5.2.22).

The conclusions obtained above on the structure of the equilibrium domain

pattern have been drawn using several assumptions. One of these was that
regarding the periodicity of the resulting equilibrium pattern. A possibility of

alternative more complicated equilibrium structure has also been discussed in
the literature by Ozaki et al. (1993) who claimed that in crystals of KH2PO4 the
antiparallel domain pattern has the form of lamellae, as reported before (Mitsui

and Furuichi, 1953), but that as the crystal plate thickness d increases, the
periodicity. . .W+/W–/W+/W–. . . with W+ = W– becomes broken and more

2 The given expression for the critical thickness is very close to that given by Kopal et al.
(1997).
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complicated yet still periodical sequences of positive and negative domains
occur, falling into the category of fractal patterns. They were interpreted as
periodic patterns representing the so-called prefractals of the pentad Cantor
sets (Ozaki, 1995). The first four prefractal structures, n=0, 1, 2, 3 are shown in
Fig. 5.2.2 (Ozaki and Ohgami, 1995). In the left half-period L we have N
domain stripes of width W+ of positive polarity. The n(n+1)th prefractal
structure is obtained from the previous one by reversing the polarity of a central
fifth part of every negative domain in the right half-period in the nth structure.
Ozaki and Ohgami calculated the depolarization energy of such patterns,
assuming the equation of state (5.2.4) and working in the dense pattern approx-
imation, to find for the total energy of the system

Utot ¼
4P2

SL

p3e0 1þ ffiffiffiffiffiffiffiffiffi
kcka
p� � aðnÞ þ ð2nþ1 � 1Þ swh

L
: (5:2:25)

Here numerical factors are a(0) ffi 1.052, a(1) ffi 0.435, a(2) ffi 0.183, a(3) ffi
0.117, etc. For n=0we obtain the situation described by Eqs. (5.2.17), (5.2.19),
and (5.2.20). Udep as a function of n exhibits a minimum for n = 3. At this
configuration the ratio of plus/minus domains is 1.05 in the left half-period and
0.95 in the right half-period; the structure as a whole, of course, is neutral. The
half-period Leq minimizing Utot is

Leq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ1 � 1Þ

swp3e0 1þ ffiffiffiffiffiffiffiffiffi
kcka
p� �

h

8P2
SaðnÞ

s
(5:2:26)

and the corresponding energy is

Umin ¼ 2
8aðnÞswð2nþ1 � 1Þ
p3e0 1þ ffiffiffiffiffiffiffiffiffi

kcka
p� �

" #1=2
PSh

1=2; (5:2:27)

Fig. 5.2.2 Schematic
drawing of the ‘prefractal’
domain patterns of period
2L with n = 0, 1, 2, 3 (see
text). PS is perpendicular to
paper. White and black
correspond to the directions
of polarization up and
down. After Ozaki and
Ohgami (1995)
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which exhibitsminimumvalue for n=0, as given byEq. (5.2.22) for the previously

considered structure with the simple periodicity. Thus, we see that prefractal

structure does not provide us with a deeper energy minimum for the system.
All the lamella domain patterns considered above can be called ‘‘one dimen-

sional’’ since they are characterized by just one parameter, their width. The

appearance of such patterns can be expected in ferroelectric ferroelastics where

domain wall orientations are strictly limited. At the same time, in the case of

nonferroelastic domain patterns, where the domains are separatedwithW1walls

parallel to PS, other ‘‘two-dimensional’’ patterns can occur. Indeed, observations

of 1808 domain patterns in such crystals show very often domains of one polarity

in the form of prolonged islands in the sea of the domain state with opposite

polarity ofPS. The question what are equilibrium parameters of two-dimensional

domain patterns was addressed by Fousek and Safrankova (1966). Several types

of two-dimensional domain patterns have been considered; however, no config-

uration giving the minimal energy lower than that of the simple lamella structure

has been found. One of the considered types is explained in Fig. 5.2.3 where the

‘‘unit cell’’ of this pattern is shown. Figure 5.2.4 shows the dependence of the

minimal energy of the system as the function of the aspect ratio of the cell. It

demonstrates that the lamella structure corresponds to the energy minimum.

Fig. 5.2.3 ‘Unit cell’ of a simple two-dimensional domain pattern. PS is perpendicular to
paper. White and black correspond to the directions of polarization up and down. After
Fousek and Safrankova (1966)

Fig. 5.2.4 Energy per unit area of the equilibrium patterns showed in Fig. 5.2.3 (normalized to
that of the equilibrium lamella structure with the same material parameters of the
ferroelectric) plotted as a function of the aspect ratio m of the ‘unit cell’. After Fousek and
Safrankova (1966)
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Now we draw the reader’s attention to an implicit assumption behind the
above whole analysis; specifically, the use of the hard-ferroelectric approxima-
tion has implied that the ferroelectric state in the domains remains stable under
the action of the depolarizing field. For the considered case of dense domain
structures, this assumption can be readily justified far for the surface of the plate
where the field is much smaller the value given by Eq. (5.2.7). At the same time,
at distances smaller than the domain period, the field remains strong so that the
stability of the ferroelectric state in these regions to be checked.

Let us evaluate the impact of the depolarizing field on the ferroelectric state
in a dense domain pattern of typical proper ferroelectrics. As is clear from the
result, Eq. (2.3.46), obtained in Sect. 2.3.6, the depolarizing field in a homo-
geneously polarized plate shifts the transition temperature down by C/kb where
C is the Curie–Weiss constant and kb is background dielectric permittivity. This
shift is the results of the depolarizing field created by two layers of the bound
charge (of the spontaneous polarization) on the faces of the plate. In the dense
domain pattern close to the surface of the plate, the field is created only by one
layer of this kind. Thus, in this case, the field and the shift of the transition
temperature are expected to be twice as small. Since for proper ferroelectrics the
magnitude of C is typically 103–105 K and kb can be considered to be of the
order of 10, the transition temperature at the surface of the dense domain
pattern should be shifted to lower temperatures by 100–10,000 K and may
become totally unrealistic. This implies that, strictly speaking, in typical proper
ferroelectrics theMitsui and Furuichi model may readily fail (e.g., for displacive
ferroelectrics where the Curie–Weiss constant is about 105 K) except for mate-
rials with very small value of C, like in weak or pseudo-proper ferroelectrics.
This is actually the failure of the hard-ferroelectric approximation, Eq. (5.2.4),
close to the surface of the ferroelectric plate.

However, in improper ferroelectrics the situation is different. In these sys-
tems, ferroelectricity is not suppressed by depolarizing field, as noted by Leva-
nyuk and Sannikov (1968). The point is that the depolarizing effect has only
slight influence on the temperature of the first-order transition and none at all
on that of the second order. Let us explain the latter case in some detail. The
simplified thermodynamic potential of an improper ferroelectric (it can be
obtained from Eq. (2.3.36) after a change of the variables and the minimization
with respect to the phase of the order parameter) can be written as

F ¼ F0 þ
1

2
aZ2 þ 1

4
bZ4 þ gZ2Pþ 1

2
aP2; (5:2:28)

where only a = a0(T – T0) is a temperature-dependent coefficient, b > 0, and
a> 0. Setting @F/@Z=0, @F/@P=E, and depolarizing fieldE=Edep= –P/e0,
we find

P ¼ � g
aþ 1=e0

Z2: (5:2:29)
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Thus, the equation of state for the order parameter reads

@F
@Z
¼ 0 ¼ aZþ b� 2g2

aþ 1=e0

� �
Z3; (5:2:30)

leading to the spontaneous values

Z2S ¼ �
a

b� ð2g2=aþ 1=e0Þ
PS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ag

bðaþ 1=e0Þ � 2g2

r
: (5:2:30a)

From these equations we see that, in an improper ferroelectric, the depolar-
izing effect does not affect the transition temperature resulting only in a
decrease in the magnitude of spontaneous polarization compared to its value

PS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ag
ba� 2g2

r
(5:2:30b)

for the short-circuited conditions.
All in all, the above analysis shows that the Mitsui and Furuichi model is

fully justified in the cases of improper and weak ferroelectrics whereas, in the
case of typical proper ferroelectrics, formally, this approach fails. However, on
the practical level, this model (for the dense domain pattern) can be viewed as a
reasonable approximation because in the main part of the sample it is fairly self-
consistent. Here one should stress that if the domain wall spacing is larger than
or comparable to the thickness of the sample, in typical proper ferroelectrics,
the hard-ferroelectric approximation may readily fail everywhere so that the
Mitsui–Furuichi-type calculations cannot be used at all for the description of
domain patterns.

One can go beyond the Mitsui–Furuichi approach. At present, there are
three ways to do it: (i) consideration of a ‘‘branching’’ scenario, (ii) abandoning
the hard-ferroelectric approximation, and (iii) taking into account the finite
conduction of the material.

The first possibility to avoid too high electric field at the plate surface has
been suggested by Marchenko (1979). In his model, still working in the hard-
ferroelectric approximation, it is assumed that half-lens-shaped domains exist
at the sample surface, forming a quasifractal structure shown in Fig. 5.2.5. They
are embedded in each other with alternating direction of PS. There are no
domain walls crossing the whole sample. Calculations lead to the maximum
length L of these domains in a plate of thickness h as follows:

L ¼ 31=2 � 1

5 � 31=2 � 1
h ffi 0:1 h: (5:2:31)

The formation of embedded domains (the so-called branching) stops where
the domain width becomes comparable with the domain wall thickness. It is
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believed that at this point the electric fields near the plate surface become small
enough not to destabilize ferroelectricity.

The second possibility to avoid too high electric field at the plate surface is to
abandon the hard-ferroelectric approximation (at least in the surface-adjacent
areas of the sample). Unfortunately, this approach cannot be implemented purely
analytically requiring numerical solution of Ginzburg–Landau equation for the
polarization (Wang et al., 1995). It has been shown that, in this approach, the
square root law for the thickness dependence of the domain period can also be
reproduced. An advanced analysis performed by De Guerville et al. (2005) has
also revealed some elements of branching in the equilibrium domain pattern
found. We will address these results in more detail later in Sect. 9.4. Discussing
the approach to the equilibrium domain pattern based on the Ginzburg–Landau
equation, one should mention the treatment of the domain formation when
crossing the phase transition from the paraelectric phase (Chenskii, 1972; Chens-
kii and Tarasenko, 1982). In this case, the domain pattern appears as a sinusoidal
modulation of polarization. Remarkably, the period of this modulation also
changes with the plate thickness as

ffiffiffi
h
p

. We will address the results from the
aforementioned papers in more detail later in Sect. 9.4.

The third approach to the problem is to take into account the possibility of
screening of the bound polarization charge with free carriers. In most of the
previous formulae, the quantity PS was used as amaterial parameter defined by
Eq. (5.2.4) but in fact it played only a role of surface density of the bound
charge. Ferroelectric samples were considered of zero electrical conductivity.
This may be a good approximation for many real materials, in particular for
those with low transition temperatures. It is obvious that free charge may
significantly reduce the total surface charge which is the source of depolarizing
field and energy. In fact the high electric field near the surface can be reduced to
an acceptable level due to the surface charge transport. When discussing phe-
nomena connected with compensation of the bound charge by free carriers, in
the simplest approach, the magnitude of P0 can be replaced by rP0 where the
factor r is the degree of compensation and 0 < r 	 1.

Fig. 5.2.5 Elements of the
branching domain pattern in
the vicinity of the
ferroelectric/free space
border. I—free space, II—
ferroelectric. Arrows show
directions of spontaneous
polarization. After
Marchenko (1979)
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More involved theories to address this problem have been developed (Chens-
kii, 1972; Darinskii et al., 1991; Selyuk, 1971). Not going into details of these
papers we just mention that all these theories predict an increase in the domain
period with increasing free carrier concentration, with a transition to a single-
domain state a high enough level of screening. This behavior is intuitively
expected since the free carrier screening decreases the energy of the depolarizing
field and does not affect the domain wall energy. An essential new feature
brought about by the screening effects is the conclusion that the period of the
domain pattern can essentially deviate from the

ffiffiffi
h
p

law in systemwhere without
screening this dependence is expected. According to Darinskii et al. (1991), for
the case of the screening with non-degenerated free carriers, the period of
appeared polarization modulation should follow the relations

W / 1ffiffiffiffiffiffiffiffiffiffiffiffi
1
h�

hd
l2D

q ; (5:2:32)

hd ¼ 2p

ffiffiffiffiffiffiffi
e0d
ka

s
; (5:2:33)

where lD is the Debye screening length and d is the correlation coefficient
defined in Eq. (6.2.1).

5.3 Domain Patterns Connected with Phase Boundaries

Considering ferroics with ferroelastic properties one has to take into account
also mechanical aspects of the problem. These issues play a significant role at
the phase transitions of the first order: Mechanical compatibility must be
ensured between the part of a sample in the parent phase and that which has
already transformed into the ferroelastic phase. The problems involved will be
discussed in the following two sections. The approaches discussed below are
also applicable to the problem of mechanical compatibility at a phase bound-
ary, which can appear at the first-order phase transition between two ferro-
electric phases (e.g., between tetragonal and orthorhombic phases in BaTiO3).
We will also discuss this situation at the end of this section.

5.3.1 Perfect Matching

A discontinuous phase transition involves the problem of mechanical compat-
ibility of the parent G and ferroelastic phase F. When a sample passes through
the temperature TTR, new phase usually nucleates in a corner or at an edge. On
decreasing temperature, the volume of F phase increases and the two phases
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become separated by a boundary, often of a planar character. Its existence and

orientation are influenced by the conditions of electrical and mechanical com-

patibility, a problem similar to the compatibility of domain states discussed in
Sects. 2.2.3 and 2.2.4. Here we pay attention to the mechanical aspect.

If the parent phase and the domain state A of the ferroic phase, characterized

by spontaneous strain eðAÞSij
, should be separated by a mechanically compatible

phase boundary, the latter must satisfy the condition that the following equa-

tion has a nontrivial solution:

eðAÞSij
xixj ¼ 0: (5:3:1)

If this is so, this equation in fact determines the orientation of the phase

boundary itself. The analogy with the domain compatibility condition (2.2.10)
is obvious.

For a limited number of ferroelastic species the mechanically compatible

phase boundaries do exist. They were determined by Shuvalov et al. (1985a) on
the basis of the condition just specified. Table 5.3.1 gives examples of their

results; the original table presented the full list of mechanically compatible

boundaries includes orientations of boundaries in the following species:
422–222, 4mm–mm2, �42m�mm2, 4/mmm–mmm; 622–222, 6mm–mm2,
�6m2�mm2, 6/mmm–mmm; 4–2, �4� 2, 4/m–2/m; 622–2, 6mm–2, �6m2�m, 6/
mmm–2/m; 6–2, 6–m, 6/m–2/m. To ensure physical contact of both phases, one

of them must be rotated by an angle j also specified in the table. Under-

standably, this is in direct analogy with the clapping angle ensuring the physical
contact of two ferroelastic domains. In a similar approach, the problem of

phase boundary orientation was addressed also by Boulesteix et al. (1986).
Thus in all species listed above the two phases can coexist in the way that on

the ferroic side of the boundary a single-domain state is realized. However, in

Table 5.3.1 Phase boundaries and clapping angles for selected ferroelastic species

Species Phase boundary

Clapping angle
between the parent
and ferroic phasesa Note

422–222,
4mm–mm2,
�42m�mm2,
4/mmm–mmm

x=+y0 x=–y0 j3 = a The x0, y0 axes are rotated by
458 with respect to x, y

422–2, 4mm–2,
�42m� 2,
4/mmm–2/m

x=+y0 x=–y0 j3 = [(sin2y –
cos2y)a – (2siny
cosy)b

The x0, y0 axes are rotated
around z by y = (1/2)
arctan (–b/a) with respect
to x, y

222–2, mm2–2,
mm2–m,
mmm–2/m

x0 = z0 x0 = –z0 j3 = b The x0, z0 axes are rotated by
458 with respect to x, y

aa, b are components of the natural spontaneous strain.
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calculations leading to these results only linear relations between spontaneous
strain and the order parameter have been taken into account, neglecting higher
order terms. From here it follows that these results are only applicable for first-
order phase transitions close to second order. On the other hand, Shuvalov’s
results can be applied even for phase interfaces of species not listed above if
accidentally the decisive component of spontaneous strain is relatively small. As
an example we refer to the case of Pb3(PO4)2 whose species �3m� 2=m is not
included in the list (Shuvalov, 1985a). The diagonalized tensor of its sponta-
neous strain has three components, e11, e22, and e33 of which the last is by an
order of magnitude smaller than the previous two. If we set this component
equal to zero, we reach the conclusion that the stress-free phase boundary exists
whose normal nmakes an angle of�46,658with the x-axis and�43,358with the
y-axis. Taking into account the additional rotation of the ferroelastic phase
with respect to the parent phase the conclusion has been reached that for
Pb3(PO4)2 the angle of the phase boundary with the y-axis should be �49,078
compared to the experimental value 49�0.58.

5.3.2 Matching on Average

In many cases, the spontaneous strain tensor is such that phase compatibility
relation (5.3.1) cannot be fulfilled. However, at a discontinuous transition, the
ferroelastic phases may be nucleated in different parts of a sample, grow, and
finally meet inside it. If the elastic misfit is too large, this process may result in
breaking the sample. However, this misfit can be significantly reduced by
splitting the part of the sample in the ferroic phase into ferroelastic domains.
The compatibility conditions can then be satisfied for the averaged spontaneous
strain.

In a general theoretical way the problem was discussed by Wechsler et al.
(1953) and their approach is often addressed when martensitic transformations
are treated. Here we will present a simplified approach (cf. DiDomenico and
Wemple, 1967), following the calculations of Dec (1993). As an example, we
wish to investigate conditions for matching a parent cubic phase with the lattice
constant a0 with tetragonal phase with cell parameters a, c. Natural sponta-
neous strains in the three ferroelastic domain states are

eð1ÞS ¼
ea 0 0

0 ea 0

0 0 ec

2
64

3
75; eð2ÞS ¼

ea 0 0

0 ec 0

0 0 ea

2
64

3
75; eð3ÞS ¼

ec 0 0

0 ea 0

0 0 ea

2
64

3
75; (5:3:2)

where ec ¼ ðc� a0Þ=a040 and ea ¼ ða� a0Þ=a050. Discussing possible coex-
istence of any of these domain states with the parent phase, one can easily check
that the compatibility condition is not satisfied. However, it can be fulfilled if we
consider an interface between the parent phase and a multidomain state. Let us
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check this possibility for two domain states 1 and 2. The average spontaneous
strain of the system of coexisting domains can be written as

�eSij ¼ ð1� aÞeð1ÞSij
þ aeð2ÞSij

; (5:3:3)

where a is the volume fraction of domain state 2. To check the possibility of
mechanical compatibility of this mixture with the parent phase we apply the
condition (5.3.1) to this average spontaneous strain. It results in an equation for
awith the solution a ¼ ec=ðec � eaÞ. We can easily check that, for this value of a,
the average spontaneous strain has the form

�eS ¼
ea 0 0

0 ea þ ec 0

0 0 0

2
64

3
75; (5:3:4)

which indeed does satisfy the compatibility condition. The orientation of phase
boundary is given by Eq. (5.3.1) with eij defined by the preceding matrix. That
determines the direction cosines {hkl} of the normal n to the interface in the
form

h ¼ ea
�ec

� �1=2

; k ¼ ea þ ec
ec

� �1=2

; l ¼ 0: (5:3:5)

From here we obtain the angles a, b, g between the normal n and the axes of
the cubic phase.

This theoretical approach provides an explanation to the experimental data on
them�3m� 4mm phase boundary orientations in several perovskites reported by
Fesenko et al. (1975, 1990). These orientations were found to be (650) for crystals
of BaTiO3 and (320) for crystals of PbTiO3. In fact, in the latter case actually
there exist 32 crystallographically equivalent boundaries. Only eight of themwere
realized in a sample if there was no temperature gradient while in a properly
engineered gradient any of these 32 boundaries could be realized. The phase front
was accompanied by a periodic 908 domain pattern. If there was only one phase
front, this 908 pattern did not depend on temperature. If there were more phase
fronts, the 908 domain pattern is complicated and changedwith temperature. The
orientations of stable boundary planes are compared in Table 5.3.2 with the
results of calculations according to the above formulae, where excellent agree-
ment between the theory and experiment is evident.

The discussed theoretical approach can also be applied to phase boundaries
that can appear at the first-order phase transition between two ferroelectric
phases (e.g., between tetragonal and orthorhombic phases in BaTiO3). In this
case, however, in general, to both phases the average spontaneous strain can be
ascribed. In this case, the difference in the average spontaneous strain between
both phases (A and B) can be written as

Dij ¼
X
a

aAa e
A;a
Sij
�
X
b

aBb e
B;b
Sij
; (5:3:6)
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where eA;aSij
and eB;bSij

are the natural spontaneous strains3 in the domain states of
the phases A and B, respectively, indexes a and b numerating these states; aAa
and aBb are the fractions of the domain states obeying the normalization condi-
tions.

P
a a

A
a ¼ 1 and

P
b a

B
b ¼ 1. The information on the orientation of the

phase boundary can now be obtained for Eq. (2.2.10) with Dij coming from
(5.3.6). An approach conceptually close to that presented above has been
applied to the tetragonal–orthorhombic phase transition in KNbO3 (Metrat,
1980). However, the validity of the results obtained is questionable since a non-
justified criterion of the mechanical compatibility (see the first footnote in Sect.
2.2.4) was used in the calculations.

5.4 Selected Observations of Domains in Crystalline Ferroic

Samples

We now wish to present a representative selection of experimental observa-
tions of domain patterns in selected kinds of ferroics. For several crystalline
ferroelectrics—TGS, barium titanate, KH2PO4, and Rochelle salt in particu-
lar—numerous experiments were performed with the aim to reach and visua-
lize equilibrium domain patterns in the sense of Sect. 5.2. These will be covered
in some detail. But in addition there is an enormous amount of interesting
data on static observations of domains not dealing with these idealized pat-
terns, which have never been summed up and could cover almost the full
volume of this book. In this section we present a very limited selection of data
with the aim to demonstrate some of either typical or challenging domain
configurations in different kinds of ferroics. When comparing any of these
data we have to bear in mind that in most observations the sample quality is
not fully defined, and yet crystal growth conditions and defects play impor-
tant roles. Often the boundary conditions, another essential factor, are not
properly specified either.While we do not wish to describe here effects induced
by intentionally applied external forces, in selected cases we find it

Table 5.3.2 Orientation of phase boundaries between cubic and multi-
domain tetragonal phases

Boundary orientation Ratio of domain volumes

Theory Experiment Theory Experiment

BaTiO3 a = 498400 a = 508 � 18 2.2 ffi 2

b = 408200 b = 408 � 18
g = 908000 g = 908 � 18

PbTiO3 a = 538560 a = 558 � 18 2.89 ffi 3

b = 368040 b = 358 � 18
g = 908000 g = 908 � 18

3 In this case the Aizu strain, in general, cannot be used in this equation (see Sect. 2.1.3).
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indispensable to describe domain patterns formed after the application of
such forces. Reported observations are sorted into several categories of fer-
roics which—as it follows from the considerations in Sect. 2.3—differ in their
basic properties. In each of them, only a few of the most studied materials are
covered in some detail.

5.4.1 Uniaxial Ferroelectrics (Nonferroelastic) with the
Second-Order Transition

5.4.1.1 TGS, Triglycine Sulfate

Triglycine sulfate and isomorphous ferroelectric crystals representing the spe-
cies 2/m–Pd–2 have served as model materials for domain studies and their
domain structures have been described and discussed in about 500 papers.
There are a number of reasons for this popularity. A crystal of TGS can be
relatively easily grown from water solution in a good quality and with the linear
size of several centimeters. Its cleavage plane is perpendicular to the polar axis
which makes it possible to prepare excellent plates of the required orientation.
Also, it is chemically stable and not hygroscopic, although it is soluble in water.
The other incentives for studying this material are the favorable location of
TC = 49.58C and the fact that there are several methods to observe domains:
Easy etching, as described in Chap. 4, as well as a number of decoration
methods of which liquid crystal decoration proved to be very effective. In
previous chapters we have already referred to domains in TGS, in particular
in connection with methods for domain observations. Investigations of domain
shapes in TGS will also be mentioned in Chap. 6.

Now let us briefly summarize some selected data on domains in TGS. This is
not a straightforward task since, in the observations, several factors combine
and cannot be well distinguished: sample quality, boundary conditions, tem-
perature, and time.

Although single TGS crystals grown in many laboratories have been of large
size, good quality, and comparable macroscopic properties, it is known that
they contain segments, often referred to as growth pyramids, which strongly
differ in domain patterns and in the response of domains to applied electric
fields. The TGS crystal is grown from a seed and the growth pyramid (hkl) can
be defined as a locus of the natural plane having indices (hkl) throughout the
growing process (Furuhata, 1970). Several authors (Stankowska and Czar-
necka, 1989; Konstantinova and Stankovskaya, 1970; Dontsova et al., 1988;
Konstantinova and Stankowska, 1971) demonstrated the differences of domain
patterns in distinct pyramids. Obviously, these phenomena may be closely
connected with the distribution of additives in different growth pyramids, but
the exact character of defects responsible for this effect is not known. Kon-
stantinova and Stankowska (1971) pointed out that the domain geometry,
domain size, as well as their time development strongly depend on the concen-
tration of Cu+2 additives as well as on the growth pyramid from which the
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sample is cut. Dontsova et al. (1988) managed to particularize how these
additives are distributed in various growth pyramids and studied the density
of domain nuclei in growth sectors of TGS crystals doped by various well-
specified admixtures. Although none of these observations have been yet trea-
ted theoretically, we can conclude that the very existence of growth pyramids
represents a warning that some of the obtained results cannot be generalized
and that proper consideration of the influence of defects on the static domain
pattern is essential even in a nonferroelastic material like TGS.

Let us first state that in ‘‘as-prepared’’—meaning no programmed tempera-
ture–time treatment has been involved—plate-like electrically isolated samples
of TGS, at room temperature, domains of one polarity of PS form irregular
islands in the sea of the other polarity (see Fig. 4.4.1). Sometimes domain walls
show a preference to be aligned along the a-axis, resulting in lenticular domains
extended along this axis for which their average width can be measured and
specified. Typically, as shown by etching both surfaces (see Fig. 4.4.1), domains
are formed by domain walls parallel to the polar b-axis which ensures their
electroneutrality. Occasionally, however, etching surfaces parallel to the polar
axis may reveal ‘‘internal’’ domains which do not reach the polar surfaces
(Chynoweth, 1960) (see Fig. 2.2.5).

In targeted experiments, first the question if the depolarizing field indeed
plays the expected role is asked. Moravec and Konstantinova (1968) examined
plates of TGS which were short-circuited by applying a layer of silver paste,
then annealed above TC, and subsequently cooled to room temperature. By
etching, they were found almost in single domain, in strong contrast to the on
average nonpolar pattern found in insulated samples. This appears to prove
unambiguously the role of depolarization energy when the domain pattern is
formed at the phase transition. These results were later confirmed by Stan-
kowska and Czarnecka (1989). The experiments of Gilletta (1972), however,
indicated a more involved—although not controversial—situation. TGS plates
were cooled alternatively in mercury and in vacuum (or paraffin oil, with the
same result). A few minutes after passing through, TC samples were irradiated
by X-rays which, on the basis of previous experience, was believed to freeze, at
that temperature, the domain structure. The latter was then revealed by etching
at room temperature. Domain patterns were similar in both cases except that in
the short-circuited samples domains were of larger size. Gilletta explained these
results by the presence of a surface layer (see Sect. 9.4.1). Indeed, he presented
dielectric data which point to the existence of an intrinsic surface layer on
insulated TGS plates and a much thicker (1 mm) surface layer in samples with
evaporated Ag electrodes. The nature of the former may be structural perturba-
tions, the latter could be due to chemical interaction with silver. In alternative
experiments, in which domains were revealed by etching, Gilletta showed that,
after shelving the insulated plates for several weeks, large domains developed,
while plates that were immersed in mercury became single domain within hours
or days. We include these observations to indicate the difficulties faced when
obtaining possibly reliable data.
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More distinctive information can be specified for samples which went through
a defined cooling process. Hatano et al. (1977) observed that after annealing a
TGS plate above TC and cooling it down to room temperature, first a fairly
periodical stripe structure occurs with well-defined orientations of domain walls,
perpendicular to the crystallographic c-axis. With time the stripes change into
lenticular or elliptical domains. These authors observed an analogical process in
TGSe, where fairly regular plate domains reached after cooling, parallel to the
crystallographic (001) planes, change with time into lenticular domains whose
tips are restricted by walls with the ð�201Þ orientation. The shapes of domains in
both these materials have been successfully discussed on the basis of wall energy
anisotropy and we shall come back to this point in Sect. 8.4.6.

Valuable evidence of the influence of crystal quality and the time factor was
obtained byMoravec and Konstantinova (1968). They prepared plates 3–4 mm
thick from four crystals of different degrees of purity: TGS1 (three times
recrystallized TGS synthesized from three times recrystallized glycocol);
TGS2 (one time recrystallized TGS synthesized from non-recrystallized glyco-
col); TGS3(Cu) and TGS3(Fe) (grown from TGS2 with addition of Cu and Fe,
respectively). After annealing at 968C, plates were cooled at a rate of 0.3 K/min
down to room temperature. After a waiting time tshelf, up to 500 h, the sample
was etched and photographed. The preferred wall orientation was specified as
perpendicular to the direction ½�1; 0; 2�. Then the number N of walls per milli-
meter was counted along this direction. Figure 5.4.1 shows their results. The
value of N was found to depend on tshelf, obeying the equation

1

N
� 1

N0
¼ Kðtshelf � t0Þ: (5:4:1)

This behavior demonstrates the aging process of insulated samples. This
result clearly represents the role of crystal quality on the observed domain

Fig. 5.4.1 Time dependence
of the number of domain
walls per 1 mm along the
direction perpendicular to
the wall preferred
orientation. o—TGS1;
D—TGS2;þ—TGS2, short-
circuited; h—TGS3(Cu++);
�—TGS3(Fe+++). After
Moravec and
Konstantinova (1968). The
roles of the crystal purity
and of electrical boundary
conditions are clearly
demonstrated
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pattern at a given time: The presence of defects has a profound effect on the rate
of the process with which the domain system changes. The aging process itself
was interpreted as corresponding to a slow compensation of the surface bound
charge by free carriers. This trend can be compared to that expected for an
equilibrium domain pattern, though, the domain patterns observed are not
equilibrium. Namely, the compensation of the surface bound charge should
lead to a reduction of the effective value of PS in Eq. (5.2.22) and to the
corresponding growth of Weq. Now, a curve is also included in Fig. 5.4.1,
showing the same type of dependence for samples of TGS2, which were short-
circuited after having been cooled to room temperature and then again after
each etching step. We see that the aging processN(tshelf) was not influenced and
proceeded as for the insulated sample. There is an analogy with the above-
mentioned Gilletta’s observations, and while we lack an exact interpretation of
this finding one can again deliberate about the influence of a passive surface
layer. Alternatively, it could be that the process of reaching equilibrium at room
temperature is already too slow because well below TC the wall mobility is
correspondingly sluggish. While we have already pointed out that there is no
doubt about the role of depolarization energy, we now have to conclude that
once the neutral structure has been reached there is little incentive for proceed-
ing to reach states with further reduced energy.

Considering all complicating factors involved, the differences in data
obtained by different authors are not surprising. Konstantinova and Stan-
kowska (1971) further extended previous study of Moravec and Konstanti-
nova. While the law of Eq. (5.4.1) was confirmed, they showed that not only the
coefficient K, i.e., the aging rate but also the domain geometry is strongly
affected by the crystal growth temperature and by the location of growth
pyramid from which the sample had been prepared. Aging effects were also
studied by Dabrowska et al. (1977) and the role of defects was in particular
demonstrated by Stankowska and Czarnecka (1989). Thus the role of crystal
quality is being repeatedly confirmed. Another elegant demonstration was
offered by Szczesniak and Szczepanska (1990): They showed that the length
of the rejuvenation period (during which the sample is kept above TC) has a
profound effect on the distribution function of domain width, for samples
which are otherwise identical.

It is evident that even in the carefully performed experiments just mentioned,
there are two essential factors—temperature and time. In this context, unique
observations made by Nakatani (1985) using liquid crystal decoration technique
deserve special attention. In these experiments, after rejuvenation, the TGS plate
was cooled through TC at a rate of 0.006 K/m; capacitance of a small electroded
part made it possible to determine, with a precision and reproducibility of 0.01K,
the moment when TC is passed. A series of photographs shown in Figs. 5.4.2 and
5.4.3 seem to be at present the best available demonstration of how domains form
and develop in a nonferroelastic material with a continuous transition. In
Fig.5.4.2, the domain patterns have been imaged during step cooling every
4 min down to T C–0.26 K. A continuous increase with time of the mean domain
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width is seen. This dependence, W(t), is linear as documented in Fig. 5.4.4a. The

cooling was stopped at T C –0.39 K; however, the domain growth continues (see

Fig. 5.4.3) with the same rate (see Fig. 5.4.4b). These results indicate that it is the

time which is the decisive factor for the domain development rather than tempera-

ture. The linearW(t) dependence starts to saturate only after about 10 h (Fig. 5.4.4c).

Fig. 5.4.2 Time evolution of domain pattern in TGS on cooling just below TC = 49.688C
imaged by LC decoration. Microphotographs are taken on slow cooling at intervals of 4 min;
temperatures are given. After Nakatani (1985)

Fig. 5.4.3 Time evolution of domain pattern in TGS at fixed temperature T =TC – 0.398C
imaged by LC decoration. Microphotographs are taken at intervals of 4 min. Frames (a)–(h)
correspond to the window shown in Fig. 5.4.2i. Small arrows indicate the shrinking domains
and the protruding boundary. After Nakatani (1985)
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While in the just described experiment the crystal is gently pulled through the

transition point, Tomita et al. (1989) employed the decoration technique to

study the time development of domains in TGS after quenching, a fast cooling

process from above TC down to room temperature. Figure 5.4.5 shows some of

Fig. 5.4.4 Temperature/time (a) and purely time (b) dependences of the mean domain width w.
These data were obtained frommicrophotographs such as in Fig. 5.4.2, taken at intervals of 2min.
(c) Time dependence of w taken at room temperature and just below TC. After Nakatani (1985)
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their data. Comparing the domain evolution for the case of slow cooling and

quenching, one distinguishes the same general trend—increases in the mean

domain width with time. As for the difference, it is in the domain shape (in the

quenching case the domains are mainly lenticular) and in the time dependence

of the domain width. According to Tomita et al. (1989), in the quenching

regime, this dependence is much slower than linear: the power law with the

exponent about 0.3.
Among qualitative result related to the domain pattern in TGS one can

mention SFMdata obtained in the frictionmode (Correia et al., 1996), attesting

to the presence of ‘‘domain structure branching’’ in the material.
All the observation mentioned above can be rationalized in terms of the

general theoretical approach to the domain formation on ferroelectrics: com-

petition between the depolarizing-field and domain wall energies under addi-

tional influence of defects pinning the walls and free charges screening the

surface bound charge. At the same time, quantitative interpretation of these

results in terms of the theory of the equilibrium domain pattern does not seem

Fig. 5.4.5 Time evolution of domain pattern in TGS quenched down to room temperature.
After Tomita et al. (1989)
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realistic. Here we can mention experimental attempts to quantify the para-
meters of the close-to-equilibrium domain patterns. Safrankova (1970a,b) and
later Strukov et al. (1972a) have investigated the equilibrium domain size Weq

on temperature and sample thickness. Figure 5.5.6 shows the ratio W2
eq=h

calculated by Strukov et al. (1972a) from their experimental data on 200
samples of thicknesses from 0.25 to 2.5 mm. According to Eqs. (5.2.22) and
(5.2.23), for this material, this ratio should be independent4 of sample, tem-
perature, and sample thickness. At the same time Fig. 5.5.6 demonstrates an
essential spread and thickness dependence of this parameter, suggesting that the
observed domain patterns are not close to real equilibrium. The data by
Safrankova (1970a) corroborate this point.

These and other numerous results on domains in TGS represent some 50% of
all available data on domain patterns in ferroelectrics. Let us briefly summarize
them. (1) There is a profound tendency that neutral structures are formed.
(2) Samples prepared for domain observations may carry a passive surface
layer which imitates an ‘‘isolated sample’’ even if it is provided with short-
circuited electrodes. (3) Both lenticular and stripe shapes are characteristic but
intermediate patterns occur most often. (4) On cooling, a fine domain structure
appears at TC and coarsens with time. On slow cooling, it is time rather than
temperature that determines the instantaneous structure. (5) The speed of this
coarsening process depends critically on crystal quality. (6) In good-quality
samples the speed of this process slows down at lower temperatures, requiring
hundreds of hours. (7) The distribution function of domain sizes becomes sharper
for samples annealed above TC. (8) In TGS, the theoretically substantiated
dependence of the characteristic domain size on plate thickness has not been
clearly demonstrated.

Fig. 5.4.6 Experimental
data on W2

eq/h collected
from TGS samples of
thicknesses from 0.25 to
2.5 mm. After Strukov et al.
(1972a)

4 This follows from the relations valid for TGS: hM /
ffiffiffiffiffi
kc
p

sW=P2
S,

ffiffiffiffiffi
kc
p / 1=PS, and sW / P3

S.
Here the latter relation follows from Eq. (6.2.10b).
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In short, we may state that in high-quality crystals of TGS we do not really

observe equilibrium domain structures but some which are not far from condi-
tions of theoretical equilibrium.

Closing the discussion of domains in TGS we wish to point out that, in some

of the observation methods, it is difficult to avoid temperature gradients in the
sample or even thermal shocks. Chynoweth and Feldmann (1960) paid special
attention to these two factors. They showed that a warming shock results in a
very regular domain pattern in which domains of one polarity have the shape of
cylinders with lens-shaped cross-sections. A cooling shock resulted in arrays
of very narrow circular domains. A simple model was suggested in explanation
of this effect.

For lack of space, we do not include data on domains in isomorphous
crystals TGFB and TGSe. There are no qualitative differences, although dif-
ferent wall anisotropy leads to other domain shapes (Hatano et al., 1977).

5.4.1.2 Other Representatives

TGS and its isomorphs are the most studied uniaxial nonferroelastic ferro-
electrics from the point of view of domain properties. In this section we shall
now mention only in passing some other materials from this group.

Lead germanate, Pb5Ge3O11, is a good candidate for static observations of
domains. It undergoes a continuous transition at 1778C, representing the
species �6� Pd� 3, whose interesting property is that domains with antipar-
allel polarization differ in the sign of optical activity. This fact (cf. Sect. 4.6.3)
makes it possible to observe nonferroelastic domains in a polarizing micro-
scope. However, Iwasaki et al. (1972) and Blumberg and Kürsten (1979)
pointed out that in freshly grown crystals of lead germanate domains cannot
be visualized. Dougherty et al. (1972) were the first to visualize domains in
c-cuts of this material, by means of optical rotation (see Fig. 2.2.8). Hexago-
nal-shaped islands with walls of f1�100g orientations were found to be
preferred.

Considerable attention to domain properties of this material was paid by
Shur et al. (1982). They showed that, in a fresh sample, domains become visible
only when an ac field is applied, first with diffuse walls but gradually acquiring a

strong contrast. This was explained by assuming that fresh untrained samples
contain head-to-head domains which are screened by free carriers; these
domains mutually compensate the rotation of polarization. The applied ac
field destabilize this compensation and makes domains penetrate the whole
thickness of a sample and become optically distinguishable. The sample can be
again thermally depolarized which leads to the previous situation, namely to a
large number of antiparallel and head-to-head domains (Shur et al., 1988). In a
later paper, Shur et al. (1985b) studied domain shapes in more detail. They
showed that when the mentioned switching process advances in fields exceeding
2.5 � 105 V/cm, domains of irregular shapes are created. If fields are below this
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value, domains have regular shapes, with walls of defined orientation, and

domains of hexagonal or triangular shapes can be deliberately formed.
Seemingly, these facts go beyond the scope of this section in which we discuss

domain shapes without considering changes in domain patterns by external

forces. However, these observations may give the reader a suggestion how to

cope with situations when no domains can be observed although their presence

can be expected on the basis of other considerations.
The last ferroic we wish to mention here is GASH, one of the most

investigated materials within the category of uniaxial ferroelectrics. In con-

trast with the previous two, its transition temperature cannot be reached since

the decomposition process takes place already at about 2008C, still within the

ferroelectric phase. Available data suggest that this material can be treated as

representing the species �3m� Pd� 3m. Its attractiveness is due to the relative

easiness of the growing process and also since several decoration techniques

as well as atomic force microscopy can be applied to observe domains on its

well-defined cleavage planes perpendicular to PS. Cleaved plates reveal a

central part of hexagonal shape and six outer parts; Le Bihan (1990) showed

that they are in fact growth pyramids, extending from the center of the

crystal.
We give a short overview of selected domain observations, with the aim to

show the diversity of data, demonstrating again the unspecified role of crystal

defects. Hilczer et al. (1975), Szczesniak et al. (1976), and Suda et al. (1978a)

were the first to investigate domain shapes. They found that the central region is

usually single domain while in the outer segments a large number of small

domains occur, both plate like and circular. With decreasing temperature

many new small domains appear and have the tendency to change from circular

to hexagonal cross-sections; this is demonstrated in Fig. 5.4.7. Tikhomirova

et al. (1979) observed a different kind of domains, in the form of narrow loops

and considerable lengths of 102–103 mm. They begin and terminate at the edges

of the crystal or form close configuration of arbitrary shape. The patterns on

opposite surfaces of a sample 0.2–3 mm thick are absolutely identical; the fact

that these patterns are related to domains is proved by the fact that in an applied

field they expand, symmetrically in both directions. While several authors, e.g.,

Le Bihan et al. (1984) and Szczesniak et al. (1985) confirm that in as-grown

crystals domains exist only outside the central hexagonal zone, Hatano et al.

(1985a,b) observed peculiar spiral domains in this zone and connected them

with the spiral growth theory of the crystal. Galiyarova and Dontsova (1999)

investigated domain shapes with the intention to determine the relation between

their perimeter and area, in connection with the idea of fractal features of

domains. All of the mentioned observations were performed with solution-

grown crystals. Hatano et al. (1990b) prepared gel-grown crystals of GASH.

He showed that in this case the outer six growth sectors are single domain of

alternating polarity, unlike in solution-grown crystals where they are subdi-

vided into domains.
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5.4.2 Ferroelastics with a Small Number of Domain States

In this section we present examples of domain patterns in materials exhibiting
two and three ferroelastic domain states. From the latter category, however, we
will not address here perovskite materials; these will be addressed later in Sect.
5.4.3. Giving credit to the historical importance of KDP, this ferroelastic with
two domain states will be discussed separately either.

5.4.2.1 Ferroelastics with Two Ferroelastic Domain States

Let us first discuss simple representatives of proper ferroelastics with two
domain states, neodymium or lanthanum phosphate, NdP5O14 or LaP5O14.
They exemplify the speciesmmm–es–2/m and undergo continuous transitions at
413 and 393 K, respectively. The spontaneous shear in the two domain states is
�eS13 , and the corresponding component dSB13 of optical indicatrix is large
enough so that domains differing in its sign can be observed optically in samples
of b-cut (normal to the twofold axis). Mechanically compatible domain walls

Fig. 5.4.7 Variation of the
small domain shape with
temperature decrease in a
GASH crystal. (a) 75,
(b) 100, (c) 120, and
(d) 1308C. The edges of the
hexagonal domains are
parallel to the mirror planes.
Bar signs in each figure
indicate length of 20 mm.
After Suda et al. (1978a)
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are parallel either to the a-axis, i.e., perpendicular to the c-axis of the parent
phase; these are called a-type walls, separating a-type domains (often referred to
as a-type twins). Alternatively, the walls are parallel to the c-axis of the parent
phase; these are called b-type walls, separating b-type twins (Weber et al., 1975;
Huang et al., 1994b).

First optical observations of domains were reported by Weber et al. (1975)
who gave an accurate crystallographic representation of domain pairs and
proved ferroelasticity by switching under applied stress. Indirect domain-
induced effects were reported by several investigators; e.g., Errandonea (1981)
found that the intensity of the Rayleigh line, i.e., of the elastically scattered
beam, is strongly dominated by reflections on a-type walls. Attention to domain
phenomena was inspired in particular by investigations of Meeks and Auld
(1985), who showed that regular domain patterns can be induced in these
crystals.

Huang et al. (1994b) studied static domain properties in crystals of NdP5O14

optically. In plates perpendicular to the b-axis, both orientations of domain
walls were observed, often forming wedge-shaped domains. However, most
observed walls were of the a-type; the b-type walls (parallel to (100) of the
parent phase) are usually formed in the fields of local stress, at elevated
temperatures. This was explained by a higher surface tension of the b-walls.
Indeed, symmetry considerations point to nonequivalency of the two walls.

By both optical microscopy and synchrotron radiation topography it
was found (Huang et al., 1994b) that at elevated temperature the density of
domains increases, sometimes forming a nearly periodic structure. Close to TC

numerous microdomains fill the crystal, frequently altering from one state to
another. When TC is determined from the temperature dependence of sponta-
neous strain, microdomains disappear at this temperature while large domains
may still be visible above TC, probably due to local stress in the sample.

While the basic data on domains were obtained bymicroscopic observations,
other methods provided additional information. Studies by synchrotron X-ray
topography (Hu et al., 1994) in Er-doped LaP5O14 crystals also recorded
fluctuations of the number of domains at TC. A simple thermodynamic treat-
ment of the transition shows that the energy barrier between the two domain
states varies with temperature as |T –TC|

2 while the wall energy decreases as |T –
TC|

3/2. Based on these facts, it can be argued that as TC is approached, the
probability of creating new domains by thermal fluctuations increases. In
crystals of this composition, only a-type domains are observed, b-type domains
are not (Huang et al., 1995).

As discussed in Chap. 4, on samples with properly oriented surfaces, ferroe-
lastic domains will form a surface relief. This was demonstrated by Hamazaki
et al. (1996, 1998) for NdP5O14, whose as-grown (100) surface was observed by
SFM in topographical mode. At the (001) domain walls the surface bends by an
angle of 0.488. The samemethod was also used by Takashige et al. (1998). These
crystals, typical ferroelastics, have received attention for investigations also by
other methods based on elastic differences between domains. For example,
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Jiang et al. (1999) used a scanning electron acoustic microscope and Kojima
(1989) used a kind of acoustic microscope.

To summarize, crystals of pentaphosphates represent a classical example of
ferroelastic ferroics of simple symmetry: The phase transition is equitransla-
tional and there are just two orientational domain states. Basic domain proper-
ties are known. However, because these materials undergo the second-order
transition, it appears that they offer an extremely interesting subject for further
research of how the transition proceeds, how ferroelastic domains are formed,
and what—if any—are pretransitional phenomena.

The second ferroelastic material we include in this section is bismuth vana-
date, BiVO4. It is a proper ferroelastic, customarily considered to represent the
species 4/m–es–2/m in which the symmetry-breaking component of natural
spontaneous strain is e12. In contrast to pentaphosphates, here we expect only
S walls to exist, of orientations (p, 1, 0) and (1, –p, 0). This was realized by
Manolikas and Amelinckx (1980a); indeed they observed sets of mutually
perpendicular walls, both passing through the c-axis and forming wedges.
From the values of spontaneous strain components they determined the value
of p; for the angle j=arctan(–1/p) which the two walls make with the x- and y-
axes, respectively, they obtained j = 31.48, in good agreement with the
observed value of j 
 328.

Obviously, the value of p is expected to depend on temperature. This pro-
blem was addressed by David andWood (1983) who measured the temperature
dependence of the orientation of walls, i.e., of the parameter p. Calculations of p
using data on spontaneous strain led to a good agreement between theory and
experimental data, for temperatures betweenTroom and 2208C.Here p decreases
linearly with T, within the range of about 0.72–0.65. Later, bismuth vanadate
was investigated by Avakyants et al. (1985) with similar results. In addition,
these authors studied the surface profile of a rod-like sample produced by
perpendicular (nearly perpendicular because the parent clamping approxima-
tion is lifted) S walls; the planar surface is rippled by changes of the order of 18.

More recently, however, the fairly consistent observations of S walls in this
material have been questioned by Moon et al. (1987) who observed, by X-ray
diffraction and NMR, walls of a new orientation (110). This was confirmed by
Lim et al. (1989) who reported its coexistence with an S wall of indices (1p0)
where p = 0.724. Based on these observations it was suggested that in fact
BiVO4 represents the species 4/mmm–es–2/m with four domain states rather
than 4/m–e–2/m. This was supported by additional studies of domain walls in
this material by Lim et al. (1995) which resulted in the conclusion that in the
samples used only Wf walls were seen and no S walls. Thus bismuth vanadate,
despite the large number of high-quality papers already published, still offers a
lively area of research.

Another ferroelastic material we would like to discuss is KSCN, representing
species 4/mmm–es–mmm. At TTR = 415 K it undergoes the transition (of
order–disorder type) which is of first order, although the discontinuity is very
small (Kroupa et al., 1988). This is an improper ferroelastic, its order parameter
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Z is connected with ordering of the SCN– groups. Again, there are two ferroe-

lastic domain states but in contrast to the two previous materials, here the

transition is non-equitranslational: the primitive unit cell doubles. The two

ferroelastic domain states differ in sign of the newly acquired strain component

eSxy / Z2S. Compatibility conditions predict ferroelastic domain walls ofWf type

with the orientations (110) and ð�110Þ, and in c-oriented plate-like samples these

are indeed observed in a polarization microscope (Schranz et al., 1988). Typi-

cally, just below TTR, dense patterns of narrow domains terminating within the

sample are formed on cooling (Fig. 5.4.8a). Lens-shaped domains occur fre-

quently while planar walls crossing the whole sample are very rare (Schranz and

Rychetsky, 1993). From about 18C below TTR down to room temperature no

significant changes in the domain pattern are observed (Schranz et al., 1988).

Perpendicular domain systems, obviously situated above each other in a plate-

like sample, can be seen.

Fig. 5.4.8 Domain pattern
in KSCN. (a) Typical
pattern not too close to TTR.
(b) Domain pattern at TTR –
0.05 K. On cooling,
junctions ‘+’ and ‘–’ merge
and lens-shaped domains
such as shown in (a) form.
Reprinted with permission
from Schranz, W., Static
and dynamic properties of
the order–disorder phase
transition in KSCN and
related crystals, Phase
Transitions, 51, 1 (1994).
Copyright (1994), Taylor
and Francis
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Schranz and Rychetsky (1993) performed an aimed study of two aspects of
ferroelastic domain patterns in KSCN. First, they paid attention to narrow
lens-shaped domains. On cooling a single-domain sample, they raise a few
degrees below TTR and show characteristic temperature dependences of their
dimensions—length L and width h. Changes of temperature and waiting times
were arranged so that the obtained data would correspond to the states close to
equilibrium. Reproducible results for temperature dependences of L and hwere
obtained, shown in Fig. 5.4.9. These dependences have been successfully mod-
eled using twinning dislocation approach (cf. the end on this section devoted to
domains in KH2PO4), specifically it has been shown that for h/L < 1

L / exp½A=eSxyðTÞ�; h / ln L / B=eSxyðTÞ; (5:4:2)

where A and B are constants. Figure 5.4.9 demonstrates a good agreement
between the theory and experiment.

The second interesting aspect of ferroelastic domains in KSCN is the coex-
istence of mutually perpendicular wedges. The prevailing wall orientations of
perpendicular wedges are (110) and ð�110Þ. Any of them are mechanically
permissible but if they meet, a strongly deformed region is formed. The inter-
esting property of KSCN is that since the phase transition is very close to the
second order, near TTR the spontaneous strain is small. Then the right-angled
walls meet relatively often and an unusual domain pattern is formed as shown in
Fig. 5.4.8b. On cooling, it transforms into a pattern such as that in Fig. 5.4.8a.
Schranz (1994) and Schranz et al. (1993) offered an explanation for this effect.

Fig. 5.4.9 Temperature dependence of the length (a) and width (b) of lens-shaped domains in
KSCN.Dots are experimental data, curves represent fits to relations (5.4.2). After Schranz and
Rychetsky (1993)
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At the two junctions (‘‘+’’ and ‘‘–’’ in Fig. 5.4.8b) a strain field is formed leading

to an attractive force Fr between them. This force was calculated as

FðrÞ ¼ �2me2Sxy r lnðR=rÞ=pð1� nÞ; (5:4:3)

where m is the shear elastic modulus, n stands for the Poisson ratio, and R is the

dislocation core radius. Near TTR the magnitude of Fr is not high enough to

move the junctions. With decreasing temperature spontaneous strain and thus

also Fr increase and the two junctions move to each other until they finally

merge to form lens-shaped domains shown in Fig. 5.4.8a.
The doubling of the unit cell at the transition in KSCN makes possible the

existence of the orientational domains divided with antiphase boundaries (see

Sect. 2.1.7). Such domains have been detected with etching technique (Schranz

and Rychetsky, 1993). The antiphase boundaries have been found to make an

angle of 458 with those ferroelastic. It has been demonstrated that the orienta-

tion of the antiphase boundaries consists of the anisotropy of the surface

tension of the boundaries, calculated based on the known parameters of the

Landau energy of the material (Rychetsky and Schranz, 1993).
An example of a two-domain-state ferroelastic is the famous improper

ferroelectric–ferroelastic Gd2(MoO4)3 (abbr. GMO) with the first-order phase

transition at TTR=1608C. It corresponds to species �42m� Peds�mm2, which

allows Wf walls of two orientations ((100) and (010) in the crystallographic

frame of the parent phase), which at the same time are parallel to the direction

of the spontaneous polarization and for this reason are neutral. Because of the

improper character of the transition (unit cell multiplication), antiphase bound-

aries can also form. Barkley and Jeitschko (1973) and Meleshina et al. (1974)

have offered detailed description of the domain patterns inGMO. In contrast to

the just discussed improper ferroelastic KSCN no regular dense domain pattern

is formed after the cooling through the transition. The domain size can be

comparable to the sample size. As for the antiphase boundaries, they seem to

exhibit a little anisotropy of the surface tension and, when far from the ferroe-

lastic walls, they acquire arbitrary shapes, making loops or ending at disloca-

tions (Fig. 5.4.10). According to Meleshina et al. (1974) there exists a strong

attraction between the antiphase and ferroelastic boundaries. When a ferroe-

lastic wall passes through an antiphase boundary it straightens the latter. When

an antiphase boundary ends at a ferroelastic wall, the angle between them

acquires a definite temperature-dependent value. The possibility of ending of

antiphase boundaries at dislocations is its important feature. As can be under-

stood using Fig. 2.1.11 as the definition of the antiphase boundary, any edge

dislocation with the proper Burgers vector should give rise to an antiphase

boundary in the low-symmetry phase: The dislocation provides a missing (or

extra) lattice constant of the parent phase to form the phase shift of the order

parameter across the antiphase boundary. Not all features of the domain

pattern in GMO are rationalized; for example, the temperature dependence of
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the angle between the ferroelastic and antiphase boundaries (Barkley and

Jeitschko, 1973) has not yet received its theoretical explanation.
The last example of a two-domain-state ferroelastic we would like tomention

here is Rochelle salt, historically the first ferroelectric compound. It belongs to

the category of proper ferroelectric ferroelastics with two domain states (species

222–Peds–2, TC = 297 K). In their classical work, Mitsui and Furuichi (1953)

were the first to pay attention to basically periodical domain patterns in a

ferroelectric. A typical domain pattern imaged by the birefringence technique

is shown in Fig. 5.4.11. The lamellar domains shown in this figure are parallel to

the b- and c-axes (the a-axis is taken parallel to the spontaneous polarization)

according to the mechanical compatibility conditions specific for this species.

As a function of the sample thickness, the period of the lamella pattern was

reported to be in compatible with the square root law however with a large

scatter as shown in Fig. 5.4.12. The short-circuiting of the sample (e.g., keeping

for 2 h in an electrolytic solution) was found to reduce the domain density

(Mitsui and Furuichi, 1953), however, only for plates thinner than 400 mm. For

Rochelle salt again the complicating time-versus-temperature aspect plays a

role. It was reported (Dabrowska et al., 1977) that in samples that have been

kept below TC for 2 h, the domain widths remain constant while in samples that

Fig. 5.4.10 Domain pattern revealed by etching on c-cut of Gd2(MoO4)3 crystal. A and C
denote domains with the polarization directed into the plane of the image, B denotes a domain
with the opposite direction of polarization. The domain and antiphase boundaries are seen as
straight (dividing A, B, and C areas) and curved lines, respectively. The antiphase boundaries
are imaged by etching only in A and C domains (the etchant is not active at positive domains).
Such distribution of antiphase boundaries is typical in crystals cooled trough TTR when very
little wall movement occurs. Reprinted with permission from Barkley, J.R., Jeitschko, W., J.
Appl. Phys., 44, 938 (1973). Copyright (1973), American Institute of Physics
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were slowly cooled through TC till room temperature, the domain widths
continue to increase for several hours.

5.4.2.2 Ferroelastics with Three Domain States (Not Including Perovskite

Material)

All preceding materials in this section were characterized by just two ferroelas-
tic domain states. Now we shall shortly mention crystals offering three domain
states, namely Pb3(PO4)2 and KFe(MoO4)2 and their isomorphs. Both repre-
sent the ferroelastic species no. 133, �3m� es� 2=m.

Fig. 5.4.11 A typical
domain pattern in Rochelle
salt imaged by the
birefringence technique.
View in the direction of the
spontaneous polarization.
Reprinted with permission
fromMitsui, T., Furuichi, J.,
Phys. Res., 90, 193 (1953).
Copyright (1953) by the
American Physical Society

Fig. 5.4.12 Domain density
in Rochelle salt as a function
of the plate thickness h. x—
experimental data; the line
corresponds to the domain
spacing W/2¼ 1.1 �
10�3

ffiffiffi
h
p

. W and h are in cm.
After Mitsui and Furuichi
(1953)
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Pb3(PO4)2 undergoes a discontinuous transition from �3m to 2/m, at TTR =

1808C; in Sect. 5.3 we have already discussed the orientation of its phase

boundary. Brixner et al. (1973) reported the basic domain properties of this

material. The twofold axes of the three ferroelastic domain states lie in the (001)

plane of the parent phase and make angles of 1208. The newly acquired shear

components of spontaneous strain are the origin of a relatively involved situa-

tion with elastic compatibility. Any two domain states can be separated either

by a Wf wall or by an S wall. Thus there are three permissible walls of the Wf

type, namely W3 = (010), W1 ¼ ð
ffiffiffi
3
p

�10Þ, and W2 ¼ ð
ffiffiffi
3
p

10Þ, and three permis-

sible S walls perpendicular to the Wf walls. The unit cells, symmetry elements,

and domain walls are schematically shown in Fig. 5.4.13 (Otko et al., 1983).

Real domains in single crystals of Pb3(PO4)2 create fairly complicated patterns

but all predicted walls have been actually optically observed and their orienta-

tions were found to fulfill mechanical compatibility conditions (Chabin et al.,

1976, 1977; Vagin et al., 1979; Ayroles et al., 1979). Figure 5.4.14 shows an

example of a domain pattern as seen in a (001) plate in polarizing microscope

(Chabin et al., 1977). Here all three domain states D1, D2, and D3 are repre-

sented and can be easily identified by extinction positions. The double arrows

indicate the twofold axes. The domains representingD2 andD3 are separated by

theW1 wall or by theS1 wall. Ideally, allWf walls should be perpendicular to the

(001) plane while orientation of the S1 wall is determined by the values of

spontaneous strain components; at room temperature, this wall makes an

angle of 738 with the (001) sample surface. In fact, the extinction directions in

neighboring domains do not make exactly the angle 60 or 1208, because in

reality the domain clamping approximation is lifted. For the same reason,

Fig. 5.4.13 Unit cells and
symmetry elements in the
three domain states of
Pb3(PO4)2, schematically.
Orientations of the
intersections of Wf and S
walls with XY plane (shown
with solid and dashed lines,
respectively). Wf walls are
perpendicular to this plane,
S walls are inclined. From
Otko et al. (1983)
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obviously, it was observed that the surfaces of neighboring domains make a

small angle of the order of 18.
Manolikas and Amelinckx (1980b) investigated domains in isomorphous

crystals of Pb3(VO4)2 (TTR = 1208C) by electron microscopy. In addition to

the analysis of wall orientations they presented interesting observations of

unusual regular local domain configurations. Figure 5.4.15a shows an image

of one of such configurations. The identification of the walls and domain states

making this image is given in Fig. 5.4.15b. An infesting feature of this config-

uration is the presence of a triangular area possibly corresponding to the

metastable parent phase (�3m symmetry).
For another isomorph, Pb3(AsO4)2, detailed observations of domains were

reported by Dudnik et al. (1983). These authors also discussed in detail the

orientations of S walls and found a good agreement with theory. No involved

studies seem to have been made of the temperature dependence of real domain

patterns. It was reported that they change on heating only when TTR is

approached (Bolshakova et al., 1989).
The same species, namely �3m� es� 2=m, is represented also by a family of

molybdates and tungstates. Otko and his coworkers (Otko et al., 1983, 1993b)

investigated domain properties in crystals of KFe(MoO4)2 and KIn(WO4)2. In

unstressed samples of the molybdate, domains are commonly separated by Wf

walls. On the contrary, in tungstate samples of good-quality tilted S walls

prevail andWf walls are observed only exceptionally. The suggested interpreta-

tion is the difference in wall energy densities of the two kinds of walls in the two

Fig. 5.4.14 Example of domain pattern in Pb3(PO4)2 as seen in a (001) plate in polarizing
microscope (b) and its assignment (a). After Chabin et al. ( 1977). All three domain states D1,
D2, and D3 are represented. Wf walls are perpendicular to the plate, the S wall is oblique
(thickness fringes are seen in (b)). Double-arrowed lines show the orientations of the twofold
axes in the domains
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materials: for the molybdate, sw(Wf) < sw(S) while for the tungstate the
opposite inequality should hold.

As seen in Figs. 5.4.14 and 5.4.15, for this species, situations often occur
where more than two domain states meet along a line. Understandably, such
intersections are not elastically compatible and these geometries are paid for by
additional elastic energy. Otko et al. (1983) studied which domains occur at the
phase boundary at the transition to the ferroelastic phase andwhy some of them
disappear on cooling. The authors have specified a series of often occurring
domain geometry transformations which avoid the contact of three domain
states.

5.4.2.3 KH2PO4, A Ferroelectric Ferroelastic

Domain patterns in KH2PO4 (abbr. KDP) have been the first ferroelectric
domain patterns intensively studied and the researchers are still active in the
field. Despite this, the physics behind these patterns is not yet fully understood.
Below, in this section, we will give a brief overview of the observation of the
domain patterns in this material, though, in many cases, we will not be able to
provide adequate interpretations for the experimental material.

Potassium dihydrogen phosphate, KDP, represents species �42m� Peds�mm2.
This material was actually the second discovered ferroelectric, in 1935 by Busch and
Scherrer (1935). The transition occurring at TTR = 123 K is of first order. The
discontinuity in PS, however, is quite small (Zeyen and Meister, 1976) and KDP
represents one of those discontinuous transitions which are very close to the second
order. Thermal hysteresis of TTR amounts only to several tenths of a degree.

Fig. 5.4.15 A domain pattern observed in Pb3(VO4)2 by electron microscopy (a), the plane of
the image is XY plane, and its assignment (b). Domain states are marked as D1, D2, and D3.
Thick lines—Swalls. Thin lines—Wwalls. The central region, shown as cross-hatched in (b), is
believed to be metastable parent phase. After Manolikas and Amelinckx (1980a,b)
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The alternative material whose domain properties are expected to be very much the

same as those of KDP is its deuterated relative KD2PO4 (abbr. DKDP). Its phase

transition occurring at TTR = 210 K is also of first order, with thermal hysteresis

0.2 K.
KDP crystals are grown from water solution, are transparent, and generally

of very high quality. Figure 5.4.16 shows its typical shape and growth sectors

(Abe, 1987); untreated samples prepared from different pyramids of an as-

grown crystal differ in their domain patterns. The pyramidal sector is usually

selected for sample preparations since it is known to be less defective than the

prismatic sector.

Spices �42m� Peds�mm2 exhibits two ferroelectric domain states which can
be joined with domain walls oriented perpendicular to a- and b-axes of the
parent phase. Probably the first evidence of the existence of domains in KDP
was indicated by Zwicker and Scherrer (1944): They found that the effective
birefringence of a c-plate in the ferroelectric phase was zero without biasing
field and nonzero with a biasing field, with the same temperature dependence as
PS. This was an indirect evidence for the existence of domains while Ubbelohde
and Woodward (1945) demonstrated their presence by X-ray measurements.
Mitsui and Furuichi (1953) were probably the first to observe domains in KDP
in a microscope but only more than 10 years later. Fomichev (1965), Fouskova
et al. (1966), Bornarel et al. (1966), and Toshev (1966) presented pictures of
characteristic patterns and analyzed the basic domain geometry.

Typically, pairs of domain walls several micrometers apart meet inside a c-
oriented plate-like sample, obviously forming a wedge-like closure; near their
tips the two walls cannot be distinguished any longer. Often a system of such
parallel domains forms a quasiperiodic pattern. Two perpendicular systems
may coexist, their boundary having an irregular shape, which may take a
different form on subsequent cooling. Alternatively, the two systems can be
parallel but mutually shifted by about one-half of their period, as reported by
Toshev (1966). Sometimes such systems can be located, when viewing along the

Fig. 5.4.16 Growth sectors
in a single crystal of KDP.
After Abe (1987)
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c-axis, above each other; seemingly a square-like pattern can then be detected
(Koptsik and Toshev, 1965). All these data indicate that the narrow domain
systems are initiated independently in different parts of a sample and meet only
afterwards. Domain geometries known as currently occurring in other ferro-
electric ferroelastics, e.g., Gd2(MoO4)3, namely the existence of only several
parallel domain walls quite apart from each other, are rare in KDP and if they
occur, only so at temperatures well below the transition point. Studies of side-
wise motion of individual ferroelastic–ferroelectric walls, performed for
BaTiO3 (Fousek and Brezina, 1964) or GMO (Flippen, 1975; Kumada, 1970),
have never been realized for KDP family of ferroics.

Let us now describe in some detail the most essential or the mostly investi-
gated properties of domain patterns in KDP. Most of available information is
based on microscopic observations of c-plates. At low temperature, a chamber
has to be used in which the requirement of zero temperature gradient is often
violated. Information obtained by X-ray diffraction or by g-diffractometry is
indirect and does not offer data on real geometry of domains. Scanning electron
microscopy was shown to be applicable (Antoshin and Spivak, 1972; Maussion
and Le Bihan, 1976) but it was found that the electron beam may interact with
the domain structure, leading to changes or even to complete disappearance of
domains.

In a c-oriented plate-like sample cooled below TTR, the most typical domain
arrangements are sets of parallel domain walls of orientations (100) or (010) in
accordance with the criterion of the mechanical compatibility. The thickness
dependence of the domain spacing of such patterns has been addressed bymany
authors, mainly with the aim to check whether theMitsui–Furuichi square root
law, Eq. (5.2.1), holds. For KDP samples with thickness of a few mm, this law
was confirmed by Toshev (1966) and Ha and Kim (1985). By contrast, the
observations of Abe (1987) showed an extremely large scatter of the domain
spacing. Figure 5.4.17 summarizes all the mentioned data.

An essential feature of the domain formation inKDP is that, typically, it is not
crucially sensitive to whether the sample is open- or short-circuited. The problem
was first identified by Bjorkstam and Oettel (1967). Contrary to expectations,
they found that, at the transition, a dense domain structure appears which is
identical for an isolated and a short-circuited crystal. Similar observations were
later reported by Nakamura et al. (1984) and by Bornarel et al. (1972). These
observations may be explained by assuming that there is a non-switchable
‘‘passive’’ layer on surfaces of the plate-like sample. X-ray diffraction data in
favor of such layer have been reported by Afonikova et al. (1987). However,
taking into account the results of the theory for domain formation in the presence
of the passive layer (see Sect. 9.4) so little effect of short-circuiting is difficult to
explain. Alternatively, Nakamura et al. (1984) attributed the domain formation
to the effect close to spinodal decomposition known from binary mixtures.

It is worth mentioning the experiments revealing the importance of the
electrostatic boundary conditions. Bornarel et al. (1972), though reporting
identical domain patterns for open- or short-circuited condition, has found
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that the in-plane shear stress s12 needed to remove the formed domain pattern5

is much larger in the open-circuited case. The impact of depolarizing effects of
completely different types has been reported by Ozaki et al. (1993, 1994) and by
Ozaki (1995). These authors calmed that manipulating with electrostatic
boundary conditions one can induce in KDP crystals periodic domain patterns,
which are more complicated than the simple lamella structure, specifically, the
so-called prefractals of the pentad Cantor sets discussed in Sect. 5.2.

Another essential feature of the domain patterns inKDP is that a simple count
of the number of ferroelectric domain state, e.g., using polarization microscopy

Fig. 5.4.17 Domain spacing,W/2, as a function of the thickness of KDP plate, h. (a)Circles—
data byHa andKim (1985), line—theW /

ffiffiffi
h
p

law. (b)Circles—data by Abe (1987); line—the
W /

ffiffiffi
h
p

law corresponding to data by Toshev (1966)

5 In KDP s12 and P3 are linearly coupled in the parent phase (see Eq. (2.3.27)), which enables
mechanical switching.

248 5 Static Domain Patterns



or a diffraction technique (Afonikova et al., 1979; Shekhtman et al., 1973;

Aknazarov et al., 1975; Bornarel and Bastie, 1980), will yield four states instead

of two expected. This phenomenon is explained by the clapping-angle effect

addressed above in Sect. 2.2.5. Figure 2.2.3 shows the orientation of the crystal-

line lattice in four suborientational domain states appeared due to this effect. The

existence, in reality, of four domain states which differ in the orientation of the

spontaneous strain tensor poses additional problems with the mechanical com-

patibility inside a multidomain KDP sample. This problem is illustrated in

Fig. 5.4.18a, where thematching of two perpendicular systems of lamella domain

patterns is schematically depicted. The boundaries between such domains have

been addressed by Afonikova et al. (1987) using both X-ray diffraction and

angular scanning topography. Samples prepared by rapid cooling from the para-

electric phase contain a large number of such boundaries. Diffraction patterns

showed a continuous sequence of states between the two domain complexes. This

indicates that the orthorhombic cell angle varies continuously. The data were

interpreted as evidence that a layer of the paraelectric phase exists in the transi-

tory region. The width of this layer was estimated as 1 mm and was found to

increase as TTR is approached. These layers were found to be easily mobile at

small changes of temperature. Analysis of mechanical matching at the boundary

between the sets of domains enabled description of geometrical features of the

system. It was shown that if a system of domains meets with a perpendicular wall,

the deviation angle a shown in Fig. 5.4.18b depends on the relative volume of the

domain states VI and VII and the angle b. It holds that (Abe, 1987)

a0 ¼ V1 � VIIjj
V1 þ VII

p
2
� b

� �
: (5:4:4)

Fig. 5.4.18 Mechanical matching of four (I–IV) suborientational domain states in KDP.
After Abe (1987)
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Here p=2� b is the spontaneous shear strain. For a particular sample, from
the integrated intensities of X-ray reflections the value of the factor was deter-
mined as VI � VIIj j=ðVI � VIIÞ ¼ 0:38 which gives a = 9.50. This agreed well
with the observed value.

A problem with perfect mechanical matching also evidently occurs when a
plate-like domain ends inside another domain of opposite polarity. The strain
fields induced by the domain tip has been extensively addressed by Bornarel
with coworkers (Bornarel and Lajzerowicz, 1968, 1972; Bornarel, 1972, 1987)
using the approach of twinning dislocations. Figure 5.4.19 explains how a
deviation of a ferroelastic wall from the permitted orientation can be presented
as system of pieces of the permissible wall shifted by one lattice constant and
interconnected with twinning dislocations. The Burgers vector of the disloca-
tion is a function of spontaneous shear eS12 and of the lateral displacement a of
the wall. As seen from Fig. 5.4.19b, a step displacement by the lattice spacing
gives the order ofmagnitude of the smallest Burgers vector: b ¼ 2a tan eS12 
 2aeS12 .
At 100 K, inserting a = 7.42 Å and eS12 ¼ 0:008 we get b ffi 0.12 Å. In this
framework an effective Burgers vector B ¼ 2LeS12 can be ascribed to the whole
domain tip where L is the domain width. The coupling between the domain tips has
been modeled as that between effective dislocations with such Burgers vector to

Fig. 5.4.19 Dislocation description of a domain tip in KDP. (a) Distribution of the disloca-
tions along the tip. (b) Drawing for the calculation of the Burger vector for the dislocation
which provides a one unit cell shift of the wall. By using these shifts, a wall inclined with
respect to the permitted orientation can be presented as that consisting of steps of the
mechanically permitted wall. The dislocations needed for such description of the domain tip
are shown in (b). After Bornarel (1972)
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show a non-monotonic character of this coupling (Fig. 5.4.20). This result enables

explanation of the specific domain configurations. For example, the attraction

between the tips at small distances explains the formation of the flat front of the

tips shown in Fig. 5.4.21a, whereas the repulsion between them helps rationalize

formation of the pattern shown in Fig. 5.4.21b.
Appreciable attention of researchers has been paid to the phase front for-

mation and domain development just at the phase transition in KDP crystals.

For a detailed discussion of this problem we refer the reader to the work of

Bornarel and coworkers (Bastie et al., 1980; Bornarel, 1991; Bornarel and Cach,

1993; Kvitek and Bornarel, 1995, 1997; Bornarel et al., 2000). Here we would

like to give one example of observation of the ferroelectric phase formation in a

DKDP sample with minimal temperature gradient (of the order of 10–3 K/mm)

schematically shown in Fig. 5.4.22. Here on cooling the ferroelectric phase is

initiated in the corners of a cube-like sample and the phase fronts are quasi-

planar. It was also observed that under these conditions, at the beginning, the

ferroelectric phase contains only a few domains, but rapid formation of

domains begins when both fronts meet in the sample center. Domains traverse

the whole sample and then the phase front disappears. The resulting dense

domain texture is usually dominated by just one of the two domain states.
Concluding presentation on the material of domain issues of KDP we would

like to stress that though an appreciable part of the experimental data can be at

least rationalized in terms of existing theoretical approaches, these exists a body

Fig. 5.4.20 Force acting
between the domain tips, F,
in KDP crystal as a function
of the x-coordinate of the
upper tip in the drawing .
After Bornarel and
Lajzerowicz (1972b)
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Fig. 5.4.21 Patterns consisting of wedged domains in KDP. Reprinted with permission from
Bornarel and Lajzerowicz (1972b). Copyright (1972), Taylor and Francis

Fig. 5.4.22 Evolution of the phase front during the phase transition in DKDP at homoge-
neous thermal condition (temperature gradient is about 10–3 K/mm). Arrow shows the
direction of polar c-axis. After Bornarel et al. (2000)
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of experimental information which is not reasonably interpreted. An example

of the question that still waits for the answer is ‘‘Why does GMO, belonging to

the same species as KDP, exhibit so different domain patterns?’’

5.4.3 Perovskite Ferroics

The ideal cubic perovskite structure (Fig. 2.1.2) is usually unstable on cooling

with respect to polar or nonpolar lattice distortions. Among widely studied

materials only KTaO3 remains cubic at very low temperatures. In the case of the

instability-associated polar distortion, which we term as ferroelectric instabil-

ity, one deals with multiaxial ferroelectrics like BaTiO3, PbTiO3, and KNbO3.

As for the instability associated with nonpolar distortion, which we term here as

structural instability, in perovskites, it is inevitably associated with a transition

with the unit cell multiplication. Such instabilities are very common in these

materials. If the temperatures of the ferroelectric and structural instabilities are

close to each other, the structural transition may strongly affect the dielectric

properties of the material. When the structural transition is slightly above

the temperature of the ferroelectric instability, the so-called antiferroelectric

behavior may occur with double P–E hysteresis loops and strong dielectric

anomaly.6 Good examples of the antiferroelectric behavior are provided by

PbZrO3 and of NaNbO3, which correspond to species m�3m� es�mmm. If,

however, the ferroelectric and structural instabilities are far from each other in

temperature, the structural transition has a little impact on the dielectric prop-

erties of the material. A well-studied material with such behavior is SrTiO3

(species m�3m� es� 4=mmm). In this section, we will concentrate on the

domain features of single crystals of multiaxial ferroelectric, giving only a few

remarks on the case with the unit cell multiplication. Domain properties of the

corresponding thin films will be addressed in Chap.9.
As we know, anymultiaxial ferroelectric must be at least a partial ferroelastic

and this is the case of BaTiO3. It represents, on decreasing temperature, three

species: m�3m� Peds� 4mm, m�3m� Peds�mm2, and m�3m� Peds� 3m. We

shall be mostly interested in its tetragonal phase 4mm which results from the

parent phase by a first-order transition and for which the amount of collected

data on domains makes the material competitive with TGS. This may have two

factual reasons: practical applicability of BaTiO3 and some isomorphs, like

KNbO3, and suitably located transition temperatures. Barium titanate has been

so thoroughly investigated also for historical reasons: Its ferroelectric properties

6 Historically such behavior was attributed to a manifestation of the anti-polar ordering (in
anomaly with antiferromagnets) (Kittel, 1951). However, further analysis has shown that such
behavior can occur at any structural ordering (Balashova and Tagantsev, 1993; Strukov and
Levanyuk, 1998). At the same time, the introduction of the anti-polar ordering itself becomes ill-
defined in the context of the conceptual problemwith the notion of polarization (see Sect. 2.1.2).
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were discovered already in the 1940s, independently in three laboratories in the
Soviet Union, USA, and Japan.

First a historical remark: Probably the first observations of domains in
BaTiO3 were presented by Matthias and von Hippel (1948). They offered
microscopic photographs of wedge-shaped domains, discussed optical effects
caused by crossing perpendicular systems of such domains, and explained the
optical appearance of a multidomain crystal cube when it is viewed from three
sides. We can state that the basic domain features were understood since this
paper was published.

It was this material that inspired the nomenclature so often used for simple
labeling of observed domains. Merz (1954) considered a plate-like crystal—at
that time the only available geometry for this material—and referred to a
domain with the vector PS parallel with the sample surface as to an a-domain
while to domain with PS perpendicular to the surface as to a c-domain. This
description, related to the sample shape, is unambiguous. In contrast, the very
often used designation ‘‘1808 domains’’ or ‘‘908 domains’’ is meaningful only
when one describes a domain pair or a system of domains and its usage in
singular is meaningless.

Possible directions of PS in the discussed species are obvious (see Fig. 2.3.5)
and permissible walls separating any pair of domains can be found in tables of
Appendix D. Let us give an overview of the relatively simplest domain patterns
occurring in plate-like samples of tetragonal barium titanate. Figure 5.4.23
shows a partial selection of observed domain configurations. Compared to
the previous cases of TGS or of ferroelastics with two or three domain states,

Fig. 5.4.23 Some of domain configurations in speciesm�3m� Peds� 4mm.Arrows specify the
PS vectors. After Eknadiosyants et al. (1997) and Fousek and Brezina (1961)
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we have a large variety of possible geometries and one can speak about
‘‘domains within domains.’’ Tetragonal BaTiO3 is a model phase for the coex-
istence of Wf and W1 walls (see Fig. 5.4.23). One can expect that in basic
domain geometries we have only head-to-tail coupling ofPS vectors at 908walls
which ensures the electroneutrality of the latter. However, in samples which
went through somemore complicated history, e.g., having been observed by the
TEM method, ‘‘head-to-head’’ and ‘‘tail-to-tail’’ geometries are realized
(Tanaka and Honjo, 1964). We should note that the energy of electrostatic
field due to bound charges of density

ffiffiffi
2
p

PS would be fairly high unless the
compensation by free charges takes place; this issue was treated in detail by
Yudin et al. (1978).

It may be mentioned that compared to BaTiO3, in freshly grown crystals of
PbTiO3 domain patterns have been found to be less involved (Eknadiosyants
et al., 1997), probably because of higher tetragonality.

We now shortly enumerate factors which seem to be most important in
determining what domain pattern is realized; we have in mind samples which
were not intentionally treated thermally or by application of electrical or
mechanical forces.

Barium titanate crystals are grown at temperatures well above TTR. If the
Remeika method is employed, plate-like samples are formed in the growth
process and then cooled through TTR. If the top-seeded solution growth
(TSSG) method is used, the as-grown crystals are bulky. In either case, during
the cooling process the temperature gradient is not controlled and complicated
domain patterns may be formed in as-grown crystals, as a result of elastic
compatibility aspects at the paraelectric–ferroelectric phase boundary as
already pointed out in Sect. 5.3. Obviously, crystal purity and intentional
doping are other factors influencing the domain patterns: Impurities can prefer
specific domain states in different parts of the crystal or induce the presence of a
domain wall in a particular location. Growth pyramids (Park and Chung, 1994)
represent an illustration of this effect. Čáslavský and Polcarová (1965) reported
observations, in c-plates, of stripes making an angle �68 with the [010] or [100]
directions. Made visible by X-ray topography or in polarizing microscope, they
disappear above TC but reappear after subsequent cooling. It was suggested
that their formation is due to defects which enforce rotation of PS.

We note in passing that growth pyramids, as well as ferroelastic domains,
have to be strictly distinguished from growth twins. In the latter, the crystal
lattices are mutually disoriented in a way which has nothing to do with ferroic
twinning operations.

The next factor which may strongly influence the domain pattern in a
particular sample is the way it was prepared. Normally, the sample is cut
from an as-grown or larger crystal and polished. The influence of polishing a
BaTiO3 sample is well known to experimentalists and has been described by
several authors (Beudon et al., 1988; Park et al., 1998). Beudon et al. (1988)
discussed in some detail how polishing a BaTiO3 plate in different ways results
in different kinds of domain patterns.
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Müser et al. (1978) observed that, when a rectangular block is cut from a
BaTiO3 crystal prepared by TSSG method, close to its surfaces domains are
seen in a polarizing microscope even at temperatures above TTR. Interestingly,
the thickness x of this ferroelectric layer is a function of temperature, namely 1/
x= g(T – T1) where T1ffi TTR. The effect disappeared when a layer about 1 mm
thick was etched off from the sample. However, if the cube faces are polished
again, the phenomenon reappears. The conclusion can be drawn that plastically
distorted surface layers, about 1 mm thick, result from the polishing process.
They exhibit an increased transition temperature. Park and Chung (1994) and
later Park et al. (1998) investigated plate-like samples cut from crystals grown
by the same method. They observed that 908 domain patterns depend on the
way a plate-like sample is prepared; also, after polishing its surfaces, domain
patterns were changing in the time scale of minutes. We note in passing that
these authors, in addition to a number of already known domain shapes,
observed a regular zigzag domain wall pattern, attributed to a 908 domain
pair. Domain patterns in BaTiO3 above TTR have also been observed by Bursill
and Peng (1984, 1986) using electron microscopy.

Comparing these and other observations (Beudon and Le Bihan, 1985;
Biedrzycki et al., 1993) it becomes obvious that all mentioned factors, i.e.,
growth method, crystal purity, the way the sample is prepared, its history, but
also the observationmethod itself, may combine to essentially affect the domain
pattern. As a result, contradictory information on domain pattern can be
reported and its general validity must be taken with caution.

In Sect. 5.4.1 we described some experiments performed with crystalline
plates of TGS, with the aim to prove the role of depolarization energy and
reach domain pattern corresponding to the minimum total energy. Similar
attempts have been made with plates of BaTiO3 grown by the flux (Remeika)
method, by Fousek and Safrankova (1965). Plate-like crystals were first etched
above the Curie point to remove any possible surface layer. Three alternative
procedures were employed to study a large number of samples 20–140 mm thick:
(I) Slow cooling at a rate of 1 K/min through the transition point to room
temperature, (Ia) in oil (conductivity at room temperature Z = 10–6O�1cm�1),
or (Ib) in glycerine with admixture of NaCl (Z=10–3O�1cm�1); (II) fast cooling
at a rate of 1K/s in these twomedia (IIa, IIb). Afterward the samples were etched
to reveal domains and in the regions (which were always larger in slowly cooled
samples) with the c-axis perpendicular to the plane of the plate, the areas, S+, S–,
of positive and negative domains, respectively, were measured. Results can be
summarized in the following ways:(a) Procedures Ib, IIb, and IIa led to non-
neutral structures, S+, S– differing by several tens of percents; domains had the
form of chaotically distributed irregular islets. (b) Experiment Ia gave nearly
neutral domain states with S+/S– = 1 � 0.03 and with islet domains prolonged
along the a-axis (Fig. 5.4.24a); in 25% of the cases, the average width of stripes
could be well defined and lay between 1 and 4 mm (Fig. 5.4.24b).

The influence of electrical conductivity of the surrounding medium testifies
unambiguously to the role of depolarization energy. On the other hand, the
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possibility of reaching non-neutral states by fast cooling has no simple explana-

tion. To interpret the latter result as being due to the time required to reach a

neutral domain pattern does not seem to be acceptable since, in such config-

urations, the magnitude of depolarizing field is capable to suppress completely

the phase transition.
We now come back to domain patterns connected with the compatibility of

the phase front, discussed in general terms in Sect. 5.3. Meyerhofer (1958)

observed the formation of domains at the phase boundary of BaTiO3 and, as

already mentioned, the problem was addressed in detail by the Rostov-on-Don

group (Fesenko et al., 1973, 1975, 1985; Surowiak et al., 1978), for crystals of

PbTiO3, BaTiO3, and K(Ta,Nb)O3. Most of the results have been summarized

in the monograph (Fesenko et al., 1990). Let us pay attention to the first two

materials. They differ in TTR (490 and 1268C, respectively), in jump of sponta-

neous strain ðc=a� 1ÞTR (0.012 and 0.0032), in the jump of polarization (40 and

20 mC/cm2), and also in electrical conductivity at TTR (10–1 and 10–8O�1cm�1).
These numbers suggest that, in lead titanate, the elastic compatibility may

strongly influence the phase boundary orientation than in barium titanate

while for the electric compatibility the situation is opposite. The given values

are fixed; what can be chosen are conditions of the transition, i.e., temperature

gradient orientation with respect to crystal axes, its magnitude, and the phase

front velocity.
The orientation of the phase boundary is, as alreadymentioned in Sect. 5.3.2,

of the type (320) for PbTiO3 and of the type (056) for BaTiO3. Figure 5.4.25

shows schematically a ferroelastic domain pattern as it forms at the phase

boundary and specifies kinds of domain patterns observed in differently

oriented plates. Relative domain volumes which ensure mechanical compat-

ibility for the two materials have been given in Table 5.3.2. To achieve these

well-defined configurations, the sample must be cooled through TTR in a

temperature gradient directed along the normal to the respective phase bound-

ary. If there is only one phase front, this 908 pattern stays permanently. If, for a

Fig. 5.4.24 Neutral 1808 domain structures in slowly cooled plates of BaTiO3, perpendicular
to the c-axis. (a) Islet-shaped domains prolonged in the direction of the a-axis; (b) domain
pattern close to periodic lamellae. After Fousek and Safrankova (1965)
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more general temperature gradient orientation, there are more phase fronts, the

908 domain pattern is complicated and changes with temperature.
Consider now the formation of 1808 domain systems imbedded into a system

of 908 walls formed at the transition. Here two factors play a role: the electric

conductivity and the phase boundary velocity n. In PbTiO3 with large conduc-

tivity, for low values of v, domains with antiparallel polarization are absent. At

v exceeding some critical value, which is a function of the sample thickness and

varies in the range 5 � 10–5–10–6 m/s, such domains are nucleated at the phase

boundary. During themotion of the latter they reach a conical shape and form a

periodical pattern of systems of islands on the sample surface. These systems

have the shape of a stripe parallel to the phase front. Figure 5.4.26a shows

schematically such a pattern in a c-domain. (This pattern itself is an element of a

twin pattern like shown in Fig. 5.4.25.) An essential feature of the bulk domain

structure, revealing itself in this pattern, is the predominance of head-to-head

configuration, which is possible because of a pronounced conductivity of

PbTiO3. In BaTiO3, though the formation of ferroelastic patterns by the

phase front is similar to that in PbTiO3, the formation of 1808 domains differs

a lot. First, they form at any velocity of the front. Second, they have a shape

of continuous ‘‘though’’ domains crossing the whole ferroelastic domain instead

of systems of islands. The details of the final pattern depend of the conditions of

Fig. 5.4.25 Ferroelastic (908) domain patterns formed at the phase boundarym�3m� 4mm, in
plates differently oriented with respect to the phase front. Arrow indicates the orientation of
the spontaneous polarization. PB indicate the phase boundary and its normal. Reprinted with
permission from Fesenko et al. (1985). Copyright (1985), Taylor and Francis
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the phase transformation. It may be fairly regular as illustrated in Fig. 5.4.26b.

The shape of 1808 boundaries can be also rather irregular. Surowiak et al.

(1978) has reported images of the domain patterns with irregular shape of

1808 boundaries, which are very similar to that shown in Fig. 4.5.23a–c. The

difference in the domain formation in PbTiO3 and BaTiO3 is evidently related

to the difference in the conductivity of these materials. In BaTiO3, the low

conductivity makes impossible both single-domain twins and head-to-head

configurations.
In the tetragonal phase of BaTiO3, an interesting complex square-net

domain pattern composed of 908 domain walls, here referred to as Forsbergh

Fig. 5.4.26 (a) Spatial distribution of the polarization in a c-oriented region formed bymotion
of a phase boundary in PbTiO3. The direction of motion is shown with black arrow. The
paraelectric and ferroelectric phases are denoted as PP and FP. The region with the ferro-
electric phase consists of two domains predominantly separated with a head-to-head wall.
Direction of the spontaneous polarization is shown with arrows. (b) Etch patterns of the
combined 90 and 1808 domain system in BaTiO3, formed as a result of the phase boundary
motion. Symbols c and a denote c- and a-domains, respectively. It is seen that the former is
split into 1808 domains. The imaged area is about 70 � 70 (mm)2. Reprinted with permission
from Surowiak et al. (1978). Copyright (1978), Taylor and Francis
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pattern, was reported by Forsbergh (1949) and other authors (Nakamura et al.,
1979; Kirpichnikova et al., 1995). It may arise in plate-like crystalline BaTiO3

samples during slow cooling through the transition point. Figure 5.4.27 shows
such pattern observed in crossed polarizers. The appearance of this kind of
patterns has been linked to crossing of groups of laminar domains; however, no
theory for the formations of such patterns is presently available.

We have shortly described some of the domain observations in the tetragonal
phase of BaTiO3. Much less effort was put on the low-temperature phasesmm2
and 3m of this material. One of the most interesting observations was made by
Cameron (1957). He found that crystals etched in the orthorhombic phase
reveal ‘‘checkerboard pattern.’’ Its etched surface relief was visualized by elec-
tron microscopy and is reproduced in Fig. 4.2.1. The pattern on the opposite
side of the sample is similar but displaced along one of the primitive crystal axes,
the displacement being equal to the thickness of the sample. It seems that exact
assignment of visualized domain states is not available but since domain walls
are planar, we probably see a mechanically non-compatible system of mutually
perpendicular Wf walls.

Barium and lead titanates are probably the most studied examples of multi-
axial ferroelectrics. Another candidate is potassium niobate, having the same
sequence of phases as BaTiO3. However, at room temperature it represents the
species m�3m� Peds�mm2 and a systematic study of coexistence of 180, 90,
and 608 domain pairs would be of interest. The truth is, however, that more
effort has been put on making these crystals ideally single domain because of
important applications of their nonlinear optical properties. Remarkable obser-
vations of intersectingWf and Swalls in themm2 phase, made byWiesendanger
(1973), were mentioned already in Sect. 2.2.7. Jun et al. (1988) reported very
complicated domain patterns in surface layers of Czochralski-grown crystals
and mutually crossing systems of 60 and 908 domain pairs. Lian et al. (1996)
investigated domains in plates of pseudo-cubic orientation, cut from TSS-
grown crystals, at room temperature. Perpendicular systems of 908 lamellar
domains were observed but also 90 and 608 domain walls crossing each other. It

Fig. 5.4.27 Forsbergh
pattern in a BaTiO3 plate.
Reprinted with permission
from Forsbergh (1949).
Copyright (1949) by the
American Physical Society
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should be mentioned that here by intersecting walls we mean a situation

different from that analyzed by Yamamoto et al (1977a,b) and discussed by

Salje (1990). In the latter case, e.g., in crystals of Gd2(MoO4)3, two mutually

perpendicular Wf walls meet in the crystal and form a rounded junction whose

radius depends on the elastic stiffness coefficients. This case requires only two

domain states to be represented in the sample. By contrast, the situations

observed in the orthorhombic phase of KNbO3 involve four domain states

meeting, in a planar projection, in one point.
Concluding this section we will make some remarks on domain patterns in

perovskites with a phase transition associated with the unit cell multiplication.

An essential feature of these materials is the expected occurrence of antiphase

boundaries because of the cell multiplication at the transition. In practice this

feature has received little attention. However, judging from the diffraction data

on SrTiO3, these kinds of walls can be quite abundant in perovskites (Wang

et al., 2000a). Between two groups of the material mentioned in the beginning of

this section (with antiferroelectric behavior and without it), in the latter, the

ferroelastic domain patterns have been of very little interest for research, being

typically addressed when these interfere with measurements of other physical

properties. For example, Müller et al. (1970) polished plates of SrTiO3, to avoid

undesirable twinning. At the same time, in perovskites with antiferroelectric

behavior, the ferroelastic twinning has been intensively addressed. In Sect. 2.2.7

we have already given examples of studies on the orientations of S domain walls

in m�3m� es�mmm species realized in PbZrO3 and NaNbO3 crystals (Dec,

1988; Miga et al., 1996). Investigations of domain patterns in this species have

been reported by several groups (Tanaka et al., 1982; Dec and Kwapulinski,

1989; Balyunis et al., 1993; Jona et al., 1955; Fesenko and Smotrakov, 1976).

The observed patterns have been termed as 60 and 908 structures. Concerning
this terminology, one should be aware that, strictly speaking, it is appropriate to

species m�3m� Peds�mm2, but not m�3m� es�mmm where already in the

parent clamping approximation (see Sect. 2.2.5) the angles between the indica-

trices in the different domain states are not exactly equal to 60 and 908. The
domain patterns in PbZrO3 can be very involved containing boundaries where

the mechanical matching between two groups of the twins is possible only on

average. Orientation of such boundaries has been theoretically addressed in

Balyunis et al. (1993); however, the results reported may not be correct as they

were obtained using an unjustified criterion of mechanical compatibility

(Metrat, 1980) (see footnote 14). An interesting feature of PbZrO3 is that,

depending on the stoichiometry, the transition from the cubic to the orthor-

hombic phase can be direct or passing through an intermediate ferroelectric

rhombohedral phase (Dec and Kwapulinski, 1989; Ujma et al., 1988). Observa-

tions of domain patterns in the rhombohedral phase as well as the phase

boundaries between the rhombohedral and orthorhombic phases have been

reported by Dec and Kwapulinski (1989), Balyunis et al. (1993), and Bah et al.

(1994).
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5.4.4 R Cases

By now we have discussed two motives which can result in regular but often

complicated domain patterns: depolarizing fields in ferroelectrics, elastic

matching at phase boundaries in ferroelastics. Situations related to the last

one may occur in ferroic species in which R cases may occur, i.e., in which

domain pairs can be formed with no mechanically compatible walls.
Table D.1 shows that there are a considerable number of species in which no

permissible walls are allowed between some particular domain states. A general

analysis of ferroelastics leads to the conclusion that in the seven following

species no permissible walls between ferroelastic domain states exist at all:

23–222, m�3�mmm, m�3�mm2, m�3� 222, 3–1, �3� 1, and �3� �1. It may be

expected that when the phase transition is continuous, non-compatible domain

pairs will not occur at all. No examples of such materials seem to be known.

However, if the phase transition is discontinuous, various domain states can be

nucleated independently in different parts of the sample, and when the transi-

tion is completed the corresponding domains will inevitably face each other.

Then the question arises of how such domains will mutually conform.

Obviously the answer depends on the magnitude of elastic energy that has to

be involved in matching the two domains together. This additional energy will

strongly depend on the values of spontaneous strain components and also on

the area of the domain wall. However, in addition to elastic deformation of the

two domain states, another possibility can be considered, namely that matching

on average will take place, similar to that discussed in Sect. 5.3. One or both

incompatible regions will be subdivided into ferroelastic domain states in a way

that the average spontaneous strain will meet the compatibility condition with

the other region, along a defined boundary.
Let us shortly discuss real situations in three ferroelastic materials in which R

cases are envisaged. Crystals of MASD were reported to represent the species

23–Peds–2. Spontaneous polarization directs along the cubic axes so that in

principle we may have 180 and 908 domain pairs like in the often studied

tetragonal barium titanate. Unlike in BaTiO3, however, antiparallel domains

represent ferroelastic pairs and can be separated byWf walls of the type [100]. It

was realized already by Jona and Shirane (1962) that here 908 walls are pro-

hibited in a stress-free crystals. However, microscopic observations of samples

which were cemented to a microscope slide before cooling (TTR ffi 177 K)

testified to the fact that three ferroelastic domains corresponding to three

mutually perpendicular directions of PS did form. Their boundary orientations

were close to either (111)- or (110)-type planes. No movements of these bound-

aries were observed in applied electric field which, however, resulted in some

polarization reversal due to antiparallel processes (Jona and Shirane, 1962).

Such behavior can be rationalized by assuming that the position of the 908walls
corresponds to deep minimum of the total mechanical energy of the fully

stressed sample. Frozen position of there ferroelastic walls can also be
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attributed to the effect of cementing the sample (see Sect. 9.3 for a discussion of
similar effect in ferroelectric thin films). Bearing in mind the clamping effects of
the microscope slide, the problem, actually, must be treated in terms of compat-
ibility conditions in a partially clamped sample; relevant theoretical treatments
have been offered by Shuvalov with coworkers (Shuvalov et al., 1987; Dudnik
and Shuvalov, 1989).

In contrast to the species assignment made above, later studies (Glushkov
et al., 1987) of MASD indicated that in fact this crystal belongs to the species
m�3� Peds�mm2. However, even in this case the 1808 walls are not permissi-
ble. Measurement of their dielectric properties performed by Glushkov et al.
(1987) provided interesting domain-related information. It was found that the
thinner the multidomain samples, the larger the permittivity value in a con-
siderable range below the transition temperature. This could be explained well
by assuming that ‘‘not perfectly permissible,’’ i.e., somewhat strained walls
indeed do exist in thinner samples and due to their high mobility considerably
enhance the dielectric response.

A comprehensive study of domains was performed for crystals of
Cd2(NH4)2(SO4)3 (abbr. CAS) (Glogarová and Fousek, 1972). Here, we would
like to go into detail since, in this crystal, we are dealing with a piece of instructive
information, which however is not fully understood. CAS is an improper ferro-
electric belonging to species 23–Peds–2 (TTR ffi 92 K). Ferroelectric domains
correspond to six polarization directions along the cubic axes. While antiparallel
domains are separated by permissible walls of the (100) type, no walls are
permitted for 908 domain pairs (Table D.20). Domains representing all six
domain states can be optically distinguished (Glogarová and Fousek, 1972).
Despite a very low value of the spontaneous polarization (
0.7 mC/cm2), the
domain formation was found very sensitive to the electrical conditions.
Figure 5.4.28 schematically shows typical patterns observed with polarized
microscope in an (001) plate. Figure 5.4.28a images an insulated sample. Here
the stripes with double arrows correspond to a-domains (or 1808 patterns of these
domains, which cannot be resolved in this orientation). These stripes are sepa-
rated with those containing dense 1808 patterns of c-domains. Figure 5.4.28b
shows a short-circuited plate. Here, much large c-domains are seen. In both
images, neighboring 908 domains are observed indeed. Despite the fact that this
neighborhood corresponds to the R case, it was found that the domain states are
divided with two sets of mutually perpendicular domain walls (like in the case of
permitted matching). For domain pairs withPS vectors [001], [100] or [001], ½�100�
the wall takes one of two orientations (570) or ð7�50Þwhile for domain pairs ½00�1�,
[100] or ½00�1�, ½�100� the wall orientations (750) or ð�570Þ were indicated. (In all
these cases the last index 0 is taken with some uncertainty.) It could have been
guessed that they represent on average permissible walls between the [001] domain
and a dense domain pattern of a-domains.However, according toGlogarová and
Fousek (1972), the strain analysis shows that even in this case permissible walls
would not exist. Thus (570) and analogical walls must indeed be only non-
coherent, accompanied by elastic stress. If we assume that a-domains do not
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represent 1808 patterns, one concludes that these non-coherent walls are also

charged, which is difficult to expect in view of the aforementioned strong sensi-

tivity of the domain pattern to the electric boundary conditions. The feature,

which can be readily rationalized in this complicated system, is the presence of

(110) walls in the insulated sample (Fig. 5.4.8a). This wall can be viewed, in a

good approximation, as the ‘‘average’’ of the sequence of (750) and (570) walls.
Crystals of K2Cd2(SO4)3 have been reported to represent the species

23–eds–222 (TTR ffi 432 K). Here again, no walls strictly comply with mechan-

ical compatibility conditions. However, optical microscopic observations of

Biletskii et al. (1988) and of Vlokh et al. (1997) revealed that in mechanically

free and fairly thick (0.6 mm or more) samples, ferroelastic domain structure

can be observed in a narrow temperature interval below the transition tempera-

ture, both on cooling and on heating. It disappears further down in the ferroe-

lastic phase. When occasionally the domain pattern stayed until room tempera-

ture, microcracks could be observed near the frontier between the polydomain

and single-domain regions, indicating an increase in the mismatch elastic

energy, as the magnitude of spontaneous strain increases on cooling. The

mentioned walls can take one of four well-defined orientations. Amore detailed

discussion of Vlokh et al. (1998) indicated that what appears to be domain walls

might be in fact regions several tens of micrometers thick whose optical proper-

ties suggest that they represent slabs of the cubic phase.
We can conclude this section by stating that mechanical contacts of mechani-

cally incompatible domains have been documented. As we have already

Fig. 5.4.28 Domains in (NH4)2Cd2(SO4)3, representing the ferroelectric and ferroelastic
species 23–Peds–2 where no 908 permissible walls are allowed; schematic drawings of polar-
ized microscope images. (a) Typical domain patterns as observed in an insulated (001) plate.
The stripes with double arrows correspond to a-domains (or 1808 patterns of these domains,
which cannot be resolved in this orientation). These stripes are separated with those contain-
ing dense 1808 patterns of c-domains. (b) Typical part of domain patterns in a short-circuited
(001) plate. In contrast to (a), two large c-domains separated with a zigzag wall are seen. In
both images, forbidden 908 permissible walls are seen. After Glogarová and Fousek (1972)
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mentioned, the existence of such contacts in finite crystals is not absolutely
impossible since in a finite sample a price of finite additional energy (though
bulk energy) should be paid. However, when an R case is realized, a natural
question of why this energy is acceptably low is to be posed. Is it a particular
relation between the components of the spontaneous strains or is it rather a
feature of the particular domain geometry? Unfortunately, for all of the dis-
cussed materials this question has not been clearly answered. An especially
intriguing situation with CAS is worth mentioning. The mechanically incom-
patible walls increase the energy of the system by an additionally bulk elastic
energy of the domains. For this reason one expects that the favorable orienta-
tion of the non-coherent walls should be different in different domain config-
urations, which is clearly not consistent with the experimental observations
in CAS.

5.4.5 Quartz

Crystal quartz (SiO2) is a secondary ferroic which has met with very wide
success in the marketplace. The world’s secondary timing standards and
many clocks and watches depend upon quartz crystal piezoelectric resonators.
In single crystals of quartz, the presence of domains is unwanted since they
reduce the effective piezoelectric response and, even worse, they change com-
pletely the resonance modes. Thus quartz is historically the first material in
which the presence of ferroic domains plays an essential practical role, though a
negative one.

Quartz represents the ferroelastoelectric and ferrobielastic species
622–ds–32, with the transition temperature 848K. The transition is equitransla-
tional. In fact, in a narrow temperature range of about 1.4 K between the two
phases of this crystal, there exists an incommensurate phase.

Let us shortly discuss domain properties of quartz as they follow from the
indicated 622 to 32 transition. In both phases there are nonzero piezoelectric
coefficients d14= –d25. In the ferroic phase additional (morphic) coefficients are
newly acquired, namely d11 = –d12 = –(1/2)d26. The two domain states are
related by the twofold axis directed along z-axis and differ in sign of themorphic
coefficients. Domain pattern corresponding to this symmetry relation is
referred to as Dauphiné twinning or electrical twinning. Since the given species
is not ferroelastic, mechanical compatibility conditions do not impose any
restriction on the orientation of domain walls.

Both phases of quartz exhibit two enantiomorphic modifications, referred to as
right- or left-handed quartz. These modifications can be obtained one from the
other by a reflection in themirror plane perpendicular to thex-axis of the structure.
When these modifications coexist in the trigonal phase of a single crystal, they are
separated by ð11�20Þ twin boundaries and their structures are related by a reflection
in this plane. Such twins are commonly referred to asBrazilian twins. They differ in
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sign of all piezoelectric coefficients and of optical gyration. It is essential to realize
that these twins do not represent ferroic domains.

The fact that domain states of quartz (Dauphiné twins) differ in the sign of
piezoelectric coefficients specified above attracted great attention to domain
phenomena in this material. For applications in classical resonators, homoge-
neous (single-domain) samples are required. Quartz crystals are found in nature
or ‘‘synthetic’’ single crystals are grown from an aqueous solution at high
pressure and high temperature. They may contain bothDauphiné and Brazilian
twins. Crystals with regions containing the latter are avoided since such twins
cannot be influenced by applied forces. Contrary to that, Dauphiné twins
represent domain pairs of ferroelastoelectric or ferrobielastic label and can be
influenced by simultaneously applied electric field and mechanical force or just
by the latter, properly oriented.

Boundary conditions are not expected to play an essential role in domain
patterns in this family of ferroics. Reported observations of domains in not
specially treated samples of quartz agree upon the fact that as-found crystals
contain rather complicated domain geometries; this was demonstrated, e.g., by
Bond (1938) who observed the etched surface of a sphere-shaped sample. By X-
ray topography, Lang (1965) detected domains of irregular shapes with planar
sections of domain walls, including those totally enclosed within the specimen.
McLaren and Phakey (1969) studiedDauphiné twin boundaries by electron and
X-ray diffraction and stressed that the Dauphiné domains were never observed
to cross Brazil twin boundaries. A short overview of domain patterns was
summarized in the monograph of Klassen-Neklyudova (1964), based on the
observations of etched samples. Generally, the contours of Dauphiné twins can
be wavy, curvilinear, or straight. A detailed study of thermally twinned crystals
showed that Dauphiné twins are sensitive to structural defects; twinning often
follows the growth zones and twin boundaries frequently reveal minute defects
connected with local residual stress. If stress is applied to a quartz plate to reach
the single-domain state (ferrobielastic switching), after its removal, the det-
winned plate restores the twinned regions precisely as before. This clearly
demonstrates the influence of defects on the domain pattern.

In addition to etching and X-ray topography, ferroelastoelectric domains in
quartz can be made visible in crossed polarizers when properly oriented either
electric field or mechanical stress is applied. Aizu (1973a,b) was the first to point
out that if the domain states in quartz are ferrobielastic and differ in elastic
compliances, they must differ also in the corresponding components of other
tensors of the fourth rank, including the tensor describing elasto-optic proper-
ties. His analysis led to the conclusion that if a uniaxial pressure p is applied
along the (011) or ð01�1Þ axis, the indicatrices of the two domain states rotate
around the x-axis in such a way that they finally make an angle proportional to
the product p2322p where p2322 is the elasto-optic coefficient. This will lead to a
clear contrast of domains in polarized light, which Aizu confirmed by micro-
scopic observations. In fact, domains with clearly defined planar geometry,
which he observed optically, demonstrate ferrobielastic switching and cannot
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be considered typical for as-grown crystals. But in principle, with small applied
stresses the method could be used to observe the original domain patterns.

Laughner et al. (1981) paid more attention to the situation in quartz under
applied stress. Because the two domain states differ in some components of
elastic compliance, when stress is applied they differ in total strain although the
material is not ferroelastic. These differences, being induced, are small but in
principle one can apply the same elastic compatibility conditions for the orien-
tation of domain walls under applied stress as for ferroelastic crystals. However,
the reported observations of domains formed by stresses applied for differently
oriented cuts showed that the walls did not fulfill these relations, probably
because defects in the used crystals played an essential role.

Domain optical distinction can also be based on the fact that since the two
domain states are ferroelastoelectric, they differ also in some coefficients of the
electro-optic tensor. A general analysis of optical visibility of Dauphiné twins in
crossed polarizers, in applied field or stress, was offered by Dolino (1975). When
the electric field is applied along the x-axis, the two indicatrix ellipsoids rotate and
domains become visible. However, since the involved electro-optic coefficients
are small, a fairly high field of 40 kV/cm has to be used to reach a satisfactory
contrast. Alternatively, Dolino et al. (1973) showed that domain observations
can be based also on nonlinear optical properties. It should be noted that if quartz
samples are irradiated by a laser beam, attention must be paid to keep the
absorbed energy low since, as shown by Anderson et al. (1976), the thermal
stresses can result in nucleating new domains, obviously due to ferrobielasticity.

Discussing domains in quartz one should indicate that large-scale domain
patterns in the ferroelastoelectric phase of quartz can be related to the dense
domain patterns existing in the narrow temperature range of the aforemen-
tioned incommensurate phase. However, because of the space problem, we do
not address this interesting issue in the book as well as other issues related to the
incommensurate phase.

While considerable attention was paid to domain patterns in quartz little is
known about domains in an isostructural crystal of AlPO4. Zvereva et al. (1992)
investigated the surface of this crystal by etching to find both right- and left-
handed parts as well as Dauphiné twins.

5.4.6 Tweed Patterns

In the introductory theoretical parts of this bookwe defined domain states on the
basis of symmetry approach as well as on the basis of thermodynamic treatments
of phase transitions. Domains as we have understood them by now ‘‘have the
right’’ to be formed only when the symmetry of the material changes, i.e., at and
below the transition temperature (pressure may play an analogical role).

In a number of materials, below some temperature—not sharply specified—
small regions, often referred to as microdomains, can be observed. Among the

5.4 Selected Observations of Domains in Crystalline Ferroic Samples 267



methods used are polarized microscopy, X-ray diffraction, and transmission
electron microscopy. They form quasi-regular patterns which on the first sight
do not exactly correspond to the basic symmetry approach to ferroics. In some
cases they are referred to as tweeds. We mention the topic only in short, giving
several references to more involved treatments. In fact, the concept of tweed
patterns is used in more than one meaning. As remarked by Putnis and Salje
(1994), it happens frequently in the study of materials that observations made in
one field are not directly compared with observations in another until each has
evolved its own set of terminologies and interpretations. This statement applies
very well to the studies of tweed microstructures in minerals and metals as
compared to the studies of domains in ferroelastics (whether ferroelectric or
not) with clearly defined phase transformations.

One family of microstructures referred to as tweed texture is connected with
spinodal decomposition in a solid solution (Putnis and Salje, 1994). It results in
modulation of the chemical composition along clearly defined crystallographic
directions. Its wavelength is of the order of 102 Å, leading to satellite reflections
around the Bragg peaks. If the process takes place in a structure of high
symmetry, there exist equivalent directions for such a modulation and a micro-
structure can be observed, referred to as tweed pattern.

The concept of tweed patterns is frequently used in connection with struc-
tural phase transitions (Putnis and Salje, 1994). In some minerals, representing
in fact ferroelastic crystalline materials, and below a temperature not sharply
specified, small regions, often referred to as microdomains, have been observed.
These regions differ in their macroscopic symmetry from the average symmetry
of the whole sample. Their typical linear dimension is of the order of 102–104 Å.
Often the whole sample is split into microdomains of lower symmetry, spatially
arranged to form a quasi-regular system and it is such a systemwhich is referred
to as the tweed pattern.

One classical example of real observations of tweed patterns is offered by the
mineral KAlSi3O8, referred to as K-feldspar. It undergoes the order–disorder
phase transition representing the species 2=m� es� �1 (Putnis and Salje, 1994).
The equilibrium transition temperature is about 500 K and the phase transfor-
mation is governed by ordering of the Si and Al ions, the process which is rather
slow so that direct experiments on the ordering transition are not possible. The
intermediate states of Si and Al order are represented by ‘‘tweed microstruc-
tures,’’ meaning that the sample is split into small regions, tweeds. They are
observable by polarized microscopy and their boundaries are of two prevailing
mutually perpendicular orientations. On average, the crystal symmetry remains
monoclinic but within tweeds some degree of ordering is already reached, with
the corresponding lowering of symmetry. To interpret these observations, two
possibilities can be considered. First, the observed tweed structure can be
recognized as a stable periodically modulated strain pattern which minimizes
the free energy (the latter of course includes the strain gradient terms). Second,
the tweeds could represent a metastable pattern allowing for local Si/Al order-
ing without the need for a macroscopic change of symmetry. In the vocabulary
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of the present book, the first possibility corresponds to spatial modulation of

the strain but not of the ordering while the second one to a dense classical

ferroelastic domain pattern. According to Putnis and Salje, the available pho-

non spectra point to the first interpretation.
In some minerals undergoing a phase transition, the latter is ‘‘smeared out’’

and it is difficult to define exactly the transition temperature. Then in many

interpretations it is accepted that the tweed pattern is formed already in the

parent phase and that it represents long-lived fluctuations of the order para-

meter (Salje, 1990). Microregions of low symmetry embedded in the higher

symmetry crystal lattice are sometimes referred to as ‘‘embryos.’’ Their occur-

rence in the higher symmetry phase of a material which undergoes a structural

phase transition is sometimes defined as the ‘‘precursor regime.’’

Fig. 5.4.29 Domain patterns
in YBa2Cu3O7 doped with
Co. Concentrations of Co
are (a) 0, (b) 1, (c) 2, (d) 2.5,
(e) 2.8, (f) 3, (g) 5, (h) 7%.
For concentrations higher
than 2.4% the material is
expected to be in the parent
phase. Patterns shown in
images (d)–(f) represent the
so-called tweed patterns.
Reprinted with permission
from Schmahl et al. (1989).
Copyright (1989), Taylor
and Francis
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As discussed in detail by Salje (1990), it is the possibility of this kind of long-
lived fluctuations that may explain the formation of tweed patterns such as
observed optically in the mineral cordierite. Even in the temperature region
where there is still no spontaneous strain present and the crystal must be
considered in the parent phase, the diffraction patterns in some materials
have shown diffuse signals which can be indexed in the low-temperature
phase and interpreted as the tweed structure. At the same time, the superlattice
reflections are not necessarily compatible with the lattice of either phase.

The problem of tweed patterns has been theoretically addressed by Brat-
kovsky et al. (1994). They indicate that the anisotropy of observed patterns can
be linked to the anisotropy of order parameter fluctuations in the parent phase.
Such anisotropic fluctuation patterns were computer simulated.

To summarize, some approaches treat the observed tweed patterns as small-
size quasiperiodic ferroelastic domain structure while the others assume a
coexistence of regions with the parent and ferroelastic symmetry.

Shortly after the discovery of high-temperate superconductivity, a
considerable attention was paid to domains and tweed microstructures in
crystals of superconducting YBa2Cu3O7–x (x ffi 0.1). It represents the species
4/mmm–es–mmm. The transition can be driven by either temperature
(TC ffi 700�C in the pure material) or by doping with Co (the critical concentra-
tion is about 2.4% at room temperature) (Schmahl et al., 1989). Figure 5.4.29
(a–h) shows electron micrographs by Schmahl et al. of domain patterns in
YBa2(Cu1–yCoy)O7–x at different Co concentrations, y. For y52:4%
(Fig. 5.4.29a–c), we see classical ferroelastic domain patterns. At the concentra-
tion 2.4% of Co, we pass through the transition point; therefore Fig. 5.4.29d–h
should correspond to tweed patterns in the parent phase. The microstructure
whose period is obviously decreasing with increasing x corresponds to lattice
modulation along two directions (110) and ð1�10Þ in the parent phase. It appears
that in this material the existence of tweeds has been proved beyond any doubt.
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Chapter 6

Domain Walls at Rest

This chapter is devoted to the properties of domain walls and let us stress first

that here we have in mind a static situation in a ferroic sample. Problems

connected with domain walls which are not in static or quasistatic equilibrium

will be dealt with separately in Chap. 8. An important aspect of walls has been

already discussed in Chap. 2, namely their orientation from the point of view of

electrical and mechanical compatibilities of neighboring domains. There we

considered walls as infinitely thin two-dimensional objects. Now we focus on its

internal structure and properties governed by this structure. In Chap. 4 we have

pointed out that several domain-imaging methods provided information about

the wall thickness; in Sect. 6.1 we wish to describe some of these observations in

more detail. In this section, we will also present available experimental data on

thickness and surface tension of domain walls.
To address the problem of crystal structure inside the domain wall, the

simplest and most widely used approach is based on thermodynamic theories.

As we have seen in Chap. 2, these theories of ferroic transitions predict that an

ideal crystal in the ferroic phase represents just one of the domain states with

spatially homogeneous value of order parameter. But thermodynamic theories

can also be used to describe multidomain states when the order parameter is

considered as continuous function of the spatial coordinates. In the simplest

situation we prescribe boundary conditions in the two opposite parts of a

sample as representing different domain states SA and SB, respectively, char-

acterized by values ZSA and ZSB of the order parameter Z. Because of the

transition region between these states, which is the domain wall, the energy of

the system is necessarily enhanced.1 The thermodynamic approach can be used

to look for the spatial distribution of the order parameter for which this increase

of total energy is minimal. This distribution represents the structure of the

domain wall. Historically, addressing the domain wall structure researches

were interested in its type, especially in the case where the order parameter

can be easily visualized. Thus, in proper ferroelectrics, the question raised

1 This is not the case for thematerials where theminimal energy of the crystal corresponds to a
spatially modulated state. These materials are not considered in this book.

A.K. Tagantsev et al., Domains in Ferroic Crystals and Thin Films,
DOI 10.1007/978-1-4419-1417-0_6, � Springer ScienceþBusiness Media, LLC 2010
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already in the early states of research was the following: Does the vector PS

rotate in space when it has to change, within the domain wall, from say+PS to
–PS, which would constitute an electric analogy of the ferromagnetic Bloch
wall? Or does it first diminish to zero and then increase in the opposite direc-
tion? Different answers may be obtained for different kinds of phase transi-
tions, depending on the order parameter and crystal structure. The obtained
spatial distribution of order parameter makes it possible to express the wall
thickness and its excess energy in terms of coefficients of the free energy
function. Considering a domain wall as a two-dimensional object, the excess
energy is represented as surface energy density (or surface tension) swmeasured
in J/m2. This kind of theories, where continuous spatial variations of the order
parameter are treated, we will call macroscopic (or continuous) theories. Such
theories have been developed for several kinds of ferroics and we shall pursue
this subject in some detail in Sect. 6.2.

The domain wall structure can also be addressed on the atomistic level. The
first attempts in this direction have been performed in terms of very simplified
discrete models. However, presently, supported with new numerical methods of
quantum chemistry and the immense progress in informatics, quite advanced
modeling of domain walls on atomistic level becomes possible. Section 6.3 will
address this kind of models which we will call microscopic models.

Since, the presence of the wall increases the energy of the system, one may
expect that the energetically favorable walls will be flat. This is true in an ideal
(defect-free) crystal when the thermal fluctuations are neglected. However, in a
real crystal at finite temperature, it is not a priori clear whether the flat wall
configuration is energetically favorable. We devote Sect. 6.4 to this problem. In
this section, we will overview the relevant theoretical results and experimental
findings.

6.1 Thickness and Structure of Domain Walls: Methods and Data

Numerous experimental methods have been employed to obtain data on
domain wall width. Some of them are identical with those used for observing
domain patterns but others have been developed specifically to address the
problem of wall thickness. Most of them are real observation methods but
attempts have also been made to obtain information based on models related
to the measurements of macroscopic properties of the sample. We shall now
briefly describe several of themethods which have been used. Attention will also
be paid to the methods which provide some information on the internal wall
structures.

The domain wall thickness, in simple terms, is conceived as the width of the
region where significant departures of the order parameter from its values deep
inside the two domains, ZSA and ZSB, occur. There are two obvious difficulties
connected with this definition. First, how large these departures have to be in
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order that the corresponding distorted region still belongs to the domain wall.
Second, a particular method may enable one to observe some properties
coupled to Z(x), not the order parameter itself; the changes of these properties
may extend over regions having a different width. What is included in this
chapter are data andmethods concerning domain walls at rest. As an exception,
we also include the paragraph on Raman scattering, a method that by now has
been used only to estimate the thickness of a moving domain wall.

In Table 6.1.1 some of the available data are collected on domain wall
thickness in different ferroic materials.

6.1.1 Direct Optical Observations

As we have already pointed out, in ferroelastics, domain patterns are customa-
rily observed in a polarizing microscope and this is usually the first thing an
experimentalist does with a transparent crystal. Hundreds of photographs have
been published. Alternatively, also isolated domain walls themselves can often
be observed. As an example we refer to observations of single crystals of
gadolinium molybdate (abbr. GMO) (Shepherd and Barkley, 1972) performed
with a high-quality plate-like specimen of GMO cut perpendicular to the ferro-
electric c-axis and well polished. By applying a properly oriented stress and/or
electric field it is relatively easy to prepare a sample containing just two domains
separated by one of the permissible (100) or (010) walls. Sections of the two
indicatrices are apparent fromFig. 6.1.1. Viewing along the c-axis in convergent
white light whose polarization plane is aligned parallel to the wall, the wall
appears as a well-defined bright or dark line, depending on the orientation of
the analyzer. With monochromatic and collimated light the width of the wall in
GMO appears larger, presumably due to a combination of refractive–diffrac-
tive effects. Such direct observations were used to give some crude estimations
of the wall thickness, being interpreted as the maximum width of the transition
region for which the lattice distortion produces birefringence different from
that in the bulk of the domains. Based on such observations, Shepherd and
Barkley (1972) estimated the apparent thickness of the 1808 wall in GMO to be
3 mm; Little (1955), based on similar observations, quoted 0.4 mm as the
thickness of the 908 domain wall in tetragonal barium titanate. These data,
however, cannot be considered reliable. They can be influenced by effects like
light deflection on domain walls which was investigated in detail by Tsukamoto
et al. (1980, 1984) in GMO and other ferroelastics.

If the sample is thick, interference pattern in the region surrounding the wall
can be observed. For a 1 cm thick GMO sample and in crossed nichols a large
number of fringes are observed in the microscope on both sides of the wall when
the incident beam is polarized parallel to the wall (Fig. 6.1.1). When its polar-
ization plane makes an angle +458 or –458, fringes appear on the left-hand or
right-hand side of the wall, respectively. This can be interpreted by the existence
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of a region near the wall where the indicatrix is perturbed. The beam propagat-

ing in this region is deviated toward the higher refractive index region. It

interferes with non-deviated beams which cross the sample in the non-perturbed

region and gives rise to fringes parallel to the domain wall.
When properly analyzed, interference patterns could be in principle used for

estimating the wall thickness or, more exactly, thickness of the region in which

the refractive index is perturbed. The problem was discussed theoretically by

Laikhtman and Petrov (1977b). Analyses of the angular intensity distribution

of light diffracted at a domain wall were performed by Suzuki and Takagi

(1971, 1972) and by Esayan et al. (1974).

6.1.2 X-Ray and Neutron Scattering

Neutron and X-ray scattering due to the presence of domain walls has been

analyzed theoretically by Bruce (1981) for both ferroelastic and nonferroelastic

domain walls. A cube-like sample of N3 unit cells is considered, consisting of

two domains separated by a wall perpendicular to the y-axis. It has been shown

that if the domain wall were of zero thickness the scattered neutrons would form

lines in reciprocal space, extending from the Bragg points perpendicular to the

plane of the wall. The scattered neutrons are expected to form a set of sharply

peaked ridges in this direction. If the domain pair is ferroelastic, each Bragg

point within these ridges will split into two separate components originating

from the two domains. The essential part of Bruce’s analysis concerns themodel

Fig. 6.1.1 Light intensity
distribution near an isolated
domain wall in GMO (d)–(f)
and the corresponding
orientations of nichols
(marked with A) and of
polarizer (marked with P)
with respect to crystal axes
(a)–(c). Light propagates
along the c-axis
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of a ferroelastic domain wall with finite thickness tw. The wall perpendicular to

the y-axis is modeled by a layer n = tw/a unit cells thick, which has the

unperturbed structure of the paraelectric phase, where a is the corresponding

lattice constant of the material. In this case, the shape of the intensity of

scattered neutrons as a function of the transferred wave vector has been

shown to consist of a broad wing on either side of the Bragg peak as before;

in addition, now the wing is modulated by an oscillatory term. These oscilla-

tions of scattered intensity have two sources: cells in the wall itself, plus the

interference effect between the contributions from the two domains. The first

effect is spurious, connected with the ‘‘sharpness’’ of the wall model used here

while the second effect is real. However, the intensity scattered by one single

wall is expected to be proportional to N2 and would be masked by other

processes like Bragg scattering, thermal diffuse scattering, and incoherent

scattering which are proportional to N3. Should the wall effect be observable,

a large number of walls must be present in the scattering volume. For typical

parameters of KDP crystals, the wall scattered intensity has been estimated to

be a factor of 105 weaker than the Bragg scattering.
The neutron scattering experiment (Bruce, 1981) was performed using a

triple-axis neutron spectrometer with a single crystal of KD2PO4 at a tempera-

ture 100 K (the transition temperature is 222 K). Comparison of the observed

intensities of scattered neutrons with the results of modeling in terms of the

above approach showed that the maximum allowed domain wall width in this

crystal is 4 unit cells; the best fit is obtained for n = 2.
By means of a two-axis X-ray diffractometer and CuKa1 radiation, Andrews

and Cowley (1986) investigated scattering of X-rays from crystals of KH2PO4

and KD2PO4. The setup made it possible to investigate scattering as a function

of temperature. A strongly temperature-dependent scattering intensity was

found above the transition points and attributed to critical fluctuations. In

the ferroelectric phase, the scattering is expected due to the presence of the

domain walls with perturbed structures. The scattered intensity was theoreti-

cally analyzed for a more realistic model than the ‘‘sharp’’ model used above,

namely, the lattice distortions u within a wall perpendicular to the y-axis are

taken as being described by the formula resulting from macroscopic theories of

walls in ferroics with the continuous transition

uðyÞ ¼ u0 tanhðy=lÞ; (6:1:1)

and it is assumed that displacements of all atoms are governed by this relation.

The scattering intensity distribution in ky direction near the Bragg points has

been evaluated as

IðkyÞ ¼
Al2

sinh2ðplky=2Þ
; (6:1:2)
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whereA is the coefficient proportional to the number of domain walls and u20. In
order tomaximize this number, crystals of KDP andDKDPwere cooled in zero
field. Scattering from walls consisted of streaks extending from the Bragg
reflections along the [100] and [010] directions in agreement with the orienta-
tions of permissible domain walls. No differences in shape were observed of the
scattering around different Bragg points in the (h0l) plane and this gives
evidence that the pattern of displacements remains reasonably constant
through the domain wall. The scattering intensity could be well fitted to
Eq. (6.1.2) over three orders of intensity. The domain wall width 2l in units
of the lattice constant resulting from these data is shown in Fig. 6.1.2 as a
function of temperature.

Chrosch and Salje (l994) and Salje and Chrosch (1996) used high-resolution

X-ray diffractometry to investigate the wall thickness in single crystals of high-

TC superconductor YBa2Cu3O7–x. These crystals represent ferroelastic species

4/mmm–es–mmm. Using CuKa1 radiation, suitable Bragg peaks like (029) and

(209) were chosen to register rocking curves, i.e., diffraction intensity in depen-

dence on the angle of incidence of the X-ray beam. The diffraction pattern was

analyzed assuming again that the spontaneous strain profile corresponds to

Eq. (6.1.1). Obtained data led to the conclusion that at room temperature the

domain wall is 7 � 2 Å thick which is the order of just one lattice constant. It

should be stressed that these data also indicated a very high wall density, that is,

a small inter-wall distance of about 230 Å. Thus the ratio of the scattering

intensity from the walls to the total scattering intensity has been found very high

compared to that in other ferroelastic or ferroelectric materials.
X-ray diffraction has also been used to investigate wall thickness tw in

ferroelastically twinned LaAlO3 (Chrosch and Salje, 1999). In the interval of

300–900 K, the wall thickness has been found to change in the range 2–25 nm,

Fig. 6.1.2 Temperature
dependence of the domain
wall thickness in KH2PO4 as
deduced from X-ray
scattering data (Andrews
and Cowley, 1986). The wall
thickness, 2l, normalized to
the lattice constant a0 ffi
7.4 Å is plotted. Data above
T = TC – 2 K could not be
evaluated because of the
background caused by
scattering due to
fluctuations
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following the law tw / ðTC � TÞ�1, which, however, is hard to explain in terms
of the continuous theory (see Sect.6.2).

6.1.3 X-Ray Topography

Using X-ray topography, considerable effort was devoted to observations of
domain walls and to the analysis of domain wall contrast with the aim to obtain
data on domain wall thicknesses and structures. Klapper (1987) distinguishes
two mechanisms which make the wall appear on an X-ray topograph: kinema-
tical contrast due to lattice strain within the wall, and dynamical contrast due to
scattering caused by the fact that the dynamical X-ray wave fields are out of
phase in the two domains and a phase shift occurs at the wall (interbranch
scattering). In this case a fringe patternmay be observed. The effect is connected
with the fault vector describing the displacement of the two parallel domain
lattices and can be described as a consequence of the phase shift of the structure
factor.

Detailed studies of domain wall contrast for 1808 walls in TGS have been
performed by a number of authors (Petroff, 1969; Takahashi and Takagi,
1978a,b; Parpia, 1982a,b) with appreciable difference in the results and inter-
pretation. The majority of authors, however, share the opinion that wall images
can be interpreted as being due to the kinematical contrast. The evaluation of
spatial distribution of strain in the domain wall indicated that the wall thickness
in this material is rather large, of the order of a micrometer. The X-ray
topography estimates for the width of 1808 domain walls in tetragonal
BaTiO3 have also yielded values in the micron range (Kawata et al., 1981),
the values that are orders of magnitude different from those obtained by other
methods (see Table 6.1.1).

One should mention that X-ray topography estimates for the wall width are
quite indirect. Suzuki and Takagi (1971) pointed out that even the sharpest
observed widthD of a wall image does not give direct information on the actual
wall thickness d, because the topographic image is spread out by the diffraction
effect and angular divergence of the beam. To give an idea of the role of
different effect in the formation of the wall image, we will give, without deriva-
tion, the relation used by Suzuki and Takagi in their wall width estimates for
NaNO2:

D ¼ dþ lL=dþ oL� d; (6:1:3)

where l is wavelength of the X-ray beam with angular divergence o, L is the
distance between the crystal and the photographic plate, and d is the distributed
range of developed silver nuclei along the track of the X-ray photon in the
emulsion. Under the experimental conditions chosen for the study of NaNO2

these quantities were l=1.54 Å, dffi 0.5 mm,L=0.7 cm, ando=1.6�10–4 rad
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which giveD= d+1/d+0.1 mm.The value ofD observed on the topographs of
this material was 2–3 mm, which limits the allowed range for the wall thickness d
to 0.35 mm � d � 2.7 mm.

A detailed analysis of the topographic contrast was also performed for
nonferroelastic walls in NaNO2 (Suzuki and Takagi, 1971, 1972; Takagi and
Suzuki, 1994) and thiourea (Aoyama et al., 1992); results obtained for wall
thicknesses are included in Table 6.1.1.

As for the interpretation of fringe patterns which are sometimes observed,
different opinions have been expressed but it appears that conclusions about
mutual shift of domain lattices along the wall by a fraction of unit cell para-
meter in crystals like TGS or LiNH4SO4 have to be taken with caution. On the
other hand, a detailed analysis of sectional topographs of GdDy(MoO4)3
crystals containing antiphase domain walls led to the conclusion (Capelle
et al., 1982) that, in addition to the expected translation of crystalline lattices
of the domains neighboring such a wall, a small additional translation takes
place. This is in qualitative agreement with the evaluation of electron micro-
scopic images (Yamamoto et al., 1977a,b).

6.1.4 Raman Scattering

Asevident fromTable 6.1.1, one additionalmethodwhich led toa surprisingly large
value of the wall thickness is Raman scattering. Such a value has been obtained
by Shepherd and Barkley (1972). In their setup, a GMO crystal containing just
one domain wall was provided with electrodes; thus an ac square-wave field
(o = 400 Hz) can be applied along the c-axis so that the wall oscillates over a
distanceof 0.4mm.AnAr-laser beamparallel to thedomainwallwas focused in the
center of the region traversed by it and the light scattered at 908 is detected.
Polarizations are chosen such that only phonons of A1 symmetry propagating
along the (001) plane contribute to the signal. Three scattering experiments record-
ingphononspectrawereperformed: (a) inbothparaelectricandferroelectricphases,
without the wall; (b) with themoving wall, detecting spectra at the frequencyo in a
phase which can be adjusted; and (c) with the moving wall, detecting spectra at the
frequency 2o. Due to the fact that the laser beam is focused exactly in themiddle of
the regionwhere thewall travels, experiment (b) gives information on the difference
between the domains whereas experiment (c) makes it possible to see the difference
between scattering from the wall and that from the homogeneous orthorhombic
phase. Three peaks were observed exactly where the differences between scattering
of tetragonal and orthorhombic phases were seen in experiment (a).

The interpretation of observed data was based on the assumption that the
wall structure has a tetragonal component corresponding to the paraelectric
phase. The ratio of the signals at 820 cm–1 in experiments (a) and (c) gives
information on the thickness of this tetragonal part of the wall. However, the
time must be known for which the wall is exposed to the laser beam; this was
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estimated by assuming a constant velocity during the wall motion. The obtained
data (Sheperd and Barkley, 1972) led to the conclusion that the wall thickness
(or rather the thickness of the tetragonally distorted region) is 0.8 mm � 10%.

It just appears that all optical data point to a very thick domain wall in
GMO. This contrasts strongly with data obtained by transmission electron
microscopy (cf. Table 6.1.1). In view of this controversy it might be worthwhile
to perform a new detailed analysis of light diffraction data. In the Raman
scattering experiment one might suspect that the assumption of the tetragonal
character of the wall is too simplistic.

6.1.5 Electron Holography

Generally, holographic methods permit that both amplitude and phase distri-
bution of a wave front are recorded in terms of intensity only. A transmission
electron microscope can be used to perform electron holography so that
changes in both amplitude and phase of the transmitted wave front are made
visible. In particular, if electrons are not scattered so that the amplitude of the
transmitted wave is not changed, the alteration of the phase of the wave front
can be visualized, with a high resolution. This change can be brought about by
slight modifications of the crystalline structure through which the wave propa-
gates as well as by electric fields which may be present.

Zhang et al. (1992) utilized this idea to produce a hologram of a 908 domain
wall in tetragonal BaTiO3. The incident electron beam is split so that one half
travels outside the sample and the other half passes through it parallel to the
domain wall. They interfere and produce a hologram (Fig. 6.1.3a). The

Fig. 6.1.3 (a) Electron hologram taken over an area of a 908 domain wall in BaTiO3. The
fringe spacing is 3.6 Å; pairs of arrows indicate the ‘‘edges’’ of the wall. (b) Schematic
representation of the fringe bending and explanation of the phase shift of the electron wave.
Reprinted with permission from Zhang et al. (1992). Copyright (1992), American Institute of
Physics
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interference fringes are straight on both sides of the wall but mutually shifted;
this shift is seen as bending of fringes within a stripe representing the domain
wall. The width of the stripe with bent fringes, shown in Fig. 6.1.3a with arrows,
is related directly to the domain wall thickness. The observed interference
pattern is also schematically shown in Fig. 6.1.3b. The quantitative analysis
of the interference pattern is carried out in terms of the phase change of the
electron wave which travels through the sample (Zhang et al., 1992, 1993; Cao
and Randall, 1993). The two neighboring fringes correspond to the phase shift
of 2p. Thus, the relative fringe bending can be directly translated into the phase
change caused by the wall,DF, as explained in Fig. 6.1.3b. It has been suggested
by Cao and Randall (1993) that this change is mainly due to depolarizing field
produced by bound charges on the sample surface. If the latter were fully
compensated by free charges, the phase change would tend to zero and no
potential contrast could be formed. Assuming that the compensation is only
partial, leading to a proportional reduction of the net polarization, the phase
profile of the wall can be found proportional to that of the spontaneous
polarization,PS(x). According to Cao andRandall, an additional strain-related
contribution to the phase change, which is proportional to P2

SðxÞ, can also be
incorporated into the model. Figure 6.1.4 (Cao and Randall, 1993) shows the
experimental data of Zhang et al. (1992) together with fits which were calculated
without and with the correction for strain, assuming the simplest tanh-type
polarization profile in the wall.

The detailed interpretation of the phase profile may be subject to further

modifications (Ravikumar et al., 1997). For instance, the interpretation of the

interference pattern could be further complicated when strong dynamic diffrac-

tion occurs: Pronounced electron channeling conditions may lead to a strong

excitation for some of the diffracted beams which then act as independent

Fig. 6.1.4 The phase shift of
the electron wave, DF(x),
(normalized to F1, the half
of total phase shift across the
wall) corresponding to the
image shown in Fig. 6.1.3a
(circles). Thin line is a fit to
tanh(z) function. Thick line
is a fit where a strain-related
contribution, which is
proportional to tanh2(z), is
also accounted for. After
Cao and Randall (1993)
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object waves and produce multiple interference regions. A 908 domain wall in
PbTiO3 was visualized under such conditions (Ravikumar et al., 1997). Thus, as
with any other method, the data of wall thickness by means of electron holo-
graphy have to be considered with caution. In addition, one has to keep in mind
the extreme requirements on the sample thickness when TEM is used. Under
such conditions domain walls may acquire profiles which differ from those in
bulk samples.

6.1.6 Transmission Electron Microscopy

As was already mentioned in Sect. 4.8, transmission electron microscopy
(TEM) in its different modifications has been successfully used for investigation
of domain wall in ferroics.

The weak-beam dark-field imaging (two-beam diffraction conditions) makes
a very important tool of domain imaging. A typical image obtained using this
technique is shown in Fig. 4.8.6. This technique has been extensively used
starting from the first electron microscopy studies of domain walls in ferro-
electrics, mostly focusing on BaTiO3 and PbTiO3 single crystals (Blank and
Amelinckx, 1963; Tanaka and Honjo, 1964; Bradt and Ansell, 1967; Shakmanov
and Spivak, 1968; Yakunin et al., 1972; Hu et al., 1986). The main problems that
were addressed by the first TEM observations of the domain walls in barium
titanate were their type, structure, and thickness. Two types of domain walls (908
and 1808) were readily identified. A better stability of the 908 walls during the
TEM observations was noticed (Bradt and Ansell, 1969). The domain wall
thickness in BaTiO3 was first evaluated as about 20 nm by Tanaka and Honjo
(1964) and later as 8 nm in (Ba,Pb)TiO3 by Dennis and Bradt (1974). The direct
TEM observations of the temperature dependence of the domain wall thickness
were performed for the first time in (Ba, Pb)TiO3 from –190 to 308C (Dennis and
Bradt, 1974). The temperature dependence of the 908 domain wall thickness of
PbTiO3 has also been evaluated from the analysis of the thickness fringes in
weak-beam dark-field images (Foeth et al., 1999a,b; 2007). Figure 6.1.5 demon-
strates the temperature evolution of such images. The temperature dependence of
the wall thickness calculated from these images is shown in Fig. 6.1.6. Comparing
the values on the wall thickness in PbTiO3 estimated in the mentioned papers of
Foeth et al. with other data, one should divide these values by a factor of two to
account for the nonstandard definition of the wall thickness adopted in these
papers.

As mentioned above in Sect. 4.8.2 high-resolution transmission electron
microscopy (HRTEM) has been used for observations of domain walls in
various ferroics. Images and other information on domain walls (often
the wall thickness) have been reported for many materials. For example,
such data are available for KNbO3 (Bursill et al., 1983; Bursill and
Peng, 1986), LiTaO3 and Ba2NaNb3O15 (Bursill and Peng, 1986), BaTiO3
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(Shiojiri et al., 1992; Floquet et al., 1997; Bursill and Peng, 1986; Tsai et al.,

1992), Pb(Zr, Ti)O3 (Tsai et al., 1992), PbTiO3 (Stemmer, 1995; Foeth et al.,

1999a,b), AgNbO3 (Verwerft et al., 1989), and YBa2Cu3O7–x (Zhu and Sue-

naga, 1992). Apart from typical non-charged walls in well-insulating ferro-

electrics, in quite conductive PbTiO3, the head-to-tail arrangement of the

domains has been directly observable by HRTEM (Spycher et al., 1987). The

domain wall thickness evaluated from HRTEM data is typically in good

agreement with that obtained from dark and weak-beam dark-field TEM. An

explicit comparison of this kind has been offered by Foeth et al. (1999a,b) for

908 domain walls in PbTiO3. Instructive results on the same system have been

reported by Stemmer et al. (1995). In this study, the lattice displacement profiles

Fig. 6.1.5 Weak-beam dark-field images of 908 domain wall in PbTiO3 taken at different
temperatures. The temperature differences from the transition point TTR are 332 K (a),
132 K (b), 37 K (c), 27 K (d), 12 K (e), 7 K (f), 2 K (g), and 0 K (h). TTR is fixed by image (h).
Along the bars shown in images (a)–(f), the analysis of the signal has been performed. Foeth
et al. (2007)
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for the walls of the same type, which were differently oriented with respect to the

plane of the ferroelectric film, have been investigated (the so-called a/a and c/a

walls). Figure 6.1.7 shows these profiles where an appreciable difference in the

profile abruptness is seen. This clearly shows that the information on formally

the same type of walls can be sensitive to the condition to which these are

exposed. In the considered case, the difference may be related to mechanical

anisotropy of the film deposited onto a substrate.

Fig. 6.1.6 Domain wall thickness evaluated from the analysis of the intensity distribution
shown in Fig. 6.1.5 (dots) fitted to the result of continuous theory for the first-order phase
transitions, Eq. (6.2.12) (curve). All thermodynamic parameters entering Eq. (6.2.13) have
been taken from an independent source, only the correlation coefficient being used as the
fitting parameter. Compared to the original here the y-axis scale is corrected by a factor of 2 to
make allowance for the non-standard definition of the wall thickness adopted in papers by
Foeth et al., (1999a,b; 2007)

Fig. 6.1.7 Variation in lattice parameters a and c across 908 domain walls in PbTiO3 obtained
form HRTEM data: (a) a/c wall and (b) a/a wall. Data are plotted as a function of position in
units of the (101) inter-plane distance. The solid line in (a) is a fit to tanh(z) function assuming
that the wall is centered at a Pb–Ti–O plane; the broken line assumes a central O-only plane. It
is seen that the a/a wall is appreciably narrower than the c/a wall. After Stemmer et al. (1995)

6.1 Thickness and Structure of Domain Walls: Methods and Data 287



6.1.7 Surface Methods

In Chap. 4 we have addressed various surface-based methods of imaging of
domains and domain walls. In this section we briefly discuss the application of
these methods to getting information on the thickness and structure of domain
walls in ferroics.

Some of these surface methods are based on surface decoration. The resol-
ving power then depends on the decorating agent and on the observation
method. An approach relying on optical observations with correspondingly
low resolution was used for crystals of GMO (Bhalla and Cross, 1981). Films of
uniform layer of GdF3 were produced on the sample surface. When observed in
reflected light, the underlying domain structure was clearly distinguished. This
made it possible to estimate the maximum wall thickness as 1 mm.

Much higher resolution can be reached when observations are made by
electron microscopy. Again, the surface of a sample containing domains is
decorated and the width of the transient region between two neighboring
domains which are covered by decorating agents is measured. Hilczer et al.
(1981, 1989) used AgCl as epitaxial decorating layers of thickness 8–20 nm,
evaporated on cleaved polar surfaces of ferroelectric crystals. Then carbon
replicas were made and observed in a transmission electron microscope. The
width of the transition region between two domains decorated with different
density or orientation of particles can be considered to be the maximum width
of the domain wall. Figure 6.1.8 shows an example of a wall separating two
decorated domains. Experiments performed with TGS crystals led to the value
of 12 nm. Another material investigated by this method was NaNO2 (Suzuki
and Takagi, 1971). Domain contrast was achieved by evaporating silver
particles and the resulting film was backed by evaporated carbon replica
film. Domain walls were found to be of thickness ranging between 0.3 and
1 mm.

A method which promises an extremely high resolution is the scanning force
microscopy (SFM). As we have discussed in the preceding chapter, this

Fig. 6.1.8 TEM picture of a
replica of the surface of a
TGS sample with
antiparallel domains
decorated by AgCl layers of
thickness about 2 nm.
Reprinted with permission
of Politechnika
Wroclawska. After Hilczer
et al. (1981)
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technique can be used for imaging domains in ferroelectric and ferroelastic

crystals provided that the sample has a correspondingly flat surface in the

area where domain walls are located. Observations of domains in cleaved

samples of TGS crystals made it possible to zoom in on domain boundaries

(Eng et al., 1997). Scanning between two domains of opposite polarities led to

the conclusion that the width of the 1808 wall at the surface is below 80 Å. This

value was found in the frictionmode and, interestingly enough, confirmed in the

non-contact mode where the contrast originates from the electric field close

above the sample surface. Similar experiments with the same material were

performed by Ohgami et al. (1996), both in the contact and non-contact modes.

The wall thickness estimated in this paper is 60–80 nm. Similarly as in the paper

by Eng et al. (1997), it was concluded that along the wall there is a step in height,

estimated to be 2–3 Å high. Such a step, if it always accompanied a domain wall

in this material, would influence a number of phenomena connected with wall

motion.
SFM techniques have been successfully applied to domain wall imaging

in GASH by Lüthi et al. (1993b). Figure 6.1.9 demonstrates the image

obtained in non-contact dynamic mode from a GASH crystal and the

signal-intensity profiles for two cross-sections of this image. Here, domain

walls with a thickness of 50–100 nm are seen. This result is not affected by

the instrumental lateral resolution of the method, which has been evaluated

as 1 nm.

Fig. 6.1.9 SFM image
obtained in non-contact
dynamic mode from a
GASH crystal (a) and the
signal-intensity profiles for
two cross-sections (shown
with arrows) of this image
(b) and (c). Domain walls
with a thickness of
50–100 nm are seen. The
instrumental lateral
resolution is 1 nm. After
Lüthi et al. (1993b)
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Concerning complications related to SMF investigations of domain walls,

one can mention the problem with the identification of a domain wall with

complete certainty. There may exist other linear artifacts on the crystal

surface which in fact do not represent surface intersections of domain

walls. Perhaps the best possibility will be to identify domains in a low-

resolution mode, in which the wall may be reliably recognized by their

characteristic shapes, and then successively zoom in on the domain wall.

The alternative unmistakable method to identify a 1808 domain wall is based

on distinguishing the sign of electric charge on both sides of the wall

(Ohgami et al., 1996). Another complication is that the cleavage process,

for instance, in TGS, itself may produce a surface step at the domain wall

(Suda et al., 1978b; Nakatani, 1979) and its width can be mistakenly con-

sidered the domain wall width.
Scanning near-field optical microscopy (SNOM), especially in its aper-

tureless modification (s-SNOM), can exhibit resolution sufficient for inves-

tigation of the thickness and structure of not too thin domain walls.

SNOM with aperture (a-SNOM) has been used for investigation of domain

wall issues in LiTaO3 (Yang et al., 1999, 1997). A wall vertex in this

material imaged with a-SNOM is shown in Fig. 6.1.10, the reported

resolution being 200 nm. Here the wall thickness is about 1,000 nm,

which is orders of magnitude larger than the value documented with

HRTEM (Peng and Bursill, 1982).

Several other methods useful for observing domains on surfaces of sam-

ples, like laser scanning microscopy based on pyroelectric signal, offer only

limited resolution and have not yet been proved suitable for domain wall

studies.

Fig. 6.1.10 A wall vertex of
a triangular domain in
LiTaO3 imaged with SNOM
with aperture of 60 nm; the
reported resolution is
200 nm. Reprinted with
permission from Yang et al.
(1997). Copyright (1997),
American Institute of
Physics
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6.1.8 Comments on Available Data

The summary of available data on domain wall thickness in different
ferroelectric and ferroelastic materials as collected in Table 6.1.1 shows
that even for the same material values obtained by different methods vary
widely. Generally speaking, optical and X-ray topography methods have
given much larger values than transmission electron microscopy or elec-
tron holography. To some extent this may be related to the fact that
samples prepared for TEM have to be extremely thin so that boundary
conditions for walls strongly differ from those for a bulk sample. One
could contemplate that this may have a direct effect on the crystal lattice
connecting neighboring domains. But large discrepancies exist even in data
obtained by different surface methods applied to bulk samples. Here it
appears that to obtain really reliable information, one cannot rely on a few
scanning events but many data have to be statistically evaluated to avoid
accidental artifacts. Also, the surface topographic profile may be seriously
affected by the way the sample was prepared. But first of all, an unambig-
uous proof must be available that the object studied is really a domain
wall.

It is evident that very few data are available on the temperature dependence
of the wall thickness. Data obtained with scattering techniques and TEM gave
evidence for a substantial increase of the wall thickness (e.g., in DKDP,
PbTiO3, and LaAlO3) when the transition temperatures are approached. On
the other hand, data on Pb5Ge3O11 (Cowley et al., 1976) based on neutron
scattering indicate only a small increase.

6.2 Macroscopic Theories of Domain Walls

The treatment of phase transitions based on thermodynamic potentials as
discussed in Chap. 2 referred to spatially homogeneous states: No quantity
was considered that would depend on the coordinates. This approach is
obviously inadequate when domains are present. Two generalizations are pos-
sible. The first one tends to explain the occurrence of a domain pattern as a
whole. This has been discussed in some detail in Chap 5. In an alternative
approach only one domain pair is considered and the aim of the theory is to
describe the domain wall separating the two domains. This section deals with
the latter case, treated in terms of thermodynamic approach where the order
parameter is considered as a continuous function of the spatial coordinates in
the system. For ferroelectrics, this kind of treatment was pioneered by Zhirnov
(1958), Bulaevskii (1964), and Bulaevskii andGinzburg (1964). Themain points
of thermodynamic theory of domain walls in ferroics can be discussed by taking
into account only the energy related to the order parameter itself, not making
explicit allowance for elastic effects. The latter can be of importance, as will be
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discussed later. However, full treatment of domain wall structure can be
reduced, at the price of certain assumptions, to a problem that deals only
with the order parameter itself. This makes it reasonable to address the
main issues of the theory in terms of the order parameter only. This will be
done in the following section. In the subsequent section we will discuss the
effect related to the order parameter/stress coupling. To conclude this
section we will overview the application of the general theory to selected
kinds of ferroics.

6.2.1 Order Parameter Profile in Domain Walls

6.2.1.1 Single-Component Order Parameter

Let us outline the basic features of the theory in terms of a single-component
order parameter Z. The ground states defined by thermodynamic theories
treated in Sect. 2.3 are spatially uniform; therefore any domain wall as a
transition region where the order parameter is necessarily nonhomogeneous
increases the energy of the crystal. The lowest order term representing this
increase is proportional to a bilinear term of components of the order parameter
gradient. For the moment, for simplicity we keep only the (,Z)2 term so that the
free energy density in its simplest form now reads

FðT; ZÞ ¼ F0 þ
1

2
aZ2 þ 1

4
bZ4 þ 1

2
dðrZÞ2; (6:2:1)

with a ¼ a0ðT� T0Þ, d > 0, and b > 0; we have in mind the second-order
transition. Solutions �ZS for homogeneous domain states remain unaf-
fected by the gradient term. The latter is sometimes referred to as the
correlation energy (Smolenskii et al., 1984) and the coefficient d as the
correlation coefficient. Other names like gradient energy, gradient coeffi-
cient, or Ginzburg coefficient are also used. This energy plays an essential
role when thermal fluctuations of the order parameter are investigated;
since d > 0, this term tends to reduce such fluctuations. Within a domain
wall between the two domain states the values of order parameter change
from +ZS to –ZS. We assume that the wall is planar and perpendicular to
x. To find the solution Z(x) corresponding to minimum total energy of the
sample we prescribe the boundary conditions: Z ! ZS for x ! 1 and Z !
–ZS for x ! –1. The spatial distributions Z(x) should minimize the free
energy of the sample

FðTÞ ¼ A

Zþ1

�1

F½T; ZðxÞ� dx; (6:2:2)
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where A is the cross-sectional area of the sample. The function Z(x) satisfies the
requirement of minimum given by the Euler equation

d

dx

@F
@ð@Z=@xÞ

� �
� @F
@Z
¼ 0; (6:2:3)

which leads to a nonlinear differential equation of the second order

d
d2Z
dx2
¼ aZþ bZ3: (6:2:4)

The solution to this equation satisfying the above boundary conditions reads
(Zhirnov, 1958)

ZðxÞ ¼ ZS tanh
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2d=� a
p
 !

	 ZS tanh
x

tth

� �
; (6:2:5)

where

tth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2d=a

p
(6:2:6)

has the meaning of a spatial scale of the wall. The double of this value is
customarily taken as the wall thickness

tw ¼ 2tth: (6:2:6a)

This type of the domain wall profile, shown in Fig. 6.2.1 (curve a), will be
referred to as the tanh-type solution; ‘‘kink solution’’ is also a term often used.
In the middle of the domain wall Z=0, which corresponds to the parent phase.
Therefore we expect that within some central region the structure is close to that
of the phaseG. As we have seen in the previous section, some techniques for the
measurements of domain wall thickness are based on modeling the wall by a
layer whose structure is exactly that of the parent phase.

The quantity tw expressed in terms of coefficients of the free energy can be
ascribed a more general meaning (Smolenskii et al., 1984). It can be related to
the correlation radius (correlation length) for the ordered phase, which is
customarily defined as

rc ¼ tw=4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d=ð�2aÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d=2a0
T0 � T

s
(6:2:7)

and represents a quantity characterizing the spatial changes of the order para-
meter in the ferroic phase. Its physical meaning can be illustrated by a simple
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model (Strukov and Levanyuk, 1998). Imagine that by some localized applied
force the order parameter on the plane x= x0 is kept at a value Z(x0)= Z0 which
is close to ZS. Because of the correlation energy term, Z cannot change discon-
tinuously and therefore it gradually tends to its normal equilibrium value ZS.
The calculation leads to the spatial dependence

ZðxÞ ¼ ðZ0 � ZSÞ expð�jx� x0j=rcÞ þ ZS: (6:2:8)

This dependence is sometimes referred to as the Oernstein–Zernicke function
for a one-dimensional case. It is obvious that the correlation length is closely
connected with the spatial relaxation of the order parameter in the vicinity of a
lattice defect. As such it plays an important role when discussing the interaction
between domain walls and defects or between domain walls themselves. In
addition, it determines the spatial scale of thermal fluctuations of the order
parameter around its equilibrium value. In the parent phase, a one-dimensional
decay of the order parameter can also be described by Eq. (6.2.8) where ZS ¼ 0
and rc = [d/a0 (T – T0)]

1/2. This corresponds to introduction of the correlation
length in the parent phase as [d/a0 (T – T0)]

1/2.
The spatially dependent solution (6.2.5) necessarily increases the energy of

the crystal compared to the energy of a single domain state. This extra energy
can be ascribed to the domain wall and expressed as the surface energy density
sw per unit wall area:

sw ¼
Zþ1

�1

½FðZðxÞ � FðZSðxÞÞ� dx: (6:2:9)

Fig. 6.2.1 Normalized profile of a half of a domain wall for different values of parameter A
defined by Eq. (6.2.13): (a) A=0, a material with the ‘‘pure’’ second-order phase transition, g
= 0; (b) A = 1/2, a material with the tricritical point, b = 0; (c) A = 2, a material with the
first-order phase transition at T = T0; (d) A = 50 and (e) A = 500 correspond to a material
with the first-order phase transition at the temperatures very close to the transition,
ðTC � TÞ=ðTC � T0Þ ¼ 0:02 and ðTC � TÞ=ðTC � T0Þ ¼ 0:002, respectively
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From Eqs. (6.2.5) and (6.2.9) one readily finds

sw ¼
2
ffiffiffi
2
p

3

d1=2

b
jaj3=2 ¼ 2

ffiffiffi
2
p

3
a3=20

d1=2

b
ðT0 � TÞ3=2 (6:2:10a)

or alternatively

sw ¼
2
ffiffiffi
2
p

3
Z3SðbdÞ

1=2: (6:2:10b)

It follows from the preceding formulae that as the temperature of a second-
order transition is approached, the wall thickness tth is expected to increase as
1/(T0 – T)1/2 while its energy density decreases as (T0 – T)3/2. For the case
of proper ferroelectric, it is also convenient to express sw in terms of the
spontaneous polarization, lattice permittivity, thermodynamic coercive field
(see Eq. (2.3.15)), and the wall thickness:

sw ¼
P2
S

6

tw
w
¼

ffiffiffi
3
p

2
PSEcrittw: (6:2:10c)

There is another important feature of domain walls that can be specified at
this point. When writing the free energy (6.2.1) we have neglected the aniso-
tropy of the gradient term. In reality it represents a sum of several terms
proportional to @Z

@xi

@Z
@xj
. When taken into account, the anisotropy of the gradient

term will obviously result in a dependence of the coefficient d [in Eq. (6.2.4)] on
the orientation of domain wall. In turn, via Eqs. (6.2.6) and (6.2.10b), it results
in orientational dependence of wall thickness and energy density. Normalizing
tw, sw, and d to their values for a certain orientation of the wall, tw0, sw0, and d0,
one obtains

sw
sw0
¼ tw

tw0
¼

ffiffiffiffiffi
d
d0

s
: (6:2:10d)

This anisotropy of the wall energy can play a role in the wall orientation. In
reality this role is of importance only for the walls whose orientation is not fixed
by the elastic effects (W1walls in terms of the classification introduced in Chap.
2). We will illustrate this point later by an example of walls in TGS crystals.

If the transition is of the first order, the simplest potential reads

FðT; ZÞ ¼ F0 þ
1

2
aZ2 þ 1

4
bZ4 þ 1

6
gZ6 þ 1

2
d

dZ
dx

� �2

; (6:2:11)

with b < 0 and g > 0. Instead of solution (6.2.5) the wall is now described by

ZðxÞ ¼ Zs
sinhðx=tthÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aþ cosh2ðx=tthÞ
q ; (6:2:12)
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where

tth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2d
Z2Sðbþ 2gZ2SÞ

s
; A ¼ g

2gþ ð3b=2Z2SÞ
: (6:2:13)

Written this way Eqs. (6.2.12) and (6.2.13) are also valid for the case of b 
 0,
thus also covering the cases of the ‘‘pure’’ second-order phase transition (b> 0 and
g=0) whereA=0 and the tricritical point (b=0 and g> 0) whereA=1/2. The
profile given by Eq. (6.2.12) is not very different from the tanh shape unless the
temperature is not too close to the transition temperatureTc whereA is larger than
or of the order of unity. Figure 6.2.1 (curves a–c) shows this profile forA=0,A=
1/2, and A = 2; the latter value is reached at the temperature equal to the
Curie–Weiss temperature (atT=T0). AtT! Tc,A diverges according to the law

A � Tc � T0

Tc � T
: (6:2:14)

Very close to the transition temperature (whereA441Þ the wall profile depends
strongly on temperature, as illustrated in Fig. 6.2.1 (curves d and e).Here the central
part of the curve e canbe interpreted as anonset of appearanceof theparent phase in
the wall center (Lajzerowicz, 1981). This actually means that the domain walls can
serve as perfect seeds of the parent phase when passing Tc on heating. In the region
where the low-temperature phase ismetastable, i.e., atTc5T5T�0 (cf. Eq. (2.3.19)),
thedomainwallbetweenthe twodomainstates inquestiondoesnotexist. Inthiscase,
two domains with the opposite signs of the order parameter can be linked only via a
finite-thickness layer of the parent phase. It is useful to note that the thickness
parameter tth given by Eqs. (6.2.6) and (6.2.13) can bewritten in a generic form

tth ¼
ffiffiffiffiffiffiffiffi
4dw

p
¼ 2rc; (6:2:15)

which is valid for either orders of the phase transition.Here w is the permittivitywith
respect to the field conjugated to the order parameter and rc is the correlation length.

6.2.1.2 Multi-component Order Parameter

Now we will highlight the features of domain walls separating domain states in
ferroics with multi-component order parameter by using a simple example of a
transition which is driven by a two-component order parameter (Z1, Z2). Let us
consider a transition described by the free energy expansion which formally
corresponds to that used in Chap. 2 for discussion of thermodynamics of
improper ferroelectrics:

F ¼F0 þ
1

2
aðZ21 þ Z22Þ þ

1

4
b1ðZ41 þ Z42Þ þ

1

2
b2Z

2
1Z

2
2

þ 1

2
d

@Z1
@x

� �2

þ @Z2
@x

� �2
" #

;

(6:2:16)
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where a = a0(T – T0), b2 > b1> 0 , and d > 0. As we have seen in Sect. 2.3.5,

such a transition results in four domain states represented in Fig. 6.2.2: (Z1= ZS,
Z2 = 0), (Z1 = –ZS, Z2 = 0), (Z1 = 0, Z2 = ZS), and (Z1 = 0, Z2 = –ZS), where
ZS = (–a/b)1/2. Two types of domain walls, corresponding to order parameter

rotations in the (Z1, Z2) plane by 1808 and 908, are possible in this system. We

shall refer to them as to 1808 and 908 walls, respectively. They are illustrated in

Fig. 6.2.2 by lines connecting points that represent domain states. The structure

of the walls, i.e., the coordinate dependence of the order parameter, can be

derived from the Euler equation (6.2.3) written for both components of the

order parameter, namely,

�d @
2Z1
@x2
þ aZ1 þ b1Z

3
1 þ b2Z1Z

2
2 ¼ 0;

�d @
2Z2
@x2
þ aZ2 þ b1Z

3
2 þ b2Z2Z

2
1 ¼ 0:

(6:2:17)

For the 1808 wall, e.g., corresponding to a curve connecting points III and I,

the solution of this equation should also meet boundary conditions: (Z1! ZS,
Z2! 0) for x!1 and (Z1! – ZS, Z2! 0) for x! –1. For the 908 wall, e.g.,
one corresponding to a curve connecting points II and I, the boundary condi-

tions are (Z1! ZS, Z2! 0) for x!1 and (Z1! 0, Z2! ZS) for x! –1.
Let us start with the analysis of the 1808 wall. One distinguishes two types of

solutions for this kind of wall: The so-called linear solution (line L in Fig. 6.2.2),

where only one order parameter component changes with the coordinate

whereas the other component stays zero, and the so-called rotational solution,

in which both components change in the wall (curve R in Fig. 6.2.2). In the case

Fig. 6.2.2 Mapping on the order parameter plane of domain states (points I–IV) and domain
walls (curves). Mapping R is shown schematically. The mappings of the walls are labeled as
follows: L, linear solution for the 1808 wall; Lw, linear solution for the 908 wall; R, rotational
solution for the 1808 wall; Rw, purely rotational solution for the 908 wall
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of linear solution, the problem is obviously reduced to the single-component
case with a tanh-type solution for Z1, given by Eq. (6.2.5). However, in contrast
to the single-component case, this solution does not always describe a stable
1808 wall since under certain condition it is unstable with respect to the appear-
ance of the nonzero second component in the wall. The limit of stability of the
linear solution can be found using the technique developed for this kind of
problems (Bulaevskii and Vekhter, 1986). We look for the minimum eigenvalue
of the functional obtained from the second of Eqs. (6.2.17) where we put
Z1ðxÞ ¼ ZS tanhðx=tthÞ and linearize it with respect to Z2. If it is negative the
linear solution is unstable. One readily finds this functional in the form

� @2

@x2
þ BþU tanh2ðx=tthÞ

� �
Z2; (6:2:18)

where B ¼ a=d; U ¼ b2Z
2
s=d. Its smallest eigenvalue can be found in the form

(see, e.g., Tagantsev et al., 2001a)

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Ut2th þ 1

q
� 1þ 2Bt2th

� ��
ð2t2thÞ: (6:2:19)

Finally, using Eqs. (6.2.6) and (6.2.19) we find that the linear solution is
stable if b2 > 3b1. When this is not the case, the linear wall is not stable. In
principle, that means either a rotation type of the 1808 wall is stable or the 180
wall is unstable with respect to a decay into two 908walls. For the case described
by free energy equation (6.2.16), as was shown by Sonin and Tagantsev (1988,
1989), the latter possibility takes place. However, once high-order invariants,
i.e., gðZ21 þ Z22Þ

3=6, are taken into account in the free energy, the rotation type of
1808wall can be stable (curve R in Fig. 6.2.2). The phase diagram of the states of
the 1808 wall in terms of b2–3b1 and g has been developed by the same authors.

As it has been shown by Ishibashi andDvorak (1976), the situationwhen b2=
3b1 corresponds to a special state of the system in which the set of involved
equations reduces to two decoupled equations in terms of the following variables:

Zþ ¼ Z1 þ Z2;

Z� ¼ Z1 � Z2:
(6:2:20)

This is clearly seen if one rewrites Eq. (6.2.17) in terms of these variables:

�d @2Zþ
@x2
þ aZþ þ

b1þb2
4 Z3þ �

b2�3b1
4 ZþZ

2
� ¼ 0;

�d @2Z�
@x2
þ aZþ þ b1þb2

4 Z3� �
b2�3b1

4 Z�Z
2
þ ¼ 0:

(6:2:21)

Thus, the problem of the domain walls structure for small jb2 � 3b1j=b1
becomes analytically tractable. The tanh-type solutions of these equations at
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b2 ¼ 3b1 were actually used in the aforementioned analysis of the stability
phase diagram for the 1808 wall.

The analysis of the 908 wall structure is more complex. For arbitrary values of
the free energy coefficient no full analytical solutions of the problem is available. A
certain progress in analytical description of the problem has been achieved by
Bulaevskii and Ginzburg (1964) and by Bulaevskii (1964). Later, Cao et al. (1990)
offered a discussion of a numerical analysis of the problem. The full analytical
solution is available if either jb2 � 3b1j=b1551 or jb2 � b1j=b1551. For the case
jb2 � 3b1j=b1551, neglecting weak coupling between the variables in Eqs.
(6.2.21), one finds for the spatial dependence of the order parameter in the wall

Z1 ¼
Zs
2 ½1þ tanhðx=tthÞ�;

Z2 ¼
Zs
2 ½1� tanhðx=tthÞ�:

(6:2:22)

This solution corresponds to a straight line connecting the points I and II in
the order parameter plane (line Lw in Fig. 6.2.2).

If, however, jb2 � b1j=b1551, the solution corresponds to a curve which is
very close to an arc linking the points representing the aforementioned domain
states (curve Rw in Fig. 6.2.2). This solution has been treated by Fousková and
Fousek (1975) and by Laikhtman and Tagantsev (1975). They considered the
situation of the first-order phase transition setting b1<0 and taking into account
the gðZ21 þ Z22Þ

3=6, invariant in the free energy. It turned out that the situation for
the first-order and second-order phase transitions is conceptually close. The
condition jb2 � b1j=b1551 corresponds to weak anisotropy in the order para-
meter plane, the situation where the potential F is only weakly dependent on the
angle j characterizing the order parameter. It is clearly seen when, rewriting the
free energy in terms of polar variables

Z1 ¼ r cos j;

Z2 ¼ r sin j;
(6:2:23)

we obtain

F ¼F0 þ
1

2
ar2 þ 1

16
ð3b1 þ b2Þr4 þ

1

16
ðb1 � b2Þr4 cos 4j

þ 1

2
d

@r

@x

� �2

þr2 @j
@x

� �2
 ! (6:2:24)

instead of Eq. (6.2.16). In polar variables the equations of state for the wall read

d @2r
@x2
� g @j

@x

� �2� 	
¼ r aþ 1

4 ð3b1 þ b2Þr2 þ 1
4 ðb1 � b2Þr4 cos 4j


 �
;

d @
@x r

2 @j
@x ¼ 1

4 ðb2 � b1Þr4 sin 4j:
(6:2:25)

6.2 Macroscopic Theories of Domain Walls 299



The 908 wall corresponds to a solution to Eq. (6.2.25) with boundary condi-
tions r = ZS, j = p/2 for x!1 and r = ZS, j = 0 for x! –1. To within a
small parameter jb2 � b1j=b1551, the purely rotating solution, i.e.,

r ¼ Zs; j ¼ tan�1 expðx=tRÞ½ �; tR ¼ tth
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1=2ðb2 � b1Þ

p
; (6:2:26)

satisfies Eqs. (6.2.25). The rotational structure of this wall is the reminiscent of
the Bloch wall in magnets. As one can see from Eq. (6.2.26), in the range of
applicability of this solution, the thickness of rotational wall tR will be much
greater than that of the linear 1808 wall tth. It is worth mentioning that for the
range of parameters where the purely rotational solution gives a good approx-
imation for the structure of the 908 wall, i.e., jb2 � b1j=b1551, the stability
condition for the 1808 wall, b243b1, is not met. Thus, in this range of para-
meters the 908 wall is the only stable one.

One remark should be made for completeness. In the above analysis we have
been dealing with the free energy containing actually only one anisotropic
invariant Z21Z

2
2 and with the coefficients fulfilling the specific condition

b24b140. In the literature, however, the problems of domain wall structure
have been treated for a range of parameters different from b14b240 as well as
for free energy having an additional invariant ðZ21 � Z22Þ

2. One can show that the
latter problems can be reduced to that treated in this section by rotating the
reference frame in the order parameter plane.

6.2.2 Effects of Strain Induced by the Order Parameter

Above we have treated the structure of a domain wall taking into account the
energy associated with the order parameter only. The results obtained corre-
spond to a problem of domain wall structure when mechanical stresses are
formally set to zero. In reality, one should take into account the energy of
mechanical stresses induced by spatial variation of the order parameter. This
complicates the problem and introduces new features into the phenomenon.
They can be summarized as follows. (i) One-dimensional solution for a domain
wall is impossible in a mechanically free sample (Cao and Barsch, 1990). To get
such a solution one should adopt spatially inhomogeneous mechanical bound-
ary conditions. (ii) Once these conditions are set, the problem can be reduced to
a one-dimensional problem dealing with the order parameter only. Coefficients
in the resulting equation are sensitive to elastic properties of the material and to
crystallographic orientation of the domain wall. (iii) Mechanical effects essen-
tially contribute to the orientational dependences of thickness and energy of the
wall.

In this section we will illustrate all these features considering a simple
example of the 1808 wall in the tetragonal phase of a BaTiO3-like structure.
For simplicity we will treat the case of the second-order transition. Let the
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nonzero component of polarization Pz be a function of the coordinate x1. We
write down the Euler equation (6.2.3) for this component, using Eq. (2.3.34),
where the P6 terms are neglected and which is appended with the correlation
term ½ð@Pz=@x1Þ2 þ ð@Pz=@x2Þ2�d=2. This leads to the following equation:

� d
@2Pz

@x21
þ aPz þ b11P

3
z � 2Pz½Q11s3 þQ12ðs1 þ s2Þ� ¼ 0; (6:2:27)

where the components of stress tensor can be determined using the elastic
equations of state:

e1 ¼ s11s1 þ s12ðs3 þ s2Þ þQ12P
2
z ; e4 ¼ s44s4;

e2 ¼ s11s2 þ s12ðs3 þ s1Þ þQ12P
2
z ; e5 ¼ s55s5;

e3 ¼ s11s3 þ s12ðs1 þ s2Þ þQ11P
2
z ; e6 ¼ s66s6

(6:2:28)

provided that the components of the strain tensor satisfy conditions of mechan-
ical compatibility (Love, 1944), namely,

@2e2
@x23
þ@

2e3
@x22
¼ @2e4
@x2@x3

;
@2e1
@x23
þ@

2e3
@x21
¼ @2e5
@x1@x3

;
@2e1
@x22
þ@

2e2
@x21
¼ @2e6
@x2@x1

; (6:2:29a)
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þ @2e5
@x2@x1

� �
;

@2e2
@x1@x3

þ 1

2

@2e5
@x22
¼ 1

2

@2e6
@x2@x3

þ @2e4
@x2@x1

� �
;

@2e3
@x2@x1

þ 1

2

@2e6
@x23
¼ 1

2

@2e5
@x2@x3

þ @2e4
@x3@x1

� �
: (6:2:29b)

One can easily check that a one-dimensional solution of this set of equations
for a mechanically free sample, i.e., all si=0, is impossible. Specifically, there is
a problem with e3 and e2. According to Eqs. (6.2.28), in a mechanically free
crystal these components should depend on x1. On the other hand, x1-depen-
dent components e3 and e2 are incompatible with the second and third of Eqs.
(6.2.29a). However, if one sets these components of strain equal to their spon-
taneous values inside the domains, i.e.,

e2 ¼ Q12P
2
s ; e3 ¼ Q11P

2
s ; (6:2:30)

the problem can be reduced to a one-dimensional one by setting

s1 ¼ s4 ¼ s5 ¼ s6 ¼ 0: (6:2:31)
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Eliminating s2 and s3 between Eqs. (6.2.27) and (6.2.28) and making use of
Eqs. (6.2.30) and (6.2.31) we arrive at the following equation for polarization
(Dvorak and Janovec, 1965):

� d
@2Pz

@x21
þ BðaPz þ b11P

3
zÞ ¼ 0; (6:2:32)

where

B ¼ 1þ 1

b11

ðQ12 þQ11Þ2

s11 þ s12
þ ðQ12 �Q11Þ2

s11 � s12

" #
: (6:2:33)

(Attention, Eqs. (6.2.32) and (6.2.33), strictly speaking do not hold for a
mechanically free sample with the domain wall! See the further discussion.)
Thus, the problem is reduced to the basic equation for the 1808 domain wall
profile, Eq. (6.2.4), which yields the tanh-type solution:

PzðxÞ ¼ Ps tanh
x

tth

� �
; tth ¼

tth0ffiffiffiffi
B
p ; (6:2:34)

where tth0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2d=a

p
is the wall thickness calculated without taking into

account the stresses induced by the order parameter nonhomogeneity. Thus,
we see that taking into account the stress effect results in a change of the spatial
scale of the wall profile.

Another manifestation of the stress effects is a change of the surface energy
density of the wall. Using relations (2.3.34), (6.2.28), (6.2.30), and (6.2.31) one
can rewrite the thermodynamic potential of the problem in terms of Pz only
(Dvorak and Janovec, 1965; Tagantsev et al., 2001a):

Feff ¼
d
2

@Pz

@x1

� �2

þB a
2
P2
z þ

b11
4

P4
z

� �
: (6:2:35)

The surface energy density sw of the wall calculated with the aid of
Eqs. (6.2.9), (6.2.34), and (6.2.35) also scales with a factor of

ffiffiffiffi
B
p

:

sw ¼
ffiffiffiffi
B
p

sw0: (6:2:36)

The above treatment has been dealing with one specified orientation of the
wall. The same approach can be applied for the description of a wall of any
orientation that is allowed by the conditions of mechanical and electrostatic
compatibilities of domains discussed in Chap. 2. To do this, one changes the
crystallographic reference frame (X1, X2, X3) to a new one (X1

0, X2
0, X3

0), where
X1
0 is normal to the wall. Although the calculation is mathematically rather

cumbersome, the scheme of the above treatment can be followed. It results in
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Eqs. (6.2.32), (6.2.34), (6.2.35), and (6.2.36) where theB-parameter is a function
of the wall orientation. For instance, for a wall making an angle of 458 with the
axes X1 and X2 one finds

B ¼ 1þ 1

b11

Q2
11ðs11 þ s12 þ s44=2Þ þ 2Q2

12s11 � 4s12Q11Q12

s11ðs11 þ s12 þ s44=2Þ=2� s212
: (6:2:37)

The orientational dependence of B is a consequence of elastic anisotropy in
the (X1, X2), plane. One can check that if this anisotropy is absent, i.e.,
2ðs11 � s12Þ � s44 ¼ 0, Eqs. (6.2.33) and (6.2.37) give the same value of B. It is
worth mentioning that in the considered case, the orientational dependence of
B is the only source of anisotropy of thickness and energy of the wall, since, in
this case, the correlation energy is isotropic in the (X1, X2) plane so that the
mechanism of orientational dependence discussed in Sect. 6.2.1 cannot be
applied. If the correlation energy is anisotropic we can generalize the equation
for the orientational dependence of wall energy and thickness (6.2.10d) by
including elastic effects, to obtain

sw
sw0
¼

ffiffiffiffiffi
d
d0

s ffiffiffiffiffiffi
B

B0

r
;

tth
tth0
¼

ffiffiffiffiffi
d
d0

s ffiffiffiffiffiffi
B0

B

r
(6:2:38)

where B0 and d0 are the values of parameters of B and d for a certain orientation
of the wall. The main result of this section, i.e., that it is possible to simplify the
problem involving the stress effects to that dealing with order parameter only,
holds in the case of the first-order phase transition. However, the renormaliza-
tion of the equations for the wall profile and the expressions for the wall
thickness and energy are more complicated than the simple scaling transforma-
tion represented by Eqs. (6.2.34), (6.2.36), and (6.2.38). In more complicated
problems, e.g., stability of a domain wall in the case of amulti-component order
parameter (like that discussed above in this section) the elastic effects, in
general, can qualitatively change the situation. A discussion of such situation
in SrTiO3 can be found in the paper by Tagantsev et al. (2001a).

Concerning the above consideration we would like to stress some important
issues. First, as one can expect, the aforementioned procedure which eliminated
elastic variable is possible only for walls which satisfy the condition of mechan-
ical compatibility of the adjacent domains. Second, though the elastic variables
can be eliminated from the equations, the price of nonzero stress components
s22 and s33 in the area of domain wall still has to be paid. For a sample having
the shape of a bar elongated along x1, this requires non-uniform mechanical
boundary conditions on the lateral (elongated) faces of the sample. To satisfy
these conditions, an x1-dependent pressure should be applied to these surfaces.
Clearly, in no real experiments this pressure is applied so that the question arises
of how the result of this section can be applied to any real situation. This
question has been recently addressed by Lee et al. (2003) for a special case of
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a wall in a proper two-dimensional ferroelastic. Being translated into the

language of our consideration the obtained answer to this question is as follows.

Far from lateral faces inside the sample, Eqs. (6.2.30) are strictly valid. There-

fore e3 and e2 are equal to their bulk spontaneous values. However, close to

these faces Eqs. (6.2.30) are violated in a way which ensures free mechanical

boundary conditions on the lateral surfaces of the sample. This will result in

deformation of the lateral surfaces of the bar which lose their planar shape in

the vicinity of the wall, unless plastic deformations occur.
Concluding this section we will discuss one more effect related to the so-

called flexoelectric coupling that plays an appreciable role in description of

phenomena associated with spatial inhomogeneity of the polarization and

strain. In terms of Helmholtz free energy it is described by a bilinear coupling

between the polarization and strain gradient (see, e.g., Tagantsev (1991)), like

shown in the following example where only P3 and e5 ¼ 2e13 variables are kept:

F ¼ w�133

2
P2
3 þ

s�144

2
e5 þ f44

@e5
@x1

P3: (6:2:39)

As clear from the minimization of this expression, this coupling leads to the

flexoelectric effect, i.e., the linear response of the polarization to the strain

gradient:

P3 ¼ �w33f44
@e5
@x1

: (6:2:40)

In the mechanically free situation, expansion (6.2.39) also implies the occur-

rence of the linear strain response to the polarization gradient:

@u3
@x1
þ @u1
@x3
¼ e5 ¼ s44f44

@P3

@x1
: (6:2:41)

Integration of this equation across a 1808 domain wall normal to X3-axis

leads to an offset of mechanical displacement u3 between two domains:

du3 ¼ 2s44f44PS: (6:2:42)

It is instructive to evaluate the strength of this effect. We will do this for a

material with high PS. We take PS ffi 0:9 C=m2 (Meyer and Vanderbilt, 2002)

for PbTiO3 at low temperatures and s44 ¼ 9� 10�12 m3=J (see Table 2.3.1).

Following atomic ‘‘estimates,’’ f-coefficients should be of the order of a few

volts (Tagantsev, 1991). This leads us to an appreciable value of a few tenths of

angstrom for the expected mechanical offset between the domains. We will be

back to this effect when discussing the microscopic theories of domain walls.
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6.2.3 Domain Walls in Selected Ferroics

The method of treating domain wall structures outlined above has been widely
applied for the description of walls in different ferroics. In this section we will
present a few examples.

6.2.3.1 Domain Walls in Uniaxial Nonferroelastic–Ferroelectrics

Uniaxial ferroelectric triglycine sulfate (TGS) provides a simple example of the
second-order phase transition driven by a single-component order parameter. It
represents the species 2/m–Pd–2 with PS directed along the y-axis. Electrically
neutral walls in TGS should be parallel to the y-direction. Since the material is
not ferroelastic, conditions of mechanical compatibility impose no restrictions
on the wall orientation. In this situation, the energetically favorable orientation
of domain walls is controlled by anisotropy of their surface energy density.
Related calculations (Fousek, 1967; Hatano et al., 1976) have been performed
following the approach formulated in the previous sections. Dependences of
thickness and surface energy densities on the angle j between the normal to the
wall and the crystallographic x-direction have been determined. It has been
shown that, after elimination of elastic variables, the problem reduces to
Eq. (6.2.35) with j-dependent d and B parameters:

dðjÞ ¼ d2121 cos2 jþ d2323 sin
2 j� d2123 sin 2j;

BðjÞ ¼ 1þ 2ðc 011k23 þ 4c 055k
2
1 þ 4c 015k1k3 þ 2q 012k3 þ 4q 052k1Þ=b

0;
(6:2:43)

k1 ¼ ðc
0

15q
0

12 � c
0

11q
0

52Þ=2ðc
0

11c
0

55 � c
02
15Þ;

k3 ¼ ðc
0

15q
0

52 � c
0

55q
0

12Þ=ðc
0

11c
0

55 � c
02
15Þ:

(6:2:44)

where c0ij and q0ij are the elastic constants and ‘‘charge/stress’’ electrostriction
coefficients in the reference frame rotated by angle jwith respect to the crystal-
lographic axes2; b0 is the coefficient of dielectric non-linearity at constant strain;
the d-coefficients correspond to the correlation energy taken in the form
(Fousek, 1969)

Fcorr ¼
1

2
d2121

@Py

@x

� �2

þ 1

2
d3232

@Py

@z

� �2

þd2321
@Py

@x

@Py

@z
(6:2:45)

Equation (6.2.35) implies a tanh shape of the polarization profile in the wall,
whose thickness and energy are given by Eq.(6.2.38) where B and d come from
Eq. (6.2.43).

2 Explicit expressions for c0ij and q
0
ij can be found in the paper by Fouskova and Fousek (1975).
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This theory enables one to estimate numerically parameters of the wall in TGS
and to determine its most favorable orientation. Using an order-of-magnitude
estimate for the correlation parameter, d = 5 � 10–14–5 � 10–13 cm2 (in CGS
units) and neglecting its anisotropy, Fousek (1967) obtained tth= 1� 10–8–3.5�
10–8 cm and sw= 4–12 erg/cm2. Hatano et al. (1976) discussed the anisotropy of
sw taking into account both angular dependences B(j) and d(j). The function
B(j) can be determined (Hatano et al., 1977) since elastic properties of TGS are
well known. As for the d(j) dependence, it reflects the anisotropy of the correla-
tion length which can be measured by X-ray critical scattering. From scattering
data the value d (20.48)= 3.6� 10–15 cm2 can be deduced. It was further assumed
(Hatano et al., 1976) that the correlation lengths along the crystallographic
directions [001], [100], and [101] are proportional to the Wigner–Seitz cell dimen-
sions in these directions. This then leads to the values d2121 = 3.71 � 10–15 cm2,
d2323 = 1.33 � 10–15 cm2, and d2321 = –0.27 � 10–15 cm2. With these data the
anisotropy of the energy and thickness of the 1808 wall in TGS was evaluated at
room temperature (Hatano et al., 1977). The results for the wall energy are shown
in Fig. 6.2.3. The wall thickness was found changing in the interval 20–35 Å. This
figure also contains analogous information for isostructural triglycine selenate
(TGSe). For TGS, the value of sw lies between 0.6 and 1.0 erg/cm2 with a
minimum at j ffi 978. This seems to explain the observations which suggest that
domain walls in TGS show a clear tendency to be oriented with j = 908. A
similar approach was employed to discuss wall energy anisotropy in NaNO2

(Hatano and Le Bihan, 1990).

One should note that all estimates for the coefficient d are very approximate
and conclusions regarding the magnitudes of wall energy and thickness must be
taken with caution. However, they all point to the fact that the wall thickness in
TGS is rather small, just several unit cell parameters.

Fig. 6.2.3 Calculated
orientational dependence of
the wall-energy densities of
TGSe at 08C and of TGS at
room temperature. After
Hatano et al. (1977)
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6.2.3.2 Domain Wall in a Multiaxial Ferroelectric: Barium Titanate

The problem of the structure of 1808 and 908 domain walls in tetragonal BaTiO3

(species m�3m� Peds� 4mm) has been addressed repeatedly by a number of
authors (Zhirnov, 1958; Kholodenko, 1962; Bulaevskii, 1964; Bulaevskii and
Ginzburg, 1964; Kittel, 1972; Cao and Cross, 1991), the most comprehensive
treatment being recently offered by Hlinka and Marton (2006). The starting
point of the theory is the Gibbs energy for the single domain BaTiO3 given by
Eq. (2.3.34) and the correlation energy (Cao and Cross, 1991):

Fcorr ¼
1
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� �
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(6:2:46)

The recently undated values of the correlation parameters are given in
Table 2.3.1. The problem is conceptually identical with that presented in
Sects. 6.2.1 and 6.2.2. Let us highlight only the most essential points of its
treatment.

We start with a 1808 wall which is perpendicular to the x1-axis and links
the domain states P3 = –Ps, P1=0, P2= 0 for x1! –1 and P3 = Ps, P1 = 0,
P2 = 0 for x1!1. We assume that the wall carries no bound charge, which is
equivalent to the requirement thatP1=0 for any x1. That reduces the number of
involved components of polarization to two and makes possible only solutions
of two types: (i) the ‘‘linear’’ solution where only P3 6¼ 0 and (ii) the ‘‘rotational’’
solution where P2 also changes on crossing the wall. Bulaevskii (1964) has
shown that in BaTiO3 the rotational solution is energetically unfavorable. As
for the linear solution, it can be readily treated on the lines of Sect. (6.2.2)
resulting (after elimination of the mechanical variables) in Eq. (6.2.11)
(Bulaevskii, 1964; Cao and Cross, 1991). That leads finally to the wall with
polarization profile typical for systems with the first-order phase transition,
Eq. (6.2.12). The orientational dependence of the wall energy was evaluated by
Dvorak and Janovec (1965) to find extremely small anisotropy of 0.13%. These
authors have taken into account only the ‘‘elastic’’ effect described by B factor
fromEq. (6.2.35). This probably explains the disagreement between their results
and the experimental data (Fousek and Safrankova, 1965). As clear from the
very anisotropic correlation energy (see Table 2.3.1), the phenomenological
theory, in fact, may predict an appreciable anisotropy of the energy of 1808
walls in BaTiO3.

Consider now a 908 wall separating domain states P1 = PS, P2 = P3 = 0
and P3 = P1 = 0, P2 = PS. This wall is a ferroelasticWf-type wall, its plane is
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fixed normal to a h110i direction. The formation of bound charge due to
polarization inhomogeneity is very unfavorable in ferroelectric. This decides
the head-to-tail configuration of the wall. Considering the material as insu-
lator and using the Poisson equation, one concludes that the projection of the
electrical displacement onto the wall normal should be constant throughout
the crystal. This condition can be properly approximated with the condition of
the constancy of the corresponding component of the polarization.3 Treating
the problem in the reference frame (XL, XT X3), where the axis XL is directed
along the wall normal, implies that PL ¼ PS=

ffiffiffi
2
p

throughout the crystal and
the problem reduces to that dealing with a single component of polarization
PT and mechanical variables.4 After elimination of the elastic variables
(cf. Sect. 6.2.2) one arrives at the effective free energy equation (6.2.11) written
in terms of PT and at the solution given by Eq. (6.2.12). The latter can be
rewritten in the cubic reference frame and describes the polarization profile in
the 908 wall as

P1ðxÞ ¼ Ps
2

1� sinhðx=tthÞ
½Aþ cosh2ðx=tthÞ�1=2

" #
;

P2ðxÞ ¼
Ps

2
1þ sinhðx=tthÞ
½Aþ cosh2ðx=tthÞ�1=2

" #
:

(6:2:47)

The expressions for parameters controlling this profile in terms of the
coefficients of the free energy expansion have been deduced by Bulaevskii
(1964); the correlation coefficient d introduced in this paper should be set
equal to ðd1111 � d1122Þ=2 (Cao and Cross, 1991).

Solution (6.2.47) is not exact because it is the component electrical displace-
ment not of the polarization that is fixed by the electrostatics. However, one can
show that inaccuracy associatedwith this fact is about 1/kc where kc is the relative
dielectric constant along the polar direction of the ferroelectric. According to
Darinskii and Fedosov (1971), at room temperature the difference between wall
energies for the exact and approximate solutions is smaller than 1%. However,
the approximate solution misses an important qualitative feature, namely, it
keeps the value of PL component of polarization exactly constant, equal to
PL ¼ PS=

ffiffiffi
2
p

, whereas in reality PL slightly deviates from this value when cross-
ing the wall. The same authors evaluated the spatial variation of PL (roughly
PS/kc) the related bound charge, and the profile of the imposed electrostatic
potential. They found that the resulting bound charge forms two back-to-back

3 This is a good approximation in materials with ‘normal’ values of the soft-mode effective
charge (of the order of the charge electronic). In ferroelectrics with anomalously small values
of this charge, like weak ferroelectrics (see Sect. 2.3.6), this approximation fails.
4 Actually, the Pz component may also appear in the wall. The stability of the available
solutions for 908 walls with respect to the appearance of this component can be investigated
following the approach outlined in Sect. 6.2.1.
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double electric layers. This kind of charge distribution does not lead to a jump of

electrostatic potential at the wall. However, this distribution was shown to create

a potential well of about 0.5 eV in the wall for a particle having the charge of an

electron. This conclusion may be of importance for mobility and pinning of the

wall by charged defects. The results of recent calculations by Hlinka andMarton

(2006) are in good agreement with these conclusions.
It is worth mentioning that, if the conductivity of the material is not negli-

gible, free carriers could compensate the internal field in the 908 wall. If the

Debye screening length lD is comparable to the wall thickness tw, this compen-

sation can be substantial. In this situation the condition of constant PL can be

strongly violated and solution (6.2.47) is no longer applicable. Problem of the

908 wall structure in BaTiO3 under the condition of complete screening of PL

has been in fact addressed by Cao and Cross (1991); they used an implicit

assumption that the bound charges related to the inhomogeneity of the polar-

ization does not create any electric field in the wall. In their approach the

problem has been reduced to that dealing with two components of the polariza-

tion for which, in general, in contrast to the aforementioned ‘‘no-compensated’’

situation, we do not have a good analytical approximation to the solution. It has

been shown that, for a special set of material parameters, a solution of type

(6.2.47) is also possible in their case. This problem has also been treated recently

by Hlinka and Marton (2006) who obtained its numerical solution for the

realistic set of the thermodynamic parameters of BaTiO3. They have also

performed the comparison of the solutions for ‘‘compensated’’ (lD55tw) and

‘‘non-compensated’’ (lD44tw) situations. The derived polarization profiles are

shown in Fig. 6.2.4. An appreciable difference between these solutions is seen.

– – –
–

–

Fig. 6.2.4 Polarization profiles in a 908 domain wall calculated for BaTiO3 at room tempera-
ture: PT, transversal component of the polarization; PL, longitudinal component of the
polarization; P, absolute value of the polarization; (a) the case of insulating crystal where
the long-range electrostatic interaction suppresses variations of PL, (b) the hypothetical case
of highly conductive crystal with the Debye screening length smaller than the wall thickness
where the depolarizing electric field in the crystal is suppressed. After Hlinka and Marton
(2006)
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The principal difference between these situations is that the long-range electro-

static coupling lets the development of the longitudinal component of the

polarization only for about 0.01PS whereas, in the compensated case, it is

about 0.3PS. It is also seen that the long-range electrostatic coupling adequately

taken into account in the non-compensated case leads to an essential shrinkage

of the wall. One should note that, for BaTiO3, the compensated situation looks

very hypothetical.
To finish the discussion of the application of the continuous thermodynamic

approach to domain walls in this crystal, we will present Table 6.2.1 where

theoretical estimates obtained for the wall energy sw and its wall width tw ¼ 2tth
(normalized to the lattice constant) are summarized.

6.2.3.3 Domain Wall in an Improper Uniaxial Ferroelastic Ferroelectric:

Gadolinium Molybdate

Gadolinium molybdate was the first discovered improper ferroelectric (Cross
et al., 1968; Dvorak, 1974). It represents the species �42m� Peds�mm2 with
n=2 (the unit cell volume is doubled in the ferroic phase), the total number of
domain states is four. We have discussed its properties in Chap. 2 in terms of a
two-component order parameter (Z1, Z2), using the Landau theory. Figure
6.2.2 shows the mapping of the four domain states on the order parameter
plane. The description of domain walls linking any two of these states requires
the knowledge of the correlation energy that can be presented in the form
(Laikhtman and Tagantsev, 1975)
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Table 6.2.1 Results of continuous theories of domain walls in tetragonal phase of BaTiO3

sw, mJ/m2 tw/a0 Ref.

1808 wall 10 2.5–10 Zhirnov (1958)

6 1.5 Hlinka and Marton (2006)

11 3.3 Bulaevskii (1964)

908 wall 2–4 12–50 Zhirnov (1958)

5 5.5 Bulaevskii (1964)

– 250 Kittel (1972)

– 9 Hlinka and Marton (2006)

7 10 Darinskii and Fedosov (1971)
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One distinguishes two categories of domain walls. Walls of the first category
link domain pairs which differ in orientation of the order parameter in the order
parameter plane by 908 as well as in sign of spontaneous polarization and
spontaneous strain; to be short, we shall call them polarization walls. Walls of
the second category, referred to as antiphase boundaries, link domain pairs
identical in polarization and strain but differing in sign of the order parameter;
in terminology of Chap. 2, these walls link the translational domains. Both
categories of domain walls inGMOhave been discussed by a number of authors
(Fousek, 1967; Ishibashi and Dvorak, 1976; Sonin and Tagantsev, 1988, 1989;
Tagantsev and Sonin, 1989; Rychetsky et al., 1992).

Let us start with the polarization wall. The conditions of mechanical compat-
ibility fix its orientation as perpendicular to either the X1 or the X2 axis of the
parent phase. For this orientation, after eliminating the elastic variables and
making use of the correlation energy given by Eq. (6.2.48) and the Landau
expansion of the thermodynamic potential (Dvorak, 1971) (a simplified version
of the latter being given by Eq. (2.3.36)), one obtains the effective free energy in
terms of the order parameter only. The resulting effective energy has the struc-
ture identical to that of the free energy written neglecting stress effect. After
rotation of coordinates in the order parameter plane the resulting effective free
energy can be presented in the form given by Eq. (6.2.16) to which the isotropic
six-order invariant gðn21 þ n22Þ

3=6 should be added. In terms of this effective free
energy the problem has been addressed by Fousková and Fousek (1975) and
Laikhtman and Tagantsev (1975). Both groups of authors have argued that the
evolution of the order parameter in the wall is close to a pure rotation, its spatial
dependence being given by Eq. (6.2.26). Fousková and Fousek based their
conclusion on the comparison of the energy corresponding to the arc-type
trajectory (Rw in Fig. 6.2.2) linking the domain states in the order parameter
plane and that of the trajectory passing through the point (Z1=0, Z2=0). Laikht-
man and Tagantsev have shown that the purely rotational solution, i.e., Eq.
(6.2.26), gives a good approximation for the exact solution of the problem in the
case of a weak anisotropy in the order parameter plane. They argue that indeed
in GMO this anisotropy is weak, supporting their hypothesis by data on ultra-
sonic scattering on the wall. It has been pointed out that if a purely rotational
profile of the wall takes place, the wall should be anomalously thick.

Antiphase boundaries of two typesmay exist inGMO, the so-called linear wall
and rotational wall; corresponding trajectories in the order parameter plane are
shown in Fig. 6.2.2 and marked L and R, respectively. The antiphase boundary
has been treated in terms of the aforementioned effective free energy employed
for the treatment of the polarization wall (Fousková and Fousek, 1975; Ishibashi
andDvorak, 1976; Sonin and Tagantsev, 1989, 1988), though this is fully justified
only when it is oriented perpendicular to the crystallographic axes of the parent
phase. Analyses close to that outlined in Sect. 6.2.1.2 have been offered. It has
been established that, close to phase transition, the linear type of the wall is the
only stable one (Sonin and Tagantsev, 1989, 1988). The profile of the order para-
meter modulus in the wall was found typical for the case of the first-order phase
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transition (Fousková and Fousek, 1975); see Eq. (6.2.12). According to Sonin and
Tagantsev (1989) the parameter G= |b1 – b2|/(|a|g)

1/2 plays the decisive role in the
stability criteria of thewall. Just below the phase transition (largeG) a linear solution
is advantageous while, as G decreases with falling temperature, the boundary
changes into a rotational one or splits into two polarization boundaries. At a certain
temperature, therefore, we may expect a phase transition in the wall structure.
Discussions of this kind of phase transition can be found in papers by Ishibashi
and Dvořák (1976), Lajzerowicz and Niez (1979), Bullbich and Gufan (1989), and
the aforementioned authors (Sonin and Tagantsev, 1989, 1988). The transition has
been found very peculiar, namely, its phase diagram in terms of coefficients of the
free energy expansion contains a multicritical point of the infinite order (Sonin and
Tagantsev, 1989, 1988).

An additional interesting aspect of antiphase walls was pointed out by Tagant-
sev and Sonin (1989). It is obvious that antiphase walls of rotational character
can be represented in the order parameter space by two different paths with the
opposite sense of rotation, clockwise and anticlockwise. It can be shown that
their energies are equal (Fousková and Fousek, 1975; Tagantsev and Sonin,
1989). In different sections of one domain wall the different solutions may
occur, meeting along a line termed circulation line. This object can also be
classified as an order parameter vortex. Such a line represents an additional,
the so-called topological ‘‘defect’’ within the domain wall. It can be illustrated by
the closed contour in the order parameter plane shown in Fig. 6.2.5. To some
extent the circulation lines are an analogy of the Bloch line in ferromagnetic
domain walls. Within antiphase walls, strain components exz and eyz may be
induced due to energy-invariant coupling order parameter gradients with the
strain tensor, such as eyz[Z1 (@Z2/@x) – Z2 (@Z1/@x)]. The two wall sections with
opposite sense of rotation differ in the sign of this invariant. Therefore an applied
shear stress syz prefers one of the wall paths, clockwise or anticlockwise, and thus
it would exert a pressure on the circulation line. It has been shown that, as one
expects for topological defects, this pressure is proportional to the area of the
corresponding contour in the order parameter plane (Fig. 6.2.3).

Fig. 6.2.5 The so-called
circulation line—
topological defect of the
order parameter, analogue
of the Bloch line in
ferromagnetic domain walls.
Mapping onto the order
parameter plane. Arrows
show the change of the order
parameter corresponding to
walking around the defect in
the real space. After
Tagantsev and Sonin (1989)
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6.2.3.4 Domain Wall in Nonferroelectrics

We now consider examples of nonferroelectric ferroics with three- and two-
component order parameter. A continuum theory of domain walls in proper
ferroelastics corresponding to species m�3m� es� 4=mmm with the first-order
transition, driven by a three-component order parameter, was developed by
Barsch and Krumhansl (1984). This theory is applicable to ferroelastics BiVO4

and Pb3(PO4)2. Domain walls in an improper ferroelastic with a three-compo-
nent order parameter (Z1, Z2, Z3) corresponding to the same species have been
treated by Cao and Barsch (1990) and the theory was applied to SrTiO3.
Further detailed theoretical analysis of domain walls in this crystal has been
performed by Tagantsev et al. (2001a). The situation has been found typical for
a system with a multi-component order parameter (see Sect. 6.2.1.2) and to a
certain extent similar to that in BaTiO3 where the three-component order
parameter is polar, however, much more complicated in several aspects.

First, as we have seen above, in BaTiO3 the electrostatic effects do not allow
for ‘‘longitudinal’’ linear 1808 walls, i.e., walls where the i-component of polar-
ization changes with the i-component of the coordinate. In the case of SrTiO3,
this limitation is absent and, actually, the boundaries of this type are the most
energetically favorable. This type of boundaries, which are antiphase and ‘‘1808
walls’’ in the order parameter plane, exhibits the traditional tanh-type profile
(Cao and Barsch, 1990). At 40 K the wall thickness, tw, have been evaluated as
some two lattice constants5 (Tagantsev et al., 2001a). Another type of antiphase
boundary links the domain states which differ in sign of the i-component of the
order parameter whereas the plane of boundary is parallel to the i-component
of the coordinate. According to Tagantsev et al. (2001a), the properties of these
walls are very different from those of the longitudinal walls. These are expected
to be much thicker (20–25 lattice constants at 40 K), having the Néel-type
structure (with nonzero longitudinal component of the order parameter in the
wall). In addition, at a temperature of about 40K the nonpolar SrTiO3 becomes
unstable with respect to the appearance of spontaneous polarization in the body
of the wall, which according to the authors may reach a value of 4 mC/cm2.

In addition, the situation with ferroelastic (908) walls in SrTiO3 is more com-
plicated than in BaTiO3, since the condition of electroneutrality @Pi=@xi ¼ 0 that
made the problem effectively one component (analytically solvable) is here not
applicable. Therefore, in contrast to BaTiO3, the problem does not have a general
analytical solution. Cao and Barsch (1990) offered an analytical solution for the
case when a special relation between the parameters of the problem is satisfied.
The result obtained actually corresponds to the special case originally discussed by
Ishibashi and Dvorak (1976) (cf. Eqs. (6.2.20), (6.2.21), and (6.2.22)).

Among systems with a two-component order parameter, great attention has
been paid to compounds KSCN and Hg2Br2. Both represent the species

5 Cao and Barsch (1990) give a much smaller value for tw because of a lost numerical factor
(Tagantsev et al., 2001a).
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4/mmm–es–mmmwith n=2 although the microscopic mechanisms of their transi-
tions are very different (Rychetsky and Schranz, 1993). The situation in this
system is similar to GMO: four domain states that can be linked either by
ferroelastic walls (‘‘908’’ walls) or by antiphase boundaries (‘‘1808’’ walls). For
the ferroelastic walls and antiphase boundaries oriented perpendicular to
either X1 or X2 axes of the parent phase, after elimination of the elastic vari-
ables, the problem reduces to that treated in detail in Sect. 6.2.1.2 (see
Eqs. (6.2.17)). For an antiphase boundary with the normal arbitrarily oriented
in the (X1, X2) plane, the coefficients d, a, and b in these equations should be
renormalized, the renormalizing factor being different for the first and second
equations and depending on the orientation of the wall. Quantitative analysis
of properties of both types of domainwalls in thementionedmaterials has been
performed by Rychetsky and Schranz (1993, 1994) and by Rychetsky (1995).
For ferroelastic walls, these authors found that the solution is close to the exact
solution of Ishibashi and Dvorak (1976) (see Eqs. (6.2.20), (6.2.21), and
(6.2.22)). For this type ofwalls, their numerical estimations led to the following
values: at 5K belowTC, forKSCN swffi 0.26 erg/cm2 and twffi 26 Å, i.e., about
4 lattice constants; forHg2Br2 swffi 0.008 erg/cm2 and tthffi 320A, i.e., about 70
lattice constants. As for the antiphase boundary, Rychetsky and Schranz
(1993), using the results of a more general analysis by Bullbich and Gufan
(1989) and by Sonin and Tagantsev (1989), reached the conclusion that, for
Hg2Br2, the linear solution (L-curve in Fig. 6.2.2) is unstable whereas, for
KSCN, the wall of this type is stable for any orientation.

6.2.4 Concluding Remarks

Continuum theories of domain walls provide an attractive issue for theoretical
activities and the subject was treated in a large number of papers. We have
demonstrated on several examples that the general approach is the same, as it
was outlined in Sects. 6.2.1 and 6.2.2. It should be noted that, the case of the
multi-component order parameter, the theory often results in coupled Euler
equations which have no analytical solution. Most of the published theories
avoid this problem by choosing particular relations between involved coeffi-
cients by which these equations are decoupled; this then leads to well-known
kink-type solutions. A more accurate approach, however, is to resort to numer-
ical solutions (Cao and Cross, 1994; Hlinka and Marton, 2006).

One can ask the general question to what extent the continuum approach is
justified. We can assume that continuum treatment of inhomogeneities will be
acceptable when the local changes of Z across the unit cell distance a0 are much
smaller than its spontaneous value in the domains ZS. Roughly speaking, we
expect the theory to give a good approximation when the wall thickness tth is
larger than at least a few lattice constants a0 (better 10a0). The overview of data
on domain wall thicknesses presented in Table 6.1.1, which are rather contra-
dictory, allows for the possibility that in some materials this condition is
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fulfilled although the truly high-resolution methods suggest that 10a0 is often
above the upper limit. For example, neutron scattering data (Bruce, 1981) for
KH2PO4 led to an outright rejection of any continuum approach in this mate-
rial. In any case, predictions based on continuum theories have proved useful in
several aspects. First, they themselves point out that ferroic walls are very thin;
we have quoted a number of estimates which typically predict tth � 10a0.
Second, the thermodynamic approach shows which material parameters con-
trol domain wall structure and thickness and this may give some guidelines for
assessing domain-conditioned properties of different materials.

An issue in reach of the continuum approach is the behavior of the domain
walls which are close to the sample surface or inside ultra thin films (free
standing or deposited onto thick substrates). It was pointed out above that
even the condition for permissible walls, Eq. (2.2.10), will be influenced by
sample thickness (Shuvalov et al., 1987; Glushkov et al., 1987) so that some
domain pairs can exist, which otherwise represent the R cases. Thus, one can
clearly expect an appreciable impact of the aforementioned factors on the
domain wall structure. This effect may be even of practical importance in
view of increasing applications of ferroelectric thin films. However, because
of the lack of space, in this book, we restrict ourselves only to referring the
reader to some relevant publications (Darinskii et al., 1989a; Novak and Salje,
1998; Lee et al., 2002; Conti and Salje, 2001).

6.3 Microscopic Theories of Domain Walls

In the previous section we have discussed the main issues of theories of domain
walls in ferroics, which are based on the Landau expansions in terms of a
continuous order parameter appended with terms containing the order para-
meter gradient. Though such theories make a convenient tool for theoretical
description of domain walls, their application to real systems is often limited.
First, the value of the gradient term is usually difficult to evaluate. Second, the
domain wall thickness obtained in these theories often occurs to be of the order
of lattice constants of the material. This makes the results obtained in the
continuum theory, at best, marginally justified. All these facts make important
theories of domain walls dealing with atomic displacements rather than with a
continuous order parameter. We will call these theories microscopic in contrast
to the first of theories, which we call macroscopic. In this section we discuss
microscopic theories of domain walls focusing on the most addressed in the
literature examples of BaTiO3 and PbTiO3 ferroelectrics.

It was the microscopic approach that was used in the first theoretical studies
of domain walls in ferroelectrics (Kinase and Takahasi, 1957). In early papers
treating the problem on the microscopical level (Kinase and Takahasi, 1957;
Kinase et al., 1970; Lawless, 1968), the authors addressed domain walls in
tetragonal BaTiO3 in terms of refinements of the classical Slater model (Slater,
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1950). In these papers, the Ti displacements were treated as the main bearer of

the ferroelectric polarization whereas the ferroelectric instability was described

in terms of an interplay between the short range ionic repulsion and destabiliz-

ing ‘‘finite range’’ part of dipole–dipole interaction (with the contribution of the

macroscopic electric field eliminated). In its original version formulated for the

bulk material, the Slater model provided a reasonable description for the

tetragonal phase in BaTiO3. When adapted to the problem of domain walls,

the new element of the model was the necessity to evaluate the dipole–dipole

interaction in the case of an inhomogeneous distribution of ‘‘ferroelectric’’

dipoles. All calculations performed using this method yielded ‘‘essentially zero

thickness’’ for 1808 walls in tetragonal BaTiO3. That is compatible with the

prediction of the phenomenological theory which gives the wall thickness close

to the lattice constant. For such thin walls, the wall energy naturally becomes

sensitive to its position in the crystalline lattice. The energies of differently

oriented and centered 1808 walls in tetragonal BaTiO3 have been evaluated by

Lawless (1968). He found that the wall preferable orientation is (100) with the

perovskite A-site (i.e., Ba) in its center (see Fig. 6.3.1 and Table 6.3.1 for

explanation and more information). The B-site (i.e., Ti)-centered (100) wall

was found to have a much higher energy. The evaluated energy of 1808 walls of
(110) orientation was also found to be a few times larger than that of the A-site-

centered (100) wall. This result is very different from a very small (0.13%)

anisotropy of the energy of this kind of wall predicted by the macroscopic

theory (Dvorak and Janovec, 1965). At the same time, an appreciable aniso-

tropy of the 1808-walls predicted by the microscopic theory is compatible with

the experimental observations of Fousek and Safrankova (1965) who reported

preferable (100) orientation for walls of this kind.

Fig. 6.3.1 Schematic drawing of different orientations and positions of a 1808 wall in a
tetragonal BaTiO3-like perovskite ferroelectric. Only the B-site (Ti) and oxygen ions lying
just above and below the B-sites are shown. Notations of the planes correspond to those of
Table 6.3.1. Reprinted with permission from Lawless (1968). Copyright (1968) by the
American Physical Society
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The refined Slater model has also been used for the description of 908walls in
tetragonal BaTiO3 by Kinase et al. (1970). They have evaluated the energy and
thickness for the walls centered on (110) plane containing metals and (110)

plane containing only oxygens. The wall of the later type was found to be more

energetically favorable. The theory predicted rather thick 908 walls (about 10
lattice constants).

Recent developments of ab initio calculations of crystalline solids make

possible more involved considerations of domain wall in ferroelectrics. Two
approaches have been employed in these considerations, which can be called

true ab initio approach and method of effective Hamiltonian.
The ab initio approach is readily applicable in the case where the ferroelectric

phase of interest is favorable at zero temperature. In this approach, the parameters

of the wall at zero temperature are calculated using the first-principle pseudo-

potential method based on density functional theory (Payne et al., 1992). The
structure of the wall is determined by minimizing (with respect to ionic displace-

ments) the total energy of the system containing the wall; the wall energy is found
by comparing the energy of the system with the wall and without it. The computer

facilities typically enable calculations for systems (supercell) containing up to 15

unit cells of thematerial with periodically boundary conditions. This technique has
been employed formodeling domain walls in PbTiO3 by Poykko andChadi (1999)

and byMeyer and Vanderbilt (2002). Both groups found that, for (100) 1808 walls
have minimal energy if they are A-site centered (see Table 6.3.1). This preferable

position of the wall is the same as in the aforementioned calculations for BaTiO3.
On the same basis, 908 walls in PbTiO3 have been addressed by Meyer and

Vanderbilt (2002). The wall energy has been found some four times smaller than

Table 6.3.1 Results of microscopic theories of domain walls

(100)-A (100)-B (110)-M (110)-O Barr. tw=a Temp. Ref.

BaTiO3

1808
1.4 �1 RT Kinase and

Takahasi (1957)

1.52 47.9 45.3 10.3 46 �1 RT Lawless (1968)

16 1.4 RT Padilla et al. (1996)

BaTiO3

908
22.5 36.4 14 9–10 RT Kinase et al., (1970)

PbTiO3

1808
100 220 120 �1 0 K Poykko and Chadi

(1999)

132 169 37 �1 0 K Meyer and
Vanderbilt (2002)

PbTiO3

908
35 1.6 1.3 0 K Meyer and

Vanderbilt (2002)

Columns 2–4 give the energy of the walls as a function of their orientation and the position of
their central plane: A and B indicate the planes passing through A and B perovskite sites;
M indicates a plane passing through the ions of metals; O indicates a plane passing through
the oxygen ions only. Column ‘‘Barr.’’ gives the height of the Peierls barrier. All energies are
given in mJ/m2. The rest of the columns give the wall thickness normalized to the lattice
constant, temperature, and the references
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for the 1808 wall. The activation barrier for the wall motion (the Peierls barrier)
was calculated to be much smaller than the wall energy (1.6 compared to 35 mJ/
m2). Both kinds of walls have been found atomically thin. The results of calcula-
tions by Meyer and Vanderbilt for the 1808 wall are illustrated in Fig. 6.3.2 where
the ferroelectric polarization is presented as a function of the distance across the
wall. The offset of the Pb position shown in this figure has been estimated as 0.6 Å.
This result is compatible with that conditioned by the flexoelectric effect in the
continuum theory (Sect. 6.2.2). However, at present, it is not clear how quantita-
tive comparison of these results can be done.6

Fig. 6.3.2 Change of polarization across the Pb-centered (a) and Ti-centered (b) 1808 walls
calculated for PbTiO3 at 0 K. Rz denotes the polar distortions of each lattice plane in the
z-direction, in the units of the distortion associated with the bulk spontaneous polarization.
The arrows indicate the sense of these distortions in the metal-oxide planes. The lengths of the
arrows are proportional to the magnitudes of the distortions. Reprinted with permission from
Meyer and Vanderbilt (2002). Copyright (2002) by the American Physical Society

6 The problem is that the optical displacements of the ions (or internal strains) are by
definition defined to within an arbitrary constant (see, e.g., a detailed discussion of Tagantsev,
1991). This makes difficult separation between the optical and acoustical displacements
(which enter the deformation tensor) on the two sides of the wall. Without this separation,
one cannot tell what mechanical off-set corresponds to a given profile of atomic displace-
ments. In Meyer and Vanderbilt (2002), this separation has been postulated and mechanical
offset of 0.04 Å across the wall has been calculated. However, the interpretation of this result
is not clear because of the apparent ambiguity of the aforementioned separation.

318 6 Domain Walls at Rest



Another prediction of the ab initio calculations (Meyer and Vanderbilt,
2002) is the offset of the electrostatic potential at 908 walls associated with
nonzero longitudinal component of the polarization in the wall. This predic-
tion is qualitatively different from that of the continuum theory (mentioned in
Sect. 6.2.3 in the context of 908 walls in BaTiO3). According to the continuum
theory (Darinskii and Fedosov, 1971) the bound charge related to the nonzero
longitudinal component of the polarization forms two back-to-back double
electric layers which do not create a potential offset at the wall (cf. Sect. 6.2.3).

The second ab initio technique, the method of effective Hamiltonian, is sum-
moned when the ferroelectric phase of interest exists only at finite temperatures,
which is the case of tetragonal phase in BaTiO3. The idea of this method is to
calculate the energy of the crystalline structure as an expansion in terms of a
limited number of atomic displacements in a unit cell (counted from the parent
cubic structure) and components of the strain tensor. The coefficients of this
expansion are calculated by using the first-principle approach mentioned above.
The equilibrium state of the system is further determined by using Monte-Carlo
simulations with the Hamiltonian obtained. This method has been successfully
applied to modeling the sequence of the phase transition in the single domain
BaTiO3 (Zhong et al., 1995).Using thismethod, the structure and energy not only
of the ground state but also that of a metastable state containing a domain wall
can be determined. Calculations performed in terms of this approach (Padilla
et al., 1996) gives for the energy of 1808walls inBaTiO3 a value of 16mJ/m2which
is some 10 times larger than those of the earlier calculations (see Table 6.3.1). The
same authors have found the (100) walls are atomically thin and have lower
energywhen centered onA-site plane. These results agree with those of the earlier
calculations in terms of the refined Slater model.

6.4 How Flat Is the Wall?

Considering a ferroic domain wall one reasonably poses a question of how far is
its real shape from an ideally flat surface. It is clear that a flat domain wall which
crosses an ideal crystalline ferroic can adjust its orientation and position with
respect to the crystalline lattice to correspond to the absolute energy minimum
of the system ‘‘crystal with a wall.’’ This means that, at zero temperature and in a
defect-free crystalline material, domain walls in ferroics should be perfectly flat.
However, at finite temperature and in a real crystal containing defects, this may
not be true. Actually, strictly speaking this is never true since both temperature
fluctuations and defects situated close to the wall will inevitably locally bend it.
When domain wall deviates from its ideally flat state one speaks about wall
roughening.

To describe the roughening effect, one uses the scheme that we explain in
terms of a two-dimensional model. It this model, the two adjacent domains
correspond to two areas on the plane and the domain wall dividing the domains
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corresponds to a linear boundary dividing the areas. The finite surface energy of
the wall in this case corresponds to a finite linear tension of this boundary. At
0 K in a defect-free crystal, because of this linear tension the straight ‘‘state’’ of
the boundary is energetically favorable. The temperature and defects will
roughen the boundary, i.e., make it to deviate from the straight ‘‘state.’’
The notions of the rough and flat walls can be introduced by considering a
segment of the boundary of the length L and look for a rectangle of this length
which in a symmetric way covers an essential fraction (e.g., 50%) of this
segment (see Fig. 6.4.1). The width of the found rectangle is denoted as
w. Clearly, for very small L, the width w will somehow increase with increasing
L. However, with further increase of L two cases are possible: (i) w tends to a
finite limit and (ii) w keeps increasing at L!1. The boundary is called flat,
when it corresponds to the first case and rough in the second case. This scheme
can be readily generalized to the three-dimensional situation corresponding to a
wall in a ferroic crystal. In this case, to characterize the wall roughening, the
domain wall is to be essentially covered by a parallelepiped. The above defini-
tion of the roughening effect does not exactly correspond to its strict mathe-
matical definition, which we will give below in the text, though it is practically
equivalent to it.

The problem of ferroic domain wall roughening makes a special case of the

problem of interface roughening. More general, it is the problem of roughening

of the so-called topological defects (Chaikin and Lubensky, 1995). This pro-

blem covers the behavior of different systems. The roughening issues of liquid/

vapor interfaces, dislocations, crystal facets, and magnetic flux vortices in

superconductors have been intensively studied by theoreticians and experimen-

talists (see, e.g., Brazovskii and Nattermann, 2004). The general theoretical

approach to the problem is readily applicable to the case of ferroic domain wall,

however, its implication in this case have been rarely discussed (Kolomeisky et al.,

1990; Nattermann, 1983). The experimental studies of the ferroic walls in the

context of roughening phenomena are also very limited. However, we believe that

the basic knowledge on the roughening phenomenamay be useful for the researches

working in the field of ferroic domains. This has motivated the inclusion of this

Fig. 6.4.1 Schematic drawing of a segment of length L of a one-dimensional domain wall
which deviates from its flat (straight) state. The width of the rectangle which covers some 50%
of the curved length of this segment is denoted as w
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section in the book. In this section, we will summarize the implication of
the general theory of the interface roughening to the case of ferroic domain
wall, elucidate some of the results in terms of simple scaling arguments, and
discuss the experimental situation. More detailed and advanced discussion
of the matter can be found, e.g., in the review paper by Brazovskii and
Nattermann (2004).

To finish this introductory text to this section we would like to mention that,
in application to ferroic domain wall at rest, the roughening problem appears to
be rather academic. At the same time, a treatment essentially based on the
roughening approach has been found extremely fruitful for the problems of
domain pinning and creep. In this context this section makes a basis for the
discussion of an issue of high practical importance, namely, the role of defects in
switching, which will be addressed in Chap. 8.

6.4.1 Mathematical Problem

For the mathematical description of roughening effect, the following scheme is
used (Chaikin and Lubensky, 1995). One considers the deviation wðx1; x2Þ of
the wall from its flat position, with ðx1; x2Þ being the in-plane Cartesian coor-
dinates of the considered point on the wall. If the mean square of the difference
wðx1; x2Þ � wð0; 0Þ increases without saturation with increasing jx1j or/and jx2j,
then one says that the wall is rough, otherwise one says that the wall is flat. To
mathematically quantify the roughness of the wall one introduces the notion of
roughness or wandering exponent B. For the case of an in-plane isotropic wall, it
is introduced by the relation

w2ðLÞ 	 wðx1; x2Þ � wð0; 0Þ½ �2
D E

/ L2B at L!1; (6:4:1)

where L is the length of the ðx1; x2Þ vector and h
 
 
i stands with thermodynamic
averaging or averaging over defect configurations. If B 
 0, the wall is rough,
the case of B=0 formally corresponding to the case of logarithmic dependence.
In the case of in-plane wall anisotropy, in a similar way, one can introduce the
exponents B1 and B2 corresponding to the limits jx1j ! 1 at x2 ¼ 0 and
jx2j ! 1 at x1 ¼ 0, respectively.

The absolute value of the typical wall wandering and the wall roughness
exponent are contorted by many factors. These are the temperature, local
surface energy of the wall, additional electrostatic and/or elastic energy arising
when the local orientation of the wall deviates for that permissible (electrically
and mechanically), Peierls potential (see Sect. 8.4), and defects.

In the following, when discussing the impact of defects we will consider only
the case of point defects. Two types of defects are commonly distinguished:
random field (RF) defects and random bond (RB) defects (see, e.g., Levanyuk
and Sigov, 1988). The energy of an RF defect is different for different domain
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states whereas the energy of an RB defect is the same for all domain states but it

is different when the defect is in the bulk of a domain and in a domain wall.

When an RF defect is crossing the plane of a domain wall, the variation of the

energy of the system is step-like, whereas in the case of an RB defect it is a

variation having the form of a smeared d function. This is illustrated in Fig. 6.4.2.

Examples of RF defects are well known for perovskite ferroelectrics (e.g.,
BaTiO3 and Pb(Zr,Ti)O3). In these materials, a B-site substitution with an ion
of smaller valence (e.g., Mn+3 for Ti+4 in BaTiO3; see Sect. 8.6.1) when
compensated with an oxygen vacancy creates an electrical dipole serving as an
RF defect. The examples of RB defects have not been discussed for ferro-
electrics though one may expect appearance of this kind of defects as a result
of isovalent substitutions.

6.4.2 Nonferroelectric/Nonferroelastic Walls

We start from the simplest case of the wall separating domains which cannot be
distinguished neither by spontaneous polarization nor by spontaneous strain.
Examples of such walls are provided by domain wall in high-order ferroics and
by antiphase boundaries in materials exhibiting a transition with unit cell
multiplication. A change of orientation of such walls is not associated with
the appearance of macroscopic electric or elastic fields, in other words, they are
electrically and mechanically permissible for any orientation. Walls of this kind
are ‘‘flattened’’ by the surface tension and the Peierls crystalline potential.
According to existing theories (see, e.g., Chaikin and Lubensky, 1995), in a
defect-free crystal, the competition between thermal fluctuations and the flat-
tening factor leads to the so-called roughening phase transition: At low

Fig. 6.4.2 Schematic plot of the energy of a domain wall U(x) as function of the distance
x� x0 between the wall and a defect: (a) random field (RF) defect and (b) random bond (RB)
defect
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temperatures the wall is localized in one potential minimum of the Peierls

potential whereas above a certain transition temperature the wall becomes
‘‘logarithmically’’ rough. Well above the transition, the average (6.4.1) charac-

terizing roughness can be found as

w2ðLÞ ¼ kBT

psw
lnðL=aÞ; (6:4:2)

where a is the lattice constant and sw is the surface energy of the wall per unit
area, which is taken isotropic so that the energy of the bent wall can be written

as the following integral over the wall area:

U ¼ sw

Z
1þ 1

2
ðDwÞ2

� 	
dS (6:4:3)

This situation corresponds to the roughness exponent B = 0.
A wall in an ultra thin film where only the in-plane roughness matters

corresponds to an effectively one-dimensional problem. In this case, the integral

in Eq. (6.4.3) can be treated as one dimensional. The change of the effective
dimension of the problem strongly changes the situation; now the wall is rough

at any temperature with the roughness exponent B ¼ 1=2. Specifically, one finds

w2ðLÞ ¼ kBT

psw

L

h
; (6:4:4)

where h is the film thickness.
The derivation of the above relations is out of the scope of this book.

However, to give the physical idea behind the trends controlling the roughening

phenomena, we will obtain the roughness exponents using the so-called
‘‘Fluery-type’’ or ‘‘Imry–Ma’’ scaling arguments (Kardar, 1987). In this
approach, one evaluates the energy, Ub, associated with a small bulge on a

wall. Such a bulge is schematically shown in Fig. 6.4.3. In one-dimensional case,
simple geometrical arguments yield7

Ub ffi sw
h

L
w2: (6:4:5)

From this relation, it is seen that for the same energy, larger displacements of
the wall w can be obtained with a larger in-plane size of the bulge L. This

expresses the trend of the wall to roughening. The roughening law is fairly

7 Here and thereafter the use of sign ‘ffi’ means that we are dealing with rough order-of-
magnitude estimates. The exact relations can contain numerical factors varying from a few
tenths to a few units.
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reproduced by the relation between w and L for a typical thermal fluctuation
with the energy kBT. Indeed, the relation Ub ffi kBT yields

w2 ffi kBT

sw

L

h
(6:4:6)

in qualitative agreement with Eq. (6.4.4).
For a normal two-dimensional wall in a three-dimensional sample the energy

of the bulge (shown in Fig. 6.4.3 with L1 ¼ L2 ¼ L) can be evaluated as8

Ub ffi sww2: (6:4:7)

In this case, the relation Ub ffi kBT gives w2 ffi kBT=sw which, being inter-
preted as an indication to the absence of the ‘‘power law’’ roughening, is also
compatible to Eq. (6.4.2).

The above results for the exponents of thermal roughening, Bth, can be
presented by the formula

Bth ¼
2� d

2
: (6:4:8)

where d stands with the effective dimension of the wall, i.e., d= 2 for a normal
wall and d = 1 for the effectively one-dimensional situation in ultra thin films.

Investigations of systems with defects showed that the thermal roughening
effect discussed above is substantially weaker than that due to the defects. Let us
show this for the case of RF defects using the scaling arguments. Consider a flat
two-dimensional wall in a material with point defects, the average distance
between them being D. The energy of such a wall may be reduced by making
a bulge on it. The reason for it is as follows. By making on the wall a bulge with
dimensions w and L (see Fig. 6.4.3 with L1 ¼ L2 ¼ L), one changes the energy
of N ffi L2w=D3 defects. Because of the randomness of their orientations, on
average, the variation of the energy of the defects is zero to within�n

ffiffiffiffi
N
p

, where

Fig. 6.4.3 Schematic
drawing of a bulge on a
domain wall

8 Here, for simplicity, we consider the case of a domain wall with the isotropic surface tension.
If the surface tension is anisotropic, obviously for the optimal bulges L1 6¼ L2. In this case,
however,L1 / L2 and one can readily show that the roughness exponent will be the same as in
the case of the isotropic surface tension.
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n is the coupling energy per defect. Thus, by bulging the wall may reduce the
energy of the defects in the crystal by a value of

URF ffi n
L2w

D3

� �1=2

: (6:4:9)

However, this reduction is limited by the extra surface energy of the bulge,
which is given by Eq. (6.4.7). The relation between the dimensions of the
optimal bulge can be found by minimizing the sum of the surface and defect
energy, Eqs. (6.4.7) and (6.4.9). This relation reads

w ffi 1

D

n
sw

� �2=3

L2=3: (6:4:10)

According to this relation, a deviation of the wall from its flat state is
energetically favorable and the larger the wall segment, the stronger this devia-
tion. This relation is also interpreted as the roughening law with the exponent
B ¼ 2=3. Thus, we see that the roughening effect of defects is stronger that that
of thermal fluctuations.

Similar consideration gives for the one-dimensional case B ¼ 1. These results
for the case of RF defects are confirmed by a rigorous analysis. They can be
written in the general form

BRF ¼
4� d

3
; (6:4:11)

where d stands for the dimension of the wall (d=2 for the wall in a bulk crystal
and d = 1 for the effectively one-dimensional situation).

Random bond (RB) defects are also more efficient in roughening than
thermal fluctuations. In this case, the roughness exponent is linked to the
dimension of the wall as

BRB ¼
4� d

b
: (6:4:12)

The value of parameter b = 4.5 has been rigorously established only for
the one-dimensional case. For the case of a wall in a bulk crystal (d=2), there is
no consensus on the value of b: Values between 4 and 5 have been obtained
in different approaches (Brazovskii and Nattermann, 2004; Kardar, 1987;
Nattermann et al., 1990).

6.4.3 Walls in Ferroelectrics and Ferroelastics

The key feature of ferroelectric and ferroelastic domain walls is that their
bending is associated with the appearance of macroscopic (electric and elastic)
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fields. This effect makes an additional flattening factor. Let us illustrate this
point in terms of the scaling arguments for the case of RF defects interacting
with ferroelectric and ferroelastic walls.

Consider the roughening of a 1808 ferroelectric/nonferroelastic wall. Bearing
in mind the experience with macroscopic bulging of this type of wall, which is
known to be strongly anisotropic, we assume for the moment that the optimal
bulge should be elongated in the direction of the spontaneous polarization to
reduce the depolarizing energy. Thus it should be characterized with three
spatial scales, L1, L2, and w (L244L144w), as shown in Fig. 6.4.3. For this
configuration, the expression for the surface and RF energies, Eqs. (6.4.7) and
(6.4.9), can be generalized to the following forms:

Ub ffi sww2 L2

L1
(6:4:13)

and

URF ffi n
L1L2w

D3

� �1=2

: (6:4:14)

The electrostatic energy associated with the depolarizing field can be roughly
estimated as that of an elongated ellipsoid with the semi-axes L1, L2, and w
(L244L144w):

Udep ffi g
L2
1w

2

L2
with g ¼ P2

S

eoka
; (6:4:15)

where PS and ka are the spontaneous polarization and relative permittivity of
ferroelectrics in the direction normal to the spontaneous polarization.9 Optimizing
the sum of the surface and depolarizing energy one finds that L2 scales as L

3=2
1 .

Further optimizationwhich takes into account theRF energy leads to the relations
between the height of the bulge and its in-plane dimensions: w / L

1=2
1 and

w / L
1=3
2 . Thus, following the arguments used in the previous consideration we

conclude that, in the case of ferroelectric wall, the roughening is anisotropic with
the exponents B1 ¼ 1=2 and B2 ¼ 1=3. This implies, as one can expect, a stronger
roughening in the direction normal to the spontaneous polarization.

The above analysis, however, has been performed under the assumption that
the optimal bulge is essentially elongated, i.e., L244L1. This is valid only for
distances which are large enough, specifically for

L2;L144Ldip ¼ sw=g: (6:4:16)

9 Estimate (6.4.15) corresponds to the estimate of the depolarizing energy associated with a
bulge on the wall used by Miller and Weinreih (1960).
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For distances smaller than Ldip the depolarizing energy is not essential in the
total energy balance so that the result for nonferroelectric/nonferroelastic wall,
Eq. (6.4.10), becomes valid. This can be checked, e.g., by comparing the surface
and electrostatic contribution to the energy, Eqs. (6.4.13) and (6.4.15), at
L2 / L

3=2
1 . Thus, in general, ferroelectric/nonferroelastic walls can exhibit a

crossover in the roughness exponents from B ¼ 2=3 at L55Ldip to B1 ¼ 1=2
and B2 ¼ 1=3 at L44Ldip.

A ferroelastic wall is yet more rigid than the purely ferroelectric one because
the orientation of the former, when it is homogeneously flat, is fully controlled
by conditions of mechanical domain compatibility whereas the conditions of
domain compatibility only partially controls the orientation of the ferroelectric
wall (keeps it parallel to the direction of the spontaneous polarization). To
evaluate the flattening effect due to the elastic energy, one should incorporate it
into the total energy balance. For an isotropic bulge (shown in Fig. 6.4.3 with
L1 ¼ L2 ¼ L), this energy can be estimated as10

Uel ffi ce2SLw
2; (6:4:17)

where eS and c stand for typical values of the spontaneous deformation and
elastic modulus. If L is large enough, i.e.,

L44Lel ¼ sw=ðce2SÞ; (6:4:18)

the surface energy given by Eq. (6.4.7) can be neglected comparing to this
contribution. Now, the relation between w and L for an optimal bulge can be
found by equating Uel and URF, Eq. (6.4.9), to find w independent of L. This
implies B = 0. Thus, we see that the ‘‘power law’’ roughening effect of RF is
suppressed by the ferroelastic nature of the wall. Thus, similar to the previous
case, one finds a crossover in the roughness exponents from B ¼ 2=3 at L55Lel

to B ¼ 0 at L44Lel.
The theoretical results obtained on the roughening of ferroelectric and ferroe-

lastic domain walls can be summarized as follows. The long-range interactions
contributing to the energy of the bent walls make roughening of this kind of walls
weaker or suppress it. In the case of thermal roughening it is fully suppressed
(Lajzerowicz, 1980)11 for both ferroelastic and ferroelectric walls. For both the
thermal and defect-driven roughening of ferroelectric–nonferroelastic walls in the
direction normal to the spontaneous polarization, the roughness exponents for-
mally correspond to a change of the dimension of the interface from d=2 to d=
2.5 in Eqs. (6.4.8), (6.4.11), and (6.4.12).12 In the case of ferroelastic wall, B = 0

10 This estimate can be obtained, for example, using the results on the oscillation spectrum of
ferroelastic walls (Nechaev and Roshchupkin, 1989).
11 The conclusion about suppression of thermal roughening for ferroelastic wall obtained in
this paper is correct; however, the calculations have been performed for the correlation
function qualitatively corresponding to a wall in a ferroelectric/nonferroelastic.
12 The result for the RB case is not rigorously justified.
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for both RF and RB cases, which formally correspond to a change of the
dimension of the interface from d = 2 to d = 4 in Eqs. (6.4.11) and (6.4.12).
All these conclusions are valid when the roughening is considered at distances
larger than certain spatial scales Ldip and Lel; at smaller distances the long-range
interactions do not essentially affect the results obtained without these interac-
tions taken into account.

The above results can be applied to both bulk ferroics and ferroic thin
films. However, in the case of thin films, the roughening of ferroelectric
and ferroelastic domain walls can be affected by the electrostatic and
mechanical boundary conditions. Here, different roughening regimes are
possible depending on the relation between the typical spatial scales of
the problem. We will not discuss these regimes though the aforemen-
tioned boundary conditions can be readily incorporated in the above
analysis.

6.4.4 Experimental Data on Roughening of Ferroic Domain Walls
and Experimental Observations

Experimental data which may be related to roughening of ferroic domain walls
are very scarce.

First attempt to analyze data on ferroic domain walls in terms of the rough-
ening effect has been done by Bruce (1981). He developed a theory of elastic
(e.g., X-ray or neutron) scattering from a wall exhibiting the thermal ‘‘logarith-
mic’’ roughening (see Eq. (6.4.2)). The theoretical prediction on the angular
dependence of the scattering intensity has been compared to the data on the
neutron scattering from a domain wall in Pb5Ge3O11. The qualitative similarity
between the theoretical prediction and experimental data has been interpreted
as a possible evidence of a roughening phase transition occurring at the domain
wall.

A possibility of the direct observation of domain wall bending on nan-
ometer scale with piezoelectric force microscope (PFM) inspired experimen-
tal investigation of domain wall roughness in PZT thin films in the group of
Triscone (Paruch et al., 2005). In tetragonal epitaxial films of thickness
50–100 nm, ferroelectric 1808 domains of area of 10–20 mm2 have been
written with an AFM tip loaded with a dc voltage. The profile of the domain
boundaries has been imaged using a PFM. The mean square deviation of the
boundary from the flat position w has been evaluated to find it an increasing
function of the length L of the wall segment tested for L5100 nm; for larger
L, a saturation of w has been observed. The w–L relation, obtained at
L5100 nm, has been considered as a manifestation of the roughening effect,
whereas the saturation at larger L has been attributed by the authors to the
incapability of the large wall segments to reach the true energy minimum.
From the analysis of w(L) dependence at L5100 nm, a roughness exponent
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of � 0:26 has been estimated. This value has been interpreted as a finger-
print of the roughening caused by RB defects. Rationalizing this value in
terms of Eq. (6.4.12), one sets d = 2.5 (because of ferroelectric/nonferroe-
lastic nature of the wall) to find b � 5:8 which is not far from the theoretical
estimate.
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Chapter 7

Switching Properties: Basic Methods

and Characteristics

7.1 Introduction

We approach one of the main issues of the investigations of ferroics: their
properties conditioned by dynamic domain phenomena. It is these properties
that play the decisive role in many recent applications. But before entering this
subject in Chap. 8, we wish to describe experimental methods used for obtaining
integral data about such phenomena. We have in mind the data that reflect
domain wall motion and other mechanisms involved in the processes in which a
ferroic sample changes its domain state under the action of external forces.
These mechanisms involve possible nucleation of new domains, growth of
nucleated or of already existing domains, and their coalescence. Such integral
data provide the basic information on characteristics of the switching process as
a whole, like its speed, its dependence on the applied force, on the boundary
conditions, or on temperature. In this chapter we describe the basic methods to
obtain such data. We will mainly concentrate on the basic characteristics: P(E)
dependences for ferroelectrics and "(s) dependences for ferroelastics or alter-
natively "(E) dependences for ferroics which exhibit simultaneously ferroelastic
and ferroelectric properties.

In some cases it may be difficult to measure the primary order parameter as a
function of the conjugate force, such as the P(E) dependence for ferroelectrics.
Then to obtain some information on the switching process one may rely on
measuring other properties which can be believed to be linearly related to the
order parameter. As an example we may mention the measurements of the
pyroelectric coefficient dependence on the applied electric field, in the form of a
hysteresis loop, for ultrathin films of ferroelectric polymers (Ducharme et al.,
1997). There it was difficult to detect directly the small switched charge while
the pyroelectric coefficient was of a large enoughmagnitude to be detected. This
method of material characterization by measuring properties which are linearly
coupled to the order parameter has become popular since the very beginning of
the research of ferroics. Such data may be useful from the point of view of
applications. In many cases it is relatively easy to measure macroscopic quan-
tities which are coupled to a higher power of the order parameter Z. If they are
proportional to Z2 we obtain the so-called butterfly hysteresis loops.

A.K. Tagantsev et al., Domains in Ferroic Crystals and Thin Films,
DOI 10.1007/978-1-4419-1417-0_7, � Springer ScienceþBusiness Media, LLC 2010
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We stress that this chapter covers selected aspects of measuring switching

characteristics of a considerable part or of the whole sample. Here we discuss

neither ‘‘local switching’’ phenomena such as creating a new small domain by
local application of electric field or mechanical stress nor methods for observing

motion of individual domain walls.

7.2 Ferroelectric Hysteresis Loop

In Fig. 7.2.1 the basic circuit is shown for recording the switching process in a

ferroelectric sample. It is often referred to as the Sawyer–Tower circuit, after the

authors who were the first to use this system (Sawyer and Tower, 1930) when
investigating polarization reversal in Rochelle salt crystals. Here the applied ac

voltage U is divided between the sample and the capacitor C connected in series.

On the horizontal axis of the oscilloscope we wish to record the magnitude of
electric field applied to the sample alone. To fulfill this requirement the value ofC

has to be large compared to the effective capacitance (the ratio ‘‘the maximum

charge over the maximum voltage applied’’) of the sample. On the vertical axis,
the recorded voltage corresponds to the instantaneous value of charge QP repre-

senting the dielectric displacementD= "0E+ P. In most ferroelectric materials,
the first term is negligible compared to induced polarization. For this reason, the

recorded hysteresis loop is interpreted as the dependence P(E) rather than D(E).

It is obvious that if the sample is lossy, the conductive current flowing through it
has a componentwhichwhen integratedon the capacitanceCproduces chargeQcon

such that an ellipse Qcon(E) is superimposed on the recorded hysteresis loop. This
ellipse, in addition, is influenced (rotated in the charge–voltage coordinate system)
by stray capacitances of the experimental setup. These effects may distort the
recorded data on the D(E) loop of the ferroelectric and are unwanted; therefore,
the ellipse of proper shape and orientation is to be subtracted from the total
hysteretic response. Modified circuits which allow for such compensations were
proposed by a number of authors (see, e.g., Roetschi, 1962; Gadkari et al., 1986;
Sinha, 1965; Hatano et al., 1992; Diamant et al., 1957).

Fig. 7.2.1 The Sawyer–Tower circuit: 1, source of ac voltage; 2, oscilloscope; 3, capacitor with
ferroelectric sample; 4, additional capacitor. R14R2—resistors of the voltage divider
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The classical Sawyer–Tower technique and its modifications still offer very

effective and inexpensive tools for examining polarization reversal processes in

ac fields. In recent years, in addition to these classical methods, alternative

electronic schemes have been developed. This is the so-called virtual ground

method which, for the first time, was suggested by Glazer et al. (1984). Nowa-

days, this method is widely used in connection with the expanding activities in

the area of ferroelectric thin film memories. As an example, we mention the

setup used by the Radiant Technologies, Inc. Systems and represented schema-

tically in Fig. 7.2.2. In this configuration, the transimpedance amplifier main-

tains the terminal A at a virtual ground potential. Thus the sample is effectively

‘‘grounded’’ during the switching process. All charge that flows through it as a

result of the applied voltage is collected by an integrator circuit. The voltage

generated on the output of the integrator is then measured and displayed as a

function of the applied voltage. The system makes it possible to measure

accurately a large range of capacitance values at a large range of speeds. The

capacitor in series with the sample required in the Sawyer–Tower circuit is

abolished and thus the effects of possible parasitic impedances are eliminated.

Probably the most important advantage of the system becomes effective when

only one period of ac field is applied. In this case, in the classical Sawyer–Tower

system, after the voltage returns to zero the charge that has been collected in the

sense capacitor generates a voltage Vback which is in fact applied to the sample

in the direction opposite to the last applied voltage. This can lead to ‘‘back-

switching’’: In part of the sample polarization can return back to its previous

orientation. In contrast, in the virtual ground measuring system the Vback

voltage is not generated: In the interval between the two subsequent periods

of applied voltage, typically several seconds long, the sample is virtually short

circuited and backswitching could only be initiated by an internal bias in the

sample.

Fig. 7.2.2 The virtual ground measuring system (Radiant Technologies, RT6000HVS)
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It is now appropriate to specify the definitions of basic quantities used to
characterize a ferroelectric hysteresis loop. A typical customarily observed P(E)
loop is represented in Fig. 7.2.3a when driven by a continuous ac field. It defines
maximum and remanent polarizations Pmax andPr as well as the coercive fieldEc

which corresponds to the points where PffiD=0. In general, the values of Pmax

and Pr do not suffice to determine the value of spontaneous polarization PS.
However, if the loop is saturated, i.e., the branches of the loop merge before the
tip of the loop, and if the driving field is not too high, the intersection of a tangent
of the loop taken at its tip yields the value ofPS. Themeaning of ‘‘not too high’’ is
that the field does not result in appreciable nonlinearity of the lattice dielectric
permittivity. This condition is not always met for characterization of thin films.
There exist materials where PS can be determined directly from the hysteresis
loop. This is usually the situation of high-quality single crystals when the P(E)
loop is measured far below the phase transition. Such an ‘‘ideal loop’’ is shown in
Fig. 7.2.3b and there is no doubt that the intersection with the vertical axis

Fig. 7.2.3 (a) Conventional P–E hysteresis loop of a ferroelectric (schematically); (b) ideal
hysteresis loop; and (c) double hysteresis loop and its derivative
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defines the value1 of PS which equals both Pmax and Pr. Connecting the extreme
points (i.e. Pmax(Em)) of the curves taken at different field amplitudes, we obtain
what is sometimes referred to, not quite logically, as the virgin curve.

As an example, we refer to the delightful hysteresis loops taken for TGS
crystals by Nakatani (1972) and shown in Fig. 7.2.4. As the amplitude Em of the
applied fieldE=Em sinot increases, the shape of theP(E) dependence changes
from an oblong-like dependence to an ideal hysteresis loop.

The classical Sawyer–Tower method and its analogies have been customarily
used to record hysteresis loops in the frequency region between 1 Hz and 1 kHz
(see, e.g., Campbell, 1957; Shil’nikov et al., 1999a). It may be of interest to
perform measurements at even lower frequencies. Unruh (1965) obtained reli-
able data for hysteresis characteristics of Rochelle salt and triglycine sulfate,
based essentially on the classical method, at frequencies down to 10–2Hz. In the
same way, Shil’nikov et al. (1999b) measured hysteresis loops of TGS at
frequencies between 0.05 and 90 Hz, for several field amplitudes; their data
are reproduced in Fig. 7.2.5. At these frequencies, the experimentalists may face
the problems connected with surface and bulk electrical conductivity of the
specimen. Then the integral switching process at frequencies below 1Hz may be
investigated by measuring, instead of polarization itself, some quantities which
are coupled to polarization in a known way and which are not affected by the
electric current due to conductivity. As an example, we refer here to Abe’s
(1964) measurements performed in ac fields of frequencies down to 4 mHz; the
quantity measured as a function of applied field was the integrated intensity of
polarized light passing through a sample. In the case of Rochelle salt this
intensity can be shown to be proportional to the areas of reversed domains
and thus to the average polarization.

Often, the registration of the P(E) dependence offers information not only on
the basic ferroelectric switching process but also on some more involved phe-
nomena. Deformation of the hysteresis loop may give evidence of internal

Fig. 7.2.4 Dependence of
60 Hz hysteresis loop shape
of TGS on applied field, its
amplitude being Em= 160,
320, 800, 1,600, and 3,200
V/cm, successively from the
internal one. Temperature
–24.58C. After Nakatani
(1972)

1 Or its projection, if the normal of a plate-like sample is not parallel to the ferroelectric axis.
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biasing field and time changes of the loop shape demonstrate different kinds of

ageing effects. Frequently the so-called double hysteresis loop is observed. It can

be connected with the influence of lattice defects whose presence prefers a

domain pattern with zero average polarization. As an example, Fig. 7.2.2c

shows such loops for ceramic samples of BaTiO3 doped with Fe (Hagemann,

1978). Alternatively, double hysteresis P (E) loops are observed at temperatures

just above TTR in ferroelectrics with the first-order phase transition; they arise

from inducing the ferroelectric phase by ac biasing field (Merz, 1953, Hatano et

al., 1985a). This is a mechanism analogue to that responsible for the double

ferroelectric loops in antiferroelectrics; it is not defect related.
In connection with the development of ferroelectric thin films it becomes

usual to use just one period of a triangular ac voltage wave for switching

characterization. Figure 7.2.6 shows an example of this kind of data recorded

with an RT-6600S setup (Radiant Technology Inc.). It portraits the switching

processes in PLZT thin films, annealed at different temperatures (Hirano et al.,

1999). Here the triangular-shaped voltage consists of a number of short inter-

vals during which the voltage is constant and the charge is integrated and

Fig. 7.2.5 Hysteresis loops of TGS crystals at 188C demonstrating the influence of field
amplitude and frequency. Em= 35, 55, 74, and 92 V/cm (a)–(c) and Em= 140, 230, 370, and
550 V/cm (d)–(f). Horizontal axes units: 10 V/cm (a)–(c) and 100 V/cm (d)–(f). Vertical axes
units: 10–4(a), 10–5(b,c) and 10–2 C/m2(d)–(f). Reprinted with permission from [Shil’nikov,
A.V., Pozdnyakov, A.P., Nesterov, V.N., Fedorikhin, V.A., Uzakov, R.E., The analysis of
domain boundaries dynamics of TGS single crystals under the ac-Fields of low and ultralow
frequencies, Ferroelectrics, 223, 149 (1999))]. Copyright (1999), Taylor and Francis
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displayed in form of points. The discontinuous jump at zero voltage images the

process taking place during the period between two subsequent cycles. Typi-

cally, the duration of the triangular pulse is 10 ms (corresponding to the

frequency of 100 Hz) with 200 sampling points.
In the classical Sawyer–Tower circuit the capacitor C can be replaced by a

resistor R. In this configuration, what is detected as a function of applied ac

field E = Em sin ot is the electric current

i ¼ dD

dt
¼ @D
@E

@E

@t
¼ o

@D

@E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E 2

m � E2

q
(7:2:1)

Here the slope @D/@E of the hysteresis loop is multiplied by the function

o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E 2

m � E 2
p

, which is an ellipse. Thus, depending on the shape of the hysteresis

loop and on the applied amplitude, the maximum current may not correspond

to the maximum @D/@E. If the data are taken applying a triangular voltage

wave so that within one half-period the derivative @E/@t is constant, then the

curve of i(E) corresponds to the real derivative of hysteresis loop. In this case

and for a typical unconstricted loop the positions of its maxima are sometimes

considered to represent the coercive fields. Since the slope @D/@Emay not reach

its maximum exactly at P=0, the value of the coercive field defined in this way

can slightly differ from that defined above (Fig. 7.2.3).
It is useful to point out that the area of the hysteresis loop D(E) determines

the effective dielectric losses. Obviously, the density of energy lost in the sample

during one cycle of period T is

ZT

0

iE dt ¼
ZT

0

dD

dt
E dt ¼

I
E dD (7:2:2)

Fig. 7.2.6 Hysteresis loop of
PLZT thin films obtained
with the system shown in
Fig. 7.2.2. After Harano
et al. 1999
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and the energy lost (or heat developed) in 1 s equals

Q ¼ f

I
E dD: (7:2:3)

At the same time, this loss of energy can be conveniently written in terms of
the imaginary part k00 of permittivity as

Q ¼ pfk}E2
m; (7:2:4)

where Em is the amplitude of ac field of frequency f= 1/T. Thus the imaginary
part of effective permittivity can be related to the area of the loop:

k} ¼ ð1=pE2
mÞ
I

E dD: (7:2:5)

This equation implies the possibility of a cross-check of the hysteresis loop
itself and the dielectric loss data.

At the end of this section we wish to discuss several artifacts and possible
factors not related to the intrinsic properties of the ferroelectric material itself.

First, the surface conditions can seriously influence the obtained data. Thus
the polarization reversal process can strongly depend on the coupling of the
sample with electrodes. Janovec et al. (1960) showed that a BaTiO3 crystal plate
with two identical liquid electrodes showed a symmetric hysteresis loop with fast
switching. With two identical indium electrodes the loop was also symmetric but
switching was slower. The use of different materials for different electrodes led to
an asymmetric loop, showing that a liquid electrode provided more favorable
conditions for switching starting at that electrode. The existence of a surface
layer located between the homogeneous sample and electrode has a tremendous
effect on the switching properties, as demonstrated by Brezina and Fotchenkov
(1964) and discussed by Drougard and Landauer (1959). Rosenman and Kugel
(1994) showed experimentally that a vacuum gap or a thin teflon layer located
between the sample and the electrode can seriously influence or fully suppress the
switching process. These and similar factors have to be considered when inter-
preting experimental data on switching and we will come back to this problem in
Chaps. 8 and 9.

Second, in a specific device, it may happen that the source of the applied
voltage may not be able to provide the current required for the switching
process to proceed fast enough as determined by its natural domain processes.
This situation can be modeled by a resistor in series with the ac power supply.
As a result, the large slope @D/@Emay be reduced so that the hysteresis loop is
deformed.

Third, we wish to note that in exceptional cases, a hysteresis curve of the typical
shape may be observed and yet the material could turn out not to be ferroelectric
at all. If the dielectric response of a material is strongly nonlinear but non-
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hysteretic and at the same time the sample is lossy, one obtains the D(E) curve
strongly resembling a hysteresis loop. This was, e.g., the case of LiN2H5SO4 where
seemingly properly shaped loops (Schmidt and Parker, 1972) were explained in
terms of intrinsic protonic conductivity of this material. A similar situation was
recognized for ceramic samples of TlTaO3 and some other materials (Le Bihan
et al., 1978). As pointed out by Scott et al. (1993), another example of ‘‘false’’
hysteresis curves is provided by polymeric electrets. Charges originating in mobile
ions diffusing under applied voltage can slowly accumulate at the surfaces of plate-
like samples of electrets, resulting in a bistable state whose orientation depends on
the polarity of applied voltage. Thus seemingly the electrets can also be switched in
polarity; however, the processes resulting in a measurable hysteresis curve are very
slow (Sessler et al., 1980).

Fourth, one has to realize that, when studying the frequency dependences of
the mentioned quantities EC, Pmax, etc., at higher frequencies, the experimen-
talist may face the problem of self-heating. This is discussed in some detail in the
following section.

7.3 TANDEL Effect

When studying the frequency dependence of coercive field, it was observed
(see, e.g., Campbell, 1957) that Ec first increases but then, with further increas-
ing frequency, it starts to decrease again. The explanation was based on the
assumption that due to hysteresis losses (cf. Eq. 7.2.3) the sample heats up and
approaches the Curie point so that the area of the transversed loop decreases.
Later it was found by Shuvalov (1960) that at some critical frequency of the field
applied to the Y-cut of triglycine sulfate crystal the sample increases its tem-
perature with a jump.

Glanc et al. (1964) studied these effects in detail and found that when an ac
voltage of high enough frequency is applied to the Y-cut of a TGS crystal, the
specimen is heated to a temperature TS close to TC and the value of TS is
stabilized with respect to the ambient temperature TA of the surroundings.
This was explained by Dvorak et al. (1964) in general terms as the consequence
of negative temperature coefficient of losses. The crystal is in a state of tem-
perature autostabilization and since it reveals nonlinear properties it can be
referred to as ‘‘temperature autostabilized nonlinear dielectric element’’ (TAN-
DEL). In addition to TGS, the effect was later observed in a number of other
ferroelectrics. We give a schematic insight into the phenomenon.

We know (Eq. (7.2.3)) that the rate of heat productionQ1 in the ferroelectric is
proportional to the area of the D – E hysteresis loop. It is also known the both
height and width of the loop decrease on increasing temperature so that the loop
area and Q1 are decreasing functions of temperature. In the stationary state, the
rate heat production Q1 should be balanced by the heat dissipation into the
ambient Q2, which is proportional to the difference TS – TA. The cycling of the
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sample leads to an increase in its temperature but the negative temperature
coefficient of losses (decrease of the loop area with increasing temperature) will
result in temperature stabilization. The final temperature of the system is given by
a solution to the equation satisfying the stability condition (Dvorak et al., 1964)

Q1 ¼ Q2; @Q1=@T5@Q2=@T: (7:3:1)

This phenomenon was simulated by Fousek (1965a) in the approximation of
rectangular polarization loop. In this approximation, the rate heat production
Q1 / P0Ec where P0 and Ec are the half-height and half-width of the loop,
respectively. It was also assumed that depending on the amplitude of the driving
field E0 three regimes are possible: (i) for small fields (E05E0k), the loss is
negligibly small and one sets P0 ¼ 0; (ii) for intermediate fields (E0 k5E05E0c),
P0 / E0 � E0 k and Ec ¼ E0; and (iii) for large fields (E0c5E0), P0 ¼ Ps and
Ec ¼ E0c þ gðE0 � E0cÞ, wherePs is the spontaneous polarization. The simulation
has beenperformed for the experimental situation close to that inTGS.This defines
the choice of the temperature dependences of the parameters controlling the
problem: E0 k / E0c / g /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TC � T
p

where TC is the transition temperature.
Novák and Hrdlička (1968) confirmed the validity of this model experimen-

tally, for TGS samples. The TANDEL effect was observed in a number of
ferroelectric materials (Malek et al., 1964) as well as in glass ceramics (Lawless,
1987). It represents some danger when data on hysteresis loops are interpreted
without taking the process of self-heating into account.

7.4 Pulse Switching

An ac voltage applied to a ferroelectric sample drives a switching process whose
time development is in some correspondence with the time-dependent magnitude
of the applied field. It is obvious that when the applied field during the whole
operation remains constant, we obtain more straightforward information about
the polarization reversal process. This was for the first time realized by Merz
(1956) who investigated the switching process in barium titanate crystals by
applying rectangular voltage pulses of alternate polarity and detecting the
switching current flowing through the ferroelectric sample. Often a pause with
zero field is inserted between the pulses of opposite polarity. Figure 7.4.1 shows
the basic scheme of the circuit employed and also the typical profiles of the
current i(t) monitored. The first sharp current peak corresponds to the linear
capacitance of the sample, not connected to any domain phenomena. When the
polarization reversal takes place in the whole volume of the sample, obviously

Z1

0

iðtÞ dt ¼ 2Ps (7:4:1)
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In reality, the value of polarization determined in this way may be smaller
than PS because of certain backswitching after the previous polarization rever-
sal process. It is essential that the output impedance of the current source is low
enough so that the voltage would not drop even when the switching current
reaches its maximum value imax.

2

Three quantities characterizing the switching process are defined unambigu-
ously, namely, the applied fieldE, the maximum value imax of the current, and the
time tmax at which it occurs. For practical purposes, the time required to complete
the switching process is an important attribute. In customary measurements, the
length tappl of the applied field pulse should be long enough to virtually complete
the switching process so that integral (7.4.1) taken from 0 to tappl would be very
close to 2PS. Otherwise the switching process is completed only partially. As
another characteristic of switching a notion of switching time ts is introduced.
This time is often defined as that necessary to reverse PS in a certain fraction, e.g.,
95%, of the sample volume (Fatuzzo andMerz, 1966). For convenience, however,
the switching time ts is defined in another way, as the time necessary for the
switching current to drop to a certain fraction, e.g., 5%of itsmaximumvalue imax.

It is this method, when the processes proceed at constant applied field, that
allows for well formulated theoretical discussions. The dependences ts(E) and
imax(E) for BaTiO3 and other materials provide the core information on which

Fig. 7.4.1 Left: Basic scheme for pulse switching; the source S applies voltage pulses of
prescribed polarity. Right: The curve ‘‘1’’ shows the switching current density i which is
typically characterized by the values of imax, tmax, and ts. The curve ‘‘0’’ shows the response
when the applied field is parallel to spontaneous polarization; it corresponds to linear
capacitance of the sample

2 A number of researchers constructed their own pulse generators; as an example we may
mention the ‘economical’ apparatus designed by Ravi et al. (1980): a bipolar square pulse
generator with a low output impedance, short rise time, variable pulse amplitude, and
repetition frequency. A number of convenient sources are now commercially available.
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theoretical interpretations of switching are based. It is obvious that to obtain
reliable results, again the power of the current source is of importance to
provide the rising time of the applied pulse considerably shorter than tmax. In
practice, it is required that the value of tmax should be independent of the
capacitance (area of electrodes, in fact) of the sample.

Apart from the classical transient current method just discussed above an
alternative technique, which can be called poling back technique, has been sug-
gested by the group ofWaser (Grossmann et al., 2000). This technique comprises
an application of the pulse sequence shown inFig. 7.4.2. In this sequence, the first,
the second, and the fourth pulses have the same amplitudes and durations large
enough to perform the full polarization reversal whereas the amplitude, V3, and
length, t3, of the third pulse are variable. The amount of the polarization switched
by the third pulse is determined by switching it back by the fourth pulse. This
method was shown to have a clear advantage compared to the classical one in the
casewhere the switching is stretched formanydecades in time. The reason for that
is an increasing difficulty with reliable monitoring of very small currents that
are typical for the stretched switching. Usually, the transient current method
enables us to cover no more than two decades in time (Merz 1956; DeVilbiss
and DeVilbiss, 1999; Song et al., 1997), whereas the poling back technique can
readily cover a six to eight decade interval (Lohse et al., 2001; Tagantsev et al.,
2002a,b). An example of the plot of time dependence of switched polarization for
PZT thin films is shown in Fig. 7.4.3.

It is worth mentioning that the application of both techniques requires
considerable precaution in order not to take the RC-controlled dynamics of
the measuring setup for a manifestation of the real switching dynamics of the
material (Larsen et al., 1991; DeVilbiss and DeVilbiss, 1999; Seike et al., 2000).
A simple reliable test excluding the RC artifact is to check that the switching
current kinetics is independent of the capacitor area.

The switching times, understandably, depend strongly on the applied field.
To give an example of their magnitude, for bulk ferroelectric crystals, in which
1808 polarization reversal process is not accompanied by a change of sponta-
neous strain (BaTiO3, TGS), typical switching times are of the order of 10–0.1

Fig. 7.4.2 Sequence of voltage pulses used for measurements of the switching polarization
with the poling back technique
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ms in fields of several kilovolts per centimeter. However, we shall see in Chap. 9

that in thin ferroelectric films switching times below 1 ns have been reached,

though for much higher fields.
Concerning ferroelectric switching produced by short- and low-voltage

pulses the observations of Fatuzzo and Merz (1959) are worth mentioning.

They showed that if a series of voltage pulses much shorter than ts are applied to

a TGS crystal, there is no net reversal ofPS. There exists a critical pulse length t*

at which the crystal begins to switch and if a series of pulses, each longer than t*,

is applied, PS will be completely reversed. Both phenomena are represented

schematically in Fig. 7.4.4. This kind of behavior is called ‘‘t* effect.’’ It is

Fig. 7.4.3 Switching
polarization as a function of
the switching time, for
different voltages measured
with the poling back
technique on a capacitor
containing 135 nm thick film
of PZT. After Tagantsev
et al. (2002b)

Fig. 7.4.4 Pulses of applied electric field and of the switching current in a TGS crystal (a) for
field pulses shorter than a critical duration (tpulse< t*) no switching was observed and (b) for a
series of longer pulses (t* < tpulse< ts) the switching process is completed. Reprinted with
permission from [Fatuzzo, E.,Merz,W.J.,Phys. Rev., 116, 61 (1959)]. Copyright (1959) by the
American Physical Society
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interesting that in the latter case the shapes of the individual small current
pulses fit together yielding the ‘‘regular’’ pulse, except for the initial peaks A, B,
C, D, E, F. The critical time t* depends on the amplitude of the applied pulse;
for very low fields it is a very small fraction of ts while for high fields it can
approach the magnitude of ts. Taylor (1965) pointed out that the ‘‘t* effect’’
could be used for non-destructive readout from a memory matrix as well as for
its successive addressing. He also showed (Taylor, 1966) that the value of t*
depends on the applied field and sample thickness and in particular that the
ratio t*/ts depends on the quality of the sample surface. While in this chapter we
pay attention to the methods only, it can be noted in passing that partial
switching phenomena have not received corresponding attention of theorist.
Here the work by Burfoot (1959) can only be mentioned.

7.5 Ferroelastic Hysteresis Loops

Ferroelastic hysteresis loops show the strain induced by an applied mechanical
stress of alternating polarity, i.e., the "(s) dependence. In principle, what is to be
measured—in the simplest correspondence to the symmetry change induced by
the phase transition—is the deformation of the sample subjected to a homo-
geneous mechanical stress. In ferroelastics which are simultaneously ferroelec-
tric, we can also get information about the behavior of strain by applying an
electric field, i.e., from the "(E) dependence. Alternatively, we could also
measure the P(s) as well as the P(E) dependences, which all would have the
characteristics of hysteresis loops. It might appear possible that these depen-
dences could be easily converted into each other since we know the P(") or "(P)
relations ‘‘dictated’’ by the symmetry of the parent phase. However, in general,
different kinds of loops do not bring identical information and such conversions
should include a number of rather complicated factors; for instance, the shape
of the P(s) hysteretic dependence may not conform with the shape of the P(E)
hysteresis loop since customarily the two are taken at different boundary
conditions. We remind the reader that except for 1808 nonferroelastic ferro-
electric switching, ferroelastic aspects are always present even in ferroelectric
hysteresis loops.

In this section we concentrate on the basic ferroelastic "(s) hysteresis loops.
Their main characteristics are defined in analogy with ferroelectric loops. The
meanings of spontaneous strain, remanent strain, maximum strain, and coer-
cive stress are self-evident and these concepts are routinely used.

Basically, we are interested in measuring a strain component as a function of
the conjugated stress component. In principle, the application of ‘‘axial’’ stress,
i.e., tension and compression, is required for a properly oriented sample.
Ferroelastic hysteresis loops have been investigated in several laboratories for
a number of ferroelastics, but the methods employed significantly differ. We
mention several examples. Pakulski et al. (1987) used an apparatus shown in
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Fig. 7.5.1 which allows one to measure directly "(s) loops, revealing compo-
nents of the spontaneous strain. Its notable features are that the sample can be
simultaneously observed in a microscope and the whole setup allows the mea-
surements at low temperatures. The specimen has the form of a rectangular bar.
Its lateral faces are polished to allow optical observations and then it is glued
into the apparatus. The force is transmitted to it through a ceramic rod; it is
proportional to the current flowing through the coil placed in a magnetic field,
with the proportionality coefficient p = 5 N/A. The deformation induced by
this force is monitored with a displacement sensor. The sample slot makes it
possible tomeasure capacitance of the sample, however, with gaps 0.2 mm thick
between the electrodes and the sample. Figure 7.5.2a gives examples of data
obtained with this apparatus. Ferroelastic loops "12(s12) were measured for the
LiCsO4 crystal, representing the species mmm–"s–2/m, by monitoring the elon-
gation and contraction of a z-458 cut with dimensions 10� 2� 0.5 mm3. Loops
of permittivity vs. stress, also shown in the figure, demonstrate the ferrobi-
electric features of the phase transition in this material. The change in the
polarity of the k(s) loop, when passing from 197 to 172 K is surprising and
we include this data to demonstrate what interesting features such studies can
offer. Several explanations have been proposed (Pakulski et al., 1987) for this
effect.

In some cases ‘‘double loops’’ were observed (Pakulski et al., 1983; Shuvalov
et al., 1984). Such loops are probably connected with a strong tendency of the
sample for backswitching and after repeated cycling they often change into
standard hysteresis loops (Kudryash et al., 1989).

Often tensile testing commercial apparatus is used to demonstrate ferroelas-
tic hysteresis, such as Instron-type machines constructed for testing mechanical
properties of metals. Prasad and Subbarao (1977) and Tsunekawa and Takei
(1976) employed this technique for BaTiO3 and LaNbO4, respectively. In this
case, only a partial loop corresponding to one sign of the stress is available. This

Fig. 7.5.1 Stress apparatus (Pakulski et al., 1987): 1, sample; 2, electrodes for permittivity
measurement; 3, capacitor displacement sensor; 4, ceramic rod; 5, cold finger; 6, electrical
feedthrough; 7, teflon ring; 8, coil; 9, permanent magnet; 10, glass window; A–A optical axes
of the microscope
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is a strong disadvantage since no information about the shape of the full
switching curve is available. The reliable information is just one quarter of the
loop corresponding to the backswitching.

Information on ferroelastic switching can also be obtained in more involved
geometries. Some authors offer data obtained for the torsion stress which
involve twisting of the sample. In the torsion geometry, a rod-shaped sample
is fixed at one end and a torque is applied to its face at the opposite side, with the
rotation axis parallel to the rod. If z is the rod axis, the strain components which
are induced are "xz and "yz. They are roughly independent of z but inhomoge-
neous along the radius of the rod. Alternative experiments have been performed
in the bending geometry. Here again the bar-like sample is fixed at one end and
force is applied to the opposite end, directing along x, perpendicular to the bar.
The sample bends and the induced strain "zz is inhomogeneous, changing

3
2

Fig. 7.5.2 (a) Stress–strain and stress–permittivity loops of LiCsO4; the stress frequency is
0.05 Hz (Pakulski et al., 1987). (b) Ferroelastic hysteresis loop of KFe(MoO4)2 recorded using
the current proportional to the light flux through the sample as a measure of the strain
(Krainyuk et al., 1983b). Elastic analogues of Barkhausen jumps are seen
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linearly with x, passing through zero in the middle of the bar. Torsion and
bending can be used to obtain some information about the hysteretic behavior
of strain but generally do not provide data about the order parameter depen-
dence on the conjugate force. No complete analysis of response of samples of
materials representing different ferroelastic species to such applied forces seems
to be available.

In most cases, experimental data on ferroelastic hysteresis are usually based
on measurements performed with frequencies in the range from 10 to 10–4Hz.
These rates are much lower than in the case of ferroelectric switching, including
that in ferroelastic ferroelectrics. This fact is connected with technical aspects of
the experiments rather than with the speed of ferroelastic switching: We know
that polarization reversal in ferroelectric ferroelastics, when driven by electric
fields, can be quite fast and ferroelectric hysteresis loops in these materials are
often taken at frequencies above 102Hz.

For the above-mentioned torsion and bending geometry, Krainyuk et al.
(1983a,b) used an apparatus in which a rod-shaped sample is fixed at one end
and provided with a magnet clamped to the other end. Helmholtz coils excite
magnetic field of chosen orientation which acts on the magnet and the developed
force results in deformation of the sample. A light beam reflects at a mirror
attached to the magnet and its reflection angle is a measure for strain at the end
of the rod. The setup allows also for simultaneous optical observations of the
sample. Depending on the direction of magnetic field excited by Helmholtz coils,
bending or torsion can be induced; this is obvious from Fig. 7.5.3a,b which shows
the sample, S andNpoles of themagnet, direction of themagnetic fieldH, direction
of the mechanical momentM, as well as the small mirror and reflected beam; in (a)
the bending and in (b) the torsion are induced. Data obtained by this apparatus
clearly demonstrate nonlinear and hysteretic elastic responses of the sample. How-
ever, it may be difficult to obtain information about spontaneous strain and basic
switching properties because of the inhomogeneity of strain in the sample.

Gridnev and co-workers used a method with several similar features for
studying strains of prevailingly torsion character (Gridnev and Shuvalov,
1983). The sample is glued into the metallic main axis of rotational pendulum;
the torsion of the axis is determined by torsion deformation of the sample and

Fig. 7.5.3 Basic geometry of the apparatus for measuring bending (a) and torsion
(b) (Krainyuk et al., 1983a,b). The detections of the applied magnetic field (H) and angular
momentum produced (M) are shown
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detected by capacitor detectors mounted on a rod fixed perpendicular to the
main axis. A number of ferroelastic materials were investigated by this method.
Figure 7.5.4 shows ferroelastic loops of KH3(SeO3)2, at different temperatures
and amplitudes, where the hysteretic dependence of "5 is plotted vs. applied
stress (Gridnev et al., 1979).

All methods for studying macroscopic characteristics of ferroelastic switching
mentioned above were based on quasistatic processes: the applied mechanical
forces were changing slowly, in correspondence with the frequency range speci-
fied above. Vagin et al. (1979) offered data for switching times measured when
applying mechanical pulses, in analogy with the ferroelectric pulse methods;
however, no technical details seem to have been offered. For single crystals of
Pb3(PO4)2 and applied stresses between 2 � 102 and 9 � 102 N/cm2, reported
switching times amounted to 3–0.3 ms.

At the end of this section it is to be pointed out that here we have concentrated
mainly on the methods of measurements of ‘‘true’’ ferroelastic switching phe-
nomena. There are, however, many othermethods to obtain indirect information
on ferroelastic switching. For Rochelle salt crystals, Abe (1958) concluded that
the average rotation angle of polarized light is nearly proportional to the change
of average strain. This method, instead of recording true strain–stress hysteresis
loops, can give more easily information about the frequency and temperature
dependences of the coercive field (Abe, 1964). Salje and Hoppmann (1976) (see
also Salje, 1990) studied ferroelastic loops in Pb3(PxV1–xO4)2 crystals using two
approaches: direct information about the average value of strain measured by
the angle of laser beam reflected from the surface of strained sample and indirect
information obtained by measuring the averaged birefringence. The shapes of
the two loops were found slightly different and this was attributed to the non-
linear relationship between strain and birefringence. Similar approach, namely,
recording the change in light flux through the sample located between crossed

Fig. 7.5.4 Ferroelastic hysteresis in KH3(SeO3)2 at different temperatures (Gridnev et al.,
1979): (a) –1788C; (b) –1008C; (c) –67,58C; (d) –62,48C; (e) –59,68C; and (f) shows the loops for
different stress amplitudes at T = –1788C
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polarizers, was used for detecting ferroelastic loops of KFe(MoO4)2 (Krainyuk
et al., 1983), obtained under rigorous uniaxial loading of proper orientation.
With the appropriate orientation of the crystal, the photosensor signal is propor-
tional to the relative volume of one of the orientational states in the sample. One
of the observed loops is shown in Fig. 7.5.2b. Here the elastic analogy of huge
Barkhausen jumps is evident, an effect very often accompanying ferroelastic
switching (see data on BaTiO3 from Sect. 8.6).

7.6 More Involved Methods

In the last section of this chapter we wish to mention, in passing, switching
characteristics which can be achieved by methods other than those mentioned
above or which are important for ferroics with more involved switching
properties.

In ferroelectrics, one method could be found useful to characterize some
features of polarization reversal in ac fields, namely, Fourier analysis of the
switching current. Little attention seems to have been paid to this possibility.
Karpov and Poplavko (1984) offered Fourier analysis of the hysteresis loop in
TGS. In addition to the information itself, this experimental approach, when
proper characteristics would be assigned to the spectrum, could provide a tool
for specifying some particular aspects of switching, e.g., basic features of the
ageing processes without observing the whole loop.

In the above sections we concentrated on ferroelectric and ferroelastic switching
processes. Have hysteresis loops been observed also for higher order ferroics,
ferroelastoelectrics, and ferrobielastics in particular? Many attempts have been
made along this line, which unambiguously demonstrated domain reversal pro-
cesses; however, the resulting data have not been presented in the formof hysteresis
loops. In ferroelastoelectrics, switching should be driven by applying simulta-
neously electric field and elastic stress, based on the energy term dijkEisjk with the
value of dijk differing in different domain states. An obvious candidate for this
phenomenon is quartz, representing the species 622–ds–32. Its two domain states
differ in sign of the piezoelectric coefficients d111= –d122= – (1/2)d212, but also in
sign of the elastic compliances s1123=–s2223= (1/2)s1213. Thuswhen an electric field
with nonzero components E1 and E2 is applied together with the stress of nonzero
components s11, s22, s12, s13, and s23, the free energy densities of the two domain
states differ by

DF¼2d111ðE1s11�E1s22�2E2s12Þþ4s1123ðs11s23�s22s23þ2s12s13Þ: (7:6:1)

The first term in this formula provides the driving force for elastoelectric
switching: Concurrent application of E1 and s11 or of E1 and s22 or of E2 and s12
makes favorable one of the two domain states and any of these couples of
applied fields could be used as the switching force. Careful experiments were
performed by Laughner et al. (1979) which at temperatures close to TC resulted
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in domain state reorientation in limited volume parts of a quartz crystal. No
changes in the spatially averaged piezoelectric response of the whole sample were
recorded which would remind a hysteretic dependence of, e.g., d111 on the
product E1s11. Ammonium chloride (m�3m� d� �43m) provides another alter-
native for the observation of d(Es) hysteresis loops. Mohler and Pitka (1974)
applied uniaxial stress along the [011] axis, together with an electric field along
the axis [100]. Since the two domain states differ in sign of the d123 coefficient, the
domain pattern was really strongly influenced as demonstrated by the change of
d123 from zero to a maximum value of 3 � 10–12C/N. Another candidate for
ferroelastoelectric switching is CsCuCl3 (6/mmm–d–622) but attempts to induce
ferroelastoelectric switching were not successful (Fousek et al., 1980).

In ferrobielastics, the switching process would be driven by the difference in
the sijklsijskl energy terms for different domain states. In other words, the
anisotropy of elastic response is the driving force for the phenomenon. The
ferrobielastic hysteresis curve would then be represented by the dependence of
sijkl on the product sijskl of the applied stress components.3 As in the previous
case, quartz crystals are good candidates for observing this phenomenon. In fact
this field of investigations was driven by the fact that quartz plays the leading
role in the area of utilization of crystalline piezoelectrics and domains (Dauphiné
twinning), since they differ in the sign of piezoelectric coefficients d111, d122, and
d212, representing an obstruction in applications. The source of driving force for
the ferrobielastic switching in quartz is the last term in Eq. (7.6.1). Wooster and
Wooster (1946) were probably the first to use this effect for controlling twins.
Applying torque they succeeded in bringing multidomain samples into single-
domain states and could even propose a spatial diagram demonstrating the
magnitudes of differently oriented torques required to complete the switching
process. Bertagnolli et al. (1979) investigated ferrobielastic switching in quartz by
applying uniaxial stress in the [011] direction, which leads to nonzero stress
components s22= s33= s23. A part of the hysteresis loop (for compressive
stress) was detected by recording the piezoelectric charge, instead of measuring
the quantity which defines ferrobielasticity, namely, elastic compliances. Shiau
et al. (1984) described ferrobielastic switching in quartz in detail: Compressive
stress was applied onto faces of a bar-shaped sample whose normal made angles
of 908 and 558 with the crystallographic axes x1 and x3, respectively. Again,
instead of measuring one of the components s1123, s2223, or s1213 which define the
ferrobielasticity of quartz, the density of charge on the (001) faces of the sample
was recorded. The ferrobielastic switching was unambiguously registered; how-
ever, using an instrument with unipolar loading (the Instron machine), the
complete hysteresis loop with both signs of applied stress was not recorded.

3 We may note that in the original paper of Newnham and Cross (1974b), ferrobielastics were
characterized by the dependence of strain vs. stress in form of a ‘butterfly’ loop.
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Chapter 8

Switching Phenomena and Small-Signal Response

8.1 Introduction and Overview of Switching Mechanisms

This chapter is devoted to phenomena associated with a change in time of the
domain state of a ferroic. Locally, such change corresponds to transitions
between domain states at least in a small fraction of the sample volume. When
the major part of a sample changes its domain state one speaks about a switch-
ing process or simply switching. The most characteristic macroscopic phenom-
enon representing this process is the hysteresis loop, often used as a logo for
ferromagnetics, ferroelectrics, or ferroelastics. Such hysteretic dependence of
the order parameter on the conjugate force is an integral effect; it is the macro-
scopic portrayal of numerous microscopic processes taking place in a ferroic
sample. Most of this chapter will be dealing with switching and switching-
related phenomena. At the end of the chapter we will also address the situation
where the change of the domain state of a ferroic is associated with transitions
between domain states in a small volume fraction of the sample. This situation
is typical when the ferroic is probed with an external perturbation of small
amplitude, it can be termed as small-signal response.

It is appropriate to mention that if it were not for polarization switching
phenomena, ferroelectrics would never have attracted so much attention in
basic and applied research areas. The possibility to make a Rochelle salt crystal
single domain supported utilization of the material in piezoelectric sensors
(including those in classical gramophones) and in fact led to the discovery of
ferroelectricity. The possibility to make a ceramic sample—originally isotropic,
since it contains millions of chaotically oriented grains—piezoelectric involves
domain aspects and resulted in extended industrial activities. The possibility to
reverse spontaneous polarization very fast in thin samples opened a new terri-
tory in memory elements and provides one of the driving forces for research in
this area. As a secondary impact, research of polarization reversal effects led to
similar activities in the field of ferroelastics.

In a simple case of the switching process, only two domain states are
involved—the original and the final one. While this is typical for switching in
ferroics with just two domain states, it can be realized—by properly chosen
conditions—even in ferroic sample which allows, by symmetry, more than two
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domain states. A well-known example is 1808 switching, i.e., reversal of sign of

the PS vector, in tetragonal barium titanate. In more complex cases, several

domain states are involved in the process which then becomes rather compli-

cated; these situations are difficult to realize in a defined way and are, therefore,

little understood. Switching phenomena include a number of processes; in fact,

still not all of them are well understood. In this chapter we wish to approach

macroscopic characteristics of these effects as well as the involved processes

themselves. Let us first give a schematic overview of them. To have a simple case

in mind, we consider a crystalline plate of a uniaxial ferroelectric nonferroelas-

tic material, cut perpendicularly to the ferroelectric axis. It is provided with

electrodes so that an electric field can be applied along this axis. In an ideal case

the original state is homogeneous and single domain. In practice, it is usually

‘‘almost single domain’’ since some minute (residual) domains with opposite

polarization could be present either as metastable remnants of the foregoing

processes or as stable regions with fixed polarization resulting from crystal

lattice interaction with local defects. Figure 8.1.1a illustrates such situation;

here the prevailing direction of the polarization is taken positive. After the

application of the field directed against this direction several processes take

place. First, all or some of the mentionedmetastable or stable ‘‘frozen-in’’ nuclei

will start to grow (Fig. 8.1.1b). In order to reduce the area of walls carrying an

appreciable bound charge of density divPS which produces electrostatic energy,

we anticipate that these nuclei will grow preferably along the ferroelectric axis

and in typical cases this expectation is indeed confirmed by observations. A

separate process is the formation of new nuclei (Fig. 8.1.1b). Typically, a small

domain––nucleus—representing the preferred domain state is formed and in

fact such nucleation occurs independently in many spots of the sample. The

Fig. 8.1.1 (a) to (e) Nucleation and growth of nonferroelastic ferroelectric domains in a
parallel plate capacitor (electrodes are shown with the darkest shading)—schematic repre-
sentation of the switching process. Arrows show the directions of the spontaneous polariza-
tion and of the applied electric field. The polarity of domains is also shown with the intensity
of shading
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issues involved in this process are the energy of the nucleus and its shape and
size. As in the case of any first-order phase transition (switching is actually an
electric-field-driven first-order phase transition) the nuclei can grow, giving rise
to macroscopic domains, only when their energy exceeds a certain critical value.
The growth of such supercritical nuclei reduces total energy of the sample. This
growth is primarily characterized by the domain wall velocity, including its
anisotropy. When the grown-up nucleus has reached both electrodes it usually
represents a narrow domain which no longer carries a bound charge on its walls.
In the Russian literature these domains are practically referred to as ‘‘skvoznye
domeny,’’ often translated as ‘‘through domains.’’ The following phase of
the process is then the sidewise motion of walls of the through domains
(Fig. 8.1.1c). It is characterized by the sidewise velocity of domain walls.
However, as walls of neighboring through domains approach each other the
problem becomes geometrically very complex and velocities can now be
ascribed to shrinking domains of the original domain state rather than to
growing domains of the resulting domain state. In other words, a wall loses
its identity as belonging to one or another particular domain. This final stage of
the switching process is sometimes referred to as domain coalescence
(Fig. 8.1.1d). The whole process results in a sample with almost homogeneous
polarization oriented along the field; however, some small long-live metastable
domains or frozen-in nuclei of the original polarization direction may remain in
the sample (Fig. 8.1.1e). Note that in Fig. 8.1.1 the remnants and nuclei of
reverse domains are always shown close to the ferroelectric electrode interfaces.
This does not mean that these are possible only at these locations; however,
ferroelectric electrode interfaces are often the preferable locations. This issue
will be discussed later in this chapter and in Chap. 9.

A related picture could be drafted for a uniaxial ferroelastic ferroelectric.
However, since now domain walls have to comply fully or almost fully with
severe requirements implied by mechanical compatibility conditions, some
stages of the switching process will be very different. The concepts of nuclei
and their forward growth could be preserved. These will have the shape of
narrow wedges. The sidewise growth of the through domains will proceed by
the motion of ferroelastic walls of only two compatible orientations, leading to
an elastically complex domain pattern which only ‘‘with great difficulties’’ will
harmonize into a single-domain state with opposite polarization. In ferroelas-
tics where no mechanically compatible walls are allowed the process is expected
to proceed in a similar way, with walls taking orientations minimizing the
unavoidable elastic energy.

The driving forces responsible for domain reorientation processes originate
from the difference of free energies of different domain states in the applied
electric and/or elastic fields. In the following Sec. 8.8.2 we shall specify these
forces for different kinds of ferroics and pay attention to mechanisms involved
in these processes.

In Sect. 8.8.3 we shall discuss in some detail the motion of single-domain
walls in nonferroelastic ferroelectrics, from the experimental point of view. The
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theory of this phenomenon will be addressed in Sect. 8.4. Sect. 8.5 is devoted to
phenomena of pinning and creeps of domain walls. Sects. 8.6 and 8.7 will be
devoted to the presentation of experimental results and theories of switching
treated as a macroscopic phenomenon. Finally, in Sects. 8.8 and 8.9 we shall
address the problem of dielectric response of multidomain crystalline samples
when measured in small applied fields. Domain walls may respond to low-level
electric or mechanical forces by very small displacements which, however, may
result in large values of dielectric susceptibility, piezoelectric, and elastic coeffi-
cients measured in small applied fields.

In this chapter, the discussed properties are related to bulk crystalline sam-
ples. Dynamic domain characteristics which are specific for thin films will be
treated in Chap. 9.

8.2 Basics of Domain State Reorientation

8.2.1 Driving Force for Processes of Domain State Reorientation

Switching processes mentioned in the preceding section are initiated and driven
by applying macroscopic (electric and/or mechanical) external fields. In the
present section we shall formulate in an explicit way the basic macroscopic
aspects of these driving forces.

In an ideal sample of a ferroic material and in the absence of external fields,
the transition from the phase G can result in any of the q domain states of the
phase F allowed by symmetry: These states are degenerate in energy. The
degeneracy can be lifted when an external field of proper physical character
and orientation is applied. When the G-to-F phase transition itself proceeds in
such a field, one or more of the q domain states may be energetically preferred.
When the field is applied in the phase F, the ferroic sample may undergo a
domain reorientation process between two states; say from state qA to state qB.
There are two possible reasons for this. First, the field may be high enough to
make state qA unstable. In such a situation the sample ‘‘leaves’’ state qA simply
because the latter does not exist for the given magnitude and orientation of the
applied field. However, this situation is of minor practical interest since the
domain state reorientation usually takes place at smaller values of the field, at
which both of the two states are still locally stable but one of them is already
more energetically favorable. Thus, one can say that the energy criterion
governs any reorientation of domain structure in ferroics. Let us address this
criterion.

To decide which of the domain states is more favorable under the condition
of fixed external fields (electric field E and stress sij), one should compare the
total free energy of the crystal and the external sources of the fields. That means
that it is not the free energy of the ferroic only that should be compared to tell
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the favorable domain state but rather the properly chosen thermodynamic
potential, which takes into account the work performed by the external sources.
According to classical thermodynamics, for the case of fixed field E and stress
sij, the density ~F of this potential is linked to the free energy density F of the
ferroic by the following relation:

~F ¼ F� eijsij � PiEi: (8:2:1)

In terms of the Gibbs energy F introduced already in Chap. 2, this potential
can also be written as

~F ¼ F� PiEi: (8:2:2)

Thus, the difference between the values of this potential for two domain states
represents thedriving force for the transitionbetween them.Having inminddomain
states denoted by qA and qB, this difference will be written as D~FAB ¼ ~FA � ~FB.

Let us consider two domain states in the simplest case that of a uniaxial
proper ferroelectric of the TGS type. For the corresponding species only two
domain states are possible, which differ in the sign of spontaneous polarization.
An external perturbation which lifts the energy degeneracy of these states is the
electric field. Let us determine D~F for these states when the field is directed
along the ferroelectric axis of the crystal. In this case, according to Sect. 2.3 the
density of the appropriate potential reads (see Eq. (2.3.13))

~F ¼ F0 þ
1

2
aP2 þ 1

4
bP4 � PE: (8:2:3)

To calculate D~F one should, first, find the values of polarization in the
domain states where it is parallel or antiparallel to the field, P+ and P–,
respectively. Second, one finds D~F by using Eq. (8.2.3). If the applied field is
small enough so that |P+| – PS << PS and PS – |P–| << PS (PS is the absolute
value of spontaneous polarization), we can use the result of Chap. 2, namely Eq.
(2.3.14), and arrive at the commonly used expression

D~Fþ� ¼ �2PSE: (8:2:4)

Clearly, close enough to the transition temperature the aforementioned
conditions for P+ and P� do not hold, so that a more precise treatment is
needed. Making use of Eq. (8.2.3) and of the equation of state @ ~Fþ=@P ¼ 0, the
exact expression for this difference can be readily found in the form

D~Fþ� ¼ �ðPþ � P�Þ
3E� aðPþ þ P�Þ

4
: (8:2:5)

As it should be, this equation reduces to Eq. (8.2.4) in the limit of small fields.
For higher fields, the energy difference between the domain states given by the
exact formula is smaller than that given by Eq. (8.2.4). However, it turns out
that this reduction is rather small; it can reach a few percent when the applied
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field reaches a value comparable to that of the thermodynamic coercive field
given by Eq. (2.3.15).

In the above example, we have profited from the relative simplicity of the
problem and presented the exact solution to the latter. In the case of an
arbitrary ferroic the situation is more complicated, so that themost constructive
way is to present the difference D~F as the Taylor expansion in terms of the
external fields E and sij. Taking into account the basic properties of the
potential ~F (cf. Eq. (2.3.12))

@ ~F
@Ei
¼ �Pi and

@ ~F
@sij
¼ �eij; (8:2:6)

we can present the difference between the thermodynamic potentials of ferroic
domain states ‘‘2’’ and ‘‘1’’ as

D~F21 ¼ P
ð1Þ
Si
� P

ð2Þ
Si

� �
Ei þ eð1ÞSn

� eð2ÞSn

� �
sn þ d

ð1Þ
in � d

ð2Þ
in

� �
Eisn

þ 1

2
kð1Þij � kð2Þij

� �
EiEj þ

1

2
sð1Þmn � sð2Þmn

� �
smsn þ � � �

; (8:2:7)

where d
ðvÞ
in , k

ðvÞ
ij , and s

ðvÞ
mn stand for the morphic components of piezoelectric

coefficients, permittivity, and elastic compliance, respectively, in the domain
state v. Here i, j¼ 1, 2, 3 while m, n¼ 1, 2, 3, 4, 5, 6. (We remind the reader that
morphic tensor components are those which are newly acquired in the ferroic
phase.) The terms kept in this expansion provide us with the expressions for the
energy difference driving the domain reorientation in ferroelectric, ferroelastic,
ferroelastoelectric, ferrobielectric, and ferrobielastic materials, respectively.

In principle, this expansion can be continued. The higher order terms propor-
tional to E3, E2s, s2E, and s3 terms are essential for domain reorientation in
tertiary ferroics. The latter can be easily identified from Table B.1. The switching
forces in them have been analyzed by Amin and Newnham (1980). A concrete
example of the speciesm�3m�m�3 is cadmium chlorapatiteCd5(PO4)3Cl. It can be
called triferroelastic since a term proportional to s3 differentiates the two domain
states. Elpasolite, K2NaAlF6, represents the species 6/mmm – 6/m which is also a
triferroelastic. The remaining tertiary species are m�3m� 432 and m�3m� 23.

Higher order coefficients are usually very small. So we generally expect that,
for realistic stresses and fields, the energy differences given by the higher order
terms will be small, making domain state reorientation difficult to achieve
before electrical or mechanical breakdown takes place. Indeed we have very
little data on this kind of reorientation.

Applying a switching force defines the equilibrium state with one or more
domain states corresponding to minimum free energy. Now the domain reor-
ientation process or switching process is to take place and in principle it is only a
matter of time when the equilibrium state will be reached. It depends on the time
profile of the applied forces and on energy barriers involved in the actual

356 8 Switching Phenomena and Small-Signal Response



process. The energy terms given by Eq. (8.2.7) provide the primary sources
driving the switching process but in real experiments the energy balance is
usually more complicated because of additional contributions to the energy.
These include the energy of the electric fields existing outside the sample and
also of fields and stresses connected with simultaneous coexistence of domain
state during the reorientation process. Some of these aspects will be also men-
tioned later in this Chapter.

8.2.2 Pressure Acting on a Domain Wall

The difference in the thermodynamic potentials between two domain states
exposed to the action of external perturbations results in a pressure acting on
the domain wall separating these states. This pressure is an important factor
controlling switching in ferroics. It can be calculated using the principle of
virtual displacements. Specifically, one can relate the pressure f acting on a
wall in a ferroic to the change of the proper thermodynamic potential of the
ferroic DW induced by a displacement of the wall Dx. Consider an element of
the wall of area DS. The work needed to shift this element by distance Dx is
equal to Dx �f �DS. On the other hand, according to the classical thermody-
namics, this work should be equal toDW. That leads us to the expression for the
pressure acting on the element of the wall

f ¼ DW
DS � Dx : (8:2:8)

Thus, the calculation of the pressure acting on a wall reduces to the calcula-
tion of the variation of thermodynamic potential of the system.

The sought pressure can be readily found in the case where the macroscopic
fields (Ei and sij) are fixed and homogeneous in the sample. In this case, the
ferroic is characterized by the density of thermodynamic potential, ~F (see Sect.
8.2.1), so that DW can be found as DW ¼ Dx � DS � D~F12 where D~F12 is the
difference between the values of ~F for the domain states ‘‘1’’ and ‘‘2.’’ This
implies (via Eq. (8.2.8)) that, in the considered situation, the pressure acting on
the wall is merely equal to the difference between the densities of the thermo-
dynamic potential on the two sides of the wall. It is instructive to express this
pressure in terms of macroscopic tensor properties of the domains and, by using
the expansion of D~F12, Eq. (8.2.7), to find

f ¼ P
ð1Þ
Si � P

ð2Þ
Si

� �
Ei þ eð1ÞSn � eð2ÞSn

� �
sn þ d

ð1Þ
in � d

ð2Þ
in

� �
Eisn

þ 1

2
kð1Þij � kð2Þij

� �
EiEj þ

1

2
sð1Þnm � sð2Þnm

� �
snsm þ � � �

(8:2:9)

Here and therein, the pressure is considered as positive when acting from
domain ‘‘2’’ to ‘‘1.’’
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In real ferroics the values of the pressure acting on awall can be very different.

Let us evaluate the pressure acting on a 1808 wall parallel to the direction of the
electric field (like that in the parallel plate capacitor shown in Fig. 8.2.1(a) in two
classical ferroelectric systems, TGS single crystal and Pb(Zr,Ti)O3 (abbr. PZT)

thin film, at the electric field of the order of the coercive field. Taking into
account the first term fromEq. (8.2.9) we find the sought pressure equal to 2PSE.
This implies values of the pressure equal to 5.6 N/m2 for TGS and 2.4 � 106 N/

m2 for PZT. These estimates have been obtained using the values PS¼ 2.8 mC/
cm2 and E¼ 1 V/cm for TGS and PS¼ 30 mC/cm2 and E¼ 40 kV/cm for PZT
film.

There are two limitations for applicability of the above results: (i) The

‘‘fields’’ Ei and sij are assumed to be homogeneous throughout the sample;

(ii) no free charges except those on the electrode are admitted in the system. A

more involved theory (Roitburd, 1971; Nechaev and Roschupkin, 1988) offers
a treatment of the problem in the case where the first limitation is lifted. This

theory gives a generalized version of Eq. (8.2.9) as

f ¼ P
ð1Þ
Si � P

ð2Þ
Si

� �Eð1Þi þ E
ð2Þ
i

2
þ eð1ÞSn � eð2ÞSn

� � sð1Þn þ sð2Þn

2

d
ð1Þ
in � d

ð2Þ
in

� �Eð1Þi sð2Þn þ E
ð2Þ
i sð1Þn

2
þ kð1Þij � kð2Þij

� �Eð1Þi E
ð2Þ
j

2

þ sð1Þmn � sð2Þmn

� � sð2Þn sð1Þm

2
þ � � � :

(8:2:10)

It is seen that this expression can give values of the pressure substantially

different from those given by the simple difference of thermodynamic ~F poten-

tial on the two sides of the wall.
The result given by Eq. (8.2.10) also holds when free charges are present in

the ferroic, except the case where the domain wall is carrying some free charge

on it. Such situation readily occurs when the domain wall is charged (i.e.,

divP 6¼ 0 at the wall) and the bound charge is fully or partially compensated

Fig. 8.2.1 Parallel plate capacitors (electrodes are shown with the darkest shading) containing
1808 ferroelectric walls. Arrows show the directions of the spontaneous polarization: (a) wall
perpendicular to the electrodes bearing no bound charge, (b) head-to-head wall parallel to the
electrodes bearing bound charge
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with free charge. For such situation, a relation for the polarization-related force
acting on a wall carrying free charge has been obtained byMokry et al. (2007) as
follows:

f ¼ Fð2Þ � Fð1Þ � 1

2
E
ð1Þ
i þ E

ð2Þ
i

� �
P
ð2Þ
i � P

ð1Þ
i � sfni

� �
: (8:2:11)

Here F is the Gibbs energy density (see the previous section), sf is the free
charge density per unit area of the wall, and ni is the normal to the wall plane
directed inside domain ‘‘2.’’

Analysis performed using this relation has shown that the force acting on a
charge domain wall can be strongly reduced when it is free-charge compensated
(Mokry et al., 2007). Such result is consistent with a statement by Landauer
(1957) who pointed out that the bound charge screening at domain walls not
only reduces the energy of the depolarizing field but may also reduce the
pressure acting on the wall.

It is instructive to illustrate this effect with a simple example. Consider a
capacitor containing a ‘‘head-to-head’’ nonferroelastic 1808 domain wall paral-
lel to its plates, the bound charge of the wall being fully compensated by free
carriers (see Fig. 8.2.1b) so that the electric field E is homogeneous throughout
the capacitor. It readily follows from Eq. (8.2.11) that, in the hard-ferroelectric
approximation (i.e., when the polarization in the domain can be presented in the
form: P ¼ �PS þ kce0E; cf. Eq. (5.2.4)), no pressure is applied to the wall.
Indeed, in this approximation, the Gibbs potential F of the two domains can
be considered as equal and Pð2Þ � Pð1Þ ¼ sf ¼ 2PS: Calculations beyond this
approximation yield the value of the pressure, which is much smaller than the
classical 2PSE value. For the simplest form of the potential F given by
Eq. (2.3.4a) according to Mokry et al. (2007) with a good accuracy one finds

f ¼ � w2E3

PS
: (8:2:12)

Here w is the lattice contribution to the susceptibility of the ferroelectric and
the negative sign indicates that the pressure is applied in the opposite direction to
that related to the 2PSE term. The origin of this small contribution to the pressure
is the difference in the nonlinear dielectric response of the two domains.

It is worth mentioning that vanishing the pressure on the wall in the hard-
ferroelectric approximation can be concluded directly from the explicit form of
the thermodynamic potential of the system. Consider the above system for a
fixed potential difference between the electrodes. In this system, because of the
full screening of the bound charge on the wall, in the hard-ferroelectric approx-
imation, the electric field is homogeneous and fixed. Thus, the corresponding
thermodynamic potential of the ferroelectric in the capacitor can be written as

W ¼
Z
Vc

FðPÞ þ e0E2

2

� �
dV� ðf1q1 þ f2q2Þ (8:2:13)
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where q1, q2 and j1, j2 are the charges and electrostatic potentials on the
electrodes, respectively; integration over the capacitor volume Vc is implied.
One readily sees that, in the accepted approximation, a wall displacement does
not result in any change ofW since, in this approximation,F is the same in both
domains, E is constant, and the charges on the plates do not change because the
fully screened domain wall is neutral. This implies no pressure applied to the
wall.

8.3 Single Domain Wall in Motion

8.3.1 Experimental Techniques Used to Measure Domain Wall
Velocity

Domain wall velocities can be determined from direct observations or from
indirect data on some macroscopic phenomenon accompanying the wall
motion, when the domain geometry is known. The method used must fulfill
two requirements. First, it is to allow application of the force acting on the wall,
i.e., of electric field, mechanical stress, or of a combination of both, without
imposing unwanted boundary conditions. Second, it must offer a satisfactory
resolution in determining the wall positions.

Optical methods appear to be ideal. To measure the velocity of single-domain
walls by direct optical observations, crystals which are simultaneously ferro-
electric and ferroelastic are preferred since wall motion can be easily induced by
applied electric field, and direct determination of wall velocity in a polarizing
microscope is relatively easy. In an ideal case, a domain wall is singled out in a
sample of high quality and, depending on the crystal symmetry and sample
geometry, the field is applied (i) using transparent electrodes on the sample
surfaces used for the optical observations or (ii) using common electrodes depos-
ited on the side surfaces of the sample. When a ferroelastic wall moves through
the sample, the shape of the latter changes; thus it has to be ensured in the
experimental setup that this is not hindered by any kind of external clamping
such as cementing the sample on a glass plate or using an unsuitable sample
holder. If electric field of alternating polarity is used, stroboscopic illumination
allows one to observe the wall position as a function of time. Since very short and
intensive light pulses can be easily produced, the technique allows high time
resolution. The stroboscopic technique was employed first for studying wall
motion in Rochelle salt (Mitsui and Furuichi, 1953) (in this pioneering work a
rotating disk with brushes and a window were employed to control the applied
field and the phase at which the wall was observed) and later fully electronic
devices with light pulses of duration below 1 ms were exploited to study 908 wall
motion in BaTiO3 (Fousek and Brezina, 1960) and gadolinium molybdate (Shur
et al., 1985a, 1989b). Nowadays, much higher time resolution could be achieved
with suitable laser light pulses as short as 100 ns at a repetition rate up to 10 kHz.
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Nonferroelastic 1808 domains in some ferroic species can also be optically
distinguishable due to optical activity. Then the stroboscopic technique could
also be used to measure wall velocity. A well-known example is lead germanate
(Dougherty et al., 1972) where in high-quality crystals the domain wall velocity
was investigated stroboscopically (Shur et al., 1985c).

Another optical technique of measuring wall motion in alternating fields is
based on the detection of a photoinduced signal (Tikhomirov, 1996). The image
of vibrating wall is transmitted onto the cathode of a photomultiplier through a
slit diaphragm so that the wall displacement modulates the light intensity
passed to the detector. Variations in the output signal reflect the wall motion.

Velocities of some domain wall may strongly depend on temperature. Then
care must be taken in microscopic observations for which the intensity of the
light can be quite high and leads to a considerable increase in the sample
temperature. For instance, the experiments with BaTiO3 plates (Miller and
Savage, 1959c) indicated that the high and low light levels resulted in a sub-
stantial temperature difference of about 8 K.

Domain walls whose positions cannot be directly determined optically are
more difficult to study. In the early stages of research, the basic data on
dynamics of 1808 walls in BaTiO3 were obtained (Miller, 1958; Miller and
Savage, 1958) by subsequent etching of the sample after the application of
electric field for a given period of time. This is in a way a destructive process;
however, it provided the essential data later confirmed by other methods.

The liquid crystal decoration technique offers another method for optical
observations of walls which cannot be observed directly. Data on wall velocity
in nonferroelastic ferroelectrics TGS and GASHwere obtained by this method.
In these materials, domains are not visible in a polarizing microscope but the
decoration technique offers sharp pictures and allows direct optical measure-
ments of wall velocities in a polarizing microscope. Tikhomirova et al. (1985a,
1986a) and Dontsova et al. (1982) used a cell representing a sandwich in which
the upper surface of the crystal plate was in contact with nematic layer, 1–10 mm
thick. This was followed by a glass plate provided with an SnO2 electrode. Thus
the crystal surface faced a thin insulating layer, namely the nematic. Therefore
the electrical conditions under which the domain walls move may not be exactly
defined. The domain wall motion could be influenced by the rate of the process
in which the bound charge produced by the motion of domain wall was
compensated by electrical conductivity of the liquid crystal layer or perhaps
of the crystal under investigation.

This disadvantage does not apply to another method used for ferroelectric
walls which do not provide optical contrast, namely the pyroelectric probe
technique (Hadni, 1970; Hadni and Thomas, 1975). In this system the sample
is necessarily electroded to detect the pyroelectric charge induced by a modu-
lated laser beam so that a voltage can be applied which causes the walls tomove.
Analyzing subsequent scans gives information about wall velocities.

Indirect methods of measuring wall velocity are based on Landauer’s for-
mula for the switching current (Landauer, 1957). We have in mind an
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electroded crystal plate of thickness d, perpendicular to the ferroelectric axis.
The current iS flowing through the electrodes is related to the volume Vsw in
which spontaneous polarization is reversed by 1808 and equals

iS ¼
2PS

d

dVsw

dt
: (8:3:1)

Knowing the values of PS and d as well as the geometry of growing domains
and their instantaneous size, data for wall velocities can be deduced from the
analysis of the switching current iS(t).

This indirect method of measuring wall velocity was first used by Miller and
Savage for 1808 walls in the tetragonal phase of BaTiO3. These walls are not
expected to be visible in a microscope. (We shall see later in this chapter that, in
fact, optical methods can be and were used for this material.) In one of their first
studies Miller and Savage (1958) used the sample holder shown in Fig. 8.3.1.
Here, sand blasting a dimple (250 mm in diameter) in the plate-like sample was
made, which predetermined the location where a domain would form and
electrolyte electrodes (aqueous solution of LiCl) were used for the application
of the field to the ferroelectric. With the liquid electrodes, the sample could be
easily extracted from the sample holder to perform direct observations of the
domain pattern at the different stages of switching. It was found that the reverse
domain grew around the dimple having the shape close to a perfect square (see
Fig. 8.3.12a). The simple geometry of the growing domain enabled linking
(using Eq. (8.3.1)) the switching current iS(t) and the domain wall velocity as

v ¼ is
8Psa

; (8:3:2)

where a is the length of side of the square domain. The latter can be determined
from the integrated switching current

a ¼ 1

2PS

Z t

0

iSðtÞdt

2
4

3
5
1=2

: (8:3:3)

Fig. 8.3.1 Liquid electrode holder with a dimpled sample of BaTiO3 mounted between the
electrodes used by Miller and Savage (1958). Reprinted with permission from Miller and
Savage (1958). Copyright (1958) by the American Physical Society
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It was this technique that was used to establish the basic law of motion of a

nonferroelastic wall in BaTiO3. It was also used by Taylor (1962) for determi-

nation of the velocity of the walls of square-like and circular-like domains in
BaTiO3. In these experiments, some discontinuities in switching currents were

detected; these were interpreted by domain coalescence, an assumption con-
firmed by powder patterning.

However, later (Miller and Savage, 1959a,c) it was found that 1808 domain

walls in BaTiO3 can be optically distinguished; this applies in particular to freshly

formed domains or to moving domain walls. Direct optical observations then
allowed one to widen the field interval in which walls in BaTiO3 were investigated,

using semitransparent metallic electrodes. Here one should mention that the
nature of the visibility of 1808 domain walls in BaTiO3 is still not clear. There is

an explanation offered by Kobayashi (1967), which is connected with the rotation

of principal optical axes in domain walls, however, its application to the very thin
domain walls typical to this crystal (see Chap. 4) seems to be problematic.

Bittel et al. (1968) studied 1808 wall velocities in Rochelle salt, by analyzing

the switching current. This is a ferroelastic material and therefore, in contrast to
the studies of BaTiO3 crystals, samples were chosen with regular stripe systems

consisting of parallel domain walls. It was found by stroboscopic observations
that, under the applied field, all walls in such a systemmoved almost in the same

way. If the number of walls per unit length is n, l is the length, and b is the width

of the sample, then the displacement of all walls by x causes a charge
qw ¼ 2PSlbnx on the electrodes to develop. This charge can be easily measured

as a voltage Uw on a capacitor C in series (in fact using the classical Sawyer–-
Tower circuit). Using an obvious relation

UwðtÞ ¼
2PSlbn

C
xðtÞ; (8:3:4)

voltage Uw can be used to determine x(t) and its time derivative.
In contrast, Kumada (1970) found that polarization reversal in the ferro-

electric ferroelastic crystal of gadolinium molybdate may proceed by the

motion of a single-domain wall only. The switching in a sample of the square
cross-section with the only wall parallel to the side or the diagonal of the square

was experimentally addressed. The wall velocity was determined from the time
dependence of the switching current taking into account a possible dependence

of the wall length on its position in the sample.
To obtain meaningful data giving information on the basic laws of wall

motion not influenced by the presence of undefined defects or by boundary
conditions, crystals must be grown and samples were prepared with extreme

caution. Till now only few of the available data seem to fulfill these require-
ments. In particular, in experiments where the electric field is homogeneous

throughout the sample, any data showing that the wall velocity depends on its

instantaneous position and especially on the distance from its original position
cannot be taken as a generally valid law of the wall motion.
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8.3.2 Motion of Ferroelectric Nonferroelastic Walls

After having discussed the methods used for measuring domain wall velocities
we nowwish to give a brief overview of experimental data.We shall concentrate
on wall motion in ferroelectrics for which there have been many attempts to
obtain reliable data. In the present section we will discuss the behavior of
nonferroelastic ferroelectric domain walls.

Several decades ago much effort was devoted to attempts to devise digital
memories based on 1808 polarization reversal in ferroelectric crystals. It was
realized that the switching not connected with changes of strain would be
advantageous from the point of view of reliability of the device and therefore
understanding reversal processes in nonferroelastic ferroelectrics was of primary
importance. Among the investigated materials, BaTiO3 played the leading role.

Having in mind the 1808 wall motion, the situation in ferroelectrics which are
not proper ferroelastics is simpler from one point of view: Elastic stresses can be
expected to have little influence. However, it can also bemore complicated because
while severe restrictions of wall orientation due to spontaneous strain do not apply,
the anisotropy of wall energy density may determine the shape of growing or
shrinking domains. In Sect. 8.3.2.1 we shall discuss the situation where the curva-
ture, energy anisotropy, and shape of the wall have little impact on its motion.
Some features of shapes of growing domains related towall energy anisotropy or to
the specific mechanisms of wall motion will be discussed in Sect. 8.3.2.2.

8.3.2.1 Planar Walls

Below we will address experimental data on the motion of nonferroelastic
ferroelectric walls that have been obtained for a few materials, the most atten-
tion being paid to ferroelectrics classical for this kind of experiments, namely to
BaTiO3 and TGS.

The earliest and still the most fundamental studies were performed byMiller
and Savage long time ago and the law of motion of 1808 walls in the tetragonal
phase of BaTiO3 deduced from their data is still widely used when discussing a
number of phenomena. In fact, it is often considered to be of general validity for
nonferroelastic ferroelectrics. This assumption, however, has to be taken with
some caution.

As it was mentioned above in Sect. 8.3.1, Miller and Savage (1958) observed
the expansion of a square-like domain in the tetragonal phase of BaTiO3 at
room temperature. One essential remark has to be made here. While the wall
velocity v at a given field can be undoubtedly determined using Eqs. (8.3.2) and
(8.3.3), one has to bear in mind that during the domain growth process also the
area of domain walls increases. Therefore, the value of v determined in this way
need not only be a function of the applied field (due to which the total energy
decreases as the domain grows) but also be a function of the rate at which the
energy of the wall surrounding the domain increases. For a square-shaped
domain, the impact of the increasing wall area on its velocity is controlled by
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a factor sw=ðaEPSÞ (Miller and Savage, 1958) where a is the length of one side of
the domain and sw is the surface energy per unit area of the wall. The effect of
increasing wall area can be neglected if sw=ðaEPSÞ551. For typical values of
the parameters of Miller and Savage’s experiments sw=ðaEPSÞ ffi 10�2 so that
increasing wall energy seemed to have been minute and the motion of walls
could be considered to represent the motion of an isolated wall.

Taking, therefore, v as a function of E only, data for a number of samples
were shown (Miller and Savage, 1958) to be well fitted, in the range between 150
and 500 V/cm, to the expression of Eq. (8.3.5) in which v1 and d are indepen-
dent of the applied field.

v ¼ v1 expð�d=EÞ: (8:3:5)

These data apply to crystal plates grown by the Remeika method, i.e., from
the flux, from which the surface layer produced during the growth process was
first removed by etching above the Curie point. For samples of thickness
100–200 mm the value of d ranged between 1.9 � 103 and 3.9 � 103 V/cm. The
value of v1 depended strongly on the way crystals were grown. Thus, for
samples grown from the melt which contained 0.1 mol% AgNO3, the magni-
tude of v1 (0.7–9.1 cm/s) was repeatedly smaller than that for samples grown
from the melt which contained 0.02 mol% Fe2O3 (7.8–68 cm/s). Changing iron
concentration in the melt from 0.00 to 0.25 atomic percent led to a decrease in
wall velocity by more than an order of magnitude (Miller and Savage, 1959c).
These findings demonstrated clearly that the impurity content and defect
structure have an essential influence on domain wall velocity.

It is essential that, unless v1 and d vary with E in some drastic manner, none of
these data can be fitted to the law v¼ m(E – E0) which, as we shall see below, was
found to be valid for lead germanate and in particular for ferroelastic ferroelectrics.

Further measurements (Miller and Savage, 1959b) were extended to the
range of applied fields up to 1500 V/cm. In the higher field range, data were
obtained by etching the sample after a field pulse was applied for a given time.
Final results covering eight orders of velocity magnitude, which are summa-
rized in Fig. 8.3.2, show that Eq. (8.3.5) with d and v1 strictly field independent
does not accurately describe the data over the entire measured range. However,
within limited intervals this relation is a good approximation.

Independent experiments with BaTiO3 plates, performed by Taylor (1962) at
room temperature, confirmed the equation of motion (8.3.5). His values of
coefficients v1¼ 2.8 � 104 cm/s and d¼ 7.8 kV/cm were found applicable for
velocities between 103 and 104 cm/s, for the range of fields 2.6–6 kV/cm. Rather
than by straight domain observations, these data were obtained by analyzing
the shape of the switching current, similar to that described by Eq. (8.3.1).

All mentioned data byMiller and Savage were obtainedwith liquid electrodes.
After the direct visibility of moving domain walls in BaTiO3 had been established
(Miller and Savage, 1959a), these authors continued their studies with semitran-
sparent evaporated gold electrodes (Miller and Savage, 1959c). The field
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dependencewas found to be the same aswith liquid electrodes; data covering four
decades of velocity (10–6–3�10–2 cm/s) fulfill Eq. (8.3.5) with a change of slope, in
the log v vs. 1/E plot, at 10�4 cm/s. These studies revealed a profound influence of
several factors on wall velocities. First, for plates of the same thickness, wall
velocity in samples with liquid electrodes is more than an order of magnitude
higher than that in samples with metal electrodes. Second, the sample thickness
itself plays an essential role. Thus, for instance, the field E1 required to reach a
velocity of 10�3 cm/s fulfills the relation E1¼ 400(1+d0/d), where d is the sample
thickness and d0¼ 5� 10�3 cm. The analysis of data showed that it is the value of
d rather than that of v1 which depends on d. Third, the wall velocity of metal-
electroded samples is affected by water vapor. Samples measured in dry winter
days have higher wall velocities. And finally, a pronounced ‘‘memory effect’’ was
observed for motion of 1808 walls. When the crystal was kept in one PS direction
for 16 h, in the field pulses applied afterwards in the opposite direction the wall
moves first very unwillingly, but at subsequent pulses more easily. Also, the areas
polarized in the direction of themeasuring field for the longest time are the easiest
to polarize in that same direction in the subsequent reversals. This is another fact
showing that charge distributions left from previous reversals have an effect on
wall motion, which persists for many minutes. It indicates that some slow
relaxation process take place as the field is applied.

The experimental data presented above and, specifically, the discovered wall
mobility law, Eq. (8.3.5), and a pronounced impact of the sample thickness on the
parameters of this law stimulated theoretical activity which yielded a nucleation-
controlledmodel for the wall motion (Miller andWeinreich, 1960) (see Sect. 8.4.2)

Fig. 8.3.2 Logarithm of
1808 wall velocity in
tetragonal BaTiO3 vs. the
inverse of the applied field.
After Miller and Savage
(1959b)
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and a surface layermodel (Drougard and Landauer, 1959) where the depolarizing

field interferes with the wall motion (see Sect. 8.4.5). In turn, these models

motivated more detailed investigation of the phenomenon. Here, remarkably is

a paper by Miller and Savage (1961), where several seminal features of 1808
domain wall dynamics in BaTiO3 have been established. Some results from

this paper are shown in Fig. 8.3.3. Figure 8.3.3a demonstrates that the wall

velocity is not constant during application of a voltage pulse of a fixed amplitude.

In this context it was established that the wall velocity saturated after it passes

some 200 nm distance, independently of a value of the driving voltage.

Figure 8.3.3b reveals a kind of memory effect. Namely when pretreated with a

voltage pulse, the impact of the second identical pulse is sensitive to the delay time

between the pulses. Finally, Fig. 8. 3.3c demonstrates a sensitivity of the wall

velocity to the length of the voltage pulse applied. Some these features of the

wall dynamics can be rationalized in terms of the aforementioned theories;

see Sects. 8.4.2 and 8.4.5.
Until now we referred only to the data taken at room temperature. The inverse

exponential form of the law (8.3.5) suggests that the motion of a domain wall of

this kind cannot be compared to pulling an object characterized by friction but

Fig. 8.3.3 Data on 1808 wall
dynamics in tetragonal
BaTiO3. After Miller and
Savage (1961).
(a) Instantaneous wall
velocity vs. wall
displacement from it
position at rest; (b) distance
of wall displacement after
the application of a single
voltage pulse vs. the time
interval tR between two
subsequent pulses;
(c) average wall velocity
vs. pulse length
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rather suggests a nucleation mechanism. Then it can be expected that the velocity

would be strongly temperature dependent. Thus the influence of temperature on

wall velocity could provide a key factor for understanding the involved mechan-

isms. Indeed, already the first observations (Miller and Savage, 1958) showed that

the increase in temperature by about 10 K above room temperature had a

profound effect on v, increasing its value by about two orders of magnitude. In

the later study Miller and Savage (1959b) showed, using liquid electrodes, that

within the temperature range between 20 and 308C the wall velocity vs. field

dependence can be still described by the inverse exponential law, Eq. (8.3.5), and

that the temperature dependence lies primarily in d and not in v1. In this region,

they found that d decreases by 1% per 8C. Savage and Miller (1960) covered a

wider temperature region using metal-electroded samples. They pointed out that

the obtained data depend strongly on relative humidity. The increase in the latter

from 17 to 30% resulted in thewall velocity higher by a factor of about three, in the

applied fields between 400 and 550V/cm. In pureBaTiO3 samples, the temperature

increase from 25 to 1008C resulted in the reduction of d by a factor of 3.
The data on direct wall observations in BaTiO3 discussed above were taken

for fields 0.1–2.0 kV/cm. The upper half of this interval covers the region of

fields usually used to study hysteresis loops in barium titanate. Stadler and

Zachmanidis (1963) significantly extended this region, up to 450 kV/cm. Short

voltage pulses were applied using liquid electrodes and domain structure was

revealed by etching after each step. The velocity data reproduced in Fig. 8.3.4a

show a considerable scatter but can be reasonably well fitted to the equation

v ¼ v0E
1:4: (8:3:6)

Fig. 8.3.4 Velocity of 1808 walls in tetragonal BaTiO3 measured at high fields. (a) In samples
of different thicknesses. After Stadler and Zachmanidis (1963). (b) At different temperatures.
After Stadler and Zachmanidis (1964)
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At the highest applied fields the wall velocity reaches the value of 105 cm/s
which amounts to half of the speed of longitudinal sound waves. In fact in a longer
field pulse the speedmay be even higher since the data by Zen’iti et al. (1958) shows
that switching is slower when it proceeds in frequently interrupted voltage pulses
than in a single step function. In an additional study (Stadler and Zachmani-
dis, 1964a,b), an involved investigation of temperature dependence of 1808
wall velocity in BaTiO3 was offered. Again liquid electrodes (water solution of
NaCl) were used since they were found to give simpler domain shapes than
metal electrodes. Starting from a single-domain state, samples were partially
switched by applying pulses of electric field. After each partial switching
process the plate-like sample was etched and photographed; the velocity was
simply calculated by dividing the wall displacement by the pulse duration; the
role of finite size of the growing domain was not considered; in fact the authors
observed even a characteristic change of domain shapes. In this study, the
authors have also addressed the impact of the temperature on the v(E) depen-
dence, which is summarized in Fig. 8.3.4b. Though, here the scatter is some-
what disturbing, the authors concluded that the temperature increase leads to
some shift of the v(E) curve in this plot to the left.

Experimental data which we have discussed up to now concern the tetra-
gonal phase of BaTiO3. Additional information about wall behavior in this
material was obtained by Callaby (1965) who studied their properties in the
orthorhombic phase, stable at temperatures below about 58C. Here PS is
parallel to h110i directions of the cubic parent system so that {110} slices can
be poled perpendicularly to themajor surfaces. It turned out that, similarly as in
the tetragonal phase, antiparallel domains could again be distinguished opti-
cally in a polarizing microscope. They have square-like cross-sections with two
walls of the (100) type and the other two of the (110)-type orientation. At low
fields the motion can be followed by eye; at higher fields the wall positions were
measured before and after the application of a field pulse. It turned out that the
law of motion given by Eq. (8.3.5) was well satisfied for velocities in the range
between 10–5 and 104 cm/s. Data which are reproduced in Fig. 8.3.5a were taken
at T¼�158C. They demonstrate also the anisotropy of the wall velocity;
the inverse exponential law, Eq. (8.3.5), is well satisfied, with v1¼ 3 � 104

cm/s and d¼ 5.7 � 103 V/cm for the (100) wall, and with v1¼ 5.5 � 102 cm/s
and d¼ 4.1 � 103 V/cm for the wall of (110) orientation. At a field of approxi-
mately 400 V/cm the two velocities were the same, the growing domain was
square in shape. In this figure data are not included for the field interval
from 300 to 700 V/cm where direct observation of the wall was no longer
possible. In keeping with the measurements of Miller and Savage, the wall
velocity was found to decrease as the wall moves, following the relation v /
1/x1.5 where x is the displacement of the wall. After some distance dss the
wall reaches steady-state velocity. At 160 V/cm dss is 70 Å, but at 550 V/cm
it exceeds 7 � 104 Å.

Similarly as in the tetragonal phase, temperature was found to play an
essential role in nonferroelastic wall motion also in the orthorhombic phase
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of barium titanate. Callaby’s (1965) data are shown in Fig. 8.3.5b. In the same

study, experiments similar to those by Miller and Savage (1961) for tetragonal

BaTiO3 have been performed. Some differences in the domain wall dynamics in

orthorhombic and tetragonal phases have been established. For explanation of

this difference a surface layer model, different from that by Drougard and

Landauer (1959), has been developed Callaby’s (1965).
Till now we have referred to some data and proposed models which con-

cerned crystals of BaTiO3. It is appropriate to point out that all these investiga-

tions were performed using flux-grown samples and that some discrepancies or

even basic features of observed dynamic domain properties might be related

either to specific lattice defects or to surface layers of plate-like samples. Only

when this research area was to a large extent abandoned, the top-seeded pulling

method was successfully introduced to grow large and high-quality crystals of

this material (cf., e.g., the book by Xu (1991)). Therefore, repeating some of the

previous experiments might be interesting.
Next to barium titanate, the other model ferroelectric material with non-

ferroelastic antiparallel domain pairs is triglycine sulfate. Large crystals of

TGS, when grown with proper care from water solution, are free of optically

detectable defects. As we have already discussed, domains are usually visualized

by etching or decoration techniques.
In good-quality crystals of TGS and its isomorphs, domains tend to have

lenticular shapes. It is appropriate to point out that some researchers have

neglected the problem of the shape of a growing domain, investigating the

wall velocity in one chosen direction, that is, observing a particular side of a

domain of two-dimensional cross-section. Another remark of general character

is that since results of Miller and Savage for BaTiO3 were already known when

1

Fig. 8.3.5 A 1808 wall velocity in the orthorhombic phase of BaTiO3. After Callaby (1965).
(a) Dependence on applied field at –158C. (b) Temperature dependence of (110)-oriented 1808
wall velocity at an applied field of 300 V/cm
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the investigations of TGSwere initiated, a certain degree of inclination to fit the

obtained data to Eq. (8.3.5) could be assumed.
Here we shall refer to only some of the available data. In one of the first

attempts to address this subject, Hayashi and Mishima (1969) applied mer-

cury electrodes (which are easily removable) to a TGS plate and after a partial

switching process revealed the new positions of domain walls by etching,

repeating this process for given values of the applied field a number of

times. Results were shown to fulfill the inverse exponential law, Eq. (8.3.5),

with v1¼ 39 cm/s and d¼ 150 V/cm. In more detail, domain wall motion in

TGS at room temperature was studied by Hadni and Thomas (1975) who used

the pyroelectric probe technique for imaging domains in a plate 20 mm thick.

As the first step, velocity was measured for walls of domains already existing

in the sample; in an applied field of 200 V/cm the average speed amounted to

1 � 10�2 to 1.4 � 10–2 mm/s, depending on the direction of the wall propaga-

tion. However, more informative are the data for domains which were first

nucleated by the applied field since their walls can be supposed to be less

influenced by pinning effects. These data are summarized, for walls moving in

the slowest direction, in Fig. 8.3.6 which shows the plot of the average wall

velocity vs. field. For a sample 20 mm thick it can again be well fitted by the

inverse exponential law, Eq. (8.3.5), with v1¼ 475 cm/s and d¼ 1.15�104 V/cm.

This figure also shows the data for a sample of smaller thickness of 6 mm.

Similarly as in BaTiO3, wall velocities were found to depend strongly on sample

thickness: A reduction of sample thickness from 20 to 6 mm leads to a three-

orders-of-magnitude reduction of the wall velocity. In a narrower interval of

Fig. 8.3.6 Wall velocity vs. applied field for TGS. After Hadni and Thomas (1965). Curve 1:
sample 20 mm thick. Curve 2: sample 6 mm thick. Solid line corresponds to a fit to Eq. (8.3.5),
dashed lines represent fits to the v ¼ v0 expðaEÞ law
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velocities, Hadni and Thomas (1975) have also fitted their data to the simple
exponential law

v ¼ v0 expðaEÞ (8:3:7)

as shown in Fig. 8.3.6.
The alternative technique of liquid crystal decoration for studying wall

velocities in TGS was employed by a number of Russian investigators; as
already emphasized, the boundary conditions involved in this method can
complicate the interpretation of obtained data. Results were presented in
the form of plots ln v vs. 1/E at temperatures between 28 and 45.58C and in
the field range 30 V/cm to 1.3 kV/cm (Dontsova et al., 1982; Tikhomirova
et al., 1986ab; Dontsova et al., 1989). The authors found that their data
can be fitted to the inverse exponential law, Eq. (8.3.5), however with the
different values of the fitting parameters in three field regions. In the three
field regions domains differ in form, their cross-sections changing from
circular to lenticular and to rhombic. The wall velocity was found to fulfill
the relation

v / expð�U0=kTÞ (8:3:8)

with the activation energy U0 changing stepwise at 438C from 0.6 to 0.7 eV
below this temperature to 6–7 eV above this temperature. The same visualiza-
tion method made it also possible to measure the amplitude of a wall oscillating
in applied ac field. The obtained data (Dontzova et al., 1989) demonstrated a
pronounced relaxation effect, already at frequencies below 0.1 Hz. In an aged
sample the wall amplitudes are generally smaller than in a sample which was
annealed above the transition temperature. Dontsova and Popov (1975), in
connection with their study of spontaneous changes of domain shapes in TGS,
measured also wall velocities for fields between 0.1 and 1 kV/cm; here they
found Eq. (8.3.5) to be satisfied, with v1¼ 0.4 cm/s, d¼ 670 V/cm. Later,
however, it was pointed out (Dontsova et al. 1981) that in the field interval up
to 1000 V/cm three linear sections in the dependences lnv vs. 1/E are observed,
differing in the activation fields: For one of the investigated crystals, d¼ 110,
530, and 2000 V/cm in three field regions.

Using the same decoration technique, the wall velocities were investigated
also in crystals of guanidine aluminum sulfate hexahydrate (GASH) (Dontzova
et al., 1989). Similarly as for TGS, the authors claim that relation (8.3.5) was
fulfilled, with different values of the coefficients v1 and d in three different
ranges of the applied field.

It is obvious that the most reliable data on the wall velocity dependence on
applied field are those based on direct domain observations, and with one
exception (Taylor, 1962) all data mentioned above were of this character.
However, attempts have also been made to obtain information on wall velo-
cities by elaborate interpretation of the switching current is(t), which represents
the current flowing through the sample after the application of a pulse-shaped
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electric field. Perez et al. (1987) used this indirect method for determining
sidewise wall velocities. They applied square-like electrical field pulses of alter-
nating polarity, which normally would lead to the well-known time-dependent
switching current. However, on pulses of one polarity of the applied field E an
additional field increase DE= E/10 was superimposed, for a time period short
compared with the total switching time. This resulted in an instantaneous
increase Di in the switching current i. Based on a simple model of switching
geometry primarily characterized by sidewise expansion of domains with velo-
city v, it was argued that Di/i¼Dv/v¼Dln(v). The analysis of experimental data
for TGS crystals at room temperature and for fields in a limited range 0.3< E<
1.1 kV/cm led to the relation

v ¼ cE2; (8:3:9)

the indirect method, however, did not allow to determine the magnitude of the
constant c.

Tikhomirova et al. (1980a) paid attention to the velocity anisotropy as well
as to the influence of temperature. Lens-shaped domains always grow much
faster along their long axis in the ½�102� direction than along the c-axis; at
E¼ 150 V/cm and T¼ 278C, for instance, the respective velocities are v||ffi 4�
10�3 cm/s ffi 2v?. In the lnv|| vs. 1/E dependence two linear sections are
observed for four different temperatures and the v?ð1=EÞ dependences were
found to be similar. Thus these sections correspond to law (8.3.5), differing in
the values of d and v1. When T changes from 23 to 478C, for different crystals
v1 increases by a factor of 2–2.5 while d decreases by a factor of 5–10.We have
to stress again that while these results are presented as domain wall velocities,
it is not isolated planar walls which are moving.

Whenmeasuring domain wall velocities, surface boundary conditions—such
as the mentioned surface layers—can play an essential role. However, well-
defined experimental studies devoted to this problem are very limited. For TGS,
interesting data were offered by Tikhomirova et al. (1985b). Their aim was to
investigate the influence of nonuniform boundary conditions onmotion of 1808
walls in TGS in the sandwich NLC–TGS–NLC where NLC stands for the
nematic liquid crystal layer. In their experimental arrangement shown in
Fig. 8.3.7, the inserted glass plate provides different boundary conditions in
the different parts of the sample. Starting with a single-domain state, after the
application of the field, domains are nucleated in region I (no glass); they grow

Fig. 8.3.7 Experimental setup by Tikhomirova et al. (1985b). 1, glass plates with conductive
SnO2 layers; 2, glass plate; 3, TGS plate; 4, layers of nematic liquid crystal
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with sidewise velocity v1 till their fronts reach the border of region II (glass).
When the domain front acquires the shape of this border, the wall continues to
move under glass into region II, with velocity v2 < v1 which continuously
decreases. Now, that the field of opposite polarity is applied, this wall, say
wallA, does not move backwards. Instead, polarization reversal proceeds again
in region I and finally new wallB is formed which penetrates into region II. This
can be continued with a wall C. When the latter reaches the already standing
wall B, they annihilate and the standing wall A starts to move with the velocity
which had the wall C when it reached the wall B.

The authors offered an interesting interpretation of this behavior. In region
I, for a sufficiently strong field E the switching time is limited by the conductiv-
ity of NLC. When a wall enters region II, its velocity is limited from above by
diffusion of free carriers into the thin NLC layer. The distance x covered in the
time interval t by the wall entering region II is of the order of

ffiffiffiffiffiffi
Dt
p

whereD is the
diffusion coefficient in the NLC. The proportionality x /

ffiffi
t
p

has been experi-
mentally confirmed. The fact that the last-but-one introduced domain wall is
immobile in the presence of the last moving wall was explained in the following
way: Its motion is practically impossible due to the small concentration of
compensating charges, since the diffusion of free charges takes place prevai-
lingly between the edge of region II and the last introduced (and moving) wall.

It was suggested that the describedmethod could be used not only to produce
domain patterns of a required configuration in uniaxial ferroelectrics but also to
estimate electrical conductivity, viscosity, diffusion coefficient, and other para-
meters of NLC, using the data on time dependence of velocity of domain walls.

It has to be pointed out that while law (8.3.5) has been repeatedly used to
interpret data on TGS, the values of d obtained by different authors strongly
differ. They depend on boundary conditions employed in the method used to
determine d, and also on the applied fields. In addition, different samples may
behave differently, due to crystal lattice imperfections. Systematic investiga-
tions in this field are still missing. For ferroelastic domain walls, it is generally
accepted that lattice imperfections such as dislocations can influence the wall
motion induced by applied field. However, it was shown by several authors that
this is the case even for nonferroelastic domain walls such as those in TGS
crystals. By etching technique, Nakamura and Nakamura (1962) observed that
moving walls in TGS are caught by dislocations and that their interactions
depend on the applied field: In the field of 30 V/cm, a domain wall was caught in
dislocation which resulted in zigzag shape of the wall. However, in the field of
350 V/cm it passed smoothly through the dislocation. These results were later
confirmed by Meleshina (1971, 1970) who observed etch patterns showing
successive positions of domain boundaries and dislocation emergence points.
Theoretically, the issue was discussed by Suda (1979).

The third nonferroelastic ferroelectric material we wish to include in this
overview of wall velocity data is lead germanate, Pb5Ge3O11. In fact this material
is especially suitable for studies of wall velocities. The reason is that it represents
the species �6� Pd� 3 in which domains are directly distinguishable in a
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polarizing microscope, due to optical activity which is a morphic effect for this

species. The problem was addressed by Shur et al. (1984b, 1985d, 1990). Polar-

ization of crystal plates provided with transparent electrodes was reversed by

applying rectangular ac field pulses and, during the reversal process, the domain

wall positions were measured in a polarizing microscope, using stroboscopic

illumination.Walls penetrating the whole sample thickness (2mm) were selected.

Before the actual measurements, the samples were ‘‘rejuvenated’’ by switching in

a 50 Hz field until a symmetric hysteresis loop was observed. In this way

unwanted effects of ‘‘unipolarity’’ due to defects preferring a particular orienta-

tion of Ps are largely avoided; these, as it was shown in an independent study

(Shur et al., 1984a), lead to backswitching phenomena which would greatly

influence data on domain wall velocity. Some of the results are shown in

Fig. 8.3.8 (Shur et al., 1985c). Here, for applied fields exceeding the threshold

field E0¼ 470 V/cm but smaller than 2.5� 103 V/cm, the wall velocity was found

to be a linear function of the electric field

v ¼ mðE� E0Þ (8:3:10)

while for fields exceeding this value relation (8.3.5) is fulfilled. It is essential to

realize that these data refer to average velocities calculated from the time required

for the wall to cover a given distance under the assumption that the velocity is

constant. Later experiments of Shur et al. (1990), however, showed that similar to

other materials the wall is slowing down as it travels from its original position. In

analogy to the earlier investigations of barium titanate, the effect was interpreted

in terms of the interface-related depolarizing phenomenon (see Sect. 8.4.5).

Figure 8.3.9 illustrates such effect. Here it is seen that, for smaller values of the

applied field (e.g., E ¼ 1:2 kV=cm), the wall virtually stops after 2 s and it still

keeps moving at higher fields. At the same time, in the whole field range

addressed, there is observed the full backswitching when the field is off.
The problem of domain wall velocity in nonferroelastic ferroelectrics was of

extensive interest several decades ago, in particular because it was connected

with the widely addressed issue of ferroelectric memories based on single

Fig. 8.3.8 Wall velocity in
lead germanate. (a) Solid line
corresponds to v/ exp(–d/E);
(b) solid line corresponds to v
/ (E – E0). After Shur et al.
(1985c)
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crystals.More recently, it disappeared from the family of research issues of high
preference, despite the fact that now a number of new materials falling into this
category are known. It has to be admitted, however, that the selection of
efficient methods with well-defined boundary conditions is still quite limited.
One of the few studies of wall velocity in relatively new materials has been
performed by Matyjasek and Jakubas (1997), on single crystals of alkylammo-
nium halogenobismuthate, (CH3NH3)5Bi2Br11 (species mmm–Pd–mm2). The
investigated crystals showed a high built-in bias field Eb. Thus the macroscopic
characteristics like switching time and wall velocity were found dependent on
the sign of the applied field. Intensive backswitching was observed, in particular
close to TC¼ 312 K. This phenomenon may be connected with a surface layer
due to which a depolarizing field is formed for a quickly moving domain wall.
Figure 8.3.10 demonstrates the field dependence of the velocity at different
temperatures, when the applied field was of polarity opposite to that of Eb. Two
straight sections correspond to the inverse exponential law (8.3.5) with different
values of d. These two sections are related to different shapes of domains:
lenticular in region I and zigzag in region II. Such data were found not to be
well reproducible since the process of nucleation is not the same in every cycle.
With increasing T, the value of d decreases, e.g., d¼ 2400 V/cm at 293 K while
d¼ 850 V/cm at 307 K.

As it is clear from data included in this section, the classical barium titanate
studies ofMiller and Savage still represent the most complete set of data on wall
motion, for any nonferroelastic ferroelectric material. These authors also
showed the role of crystal quality or perhaps of particular additives. This factor
is often completely forgotten when discussing some experimental results on
switching. However, up to now no data seem to be available, which would
specify these effects in detail and allow an involved analysis. In particular,
practically nothing is known on the influence of specified crystal quality or
particular additives on the values of v1 and d coefficients or even on the validity
of Eq. (8.3.5) and the retardation effects (slowing-down of the wall under a fixed

Fig. 8.3.9 Time
dependences of domain wall
shifts in lead germinate
during and after the
application of a 2 s pulse of
an electric field of three
indicated values. After Shur
et al. (1990)
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applied field). Similarly, in triglycine sulfate it was shown clearly by Dontsova
et al. (1982) that the velocity of lateral motion of domain walls is strongly
affected by the growth conditions and previous history of a sample. In an aged
crystal it is by two orders of magnitude less than that in a crystal annealed for
2 h at 808C. Crystals grown in the paraelectric phase have a more labile domain
structure than those grown in the ferroelectric phase. All these phenomena
remain unexplained.

8.3.2.2 Growing Domains

In the previous this section we had in mind the motion of those nonferroelastic
walls in ferroelectrics which are parallel with the polar axis; in other words, we
considered the ‘‘sidewise’’ wall motion. In addition, we concentrated on cases
where the shape of the growing domain did not — or was supposed not to —
essentially influence domain wall velocity. Now we shall lift these two limita-
tions and offer some additional experimental data. It is again assumed that an
electric field is applied whose polarity supports the PS orientation in the grow-
ing domain. First, we will discuss the growth of long narrow domains along the
polar direction; this phenomenon follows the formation of a small nucleus with
antiparallel orientation of Ps. When such a narrow domain reaches both
surfaces of a plate-like sample, the switching process continues by its sidewise
growth. This phenomenon can be expected to be anisotropic on the two-
dimensional level, depending on the anisotropy of domain wall velocity, and
we shall present some relevant data at the end of this section.

The time required for a narrow domain nucleated at one electrode to reach
the opposite electrode may play a role in the speed of the whole switching
process. However, we have no systematic and confirmed data addressing this

Fig. 8.3.10 Field dependence of velocity of nonferroelastic 1808 domain walls in alkylammo-
nium halogenobismuthate at different temperatures. After Matyjasek and Jakubas (1997)
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problem, primarily because of difficulty of the direct observation of nucleated

domains which are very small.
The problem of the forward growth velocity of narrow nonferroelastic 1808

domains was addressed by Stadler (1966). He claimed that in a-oriented plates

of barium titanate (i.e., the c-axis lies in the plane of the sample), domain walls

were visible as dark regions 2–4 mm wide, separated from the dark field by

bright-colored lines 0.5–1 mmwide. This allowed applying stroboscopic method

for measuring speed above 50 cm/s. For lower velocities the successive positions

of the wall after each short pulse of applied field were directly determined.

While some walls speeded up on approaching the far side, others slowed to an

abrupt stop inside the crystal. It was established that for domains which were

first to be seen during reversal, the data could be fitted to the inverse exponen-

tial law, Eq. (8.3.5), with v1¼ 5500 cm/s and d¼ 1.8 kV/cm. These data are

shown in Fig. 8.3.11. However, domains which appeared somewhat later moved

considerably slower while domains appearing much later were impossible to

follow in the complicated picture the author saw.

Stadler’s effort to measure directly the forward velocity of a narrow growing

domain seems to be quite solitary. However, several attempts have been made

to obtain information on wall velocities by an elaborate interpretation of the

switching current is(t), which represents the current flowing through the sample

after the application of pulse-shaped electric field. Binggeli and Fatuzzo (1965)

were the first to rely on this indirect method. They based their approach on the

assertion that in TGS, for fields above 20 kV/cm, the time required for the

Fig. 8.3.11 Velocity of
forward growth of narrow
1808 domains in BaTiO3.
Circles are measurements of
one domain wall and
triangles represent several
other walls moved after
voltage was applied. Squares
represent walls which moved
after the polarization had
already been partially
reversed. After Stadler
(1966)
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formation of nuclei with opposite polarization is much shorter than the domain
transit time. If this were so, then from the data on switching time the forward
wall velocity vforw could be determined. The latter was found to increase linearly
with the applied field till it reached a critical value of the order of the sound
velocity in the material. For further increasing field, vforw was found to increase
with an even higher slope. In this interpretation approach, however, sidewise
growth of domains was not considered and thus it appears questionable. A
more involved interpretation approach to determine wall velocities from the
analysis of switching current was offered by López and Gonzáles (1973). They
introduced five quantities characterizing is(t), namely imax, tmax (see Sect. 7.4),
and three additional parameters characterizing the shape of switching current.
The is(t) function was modeled as a function of the transit time td (needed for a
nucleus to reach the opposite electrode), sample thickness d, sidewise wall
velocity, total number of formed nuclei, and probability of formation of an
isolated nucleus. Based on this model, the forward wall velocity vd¼ d/td was
found to satisfy the inverse exponential law, Eq. (8.3.5) dependent on the
sample thickness. The highest velocities obtained for the highest applied fields
of 10 kV/cm were found to be vd¼ 24,000 cm/s.

We can summarize that the efforts devoted to the issue of forward velocity
were rather limited and it still represents an open problem.

When a growing nucleus reaches both surfaces of a ferroelectric plate, it starts to
expand sidewise and it is this process that we are now going to discuss. Typically,
nonferroelasticdomainwallsarenotplanaranddonotextendoverthewholesurface
of a sample. The problem of shapes of growing domains was addressed a long time
ago;however,ourknowledge is rather limited sinceonlya fewclassical ferroelectrics
were investigated in some detail. Below we present some experimental data on this
matterwhereaswe shall consider the theoretical approaches to the shapeof growing
domain in the Sect. 8.4.6. Here it may be useful to point out that these shapes are
primarily determined by the wall velocity anisotropy.

The most involved data concern BaTiO3 in its tetragonal phase and it is
appropriate to start with the classical Miller–Savage investigations (Miller,
1958; Miller and Savage, 1959b). They used plate-like samples etched down to
the thickness of about 50 mm, with liquid electrodes; domains were visualized by
etching. A previously poled single-domain sample was first partially switched
by a short application of a dc field. Then a distribution of domain sizes was
observed, with the smallest ones which are circular in cross-section at one side of
the crystal and cannot be seen on the other side. With a strong preference, the
domains start growing from the electrode biased with a negative voltage. These
domains are of the conical shape with the estimated apex angle of 18. They grow
sidewise and by the time the base is about 10 mm in diameter, the truncated cone
is nearly a cylinder. In further expansion of a domain, there is a strong pre-
ference to form a square-like cross-section, whose edges make 458 with the
crystallographic a-axes (Fig. 8.3.12a). The same was observed for metal-
electroded samples. As the applied field is increased, the growing domains
become octagonal in shape (Fig. 8.3.12b). Finally for higher fields they
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become square-like again but now with sides parallel to the a-axes. It should
be mentioned that the basic wall velocity data (Fig. 8.3.2) refer to the first
stage: walls of the approximate (110) orientation.

In the investigations of other authors, most of these observations were
confirmed and some additional data were presented. Husimi (1960) found
that when the primary squares shrink due to the application of field of opposite
polarity, they become octagonal and then again square like, but with diagonals
along [110]. Stadler and Zachmanidis (1963) observed that when a domain
grows in the primary stage, its velocities along the two a-directions are some-
times different, leading to an oblong-shaped cross-section. When studying the
temperature dependence of 1808 domain wall velocity, these authors observed
that the originally square-like growing domains become very rounded at tem-
peratures from 50 to 758C; at 758C they are almost perfect circles (Stadler and
Zachmanidis, 1963). This was explained by assuming that at these tempera-
tures, the energy of such a wall is independent of its orientation.

Much later, Lee et al. (1984) revisited the issue of dynamic domain behavior
in BaTiO3 crystals. They used saturated aqueous solution of LiCl as electrodes
as in some of the papers by Miller and Savage. When the field of 187 V/cm was
repeatedly applied, each time for 15 s, small round-shaped nuclei grew into
square-shaped domains with [100] diagonals as reported before. However,
when the total time of applied field exceeded 45 s, the domain shape developed
such as that shown in Fig. 8.12c. The authors brought attention to the fact that
the sequence of domain shapes corresponds to the sequence of (001) cross-
sections of velocity surfaces of elastic waves in this material.

It would be difficult to summarize the known facts of BaTiO3 and connect
them with some consistent theoretical approach (see Sect. 8.4.6 for a limited
discussion). Here we are to stress that all mentioned data were collected several
decades ago and, though the dynamics of domain growth in barium titanate was
not fully understood, little attention was paid to this field of research since that
time. With presently available high-quality crystals, the issue seems to be worth
of further investigations.

We now pay some attention to the studies of growing domains in crystals of
triglycine sulfate and its isomorphs. It was already pointed out above that
domain wall velocities in this material were repeatedly studied, without clearly

Fig. 8.3.12 Shapes of isolated growing 1808 domains in tetragonal BaTiO3; see text. After Lee
et al. (1984) andMiller and Savage (1958); Reprinted with permission fromMiller and Savage
(1958). Copyright (1958) by the American Physical Society
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specifying the domain shapes or the wall orientations. The usefulness of such

data is somewhat limited. It is known that after the application of electric field

small domains are nucleated; then they start to expand sidewise, usually acquir-

ing a lenticular shape (Hayashi and Mishima, 1969). According to Dontsova

et al. (1982), at high fields, domains can acquire a rhomboidal shape.
The most involved study of shapes of growing domains in TGS and TGSe

crystals was performed by Suda et al. (1978b). They initiated the switching

process by applying low field for a given period of time, using liquid electrodes.

Shapes of growing domains were determined by the powder pattern decoration

method. In TGS, the authors claimed to have observed two typical shapes of

growing domains: lenticular and elliptical, in both cases with the long axes

perpendicular to the crystallographic c-axis; this is in some contradiction with

the above-mentioned results. In TGSe, ‘‘restricted lenticular’’ domains are

formed. These observations, illustrated in Fig. 8.3.13, were successfully related

to a theoretical approach, as discussed in the Sect. 8.4.6. This figure also

contains the modeled domain shapes (Suda et al., 1978b).

All in all despite a large number of published observations, we do not have an

unambiguous description of domain shapes in TGS or isomorphous materials,

a fact which is related to unspecified sample qualities and their histories as well

as to not satisfactorily specified boundary conditions when domains are

visualized.
Till now, it appears that barium titanate and TGS-type crystals have been the

only candidates of nonferroelastic ferroelectrics for involved investigations of

the shapes of growing domains. Only very few other attempts to address this

issue seem have been undertaken, which led to some preliminary results. For

Fig. 8.3.13 Shapes of growing domains: experiment and theory after Suda et al. (1978b).
(a) Powder pattern in TGS at room temperature, under applied field of 2.4 kV/cm; (b) powder
pattern in TGSe at 08C, under applied field of 2.1 kV/cm. Calculated domain shapes for TGS
(c) and TGSe (d)

8.3 Single Domain Wall in Motion 381



example, when studying polarization reversal behavior in lead germanate,
Pb5Ge3O11, Shur et al. (1985b) observed that domains growing in applied fields
below 3 kV/cm are typically of regular hexagonal shape (cf. Fig. 2.2.8); how-
ever, when field pulses of opposite polarity but different duration are applied,
domains acquire triangular shapes.

8.3.3 Motion of Ferroelastic Walls in Ferroelectrics

In ferroelectrics, any pair of domain states which differ in spontaneous strain,
differ also in the direction ofPS. As a consequence, motion of ferroelastic walls in
ferroelectrics can always be induced by applying electric field of proper orienta-
tion. Experimentally, this is a relatively easy task; in particular, the observed
domain wall can be made to move in any required direction by choosing polarity
of the applied field while to apply alternatively a compressive and expansive stress
would require rather involved experimental setups. In the present section, we
concentrate on ferroelastic domain walls in ferroelectrics. First, we discuss the
‘‘sidewise’’ motion of planar walls; next, dynamic properties of narrow ferroelas-
tic domains terminating inside a sample will be considered.

8.3.3.1 Planar Walls

The orientation of ferroelastic domainwalls is severely limited by the conditions of
mechanical compatibility. Serious orientation departures violating these condi-
tions cannot be expected even for moving domain walls. However, small devia-
tions do occur and result usually in the formation of wedge-shaped domains. The
motion of wedges has several specific features and will be discussed in a separate
section.At presentwe shall have inmind ferroelastic walls which on amacroscopic
scale are planar, fulfilling the mechanical compatibility conditions.

The first domain walls in nonmagnetic ferroics whose dynamic properties
were investigated were ferroelastic walls in the earliest known ferroelectric
crystal, Rochelle salt. Mitsui and Furuichi (1953) applied square-wave voltage
of alternating polarity with frequency 22 Hz and measured stroboscopically
domain wall position as a function of time. They found that some threshold
field amplitude E0 must be applied to make the wall move and that the wall
velocity slows down as it departs from the original position by 1 or more
micrometers, giving evidence of the existence of a built-in restoring force. In
the temperature interval between 11 and 228C the velocity at the original
position follows the linear law (8.3.10) in the field interval 70–300 V/cm (Mitsui
and Furuichi, 1954). In this temperature range m is roughly constant but E0

decreases from �80 to �40 V/cm with increasing temperature between 11 and
228C. To have a feeling about the real magnitudes of velocities we give just one
value: v¼ 0.25 cm/s at E ffi 200 V/cm.

Very similar measurements on Rochelle salt were performed by Bittel et al.
(1968). Their data obtained both stroboscopically and by electricalmeasurements
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(using Eq. 8.3.4) clearly demonstrated slowing-down and backswitching effects,

illustrated in Fig. 8.3.14, similar to those reported for lead germanate (cf.

Fig. 8.3.9). However, in contrast to the previous investigators they fit their

velocity data for the field interval 120–400 V/cm (at the original position of the

wall) to the simple exponential law, Eq. (8.3.7), with v0¼ 0.24 cm/s and

a ¼ 5:5 cm=kV (Fig. 8.3.15). At room temperature and for E¼ 200 V/cm this

gives v ffi 0.7 cm/s. Understandably, it would be meaningless to extrapolate this

equation down to E¼ 0. In the same series of experiments a strong influence of

humidity on the wall mobility was observed.

Another ferroelectric–ferroelastic crystalline material, gadolinium molyb-
date (abbr. GMO), has the advantage that its crystalline plates can be relatively
easily prepared with only one or very few domain walls. This makes the wall
velocity measurements more reliable since interaction between domain walls
can be avoided. Kumada’s data (1969, 1970) (see Sect. 8.3.1 for the method)
showed that the wall motion satisfies well the linear mobility law, Eq. (8.3.10),

Fig. 8.3.14 Time
dependence of domain wall
position in Rochelle salt
during one period of ac
square-shaped field
(amplitude 360 V/cm,
frequency 1600 Hz). Points,
optical observation; solid
line, electrical measurement.
After Bittel et al. (1968)

Fig. 8.3.15 Wall velocity in
Rochelle salt, measured at
the original position of the
wall, as a function of applied
field. After Bittel et al.
(1968)
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with m¼ 2�10�2 cm2/Vs which is independent of temperature between 20 and

808C; at higher temperatures the appearance of new walls prevented to perform

meaningful measurements. The author did not specify the value of E0.
Shur et al. (1985a, 1989b, 1990) studied wall motion in GMO in detail, in a

square-wave ac electric field. Similarly as for Rochelle salt they found that the

slowing-down and backswitching effects are very similar to those for lead germa-

nate and Rochelle salt as shown in Figs. 8.3.9 and 8.3.14. When velocity is

evaluated from the time required to cover the first 25 mm from the initial position,

the linear mobility law, Eq. (8.3.10), is well satisfied with m¼ (2.0 – 2.5) � 10–2

cm2/V�s (Shur et al., 1989b) and the mobility is independent of temperature, up

to 1508C. This is in a good agreement withKumada’smeasurements. An example

of data is shown in Fig. 8.3.16. Measurements were made only for fields not

exceeding some 12 kV/cm since at higher fields new domains nucleated and

the behavior of a single wall could not be followed. The threshold field

E0¼ (1.0 – 1.7) � 103 V/cm (Shur et al., 1985a, 1989b) depends on the history

of the sample. This is also true for the maximum displacement of the wall

within one period. Figure 8.3.17 is a demonstration of the aging and rejuvenation

effects.
In KH2PO4 the validity of the linear mobility law, Eq. (8.3.10), was also

confirmed by Bornarel (1987). He found that distant walls move with a constant

velocity and independently of each other, provided they are further apart than

the sample thickness. Coupling between domain walls was documented up to a

distance of 850 mm. When two walls approach each other and their distance d

nears 10–20 mm, its further decrease becomes a very long process; a strong

Fig. 8.3.16 Wall velocity in
GMO at different
temperatures. 1—308C;
2—1008C; 3—1268C;
3—1268C; 4—1378C;
5—1418C; 6—1508C.
After Shur et al. (1985a)
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repulsive wall interaction takes place. The final value of d equals the width w of
a needle-shaped domain which can exist in the sample at a given sample
thickness and temperature.

Another material for which experimental data are available is one of the
few organic ferroelectrics, namely tanane, C9H18NO. It represents the same
species as KDP, �42m� Peds�mm2. It was found (Bornarel and Legrand,
1981) that the linear mobility law, Eq. (8.3.10), applies to the motion of
an isolated wall. A few degrees below TC¼ 287 K, m lies between 10–7 and
10�5 cm2/V �s while the limits for E0 are 100 V/cm and 2 kV/cm. The
observations of domain behavior in tanane, though scarce, revealed two
interesting features. For obvious reasons, two neighboring domain walls, in
an applied dc field, move in opposite directions. Their velocities were found
to depend on their instantaneous distance d; this is demonstrated in Fig.
8.3.18a. This suggests that an additional pressure due to a repulsive inter-
action between the walls acts on them. The presented data enable evaluation
of this pressure which we denote as prep. Using the linear mobility law
v¼ m(p – p0) and taking into account this additional pressure, the wall
velocity when the wall distance increases, va, and that when the wall distance
decreases, vb, can be written as

va ¼ mðpE þ prepÞ; vb ¼ mðpE � prepÞ; (8:3:11)

where pE is the pressure due to the applied field. From this, for a fixed value of
the applied field, one readily finds

R ¼ ðva � vbÞ=ðva þ vbÞ / prep (8:3:12)

Using this relation, the data shown in Fig. 8.3.18a make it possible to plot
prep as a function of wall distance d. This is shown in Fig. 8.3.18b which

Fig. 8.3.17 Maximum
displacement of a domain
wall in GMO as a function
of applied field. (1)
Specimen was held without
field applied for 18 h; (2)
specimen subjected to
preliminary switching for
3 h. After Shur et al. (1989b)
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demonstrates that the repulsive interaction between two planar domain walls

varies as the inverse of their distance. In tanane, for a sample 1 mm thick, the

repulsive effect is detectable for distances up to 300 mm.
Motion of ferroelastic domain walls separating domains with a noncollinear

orientation of the spontaneous polarization has also been experimentally stu-

died. 908 domain walls in BaTiO3 is a classical example of such kind of walls.

The motion of these walls has been mainly addressed for the situation where

these form wedge-shaped domains. (We will discuss this situation later in this

section.) At the same time the experimental studies of motion of individual

planar 908 walls have been rather limited. Here one can mention the work by

Fousek and Brezina who reported results of direct optical observations of

oscillations of individual {011} walls driven by a 50 Hz ac electric field in an

electroded {001} plate of BaTiO3. It was found that the walls exhibit visible

oscillations as a whole only at field amplitudes exceeding a certain critical value

Fig. 8.3.18 (a) Relative
velocity Dd/Dt vs. wall
spacing d, for two moving
walls in tanane at 98C.
(b) The ratio R vs. d, in
logarithmic scale. The line
has the slope –1. After
Bornarel and Legrand
(1981)
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E0 which, however, appreciably varies (0.3–3 kV/cm) from sample to sample

and also as a function of the sample prehistory. The amplitude of the wall

oscillation d0 increases with increasing E0. The d0 vs. E0 dependence also

exhibits an essential sample-to-sample variation. Being approximated as a

linear function this dependence can be characterized with a typical slope of

0.3mm2/V. All these data suggest that conditions for the wall motion can be very

different in different parts of the sample. This can be taken as an indication of

an appreciable coupling between the walls and defects. To rationalize this

variance of the parameters of the wall motion one should assume that distribu-

tion of the defects is strongly inhomogeneous at least in the typical volume

covered by the oscillating wall ðffi 10�4 mm3Þ. The same suggestion can be

drawn from the variance of the shapes of the ‘‘wall-displacement-field’’ hyster-

esis loops reported in this paper (Fig. 8.3.19).

Motion of ferroelastic 908 walls in ac electric field exhibits a new qualita-

tive feature compared to that of 1808 walls; namely, in the former case, one

finds a kind of dc effect. In other words, the oscillatory motion of the wall is

accompanied with its drift. Fousek and Brezina in their experiment with

inclined ferroelastic 908 walls in BaTiO3 have reported such a drift in the

direction corresponding to the increase in the volume of the domain with the

polarization collinear to the applied electric field. This effect has been attrib-

uted to a manifestation of a high-order contribution to the pressure acting on

the wall. This contribution is described by the fourth term in Eq. (8.2.9) and

driven by the difference in the dielectric energy in the domains. Its sign is

independent of the direction of the field, thus providing a dc effect in the

oscillatory motion of the wall. In the case of BaTiO3, where at room tem-

perature the anisotropy of the dielectric permittivity ka=kc is about 25, this
contribution has been shown to be appreciable with the sign of the wall drift

corresponding to the type of the dielectric anisotropy. Interestingly, it has

been found that the aforementioned drift effect can lead to a removal of the

wall from the sample.

Fig. 8.3.19 Hysteresis loops ‘‘wall displacement, x’’—‘‘average electric field, V/h’’ recoded on
different samples of BaTiO3 (or after different pretreatments of one sample); V and h are the
voltage applied to the sample and its thickness, respectively. After Fousek and Brezina (1960)
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8.3.3.2 Needle-Shaped and Wedge-Shaped Domains

Needle-shaped and wedge-shaped domains1 are observed very frequently in the

majority of ferroelastic crystals. The term ‘‘needle-shaped’’ is used for domains

schematically shown in Fig. 8.3.20 (a) and (b) whereas domains schematically

shown in Fig. 8.3.20c are called wedge shaped. These two types of domains have in

common their wedge-shaped terminations. Hereafter we will use the term wedge-

shaped domains for both types. Dynamic properties of this kind of domains can be

most easily studied when the domain pair is ferroelectric at the same time, making

it possible to apply a force acting on domain walls in an easy way, without any

mechanical constraints. We can expect that the growth of narrow domains with

wedge-shaped terminations will have kinetic characteristics different from those of

planar walls, because a substantially different geometry will result in different

elastic conditions. The principal feature of wedge-shaped ferroelastic domains is

that the walls making these domains are not fully mechanically compatible.

In many papers two kinds of such domains were studied, schematically shown

in Fig. 8.3.21. Figure 8.3.21a shows a situation typical for KDP where the wedge

is made of two ferroelectric 1808 domain walls parallel to the direction of the

spontaneous polarization. Even the inclined sections at the ends these walls are

electrically neutral. Figure 8.3.21b shows another situation typical for ferro-

electric 908 pairs in BaTiO3. Here, the walls are necessarily charged in the area

of the tip since, there, the wall is rotated with respect to the ideal orientation with

divPs¼ 0.However, if the ferroelastic domains are divided into 1808 domains, the

boundaries limiting the wedge-shaped domain can be electrically neutral on

average. Another distinguishing feature is that while, in the case of 1808 wedge-
shaped domains (like in KDP; see Fig. 8.3.21a), the domain geometry does not

essentially influence the homogeneity of applied electric field, in BaTiO3 the

spatial distribution of the field is strongly affected by 908 domains because of

Fig. 8.3.20 Growth of
needle-shaped and wedge-
shaped domains may grow

1 The term ‘spike-shaped domains’ is also in use.
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the anisotropy of permittivity. In both cases, however, the tip of the needle forms

a region of inhomogeneous strain. It is obvious that the lattice structure at the tip

is strongly deformed but no direct structural data seem to be available. The

growth of a wedge-shaped domain may be but need not be accompanied by an

increase in its width; all possibilities shown schematically in Fig. 8.3.20 were

observed in BaTiO3 (Fousek and Brezina, 1961). For KDP, geometry a seems to

be the rule although geometry b has also been considered to explain some domain

properties. In both materials these domains are easily observable in a polarizing

microscope; the contrast is due to walls rather than due to domains.
Little (1955) was the first to study wedges, in single crystals of BaTiO3. In the

tetragonal phase of this material wedge-shaped domains, of typical width

10–30 mm, represent 908 domains and, in an a-oriented plate, a system of wedges

can easily be introduced by the application of a field perpendicular to the existing

polarization. A detailed study of the dynamic properties of wedges which occur

spontaneously in plate-like samples was made by Fousek and Brezina (1961).

Such awedge usually requires a critical field tomove and, for a sample containing

several wedges, its typical value is of the order of several hundreds V/cm. In an ac

field of frequency 50 Hz the wedge tip travels over large distances, leading to a

substantial increase in the total domain wall area. Often the tip moves by jerks;

examples of such characteristics are shown inFig. 8.3.22.When a growing needle-

like domain reaches the surface of the sample it separates into two parallel

mechanically compatible walls. This transformation manifests itself in a huge

jump of the switching current (a huge Barkhausen pulse). It is essential that 908
domain pairs in BaTiO3 represent degenerate (in the ‘‘domain meaning’’) systems

since each neighboring region can contain a number of 1808 domains, and

antiparallel reversal processes may have an essential influence on the dynamic

characteristics of the 908 wall. These hidden phenomena make it difficult to

obtain data specifying the law of motion for such wedges in a dc field.
The aspect of domain degeneracy is absent for needle-like domains in

KH2PO4 and mechanisms involved in their motion are simpler. Our knowledge

Fig. 8.3.21 Needle-shaped and wedge-shaped domains: (a) –1808 domain textures in orthor-
hombic KH2PO4. The signs of the polarization in the domains are shown with ‘‘+’’ and ‘‘–.’’
Reprinted with permission from Bornarel, J., Domains in KH2PO4, Ferroelectrics 71, 255
(1987). Copyright (1987), Taylor and Francis. (b) Crossing 908 a-domains in a plate of
tetragonal BaTiO3. The directions of the polarization in the wedge-shaped domains are
perpendicular to that in the rest of the sample. After Fousek and Brezina (1961)
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of their behavior is mainly based on the extensive research performed by

Bornarel and Lajzerowicz. They used plate-like samples perpendicular to the

polar c-axis, provided with transparent electrodes, and photographed the

domain structures after the application of electric field.
Typically, KDP single crystalline plates contain, in addition to regions

incorporating systems of lamellar domains, also regions with dense systems of

needle-like domains whose tips are terminating in the sample forming a front

perpendicular to their lengths (see Fig. 5.4.21). Their characteristic width is of

the order of 10 mm and while their separation varies, a value of 150 mm can be

considered as typical (Bornarel and Lajzerowicz, 1968). In addition, isolated

‘‘needles’’ also exist. It was found (Bornarel and Lajzerowicz, 1970) that the

dynamic characteristics of the latter differ from those of systems of needle-like

domains which perform an orchestratedmotion.When a series of electric pulses

several kV/cm strong and several tens of nanoseconds long are applied, the

average velocity of domain tips representing the growth of domain lengths can

be measured. While the distribution of velocities is quite wide, two maxima are

evident. For sayE¼ 1600 V/cm and atT¼ 100K,most of the isolated tipsmove

with v ffi 900 m/s while most of the fronts of the systems of needles move with

v ffi 100 m/s. This difference gives evidence of a long-range mechanical interac-

tion between wedge-shaped tips of needle-like domains.
Later the velocity of isolated tips was studied in detail (Bornarel, 1975) and it

was found to fulfill the linear mobility law (8.3.10). However, even for domains

within one sample, the distribution limits of the coefficients are rather wide: at

T¼ 89 K, E0 ranges from 0.5 to 3.3 kV/cm and m from 150 to 910 CGS units.

The maximum of the velocity distribution for a given field seems to increase

exponentially with the applied field, from 103 cm/s for 1 kV/cm to 105 cm/s for

6 kV/cm; the latter value is not far from the velocity of sound. Often the tip

motion is not smooth: Visible imperfections are seen to block the tip motion.

Sometimes the presence of another tip in the neighborhood accelerates the

observedmotion. It is essential that the threshold fieldE0 does not fully describe

Fig. 8.3.22 Length of a 908
wedge-shaped domain in
tetragonal BaTiO3: wedge
length vs. applied field, at
50 Hz. A jerky character of
motion is seen. After Fousek
and Brezina (1961)
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the ‘‘willingness’’ of the domain tip to begin moving. In addition, the field pulses

must be applied for a period longer than some critical length t*. It seems to

suggest that it is some thermally activated process that is responsible for wall

motion. As the length of the wall increases, the tip finally comes to a stop and

the field has to be slightly increased to make it move again. Thus, effectively, E0

increases with the domain length.
The magnitude of the critical field E0 varies with temperature and also with

composition of materials undergoing the same kind of transition as KH2PO4,

namely KD2PO4 and RbH2PO4 (Bornarel and Lajzerowicz, 1972). For instance,

E0 ffi 10 V/cm applies to KH2PO4 and KD2PO4 for temperatures 98 and 153 K,

respectively. It was found that the value of the critical field strongly correlates with

that value of spontaneous shear exy. This correlation is documented in Fig. 8.3.23.

It should also be mentioned that, similarly as in BaTiO3, the presence of the
sample edge may have a profound effect on the tip velocity which greatly
increases as the growing needle approaches the sample boundary (Bornarel
and Lajzerowicz, 1972a). The range of this attractive force is about 300 mm.

Bornarel (1972) interpreted most of these observed properties by a model in
which the tip of a needle-like domain is characterized by an assembly of
twinning dislocations. The use of twinning dislocations for description of the
static domain pattern in KDP-type crystals has been already mentioned in Sect.
5.4.2 (see Fig. 5.4.19). For description of the dynamics of needle-like domain,
the static framework has been extended by incorporation of elements of the
Peierls dislocation model.

8.4 Theories of Single Wall Motion

In the present section we will give an overview of the theories contributing to
understanding of the experimental finding on motion of single-domain wall in
ferroics discussed in the previous sections. Though these theories have been

Fig. 8.3.23 Critical field E0

required to move wedge-
shaped domains in KDP-
like ferroics vs. spontaneous
shear strain eS12 . Points
represent three materials at
different temperatures.
After Bornarel and
Lajzerowicz (1972a)
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developed for the case of nonferroelastic domain wall in ferroelectrics, many of
the ideas employed in these theories are applicable to domain walls of other
types, e.g., ferroelastic walls or walls in nonferroelectrics. We will comment on
this issue in the conclusion to the present section.

The main part of this section (Sects. 8.4.1, 8.4.2, 8.4.3, 8.4.4, 8.4.5 and 8.4.6)
is devoted to a discussion ignoring the impact of defects on the wall motion; the
role of the defects will be addressed in Sect. 8.5.

8.4.1 Two Regimes of Wall Motion

As we know (see Sect. 8.2.2) the application of an external macroscopic field
conjugated to the order parameter of a ferroic, in general, results in a pressure f
applied to domain walls existing in the ferroic. This pressure in the final run will
result in amotion of the domain walls. Roughly one can distinguish two regimes
of wall motion, depending on the relation between this pressure and the
strength of the interaction between the wall and the crystalline lattice. The
difference between these regimes can be explained as follows.

As we have discussed in the section devoted to the microscopic theory of
domain walls (Sect. 6.3) the energy of a domain wall depends, among many
other factors, also on the position of the wall center with respect to the sites of
crystalline lattice of the material. In general, this dependence can be character-
ized by the so-called Peierls potential VP(z) which describes the variations of the
wall energy (per unit area) when the wall is displaced as whole by a distance z in
the direction of its normal. Obviously, VP(z) depends on the crystallographic
orientation of the wall and it is a periodic function of z with the period, c, equal
to the lattice period in the considered direction. Figure 8.4.1 (curve a) schema-
tically illustrates the profile of such a potential; we introduce the amplitude VP0

to characterize its strength. The application of the external field modifies this
profile. Taking into account the pressure induced by the field, f, and the Peierls
potential one finds the spatial dependence of the wall energy W(z) in the form

UðzÞ ¼ S0ðVPðzÞ � fzÞ; (8:4:1)

where S0 is the area of the wall. As illustrated in Fig. 8.4.1 (curves b and c) the
resulting energy profile for the wall motion can either possess minima and
maxima (b) or be monotonical (c), depending on the value of the pressure f.
One clearly sees that, in the first case, the applicationof pressure does not lead to the
motion of thewall, unless thermal fluctuations are intensive enough to help thewall
to overcome the potential barriers. In this situation, the motion of the wall can be
presented as a sequence of ‘‘waitings’’ at the potential minima and thermoactivated
‘‘jumps’’ over the maxima.We will call this regime of motion activated regime.The
situation illustrated in 8.4.1 (curve c) is verydifferent from that just discussedabove:
Here the wall can move without assistance of the thermal fluctuation. For this
reason, we will call this regime of motion non-activated regime. Mathematically,
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these two regimes can be distinguished by comparison the pressure f and the

maximal steepness of the potential f *= max[dVP/dz]: the activated regime

corresponds to f < f *, the non-activated regime to f > f *. As clear from

Fig. 8.4.1 (curve a) we can roughly evaluate f * � 2VP0/c. For ferroelectrics,

clearly the regime of the wall motion is determined by the relation between

the applied electric field E and a critical field E*. For a 1808 ferroelectric wall
[at which f¼ 2E PS], the critical field can be written as

E	 ¼ 0:5f	=PS � VP0=ðcPSÞ; (8:4:2)

where PS is the spontaneous polarization.

Togivean ideaof thevaluesof thePeierlspotential andthecritical fieldE*wewill

cite theestimatesbyBurtsevandChervonobrodov(1982) for1808 ferroelectricwalls
in BaTiO3 at room temperature:VP0� 0.05– 0.07 erg/cm2 andE*� 10 kV/cm. It is

instructive to comment on these values. First, comparing the value of VP0 to the

estimates for the surface energy of the wall (� 10 erg/cm2; see Sects. 6.2–6.3) we see

that the Peierls potential represents light ripples on the background of the total wall

energy. Second, comparing the valueofE* to the field rangewhere thewallmobility

in BaTiO3 has been studied (0.15–450 kV/cm; cf. Sect. 8.3), we see that this range

includes this value. That means that the understanding to the behavior of the wall

motion inboth regimes is crucial for the interpretationof the experimental data. It is

clear that the physical processes which control the wall motion in these two regimes

are quite different. For this reason, we will be treating these regimes in separate

sections.Thenextsectionisdevotedtothetheoriesapplicabletotheactivatedregime.
At this point, we would like to make a terminological remark. When dis-

cussing in the above consideration the dynamics of the wall in a fixed external

field we have called the variable used ‘‘energy,’’ implying that its spatial deriva-

tive gives the force acting on the wall. However, as the reader can conclude from

the Sect. 8.2, this variable is actually the thermodynamic potential chosen in

accordance with the conditions of the experiment. Though being aware of this

terminological disparity, we will continue to use in this section the term

‘‘energy’’ for the thermodynamic potential as shorthand.

Fig. 8.4.1 Schematic drawing of the dependence of the wall energy on its position in an ideal
crystal. (a) No external pressure is applied (Peierls potential); (b) the external pressure f is
smaller than the critical value f*; (c) f > f*
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8.4.2 Wall Mobility in Activated Regime. Miller–Weinreich
Theory

The theory of sideway motion of ferroelectric domain wall in activated regime
has been pioneered by Miller and Weinreich (1960) in their classical paper. In
this paper, the authors formulated the principal idea of the mechanism of the
wall motion in this regime and, based on this idea, showed that the field
dependence of the wall velocity v(E) of the type

vðEÞ / e�ðd=EÞ (8:4:3)

is expected for this kind of wall motion. This dependence was in good agreement
with the experimental data on the low-field mobility in BaTiO3. That provided a
wide recognition for the theory. However, a more detailed analysis reveals a
serious disparity between results of the original Miller–Weinreich (MW) theory
and the totality of the experimental data. It became clear later that, though the
authors had incorporated in their theory a very important feature of the phe-
nomenon, a self-consistent description of the latter should also take into account
a couple more of its features. In the current section, we will presentMW theory in
its original form. In the next section, we will discuss the shortcoming of this
theory and outline the ways in which it has been improved and revised.

Consider motion of a wall in the activated regime but not too close to the
border to the non-activated regime, i.e., we do not consider the situation where
to E* – E << E*. By definition, the motion in this regime is possible if the
thermal fluctuations help the wall to overcome the potential barrier on its way.

The simplest scenario of wall motion is its motion as a hole. It this case, the
wall of area S0 should overcome barriers of the order of Up = S0VPo (see Eq.
(8.4.1)). As it is easy to check, for any macroscopic size of the sample, this
energy is many orders of magnitude greater than the thermal energy kT. This
means a vanishing provability,/ exp(–Up/kT), of a thermally activated jump of
the wall as a whole over the barriers and rules out this scenario.

Clearly the thermoactivated jump of the wall over the Peierls barriers as a
whole is not the only possibility; one can consider jumps of small pieces of the
wall. In this case, we can substantially reduce the associated Peierls energy. On
the other hand, now we should also pay the price for the reduction of the
‘‘jumping’’ area: the total area of the wall increases. That will contribute to
the total energy of the system via an enhanced contribution of the surface
energy of the wall. However, it is easy to understand that provided the jumping
pieces, which actually can be considered as two-dimensional nuclei of the
reverse domains on the domain wall, are small enough, the probability of the
jumps can be appreciable even when both contributions to the activation energy
are taken into account. The reasonable probability to have such nuclei opens a
realistic possibility for macroscopic motion of the wall in the activated regime.
However, to realize this possibility one should satisfy an additional condition.
Namely, when a piece of the wall has overcome the potential barrier to arrive at
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a position separated by the lattice spacing from its initial position, the formed
nucleus should be unstable with respect to increase in its area. If it is so, a single
jump of a piece of the wall will finally result in a shift of the domain wall by one
lattice spacing.

The scenario described above makes the leading idea of MW theory whose
scheme contains the following steps: (i) One calculated the energy of a nucleus
on the wall as a function of their shape and dimensions. (ii) One determines the
parameters of unstable nucleus whose energy is the smallest among all unstable
nuclei; we called this the critical nucleus and denote its energy as Uc. (iii) One
determines the nucleation rate of critical nuclei, Ic, as proportional to the Gibbs
factor

Ic / expð�Uc=kTÞ: (8:4:4)

(iv) Since one critical nucleus can give rise in a shift of the wall by one lattice
constant, the velocity v(E) of the sideway wall motion is assumed to be propor-
tional to the nucleation rate Ic, i.e.,

vðEÞ / Ic: (8:4:5)

Let us outline the derivations by Miller and Weinreich (1960). The above
scheme of calculation has been performed for nuclei having the shape of
triangular steps terminating at the electrode, as shown in Fig. 8.4.2a. The energy
of such a nucleus can be presented as consisted in three parts

U ¼ �2PSEVn þ swAn þUd: (8:4:6)

Here the first term give the gain in the bulk energy on the ferroelectric, which
is calculated under the assumption that the electric field is homogeneous in the
capacitor, Vn stands for the volume of the nucleus. The second one gives the
energy paid for the increase in the area of the wall An, sw being the surface
energy density of the wall. Ud, referred to as the depolarizing energy, is the
energy of the electric field produced by bound charges on the new oblique
sections of domain wall. In other words, the last term takes into account that
in the presence of the nucleus the electric field in the capacitor is not any more
homogeneous everywhere. Note that the lateral sides of the nucleus cross
perpendicularly the Peierls barrier, which is situated at a distance of c/2 from
the plane of the wall. For this reason, the contribution of the Peierls energy toU
is expected to be small and hence neglected in Eq. (8.4.6). For the geometrical
parameters of the nucleus explained in Fig. 8.4.2a, the energy U can be pre-
sented in the following explicit form:

U ¼ �2PSEalcþ 2swcða2 þ l2Þ1=2 þ 8P2
S

c2a2

kal
ln
2a

c
� 1

� �
; (8:4:7)

where ka is the dielectric constant in the direction perpendicular to the direction
of the spontaneous polarization. It is seen that the energy of the triangular

8.4 Theories of Single Wall Motion 395



nucleus is controlled by two geometrically parameters: its half-width a and
height l. As it is usually done in nucleation problems, the dimensions of the
critical nucleus (a* and l*) are to be determined by the conditions

@U=@a ¼ 0; @U=@l ¼ 0: (8:4:8)

These conditions lead Miller and Weinreich to

a	 ffi 2

3

sw
PSE

; l	 ffi 2s1=2w s1=2pffiffiffi
3
p

PSE
; (8:4:9)

where sp¼ (4PS
2b/ka)(ln(2a/c) – 1), and finally to the expression for the energy

of the critical nucleus

Uc ffi
8

3
ffiffiffi
3
p cs3=2w s1=2p

PSE
: (8:4:10)

The physical situation standing behind the above calculation is as follows. In
contrast to the simplest situation (like in the case of a boiling liquid) where the
dimensions of the critical nucleus are determined by competition of the bulk
and surface energies solely, in the considered case the third contribution—
depolarizing energy—enters the game. The latter compete with the surface

Fig. 8.4.2 Shape of critical nucleolus in theories of activated motion of domain walls.
(a) Miller– Weinreich theory (1960). (b) Burtsev and Chervonobrodov theory (1982). The
difference between the shapes in the in-plane geometry (triangular or ellipse, respectively) and
in the orientation of the lateral side of the nucleus (normal to the plane of the wall or inclined,
respectively). In Miller–Weinreich theory the nucleation occurs at the electrode (lower
horizontal plane in the figure). In Burtsev and Chervonobrodov theory the nucleation
occurs everywhere on the wall
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energy. Namely, for a fixed half-width of the nucleus, to decrease the surface
contribution one should obviously decrease the height l of the nucleus whereas
from the point of view of the depolarizing contribution a needle-type shape is
favorable, i.e., large l’s. Depending on which of the trends win, the nucleus will
be elongated, i.e., l/a >> 1, or flat, i.e., l/a << 1. Miller and Weinreich
performed their calculations for the case of elongated critical nuclei (the for-
mulae (8.4.9) and (8.4.10) are valid only for this case), which they found
consistent with the set of material parameters of BaTiO3 they used for testing
their theory.

Using the basic relation (8.4.4) and assuming the validity of Eq. (8.4.5),
Miller and Weinreich arrived at the sought equation for the sideway motion
(8.4.3), a value of the activation field d being equal to

dMW ¼
Uc

kT
¼ 8

3
ffiffiffi
3
p cs3=2w s1=2p

PSkT
¼ 16

3
ffiffiffi
3
p c3=2s3=2w

k1=2a kT
ln
2a	

c
� 1

� �1=2

: (8:4:11)

Thus, the theory gives an explanation for a rather peculiar field dependence of
the velocity of sideway motion documented for some ferroelectric (see Sect. 8.3).
As for quantitative comparison with the experiment, it has been performed only
for 1808wall in BaTiO3. It was shown (Miller andWeinreich, 1960) that using the
known thermodynamic parameters of the material and taking sw¼ 0.42 erg/cm2,
which should be considered substantially lower than the main theoretical esti-
mates (cf. Tables. 6.2.1 and 6.3.1), a reasonable values of d¼ 4 kV/cm can be
evaluated from Eq. (8.4.11). Concerning the temperature dependence of the
activation field predicted by Eq. (8.4.11), it has been found qualitatively different
from that measured experimentally (Savage and Miller, 1960).

8.4.3 Wall Mobility in Activated Regime. Advanced Theories
and Present Understanding of the Problem

It is clear from the previous section that MW theory enabled substantial
progress in understanding the nature of the motion of domain walls. However,
as was recognized later, this theory left quite a lot of open questions and did not
stand the test on quantitative self-consistency (see the previous section). Let us
list these questions.

(i) The shape of the critical nuclei was not optimized inMW theory. Could the
optimization of the nucleus shape essentially affect the final result?

(ii) Does the assumption that the wall velocity is proportional to the nuclea-
tion rate, Eq. (8.4.5), always hold?

(iii) What physical mechanism is standing behind the departure of the v(E) law
from the exponential dependences?

(iv) Is the pre-exponential factor in the v(E) law always just a field-independent
constant?
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All these questions have been treated by Stadler and Zachmanidis (1963),
Nettleton (1967), Hayashi (1972a,b, 1973), Burtsev and Chervonobrodov (1982),
and Sidorkin (1993). In this book we are going to discuss the first three questions
since these occur to be of primary importance for the subject. As for the fourth
question, we will refer the reader to the original papers of Hayashi (1972a) where
the theoretical results on the pre-exponential factor in the v(E) law are available.

8.4.3.1 The Role of Shape of Critical Nuclei

Looking wider at the problem of the domain wall motion one finds it close to
that treated by the well-developed theory of two-dimensional nucleation at
phase transformations in solids (Cahn, 1960). Burtsev and Chervonobrodov
(1982) modified this theory for the case of the domain wall motion in ferro-
electrics. One of their principal results states that, in general, the shape of the
critical nucleus suggested by Miller and Weinreich is far from optimal and that
by optimizing its shape one can decrease that value of the activation field for the
nucleation rate by one to two orders of magnitude. Clearly, this modification is
essential for the theory.

Burtsev and Chervonobrodov indicated two ways for the optimization of the
critical nucleus shape. First, they consider oval shape of the nuclei instead of trian-
gular. Second and of crucial importance for the problem, they found that the oblique
lateral sides of the nuclei ensure an essential gain in the energy, provided the Peierls
barrier amplitude is much smaller than the surface energy density of the wall, i.e.,

VP0 
 sw; (8:4:12)

the property which is expected for domain walls and interphase boundaries
(Cahn, 1960). The shape of this kind of the critical nucleus is illustrated in
Fig. 8.4.2b. It has been shown (Burtsev and Chervonobrodov, 1982) that, for
this type of nuclei, the activation field for the nucleation rate, dBC, is related to
the activation rate calculated by Miller and Weinreich, dMW, Eq. (8.4.11), as

dBC ¼ B
VP0

sw

� �3=4

dMW; (8:4:13)

where the factor z is of the order of unity; it is weakly dependent upon the
parameters of the problem and the model of the Peierls barrier accepted for the
calculations. The physical interpretation of this result is rather transparent. By
making the lateral sides of the nucleus oblique we gain in the surface energy. On
the other hand, now the wall does not cross the Peierls barrier perpendicularly, as
was in the case of MW nucleus, thus the price of an appreciable contribution of
the Peierls energy should be paid. Since the Peierls barrier amplitude is small
compared to the surface energy density of the wall, Eq. (8.4.12), an oblique
configuration of the lateral sides of the critical nucleus provides some decrease
in its energy. Using for 1808 domain wall in BaTiO3 the estimates
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VP0 ffi 0:05� 0:07 erg=cm2 and sw ffi 10 erg=cm2 (cf. Tables 6.2.1 and 6.3.1) we
conclude from Eq. (8.4.13) that optimizing the nucleus shape can provide indeed
a reduction of energy barrier for nucleation by one to two orders of magnitude.

8.4.3.2 The Nucleation Rate vs. Wall Velocity Relation

The problem of the relation between the rate of formation of critical nuclei and
the velocity of domain wall motion has been addressed by Hayashi (1972a,b)
and by Burtsev and Chervonobrodov (1982). Hayashi considered this problem
for the situation of electrode-adjacent nucleation of triangular steps on the wall
shown in Fig. 8.4.3 whereas Burtsev and Chervonobrodov treated the case of
the two-dimensional nucleation all over the wall area. Here, similar to the
Hayashi model, the nucleation can take place both on the originally flat surface
of the wall and on the already formed nuclei. Qualitatively identical results have
been reported for both situations. It has been shown that, depending on the
relation between the applied field and some critical field,E**, which depends on
the material parameters and temperature, one can distinguish two regimes with
a crossover region between them. ForE>E**, there is a linear relation between
the wall velocity v(E) and the nucleation rate Ic

vðEÞ / Ic (8:4:14)

in accord with the assumption of Miller andWeinreich, Eq. (8.4.3). In contrast,
for E < E**, the wall velocity is proportional to a fractional power of Ic

vðEÞ / I zc ; (8:4:15)

where the exponent x varies from 1/3 to 1/2 depending on the nucleation
scenario. The picture of wall motion has been found very different in the two
regimes. In the low-field regime, a layer-by-later growth of virtually flat walls takes
place. In contrast, in the high-field range the critical nuclei pile on each other, as
shown in Fig. 8.4.3, and the surface ofmoving wall appears to be essentially rough.

Fig. 8.4.3 Schematic drawing of nucleation and expansion of nucleus controlling the domain
wall motion. After Hayashi (1972b). A 1808 wall parallel to ZY-plane moves in X-direction.
The polarization and applied field are parallel to Z-direction. Nucleation of reverse domain
takes place at the electrode (XY-plane)
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It is interesting to note that the assumptionmade byMiller andWeinreich that, for
layer-by-layer growth, the wall velocity is proportional to the nucleation rate has
not been justified whereas it has been justified for the regime where the piling up of
the nuclei takes place, the situation not implied by these authors.

The values 1/2 (Hayashi, 1972a,b) and 1/3 (Burtsev and Chervonobrodov,
1982) for the exponent x have been obtained for the case of electrode-adjacent
nucleation and for that of two-dimensional nucleation. In the first case, the
reverse domains are assumed to nucleate at the electrodes (like that in the Miller
andWeinreich model; see Fig. 8.4.2a), whereas in the second case, the nucleation
with the same probability all over the wall is assumed (see Fig. 8.4.2b).

The above finding essentially influences the results of the calculations. It
actually implies that the activation field for the wall motion d is not always
equal to the activation field for the nucleation rate, the latter we denote now as
dn. Specifically, in low-field regime, d should be two to three times smaller than
dn. This result has been found relevant to the experimental situation in BaTiO3.
According to Hayashi (1972a,b) and Burtsev and Chervonobrodov (1982) it is
the regime whereE<E** that takes place at the lowest fields in BaTiO3 at room
temperature. One can easily check that, in this case, taking into account
the proper relation between the wall velocity and the nucleation rate, i.e., the
use dn/2 or dn/3 instead of dn for the activation field for the wall motion will
change a value of the wall velocity by many orders of magnitude. Another
prediction of the presented approach is that, if the studied field interval contains
the crossover field E**, an appreciable increase in the activation field for the
wall velocity, from dn/2 or dn/3 to dn, with increasing field is expected. Accord-
ing to Hayashi (1972a,b) this crossover can explain the deviation from pure
MW law illustrated in Fig.8.3.2.

Referring the reader to the original papers (Hayashi, 1972a,b; Burtsev and
Chervonobrodov, 1982) we are not going to discuss in this book the calculation
resulting in the aforementioned findings. However, we find it instructive to
present semi-quantitative arguments which can elucidate the physics behind the
relations between the nucleation rate and the wall velocity. We address the case
of two-dimensional nucleation treated by Burtsev and Chervonobrodov (1982).
Let us denote Dt—the time needed for the wall to shift by one lattice constant,
ul—the linear velocity of lateral expansion of the nuclei, I2D—the rate of
nucleation per unit area, and r0—the linear dimension of the critical nuclei
(we neglect for simplicity the elongation of nuclei). Consider the kinetics of the
wall motion. Any growing layer should be in dynamical equilibrium; we mean
that on the area of the wall that was moved forward due to the appearance and
further growth of one nucleus there should be on average one nucleation during
the time Dt. This condition can be obviously written as

Dtðr0 þ ulDtÞ2I2D ¼ 1: (8:4:16)

In terms of this equation, the two regimes of wall growth discussed above
correspond to the following two conditions: (i) The size of a critical nucleus can

400 8 Switching Phenomena and Small-Signal Response



be neglected compared to the displacement of its lateral sides during the timeDt,
that is r0 << ul Dt. (ii) The critical nuclei do not substantially grow during the
time Dt, that is r0>> ul Dt. The time needed for displacement of the wall by one
lattice constant in these two cases,Dti andDtii, can be found fromEq. (8.4.16) as

Dti ¼ ðu2l I2DÞ
�1=3 and Dtii ¼ ðr20 I2DÞ

�1 (8:4:17)

that leads to the relations between the corresponding wall velocity and the
nucleation rate

vi ¼ cðu2l I2DÞ
1=3 and vii ¼ cr20I2D: (8:4:18)

We see that Eq. (8.4.18) does reproduce relations (8.4.14) and (8.4.15) stated
above for the regimes where E < E** and E > E**, respectively. Using
Eq. (8.4.17) we also find that the nucleation rate in these regimes meets inequal-
ities r30I2D=ul 
 1 and r30I2D=ul � 1, respectively. In these inequalities, the
strongest (exponential) field dependence exhibits the nucleation rate I2D; this
determines the correspondence between the wall motion regimes and the field
intervals.

The important feature of the high-field regime—essential roughness of the
growing wall—also can be elucidated. In this regime, the growing structure ‘‘is
made’’ of slowly growing nuclei. For this reason, the first layer made of the
nuclei by the time Dtii contains ‘‘holes’’ of the linear dimensions about r0. Filling
these holes by the lateral expansion of the nuclei will take time about Dtf¼ r0/ul.
During this time the front of the growing structure will advance by the distance
Dtfvii ¼ cr30I2D=ul. This means that the growing front is roughwith a deepness of
modulation about r30I2D=ul times the lattice constant.

Similar reasoning can qualitatively explain the results obtain by Hayashi for
the case of the nearby-electrode (actually one-dimensional) nucleation.

8.4.3.3 Departure from the Exponential Law and Temperature Dependence

of the Velocity

Aswe know from the results of the experiments, the field dependence of velocity
of domain wall in ferroelectrics is not always exponential. For example, in most
studies of the 1808wall in BaTiO3 at room temperature, the exponential lawwas
clearly observed at fields below 1 kV/cm. At higher fields (10–450 kV/cm), this
law transforms into a power law with the exponent rather close to one. Since the
time this result was published by Stadler and Zachmanidis (1963) three very
different interpretations of this phenomenon have been offered.

First, Stadler and Zachmanidis themselves offered a modification of the
MW theory. Miller and Weinreich (1960) had shown that the energy of the
critical nucleus which is n-lattice-constant thick is n 3/2 times the energy of the
‘‘ordinary,’’ one-lattice-constant-thick nucleus Uc. Naturally, assuming that an
n-lattice-constant thick nucleus provides a shift of the wall by n lattice
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constants, Stadler and Zachmanidis presented the contribution from the nuclei
of different thicknesses to the wall velocity in the form

vðEÞ /
X1
n¼1

n exp �UcðEÞ
kT

n3=2
� �

: (8:4:19)

It was shown that in the high-field limit Eq. (8.4.19) yields v(E) / E1.4 in a
close agreement with the experimental data. Thus, the power law for the wall
mobility was interpreted as a result of interference of contributions of nuclei of
different thicknesses.

The second scenario has been proposed by Hayashi (1972a,b). He pointed
out that according to the MW theory, for fields at which the power law field
dependence of the wall mobility had been observed, the width of critical nuclei
becomes smaller than the lattice spacing. This means that, for this case, the
theory requires revision. According to Hayashi, in the case of very strong fields,
chains of unit cells parallel to the direction of the spontaneous polarization
should be considered as critical nuclei. The theory developed for this kind of
nucleation yielded a field dependence of the velocity close to v(E ) / E n,
provided the field is high enough. For a 1808 wall in BaTiO3 at room tempera-
ture, he obtained n� 1.54 in close agreement with the experimental data. Thus,
the power law for the wall mobility was interpreted as a result of an essential
change of the geometry of the nucleation.

Though formally the two above scenarios could be considered as possible
explanations for the experimental finding, according to Burtsev and Chervono-
brodov (1982) there exists a reason to rule them out at least in the case of
BaTiO3. The point is that the activation approach of the type used in MW
theory corresponds to the physical situation in the material only if the field is
smaller than E*, the critical field of the activated regime given by Eq. (8.4.2).
For higher fields, in the non-activated regime, as we discussed in Sect. 8.4.1, the
motion of the wall as a rigid plain is possible since the field is high enough to
suppress the Peierls barriers (see Fig. 8.4.1c) so that the nucleation is not needed
at all to promote the wall motion. According to estimates (Burtsev and Cher-
vonobrodov, 1982), for a 1808 wall in BaTiO3 at room temperature, E*
� 10 kV/cm. Thus, the field interval, where the field dependence of the wall
velocity is a power law, corresponds to the non-activated regime of motion. In
this regime as we will discuss later, a power law field dependence of the wall
velocity is naturally expected. Thus, the transition from the exponential to the
power law field dependence of the wall velocity was explained as a crossover
from the activated to non-activated regimes of wall motion. At present, this
scenario looks to be the most justified, at least for the case of BaTiO3.

At this point we would like to address an issue which seems to be of the key
importance for the experimental verification of the whole theory on activated
motion of domain wall in ideal (defect-free) material, namely the temperature
dependence of the Peierls barrier VP0. It has been theoretically established that
the Peierls barrier of an interphase boundary or a domain wall is strongly
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dependent on their thickness (Cahn, 1960; Suzuki and Ishibashi, 1985). The
result obtained in the continuous approximation reads (Cahn, 1960)

VP0 ¼ 4p4sw
tth
c

� �3
exp �p2 tth

c

� �
; (8:4:20)

where sw and tth are the surface energy density of the wall and its half thickness,
respectively. This is really a fast function of the wall thickness, e.g., a change of
tth/c from 1 to 2 results in a change of VP0/sw from 0.02 to 0.8 � 10�5. This has
important implications.

First, the critical field E*, which according to Eq. (8.4.2) is proportional to
the Peierls barrier, should dramatically decrease with increasing wall thickness.
This field divides the activated and non-activated regimes of wall motion. Thus,
in the material with relatively thick walls, the non-activated regime should take
place where no MW type theories are applicable. For instance, in a material
where the activated regime occurs in a certain temperature range, in a view of
temperature dependence tth / (Tc – T)�1/2, a crossover to the non-activated
regime should be inevitably expected on approaching the transition
temperature.

Second, if, in a certain temperature range, the wall motion does correspond
to the activation scenario, the activation field d should exhibit a complex
temperature dependence that is basically an exponential function of Tc – T.
This can be shown as follows. We have discussed above in this section that due
to the fact that the Peierls barrier for a wall, VP0, is expected to be much smaller
than its surface energy density, sw, an optimization of the shape of the critical
nuclei is possible. According to Eq. (8.4.13) this leads to a reduction of the
activation field d by a factor of about (VP0/sw)

3/4. Thus, taking into account Eq.
(8.4.11) and the temperature dependences sw/ (Tc –T )3/2 and tth/ (Tc –T )�1/2

(see Sect. 6.2) we find

d / s3=2w t
9=4
th

T
exp �0:75p2 tth

c

� �
/ ðTc � TÞ8=9e�ðM=

ffiffiffiffiffiffiffiffiffi
Tc�T
p

Þ; (8:4:21)

where M is a constant. It is useful to note that this result actually implies a
double exponential temperature dependence for the wall velocity. In our opi-
nion, such dependence can be considered as reliable fingerprints of the activated
MW regime of wall motion.

To conclude the above discussion, we would like to note that very limited
relevant experimental information is available for the moment. As an example
of application of the aforementioned approach, we can refer to a paper by
Sidorkin (1993). He explained a deuteration-induced increase in the domain
wall mobility in KDP (106 times) (Bjorkstam and Oettel, 1966) as a result of
deuteration-induced increase in the wall thickness. According to Sidorkin a
slight change of the wall thickness can provide a 106 times variation of the
velocity since the dependence is actually double exponential (cf. Eqs. (8.4.13)
and (8.4.20)).
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8.4.4 Domain Wall Motion in Non-activated Regime

In Sect. 8.4.1 we have introduced two types of domain wall motion: activated
and non-activated. The former has been discussed in the previous section, now
we proceed to the discussion of the latter. The principal difference between these
regimes already expressed in their names relates to the assistance of thermal
fluctuations needed for the wall motion. This assistance is required in the
activated and it is not required in the non-activated regime. This difference
implies an essential difference in the physical mechanisms limiting the wall
velocity in these regimes. We have seen in the previous sections that, in the
activated regime, the nucleation rate of critical nuclei controls the wall mobility.
In the non-activated regime, this factor is irrelevant and the limiting factors
are the energy dissipation resulting from the polarization reversal in the wall and
the inertia of the ions carrying the ferroelectric polarization. As wewill see below,
the former directly controls the wall mobility whereas the latter controls the
thickness of the moving wall. In the following sections we will address these two
issues mainly in terms of the continuous Ginzburg-–Landau theory. The con-
sideration will be performed in terms of the simplest model: 1808 wall in a
uniaxial ferroelectric with elastic effects being neglected. The below presentation
will be based on papers by Sannikov (1962), Laikhtman (1973), and Collins et al.
(1979). More theoretical results on domain motion in non-activated regime can
be found in papers by Wang and Xiao (2000) and by Loge and Suo (1996).

8.4.4.1 Low-Field Wall Mobility in Non-activated Regime

Consider a moving domain wall in a uniaxial ferroelectric in terms of the
Ginzburg–Landau theory. Neglecting for simplicity the elastic effects we start
from the thermodynamic potential given by Eq. (2.3.13) appended with the
gradient terms like in Eq. (6.2.1)

~F ¼ F0 þ
1

2
aP2 þ 1

4
bP4 þ 1

2
d
@P

@x

� �2

�PE: (8:4:22)

The equation of motion for the polarization can be obtained by generalizing
the static Euler equation (like (6.2.3)) by adding terms that describe the energy
dissipation during the polarization reversal and the inertia of the ions carrying
the ferroelectric polarization. Such an equation of motion reads

@

@x

@ ~F
@ @P=@xð Þ

� �
� @

~F
@P
¼ Z _Pþ z €P; (8:4:23)

where the dots mean the time derivatives. Equations (8.4.22) and (8.4.23) read-
ily imply

z €Pþ Z _P� d
@2P

@x2
þ aPþ bP3 ¼ E: (8:4:24)
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The polarization profile corresponding to the 1808 domain wall at rest

P0ðxÞ ¼ PS tanhðx=tthÞ (8:4:25)

(where P2
S ¼ �a=b and t2th ¼ �2d=a) satisfies this equation (see Sect. 6.2.1);

however, the moving domain wall described by the function

P ¼ Ptr 
 P0ðx� vtÞ (8:4:26)

(where v is the wall velocity) is not an exact solution to it. On the other hand,
expecting that the function (8.4.26) can be a good approximation for a slowly
moving wall, we are looking for a solution to Eq. (8.4.24) in the form
P ¼ Ptr þ p, where p
 Ptr. Inserting this form into Eq. (8.4.24) and consider-
ing the dynamic terms and E in it as small perturbations we arrive at the
following first-order perturbation theory equation for p:

L̂p ¼ E� Z _Ptr � z €Ptr; (8:4:27)

where the differential operator L̂ reads

L̂ ¼ �d @2

@x2
þ aþ 3bP2

tr: (8:4:28)

At this point, for further progress one usually enjoys the results of theory of
differential operators. First, one checks that this operator is Hermitian and that

fðxÞ ¼ @Ptr=@x ¼ PS cosh�2½ðx� vtÞ=tth�=tth

is a bounded solution of the homogeneous equation L̂f ¼ 0. Second, one takes
into account that inhomogeneous equation (8.4.27) has a bounded solution for
p under a condition that its r.h.s. is orthogonal to a bounded solution of the
corresponding homogeneous equation, i.e., to @Ptr=@x. It is this condition of
orthogonality that ensures that, in the limit of small wall velocities, p is small
compared toPtr. Inserting Eq. (8.4.26) into Eq. (8.4.27) we find this condition in
the form

Z1

�1

E� g
d2P0ðzÞ
dx2

v2 � Z
dP0ðzÞ
dx

v

� �
dP0ðzÞ
dx

dz ¼ 0: (8:4:29)

Integrating this expression and taking into account thatR1
�1 cosh�4ðzÞdz ¼ 4=3 and

R1
�1 cosh�2ðzÞ d

dz cosh
�2ðzÞdz ¼ 0 we readily arrive

at the following mobility law for the wall:

v ¼ 3tth
2ZPS

E: (8:4:30)
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In other words, a constant mobility

m0 ¼
3tth
2ZPS

(8:4:31)

can be attributed to the wall.
It is instructive to evaluate the maximal velocity vm that the wall can acquire

in the low-field regime. This velocity corresponds to a driving field equal to the
thermodynamic coercive field.2 Using Eqs. (2.3.15) and (8.4.30) one finds

vm ¼
tth

2
ffiffiffi
3
p

Zw
: (8:4:32)

Here w ¼ 1=ð�2aÞ is the lattice dielectric permittivity.
Clearly the above results hold in the case where the shape of the moving wall

is close to the static one (given by Eq. (8.4.25)). This imposes a limitation on the
value of the driving electric field. However, since the problem of the wall
mobility has physical meaning only for the driving fields smaller than the
thermodynamic coercive field, there may be situations where the linear mobility
law Eq. (8.4.30) provides a good approximation to the exact result for any
physically meaningful values of the field. We will discuss this issue later using
the exact solution of the problem.

8.4.4.2 Exact Solution for a Moving Wall; Modification of the Profile

of Moving Wall

The problem of moving domain wall written in the form of Eq. (8.4.24) was
shown to have an exact stable solution (Collins et al., 1979). This solution reveals
qualitatively new features of the phenomena. In this book, wewill not address the
way how this solution has been found, referring the interested reader to the
original paper. We will present only this solution and discuss its main features.

For a wall in a field E > 0 which divides domains with P ¼ P�50 at
x! �1 and P ¼ Pþ40 at x! þ1 ( P�j j5PS and Pþ4PS; P– and P+ are
the solutions to the static problem), the exact solution to Eq. (8.4.24) reads

P ¼ Pex
x� vt

tex

� �
; PexðzÞ ¼

Pþe
Z þ P�e

�Z

eZ þ e�Z
; (8:4:33)

where

tex ¼ tth
2PS

Pþ þ jP�j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

v20

s
; (8:4:34)

v ¼ mexE; (8:4:35)

2 For higher fields, the antiparallel to the field orientation of the polarization is absolutely
unstable so that the polarization reversal will take place through the bulk switching.
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mex ¼
3tex
2ZPS

PSðPþ þ jP�jÞ
2PþjP�j

: (8:4:36a)

Here the critical velocity v0 ¼
ffiffiffiffiffiffiffi
d=z

p
. The wall mobility can also be written in

the form

mex ¼
3tth
2ZPS

P2
S

jPþP�j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

v20

s
: (8:4:36b)

Comparing the solution given by Eqs. (8.4.33), (8.4.34), (8.4.35), and (8.4.36)
with the low-field solution, Eqs. (8.4.26), (8.4.30), and (8.4.31), we find (i) a
deviation from the tanh shape of the distribution of the polarization in the wall,
(ii) a change in the effective thickness of the wall (tex instead of tth), and (iii) a
change in the wall mobility (mex instead of m0).

In the modification of the wall thickness, one can distinguish two trends. First,

there is the ‘‘relativistic’’ correction
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=v20

q
which arises due to the z €P in

Eq. (8.4.24). The physical origin of this correction is the inertia of the ions carrying
the ferroelectric polarization. This correction formally results in unlimited ‘‘thin-
ning’’ of thewall when the velocity approaches the critical velocity v0. Second, there
is a factor of 2Ps=ðPþ þ jP�jÞ related to the dielectric nonlinearity of the ferro-
electric. Due to this factor the wall under the field becomes thicker.

Clearly, the predictions of the exact theory look richer than those of the
linear theory; however, the interpretation of the results of the exact theory
requires an analysis which takes into account realistic parameters of the system
and the limitations of the continuous theory. Such an analysis is given below.

8.4.4.3 Interpretation of the Theoretical Results for Wall Motion in

Non-activated Regime. Additional Factors Influencing the Phenomenon

Here we are going to address the relevance of the theoretical result presented
above to a realistic experimental situation and to give the reader an idea on
possible experimental manifestation of the phenomena discussed.

First, let us note that, depending on the relation between the critical velocity
v0 ¼

ffiffiffiffiffiffiffi
d=z

p
and the velocity vm which is the maximal that the wall can reach in

terms of low-velocity approximation, Eq. (8.4.32), one can single out two
quantitatively different situations where (i) vm5v0 and (ii) vm4v0. Writing
the ratio vm=v0 explicitly

vm
v0
¼

ffiffiffiffiffiffiffiffiffiffi
jajz
12Z2

s
¼ 1

2
ffiffiffi
3
p O0

G0
(8:4:37)

(where O0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2jaj=z

p
and G0 ¼ Z=z are the resonance frequency and damping

for the spatially homogeneous linear polarization dynamics governed by
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Eq. (8.4.24))weseethattheseregimesroughlycorrespondtothecaseofover-damped

and under-damped polarization dynamics, respectively. It is instructive also to note
that, according to simple order-of-magnitude estimates, the critical velocity

v0 ¼
ffiffiffiffiffiffiffi
d=z

p
is expected to be of the order of the sound velocity in thematerial.

Let us discuss these situations ‘‘deep inside’’ the two regimes, i.e., at
(i) vm55v0 and (ii) vm44v0.

In the over-damped regime, the ‘‘relativistic’’ factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=v20

q
in the

expression for the wall thickness (8.4.34) can be neglected. Thus, we find that,
in this regime, the moving wall is a factor 2Ps=ðPþ þ jP�jÞ thicker than that
when at rest. However, this correction appears to be insignificant. For the

second-order phase transition, one shows that the value of 2Ps=ðPþ þ jP�jÞ
always lies between 1 and 2=

ffiffiffi
3
p
� 1:15. Thus, this ‘‘thickening’’ effect is small

and hardly of any experimental interest. The same is true for the difference in
the polarization profiles given by Eqs. (8.4.25) and (8.4.33).

The wall mobility appears to be more sensitive to the high-field regime of

motion. In the over-damped regime, fromEqs. (8.4.31) and (8.4.36) we readily find

mex ¼
P2
s

PþjP�j

� �
m0: (8:4:38)

One easily checks that as E increases from 0 to thermodynamic coercive field
(given by Eq. (2.3.15)) the factor P2

s =ðPþjP�jÞ changes from 1 to 3/2. Thus, in
the over-damped regime a slightly superlinear mobility law is expected. In

Fig. 8.4.4, curves (a) and (c) illustrate the field dependence of the wall thickness
and velocity as predicted by the theory for the over-damped regime.

For the under-damped situation we are facing a totally different behavior;

now the ‘‘relativistic’’ factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=v20

q
fully controls both the thickness and

themobility of the wall. The theory predicts that the wall thickness tends to zero

at v! v0 (see Eq. (8.4.34)). One easily checks that this readily implies that the
wall velocity saturates on the level of the critical velocity v0 and the wall motion

with v > v0 is impossible. This behavior is illustrated with curves (b) and (d) in
Fig. 8.4.4. As seen from this figure, the characteristic feature of the wall motion

in the case of under-damped polarization dynamics is a sublinear (with satura-
tion) mobility law.

Concluding the discussion of the relevance of the model results to the real

situation we would like to make a few remarks concerning factors neglected in
the above model.

First, the model ignores the elastic effects. However, according to the results
available in the literature, at least for nonferroelastic domain walls, these effects

do not qualitatively change the situation. An exact solution for a moving wall,
which takes into account rotation of molecular groups associated with the

ferroelectric polarization and elastic stresses, has been offered by Pouget and
Maugin (1985). These authors reported a modified (compared to the discussed
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above) polarization profile in the moving wall. However, since the authors have

neglected the dissipation phenomena, it is difficult to appreciate the relevance of

this result to the situation in real systems.
A generalization of the theory for the low-field mobility can be found in the

paper by Laikhtman (1973). In the limit of small E, this is an exact phenomen-

ological theory that takes into account the moving polarization kink and also

the elastic and thermal perturbation induced by this kink. It has been shown
that the energy dissipation related to the heat transport across the moving wall

can be essential for the wall dynamics. Taking into account this effect the wall-
mobility law (8.4.30) can be rewritten as the following balance-of-force

equation

G � v ¼ ðGP þ GtÞ � v ¼ 2PSE; (8:4:39)

where the r.h.s. stands for the force acting on the wall owing to the applied field
(cf. Sect. 8.2.2) whereas the l.h.s. has the meaning of the friction force acting on

the wall. Here two contributions to the ‘‘wet friction’’ coefficient G can be

distinguished: GP is the contribution to the wall friction controlled by the
relaxation of the polarization (Z _P in Eq. (8.4.24)) while Gt is the contribution

controlled by the heat transport. Equation (8.4.30) corresponds to
GP ¼ ð4=3ÞZP2

s=tth / 1=tth. Laikhtman addressed the second contribution to

find Gt / tth. Thus, we see that the relation between these two contributions to

Fig. 8.4.4 Thickness (a, b) and velocity (c, d) of a 1808 ferroelectric wall as functions of the
applied electric field according to the continuous theory, Eqs. (8.4.33), (8.4.34), (8.4.35), and
(8.4.36). The velocity is normalized to the velocity vm given by Eq. (8.4.32). The field is
normalized to the thermodynamic coercive field given by Eq. (2.3.15). The wall thickness is
normalized to its thickness at rest, tth ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2d=a

p
. Curves (a) and (c) are plotted for the case of

over-damped polarization dynamics ðv0=vm ¼ 10Þ. Curves (b) and (d) are plotted for the case
of under-damped polarization dynamics ðv0=vm ¼ 0:1Þ
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the wall friction is very sensitive to the wall thickness. Laikhtman has evaluated
these contributions for TGS at room temperature to conclude that the con-
tribution controlled by the heat transport can be essential; e.g., using, however,
a somehow too large value of the wall thickness tth ffi 10�5cm, he has found
GP=Gt ffi 0:25� 10�3.

Concerning the equation of wall motion (8.4.39) one more remark can be
made. Several authors (see, e.g., Gentner et al., 1978) have developed a micro-
scopic theory of the G friction coefficient considering the scattering of the
acoustical phonons against the wall as an origin of the friction. These theories
are directly applicable for the case where the wall velocity is smaller than the
typical velocities of the acoustical waves. For higher velocities, a modified
theory is needed. In general, such a theory, though not presently available,
should give a value of the G constant different from that obtained for the low-
velocity regime. Thus, in terms of the microscopic theory of wall friction, a
change of slope on the v(E) curve at a velocity of the order of the sound velocity
might also be expected.

To the best of our knowledge, the theoretical results presented above have
not been compared to the available experimental data on the wall mobility in
ferroelectrics. In this book, not attempting a systematic comparison of this
kind, we would like to make just one remark. The superlinear type of wall-
mobility law reported by Stadler and Zachmanidis (1963) (shown in Fig. 8.3.4)
for BaTiO3 at for E¼ 10–450 kV/cm might be relevant to the theoretical
prediction for the over-damped case. This interpretation is supported by the
over-damped nature of the soft mode in this material; in addition the value of
450 kV/cm is of the order of the thermodynamic coercive field in BaTiO3 at
room temperature.

8.4.5 Domain Wall Motion Influenced by the Ferroelectric/
Electrode Interface

In the above sections devoted to the theories of domain wall motion we have
addressed an idealized situation where the electric field in the sample is not
disturbed by the presence of the wall and equal to the applied field. In these
sections, we have derived relations between the applied field and the wall
velocity. The application of these relations to the situation in a real capacitor
requires, however, taking into account the fact that the field seen by the domain
wall can differ from the applied field and be sensitive to the position of the wall
and its velocity. The existence of such a difference has been suggested by
experimental results reported by several authors, e.g., by Merz (1956) and
Callaby (1967) for BaTiO3 and by Shur et al. (1990) for Gd2(MoO4)3 and
Pb5Ge4O11. Presently, it is generally believed that a special thin layer at the
ferroelectric/electrode interface is responsible for this difference. Three models
for such a layer have been offered by Merz (1956), Drougard and Landauer

410 8 Switching Phenomena and Small-Signal Response



(1959), and Callaby (1965). Though none of these models are able to give an

exhaustive quantitative description of the totality of the observed features, they

offer a realistic qualitative interpretation of them. The present section is

devoted to discussion of these models and their implications.
The models are schematically illustrated in Fig. 8.4.5. All the models contain

a modified surface layer3 of thickness d. The Merz’s model, illustrated in

Fig. 8.4.5a, contains a nearby-electrode layer with the dielectric permittivity,

kd, which is much smaller than that in the bulk one, kc, but which, however, can
be switched like the bulk of the ferroelectric. The surface layer in the model by

Drougard and Landauer, illustrated in Fig. 8.4.5b, (i) is non-switchable, (ii) has

a low dielectric permittivity, and (iii) exhibits an appreciable conduction (lossy).

In the model by Callaby, illustrated in Fig. 8.4.5c, the material of the capacitor

is homogeneous in all the properties except the wall mobility, which is assumed

to be much smaller inside the surface layer.

In the model by Merz, the impact of the surface layer on the wall motion is
evident: The field seen by the wall in the bulk, Ef, is reduced compared to the
value of the applied field, E¼V/h (V is the potential difference between the
electrodes and h is the thickness of the ferroelectric). For the case of interest
where d << h, one readily arrives at the well-known expression

Ef ¼
E

1þ ðdkc=hkdÞ
: (8:4:40)

This expression provides a difference between the applied field and the field
seen by the wall, which depends on the thickness of the ferroelectric and that of
the surface layer. Naturally assuming that, for a series of the samples with

Fig. 8.4.5 Schematics of surface layer models. Two electrodes (hatched), ferroelectric (no
shading), and surface layer (shaded) are shown. Dashed lines show the original positions of
the wall. Solid lines show the position of the wall after the application of the electric field
directed upwards. (a) Merz model, where the surface layer is perfectly switchable but has a
smaller permittivity than the bulk material. (b) Drougard–Landauer model, where the surface
layer is non-switchable. (c) Callaby model, where the surface layer is identical to the bulk
except for a reduced value of the wall mobility. In the latter model a step on the moving wall
(as shown in the figures) is expected

3 In all three models, the authors consider the impact of the two layers of thickness d/2 at each
electrode, which is roughly equivalent to the impact of one layer of thickness d. We will be
discussing the situation with one layer.
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different thinness, the thickness of the surface layer is independent of h,
Eq. (8.4.40) leads to higher wall mobility in thicker samples. Specifically, for
the wall motion in the activated regime with the mobility law v/ exp(–d/E), the
reduction of the field given by Eq. (8.4.40) implies the dependence
v / expð�deff=EÞ with deff ¼ dð1þ h0=hÞ (h0 is a constant). For Remeika-
grown BaTiO3 crystals this kind of deff(h) dependence has been found in good
agreement with the experiment (Merz, 1956).

In the model of Drougard and Landauer illustrated in Fig. 8.4.5b, the
surface layer is just a dielectric one with a finite conduction and it is assumed
that due to this conduction the free charge transport from the electrode to the
layer/ferroelectric interface is possible; it is also assumed that a certain surface
charge density s can exist at this interface. Let us discuss this model starting
from the single-domain situation. In this situation for the case of interest
(where d << h), one easily finds that the difference between the field seen by
the ferroelectric and the applied field, the so-called depolarizing field DEdep,
reads

DEdep ¼ �
d

he0kd
ðPþ sÞ: (8:4:41)

This field depends on the state of the ferroelectric and the prehistory of the
capacitor. After staying for a long enough time in the single-domain state (with
P¼ –PS) under short-circuited conditions (E¼ 0), the field in the capacitor
vanishes (Ef¼ 0) and so the depolarizing field does, since Ef¼E + D Edep.
This requires s¼PS which means a full screening of the ferroelectric polariza-
tion by the free charges delivered by the conduction across the layer. If we then
switch the capacitor to the positively poled single-domain state (with P¼PS)
and do it fast (compared to the relaxation time of the charge at the layer/
ferroelectric interface, t) we will find the depolarizing field

DEdep ¼ �
d

he0kd
2PS: (8:4:42)

This field is created4 by a sheet of charge of density 2PS at the layer/ferro-
electric interface. Keeping the capacitor in the positively poled state for a time
substantially exceeding t obviously results in vanishing the depolarizing field
again and developing negative screening charge: s¼ –PS.

For the case of two-domain state illustrated in Fig. 8.4.5b, a more involved
consideration is needed. Like in the preceding case, after being in the same state
for a long time the depolarizing field is absent in the system. If then the wall is
displaced by a distance s, the depolarizing field appears. It is created by a stripe
of charge of density 2PS and width s located at the layer/ferroelectric interface.
In this case, the average depolarizing field hD Edepi acting on the wall depends
on the relation between d, s, and h. It is obvious that, for s >> h >> d, the

4 The depolarizing field is actually the sum of the field directly produced by these charges and
the field produced by the charges induced by this charge in the electrodes.
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depolarizing field is equal to that in the case of semi-infinite sheet of charges.
For the symmetry reason it is equal to a half of the value given by Eq. (8.4.42),
i.e., in this case,

hDEdepi ¼ �
d

he0kd
PS: (8:4:43)

It can be shown (Drougard and Landauer, 1959; Shur et al., 1990), though it
is less obvious, that this result holds under much less restrictive condition h,
s >> d. That means that the Eq. (8.4.43) is valid even for h � s if only s >> d.
For s tending to zero obviously the depolarizing field tends to zero as well. The
formula describing the development of the depolarizing field as one increases s
can be found in the form (Drougard and Landauer, 1959; Shur et al., 1990)

hDEdepi � �
dPS

he0kd

2

p
tan�1

s

2d
þ s

4d
ln 1þ 2d

s

� �2
" #" #

: (8:4:44)

Thus, in the Drougard–Landauer model, this equation gives the average
depolarizing field that acts when the domain wall is displaced fast enough from
its original position. This field is screened down by the charge transport across
the layer after the time exceeding the relaxation time t.

The third model, the model of Callaby (1965), though being physically differ-
ent from that ofDrougard and Landauer, phenomenologically, is quite similar to
the latter. According to Callaby, the small part of the wall, which belongs to the
surface layer, is assumed to be less mobile. This difference in the mobility will
result in lagging behind the lateral part of the wall and in the formation of a
stripe of the charged head-to-head domain wall as shown in Fig. 8.4.5c. This
stripe creates a depolarizing field in the same way as the charged stripe in the
Drougard–Landauer model does so that Eq. (8.4.44) for the field holds with s
standing for the width of the stripe. The configuration with the head-to-head
stripe is not energetically favorable. Thus, being left at rest in the zero external
field for a long time, the stripe will shrink its width down to zero. This process is
analogous to the conduction-driven screening of the bound charge in the
Drougard–Landauer model. The phenomenological similarity between the two
models results in virtually identical qualitative predictions of these.5

Let us have a look at the predictions of the Drougard–Landauer and Callaby
(DLC) models. First of all, clearly, the DLC models predict a thickness depen-
dence of the wall mobility as the Merz model does. The difference between the
DLC and Merz models is that, in the former case, the field seen by the wall is
smaller than the applied field by a field-independent term (e.g., given by
Eq. (8.4.44)) while, in the Merz model, the applied field is reduced by a scaling
factor. A qualitative new feature of the DLCmodels is that the relation between

5 In the original paper, Callaby has compared his model with that by Drougard and
Landauer, arguing that there is essential difference between predictions of the two models.
However, looking at the models more fully as it is done in this book, one finds a strong
similarity between these predictions.
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the field seen by the wall and the applied field is sensitive to the prehistory of the
system. We would like to mention two nontrivial implications of this feature:
‘‘stop’’ effect and backswitching.

‘‘Stop’’ effect. Consider the situation where during the time of the experiment
the screening effect can be neglected. Then, the wall motion will be accompa-
nied by a reduction of the field acting on it due to a growth of hD Edepi with
growing wall displacement. This will result in slowing down of the wall moving
under the action of constant applied field. If the difference between applied field
and the maximal value of hD Edepi (given by Eq. (8.4.43)) is smaller than the
threshold field for the wall motion, the wall will stop at a certain distance from
its original position.

Backswitching effect. Consider wall motion from it original position where it
has been for a long time. Let us turn off the applied field, so that the wall will see
only the depolarizing field whose sign is opposite to that of the originally applied
external field. This can induce a backward displacement of the wall. If the
screening of the depolarizing field is negligible and the maximal depolarizing
field substantially exceeds the threshold field for the wall motion, the wall will
return to its position where it was before the application of the external field.

Both the above effects have been experimentally identified and investigated
in a number of ferroelectrics (see Sect. 8.3).

The DLC models predict and explain several more interesting phenomena.
We refer the interested reader to the original paper by Callaby (1965).

To conclude this section, we would like to discuss to what extent the above
three models are realistic and what their limitations are. The Merz model, as
was realized by Drougard and Landauer (1959), requires much lower dielectric
permittivity in the layer than in the bulk, however, with the same switching
performance. This is a very strong requirement for a real system, so that this
model seems to be of purely academic interest. The main assumption of the
Callaby model—a much lower nearby-electrode wall mobility—could be rea-
lized, e.g., due to the defect-induced reduction of the wall mobility near the
electrode. However, this model faces a serious problem: The field between the
head-to-head stripe and the electrode will jeopardize the ferroelectricity in this
layer. One can easily check that, in the case of a proper ferroelectric, this field
will suppress the ferroelectricity, except for the case of anomalously small
values of PS (weak ferroelectrics). Thus, the Callaby model is applicable only
for weak and improper ferroelectrics. The Drougard–Landauer model causes
basically no objections; it can be considered as a reasonable approximation for
a real situation where both the bound and screening charges occupy sheets of a
finite thickness. It has been pointed out by Shur et al. (1990) that the screening
charge should be distributed over a distance of the Debye screening length from
the electrode. The same authors have modified the Drougard–Landauer model
taking into account this issue and offered a quantitative description for wall
dynamics in Gd2(MoO4)3 and Pb5Ge4O11. However, it is difficult to judge to
what extent these results are conclusive because of the addition assumptions
and parameters introduced by the authors into the original framework.
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8.4.6 Motion of Curved Domain Walls

The results of the previous sections are the mobility laws derived for domain

walls traveling in different regimes. All these results have been obtained for the

case of a planar wall. In reality, the domain walls are often curved. A typical

situation is the formation of a macroscopical domain from a cylindrical

nucleus. Description of motion of a curved domain wall is trivial for the special

case where the wall mobility does not depend on the wall orientation. Evidently,

in this case, the wall will travel keeping its original shape. In general case, where

the wall mobility is a function of its orientation, the wall changes its shape when

traveling. In this section, we will address the theory of this phenomenon. Its

elegant description that is based on the result of the theory of shock waves and

crystalline optics has been offered by Nakamura (1960). The developed theory

has been applied to the interpretation of evolution of domain shapes in BaTiO3

(Nakamura, 1960) and in TGS and TGSe (Suda et al., 1978b). In what follows

we will present the key points of this theory and its applications.
The problem ofmotion of awall with anisotropicmobility is basically a special

case of the problem of propagation of the wave front in an anisotropic medium.

A well-known example of such a problem is offered in the crystalline optics,

where the theory of propagation of the front of an electromagnetic wave has been

developing from the times of Huygens. Actually, the mathematical scheme

developed in optics can be directly applied to the problem of the wall motion.

For this reason, wewill mainly skip themathematical derivation and focus on the

final results and their interpretation; the interested reader is referred to textbooks

on crystalline optics and the original paper by Nakamura (1960).
Consider the motion of a small element of the curved wall of a given

orientation with respect to the reference frame XY (see Fig. 8.4.6). As short-

hand, we will say that the orientation of the element is y when its normal makes

angle ywith theX-axis. Let the angular dependence of velocity of the plane wall

be v(y). According to Nakamura (1960), the motion of the considered element

can be described by the following relation:

x ¼ x0 þ vðyÞ cos y� dvðyÞ
dy

sin y
� �

dt

y ¼ y0 þ vðyÞ sin yþ dvðyÞ
dy

cos y
� �

dt

; (8:4:45)

Fig. 8.4.6 Orientation of
domain boundary surface
(for Eq. (8.4.45))
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where (x0, y0) is the original position of the element and (x, y) is its position after

a small interval of time dt. This is the basic relation describing motion of curved
domain walls.

The physical meaning of relation (8.4.45) is simple. The terms containing v(y)
evidently describe a displacement of the element along its normal. The origin of
the terms containing dv/dy can be elucidated as follows. Because of non-
vanishing angular dependence of wall velocity and nonzero curvature of the

element, there is a gradient of the velocity along the element. That means that
the displacement vdt of the element along its normal is accompanied by its
rotation by a certain angle dy. Thus, the new position of the element with
orientation y should be looked for as a result of the normal displacement of
an element with original orientation y – dy. For the motion of the element with a

fixed orientation, that implies an additional displacement (dv/dy)dt in the
direction perpendicular to the normal to the element. This explains the origin
of the terms containing dv/dy.

Equations (8.4.45) enable a parametric description of the shape of growing
and shrinking domains. Essential implications of these relations for the situa-
tion of anisotropic domain growth are as follows: (i) Starting from a domain

having a smooth shape one can arrive, after a growth or shrinkage of the
domain, at a shape containing ‘‘corners’’ (discontinuities of the derivative). (ii)
For growing domains, the corners form in the directions where v(y) is maximal
whereas, for shrinking domains, they form in the directions where v(y) is
minimal.

Figures 8.4.7 and 8.4.8 exemplify the above issues for the case of a hypothe-

tical dependence v(y). Figure 8.4.7 shows the polar diagram for 1/v(y). The
growth of a circular domain to a side-rounded square is illustrated in Fig.8.4.8a.
The backward shrinkage of the side-rounded square is illustrated in Fig. 8.4.8b.
The result of the latter is a square rotated by 458with respect to the original side-
rounded square. Inspecting Figs. 8.4.7 and 8.4.8 we find the aforementioned

correspondence between the orientation of the corners, sense of the domain
evolution, and positions of maxima and minima of the v(y). The trajectories of
the elements with a fixed orientation are also shown.We can conclude from this
figure that the corners form due to the crossing (converging) of different
trajectories. Analysis of this situation in terms of the wave approach can be

found in the original paper by Nakamura (1960).

Fig. 8.4.7 Example of polar
diagram of reciprocal rate of
domain growth 1/v(y). After
Nakamura (1960)

416 8 Switching Phenomena and Small-Signal Response



Nakamura (1960) has compared the above theoretical prediction with the
experimental data on the field-induced evolution of the shape of 1808 domain
in BaTiO3 crystals (Miller, 1958; Miller and Savage, 1958; Husimi, 1960); see
Sect. 8.3.2. The theory has been found in a perfect agreement with the experiment.

Suda et al. (1978b) applied the Nakamura’s theory to the analysis of the
applied-field-induced evolution of domain shape in TGS and TGSe. These
authors use the Miller–Weinreich theory to obtain the v(y) dependence for
these materials. They also assume that the anisotropy of the wall velocity is solely
governed by the anisotropy of the activation field d(y), which in turn is controlled
by the anisotropy of the wall surface energy sw and by that of the dielectric
permittivity in the direction of the wall normal, ka. Accordingly, in this modeling

vðyÞ ¼ v1 expð�d=EÞ; dðyÞ ¼ Ks3=2w k�1=2a ; (8:4:46)

where K is a constant independent of y. The authors numerically simulated the
evolution of the domain shape using Eqs. (8.4.45) and (8.4.46) with sw(y)
obtained from the results of theoretical calculations (shown in Fig. 6.2.3) and
the kaðyÞ dependence evaluated from the experimental data. It was shown that
depending on the value of the applied field a growing circular domain could
acquire the shape with two angles (‘‘lenticular’’), four angles (‘‘restricted lenti-
cular’’), or could keep a corner-free (‘‘elliptical’’) shape. An essential quantita-
tive result of the theory is the prediction of restricted lenticular domains
for TGSe and lenticular domains for TGS, in accordance with the presence
of four and two maxima in their sw(y) dependences, respectively. This predic-
tion has been found in perfect agreement with the experiment. A comparison of
the calculated and experimentally observed domain shapes is presented in
Fig. 8.3.13.

Fig. 8.4.8 Evolution of the shape of growing and shrinking domains for the growth aniso-
tropy illustrated in Fig. 8.4.7. (a) Growth of a circular domain. (b) Shrinkage of ABCD square
domain. Trajectories of elements of the wall with different orientation are shown. After
Nakamura (1960)
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8.5 Defect Pinning and Creep of Domain Walls

In the previous section we have discussed the domain wall motion neglecting the

impact of the structural defects. Though the models developed in this context are

relevant to some experiments carried out in pure materials, one can readily come

across situations where the role of structural defects in the domain wall motion is

not negligible. These situations will be discussed below. This issue actually makes

a special case of an extended area of theoretical condensed matter physics—

interaction of structural disorder with the so-called topological defects. In this

chapter we will present a ‘‘projection’’ of the results obtained in this area onto the

problem of domain wall motion in ferroics. We have presented such kind of

consideration in Sect. 6.4 when treating a ferroic domain wall at rest. Similar to

the consideration from that section, below we will restrict ourselves to a brief

discussion of the basic ideas appended with simple model illustrations.
The presence of structural defects in a ferroic obviously impedes the domain

wall motion. One says that the wall is pinned by defects when, under an external

pressure, the wall does not move because of its coupling with defects of the

crystal. The potential imposed by the defects onto the wall is called pinning

potential. In this context, one also introduces a notion of pinning pressure

defined as external pressure needed to cause depinning—the macroscopic

motion of the wall through the pinning potential. The depinning can occur

either without the assistance of thermal fluctuations or with such assistance. In

the former case, the application of the external pressure leads to the full

suppression of the potential barriers that pin the wall. In the thermally assisted

regime, the applied pressure determines the direction for the wall motion and

only partially reduces the potential barrier that pins the wall, while thermal

fluctuations essentially help to overcome it. In the following we will first con-

sider the non-thermally activated regime. We denote calculated pinning pres-

sure in this case as fpin. Then, we consider a realistic situation taking place at

finite temperatures where both regimes are possible. In this case, to introduce

pinning pressure unambiguously, one should also specify the time interval

within which the macroscopic wall displacement is expected. Clearly, since

now the depinning is fluctuation assisted, the longer the waiting time, the

smaller the pinning pressure. The maximal pinning pressure corresponding to

the microscopic times (about the period of lattice vibrations) we denote as fpin;T.

The pinning pressure at macroscopic time t we denote as fpin;T;t. When the

applied pressure f is smaller than fpin;T, the only exponentially slow wall motion

is possible, a situation similar to the activated regime of wall motion in detect-

free material (see Sect. 8.4.2). This phenomenon is customarily called creep.
In the following discussion we will address the pinning pressures fpin, fpin;T,

and fpin;T;t as well as the dependence of the wall velocity on the applied pressure f

in the creep regime of motion.
Considering the impact of defects on the motion of a domain wall one should

also take into account the ability of defects tomove and change their orientation.
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In this section we will mainly deal with the situation where the defects do not
change their state during the observation time. This is the situation of the
so-called frozen disorder. The opposite situation of ‘‘flexible defects’’ (i.e., where
the distribution and orientation of defects is appreciably affected by their
coupling with the order parameter) we will only briefly comment. For simplicity
we will treat only the case of one-component order parameter and, in the case
of ferroelectric, 1808 non-charged walls will be considered.

In the following four sections, we will address the situation where the
coupling of the wall with the crystalline potential (the Peierls potential, see
Sect. 8.4.1) plays a minor role compared to the defect/wall coupling and thus
can be neglected.

8.5.1 Non-thermally Assisted Regime, Weak and Strong Pinning

Consider a domain wall of thickness tw in a ferroic with the density of defects
n ¼ 1=D3, where D is the average distance between them. The defects may be
of random field (RF) or random bond (RB) types (see Sect. 6.4, Fig. 6.4.2).We
will be interested in the pinning pressure fpin created by these defects in the
situation where the depinning effect of thermal fluctuations can be neglected.
To get a good insight into this problem it is instructive to start with the
treatments within two naive approaches which lead to formally contradicting
results.

The first method, which was widely used at the early stages of investigation of
pinning, can be outlined as follows. Consider an individual defect. The maximal
force that can be applied from it to the wall can be evaluated as the energy of the
wall/defect interaction v (see Sect. 6.4, Fig. 6.4.2) divided by the domain wall
width tw, i.e., as v=tw. On the other hand, a piece of the wall of area S can be
naively viewed as pinned by the number of defectsN ¼ S tw=D

3 contained in the
volume of the wall of this area. This gives for the pinning pressure6

fpin ¼ f0 
 ðv=twÞN=S ¼ nn: (8:5:1)

The alternative method treats a wall having very high surface energy so that
it stays flat when interacting with defects. To illustrate it we address, for
simplicity, the case of RF defects which may have two orientations and con-
tribute+n or –n to the energy depending on themutual orientation of the defect
and the order parameter. We again consider a piece of the wall of area S
(containing N ¼ S tw=D

3 defects). The contributions to energy from differently
oriented defects essentially compensate each other as well as the pinning forces.

6 This is a rough estimate valid for both RB and RF defects. In the latter case, the number of
defects impeding the wall motion is obviouslyN/2 notN as set in this estimate. One can neglect
the factor of 1/2 to within the estimate accuracy.
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According to the laws of statistics, their total contribution can be evaluated as
that from

ffiffiffiffi
N
p

defects of the same orientation. This gives for the pinning
pressure

fpin ¼ ðv=twÞ
ffiffiffiffi
N
p

=S ¼ f0ffiffiffiffi
N
p : (8:5:2)

We see that the difference between the results of Eqs. (8.5.2) and (8.5.1) can
be very big. It is due to the fact that, in the derivation of (8.5.1), it was implicitly
assumed that the wall was soft enough to ‘‘hang’’ over unfavorable defects
collecting the forces from them, whereas in the second method, the wall was
assumed not bending at all. It is instructive to note that the result obtained by
the second method appears to be unphysical since it predicts the pinning
pressure for macroscopically large pieces of the domain wall to vanish, since
fpin / 1=

ffiffiffiffi
N
p
/ 1=

ffiffiffi
S
p

.
The above discussion suggests that the pinning pressure created by the

defects, in general, should be essentially dependent on the surface tension of
the wall. Conceptually, the problem of finding fpin is to find the maximal area,
Sfl, of the wall, on which it behaves as flat. In other words, the problem is to find
the maximal area, Sfl, on which the wall ‘‘averages’’ the negative and positive
contributions to the pinning pressure. From Sfl, the number of defects partici-
pating in averaging N ¼ Sfl tw=D

3 can be found, which finally determines the
pinning pressure through Eq. (8.5.2). One should mention that the concept of
the ‘‘averaging’’ scale is one of the recent breakthroughs of the physics of
disordered systems. For the first time this concept was introduced for the
superconducting systems by Larkin and Ovchinnikov (1979).

Let us outline the solution to the problem for the case of nonferroelectric/
nonferroelastic wall interacting with RF defects. First, one introduces the
length Le on which the wall wanders for a distance equal to the wall thickness
by rewriting Eq. (6.4.10) as

w ffi tw
L

Le

� �2=3

with Le ¼
swðtwDÞ3=2

v
: (8:5:3)

The length Le can be considered as maximal spatial scale on which the wall
behaves as flat (Nattermann et al., 1990). This can be rationalized, since the
typical scale of the random potential, which the wall is exposed to, is about tw so
that for scales L5Le the wall stays in one potential minimum and can be
considered as flat. Thus, Sfl can be evaluated as L2

e giving

Nb ¼
swt2w
v

� �2

(8:5:4)

for the number of the defects,Nb, which is averaged by a flat segment of the wall
and

fpin ¼ f0
n

swt2w
: (8:5:5)
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for the pinning pressure. From Eq. (8.5.5), we see that if the energy of the
coupling with defects is small enough (or the wall is stiff enough) so that

n
swt2w

551; (8:5:6)

the pinning pressure is reduced compared to the estimate Eq. (8.5.1) where the
defects were treated as acting independently. Condition (8.5.6) also guarantees
that the number of impurities averaged by a flat segment of the wall is large thus
justifying the application of the statistical approach. At the same time, if
condition (8.5.6) is not met, the statistical approach fails and the impurities
should be considered independently. These two situations are called weak-
pinning and strong-pinning regimes, respectively. The existence of such regimes
is common for the problems where the coupling of topological defects with
frozen disorder is considered (like order parameter vortices and waves of charge
density; see, e.g., Blatter et al., 1994).

The strong-pinning regime where a condition opposite to Eq. (8.5.6) occurs,

i.e., swt2w55n, exhibits an additional feature. Now it is favorable for the wall to

be captured by the defects spaced by the distance larger than the wall thick-
ness—at such capture, the gain from the pinning nwould bemore than the extra

surface energy swt2w (cf. Eq. (6.4.7)). Specifically, it is favorable for the wall to be

captured by the defect spaced from its flat position up to the distance

wcap ¼
ffiffiffiffiffiffiffiffiffiffi
v=sw

p
. This will influence the number of defects interacting with the

wall. For the wall of area S this number can be now found as

Nst ¼ Swcap=D
3 ¼ S

ffiffiffiffiffiffiffiffiffiffi
v=sw

p
=D3 (instead of N ¼ S tw=D

3 used for getting the

estimate for the pinning pressure, Eq. (8.5.1)). Accordingly, the pinning pres-
sure for the strong-pinning regime reads (cf. Eq. (8.5.1))

fpin ¼ fst 
 ðv=twÞNst=S ¼ nn
ffiffiffiffiffiffiffi
n

st2w

r
: (8:5:1a)

The above results for the weak-pinning regime can be readily generalized to the
case of nonferroelastic walls in ferroelectrics. In the context of the developed
approach it is clear that the additional electrostatic energy associated with the
bending of the ferroelectric domain wall should result in further increase in the
difference between the pinning pressures calculated in the strong- and weak-
pinning regimes since this energy leads to an additional stiffening of the wall. As
was shown in Sect. 6.4.3, the wandering of such wall is anisotropic. Therefore it
should be characterized by two spatial scales, Le1 and Le2 , instead of the single
length Le. On the lines of the analysis from Sect. 6.4.2, one can show that

L1e ¼ Lem
1=2 and L2e ¼ Lem

3=2; (8:5:7)

where

m ¼ twD
g

n

� �2=3
; (8:5:8)
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with g being defined by Eq. (6.4.15). Parameterm controls the importance of the
depolarizing energy on the scale where the wall can be considered as flat. If
m441, then this contribution to the total energy balance is important and the
relations (8.5.7) apply. In the opposite case, the depolarizing energy can be
neglected and only one spatial scale, Le, controls the problem. Thus, in the
former case, the number of impurities over which the pinning forces should be
averaged can be evaluated as

Nb ¼
L1eL2etw

D3
¼ swt2w

v
m

� �2

¼ swt2wD
v

g

n

� �2=3� �2
; (8:5:9)

leading according to Eq. (8.5.2) to

fpin ¼ f0
n

swt2w

1

m
: (8:5:10)

In the latter case, at m551 the previous result, Eq. (8.5.5), holds.
Two features of the situation with the ferroelectric wall are worth mention-

ing. First, the condition of the weak-pinning regime can be milder than
Eq. (8.5.6), specifically

n
swt2wm

551 (8:5:11)

atm> 1. Second, by varying the defect concentration one can switch between the
pinning regimes given by Eqs. (8.5.5) and (8.5.10). A remarkable difference
between these regimes lies in the concentration dependence of the pinning pres-
sure. Specifically, as clear from Eqs. (8.5.1), (8.5.5), (8.5.8), and (8.5.10), in these
regimes fpin / n (according to the naive logic the pinning pressure should be
proportional to the defect concentration) and fpin / n=D / n4=3, respectively.

Restricting our discussion of the non-thermally activated regime to the
above analysis we would like to make two further remarks. First, this analysis
can be readily generalized to the case where the sample thickness h is smaller
than the spatial scales on which the wall can be considered as flat. This would
yield various size effects for the pinning pressure with fpin / h�a with a > 0.
Second, in the situation with ferroelastic walls, where the long-range elastic
forces additionally contribute to the wall stiffness, one reasonably expects a
further reduction of the pinning pressure compared to the strong-pinning
regime. However, a straightforward application of the above approach fails in
this case and a more rigorous treatment of the problem is missing.

8.5.2 Finite Temperatures: Weak Pinning and Creep

In the energy terms, the above consideration corresponds to the full suppression
of the pinning barrier (for either weak- or strong-pinning regime) by applied
external pressure. To make a realistic description of the pinning pressure one
should also take into account the thermoactivated regime of depinning, which
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becomes important when the pressure applied to a wall f is smaller than the
pinning pressure fpin calculated above. The pinning pressure in this regime,
fpin;T, is determined from the condition that the typical height of the barriers
DU(f), which the wall should overcome to move at given f ¼ fpin;T, equals the
thermal energy kBT. This pressure corresponds to depinning of the wall on the
microscopic time scale (about the period of lattice vibrations). This approach
can equally be applied to the cases where the potential barrier is formed by the
coupling of the wall with many impurities (weak-pinning regime) and with a
single impurity (strong-pinning regime). In this section we consider the latter
regime, the former regime being considered in the next section.

Let us first estimate fpin;T for the case of nonferroelectric/nonferroelastic
wall. Here, under an external pressure, the wall motion is controlled by the
balance between the energy of the domain wall surface, Eq. (6.4.7), the energy of
the defects7, and the gain in energy due to displacement of the wall in the
presence of the external pressure. To estimate fpin;T, one should find the shape
of the optimized bulges on the wall promoting its thermally activated motion
through the pinning potential. For such a bulge, the first two contributions are
of the same order. This condition, as was shown in Sect. 6.4, leads to a relation

w ffi tw
L

Le

� �B

(8:5:12)

between the bulge parameters L and w; the corresponding sum of these con-
tributions can be evaluated using Eq. (6.4.7) as

Ubþd ffi swt2w
L

Le

� �2B

: (8:5:13)

Under the external pressure this contribution competes with the third con-
tribution which is equal to the product of the bulge volume and the pressure.
Using Eq. (8.5.12), this contribution can be evaluated as

Uf ffi fL2w ¼ twL
2
e f

L

Le

� �2þB
¼ kBTe

f

fpin

L

Le

� �2þB
(8:5:14)

where fpin is explicitly defined by Eq. (8.5.5) and kBTe 
 swt2w. The fully opti-
mized bulge corresponds to the minimum of the sum Ubþd þUf. Using
Eqs. (8.5.13) and (8.5.14) we readily estimate its dimensions

L ffi Le
fpin
f

� �1=ð2�BÞ
; (8:5:15)

w ffi tw
fpin
f

� �B=ð2�BÞ
; (8:5:16)

7 For the RF case, this contribution to the energy is given by Eq. (6.4.9).
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and energy

DU ffi kBTe
fpin
f

� �m

; (8:5:17)

m ¼ 2B
2� B

: (8:5:18)

Equation (8.5.17) defines the typical height of the barriers that the wall should
overcome tomove at a given external pressure. Thus, the conditionDUðfÞ ¼ kBT
leads to the expression for the temperature-dependent pinning pressure

fpin;T ffi fpin
Te

T

� �1=m

: (8:5:19)

According to the logic of the previous consideration, this equation yields the
value of the pinning pressure as far as it defines the pinning pressure smaller
than fpin, i.e., at T4Te. For lower temperatures the thermal fluctuations do not
substantially affect the pinning pressure and fpin;T ffi fpin.

The obtained result for the pinning pressure at finite temperature corre-
sponds to the wall depinning on the microscopic time scale 1/o0 where o0 is a
typical frequency of ionic vibration in the solid. If we consider the depinning at
macroscopic times t, then making allowance for the Gibbs statistics of thermal
fluctuations the condition for depinning can be written as

1

t
ffi o0 exp �

DUðfÞ
kBT

� �
: (8:5:20)

This leads us to a generalization of Eq. (8.5.19) in the form

fpin;T;t ffi fpin
Te

T lno0t

� �1=m

: (8:5:21)

The above results for the pinning pressure, Eqs. (8.5.5) and (8.5.21), can be
expressed by a single extrapolating formula (Nattermann et al., 1990)

fpin;T;t ffi
fpin

1þ T
Te
lno0t

� �1=m : (8:5:22)

The phenomenon behind the time-dependent pinning pressure can be viewed
alternatively. The fact that, for an external pressure f, the time needed for the
wall to overcome the pinning barriers is defined by Eq. (8.5.20) can be trans-
lated into the wall velocity vw(f). Taking into account that during the waiting
time given by this equation the wall on average moves for a distance equal to the
height of the optimal bulge given by (8.5.16) we find

vwðfÞ /
fpin
f

� �m=2

exp �Te

T

fpin
f

� �m� �
: (8:5:23)
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This basically exponential dependence, which is valid for f < fpin,T ”
fpinðTe=TÞ1=m, corresponds to the so-called creep motion of the wall, the expo-
nent m being called creep exponent. We have come across a dependence of such
kind while considering the wall motion over the Peierls potential barriers in
terms of Miller–Weinreich mechanism (see Sect. 8.4.2), which is conceptually
close to the above consideration.

The above approach can be equally applied to the description of pinning and
creep of nonferroelastic domain walls in a ferroelectric. Here, two situations can
be identified depending of the value of parameter m (defined by Eq. (8.5.8)).

As was discussed above, at m > 1 in the non-activated regime the optimal
bulge is large enough (its dimensions meet the inequality (6.4.16)) so that the
depolarizing energy on its spatial scale is important and makes it elongated. In
the thermally activated regime, as clear from the above consideration, the
optimal bulge size increases. This means that, at m > 1, when calculating the
pinning pressure in thermally activated regime the above analysis should be
modified so that it takes into account the elongation of the optimal bulge. Such
analysis leads to the pinning pressure and creep law in the forms (8.5.22) and
(8.5.23) where fpin should be taken according to Eq. (8.5.10) and Te and m
redefined as

kBTe ¼ swt2wm; (8:5:24)

m ¼ 2B1 þ 1=2

2� B1
; (8:5:25)

where B1 is the roughness exponent of the system. In this regime, the smallest
dimension of the optimal bulge, L1, is given by a relation similar to (8.5.15)

L1 ffi L1e
fpin
f

� �1=ð2�B1Þ
; (8:5:26)

where fpin and L1e are defined by Eqs. (8.5.10) and (8.5.7), respectively.
For m < 1 the situation is different. This condition means that on the scale,

where the wall can be considered as flat, the depolarizing energy becomes
smaller than the surface energy and can be neglected. Thus, in this case, in the
non-activated regime, the optimal bulge is not essentially elongated. In the
thermally activated regime, i.e., with T growing above Te, the bulges of larger
energy and therefore of larger size come into play. For the pinning pressure at
longer times, the bulge size further increases. Physically, this is clear from the
whole logic of the consideration of the thermally activated regime. Formally the
aforementioned dependence can be obtained by inserting f ¼ fpin;T;t into
Eq. (8.5.15) with fpin;T;t coming from Eq. (8.5.21) to find for the size of the
relevant (not elongated) bulge as a function of t and T:

L ffi Le
T ln o0t

Te

� �1=2B

: (8:5:27)
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Now, at large enough values of the parameter T ln o0t, the bulge size
becomes sufficiently large to make the depolarizing energy contribution impor-
tant and the bulge elongated. This corresponds to the regime where relations
(8.5.24), (8.5.25), and (8.5.26) apply. Thus, at m < 1 we are dealing with the
situation where the characteristics of pinning and creep will depend on the
relation between the value of parameter T ln o0t and a certain critical value.

The aforementioned crossover becomes really interesting when being trans-
lated into the creep law for the wall velocity. In this case, as seen from (8.5.15),
the smaller the pressure, the larger the relevant bulges. The crossover in the
pinning regime corresponds to condition Le ¼ Ldip (the characteristic length
Ldip is introduced by Eq. (6.4.16)). The crossover pressure evaluated from this
condition reads

fcross ¼ f0
n

swt2w
m3�3B=2: (8:5:28)

This crossover may manifest itself in the creep exponents which are different
at f4fcross and f5fcross. However it occurs that it is not observable for the RF
case. In this case, in both regimes the creep exponents (calculated according to
Eqs. (8.5.18) and (8.5.25)) are the same m¼ 1.

8.5.3 Finite Temperatures: Strong-Pinning Regime

In the case of strong pinning the thermal fluctuation can also reduce the pinning
pressure. To estimate it, one should evaluate the height of the typical potential
barriers, DUð f Þ, which pin the wall at a given value of the applied pressure. In
the strong-pinning regime, these are associated with the motion of pieces of the
wall across individual impurities and can be evaluated as

DUð f Þ ¼ n� Vacf; (8:5:29)

where Vac is the change of the volume of the favorable domain when the wall
‘‘climbs’’ on the impurity. Vac can be estimated as Sitw where Si is the area per
impurity in the wall. Now, calculating Si like for the derivation Eq. (8.5.1.a),

one finds Si ¼ D3=
ffiffiffiffiffiffiffiffiffiffi
v=sw

p
, Vac ¼ D3

ffiffiffiffiffiffiffiffiffiffiffiffi
st2w=n

p
, and

DUðfÞ ¼ nð1� f=fstÞ; (8:5:30)

where fst is the pinning in the strong-pinning regime given Eq. (8.5.1.a). Now,
on the lines of the consideration from the previous section, the temperature- and
time-dependent pinning pressures in the strong-pinning regime can be presented
in the form

fpin;T;t ffi fst 1� kBT

v
ln o0t

� �
: (8:5:31)
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Similarly, the wall mobility law for f5fst can be written as

vw / exp � n
kBT

1� f

fst

� �� �
: (8:5:32)

This expression is readily applicable at kBT5n. If it is not the case, when
calculating the wall velocity one should also take into account the thermally
activated jumps of the wall against the applied pressure. In this case, one finds
essentially linear mobility law

vw / exp � n
kBT

1� f

fst

� �� �
� exp � n

kBT
1þ f

fst

� �� �
� 2

n
kBT

f

fst
: (8:5:33)

It is instructive to note that, if the thermal fluctuations substantially influ-
ence the behavior of the wall, the difference between the weak- and strong-
pinning regimes is yet more pronounced than that in the non-thermally acti-
vated regime. For instance, the wall mobility laws, being considered in a wide
enough interval of the applied pressure, are very different.

8.5.4 Weak and Strong Pinning with Flexible Defects

In the previous sections we addressed the pinning and creep of domain walls
which couple with defects whose position and state (e.g., orientation of RF
defects) do not change in time. It is clear that such description may not be a
good approximation for real systems especially for long observation times. The
ability of defect to adjust themselves to the local values of the order parameter
can essentially affect the behavior of the system. As a result of such rearrange-
ment the defect distribution becomes correlated leading to an increase in the
pinning barriers. This is known to lead to aging and imprint effects (see 9.5.3)
which are harmful to many applications of ferroelectrics. In this section we
would like to comment on the impact of the defect flexibility on the pinning and
creep effects. We will discuss the situation of flexible (reorientable) RF defects.
However, similar conclusion can be drawn for RB defects as well.

Let us compare the impact of defect reorientation on the weak and strong
(individual) pinning. Consider a piece of the wall of area S pushed by some
external pressure in the individual pinning regime. This piece interacts with
Nst ffi S

ffiffiffiffiffiffiffiffiffiffi
v=sw

p
=D3 defects (see Sect. 8.5.1). In the case of random distribution

of their orientation, approximatelyN/2 defects oppose the wall displacement (it
is spanned on them) whereas the rest N/2 defects can be freely passed by the
wall. If we let defects fully relax to their energetically favorable state (locally
align with the order parameter), the orientation of the defects will be homo-
geneous throughout any domain. Clearly in this case, all N defects will oppose
the wall displacement. This will lead to doubling of the pinning pressure.
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In the weak-pinning regime, the same system will behave differently. In the
case of random distribution of the defect orientation, according to Eq. (8.5.2), the
pinning pressure is

ffiffiffiffiffiffi
Nb

p
times smaller than the value f0 given by Eq. (8.5.1), whereffiffiffiffiffiffi

Nb

p
is the number of the defects interacting with the wall on the scale on which

the wall can be considered as flat. This reduction is associated with the fact that,
on this scale, the actions of favorable and unfavorable defects strongly compen-
sate each other. In the case of the fully relaxed defects, in an attempt to move, all
defects encountered by the wall will be unfavorable. That implies no room for
the aforementioned compensation, no reduction of the pinning pressure due to
the averaging effect, and therefore the pinning pressure will correspond to
estimate Eq. (8.5.1), i.e.,

ffiffiffiffiffiffi
Nb

p
times larger than before the defect relaxation.

The above consideration shows that the strong- and weak-pinning regimes
can be additionally distinguished if the RF system can be subjected to aging
which leads to the alignment of the defects according to the local orientation of
the order parameter. In the strong-pinning regime, an aging-induced increase in
the pinning pressure up to two times is possible. (The factor of 2 corresponds to
the case of the 100% defect alignment; in principle the alignment may not be
full.) At the same time, in the weak-pinning regime, a much stronger increase in
pinning pressure is possible. Though the above consideration has addressed the
non-thermally activated depinning, it is clear that the above reasoning can be
also applied to the case of pinning at finite temperatures and creep.

8.5.5 Experimental Evidence on Weak Pinning and Creep
of Ferroelectric Domain Walls

Only a limited attention has been paid to focused experimental studies of the
weak pinning and creep phenomena. Here we can mention only atomic force
microscopy measurements of the field dependence of the velocity of 1808
domain walls in thin films of Pb(Zr0.2Ti0.8)O3 performed by Triscone and cow-
orkers (Tybell et al., 2002; Paruch et al., 2005, 2006). One should mention that it
is a difficult experimental task to distinguish the creep mobility law
v / expð�const:=EmÞ from that expected in the case of individual pinning,
v / expðconst:� EÞ.

In the earlier publication (Tybell et al., 2002) this group reported the creep
law with the creep exponent m in the interval 1.01–1.21, which to within the
experimental accuracy was interpreted as m¼ 1. The experimental data used for
the calculation of these values of the creep exponent are presented in the chapter
devoted to ferroelectric thin films (Fig. 9.8.2). The obtained values of the creep
exponent were regarded as an indication that the wall moves in the weak-
pinning regime with RF defects. As we pointed out above, in RF systems, the
relation m¼ 1 always holds. In the case of a ferroelectric–nonferroelastic
domain wall, this means that this relation holds independently of whether the
additional electrostatic rigidity of the wall is relevant in the creep process or not.
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In the further work (Paruch et al., 2005) on the same system, the creep
exponent m was found to be in the interval 0.51–0.59. Additional information
of the pinning mechanism was obtained from the measurements of the rough-
ness exponent B, whose value was found to lie in the interval 0.22–0.26 (see for
more discussion Sect. 6.4.4). These two sets of exponents were interpreted as an
indication that the wall moves in the weak-pinning regime with RB defects and
that the additional electrostatic rigidity of the wall is relevant in the creep
process. This conclusion was supported by the following observations. First,
the reported values of m and B are close to those obtained for this system in
different theoretical approaches. Second, the m and z pairs of the exponent for
the same sample satisfy with a good accuracy Eq. (8.5.25).

A recent work (Paruch et al., 2006) of the same group on the same system
experimentally addressed the impact of artificially introduced defects on the
values of the creep exponent m. It was found that the defect introduction leads
to an appreciable reduction of m, from values of 0.62–0.69 for the nominally pure
systems down to the intervals 0.30–0.5 or 0.19–0.31 depending on the defect type.

8.6 Switching Process in Selected Materials

The change of a domain state under the application of an external perturbation
conjugated to the order parameter, customarily called switching, is the key
property of ferroics. In the previous sections we have focused on the situation
where the change of the domain state in the whole crystal or its part occurs as a
result of displacement of a single-domain wall. For the general situation, the
experimental data and theory will be addressed in this section and the following
one. Another special situation where a small ac perturbation leads to a basically
linear response of the domain state of the sample will be treated separately in
Sect. 8.8.

At this point, it is proper to clarify the terminology. The term ‘‘switching’’
can be used in the wide and narrow senses. In the wide sense it has been just
introduced above. When used in the narrow sense, it means a change of the
domain state in most parts of the sample. In the narrow sense, the term switch-
ing is often used in order to distinguish the situation where the application of an
ac perturbation results in the change of the domain state virtually in the whole
sample (switching regime) from that where such perturbation affects only the
domain states in the close vicinity of the domain walls (non-switching regime).
In this and the following sections we will discuss switching in the narrow sense
(in this sense this term will be used hereafter) as well as the Rayleigh domain
wall dynamics, which formally cannot be classified as switching in the narrow
sense. These sections will be mainly dealing with the situations occurring in bulk
single crystals; the cases of thin films will be treated separately in Chap. 9.

As a general remark on switching one should mention that it is always very
sensitive to the imperfections of the material, which very often are not under
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proper control. For this reason, the switching behavior of crystals of the same
material but which are not identical in processing, thermal prehistory, electrical
prehistory, and aging may be essentially different. For the same reason, a
comprehensive presentation of the experimental data on switching in a material
that has been already for 60 years under the consideration (like BaTiO3) can
readily provide material for a small book. In this section we are not aiming at
such comprehensive description. What we are rather going to present is a
selection of the experimental data on widely investigated ferroics chosen to
give the reader an idea of how the switching may happen.

8.6.1 BaTiO3

Perovskite barium titanate is a classical ferroelectric exhibiting a sequence of
phase transitions on cooling from the centrosymmetric paraelectric phase. The
stoichiometry of this compound also allows another crystalline modification
which is also ferroelectric, however, with a hexagonal paraelectric phase. Below
we will discuss the switching behavior of the perovskite BaTiO3.

The first detailed information of switching behavior of BaTiO3 was
obtained by Merz (1954) from the direct optical observations and pulse
switching measurements in the tetragonal ferroelectric phase. The principal
conclusion drawn for the polarized light microscopy observations (in addi-
tionally strained crystals) was that the switching primarily occurs via a for-
ward growth of 1808 wedge-type domains appearing first at the electrodes.
This suggests that the nucleation of new domains is more favorable than the
sideway motion of those already existing. The switching current (see Sect. 7.4)
was found to be very sensitive to the value of the applied field. The maximal
switching current, imax, monitored as a function of the applied field is shown in
Fig. 8.6.1b. Figure 8.6.1a shows the switching time (see Sect. 7.4) measured in
the same experiment, tS. The product tSimax was found virtually independent
of the value of the applied field, E. For E � 7 kV=cm, the imaxðEÞ dependence
shown in Fig. 8.6.1b is close to a linear law. The temperature dependence of
the ‘‘differential resistance’’ corresponding to this linear law is shown in
Fig. 8.6.2b. The initial part of the imaxðEÞ curve, for E55 kV=cm, can be fitted
to the exponential law

imaxðEÞ / exp½�d=E�: (8:6:1)

The temperature dependence of the activation field d is shown in Fig. 8.6.2a.
The exponential imaxðEÞ dependence (at small fields) was interpreted as an
indication that, at these fields, the switching current is controlled by the nuclea-
tion of new domains, whereas the linear imaxðEÞ dependence was treated as a
fingerprint of the regime where, due to high values of the field, the nucleation is
relatively easy and the switching current is controlled by the forward growth of
the wedged domains. Metz has related the multiple domain nucleation at a
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certain field level (optically observed) with a sharp ‘‘low-field-corner’’ typical

for the P–E hysteresis loops typical for BaTiO3 (see Fig. 8.6.3b and c).
For description of pulse switching dynamics of BaTiO3, Pulvari and Kuebler

(1958a) successfully used the following system of phenomenological relations:

PðtÞ
PS
¼ 1� 2 exp½�0:5ðt=tmaxÞ2�; (8:6:2)

Fig. 8.6.2 Temperature
dependences of parameters
of pulse switching. The
parameters of the sample are
given in the caption for
Fig. 8.6.1. Upper panel—d
from Eq. (8.6.1). Lower
panel—differential
resistance of the sample
corresponding to the linear
regime of imaxðEÞ in Fig.
8.6.1. After Merz (1954)

Fig. 8.6.1 Parameters of
pulse switching for a
Remeika-grown crystal of
BaTiO3 as functions of the
applied field. Sample
thickness 50 mm. Electrode
area 10�4 cm2. Upper
panel—switching time.
Lower panel—maximal
switching current. After
Merz (1954)
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1

tmax
¼ gE exp½�d=E�; (8:6:3)

where g is a constant. These relations also provide a good description for the
aforementioned data by Metz.

The most common way to study switching in BaTiO3 was monitoring P – E
hysteresis loops. Strain-field (Pan et al., 1988) and birefringence-field (Meyer-
hofer, 1958) hysteresis loops have been also used for characterization of switch-
ing in this crystal but to a much less extent. Figure 8.6.3 shows examples of the
P – E loops: Figure 8.6.3a and b presents one of the first loops reported in 1950
(von Hippel, 1950) for Remeika-grown single crystals; figure c and d shows
recently reported loops (Eng, 1999) for single crystals grown with the same
technique.

It was found already in the early stages of BaTiO3 studies that its coercive
field, Ec, is not a constant (as it was sometimes expected, based on the knowl-
edge of classical ferromagnets) but depends significantly on frequency, o, and
amplitude of the applied field, Em. As the frequency grows, the field changes
faster and the domain processes characterized by the loop increase their

Fig. 8.6.3 Room temperature P–E hysteresis loops of a Remeika-grown crystal of
BaTiO3. (a) and (b) Loops taken with a Sawyer–Tower circuit before and after heat
treatment, respectively. (In (b) the remanent polarization is ffi 25 m C=cm2 and the
coercive field is ffi 1 kV=cm). Reprinted with permission from von Hippel, A., Rev.
Mod. Phys. 22, 221 (1950). Copyright (1950) by the American Physical Society.
(c) Loop taken with a Sawyer– Tower circuit. (d) Nanoscale loop taken with a scanning
force microscope. Reprinted from Eng, L.M.: Nanoscale domain engineering and char-
acterization of ferroelectric domains. Nanotechnology 10, 405 (1999) with permission by
IOP Publishing Ltd
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‘‘delay’’; thus we expect an increase in the field at which the average polarization

of the sample reaches zero, i.e., of the coercive field. This was shown byWieder

(1957) for both tetragonal and orthorhombic phases of BaTiO3 and later

studied by Campbell (1957) and Pulvari and Kuebler (1958a) at room tempera-

ture. Figure 8.6.4a shows the function EC(o) measured with field amplitudes

Em¼ 2Ec(o). The cross points represent data obtained with continuous ac field;

circles correspond to data taken with pulsed sine waves, to avoid the heating

effects. The same authors (Pulvari and Kuebler, 1958a) investigated also the

dependence Ec(Em), shown in Fig. 8.6.4b for o¼ 200 Hz. These dependences

are compatible with the above data on the field and time dependence of the

switching current. Specifically, the phenomenological relations for switching

dynamics Eqs. (8.6.2) and (8.6.3) can be translated into the logarithmic fre-

quency dependence of the coercive field and near proportionality of Ec to the

activation field for pulse switching d (Pulvari and Kuebler, 1958a). For the case

of sine wave driving field the corresponding relation reads

1:3oEm � gE2
c exp½�d=Ec� ¼ 0: (8:6:4)

Fig. 8.6.4 Coercive field Ec

of P–E hysteresis loops of a
Remeika-grown crystal of
BaTiO3. (a) Dependence on
the frequency of the sine
wave driving field under
condition Em ¼ 2Ec;
crosses—continuous sine
wave, circles—pulsed sine
wave. (b) Dependence on the
amplitude of the driving
field Em measured at a
frequency of 200 Hz. After
Pulvari and Kuebler (1958a)
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This equation provides a good description for the data presented in Fig. 8.6.4.

ParametersEc and dwere found to be a linear function of the inverse thickness of

the sample for the range 20–70 mm, d being approximately eight times larger than

Ec. Concerning this thickness dependence, it is useful to note that the authors did

not mention any etching procedure and since obviously ‘‘Remeika-type’’ crystals

were used, their samples could have carried a surface layer which, according to

many workers, can play an essential role of the switching performance of ferro-

electric crystals. Discussing the coercivity in BaTiO3 crystals one should indicate

that, as usual in ferroelectrics, the experimentally determined value of Ec (about

1 kV/cm at room temperature) is much smaller than the value of the thermo-

dynamic coercive fieldEcrit (about few hundreds of kV/cm at room temperature).
An important feature of the switching process is that, on a small enough time

scale, the switching current is not a monotonic function of time and the

corresponding P – E hysteresis loop is not smooth. Being motivated by the

magnetic analogy, this problem was addressed on the very early stage of

investigation of BaTiO3 by Newton et al. (1949) followed by later systematic

studies by Chynoweth (1958) and Brezina et al. (1961). The pulses of current

superimposed on the smooth background, called in analogy with magnetic

systems Barkhausen pulses, were readily identified. Figure 8.6.5 shows oscillo-

scope photographs of typical Barkhausen pulses observed by Chynoweth

(1958). However, the available experimental data are contradictory. For exam-

ple, Newton et al. (1949) reported that the total number of the pulses at a

switching event is a linear function of the applied field, Fig. 8.6.6, whereas

according to Chynoweth (1958) the total number of pulses in a given sample is

Fig. 8.6.5 Oscilloscope photographs of typical Barkhausen pulses in BaTiO3. The total length
of the trace is 100 ms. Reprinted with permission fromChynoweth (1958). Copyright (1958) by
the American Physical Society

Fig. 8.6.6 Number of Barkhausen pulses given by a BaTiO3 sample as a function of applied
voltage. Distance between the electrodes is 0.15 cm. Volume of the sample is 5.6 � 10�4 cm3.
After Newton et al. (1949)
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independent of the applied field. In this detailedwork, the author revealed several
clearly pronounced trends. Based on the totality of the obtained results it was
concluded that the origin of the observedBarkhausen pulses is the nucleation and
initial stages of growth of new wedge-shaped 1808 domain extending along the
polar axis of the material. In this context, the fixed number of pulses given by a
crystal implies a definite number of nucleation sites on the crystal surface. It is
worthmentioning that such interpretation of the Barkhausen pulses is principally
different from the traditional scenario inmagnetic system, where the Barkhausen
pulses are attributed to jerky domain wall motion. However, the current pulses
related to this kind of domain wall motion can also be observed in BaTiO3

crystals. Brezina et al. (1961) reported giant Barkhausen pulses which accompany
switching associated with the jerky motion of 908 domain walls. We have already
discussed this effect in Sect. 8.3.3. Another argument in favor of Barkhausen
pulses associated with the jerky motion of domain wall in BaTiO3 was presented
byRudyak et al. (1973) who distinguished in their experimental data two kinds of
pulses strongly different in their shape; these two types were attributed to pulses
resulting from the nucleation and from the jerky domain motion.

Polarization-field hysteresis loops of BaTiO3 crystals were found to be affected
byUV illumination.Warren andDimos (1994) demonstrated that the illumination
combined with application of a dc bias field can essentially (by 90%) suppress the
height of the loop taken from Remeika-grown crystals. The suppressed state is
stable (the reduced loop remains unchanged at least after a 2 week sample storage
at room temperature). However, this state can be erased using the same illumina-
tion combined with application of a dc bias of the polarity opposite to that applied
for the loop suppression. The suppression of the loopwasmaximized for band-gap
illumination, i.e., l¼ 404 nm (hn ¼ 3:075 eV; BaTiO3 band-gap Eg ¼ 3:1 eV).
Results, quite different from the above, were reported by Cudney et al. (1994)
for the crystals obtained with a top-seeded solution technique. If was found that,
the continuous illumination during electrical cycling with light (l¼ 488 nm) leads
to an appreciable increase in the loop height and a reduction of the backswitching
(the top of loop becomes flatter under illumination), Fig. 8.6.7.

Fig. 8.6.7 Impactof continuous illumination (l¼ 488nm)oncharge/electric field,Q–E, hysteresis
loop of a BaTiO3 crystal grown by a top-seeded technique. The electrode area is 8 mm2. Solid
line—with illumination.Dashed line—without illumination. After Cudney et al. (1994)
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Already in the early stages of investigations it was pointed out that the kind

of electrodes can seriously influence the shape of a hysteresis loop (Janovec

et al., 1960). A BaTiO3 crystal plate with two identical liquid (aqueous solution

of LiCl) electrodes showed a symmetric hysteresis loop with fast switching.

With two identical indium electrodes the loop was also symmetric but the

switching was slower. Combined electrodes lead to an asymmetric loop, show-

ing that a liquid electrode provides more favorable conditions for switching

starting at that electrode. The loop asymmetry due to non-equivalent electrodes

is the evidence of the role of surface conditions in switching. The effect of the

humidity of the ambience on the shape of the hysteresis loops in BaTiO3 crystals

reported by Anderson et al. (1955) also indicates the role of the surface condi-

tions in switching.
The electric-field-driven switching discussed above is related to the field-

induced change of the domain state. In BaTiO3, exhibiting three first-order

structural phase transitions, the electric field not only can switch the domain

state but also can ‘‘switch’’ the phase, resulting in ‘‘double hysteresis loops’’

shown already in Fig. 2.3.4. The appearance of the double hysteresis loops in

the vicinity of a ferroelectric first-order phase transition is clear from a sche-

matic field–temperature phase diagrams as illustrated in Fig. 8.6.8c and d (for

Fig. 8.6.8 Single (a) and double (b) P – E hysteresis loops taken from a BaTiO3 sample at
temperatures TC � 1K and TC þ 3:5K, respectively. Reprinted with permission from Merz
(1953). Copyright (1953) by the American Physical Society. Schematic temperature/electric
field phase diagram of a ferroelectric phase transition; (c) the case where at E ¼ 0 the
transition is of the second order; (d) the case where at E ¼ 0 the transition is of the first
order. Direction of the field is parallel to that of the spontaneous polarization. Solid lines
correspond to the lines of first-order phase transitions. Points correspond to the isolated
critical points. Field variation according to the double-arrowed lines marked with ‘‘1’’
corresponds to simple P – E hysteresis loops. Field variation according to the double-
arrowed line marked with ‘‘2’’ corresponds to a double P – E hysteresis loop
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more information see Sect. 2.3.1). For the cubic–tetragonal phase transition
the double hysteresis loops were observed and interpreted by Merz (1953).
Figure 8.6.8a and b shows regular and double hysteresis loops taken from a
BaTiO3 crystal at temperatures TC � 1K and TC þ 3:5K, respectively. Triple
hysteresis loops related to the tetragonal–orthorhombic phase transition were
reported by Huibregtse and Young (1956). The mechanism of the formation of
such loop is similar to that of the double loops; however, it is more complicated
because in this case both phases have several domain states.

Viewing the polarization switching as an electric-field-driven phase transi-
tion happening much before the ‘‘unfavorable phase’’ becomes absolutely
unstable at E ¼ Ecrit, it is clear that crystalline imperfections must play a
decisive role in this process. Despite the obvious importance of this issue, the
focused work on the impact of imperfections on switching in BaTiO3 is quite
limited. As an early work on this issue one can indicate a work by Kudzin et al.
(1964). This work documents formation of double P – E loops induced by
impurities that make the polydomain state with zero net polarization energeti-
cally favorable. This effect was recently revisited in illuminating studies by
Zhang and Ren (2005, 2006) where the impact of Mn doping (0.3 mol%) on
switching in BaTiO3 crystals was addressed by simultaneous monitoring of the
polarization, domain pattern, and strain. In BaTiO3, Mn+3 ions substitute for
B-site Ti+4 ions. In a rough approximation, every substituted ion can be
considered as electrically compensated with an oxygen vacancy which can
occupy one of the six neighboring positions (see Fig. 2.1.2). The resulting dipole
(substitution–vacancy) represents an RF defect for the polarization, which due
to appreciable mobility of oxygen vacancies can change its orientation. In
the cubic phase or in the tetragonal phase reached by fast cooling through
the transition, the distribution of the oxygen vacancies between the six positions
is homogeneous. However, after a long stay in the tetragonal phase, this
distribution acquires the 4mm symmetry between one (the most favorable),
four (the second-best), and one (themost unfavorable) positions of the vacancy.
Obviously, the orientations of this distribution in different domains follow
the orientations of the spontaneous polarization in them. Zhang and Ren
(2005) demonstrated that, in properly aged tetragonal phase crystals, the
coupling between the polarization and redistributed impurities is so strong
that the domain pattern, in which the aging was performed, is practically fully
restored after cycling with the switching electric field. Figure 8.6.9 shows that
this is the case in the aged crystals, whereas in non-aged crystals, the domain
pattern is significantly affected by the cycling. In the same paper it was also
shown, using the strain-field hysteresis loop, that the aging results in a
substantial increase in the amplitude of the induced strain. In turn this attests
to enhancement of the 908 switching in the aged sample, which is consistent with
the distribution of the impurities making the 908 rotation more favorable
than the 1808 rotation. The same effect was also demonstrated from the experi-
ments with aging in a single-domain state (Zhang and Ren, 2006). Here,
the crystal was aged in a single-domain state and then was switched further
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in a field perpendicular to the initial direction of the polarization; this yielded
double P – E hysteresis loops.

8.6.2 TGS and TGFB

Triglycine sulfate (TGS) and its isomorph triglycine fluoberyllate (TGFB) are
considered as model uniaxial ferroelectric–nonferroelastics. Despite intensive
investigations, the switching data on these materials obtained by different
authors are not free from contradictions.

Some data on switching in TGS have been presented above in the book.
Figure 7.2.4 shows that, at high enough amplitudes of the driving field, TGS
exhibits exemplary rectangular saturated P – E hysteresis loop. However, at
smaller amplitudes, as shown in Fig. 7.2.5, the shape of the loops transforms
toward the Rayleigh shape. An important feature of the P – E loops is that their
coercive field does not show any trend to the saturation on increasing ampli-
tudes of the driving field, as shown in Fig. 8.6.10b. Pulvari and Kuebler (1958)
successfully applied the phenomenological framework given by Eqs. (8.6.2) and
(8.6.3), originally used for BaTiO3, to the description of the switching dynamics
in TGS and TGFB. Figure 8.6.10a shows the frequency dependence of the
coercive field Ec of these crystals measured at the driving field amplitude
Em ¼ 2Ec, demonstrating good agreement with the prediction of Eq. (8.6.4).
However, in contrast to BaTiO3, no thickness dependence of Ec was reported in
the range 0.15–0.45 mm at room temperature; the corresponding data are

Fig. 8.6.9 Polarization-field hysteresis loops of BaTiO3 crystals doped with 0.3 mol % of Mn
and micrographs illustrating 908 domain patterns corresponding to different stages of switch-
ing. (a) Crystal aged at 808C for 2 weeks. (b) Crystal heated above TC and kept for 4–5 h. It is
seen that in the first case the domain pattern is fully reproduced after a switching cycle. After
Zhang and Ren (2005). Courtesy of Prof. Xiaobing Ren
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shown in Fig. 8.6.11. The pulse switching experiments revealed that the activa-

tion field d is also thickness independent, the ratio d=Ec being 3 for TGS and 1.5

for TGFB.
The above data by Pulvari and Kuebler clearly contradict those by Kay and

Dunn (1962). The latter found that the coercive field of TGS is frequency

independent in the range 40–4 KHz. At the same time these authors reported

a pronounced thickness dependence of the coercive field which can be fit to the

law Ec / h�2=3 as shown in Fig. 8.6.12. An alternative thickness dependence of

the coercive field, Ec / 1þ h0=h, was reported for TGS by Hadni et al. (1983)

for the thickness range 1.3–5,000 mm.

Fig. 8.6.10 (a) Frequency
dependence of 1/Ec for TGS
and TGFB. After Pulvari
and Kuebler (1958). (b)
Driving-field amplitude and
temperature dependence of
Ec for TGS, measured at
60 Hz. Temperature is
indicated at the plots. After
Nakatani (1972)

Fig. 8.6.11 Thickness
dependence of Ec and of the
activation field d for TGS
and TGFB. Circles
represent Ec from hysteresis
loop measurements. Crosses
give d obtained from pulse
measurements. After Pulvari
and Kuebler (1958)
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The temperature dependence of the coercive field in a wide temperature range

was addressed by Domanski (1958). His data for the driving field with frequency

50 Hz and amplitude 1.5 kV/cm are presented in Fig. 8.6.13. As usual in ferro-

electrics, the experimentally determined value of Ec is much smaller than the

value of the thermodynamic coercive field Ecrit; in the case of TGS, the Landau

theory predicts Ecrit / ðTc � TÞ3=2 with Ecrit ffi 1 kV=cm at Tc � T � 1K. Inter-

estingly, Martinez and Gonzalo (1982) found that close to the transition tem-

perature, Tc � T ¼ 0:03� 0:2K, the relation Ec / ðTc � TÞ3=2 is consistent with
the experimental data. However, the determined proportionality coefficient was

some 200 times smaller than the thermodynamic coercive field in the Landau

theory. The authors also compare their experimental data with their original

model for the coercivity to find disagreement in the proportionality coefficient in

some 20 times. Another temperature dependence of the coercive field in TGS in

the vicinity of Tc, Ec / Tc � T, was documented by Okada et al. (1980). How-

ever, according to Martinez and Gonzalo (1982) this discrepancy was due to a

difference in the used definitions of the coercive field.

A comprehensive investigation of switching dynamics in TGS by pulse

switching technique in very wide interval of driving fields was done by Fatuzzo

andMertz (1959) (up to 50 vs. 3 kV/cm in experiments by Pulvari andKuebler).

Fig. 8.6.12 Thickness
dependence of Ec for TGS.
Circles and triangles
represent data taken from
slices cleaved from different
samples. After Kay and
Dann (1962)

Fig. 8.6.13 Temperature
dependence of Ec for TGS at
frequency 50 Hz and driving
field 1.5 kV/cm. After
Domanski (1958)
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Based on a body of experimental data these authors concluded that the switch-
ing scenario in TGS is basically the same as in BaTiO3. Namely, at small applied
fields the bottleneck of switching is the nucleation of new domains at the
electrodes, whereas at high fields the switching is governed by the forward
growth of the needle-shaped domains, the sideway expansion of the through
domains not playing essential role. Figure 8.6.14 shows field dependence of the
inverse switching time reported by Fatuzzo and Merz (1959). In this figure, the
nucleation–controlled regime is marked with I and the regime controlled by the
forward growth of the needle-shaped domains is marked with III. In these
regimes, the switching time can be fit to the relations 1=ts / expð�d=EÞ and

1=ts ¼ kE; (8:6:5)

respectively. Similar to the case of BaTiO3, the validity of this relation was
considered as an argument for the switching scenario proposed. Another fea-
ture of the switching dynamics revealed by Fatuzzo and Merz, which supports
the forward growth scenario for high-field regime, is the thickness dependence
of the k coefficient from Eq. (8.6.5). Specifically, it was found that k is inversely
proportional to the sample thickness. This is clearly possible in the case of
forward growth mechanism whereas it cannot be rationalized in the case where
the sideway expansion of the through domains plays an essential role. Analyz-
ing partial switching in this crystal, these authors also found that too short
pulses do not lead to a change of the polarization of the crystal; this, the so-
called t	 effect, is discussed above at the end of Sect. 7.4. The simplest inter-
pretation of this effect is that the needle-shaped domains become stable only
once they reach the opposite electrode of the sample, otherwise, in the absence
of the applied field, they shrink back and disappear (Fatuzzo and Merz, 1959;
Taylor, 1966).

Fig. 8.6.14 Field
dependence of the inverse
switching time in TGS at
room temperature. After
Fatuzzo and Merz (1959).
According to Fatuzzo and
Merz (1959), the field
intervals marked with
symbols ‘‘I’’ and ‘‘III’’
correspond to the switching
regimes primarily controlled
by the domain nucleation
and the forward growth of
need-shaped domains,
respectively
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The nucleation-controlled nature of the low-field regime of switching in TGS
(I regime) is also indirectly supported by a three —times change of the activa-
tion field d at the field of about 1 kV/cm, which was reported by many authors,
e.g., in the paper by Jaskiewicz and Przeslawski (1979). These authors indicated
that such crossover is typical for a phase transformation driven by two-dimen-
sional nucleation. We have addressed the theory of this effect in Sect. 8.4.3.2 in
the context of the relation between the nucleation rate and the wall velocity (the
rate of the phase transformation).

Discussing switching dynamics in TGS one should mention a work by
Hashimoto et al. (1994) where P – E hysteresis loops exhibited by a TGS crystal
were reported and analyzed in terms of a Kolmogorov–Avrami-type model
which primarily deals with sideway motion of the domain walls (see Sect. 8.7.5).
These authors demonstrated that several features of the measured loops can be
described in terms of this model. This may be considered as an indication to a
decisive role of the sideway domain motion in this material. However, the
model provides a good description only if the domain growth dimension is
taken as non-integer. Since, in this problem, the non-integer growth dimension
has no clear physical meaning, this logic cannot be taken for granted as con-
clusive.We will return to the discussion of the switching data on TGFB in terms
of a Kolmogorov–Avrami-type model in Sect. 8.7.4

Impact of defects on the switching performance of TGS crystals has been
addressed by many workers. Here one should distinguish two principally dif-
ferent situations. First, it is the situation similar to that we have discussed above
for BaTiO3 where the defects ‘‘memorize’’ during aging the domain state in a
region of the crystal. In this case, if by the application of an electric field the
domain state in the region is changed, once the field is turned off, the original
domain state in the region is restored. Here of importance is that one can
memorize any domain pattern that can be created in the crystal. This kind of
treatment can lead to double P – E hysteresis loops as well as to a voltage offset
of single P – E hysteresis loops (if the crystal was aged in a single-domain state
and further switched in an electric field parallel to the original direction of the
polarization). For TGS, this kind of defect impact has been documented for Cu-
doped (see, e.g., (Eisner, 1974)) and radiation damaged material (Chynoweth,
1959). The second situation occurs when TGS is doped with chiral molecules.
Specifically, the substitution of a-alanine molecule for glycine was used
(Brezina and Havránková, 1985). This kind of doping makes favorable one of
the two crystallographic orientations of the spontaneous polarization. That
means that one direction of the polarization becomes preferable throughout the
whole crystal when it is grown in the ferroelectric phase. It was also demon-
strated that, by using the right (D-a-alanine) or the left (L-a-alanine) modifica-
tions of a-alanine, one can select the preferable detection of the spontaneous
polarization. Such doping results in a voltage offset of theP – E hysteresis loops
corresponding to the internal bias field in the range 0.3–5 kV/cm (Nakatani,
1991). A theory-group-based interpretation of this effect was offered by
Zikmund and Fousek (1988, 1989).

442 8 Switching Phenomena and Small-Signal Response



8.6.3 LiTaO3 and LiNbO3

Lithium tantalate (LT) and lithium niobate (LN) are uniaxial ferroelectrics with

non-piezoelectric paraelectric phase thus exhibiting nonferroelastic domain states.

In this aspect these crystals are similar to TGS. However, they differ much from

TGS inmany aspects. These are displacive ferroelectrics exhibiting high transition

temperatures (about 1,2008C for LN and 6208C for LT), high room temperature

values of the spontaneous polarization, and they can stand an appreciable degree

of non-stoichiometry that dramatically influences their switching properties.

These materials are of high interest for many practical applications based on

their optical, piezoelectric, and pyroelectric properties (Volk and Woehlecke,

2008). Since the domain structure of LT and LNmatters for all these applications,

polarization reversal in these materials has been extensively investigated, some-

times using non-common poling techniques, e.g., with involvement of element

diffusion (Rosenman et al., 1995), proton exchange (Nakamura and Tourlog,

1993), and electron beam impact (Nutt et al., 1992). Here in the book we will

discuss only the classical situation of switching in a homogeneous electric field (in

a parallel plate capacitor). For the experimental data on switching in LT and LN

driven by an inhomogeneous electric field we refer the reader, e.g., to original

papers (Agronin et al., 2004; Shur et al., 1999; Yamada et al., 1993).
At the early stages of investigation, it was recognized that full polarization

reversal at room temperature in LT and LN requires application of very high

electric fields (more than 300 kV/cm) (Wemple et al., 1968). However, partial

polarization reversal was reported, for pure LN, starting from 100 kV/cm and

for Fe-doped—from 10 kV/cm (Kovalevich et al., 1978; Kamentsev and

Rudyak, 1984).
LT and LN provide a classical example of the impact of crystalline imperfec-

tions on the switching performance of ferroelectrics. These materials can be

grown with appreciable deficiency of Li and corresponding excess of Nb or Ta.

According to Gopalan and Gupta (1997) defects associated with this non-

stoichiometry may make polar (RF) defects which strongly couple with the

ferroelectric polarization. The impact of the stoichiometry on switching in LT is

illustrated in Fig. 8.6.15 where the P� E hysteresis loops reported by Kitamura

et al. (1998) for stoichiometric and the so-called congruent (with 1.5% Li

deficit) composition of LiTaO3 are shown. The strongly reduced coercive field

and voltage offset are clearly seen for the stoichiometric composition. For LN

such effect was traced for three concentrations of the Li deficit as shown in

Fig. 8.6.16. The variation of stoichiometry also leads to a qualitative change of

some features of polarization switching like the shape of the growing domains

and the shape of switching current. According to the results obtained by Shur

and coworkers (Shur et al., 2002), for congruent LT, columnar domains with

triangular cross-section are typical whereas growing domains with more com-

plicated cross-sections (e.g., hexagonal) are typical for stoichiometric LT. The

same group (Shur et al., 2001b) reported results suggesting an appreciable
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difference in the shape of switching current in materials with different stoichio-

metry: For stoichiometric LT it mainly consists of individual spikes, whereas

for congruent LT, the current contains an appreciable smooth component.

These features are illustrated in Fig. 8.6.17. This figure also shows that, in the

Fig. 8.6.15 Room
temperature polarization-
field hysteresis loops of
congruent and
stoichiometric lithium
tantalate crystals. After
Kitamura et al. (1998)

Fig. 8.6.16 Dependence of switching parameters of lithium niobate crystals, determined at
room temperature, on its composition: Ef —field needed for switching from a virgin single-
domain state, Er—field needed for switching from the once-reversed polarization state,
Eint ¼ ðEf � ErÞ=2—field corresponding to the voltage offset of switching. The sample
compositions were evaluated from the values of the transition temperature, which are also
shown. Abbreviations: CLNW, SLNW, and HLNW denote the near-stoichiometric, the
congruent, and the intermediate compositions of lithium niobate with high hydrogen
content. Reprinted with permission from Gopalan et al. (1998). Copyright (1998),
American Institute of Physics
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stoichiometric material, a much smaller electric field produces much faster

switching. A specific shape of transient current (consisting of very sharp

(<1 ms) spikes spread over 50–100 ms depending on the applied field) was

indicated by Gopalan et al. (1998) as typical for LN in general.
The spike-like components of the transient current reported for LN and LT

suggest that, in these crystals, the polarization reversal is mainly controlled by

forward growth of the needle-like domains whereas the merging of expanding

columnar domains seems to be of minor importance. The direct observation by

Kuroda et al. (1996) of the side view of dynamical domain patterns in MgO-

doped LN supported such suggestion. Figure 8.6.18 shows the side views

(normal to the polar axis) of different stages of the polarization reversal in

Fig. 8.6.17 Shapes of switching currents in lithium tantalate at room temperature. (a) Congruent
composition, driving field of 190 kV/cm, (b) stoichiometric composition, driving field of 33 kV/
cm. Reprinted with permission from Shur et al. (2001a). Copyright (2001), American Institute of
Physics

Fig. 8.6.18 Domain patterns
at different stages of
switching in MgO-doped
lithium niobate, revealed by
etching of +Y surface of a
Z-cut crystal. The applied
field is 4.45 kV/mm.
(a) After 5.6 s. (b) After
160.2 s. (c) After more than
1 h. Reprinted with
permission from Kuroda
et al. (1996). Copyright
(1996), American Institute
of Physics
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this system, which clearly illustrate the predominant role of the forward growth.
One should mention that such switching scenario, where most of the inverse
domains end in the bulk of the crystal, implies a presence of appreciable bound
electric charge distributed in the crystal, the situation unfavorable from the
electrostatic point of view. A comprehensive characterization of the charged
domain walls was performed by Shur and coworkers (Shur et al., 2000a) who
demonstrated that, in congruent LN, zigzag configurations of the charged
domain wall stay in the sample even after the applied field is turned off. As an
unexpected observation, which also attests to the dominant role of charged
domain walls in this system, we mention the behavior of LN plate heated from
room temperature (at which it was single domain) to 1,1108C and kept in air for
over 5 h. Such treatment led to the formation of two head-to-head domains of
equal volumes separated by a rather flat charged domain walls. At the same
time, the exposition to 1,1108C in flowing Ar gas resulted in the formation of
the same type of domains, however, with a much smaller volume of the reverse
one.

8.6.4 KDP and Isomorphous Crystals

Potassium dihydrogen phosphate (KDP), the second discovered ferroelectric, is
an example of uniaxial ferroelectric with a piezoelectric coupling between the
order parameter and deformation in the paraelectric phase. Thus, this material
exhibits two domain states which differ both in the spontaneous polarization
and in the strain. As we have discussed above in this book, the ferroelastic
nature of the domain states essentially influences the static domain pattern and
domain wall motion in this crystal. Some features of switching in KDP were
found unique; however, in most of the aspects of switching on macroscopical
level, the behavior of KDP-type crystals is comparable to that of BaTiO3 and
TGS.

Peculiar direct information of the switching mechanism in DKDP (deuter-
ated isomorph of KDP) was offered by Aleshko-Ozhevskij et al. (1985) who
monitored the polarization reversal driven by an applied electric field by using
synchrotron radiation topography. It was found that, in poly-domain samples,
the polarization reversal is strongly correlated. According to these authors, in
areas 10–100 mm thick containing many thin lamella domains, all unfavorable
domains switch at the same time. At some 60 K below the transition tempera-
ture, switching in correlated areas starts at a field of 0.1–0.2 kV/cm and it is
complete at 1 kV/cm. The specifics of the polarization reversal in KDP was
repeatedly stressed in works by Bornarel and coworkers. As a unique feature of
KDP, for example, the time dependence of switching current with two maxima
reported by Guyon and Lajzerowicz (1966) was indicated.

At the same time, the phenomenological description of switching inKDP can
be successfully done using the framework tested on BaTiO3 and TGS.
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According to Guyon and Lajzerowicz, for pulse switching at small fields, the

inverse switching time follows the exponential law expð�d=EÞ (with

d ¼ 0:2 kV=cm at temperature 20 K below the transition temperature) followed

with a linear field dependence at higher fields (cf. Sects. 8.6.1 and 8.6.2). More-

over, the logarithmic dependence of the coercive field on the amplitude of the

driving field reported for KDP by Bornarel (1995) (Fig. 8.6.19) is comparable to

the Pulvari–Kuebler (1958a) phenomenological framework and with the data for

BaTiO3 shown in Fig. 8.6.4. The time dependence of the switching current in

KDP was monitored byUsher et al. (1990) for the applied fields 0.05–1 kV/cm in

the temperature interval of some 35 K below the transition temperature. These

authors typically did not observe the two-maxima profile reported byGuyon and

Lajzerowicz (1966) except for the case of a cracked crystal. The obtained, thus,

one-maximum traditional profiles were fitted to that predicted by theKolmogor-

ov–Avrami-type model (see Sect. 8.7.3). Obtained from this fit values of the

growth dimensions were found non-integer and close to those determined from

the frequency dependence of the hysteresis loops inTGS (Hashimoto et al., 1994).

The temperature dependence of the coercive field in KDP was reported by
several authors (Guyon and Lajzerowicz, 1966; Bornarel, 1995; Barkla and
Finlayson, 1953). Though these data differ much, one common qualitative
feature may be distinguished. Specifically, after a rise of Ec on cooling just
below the phase transition there comes a kind of saturation followed by the
second sharp rise on cooling at a temperature that is some 50–60 K below the
transition temperature. Such anomaly as documented by Barkla and Finlayson
(1953) is shown in Fig. 8.6.20a. This behavior reminds that reported for TGS
and shown in Fig. 8.6.13. The same authors reported a very strong drop of the
domain contribution to the permittivity occurring at the temperature of the
second rise of Ec (Fig. 8.6.20b). The latter effect was later called ‘‘domain
freezing’’ (Huang et al., 1997) and it was also identified in TGS. Thus, the

Fig. 8.6.19 Dependence of
the coercive field, Ec, on the
amplitude Em of the driving
field at different
temperatures in a KDP
crystal. The driving field
frequency is 50 Hz. After
Bornarel (1995)
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similarity in the temperature dependence of the coercive field in KDP and TGS
may be rationalized as a manifestation of the domain freezing effect (see Sect.
8.8.7 for more information).

8.7 Theory and Modeling of Switching

8.7.1 Introduction

Ferroelectric switching is an example of a first-order phase transition which is
driven by the application of an external electric field. This is clearly seen from
the phase diagrams for a homogeneous state of a ferroelectric in a fixed electric
field shown in Fig. 8.7.1. These diagrams illustrate the situation in the simplest

Fig. 8.6.20 (a) Temperature dependence of the coercive field of different KDP samples. The
driving field frequency is about 10�2 Hz. (b) Temperature dependence of the dielectric
constant of a mechanically free KDP crystal, i.e., measured at the frequency of the driving
field which is smaller than the piezoelectric resonance frequency of the sample. The data
presented for the cases where dc bias is absent and under a dc bias of 3 kV/cm. After Barkla
and Finlayson (1953)

Fig. 8.7.1 Schematic phase diagrams of a uniaxial ferroelectric with the second-order phase
transition. (a) Polarization–temperature (P – T) diagram: Solid line shows the state in the
absence of the electric field; under the field all values on the polarization are achievable except
for the area limited with the parabola shown with dashed line. (b) Field–temperature (E – T)
diagram: the areas where only one (indicated by arrows) direction of the polarization are
shown; in the shaded area two polarization states are possible. The boundary of the shaded
area corresponds to the values of the thermodynamic coercive field
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case of a uniaxial ferroelectric whose behavior is controlled by the thermody-
namic potential as given by Eq. (2.3.13). The solid lines in Fig. 8.7.1a corre-
spond to the equilibrium values of the polarization in the absence of the electric
field PsðTÞ. The application of an electric field changes the polarization. How-
ever, its variation is limited, i.e., there exist values of the polarization which
cannot be achieved for a given temperature. These values belong to the area in
Fig. 8.7.1a, which is limited by the so-called spinodals of the system shown with
the dashed lines. These lines correspond to the condition ð@E=@PÞT ¼ 0 and, for
the considered system, the absolute value of the polarization on these lines is
equal to PsðTÞ=

ffiffiffi
3
p

. The electric field applied along the direction of the sponta-
neous polarization increases the polarization; by increasing the field one can, in
principle, increase it unlimitedly. On the other hand, the application of an
electric field opposing the direction of the spontaneous polarization reduces
the polarization of a single-domain ferroelectric; however, it cannot be reduced
below a value of PsðTÞ=

ffiffiffi
3
p

. The value of field required to get P ¼ PsðTÞ=
ffiffiffi
3
p

is
called thermodynamic coercive field Ecrit. For the considered system it is given
by Eq. (2.3.15). Thus, for jEj4jEcritj, only one orientation of the polarization is
possible, whereas for jEj5jEcritj, there exist two possible polarization states of
the system, one of these being metastable. This is illustrated in Fig. 8.7.1b.
Considering in this context the ferroelectric switching we distinguish two cases.
The first case, which can be called spinodal switching, corresponds to the
switching that happens homogeneously throughout the crystal when the
applied field reaches a value of Ecrit. This situation has never been experimen-
tally documented (except maybe in ultrathin polymer films); we will not address
it in our book at all. The second case corresponds to the real experimental
situation where the switching takes place at fields that are much smaller than
Ecrit. The typical feature of this situation is that the polarization reversal takes
place inhomogeneously via formation of nuclei of reverse domain or formation
of macroscopic domains from the remnants of reverse domains left after the
previous polarization reversal. Only this situation will be addressed in this book
and it is this situation that we mean in using the term ‘‘switching’’

As was discussed in the preceding sections the process of domain reorienta-
tion or switching of a ferroelectric can be separated into several stages. In the
case of switching from a single-domain state, one usually distinguishes three
stages: (i) the formation of nuclei of reverse domains, (ii) the growth of the
nuclei to form through domains, and (iii) the sideway growth of the through
domains (see Fig. 8.1.1). Theoretical studies of switching in ferroelectrics have
been focused on the first and the third of the aforementioned stages. It was
typically assumed that the second stage is very fast and that the polarization
variation during this stage does not essentially contribute to the switchable
polarization. Though the high (compared to the wall sideway motion) speed of
the forward domain growth is supported by theoretical analysis by Molotskii
(2003a), the neglect of the second stage of switching does not seem to be
generally justified. Clearly that, at a certain high enough rate of the reverse
domain nucleation, both the time of the forward domain propagation and the
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corresponding contribution to the switching polarization can play an appreci-
able role in switching. The experimental data presented in the preceding section
suggest that this situation is relevant to switching in classical ferroelectric
crystals. However, to the best of our knowledge, this situation has not received
a proper theoretical treatment. Thus, below in this section we will discuss the
switching theories exclusively dealing with the nucleation and sideway wall
motion. Such approach requires the following considerations: A treatment of
the rate of nucleation of reverse domains, a description of the sidewaymotion of
the domain walls, and a calculation of the volume of reversed part of the crystal,
which is not a trivial task because of the overlapping of the growing domains.
One of these problems, namely the dynamics of the sideway wall motion, has
been treated above in Sect. 8.4. The other two problems, i.e., those related to the
nucleation and coalescence of the growing domains, will be considered below in
Sects. 8.7.2 and 8.7.3. Based on these results we will address the problem of
pulse switching (the polarization response to a step of the applied voltage) in
Sect. 8.7.4. On the same basis, a theoretical treatment of the classical polariza-
tion hysteresis loops (we mean well-shaped saturated or subsaturated loops)
will be offered in Sect. 8.7.5.

The classical situation of the ferroelectric switching covered in Sects. 8.7.2,
8.7.3, 8.7.4, and 8.7.5 is relevant to polarization reversal accompanied by
macroscopic displacements of the domain walls. However, there exists a com-
mon situation where the amplitude of the driving field is very low and one can
come across the so-called Rayleigh hysteresis loops. These loops correspond to
a situation where the driving field is not strong enough to initiate the nucleation
of reversed domains or/and to induce macroscopical displacements of the
domain walls. The hysteretic polarization response observed in this regime
corresponds to mesoscopical irreversible displacements of the small areas of
the domain walls. A thory for this regime of the polarization response will be
addressed in Sect. 8.7.6. Until recently, the classical and the aforementioned
‘‘Rayleigh’’ scenarios seem to cover properly the experimentally observed situa-
tion in polarization reversal. However, the resent experimental results on the
switching kinetics in ferroelectric thin films have demonstrated an essentially
new type of polarization reversal which requires an alternative theoretical
approach to the problem. Since the present chapter does not address the
behavior of the thin ferroelectric films, the discussion of this approach is
postponed to Chap. 9.

One more phenomenon related to the problem of ferroelectric switching will
also be addressed in Sect. 8.7.7 where a simple theory of the so-called piezo-
electric hysteresis loop will be presented.

The situation of switching in a homogeneous electric field treated in Sects.
8.7.2, 8.7.3, 8.7.4, 8.7.5, 8.7.6, and 8.7.7 is true to the common case of a parallel
plate capacitor. In the case of switching driven by the scanning force micro-
scope, whose tip is loaded with electrostatic potential, the applied electric field is
strongly inhomogeneous. In Sect. 8.8.8, we will present a theory of domain
generation in this situation.
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To conclude this introductory section we would like to make some remarks
on the scope of this section. It addresses mainly well-developed and widely
discussed issues of ferroelectric switching covering the switching between two
domain states driven by homogeneous electric field. The problem of switching
involving more than two domain state has received little theoretical treatment;
however, this kind of switching can make a realistic scenario in perovskite
ferroelectric in the vicinity of morphotropic phase boundary. Discussion of
this problem can be found in a paper by Ishibashi and Iwata (1999), where an
essential reduction of the thermodynamic coercive field is predicted close to the
vicinity of morphotropic phase boundary. The results presented in this section
have been obtained using classical analytical methods. As for the results of
numerical simulation of switching we restrict ourselves to referring the reader to
original papers (Ahluwalia and Cao, 2001; Ahluwalia and Cao, 2003; Cao et al.,
1999). There is an issue that we have also left out of the scope of our considera-
tion, namely random-system effects on integral switching in ferroelectrics (e.g.,
P – E hysteresis), though we have briefly addressed random-system effects on
domain wall motion in Sect. 8.5. For the case of magnetic hysteresis, the
corresponding theoretical analysis is available (see, e.g., Nattermann et al.,
2001 and references therein). Some of the results obtained for magnetic hyster-
esis may be adjusted to the situation in ferroelectrics; however, the correspond-
ing results are still missing in the literature.

8.7.2 Domain Nucleation

The nucleation of new domains in fields much smaller than the thermodynamic
coercive field is a key problem of the theory of ferroelectric switching. This
problem was first qualitatively addressed byMerz (1956); a further quantitative
consideration was offered by Landauer (1957). These considerations were
performed on the lines of the standard nucleation theory at the first-order
phase transition. In the case of the ferroelectric switching, the new feature is
the necessity of taking into account the energy of the depolarizing field in
addition to the bulk and surface energy of the nucleus. Following the usual
logic of the nucleation problem, the energy, Uc, of the critical nucleus (i.e., the
nucleus having the minimal energy from all nuclei which are unstable with
respect to further expansion) was calculated and the nucleation rate was eval-
uated as proportional to the Gibbs factor expð�Uc=kTÞ. In its original form,
the Landauer theory encounters a serious problem, namely the values of the
critical nucleus energyUc turned out to be unrealistically large (Uc ¼ 108 kT for
BaTiO3 at room temperature and E ¼ 0:5 kV=cm (Landauer, 1957)). Even at
much higher applied fields routinely used in ferroelectric thin film capacitors,
this energy remains too big to provide realistic nucleation rates (Uc ¼ 103 kT for
PZT film at room temperature and E ¼ 100 kV=cm, which makes the Gibbs
factor to be expð�Uc=kTÞ ffi 10�430 (Tagantsev, 1996). All these estimates have
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been obtained for the case of the nucleation in an ideal insulating crystal, i.e.,
for the nucleation that is not assisted by the presence of defects or free carriers in
the material. Since the switching from the single-domain states always experi-
mentally takes place at fields essentially smaller than the thermodynamic coer-
cive field, it was commonly assumed that, in real crystals, the nucleation of new
domains is always defect assisted. For the first time this kind of nucleation
scenario was theoretically addressed by Janovec (1959) who modeled nuclea-
tion stimulated by the space charge field at the ferroelectric/electrode interface.
Revision of the Landauer theory on the lines of defect-stimulated nucleation
has been recently undertaken by Molotskii et al. (2000) and Gerra et al. (2005).
Molotskii and his coworkers have shown that formation of a Landauer nucleus
simultaneously with an electron droplet may be energetically favorable; how-
ever, the results of the papers cannot be reliably translated into an estimate for
the nucleation rate. Gerra and his coworkers revisited the interface-stimulated
scenario by Janovec; the Landauer model has been generalized by incorpora-
tion of the energy of the ferroelectric/electrode interface, which is dependent on
the sign of the polarization at this interface. The latter model has been found to
provide a realistic description of reverse domain nucleation.

Below in this section, we will present the Landauer model and its version
modified by the incorporation of polarization-dependent surface term (Gerra
et al., 2005).

Landauer (1957) has treated a nucleus of reversed domain having the form of
a half prolate spheroid of radius r and length l terminating on one electrode
(Fig. 8.7.2). Its energy (actually thermodynamic potential in a capacitor kept
under a fixed voltage) can be written as8

U ¼ �ar2 lþ brlþ c
r4

l
; (8:7:1)

a ¼ 4pPSE

3
; b ¼ p2sw

2
; c ¼ 4pP2

S

3kaeo
ln

2 l

r

ffiffiffiffiffi
ka
kc

r� �
� 1

� �
: (8:7:2)

Here sw, kc, and ka are the surface energy of 1808wall and the relative lattice
dielectric constants in the direction of the spontaneous polarization and

Fig. 8.7.2 Nucleus of reverse
domain in the Landauer
model. Electrode is shown as
black rectangular

8 The following expression for c is written for the case where the argument of the logarithmic
function is much greater than unity, which is usually the case for this problem.
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perpendicular to this direction, respectively. The parameters r and l of the
critical nucleus, rL and lL, and its energy UL were routinely determined from
minimization of U. The condition @U=@l ¼ 0 yields that U has a global mini-
mum with respect to l at

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cr3

b� ar

r
: (8:7:3)

This result together with condition @U=@r ¼ 0 gives

rL ¼ 5A=6; lL ¼ rL
ffiffiffiffiffiffiffiffiffiffi
5c=a

p
; UL ¼ 0:4ar2LlL; (8:7:4)

where A¼ b/a. Using these expressions one readily arrives at the above esti-
mates for the energy of the critical nucleus, which are typically by orders of
magnitude exceeding the thermal energy. For instance, the above estimate for a
(PbZrxTi1�xO3) PZT film at E ¼ 100 kV=cm can be obtained when setting
PS ¼ 30 m C=cm2, sw ¼ 0:01 J=m2, and ea ¼ ec ¼ 200.

The activation energy of nucleation can be essentially reduced by assuming
that energy of the ferroelectric/electrode interface is substantially dependent on
the sign of the polarization pointing to the electrode. This asymmetry can be
due to electronic or mechanical properties of the interface and/or the presence
of impurities or dislocations. This ferroelectric/electrode coupling can be
related to an interface energy density g that changes its sign according to the
polarization direction. In the simplest case, it will be linear in the polarization
PS: g ¼ BPS where B plays the role of a surface field conjugate to the order
parameter PS. One incorporates this phenomenon into Landauer model by
adding a new term

Usur ¼ dr2; d ¼ gp (8:7:5)

to the energy given by Eq. (8.7.1). With this term taken into account, the energy
of the nucleolus as a function of its normalized radius x ¼ r=rL has the form
(Gerra et al., 2005)

UðxÞ
UL
¼

ffiffiffi
6
p

x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 1� 5
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x
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�

ffiffiffi
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6

r ffiffiffiffi
A
p
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" #
; D 
 d

2
ffiffiffiffiffi
bc
p : (8:7:6)

Figure 8.7.2 shows a plot ofU(x) for different values of the parameter
ffiffiffiffi
A
p

D.
In the original Landauer model, where D = 0, we have a local minimum at
r ¼ l ¼ 0 and a saddle point at r ¼ rL. For nonzero values ofD, the point x¼ 0
becomes unstable, the local minimum Umin is shifted to the right and the local
maximum Umax—to the left, while the activation energy, DU ¼ Umax �Umin is
decreased. Here, Umin ¼ UðxminÞ andUmax ¼ UðxmaxÞ, where xmin and xmax are
the positive roots of the following equation:

5
ffiffiffiffiffiffi
5x
p
ð1� xÞ

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6� 5x
p ¼

ffiffiffiffi
A
p

D: (8:7:7)
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When the parameter
ffiffiffiffi
A
p

D exceeds its critical value, ð
ffiffiffiffi
A
p

DÞc � 0:553,
Eq. (8.7.7) has no positive roots and the activation barrier disappears
(Fig. 8.7.3c and d). Unlike the classical Landauer model, we arrive at the situa-
tion where at applied fields corresponding to the condition

ffiffiffiffi
A
p

D4ð
ffiffiffiffi
A
p

DÞc the
nucleation barrier is completely suppressed.

It is instructive to express
ffiffiffiffi
A
p

D in terms of the anisotropy factor Z ¼ ka=kc
and the thermodynamic coercive field Ecrit ¼ PS=ð3

ffiffiffi
3
p

kce0Þ introduced by Eq.
(2.3.15) 9

ffiffiffiffi
A
p

D ¼ k
g
sw

ffiffiffiffiffiffiffiffiffiffiffiffi
Z

E

Ecrit

r
; k � 0:04: (8:7:8)

Figure 8.7.4 shows a plot of the activation energy DU ¼ Umax �Umin as a
function of the physical quantities appearing in Eq. (8.7.8). It is evident that
as well as by the external electric field, nucleation is favored by high values of
the ratio g/s and the anisotropy factor Z. The latter less evident effect is
related to a reduction of the electrostatic energy which is inversely

Fig. 8.7.3 The effect of parameter
ffiffiffiffi
A
p

D on the dependence of energy of the nucleus (normal-
ized to the Landauer activation energy UL) on its radius (normalized to the radius of the
Landauer nucleus rL)

9 One should note that this type of thermodynamic coercive field may not be the real
thermodynamic coercive field of the system if more than two antiparallel domain states are
involved in switching (see the paper by Ishibashi and Iwata, 1999).
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proportional to the transverse permittivity ka (cf. Eq. (8.7.2)). From condi-

tion
ffiffiffiffi
A
p

D4ð
ffiffiffiffi
A
p

DÞc and Eq. (8.7.8) one obtains the applied field needed for

total suppression of the nucleation barrier, which we will call zero-tempera-

ture critical field ET¼0
c :

ET¼0
c

Ecrit
� 183

Z
sw
g

� �2

: (8:7:9)

In Fig. 8.7.4, we note that the nucleation barrier drops to zero abruptly as the

applied field approaches ET¼0
c . For fields less than 70% of the critical value,

DU � 0:1UL, implying, for typical values of the relevant parameters, unrealis-

tically low nucleation rates. This means that, in the modified model, the finite-

temperature critical field is within 30% of ET¼0
c . Moreover, if the nucleation is

the limiting factor of switching, then the coercive field of hysteresis loops is

close to this finite-temperature critical field and thus only moderately, non-

exponentially temperature dependent (through the temperature dependence of

the parameters of the material).
Two more features following from the above analysis are worth mentioning.

First, the nucleation has been found to be favored by a high value of the

anisotropy factor Z. This implies that the switching can be facilitated in per-

ovskite-type ferroelectrics near morphotropic phase boundaries, where this

factor is anomalously high. This prediction may be relevant to the coercive

field reduction in PZT at the tetragonal side of the morphotropic phase bound-

ary reported by Yamamoto (1996). Second, the model readily provides an

exponentially wide spectrum of waiting times for nucleation. It is clear from

Fig. 8.7.4 that, in the steep part of the curve (corresponding to a realistic

thermally activated regime), small variations of the system parameters readily

lead to orders-of-magnitude variations of the activation barrier, on which the

waiting time is exponentially dependent. This result is important in the context

Fig. 8.7.4 Nucleation barrier DU (normalized to the Landauer activation energy UL) as a
function of the dielectric anisotropy factor Z ¼ ka=kc, the applied electric fieldE, and the ratio
between the energy of polarization/electrode coupling (per unit area) g and the surface tension
of the domain wall sw
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of the data on the switching kinetics in ferroelectric thin films, which have been
interpreted in terms of this kind of spectrum.Wewill discuss this problem below
in Sect. 9.5.1.

For the moment, the absence of experimental data and result of first princi-
pal calculations of the energy of the ferroelectric/electrode interface make
difficult quantitative estimates for the strength of the effects discussed above.
However, according to Gerra et al. (2005), the rough order-of-magnitude
estimates suggest that the ferroelectric/electrode interaction can significantly
facilitate the switching. Based on the Landau theory result for the wall energy
sw ¼ twPSEcrit

ffiffiffi
3
p

=2 (see Eq. (6.2.10c)) where tw is the wall thickness and the so-
called ‘‘atomic’’ estimate for the effective surface field B ffi Eatlat where
Eat ffi 100 MV=cm is a typical atomic electric field and lat is the lattice constant,
one gets sw=g ¼ sw=ðPSBÞ ffi ðEcrit=EatÞðtw=latÞ. Bearing in mind parameters of
perovskite ferroelectrics like BaTiO3 we find that the ratio sw=gmay be as small
as 10�2. Thus, according to Eq. (8.7.9), the model can yield a coercive field two
orders of magnitude smaller than Ecrit. For a numerical estimate, taking room
temperature parameters of BaTiO3 (Ps¼ 26 mC/cm2, ka ¼ 2000, kc ¼ 120, and
sw ffi 7� 10�7 J=cm2) and sw=g ¼ 0:02 one obtains ET¼0

c ffi 2 kV=cm. These
estimates show that the model may provide reduction of the coercive field
down to the values typical for BaTiO3 single crystals (about 1 kV/cm).

The above model has considered a situation where the surface field B is
homogeneous in sign, which may not be a realistic situation. From Eq.
(8.7.3), we see that unrestricted growth of the nucleus is possible only when
r! r	 
 b=a. So if the average linear size of the regions where B is homoge-
neous, r0, is larger than r	, nucleation will not be affected by the variations of B.
On the other hand, when r05r	, fluctuations in the sign of B will result in
opposite contributions to the energy, i.e., different parts of the interface support
different orientations of the polarization. The latter situation requires a more
involved consideration. The case of small-scale inhomogeneity of B where
r055r	 has been treated by Gerra et al. (2005) on the lines of the statistical
approach of Imry andMa (1975). Results similar to presented above have been
obtained, however, with higher values of the zero-temperature critical field.

At this point it is instructive to compare the nucleation problem treated in
terms of original Landauer model with the problem which one encounters when
treating the thermally activated sideway motion of a 1808 domain wall (see
Sect. 8.4.2). In both cases the parameters of the critical nucleus are determined
from finding extremum of the expressions for nucleus energy, which have an
identical structure, specifically, consisting of the bulk and surface contributions
and that of the depolarizing field (cf. Eqs. (8.7.1) and (8.4.7)). However, the
comparison of the above results to those of the Sect. (8.4.2) reveals for the same
material a few-order-of-magnitude difference between the evaluated critical
nucleus energies in these two situations. This difference can be readily under-
stood. In the case of the nucleation of a new domain, a new interface boundary
is formed, whereas in the case of the wall motion, an existing interface boundary
just deforms to make the nucleus needed for a displacement of the wall to the
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next minimum of the Peierls potential. A much smaller surface energy is typical
for the nuclei in the latter case. The difference in the depolarizing energy for
these two cases also contributes to the total difference in the critical nucleus
energies. However, as was pointed out byMolotskii et al. (2000) this is an effect
of the secondary importance compared to the problem with excessive surface
energy. The above arguments also rationalize the reduction of the nucleation
energy in themodified Landauer model, where the excessive energy of the newly
formed interface is compensated by a decrease in the ferroelectric/electrode
energy. In this context, a paper by Kukushkin and Osipov (2002) is worth
mentioning. In this paper, an exhaustive analysis of the kinetics of the ‘‘phase
transformation’’ corresponding to the switching in a uniaxial ferroelectric is
offered; however, the results and conclusions of the paper turn out to be
inapplicable to the real situation in ferroelectrics because of the authors’ neglect
of the aforementioned excessive interface and depolarizing energy.

Concluding the discussion of reverse domain nucleation, an important gen-
eral note is to be made. The introduction of the defect energy into the con-
sideration not only makes it possible to reduce the nucleation energy but also
introduces a nucleation mechanism which does not freeze out at T! 0. Thus in
this case one can speak about cold-field nucleation, where the nucleation barrier
is fully suppressed by the applied electric field, in contrast to thermally activated
nucleation, where thermal fluctuations assist in overcoming this barrier. These
situations also differ in the moment for the appearance of the nuclei. If the cold-
field nucleation dominates the polarization reversal, then the nucleation is not
delayed in time after the variation of the applied field. For pulse switching, for
example, this means that all nuclei will form at the moment of the pulse
application. At the same time, in the thermally activated regime, the nucleation
is delayed leading, in general, to more complicated switching dynamics. We will
be back to this point in Sect. 8.7.4.

8.7.3 Domain Coalescence

The knowledge on the nucleation rate of reverse domains combined with that
on the applied-field-driven motion of ferroelectric domain walls can be used for
calculations of the switched polarization Psw. In the general case, it is a com-
plicated problem that comprises taking into account three factors: the impact of
the evolving domain pattern on the polarization in the domains, the interaction
between domains, and overlapping of growing domains. The first two issues are
very difficult for treatment so that, by now, they have not been actually
addressed theoretically. In contrast, overlapping of domains can readily be
described by a theory. This theory makes the subject of this section where we
address it for the case of 1808 switching.

Consider switching from a single-domain state, which starts with nucleation of
reversed domains from randomly distributed nucleation sites followed by the
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further domain growth. At the early stages of switching where the overlapping of

growing domains is negligible, the switched polarization can be obviously found as

Psw ¼ DP
Vtot

V0
¼ DP

Stot

S0
; (8:7:10)

where DP is the difference between the polarization of the final and initial states

of the system,V0 is the volume of the sample, andVtot is the sumof the volumes of

the newly appeared domains. 10 The last equality of Eq. (8.7.10) is written for the

situation where the switching in a plate capacitor is controlled by the sideway

motion of 1808 domain walls passing throughout the thickness of the capacitor;

here S0 and Stot stand for the intersection of the volumes V0 and Vtot with the

ferroelectric/electrode interface. This is actually the situation towhich the present

theory can be primarily applied since, in this case, the electrostatic coupling

between the domains is absent so that the geometrical effect of the domain

coalescence taken into account by the theory dominates the phenomenon. Equa-

tion (8.7.10) starts to fail as far as the overlapping among the domains becomes

essential. This happens once Stot becomes comparable to S0. This is illustrated in

Fig. 8.7.5. Here the sum of the areas of the circles gives Stot whereas the switched

polarization is controlled by the area covered by the totality of the circles S so

that the normalized switched polarization qðtÞ ¼ Psw=DP can be written as

qðtÞ ¼ S

S0
: (8:7:11)

Fig. 8.7.5 Illustration of
overlap of domains growing
from different nuclei

10 When discussing the switching phenomena in this and the two following sections we will
focus on the domain contribution to the switched polarization neglecting the lattice contribu-
tion to it. If needed, the latter can be taken into account by adding a proper term.
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The calculation of S makes a mathematical problem, which, in the case of
random distribution of big number of the nuclei, can be exactly solved. An exact
solution of this problem has been offered by Kolmogorov (1937) and Avrami
(1940). They have shown that, in this case, S, Stot, and S0 are linked by a simple
relation

S ¼ S0ð1� expð�Stot=S0ÞÞ: (8:7:12)

This equation, which we call Kolmogorov–Avrami theorem, is valid for the
problem of overlapping coverage of space of an arbitrary dimension. For
example, in the three-dimensional case, this relation can be evidently rewritten
in terms of V0 and Vtot.

Let us derive Eq. (8.7.12) following the idea by Kolmogorov (1937). The
variable proper for calculations is not S but 1� S=S0. For a random coverage
of the surface with circles, it has the mathematical meaning of probability pnon
that a given point was not covered by any of the circles. Indeed, the uncovered
area can be found as pnonS0 which makes S� S0. On the other hand, the
probability that a point is not covered by any of theN circles equals the product
of the probabilities that the point is not covered by each circle, 1� Si=S0, where
Si is the area of the ith circle. Thus, we have

1�S=S0¼ð1�S1=S0Þð1�S2=S0Þð1�S3=S0Þð1�S4=S0Þ:::ð1�SN=S0Þ: (8:7:13)

Taking the logarithm of Eq. (8.7.13) we arrive at the following relation:

lnð1� S=S0Þ ¼
X
i

lnð1� Si=S0Þ � �
X
i

Si=S0 ¼ �Stot=S0; (8:7:14)

which readily leads us to Eq. (8.7.12).
It is seen that the above calculations are justified on the assumption that

Si=S0551, i.e., the area of each circle is small compared to S0. Applying
formula (8.7.12) to the problem of the coalescence of growing domains in a
finite sample, we will inevitable violate this condition at the final stage of
switching once Si ffi S0. However, if the number of nucleolus in the sample Nn

is large, this stage corresponds to an exponentially small non-switched area
(according to Eq. (8.7.12) it can be evaluated as S0 expð�NnÞ). Thus, being
interested in measurable amounts of switching polarization, the use of the
Kolmogorov–Avrami theorem is justified as far as the number of nuclei in the
sample is large.

8.7.4 Pulse Switching

The theoretical analysis of the ferroelectric switching in crystals has beenmostly
performed for the case of the 1808 switching, which involves reorientation of
nonferroelastric domains. In this case, only two orientations of the spontaneous
polarization are considered and the elastic aspect of the problem can be
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legitimately ignored. In the present section we consider this situation, addres-
sing the switching caused by an abrupt application of a step of electric field to a
ferroelectric originally poled in the direction antiparallel to the field. The
application of the field will result in formation of supercritical nuclei which
give rise to expanding macroscopic domains of reverse polarization, in brief
reverse domains. Affected by the depolarization effect the supercritical nuclei
are elongated in the direction of the spontaneous polarization. As mentioned
above in this section, the first stage of their growth is their fast expansion along
the direction of the spontaneous polarization to form the through domains. In
theories of switching (e.g., Fatuzzo, 1962; Ishibashi and Takagi, 1971), the time
taken by this stage is typically neglected. We will neglect it as well and comment
a possible impact of this neglect later in this section. Thus, in the adoptedmodel,
the description of the polarization reversal is reduced to the growth and coales-
cence of the appeared through domains. This kind of theory for the ferroelectric
switching was first developed by Fatuzzo (1962) and further generalized by
Ishibashi and Takagi (1971). The following presentation is mainly based on the
work by Fatuzzo.

Let us address this problem basing on the results of Sects. 8.7.2 and 8.7.3,
starting from the case of cold-field nucleation. In this case, the moment the field
is applied all seeds which become critical at this value of the field yield super-
critical nuclei which, in turn, instantly provide the initial through domains. In
the considered nucleation regime no new supercritical nuclei and through
domains will later appear in the system. According to Eq. (8.7.12) the calcula-
tion of the switched volume of the sample requires the knowledge of the bare
sum of the areas of the reverse domains, Stot. Assuming the circular shape of the
initial and growing domains (the latter also implies that the velocity of the
sideway motion of the domain wall v is isotropic in the plane of the domain
growth), the area Stot evidently reads

Stot ¼ Npðr0 þ vtÞ2; (8:7:15)

where N and r0 are the number and the radius of the initial through domains,
respectively. ThoughN, v, and r0 are, in general, field dependent, for the case of
pulse switching these can be considered as constants. Equations (8.7.11),
(8.7.12), and (8.7.15) lead us to the expression for the time dependence for the
normalized switched polarization

qðtÞ ¼ 1� exp � t0 þ t

tcol

� �2
" #

; (8:7:16)

where

t0 ¼
r0
v

and tcol ¼
1

v
ffiffiffiffiffiffiffi
pn0
p : (8:7:17)

and n0 ¼ N=S0 is the density of the critical seed in the sample. Following
Kolmogorov, the above discussed regime is sometimes called ‘‘b-model’’.
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In the case of thermally activated nucleation, the calculation can be per-
formed on the same lines. The difference is that since now the nucleation occurs
with a certain probability all the time, the calculation of Stot requires the
summation of the areas of circles of different sizes existing at the given
moments, i.e.,

Stot ¼ p
X
i

½r0 þ vðt� tiÞ�2; (8:7:18)

where ti stands for the nucleation time of the ith through domain. For the
considered situation where the number of appearing domains is big, one can
pass in Eq. (8.7.18) from the summation over the domains to the integration
over the nucleation time (via introduction the nucleation rate per unit volume in
the sample RðtÞ ¼ S�10 dN=dt) to get

Stot ¼ S0p
Z t

0

RðtÞ½r0 þ vðt� tÞ�2dt: (8:7:19)

If the reservoir of the seeds is not substantially exhausted during the obser-
vation time of the switching, the nucleation rate can be reasonably assumed to
be constant: RðtÞ ¼ R0. Following Kolmogorov, the regime with the constant
nucleation rate is sometimes called ‘‘a-model.’’ In this regime, calculations can
readily lead us to the following expression for the time dependence for the
normalized switched polarization:

qðtÞ ¼ 1� exp �ðt0 þ tÞ3 � t30
t3act

" #
; (8:7:20)

where

tact ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3

pR0v2

s
: (8:7:21)

Equations (8.7.20) and (8.7.16) can be readily generalized from the case of n-
dimensional switching (Ishibashi and Takagi, 1971), which are illustrated in
Fig. 8.7.6. The one-dimensional situation may be of interest for ferroelectrics
corresponding to the switching via formation of a random lamella pattern.
However, the three-dimensional case is not relevant to the ferroelectric switch-
ing, at least in the simple isotropic growth version currently considered. The n-
dimensional generalizations of these equations read

qðtÞ ¼ 1� exp � t0 þ t

tcol

� �n� �
; (8:7:22)

qðtÞ ¼ 1� exp �ðt0 þ tÞnþ1 � tnþ10

tnþ1act

" #
; (8:7:23)
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where the parameters now are also functions of n (see Ishibashi and Takagi
(1971) for the explicit expressions). Essential feature of the generalized model is
that the parameters that govern the speed of switching, tcol and tact, are always
decreasing functions of the wall velocity: tcol / v�1 and tact / v�ðn�1Þ=n.

In the situation where taking into account the initial areas of the growing
through domains is of minor importance for the switching dynamics, i.e., when
tcol, tact44t0, all the above results can be covered by a unified relation that
reads

qðtÞ � 1� exp � t

tsw

� �k
" #

; (8:7:24)

where the exponent k can acquire the integer values from 1 to 4 depending on
the dimensionality of the domain growth and the scenario of nucleation. The
effect of value of the exponent k on the switching dynamics is illustrated in
Fig. 8.7.7a. It is seen that, qualitatively, this effect is not strong. An important
feature of the unified relation (8.7.24) is illustrated in Fig. 8.7.7b. Namely, in the
semi-logarithmic scale, any variation of the time parameter tsw shifts only the
plot q vs. log t along the log t axis but does not change its form. This is a
characteristic feature of the Kolmogorov–Avrami switching dynamics in this
regime. This feature can be used for the identification of this type of switching
dynamics in real systems, e.g., in semi-logarithmic plots the switching curves
taken at different applied fields should differ only in the time offset but not in
the shape. An example of such behavior in a crystal of TGFB is shown in
Fig. 8.7.8.

The switching behavior of the considered models for the case where
taking into account the initial areas of the reversed domains is essential,
i.e., tcol, tact ffi t0 or tcol, tact5t0 is illustrated in Fig. 8.7.7c and d. It is seen
from this figure that now, in the case of cold-field nucleation scenario, the
model describe a special case of two-stage polarization reversal11

(Fig. 8.7.7c). This means a switching current profile with two maxima;
the existence of such kind of profile was disputed for KDP crystals (see
Sect. 8.6.4). In the case of the activation nucleation scenario (Fig. 8.7.7d),
an increase in the size of the initial domains (effectively an increase in t0)

Fig. 8.7.6 Schematic
drawing of n-dimensional
isotropic domain growth:
(a) n ¼ 1, (b) n ¼ 2, and
(c) n ¼ 3

11 Formally, in this situation, the first stage of the switching occurs infinitely fast. The finite
rate of the polarization reversal at this stage is evidently controlled by the time taken by the
through growth of the nuclei, which was neglected in the theory.
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can result in an essential acceleration of switching, however, with a lower

logarithmic slope in the transitory interval of time. In the limit t55 t0, this

behavior is close to that given by Eq. (8.7.24) with k¼ 1, as can be concluded

from Eq. (8.7.20).

Fig. 8.7.7 Kinetics of pulse switching in a- and b-models for the isotropic two-dimensional
domain growth according to Eqs. (8.7.20) and (8.7.16), respectively. (a) Curve 1 corresponds to
b-model, curve 2 corresponds to a-model; the curves are very close to those obtained from Eq.
(8.7.24) with k ¼ 2 and 3, respectively. (b) The results of b-model for two values of parameter
tcol; the curves are very close to those obtained Eq. (8.7.24) with two, 100 times different, values
of parameter tSW. (c) The results of b-model for two values of parameter t0. (d) The results of a-
model for three values of parameter tcol. The values of all parameters are indicated in the figures

Fig. 8.7.8 Kinetics of pulse switching in TGFB crystals for four values of the applied field.
The higher the field, the larger the shift of the switching curves to the left. Reprinted with
permission from Lohse et al. (2001). Copyright (2001), American Institute of Physics
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One should mention that the a- and b-models by no means cover possible
switching kinetics controlled by domain coalescence. In reality, these models
are the limiting cases. As realistic ‘‘intermediate’’ case, one can consider a
situation where there exists a typical activation energy for the nucleation and
therefore a typical waiting time for nucleation t0 can be introduced. As a simple
function of modeling the nucleation rate in this case we set

RðtÞ ¼ n0
t0

exp � t

t0

� �
: (8:7:25)

In the case of two-dimensional domain growth with the negligible initial size
of the nucleus, such nucleation rate leads (via Eq. (8.7.19) with r0 ¼ 0) to the
following expression for the normalized switching polarization (Fatuzzo, 1962):

qðtÞ ¼ 1� exp � t0
tcol

� �2

2
m2

2
�mþ 1� e�m

� �" #
; (8:7:26)

wherem ¼ t=t0. It is seen that this expression describes a crossover between the
a-model at t55t0 to the b-model at t44t0. One readily checks that, for the
domain growth of other dimensions, the nucleation rate Eq. (8.7.25) leads to a
similar ‘‘a – b’’ crossover.

Thus, we see that switching kinetics, controlled by the domain coalescence
and treated using the Kolmogorov–Avrami approach, results in an exponential
time dependence of the normalized switching polarization. In some limiting
cases, it is the ‘‘pure’’ dependence with a unique k given by Eq. (8.7.24).
However, taking into account more realistic features of the phenomenon results
in a crossover behavior corresponding to different values of the exponent k for
the beginning and end stages of the switching. Remarkably the crossover due to
the finite area of the nucleus (see Eqs. (8.7.22) and (8.7.23)) manifests itself in an
increase in k with the time, whereas for the crossover related to the proper
description of the nucleation rate (see Eq. (8.7.26)), an opposite behavior of this
exponent is expected. To complete the crossover issue, one can mention the
crossover with a reduction of k with time for the a-model in granular ferro-
electrics, where domain walls are not allowed to cross the grain boundaries
(Duiker and Beale, 1990).

When applying that above result to the description of the switching kinetics
in real system one should bear in mind that all above expressions are dealing
with the domain contribution to the switching polarization. The total polariza-
tion Psw switched by a voltage step should be calculated taking into account the
lattice contribution to the polarization Plat as well. Thus the following relation
should be used

Psw ¼ DPqðtÞ þ Plat; (8:7:27)

where Plat is time independent and can be found from the equation of state of
the ferroelectric, e.g., Eq. (2.3.6).
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The theoretical results for the switched polarization presented in this section
enable the calculation of the switching current. There are many examples where
the time dependences of the switching current calculated in this way are in
qualitative agreement with the experimental data in ferroelectrics. An example
of such agreement is illustrated in Fig. 8.7.9a. However, the quantitative
description of the profiles of the switching currents does not seem to be usually
possible in terms of appealingly universal relation (8.7.24) whereas the afore-
mentioned crossover regimes have not been addressed, at least in the numerous
recent studies. To reach a better quantitative description of the experimental
data, a further modification of the classical approach was done. First, non-
integer values of the k-parameter in relation (8.7.24) were used when fitting the
experimental data (Usher et al., 1990). Second, a change of the dimensionality
of the domain growth during switching was assumed. Accordingly, different
parts of the experimental curve were fitted to relation (8.7.24) with different
values of the k-parameter. Examples of such fit are shown in Fig. 8.7.9b and c. A
better quality of the fits is seen, which however is obtained at the price of the
additional fitting parameter(s). It should be mentioned that the physical inter-
pretation of the modified models does not seem to be clear. For instance, the
origin of fractional dimensionality of switching is not clear. As for the change of
the dimensionality of the domain growth during switching, its justification is
not always evident. For example, according to Shur and coworkers (Shur et al.,
1998) it can occur when the typical scale of the domain pattern increases to
reach the typical distance between the objects limiting free domain growth,
e.g., the grain size. The fit shown in Fig. 8.7.9c was justified by these authors on
the lines of this approach applied to the case of elongated grains. This justifica-
tion can be questioned bearing in mind that the decreasing part of the curve,
where the presumed crossover is indicated, corresponds to decrease in the

Fig. 8.7.9 Different fits of
the same time dependence of
the switching current in a
PZT thin film. (a) Fit to
Eq. (8.7.24) with k ¼ 2,
(b) fit to Eq. (8.7.24) with
k ¼ 1:79, (c) fit to a
crossover formula
corresponding to k ¼ 2 for
the first part of the curve and
to k ¼ 1 for its tail.
Reprinted with permission
from Shur et al. (1998).
Copyright (1998), American
Institute of Physics
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typical scale of the domain pattern (i.e., the average diameter of non-switched
areas) not to its increase.

The above reviewed theory of the pulse switching based on the Kolmogor-
ov–Avrami approach also enables a modeling of the electric field and tempera-
ture dependences of the switched polarization and switching current (once one
uses the theoretical results on the field and temperature dependences of velocity
of the wall sideway motion (see Sect. 8.4)). However, one should mention that
this modeling is severely limited by the lack of information on the field and
temperature dependences of the density of the critical seeds and nucleation rate
entering the basic relations of the theory.

8.7.5 Classical Polarization Hysteresis Loops

In the previous section, we have addressed a Kolmogorov–Avrami approach-
based description of polarization pulse switching. This approach can equally be
applied to the description of switching driven by a periodical electric field, the
case where the polarization plotted as a function of the field traces a hysteresis
loop. In principle, such loop can be obtained using thermodynamic theory as
was discussed in Sect. 2.3.1 (see Fig. 2.3.2). However, the loop predicted by
thermodynamic theory (‘‘thermodynamic hysteresis loop’’) is not relevant to
those observed in real ferroelectrics (possibly except for some special situation
in ultrathin ferroelectric films) because switching always starts at fields much
smaller than the thermodynamic coercive field. A principal difference between
the physical situations behind the thermodynamic hysteresis loop and a real P –
E hysteresis loop is that the former is controlled by a distinct threshold field
whereas behind the latter there may be no threshold field. At the same time, a
real ferroelectric loop (with the coercive field orders-of magnitudes smaller than
the thermodynamic coercive field) can be extremely ‘‘square’’ (see Sect. 8.6),
creating appearance of threshold-controlled switching. Below in this section we
will demonstrate how Kolmogorov–Avrami approach-based models, being
‘‘threshold free,’’ can yield quite square hysteresis loops. At the end of this
section we will also make remarks on the problem of ferroelectric hysteresis
loops in view of the modern theory of hysteresis phenomena.

Wewill start with themodel developed by Janta (1970, 1971) who addressed the
cases of the two- and one-dimensional domain growth yielding similar qualitative
picture of the phenomenon. Below we present the results obtained for the case of
the two-dimensional domain growth. The basic assumption of the model is that,
even in the nominally fully poled state, the ferroelectric contains a certain amount
of small remnants of the inverse domains which (after the application of the
switching electric field) give rise to larger domains just as a result of their growth
without any threshold to be exceeded by the applied field. In Janta’smodelwith the
two-dimensional domain growth, the case of the in-plane isotropic domain growth
is considered and the remnants are supposed to have the forms of circular cylinders
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(through domains) of the same radius rr, which are randomly distributed with the
density nr (per unit area). Thus, at the early stages of the evolution from a poled
state, the domain pattern represents a system of circular cylinders parallel to the
direction of the applied field. Mathematically this situation is similar to the b-
model treated in the previous section. The difference is that now the wall velocity is
time dependent. For the switching from a state with the aforementioned domain
remnants, Eq. (8.7.15) can be rewritten as

Stot

S0
¼ nrp rr þ

Z t

0

v½Eðt0Þ�dt0
0
@

1
A

2

: (8:7:28)

In the case of periodicalE(t), this equation holds from amoment whenE=0
through the next moment where the field equals zero again, i.e., from the
negative to the positive remanence. Setting EðtÞ ¼ Em sin ot and
vðEÞ ¼ v1 expð�d=EÞ (cf. Eq. (8.3.5)) and using Eqs. (8.7.10), (8.7.11) and
(8.7.12) we obtain for the ‘‘domain part’’ of the normalized polarization P=PS

PðjÞ
PS
¼ 1� 2 exp � yþ g

Zj

0

exp � 1

b0 sinj0

� �
dj0

0
@

1
A

2
2
64

3
75; (8:7:29)

where b ¼ Em=d is the normalized amplitude of the driving field and
g ¼ v1ðpnrÞ1=2=o is the normalized period of this field. Here, parameter
y ¼ rrðpnrÞ1=2 controls the degree of poling of the ferroelectric at remanence.
It can be determined from the condition

Pð0Þ ¼ �PðpÞ; (8:7:30)

reflecting the symmetry of the loop, which can be rewritten as

exp � yþ g
Zp

0

exp � 1

b0 sin j0

� �
dj0

0
@

1
A

22
4

3
5þ exp½�y2� ¼ 1: (8:7:31)

The polarization loops derived by using Eqs. (8.7.29) and (8.7.30) are pre-
sented in Fig. 8.7.10. According to Janta (1970) the shape of these loops as well
as their evolution caused by variations of the amplitude and frequency of the
driving field are in a good qualitative agreement with experimental data on
BaTiO3 and TGS crystals (see Sects. 8.6).

In the limit of strongly saturated loops where y551, neglecting y in
Eq. (8.7.29) one arrives at a simple expression for the frequency dependence
of the hysteresis loops as follows:

PS � PðE;oÞ
2PS

¼ exp �BðEÞ
o2

� �
; (8:7:32)

where B(E) is a function of the field only.
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The results by Janta can be generalized by considering the domain nuclei
instead of remnants as the seeds of the polarization reversal. We will give an
example of such generalization for the case of d-dimensional isotropic domain
growth initiated by the d-dimensional isotropic nuclei. In this case, Eq. (8.7.19)
should be replaced with the following:

VtotðtÞ
V0

¼ Cd

Z t

0

R½Eðt1Þ; t1� r0½Eðt1Þ� þ
Z t

t1

v½Eðt2Þ�dt2

2
4

3
5
d

dt1; (8:7:33)

where RðE; tÞ is the nucleation rate which, in general, is a function of the
electric field and an explicit function of time. The factor Cd depends on the
geometry and dimension of the domain growth, for one-, two-, and three-
dimensional situations illustrated in Fig. 8.7.6, it acquires values of 1, p, and
4p/3, respectively. Starting from Eq. (8.7.33), Orihara et al. (1994) addressed
the saturated loops for two models which allow obtaining analytical results.
These models can be considered as generalizations of the Kolmogorov a- and
b-models. Like the a- and b-models these considerations do not cover all
situations described by the Kolmogorov–Avrami description of P – E hyster-
esis loops (via Eq. (8.7.33).

In the first model, the initial domain radius r0 is neglected and the nucleation
rate is set as

RðE; tÞ ¼ RðEÞ: (8:7:34)

This substitution via Eqs. (8.7.10), (8.7.11), and (8.7.12) readily leads to an
analytical expression for the frequency dependence of the polarization loop.

Fig. 8.7.10 Hysteresis P – E loops derived from Janta’s model with the isotropic two-dimen-
sional domain growth (Janta, 1970). (a) Loops for different values of normalized amplitude of
the driving field b ¼ Em=d, which are given in the figure; the normalized period of the field
g ¼ 103. (b) Loops for different values of the normalized period, which are given in the figure;
the amplitude of the driving field is set as twice the coercive field
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For the case of an arbitrary periodic driving signal E ¼ E0CðotÞ where
CðjÞ ¼ Cðjþ 2pÞ, one finds

PS � PðE;oÞ
2PS

¼ exp �AðEÞ
odþ1

� �
(8:7:35)

and

AðEÞ ¼ Cd

ZE

0

RðE1Þ
ZE

E1

vðE2Þ
E0

dE2

GðE2Þ

2
64

3
75
d

dE1

GðE1Þ
: (8:7:36)

Here GðEÞ ¼ dC=dj calculated at j ¼ C�1ðE=E0Þ where C�1ðxÞ is the
inverse function of CðxÞ.

In the second model, the initial domain radius r0 was also neglected and the
nucleation rate was set as12

RðE; tÞ ¼
ZE

0

n00ðE1Þdðt� t0ðE1ÞÞdE1: (8:7:37)

Inserting (8.7.37) into (8.7.33) leads through simple mathematics to a gen-
eralization of the result of the Janta model (8.7.32) as follows:

PS � PðE;oÞ
2PS

¼ exp �BðEÞ
od

� �
; (8:7:38)

where

BðEÞ ¼ Cd

ZE

0

n00ðE1Þ
ZE

E1

vðE2Þ
E0

dE2

GðE2Þ

2
64

3
75
d

dE1: (8:7:39)

It is instructive to notice that, for these two models, the frequency depen-
dence of the hysteresis loops can be presented in a unified form13

ln
PS � P

2PS
¼ � const:

ok
; (8:7:40)

where k is an integer (from 1 to 3 for the situations of the two- and one-
dimensional domain growth, which are of interest for ferroelectrics). To the

12 This functional dependence of the nucleation rate can be reduced to that corresponding to
b-model by setting t0ðEÞ ¼ 0 and n00ðEÞ ¼ n0dðEÞ.
13 We would like to remind readers that in this section only the ‘domain part’ of the
polarization is addressed, i.e., the polarization with the lattice contribution being subtracted.
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best of our knowledge this equation has never been documented for integer
values of the exponent k, though sometimes experimental data were successfully
fitted to it with non-integer k. For example, Hashimoto et al. (1994) found that
their data on TGS fitted to Eq. (8.7.40) with k � 1:3.

It is clear that the analysis discussed above can hardly provide quantitative
description of P – E hysteresis loops in real ferroelectrics; however, as is common
for simplemodels, the results of such analysis are useful as providing illustrations
for the trends experimentally documented. In this context it is indispensable to be
aware of the situation where the analysis may readily fail. In the presented
analysis, the weak point is the assumption that the hysteresis loop is symmetric,
with the average over the period value of the polarization equal zero. In the above
analysis, this assumption was essentially used in condition (8.7.30). As was
recently realized for other kinds of hysteretic phenomena, this kind of seemingly
self-evident condition can be violated for small amplitudes or/and high frequen-
cies of the driving field. In this case, the polarization starts oscillating about a
nonzero average value. When a system, under the impact of changing amplitude
or/and frequency of the driving field, changes its mode of cycling (from ‘‘sym-
metric’’ to ‘‘asymmetric’’) one speaks of dynamic transition. Thus, one can arrive
at a situation qualitatively different from that described by Eqs. (8.7.35) and
(8.7.38). For magnetic systems, such situation has been intensively studied theo-
retically and experimentally (Chakrabarti and Acharyya, 1999; Lyuksyutov
et al., 1999; Nattermann et al., 2001). Though the obtained theoretical results
make a good starting point for a discussion of this issue in application to the
ferroelectrics, such discussion is not presently available in the literature. The
review paper by Chakrabarti andAcharrya (1999) provides a simple introduction
to the problem of dynamic transition in hysteresis.

8.7.6 Rayleigh Loops

In this section we will consider a description of ferroelectric loops for the
situation where the motion of domain walls as a whole under the action of the
driving field is suppressed by defects and only a small fraction them can be
displaced by distances comparable to the size of the sample or the domain wall
spacing. In this situation, the driving field can produce only a partial switching
of the sample, which often corresponds to the so-called Rayleigh hysteresis
loops schematically shown in Fig. 8.7.11. Loops of this shape were first
observed in magnetics by Rayleigh (1887) who also offered simple empirical
expressions for their analytical description. In the case of ferroelectrics, these
relations can be applied to the ‘‘domain part’’ of the polarization. Using
Rayleigh’s relations the curves shown in Fig. 8.7.11 can be described as

P ¼ aE2; (8:7:41)

for the ‘‘initial magnetization curve,’’ a�b, and
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P ¼ aEEm �
a
2
ðE2

m � E2Þ (8:7:42)

for the two branches of the loop where ‘‘+’’ should be used for the b–c–d branch
and ‘‘–’’ for the d–e–b branch. Simple relations (8.7.41) and (8.7.42) can be
interpreted in a frame of a simple phenomenological approach put forward by

Preisach (1935). Let us outline this approach.
Consider a domain wall coupling with the defects of the crystal. As was

discussed in Sect. 4.4 this coupling makes the wall essentially non-flat with its
segments lying in the local minima of the random potential of the defects. It is clear
that, due to the randomness of the potential, the local energy minimum a segment

of the wall is lying in is not its only possible position and, by a small displacement,
it can be brought to other local minima. This situation is schematically illustrated
inFig. 8.7.12. The application of an electric fieldwill result in a redistribution of the

segments of thewall among theminima of the randompotential. If the field is weak
enough, it cannot depin the whole wall but it will rather produce short jumps of
weakly pinned wall segments between the neighboring minima of the random

potential. The variation of polarization accompanying these jumps is considered as
the source of the polarization response corresponding to the Rayleigh hysteresis
loops. The simplest model which successfully simulates this kind of response

corresponds to the following mathematical scheme.

(i) An ensemble of double-well potentials (systems) is considered.
(ii) Each system contains one particle; a jump of the particle between the wells

of the potential corresponds to a displacement of a weakly pinned segment
of a domain wall.

(iii) The position of the particles describes the polarization states of the ferro-
electric: Each particle in the right-hand well of the potential contributes a
dipole moment p0 to that of the total dipole moment of the ferroelectric
whereas each particle in the left-hand well contributes –p0. All dipoles are
considered to be aligned in the same direction, say z-direction. Thus, the
domain contribution to the polarization of the ferroelectric can be written as

P ¼ p0
V
ðNR �NLÞ; (8:7:43)

Fig. 8.7.11 Rayleigh P – E
hysteresis loop
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where NR and NL are the numbers of the particles in the right- and left-hand

wells, respectively; V is the volume of the sample.

(iv) Each double-well potential is characterized by two parameters: the barrier
height WC and the asymmetry WA as illustrated in Fig. 8.7.13. Thus, each
double-well potential can be presented as a point on the (WC,WA) plane. For

Fig. 8.7.12 Schematic drawing of domain wall interacting with defects (shown with dots).
Solid and dashed lines illustrate possible positions of the wall in the local minima of the
potential created by the defects

Fig. 8.7.13 Energy of a
weakly pinned segment of
domain wall as a function of
the dipole moment
associated with flips of this
segment between its two
equilibrium positions as
defined in the Preisachmodel
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further consideration, it ismore convenient to use variables eC ¼WC=p0 and
eA ¼WA=p0 and the (eC, eA) plane. The electric field in z-directionE changes
the energy of the right- and left-hand wells by values of �Ep0 and Ep0,
respectively. Thus, the field can induce ‘‘switching’’ between the wells.

(v) The thermal activation effects in switching are neglected, i.e., it is consid-
ered that the switching in a double well takes place only when the applied
field completely suppresses the barrier between the wells. This means that
the switching from the left well to the right one takes place at E ¼ eC þ eA
and back at E ¼ � eC þ eA. This local switching can be described by a loop
shown in Figure 8.7.14. This figure elucidates the physical meaning of
parameters eC and eA as the half-width of the local loop and its field offset.

The (eC, eA) plane is convenient for the classification of the double-well

potentials for a given value of the applied field. As shown in Fig. 8.7.15a, the

lines eA þ eC ¼ E, eA � eC ¼ E, and eA ¼ E divide the (eC, eA) plane into areas

corresponding to the four types of the local potential: (i) where the only

minimum is on the right, (ii) where the only minimum is on the left, (iii) where

there are two minima, the deepest one being on the right, and (iv) where there

are two minima, the deepest one being on the left.
Using this classification, one readily describes the switching of the ensemble

of the double wells simulating the partial switching of the ferroelectric. Let us

start from the equilibrium state of our system in the absence of the applied field

where each particle occupies the deepest minimum. In this case, clearly, the

systems with eA50 are poled positively (up) and those with eA40 are poled

negatively (down) as illustrated in Fig. 8.7.15b. Consider the switching caused

by an applied field E140. To find the corresponding variation of the polariza-

tion, one should count the number of systems flipped by the field. In the

graphical representation, these systems belong to the cross-hatched triangular

area in Fig. 8.7.15c. If then we decrease the field down to a positive valueE2, the

contribution of the systems belonging to the triangle marked with ‘‘1’’ in

Fig. 8.7.15d should be subtracted from the result obtained at E¼E1. On the

same line one can find the (eC, eA) mapping of the state with E ¼ �E1 obtained

with a further reduction of the field (shown in Fig. 8.7.15e) as well as themapping

Fig. 8.7.14 Dipole moment-
field hysteresis loop
associated with flips of the
weakly pinned segment of
the domain wall, whose
energy is given in Fig. 8.7.13
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shown in Fig. 8.7.15 f. The latter corresponds to an increase in the field from�E1

to E3. It is clear that, in this model, to calculate the field-induced variation of the
polarization, one should be able to count the number of the representative points
covered by geometrical figures discussed above. In the simplest version of the
Preisach model two additional assumptions are made: (i) the density of repre-
sentative points, n, set fixed over the whole (eC, eA) plane; (ii) this density is set
high enough so that a typical variation of the electric field will flip many double
potentials. These two assumptions make it possible to link the variation of the
polarization DP to the change of the mapping area corresponding to the systems
poled up, DS, namely DP ¼ DS� n� 2p0=V. Using this relation and the geome-
trical considerations presented above one readily arrives at the following P – E
dependences for the description of the loop shown in Fig. 8.7.11:

P ¼ np0
V

E2 (8:7:44)

for the ‘‘initial magnetization curve,’’

P ¼ np0
V

E2
m �

1

2
ðEm � EÞ2

� �
¼ np0

V
EEm þ

E2
m � E2

2

� �
(8:7:45)

Fig. 8.7.15 Preisach model:
mapping of the state of the
system of weakly pinned
segments of domain wall
onto the (eC, eA) plane. See
the text
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for the descending branch, and

P ¼ np0
V
�E2

m þ
1

2
ðEm þ EÞ2

� �
¼ np0

V
EEm �

E2
m � E2

2

� �
(8:7:46)

for the ascending branch. One sees that Eqs. (8.7.44), (8.7.45), and (8.7.46)
readily reproduce the Rayleigh relations, Eqs. (8.7.41) and (8.7.42), with
a ¼ np0=V.

The basic version of the Preisach model presented above, where jumps of the
wall segments are replaced by jumps of the particles in the double-well systems
and where the change of the dipole moment per jump is the same for all systems,
is rather simplified. Clearly, the dipole moments in question are not the same for
different jumps of different wall segments. Another simplification is the con-
stancy of the density of the representative points. For large mapping areas this
may not be true. In principle, this apparent drawback of the model can be fixed
by introducing the density of representative point dependent on eC and eA. This
gives a way to a generalization of the Preisach model, which is well mathema-
tically developed and can be applied to the description of the hysteresis loops of
any kind not only of the Rayleigh loops. The mathematical aspect of the
problem is comprehensively discussed in the book by Mayergoyz (1991). The
generalized Preisach model was first applied to ferroelectrics by Turik (1963,
1964). Other examples of application of this model to ferroelectrics can be
found in papers of other authors (Jiang et al., 1997; Robert et al., 2001; Bartic
et al., 2001; Damjanovic, 2005).

Another aspect of the Preisach description of the hysteresis loops is its
microscopic justification. This problem was addressed, first, for the case of
magnetics (Néel, 1942; Kronmüller, 1970) and further on for ferroelectrics
(Boser, 1987). The statistical consideration of the problem showed that polar-
ization (magnetic) response of the ensemble of domain walls in a random
pinning potential is consistent with the basic Preisach model.

8.7.7 Piezoelectric Hysteresis Loops

As discussed above in this chapter cycling a ferroelectric with an ac electric field
induces not only P – E loops but also hysteretic curves actually of all its
parameters. Among these curves the hysteretic loops of the piezoelectric coeffi-
cient, d – E loops, are usually considered as those that are most close to the
primaryP – E loops. Experimentally, the shapes of theP – E and d –E loops are
sometimes similar but the cases where there exists a qualitative difference
between these are not rare. This applies to the case of crystalline samples
(Schmidt et al., 1982; von Cieminski and Schmidt, 1988), thin films (Hiboux
et al., 1999; Chen, 2003), and ceramics (Uchida and Ikeda, 1965; von Cieminski
et al., 1990). Below in this section we will address the relation between these two
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kinds of hysteresis loops for two simple situations: (i) a saturated square P – E
hysteresis loop where the switching occurs in a narrow interval of applied field
close to a well-defined coercive field; (ii) a real hysteresis P – E, non-saturated
and/or affected by backswitching; part of the sample may be non-switchable.

8.7.7.1 Thermodynamic Piezoelectric Loops and the Case of Abrupt Switching

In the situation where the switching occurs in a narrow interval of applied field
close to a well-defined coercive field, the shape of both the P – E and d – E loops
can be found from the Landau theory. We will consider, for simplicity, the case
of the second-order phase transition in a uniaxial ferroelectric (the polar axis is
directed along z-axis). We will also consider the behavior of the longitudinal d
piezoelectric coefficient defined as

d ¼ d333 ¼
@e33
@E3

: (8:7:47)

Below, the indices for all variables entering this equation and the polariza-
tion will be omitted. The experimental situation addressed corresponds to
applying to a sample a combination of (i) an ac electric field slowly changing
in symmetric limits with the amplitude large enough to produce polarization
switching and (ii) a weak ac field used tomeasure the d coefficient. Starting from
Eqs. (2.3.3) and (2.3.23) the relation between the strain e and the polarization
P reads e ¼ QP2 where Q ¼ Q33. Inserting this relation into Eq. (8.7.47) and
taking into account the equation of state for the ferroelectric, E ¼ aPþ bP3, we
find the following expression for d as a function of the polarization:

d ¼ 2QP
@P

@E
¼ 2QP

aþ 3bP2
: (8:7:48)

This result leads us to an important conclusion, namely, that, in contrast to
the polarization, the piezoelectric coefficient is always a decreasing function of
the field (in the interval where it is continuous). That can be readily shown by
checking the sign of the derivative @d=@E ¼ 2Qða� 3bP2Þ=ðaþ 3bP2Þ3, which
is clearly negative. One can show that this statement holds for the case of the
first-order phase transition, except maybe for a narrow temperature interval
between T0 and TC.

It is instructive to compare the shapes of the piezoelectric loop correspond-
ing to Eq. (8.7.48) and the corresponding polarization loop. These loops are
shown in Fig. 8.7.16. The solid lines correspond to the idealized case where the
thermodynamic coercive field is reached on the loop. In this case a strong
growth of jdj at E! Ecrit is seen. In a realistic situation where the antiparallel
configuration of the polarization and field becomes unstable at E ¼ Ec55Ecrit

(the jumps at Ec in the figure are shown with the dashed lines), this growth is
essentially limited; however the trend holds.
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8.7.7.2 Piezoelectric Loops Affected by Non-saturation, Backswitching,

and Partial Switching

Very often the remanent polarization of a P – E loop is smaller than the
spontaneous polarization of the material. The reasons for that are (i) the so-
called backswitching, i.e., the appearance of domains when the field decreases
from the tip of a saturated polarization loop to the remanence and (ii) partial
switching of the sample. Below we will address the relation between the P – E
and d – E loops for the situation where these effects are essential and/or the
polarization switching is not abrupt taking place in an interval of the applied
field. This problem has been theoretically addressed by Tagantsev et al. (2004a).
The oncoming consideration is mainly based on the results from this paper. As
above we will consider the longitudinal d piezoelectric coefficient for the case
where the polarization is collinear to an ac electric field driving the P – E and
d – E hysteresis loops in symmetric field limits. As well we restrict our con-
sideration to the case where the 1808 nonferroelastic switching takes place at
moderate values of the applied field so that the nonlinearity of the lattice
contribution to the ac dielectric susceptibility,wlat, can be neglected. In this
case, the polarization of the ferroelectric P can be divided into the domain
and lattice contributions

P ¼ Pdom þ Plat 
 PSð2a� 1Þ þ wlatE; (8:7:49)

where a is the volume fraction of the positively oriented domains. Now the
description of the P – E loop reduces to setting a hysteretic function a(E)
describing the evolution of the domain population during the cycling. The

Fig. 8.7.16 Piezoelectric (a) and polarization (b) hysteresis loops simulated in terms of the
Landau theory for the second-order phase transition described with the free energy expansion
up to the P4 terms (solid lines). The loops formed with two dashed lines correspond to the case
of abrupt polarization switching at a field smaller than the thermodynamic coercive field
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same separation can be done for the ac susceptibility measured at a given point
of the loop

w ¼ wdom þ wlat ¼ 2PS
@
$

a

@
$

E
þ wlat: (8:7:50)

Here we have used the notation
@
$
a

@
$
E
for what we call ac derivative of a(E). We

define it as the amplitude of the first harmonics of aðEþ Eac cosotÞ=Eac.
Because of the hysteretic nature of the function a(E), in general, the ac deriva-
tive differs from the normal derivative of a(E) calculated from the correspond-
ing branch of the P – E hysteresis loop. 14

Using again the relation e ¼ QP2 we find the strain in the positively poled
material as follows:

eþ ¼ QP2 ¼ Q½P2
S þ 2PSwlatEþ ðwlatEÞ

2� (8:7:51a)

whereas for the negatively poled material we have

e� ¼ QP2 ¼ Q½P2
S � 2PSwlatEþ ðwlatEÞ

2�: (8:7:51b)

We determine the strain in the polydomain state as the weighted average of
the strains in the fully poled states. This enables us to calculate the piezoelectric
coefficient as

d ¼ @
$

@
$

E
½aeþ þ ð1� aÞe�� ¼ Q

@
$

@
$

E
½P2

S þ ð2a� 1Þ2PSwlatEþ ðwlatEÞ
2�

¼ 2Q PSð2a� 1Þwlat þ wlatE � 2PS
@
$

a

@
$

E
þ w2latE

" #
:

(8:7:52)

This expression acquires a simple form when rewritten in terms of lattice and
domain contributions to the polarization and small-signal susceptibility:

d ¼ 2QðPwlat þ PlatwdomÞ: (8:7:53)

Equation (8.7.53) makes it possible to specify a number of conclusions
concerning the shape of the piezoelectric loop. The structures of the terms
entering this formula are familiar: electrostriction coefficient � polarization �
susceptibility. The contribution to the piezoelectric loop controlled by the first
term, d0 ¼ 2QPwlat, has the shape of the P(E) loop (Fig. 8.7.17a). The shape of
the contribution of the second term, Dd ¼ 2QPlatwdom, is very different from
that of the first contribution. This term vanishes at the saturated tips of the loop

14 Like the measuredC–V curve of a ferroelectric capacitor very often does not correspond to
the field derivative of its polarization loop.
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where wdom ¼ 0 because of the absence of domain walls at saturation. It also

vanishes at the remanence where Plat ¼ wlatE ¼ 0. Thus, the absolute value of

Dd passes through a maximum between the tip of the loop and the remanence.

Since the domain contribution to the permittivity wdom is proportional to the

domain population, which is a hysteretic function of the field, the term

Dd ¼ 2QPlatwdom will also exhibit a hysteresis schematically shown in Fig.

8.7.17b. Its remarkable feature is that it is clockwise like the w� E hysteresis

at E40. Finally we see that the piezoelectric hysteresis loop can be presented as

a sum of a loop having the shape of regular anticlockwise P(E) loops and a

clockwise DdðEÞ loop with ‘‘humps.’’ If the contribution Dd is appreciable, the

d(E) loop may exhibit humps and clockwise rotating tips (noses). This is

schematically illustrated in Fig. 8.7.17c. For comparison, Fig. 8.7.18 shows a

piezoelectric loop obtained from a (111) tetragonal PZT thin film15 where a

clear nose and two humps are seen.

Fig. 8.7.17 (a) and (b) Schematics of two contributions to piezoelectric loop, d0 ¼ 2QPwlat
and Dd ¼ 2QPlatwdom, which are predicted by the theory according to Eq. (8.7.53). (c) Piezo-
electric loop dðEÞ ¼ d0ðEÞ þ DdðEÞ corresponding to the contributions shown in (a) and (b).
After Tagantsev et al. (2004a)

Fig. 8.7.18 A d33 � E
hysteresis loop obtained
from a 300 nm thick PZT45/
55 (tetragonal) film of (111)
orientation. After Hiboux
et al. (1999)

15 Though such filmmay contain ferroelastic domains these are not piezoelectric active for the
considered settings.
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It is instructive to evaluate the importance of Dd for a realistic set of the
material parameters. A suitable for this purpose relation

Dd
d� Dd

¼ wdomE
P

(8:7:54)

can be readily obtained from Eq. (8.7.53). We will obtain this estimate for the
values of the parameters typical for characterization of Pb(Zr,Ti)O3 thin films.
Thus, taking wdom=e0 ¼ 700, P ffi Ps ffi 30 mC=cm2, and E ¼ 100 kV=cm we
estimate this ratio as 0.2. This means that the effects predicted by this theory
can be appreciable.

One can relate the nose and humpwith features of the polarization switching.
The hump can appear if wdom is appreciable when the applied field decreases
from the tip of the loop down to zero. This implies that intensive domain
formation takes place at this phase of the hysteresis loop. Thus, we conclude
that the appearance of hump attests to strong backswitching in the system in the
corresponding field interval. Following similar reasoning, a pronounced nose of
a piezoelectric loop can be related to weak backswitching. It is in this case where
the difference in domain population (and in turn in wdom) is significant for the
‘‘from-remanence-to-tip’’ and ‘‘from-tip-to-remanence’’ phases of the loop.

Equation (8.7.53) also clearly shows that the piezoelectric loops should be
slimmer than the polarization loops (i.e., the coercive field of the polarization
loop should be always larger than that of the piezoelectric loop) since at P ¼ 0
the piezoelectric coefficient has already changed its sign.

New let us consider the situation where, in addition, a volume fraction g of
the sample is non-switchable, exhibiting, at E ¼ 0, the net frozen polarization
PN. The frozen polarization will differently affect the P – E and d – E loops. For
the P – E loop (customarily symmetrized along the P-axis) this will in general
lead to a reduction of the swing of the measured polarization, whereas for the
d – E loop, in addition to a reduction of its swing, an offset of the loop along the
d-axis is expected. Let us illustrate this effect in the approximation employed
above, where the measured polarization and strain of the sample are calculated
as the weighted averages.

Now the average polarization of the whole system defined in accordance
with the ‘‘P-axis-symmetrized’’ way of its measurement, i.e., satisfying the
condition max½P� ¼ �min½P�, can be written as

P ¼ ð1� gÞP1 þ gwlatE; (8:7:55)

where P1 is the polarization in the switchable part of the crystal, given by
Eq. (8.7.49) with g having meaning of the fraction of this part. For the average
differential permittivity and piezoelectric coefficient, applying Eqs. (8.7.50) and
(8.7.53) to the switchable part, one finds

w ¼ ð1� gÞwdom þ wlat (8:7:56)
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and

d ¼ ð1� gÞ2QðP1wlat þ PlatwdomÞ þ g2QðwlatPN þ w2latEÞ: (8:7:57)

Now using the extrinsic contribution to the susceptibility of the system,
wextr ¼ w� wlat, as a variable we arrive at a form of the piezoelectric coefficient

d ¼ 2QðPwlat þ PlatwextrÞ þ g2QPNwlat; (8:7:58)

where the first term is actually identical to the result for the system without the
frozen polarization whereas the second one is a constant offset conditioned by
the frozen polarization.

Thus, we see that, in terms of the polarization P traced by the standard
symmetrized P – E loop, and permittivities wexrt and wlat, which can be in
principle evaluated from the C – V curves of the sample, the presence of the
areas with frozen spontaneous polarization manifests itself in an offset of the
d – E loop along the d-axis.

8.7.8 Ferroelectric Breakdown

In the previous sections we have discussed the switching caused by a homo-
geneous applied electric field. For a long time this situation was the only typical
experimental situation (in parallel plate capacitors). The recent use of scanning
force microscopes (SFM) has brought about another situation. The switching
caused by an SFM whose tip is loaded with a high electric potential occurs in a
very inhomogeneous electric field. The theory of this special kind of switching
has been recently developed by Molotskii (2003b) and Molotskii et al. (2003).
These authors have shown that, in this case, the polarization reversal can take
place inside regions elongated normally to the sample surface having a length
that can exceed the tip radius bymany orders of magnitude. If the sample is thin
enough, the resulting regions of reverse polarization can have the shape of
narrow cylindrical domains. The authors have called this phenomenon ferro-
electric breakdown. The predictions of this theory have been found compatible
with the experimental observations. Below we will discuss this phenomenon
following the aforementioned papers.

In the context of polarization switching, the field inhomogeneity in SFM reveals
itself in two aspects. First, close to the tip, the field can be very strong. Its normal
component reaches a value of about V=ðRe0kcÞ where R, V, and kc are the tip
radius, the voltage applied to the tip, and the normal component of the permittivity
of the ferroelectric (lattice contribution), respectively. This field may readily be
strong enough to provide local polarization reversal at the tip. Second, this field
strongly decreases with increasing distance from the tip. Thus far in the bulk of the
sample, the applied field is expected to be too small to cause any switching.
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However, the mathematical analysis of the problem has shown that the polariza-

tion reversal is possible far from the tip being driven by the decreasing depolariza-

tion energy of the expanding domain. Let us outline the key points of this analysis.
The formation of reverse domain under the field created by an SFM tip of

radius R spaced by a distance d from the surface of the ferroelectric is consid-

ered as shown in Fig. 8.7.19. It is assumed that the reverse domain has the shape

of a half prolate spheroid (like in the Landauer model; see Sect. 8.7.2). Also like

in the Landauer model, the hard-ferroelectric approximation is adopted, where

the ferroelectric is characterized with its spontaneous polarization PS and its

lattice dielectric permittivity having two independent components kc (along PS)

and ka (perpendicular to PS). It is shown that along this approach, the equili-

brium dimensions of the reverse domain (length l and radius r) can by found

from the minimization of its energy (Molotskii, 2003b)

U ¼ brlþ c
r4

l
� fð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ s2

p
� sÞ; s ¼ Rþ d; (8:7:59)

f ¼ 2CtVPS

e0 1þ ffiffiffiffiffiffiffiffiffi
kakc
p	 
 ; (8:7:60)

where the first two terms are the energy related to the creation of the domain
wall and that of the depolarizing field. The explicit expressions for parameters b
and c are defined by Eq. (8.7.2). The third term (written for the case of practical
interest where l44r, s), is related to the gain of the bulk energy due to the
polarization reversal in the domain. HereCt is the tip capacitance. In general,Ct

is a complicated function of the parameters of the problem (Molotskii, 2003b),

which in the case where the gap d is very small, d=R554= 1þ ffiffiffiffiffiffiffiffiffi
kakc
p	 
2

, can be

approximated as Ct � 4pe0R
ffiffiffiffiffiffiffi
kakc
p þ1ffiffiffiffiffiffiffi
kakc
p �1 ln

ffiffiffiffiffiffiffi
kakc
p þ1

2 . Typically, the ratio d=R ffi 10�3,

so that this inequality is not met as a strong one. In this case this formulamay be
used as a rough estimate.

The analysis of Eq. (8.7.59) shows that (i) the formation of the reverse
domain is energetically favorable at any value of the applied voltage and
(ii) the reverse domain tends to acquire certain dimensions instead of growing

Fig. 8.7.19 Schematic
drawing of SFM tip and the
reverse domain induced by
the application of positive
potential to the tip
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unrestrictedly, unlike in the Landauer model. If the applied voltage is high
enough, the length of the reverse domain can be comparable to the thickness of
a ‘‘bulk’’ sample (fraction of mm). Thus, using SFM tip loaded with high
voltage, cylindrical ‘‘through’’ domains can be created in bulk samples.

It is instructive to present an estimate for the situation where the generation
of such ‘‘through’’ domains has been documented (Molotskii et al., 2003): a
LiNbO3 crystal with application of 3.2 kV to tip with R ¼ 50 nm and
d ffi 0:1 nm. Taking for parameters of this system: sW ¼ 10� 35mJ=m2,
ka ¼ 30, kc ¼ 84 PS ¼ 75� 80 mC=cm2, and Ct � 1:7� 10�17 F, the minimiza-
tion of Eq. (8.7.59) gives for equilibrium dimensions (radius rm and length lm) of
the reverse domain (Molotskii et al., 2003):

2rm � 2
f

5
ffiffiffiffiffi
bc
p

� �2=3

� 1� 1:5 mm; (8:7:61)

lm �
f

5b
� 200� 700 mm: (8:7:62)

This estimate for the length of the reverse domain is consistent with the
observation of ‘‘through’’ domains under these conditions in a 150 mm thick
sample of LiNbO3: The sample thickness smaller than the estimated domains
length can be interpreted as the condition for the formation of through
domains. The theoretical estimate (8.7.61) for the domains radius has been
found to be comparable to the effective diameter of the observed through
domains. However, the theory discussed above is inapplicable for the descrip-
tion of the ‘‘through’’ domain radius so that the reason for this theory–experi-
ment agreement remains unclear.

Qualitatively, the physical mechanism behind the described phenomenon
can be elucidated as follows. The strong field near the SFM tip leads to the local
switching in the tip-adjacent region. This switched region stretches out from the
strong-field region to decrease the depolarizing energy which decreases with the
domain elongation (see the second term in Eq. (8.7.59)). Thus, the applied field
does not directly influence the forward growth of the domain (only indirectly
through the polarization reversal at the tip). This explains the propagation of
the elongated domain through the regions of crystal far from the tip where the
applied field is actually vanishing.

8.8 Extrinsic Contribution to Small-Signal Dielectric Response

in Bulk Ferroelectrics

8.8.1 Introduction

The dielectric response of a multidomain ferroelectric is traditionally divided
into two parts. The first part, the so-called intrinsic contribution, can be
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determined as the weighted average of the lattice contributions of the ferro-
electric domains to the response. The second part, the so-called extrinsic con-
tribution, comprises the contribution associated with the presence of the domain
pattern in the ferroelectric. Even, an immobile domain pattern can affect the
dielectric response of a ferroelectric as will be discussed in Sect. 8.8.2. However,
the most important mechanisms of the extrinsic contribution are associated
with the domain wall motion. The main part of this section will be devoted to
these mechanisms.

Displacement of a ferroelectric domain wall is a very efficient method to
change the average polarization of a crystal. When such displacements are
induced by an electric field, they contribute to the dielectric permittivity of the
material. We will denote the corresponding contribution as kw and refer to it as
the domain contribution. Its reference value can be obtained evaluating the
average permittivity which the material exhibits at switching, i.e.,

kw ffi
PS

eoEc
: (8:8:1)

Here PS and Ec are the spontaneous polarization and the coercive field of the
ferroelectric, respectively. Bearing in mind a BaTiO3 crystal, we take
PS ¼ 25 mC=cm2 and Ec ¼ 1 kV=cm to find a value of kW ffi 250; 000, which is
large compared to the typical values of the lattice contribution to the permit-
tivity. In this section we will be mainly dealing with the small-signal dielectric
response which we specify as the polarization response to the electric fields
which are much smaller than Ec. In this case, the above estimate, Eq. (8.8.1),
can be considered as an upper bound. This estimate actually correctly suggests
that the extrinsic contribution to permittivity can be comparable or even larger
than the lattice one. Below we will give examples where the experimental value
of the domain contribution is less than one order of magnitude smaller than this
estimate.

In the present section we will mainly address the situations typical for ferro-
electric single crystals where the domain walls are not objected to the impact
of external, mechanical, or/and electrostatic, constraints. As an exception, in
Sect. 8.8.8 we will discuss the extrinsic contribution from ferroelastic domain
walls of a ferroelectric grain in ceramics, which is clamped by the ‘‘neighbors.’’
The effects of mechanical clamping by the substrate and that of the so-called
passive layer, typical for thin films, will be dealt with in Chap. 9.

An essential feature of the extrinsic contribution to the dielectric permittivity
of ferroelectrics is that it is strongly influenced by the defects of the material.
This poses problems on the experimental and theoretical levels.

For focused experimental investigation of this contribution, one should be
able to reproduce the same domain pattern and, in the ideal case, to get some
information on its microstructure. Since the domain pattern is often far from
the equilibrium, this is not an easy task (even when dealing with identically
processed samples). The conclusive comparison of the experimental data
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obtained from differently processed sample is yet more difficult, since, in this
case, we need information both on the domain pattern and on the population
and type of defects in the sample.

For theoretical treatment, the description of the extrinsic contribution to the
permittivity requiresmodeling of the domainwallmotion in the randompotential
of the defects, the information onwhich is usually hardly available. This is a tough
theoretical task which is typically treated in terms of substantially simplified
models. Despite such simplifications, the results with controllable inaccuracy
are rear. For this reason, an experimentalist has often to be content with theore-
tically predicted trends for comparison with the experimental data.

Discussing the dielectric response we will use the notions of the real, k0ij, and
imaginary, k00ij, parts of the dielectric permittivity, which control the in-phase

and out-of-phase components of the induced electrical displacement. Specifi-
cally, for the applied field Ei ¼ Emi cos ot, these components can be written as

Din
i ¼ k0ije0Emj cosot; Dout

i ¼ k00ije0Emj sinot; (8:8:2)

respectively. The real and imaginary parts of the susceptibility wij can also be
introduced according to the relation e0ðkij � dijÞ ¼ wij.

Concerning the content of this section one more remark is to be made. For
the moment, the available experimental information on the domain contribu-
tion to the permittivity of ferroelectrics and the available relevant theories do
not suffice to outline a comprehensive big picture of the problem. What is
actually available is a collection of various experimental and theoretical results,
which is far from being complete. For this reason, we will not be able to present
a systematic discussion of the subject but rather a discussion of selected issues.

8.8.2 Fully Immobile Domain Pattern

One readily expects that, in a ferroelectric, it is the driving-field-induced motion
of domain walls that controls the extrinsic contribution to the permittivity.
However, in the literature, a number of mechanisms of the extrinsic contribu-
tion have been considered, which are present even in the absence of such
motion. Specifically, these mechanisms are as follows: excessive polarizability
of domain walls (Lawless and Fousek, 1970), the electrocaloric effect inducing
heat transport across the domain walls (Marvan, 1969), and the piezoelectric
clamping effect (Drougard and Young, 1954). The manifestation of these
mechanisms can be in principle detected or has been detected provided the
contribution to the permittivity associated with wall motion is not too large.

8.8.2.1 Excessive Polarizability of Domain Walls

Lawless and Fousek (1970) evaluated the dielectric response of the distorted
materials ‘‘inside’’ a 1808 domain wall in BaTiO3. Since in such wall the
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polarization passes through zero, the ‘‘material inside it’’ can be viewed as being
closer to the phase transition than in the bulk of the domains. The calculations
performed in terms of a refinement of the Slatter model showed that, indeed, the
domain wall contributes to the permittivity as a material with 6.5-times larger
permittivity than in bulk BaTiO3. For a lamellar domain pattern with 1 mm
spacing typical for static 1808 domain patterns of bulk BaTiO3 this effect would
lead to quite small extrinsic contribution to the permittivity with kw ffi 1. How-
ever, according to Lawless and Fousek, at switching in strong fields (where
numerous nucleation of reverse domain is expected), much larger domain
densities are expected. As a result, under such condition, this contribution can
become comparable to a value of kw ffi 20 reported for the extrinsic contribu-
tion to the permittivity in Remeika BaTiO3 crystals at room temperature
(Fousek, 1965a).

8.8.2.2 Electrocaloric Effect

The characteristic feature of ferroelectric domain states is their distinction in the
pyroelectric coefficients. According to thermodynamics, these coefficients also
control the electrocaloric effect. Both the pyroelectric and electrocaloric effects
can be described by the following constitutive equations:

dPi ¼ wTijdEi þ pidT

dS ¼ pidEi þ
cE
T
dT;

(8:8:3)

where dS, wTij , pi, and cE are the variation of entropy, isothermal dielectric
susceptibility, pyroelectric coefficient, and the heat capacity per unit volume
at constant electric field, respectively. From the second equation of Eq. (8.8.3),
the electrocaloric effect that consists in a temperature change caused by the
adiabatic application of an electric field reads

dT ¼ � T

cE
pidEi: (8:8:4)

Since all ferroelectric domain states differ in pi, the application of an ac
electric field to a polydomain sample should result in a spatial modulation of its
temperature. The dielectric susceptibility measured with such field will be
sensitive to the relationship between its frequency o and the time of thermal
relaxation of the system th ffiW2cE=l where W is the period of the domain
pattern and l is the coefficient of thermal conductivity of the material. At
oth551, the isothermal susceptibility wij will be measured, whereas at
oth441 it will be its adiabatic value

wSij ¼ wTij �
T

cE
pipj: (8:8:5)
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Thus, the presence of a domain pattern in a ferroelectric should result in a
frequency dispersion of its dielectric susceptibility at frequency ffi 1=th and in a
loss maximum at the same frequency (in view of the Kramers–Kronig relation).

For a lamellar pattern of 1808 domains of periodW and the ac field parallel
to the direction of the spontaneous polarization, this mechanism was modeled
byMarvan (1969). He found the time-dependent stationary spatial distribution
of the temperature in the system by solving the heat transport equation. In this
equation the heat source changes its sign at the domain wall whose thickness
was neglected. From this solution, using Eq. (8.8.3) the average polarization of
the domain pattern was determined leading to the following contributions to
the corresponding components of the susceptibility

w0 ¼ wT þ Tp2

cE
b1ðoÞ; (8:8:6)

w00 ¼ Tp2

cE
b2ðoÞ; (8:8:7)

where

b1 ¼
1

A

sinh Aþ sin A

cosh Aþ cos A
; (8:8:8)

b2 ¼
1

A

sinh A� sin A

cosh Aþ cos A
; (8:8:9)

A ¼W

2

ffiffiffiffiffiffiffiffiffi
ocE
2l

r
� 2:3

ffiffiffiffiffiffiffiffiffiffi
o

omax

r
: (8:8:10)

Functions b1ðAÞ and b2ðAÞ are shown in Fig. 8.8.1. The dispersion described
by Eqs. (8.8.6), (8.8.7), (8.8.8), (8.8.9) and (8.8.10) is of non-Debye type.
The essential difference from the Debye relaxation is evident in the high

Fig. 8.8.1 Functions b1ðAÞ and b2ðAÞ where A � 2:3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o=omax

p
, which control the

contributions of the electrocaloric mechanism to the real and imaginary parts of the
permittivity. See Eqs. (8.8.6) and (8.8.7). After Marvan (1969)
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frequency limit where b1ðoÞ � b2ðoÞ / 1=
ffiffiffiffi
o
p

. The loss associated with this
mechanism passes a maximum of

w 00max � 0:42
Tp2

cE
(8:8:11)

at frequency

omax � 41
l
cE

1

W2
: (8:8:12)

Taking W=2 ¼ 1 mm as a typical domain wall spacing and an estimate
l=cE ffi 10�2 cm2=s, which are close to the corresponding values for TGS and
BaTiO3 (Maier et al., 1980; Marvan, 1969), we find omax=2p ffi 1MHz. Thus, in
polydomain ferroelectrics, this mechanism is expected to cause frequency dis-
persion of the susceptibility and a loss maximum in the radio frequency range.

The strength of the effect can be characterized by the parameterTp2=wTcE. In
a ferroelectric undergoing the phase transition close to the second order this
parameter does not exhibit strong critical (i.e., as a function of TC � T) tem-
perature dependence (in terms of theP4-Landau expansion p2=wT ¼ const:) For
TGS and BaTiO3 at room temperature, it has a value of the order of 0.1. Thus
for the real part of the susceptibility the effect is small. On the other hand, for
the loss tangent, the expected contribution of a few percent in the maximum can
be appreciable. According toMaier et al. (1980), who treated the problem in the
Debye approximation, this loss mechanism can be relevant to the experimental
situation in KDP, TGS, and BaTiO3.

8.8.2.3 Piezoelectric Clamping

An important feature of ferroelectrics is the piezoelectric effect providing a
linear coupling between the polarization and deformation. In view of this
coupling the mechanical conditions can affect the value of the dielectric per-
mittivity. One can readily show that the full or partial mechanical clamping
leads to a reduction of the permittivity. Such clamping effect can manifest itself
in a reduction of the permittivity of a single-domain ferroelectric when it breaks
into domains. In this case, the mechanical clamping is conditioned by the
difference in the tensors of the piezoelectric coefficients of neighboring
domains. Such difference leads to that in the piezoelectric strains induced by
the measuring electric field in the neighboring domains. Since the latter are in
physical contact, this leads to their partial mechanical clamping.

The effect of this kind of clamping on the permittivity of a ferroelectric was
first documented and explained by Drougard and Young (1954) for BaTiO3

crystals. They monitored the permittivity of a Remeika-grown c-domain crystal
as a function of the additional slowly changing electric field (with a rate of 30 V/
cm/min). This field was large enough to reverse its spontaneous polarization.
The crystal exhibited very abrupt switching so that at any field, except for the
narrow intervals around the coercive field, it was always in a single-domain
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state. An appreciable reduction of the permittivity within these field intervals
was documented as shown in Fig. 8.8.2. The effect was attributed to a manifes-
tation of a dense 1808 domain pattern existing in the crystal during the polar-
ization reversal. In such pattern, the neighboring domains differ in the sign of
the e33 component of the piezoelectric strain (X3-axis is set parallel to both the
polar axis of the crystal and to the direction of the applied field). In the dense
domain pattern this leads to the clamping of this strain component. The impact
of such clamping on the permittivity can be evaluated from the following
constitutive equations:

D3 ¼ e0kfree33 E3 þ d333s33

e33 ¼ d333E3 þ s3333s33;
(8:8:13)

where kfree33 , d333, and s3333 are the corresponding components of the dielectric
permittivity at constant stress, the piezoelectric coefficient, and the elastic
compliance at constant field. Using condition e33 ¼ 0, the value of the clamped
permittivity can be found from Eq. (8.8.13) as

kcl33 ¼ kfree33 1� d2333
e0s3333kfree33

� �
: (8:8:14)

The reduction of the permittivity in a polydomain sample described by this
equation can be observed at ac frequencies lower than the frequency of the
piezoelectric resonance. At such frequencies the measured permittivity of sin-
gle-domain crystal should be equal to kfree33 . At frequencies higher than the
piezoelectric resonance, already the single-domain sample will exhibit the

Fig. 8.8.2 Dielectric permittivity of a c-domain BaTiO3 crystal (measured with an ac electric
field with amplitude 1.45 V/cm and frequency 20 KHz) as a function of quasistatic additional
strong ac field (amplitude 1.5 kV/cm and frequency 10–5 Hz); the aspect of experimentally
obtained plots. Room temperature. The sense of the variation of the strong field is shownwith
arrows. In the original state, the sample was depoled by 60 Hz cycling with decreasing field
amplitude. After Drougard and Young (1954)
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clamped value of the permittivity. Thus, at these frequencies the effect on
polydomain clamping of the permittivity will be absent. This behavior was
experimentally confirmed by Fousek (1965a,b) who measured the permittivity
of a polydomain BaTiO3 crystal below and above the piezoelectric resonance.
In this experiment, the domain population of the crystal was stepwise changed
by the application of dc-field pulses and the permittivity was measured between
the pulses (in the absence of the dc field). Below the resonance Fousek docu-
mented a decrease in the permittivity with increasing domain population, in
agreement with the results by Drougard and Young. Whereas, above the
resonance, it was found that the introduction of new domain into the system
leads to an increase in the permittivity. The latter effect was attributed to the
contribution of the wall motion to the permittivity.16

The experimental data shown in Fig. 8.8.2 are in good agreement with
Eq. (8.8.14). For BaTiO3 at room temperature using the material parameters
s3333 ¼ 16� 10�12 m2=N, d333 ¼ 90� 10�12 C=N, and kfree33 ¼ 185, one finds
d2333=e0s3333k

free
33 ¼ 0:31. This implies a clamping reduction of the permittivity

close to that observed experimentally.
It should be mentioned that the experimental situation reported by Drougard

and Young, where a decrease in the permittivity at the coercivity is observed, is
rare. It seems to take place due to very slow switching. Typically, the C–V curves
(the differential capacitance vs. the applied voltage) driven by a field of much
higher frequency demonstrate maxima instead of minima at the coercive voltage.
This behavior will be discussed in the next section.

8.8.3 Contributions from Moving Domain Walls in Ideal Crystals

As was discussed in Sect. 8.4 the macroscopic displacements of domain wall are
possible in the two regimes: thermally activated and non-activated. In the former,
the wall motion from one minimum of the Peierls potential to another is assisted
by thermal fluctuations. Whereas, in the latter, the applied field is strong enough
to suppress the barriers of the Peierls potential and the motion can take place
without the assistance of thermal fluctuations. When treating the small-signal
dielectric response associated with the wall displacements, one should also take
into account that wall displacements are also possible inside one minimum of the
Peierls potential. Thus, there exist three situations (activated, non-activated, and
‘‘inside-one-minimum’’ regimes) to be addressed in the context of the domainwall
contribution to small-signal dielectric response. In this section we will treat these
situations for the case where domain walls remain on average flat while moving.
Here we do not exclude the case of local wall bending by thermal fluctuations like
in theMiller–Weinreichmodel. Themoving wall within thismodel we consider as
flat on average. The assumption that a wall remains flat on average whenmoving
sounds realistic for domain walls in an ideal (defect-free) crystal.

16 See discussion in the next section.
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8.8.3.1 Wall Near the Bottom of Peierls Potential

Consider motion of a ferroelectric domain wall in a minimum of the Peierls
potential staying close to its bottom. The wall is treated as a hard interface. For
simplicity, let it be a 1808 wall. The potential energy (per unit area) of such wall
counted from its equilibrium position can be evidently written as

Ww ¼
1

2
Kx2; (8:8:15)

where x is the wall displacement from its equilibrium position. The ‘‘rigidity
constant’’K can be evaluated if the barrier height of the Peierls potential,VP0

, is
known. Assuming thatWw ffi VP0

=217 at x ¼ c=4 (where c is the lattice constant
in the direction of the wall motion) we find

K ffi 4VP0
=c2: (8:8:16)

In a small electric field E, a pressure of 2PSE is applied to the wall. Using
Eq. (8.8.15) one readily finds the field-induced displacement of the wall
x ¼ 2PSE=K. If the sample contains many domain walls with the typical wall
spacing L, their displacements by a distance x will lead to a polarization
variation of the sample P ¼ 2PSx=L. All in all, one finds the contribution of
this system of walls to the dielectric permittivity in the following form:

kw ffi
P2
Sc

2

VP0
Le0

: (8:8:17)

It is instructive to evaluate this value for tetragonal BaTiO3 crystal for the
typical domain wall spacing L ¼ 1 mm. Using the following values of the mate-
rial parameters: PS ¼ 0:25C=m2, c ¼ 0:4 nm, and VP0

¼ 0:05� 0:07mJ=m2

(Burtsev and Chervonobrodov, 1982) we find kw ¼ 16� 23. This is close to the
values of kw ¼ 15� 30 reported by Fousek for the domain contribution in this
crystal at room temperature (Fousek, 1965a,b). In this study the permittivity was
measured at frequencies above the piezoelectric resonance so that the domain
clamping effect was suppressed (see discussion in the previous section).

8.8.3.2 Dielectric Response of Moving Domain Walls and C–V Curves

It was found already in early works on BaTiO3 that during not too slow
switching the small-signal dielectric permittivity can be strongly enhanced
(Drougard et al., 1954). Nowadays, monitoring the small-signal dielectric
response as a function of changing bias is often used for characterization of
ferroelectric thin films. The result of such monitoring is customarily called C–V
curve (differential capacitance vs. applied voltage). In such experiments, in
contrast to the situation discussed in Sect. 8.8.2.3, the dielectric response of

17 This is an exact relation for a model for the potential made of segments of parabolas ‘‘x2’’
and ‘–x2.’
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moving walls is monitored. This makes an essential difference. In this aspect, a

very similar situation occurs when the small-signal dielectric permittivity is

monitored during pulse switching. However here, the analysis of the experi-

mental data is simpler since the walls move in a virtually constant electric field.

For the case of the pulse switching, an appreciable increase in the permittivity

was documented for TGS and LiH3(SeO3)2 by Fatuzzo (1961) while a compre-

hensive set of data for BaTiO3 and TGS was reported by Fousková and

Janousek (1965). Some of the data on BaTiO3 by Fousková and Janousek are

shown in Fig. 8.8.3. Here, the real part of the permittivity, k0, the ac conductiv-
ity, s ¼ oe0k 00, and the switching current are plotted as functions of time. An

enormous increase in k0 up to 20,000 is clearly seen.

This phenomenon was modeled in terms of a Kolmogorov–Avrami-type
model for the two-dimensional domain growth by Fousková (1965). In this
theory, one calculates the switching current induced by the combined action of a
large dc and small ac components of the electric field

E ¼ Edc þ Em cos ot: (8:8:18)

The ac component of the current density, which is calculated to within the
linear terms in Em, is interpreted as

Jac ¼ oEme0ð�k0 sin otþ k 00 cos otÞ; (8:8:19)

Fig. 8.8.3 Experimental
curves (indexed with ‘‘exp’’)
of time dependence of the
switching current density
(JSW), relative permittivity
(k0) measured at 100 kHz,
and equivalent parallel
conductivity (s ¼ oe0k 00)
measured at 2 MHz during
switching in a BaTiO3

crystal and the results of the
calculations (indexed with
‘‘th’’) according to
Eqs. (8.8.24), (8.8.29), and
(8.8.23b). After Fouskova
(1965)
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where k0 and k 00 are the real and imaginary parts of the permittivity. Such
determination of k0 and k 00 is fully consistent with the customary experimental
measurement technique. Below we will explain the basic idea of this theory. In
addition, we will demonstrate that, calculated or/and measured k0 and k00 in this
way may not give the true value of the permittivity but an apparent value. For
the theory by Fousková (1965), for example, the calculated value of k0 is
apparent while its true value is zero.

Consider domain walls in a crystal under the combined action of a large dc
and small ac components of the electric field given by Eq. (8.8.18). Since the
switching is addressed, the field Edc is supposed to be large enough to free the
wall from the minima of the Peierls potential during its application, the wall
velocity being a function of the applied field, vðEÞ.18 Thus, the walls are moving
with a slightly time-modulated velocity

vðEÞ � vðEdcÞ þ
@v

@E
Em cos ot 
 v0ð1þ gEm cos otÞ; (8:8:20)

where g ¼ ð@v=@EÞ=vðEÞ at E ¼ Edc and v0 ¼ vðEdcÞ. The contribution of such
motion to the permittivity depends on the domain growth geometry at
switching.

It is instructive to start with the simplest situation. We consider the initial
stage of switching controlled by the one-dimensional 1808 domain growth (see
Fig. 8.7.6a) fromN planar nuclei (of zero width) spread over the distance B. By
the initial stage we mean the stage where the domain overlapping can be
neglected. Here, the polarization as a function of time can be written as

P ¼ 2PS

B
2N

Z t

0

vðEÞdt� PS: (8:8:21)

This leads to the amplitude of the ac current

Jac ¼ JSWgEm cos ot (8:8:22)

expressed in terms of the switching current

JSW ¼ 4PSv0N=B: (8:8:23)

Now using Eq. (8.8.19) we find that k0 ¼ 0 and

k 00 ¼ JSW
g

oe0
: (8:8:24)

This is a naturally expected result: The real part of the permittivity is absent
since there is no ‘‘restoring force’’ in the system and the contribution to the
imaginary part is as from the pure conduction.

18 This dependence can correspond to any regime of wall motion (activated or non-activated).
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Now let us address as the next step the initial stage of switching controlled by
the two-dimensional domain growth (see Fig. 8.7.6b) from N nuclei (of zero
area) spread over the area A. Here, the polarization as a function of time reads

P ¼ 2PS

A
Np

Z t

0

vðEÞdt

0
@

1
A

2

�PS: (8:8:25)

From this equation one readily finds for the total current

J ¼ 4PS

A
Npv20ð1þ gEm cos otÞ tþ

Z t

0

gEm cos ot dt

0
@

1
A (8:8:26)

and the amplitude of the ac current

Jac ¼ JSWgEm cos otþ 1

ot
sin ot

� �
(8:8:27)

expressed in terms of the switching current, which now has the form

JSW ¼
4PSpNv20t

A
: (8:8:23a)

For the two-dimensional domain growth like for the one-dimensional one,
there is no ‘‘restoring force’’ so that k0 ¼ 0 is expected. However this is not the
case. From Eq. (8.8.27) we see that the imaginary part of the permittivity is still
given by Eq. (8.8.24) with the switching current coming from Eq. (8.8.23a). At
the same time, now there appears a nonzero real part of the permittivity

k0 ¼ �JSW
g

o2te0
: (8:8:28)

The presented calculations for the two-dimensional domain growth illustrate
the concept of the calculations for the switching-stimulated permittivity
enhancement performed by Fouskova (1965). She considered the problem in
terms of two models: the b-model (no additional nucleation during switching)
with the nucleus radius r0 (see Sect. 8.7.4) and the Fatuzzo model with the
nucleation rate given by Eq. (8.7.25). For the b-model, it was found that

k0 ¼ �JSW
g

o2te0
1� 2pN

A
ðv0tþ r0Þ2

� �
1

1þ r0=v0t
(8:8:29)

with

JSW ¼
4PSpNv20t

A
ð1þ r0=v0tÞ exp �

pNv20t
2

A
ð1þ r0=2v0tÞ

� �
(8:8:23b)
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while for k 00 Eq. (8.8.24) holds. One readily checks that Eqs. (8.8.29) and
(8.8.23b) are consistent with Eqs. (8.8.28) and (8.8.23a) in the limit r0 ! 0
and t! 0. For the Fatuzzo model, more complicated relations were obtained.

The comparison of the theoretical predictions given by Eqs. (8.8.24), (8.8.29),
and (8.8.23b) to the experimental data for BaTiO3 is shown in Fig. 8.8.3.Here the
parameters of the theory are determined from the fit of the switching current
to Eq. (8.8.23b) and then the curves for k0 and k 00 are plotted according to
Eqs. (8.8.24), (8.8.29), and (8.8.23b). Here a good quantitative agreement is
seen for k 00, while for k0 one can speak only of qualitative agreement. The fit to
the Fatuzzo-model-based calculations is qualitatively similar but quantitatively
better (less pronounced area with k050).19 When applied to TGS, the approach
by Fouskova leads to a similar quality description.

Concerning the theory presented above one can naturally raise the following
questions. What is the ‘‘restoring force’’ behind the large k0 in the case of the
two-dimensional switching in contrast to the one-dimensional case where
k0 ¼ 0? How the domain wall contribution to the permittivity can be negative
(see Eq. (8.8.28))? The single answer to these two question is that, in a sense, the
calculated nonzero k0 is not the ‘‘true’’ real part of the permittivity as it is defined
by Eq. (8.8.2) and there is no ‘‘restoring force’’ behind it in the case of the two-
dimensional switching like that in the one-dimensional case. This is clear from
the following simple example.

Let us consider a domain having the boundary area S and let the boundary
oscillate under the action of an ac electric fieldE ¼ Em cos otwith velocity vðEÞ
proportional to the instant value of the field. The contribution of such motion
to the total polarization obviously obeys the following relation:

Pac / S

Z t

0

vðEÞdt0 / S sin ot (8:8:30)

that leads to k 00 6¼ 0 and k0 ¼ 0. This situation corresponds to the one-dimen-
sional case. Now let S slowly grow with time. This would lead to a slow growth
of the amplitude of Pac. If S / t, we find

Pac / t sin ot: (8:8:31)

Physically this relation should be interpreted as k 00 / t and k0 ¼ 0. However,
formally calculating the ac current (as J / @P=@t) we find

Jac / sin otþ to cos ot: (8:8:32)

Comparing this relation with Eq. (8.8.19), one finds that k0 is nonzero and
negative. Thus, the ‘‘current’’ method of determination of k0 ‘‘takes’’ the linearly
increasing loss for time independent and negative k0. The value of the apparent

19 A negative contribution to the permittivity at switching was also found in calculations by
Landauer et al. (1956).
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k0 can also be positive. For example, at the end of switching, when the domain
wall area decreases with time, on the same line one finds k040. The change of the
sign of k0 during the switching predicted by Eq. (8.8.29) actually corresponds to
the crossover from growing to decreasing total domain wall area.

It is worth to indicate onemore aspect in which the just discussed contribution
to k0 is not a ‘‘true’’ contribution: For a static domain pattern corresponding to a
snapshot of an evolving in time domain pattern this contribution vanishes.

Concluding the discussion of the small-signal response at switching the follow-
ing remarks should be made.When k0 is determined from the ac component of the
switching current (as customarily done) it clearly contains a spurious contribution
that does not correspond to the in-phase component of the electric displacement.
However, this contribution does not seem to be the only contribution to k0 at
switching. The point is that, according to the modeling, a time interval at the
beginning of switching is expected, where this contribution must be negative while
this has not been experimentally observed. The additional true contribution, which
would explain the increase in k0 at the beginning of switching, may be attributed to
a real restoring-force-controlled motion of domain walls. Here, in an ideal defect-
free crystal, such motion is possible at the bottom of the Peierls potential, where a
domain wall resides between the jumps of the Miller–Weinreih scenario. In terms
of suchmechanism, the increase in k0 can be interpreted as a result of an increasing
number of the walls participating in switching. Another scenario associated with
the restoring-force-controlled wall motion was developed by Fatuzzo (1961).

In the context of the aforementioned spurious contribution to k0 at switch-
ing, it becomes clear that the information delivered on the domain pattern by
C–V measurements can be essentially different when such measurements are
done in the continuous and stepmodes. In the latter method, which is nowadays
often used, the driving voltage is applied stepwise and the permittivity is
measured at the ends of the steps when the walls can be in motion or immobile,
depending on the step length. This, may imply an appreciable impact of the step
length on the results of the measurement.

8.8.3.3 Dispersion of the Dielectric Response Due to Free Domain Walls

Any domain wall motion is associated with motion of the atoms of the crystal at
the moments when the wall passes through them. This atomic motion in turn is
associated with relaxation processes and some acceleration of the atoms. For
this reason the wet friction coefficient and effective mass can be ascribed to the
wall. These parameters of the wall can be readily introduced in terms of the
Ginzburg–Landau theory. In Sect. 8.4.4, devoted to the motion of a 1808
domain wall with a constant velocity, we have demonstrated a derivation of
the friction coefficient starting from the equation of motion for the polarization

B €Pþ Z _P� d
@2P

@x2
þ aPþ bP3 ¼ E: (8:8:33)
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On the same line, the equation for the accelerated wall motion can be
obtained (Sannikov, 1962). Here, the calculations are virtually identical to
those given by Eqs. (8.4.25), (8.4.26), (8.4.27), (8.4.28), (8.4.29), and (8.4.30)
except for the polarization profile for the moving wall, which should be taken in
a more general form, namely P ¼ P0ðx� x0ðtÞÞ where x0ðtÞ is the position of
the center of the wall. Such calculations readily lead to the equation of wall
motion

Mw€x0ðtÞ þ bw _x0ðtÞ ¼ 2PSE (8:8:34)

which generalizes Eq. (8.4.30). Here

Mw ¼
4P2

S

3tth
B and bw ¼

4P2
S

3tth
Z (8:8:35)

are the effective mass and wet friction coefficient of the wall per unit area,
respectively, with tth being the half thickness of the domain wall defined by
Eq. (6.2.6). For a ferroelectric containing walls spaced by the distance L, the
corresponding complex permittivity (actually its complex conjugated) can be
found in the form

k	 ¼ 3tth
LB

1

ioG0 � o2
: (8:8:36)

G0 ¼
Z
B
: (8:8:37)

Here G0 is the damping for the linear polarization dynamics governed by Eq.
(8.8.33), which typically lies in the THz range. Thus, in radio frequency range
the dielectric response is strongly dominated by the friction, which is equivalent
to a shunting conduction

s ¼ 3
tth
LZ

; (8:8:38)

where, for BaTiO3, with 1 mm spacing between the walls, taking G0 ¼ 1013 s�1

and Be0 ¼ 10�29 s2 (Vaks, 1973) we find s ¼ 300 m�1O�1. Such conductivity is
comparable to the room temperature conductivity in doped Si. Thus, we see
that the continuous Ginzburg–Landau description of the wall motion corre-
sponds to an extremely lossy material. However, this result may correspond to a
realistic experimental situation when the effect of the Peierls potential can be
neglected. For instance, such situation takes place at ac field amplitudes larger
than 10 kV/cm (see Sect. 8.4.1). For smaller amplitudes, the wall in principle can
be considered as free if the ac field frequency is low enough so that, during its
period, the thermal fluctuations can essentially help the wall in overcoming the
Peierls potential barriers. However, in this case, the above approach should be
modified to incorporate the effect of thermal fluctuations. To the best of our
knowledge, such description is not presently available in the literature.
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At the same time, the problem can be addressed for the situation where the
wall moves inside a single minimum of the Peierls potential. In this case the
appropriate restoring force can be incorporated in the equation. As a result, the
equation for the wall motion becomes (cf. Eqs. (8.8.15) and (8.8.16))

Mw€x0ðtÞ þ bw _x0ðtÞ þ Kx0ðtÞ ¼ 2PSE; (8:8:39)

where the rigidity constant K is coming from Eq. (8.8.16). This equation
describes the dielectric response of a damped oscillator so that the equation
for the complex permittivity becomes

k	 ¼ 3tth
LB

1

O2
W � o2 þ ioG0

; (8:8:40)

Ow ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3tthVP0

BP2
Sc

2

s
¼ O0

ffiffiffiffiffiffiffiffi
VP0

sw

r
tth
c
: (8:8:41)

Here O0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2jaj=z

p
is the resonance frequency of the linear polarization

dynamics governed by Eq. (8.8.33); sw ¼ 2jajP2
Stth=3 is the surface wall energy

per unit area in the Ginzburg–Landau theory (see Eq. (6.2.10c)).
Let us evaluate the dielectric response described by Eq. (8.8.40) for the case

of BaTiO3. Using for the Peierls barrier, as before, VP0
¼ 0:05� 0:07mJ=m2

and taking tw ¼ 2tth ffi 2c for the wall thickness and sw ffi 10mJ=m2 for its
energy, we find

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VP0

=sw
p

tth=c ffi 1=10. This means that the resonance fre-
quency Ow associated with the wall oscillations at the bottom of the Peierls
potential is expected to be one order of magnitude lower than the soft-mode
frequency O0. At the same time, in BaTiO3, the soft-mode is over-damped, i.e.,
G04O0. Thus, the obtained dielectric response corresponds to an over-damped
oscillator. This also means that the inertia of the wall (i.e., its effective mass)
plays a negligible role in the response. It is virtually of the Debye type, with a
rather high relaxation frequency s=ð2pkwe0Þ ffi 0:25 THz. At this frequency the
imaginary part of the permittivity reaches a modest value of kw=2 ffi 10 .

8.8.4 Quasistatic Bending Contribution from ‘‘Firmly’’ Pinned
Domain Walls

Let us address the dielectric response of a domain wall coupling with the
imperfections of a crystal. Typically this coupling is much stronger than the
Peierls potential so that we will neglect the latter in the further consideration.
The wall–defect coupling, as was discussed in Sects. 6.4 and 8.5, leads to the wall
roughening and can strongly affect its coercivity. For the small-signal dielectric
response, i.e., for the fields much smaller than the coercive field, this coupling
provides a restoring force for the wall motion. This force is due to an energy
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increase associated with the bending of the wall from its position in the absence
of the applied field. In contrast to the above treatment, the problem becomes
essentially multidimensional so that the Ginzburg–Landau description of the
problem requires incorporation of all spatial derivatives in the equation of
motion for the polarization (z-component), i.e., Eq. (8.8.33) should be general-
ized to the form

B €Pþ Z _P� d33ij
@2P

@xi@xj
þ aPþ bP3 ¼ E: (8:8:42)

In this case, the equation of motion (and bending) of the wall can be obtained
with the calculations which are similar to those given by Eqs. (8.4.25), (8.4.26),
(8.4.27), (8.4.28), (8.4.29), and (8.4.30). The difference is that now the polariza-
tion profile should be taken in a yet more general form, namely
P ¼ P0ðx� x0ðy; z; tÞÞ, where x0ðy; z; tÞ is the x-coordinate of the wall center
counted from a reference YZ-plane. Such calculations readily lead to the
following equation of wall motion (Laikhtman, 1973):

Mw€x0 þ bw _x0 þ gab
@2x0
@xa@xb

¼ 2PSE; (8:8:43)

gab ¼
4P2

S

3tth
d33ab; (8:8:44)

where a and b can acquire values 2 and 3. This equation is actually the equation
of motion for an anisotropic membrane with the surface tension tensor gab. If
the in-plane wall anisotropy is neglected, this tensor can be expressed in terms of
the surface wall energy per unit area: gab ¼ swdab (attention, dab is the Kro-
necker d). However, the wall dynamics is, in general, different from that of a
membrane since E entering Eq. (8.8.43) is not just the applied field. It also
contains the depolarizing component caused by the bound charges which can
appear at the wall bending. This effect provides additional ‘‘non-local’’ stiffness
to the wall. To complete the discription of the wall motion, the coupling with
the defects should also be incorporated in the equation of motion to find

Mw€x0 þ bw _x0 þ gab
@2x0
@xa@xb

þ
X
i

@Uiðx0Þ
@x0

¼ 2PSE; (8:8:45)

where Uiðx0Þ is the energy of the wall interaction with the ith defects of the
system. For the case of random bond and random field defects this energy was
introduced in Sect. 6.4.1 (see Fig. 6.4.2).

The contribution of a domain wall to the dielectric permittivity in terms of
Eq. (8.8.45) has been addressed by many authors. In the present section we
consider the quasistatic response (all time derivatives are neglected) of a domain
wall which is ‘‘firmly’’ pinned by the defects, i.e., the applied ac field does not
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cause any depinning (even local) so that under the field the wall just bulges

between the pinning centers. First, to clarify the approach, we will roughly

estimate such dielectric response in the simplest approximation where the

depolarizing effect is neglected. Later we will consider the results of calculations

for more realistic situations.
Consider a wall pinned by defect with spatial separation lp so that the defect

breaks it into segments of area Sp ffi l2p, which can freely bend. Let the applied

field induce the segment bowing with the maximal deflection w. The value of

this deflection is controlled by the balance between the work done by the

external pressure 2PSE, which is about 2PSEwSp, and the variation of the

surface energy of the wall sww2 (cf. Eq. (6.4.7)). This yields 2PSESp=sw and

4P2
SES

2
p=sw for the maximal wall deflection and the dipole moment produced

by this deflection. Taking into account that the number of movable segments

per unit area of the wall is inversely proportional to Sp, the contribution to the

dielectric permittivity of a multidomain sample with the typical wall spacing L

can be found in the form

kw ffi Sp
4P2

S

swLe0
: (8:8:46)

The spatial separation of the pinning defect in the wall lp, which essentially

controls this contribution (since Sp ffi l2p), is sensitive to the pinning regime. The

treated case of the ‘‘firmly’’ pinned wall corresponds to the strong pinning

which, according to Sect. 8.5, occurs when the energy of defect-wall coupling

n is large enough to satisfy the condition

n44swt2w: (8:5:47)

This inequality means that it is favorable for the wall to be captured by the

defects spaced from its flat position by the distance larger than the wall thick-

ness. At such capture, the gain from the pinning n would be more than the extra

surface energy swt2w. Specifically, it is favorable for the wall to be captured by

the defects spaced from its flat position up to the distance

wcap ¼
ffiffiffiffiffiffiffiffiffiffi
v=sw

p
: (8:8:48)

For a wall segment deflected by such distance, the two competing contribu-

tions to its energy are equal. Then, the number of the pinning defects per unite

area of the wall, 1=Sp, can be found from the evident relation Spwcap ¼ 1=n.
This finally leads to 1=Sp ¼ nwcap ¼ n

ffiffiffiffiffiffiffiffiffiffi
v=sw

p
and

kw ffi
4P2

S

e0swLntw

ffiffiffiffiffiffiffiffiffiffi
swt2w
n

r
¼ 4P2

S

e0Ln
ffiffiffiffiffiffiffiffi
vsw
p : (8:8:49)
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The approach outlined above has been applied by Darinskii et al. (1989b) to
the analysis of the dielectric response associated with ferroelectric wall in the
strong-pinning regime but without the neglect of the depolarizing effect. In
addition, the analysis was performed in a more quantitative manner. The result
obtained for the extrinsic contribution to the permittivity

kw ¼
8P2

S

e0Ln
ffiffiffiffiffiffiffiffi
vsw
p

Ldip

tw

� �1=4

; (8:8:50)

Ldip ¼
swe0klat

P2
S

(8:8:51)

inherits from Eq. (8.8.49) the concentration dependence and the dependence on
n. Here Ldip is the spatial scale introduced in Sect. 6.4.3 and klat is the lattice
contribution to the permittivity of the ferroelectric. The depolarizing effect
taken into account in Eq. (8.8.50) influences the dielectric response via two
competing trends. This effect makes the wall stiffer—this should lead to a
reduction of the response. At the same time, the stiffer wall should be captured
by less defects—this should enhance the response. This competition is reflected
in the extra factor 2ðLdip=twÞ1=4 in Eq. (8.8.50) compared to Eq. (8.8.49). What
trend wins depends on the relation between the spatial scales Ldip and tw.

The same authors (Darinskii et al., 1989b) have also analyzed the case of 1808
ferroelectric/ferroelastic wall separating domains which differ in the sign of the
spontaneous shear strain. This situation required taking into account the long-
range elastic forces which affect both the wall stiffness (cf. Sect. 8.4.3) and the
capture of the wall by defects. The contribution to the permittivity in the strong-
pinning regime was found in the following form:

kw ¼
4
ffiffiffi
2
p

e0Ln
p3klatP3

S

me2Sn
2tw

� �1=4

; (8:8:52)

where eS and m are the absolute value of the spontaneous strain and the shear
modulus, respectively (the elastic effect were taken into account in the isotropic
approximation). Though this result essentially differs from (8.8.49) to (8.8.50) it
shares their common feature, namely 1=kw / n

ffiffiffi
v
p

.

8.8.5 Limited Motion of Free Domain Wall

The discussions from the preceding sections outline a clear picture of how ferro-
electric domain walls contribute to the dielectric response. A ferroelectric domain
wall not restrained in its motion by pinning against the Peierls barriers and/or
crystalline defects contributes only to the imaginary part of the permittivity so that

kw /
1

io
: (8:8:53)
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However, in the presence of the pinning, the restoring forces appear together
with real part kw. Putting aside the Peierls potential effect, one clearly sees the
origin of the latter in the wall bending which provides a quasi-harmonic restor-
ing force. However, it occurs that even without wall bending the wall–defect
interaction can lead to the appearance of a contribution to the real part of kw.
Such situation takes place when the displacement of the wall is limited by some
obstacles, e.g., by strong repulsive random bond defects. This situation can be
illustrated with a simple model. Consider a wall moving as a hard surface so that
the bending contribution is excluded. If, during the cycle of the measuring ac
field, the wall does not meet any obstacle then the dielectric response is purely
dissipative. This holds for any wall mobility law v ¼ vðEÞ. However, if the
distance, which the wall has for its free motion, is smaller than the swing of
the wall displacement (in the unlimited motion for the given field amplitude and
frequency), the wall will spend some time standing by the obstacle. During this
period of time, the wall is ‘‘waiting’’ when the field changes its sign, only then it
will leave the obstacle. The direct calculations of the first polarization harmo-
nics show the appearance of the contribution to the real part of the permittivity
once the wall motion is limited. For a system of domain walls distributed with
the linear density L�1 whose motion is confined by the distance Lfree, the
extrinsic contribution to the permittivity reads20 (Tagantsev and Fousek, 1999)

k0w ¼
2

o
PS

pLe0Em

Zf0

0

vðEm sin fÞ cos f df; (8:8:54)

k 00w ¼
2

o
PS

pLe0Em

Zf0

0

vðEm sin fÞ sin fdf; (8:8:55)

whereEm is the amplitude of the probing ac field. Herej0 is the width of the phase
interval during which the wall moves between the stuck positions at the obstacles.
Obviously 05j05p; it can be found as the corresponding root to the equation

Zf0

0

vðEm sin fÞdf ¼ oLfree: (8:8:56)

One can readily check that, formally, the non-restricted wall motion is
described by Eqs. (8.8.54) and (8.8.55) with j0 ¼ p. Noting that, at j0 ¼ p,
the integral from Eq. (8.8.54) is zero for any mobility law v ¼ vðEÞ we see that,
indeed, for the not restricted wall motion always k0w ¼ 0.21

20 In the original paper in these equations a factor of ‘2=o’ is missing. Further in this paper,
there are factors of ‘2’ missing in the definition of the normalizing constants wo, wo, and wM.
21 The above derivation proves that k0w ¼ 0 for any arbitrary non-hysteretic dependence
v ¼ vðEÞ. On the same lines, one readily shows that this also holds for an arbitrary hysteretic
dependence v ¼ vðEÞ.
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Tagantsev and Fousek (1999) have applied relations (8.8.54) and (8.8.56) to
the cases of the exponential and linear wall mobility laws. Here we present the
results for the latter case, i.e., vðEÞ ¼ mE. The results obtained for the exponen-
tial wall mobility law, though being quantitatively different, are qualitatively
similar to those obtained for the linear mobility law. For vðEÞ ¼ mE, the
expressions for the components of complex permittivity were found in the
following form:

k0w ¼
k0ðoÞ
p

sin2 f0; (8:8:57)

k 00w ¼
k0ðoÞ
2p
ð2f0 � sin 2f0Þ; (8:8:58)

cosf0 ¼ 1� 2o
oE

:; (8:8:59)

where k0ðoÞ ¼ 2mPS

oLe0
andoE ¼ 2mEm

Lfree
. Equations (8.8.57), (8.8.58), and (8.8.59) are

applicable on condition that o5oE. The situation, where o4oE and Eq.
(8.8.59) has no solution, corresponds to the wall motion without reaching the
obstacles, i.e., to the purely dissipative dielectric response: k 00w / 1=o and
k0w ¼ 0.

The frequency and amplitude dependences of the dielectric response
described by Eqs. (8.8.57), (8.8.58), and (8.8.59) are shown in Fig. 8.8.4a and
b. Figure 8.8.4c shows the corresponding Cole–Cole plot. In Fig. 8.8.4b and c,
the components of the permittivity are shown normalized to the value

kE ¼ k0ðoEÞ ¼
Lfree

L

PS

Eme0
: (8:8:60)

One should note the following features of this kind of extrinsic dielectric
response. First, the Cole–Cole plot is similar to a part of that for the Debye
response with a distribution of the relaxation times, while, physically, no

Fig. 8.8.4 Amplitude (a) and frequency (b) dependences of the contributions to the dielectric
permittivity according to Eqs. (8.8.57), (8.8.56), (8.8.57), (8.8.58), (8.8.59) and (8.8.60) and the
corresponding Cole–Cole plot (c). Eo ¼ 0:5oLfree=m. After Tagantsev and Fousek (1999)
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spectrum of the relaxation times can be attributed to the system. Second, as seen
from Fig. 8.8.4a, an increase in Em beyond the threshold leads to a reduction of
k 00w. Such behavior is opposite to that expected in the case where the amplitude
increase leads to depinning of the walls.

The results of the above analysis can be qualitatively applied to a description
of the first harmonics polarization response taken from a ferroelectric in switch-
ing regime, i.e., when that amplitude of the driving field is essentially larger than
the coercive field of the system. In this case the displacements of the walls are
limited by the wall spacing in the multidomain state or by the size of the sample.
For a simple model of switching these results can be applied quantitatively. In
this model the switching is conducted by a lamella pattern of 1808 domains. In a
single-domain state, once the applied field changes its sign, the reverse domains
appear as very thin plates and grow until the domain walls annihilate yielding
the oppositely poled single-domain state. These nuclei plates are assumed to be
distributed with a spacing LN. This implies that the domain walls of the pattern
will cover a distance of LN=2 before the annihilation. It is clear that the results
obtained above can be quantitatively applied to this switching model once we
set L ¼ Lfree ¼ LN=2. Though this switching model is oversimplified, one can
expect that it provides a qualitatively correct description of the first harmonic
polarization response in the switching regime in general. Specifically, when a
ferroelectric sample is cycled with an ac field essentially exceeding its coercive
field, the measured effective permittivity (real and imaginary parts) should
qualitatively comply with the Cole–Cole plot shown in Fig. 8.8.4c.

8.8.6 Wall Motion in Random Potential and Dispersion
of the Dielectric Response (Experimental Findings
and Interpretation)

Extrinsic contribution to the dielectric permittivity in ferroelectrics typically
exhibits a complex frequency dispersion. Customarily, this dispersion is attrib-
uted to the coupling of domain wall with the random potential of crystalline
imperfections which are believed to be present even in high purity materials.
The decomposition of this contribution into the parts associated with different
mechanisms and/or different regimes of the wall motion is usually a difficult
task which does not always yield unequivocal results. The interpretation of the
experimental data is also complicated by a limited progress presently achieved
in the relevant theory. The theoretical results available usually deal with special
limiting cases being obtained in terms of semi-quantitative and scaling argu-
ments. The application of these results to real ferroelectric systems is not
straightforward. For example, the developed theories usually consider the
wall motion without taking into account the long-range electric and elastic
effects which are important for ‘‘purely’’ ferroelectric and ferroelectric/ferroe-
lastic domain boundaries. At best, when applying these results to a ‘‘purely’’
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ferroelectric wall, one modifies them by changing the effective interface dimen-
sion from 2 to 2.5 (cf. Sect. 6.4.3). However, strictly speaking, the validity of
such substitution should be checked for every problem under consideration.
Bearing in mind all stated above, we do not believe that a comprehensive
discussion of the issue is presently feasible. For this reason, in this section, we
will present some experimental information on the dispersion of the dielectric
response in polydomain ferroelectric, which we will be appended with a discus-
sion of main theoretical approaches used for the interpretation.

Experimental data on the frequency dispersion of the extrinsic contribution
to the complex permittivity are available for many ferroelectrics, including
‘‘regular’’ ferroelectrics like TGS (Fousek and Janousek, 1966), relaxors, and
exotic systems like the O18-substituted SrTiO3 (Dec et al., 2004) (see also data
used for the discussion of the domain freezing in Sect. 8.8.7). However, the
focused studies on the problem in ‘‘regular’’ ferroelectrics are rare. Here we will
present the recent results obtained by Park (2000) on Pb(Fe1/2Nb1/2)O3 and by
Kleemann and coworkers (Kleemann et al., 2006; Braun et al., 2005) on
KTiOPO4. These are shown in Figs. 8.8.5 and 8.8.6. In both cases, the data
have been obtained on single crystals. In the former material, a 1808 domain
pattern with the walls parallel to the direction of the applied field was expected
from the geometry of the experiment. In the latter, an artificial 1808 domain
pattern of a period of 9 mm was introduced using lithographic methods. The
situation in KTiOPO4 was complicated by the super-ionic conduction of the
material. To avoid effects related to it, the difference between the dielectric
response of single-domain and polydomain crystals was always analyzed.

A distinct feature of the Cole–Cole plots shown in Figs. 8.8.5 and 8.8.6. is a
crossover from a Debye-type relaxation at the high-frequency side to a relaxa-
tion corresponding to the Jonscher universal relaxation law (Jonscher, 1996)
corresponding to the following relation:

Dk	 / 1

io

� �b

; (8:8:61)

(05b51Þ which also implies

Dk 00

Dk0
¼ tan

bp
2

� �
: (8:8:62)

The data on Pb(Fe1/2Nb1/2)O3 (Park, 2000) yield b ¼ 0:15� 0:4 in the tem-
perature interval22 T ¼ 350� 400 K. The data on KTiOPO4 (Braun et al.,
2005) correspond to b ¼ 0:35 at T ¼ 233 K. Another important feature of the
crossover in the relaxation mechanism is that the dielectric nonlinearity is much

22 This interval contains the transition temperature. The domain contribution to the permit-
tivity is believed to exist above the transition because of some residual domains present in the
paraelectric phase.
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stronger in the low-frequency regime (Kleemann et al., 2006). Most of the

aforementioned features of the dielectric response of polydomain ferroelectrics

are in qualitative agreement with data reported by Fousek and Janousek (1966)

for the ‘‘classical’’ ferroelectric of TGS.
The presently available literature interpretation of the dispersion of permit-

tivity of polydomain ferroelectric can be summarized as follows.
At very high frequencies, segments of the domain walls are moving (under

the action of the ac field) inside the valleys of the random potential of crystalline

imperfections. This regime is called relaxation. The potential of imperfections

Fig. 8.8.5 The Cole–Cole plot for the permittivity of single crystal of Pb(Fe1/2Nb1/2)O3. The
measuring frequency indicated in Hz. After Park (2000)

Fig. 8.8.6 Frequency dependence of the extrinsic contribution (difference between the data
for polydomain and single-domain crystals) to dielectric permittivity and the Cole–Cole plot
for KTiOPO4. After Kleemann et al. (2006)
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provides some quasi-harmonic restoring force for the wall segments. This

restoring force taken into account together with some wet friction leads to a

Debye-type contribution to the permittivity from the segment

k	w /
1

1þ iot
; (8:8:63)

where t is the relaxation time constant. The distribution of the relaxation times

of different segments, natural in random systems, will modify the dielectric

response. Then, for its description, the so-called poly-dispersive Debye formula

is often used

k	w /
1

1þ ðiotÞa (8:8:64)

with 05a51. Arcs in the Cole–Cole plots in Figs. 8.8.5 and 8.8.6 can be

modeled with this relation. Accordingly, the corresponding contribution to

the permittivity is attributed to the relaxation mechanisms, i.e., to the motion

of the wall segments inside the valley of the random potential of crystalline

imperfections.
On frequency lowering, say below a certain threshold frequency oc, it is

supposed (Kleemann et al., 2006; Fedorenko et al., 2004) that, during the period

of ac field, there is an appreciable probability that the wall segments will leave

their ‘‘original’’ valleys of the pinning potential. The wall motion in this regime

is viewed and termed differently by different authors.
According to Fedorenko et al. (2004) here, one can distinguish two sub-

regimes. For frequency o just below oc, the wall segment leaves its original

valley and travels between metastable minima of the potential; however, the ac

field period is not long enough to let it reach the true minimum. 23 This happens

in the frequency range o	5o5oc whose lower bond, o	, being an exponential

function of �1=Em is determined by Eqs. (8.5.20) and (8.5.17). The physical

meaning of o	 is that, for the times longer than 1=o	, the wall is involved in the

macroscopic motion as a whole. The regimes of the oscillatory wall motion

corresponding to the frequency ranges o	5o5oc and o5o	, in terminology

by Fedorenko et al. (2004), are called stochastic and creep regimes, respectively.
In such defined creep regime, at o5o	, the walls are expected to move

according to a certain mobility law, i.e., v ¼ vðEÞ. In this case, unless the wall

motion is restricted by some obstacles, the polarization response is purely

dissipative, i.e., k00w / 1=o and k0w ¼ 0, no matter if the mobility law is expo-

nential (creep law) or linear (see Sect. 8.8.5). The term ‘‘creep regime’’ is

probably conditioned by the fact that, at small fields, in the traditional

‘‘weak-pinning’’ model it is the creep law that controls the wall motion.

23 In terms of consideration from Sect. 8.5.2, such minimum corresponds to the optimal bulge
for the given value of the applied field.
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In the stochastic regime, at o	5o5oc, where the macroscopic wall motion is
impossible, according to Fedorenko et al. (2004) the dielectric response should
follow the law given by Eq. (8.8.61), thus exhibiting k0w 6¼ 0. In terms of involved
calculations, the validity of this law was demonstrated using the analogy between
the considered problem and that of the stochasticmotion of a particle in the random
field environment. The values of the exponent b were found to be an increasing
function of the amplitude of the driving field Em. The exact result, b /

ffiffiffiffiffiffiffi
Em

p
, was

obtained only for the one-dimensional case. One shouldmention that the increasing
field dependence of b matches well with the physical picture of the phenomenon.
Namely, on increasing Em one approaches regime o5o	 where b ¼ 1.

An alternative terminology was used by Kleemann and coworkers (Klee-
mann et al., 2006; Braun et al., 2005). Though using the same terminology for
the very high-frequency range, the regime where the Jonscher law holds was
termed creep regime whereas the regime with the purely dissipative wall motion
(at lower frequencies) was termed sliding regime. The conflict in the terminology
is summarized in Table 8.8.1. Hereafter in the book we will use the Kleemann’s
terminology as already widely employed, though it is somehow contradictory.
Specifically, in the sliding regime, the creep wall motion is possible while there is
no creep wall motion in the creep regime.

Discussing the dispersion of the dielectric response in polydomain crystals,
one should mention an approach which enables modeling of the extrinsic
contributions to the permittivity whose frequency dependences are essentially
different from the trivial Debye-and conductivity-type relations. The starting
point of this approach is an observation that the contribution from a pinned
domain wall to the complex permittivity is, on one hand, proportional to the
Debye factor (cf. Eq. (8.8.63)) and, on the other hand, to the area of the typical
movable segment Sp of the wall (see Eq. (8.8.46)). Thus one can present the
contribution associated with the segment in the form

Dk	w /
Sp

1þ iot
: (8:8:65)

When the motion of the segment is limited to a single valley only, the
segment-to-segment variations of Sp and t are not expected to be large leading
to the Debye-type response (relaxation regime). However, if the ac field fre-
quency is low enough, there appears an appreciable probability that, during
time 1=o, the wall will jump out of the valley. Here two situations, of strong and
weak pinning, can be distinguished.

Table 8.8.1 Terminology for the regimes of frequency dispersion of
the extrinsic contributions to the complex permittivity (see the text)

Complex permittivity Fedorenko Kleemann

/ 1
1þðiotÞa Relaxation Relaxation

/ 1
io

	 
b Stochastic Creep

/ 1
io

Creep Sliding
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In the case of the individual coupling between the wall and defects (strong
pinning), the segment can hop over a single impurity. The height of the
barrier associated with this jump will control the relaxation time of dielectric
response. Of importance is that, in this situation, the barrier height is basi-
cally controlled by the average distance between the impurities.24 For this
reason, no essential segment-to-segment variation of the barrier (and of
relaxation time) is expected. Passing to these regimes from the relaxation
one, the movable segment area Sp will clearly change. However, no essential
spread of Sp will be expected either. All these clearly leads to a Debye-type
response.

In the weak-pinning regime the situation is different. Here a wide
spectrum of the sizes and hoping barriers is available leading to wide
spread of Sp and t and finally to an essentially non-Debye dielectric
response. Let us address this point in the widely used approximation of
isotropic elastic membrane (the electrostatic contribution to the bending
energy is neglected). In this case, the energy barrier UL separating the
equilibrium states of the segments of the size L can be found from Eq.
(8.5.13). Then according to the Gibbs statistics, the relaxation time of the
segment can be written as

tðLÞ ffi o�10 exp
UL

kBT

� �
ffi o�10 exp

L

Le

� �2B
Te

T

" #
; (8:8:66)

where B is the roughness exponent; the rest of the parameters are introduced in
Sect.8.5.2. Now, in principle, the segments of any length can contribute to the
polarization response. The key assumption of the approach (Nattermann et al.,
1990) is that, since Dkw / Sp, the polarization response is dominated by the
segments that have the maximal size from those following the ac field. In other
words, the polarization response is dominated by the segments whose size
satisfies the resonance condition otðLÞ ffi 1. Using Eq. (8.8.66) one finds for
the length of such segments

LðoÞ ¼ Le
T

Te
ln
o0

o

� �1=2B

: (8:8:67)

Then, after Nattermann, evaluating the real part of the permittivity as
proportional to the area of the resonance segment (cf. Eq. (8.8.65)) one finds

k0w / LðoÞ2 / ln
o0

o

� �g
(8:8:69)

with g ¼ 1=B. To restore the imaginary part, one uses the Kramers–Kronig
relation in the form of the ‘‘p=2 rule’’ (see e.g., (Courtens, 1986))

24 This is actually an assumption. However, when comparing the weak and strong pinning
regimes it looks qualitatively correct.
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k 00ðoÞ ¼ � p
2

@k0ðoÞ
@ ln o

; (8:8:70)

to find

k 00w / ln
o0

o

� �g�1
: (8:8:71)

The results given by Eqs. (8.8.69) and (8.8.71) are identical to those obtained

by Fedorenko et al. (2004) in the approximation of isotropic elastic membrane. 25

If the electrostatic stiffness of the wall is taken into account, on the same line one

arrives at Eqs. (8.8.69) and (8.8.71) however with g ¼ 5=ð4B1 þ 1Þ where B1 is the
roughness exponent for this case.

One readily checks that assuming that the size of the resonance segments scales

as a power law of the ac field frequency, i.e., LðoÞ / o�f, the above arguments

lead to the Jonscher law, Eq. (8.8.61) with b ¼ 2f. Based on this assumption

Kleemann et al. (2006) derived the Jonscher law in terms of similar arguments.
To finish this section which is primarily dealing with the small-signal response,

i.e., for the driving fieldsEm smaller that the coercive field, we would like to give an

outlook at the whole frequency range including the situation where on frequency

lowering this condition is violated. Here we should recognize that one has a

relatively clear picture only for the two limiting cases as shown in the Cole–Cole

plot in Fig. 8.8.7. At the high-frequency end, one finds the relaxation and creep

regimes (shown with solid lines). At the low-frequency end, assuming that the

condition Em4EcðoÞ is reached, the wall motion is expected to be purely dissipa-

tive with k}w / 1=o and k0w ¼ 0 (sliding regime) unless the wall motion is limited

by some obstacles and/or the full switching of the sample occurs. The later regime is

Fig. 8.8.7 Schematic of the
Cole–Cole plot for complex
permittivity of a
polydomain ferroelectric.
See the text. The lattice
contribution to the real part
of the permittivity is denoted
as k0lat. The lattice
contribution to the
imaginary part of the
permittivity is neglected

25 The above derivation, though expressing idea of the approach, is oversimplified. For a
more rigorous consideration see the original papers (Nattermann et al., 1990; Fedorenko
et al., 2004).

510 8 Switching Phenomena and Small-Signal Response



the switching regime discussed in Sect. 8.8.5, with the Cole–Cole plot of the type
shown in Fig. 8.8.4c.

As for the intermediate frequency range, to the best of our knowledge, no
model is available to its description. The trajectories in the Cole–Cole plot
corresponding to conceivable scenarios of the intermediate frequency crossover
are shown as arrowed dotted lines.

The first option labeled with ‘‘1’’ corresponds to the case where in a certain
frequency range all domain walls of the sample participate in the purely dis-
sipative motion. In this regime the real part of the permittivity must be equal to
the lattice permittivity. Independent of the physical mechanism behind the
intermediate frequency crossover, it must be associated with some reduction
of k0 on frequency lowering as clear from Fig. 8.8.7. The second option labeled
with ‘‘2’’ corresponds to the case where the creep regime directly converts into
the switching regime; symbol ‘‘3’’ lables the crossover scenario favored by
Kleemann et al. (2006).

8.8.7 Domain Freezing

Domain freezing is one of the first effects documented in ferroelectrics and it is
definitely the oldest from those not properly understood in this system. This
effect was actually reported in 1935 in the first publication on the second
discovered ferroelectric KDP. Figure 8.8.8 shows the first reported temperature
dependence of the permittivity of a KDP crystal. Busch and Scherrer (1935)
reported it as an evidence for the ferroelectricity in this crystal. The two char-
acteristic temperatures y1 and y2 marked in this figure were interpreted as two
transition temperatures in analogy with the Rochelle salt, the only known ferro-
electric by that time. In reality, in KDP there is only one ferroelectric phase
transition corresponding to temperature y1. As for the behavior of the permittiv-
ity between y1 and y2, it is controlled by the domain wall dynamics. Since 1935
such kind of plateau in the temperature dependence of the permittivity below the
transition temperature was repeatedly reproduced for KDP and other ferro-
electrics. This phenomenon has been named domain freezing. This term implies

Fig. 8.8.8 Temperature
dependence of the real part of
the permittivity of KDP
crystals. Measuring field
amplitude –1 kV/cm,
frequency –50 Hz. First
evidence for the
ferroelectricity inKDP.After
Busch and Scherrer (1935)
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the existence of a contribution of the domain walls to the permittivity, which

vanishes below a certain temperature where the domain wall motion freezes out.
This phenomenon has been well documented for the ferroelectrics of KDP

family (see, e.g., Bornarel et al., 1966; Strukov et al., 1972b; Gladkii et al., 1973;

Magataev et al., 1975; Peercy and Samara, 1973; Nakamura et al., 1989), TGS

(Huang et al., 1997), and BaTiO3 (Wang et al., 2007a). All experimental data

reported are qualitatively consistent in describing the same physical phenom-

enon in all these materials. Here one should stress that all features of the domain

freezing correspond to the amplitudes of the measuring field much smaller

than the coercive field. Though there have been a number of attempts to

model this phenomenon or rationalize its mechanism (Bornarel, 1972; Fedosov

and Sidorkin, 1977; Kuramoto, 1987; Huang et al., 1977), the microscopic

scenario which would be able to explain the whole body of experimental data

is not presently available in the literature. For this reason, in this book, we

restrict ourselves to the presentation of experimental data illustrating the char-

acteristic features of domain freezing in aforementioned materials.
In the context of the domain freezing, the most investigated are the ferro-

electrics of the KDP family. For these materials, it was established that the value

of the permittivity at the plateau is very sensitive to the crystal quality and the

amplitude and frequency of the measuring field; the dc bias exceeding the value of

the coercive field was also found to essentially affect (reduce) the value of the

permittivity at the plateau (see, e.g., Bornarel et al., 1966; Nakamura et al., 1989;

Fally et al., 2001) or remove it completely as shown in Fig. 8.6.20. Figure 8.8.9

shows the dielectric data for a high-purity KDP crystal: Here a two-orders-of

magnitude difference in the permittivity at the plateau compared to Fig. 8.8.8 is

seen as well as the impact of the ac field frequency. The impact of the ac field

amplitude on the complex dielectric permittivity of a KDP crystal is illustrated in

Fig. 8.8.10. Higher permittivity for higher field amplitudes or/and lower

Fig. 8.8.9 Temperature
dependence of real part of
the dielectric permittivity
and loss factor of a high-
quality KDP crystals
measured at different
frequencies of the ac field.
After Bornarel et al. (1966)
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frequencies documented in these figures clearly suggest some kind of depinning

mechanisms behind the effect. Analysis of the loss spectrum has revealed a very

strong slowing down of the dielectric relaxation on approaching the low-tempera-

ture end of the plateau. The temperature dependence of the characteristics relaxa-

tion time t was found compatible with the Vogel–Fulcher law (Nakamura et al.,

1989; Huang et al., 1997):

t ¼ t0 exp
A

T� Tf

� �
; (8:8:72)

where the constants t0, Tf, and A were found sensitive to the purity of the

sample.
In TGS, the domain freezing exhibits basically the same features as in KDP.

Here, using a-alanine-doped samples, the dielectric response in poly- and

nominally mono-domain samples has been compared to find a very strong

suppression of the effect in the latter (Huang et al., 1997).
In the classical ferroelectric of BaTiO3, the domain freezing was recently

discovered in the rhombohedral phase (Wang et al., 2007a). Figure 8.8.11 shows

the comparison of the measured temperature dependence of real part of the

dielectric permittivity of (111) oriented BaTiO3 single crystals to the Landau

theory prediction for a single-domain crystal. It is seen that in all phases but the

low-temperature rhombohedral one, the dielectric response is mainly controlled

by lattice contribution whereas in the latter a very large extrinsic contribution

appears. The effect was found strong in the depoled samples. In general, the

impact of the thermal and electrical pretreatment on the dielectric response in

the rhombohedral phase was found to be very complicated. Of interest are the

results on the dielectric nonlinearity in the plateau region. The data shown in

Fig. 8.8.12 suggest a kind of ac-field-amplitude-driven dynamical phase transi-

tion occurring in this region.

Fig. 8.8.10 Temperature
dependence of the real and
imaginary parts of the
dielectric permittivity of
high-quality KDP crystals
measured at different
amplitudes of the ac field
and frequency 1Hz.
Reprinted with permission
from Fally, M., Fuith, A.,
Müller, V., Phys. Rev. B 64,
026101 (2001). Copyright
(2001) by the American
Physical Society
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Fig. 8.8.12 Dielectric
response of a BaTiO3 single
crystal monitored at 140 K.
Before measurements the
crystal was first cooled to
140 K and then electrically
depoled (as described in the
caption of Fig. 8.8.11).
Panels (a) and (b) show the
amplitude and phase angles
of the first and third
polarization harmonics
(P1 sinðotþ y1Þ and
P3 sinð3otþ y3Þ,
respectively.) vs. the
amplitude of the ac driving
field (E sinot) at the
frequency 1 kHz. Panel
(c) shows the amplitude
dependence of the real part
of dielectric permittivity
measured at various
frequencies. After Wang
et al. (2007)

Fig. 8.8.11 Temperature dependence of real part of the dielectric permittivity of (111)-
oriented BaTiO3 single crystals. Open circles and dashed line represent the experimental
values measured using a small ac signal (100 Hz, 0.05 kV/cm) upon heating under zero bias
electrical field and mechanical stress. Before the measurement, the crystal was annealed at
473 K overnight, then cooled down to 250 K, and depoled with a fast decayed (from 1 kV/cm
to zero within five periods) low-frequency ac field, and finally cooled down to 15 K. The solid
line shows the prediction of the Landau theory for the temperature dependence of the
permittivity in a h111i single-domain crystal. In the orthorhombic phase, the solid line
corresponds to the contribution of a (110) domain. After Wang et al (2007a)
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8.8.8 Dielectric Response Associated with Mobile Ferroelastic
Domain Walls in a Clamped Multidomain Ferroelectric

In this section we have already addressed a few scenarios for the dielectric

response associated with domain walls. These scenarios can be distinguished

based on the mechanisms controlling the restoring force, effective mass, and

friction force associated with the wall motion. In the present section we will

address the situation taking place in grains of ferroelectric ceramics split into

ferroelastic domains. In this system, where the grain is mechanically clamped by

the ‘‘matrix’’ of neighboring grains, one comes across new mechanisms for the

aforementioned features of the domain wall dynamics. Belowwewill outline the

theory of the dielectric response in such system to highlight these mechanisms.

In general, the theory of the dynamics of ferroelastic domain walls is quite

involved; for a comprehensive theoretical treatment of the matter we can refer

the reader to a book by Sidorkin (2006). A very instructive paper on the

dielectric response controlled by the motion of ferroelastic walls was published

by Pertsev and Arlt (1993). In this paper, the authors have developed a rather

general theory of the phenomenon and demonstrated the application of their

theory to a model where both the calculations and the interpretation of the

results obtained can be readily done. In this section we will basically follow the

treatment of this model given by Pertsev and Arlt. In this model, a spherical

grain in a sample of ferroelectric ceramics, which contains 908 domain walls not

interacting with structural defects, is considered. The domain pattern in the

grain is shown in Fig. 8.8.13. In the absence of the applied electric field, the

grain contains a periodic pattern of flat walls. The domain pattern is dense, i.e.,

the gain size g is assumed to be much larger than the domain wall spacing L:

Fig. 8.8.13 Spherical grain
with a lamellar 908 domain
structure. The dashed lines
designate 908 domain walls
displaced by an amount xo
from their equilibrium
positions. g is the grain
diameter. L is the domain
wall spacing. The direction
of the applied field is
indicated. Arrows inside
domains show the directions
of the spontaneous
polarization
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g44L (8:8:73)

The general form of the equation for a displacement of the wall from its
position in the initial domain pattern, x0, can be written by generalizing
Eq. (8.8.39) as follows:

MW€x0 þ bW _x0 þ Kx0 ¼ ðPð1ÞSi � P
ð2Þ
Si ÞEi þ ðeð1ÞSn � eð2ÞSn Þsn; (8:8:74)

where MW, bW, and K are effective mass, friction constant, and the Peierls
barrier restoring force constant of the wall, respectively, as they were intro-
duced for an ideal crystal in Sect. 8.8.3. The r.h.s. of this equation corresponds
to the pressure acting on a ferroelectric/ferroelectric wall as it was introduced in
Sect. 8.2.2. We would like to stress that the electric field and mechanical stress
entering the r.h.s. of Eq. (8.8.74) are the actual fields in the grain comprising the
external and internal components, e.g., the applied and depolarizing electric
fields. In the absence of the applied electric field, we assume that the electric and
elastic fields are fully relaxed and this pressure vanishes. For a dense domain
pattern, this is a good approximation.

Application of an external ac electric field, according to Eq. (8.8.74), will
cause displacements of the walls in the pattern as shown in Fig. 8.8.13. In turn
these displacements will bring about some ‘‘internal’’ electric field and strain.
The internal electric field created, Eint, is just the depolarizing electric field
appeared in the grain, which, once the walls are displaced from their initial
position, will exhibit a nonzero net polarization. This field is proportional to x0
as being proportional to the net polarization which, in turn, is proportional to
x0. The internal stress caused by the displacements of the walls, sint, is linked to
x0, in general, in a complicated manner. (An advanced theory of this effect can
be found in the paper by Pertsev and Arlt (1993).) However, this link can be
rationalized in the case where the grain size is smaller than the acoustic wave-
length at the frequency of the external ac electric field. In this case, one can
distinguish three contributions to sint, which are proportional to x0, €x0, and x0
(Pertsev and Arlt, 1993). The first is associated with the elastic energy of the
clamped grain with displaced walls (this is actually a mechanical analog of the
depolarizing-field-driven effect just discussed above). The second is associated
with the kinetic energy of motion of the grain material. The third term, propor-
tional to the third derivative of the wall displacement with respect to time, is due
to the emission of the acoustic waves by the moving walls. For this model,
explicit expressions for Eint and sint have been derived in the approximation of
elastically isotropic medium (the same elastic constants for the grain and
‘‘matrix’’) neglecting the piezoelectric effect in the material. Under these
approximations, making use of these expressions and taking into account the
orientation of the spontaneous polarization, one can present Eq. (8.8.74) in the
following form (the details of calculations can be found in the paper by Pertsev
and Arlt (1993)):
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" #

Ge2S
L

t3g; (8:8:78)

tg ¼ g=ct: (8:8:79)

Here G and n are the shear modulus and the Poisson ratio of the material; PS

and eS are the absolute values of the spontaneous polarization and spontaneous
shear strain in the domains, k33 and kmatr are a component of the effective
dielectric constant in the grain (in the direction of the applied field) (Turik,
1970) and that of the ceramics. The parameter tg ¼ g=ct is the time needed for
the transverse sound to cross the grain, ct being its velocity. `When deriving these
equations, it has been taken into account that the electric field entering equation
of motion of the wall can be presented in the form

Ei ¼ Ei
int þ AEi

ext; (8:8:80)

where Eext
i is the external electric field in the matrix far from the grain and the

factor A links this field with that inside the grain. At the same time, since the
piezoelectric effect has been neglected, the stress in the grain was taken equal to
the internal that associated with the wall motion, sint.

Let us discuss the role of the new effects introduced by Eq. (8.8.75).
The contribution to the restoring constant Kd is controlled by the two terms,

which originate from the electrostatic and elastic effects, respectively. Accord-
ing to the order-of-magnitude estimates these contributions are expected to be
of the same order. Using the set of parameters typical for PbZr0.49Ti0.51O3 given
in the paper by Pertsev and Arlt (1993) (eS ¼ 0:029, PS ¼ 0:6 C=m2,
G ¼ 1:26� 1010 N=m2, k33 ¼ kmatr ¼ 500, n=0.4) one finds similar values for
these terms. According to the calculations of these authors these values lead to
the domain wall contribution of 350 to the dielectric constant of the ceramics in
the static limit. This value is compatible with the experimental estimates for this
contribution. A remarkable feature of this contribution is that it is predicted
independent of the domain wall spacing. This can be readily concluded from the
knowledge developed in this section. Indeed, as clear from the derivation of Eq.
(8.8.17), in general, the contribution of a domain wall to the static dielectric
constant is inversely proportional to the product ‘‘domain wall spacing times
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restoring force constant.’’ Since in the above theory the restoring force constant,
given by Eq. (8.8.76), is itself inversely proportional to the domain wall spacing,
the aforementioned contribution occurs to be independent of the latter. It is worth
noting that this often happens in the case where the restoring force is related to the
energy of macroscopic electric or/and elastic fields (cf. the results for thin films in
Sects. 9.6.4 and 9.6.5). In calculations of the dielectric response in the above
model, the effect of the Peierls barriers was neglected. Such neglect cannot be
always justified. If we take the estimate for the Peierls barriers for a 1808 wall
BaTiO3 used in Sect. 8.4.3, n ¼ 0:4, we readily find comparable values of
VP0
� ð5� 7Þ � 10�5 J=m2 and Kd. At the same time, the Peierls barrier height

decays very fast with increasing wall thickness (see Eq. (8.4.20)). Thus, this neglect
can be justified if the wall is not ‘‘very thin,’’ as seems to be the case of 908 walls.

Another remarkable feature of the model considered is that it yields an appre-
ciable effectivemass for thewall. The order-of-magnitude estimates and numerical
estimates using typical values of the material parameters of perovskites readily
show that the initial mass of the wall, M0, is at least two orders of magnitude
smaller than the additional massMd, acquired due to the elastic effects.

The dynamical effects associated with the ‘‘elastic’’ effective mass and the
sound emission by the domain walls can be substantial at common microwave
frequencies. This is readily concluded from Eqs. (8.8.75), (8.8.76), (8.8.77),
(8.8.78), and (8.8.79). Specifically, one sees that, at the angular frequency
o ffi t�1g , the terms in Eq. (8.8.75) related to the elastic contribution to the
restoring force, to the ‘‘elastic’’ effective mass, and to the sound emission
become comparable. This implies a strong dispersion of the dielectric response
at this frequency. For PbZr0.49Ti0.51O3 with the grain size g ¼ 2 mm and density
r ¼ 7:6 g=cm3 one finds about 100MHz for the frequency corresponding to the
time tg. Modeling performed by Pertsev and Arlt (1993) for this system on the
lines of Eqs. (8.8.75), (8.8.76), (8.8.77), (8.8.78), and (8.8.79) clearly illustrates
such behavior (see Fig. 8.8.14).

Fig. 8.8.14 The frequency dependence of the domain wall contributions to the real (curve 1)
and imaginary (curve 2) parts of the dielectric constant calculated on the lines of Eqs. (8.8.76),
(8.8.77), (8.8.78), and (8.8.79) for unpolarized Pb(Zr0.49Ti0.51)O3 ceramics with the grain size
2 mm. After Pertsev and Arlt (1993)
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One should make the following remarks concerning the model discussed
above. It definitely reveals some important qualitative features of the dielectric
response of the ferroelastic domains in a clamped grain. At the same time,
Eq. (8.8.75) cannot be used for the quantitative description of the frequency
dispersion of the system at o ffi t�1g since it has been derived under the assump-
tion o55t�1g . Such quantitative description can be obtained numerically using
the general results derived by Pertsev and Arlt (1993), which, however, are to be
complemented with the incorporation of the piezoelectric response of the mate-
rial into the model.
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Chapter 9

Ferroelectric Thin Films

9.1 Introduction

Ferroelectric thin films presently are the object of intensive fundamental and

applied studies, which to a great extent have been stimulated by the horizons of

their applications as functional materials in non-volatile memories in micro-

electronics, mechanical sensors, actuators in micromechanics, pyroelectric

detectors, and in tunable microwave and electro-optical devices. When speak-

ing of ferroelectric thin films, one usually means films of thicknesses ranging

from a few tens to hundreds of nanometers deposited on a thick (typically

0.5 mm or thicker) substrate. This determines mixed mechanical boundary

conditions with the fixed in-plane components of the deformation while the

film is free in the out-of-plane direction. The anisotropy of these conditions

plays a decisive role in many properties of ferroelectric thin films.
For description of the microstructure of ferroelectric films one customarily

uses the terms ‘‘epitaxial,’’ ‘‘textured,’’ and ‘‘polycrystalline’’. When the orienta-

tion of the crystallographic axes of the films is the same throughout the film, one

speaks about an epitaxial film. Practically this may be achieved when the film is

deposited on a crystalline substrate of the structure that is very close to that of

the ferroelectric, and the crystalline lattice of the latter can be viewed as a

continuation of that of the substrate. ‘‘Epitaxial’’ is actually used as a synonym

of ‘‘single crystalline’’. A polycrystalline film is usually called ‘‘polycrystalline’’

when the orientation of its grains is fully random. When this orientation is not

fully random, one speaks about polycrystalline films with a mixed or preferable

orientation. The term ‘‘textured films’’ is applied to the case where the orienta-

tion of the out-of-plane crystallographic axis is the same in all grains of the film

whereas the in-plane orientation is random. To describe the orientation of a

film, hereafter we will use the Miller indices (i j k) to indicate the orientation of

the surface of the films in the reference frame of the paraelectric phase of the

ferroelectric. For example, the notation ‘‘(001) BaTiO3 film’’ means a film with

the surface normal to a fourfold axis of the paraelectric phase of the material. In

such film, in the ferroelectric tetragonal phase, in principle, both the in-plane

and out-of-plane orientations of the spontaneous polarization are possible.

A.K. Tagantsev et al., Domains in Ferroic Crystals and Thin Films,
DOI 10.1007/978-1-4419-1417-0_9, � Springer ScienceþBusiness Media, LLC 2010
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The most intensively investigated are perovskite thin films (e.g., Pb(Zr,Ti)O3

(PZT), BaTiO3, SrTiO3, and (Ba,Sr)TiO3, Pb(Mg1/3Nb2/3)O3 (PMN)). Among

other materials special attention is paid to Aurivillius structure ferroelectrics

like pure or modified SrBi2Ta2O9 and Bi4Ti3O12 which are considered as good

candidates for ferroelectric memory devices. Extended investigation of ferro-

electric thin films reveals that their properties can substantially differ from

those of the bulk form of the same material. As an example of this difference

one can indicate substantially elevated (compared to the bulk samples) values of

coercive fields in the films (e.g., in PZT films). Another typical feature of films is

strongly reduced values of the dielectric constant in the case where the dielectric

constant of the bulk material is very high (reaches values of a few tens of

thousands like in SrTiO3 and PMN).
Discussing the difference in the properties of bulk ferroelectrics and thin

films, one distinguishes two groups of factors.
The first group covers the factors related to the difference in the processing

condition. The deposition temperature of thin films (or crystallization tempera-

ture in case of low-temperature deposition), usually ranging from 500 to 8008C,
is considerably lower than the fabrication temperature of single crystals and

bulk ceramics. Another remarkable feature of thin film processing is a big

surface-to-volume ratio. All these factors can substantially influence the stoi-

chiometry, microstructure, and defectness of the thin films. The big surface-to-

volume ratio can also lead to a certain degree of compositional inhomogeneity

across the film thickness.
The second group covers the factors related to the physical phenomena that

become important in the films due to their small thickness.

(i) The mechanical interaction between a film and the substrate results in
stressed and strained states of the film. Since the thickness of the substrate
is usually much greater than that of the film, the substrate is only slightly
deformed whereas the lattice parameters of the ferroelectric film can sub-
stantially differ from those of the bulk material. When amisfit-dislocation-
assisted stress release takes place at the ferroelectric/substrate interfaces,
the strain and stress at the interface become inhomogeneous.

(ii) Properties of a ferroelectric near its free surface or a ferroelectric/substrate
interface are, in general, different from those in the bulk. If the film
thickness is comparable to the width of such a ‘‘disturbed’’ layer, the
properties of the film as a whole can be affected, e.g., its average dielectric
response. If, in addition, the polarization in the films has a component
normal to the plane of the film, the depolarizing effect enters the game. As
a result, the bulk of the films become sensitive to the presence of the
disturbed layer leading to yet more pronounced thickness dependence of
the film properties. The origin of the ‘‘disturbed’’ layer may be both
intrinsic (e.g., the presence of misfit dislocation or coupling between the
ferroelectric polarization and the substrate) and extrinsic (e.g., the pre-
sence of a layer of a secondary phase).
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(iii) The electrochemical interaction between the electrodes and the ferroelectric
is also a possible source of the thickness size effect. This interaction can
result in the formation of the so-called depletion space charge in an appreci-
able fraction of film volume. The field and polarization induced by this
charge can substantially influence the properties of ferroelectric films.

Not underestimating the importance of the first group of factors, in this
chapter we will mainly focus on the domain-related issues of ferroelectric thin
films in the context of the second group of factors. The goal of this chapter is to
review the basic theoretical concepts and experimental findings in this field,
trying to cover most of the important issues. When reading this chapter the
reader should realize that the field is relatively young so that the theoretical
understanding is quite ‘‘inhomogeneous’’ (wemean advanced theories are avail-
able on some issues whereas only non-developed concepts are available on
others) and the experimental findings are sometimes contradictory (or at least
look so). Such situation urged us to make a choice between the presentations of
only accomplished theory and fully understood experimental finding on the one
hand and, on the other hand, of more open big picture of the activity in the field.
We have chosen the latter option. In its spirit, we devoted Sect. 9.2 to a review of
nearly raw experimental data on domain patterns in ferroelectric thin films.
Some of these data will be discussed later in the context of the available theories.
In general, in this chapter, as was said, trying to cover important problems, we
combine in our presentation properly understood issues with issues that,
though being important, are still less understood.

9.2 Experimental Studies on the Static Domain Pattern

in Thin Films

Domain pattern in ferroic thin films became an issue of interest during the past
two decades, the main focus being on ferroelectric thin films. This section will
mainly address the experimental data on static domain parents in thin films of
classical perovskite ferroelectrics such as PbTiO3, BaTiO3, as well as solid solu-
tions based on thesematerials. In addition, wewill reviewbriefly the experimental
results on less investigated systems like films of SrBi2Ta2O9, Bi4Ti3O12, and
KNbO3.

9.2.1 Domain Structure in (001) Thin Films of Tetragonal
Ferroelectric Perovskites

Domain features of thin films of ferroelectric perovskites with a cubic–tetragonal
phase transition have been attracting much attention of workers since the early
1990s, though some observations of domain patterns in this kind of films have
been reported in yet earlier papers (Sviridov et al., 1984). This activity has mainly
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addressed PbTiO3, and to a lesser extent films of Pb(Zr,Ti)O3 (PZT), (Pb,La)-
TiO3 (PLT), BaTiO3, and (Ba,Sr)TiO3 (BST). To date, most of studies have been
performed on epitaxial films deposited onto crystalline substrates of (001) or
pseudo-(001)1 orientations (MgO, KTaO3, SrTiO3, and LaAlO3) using a wide
variety of deposition techniques (magnetron sputtering, pulse laser deposition
(PLD), metal-organic chemical-vapor deposition (MOCVD), molecular-beam
epitaxy (MBE), and chemical solution deposition (CSD)). The domain patterns
in films are visualized by using different techniques. The most conventional
techniques are scanning force microscopy (SFM) pioneered in ferroelectric thin
films by Franke et al. (1994) and transmission electron microscopy (TEM). In
earlier papers a good domain contrast was achieved by using a method which
included a chemical etching followed by making platinum–carbon replicas, the
latter being visualized using an electron microscope (Sviridov et al., 1984; 1992).
A high resolution of 1808 domains was recently demonstrated by using
scanning nonlinear dielectric microscopy (SNDM) (Odagawa and Cho,
2001). An important parameter of domain patterns—fraction of domains
making the pattern—can also be reliably determined by comparing intensities
of XRD peaks corresponding to different domain states. Using all these
techniques a large body of experimental data, sometimes contradictory, has
been collected on the domain features of (001) thin films of tetragonal ferro-
electric perovskites. In what follows we will try to overview the main trends
revealed, without going into details of fabrication and characterization
techniques.

9.2.1.1 Configuration of Ferroelastic Domain Patterns

One reasonably expects that domain patterns of a ferroic film should be formed
by the walls that meet the conditions of mechanical compatibility for the bulk
material2. Accordingly, in the case of ferroelastic domains in tetragonal ferro-
electric perovskites, only walls of {110} orientations are expected. In a (001) film
(the X3-axis is defined perpendicular to the plane of the film), this determines
two types of simplest ferroelastic patterns made of c- and a-domains (domain
states) where the c- or a-axis is normal or nearly normal to the plane of the film,
respectively. These are the so-called a/c- and a1/a2-variants. In the a/c-variant,
the domain walls are parallel to one of the (101), (011), ð�101Þ, and ð0�11Þ planes,
making approximately angles of 458 with the plane of the film. In the a1/a2-
variant, the walls are parallel either to (110) or to ð1�10Þ planes, being perpendi-
cular to the plane of the film. According to the possible orientation of the
domain walls in these variants, four a/c-variants and two a1/a2-variants are
distinguished. The orientations of the walls and spontaneous polarization in the

1 In the case where the substrate is pseudocubic.
2 Actually, this may not always be the case; see papers by Shuvalov et al. (1987) and Dudnik
and Shuvalov (1989).
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a/c- and a1/a2-variants are illustrated in Fig. 9.2.1. A general feature of experi-

mentally observed patterns is that a1/a2-variants contain equal fractions of

a1- and a2-domains in accordance with simple theoretical arguments (see

Sect. 9.3.3) whereas the fraction of c-domains in a/c-domain patterns is very

sensitive to many parameters of the film/substrate system.
The domain patterns experimentally observed in (001) thin films of tetra-

gonal ferroelectric perovskites are a/c- and a1/a2-variants as well as their super-

positions. Below we will give examples of such structures. Figure 9.2.2 shows a

plan-view TEM image of 200 nm thick PbTiO3 (PLD film onKTaO3 substrate),

where two a1/a2-variants and at least two a/c-variants are seen.
3 The coexistence

Fig. 9.2.1 Domain patterns
in (001) tetragonal
ferroelectric thin films: a/c-
pattern (a) and a1/a2-pattern
(b). Arrows show the
directions of the
spontaneous polarization

Fig. 9.2.2 Coexistence of
different types of domain
patterns in (001) tetragonal
ferroelectric thin films. Plan-
view TEM image of an
epitaxial PbTiO3 films on
(001) KTaO3 substrate.
Reprinted with permission
from Lee et al. (2001b).
Copyright (2000), American
Institute of Physics

3 From this type of image one cannot distinguish the variants that have identical orientation
of the intersection between their domain walls and the free surface of the film.

9.2 Experimental Studies on the Static Domain Pattern in Thin Films 525



of a1/a2- and a/c-variants is a rare situation; more typical is the coexistence of

only a/c-variants (two or more). An example of such coexistence is illustrated in

Fig. 9.2.3. Here a cross-section TEM image of a 400 nm thick PZT (20/80) film

(PLD film on SrTiO3 substrate) shows two a/c-variants with the walls parallel

to (101) and ð�101Þ planes (Ganpule et al., 2000a). An SFM image obtained from

an identically processed film is shown in Fig. 9.2.4. A cross-hatched pattern

Fig. 9.2.3 Cross-section
TEM image of a
Pb(Zr0.2Ti0.8)O3 epitaxial
film on (001) SrTiO3

substrate. Reprinted with
permission from Ganpule
et al. (2000a). Copyright
(2000), American Institute
of Physics

Fig. 9.2.4 (a) Typical
piezoelectric image of a
Pb(Zr0.2Ti0.8)O3 epitaxial
film. (b) The amplitude of
the electric signal
corresponding to the
vibration intensity as a
function of the distance
along the line drawn in
(a). Reprinted with
permission from Ganpule
et al. (2000a). Copyright
(2000), American Institute
of Physics
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shown in this figure corresponds to interpenetrating a/c-variants having walls
parallel to (101) and (011) planes, the black stripes visualizing the intersections
of a-domains with the free surface of the film. Similar images were obtained by
different authors using various visualizing techniques: SFM in the height mode
(Seifert et al., 1995), SFM in the piezoelectric mode (Maruyama et al., 1998),
TEM (Ganpule et al., 2000a), and chemical etching followed by making plati-
num–carbon replicas (Sviridov et al., 1992). Actually these structures should be
considered asmade of all three possible ferroelastic domain states. According to
Roytburd et al. (2001) two types of three-domain-state regular structures are
possible: the so-called ‘‘second-order polydomain’’ and ‘‘cellular polydomain’’
structures schematically shown in Fig. 9.2.5. The cross-hatched patterns typi-
cally observed correspond to the ‘‘cellular polydomain’’ type structure, which,
however, are not as regular as that shown in Fig. 9.2.5. Independently of
whether an a/c-domain pattern corresponds to a three-domain-state structure
or the film consists of non-overlapping areas containing different types of a/c-
variant, the films usually contain nearly equal fractions of four possible a-
domain states. If the film is not too thin, these states can be distinguished by
using the XRD intensity reciprocal space mapping (Foster et al., 1995; Lee and
Baik, 2000). The result of such analysis offered by Lee and Baik (2000) is shown
in Fig. 9.2.6 where the XRD contour maps for HK-reciprocal space of PbTiO3

(100) reflections are shown for films of different thicknesses (PLD film onMgO
substrate). In thinner films, Fig. 9.2.6a and b, the (100) Bragg point is not split,
which means that, in all four a-domain states, the vertical a-axes are strictly
normal to the substrate. In thicker films, Fig. 9.2.6c and d, the (100) Bragg point
is split into four points, showing that now all four a-domain states are misor-
iented with respect to the substrate. The cause of this misorientation is the
clapping angles between a- and c-domains, the latter being oriented normally to

Fig. 9.2.5 Possible
three-domain-state regular
structures in (001)
tetragonal ferroelectric thin
films. After Roytburd et al.
(2001)
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the substrate (Lee et al., 2001b). It was, however, found that the tilt ja of a-
domains is smaller than that of the bulk value of the clapping angle 2arctan(c/a)
– 908 (see Sect. 2.2.5), c and a being the lattice parameters of the bulk material.
For example, according to two groups of authors (Foster et al., 1995; Lee and
Choi, 2001), for PbTiO3/MgO films, ja � 2.68, that is smaller than the bulk
value of the clapping angle 3.68. For the same system, yet smaller values of ja

have also been obtained (Lin et al., 1999): in the range 1.9–2.158, depending on
the cooling rate. The c-domains of a/c-variant also can be misoriented with
respect to the substrate. Figure 9.2.7 shows an area map of XRD intensity of
(003) peak of a 790 nm thick PbTiO3 film (MOCVD film on MgO substrate)
(Foster et al., 1995); the splitting of the peak corresponds to a 0.68 misorienta-
tion of c-domains in the film.

The images shown in Figs. 9.2.2, 9.2.3, and 9.2.4 suggest that the domain
patterns in the films can be characterized by a certain value of the a-domain
spacing. However, it is seen from these figures that, in different regions of the
same film, this value can readily differ by a factor of 2. Despite this scatter of
the data a clear trend can be traced: The average spacing in ferroelastic
domain patterns in films of a given material increases with increasing film
thickness. These two statements are illustrated with the experimental data

Fig. 9.2.6 XRD counter maps for HK-reciprocal space of PbTiO3 (100) reflection intensity
shown for films of different thicknesses. Reprinted with permission from Lee and Baik (2000).
Copyright (2000), American Institute of Physics
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given in Table 9.3.2 later in this chapter. A systematic analysis of periodicity

of ferroelastic domain patterns in PZT/SrTiO3 films has been reported by

Nagarajan et al. (2001). The obtained statistics of the a-domain spacing is

illustrated in Fig. 9.2.8. It is seen that the periodicity in the film deposited

onto a flat SrTiO3 substrate is rather poor; at the same time, it can be strongly

improved by using a vicinal substrate, i.e., a crystalline substrate having the

orientation which is very close to a certain high-symmetry orientation, e.g.,

(001). Such substrates exhibit a system of small steps on the surface spaced by

many lattice constant distance. This effect is illustrated in Fig. 9.2.8 showing a

very narrow distribution of the domain spacing in a film grown on a vicinal

SrTiO3 substrate having 7–10 nm steps every 200 nm. In this system the steps fix

the positions of narrow a-domains. Natural defects in the substrate also often

provoke nucleation of ferroelastic domains in the film (Foster et al., 1997).

Fig. 9.2.7 XRD counter
map of XRD intensity of
(003) reflection of a 790 nm
thick PbTiO3 film.
Reprinted with permission
from Foster et al. (1995).
Copyright (1995), American
Institute of Physics

Fig. 9.2.8 Probability of
a-domain spacing in (100)
PbZr0.2Ti0.8O3 epitaxial thin
films on (100) SrTiO3

substrates for the exact (100)
orientation (Flat STO) and
for 38 vicinal cut toward
(010) (Vicinal STO).
Reprinted with permission
from Nagarajan et al.
(2001). Copyright (2001),
American Institute of
Physics
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9.2.1.2 Composition of Ferroelastic Domain Patterns

Themost clearly determined characteristic of a/c-domain patterns in films is the
fraction of different domain states. A convenient parameter describing the
composition of the pattern is the volume fraction of c-domains, which we
denote as a. It can be evaluated from TEM or SFM images. For instance,
using the TEM image shown in Fig. 9.2.3 one can evaluate a¼ 0.7–0.9 from the
ratio of the volumes of the a- and c-domains shown in this image. Another
way of evaluation of the average fraction of domain states in a pattern is to
analyze the intensities of XRD peaks. In terms of total intensities of the (001)
and (100) reflections, SI(001) and SI(100), the fraction of c-domain states can
be evaluated as

a ¼ SIð001Þ
SIð100Þ þ SIð001Þ : (9:2:1)

Reliable information on the XRD intensity peaks can be obtained from
maps of XRD intensities (or rocking curves) like those shown in Figs. 9.2.6
and 9.2.7. For a common situation the (001) point is not split and the (100) point
is so that SI(001) ¼ I(001) and SI(001) ¼ 4I(001). Just the use of areas of the
corresponding maxima of y–2y curves can lead to wrong values of a. A detailed
discussion of this point has been offered by Foster et al. (1995).

For PbTiO3 and tetragonal PZT films, the fraction a has been evaluated as a
function of film thickness h by many authors. It has been found that the a(h)
dependence is sensitive to the substrate material and film composition. Avail-
able experimental data reveal both increasing and decreasing types of the a(h)
dependence as it is shown in Fig. 9.2.9. This figure suggests a correlation
between sense of this dependence and the sign of the in-plane strain imposed
by the substrate on the film at the processing temperature (typically some
7008C). Namely, the positive sign of this strain corresponds to a(h) increasing
as a function of h and vice versa. In the case of MgO and KTaO3 substrates
(Fig. 9.2.9a and b), at the processing temperature, the lattice constants of
the substrates as (4.351 and 4.004 Å) are greater than that of the bulk ferro-
electric in the paraelectric phase ac¼ 3.979 Å. Via the effect of epitaxy this leads
to tensile stresses in the film. In the case of PbTiO3/SrTiO3 (ac ¼ 3.979 Å and
as ¼ 3.934 Å) and Pb(Zr0.2Ti0.8)O3/LaAlO3 (ac ¼ 4.02 Å and as ¼ 3.821 Å) the
inverse relation between as and ac takes place so that, in the paraelectric phase,
the film is under compression. Results for PbTiO3/MgO system, similar to
those shown in Fig. 9.2.9a, have been reported by Choi et al. (1998). The
trend illustrated for the PbTiO3/SrTiO3 system in Fig. 9.2.9c, namely the
thinner the film, the higher the fraction of c-domains, is in qualitative agreement
with results reported by Forster et al. (1995) and Theis and Schlom (1997).
However, for this system, several authors have reported the pure c-domain state
for quite thick (up to 250 nm) films (Lee et al., 2001b; Kwak et al., 1994;
Gan et al., 1998).
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The temperature dependence of a was experimentally addressed for films of

PbTiO3 and PLT onMgO (Lee and Baik, 1999; Kwak et al., 1994; Alpay et al.,

1998; Kang and Baik, 1997) and for PbTiO3/KTaO3 films (Kwak et al., 1994).

The same trend, namely a reduction of a with increasing temperature, was

obtained. The results by Lee and Baik (1999) on PbTiO3/MgO films (PLD;

h ¼ 300 nm) are shown in Fig. 9.2.10a, the results of Kwak et al. (1994) being

very close to those shown. Figure 9.2.10b shows the a(T) dependence obtained
by Kwak et al. (1994) for PbTiO3/KTaO3 (MOCVD, h ¼ 250 nm).

Data on the concentration dependence of the fraction of c-domains a in

PZT/MgO system (magnetron sputtering) were reported by Lee et al. (1997b).

The ratio of integrated intensities of rocking curves for (001) and (100) was used

for the evaluation of this parameter. It was found that, both at room and

phase transition temperatures, a increased with increasing Zr concentration

(see Fig. 9.2.11), the effect being better pronounced at the transition temperature.

(a) (b)

(c) (d)

Fig. 9.2.9 Fraction of c-domains in of PbTiO3 films on different substrates as a function of the
film thickness. (a)MgO, (b) KTaO3, (c) SrTiO3, (d) LaAlO3. After Lee and Baik (2000), Kwak
et al. (1992), Hsu and Raj (1995), and Nagarajan et al. (1999)
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Similar behavior has been reported for the La-concentration dependence of a in

PLT/MgO films (Kang and Baik, 1997).
All experimental data on a/c-patterns in (001) films presented above have

been obtained for PbTiO3 (pure or modified) films which attracted the most

attention of workers. Much less information is available on a/c-patterns from

ferroelectric thin films of BaTiO3. Despite considerable amount of publications

on (001) BaTiO3 films, the information on ferroelastic domain patterns in these

is virtually absent since most of the works report on a- or c-monovariant states.

A correlation between the type of the monovariant and thermal expansion

coefficient of the substrate has been reported forMgO, GaAs, and fused quartz

substrates (Ogawa et al., 1991; Srikant et al., 1995). For MgO substrate, which

has a higher coefficient of thermal expansion than that of BaTiO3 in the para-

electric phase, one observed the c-domain state, whereas for GaAs and fused

quartz having smaller expansion coefficients, it was the a-domain state. As for

Fig. 9.2.10 Fraction of c-domains in PbTiO3 films on different substrates as a function of
temperature. (a) MgO; (b) KTaO3. After Lee and Baik (1999) and Kwak et al. (1992)

Fig. 9.2.11 Fraction of
c-domains in of Pb(Zr,Ti)O3

films on MgO substrate as a
function of Zr concentration
at room temperature
(marked TA) and close to the
phase transition (marked
TC). After Lee et al. (1997b)
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the a/c-pattern, it has been only observed in the peripheral regions of BaTiO3

(001) films (MBE, h ¼ 20 nm) (Tsunekawa et al., 1999a,b). According to SFM
image, this pattern exhibits a period of some 70 nm and the c-domain fraction
a ffi 0:5. The a1/a2-pattern was reported for BaTiO3 (001) films (MOCVD,
h ¼ 500–600 nm) by Kaiser et al. (1995).

9.2.1.3 Antiparallel Domain Patterns

Antiparallel domain patterns have been observed in (001) perovskite thin films
by using different experimental techniques. Probably the first information on
1808 domains in these systems has been reported by Surowiak et al. (1993) who
employed a method with a chemical etching followed by making platinum–car-
bon replicas. These authors monitored antiparallel c-domains in (Ba1–xSrx)-
TiO3/MgO ðx ¼ 0� 0:3Þ films obtained by sputtering covering the thickness
range h ¼ 20� 5000 nm. The films were purely c-domain oriented. The tem-
perature evolution of the domain pattern observed in a (Ba0.7Sr0.3)TiO3 film is
illustrated in Fig. 9.2.12. This film was found to be under a strong in-plane
compression which resulted in a 90 K shift of the transition temperature in the
film compared to its value for the target (310 K). The mean width of the
observed domains was reported to increase as � 0:28 h with increasing film
thickness h.

Thickness-dependent 1808 domain patterns in MBE deposited BaTiO3/
SrTiO3 films has been reported by Tsunekawa et al. (1997, 1998) for film
thicknesses of 4, 20, 1000 nm. The information was obtained by using SFM.
A correlation between the sign of polarization in domains and their height,
which enabled the visualization of the pattern, was attributed by the authors to
dry etching effects. The end shape of the 1808 cylindrical domain was found
regular (almost round) in thinner films becoming irregular with increasing
thickness. In thicker films, the coexistence of 180 and 908 domains was
observed. The determined thickness dependence of the average diameter of
the domain ends D is shown in Fig. 9.2.13, where the data on bulk BaTiO3

crystals obtained by the same authors are also incorporated. As the best fit for
this dependence a relation D ¼ 3:2 h0:51 (D and h are in nm) was suggested.

Similar correlation between the domain height and their sign was reported
by Odagawa and Cho (2001) who used a combination of height-mode SMF
technique with scanning nonlinear dielectric microscopy (see Sect. 4.5.6). In
their experiments, the polarity of the domains was determined from the phase of
the second polarization harmonics taken simultaneously with surface topology
images. For PZT/SrTiO3 films, the positively poled domains were reported to
be 1 nm higher than those poled negatively. An example of a cross-section of the
second harmonics phase image containing 1808 domains is shown in Fig. 9.2.14,
here 1–3 nm domains separated with 0.3–0.5 nm transient regions. The latter
should be interpreted as conditioned by the finite instrumental resolution not by
the wall thickness since the phase of the second harmonics can be related to the
sign of the polarization, which changes abruptly in the wall of any thickness.
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Fig. 9.2.13 Geometrically
averaged diameter of the
ends of c-domains vs. the
thickness of an epitaxial
BaTiO3 film on SrTiO3

substrate. After Tsunekawa
et al. (1997)

(b)

Fig. 9.2.12 Evolution of c-domain structure in (001) films of Ba0.7Sr0.3TiO3 onMgO substrate
as a function of temperature (a) 293 K, (b) 333 K, (c) 353 K, (d) 369 K, (e) 383 K, (f) 403 K.
Reprinted with permission from Surowiak, Z., Mukhortov, V.M., Dudkevich, V.P. Phase
transitions and domain structure in heteroepitaxial ferroelectric (Ba1-xSrx)TiO3/(100)MgO
and PbTiO3/(100)MgO thin films, Ferroelectrics 139, 1 (1993). Copyright (1993), Taylor and
Francis
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All the experiments discussed above are dealing with information obtained

from the interface or from a thin interfacial layer of the films. To obtain the

direct information on the 1808 domain patterns in the ‘‘bulk’’ of the film one

should test the sample using a kind of radiation that can penetrate into it. An

example of such a study has been offered by Streiffer and coworkers (2002). In

this work, epitaxial PbTiO3/SrTiO3 films of thicknesses h ¼ 1:6� 42 nm were

studied using X-ray scattering. Upon cooling below the transition temperature,

satellites appeared around Bragg peaks indicating the presence of 1808 stripe
domain patterns of periodW ¼ 3:7� 24 nm, the thickness dependence of period

of the patterns (shown in Fig. 9.2.15) being consistent with the square root law

W ¼ 3:2 h0:5 (W and h are in nm). Another interesting finding of this chapter is

the observation of three types of the domain structures depending on the tem-

perature and the thickness of the film. It was reported that on progressive cooling

from the paraelectric state the system exhibits, first, a pattern where the domain

width is comparable to the domain wall thickness, second, a pattern with

relatively narrow domain walls, and finally, a single-domain state.

Fig. 9.2.14 A cross-section
of the second harmonics
phase image containing 1808
domains. Pb(Zr,Ti)O3 films
on SrTiO3 substrate.
Reprinted with permission
from Odagawa and Cho
(2001). Copyright (2001),
Taylor and Francis

Fig. 9.2.15 Period of a striped c-domain pattern vs. thickness of PbTiO3 films on SrTiO3

substrate. Solid symbols: T ¼ Tc � 250K. Open symbols: T ¼ Tc � 50K. Line: theory at
T ¼ Tc � 250K (the square root law with the parameters taken from independent sources,
see Sect. 9.4). After Streiffer et al. (2002)
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9.2.2 Ferroelastic Domain Patterns in (001) Rhombohedral and
(111) Tetragonal Thin Films of Ferroelectric Perovskites

In this section we will discuss the theoretically expected and experimentally

observed structures of ferroelastic domain patterns in (001)-oriented rhombo-

hedral and (111)-oriented tetragonal ferroelectric thin films. Specifically, we

will address the case of perovskite ferroelectrics with the cubicm�3m paraelectric

phase and tetragonal 4mm and/or rhombohedral 3m ferroelectric phases. The

common feature of these systems is that none of their domain states have

spontaneous polarization purely normal to the plane of the film whereas the

vectors of spontaneous polarization in these domain states are arranged in a

symmetric manner with respect to the film normal. We will see that a certain

similarity is also expected between the ferroelastic domain patterns in these

systems.
The geometry of domain patterns in these systems has been treated by

Streiffer et al. (1998) and Romanov et al. (1999) based on the conditions of

mechanical and electrical compatibilities (see Sects. 2.2.3 and 2.2.4). Specifi-

cally, it has been found that in these systems, in all domains, the components of

the spontaneous polarization normal to the plane of the film are equal in the

absolute value whereas its in-plane components are equal in absolute value but

differ in orientation.
For the case of the cubic–rhombohedral ferroelectric phase transition

(m�3m) 3m), four possible ferroelastic states (or variants) are shown in

Fig. 9.2.16. Orientations of elastically permissible domain walls separating

these variants are given in Table 9.2.1 (see also tables in Appendix D). The

walls are of {100} and {110} orientations. The symmetric arrangement of the

vectors of spontaneous polarization of the variants with respect to the film

normal implies that the in-plane spontaneous strain in the variants can differ

only in their orientations, i.e., the tensors of the spontaneous deformation of the

domains are related by in-plane rotations of the reference frame. This situation

is similar to the a1/a2-pattern in tetragonal (001) films discussed in the previous

section. Like in the a1/a2-pattern, in (001) rhombohedral films, the width of the

domains making a ferroelastic pattern is expected to be the same. However, two

types of patterns are possible.
Domain patterns of the first type contain walls that are perpendicular to the

plane of the film. The structure of such patterns is shown in Fig. 9.2.17a and b;

they contain walls of (100) and (010) orientations. As clear from Fig. 9.2.17b,

the net polarization of this pattern possesses only the in-plane component.

Domain patterns of the second type contain oblique walls that make angles

of about 458 with the plane of the film (Fig. 9.2.17c and d). As clear from

Fig. 9.2.17d, the net polarization of this pattern possesses a nonzero out-of-

plane component. Thus, the domain structure with vertical walls is nonpolar in

the out-of-plane direction whereas the structure with oblique walls is ‘‘perfectly

poled’’ in this direction, i.e., it exhibits the maximal vertical projection of the net
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Fig. 9.2.16 Elementary cell transformations resulting from cubic–rhombohedral ferroelectric
phase transition showing four structural variants of the rhombohedral phase (r1, r2, r3, r4) and
eight polarization variants (Pþ1 , P

�
1 , P

þ
2 , P

�
2 , P

þ
3 , P

�
3 , P

þ
4 , P

�
4 ) corresponding to eight domain

states allowed at this transition. Reprinted with permission from Streiffer et al. (1998).
Copyright (1998), American Institute of Physics

Table 9.2.1 Coherent domain boundaries between
different variants (defined in Fig. 9.2.16). The aster-
isks denote variants that are not expected in epitaxial
(001) films. After Streiffer et al. (1998)

Variant r1 r2 r3 r4

r1 ð100Þ
ð011Þ

ð001Þ�

ð110Þ�
ð010Þ
ð101Þ

r2
ð010Þ
ð�101Þ

ð001Þ�
ð�110Þ�

r3
ð100Þ
ð0�11Þ
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spontaneous polarization. One should mention that not all ferroelastic patterns

permitted in the bulk material are expected in (100) rhombohedral films. The
reason is as follows. The driving force of the formation of ferroelastic domain
patterns is a stress release. In the case of ceramics, it is a three-dimensional stress
release in grains clamped on average by the rest of the material. In films on a
substrate, it is a release of the two-dimensional stress imposed by the substrate.

If the in-plane spontaneous strains in two ferroelastic variants are the same, a
pattern made of these variants cannot obviously contribute to the above two-
dimensional stress release and, thus, is not favored. This is the case of a domain
structure containing r1/r3 or r2/r4 pairs which are not expected to occur in the

considered system (see Sect. 9.3.4 for a more detailed discussion).
In the case of (111) tetragonal films, one finds a situation similar to that

discussed above for (001) rhombohedral films. Here, also two types of domain
patterns are possible. One is nonpolar in the out-of-plane direction and contains
vertical walls, which can be parallel either to ð�101Þ, or to ð0�11Þ, or to ð�110Þ
crystallographic planes. This pattern is explained in Fig. 9.2.18a and b. The

patterns of the second type are ‘‘perfectly poled’’ in the out-of-plane direction
and contain oblique walls of either (101), or (011), or (110) orientations as
shown in Fig. 9.2.18c and d.

Fig. 9.2.17 Schematic plan views (a) and (c) and cross-sections (b) and (d) of possible domain
parents in (001) ferroelectric films exhibiting a cubic–rhombohedral ferroelectric phase tran-
sition. Arrows show the directions of spontaneous polarization in the domains and of the net
polarization of the pattern. For the definition of the structural variants of the rhombohedral
phase (r1, r2, r3, r4) see Fig. 9.2.16. Reprinted with permission from Streiffer et al. (1998).
Copyright (1998), American Institute of Physics

538 9 Ferroelectric Thin Films



Comparing the two types of the domain patterns in rhombohedral and tetra-

gonal systems discussed above an essential qualitative difference between these

systems can be pointed out. In (001) rhombohedral films, the intersection lines

between domain walls and the upper film surface are oriented either along [100]

or along [010] directions disregarding the type of the pattern. These directions are

equivalent in terms of the cubic symmetry of the paraelectric phase. For this

reason, one cannot distinguish the ‘‘nonpolar’’ and ‘‘perfectly poled’’ patterns

merely judging from the orientation of these lines (cf. Fig. 9.2.17). In contrast, in

(111) tetragonal films, for the ‘‘nonpolar’’ and ‘‘perfectly poled’’ patterns, the

orientations of the intersection lines are non-equivalent in the aforementioned

sense (see Fig. 9.2.18). Thus, the information on the cross-section of a domain

pattern with the film surface enables identification of the pattern type.
A comprehensive investigation of domain structure of (100) rhombohedral

PZT thin films was performed by Streiffer et al. (1998). The results of plan-view

TEM and SEM studies were reported for MOCVD non-electroded films of two

compositions: 80/20 and 65/35 deposited on SrRuO3-buffered SrTiO3. Using

the information from the d-fringe contrast, plan-view TEM tilting experiments,

and arcing of higher order diffraction spots in selected area electron diffraction

pattern, it was shown that the domain structure of the films contains exclusively

‘‘nonpolar’’ patterns having walls of (100) and (010) orientations. The vertical

Fig. 9.2.18 Schematic plan views (a) and (c) and cross-sections (b) and (d) of possible domain
parents on (111) ferroelectric films exhibiting a cubic–tetragonal ferroelectric phase transition.
Arrows show the directions of spontaneous polarization in the domains. Symbols d�i denotes six
possible domain states allowed at this transition. After Romanov et al. (1999)
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orientation of the wall was also confirmed by TEM images taken from

200–400 nm thick foils, which are shown in Fig. 9.2.19. Here, the domain

pattern consists of orthogonal groups of the order of 10 parallel twin lamellae

with traces, with the length of up to some 20 mm and the wall spacing of the

order of 200–500 nm. The projected width of the walls is approximately 30 nm,

which is consistent with a small (�58) tilt of the foil. SEM images of the films

also reveal cross-hatched domain patterns of the same orientation, however,

with much smaller domain wall spacing. For 520 nm thick PZT 80/20 films it

was found to be 80–120 nm, and for 700 nm thick PZT 65/35 films 50–100 nm.

The vertical orientation of the domain walls in non-electroded (100) rhombo-

hedral PZT films was also documented with TEM cross-section images by Lin

et al. (1999). As was pointed out by Streiffer et al. (1998) the nonpolar domain

configuration can be anticipated for non-electroded films since it is more

electrostatically favorable than the ‘‘perfectly poled’’ pattern.

Fig. 9.2.19 (001) film of
tetragonal PbZr0.65Ti0.35O3.
Plan-view TEM (a) and
SEM (b) images of domain
patterns. In the rectangular,
the voltage contrast is
enhanced by applying a
Fourier filter. Reprinted
with permission from
Streiffer et al. (1998).
Copyright (1998), American
Institute of Physics
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The experimental data on domain patterns in (111) tetragonal ferroelectric

thin films are limited though PZT films of this type are actually used in non-

volatile memory devices.
Results of SFM (topography mode) studies of sputtered (111) PZT (25/75)

films deposited on Si covered with different sublayers (Pt, IrO2, and Al2O3)

have been reported by Zybill et al. (1999, 2000). For 700 nm films, the patterns

visualized have typical domain wall spacing about 20 nm. For films on Pt

sublayer, the spacing increases with increasing film thickness h: h = 300, 500,

and 700 nm correspond to spacings of 12, 16, and 19 nm, respectively (Zybill

et al., 2000). An example of height-mode SFM image of the surface of a film

revealing a domain pattern is shown in Fig. 9.2.20 (after Zybill et al., 1999). This

image enables also an evaluation of the width of 908-domain wall as�1 nm. The

investigated films were found to be spontaneously poled during the deposition.

This suggests that the film contains ‘‘perfectly poled’’ patterns with oblique

domain walls.
An example of nonpolar domain pattern in a (111) PZT tetragonal ferro-

electric film has been reported by Romanov et al. (1999). In this paper, the

conclusion about the presence and type of the domain pattern was drawn from

the SEM images shown in Fig. 9.2.21, where the contrast was related to the sign

of the normal component of the polarization in the domains. This image was

interpreted as a superposition of three types of nonpolar domain patterns

illustrated in Fig. 9.2.18b.

Fig. 9.2.20 An example of
height-mode SFM image of
the surface of a (111)
tetragonal PbZr0.25Ti0.75O3.
Domain walls are shown
with arrows. After Zybill
et al. (1999)
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9.2.3 Domain Structure in Other Systems

Experimental information available in the literature on domain patterns in
systems different from tetragonal and rhombohedral perovskite films is very
limited as well as the relevant theoretical work. This impedes conclusive discus-
sion of this matter. For this reason in the present section we restrict ourselves to
brief mentioning of some publications and findings.

Room temperature domain structure of orthorhombic (with the cubic para-
electric phase) KNbO3 films has been experimentally addressed by Gopalan
and Raj (1996, 1997). The studied films had a thickness of about 350 nm and
were laser ablated onto a SrTiO3 (100) substrate or onto a MgO (100) substrate
with a 12 nm SrTiO3 sub-layer. The films exhibit excellent cube-on-cube epi-
taxy. TEM investigations reveal that among 12 possible ferroelectric domain
states (see Fig. 2.3.5b) only 8, which have nonzero out-of-plane component of
the spontaneous polarization, participate in the domain patterns. Judging from
plan-view TEMmicrographs, the films were found to contain a domain pattern
made of 60 and 1208 domain walls whose traces on the (001) plane are parallel to
the [011] and ½0�11� pseudo-cubic directions (Fig. 9.2.22), a typical domain wall
spacing being about 100 nm. Area fractions of four domain pairs (with the same
in-plane component of the spontaneous polarization within any pair) were
evaluated from the result of the second optical harmonics generation measure-
ments. For some 30 mm2 area of as-deposited films tested, the fractions of the
pairs were found virtually equal (to within a 2–3% accuracy).

Similar characterization of monoclinic Bi4Ti3O12 films has been offered by
Barad et al. (2001). Bi4Ti3O12 films of 100 nm thickness were MBE deposited
onto SrTiO3 with the epitaxial orientation relationship SrTiO3 (001)[110]/
Bi4Ti3O12(001)[100]. The symmetry of the bulk material allows eight ferro-
electric domain states. The plan-view TEM analysis revealed a network of 908

0.5 µm

[ ]

[ ]
_ _

[

1 1 1

1 1 2

1 1 0]
_

Fig. 9.2.21 SEM image of a
domain pattern in
tetragonal (111) PZT film.
Reprinted with permission
from Romanov et al. (1998).
Copyright (1998), Wiley-
VCH Verlag GmbH & Co.
KGaA
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domain walls approximately parallel to SrTiO3h100i directions (Fig. 9.2.23),
the typical domain wall spacing being about 100 – 200 nm. Area fractions of

four domain pairs Aþx , A
�
x , A

þ
y , and A�y (with the same in-plane component of

the spontaneous polarization within any pair; here the suffix and index denote
its orientation and sign of polarization in the pair, respectively) were evaluated
from the results of the second optical harmonics generation measurements. For
some 1 mm2 area of as-deposited films tested, a point-to-point variation of the

ratio
jAþx �A�x j
jAþy �A�y j

was found to be 15 – 20% about the value of 1.

Fig. 9.2.22 Plan-view TEM
micrograph of a domain
pattern in orthorhombic
(100) film of KNbO3.
Reprinted with permission
from Gopalan and Raj
(1997). Copyright (1997),
American Institute of
Physics

Fig. 9.2.23 Network of 908
domain walls as seen in the
plan-view dark-field TEM
image of a monoclinic (001)
Bi4Ti3O12 thin film.
Reprinted with permission
from Barad et al. (2001).
Copyright (2001), American
Institute of Physics
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Films of isostructural Aurivillius phase SrBi2Ta2O9 and SrBi2Nb2O9 have
been drawing attention of researcher because of the use of these materials for
memory application; however, the information on domain patterns in these
films is very limited. Weak piezoelectric response and very small ferroelastic
distortion make difficult standard TEM and SFM visualization of domain
pattern in these materials. The results obtained by using optimized SFM
(Gruverman and Ikeda, 1998) and Fourier transform HRTEM (Zurbuchen
et al., 2002) suggest the presence of quite irregular domain patterns with typical
spatial scale of some 10–100 nm. According to these results, in films of these
materials, both 180 and 908 domain walls are strongly curved.

9.3 Domain Pattern and Elastic Effects

9.3.1 Strained State of Ferroelectric Film and Dislocation-Assisted
Stress Release

The key difference between a mechanically free bulk material and a thin film
made of the same material, which is deposited on a dissimilar substrate, is that
the film is strained, i.e., the film has the lattice parameters different from those
of the bulk material. In this situation one speaks about the presence of misfit
strain in the film. This notion plays an essential role in the treatment of elastic
effects in ferroelectric thin films. The objective of this section is to discuss the
factors controlling the misfit strain and its typical distribution in the films. Let
us start with the terminology we are going to use.

Unfortunately, the terminology presently used for the description of strains in
ferroelectric films is quite confusing. Namely, the researchers working in the field
use the term ‘‘misfit strain’’ in twomeanings that can be essentially different when
one deals with the low-symmetry phase of the material. This problem is related to
the use of two different approaches: the approach based on the Landau theory
and that where the purely mechanical aspect of the problem is addressed. In our
book, we are going to present both approaches, thus we are to develop below a
unified terminology, whichwill enable us to avoid the aforementioned ambiguity.

We start with the notion of misfit strain. When a ferroelectric film, being
deposited onto a substrate, exhibits the in-plane lattice constant(s) different
form that (those) of the bulk material, one says that the film experiences misfit
strain. Thus, formally the misfit strain is defined as the two-dimensional defor-
mation (in the plane of the film) that is required to transform the unit cell of the
non-strained material into that of the film and we denote it as eMab (Here a, b=
1,2; we use the Cartesian reference frame withX3 axis perpendicular to the film/
substrate interface). This definition is currently used when one deals with the
mechanical aspect of polydomain state of ferroelectric films. However, workers
dealing with the Landau theory of ferroelectric thin films define the misfit strain
as the two-dimensional deformation that is required to transform the unit cell of
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the parent phase of the non-strained material into that of the film, for tempera-
tures below the transition point, the extrapolated values of the parameters of
the parent unit cell being used. In the parent phase, these definitions are clearly
identical; however, in the ferroelectric phase they are essentially different. We
use the term parent misfit strain for the quantity defined in the latter way and
denote it as ePab. The difference between misfit strain and parent misfit strain is
illustrated in Fig. 9.3.1. This figure addresses the case of the cubic/tetragonal
phase transition in a (001) epitaxial film of a BaTiO3-type ferroelectric depos-
ited on an elastically isotropic substrate. Here, the misfit strains are shown with
arrow ‘‘1’’ for the paraelectric phase and with arrows ‘‘2’’ and ‘‘3’’ for the
ferroelectric phase. The parent misfit strain is shown with arrow ‘‘1’’ for the
paraelectric phase and with arrow ‘‘4’’ for the ferroelectric phase. In the same
figure the natural spontaneous strain already introduced in Chap. 2 is also shown
(arrows ‘‘5’’ and ‘‘6’’). We denote the in-plane components of the latter as eSab.
One easily checks that the tensors of natural spontaneous strain, misfit strain,
and parent misfit strain are linked by the following relation:

eMab ¼ ePab � eSab: (9:3:1)

To clarify the introduced system of definitions we give below expressions for
the misfit strains and parent misfit strains for the aforementioned system
(illustrated in Fig. 9.3.1). For this system, at any temperature the parent misfit
strain tensor can be written as

ePab ¼ eP
1 0

0 1

� �
; eP ¼

asðTÞ � acðTÞ
asðTÞ

; (9:3:2)

Fig. 9.3.1 Illustration for the concepts of misfit and parent misfit strains. A ferroelectric (like
in PbTiO3) with a cubic/tetragonal ferroelectric phase transition at temperature TC is
considered. The temperature dependences of its lattice constants are shown: acðTÞ—for the
cubic phase, a and c—for the tetragonal phase. An epitaxial (001) film of this ferroelectric
deposited onto a (001) cubic substrate without formation of misfit dislocations is considered.
The temperatures dependence of the substrate lattice constant is shown as asðTÞ. The
variation of the lattice constants corresponding to the natural spontaneous strain (5,6),
misfit strain (1, 2, and 3), and parent misfit strain (1,4) are shown with arrows
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where asðTÞ is the actual in-plane lattice constant of the films and acðTÞ is the
value of the in-plane lattice constant (real or extrapolated to the given tempera-
ture as shown in Fig. 9.3.1) of the films in the paraelectric phase if they were free
standing. The misfit strain in the paraelectric phase is also given by Eq. (9.3.2).
In the ferroelectric phase, the tensors of misfit strain for the two a- and
c-domain states can be written as

eð1ÞMab ¼
ec 0

0 ea

� �
; eð2ÞMab ¼

ea 0

0 ec

� �
; eð3ÞMab ¼

ea 0

0 ea

� �
; (9:3:3)

where ea ¼
as � a

as
, ec ¼

as � c

as
; a and c stand for the parameters of the tetragonal

unit cell of the bulk material. The difference

eT ¼ ec � ea ¼
c� a

as
; (9:3:4)

which is often called tetragonality strain, characterizes the degree of the tetra-
gonal distortion in the bulk material.

For the following discussions, two more parameters related to the misfit
strain will be useful, namely tetragonality ratio

w ¼ � ec
ea
¼ c� as

as � a
(9:3:5)

and relative coherency strain

f ¼ ea
ea � ec

¼ a� as
a� c

¼ 1

1þ w
: (9:3:6)

At this point we would also like to specify that in this chapter, we will be
treating only situations where the strains are small. Accordingly, the terms
proportional to higher powers of strain will be neglected everywhere. For
example, we do not distinguish the difference between the following expres-
sions: ea = (as – a)/as and ea = (as – a)/a.

Let us now discuss the factors controlling the strains in the films. We will
start from the situation at the deposition temperature.4 In general, the in-plane
crystalline periodicity of a mechanically free ferroelectric differs from the in-
plane periodicity of the substrate. As a result, during the deposition the film
‘‘tries’’ and, under a certain condition, ‘‘succeeds’’ to adjust its in-plane periodi-
city to that of the substrate. Though this adjustment is favorable from the point
of view of the film/substrate interface energy, the price of an additional elastic

4 In the case for low-temperature deposition in amorphous phase with subsequent crystal-
lization at a high temperature one should speak about the crystallization temperature. In the
book, as shorthand, we will use the term ‘deposition temperature’ instead of the crystallization
temperature.
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energy should be paid for it. However, one can reduce this energy by formation

of misfit dislocations. By introducing a high enough dislocation density, one, in

principle, could satisfy at once two conditions: the epitaxy relation (matching of

unit cells of the film and substrate) at the interface and the absence of stresses in

the body of the films. We illustrate the two aforementioned limiting cases in

terms of the model shown in Fig. 9.3.2. In this schematic drawing, the thin lines

show the rows of atoms of the film whereas the thick lines show the rows of

atoms of the substrate. For simplicity, we consider the situation where the x1-

direction period of the material of the film, a, is different from that of the

substrate, as, but close to it, as shown in Fig. 9.3.2a, whereas the periods in the

direction perpendicular to the plane of the figure are equal. Figure 9.3.2b

illustrates a dislocation-free adjustment of the film to the surface potential of

the substrate. A hypothetical situation where the dislocations provide a com-

plete stress release in the body of the film is illustrated in Fig. 9.3.2c.
The strain states of the films shown in Fig. 9.3.2b and c can be characterized

with values of the misfit strain. In the case of 9.3.2b, the misfit strain obviously

reads eM= (as – a)/as. In the case of 9.3.2c, the film is inhomogeneously strained

thus, strictly speaking, its strain state cannot be characterized with a single

value of the misfit strain. However, dealing with a similar situation in practice,

one customarily uses two values. One indicates eM = (as – a)/as as the misfit

strain implying its value expected when there is no dislocation-assisted strain

release. In this case, the misfit strain is considered as a characteristic of the pair

of materials used in the heterostructure. Alternatively, one indicates eM = 0 as

the misfit strain implying that far from the interface the film is not strained.

Thus, using the notion of the misfit strained one should be aware of possible

confusions associated either with the aforementioned ambiguity or with the

difference in the notion of ‘‘misfit strain’’ and ‘‘parent misfit strain.’’

Fig. 9.3.2 Model used for
explanation of the
dislocation-assisted stress
release (see the text)
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The dislocation density (number per unit length) r corresponding to this
situation illustrated in Fig. 9.3.2c can be evidently related to the misfit strain
eM = (as – a)/as as

r ¼ rrelax ¼ eM=a: (9:3:7)

In a real situation, since the creation of dislocation costs some energy, the
dislocation density r will be smaller than rrelax and the film still sustains the
misfit strain er ¼ eM � ar called residual misfit strain. When the dislocation
density r is equal to its equilibrium value req, the corresponding value of the
residual misfit strain er0 ¼ eM � areq will be called equilibrium residual misfit
strain. It is this situation that we will mainly address in this section.

We readily see that, from the point of view of the ‘‘bulk’’ of the film, the film/
substrate contact with the equilibrium concentration of the dislocations is equiva-
lent to a non-relaxed contact of the film with a substrate with the lattice constant

a�s ¼ asð1� areqÞ: (9:3:8)

Thus, following Speck and Pompe (1994) one can say that after an equilibrium
array of misfit dislocations has developed at the interface, the film no longer
‘‘sees’’ the potential of substrate, but it rather experiences the potential of the
substratemodified by the array, residualmisfit strain in the films being controlled
by the effective substrate lattice constant a�s . Residual stress determined in this
way corresponds to the equilibrium situation. In reality, the equilibrium concen-
tration of the dislocation may not be achieved. That corresponds to a smaller
strain release in the body of the film. In terms of ourmodel that leads to a value of
the effective substrate lattice constant lying between as and a�s . The logic of this
model consideration can be readily translated to any real situation.

The quantitative description of the dislocation-controlled stress release in
ferroic thin films requires consideration of the energetics and kinetics of the
problem. For the equilibrium situation, i.e., where the dislocation mobility is
high enough to provide their equilibrium concentration, the general theory of
the phenomenon is well developed (see book by Tsao (1993)) for an excellent
review and paper by Speck and Pompe (1994) for an example of application of
this theory to ferroelectric films). The principal result of this theory, the Mat-
thews–Blakeslee criterion5 (Matthews and Blakeslee, 1974), can be formulated
as follows. The strain state of the films is determined by the relation between the
film thickness h and a certain critical thickness hc. The critical thickness and
the equilibrium dislocation density in films thicker than hc are functions of the
original misfit strain and film thickness.

5 Presently, the Matthews–Blakeslee theory is not the only one available on the dislocation-
assisted stress release in thin films (see, e.g., papers by People and Bean (1985) and Holec et al
(2008)). To the best of our knowledge the results of these theories have never been applied to
the description of ferroelectric thin films, though they may be relevant.
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Let us address the basic points of this theory. One considers the energy of the
whole system (films+ substrate). It contains three contributions: elastic energy of
the substrate, elastic energy of the films, and the energy of creation of the disloca-
tions. The film and substrate apply equal and opposite tractions Ffilm = –Fsub
upon one another. That implies that the in-plane stresses in the film and substrate
are inversely proportional to their thicknesses h and hsub: sfilm = Ffilm/h and
ssub= –Ffilm/hsub, and that the elastic energies of these are also inversely propor-
tional to their thicknesses: Uel /h(sfilm)2/ 1/h and Usub /hsub(ssub)2/ 1/hsub.
Because the substrate thickness is usually a few orders of magnitude larger than
the film thickness, the elastic energy of the substrate can be neglected compared to
that of the films. Thus, the equilibrium dislocation density in the film corresponds
to a trade-off between its elastic energy and the energy of creation of dislocations.

We will illustrate the further development of the theory in terms of the simple
model that we treated above. The elastic energy of the film can be found using
the result of the elasticity theory for a biaxially strained body (see, e.g., Pompe
et al., 1993). We consider the films as an elastically isotropic medium having
Young modulus E and the Poisson ratio n. (This assumption will not affect the
basic conclusion of this consideration.) It is clear that, in the situation illu-
strated in Fig. 9.3.2b, film sustains the in-plane deformation with the compo-
nents e11 = eM – ar, e22 = 0, and e12 = 0. The corresponding elastic energy per
unit area of the film, uel, is a decreasing function of r and can be written as

uel ¼
Eh

1� n
ðeM � raÞ2: (9:3:9)

On the other hand, the energy of creation of dislocations per unit area of the
film udis is obviously proportional to the dislocation density r

udis ¼ Ldisr; Ldis ¼
1

2

Ea2

1� n2
lnðah=aÞ

2p
: (9:3:10)

Here Ldis is the dislocation energy per unit length given by the standard
dislocation theory (see, e.g., Speck and Pompe, 1994) and a is a numerical
parameter of the order of unity.6 The equilibrium dislocation density corre-
sponds to a minimum of the total energy of the system uel + udis. One readily
finds that, for film thickness h smaller than some critical value hc, the dislocation-
free state is favorable, parameter hc being defined as the solution to the equation

hc ¼
LðhcÞ
jeMj

; (9:3:11)

6 For h larger than the distance between the dislocations 1=r, strictly speaking, Eq. (9.3.10)
should be modified: h under ‘‘ln’’ should be replaced with 1=r. The impact of this replacement
on the final results is small. Hereafter, for simplicity, in this and similar ‘‘ln’’ factors we will
ignore the difference between h and 1=r, keeping h for any film thicknesses.
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where

LðhÞ ¼ a
lnðah=aÞ
8pð1þ nÞ ; (9:3:12)

while at h > hc the equilibrium dislocation density is

r ¼ req 	
eM
a

1� LðhÞ
eMh

� �
: (9:3:13)

Equations (9.3.8), (9.3.12), and (9.3.13) lead to the following expression7 for
the effective substrate lattice constant a�s as a function of the film thickness:

a�s ¼ a 1þ LðhÞ
h

� �
(9:3:14)

for h4hc and a�s ¼ as for h5hc. This expression is valid for the above consid-
ered case where the substrate imposes tensile stress to the films, i.e., a < as. The
expression, which is also applicable to the case where a > as, should take into
account that the sense of the deformation accompanying the stress release is
controlled by the sign of the difference a – as. Such expression can be written as

a�s ¼ a 1þ signðas � aÞLðhÞ
h

� �
: (9:3:15)

The above results enable us to arrive at an important conclusion, namely,
that the effective substrate lattice constant a�s (corresponding to the equilibrium
density of dislocations) is sensitive to the value of the misfit strain eM only when
the film thickness is smaller than the critical thickness and a�s ¼ as. In the case of
the partial stress release, i.e., for greater film thickness, the effective substrate
lattice constant a�s is independent of the absolute value of eM, being sensitive
only to the sign of the latter. The dependence given by Eq. (9.3.15) is schema-
tically depicted in Fig. 9.3.3.

The results obtained above are qualitatively valid for real epitaxial thin films.
To apply these results quantitatively one should take into account such factors
as the mutual orientation of the Burgers vector ~b, the dislocation lines, and the
plane of the film. This leads to the modification of the expression for function
L(h) that now reads (Speck and Pompe, 1994)

LðhÞ ¼ j b!j
8p cos l

1� n cos2 b
1þ n

lnðah=j b!jÞ: (9:3:16)

7 According to the accepted accuracy of our calculations, in the obtained expression, the ratio
aL(h)/h has been substituted for asL(h)/h.
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Here b is the angle between the dislocation and the Burgers vector and l is the
angle between the Burgers vector, a line which lies within the interface and in a

plane normal to the dislocation line.With this definition ofL(h) one can still use

Eqs. (9.3.11) and (9.3.15) in the real situation.
An example of the results of calculations of dislocation-assisted stress release

is given in Fig. 9.3.4. The calculations have been performed by Speck and

Pompe (1994) for a (001) PbTiO3 epitaxial film grown on a (001) SrTiO3

substrate. Figure 9.3.4a shows the calculated dependence hc on the misfit strain.

The features of this system are illustrated in 9.3.4b. The values j b!j ¼
ffiffiffi
2
p

 4 Å,

b ¼ 90�, l= 458, a = 4, and n = 0.3 were used in the calculations. For these

Fig. 9.3.3 Results of the Matthews–Blakeslee Lattice theory. The in-plane lattice constant vs.
thickness of epitaxial (001) films of a cubic material with the stress-free value of the lattice
constant 4.00 Å, which is deposited onto (001) cubic substrates with the lattice constants 3.82,
3.92, 4.08, and 4.18 Å. The cusps on the curves correspond to the critical thickness hc. See the
text. It is seen that, for films thicker than hc, the lattice constant of the film is not sensitive to
the absolute value of the misfit strain

Fig. 9.3.4 (a) Normalized critical thickness, hc=b, for perovskite epitaxial thin films with the
dislocation-assisted stress release according to Eqs. (9.3.11), (9.3.16), and (9.3.17). (b) Para-
meters of misfit dislocations providing the stress release in perovskite epitaxial thin films. b is
the angle between the dislocation and the Burgers vector and l is the angle between the
Burgers vector a line which lies within the interface and in a plane normal to the dislocation
line. Reprinted with permission from Speck and Pompe (1994). Copyright (1994), American
Institute of Physics
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values that are typical for perovskite thin films of interest, function L(h) can be
evaluated as

LðhÞ ¼ 0:24 lnð0:7 hÞ; (9:3:17)

where L(h) and h are measured in Å.
The above theory enables us to make an important conclusion on the strain

state of the film. From the point of view of the strains in the films, we can
distinguish the three following situations.

(i) For h < hc, the strain is homogeneous throughout the films and equals the
value of the original misfit strain.

(ii) If h exceeds hc but remains of the order of hc, the distance between the
dislocations, 1/req, exceeds the film thickness. This is clear from a rough
estimate

1

req
ffi h

5hc
h� hc

; (9:3:18)

which follows from Eqs. (9.3.13) and (9.3.17) for typical values of the
problem parameters. This implies that, in this case, the strain in the film
is strongly inhomogeneous.

(iii) Finally, for h>> hc when 1=req55h, we arrive at a situation where, outside
the substrate adjacent layer of a thickness of few hc, the strain distribution
can be considered as homogeneous with its magnitude reduced compared
to its original value.

The above consideration of the strain state of the film was actually dealing
with a film just deposited onto a substrate. For a real experimental situation,
this corresponds to films just deposited at rather high temperature in the para-
electric phase. On cooling down, still in the paraelectric phase, the misfit strain
changes. If the film is in the dislocation-free regime or if the misfit dislocation
density does not follow the temperature variation, the misfit strain changes
strictly according to the difference in thermal expansion coefficients of the film
and the substrate. If the formation of new dislocation occurs during cooling, the
effective substrate lattice constant should be, respectively, corrected.

The three factors discussed above—the epitaxy relation, dislocation forma-
tion, and difference in thermal expansion coefficients of the film and the
substrate—exhaustively control the strained state of the film in the paraelectric
phase. On cooling down to the ferroelectric phase, another powerful factor—
formation of ferroelastic domains—enters the game. The role of this factor in the
strain control of the film is actually obvious.We will illustrate this point by using
an earlier discussed example of the cubic/tetragonal phase transition in a (001)
filmBaTiO3 deposited onto an elastically isotropic substrate. In this system, three
ferroelastic domain states being in the epitaxial contact with substrate experience
misfit strains given by Eq. (9.3.3). For single-domain states, this is correct without
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reservations. However, for a multidomain state, this holds only close to the film/
substrate interface (at distances much smaller than those to the nearest ferro-
electric domain wall). Farther from the interface, the strains in domains level off
approaching the average value of the strain in the film. The latter in turn is
controlled by the volume fraction of different ferroelastic domain states. This
way the domain structure of the film can essentially influence the strain in it.

9.3.2 Single-Domain State in a Strained Film

This section addresses the thermodynamics of single-domain state as affected
by the strain imposed by the substrate upon the ferroelectric film. The results
presented below are applicable to the description of true single-domain states as
well as to that of the ferroelectric features of the material ‘‘inside’’ domains of
multidomain patterns with the domain width much larger than the film thick-
ness. This extension is possible because, under this condition, the strain ‘‘inside’’
any domain is identical to that in the corresponding single-domain film.

The presence of a misfit strain in a ferroelectric film can strongly influence
the thermodynamics of its single-domain state. To a certain extent the situation
is similar to that in bulk crystals under hydrostatic pressure p, but it is not
identical. In the case of a bulk ferroelectric, one controls two external para-
meters, temperature T and pressure p, so that a two-dimensional (p–T) phase
diagram suffices for the description of the state of the material. In the case of a
ferroelectric film on a substrate, one controls the temperature and three com-
ponents of the in-plane strain, e1, e2, e6, and, in principle, s3 component of stress
(we use the Voigt matrix notations, with the X3-axis of the Cartesian reference
frame normal to the plane of the film). Thus, because of the mechanical
boundary conditions, unlike in a crystal under hydrostatical pressure, for the
films, in general, the phase diagram should be specified in more than two axes.

There is also an essential difference in the thermodynamic description of the
bulk ferroelectrics and thin films. Namely, the thermodynamic Gibbs function
F(T,Pi, si), which has the polarizationPi and stress si as independent variables, is
not an appropriate8 thermodynamic potential for strained thin films. We mean
that, for thin films clamped by the substrate,F does not reach its minimum at the
thermodynamic equilibrium. Appropriate for thin films thermodynamic function
G can be obtained via the followingLegendre transformation (Pertsev et al., 1998):

G ¼ Fþ e1s1 þ e2s2 þ e6s6: (9:3:19)

8 One should mention that the choice of the appropriate potential matters for derivation of
the phase diagram of a system only in the case where the phase diagram contains lines of first-
order phase transitions. If it is not the case, all treatments based on different thermodynamic
potentials will result in the same phase diagram. This relates to the fact that all the potentials
result in equivalent equations of state.
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The thermodynamic function G reaches the minimum at equilibrium in the
system where the strain components e1, e2, e6 and the stress components s3, s4,
s5 are fixed. If the film is much thinner than the substrate, these conditions are
often met with good accuracy. (We will be back to this issue at the end of this
section.) It is useful to mention that, in the common experimental situation
where upper surface of the film is mechanically free, G coincides with the
Helmholtz free energy F = F + e1s1+ e2s2 + e3s3 + e4s4 + e5s5 + e6s6
since in this case s3, s4, s5 are identically equal to zero. An important issue for
the thermodynamics of the system is that the fixed strain components e1, e2, and
e6 are equal to those of the two-dimensional tensor ePab of the parent misfit
strain9 introduced in the previous section. This is a direct consequence of the
fact that, in the standard Landau theory of ferroelectrics, the spontaneous
strains are always ‘‘counted’’ from the unit cell of the parent phase extrapolated
down to a given temperature. Thus, starting from the thermodynamic Gibbs
function F and using transformation (9.3.19) one can eliminate the elastic
variables s1, s2, and s6 with the help of the equations of state

@G=@s1 ¼ �e1; @G=@s2 ¼ �e2; and @G=@s6 ¼ �e6: (9:3:20)

For the typical situation where s3, s4, and s5 are identically equal to zero,
this leads us to the thermodynamic function G defined as a function of the
temperature T, the tensor ePab, and the polarization vector P. The minimization
of G with respect to the polarization provides us with the (ePab – T) diagram for
single-domain states of the film. In such calculations, the macroscopic electric
field in the ferroelectric is automatically set zero; thus, the obtained diagrams
correspond to the situation in a short-circuited capacitor containing the film.10

Let us discuss the result of the calculations outlined above in application to
BaTiO3-type perovskite films of (001) and (111) orientations grown on substrates
with the isotropic in-plane thermal expansion. In this case, the parentmisfit strain
tensor can be written in the form given by Eq. (9.3.2) and thus controlled by only
one independent parameter eP. The calculations using Eqs. (2.3.34), (9.3.19), and
(9.3.20) lead to the thermodynamic functionG dependent onT, eP, and ~P. For the
film of (001) orientation it reads (Pertsev et al., 1998)

G¼a1ðP2
1þP2

2Þþa3P2
3þa11ðP2

1þP2
2Þ

2þa33P4
3þa13P2

3ðP2
1þP2

2Þ

þa12P2
1P

2
2þ

g111
6
ðP6

1þP6
2þP6

3Þþ

g112 P4
1ðP2

3þP2
2ÞþP4

2ðP2
1þP2

3ÞþP4
3ðP2

1þP2
2Þ

� �
þg123P2

1P
2
2P

2
3;

(9:3:21)

9 In the cited papers, the term ‘misfit strain’ was used for this quantity. We had to change the
original terminology to avoid confusion.
10 The condition that the electric field in the film is zero, strictly speaking, is not satisfied in a
short-circuited capacitor because of incomplete screening of the bond charge with the free
charges in the electrodes. This effect, which may be of importance for ultrathin films, will be
discussed in Sect. 9.4.
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where the coefficients can be expressed in terms of those of the Gibbs function
(2.3.34)

a1¼
a0ðT�T0Þ

2
� eP

Q11þQ12

s11þs12
; a3¼

a0ðT�T0Þ
2

�eP
2Q12

s11þs12
;

a11¼
b11
4
þðQ

2
11þQ2

12Þs11�2Q11Q12s12

2ðs211�s212Þ
; a33¼

b11
4
þ Q2

12

s11þs12
;

a12¼
b12
2
�ðQ

2
11þQ2

12Þs12�2Q11Q12s11

s211�s212
þ2Q

2
44

s44
; and a13¼

b12
2
þQ12ðQ11þQ12Þ

s11þs12
:

(9:3:22)

For the film of (111) orientation in the reference frame of the film (where
theX3-axis is normal to the plane of the film and the X1-axis is taken to be
parallel to the ½1�10� twofold axis of the cubic paraelectric phase), theG function
can be written as (Tagantsev et al., 2002a)

Geff¼a�1ðP2
1þP2

2Þþa�3P2
3þ

a�11ðP2
1þP2

2Þ
2þa�33P4

3þa�13P2
3ðP2

1þP2
2Þþa2223P2P3ðP2

2�3P2
1ÞþGð6Þ;

(9:3:23)

where

a�3¼
a0ðT�T0Þ

2
�eP

2ð2Q11þ4Q12�2Q44Þ
4s11þ8s12þs44

; a�1¼
a0ðT�T0Þ

2
� eP

2ð2Q11þ4Q12þQ44Þ
4s11þ8s12þs44

;

a�11 ¼
b11þ b12
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þQ2
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b11þ 2b12
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44þ 8Q11Q12� 4Q11Q44� 8Q12Q44
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(9:3:24)

a�13¼
b11
2
þ2Q

2
11ð2s11þ2s12þs44Þþ2Q2

12ð4s11þ3s44Þþ2Q2
44ðs11þ3s12Þ

ðs11�s12þs44Þð4s11þ8s12þs44Þ

þ4Q11Q12ð4s12�s44Þþ2Q11Q44ð3s11þ5s12þs44Þþ4Q12Q44ðs11þ3s12Þ
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;

a2223¼�
ffiffiffi
2
p

6
b11�b12þ2

Q2
11þQ2

12�2Q2
44�2Q11Q12þQ11Q44�Q12Q44
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� �
:

For the six-order polarization terms

Gð6Þ ¼ g123
6

P6 þ 2g112 � g123
2

P2I1ð~PÞ þ
g111 � 6g112 þ 2g123

6
I2ð~PÞ; (9:3:25)
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where11

I1ð~PÞ¼
1

2
ðP4
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: (9:3:27)

The calculations performed for (001) films of PbTiO3 (Pertsev et al., 1998),
BaTiO3 (Pertsev et al., 1999b), and Pb(Zr,Ti)O3 (Pertsev et al., 2003b) have led
to (eP, T) phase diagrams for single-domain states of these films,12 which are
shown in Figs. 9.3.5 and 9.3.6. Results corresponding to a number of cross-
sections of the diagram for the BaTiO3 film have also obtained by Desu et al.
(1996). The (eP, T) phase diagram for (111) films of PbTiO3 (Tagantsev et al.,
2002a) based on expression (9.3.23) is shown in Fig. 9.3.7. Similar analysis for

Fig. 9.3.5 Parent misfit strain vs. temperature phase diagrams of (001) single-domain BaTiO3

(a) and PbTiO3 (b) thin films epitaxially grown on (001) cubic substrates. The second- and
first-order phase transitions are shown with thin and thick lines, respectively. The quadruple
and triple points at eP ¼ 0 correspond to the Curie–Weiss temperatures of these materials in
the bulk form. The point symmetries of the phases are indicated. The spontaneous polariza-
tion in the phases has the following components: c-phase, ðP1 ¼ 0; P2 ¼ 0; P3 6¼ 0Þ; aa-
phase, (|P1|=|P2|6¼0, P3=0); ac-phase, (P36¼0 and P16¼0, P2=0 or P26¼0, P1=0; r-phase,
(|P1|=|P2|6¼0, P36¼0). After Pertsev et al. (1999)

11 This result can also be presented in terms of invariant tensors of the cubic symmetry

g
ð4Þ
ijkl and g

ð6Þ
ijklmn whose components in the cubic reference frame equal ‘1’ when all their

indices are equal, otherwise the components equals ‘0’. Namely I1 ¼ g
ð4Þ
ijklPiPjPkPl and

I2 ¼ g
ð6Þ
ijklmnPiPjPkPlPmPn calculated in the film reference frame.

12 An (eP, T) diagram for (001) BaTiO3, which is different from that shown in Fig. 9.3.5a was
given in the paper of Pertsev et al. (1998). This diagram should be neglected as obtained based
on a set of thermodynamic parameters of bulk BaTiO3, which did not properly correspond to
the system.
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(001) films of SrTiO3, which was however complicated by the presence of

additional nonferroelectric ordering, was performed by Pertsev et al. (2000,

2002). The main result of this work is the prediction of strain-induced ferroe-

lectricity in (001) films of SrTiO3, which in the bulk form is only an incipient

ferroelectric (it exhibits a strong increase in the permittivity without passing to

the ferroelectric phase down to absolute zero of temperature). This prediction

has been experimentally confirmed by Haeni et al. (2004).
The inspection of the phase diagrams shown in Figs. 9.3.5, 9.3.6, and 9.3.7

reveals a strong impact of the films/substrate mechanical coupling on the

Fig. 9.3.6 Parent misfit strain vs. temperature phase diagrams of (001) single-domain
Pb(Zr,Ti)O3 films epitaxially grown on (001) cubic substrates. The Zr/Ti ratios are indicated.
The phase notations are identical to those from Fig. 9.3.5. The second- and first-order phase
transitions are shown with thin and thick lines, respectively. The triple or quadruple point at
eP ¼ 0 corresponds to the Curie–Weiss temperature of the stress-free bulk material. The
dashed line indicates the ðeP;TÞ conditions, at which the polarization in the r-phase becomes
oriented along the body diagonal of the prototypic cubic unit cell ðP1 ¼ P2 ¼ P3Þ. After
Pertsev et al. (2003b)
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single-domain state of ferroelectrics.13 First, the ferroelectric phase transitions
change their order from the first to the second. Second, in the films, there appear
phases of the type forbidden in the bulk crystals of the samematerial. For instance,
in bulk PbTiO3, only a phase with one nonzero component of the polarization
(with respect to the cubic reference frame) is allowedwhereas, in the (001) and (111)
films, domain states with two and three nonzero components of the polarization
are also possible. Third, in thin films, lowering the symmetry of the problem (owing
to the biaxial strain imposed by the substrate on the ferroelectric) makes stable
phases which have the number of domain states different from those possible in the
bulk material. For example, one sees from these diagrams that, in the case where
the substrate compresses the ferroelectric in the parent phase, i.e., eP < 0, in all
considered cases, one deals with transitions to phases having only two domain
states, specifically, 4

mmm) 4mm and �3m) 3m transitions occur, like in uniaxial
ferroelectrics. The change of the number of domain states in the ferroelectric phases
should have implications on the features of domain structures in the films.

The presented phase diagrams and other diagrams of this type can be
employed for analysis of sequences of the expected single-domain states in a
ferroelectric film on a given substrate. This sequence is given by the cross-section
of the (eP, T ) phase diagram with the curve eP = eP(T ) representing the tem-
perature dependence of the parent misfit strain, which can be determined experi-
mentally from the data on the in-plane lattice constant of the ferroelectric. For
simple cases, the eP(T ) dependence can also be evaluated theoretically. For
example, in the case of ideal dislocation-free epitaxy, one readily finds

ePðTÞ ¼ er þ ðaTS � aTFÞðT� TGÞ; (9:3:28)

Fig. 9.3.7 Parent misfit strain vs. temperature phase diagram for (111) single-domain PbTiO3

thin film epitaxially grown on (111) cubic substrates. The second- and first-order phase
transitions are shown with thin and thick lines, respectively. The line on which the out-of-
plane component of the dielectric permittivity passes through a maximum is shown with the
dashed line. The point group symmetries of the phases are indicated (Tagantsev et al., 2002a)

13 Let us recall, that, in the bulk BaTiO3, a sequence of the first-order phase transitions
separating four (cubic–tetragonal–orthorhombic–rhombohedral) phases occurs whereas, in
PbTiO3, only one cubic–tetragonal first-order phase transition does.
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where aTS, aTF,TG, and er are the thermal expansion coefficient of the substrate,
that of the cubic parent phase of the ferroelectric, the deposition temperature,
and the misfit strain at this temperature, respectively.

Concluding this section we would like to discuss the limitations and range of
applicability of the theory discussed above.

First, the described procedure of calculations contains an implicit approx-
imation, which could influence the obtained phase diagrams. The point is that
the standard expression for the Gibbs function of a BaTiO3-type ferroelectric,
e.g., Eq. (2.3.34), does not contain the electromechanical terms of the type P4

i sj
whose coefficients are not available in the literature. Though these terms play
negligible role for the properties of the bulk single crystal, they can significantly
influence the thermodynamics of thin films. It is easy to show that, passing (via
elimination of the elastic variable) from F to the effective thermodynamics
functionG(T, P, eP), the P4

i sj-type terms will manifest themselves in a renorma-
lization of the coefficient for theP6

i terms inG(T,P, eP). Though the coefficients
for the P4

i sj-type terms are not known, there is no reason to believe that
aforementioned renormalization is insignificant (Tagantsev et al., 2002a).
This renormalization can modify the positions of the line of first-order phase
transitions in the phase diagrams and even alter the symmetry of the ferro-
electric phase. For example, in the case of (111) PbTiO3 films under positive
parent misfit strain, it can alter the point group of ferroelectric phase from ‘‘m’’
(as shown in Fig. 9.3.7) to ‘‘2’’ (Tagantsev et al., 2002a).

Second, the whole approach is based on the assumption that the strain in
the film is homogeneous. This assumption is fully justified only for the case of
thin enough epitaxial films where no misfit dislocations form neither during
deposition nor during cooling down to the ferroelectric phase, i.e., for h < hc.
If the film thickness h is about the critical thickness for misfit-dislocation
formation hc, the strain in the films is strongly inhomogeneous and the results
of the theory are quantitatively inapplicable. For yet thicker films, i.e., for
h >> hc, the strain is homogeneous in the main part of the films. That makes
the theory applicable again, however, with a reservation. The situation where
the out-of plane component of the spontaneous polarization is not zero
requires further treatment. In this case, the inhomogeneity of the in-plane
strain in a substrate adjacent layer of thickness hc implies an x3-dependent
polarization component P3. This, in turn, implies the appearance of depolar-
izing field, which being taken into account, may influence predictions of the
theory. Another issue of concern is a possible (via the flexoelectric effect)
poling effect of the strain gradient. This issue will be addressed later in this
chapter (in Sect. 9.5.3).

Third, up to this point we have considered only limitations on the applic-
ability of the results of the theory of the single-domain state of the films. These
limitations should be appended with one more important limitation. To apply
the result of this theory to the real situation, the films should be in a state where
the domain width is much larger than the film thickness. Only in this case the
basic assumption of the theory, that the strain components e1, e2, and e6 are
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solely fixed by mechanical coupling between the films and the substrate, can be
satisfied in the majority of the volume of every domain. Otherwise a domain-
assisted strain release should be taken into account. This extremely important
issue will be discussed in the following sections.

9.3.3 Domain Formation Driven by Elastic Effects: Basic Concepts

The problem of domain (twin) formation driven by elastic effects in thin films
of ferroics was pioneered by Roytburd (Roitburd, 1976) and later treated by
many workers. These studies have made available a good qualitative and, in
many cases, quantitative mathematical description of the phenomenon. The
progress has been achieved in terms of a number of approaches such as follows:
(i) consideration of dense periodical domain structures (the domain period
smaller than the film thickness) using the average mechanical energy of the
systems as the basic approximation, which we will hereafter call mean-strain
approach (e.g., Roitburd, 1976); (ii) calculations based on the analytical results
for elastic Green functions (e.g., Pompe et al., 1993); (iii) calculations using the
fictitious dislocations for the description of the deformation fields (e.g., Pertsev
and Zembilgotov, 1995 and Romanov et al., 1996); (iv) Landau theory of the
dense domain pattern (e.g., Koukhar et al., 2001); and (v) the phase-field
calculations based on Ginzburg–Landau theory (Li et al., 2002, 2001). In the
present section we address the fundamentals of domain formation driven by
elastic effects in terms of the Roytburd’s mean-strain approach which, though
being mathematically rather simple, provides a good insight into the phenom-
enon and, in most cases, its adequate quantitative description. The results of
more involved theories will be discussed in Sect. 9.3.4.

9.3.3.1 Factors Governing Domain Formation Driven by Elastic Effects

Let us compare the energy of multi- and single-domain states of ferroelectric
films and readily check that, under certain conditions, the multidomain state
can be energetically favorable. A simple example of such a situation provides a
(001) film14 of tetragonal BaTiO3 deposited onto a substrate in a way that its in-
plane unit cell remains square and its lattice constant as meets a condition that a
< as < c (a and c are the parameters of the tetragonal unit cell of mechanically
free BaTiO3). This can take place when the film is epitaxially deposited onto a
cubic substrate (with the lattice constant as) without dislocation formation. It is
intuitively clear from simple geometrical arguments that a multidomain state
with the average in-plane lattice constant close to as can be more energetically
favorable than either of the single-domain states. To check whether it is so and

14 As was specified in Sect. 9.1, when indicating the (001) orientation of a tetragonal ferro-
electric film we imply the orientation of the film in the paraelectric cubic phase. Thus, the films
of such orientation being in the ferroelectric phase can contain both a- and c domains.
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to find the parameters of the energetically favorable domain pattern (if any) one

should take into account a number of different contributions to the energy of

the system. For the case of a dense domain structure, i.e., when the domain

periodW is smaller than the film thickness h, one can distinguish the following

four contributions15 to energy of the film per unit area (thereafter as a short-

hand we will refer to it as ‘‘energy’’)

Utot ¼ Umac þ Umic þUW þUS; (9:3:29)

where Umac, Umic, UW, and US are the elastic energy corresponding to the

average (macroscopic) strain in the system, the energy of microstresses at the

film/substrate interface, the energy of the domain walls, and the contribution

related to the difference in the energy of the film/substrate interface for the

different domain states. These contributions are illustrated in Fig. 9.3.8. Some

information on the relative importance and role of these contributions can be

obtained from simple qualitative arguments.
Let us start from the factors controlling the period of the domain structureW.

Among the contribution enteringEq. (9.3.29) onlyUmic andUWareW dependent.

Fig. 9.3.8 Schematic representation of the contributions to the electric energy of a dense periodic
ferroelectric domain pattern. (a) Energy of the average (macroscopic) strain. (b) Energy of
microstresses at the film/substrate interface. (c) Energy of the domain walls. (d) Contribution
related to the difference in the energy of the film/substrate interface for the domain states involved
in the pattern. Dashed line–hatched areas show substrate. Open areas show ferroelectric film.
Systems of parallel lines show ferroelectric domain walls. Arrows in (d) show the orientation of a
crystallographic direction of the material in the different ferroelectric domain states

15 In this and ongoing sections we are not taking into account the contribution of the
macroscopic electric field that can arise in ferroelectric multidomain structures (depolarizing
field). We will address the impact of this contribution later on in this chapter.
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The contribution of energy of domain walls is proportional to the domain pattern
density thus it is inversely proportional to the periodW:

UW ¼ 2sh=W: (9:3:30)

(Here s equals the surface tension of the domain wall sW, if it is perpendicular to
the plane of the film; in the case of oblique walls, s should be taken as equal to
sW= sin a where a is the angle between the wall and the plane of the substrate;
see Fig. 9.3.8). The Umic contribution originates from the inhomogeneous
stresses in the ferroelectric and substrate. These stresses are due to the difference
of the spontaneous deformations of neighboring domains. They are mainly
concentrated close to the ferroelectric/substrate interface in a stripe of a thick-
ness L about W. Thus, one expects Umic /W. (This situation is similar to the
contribution of inhomogeneous electric fields in 1808 ferroelectric domain
structures in a non-electroded sample.) Thus, the W-dependent contribution
to the energy of the domain system can be written as

Umic þUW ¼ AWþ 2sh=W; (9:3:31)

where parameter A can be considered as a constant if the domain structure is
dense enough. The period of the equilibrium domain structure can be found
from minimizing (9.3.31) with respect to W, which leads us to the classical
square root thickness dependence of the domain period:

W ¼ ð2sh=AÞ1=2: (9:3:32)

This period corresponds to an equilibrium value of Umic + UW equal to

UWeq
¼ 2ð2shAÞ1=2: (9:3:33)

Thus, the energy of the equilibrium domain system can be reduced to the sum
of three contributions,Umac +UWeq +US, the dependences of these contribu-
tions on the film thickness being different: Umac / h, UWeq / (h)1/2, and US is
thickness independent. This implies that, in thick enough films, it is the con-
tribution of the macroscopic stresses, Umac, that govern the energetics of the
system. Let us address this contribution.

9.3.3.2 Domain Formation Driven by the Energy of Macroscopic Stress

The energy of macroscopic stress makes the main driving force for the domain
formation in ferroelectric films, and to a great extent it is this energy that controls
the type of their equilibrium domain structure. The goal of this section is to
explain the basic features of this mechanism of domain formation. We will do
that following the simple mean-strain approach offered by Roytburd. To make
the presentation more transparent we will address a simple case of a (001) film of
a tetragonal BaTiO3-type ferroelastic and neglect the elastic anisotropy of the
material (but not the anisotropy of the spontaneous strain!). However, the
consideration can be readily extended to an elastically anisotropic situation
(see Sect. 9.4).
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Let us start from the elastic energy of single-domain ferroelastic states. There
are three ferroelastic states in the considered system. They correspond to one
state with the out-of-plane (normal to the film) orientation of the tetragonal
axis (c-domain) and two states with its in-plane orientation (a-domains). In
these states, thematerial is strained in the plane of the film and it is mechanically
free in the direction of the film normal. The in-plane component of the defor-
mation is given by the matrices of the misfit strain Eq. (9.3.3). (We keep the
reference frame accepted above in this section with X3-axis normal to the plane
of the film.) The elastic energy of these states can be evaluated using the result of
the elasticity theory for the energy density, uel, of a biaxially strained body
(Pompe et al., 1993):

uel ¼
1

2

E

1� n2
ðe211 þ e222 þ 2ne11e22Þ; (9:3:34)

where E and n are the Young modulus and the Poisson ratio, respectively.16

From Eqs. (9.3.3), (9.3.5), and (9.3.34) we readily find for the elastic energy of
c- and a-domains, uc and ua, respectively:

uc ¼
E

1� n
e2a ¼ 2uoð1þ nÞ; (9:3:35)

ua ¼
1

2

E

1� n2
ðe2a þ e2c þ 2neaecÞ ¼ u0ð1þ w2 � 2nwÞ; (9:3:36)

where w is the tetragonality ratio defined by (9.3.5) and

u0 ¼
1

2

E

1� n2
e2a: (9:3:37)

At this point it is instructive to note that according to Eqs. (9.3.35) and
(9.3.36) the a- and c-domain states have the same elastic energy at w ¼1 þ 2n,
i.e., at

as ¼
aþ c

2
� n

c� a

2ð1þ nÞ ; (9:3:38)

This means that the intuitive geometrical reasoning that the mechanical
energy of the a- and c-domain states should be equal when the actual in-plane
lattice constant of the film as equals (a + c)/2 does not work because of a
nonzero value of the Poisson ratio. The above result also means that if one
considers the competition of single-domain states only, the c-monovariant is
more favorable at w > 1 + 2n whereas, at w < 1 + 2n , the a-monovariant is. In
the diagram given in Fig. 9.3.9 (#1), this is illustrated in terms of relative
coherency strain f ¼ 1=ð1þ wÞ.

16 The elastic energy of the substrate can be neglected. See Sect. 9.3.1 for the justification.
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Now let us evaluate a possible energy gain due to domain formation. We
start from the a/c-variant structure introduced in Sect. 9.2.1. Since there exist
two a-domain states (with the tetragonal axis parallel to the X1 and X2 in-plane
directions), two types of this structure is possible. However, energetically these
are identical, so that we will consider only one type. This structure is made of
two domain states (of c- and a-domains with the tetragonal axis parallel to the
X1-direction). This provides some one-dimensional stress release in the X1-
direction. The volume fraction of c- and a-domains in this structure we denote
as a and 1 – a, respectively, 0 < a < 1. The elastic energy corresponding to the
average stress in the structure, Umac, can be found using Eq. (9.3.34) with the
strain equal to the weighted average of the misfit strains in the domains, i.e.,

eð1;3Þgb ¼ aeð3ÞMgb þ ð1� aÞeð1ÞMgb: (9:3:39)

The calculations give

UmacðaÞ ¼ ½auc þ ð1� aÞua � að1� aÞuac�h; (9:3:40)

where

uac ¼
1

2

E

1� n2
ðea � ecÞ2 ¼

1

2

E

1� n2
e2T ¼ u0ð1þ wÞ2: (9:3:41)

Fig. 9.3.9 Diagram shows the domain states or domain patterns having the minimal average
(macroscopical) elastic energy in a (001) tetragonal ferroelectric film as functions of the
relative coherence strain, f. The corresponding values of the substrate lattice constants are
also shown. The ‘‘3d-variant’’ stands for the three-domain-state structure. See text for details
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The last r.h.s. term in (9.3.40) is always negative; it corresponds to the energy
gain due to the partial stress release driven by domain formation. It can also be
interpreted as the energy of the indirect long-range interaction between
domains through the substrate (Roytburd, 1997). We will call the coefficient
controlling this interaction, uac, therein as normalized energy density of inter-
domain interaction.

Minimizing (9.3.40) with respect to a we find the equilibrium fraction of
c-domains for the equilibrium state of the system

aeq ¼
1

2
þ ua � uc

2uac
¼ w� n

1þ w
¼ 1� ð1þ nÞf (9:3:42)

corresponding to the total elastic energy of the film:

Uða=cÞeq ¼ ua �
ðua � uc þ uacÞ2

4uac

" #
h ¼ u0ð1� n2Þh: (9:3:43)

The multidomain state exists if (0 < aeq < 1). This condition corresponds to
the relation between the energies

� uac5uc � ua5uac: (9:3:44)

In terms of the relative coherency strain, it can be rewritten as
05f51=ð1þ nÞ, using Eqs. (9.3.35), (9.3.36), (9.3.41), and (9.3.6). Thus, for
the system with f lying inside this interval, the ac-variant is favorable, outside
of it, the a- and c-monovariants are. The resulting phase diagram for the
domain states of the film is shown in Fig. 9.3.9 (#2).

The above treatment shows that the domain-assisted stress release can lower
the energy of the ferroelastic film. However, it is clear that the domain structure
considered above may not provide the ultimate solution to the problem, since
other domain structures may offer further lowering of the mechanical film
energy. One easily checks that, under certain conditions, the structure contain-
ing the two a-domain states is favorable; it is the so-called a1/a2-variant shown
in Fig. 9.2.1b. For this structure, the average deformation reads

eð1;2Þgb ¼ aeð1ÞMgb þ ð1� aÞeð2ÞMgb; (9:3:45)

where the matrices of misfit strain come from Eq. (9.3.3). Via Eq. (9.3.34) we
arrive at the elastic energy of this variant

UmacðaÞ ¼ ½ua � að1� aÞuaa�h; (9:3:46)

where a stands for the volume fraction of one type of the domains and

uaa ¼
E

1þ n
ðea � ecÞ2 ¼

E

1þ n
e2T ¼ 2u0ð1þ wÞ2ð1� nÞ: (9:3:47)
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We readily find that this energy reaches its minimum

Uða=aÞeq ¼ ua �
uaa
4

� �
h ¼ u0

ð1þ nÞðw� 1Þ2

2
h (9:3:48)

at a=1/2, i.e., as one can expect from the symmetry arguments, the 1:1mixture
of the two domain states minimizes the energy of the a1/a2-variant. Comparing
the energy of this variant with that of the twomonovariants and with the energy

of the optimized a/c-variant we find that the a1/a2-variant provides a further
lowering of the mechanical energy of the film for w51þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2n
p

, i.e., for
f41=ð2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2n
p

Þ. The phase diagram taking into account this fact is
shown in Fig. 9.3.9 (#3). An interesting feature of this diagram is that it does
not contain the a-monovariant at all, since the a1/a2-variant is always more
favorable than either of a-variants. This is a general feature of a system contain-

ing two domain states with equal elastic energies.We will commentmore on this
point below in Sect. 9.3.4.

The above analysis demonstrates a possibility of lowering the elastic energy
of the film via the formation of two-component ferroelastic domain structures.
However, we see that the release of the average stress has never been complete
except for the points f = 0 and f = 1/2 (i.e., at as = a and as = (a + c)/2,
respectively) where obviously, on average, the c-monovariant and a1/a2-variant

are not stressed, respectively. According to Roytburd (1997) a further energy
lowering (for an interval of f) is possible if all the three domain states are
involved in the structure.

Two kinds of these structures, the so-called three-domain-state structures
introduced in Sect. 9.2.1, are shown in Fig. 9.2.5. These are domain structures
where the three domain states mixed in a way where all domain walls involved in
the structure are mechanically compatible, so that no additional microstresses
are brought about with the complication of the structure. The average deforma-

tion in this structure can be written as

eð12;3Þgb ¼a3 � a1eð3ÞMgbþð1�a1Þe
ð1Þ
Mgb

h i
þ½1�a3� � a2eð3ÞMgbþð1�a2Þe

ð2Þ
Mgb

h i
; (9:3:49)

where a1, a2, and a3 are the fraction of c-domain state in the a1/c-variant, that in
the a2/c-variant, and the fraction of the a1/c-variant layers in the three-domain

structure, respectively. Insertion of Eq. (9.3.48) into Eq. (9.3.34) yields the
energy of the average mechanical stress in the system. It is clear from the
symmetry arguments that the minimum of this energy should be looked for at
a1¼ a2 and a3¼ 1/2. These conditions simplify the energy of the system down to
the following form:

Uð3dÞeq ¼ uc
½a1ð1þ wÞ þ 1� w�2

4
h (9:3:50)
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which reaches zero at its minimum when

a1 ¼ ðw� 1Þ=ðwþ 1Þ ¼ 1� 2f: (9:3:51)

This minimum is physically meaningful if 0< a1< 1. In terms of the relative
coherency strain f this implies that, for 0 < f < 1/2, the three-domain-state
structures provide the full average stress release in the film. The phase diagram
that takes into account this kind of domain pattern is shown in Fig. 9.3.9 (#4).

9.3.3.3 Effect of Film Thickness on the Stress-Driven Formation

of Domain Structure

The effect of film thickness on the stress-driven formation of domain structure
is an issue whose exact treatment is, in general, possible only numerically. We
will give a number of examples of such considerations in Sect. 9.3.4. In this
section we will treat this problem in terms of a relatively simple approximation
offered by Roytburd (1997, 1998b), which provides an adequate mathematical
treatment in many cases of practical interest.

We address this effect for the case of domain patterns containing two domain
states. In addition, we consider the situation of a dense domain structure, i.e.,
the situation where the domain periodW is smaller than the film thickness h. In
this case, as we have discussed above, the energy of the film can be presented
as a sum of energy of macroscopic internal stress Umac, the optimized (with
respect to W) sum of the energies of microstresses and domain walls, UWeq

(see
Eq. (9.3.33)), and the contribution related to the difference in the energy of the
film/substrate interface for the two kinds of domain states making the domain
pattern, US. Following the results of the preceding section we express the Umac

contribution in terms of the elastic energy density of the two domain states, u1
and u2, their volume fractions, (1 – a) and a, and the normalized energy density
of their long-range coupling through the substrate,17 u12, to get

UmacðaÞ ¼ ½ð1� aÞu1 þ au2 � að1� aÞu12�h: (9:3:52)

The US can also be easily obtained in the following form:

US ¼ ð1� aÞUS1 þ aUS2 ; (9:3:53)

where US1 and US2 are the energies of the film/substrate interface for the two
domain states. As for the UWeq

contribution, Eq. (9.3.33), it is much more
involved. Though its thickness dependence is clear from the scaling arguments
as we have shown above, getting information on the dependence ofUWeq

on the
misfit strain and a requires the knowledge of the coefficient A in the expression
for the energy of internal microstresses, Umic = AW. An approximation for

17 For themoment Eq. (9.52) is written in analogy with Eq. (9.40), a general proof for it will be
given in Sect. 9.3.4.
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Umic, which essentially simplifies further calculation, has been offered by
Roytburd (1997, 1998b):

UmicðaÞ ¼ ð1� aÞ2a2u12W; (9:3:54)

where x is a constant of the order of unity. For the domain patterns in question
when a is not too close to 1 or 0, Eq. (9.3.54) with x = 0.27 provides a good
approximation18 to the exact values of Umic when W/h <1. At a close to 1/2, it
works even forW/h� 2.Wewill employ this approximation in our analysis, i.e.,
settingA= x(1 – a)2a2u12, and return to discussion of its accuracy in Sect. 9.3.4.
Thus, following the derivation of Eq. (9.3.33), the optimized sum of Umic and
the energy of the domain walls can be presented in the form

UWeq
ðaÞ ¼ ð1� aÞau12ðh � h0Þ1=2; (9:3:55)

where

h0 ¼ 8xs=u12 (9:3:56)

is a characteristic length. As clear from comparing Eqs. (9.3.52) with (9.3.55),
the physical meaning of h0 is the film thickness at which the gain in energy of the
pattern due to the long-range coupling through the substrate is compensated by
energy of the microstresses and domain walls. At h¼ h0, domain period is a few
times greater than the film thickness as it is seen from the expression for the
domain period, Eq. (9.3.32), rewritten in terms of h0:

W ¼
ffiffiffiffiffiffiffi
h0h
p

2xað1� aÞ : (9:3:57)

Now combining Eqs. (9.3.52), (9.3.53), and (9.3.55) we can present the total
energy of the system in a form identical to that of the Umac(a) contribution,
Eq. (9.3.40):

Utot ¼ ½ð1� aÞ~u1 þ a~u2 � að1� aÞ~u12�h; (9:3:58)

~u1 ¼ u1 þ
Us1

h
; ~u2 ¼ u2 þ

Us2

h
; (9:3:59)

~u12 ¼ u12 1�
ffiffiffiffiffi
h0
h

r !
: (9:3:60)

18 The approximation addresses the case where the elastic properties of the substrate are
identical to that of the film. For this reason, elastic parameters of the substrate do not enter
Eq. (9.3.54).
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Thus, the problem of the domain formation in the film of a finite thickness
has been formally reduced to that considered above for a thick enough film,
however, with the parameters that are thickness dependent. This enables us to
use a mathematical result from the previous section, namely the expression for
the equilibrium fraction of the domain state a

aeq ¼
1

2
þ ~u1 � ~u2

2~u12
; (9:3:61)

cf. Eq. (9.3.42), and the condition for the stability of the multidomain state

� ~u125~u1 � ~u25~u12; (9:3:62)

cf. Eq. (9.3.44).
We can distinguish two kinds of size effects in our problem: one is related to

the difference in surface (films/substrate) energies of the two domain state and the
other to the combined action of microstresses and the wall energy. The impact of
these effects is different since the former results in a thickness dependence of the
effective energy densities of the domain states whereas the latter introduces a
thickness dependence of the effective energy densities of their coupling. This is
seen from Eqs. (9.3.59) and (9.3.60). We will consider these effects separately.

Let us start from the size effect related to the combined action of microstresses
and the wall energy. It manifests itself via reduction of the effective coupling
energy ~u12, which makes the driving force for the domain formation. At h = h0
the effective coupling energy vanishes and the theory predicts no polydomain
states in films thinner than h0. At h > h0, the polydomain state is possible but its
stability window shrinks compared to that obtained taking into account only the
energy of the macroscopic stress. As an example of such a behavior we will
consider the thickness dependence of the parameters of the a/c-pattern, which
was treated in the preceding section. Equations (9.3.60) and (9.3.61) provide us
with an expression for the c-domain fraction aeq as a function of the relative
coherency strain f and the normalized film thickness h/h0a/c (h0a/c is the char-
acteristic length the a/c-pattern calculated according Eq. (9.3.56)):

aeq ¼
1

2
þ ua � uc

2uac

1

1�
ffiffiffiffiffiffiffi
h0a=c
h

q ¼ 1

2
þ 1=2� ð1þ nÞf

1�
ffiffiffiffiffiffiffi
h0a=c
h

q : (9:3:63)

Figure 9.3.10a shows aeq plotted as a function of f for n=0.3 calculated for
different values of the normalized film thickness. Another instructive example of
this size effect is the thickness dependences of the borders between a/c-variant and
monovariants(aorc)forthissystem.Thesedependencescanbereadilyobtainedfrom
the two limitsof condition (9.3.62). In termsof the relativecoherence strain, theyread

fa;a=c ¼
1

1þ v
� 1

2ð1þ vÞ

ffiffiffiffiffiffiffiffiffiffi
h0a=c

h

r
; (9:3:64)
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fc;a=c ¼
1

2ð1þ vÞ

ffiffiffiffiffiffiffiffiffiffi
h0a=c

h

r
: (9:3:65)

Here and therein the lower indices for f indicate the variants that meet in the
diagramat thisvalueof therelativecoherence strain.Thethicknessdependenceof the
border between the a/c- and a1/a2-variants can be found from comparing their
energies. The characteristic lengths given by Eq. (9.3.56) for these two variants, h0a/c
andh0a/a,are, ingeneral,different.Forthisreason, thegeneralequationfortheborder
betweenthese invariants isverycumbersome.Inacompactform, thisequationcanbe
foundfor thecasewhere thecharacteristic lengths for these twovariantsare set equal:

fa=a;a=c ¼
1

2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2n
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2n
p

� 1

2ð1þ vÞ

ffiffiffiffiffiffiffiffiffiffi
h0a=c

h

r
: (9:3:66)

For this situation, the phase diagram for the single- and for bi-domain-state
structures as predicted by the considered framework is shown in Fig. 9.3.11. In

Fig. 9.3.10 Effect of the film thickness on the dependence of volume fraction of the c-domain
state, a, on the relative coherence strain, f (according to Eqs. (9.3.58), (9.3.59), and (9.3.60).
The a/c-domain pattern in a (001) tetragonal ferroelectric film with the Poisson ratio n ¼ 0:3.
(a) The impact of microstresses located at the film/substrate interface. (b) The impact of the
interface (ferroelectric/substrate) energy. h0 ¼ h0c=a See the text

Fig. 9.3.11 Effect of the film thickness, h, on the energetically favorable type of the domain
variant (according to the Roytburd theory of the size effect, Eqs. (9.3.63), (9.3.64), (9.3.65),
and (9.3.66)). Results of the calculations for domain structures involving not more than two
domain states in a (001) tetragonal ferroelectric filmwith the Poisson ratio n ¼ 0:3. In the limit
h!1 and neglecting themetastable state, the diagram transforms into line #3 in the diagram
shown in Fig. 9.3.9. Here h0 ¼ h0c=a ¼ h0a=a
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the limit h!1 this diagram corresponds to the diagrams (#2) and (#3) from
Fig. 9.3.9. Interesting feature of these diagrams is a wide region of possible
coexistence of the a/c- and a1/a2-variants where the former variant is meta-
stable. Actually, the a1/a2-variants should also bemetastable in the areamarked
‘‘a/c’’; however, we have not shown that in the diagram since no relevant
calculations are available for the moment.

The case of the surface energy-related effect can also be treated using the
stability condition (9.3.62) which now reduces to

� u125u1 � u2 þ
US1 �US2

h
5u12: (9:3:67)

We see that the decrease in the film thickness impedes the satisfaction of one
of the inequalities in Eq. (9.3.67) whereas it facilitates the satisfaction of the
other. These inequalities correspond to the borders between the poly- and
single-domain states. Thus, the variation of thickness will just shift the window
of the stability of the polydomain state rather than shrink it. Evidently, the
window shifts to favor the domain state with the smaller surface energy. To
illustrate this point, we will present an expression for the c-domain fraction, aeq,
as a function of the relative coherency strain f and the film thickness, which
takes into account only the surface-energy-related effect. Using Eqs. (9.3.59)
and (9.3.61) we readily find

aeq ¼
1

2
þ ua � uc

2uac
þ hs

h
¼ 1� ð1þ nÞfþ hs

h
; (9:3:68)

hS ¼
USa �USc

2uac
; (9:3:69)

whereUSc andUSa are the surface (films/substrate) energies of c- and a-domain
states and the characteristic length hS that governs the strength of the size effect.
The latter can be compared to the characteristic length for the first size effect, h0
(introduced by Eq. (9.3.56), via an obvious relation

hs
h0a=c
¼ 1

16x
USa �USc

s
: (9:3:70)

For the surface energy-related effect, the c-domain fraction, aeq, as a func-
tion of f for different values of the normalized film thickness h/hS is given in
Fig. 9.3.10b. The qualitative difference in the manifestations of the considered
size effects is clearly seen by comparing Fig. 9.3.10a and b.

Let us now address the range of applicability of the above results. The key
point of the ‘‘mean–strain’’ theory, namely the separation of the mechanical
energy into the contributions of macro- and micro-internal stresses, is justified,
as we already mentioned, only for dense domain structures. According to
Roytburd (1998b), mathematically this theory is quantitatively applicable at
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W < h in general case and at W < 2h for the most favorable case of symmetric
domain patterns with a � 1/2. Using Eq. (9.3.57) with x =0.27 we find for the

condition of applicability of the ‘‘mean–strain’’ theory h456h0
1=4

að1�aÞ

� �2
and h>

14 ho for the two aforementioned situations, respectively. Checking the validity
of this criterion we immediately find out that there are situations where the
theory runs out away from its range of applicability. It takes place, first, in the
vicinity of the bounds of the stability regions for polydomain states, i.e., at a! 0
and a ! 1, and second, in films thinner than some 30h0. The latter finding is
clear of great importance for the whole consideration. Namely, the conclusion
of the theory that at h< ho the single-domain state is always favorable becomes
non-justified. However, the theory still provides useful information on this
thickness interval since the theory actually states that, at h < h0, no dense
domain structure is possible in the system. From this we can conclude that at
h < h0, the film should be either in the single-domain state or in a multidomain
state with the period that is much greater than the film thickness.19 These two
possible states of the films correspond to the same stress state for the main part
of the systems. Thermodynamically both these states are actually single
domain. For example, the thermodynamics of the single-domain ferroelectric
films (see Sect. 9.3.2) is directly applicable to domains making a pattern with
W44h. Thus, we can formulate an important result of the above theory: in
ferroelectric films thinner than the characteristic thickness ho the physically
single-domain state is energetically favorable.

To conclude this section we present estimates for the characteristic lengths ho
and hS. For the a/c-pattern, the walls are inclined by 458 to the plane of the film
that implies s ¼

ffiffiffi
2
p

sW. Aiming at order-of-magnitude estimates, we will use
the result of the continuous theory of domain walls for the wall energy, Eq.
(6.2.10c). Then with the help of Eqs. (9.3.56) and (9.3.41) we arrive at the
following relation between h0a=c and the wall thickness tw:

h0a=c ¼ Ba=ctw; Ba=c ¼
8
ffiffiffi
2
p

x
3

P2
sw
�1 1� n2

Ee2T
: (9:3:71)

Let us evaluate the coefficient Ba/c entering this expression for PbTiO3 films
at room temperature. Using x ¼ 0.27 and the values of material parameters of
PbTiO3 (Ps ¼ 0.52 C/m2, 1/E ffi 8 
 10-12, w ffi 200e0, n ffi 0.31, e2T ¼ 0:063) we
find Ba/cffi 0.3. For the a1/a2-variant, similar calculations give for its character-
istic lengths h0a=a

h0a=a ¼ Ba=atw; Ba=a ¼
4x
3
P2
sw
�1 1þ n

Ee2T
(9:3:72)

19 The third hypothetical possibility that, for h < ho, the domain period always stays of the
order of the film thickness we exclude as containing an excessive density of domain walls.
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with Ba/a ffi 0.15. It is worth mentioning that the combination of thermody-

namic parameters entering the expressions for B’s is expected to be weakly

temperature dependent so that the temperature dependence of the critical

thickness should roughly follow that of the domain wall thickness.
To evaluate the characteristic length for the second size effect, hS, we need

information of the difference between the surface (film/substrate) energies (per

unit area) of the two domain states. Though these energies themselves can

hardly be evaluated without knowledge of the chemistry of the interface, their

difference, as governed by the electrode-adjacent variation of the order para-

meter, can be roughly estimated as being about the domain wall energy (per unit

area), i.e., |USc – USa|ffi sW. Based on this and using Eq. (9.3.70) we find

jhsj ffi 0:06tW.
Despite the roughness of these estimates we can conclude that the character-

istic thickness h0 should be of the order of the domain wall thickness, actually a

few times smaller, whereas hs is yet smaller. The estimates obtained enable us to

tell the range of theoretical parameters corresponding to the typical experimen-

tal situation where the thickness of thin films investigated is at least one to two

orders of magnitude larger than the domain wall thickness.We readily conclude

that in this situation h >>h0 (h > 30 h0 in the evaluated case of PbTiO3). This

means that, in experiments, one usually deals with dense domain patterns,

which can be adequately described by the Roytburd ‘‘mean–strain’’ approach,

except maybe for the case of record thin films and strongly asymmetric domain

patterns, where a! 0 or a! 1.

9.3.4 Domain Formation Driven by Elastic Effects:
Advanced Theoretical Results

In the previous section we have addressed the fundamentals of the mechanical

effects on the domain states and domain pattern in ferroic thin films. The

material selected for that section introduces the basic notions and gives ideas

about the physics behind the considered phenomena in terms of simple and

mathematically transparent approaches. The goal of this section is to comple-

ment the aforementioned material with the results of more involved theoretical

treatments of the problem. In contrast to the previous section we will only

overview the obtained results mainly skipping derivations. We will address

(i) the application of mean-strain Roytburd’s approach to the elastically aniso-

tropic situation and to the case of polydomain heterostructures, (ii) the treat-

ment of domain structures by using the methods of fictitious dislocations and

elastic Green’s functions, (iii) the consideration of dense domain structures

taking into account the stress dependence of the order parameters in domains,

and (iv) theory of domain patterns in (001) rhombohedral and (111) tetragonal

films of ferroelectric perovskites.
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9.3.4.1 Results of the Mean-Strain Approach

The mean-strain approach outlined in the previous section can be applied to
situations more complex than those treated there. Relevant results can be found
in the original papers by Roytburd and coworkers (Roytburd, 1998a,b; Alpay
and Roytburd, 1998). Here we will address only two issues, which are of the
most practical interest.

The treatment presented in Sect. 9.3.3 is valid in the case of an arbitrary
elastic anisotropy. Namely, the expression derived above for the case of elasti-
cally isotropic ferroelectric (e.g., Eq. (9.3.58)) can be used in the anisotropic
situation with the elastic energy (density) of the domain states and the energy
(density) of inter-domain through-substrate interaction, which are adequately
calculated. When the elastic anisotropy of the ferroelectric is taken into
account, the elastic energy u1 of the strained domain state ‘‘1’’ should be written
as (Roitburd, 1976)

u1 ¼
1

2
eð1ÞMabGabgdð~nÞeð1ÞMgd; (9:3:73)

where a, b ¼ 1� 2, eð1ÞMab is the misfit strain of domain state ‘‘1,’’ ~n ¼ ð0; 0; 1Þ is
the normal to the film interface, and Gijlmð~nÞ is the so-called planar elastic
modulus tensor:

Gijlmð~nÞ ¼ cijlm þ cijkpnpUkrntctrlm; ðU�1Þkr ¼ nicikrpnp: (9:3:74)

The normalized energy (density) of inter-domain through-substrate interac-
tion (cf. Eq. (9.3.41)) between domains ‘‘1’’ and ‘‘2,’’ in this case, reads

u12 ¼
1

2
eð1ÞMab � eð2ÞMab

� �
Gabgdð~nÞ eð1ÞMgd � eð2ÞMgd

� �
: (9:3:75)

Using these expressions in the basic Eqs. (9.3.58), (9.3.59), (9.3.60), and
(9.3.61) generalizes the results of the preceding section to the elastically aniso-
tropic situation. For example, now Eq. (9.3.61) provides information on the
impact of elastic anisotropy of the ferroelectric on the fractions of the domain
states in the film. One can show that u12 calculated according to Eq. (9.3.75) is
always positive. This implies, as is clear from Eq. (9.3.52), an important result
already mentioned above: In systems containing two domain states with equal
elastic energies, u1 = u2, the domain patterning is always favorable as far as the
energy of the microscopic mechanical energy plays the decisive role.

The results of Sect. 9.3.3 address the situation of infinitely thick substrate, in
other words, the situation where an infinitely thick layer of ‘‘passive material’’ is
attached to the ferroelectric film. In this case, the macroscopic elastic energy of
the passive material can be neglected. The situation conceptually close to this is
a periodical heterostructure made of ferroic layers of thickness h and passive
layer of thickness h0 with the same elastic properties. It has been shown that
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this situation can be readily described in terms of the developed approach
(Roytburd, 1998a,b; Alpay and Roytburd, 1998). An instructive result of the
theory is the expression for the equilibrium fraction of one of the domain states
in a bi-domain structure. Being a generalization of (9.3.63), it reads (Alpay and
Roytburd, 1998)

að2Þeq ¼
1

2
þ u1 � u2

2u12 1�
ffiffiffiffi
h0
h

q
1þ h

h0

	 
h i : (9:3:76)

Equation (9.3.76) demonstrated a non-trivial interplay between the effects of
the partial stress release in the passive layers and microstresses.

9.3.4.2 Theory of Domain Pattern of Arbitrary Density for Cubic–Tetragonal

Transition in (001) Films

The problem of the equilibrium domain pattern resulting from a cubic–tetra-
gonal transition in (001) films of perovskite ferroelectrics like PbTiO3,
Pb(Zr,Ti)O3, and BaTiO3 has been extensively treated in Sect. 9.3.3 in terms
of the mean-strain approach. Though the results obtained there provide a good
coverage of the typical experimental situations, they are still limited since the
approach itself is applicable only if the domain structure of the film is dense, i.e.,
if the period of the structureW is smaller than the film thickness h. As we have
mentioned this condition is always violated when the film thickness is smaller
than some 20 critical thicknesses h0 or when the fraction of one of the domain
states tends to zero, a!0 or 1–a!0 (see Sect. 9.3.3). Description of the domains
in these situations as well as the evaluation of the accuracy of the mean-strain
approach calls for a more precise treatment of the problem. Such treatments
have been offered by several authors who used different advanced methods of
the elasticity theory. In this section we will overview the theoretical results on
bi-domain state structures, i.e., the a/c- and a1/a2-variants illustrated in Fig. 9.2.1.

Three kinds of problems have been addressed: (i) calculation of elastic
energy of the a/c-variant (Pompe et al., 1993; Pertsev and Zembilgotov, 1995),
(ii) calculation of elastic energy of the a1/a2-variant (Pompe et al., 1993; Pertsev
and Zembilgotov, 1995; Romanov et al., 1996), and (iii) calculation of elastic
energy of an a-domain band inserted in a large c-domain (Pompe et al., 1993).
All the problems were addressed in the approximation of elastic isotropy of
both the ferroelectric and the substrate, whose elastic constants were taken
identical. These quite involved calculations have been performed by Pompe and
coworkers using elastic Green functions approach (Pompe et al., 1993), by
Pertsev and Zembilgotov (1995) and by Romanov with coworkers (1996)
using method of fictitious dislocations and disclinations. For the case of a
film of an arbitrary thickness the rigorous results can be derived only numeri-
cally. For the a1/a2-pattern, Romanov and coworkers (1996) offered an approx-
imate, but fully analytical, treatment of the problem, which yields qualitatively
correct results. We will not discuss the technical aspect of all these calculations,
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referring the interested reader to the original papers, and address the most
important of the results obtained.

The rigorously calculated total elastic energy of the a/c- and a1/a2-periodic
patterns (Pertsev and Zembilgotov, 1995) can be written in the form identical to
that of the total elastic energy, Umac(a) + Umic(a), used in the mean-strain
approach (see Eqs. (9.3.52) and (9.3.54)):

UtotðaÞ ¼ ½ð1� aÞu1 þ au2 � að1� aÞu12�hþ u12WP12ðW=h; aÞ; (9:3:77)

where u1, u2, and u12 are the elastic energy densities of the two domain states
making the pattern and the normalized energy of their interaction introduced
according to Eqs. (9.3.35), (9.3.36), (9.3.41), and (9.3.47). The functionP12 (W/h,
a), being, in general, different for different pairs of the domain states, vanishes
at a¼ 0 and a¼ 1. In the limit of dense domain structure,W/h!0, and at a¼ 1/
2, it acquires a value of 7z(3)/16p3 � 0.017. (Here z(x) is the zeta function.) As
one expects, in the dense structure limit, the results of rigorous calculations are
very close to those of the mean-strain approach. The first r.h.s. term from
Eq. (9.3.77) is identical to the energy of macrostresses Umac(a). The second
r.h.s. term from Eq. (9.3.77) can be compared to the contribution
of microstresses in the mean-strain approach Umic(a) ¼ x(1 – a)2a2u12W,
Eq. (9.3.54). The identical dependences of these expressions on the period of
the structure and the material parameters of the system (entering in u12) are
seen. The difference is that, in the mean-strain theory, the functionP12 (W/h, a)
is approximated by x(1 – a)2a2. In the limitW/h!0 andwith x¼ 7z(3)/p3� 0.27,
these functions coincide at a ¼ 0, a = 1/2, and a ¼ 1, having, according to
Roytburd (1998b), very similar symmetric bell-like forms.

Once the function P12 (W/h, a) is available (for arbitrary W/h it is available
only in a numerical form, see Pertsev and Zembilgotov, 1995), the scheme
described in the Sect. 9.3.3, where x(1 – a)2a2 in the expression for Umic(a) is
replaced by P12 (W/h, a), can be employed for determining the parameters
of the domain patterns as functions of the film thickness, material parameters
of the ferroelectric, and the clamping condition imposed by the substrate.
A program equivalent to that aforementioned has been numerically imple-
mented by Pertsev and Zembilgotov (1995); the obtained results are illustrated
in Figs. 9.3.12, 9.3.13, 9.3.14, and 9.3.15.

Figure 9.3.12 shows the fraction of c-domains in a/c-variant, aeq(f), numeri-
cally calculated (Pertsev and Zembilgotov, 1995) as a function of the relative
coherency strain f for the Poisson ratio n ¼ 0.3 and different values of the
normalized film thickness: h=h0c=a ¼ 3:3, 6.6, 10.0, 13.3, and 16.7 (solid lines).
For h=h0c=a ¼ 16:7, the curve can be compared to the prediction of the mean-
strain approximation (straight solid line) since, at this value of the normalized
thickness, we are entering the range of applicability of this approximation.We see
that, forf> 0.15, this approximation yields the results that are very close to those
of the exact theory. It fails for smaller values of f where, however, as one can
check using Eqs. (9.3.57) and (9.3.42), the domain period is quite large (W> 3h).
It is clear that on increasing thickness the range of applicability of themean-strain
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theory increases. In the limit h=h0c=a !1, the exact and approximate theories
yield the same aeq(f) dependence, which is shown with the dashed line.

The thickness dependence of the period of the a/c-variant calculated numeri-
cally (Pertsev and Zembilgotov, 1995) is presented in Fig. 9.3.13 for three values
of the relative coherency strain f ¼ 0.27, 0.30, and 0.33. At small h the curves

Fig. 9.3.12 Effect of the film thickness on the dependence of the volume fraction of the c-
domain state, a, on the relative coherence strain,f. The a/c-domain pattern in a (001) tetragonal
ferroelectric film with the Poisson ratio n ¼ 0:3. Curves 1–5 show the results of numerical
calculations by Pertsev and Zembilgotov (1995) for the normalized thicknesses h=h0 ¼ 3:3,
6.7, 10, 13.3, and 16.7, respectively. Solid straight line—the result of the mean-strain approach
for h=h0 ¼ 16:7. Dashed line—the aðfÞdependence in the limit h=h0 !1. Here h0 ¼ h0c=a

Fig. 9.3.13 Normalized period of the a/c-domain pattern in a (001) tetragonal ferroelectric
film with the Poisson ratio n ¼ 0:3. Solid curves—the results of the numerical calculations by
Pertsev and Zembilgotov (1995) for different values of the relative coherence strain,f.Dashed
line—the ‘square root law’ which, in the limit of large film thickness, is consistent with the
results the mean-strain approach for f ¼ 0:3. Here h0 ¼ h0c=a . See the text
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end up at the values of h corresponding to the minimal thickness below which
the c-monovariant is preferable to the a/c-variant. The curve for the case of f¼
0.30 is compared to the square root dependence predicted by the mean-strain
theory, Eq. (9.3.57). For x=0.27 and a coming fromEq. (9.3.42) withf¼ 0.30,
the result of the mean-strain theory is shown in this figure with the dashed line.
It is seen that for the normalized thicknesses h=h0c=a425 the mean-strain

approximation perfectly reproduces the result of the exact theory.20

Fig. 9.3.14 Normalized period of the a1/a2-domain pattern in a (001) tetragonal ferroelectric
film. Solid curves—the results of the numerical calculations by Pertsev and Zembilgotov
(1995), which take into account the exact strain distribution in the film. Dashed line—the
‘square root law’ which, in the limit of large film thickness, is consistent with the results the
mean-strain approach. Here h0 ¼ h0a=a . See the text

Fig. 9.3.15 Effect of the film thickness, h, on the energetically favorable type of the domain
variant. Results of the calculations for domain structures involving not more than two
domain states in a (001) tetragonal ferroelectric film with the Poisson ratio n ¼ 0:3. Solid
curves—the results of the numerical calculations by Pertsev and Zembilgotov (1995) taking into
account the exact strain distribution in the film. Dashed lines show, for comparison, the
predictions of the mean-strain theory already presented in Fig. 9.3.11 (the area of
metastability of the a/c-variant is not shown for simplicity of the figure). Here h0 ¼ h0c=a ¼ h0a=a

20 One should note that for smaller thicknesses, where the situation is on the limit or out of the
limit of applicability of the mean-strain approximation, its predictions are still qualitatively
correct. First, like in the exact theory, it is predicted that the a/c pattern becomes unstable for
the film thicknesses below a certain critical value. Second, at small h=h0c=a , taking into account
the thickness dependence of a (given by Eq. (9.3.63)) in Eq. (9.3.57), one arrives at a WðhÞ
curve deviating up from the square-root law similar to the numerically calculated curves in
Fig. 9.3.12 do.
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The investigations (Pompe et al., 1993; Pertsev and Zembilgotov, 1995; Roma-
nov et al., 1996) of the energerics of the a1/a2-variant reveal a qualitative differ-
ence in the thickness evolution of the a1/a2- and a/c-variants: the former, in
contrast to the latter, remains energetically favorable for an arbitrary small film
thickness. These investigations have also predicted a formally unlimited increase
in the period of a1/a2-pattern for the film thickness tending zero. This is illustrated
in Fig. 9.3.14 where the results of the numerical calculation by Pertsev and
Zembilgotov (1995) are shown. The thickness dependence of the domain period
of the a1/a2-variant has also been treated analytically in the so-called Somigliana
dislocation quadrupole approximation by Romanov and coworkers (1996). The
curve obtained analytically is close to that shown in Fig. 9.3.14 to within 20%
accuracy. In the limit of very thin films h=h0a=a551, these calculations provide an
analytical description of the thickness dependence of the domain period

W / h expð1:9h0a=a=hÞ; (9:3:78)

where h0a=a is defined by Eqs. (9.3.56) and (9.3.47). Comparing the result obtained
numerically with that of the mean-strain approximation (shown as the dashed
line in the same graph), one sees that at h=h0a=a415, as one expects, this approx-
imation perfectly reproduces the result of the exact theory. On the other hand, the
quantitative description of the steep rise of the domain period with decreasing
thickness at small h=h0a=a is left out of the reach of this approximation. However,
as was mentioned in Sect. 9.3.3.3, in a sense, the qualitative prediction of this
approximation is correct: for h=h0a=a51, it predicts the single state, which is
physically very close to a polydomain states with very large domains.

Combining the result of Pompe and coworkers (1993) and Pertsev and
Zembilgotov (1995) one can derive the ‘‘h–f’’ diagram for the single- and for
bi-domain-state structures. This diagram is shown in Fig. 9.3.15. It should be
considered as a revised version of the diagram developed in terms of mean-
strain approximation and shown in Fig. 9.3.11. (In Fig. 9.3.15 for simplicity
the region of the metastability of the a/c-variant is not shown.) For comparison,
the curves corresponding to this approximation are also incorporated in
Fig. 9.3.15. It is seen that, except for very small thicknesses h/hco < 2–3, the
results of the exact and mean-strain theories are rather close.

9.3.4.3 Theories Taking into Account the Stress Dependence

of the Order Parameter

The approaches applied above for the description of equilibrium domain pat-
terns do not make allowance for the variation of the order parameter in the film
caused by the substrate-induced stress. This variation always takes place
because of the coupling between the deformation and the order parameter
complicating the problem. However, for the case of dense domain pattern, the
problem can still be treated analytically as was recently shown by Pertsev with
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coworkers (Pertsev and Koukhar, 2000; Koukhar et al., 2001; 2006). An alter-
native approach, the so-called phase-field numerical approach, has been also
recently applied to this problem by Li et al. (2001, 2002, 2003). Below we briefly
outline these approaches and discuss the results obtained with their help.

The basic idea by Koukhar et al. is to consider the distribution of the
polarization, electric field, and strain in a dense domain pattern as piecewise
homogeneous with mechanical and electrical boundary conditions satisfied. At
the same time, the mechanical stress in the film is set homogeneous. This
approximation, whose accuracy is better the denser the pattern, readily yields
the energy of the film as a function of the above variables and the fractions of
domain states making the pattern. The minimization of the obtained energy
with respect to all these variables enables the authors to determine the type and
parameters of the energetically favorable domain pattern. This approach has
been implemented for the consideration of dense 908 bi-domain-state structures
in BaTiO3 and PbTiO3 (001) films. The authors based their calculations on the
Gibbs function phenomenological expansion (see Eq. (2.3.34)). The result of
calculations is the parameters of the equilibrium domain patterns of the system
as functions of the temperature and parent misfit strain.

To illustrate the link between the approach of Koukhar et al. (2001) and that
of Roytburd (1998a,b) we will compare the predictions of these theories con-
cerning the fraction of c-domains in the a/c-domain pattern in a (001) PbTiO3

film, aeq. According to Koukhar et al. (2001), aeq reads

aeq ¼ 1� 1� s12
s11

� �
eP �Q12P

�2
S

ðQ11 �Q12ÞP�2S
; (9:3:79)

P�2S ¼
�b�11 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b�211 � 4g111a�

q
2g111

; (9:3:80)

a� ¼ a0ðT� T0Þ �
2Q12

s11
eP; and b�11 ¼ b11 þ

2Q2
12

s11
: (9:3:81)

Here P�S is the spontaneous polarization in the polydomain pattern expressed
in terms of the parent misfit strain eP and the thermodynamic parameters of the
material (see Eq. (2.3.34)). In the considered approximation as a result of the
homogeneity of the stress, the spontaneous polarization P�S is the same in both a-
and c-domains; however, it is different from its value in the bulk material PS.

21

21 It is proper to indicate that Eqs. (9.3.80) and (9.3.81) give actually the results of the third
modification of Landau theory for this kind of materials. Speaking about three modifications
we mean the versions of Landau theory for (i) mechanically free material (Sect. 2.3.4),
(ii) single-domain film clamped by a thick substrate (Sect. 9.3.2), and (iii) film clamped by a
thick substrate but containing a dense ferroelectric domain pattern. Similar to cases (i) and
(ii), in case (iii), the stresses are mainly homogeneous throughout the sample. In terms of the
stress level, case (iii) is intermediate between (i) and (ii).
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The result given by Eqs. (9.3.79), (9.3.80) and (9.3.81) can be readily com-

pared to the corresponding result of the Roytburd’s mean-strain approach, i.e.,

aeq ¼ 1–(1+n)f (see Eq. (9.3.42)). Taking into account that for the considered

orientation of the film the Poisson ratio n ¼ –s12/s11 and the relative coherency

strain f can be presented as ðeP �Q12P
2
SÞ=ðQ11 �Q12ÞP2

S, we readily rewrite the

result of Roytburd’s theory as

aeq ¼ 1� 1� s12
s11

� �
eP �Q12P

2
S

ðQ11 �Q12ÞP2
S

: (9:3:82)

Thus we see that, in the considered aspect, the difference between the results

of the two theories is the use of the modified (by the stresses in the film) value of

spontaneous polarization P�S instead PS.
To illustrate the effect of the stress-induced variation of the order parameter

taken into account by the theory by Koukhar et al. (2001), let us compare the a
vs. eP dependences predicted by the two theories (i.e., Eqs. (9.3.79) and (9.3.82))

for the case of PbTiO3 at T ¼ 25 and 4408C.22 The result of this comparison is

shown in Fig. 9.3.16. One concludes from this figure that far from the transition

(at T ¼ 258C) this effect is of minor importance whereas relatively close to the

transition (at T ¼ 4408C) its impact can be considerable. Another important

feature seen is that, at the border between c- and a/c-variants (i.e., at a ¼ 1 and

f¼ 0), the theories give the identical results, as one can expect, since atf¼ 0 the

c-variant is not strained.23

The theory by Koukhar et al. (2001) enables the development of the

(T – eP) phase diagram for the domain pattern of the film, which makes

allowance for single- and bi-domain-state structures. Such diagrams for

PbTiO3 and BaTiO3 (001) films are shown in Fig. 9.3.17a and c, respectively.

Fig. 9.3.16 The dependence of the volume fraction of the c-domain state, a, on the parent
misfit strain, eP, in a (001) tetragonal PbTiO3 film with the a/c-domain pattern calculated
according to the mean-strain approach (dashed lines) and the theory by Koukhar et al. (2001)
(solid lines). Results of calculations are presented for two temperatures indicated in the graphs

22 The materials parameters used in these calculations are listed in Table 2.3.1.
23 One readily checks that at f ¼ 0, i.e., at eP ¼ Q12P

2
S, P

�
S ¼ PS.
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It is instructive to compare these diagrams with the predictions of Roytburd’s
mean-strain approach (line #3 in Fig. 9.3.9). For the case of PbTiO3 and far
below the phase transition, the difference between the predictions of the two
approaches is rather small. The theories give the identical position of the c- to
a/c-variant border, as was stated above, and very close positions of the a1/a2-
to a/c-variant borders (at room temperature its position in the diagram
shown in Fig. 9.17a to within 5% corresponds to the value of the relative
coherency strain equal to 1=ð2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2n
p

Þ predicted by Roytburd’s theory).
However, we find a very different situation for BaTiO3. Here the theory by
Koukhar et al. predicts a qualitatively new effect—appearance of the domain

Fig. 9.3.17 Calculated ‘temperature–parent misfit strain (eP)’ diagrams for the (multi)domain
states in (001) tetragonal films of PbTiO3 (a, b) and BaTiO3 (c). (a) and (c)—the results by
Koukhar et al. (2001); here thin lines show the second-order phase transitions, the thick lines—
the first-order phase transitions. Reprinted with permission from Koukhar et al. (2001).
Copyright (2001) by the American Physical Society. (b) The results of the phase-field calcula-
tions by Li et al. (2001); here the symbols limit the areas on the diagram where the given
domain pattern is favorable. ‘c’ indicates the c-domainmonovariant. The nomenclature of the
domain patterns is explained in Fig. 9.3.18.Dashed line shows the temperature dependence of
the parent misfit strain expected in the case of MgO substrate and the formation of equili-
brium density of misfit dislocations at the crystallization temperature (but without further
dislocation formation at lower temperatures)

582 9 Ferroelectric Thin Films



patterns made of domain states unknown for the bulk BaTiO3. For instance,

at room temperature in addition to the ‘‘known’’ c-, a1/a2-, and a/c-variants,

there appear new ones (ca*/aa*, ca1/ca2, and aa1/aa2) having orientations of

the spontaneous polarization shown in Fig. 9.3.18. Such complex diagram

containing new phases can be considered as a typical feature of systems

where in the bulk form the energy of different ferroelectric phases is close

to each other. This point is supported by the results obtained for

Pb(ZrxTi1–x)O3 films by Koukhar et al. (2006). The eP–T diagrams developed

in this chapter are relatively simple for the end members of this sold solution

whereas close to the morphotropic boundary at x�0.5 the diagram is quite

complex.
A comparison of the diagrams shown in Fig. 9.3.17a and c with those for the

single-domain state of these films (Fig. 9.3.5) reveals an essential difference between

these. The only feature of the single-domain phase diagram that is shared by the

diagrams shown in Fig. 9.3.17a and c is the temperature and the order of the

Fig. 9.3.18 Orientations of
domain walls separating
domains in the domain
patterns addressed in the
diagrams shown in
Fig. 9.3.17. Orientations of
the spontaneous
polarization are shown with
arrows. (a) ac, (b) ca*/aa*,
(c) a1/a2, (d) ca1/ca2, (e) aa1/
aa2, and (f) r1/r2. Koukhar
et al. (2001). Copyright
(2001) by the American
Physical Society
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ferroelectric phase transition forms the parent phase (except for a narrow interval
of small eP). Of interest is the behavior of the system at the transition from the
paraelectric phase to that with the in-plane orientation of the spontaneous polar-
ization. In the dense domain structure, the low-symmetry phase is the a1/a2-variant
whereas the predicted single-domain state is the aa-variant with h110i directions of
the polarization. Thus, in these situations, the orientation of the polarization differs
by an angle of 458. This may manifest itself in a change of the orientation of the
polarization of the film on increasing thickness. In thicker films with the dense
domain pattern, the h100i directions of the polarization are favorable. On the other
hand, in very thin films, where the domain period is expected to be greater than the
film thickness, the elastic state of the film approaches that in the single-domain
state, where the diagonal h110i directions of polarization are favorable.

Let us now outline the so-called phase-field approach (Li et al., 2001; 2002)
and the results obtained within it. The basic idea of this approach is to simulate
the relaxation of the polarization to its equilibrium spatial distribution using the
time-dependent Ginzburg–Landau equations. Specifically, the polarization
kinetics is described by equation

@Pið~x; tÞ
@t

¼ �L dF
dPið~x; tÞ

; (9:3:83)

where the variational derivative is taken from the free energy density
of the ferroelectric F written with the gradient terms taken into account
(for more information on these terms see Sect. 6.2) and L is the kinetic
coefficient. The relaxation of mechanical degree of freedom is assumed
to be instantaneous, i.e., the condition of the local mechanical
equilibrium

@sji
@xi
¼ @

@xi

@F

@eji
¼ 0 (9:3:84)

is applied. The values of the spatial average strain and stress components are
fixed according to the mechanical boundary conditions and the aspect ratio of
the filmmechanically clamped on a thick substrate, i.e., he1i= h e2i= ep, he6i=
0, and hs3i=h s4i=hs5i = 0 (cf. Sect. 9.3.2). The spatially inhomogeneous
contribution to the strain is set zero at a plane lying in the substrate at a certain
distance from the film/substrate interface. The equilibrium domain pattern is
determined from the time-dependent solution to Eqs. (9.3.83) and (9.3.84)
(result of the polarization relaxation) by using the so-called semi-implicit
Fourier-spectral method and numerical simulations with 128
128
36 grid
points. The (T – ep) diagram developed for PbTiO3 film, using the same set
of the thermodynamic parameters as Koukhar et al. (2001) used, is shown in
Fig. 9.3.17b. This diagram is rather close to that obtained by Koukhar et al. in
the limit of the dense domain pattern. A certain difference between the diagrams
obtained by these methods can be attributed to the finite-thickness effect in
the case of the phase-field calculations. In these calculations, the X3 grid
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spacing is set about one-fourth of the domain wall width. For a PbTiO3 film,
this is about the critical thickness h0 introduced for this problem in Sect. 9.3.3.
Thus, the film thickness addressed in these calculations is about 36h0. Accord-
ing to Sect. 9.3.3, films of this thickness correspond to the limit of the range of
applicability of Roytburd’s dense-domain-pattern theory. The dense-domain-
pattern theory developed by Koukhar et al. is not expected to have milder
limits of applicability. Thus, the results of phase-field simulations for the 36h0
thick film may essentially deviate from those of the dense-domain-pattern
theory.

A remark on the reliability of the results discussed in this section should be
made. In general, the frameworks discussed above can provide treatments of
domain patterns in ferroelectric thin films, whose accuracy can be controlled.
However, the results presented above for BaTiO3 and PbTiO3 films are not,
strictly speaking, the case. The reason is that corresponding calculations are
based on traditional expansion of the Gibbs function, which does not contain
the sP4-type terms. As mentioned in Sect. 9.3.2 these termsmay essentially alter
the obtained value of the film energy. Thus, the results in question should be
taken with some reservation.

9.3.4.4 Theory of Domain Patterns in (001) Rhombohedral and (111) Tetragonal

Films of Ferroelectric Perovskites

Let us now discuss the theoretical results on ferroelectric domain patterns in
(001) rhombohedral and in (111) tetragonal ferroelectric thin films. Specifi-
cally, we will address the case of perovskite ferroelectrics with a cubic m�3m
paraelectric phase and tetragonal 4mm and/or rhombohedral 3m ferroelectric
phases. The common obvious feature of these systems is that no domain state
has spontaneous polarization purely normal to the plane of the film whereas
the vectors of spontaneous polarization in the domain states are arranged in a
symmetric manner with respect to the film normal (see Sect. 9.2.2). This
situation is distinguished with respect to the relation between the in-plane
components of the tensor’s spontaneous deformation of the variant,
eSabða; b ¼ 1; 2Þ. Namely, the principal values of these matrices are equal so
that the variants differ only by the orientation of the principal axes of the
tensors. Less rigorously, one can say that the in-plane spontaneous deforma-
tion of the variants differ only in its orientation. Actually, such a situation was
already treated above for the a1/a2-pattern. We will see that the results
obtained for the a1/a2-pattern can readily be translated to the systems
addressed in this section.

First let us address the implication of the mean-strain theory for the
problem. The basic information required for its application is the knowl-
edge of the matrices of misfit strains of the variants, eMab, which are
controlled by the matrices of the parent misfit strain, ePab, and the matrices
of the natural spontaneous strain, eSab. For the domain patterns under
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consideration, this information is readily available. The matrices of the in-
plane components of the tensor’s spontaneous deformation, eSab, can be
readily presented as

eðd1ÞSab ¼eis
1 0

0 1

� �
þeT

ffiffi
3
p

6

1=
ffiffiffi
3
p

1

1 �1=
ffiffiffi
3
p

 !
;

eðd2ÞSab ¼eis
1 0

0 1

� �
þeT

ffiffi
3
p

6

1=
ffiffiffi
3
p

�1
�1 �1=

ffiffiffi
3
p

 !
;

eðd3ÞSab ¼eis
1 0

0 1

� �
þeT

ffiffi
3
p

6

�1 0

0 1

� �
;

(9:3:85)

for d1–d3 variants of the (111) tetragonal films and

eðr1;r3Þ
Sab

¼ eis
1 0

0 1

� �
þ d

2

0 1

1 0

� �
;

eðr2;r4Þ
Sab

¼ eis
1 0

0 1

� �
� d

2

0 1

1 0

� �
;

(9:3:86)

for r1–r4 variants of the (001) rhombohedral films, the variants being explained
in Figs. (9.2.16), (9.2.17), and (9.2.18). Here eis is one-third of the relative change
of the unit cell volume resulted from the phase transition, eT is the tetragonality
strain (see Eq. (9.3.4)), and d (see Fig. (9.2.16)) is the angle of rhombohedral
distortion.24 For the tetragonal case, thematrices are written in the origin where
‘‘X1’’-axis is parallel to the trace of the d1/d2 inclined domain wall on the (111)
plane and ‘‘X2’’-axis is perpendicular to this trace (see Fig. 9.2.18c). For the
rhombohedral case, the standard cubic reference frame is used. One can readily
check that the matrices, Eq. (9.3.85), transform into each other upon the 1208
rotations of the origin and the matrices, Eq. (9.3.86), transform into each other
upon the 908 rotations. This implies equal elastic energies of the single-domain
variants.25 For a binary domain pattern, this degeneracy leads to the equal
volumes of the variants in the pattern. Thus, the only two questions related to
the domain structure are left: (i) Under what conditions themultidomain state is
more favorable than the single-domain one? (ii) What is the period of the
equilibrium domain pattern?

As follows from Sect. 9.3.3 (see Eqs. (9.3.56) and (9.3.57) with a¼ 1/2), in the
mean-strain approach, the domain period is controlled by the surface energy of
domain walls and the so-called normalized energy density of the long-range

24 Equations (9.3.85) and (9.3.86) are written to within the approximation of small eT and d.
25 In principle it may not be the case when the thermal expansion of the substrate is not
isotropic in the plane of the film or the epitaxy relation in the cubic phase lowers the in-plane
symmetry of the film. We will not cover these situations which have not been addressed in the
literature.
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inter-domain coupling between two variants (‘‘1’’ and ‘‘2’’) through the sub-
strate u12. The latter is a function of the difference eð1ÞMab � eð2ÞMab of the misfit
strains of the variants (see Eqs. (9.3.75)). Using relation (9.3.1) one readily finds
that this difference is equal to eð2ÞSab � eð1ÞSab. Thus, it is the difference of the in-
plane components of the spontaneous strains of the variants that should be
determined to characterize the pattern. One readily finds from Eqs. (9.3.85) and
(9.3.86) that, for the discussed domain systems, this difference is always a pure
shear:

eðr1ÞSab � eðr2ÞSab ¼ d
0 1

1 0

� �
: (9:3:87)

eðr1ÞSab � eðr2ÞSab ¼ d
0 1

1 0

� �
: (9:3:88)

This is a situation identical to that in the a1/a2-pattern in (001) tetragonal
films where this difference written in the proper reference frame reads

êða1Þ
S
� êða2Þ

S
¼ eT

0 1

1 0

� �
: (9:3:89)

Thus, we see that, to within the mean-strain approach, the problem of the
energetics of the domain pattern in (001) rhombohedral and (111) tetragonal
films is equivalent to that of the a1/a2-pattern. Specifically, the relations derived
for the equilibrium period of the a1/a2-pattern are applicable to the two systems
under the consideration.26

For future analysis, it is proper, using Eqs. (9.3.47), (9.3.56), and (9.3.57), to
present the relations for the period W and the critical thickness of the a1/a2-
pattern in the form

W ¼ 2

x

ffiffiffiffiffiffiffi
hh0

p
; (9:3:90)

h0 ¼
4xs
Go2

s

; (9:3:91)

where G=0.5E/(1+v) is the shear modulus, os=eT is the values of the shear
strain relating the crystalline lattices of the two domain states involved in the a1/

a2-pattern, and s ¼ sW= sin a ¼
ffiffiffi
2
p

sW. Here a and sW are the angle between
the domain walls and the substrate and the energy density (per unit area) of the
wall, respectively. In this form, the relations for the domain period and the

26 In the approximation of elastic isotropy of the material of the film and the substrate, which
is currently used in the problems of this kind.
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critical thickness can be applied to the domain patterns in (111) tetragonal and

(001) rhombohedral films once the proper relations foros and s are used. Based
on Eqs. (9.3.87) and (9.3.88) and the information on the geometry of the

domain patterns (see Sect. 9.2.2) these relations are as follows. For the domain

patterns in the (111) tetragonal films os ¼ eT=
ffiffiffi
3
p

, s ¼
ffiffiffiffiffiffiffiffi
3=2

p
sW (inclined pat-

tern), and s ¼ sW (the walls are normal to the substrate). For the domain

patterns in the (001) rhombohedral films os ¼ d, s ¼
ffiffiffi
2
p

sW (inclined pattern),
and s ¼ sW (the walls are normal to the substrate). As for the parameter x, for
the a1/a2-pattern, from numerical calculations (Pertsev and Zembilgotov, 1995)

it can be evaluated as 0.27. The same value can be used for the cases where the
walls making the pattern are oblique. This can be decided based upon the
treatment by Romanov et al. (1998, 1999) where it was shown that the cases

of oblique walls in (111) tetragonal and (001) rhombohedral films are elastically
equivalent to the situation in the a1/a2-pattern. In the case of vertical walls in the
former systems, the situation is more complicated (Romanov et al., 1998; 1999)

and no exact treatment of the problem is available. However, based on the
analytical results by Romanov et al. a value of 0.27(2–n)/(1–n) can be used as a

reasonable estimate for x in this case.
Despite its appealing simplicity the mean-strain approach is limited to the films

essentially thicker than the critical thickness h0. For this reason, the prediction of
this approach that at h < h0 the multidomain state is not energetically favorable

(see Sect. 9.3.3) cannot be trusted. For the a1/a2-pattern, we have already seen that
this prediction is not valid and the domain pattern is energetically favorable for
films of any thickness. One can expect that this holds for the (111) tetragonal and

(001) rhombohedral films. This supposition was justified by Romanov et al. (1998,
1999) who offered a treatment of the problem, which goes beyond the mean-strain
approximation. Another interesting result obtained by these authors (Romanov

et al., 1999) is that, in a certain range of parameters of the problem, the energetics of
the domain pattern in the (111) tetragonal films allows two values of its period
corresponding to stable and metastable domain structures.

It is important to note that the ‘‘purely elastic’’ analysis of the problem addressed

above suffers from a limitation which can be crucial for the considered situation,
namely the effect of the misfit strain on the order parameter is neglected. For the
moment, in contrast to the case of the (001) tetragonal films, there is no theory for

the (111) tetragonal and (001) rhombohedral films that would take into account
this effect. However, it seems that there is at least one conclusion of the ‘‘purely

mechanical’’ analysis, which can be revised by the analysis that takes into account
the impact of misfit strain on the order parameter. Namely, it is the state of the
films under high compressive strains (the case of large negative parent misfit

strains). Let us explain this point for the case of (111) films made of material
having the tetragonal phase in the bulk form. In this case, the ‘‘purely elastic’’
theory, assuming that the film is always in the tetragonal state, predicts that the

multidomain state is energetically favorable. However, as seen from the phase
diagram shown in Fig. 9.3.7, for negative values of the parent misfit strains, the
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single-domain state of this system can be rhombohedral. This state can be more
energetically favorable than multidomain tetragonal state, especially for large
negative values of the parent misfit strain.

9.3.5 Domain Formation Driven by Elastic Effects:
Theory vs. Experiment

In this section we discuss the available experimental data on ferroelectric
domain patterns in thin films (see Sect. 9.2) in the context of existing theories
(Sects. (9.3.1), (9.3.2), (9.3.3), and (9.3.4). We will mainly address the data on
the domain pattern in (001) perovskite films. We will cover the behavior of the
domain fraction and period as functions of the temperature, material of the
substrate, film thickness, and composition.

9.3.5.1 Domain Fraction of a/c-Pattern in (001) Tetragonal Perovskite Films

as a Function of Temperature

The available experimental data on the temperature dependence of c-domain
fraction, aeq, in PbTiO3 films show a decrease in aeq when approaching the
transition temperature. This is illustrated in Fig. 9.2.10 for the case of films
deposited onMgO andKTaO3 substrates. The thicknesses of these films are 200
and 250 nm, respectively. For such thicknesses dense a/c-domain patterns are
expected. Thus, we will invoke the theories of the dense a/c-domain structure.
Three of them are presently available: (i) purely elastic theory of the a/c-pattern
(Roytburd, 1997; 1998a), (see Sect. 9.3.3), (ii) purely elastic theory of three-
domain-state structures based on the a/c-patterns (see Sect. 9.3.3) (Roytburd,
1997; 1998a), (iii) theory of the a/c-pattern taking into account the stress-
induced variation of the order parameter (Koukhar et al., 2001) (see Sect.
9.3.4.). The results of these theories for aeq, Eqs. (9.3.82), (9.3.51), and 9.3.79),
can be presented within a unified formula

aeq ¼ 1� A
�Q12

Q11 �Q12
þ eP
ðQ11 �Q12ÞP2

� �
; (9:3:92)

where

A ¼ 1þ n ¼ 1� s12
s11

; P ¼ PS for theory ðiÞ; (9:3:93)

A ¼ 2; P ¼ PS for theory ðiiÞ; (9:3:94)

and

A ¼ 1þ v ¼ 1� s12
s11

; P ¼ P�S for theory ðiiiÞ: (9:3:95)
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Here PS and P�S are the spontaneous polarization in the bulk material and
that calculated for the domain pattern taking into account the average stress in
the film (given by Eq. (9.3.80)), respectively. The less known parameter among
those entering Eq. (9.3.92) is the parent misfit strain, eP. It is controlled by the
lattice mismatch between the film and substrate in the paraelectric phase, the
dislocation-driven stress release, and the thermal expansions of the film and
substrate. The aforementioned uncertainty of eP results from that of the sce-
nario of the dislocation-assisted stress release. A detailed discussion of this
problem can be found in a paper by Speck and Pompe (1994). In the following
discussion, we will adopt a scenario, which is presently considered as most
realistic, namely, that the dislocation-assisted stress release does not take
place below the crystallization temperature of the film TG. In this case, the
parent misfit strain eP can be expressed in terms of the residual misfit strain at
the crystallization temperature of the films, er, and the thermal strain eth:

eP ¼ er þ eth; eth ¼ ðaTS � aTFÞðT� TGÞ: (9:3:96)

where aTS and aTF are the thermal expansion coefficients of the substrate and
film in the paraelectric phase, respectively. The residual misfit er is controlled by
the equilibrium concentration of misfit dislocations. Its equilibrium value, er0 ,
can be evaluated using Eqs. (9.3.15):

er0 ¼ ehigh ¼
aS � ac

aS
for h5hc; (9:3:97a)

er0 ¼ elow ¼ signðaS � acÞ
LðhÞ
h

for h4hc; (9:3:97b)

where aS and ac are the lattice constants of the substrate and film at TG,
respectively. The critical thickness of the misfit dislocations hc and the weakly
h-dependent parameter L(h) are defined by Eqs. (9.3.11) and (9.3.16). For
h5hc, the equilibrium value of the residual misfit strain given by Eq. (9.3.97a)
determines the real value of er whereas, for h > hc, the real value of er should lie
between ehigh and elow tending to elow in the ideal situation of the equilibrium
density of misfit dislocations.

Now let us discuss the experimental data shown in Fig. 9.2.10 in terms of the
results of the three theories presented above. As is clear from the inspection of
Eqs. (9.3.92), (9.3.93), (9.3.94), and (9.3.95), in all three theories, an essential
temperature dependence of aeq can arise from temperature variations of the
polarization P and parent misfit strain. Analysis of the material parameter of
the PbTiO3 and the substrates (MgO and KTaO3) shows (see Table 9.3.1) that
the thickness of the films (200 and 250 nm) is definitely greater than the critical
thickness of the misfit dislocation formation hc so that the dislocation-assisted
stress-release mechanism is active. At the crystallization temperature, this
mechanism can provide a release of misfit stress down to its equilibrium values
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of 0.8
 10–3 and 0.7
 10–3 for the 200 and 250 nm thick films, respectively. Let

us compare the data on the temperature dependence of aeq shown in Fig. 9.2.10

with the predictions of the three theories on the assumption that, at TG, the

equilibrium concentration of misfit dislocations is reached whereas at lower

temperatures only the thermal stress controls the parent misfit strain. This

comparison is illustrated in Figs. 9.3.19 and 9.3.20. It is seen that, though the

theories give a reasonable room temperature value (at least for MgO substrate)

of the domain fraction, none of them is able to explain the temperature varia-

tion of aeq. The theories yield more reasonable predictions if we assume that the

stress release at TG is not complete, i.e., that er is somewhat larger than er0 . In
Figs. 9.3.19 and 9.3.20, we have plotted the predictions of the three theories for

aeq(T) with values of er ¼ er0 þ De (from the interval elow–ehigh) adjusted to have

the best correspondence with the experiment. It is seen, first of all, that now all

the theories give qualitatively correct trends. As for more quantitative compar-

ison, in the case of films on KTaO3, the three-domain-state model provides the

best fit to the experimental data whereas, for the films on MgO, the theory

taking into account the stress-induced variation of the order parameter seems to

be the best. In both cases the best fit corresponds to a value of er about 5
 10–3.

Though, the body of the experimental data is not large enough for a thorough

analysis one can conclude, from the above consideration, that the stress release

in PbTiO3 at TG is not complete. A finite element analysis of the a/c-domain

pattern in the PbTiO3 on MgO system offered by Lee and coworkers (2001a)

has led to the same conclusion. The analysis based on Eq. (9.3.92) also suggests

that the temperature dependence of aeq is stemming from that of the sponta-

neous polarization rather than from the temperature dependence of the thermal

strain.
Concerning the theoretical predictions on the composition of the a/c-domain

pattern the following remarks should be done.

(i) The theory of Koukhar et al. (2001) should be considered as virtually exact
with a reservation concerning the renormalization of the P6-terms (men-
tioned in Sect. 9.3.2). Far from the phase transition the prediction of this
theory is very close to that of the Roytburd’s theory of the a/c-pattern

Table 9.3.1 Parameters of some crystalline substrates and the strain states of (001) PbTiO3

epitaxial films on these substrates. eMPTmeans the non-relaxed value of the misfit strain (ehigh)
of the PbTiO3 film. The numbers in the parentheses show either the temperature or the film
thickness

aS, ac, Å
(7008C)

aTS, aTF

106, K

eMPT
103
(7008C) hc, Å

L, Å
(2000 Å)

er0 
 103

(2000 Å)
eth
103
(258C)

MgO 4.251 13.4 64 5 1.7 0.8 –3.6

KTaO3 4.004 6.7 6.3 175 1.7 0.8 0.9

SrTiO3 3.934 11 –11 86 1.7 –0.8 –2.0

LaAlO3 3.821 11 –41 11 1.7 –0.8 –2.0

PbTiO3 3.979 8
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(Roytburd 1997, 1998a). At room temperature, the prediction of these the-
ories is a fewpercent close to each other as seen in Figs. 9.3.19 and 9.3.20. The
reason for that is a closeness of values of Ps and P�s at room temperature.

(ii) Using the diagram, Fig. 9.3.17a, developed by Koukhar et al. (2001) for
(001) PbTiO3 films, one can perform a further comparison of the theory
to the experiment for the PbTiO3 on MgO system. The best fit shown in
Fig. 9.3.20c corresponds to the straight dashed line shown in this diagram.
The cross-section of the diagram with this line predicts a change of the
domain state as a function of the temperature, namely a transition from
a/c- to a1/a2-pattern at about 4008C. We have no experimental evidence
concerning this transition. In the considered framework, the absence of
the a/c- to a1/a2-transition might be attributed to the persistence of the a/
c-pattern as metastable (cf. diagram shown in Fig. 9.3.11).

(iii) The available experimental data on aeq(T) correspond to the case of the
positive residual misfit strain at the crystallization temperature. All the
above theories naturally explain the correlation between the positive sign
of the residual strain and decreasing aeq(T) with increasing temperature.

Fig. 9.3.19 Experimental
data (points) (Kwak et al.,
1992) on the temperature
dependence of the fraction
of c-domains, a, in a/c-
domain patterns in (001)
PbTiO3 films on KTaO3

substrates fitted to (a) the
mean-strain theory with two
domain states, (b) the mean-
strain theory with three
domain states, and (c) the
mean-strain theory with two
domain states and corrected
value of the spontaneous
polarization. (See the text.)
Curves marked with De ¼ 0
are the results of the
calculations performed for
the equilibrium value of the
residual misfit strain, er0 .
The other curves are the
results of the calculations
performed for the values of
the residual misfit strain,
which are larger than er0 by
values of De indicated in the
graphs
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The reason for this is that the sign in the second term (leading) in the
parentheses in Eq. (9.3.92) is contorted by the sign of the residual strain.
Similarly, these theories will predict an increasing temperature dependence
of aeq in the case of negative residual strain at the crystallization tempera-
ture (see Eq. (9.3.92)), which is the case of SrTiO3 and LaAlO3 substrates
(see Table 9.3.1). Unfortunately, at present, there are no experimental data
available to test this point.

On the lines of the above discussion one expects Eq. (9.3.92) to describe, at

least qualitatively, the concentration dependence aeq in PZT on MgO system

shown in Fig. 9.2.11. However, assuming that, in PbTiO3 and PZT, the

residual stresses at TG are of the same order of magnitude and taking into

account the difference between the material parameters of these crystals, one

cannot explain this dependence. At the same time, one readily checks that

these theories provide a correct trend under the assumption that, in PZT, the

relaxation of the residual stress at TG is much smaller than that in PbTiO3.

This scenario is supported by the finite element analysis offered by Lee and

coworkers (2001).

Fig. 9.3.20 Experimental
data (points) (Lee and Baik,
1999) on the temperature
dependence of the fraction
of c-domains, a, in a/c-
domain patterns in (001)
PbTiO3 films on MgO
substrates fitted to (a) the
mean-strain theory with two
domain states, (b) the mean-
strain theory with three
domain states, (c) the mean-
strain theory with two
domain states and corrected
value of the spontaneous
polarization. (See the text.)
Curves marked with De ¼ 0
are the results of the
calculations performed for
the equilibrium value of the
residual misfit strain, er0 The
other curves are the results
of the calculations
performed for the values of
the residual misfit strain,
which are larger than er0 by
values of De indicated in the
graphs
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9.3.5.2 Thickness Dependence of the Domain Fraction of a/c-Pattern in (001)

Tetragonal Perovskite Films

The available experimental data on the thickness dependence of domain pattern
in (001) tetragonal perovskite film mainly cover PbTiO3 and PZT films thicker
than 15 nm. Using our estimates for the critical thickness h0 as a fraction of the
domain wall width (see Sect. 9.3.3.3) we conclude that the thicknesses of these
films exceed h0 by some two orders of magnitude. For such thicknesses, the
domain pattern is expected to be dense so that we can apply the theory of the
dense domain pattern to the analysis of the above data. Addressing the room
temperature data we can neglect the effect of stress-induced variation of the
order parameter and base our consideration on the mean-strain theory (see
Sects. 9.3.4). Thus, combining Eqs. (9.3.63), (9.3.68) and using the relation
f ¼ ðeP �Q12P

2
SÞ=ðQ11 �Q12ÞP2

S, we arrive at the following expression for
the thickness dependence of the c-domain fraction in the a/c-pattern

aeq ¼
1

2
þ 1

2
þ ð1þ nÞQ12

Q11 �Q12
1� eP

Q12P
2
S

� �� �
1

1�
ffiffiffiffi
h0
h

q þ hs
h
: (9:3:98)

To discuss the thickness dependence of aeq one needs information on the
thickness dependence of the parent misfit strain eP. In general, this dependence
is controlled by the scenario of the dislocation-assisted stress release in the film.
For the quantitative comparison of the theory with the experiment, we will
adopt the already addressed above scenario, namely, that the dislocation-
assisted stress release does not take place below the crystallization temperature
of the film TG whereas the dislocation density at this temperature is in equili-
brium. Under these assumptions, using Eqs. (9.3.96) and (9.3.97b) we find the
following thickness dependence of eP:

eP ¼ eth þ signðaS � acÞ
LðhÞ
h

; LðhÞ ¼ 0:24 lnð0:7 � hÞ; (9:3:99)

where h should be taken in Å. Combining Eqs. (9.3.98) and (9.3.99) we find

aeq ¼
1

2
þ 1

2
þ ð1þ nÞQ12

Q11 �Q12
1� eth

Q12P
2
S

� hr
h

� �� �
1

1�
ffiffiffiffi
h0
h

q þ hs
h
; (9:3:100)

where

hr ¼ signðaS � acÞ
LðhÞ
Q12P

2
S

: (9:3:101)

From Eq. (9.3.100) we see that, in the above situation, the thickness depen-
dence of aeq is governed by three effects characterized by three spatial scales:
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(i) the size effect related to the microstresses with the scale h0, (ii) the size effect

related to the difference between the energies of the a- and c-domain/substrate

interfaces with the scale hS, and (iii) the thickness dependence of the equilibrium

stress release with the scale hr ¼ L=ðQ12P
2
SÞ ffi 150 Å. Among these effects, the

size effect related to the difference in the interface energies is the most difficult to

evaluate quantitatively. However, based on a very rough estimate of jhSj as about
one-tenth of the domain wall thickness (see Sect. 9.3.3.3) we conclude that this

effect does not look essential for the considered systems. Neglecting this effect in

Eq. (9.3.100)we arrive at an expression for the thickness dependence of aeq, which
contains only one not exactly known parameter h0. For h0 ¼ 2 Å, this expression

reasonably imitates the data for the PbTiO3 onMgO system as seen inFig. 9.3.21.

The used value of h0 is consistent with its estimate as a fraction of the domainwall

thickness. The simulated effect is mainly due to the thickness dependence of the

residual strain at TG slightly compensated by the size effect related to the micros-

tresses. Of importance to notice is that the sense of the size effect, i.e., increasing or

decreasing type of the predicted aeqðhÞ dependence, is controlled by the sign of the

residual strain, which is in turn controlled by that of the parent misfit strain.

Thus, the experimental aeqðhÞ dependence in the PbTiO3 onMgO system can

be reasonably compared with the quantitative predictions of the theory assum-

ing the equilibrium dislocation density at TG. As for the experimental aeqðhÞ
dependences for PbTiO3 (100) films deposited on other substrates (KTaO3,

SrTiO3, and LaAlO3; see Fig. 9.2.9b, c, and d), these occur to be too strong to

be interpreted in terms of this equation. However, one may rationalize these

experimental data assuming that the residual stress at TG does not arrive at its

equilibrium value given by Eq. (9.3.97b).
Let us do this using a more general relation, Eq. (9.3.98). In the case of non-

equilibrium density of misfit dislocation, similar to the equilibrium situation, in

thicker films the dislocation density is expected to be larger. In turn, this means

that the thicker the film, the smaller the residual misfit strain. Taking this into

account, one can rewrite the parenthesis in Eq. (9.3.98) in the form

1� eth
Q12P

2
S

� er
Q12P

2
S

� �
;

Fig. 9.3.21 Experimental
data (points) (Lee and Baik,
2000) on the film-thickness
dependence of the fraction
of c-domains, a, in a/c-
domain patterns in (001)
PbTiO3 films on MgO
substrates fitted to
Eq. (9.3.100). See the text
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where er is the residual misfit strain contorted by the non-equilibrium density of
misfit dislocation. According to the above reasoning, jerj is a decreasing func-
tion of the film thickness. It is clear that this parenthesis will provide an
increasing thickness dependence of aeq, if er40, and a decreasing dependence,
if er50. Using the information on the non-relaxed misfit strain given in
Table 9.3.1, we find that the sense the aeqðhÞ dependences shown in Fig. 9.2.9b,
c, and d perfectly corresponds to the sign of eMPT, which obviously controls the
sign of er. A magnitude of the size effect in the case of KTaO3, SrTiO3, and
LaAlO3 substrates could be attributed to larger values of the residual misfit
strains at TG in these systems.

9.3.5.3 Periodicity of a/c-Patterns in (001) Tetragonal Perovskite Films

Images obtained with SEM, TEM, SFM, and other visualization techniques
provided a wide body of information on the periodicity of the a/c-pattern in
(001) tetragonal PbTiO3 and PZT films (see Sect. 9.2.1). These data were
obtained on films having the thicknesses large enough to apply the theory of
dense a/c-pattern. Thus the result of the mean-strain theory for the domain
period W, Eq. (9.3.57), can be used for the discussion of these experimental
data. We will use this expression with n ¼ 0:3 and x ¼ 0:27, rewriting it in the
form

W ¼ 7:4t
ffiffiffiffiffiffiffiffiffiffiffi
hh0a=c

q
;

t ¼ 0:25

að1� aÞ ; (9:3:102)

h0a=c ¼ 5:6
sw
Ee2T

: (9:3:103)

Here parameter t describes the effect of the c-domain fraction a on the
domain period W. The characteristic length h0ac for the a/c-domain pattern
has been evaluated (see Eq. (9.3.71)) for PbTiO3 films as a fraction of domain
wall thickness that corresponds to a few angstroms at room temperature. One
should mention that this estimate is very rough first of all because of the
roughness of the available estimates for the surface energy of the domain wall
sW. On the other hand, one may expect no essential difference between the
values of h0ac for PbTiO3 and tetragonal PZT since the pronounced variation
(between PbTiO3 and PZT) of the tetragonality strain entering the estimate may
be substantially compensated with the variation of sW.

Let us apply Eq. (9.3.102) to the analysis of the data on the periodicity of the
a/c-domain pattern in PbTiO3 and PZT listed in Table 9.3.2. In the same table
we give the values of parameter h0a=c , which is calculated from these data using
Eq. (9.3.102). As seen from this table the estimated value of the characteristic
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length of the h0a=c exhibits some three-orders-of-magnitude spread which by no

means can be attributed to a variation of material parameters of the system like

the degree of stoichiometry and/or composition. This clearly indicates that

the theory of equilibrium ferroelastic domain pattern in thin films at least not

always provides a reasonable description of the real experimental situation.

The reason for this disparity is that the real domain pattern appears to be far

from the equilibrium one, i.e., it does not correspond to the energy minimum

of the system. Data corresponding to a situation which is very far from the

equilibrium were reported by Nagarajan et al. (2001) (the last row in

Table 9.3.2) where the authors observed enormous spread of the local peri-

odicity of the pattern. Disregarding these data we however find that the data

from the rest of the table correspond to a value of h0a=c that is about few

angstroms; this is consistent in the order of magnitude with the theoretical

estimate given above.
Comparing the data on the domain fraction a and domain period W dis-

cussed in this section one notices that the equilibrium theory of the domain

pattern provides a better description for the latter than for the former. The

reason for that is rather obvious. In thick enough films, the domain fraction is

controlled by the energy of macrostresses, which is proportional to the film

thickness h. At the same time the period is controlled by the balance between the

energy of microsresses and the energy of the domain walls, resulting in a

contribution to the energy proportional to
ffiffiffi
h
p

. This energy is roughlyffiffiffiffiffiffiffiffiffiffiffiffiffi
h=h0a=c

q
times smaller than that controlling a. The implication is that the

domain wall pinning (that prevents the domain pattern from reaching its

equilibrium state) should affect the period stronger than the domain fraction.

Since the pinning energy per wall is proportional to the wall area that is in turn

proportional to h, in thicker films, one expects stronger deviations of the

domain period from its equilibrium value.

Table 9.3.2 The experimental data on a/c domain patterns in (001) PbTiO3 epitaxial films on
different substrates: h, film thickness, W, period of the pattern, a, fraction of c-domain, and
t ¼ 1=½4að1� aÞ�. The last column gives the values of the parameter h0a/c of the main strain
theory calculated from these data using Eq. (9.3.103)

h, nm W, nm a t h0a/c, Å

PbTiO3/MgO [1] 790 50–200 0.8 1.6 0.2–4

PbTiO3/MgO [2] 1200 80–300 0.7 1.2 0.7–10

PbTiO3/KTaO3 [3] 200 40 0.3 1.2 1

PbTiO3/LaAlO3 [4] 150 25–100 0.75 1.3 7–68

PZT(20/80)/SrTiO3 [5] 400 200 0.85 2 5

PZT(20/80)/SrTiO3 [6] 400 120–140 0.8 1.6 3–4

PZT(20/80)/SrTiO3 [7] 350 200–700 0.8 1.6 9–100

[1] Foster et al., 1995; [2] Surowiak et al., 1993; [3] Lee et al., 2001b; [4] Yen and Chen, 1999;
[5] Alpay et al., 1999; [6] Ganpule et al., 2000a; [7] Nagarajan et al., 2001.
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9.3.5.4 Periodicity of Domain Patterns in (111) Tetragonal and (001)

Rhombohedral Perovskite Films

Experimental data on the period of the domain patterns in (111) tetragonal and
(001) rhombohedral perovskite films are available only for relatively thick films
so that the result of mean-strain approach can be used of their interpretation.

For (111) tetragonal PZT (25/75) films, the data on domain wall spacing for
300–700 nm thick films were reported to be consistent with the square root law
predicted by Eq. (9.3.90) (Zybill et al., 2000). The observed domain pattern was
attributed to the type containing oblique domain walls (see Fig. 9.2.18c and d).
For such pattern, Eqs. (9.3.90) and (9.3.91) can be rewritten (with os ¼ eT=

ffiffiffi
3
p

,
s ¼

ffiffiffiffiffiffiffiffi
3=2

p
sW, n ¼ 0:3, and x ¼ 0:27) as

W ¼ 7:4
ffiffiffiffiffiffiffi
hh0

p
: (9:3:104)

h0 ¼ 10:3
sw
E e2T

: (9:3:105)

In terms of Eq. (9.3.104), the reported data yield a value of parameter h0 of
about 0.4 Å. Now, concluding from Eqs. (9.3.105) and (9.3.103) that
h0a=c � 0:5h0, we can estimate h0a=c � 0:2 Å. This value is some one order of
magnitude smaller than the rough theoretical estimate. Comparing this value to
the set of experimental estimates obtained for the data on the a/c-pattern (Table
9.3.2) we find it corresponding to the lower limit of the set.

The information on domain patterns in (001) rhombohedral perovskite films
has been offered by Streiffer et al. (1998) for PZT (80/20) and (65/35). The data
reported do not allow us to discuss the thickness dependence of the domain
period. However, these data enable estimation of the parameter h0. For the
structure with vertical domain walls (see Fig. 9.2.17) reported in this chapter,
the basic Eqs. (9.3.90) and. (9.3.91) can be rewritten as

W ¼ 3
ffiffiffiffiffiffiffi
hh0

p
; (9:3:106)

h0 ¼ 6:8
sw
E d2

; (9:3:107)

where we have set x ¼ 0:27ð2� nÞ=ð1� nÞ, os ¼ d, s ¼ sW, and n ¼ 0:3. The
data reported in this chapter (PZT 80/20, h = 520 nm, W/2 = 80–120 nm, and
PZT (65/35), h=700 nm,W/2=50–100 nm) yield, via Eq. (9.3.107), an estimate
h0 � 50� 640 Å. Interpretation of this result is difficult because of the lack of the
information of the wall energy for the rhombohedral phase. Assuming
sW ffi 10�2 J=m2 Streiffer et al. (1998) found this estimate consistent with the
theory. Indeed, with the experimental values d � 0:005 and
1=E ¼ 7
 10�12 J=m3, Eq. (9.3.107) leads a theoretical estimate h0 ffi 200 Å,
which is consistent with the above experimental estimate. Comparing Eqs.
(9.3.107) with (9.3.103) one can rationalize such large (compared to h0a=c ) value
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of h0 as owing to the smallness of shear deformation os � d � 0:005 in the
rhombohedral case compared to that in the tetragonal case, os � eT � 0:06.

9.4 Domain Pattern and Electrostatic Effects

As it was discussed in Chap. 5 the depolarizing fields created by the appearance of
the spontaneous polarization at the phase transition lead, if not screened bymobile
chargers, to splitting the ferroelectric crystal into domains. In the case of thin films,
this effect is also expected. Here one can distinguish two situations different from
that in a non-electroded slab of a bulk ferroelectric. First is the case of a ferroelectric
film in a short-circuited capacitor. For a real ferroelectric thin film, the short-
circuiting does not necessarily lead to screening of the depolarizing field because
the ferroelectric/electrode interface often behaves as a thin dielectric layer (see Sect.
9.5.2 for more discussion of this point). This situation can be modeled by consider-
ing a short-circuited capacitor containing a ferroelectric/dielectric sandwich struc-
ture. The second situation is a ferroelectric film deposited onto insulating substrate
having free surface exposed to a reactive atmosphere. In this case, the bound charge
of the polarization at the free surface may be considered as screened by the free
chargers provided by the reactive atmosphere. At the same time, the bound charges
of the polarization at the ferroelectric/substrate interface may not be screened. In
what follows we will discuss the theories covering these situations.

9.4.1 Equilibrium Domain Pattern in Ferroelectric/Dielectric
Sandwich Structure

The problem of domain pattern formation in a capacitor containing a ferro-
electric and electrode-adjacent passive layer(s) was address by Kopal et al.
(1999) and by Bratkovsky and Levanyuk (2000a). Let us specify the mathema-
tical formulation of the problem and briefly discuss the principal results
obtained and the range of their applicability.

A 1808 domain pattern is considered in a ferroelectric film, which is sandwiched
between two dielectric layers and electrodes. The resulting capacitor structure is
shown in Fig. 9.4.1. It is assumed that the energetically favorable domain pattern is

Fig. 9.4.1 Schematic cross-
section of a capacitor where
two dielectric layers separate
a multidomain ferroelectric
from two electrodes. The
domain widths (Wþ and
W�) and the period of the
c-domain pattern (W) are
indicated
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periodic. Its two parameters, the periodW and asymmetryA ¼ aþ � a� where aþ
and a� are the volume fractions of the positively and negatively poled domain,
can be found minimizing the appropriate thermodynamic potential, which in this
case is given by Eq. (8.2.13). In the ‘‘hard–ferroelectric’’ approximation where the
displacement in both the ferroelectric and dielectric of the passive layer can be
written as Di ¼ PSi þ e0kijEj, this potential reads

G ¼ 1

2

Z
EiðDi � PSiÞd3x� q1j1 � q2j2: (9:4:1)

where q’s and j’s are the charges and potentials on the electrodes, respectively,
and the integration is taken over the whole volume of the capacitor. In terms of
the potential difference applied to the capacitor V and the distribution of the
PS-related bound charge density at the interfaces between the ferroelectric and
the passive layers, sf ¼ �PS, G can be expressed as

G=S ¼ 1

2S

Z
sfj dSþ 1

2
seV; (9:4:2)

where S is the area of the capacitor and se is the charge of the capacitor; the
integration is taken over the interfaces between the ferroelectric and the passive
layers. The distribution of the electrostatic potential j as well as the charge se as
functions ofW andA can be found by solving theLaplace equationwith the proper
boundary conditions (see Sect. 5.2.). Then, the total thermodynamic potential of
the system, Gtot (hereafter as a shorthand we will call it energy), can be found as a
sum of the surface energy of the domain walls and the electrostatic energy,
Eq. (9.4.2), calculated using the found expressions for j and se. The final forms
of Gtot reads (Kopal et al., 1999; Bratkovsky and Levanyuk, 2000a; 2001c)

Gtot=S¼
2sWh

W
þ dh=e0
kdhþkcd

P2
N

2
�VPNe0kd

d

� �
þP2

S

4W

e0p3
X1
n¼1

sin2 np2 1þPN

PS

� �h i
n3Dn

; (9:4:3)

where

Dn ¼ kd coth
npd
W
þ ffiffiffiffiffiffiffiffiffi

kakc
p

coth

ffiffiffiffiffi
ka
kc

r
nph
W

� �
: (9:4:4)

Here PN ¼ APS is the net spontaneous polarization of the ferroelectric; ka,
kc, and kd are the in-plane and out-of-plane lattice permittivities of the ferro-
electric films and that of the dielectric layer, respectively; sW is the surface
energy of the domain wall; the contributions independent of the period and the
asymmetry of the pattern are skipped over.27 In Eq. (9.4.4), the first term gives
the surface energy of the walls, the second one gives the electrostatic energy of
the system calculated neglecting the effects of stray fields (inhomogeneity of the

27 In the corresponding equation from the paper of Kopal et al. (1999), Eq. (2), there is a
misprint: V/2 instead of V.
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field in the plane of the capacitor), and the third term gives the energy of the
stray fields. In the limit of infinitely thick dielectric layers (d!1) with kd ¼ 1
and at V=0, the last two terms of Eq. (9.4.3) can be reduced to Eq. (5.2.16). It is
expected since, in this limit, the treated problem becomes equivalent to that of
the domain pattern in ferroelectric slab in vacuum treated in Sect. 5.2.

The net spontaneous polarization and the period of the pattern as a function
of the applied voltage and the parameters of the system can be determined by
minimizing the found expression of the energy of the system with respect to
these variables. In general, these calculations can be performed only numeri-
cally. However, using analytical result available in several limiting cases, it is
possible to trace themain trends of the behavior of the system and to distinguish
its new features brought about by the presence of the dielectric layers.

Let us discuss the equilibrium domain pattern when the system is short-
circuited and compare it with the classical results for a non-electroded ferro-
electric slab. First of all, the presence of the passive layers and short-circuited
electrodes ceases to influence the behavior of the system when the domain
period is much smaller than the thickness of the passive layers (W55d) since
in this case the stray fields of the pattern do not reach the electrodes. Thus, in
this case, we arrive at a situation like in a non-electroded ferroelectric, which,
for dense domain patterns (for W 


ffiffiffiffiffiffiffiffiffiffiffiffi
ka=kc

p
h), corresponds to the classical

result by Mitsui and Furuichi (1953). Accordingly, for V ¼ 0 and W 
 d,ffiffiffiffiffiffiffiffiffiffiffiffi
ka=kc

p
h, the minimization of Eq. (9.4.1.3) yields a symmetric pattern with

the distance between the walls:

W=2 ¼
ffiffiffiffiffiffiffiffiffi
hMh

p
; (9:4:5)

where the characteristic length reads

hM ¼ 3:7e0ðkd þ
ffiffiffiffiffiffiffiffiffi
kakc
p ÞsW=P2

S: (9:4:6)

One readily checks that at kd ¼ 1, Eqs. (9.4.5) and (9.4.6) are identical to the
results of Mitsui and Furuichi given by Eqs. (5.2.21) and (5.2.22).

The presence of the passive layers and the short-circuited electrodes becomes
really essential when the thickness of the layers is much smaller than the period
of the pattern ðd55WÞ. In this case the thickness dependence of the period
essentially differs from that given by Eq. (9.4.5). In this limit for the dense
domain pattern, strictly speaking at W 


ffiffiffiffiffiffiffiffiffiffiffiffi
ka=kc

p
h, an analytical form of this

dependence can be found for a special case where kd ¼
ffiffiffiffiffiffiffiffiffi
kakc
p

. It reads (Brat-
kovsky and Levanyuk, 2000a,b)

W=2 ¼ 0:95d exp 0:4
hMh

d2

� �
: (9:4:7)

There is one more limiting case where an analytical solution can be readily
found at kd ¼

ffiffiffiffiffiffiffiffiffi
kakc
p

, namely the situation where the passive layers are much
thicker than the domain period (W55d) but where the domain pattern is not

9.4 Domain Pattern and Electrostatic Effects 601



dense (W44h). In this case, employing the symmetry of expression (9.4.4) with

respect to swapping d$ h
ffiffiffiffiffiffiffiffiffiffiffiffi
ka=kc

p
, we get the result by substitution h

ffiffiffiffiffiffiffiffiffiffiffiffi
ka=kc

p
for d in Eq. (9.4.7). This leads to the thickness dependence of the period for very

thin films

W=2 ¼ 0:95 h
ffiffiffiffiffiffiffiffiffiffiffiffi
ka=kc

p
exp 0:4

hM
h

ka
kc

� �
; (9:4:8)

which is similar to that found for very thin films in the case of the ferroelastic a1/

a2-domain pattern (cf. Eq. (9.3.78)).
The asymptotic thickness dependences of domain period given above pro-

vide a qualitative description of the evolution of the domain pattern in a wide

thickness range, on condition that the thickness of the passive layers d is greater

than the characteristic scale hM. For this regime, such description is illustrated

in Fig. (9.4.2)28 for d=hM ¼ 3 and ka ¼ kc. However, if this condition is not met,

the range of applicability of the asymptotic relations Eqs. (9.4.5), (9.4.7), and

(9.4.8) vanishes so that the domain pattern modeling can be performed only

numerically. To the best of our knowledge, no simulation of this kind is

available in the literature. Using Eq. (6.2.10c) for the wall surface energy we

can get an estimate for the characteristic length hM as being about the domain

wall width tW. Thus, in materials like PbTiO3 or PZT at room temperature, one

expects hM to be of the order 1–3 nm. This means that the above analytical

results can be applied to the situation where the passive layer is thicker than a

few nanometers.

Fig. 9.4.2 Dependence of the period of a c-domain pattern on the thickness of the ferroelectric
calculated for a dielectric/ferroelectric sandwich structure placed in a short-circuited
capacitor (shown in Fig. 9.4.1). The segments of the curves marked with (1), (2), and (3)
show the results of calculations according to asymptotic relations (9.4.8), (9.4.5), and (9.4.7),
respectively. See the text

28 The range of validity of the shown curve is actually limited by conditions h4W for large h
and d4W for small h. For hM=d ¼ 3 and ka ¼ kc, that gives the range of validity
0:25h=hM545.
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9.4.2 Equilibrium Domain Pattern in Ferroelectric Films
on Insulating Substrates

Consider the equilibrium domain pattern in a ferroelectric film deposited onto
an insulating substrate and having the polarization bound charge screened at its
free surface. As in the previous section we will be interested in a 1808 domain
pattern in a ferroelectric which is not too close to the phase transition so that the
‘‘hard–ferroelectric’’ approximation may be applicable. Though this problem is
different from that addressed in the previous section, it can be formally treated
using the results obtained for the latter. To do that, two points should be
clarified. First, since the screened free surface of the film is equipotential, the
equilibrium distribution of the polarization in it is identical to that in one half of
the ferroelectric films of a double thickness but having the insulating substrate
material at both interfaces (Streiffer et al., 2002). Thus, the problem is reduced
to that for a ferroelectric slab immersed in an infinite volume of the dielectric
material of the substrate. Second, if the total thickness of the dielectric d in the
short-circuited capacitor containing two electrode-adjacent dielectric layers
(see Fig. 9.4.1) formally tends to infinity, the screening effect of the electrodes
vanishes so that one arrives at a problem of the domain pattern in a ferroelectric
slab immersed in an infinite volume of the dielectric.

Taking into account the above arguments and using Eq. (9.4.3), the energy of
the equilibrium domain pattern in the ferroelectric film of thickness h on an
insulating substrate can be written

Gtot=S ¼
4sWh

W
þ P2

S

4W

e0kdp3
X1

n¼1:3;5...

1

n3 ~Dn

; (9:4:9)

where

~Dn ¼ 1þ
ffiffiffiffiffiffiffiffiffi
kakc
p

kd
coth

ffiffiffiffiffi
ka
kc

r
2nph
W

� �
(9:4:10)

and for the notations see the previous section.29 The equilibrium domain period
can be found by minimizing Gtot with respect to W. In the case of practical
importance of a dense domain pattern (W 


ffiffiffiffiffiffiffiffiffiffiffiffi
ka=kc

p
h), this leads to relations

(9.4.5) and (9.4.6) where h should be replaced with 2 h. This gives

W ¼ 5:4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0ðkd þ

ffiffiffiffiffiffiffiffiffi
kakc
p ÞhsW=P2

S

q
: (9:4:11)

This theory was used by Streiffer and his coworkers (2002) for the inter-
pretation of their data on a dense 1808 domain pattern in PbTiO3 films depos-
ited on SrTiO3 (see Sect. 9.2.1). In this work, using the material parameters of

29 Equations (9.4.9) and (9.4.10) with kd ¼ 1 become identical to those obtained byKopal et al.
(1997) for the problem of the domain pattern in a ferroelectric slab in vacuum (see Chap. 5).
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PbTiO3 and SrTiO3 as well as the results of ab initio calculations for the wall
energy sW (Meyer and Vanderbilt, 2002), the authors reduced Eq. (9.4.11)
down to the relation W ¼ 3:2 h0:5 (W and h in nm), which was found in good
agreement with their experimental data.

9.4.3 Limitations of Hard-Ferroelectric Approximation
and Results Obtained Beyond This Approximation

The limitations of the hard-ferroelectric approximation have been already dis-
cussed in Sect. 5.2 for the case of a ferroelectric plate embedded in a dielectric
medium (with the out-of-plane direction of the spontaneous polarization). Simi-
lar limitations apply to the results obtained in this approximation for a dielectric/
ferroelectric/dielectric sandwich with the same orientation of the polarization.

An obvious problem appears in the case where the predicted domain period
essentially exceeds the film thickness (wide domain pattern). In this case, the
depolarizing field in the domains is very close to that in the single-domain film.
Here, for the sandwich structure placed in a short-circuited capacitor, the
depolarizing field leads to a shift of the Curie–Weiss temperature, T0, down by

DT0 ¼
Cd

kbdþ kdh
; (9:4:12)

where C and kb are the Curie–Weiss constant and the background permittivity
of the ferroelectric, respectively; the rest of the notations are identical to those
introduced above in this section. In the case of very thick passive layer (d!1),
Eq. (9.5.12) reduces to the results obtained for a ferroelectric slab embedded in a
dielectric medium, Eq. (2.3.46). The derivation of Eq. (9.5.12) is similar to that
of Eq. (2.3.46) (it can also be readily obtained from the theoretical results on
ferroelectric/dielectric composites; see the paper by Sherman et al. (2006)). In
view of possibly high values of C, such shift can be appreciable. For tempera-
tures lower than T0 � DT0, this shift will lead to a reduction of the value of the
spontaneous polarization. In this case, results of the hard-ferroelectric approx-
imation (e.g., (9.4.8) and (9.4.6)) still might be applicable though an additional
check of this approach is needed. At the same time, for T04T4T0 � DT0, this
shift means the suppression of the homogeneous ferroelectric state in the
domains. This obviously implies that the results of the hard-ferroelectric
approximation for wide domains (i.e., when W44h is predicted) are invalid.
In the above discussion it was implied that we are dealing with a proper ferro-
electric. In the case of an improper ferroelectric, as was shown in Sect. 5.2, the
depolarizing field does not destabilize the ferroelectric state but only reduces its
spontaneous polarization. Thus, in improper ferroelectrics, all the results
obtained above in this section, should hold, however, with modified (film-
thickness dependent) values of the spontaneous polarization.

In principle, we can continue the discussion of shortcoming of the hard-
ferroelectric approximation; however, we believe that it is more instructive to
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discuss the approach, which goes beyond this approximation. A further progress
in this matter is possible on the lines of the Landau theory, which incorporates
the gradient terms (often called Ginzburg–Landau theory). We have used this
theory in Chap. 6 for the description of structures of domain walls. Such
approach in application to layered dielectric/ferroelectric/dielectric structures
has been pioneered in the 1980s by Chensky and Tarasenko (1982). Recently,
mainlymotivated by the activity in ferroelectric thin films, further studies in this
direction have been performed (Stephanovich et al., 2005; De Guerville et al.,
2005; Bratkovsky and Levanyuk, 2006). The refusal to use the hard-ferroelec-
tric approximation makes the mathematical treatment much more involved.
Presentation of this treatment goes beyond the scope of the book. Below we
restrict ourselves to the presentation of the mathematical formulation of the
problem and highlight some of the results obtained.

Now the starting point of the theory is the thermodynamic potential of the
system, which reads (cf. Eq. (9.4.1))

G ¼
Zh=2

�h=2

a
2
P2 þ b

4
P4 þ d3333

2

@P

@z

� �2

þ d1313
2

@P

@x

� �2

þ e0kb
2

E2
z þ

e0ka
2

E2
x

" #
dz dx

þ e0kd

Zh=2þd=2

h=2

E2dz dx� q1j1 � q2j2;

(9:4:13)

where a ¼ ðT� T0Þ=ðe0CÞ. Here the notation are the same as above in this
section, ka is the in-plane value of the dielectric constant of the ferroelectric, d’s
are the proper components of the tensor of the correlation coefficients (cf. Eq.
(6.2.46)). The Euler equation obtained by variation of this functional with
respect to P should be solved together with the Maxwell equations

div D ¼ 0 and curl E ¼ 0; (9:4:14)

where the electrical displacement in the ferroelectric is defined as

Dz ¼ Pþ e0kbEz; Dx ¼ e0kaEx; (9:4:15)

whereas in the dielectric layers

D ¼ e0kdE: (9:4:16)

Here X-axis is set in the plane of the film and Z-axis normal to it.
De Guerville et al. (2005) have addressed the domain formation in the

dielectric/ferroelectric/dielectric structure placed in a short-circuited capaci-
tor and for the case where the domain wall spacing is smaller than the
thicknesses of both the film and dead layer. The problem was actually equiva-
lent to that in a ferroelectric plate embedded in a dielectric medium. The
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numerical treatment showed that the period of the domain pattern is in a

reasonable agreement with the results of the hard-ferroelectric approximation

(Eqs. (9.4.5) and (9.4.6)) at any temperature (even close to the transition

temperature). At the same time, it was found that the abrupt spatial distribu-

tion of the polarization (reminding that in the hard-ferroelectric approxima-

tion) occurs only for thick enough films or/and far enough from the transition

temperature. In the opposite case, the simulations yielded smooth domain

patterns (soft domains) where the wall spacing and width are comparable. Yet

closer to the phase transition or/and for yet thinner films comes the para-

electric phase. Figure 9.4.3 illustrates this result.

The same theoretical framework was also used by Chensky and Tarasenko

(1982) for testing the stability of the paraelectric state in the aforementioned system

in the temperature intervalT0 � DT05T5T0, whereDT comes fromEq. (9.4.12).

The stability was checked with respect to a ‘‘soft domain’’ pattern with

P ¼ a cos kx cos qz: (9:4:17)

Here a, k, and q are the constants. It was shown that the stability of the
paraelectric state is controlled by the relation between DT0 and a material-

dependent parameter DTdom: if DTdom4DT0, the paraelectric state in the sand-

wich structure is stable down to the transition into single-domain state at

TS ¼ T0 � DT0; in the opposite case, a transition into multidomain state takes

place at

TMðhÞ ¼ T0 � DTdom: (9:4:18)

Fig. 9.4.3 Schematic of temperature–thickness diagram for the polarization state in a plate of
a uniaxial ferroelectric embedded into a dielectric medium with the direction of the
ferroelectric axis perpendicular to the plain of the plate. ‘Hard domains’ and ‘soft domains’
stand for a domain pattern where the wall thickness is much smaller than the period and that
where these parameters are comparable, respectively. See the text. Reprinted with permission
from De Guerville et al. (2005). Copyright (2005), Elsevier

606 9 Ferroelectric Thin Films



The period of the domain pattern was found to be close to the dependence
given by Eq. (9.4.5) except for temperatures, which are very close to TM.

In the case of a thin dead layer, i.e., at h44d (the situation of interest for thin
film ferroelectric capacitors), Chensky and Tarasenko (1982) found

DTdom ¼
C

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12e0d1313

kx

s
; (9:4:19)

whereas Eq. (9.4.12) can be simplified down to the form

DT0 ¼
Cd

kdh
: (9:4:20)

Here it is instructive to mention that when the theory is applied to a ferro-
electric thin film capacitor deposited, as usually, on a thick substrate, the
transition temperature T0 is that of the strained films, which can be substan-
tially different from its value for the bulk material (see Sect. (9.3.2).

It was also shown that, if DTdom5DT0, on further cooling below TM the
multinomial state remains the only possible (stable) one down to temperature

TSSðhÞ ¼ T0 � 1:5DT0 þ 0:5DTdom: (9:4:21)

Below this temperature two states are possible—multidomain and single-
domain, though the latter is less energetically favorable. Chensky and Tarasenko
also made some predictions concerning the state of the system for temperatures
below TSS. Approximating the polarization pattern with its first harmonics, i.e.,
using ansatz (9.4.17), they showed that at temperatures below

TSSSðhÞ ¼ T0 � 3DT0 þ 2DTdom (9:4:22)

the multi- and single-domain states are both possible but now the single-domain
state has a lower energy.

The hierarchy of the critical temperatures, TM, TSS, and TSSS for a given film
thickness can be transformed into a hierarchy of the critical thicknesses at a given
temperature T, hM, hSS, and hSSS, which are the solutions of the equations
TMðhÞ ¼ T, TSSðhÞ ¼ T, and TSSSðhÞ ¼ T, respectively. Thus, for h5hM the ferro-
electric is in theparaelectric state, for hM5h5hSS the ferroelectric is in amultidomain
state, for hSS5h5hSSS the ferroelectric can be in both multidomain and single-
domain states, the latter being metastable, and for hSSS5h the ferroelectric can be
again in both multi- and single-domain states, but with the former being metastable.

The Chensky–Tarasenko theory also enables a description of the state of the
ferroelectric for the case where a fixed potential difference is kept between the
plates of the capacitor.

The prediction of this theory should be taken with reservations because of
two reasons: (i) the polarization profile in the domain pattern is described in the
first harmonics approximation and (ii) the elastic effects are not taken into
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account. The first issue is crucial for calculation of TSSS: The result given by
Eq. (9.4.22) is actually the upper bound for TSSS. However, for a certain
combination of the parameters of the system, it may serve a very rough esti-
mate. The second issue may be of importance for calculations of TSS (Pertsev
and Kohlstedt, 2007) and TSSS. This matter is presently under discussion
(Pertsev and Kohlstedt, 2008; Bratkovsky and Levanyuk, 2008).

9.5 Switching and Polarization Hysteresis

The polarization response of ferroelectric thin films makes the most important
characteristics of these from the application point of view. The small thickness
of the films obviously enables the application of high electric fields to the
material, which can promote an effective switching of the ferroelectric at
relatively low applied voltages. However, already the first investigations of
the ferroelectric thin film capacitors revealed that the switching behavior as
well as the small-signal dielectric response of the films is not identical to those of
the bulk materials of nominally the same compositions. For example, the films
typically exhibit lower values of the relative permittivity and higher values of
the coercive field. For the interpretation of these and other properties of ferro-
electric thin films, a number of different models were suggested. The present
section addresses typical features of the polarization response of ferroelectric
thin films and the models which provide description of these features.

9.5.1 Pulse Switching

Experimental studies of the pulse switching kinetics of the ferroelectric thin
films were mainly performed by using the classical transient current method
and the poling back technique, which were already discussed in Sect. 7.4. The
results obtained with these techniques are rather contradictory as well as their
interpretation (see, e.g., Scott et al., 1988; Larsen et al., 1991; DeVilbiss and
DeVilbiss, 1999; Seike et al., 2000; Song et al., 1997; Lohse et al., 2001;
Tagantsev et al., 2002b). This is related, first, to the difference in real para-
meters of the materials, which in turn seem to be very processing dependent,
second, to the way the raw data on switching current are analyzed and, third,
to the width of the time interval monitored. The body of the available data will
be summarized below in this section.

The polarization switching in 100�300 nm thick PZT and SrBi2Ta2O9 films
can be rather fast: For a switching voltage of a few volts, the switching times lay
in nanosecond�sub-nanosecond range. Figures 9.5.1 and 7.4.3 show examples
of switching curves. These curves were obtained by excluding the artifacts
related to the RC parameter of the measuring setup. In the case of the curve
shown in Fig. 9.5.1a (174 nm thick film of SrBi2Ta2O9), the measured switching
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current density was checked to be independent of the capacitor area (DeVilbiss

andDeVilbiss, 1999). The curve shown in Fig. 9.5.1b (250 nm thick film of PZT)

was obtained measuring the reading signal of a 16 kbit memory cell matrix with

a subtraction of the RC-controlled background current of the setup (Seike

et al., 2000). The curve shown in Fig.7.4.3 (135 nm thick film of modified

PZT) was obtained using the poling back technique, the capacitor area inde-

pendence of the results being checked (Tagantsev et al., 2002a,b).
The interpretation of switching behaviormonitored in relatively narrow (typically

two decades) time interval is usually based in the classical Kolmogorov�Avrami

scenario using Eq. (7.7.24) or its modified versions. These data were found to

Fig. 9.5.1 Example of monitoring the pulse switching kinetics in SrBi2Ta2O9 (a) and PZT (b)
thin films. In (a), the voltage of the switching pulses for the curves are 1–1, 2–2, 3–3, and 4–7V.
After DeVilbiss and DeVilbiss (1999). In (b), the voltage of the switching pulses is 3 V. After
Seike et al. (2000)
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be in a reasonable agreement with this equation with the k parameter ranging
from 1 to 2 corresponding to the situation of one- to two-dimensional domain
growth from already existing nuclei (see, e.g., Seike et al., 2000). Better fits
were obtained by using non-integer values of k or the hypothesis of a crossover
between the two- and one-dimensional situations as shown in Fig. 8.7.9.

An analysis of the switching data in a wider time interval showed that the
switching dynamics can be very far from that predicted by the Kolmogor-
ov�Avrami scenario (Lohse et al., 2001; Tagantsev et al., 2002b). This can be
clearly seen by comparing the switching curves shown in Fig. 7.4.3 to the results
of modeling for theKolmogorov–Avrami scenario shownFig. 8.7.7b, namely the
variation of the average slope of the experimental curves with changing the
applied field cannot be reproduced by this scenario. On the level of Eq. (8.7.24)
it is associated with the fact that, in this model, any variation of the applied field
translates into a variation of parameter tSW, which results only in a simple shift of
the switching curves in semi-logarithmic scale. An alternation scenario assumes
(Tagantsev et al., 2002b) that the switching kinetics of the film is controlled by the
statistics of polarization reversal in quasi-independent regions of the films rather
than by the statistics of the domain coalescence employed by the Kolmogoro-
v–Avrami scenario. This alternative model, the so-called nucleation-limited
switching model, is defined by the following assumptions:

(i) The film is represented as an ensemble of elementary regions that switch
independently.

(ii) The switching of an elementary region occurs once a domain of reversed
polarization is nucleated in the region.

(iii) Time needed for switching of an elementary region is equal to the waiting
time for the first nucleation, i.e., the time needed for filling the region with
the expanding domain is neglected compared to the waiting time.

(iv) The distribution of the waiting times for the ensemble of the elementary
regions is smooth and exponentially broad, i.e., covering many decades.

This model results in a simple expression of the normalized switched polar-
ization q(t) (the fraction of the total switchable polarization that has been
switched during the time t)

qðtÞ ¼
Zlog t

�1

gðzÞ dz (9:5:1)

in terms of the distribution function for the waiting times t, gðlog tÞ, normal-
ized in the logarithmic scale:

Z1

�1

gðzÞ dz ¼ 1: (9:5:2)

It was shown that the essential features of the switching dynamics monitored
in a wide time interval (illustrated by Fig. 7.4.3) can be described in terms of this
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model with a simple shape of the spectrum g(z) shown in Fig. 9.5.2. The spectrum
is specified by three parameters: z1 ¼ log tmin and z2 ¼ log tmax—logarithms of
the typical minimum and maximum times, tmin and tmax, and the decay constant
G for the Lorentzian tails of the spectrum, where either gðzÞ / ððz� z1Þ2 þ G2Þ�1
or gðzÞ / ððz� z2Þ2 þ G2Þ�1. For this kind of spectrum, an explicit expression for
the normalized switched polarization can be written as

qðtÞ ¼ A
p
2
� arctan

z1 � z0
G

� �
for z05z1

qðtÞ ¼ A
p
2
þ z0 � z1

G

� �
for z15z05z2;

qðtÞ ¼ A
p
2
þ z2 � z1

G
þ arctan

z0 � z2
G

� �
for z25z0

(9:5:3)

whereA ¼ Gðz2 � z1 þ GpÞ�1 and z0 ¼ log t. A fit of switching curves Fig. 7.4.3
to Eq. (9.5.3) with z1 and z2 used as adjustable parameters and fixed G is shown
in Fig. 9.5.3a. The parameters z1 and z2 (corresponding to this fit) plotted as
functions of the switching voltage are shown in Fig. 9.5.3b. The typical maximal
waiting time tmax ¼ 10z2 was found to follow an exponential field dependence

tmax ¼ t0eðE0=EÞn ; (9:5:4)

where n ¼ 1:5, t0 ¼ 10�13 s, and E0 ¼ 770 kV=cm. As mentioned by Tagantsev
et al. (2002b) the fit given by Eq. (9.5.4) is not unique; however, physically, the
ambiguity is not so large since the pre-exponential factor is expected to be of the
order of the inverse of the soft-mode frequencyoSM whereas the activation field
E0 should not be greater than the thermodynamic coercive field Ecrit. For PZT
at room temperature, these parameters are expected to be oSM ffi 1013 s�1 and
Ecrit ¼ 0:5� 1 MV=cm. It is seen that the fitting parameters used meet these
requirements.

For the moment, despite extensive efforts (see Sect. 8.7.2), there is no self-
consistent theory of domain nucleation in ferroelectrics. For this reason, com-
parison of Eq. (9.5.4) with the results of existing theories is not instructive.
However, the following remarks may be of interest. First of all, the clearly
exponential field dependence of the upper edge of the spectrum of the waiting
times, Eq. (9.5.4), is consistent with the expected activation nature of the
phenomenon. On the other hand, Eq. (9.5.4) suggests that we are dealing with
the activation energy for the nucleation, which is proportional to E�n with
n ¼ 1:5. This dependence is comparable with the results of early theories on the

Fig. 9.5.2 Spectrum of
waiting times used in the
nucleation-limited switching
model
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activated polarization reversal, which give the functional dependence (9.5.4)

but with n ¼ 1 (cf. Eq. (8.4.10)) and n ¼ 2 (Miller and Weinreich, 1960) and

n ¼ 2:5 (cf. Eqs. (8.7.2) and (8.7.4)).
The activation nature of the temperature dependences of the edges of the

waiting time spectrum has also been checked by monitoring the switching

kinetics in modified PZT films in the temperature range from –50 to +90 8C.
It has been shown (Stolichov et al., 2004, 2005b) that, using the parameters of

the waiting time spectrum determined at room temperature and the activation

temperature dependence of tmin and tmax, the model gives good description of

the switching kinetics in the whole temperature range.

Fig. 9.5.3 (a) Fit of the switching curves for a PZT film shown in Fig. 7.4.3 using the prediction
of the nucleation-limited switching model, Eq. (9.5.3). Experimental data from Fig. 7.4.3 for
voltages of 0.6, 1.35, and 3 V are marked with black dots, the data for 0.9, 2.2, and 5 V are
marked with gray dots. (b) Upper (black dots) and lower (gray dots) limits for the spectrum of
waiting times for domain nucleation used for fitting curves in (a) as functions of the applied
voltage. The solid line shows a fit of the experimental data for voltage dependence of the
maximal waiting time to the function given by Eq. (9.5.4). After Tagantsev et al. (2002a,b)
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A remark about the origin of the exponential broadness of spectrumofwaiting
times, which makes the main assumption of the model, should be made. As was
discussed in Sect. 8.7.2, the energy barriers for the nucleation of reverse domains,
U�, when evaluated in terms the Landauer theory for an ideal crystal, are very
large, making at least thousands of thermal energies kT for typical experimental
situations. This implies that, in the ideal situation, the waiting times for the
nucleation, which are inversely proportional to the Gibbs factor expð�U�=kTÞ
are infinitely long. In a real situation, the nucleation barriers are believed to be
reduced by the external factors (like defects or free carriers) by orders of magni-
tude from some thousands of thermal energies kT down to a few tens of kT. Thus,
the resulting activation energy for the nucleation, Ur, actually represents the
difference between two energies, which are orders of magnitude larger than this
energy itself. This implies that small fluctuations of these two energies can lead to
an essential spread ofUr. Since the waiting time is an exponential function of the
activation energy, this spread should lead to an exponentially broad spectrum of
waiting times. This reasoning is supported by the results obtained from themodel
of surface-stimulated domain nucleation addressed in Sect. 8.7.2. Here, the can-
celationof two contributions to the nucleationbarrier (the energyof theLandauer
nucleus and that of coupling between the polarization and the electrode) is
illustrated with the curve shown in Fig. 8.7.4. In the steep part of this curve
(corresponding to a realistic regime of themoactivation nucleation) small varia-
tions of the system parameters readily lead to order-of-magnitude variations of
the activation barrierUr.

Clearly, the nucleation-limited switching model represents a limiting case of
the switching kinetics opposite to the Kolmogorov–Avrami model. However,
this model seems to reproduce properly essential features of the switching
kinetics in the case of the region-by-region switching scenario.

9.5.2 Ferroelectric Hysteresis Loops; Size Effects

As we have discussed in Chap. 8, in bulk ferroelectric samples, polarization-field
(P–E) hysteresis loops are typically taken by using continuous (sinusoidal
or triangular wave) driving voltage. In ferroelectric thin films this technique is
rarely used.Usually, in the films,P–E hysteresis loops aremonitored employing a
set of pulses shown in Fig. 9.5.4. Voltage profiles of this kind are common in

Fig. 9.5.4 Set of voltage pulse used for taking polarization hysteresis loops. Pulses 1, 2, and 4
prepare the ferroelectric in the positively or negatively poled state. Pulses 3 and 5 used for
monitoring the loops stating from different initial states
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commercially available testing setups produced by Radiant Technologies and
aixACCT. A typical feature of P–E loops taken by using these voltage profiles
is a gap between the points corresponding to the beginning and the end
of the measuring cycle (shown in Fig. 9.5.5). The origin of this gap is a back-
switching during the time when the sample stays in a poled state before the
application of the next measuring profile. The loops obtained are characterized,
in addition to the remanent polarization ðPrÞ and coercive field ðEcÞ, also by
switchable polarization ðPswÞ and non-switchable polarization ðPnsÞ explained
in Fig. 9.5.5. Typically, the loops are symmetrized along the P-axis, i.e., the
absolute values of the polarization reached at the tips of the loop are set equal
by adding a proper polarization offset. Interpretation of non-symmetrized P–E
hysteresis loop is a difficult task easily affected by experimental artifacts; we will
not discuss these kinds of loops in our book. The terminology introduced above is
associated with the so-called pulse method of determination of the switching
parameters of ferroelectric capacitors. In this method, voltage pulses are applied
to the capacitor tested and Psw and Pns are obtained by the integration of
the current response induced by these pulses. An alternative terminology exists
where ferroelectric capacitors are tested with voltage steps. In this case,
P�sw ¼ Psw þ ðPmax � PrÞ represents the switching polarization whereas
P�ns ¼ Pns þ ðPmax � PrÞ the non-switching polarization. In this book we will
use the pulse switching terminology. The description of real ferroelectric loops
in the films also requires taking into account a possible voltage (field) offset of the
loops. In this case, one distinguishes the positive and negative non-equal coercive
fields, ðEþc Þ and ðE�c Þ, as well as the positive and negative non-equal remanent
polarizations ðPþr Þ and ðP�r Þ.

Typically, a P – E hysteresis loop obtained from ferroelectric thin film capa-
citors has a shape similar to that of the loops obtained from the bulk ferro-
electrics. In capacitors based on BaTiO3 (Abe et al., 2000), PZT (Stolitchnov
et al., 2000), and SrBi2Ta2O9 films (Kalinin et al., 2004), well-shaped ferroelectric
loops have been documented for the amplitudes of the driving voltage down to
1 V (see Fig. 9.5.6). Such small values are hardly attainable in capacitors
containing bulk counterparts of these materials. However, comparing
the values of the electric field needed for switching in bulk and thin film
samples of the same material one comes across the opposite situation. Namely,

Fig. 9.5.5 Notations for
parameters of a polarization
hysteresis loop
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the switching in thin films requires much higher fields than in the bulk materials

of similar compositions. This situation is illustrated in Fig. 9.5.7 where theP – E

loops taken from a 500 mm thick ceramic sample and from a thin film which is

0.5 mm thick; in both cases, the material is morphotropic boundary 2% Nb-

doped PZT (Tagantsev, 1996). It is seen that the coercive field in the film is some

10 times larger than that in the bulk counterpart. In addition the loop itself is

much more tilted in the case of the film. A systematic analysis of the switching

data on PZT films with Pt electrodes revealed a decreasing thickness depen-

dence of the coercive field consistent with the above observation (Haertling,

1997). Figure 9.5.8a illustrates this dependence. However, such dependence is

not solely controlled by the ferroelectric material used in the thin film capacitor

but rather by the combination of materials of the ferroelectric and electrodes.

This is suggested by the results on PZT with conductive oxide electrodes

(Cillessen et al., 1997) and on SrBi2Ta2O9 capacitors with Pt electrodes (Zhu

et al., 1998) presented in Fig. 9.5.8b, where actually no thickness dependence of

the coercive field can be traced. An example of a strong increase in the coercive

Fig. 9.5.6 Examples of polarization hysteresis loop of ferroelectric thin films: (a) 58 nm thick
of BaTiO3. After Abe et al. (2000); (b) 100 nm thick Pb(Zr0.45Ti0.55)O3. After Stolichnov et al.
(2000); (c) 180 nm thick SrBi2Ta2O9. After Kalinin et al. (2004)
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field with decreasing thickness (up to its thermodynamic value) has been

reported by Pertsev et al. (2003a) for PZT capacitors with bottom oxide and

top Pt electrodes. The thickness dependence of the coercive field obtained in this

work is shown in Fig. 9.5.8c.

Fig. 9.5.8 Examples of thickness dependences of the coercive field in thin film capacitors.
(a) Perovskite—Pt electrodes systems Pt/(Pb,Li)(Zr,Ti)O3/Pt. After Haertling (1997).
(b) Perovskite—oxide electrodes system (La0.5Sr0.5)CoO3/Pb(Zr0.53Ti0.47)O3/(La0.5Sr0.5)CoO3

(LSCO/PZT/LSCO). After Cillessen et al. (1997). Aurivillius structure—Pt electrode system
Pt/(SrBi2Ta2O9)0.8(Bi3TiNbO9)0.2/Pt (Pt/SBT/Pt). After Zhu et al. (1998). (c) SrRuO3

Pt-perovskite-oxide electrode system Pb(Zr0.52Ti0.48)O3/SrRuO3. After Pertsev et al. (2003a)

Fig. 9.5.7 Comparison of polarization hysteresis loop taken from a 500 mm thick ceramic
sample and from a thin film which is 0.5 mm thick; in both cases, the material is morphotropic
boundary 2% Nb-doped PZT. After Tagantsev (1996)
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Two possible sources of the above size effect on switching can be distin-
guished. First, the processing conditions for single crystals, ceramics, and thin
films are different and they may not be identical for films of different thick-
nesses. For instance, typically, in thin films, the processing temperature is lower
and there is a possibility for a substantial loss of a volatile component (Pb in the
case of PZT). This can influence the composition and microstructure of the
material and, in turn, its switching performance. Second, even if the composi-
tion and microstructure of the material are thickness independent, one can
expect a thickness dependence of the switching behavior due to a number of
physical size effects. These effects have been under consideration in the literature
for some 50 years. Inwhat followswewill discuss the ideas of these effects and the
relevance of these ideas to experimental observations. We restrict ourselves to a
discussion of the ideas that could account for mechanisms leading to the two
aforementioned features of the loops in the films, namely high coercive field and
strong tilt. These ideas are associated with the following issues:

1. Size of nucleus of the reverse domains.
2. Surface pinning of domain walls.
3. Semiconductor-depletion-assisted nucleation of reverse domains.
4. Surface non-switchable (passive) layer.

9.5.2.1 Size Effect on Nucleation of the Reverse Domains

The idea of a size effect related to the nucleation of reverse domains has been put
forward by Janovec (1958) and by Kay and Dunn (1962). It is based on the
nucleation theory of Landauer (1957) that we discussed in Sect. 8.7.2. This theory
yields the relationbetween the lengthof the critical nucleus l * and the applied fieldE:

l � / E�3=2: (9:5:5)

(Equations 8.7.2 and 8.7.4 readily lead to Eq. (9.5.5).) Based on this relation,
one formulates the following scenario for the size effect. The coercive field Ec is
defined as the minimal field at which the critical nuclei can form. Any field that
corresponds to the critical nucleus length, l �, smaller than the film thickness, h,
can produce critical nuclei. If the field corresponds to l* greater than the film
thickness, it cannot produce nuclei because their length would be larger than
that of the film thickness. The implication is that the value of Ec can be
estimated from the condition l � ffi h. Thus, from Eq. (9.5.5), one finds the
thickness dependence of the coercive field

Ec / h�2=3: (9:5:6)

Unfortunately, this idea encounters several problems, which impedes its
application to real systems (Tagantsev, 1996). Here we mention only the most
serious of these. As we showed in Sect. 8.7.2 the energy of critical nucleus in the
Landauer theory is so high that the probability of the nucleation, even for
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relatively high fields (typical to thin films), vanishes in the scale of the lifetime of
the universe. This means that the outlined above size effect is irrelevant to the
ferroelectric switching taking place on realistic time scales. However, one
should mention that the very idea of this kind of size effect might be successfully
employed in the case of a realistic nucleation mechanism.

9.5.2.2 Surface Pinning Size Effect

The idea that a surface contribution to the coercive force can result in a size effect
for the coercive field has been discussed by several authors (Drougard and
Landauer, 1959; Callaby, 1965; Lebedev and Sigov, 1994). The scenario based
on this idea can be outlined as follows. One considers the switching from a state
already containing domain walls that are perpendicular to the plane of the films.
The defects are assumed to be the origin of the coercive force for the walls. The
contributions of both surface and bulk defects are taken into account. For thin
films, where the contribution of the surface pinning becomes comparable to that
of the bulk one, a thickness dependence of the coercive force is expected. The
coercive field is found from the following balance-of-force equation for the wall:

2PSEcSW ¼ fbSW þ 2fcL;

where SW and L are the area of the wall and length of the crossing line between
the wall and the film/electrode interface, respectively; fb and fc are the area
density of the bulk coercive force and the linear density of the surface coercive
force, respectively. Since SW ¼ Lh, the above balance-of-force equation imme-
diately yields

Ec / 1þ hLeb=h; (9:5:7)

where hLeb ¼ 2fc=fb is the characteristic length of the size effect.
The idea of this model does not encounter principal objections. As a problem

with this approach one can indicate the lack of a reliable estimate of the surface
pinning strength. Lebedev and Sigov (1994) have suggested the surface rough-
ness to be a possible origin for the surface domain wall pinning and derived a
relation between the amplitude of the random surface pinning potential and fc.

9.5.2.3 Depletion-Assisted Nucleation of Reverse Domains

The electrochemical interaction between the conductive electrodes and the
electronic carriers of the ferroelelectric may result in the so-called depletion
effect, i.e., the removal of the carriers from narrow electrode-adjacent regions
so that charged regions of bare impurities are formed near the electrodes. In the
case of a wide gap and heavily compensated semiconductor, which is often the
case for typical ferroelectrics, this built-in charge is related to deep trapping
centers and oxygen vacancies (Brennan, 1995). It can be considered as immobile
during electrical measurements at room temperature and homogeneous inside
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the depletion layers (Simmons, 1971). The depletion phenomenon is character-

ized by the parameter W called depletion layer width, which is a function of the

electrochemical parameters of the electrode/ferroelectric interface. If the film

thickness h is larger than 2W, the film will contain two space charge layers at the

two electrodes and a neutral region in the middle. This is the case of partial

depletion. If h52W, the film is homogeneously filled with space charge. This is

the case of full depletion.A sketch of the distribution of the built-in electric field

in a film subjected to the depletion effect is shown in Fig. 9.5.9. The absolute

value of this field at the electrodes, Ebi, can be readily found (from the Poisson

equation) in the following form (see, e.g., Tagantsev et al., 1994):

Ebi ¼
eNd

e0kf
W for h42W; Ebi ¼

eNd

e0kf

h

2
for h52W; (9:5:8)

where e andNd are the charge of the doping centers and their concentration and

kf is the lattice dielectric constant of the ferroelectric. Referring the reader to the

original paper (Tagantsev et al., 1994) for a more detailed discussion we shall

only outline the suggested mechanism of the thickness dependence of the

coercive field Ec. Consider switching from the negatively poled single-domain

state when a positive external field E is applied to the capacitor. The first step of

the switching is the nucleation of reverse domains. Since for E40 the total

(depletion+ external) field reaches its maximum at one electrode (the right one

in Fig. 9.5.9), the nucleation of positive domains will occur at this electrode. Let

the nucleation threshold field be Ecn. Then, the condition for surface nucleation

can be written as

Ecn ¼ Eþ Ebi: (9:5:9)

If the threshold field ismuch higher than the field required keeping the domain

walls (created due to the nucleation)moving, then the nucleation is the bottleneck

for switching, and the condition for nucleation (9.5.9) is also the condition for

switching. One can thus find the coercive field from Eqs. (9.5.8) and (9.5.9) as

Ec ¼ Ecn � Ah; A ¼ eNd

2e0kf
; for h52W: (9:5:10)

Fig. 9.5.9 Distribution of
the built-in electric field in
films with thicknesses larger
than the double depletion
width 2W (partial depletion)
and smaller than 2W (full
depletion)
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For thicker films (with h42W), where the surface built-in field is thickness
independent, one expects the coercive field to be thickness independent.

This mechanism can explain the thickness dependence of the coercive field in
PZT films with Pt electrodes thinner than a few micrometers. In this interval, a
pronounced thickness dependence ofEc is documented for h5hd ¼ 0:5 mmwith
a typical slope A ¼ @Ec

@h � ð0:15� 0:25Þ 
 107 kV=cm2 (Tagantsev et al., 1994).
This corresponds to a concentration of once-ionized doping centers
Nd ¼ 2Akfe0

e � ð0:3� 0:4Þ 
 1019 cm�3 (kf ¼ 300 was used as an estimate). On
the other hand, in terms of this model, the appearance of the thickness depen-
dence of Ec at h � hd ¼ 0:5 mm implies the depletion layer width in the bulk
material, W, to be about hd=2 ¼ 0:25 mm. Using the relation30 Vbi = AW2

(Tagantsev et al., 1994) and the above values ofW and A, one can also evaluate
the contact built-in potential Vbi ffi 1V. The estimates obtained for Nd,W, and
Vbi are comparable with typical values of these parameters in perovskites (Scott
et al., 1991; Waser and Klee, 1992; Brennan, 1992b). Thus, the suggested
mechanism looks compatible with the semiconductor properties of perovskites.

9.5.2.4 Surface Passive Layer

Amost obvious reason for the difference between the switching performance of
ferroelectric thin films and that of their bulk counterpart of the same composi-
tion is the presence of a non-switching ‘‘passive’’ dielectric layer (or a layer with
a reduced switching ability) between the ferroelectric and electrode of ferro-
electric capacitors. The impact of such passive layers on the equilibrium domain
pattern in thin films has been already addressed in Sect. 9.4.1. In the present
section we will address the impact of such layers on switching in thin films. This
problem has been approached in the literature for the past 50 years; however,
certain misunderstanding of one essential issue of the problem has been persist-
ing for a long time.

The commonly used approach to the influence of a passive layer on the
polarization response of a ferroelectric capacitor is to consider it as in-series
connection of a capacitor containing ferroelectric with that containing a dielec-
tric. Clearly, this ‘‘in-series capacitors’’ model is an approximation, for example,
it does not take into account the stray fields of the domain pattern of the
ferroelectric. On the other hand, this model provides a clear and simple descrip-
tion of the basic features of the phenomenon. In this section, we discuss the
effect of the passive layer of ferroelectric hysteresis employing the ‘‘in-series
capacitors’’ model since more advanced considerations of the problem are not

30 In this relation, following the original paper, we do not make any difference between the
dielectric constant at the temperature of the electrochemical equilibrium (at which the deple-
tion layer forms) and that at the measuring temperature (at which the trapped creates the
built-in field). The incorporation of this difference in the theory will not affect the qualitative
conclusions of the analysis. A more advance discussion of the depletion effect can be found in
Subsect. 9.5.3.
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presently available in the literature. In what follows, we overview the theory
developed for the case where the passive layer is a perfect insulator layer (Miller
et al., 1990; Brennan, 1992; Tagantsev et al., 1995a) as well as for the case where
the layer is a dielectric with a threshold conduction (Cillessen et al., 1997;
Tagantsev and Stolichnov, 1999).

The effects which are out of the reach of the ‘‘in-series capacitors’’ model will
be discussed later in Sect. 9.6 where the problem of small-signal dielectric
response of the capacitor containing a passive layer is addressed.

9.5.2.5 Insulating Passive Layer

The sandwich structure shown in Fig. 9.5.10 is considered. Neglecting the
possible inhomogeneity of the electric field in the plane of the capacitor its
switching behavior can be analyzed based on the condition of continuity of the
normal component of the electric displacement and the equation for the poten-
tial drop across the system:

e0kdEd ¼ e0Ef þ Pf

dEd þ hEf ¼ ðdþ hÞE
; (9:5:11)

where E is the applied field; Pf and Ef are the average polarization and electric

field in the ferroelectric, h being its thickness;Ed, d, and kd are the average field in
the dielectric, its thickness, and its dielectric constant, respectively. For the case of

a thinpassive layer (d55h)weare interested in, Eq. (9.5.11) canbe reduced toa set

of simple equations relating the polarization and field in the ferroelectric to the

field applied to the sandwich and the average polarization in it,P (i.e., the quantity

that is actually measured). Neglecting, as usually, the difference between the

polarization and displacement of the ferroelectric, these equations read

Ef ¼ E� d

h
Ed;

Ed ¼
Pf

e0kd
;

P ¼ Pf:

(9:5:12)

Fig. 9.5.10

Electrode–passive
layer–ferroelectric–electrode
sandwich structure.
Thickness of the passive
layer is d, that of the
ferroelectric is h
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Equations (9.5.12) enable calculations of the set of hysteresis loops PðE;EmÞ
of the sandwich for different amplitudes of driving field Em, if such a set,
PfðEf;EfmÞ, is known for the ferroelectric (where Efm is the amplitude of the
field seen by the ferroelectric). The scheme of the calculations is as follows. To
obtain the loops of the sandwich for a given value of Em (say E1) one, first,
determines the amplitude of the driving field Efm seen by the ferroelectric when
the amplitude Em of the driving field equals E1. This value of Efm, which we
denote as E2, can be found as a root of the equation

Efm ¼ E1 �
d

e0kdh
PfðEfm;EfmÞ: (9:5:13)

Thus we find that the polarization and field in the ferroelectric during the
cycling considered are related by the function Pf ¼ PfðEf;E2Þ so that the loops
exhibited by the sandwich can be generated using the equations

Ef ¼ E� d

e0kdh
PfðEf;E2Þ; (9:5:14)

P ¼ PfðEfÞ: (9:5:15)

This approach was applied to modeling hysteresis loops of a sandwich
containing ferroelectric films whose set of hysteresis loops was available from
experiment. The results of such modeling (Tagantsev et al., 1995) are presented
in Fig. 9.5.11a. Comparing the loop for the ferroelectric with those for the
sandwich with different thicknesses of the passive layer, the following trends
can be distinguished.31 An increase in the passive layer thickness (a decrease in
the thickness of the ferroelectric) results in (i) an essential tilt of the loops, (ii) an
essential reduction of the remanent polarization Pr, (iii) a certain reduction of
the maximal polarization on the loop Pm, and (iv) a certain reduction of the
coercive field Ec. Analytical treatment of the problem (Tagantsev et al., 1995)
confirmed such observations. It was also analytically shown that, in the limit
of high amplitudes of the driving field Em (where the polarization loops seen by
the ferroelectric become fully saturated), effects (iii) and (iv) disappear whereas
effects (i) and (ii) hold. For the coercive field, this trend is illustrated in
Fig. 9.5.11b. Referring the reader to the original paper (Tagantsev et al.,
1995) for details of the analysis, we would like to comment here only two issues:
the tilt of the loop and the behavior of Ec.

To characterize the tilt of the loop it is convenient to consider its slope at Ec,
dP
dE




P¼0, as a measure of the tilt. Using Eq. (9.5.12) this parameter can be readily

related to the corresponding parameter of the loop of the ferroelectric dPf

dEf





Pf¼0

:

31 The gap seen on the calculated loops is an artifact of calculations which use an experimental
set of loops with gaps (like shown in Fig. 9.5.6b).
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h
dP
dE




P¼0
¼ h

dPf

dEf





Pf¼0

þ d

e0kd
; (9:5:16)

(with h44d) where one can easily recognize the formula for in-series connec-

tion of two capacitors applied to the considered structure.32 Equation (9.5.16)

clearly explains the aforementioned relation between d (or h) and the tilt of the

polarization loop of the sandwich.
The impact of the passive layer on the coercive field of the system illustrated

in Fig. 9.5.11b is less evident than that in the case of the loop tilt. Actually, this

result seems contradictory to the routine reasoning: ‘‘The coercive field is

roughly the field needed to switch the ferroelectric. There is a drop of potential

across the passive layer. Thus a higher voltage should be applied to the sand-

wich than to the bare ferroelectric to switch it. For this reason, one expects the

coercive field to increase with increasing thickness of the passive layer.’’ We

elucidate the origin of the effect illustrated in Fig. 9.5.11b by pointing out a

drawback of the above reasoning. First, according to Eqs. (9.5.12), the drop of

potential across the passive layer equals Pd=e0kd so that at Ec (where P ¼ 0) it

vanishes to within the accuracy of our calculations. Thus, the fields seen by the

ferroelectric and sandwich at Ec are the same. This means that, if the loop

exhibited by the ferroelectric part of the sandwich is saturated (by ‘‘saturated’’

wemean the fact thatPr andEc of the loop are virtually independent of driving

field) then the coercive fields of the ferroelectric and sandwich are equal

(cf. Fig. 9.5.11b). The case where the loop exhibited by the ferroelectric part

Fig. 9.5.11 (a) Hysteresis loop of a ferroelectric (the less tilted) and the calculated loops of the
sandwich (ferroelectric/thin dielectric layer) for different values of d=kdh ¼ 0:003, 0.09, 0.018
(the larger d, the larger the tilt). In the calculations, a set of hysteresis loops of the ferroelectric
was used as its dielectric portrait. (b) The calculated dependence of the coercive field of the
sandwich containing a ferroelectric (with d=kdh ¼ 0:01) on the amplitude of the driving field
compared to that of the ferroelectric. After Tagantsev et al. (1995a)

32 Here, it is worth to remind that, in general, the slope of the loop at coercitivity is different
from the differential susceptibility measured at this point since the latter is not influenced, in
contrast to the slope, by the irreversible contribution to the polarization response.
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of the sandwich is not saturated requires a more involved treatment which
shows that, in this regime, Ec is a decreasing function of d=kdh. This behavior
is related to the fact that the loop exhibited by the ferroelectric part of the
sandwich is driven by a field whose amplitude is smaller than that of the field
applied to the sandwich.

9.5.2.6 Passive Layer with Threshold Conduction

An estimate of the electric field acting in the passive layerEd during switching in
a capacitor containing a thin film of a conventional ferroelectric like PZT shows
that it can be very large. For example, taking P ¼ 0:3 C =m2 and the dielectric
permittivity of the passive layer even as high as kd ¼ 100, one finds
Ed ¼ 3 MV=cm. This field is large enough to induce considerable charge injec-
tion across the layer. Thus, an adequate description of the switching in a ferro-
electric capacitor may require taking into account this injection as well as the
influence of the injected charge on the switching and on the injection itself
(Cillessen et al., 1997; Tagantsev and Stolichnov, 1999). This phenomenon can
be readily incorporated into the model considered above by taking into account
(i) the free carrier transport across the layer, JðEdÞ being the current density
across the layer, and (ii) the accumulation of these free carriers at the ferro-
electric/dielectric interface, s being the corresponding surface charge density.
An essential feature brought about by the introduction of the injection in the
model is an effective screening of ferroelectric polarization by the charge of
accumulated carriers.

The switching behavior of the system is then described by a modified version
of Eqs. (9.5.12) appended with the equation for the charge transport across the
layer33:

Ef ¼ E� d

h
Ed; (9:5:17)

Ed ¼
Pf � s
e0kd

; (9:5:18)

P ¼ Pf; (9:5:19)

ds
dt
¼ JðEdÞ: (9:5:20)

Here the screening effect of the charge at the ferroelectric/dielectric interface
is clearly seen in Eq. (9.5.18). This screening results in some reduction of
the field in the passive layer. According to Eq. (9.5.19), the total polarization
of the sandwich is taken equal to the polarization of the ferroelectric layer P;

33 We remind that the situation of a thin passive layer is treated ðd55hÞ. This is taken into
account in the following equations.
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i.e., the contribution of the dielectric layer is neglected.34 The complete descrip-
tion of the problem is given by Eqs. (9.5.17), (9.5.18), (9.5.19), and (9.5.20)
appended with the specified dependences JðEdÞ and PfðEfÞ.

Following Tagantsev and Stolichnov (1999) we will discuss the impact of this
kind of passive layer on the coercive field of the sandwich. For simplicity we
consider the case of saturated loops, for which, in the previous model, Ec of the
sandwich was found independent of the layer thickness and equal to the
coercive field of the ferroelectric Ec0 . As for the JðEdÞ dependence, we assume
it to be very steep and being characterized by a threshold field, Eth. In other
words, in this model, if in the surface dielectric layer Ed5Eth, the layer behaves
as an insulator whereas if Ed4Eth the layer behaves as a nonlinear conductor
maintaining Ed very close to Eth (slightly higher), irrespective of the passing
current. This is a reasonable approximation for typical injection mechanisms in
thin dielectric films.

The impact of this kind of passive layer on Ec can be readily elucidated from
the following consideration. The behavior of the system differs depending on
the relation between Eth and the maximal polarization Pm on the hysteresis
loop. If Eth4Pm=e0kd, the field in the surface layer Ed ¼ Pf=e0kd (see
Eq. (9.5.18) where s is set to zero before the onset of injection) is always smaller
than the injection threshold field so that the injection is off during the cycling
and the surface layer behaves as an ideal insulator. In this case the model
reduces to the insulating layer model treated above and we find no effect of
the passive layer on the coercive field, i.e.,

Ec ¼ Ec0 : (9:5:21)

If Eth5Pm=e0kd, the field in the surface layer Ed will reach the threshold
value Eth during cycling and the injection will be on during some phases of the
switching cycle. This injection will bring some charge at the ferroelectric/dielec-
tric interface, which, in turn, will affect the value of the coercive field of
the sandwich Ec. I has been shown (Tagantsev and Stolichnov, 1999) that,
for e0kdEth5Pm52e0kdEth;

Ec ¼ Ec0 þ
d

e0kdh
ðPm � e0kdEthÞ (9:5:22)

and, for Pm42Ethe0kd

34 Note that, in this case, the total (measured) polarization of the system is not given by the
charge on the electrode, which is equal to Pf � s, since the variation of the latter is not fully
controlled by the current in the external circuit. We remind that, in the used approximation
where the difference between the polarization and the electrical displacement is neglected, the
current in the external circuit is liked to the polarization by the relation Iext ¼ A � dP=dt, where
A is the electrode area.
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Ec ¼ Ec0 þ
d

h
Eth: (9:5:23)

The physical difference between the regimes corresponding to Eqs. (9.5.22)

and (9.5.23) is that, in the first case, the injection is on during some phases of the

switching cycle but it is off at the coercive field point whereas, in the second

case, the injection is also on at this point. It is seen from these equations that the

injection implies a thickness dependence of the coercive field of the sandwich

and, in the first regime, an additional dependence of it on Pm. These depen-

dences are illustrated in Fig. 9.5.12a.

It is worth noting that there is a transparent physics behind the trends given

by Eqs. (9.5.22) and (9.5.23). In the case where the injection is on at Ec,

Eq. (9.5.23), the field in the passive layer is exactly known and equal to Eth so

that this relation directly follows from a simple calculation of the voltage drop

across the sandwich at coercitivity: hEc0 þ dEth (Cillessen et al., 1997). The

trend given by relation (9.5.22), namely the increase in Ec with increasing Pm,

can be understood from the following argument. At the tip of the loops (at

P ¼ Pm) the polarization is screened by a certain amount of charge at the

ferroelectric/dielectric interface. When the applied field reduces from it max-

imum, this charge holds constant (as we would need a field in the opposite

direction and above the threshold value in order to reverse the charge transport)

up to the Ec point (since at Ec the injection is still off). At this point ðP ¼ 0Þ, this
charge is no longer compensated by the bound charge of the polarization and it

creates a field that opposes polarization reversal, finally resulting in an increase

in Ec. Since the screening charge increases with increasing Pm, Ec increases with

Pm as well.

Fig. 9.5.12 (a) The coercive field,EC, of thin ferroelectric films of different thicknesses plotted
as a function of Pm—the maximal polarization on the P–E loop used for measuring EC.
(a) Results of modeling which take into account the charge injection across the dielectric layer.
(b) Results of measurements on (111) highly textured PbZr0.45Ti0.55O3 ferroelectric films with
Pt electrodes. The film thicknesses are indicated in the graphs. After Tagantsev and Stolich-
nov (1999)
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A remarkable feature of the theoretical results given by Eq. (9.5.22) is that its

relevance to experimentally observed effects can be verified by analyzing a two-

dimensional array of data: Ec as a function of the film thickness, h, and the

maximal polarization,Pm. An example of such analysis for a Pt/PZT/Pt thin film

capacitor is shown in Fig. 9.5.12b where it is seen that the experimental results

reproduce fairly well the fan-like structure of the graph predicted by the model.
According to Tagantsev and Stolichnov (1999), apart from the description of

the size effect in switching in a Pt/PZT/Pt system, the presentedmodel also gives

a possible explanation for the much smaller magnitude of this effect in Bi-

containing films (Zhu et al., 1998) and oxide electrode systems (Cillessen et al.,

1997) (see Fig. 9.5.8). In the first case, a smaller magnitude of the maximal

ferroelectric polarization Pm in these materials can be a reason for the absence

of nearby-electrode injection and, as a result, for the absence of the size effect on

the coercive field (i.e., Pm5Ethe0kd in Fig. 9.5.12a). In the case of PZT with

oxide electrodes, known for much higher leakage currents than those in the Pt/

PZT/Pt system, one could expect a much stronger nearby-electrode injection. In

terms of the model, this corresponds to small Eth and the regime of relatively

large Pm (i.e., Pm42Ethe0kd in Fig. 9.5.12a). In this regime, the magnitude of

the size effect is proportional to Eth and therefore small. In other words, this

means that the injection actually short-circuits the nearby-electrode layer, so

that the layer ceases to influence the switching.

9.5.3 Effects of Internal Bias and Imprint

Very often the switching characteristics of ferroelectric thin film capacitors

are not symmetric with respect to the reversal of the applied voltage. In this

case, one speaks about the presence of an internal bias field in the capa-

citor, which creates this asymmetry. Although the presentation of the

electric field seen by the ferroelectric as the sum of the applied and internal

bias field does not usually correspond to a real situation (as will become

clear from the following discussion), we will be using the established term

‘‘internal bias’’ when speaking about the switching asymmetry, implying the

ratio Voff=h where Voff is the voltage offset of the switching characteristics

of the film and h is its thickness.
By the term internal bias field effects we mean two classes of phenomena:

(i) built-in internal bias field development as a result of processing of the ferro-

electric capacitor and (ii) internal bias field development in the ferroelectric

capacitor as a result of keeping the capacitor in a poled state for some time

(exposition time). The latter effect is customarily called imprint. During the

exposition time the capacitor can also be treated with an electrical field, elevated

temperature, or visible/UV light illumination. In the latter two situations one

also uses the terms thermal and optical imprints, respectively.
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In the present section, we first theoretically address the models for internal
bias effects in ferroelectric thin films. These models are related to trapped (i.e.,
immobile on the time scale of the switching experiment) charge in the film,
reorientation of polar defects in the bulk of the film, the poling effect of the
ferroelectric/electrode interface, and the depletion effect. We will also theoreti-
cally address the imprint scenario related to charge transport in the vicinity of
electrodes. We will end this section with a discussion of relevant experimental
findings.

9.5.3.1 Voltage Offset Caused by Nearby-Electrode Trapped Charge

It is obvious that space charge asymmetrically trapped in the film should lead to
some asymmetry of the ferroelectric switching. Typically, in thin films this
charge is trapped close to the ferroelectric/electrode interfaces. In this case,
the ferroelectric capacitor can be roughly modeled as the in-series connection of
an ideal ferroelectric capacitor with another (surface) capacitor, having the
thickness equal to the distance between the centroid of the trapped charge
and the electrode, with the charge of the second capacitor being set equal to
the total trapped charge. If we assume that due to the impact of the ferroelectric/
electrode interface the surface capacitor is non-switchable, we arrive at the
simple model for the internal bias field effect driven by the electric charge
trapped at the ferroelectric/electrode interface. This model (where in addition
the ‘‘material’’ of the surface capacitance is assumed to be nonpolar) has been
used by Grossmann et al. (2002a,b) and by Tagantsev et al. (2004b) for the
description of the imprint phenomenon. An electrostatically identical model
has been already discussed in the previous section. This model contains a
sandwich structure with a ferroelectric layer and a thin dielectric layer (passive
layer) separated by the interface containing the trapped charge (see Fig. 9.5.10).
The internal bias effect in this model is controlled by the relation between the
voltage offset and the amount of the trapped charge. To obtain this relation,
one starts from that for the total voltage drop across the system and from the
equation for the jump of the electrical displacement at the ferroelectric/passive
layer interface

V ¼ hEf þ dEd; (9:5:24)

Df � s ¼ e0kdEd (9:5:25)

and an equation following from these:

Df � s ¼ e0kd
V

d
� h

d
Ef

� �
; (9:5:26)

where V is the voltage applied to the capacitor; Df and Ef are the electrical
displacement and field in the ferroelectric, h being its thickness;Ed, d, and kd are
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the field in the passive layer, its thickness, and dielectric permittivity, respec-

tively. Here s stands for the surface density of trapped charge at the ferro-

electric/passive layer interface.
We define the voltage offset, Voff, as the difference in the applied voltages

that produce the same switching in the cases of the charged and uncharged

ferroelectric/passive layer interfaces. In terms of Eq. (9.5.26), ‘‘to produce the

same switching’’ means to arrive at the same values ofDf and Ef. Following this

definition and writing Eq. (9.5.26) for the capacitors with and without the

trapped charge, we find from the difference between these two equations:

Voff ¼ �
ds
e0kd

: (9:5:27)

It is instructive to rewrite Eq. (9.5.26) in terms of Voff and of the voltage

applied to the ferroelectric layer, Vf ¼ hEf:

Vf ¼ V� Voff �
dDf

e0kd
: (9:5:28)

This equation clearly illustrates the statement from the beginning of this

section that the electric field seen by the ferroelectric is not simply the sum of the

applied and the internal bias fields. Such presentation is valid only at Df ¼ 0,

i.e., only at two points of the P – E hysteresis loop. Otherwise, the depolarizing

field (controlling the last term in Eq. (9.5.28)) also contributes to the difference

between the applied field and that seen by the ferroelectric.
At this point it is important to mention that, in general, the voltage offset just

calculated, Voff, can essentially differ from the voltage offset, Voff�cr, defined as

the half-sum of the coercive voltages of theP–E loop of the same capacitor. There

are two reasons for that. First, if the ferroelectric loop is not saturated, in the

presence of the internal bias, the degree of saturation at the tips of the loop is

different from that observed in the absence of the internal bias. For this reason,

the switching curves of the ferroelectricDfðEfÞmay not be the same for these two

cases. Hence Eq. (9.5.26) may lead nomore to Eq. (9.5.27). Second, themeasured

P–E loops are usually symmetrized with respect to the P-axis (see the beginning

of Sect. 9.5.2); therefore in order to compare them to the experimental data, the

calculated loops should also be symmetrized by introducing some polarization

offset. This polarization offset will result in an additional voltage offset.
It is instructive to demonstrate the difference between Voff�cr and Voff. In

general, to calculate such difference is a complicated task. To give an idea about

it, we will evaluate Voff�cr in our model for the case of saturated P–E loops in

the hard-ferroelectric approximation, where it is set that

Df ¼ PN þ kfe0Ef: (9:5:29)
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Here PN and kf are the domain contribution to polarization of the ferro-
electric and the lattice contribution to its permittivity, respectively. In addition,
close to the coercivity, we approximate the hysteresis loop of the ferroelectric as

Df ¼ e0kcrðEf � EcÞ; (9:5:30)

where Ec is the coercive field of the ferroelectric and kcr is a constant controlling
the slope of the loop at coercivity. Using Eq. (9.5.26) and the relation between
the average displacement of the capacitor, D, and Df, i.e.,

D ¼ e0kdEddþDfh

hþ d
¼ Df �

sd
hþ d

; (9:5:31)

(derived with the aid of Eq. (9.5.25)), one readily finds for the polarization offset
of the saturated loop (i.e., a loop with PN ¼ �P0 at its tips)

35:

DD ¼ ds
h

kf
k�d
� h

dþ h

� �
; (9:5:32)

where

k�d ¼ kd þ
d

h
kf: (9:5:33)

Using the above relations, one finds the values of the positive and negative
coercive voltages of the symmetrized loop, V+ and V-, i.e., the values of the
applied voltage at which the displacement of the system equals DD:

V� ¼ �hEc þ
h

kcr
þ d

kd

� �
DDþ sd

dþ h

� �
� ds

kd
: (9:5:34)

This leads to the final expression for the voltage offset of the symmetrized
loop

Voff�cr 	
Vþ þ V�

2
¼ � ds

e0k�d
1� kf

kcr

� �
¼ Voff

1� kf
kcr

1þ dkf
hkd

: (9:5:35)

The relation (9.5.35) suggests that Voff�cr and Voff may essentially differ. In
the case of a ferroelectric material with square loops (i.e., where kf55kcr) and
for very thin passive layers (where d55hkd=kf) Voff�cr � Voff. On the other
hand, for thicker passive layers where d � hkd=kf, Voff�cr and Voff can differ
dramatically in the values as well as in their functional dependence on the
parameters of the problem. For instance, in the latter regime, Voff is

35 As everywhere in this book we neglect the difference between the polarization and electric
displacement of ferroelectric systems.
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independent of the film thickness (see Eq. (9.5.27)) whereas Voff�cr is strongly
dependent on it.

The above consideration shows that the interpretation of experimental data
on the internal field effects should be done with paying proper attention to the
method of the evaluation of the internal bias.

9.5.3.2 Electrode-Adjacent Injection Model for Imprint

In thin ferroelectric films, as we have seen in Sects. 9.4 and 9.5, the presence of
electrode-adjacent passive layer may be essential for various properties of the
film. For the description of the impact of such a layer on ferroelectric domain
patterns, on the coercive field of hysteresis loops, and on their tilt, the passive
layer has been modeled as a thin dielectric layer between the ferroelectric and
the electrode. A version of this model, which makes allowance for charge
transport across the layer, is also appropriate for a mechanism for the internal
field effect. Grossmann et al. (2002a,b) offered an imprint mechanism of this
kind for ferroelectric thin film capacitors. The driving force of the mechanism
can be explained as follows. In a capacitor with such a passive layer, at
remanence (i.e., the capacitor is poled and then short-circuited), the bound
charge of the remanent polarization is separated from the charge on the elec-
trodes and, as a result, the layer is subjected to a very high electric field (see Sect.
9.5.2 for an estimate). This field can promote charge transfer from the electrode
to the ferroelectric/passive layer interface. During further electrical cycling, the
field in the passive layer will change its direction following the variation of
polarization in the ferroelectric. Accordingly, the charge at the ferroelectric/
dielectric interface will change in time, its evolution depending on the cycling
regime. If the time elapsed while the capacitor is at remanence is comparable to
the cycling period, a periodical variation of this charge with a vanishing average
value is expected. This situation has been addressed in Sect. 9.5.2.6 where it has
been shown that, in this regime, the loop remains symmetric. If, however, the
time elapsed while the capacitor is at remanence is much greater than the cycling
period, it is possible that the charge at the ferroelectric/dielectric interface is
only slightly time dependent, having an appreciable average value (over the
cycling period). This occurs if the charge accumulated at the interface is too
large to be removed by the field in the layer during half the cycling period. The
electric charge thus accumulated at the ferroelectric/passive layer interface will
lead to the appearance of an internal bias field as described in the previous
section.

In this model, the description of imprint requires, first, the calculations of the
accumulated charge and second, finding the voltage offset by using the corre-
sponding relations from the previous section. Under reasonable assumptions
on the charge transport across the passive layer, one finds that the offset voltage
is a logarithmic-type function of the time spent by the capacitor in the poled
state (the exposition time), which agrees qualitatively with experimental obser-
vations (see Sect. 9.5.3.6). This logarithmic-type time dependence of the
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voltage offset was demonstrated by Grossmann et al. (2002b) using numerical
simulation and by Tagantsev et al. (2004b) using an analytical approach. Below
we will address the analytical approach, mainly following the aforementioned
paper.

First, we consider the situation where the capacitor is under open circuit
conditions during the exposition time. Depending on the parameters of the
system, the electrical conditions may alter some of the conclusions of our
analysis. We will return to this point later on. In the model we are considering,
the charge transport across the passive layer is fully described by Eqs. (9.5.24)
and (9.5.25) and by the equation for the charge accumulation (9.5.20), where
the hard-ferroelectric approximation (9.5.29) is adopted as the constitutive
equation of the ferroelectric. We consider the situation where, originally, the
ferroelectric is not poled, i.e., PN=0, and where, originally, the charge at the
ferroelectric/passive layer interface is equal to zero, i.e., s = 0. Then the ferro-
electric is poled with a voltage pulse (i.e., we set PN ¼ PS and V ¼ 0 just after
application of the pulse) and left in this poled state. In the presence of the
passive layer, the polarization of the ferroelectric will result in a depolarizing
field in the ferroelectric film and in a field in the passive layer, which is much
higher than the depolarizing one. The field in this layer will cause charge
transport across it, resulting in the accumulation of the charge at the ferro-
electric/passive layer interface. Let us calculate this charge, sðt;PSÞ, as a func-
tion of the exposition time, t, for the case of open electric circuit. The condition
PN ¼ PS is assumed to hold at any t, which corresponds to the situation where
the polarization relaxation rate is smaller than the rate of charge accumulation
at the interface. A proper variable for the calculations is the field in the passive
layer,Ed, which satisfies the relationships following from Eqs. (9.5.24), (9.5.25),
(9.5.20), and (9.5.29):

e0kd
dEd

dt
¼ �JðEdÞ; (9:5:36)

s ¼ �kde0 Edð0Þ � EdðtÞ½ �; (9:5:37)

Edð0Þ ¼ �
PS

e0k�d
; (9:5:38)

with k�d defined by Eq. (9.5.33). Here, Eqs. (9.5.36) and (9.5.37) have been
obtained using the open electric circuit conditions that in our model correspond
to a time-independent electric displacement in the ferroelectric; Eq. (9.5.38)
corresponds to the condition V = 0, which is valid just after the poling, i.e., at
t ¼ 0. Equations (9.5.36), (9.5.37), and (9.5.38) appended with the law for the
charge transport across the passive layer J(E) specify the mathematical pro-
blem. We will consider the situation where the charge transport across the
passive layer can be described by an exponential equation, i.e., where J(E) can
be written as
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JðEÞ ¼ A
E

Eth

� �a

exp signb
E

Eth

� �b
" #

: (9:5:39)

This situation covers the Pool–Frenkel, thermoionic (Schottky), and cold-

field emissionmechanisms, which are typical for dielectrics at high electric fields

(O’Dwyer, 1973). By introducing a new variable36

q ¼ exp sign b
Ed

Eth

� �b
" #

(9:5:40)

we can rewrite Eq. (9.5.36) (with J(E) coming from Eq. (9.5.39)) as

t
dq

dt
¼ �j ln qjgq2; (9:5:41)

where

t ¼ e0kdEth

jbjA and g ¼ 1þ a� 1

b
: (9:5:42)

In the case that we call ‘‘weak screening case,’’ an approximate analytic

solution37 to this equation is possible. In this case, where the conduction in

the passive layer is truly exponential (i.e., 1=j ln qj551) and the polarization

screening by the trapped charge is far from saturation (i.e., the current value of

s is much smaller than its value at the end of screening, which for the open

circuit conditions equals PSkd=k�d), the solution to Eq. (9.5.5) to within the

accuracy of small parameters 1=j ln qj and k�ds=ðPSkdÞ can be presented as

(Tagantsev et al., 2004b)

qð0Þ
q
¼ 1þ t

t0
; (9:5:43)

where

t0 ¼
t

qð0Þj ln qð0Þjg (9:5:44)

36 This analysis is related to the case of positive Ed; in the general case, Eq. (9.5.39) should be
taken with jEdj instead of Ed. This obviously does not affect the results of our analysis.
37 This kind of solution is well known in the theory of transient currents in dielectrics (see, e.g.,
Baginskii and Kostsov, 1985; Lundstrom and Svensson, 1972).
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and the initial value of q equals qð0Þ ¼ exp signb PS

e0k�dEth

� �b� �
. Using Eqs.

(9.5.37), (9.5.38), (9.5.43), and (9.5.44) we find the accumulated charge as a
function of the exposition time and of other parameters of the problem:

s ¼ e0kdEth

bj j
PS

e0k�dEth

� �1�b
lnð1þ t=t0Þ; (9:5:45)

where

t0 ¼
kd
k�d

PS

bj jA
e0k�dEth

PS

� �aþb
exp �signb PS

e0k�dEth

� �b
" #

: (9:5:46)

According to Eq. (9.5.27) this leads to the following expression for the
voltage offset38:

Voff ¼ V0 lnð1þ t=t0Þ; (9:5:47)

where

V0 ¼
dEth

bj j
PS

e0k�dEth

� �1�b
: (9:5:48)

We therefore see that the exponential form of the conduction equation
for the passive layer leads to a universal logarithmic-type time dependence
for the voltage offset in the case of weak compensation of the depolarizing
field by carrier transport across the passive layer. This dependence is illustrated
in Fig. 9.5.13. The regime of weak compensation may be relevant to the real
experimental situations since exponentially long times are required to pass from
this regime to that of strong compensation. The explicit expression for the
voltage offset, Eq. (9.5.47), is controlled only by two parameters, V0 and t0,
which have the meaning of ‘‘logarithmic slope’’ in the regime of logarithmic
charge relaxation and of the crossover time between the regimes of linear and
logarithmic relaxations, respectively. Equations (9.5.46), (9.5.47), and (9.5.48)
and the explicit expressions for the parameters entering these relations enable us
to extract some clear predictions from the theory.

Imprint is a logarithmic function of time only in the limit of large times. In
general, it is not linear in the semi-logarithmic scale. Its semi-logarithmic
dependence might give the impression that the imprint accelerates with time.

38 We neglect the sign in the expression for Voff since, in practice, the sign of the voltage
applied to a capacitor is fixed by convention. For a given convention, the sign of Voff can be
determined from simple electrostatic arguments.
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In reality, the relaxation slows down with time (sublinear) and its apparent
acceleration is an artifact of the semi-logarithmic scale.

Equations (9.5.46), (9.5.47), and (9.5.48) enable a description of the tem-
perature dependence of the imprint in the cases of the Pool–Frenkel mechanism
and of the thermoionic emission as well as of cold-field emission (O’Dwyer,
1973). In the case of the thermoionic emission and of the Pool–Frenkel mechan-
ism b ¼ 1=2 and

Eth ¼
4pe0khðkTÞ2

be3
; (9:5:49)

where k is the Boltzmann constant, kh is the optical dielectric constant of the
material, T is the temperature, e is the charge of the electron, and b = 1 for the
thermoionic emission and 15b52 for the Pool–Frenkel mechanism. For these
mechanisms, the parameter amay acquire the values 1, 3/4, and 0, depending on
the field interval. The factor A is basically an exponential function of the
temperature

A / e�ðF=kTÞ; (9:5:50)

where F stands for the Pool–Frenkel or the interfacial Schottky activation
barrier.

Using the above relations, for the situation where the charge transport across
the passive layer is controlled by the thermoionic or Pool–Frenkel mechanisms,
we find

V0 ¼ 2d

ffiffiffiffiffiffiffiffiffiffiffiffi
PSEth

e0k�d

s
/ dT

ffiffiffiffiffiffi
PS

k�d

s
; (9:5:51)

ln t0 ¼ A0 þ
~F
kT

; (9:5:52)

Fig. 9.5.13 Electrode-
adjacent injection model for
imprint. Plot of Eq. (9.5.47),
time dependence (z ¼ t=t0)
of the normalize voltage
offset Voff=V0 in the case of
weak compensation of the
depolarizing field by carrier
transport across the passive
layer

9.5 Switching and Polarization Hysteresis 635



where A0 is a weakly temperature-dependent constant and ~F is the activation
barrier calculated with the field-induced reduction. From these relationships
and Eq. (9.5.47) we conclude that, in this case where the charge transport is
thermally activated, the temperature dependence of the imprint is very different
for the regimes of linear and logarithmic charge relaxations. In the linear
regime, i.e., at t55t0, the temperature dependence of Voff / V0=t0 is exponen-
tial with the activation energy equal to that of the conduction mechanism
responsible for charge transport across the passive layer. On the other hand,
in the logarithmic regime, i.e., at t44t0, the explicit temperature dependence of
Voff / V0ðln t� ln t0Þ is close to linear.

The results for the case of tunneling transport through the passive layer,
where b = � 1 and a ¼ 2 (O’Dwyer, 1973), can be obtained on the same line.
However, in this case, g ¼ 0 and Eq. (9.5.43) provides an exact solution to
Eq. (9.5.41) for an arbitrary degree of polarization screening. For the accumu-
lated charge this solution gives

s ¼ PS
kd
k�d

lnð1þ t=t0Þ
lnð1þ t=t0Þ þ

e0k�dEth

PS

: (9:5:53)

In the case of weak screening this relation is consistent with Eqs. (9.5.45),
(9.5.46), (9.5.47), and (9.5.48). It clearly shows that the approximate solution is
justified at s55kd=k�dPS.

The above analysis has treated the case of charge relaxation under open-
circuited electric conditions for the external circuit. These conditions are con-
sistent with the experimental situation at small times, since during the exposi-
tion time the capacitor is typically electrically disconnected from the rest of the
circuit. However, at long enough times, the parasitic charge transport between
the electrodes may become important shifting the situation close to the short-
circuited electrical conditions. For this reason, it is instructive to evaluate the
impact of the electrical conditions on the charge relaxation. An analysis similar
to that given above readily shows that, under short-circuited conditions, the
basic equations (9.5.36) and (9.5.37) should be modified by substitution of the
permittivity of the passive layer kd with k�d. Themodified equations will still lead
to Eq. (9.5.47), but Eqs. (9.5.46), (9.5.48), (9.5.51), and (9.5.53) should be
replaced with their modified versions:

t0 ¼
PS

jbjA
e0k�dEth

PS

� �aþb
exp � PS

e0k�dEth

� �b" #
; (9:5:46a)

V0 ¼
k�d
kd

dEth

bj j
PS

e0k�dEth

� �1�b
; (9:5:48a)
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V0 ¼ 2d
k�d
kd

ffiffiffiffiffiffiffiffiffiffiffiffi
PSEth

e0k�d

s
/ dT

ffiffiffiffiffiffiffiffiffiffiffi
PSk�d

p
; (9:5:51a)

s ¼ PS
lnð1þ t=t0Þ

lnð1þ t=t0Þ þ
e0k�dEth

PS

: (9:5:53a)

It is clear that these modifications will not affect the principal conclusions
obtained above; however, there may be some changes in the details when kd and
k�d are essentially different, i.e., when dkf44hkd. For instance, in this case,
V0 /

ffiffiffiffiffi
hd
p

under the open circuit situation, whereas V0 /
ffiffiffiffiffiffiffiffiffiffi
d3=h

p
under short-

circuited conditions.

9.5.3.3 Poling Effect of Misfit Dislocations

A possible source of internal bias in ferroelectric thin film capacitors is the
mechanical coupling between the ferroelectric material and the electrodes.
The internal bias occurs when the atomic structure of the interface between
the ferroelectric and the electrode favors a certain direction of polarization in
the capacitor. Here we will discuss a simplest scenario of such effect, which is
related to dislocation-assisted stress release in epitaxial films.

In epitaxial films at the ferroelectric/substrate (bottom electrode) interface,
the lattice of the ferroelectric perfectly matches that of the substrate while the
bulk lattice constants of the two materials are different. For this reason, just at
the interface, the ferroelectric is always strained. As we discussed in Sect. 9.3.1,
typically this strain leads to the appearance of misfit dislocations, and as a result
the strain decays with the distance from the interface, creating a strain gradient.
This strain gradient induces a linear polarization response via the flexoelectric
effect (see, e.g., Tagantsev, 1991; Tagantsev, 1986a; Ma and Cross, 2001). How-
ever, in contrast to the piezoelectric effect,39 the flexoelectric effect can control
the sign of the ferroelectric polarization (poling effect). If this poling effect is
large enough, an internal bias can appear in the capacitor. Let us evaluate the
magnitude of this poling effect and the corresponding voltage offset.

Let the value of the in-plane lattice constant of the unstrained ferroelectric be
a and that of the ferroelectric in the vicinity of the ferroelectric/substrate inter-
face be aS4a. In the case of cube-on-cube ferroelectric/substrate epitaxy, aS is
just the lattice parameter of the substrate (bottom electrode). The lattice con-
stant of the ferroelectric in the ‘‘bulk’’ of the film, a�S, which lies between a and

39 An important difference between the piezoelectric and flexoelectric effects is that the sign of
the piezoelectric effect in ferroelectrics (with the rare exception for ferroelectrics with a
piezoelectric paraelectric phase) is controlled by that of the ferroelectric polarization. For
this reason, the strain can control (via the piezoelectric effect) only the spatial axis along which
the ferroelectric polarization is directed, but not its sign.
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aS, is controlled by the density of misfit dislocations at the ferroelectric/sub-
strate (bottom electrode), r. For simplicity we will treat the problem in terms of
the stress release model already used in Sect. 9.3.1 (see Fig. 9.3.2), where the
Burgers vector lies in the plane of the film. In this model, according to
Eq. (9.3.8), the aforementioned parameters are related as

a�S ¼ aSð1� arÞ: (9:5:54)

Hence the variation of the lattice parameter of the ferroelectric from aS to a�S
takes placebetween the ferroelectric/substrate interface and thebulk.This variation
takes place in a thin interfacial layer whose thickness is roughly equal to the inter-
dislocation distance 1/r. Thus, using Eq. (9.5.54), the out-of-plane component of
the strain gradient near the ferroelectric/substrate interface can be evaluated as

@e11
@x3
ffi aS�a

a
�a
�
S�a
a

� �
r�1� 1

aS
e�2M;

�

(9:5:55)

where x3 is the Cartesian coordinate normal to the plane of the film and

e�M ¼
aS�a�S

a is the amount of strain released by themisfit dislocations. Depending

on the film thickness and on the conditions of the strain relaxation in the film,
e�M varies between zero and the misfit strain eM ¼ aS�a

a .

The flexoelectric effect can be described as an additional term

DF ¼ g
ð0Þ
iljkPi@ejk=@xl in the Landau free energy expansion (Tagantsev, 1991;

1986a). Being controlled by a fourth rank tensor it is allowed in materials of
any symmetry. To assess the poling efficiency of this effect, we estimate the

value of the effective electric field, E eff
i ¼ �@ðDFÞ=@Pi, which would produce

the same polarization as the strain gradient. The information on the values of

the flexoelectric tensor components g
ð0Þ
ijkl in ferroelectrics is very limited; how-

ever, an order-of-magnitude estimate compatible with experimental data for

perovskites (Ma and Cross, 2001) is jgð0Þijklj ffi e=ð4pe0aÞ, where e stands for the
electron charge (Tagantsev, 1991;1986a; Kogan, 1963). Using this estimate we
evaluate the value of the out-of-plane component of the effective electric field
generated by the strain gradient as40

Eeff ¼ g
ð0Þ
3311ð@exx=@zþ @eyy=@zÞ ffi

2g
ð0Þ
3311

a
e�2M ffi

2e

4pe0a2
e�2M ¼ 2Eate�2M; (9:5:56)

where Eat � 90MV=cm is the so-called typical atomic electric field. For epitax-
ial films, the misfit strain is typically about 1–5%. This gives un upper limit

40 As everywhere in the book we consider all strains as small, thus here we neglect the
difference between e�2M=aS and e�2M=a.
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estimate for the released misfit strain e�M. Thus, according to Eq. (9.5.56), the

strain gradient works as an electric field of some 20–500 kV/cm in an electrode-

adjacent layer that is a few tens of lattice constant thick. It is clear that this

effective electric field will impose some asymmetry on the switching behavior of

the ferroelectric capacitor. Let us discuss this phenomenon in terms of a simple

model offered byAbe and coworkers (Abe et al., 1997;2002), which is illustrated

in Fig. 9.5.14. The model considers only two possible directions of polarization

in the capacitor (‘‘up’’ and ‘‘down’’) and postulates that the strain gradient is

large enough to block the polarization direction in a certain electrode-adjacent

layer. Actually, the flexoelectric coupling is not the only mechanism that can

block switching in the passive layer; direct ‘‘microscopic’’ coupling between the

polarization and the dislocation can also contribute to this blocking. The

presence of such non-switchable polar layer implies that one of the possible

directions of polarization is preferable in the switchable part of the capacitor. In

Fig. 9.5.14, this is the ‘‘up’’ direction. The state with the reverse polarization is

energetically less favorable, because it contains a head-to-head polarization

configuration at the boundary between the switchable and non-switchable

parts of the capacitor. The energy of the electric field related to the bound

charge at the head-to-head polarization junction will make the ‘‘down’’ state of

polarization ‘‘energetically costly.’’ If this field is not compensated by free

carriers, this state is metastable at best. However, if some free charge is accu-

mulated at the interface between the switchable and non-switchable parts, the

‘‘down’’ state can be stabilized. Thus, we arrive at amodel similar to that treated

in the beginning of this section (see Eqs. (9.5.24), (9.5.25), (9.5.26), and (9.5.27));

the difference is that now the passive layer is polar and affected by the effective

electric field induced by the strain gradient. These features can be readily

Fig. 9.5.14 Themodel devised byAbe and coworkers (1997, 2002) to explain the voltage offset
of ferroelectric loops caused by the poling effect of the strain gradient at the ferroelectric/
electrode interface. The hysteresis loop corresponding to the states ‘‘up’’ and ‘‘down’’ are
schematically shown in ‘‘applied voltage’’–‘‘charge’’ coordinates. The top electrode is
grounded and the voltage is applied to the bottom electrode
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incorporated in the consideration by modifying Eqs. (9.5.25) and (9.5.26) as
follows (note, Eq. (9.5.24) is still valid):

Df � s ¼ e0kdðEd þ E effÞ þ PLS; (9:5:57)

Df � s� PLS � e0kdE eff ¼ e0kd
V

d
� h

d
Ef

� �
; (9:5:58)

where PLS is the spontaneous polarization in the strain-graded layer,
d ffi r�1 ffi a=e�M is its thickness, and the rest of the notations has been intro-
duced above in this section. Similar to the derivation of Eq. (9.5.27), we obtain
for the voltage offset in the modified model

Voff ¼ �d
PLS þ e0kdE eff þ s

e0kd
: (9:5:59)

This equation has the same physical meaning as (9.5.27): The voltage offset is
controlled by the immobile charge at the ferroelectric/dielectric interface. While
in the case of Eq. (9.5.27) such charge was simply the trapped free charge s, now
it is the sum of the bound charge associated with the non-switchable surface
layer and the trapped free charge.

For the model illustrated in Fig. 9.5.14, PLS ¼ PS and it is constant during the
switching. To evaluate the voltage offset, information on the compensating free
charge at the interface is needed. If the ‘‘up’’ state is held long enough, the compen-
sation charge s may reach a value of �e0kdEeff, which corresponds to full neutra-
lization of the bound charge at the interface between the switchable and non-
switchable parts of the ferroelectric. According to Eq. (9.5.59), this corresponds to

Voff ¼ �d
PS

e0kd
: (9:5:60)

If this screening is not full, then �e0kdEeff5s50. According to Eq. (9.5.59)
this will alter the estimate (9.5.60). However, the relative variation of this
estimate due to incomplete screening will not exceed e0kdE eff=PS, which is
expected to be much smaller than unity except maybe for the situation occur-
ring very close to the transition temperature. Thus, the estimate (9.5.60) should
usually be valid for the ‘‘up’’ state.

As to the case of the ‘‘down’’ state, full screening of the bound charge requires
the accumulation of a much larger amount of free charge at the interface
between the switchable and non-switchable regions: s ¼ �2PS � e0kdEeff.
This corresponds to a voltage offset of the opposite sign:

Voff ¼ d
PS

e0kd
: (9:5:61)

640 9 Ferroelectric Thin Films



In contrast to the ‘‘up’’ state, the degree of screening (i.e., the variation of the

charge in the range41 �2PS � e0kdE eff5s5� e0kdE eff) may essentially affect

this estimate leading to a wide widow for Voff:

� d
PS

e0kd
5Voff5d

PS

e0kd
: (9:5:62)

Thus, for the ‘‘down’’ state, estimate (9.5.61) gives the upper limit for the
possible positive offset. As clear from inequality (9.5.62), if for some reason the

screening of the rather large bound charge at the interface between the switch-

able and non-switchable parts of the ferroelectric is not complete, smaller

positive offsets and even some negative offsets may occur.
The present model enables us to estimate the upper limit for absolute value of

the voltage offset induced by dislocation-assisted strain relaxation in epitaxial

films. FromEqs. (9.5.60) and (9.5.61) and taking into account that d ffi a=e�M we

find

jVoffj ffi
1

e�M

aPS

e0kd
: (9:5:63)

For realistic values of the parameters entering this estimate (e�M ¼ 0:01;
PS ¼ 0:25C=m2; a ¼ 0:4 nm; kd ¼ 150) we find Voffj j ffi 8V.

Notice that, ‘‘surprisingly,’’ the model predicts jVoffj to be inversely propor-
tional to the dislocation-assisted strain release e�M. It is instructive to comment

on this point. First, the thickness of the strain-graded layer d (being inversely

proportional to the misfit dislocation density) does go as 1=e�M. The voltage

offset given by Eq. (9.5.63) is actually the product of d and the electric field
induced by the spontaneous polarization in this layer, which is independent of d.

Thus, here everything looks reasonable. Second, the very high values of jVoffj,
which according to Eq. (9.5.63) should be generated by very small values of e�M,

are beyond the range of applicability of this model. The point is that, according
to the model, the effective electric field in the strain-graded layer, Eeff, is

proportional to e�2M. This field is assumed to block the switching in this layer.

It is clear that if e�M is too small (which means small E eff), the blocking effect of

misfit dislocations may not be strong enough to prevent switching in the surface
layer (because of smallE eff). In other words, for too small values of e�M, themain

assumption of the model that the switching in the surface layer is blocked ceases

to hold.
All in all, the presence of misfit dislocations at the ferroelectric/electrode

interface should lead to the internal bias field effect; however, the quantitative

41 The upper limit of this range correspond to the situation where, after full charge compensa-
tion in the ‘up’ state the sample is brought to the ‘down’ state without any redistribution of the
free charge.
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evaluation of this effect may require an analysis, which is more involved than
that given above.

9.5.3.4 Voltage Offset Due to Reorientation of Random Field Defects

We have already discussed the interaction of the reorientable defects with
domain walls in Sect. 8.5.4. Now we are interested in the internal bias effect
associated with this kind of defects. The identification and investigation of this
effect was pioneered by Carl and Härdtl (1978), who recognized it as the
principal origin of the internal bias field in ferroelectric ceramics. Let us give
a simple description of this effect.

In Sects. 6.4 and 8.5.4, we have considered, for simplicity, random field
defects in the case of a uniaxial ferroelectric, where only two possible orienta-
tions of defects were possible. Now we consider a more general situation with
multiple orientations of the polarization and defects, specifying the orientation
of a defect with a unitary vector ti. In this case the contribution to the free
energy density from the interaction of the defects with the homogeneous polar-
ization in the sample, Pi, can be written in the following form:

DF ¼ � g
VS

X
tiPi; (9:5:64)

where the summation is implied over the defects in the sample of the volumeVS.
Here g is the coupling constant. In the case of a uniaxial ferroelectric it
can be linked via the relation n ¼ 2Pg to the interaction energy n (introduced
in Sect. 6.4). Now the internal bias field created by the defects can be written as

Ebias
i ¼ � @DF

@Pi
¼ gnhtii; (9:5:65)

where n and htii are the concentration of the reorientable defects and the average
value of their ti vectors. In a poled sample, due to the defect-polarization
coupling a preferable orientation of the defects occurs leading to htii 6¼ 0.
According to Eq. (9.5.65), htii 6¼ 0 results in the appearance of internal bias field.

For the case of ferroelectric thin films, an essential issue is that the internal
bias field is a bulk property of the sample, so that it is independent of the film
thickness. That implies the offset voltage which is proportional to the film
thickness h:

Voff ¼ hgnhtii: (9:5:66)

It is useful to underline that the electric field seen by the ferroelectric is just
equal to the applied field whereas the voltage offset given by Eq. (9.5.66) is the
result of poling effect of the oriented defects, which is not associated with the
appearance of a real electric field. This situation is similar to the piezoelectric
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effects where the poling effect of the strain is not associated with the appearance
of a real electric field.

9.5.3.5 Voltage Offset Due to Depletion Effect

We have seen above in this section that the effect of semiconductor depletion
may influence the switching behavior of ferroelectric thin films. The driving
force of this phenomenon is the formation of electrode-adjacent regions of
immobile space charge which produces a built-in electric field. Of importance
is that this built-in field does not vary during switching. In the case where the
electrochemical states of the two electrode-adjacent regions of the ferroelectric
are not identical, an asymmetry in the switching process may occur. The
relation between the asymmetry of the built-in electric field and that of the
hysteresis loops is sensitive to the switching scenario.Wewill now discuss the case
of the scenario addressed above in Sect. 9.5.2.3 where the electrode-adjacent
nucleation of reverse domains is considered as the bottleneck of switching.

Let us start with the case of partial depletion. This is illustrated in Fig. 9.5.9
for the situation where the electrochemical states of the nearby-electrode
regions of the ferroelectric are identical so that the depletion regions have the
same thicknesses. If this is not the case, e.g., if the surface built-in potentials are
different for the two ferroelectric/electrode interfaces, the depletion widths at
the two electrodes will be different. We can relate the surface built-in potentials
V1 and V2 to theW1 andW2, of the depletion layers formed by these potentials
(the suffix refers to the electrode considered) as follows42:

V1 ¼
eNd

2e0kl
W2

1 � V2 ¼
eNd

2e0kl
W2

2; (9:5:67)

where kl is the dielectric constant of the ferroelectric at the temperature at which
electrochemical equilibrium is reached at the electrodes; the rest of the notations
are identical to those used in Sect. 9.5.2.3. Similar to Eq. (9.5.8), the built-in
fields at the electrodes can also be found as

E1 ¼
eNd

e0kf
W1; E2 ¼ �

eNd

e0kf
W2; (9:5:68)

where kf is the dielectric constant of the ferroelectric at the temperature at which
the switching measurements are performed. According to the considered
switching scenario, polarization reversal takes place once the electric field
seen by the ferroelectric at its interface with an electrode (sum of the applied
and built-in fields) reaches a critical value of Ec0 . Thus, the absolute values of
both the positive and negative coercive fields of the system will always be

42 These relations follow from simple electrostatics on the standard assumption that the
charge density in the depletion layers is homogeneous.
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smaller than Ec0 , namely Ec0 � jE1j and Ec0 � jE2j. Using Eqs. (9.5.67) and
(9.5.68), we can evaluate the voltage offset of the polarization loop (non-
symmetrized along the P-axis) via the half-sum of the coercive voltages. This
half-sum gives

Voff¼�h
Ec0�jE1j�ðEc0�jE2jÞ

2
¼kl
kf
ðV1�V2Þ

h

W1þW2
; h4W1þW2;(9:5:69)

where h is the film thickness. Here, the voltage offset is given for the case where
the loop is monitored as a function of the potential difference between electrode
‘‘2’’ and electrode ‘‘1.’’

The case of full depletion, i.e., where h5W1 þW2, can be treated similar to
obtain the following expression for the voltage offset:

Voff ¼
kl
kf
ðV1 � V2Þ; h5W1 þW2: (9:5:70)

Thus, we see that the depletion effect may lead to a voltage offset in polar-
ization loops. In the case of full depletion, it is equal to the difference between
the built-in potentials (which are responsible for the formation of the depletion
layers near the two electrodes) times the factor kl=kf. For films thicker than
W1 þW2, the partial depletion occurs and the voltage offset becomes larger
than klðV1 � V2Þ=kf and proportional to the film thickness. Considering that
values in the range 1–2 V are a realistic estimate for these potentials, a voltage
offset up to a few volts can be predicted by the depletion model. It is of interest
to note that this model predicts a correlation between the thickness dependence
of the coercive field (see Sect. 9.5.2) and of the ‘‘field offset’’Voff=h: In the case of
full depletion, both are thickness dependent, whereas they are thickness inde-
pendent in the case of partial depletion.

It is instructive to consider the applicability of Eqs. (9.5.69) and (9.5.70). In
general, the interfacial built-in potentials are fully controlled by the materials
the ferroelectric and the electrode are made of. However, the potentials V1 and
V2 introduced above can be identified with the aforementioned contact poten-
tials with a reservation. Let us elucidate this issue for a situation often met
experimentally. A ferroelectric film is deposited and crystallized onto a metallic
bottom electrode (electrode ‘‘1’’) at a rather high temperature, e.g., 6508C. Then
a top electrode of the same metal (electrode ‘‘2’’) is deposited at a much lower
temperature, e.g., 2008C. Let the contact potential between the ferroelectric and
the electrodes be V0. Formally, in this situation one might set V1 ¼ V2 ¼ V0. In
reality, the conditions for formation of depletion layers at the two electrodes are
very different. For instance, one can expect that at 6508C electrochemical
equilibrium (involving deep trapping levels) is reached at the electrode, whereas
2008C may be insufficient to reach this equilibrium. In such a situation, the
depletion layer is formed only near the first electrode, so that according to the
definition ofV1 andV2 as potentials responsible for the formation of the depletion
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layers in the capacitor, we should set V1 ¼ V0 and V2 ¼ 0. We thus see that the
difference between the contact potentials at the electrodes and the potentials V1

andV2 can be essential and the model can predict a nonzero voltage offset in the
case where the materials of the two electrodes are the same.

9.5.3.6 Internal Bias Field and Imprint—Experimental Observations

A number of experimental techniques have been used for observation and
characterization of internal bias field effects in ferroelectric thin films. The
method mostly used for this purpose is to monitor the coercive voltages of
electric-field-driven hysteresis loops of different parameters of the film, like
polarization (Takayama and Tomita, 1989; Dimos et al., 1994), differential
capacitance (Abe et al., 1997), or the longitudinal piezoelectric coefficient ‘‘d33’’
(Kholkin et al., 1998; Alexe et al., 2001). In this method, the voltage offset,
Voff�cr, is calculated as the half-sum of the measured coercive voltages (taken
with their signs). This method is quite illustrative; however, it is not optimal for
qualitative characterization of the phenomenon. Two of its drawbacks have
been discussed in Sect. 9.5.3.1. First, relating the half-sum of the coercive
voltages of a polarization loop with the real voltage offset Voff poses a serious
problem. Second, for P� E loops, the polarization offset is conventionally set
at zero whereas, in the presence of internal bias, the switching driven with a
‘‘symmetric’’ ac field is intrinsically ‘‘asymmetric.’’ This artificial elimination of
the polarization offset of the loop can bring about an additional spurious
voltage offset which can be substantial. Although we have discussed these
problems in detail only for the voltage offset mechanism related to trapped
charge, it is clear that for any voltage offset mechanism there may be some
difference between the real voltage offset and that calculated from the coercive
voltages of the P� E loop. For the case of ‘‘d33’’-loops, the situation may be
even worse. If in a part of the film the polarization is frozen in one direction,
whereas in the rest of the film the switching is ‘‘symmetric’’ but with a tilted
loop, the resulting ‘‘d33 � E’’ loop will exhibit a spurious voltage offset. From
the point of view of memory applications (for which the imprint control is of
primary importance), the hysteresis-loop-biased method discussed here is not
really informative, since in these applications it is the fast pulse technique that is
used rather than the relatively slow hysteresis technique.

The method of characterization of the internal field effects, which is the most
common in memory applications of ferroelectric thin films, is the so-called
PUND test proposed by Traynor et al. (1997). In this test, the tested capacitor
is subjected to the sequence of voltage pulses shown in Fig. 9.5.15 and the
charges, QP, QU, QN, and QD switched by pulses P, U, N, and D, respectively,
are collected. In the case of a capacitor not affected by an internal bias field,
QP ¼ QN4QU ¼ QD. If it is affected, the information on the internal bias field
is provided by the difference between QP and QN. If the internal bias field is
positive, the switching from the positively poled state to the negatively poled
one will be less efficient than in the case of the opposite sense of switching,
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resulting in QP5QN and vice versa. The advantage of this method is that it

directly evaluates the impact of the internal bias field on the chargesQP andQN,

which are used for reading the information bit stored in a memory capacitor.

On the other hand, the value of the voltage offset is not directly given by this

technique.
There are also methods that directly provide the value of the voltage offset for

the pulse switching regime. The basic idea of these methods is to compare

voltages applied to the capacitor that produce the same switching effects in the

case where the internal bias field is directed along the applied field, against it, and

when it is absent. This approach has been used byAbe et al. (2000) to evaluate the

built-in internal bias in BaTiO3 thin films by comparing the voltages which give

the same values of the maximum switching current for each sense of switching.

Figure 9.5.16 exemplifies this method. In this figure, the maximum switching

current is plotted as a function of the amplitudes of applied positive and negative

voltage pulses. The voltage shift between the curves, corresponding to two signs

of the applied field, is about 0.9 V, which can be interpreted as the presence of a

Fig. 9.5.15 The PUND method used for the characterization of internal field effects in
ferroelectric capacitor systems. The capacitor is subjected to a sequence of positive P and U
and negativeN andD voltage pulses, and for each pulse (i=P,U,N,D), the switching charge
Qi is measured. The difference between QN and QP gives information about the sign of the
internal bias field

Fig. 9.5.16 Pulses switching
in a 58 nm thick film of
BaTiO3; polarization
hysteresis loop taken from
this film is shown in
Fig. 9.5.6a. Maximum
switching current vs. applied
voltage for each sense
(negative and positive) of
voltage application. After
Abe et al. (2000)

646 9 Ferroelectric Thin Films



voltage offset Voff ¼ 0:45V. This can be compared to the P� E loop which is

taken from the same film (shown Fig. 9.5.6a). The coercive voltages of this loop

give a value of the voltage offset close to that determined from the data on

switching currents. This may be expected, since the loop is saturated and quite

rectangular.
A similar method based on this idea has been used by Tagantsev et al.

(2004b) for imprint characterization. In this method, the charge obtained by

switching against the internal bias field of the imprinted capacitor is compared

to that of the nonimprinted capacitor. Then, the difference between these charges,

DP, is converted into a voltage offset by using the voltage dependence of the

switching charge for the nonimprinted capacitor. Figure 9.5.17 illustrates the

application of this method to evaluate the dependence of imprint in PLZT film

Fig. 9.5.17 Imprint in PLZT film capacitors: (a) difference between the switching charge of
the imprinted and the nonimprinted capacitor, DP, as a function of exposition time for
different exposition temperatures; (b) switching charge as a function of applied voltage for
the nonimprinted capacitor; and (c) calculated voltage offset as a function of exposition time
and exposition temperature. After Tagantsev et al. (2004b)

9.5 Switching and Polarization Hysteresis 647



capacitors on the exposition time and temperature. Figure 9.5.17a shows the
exposition time dependence of DP acquired at different exposition temperatures
with voltage pulses of 1.8 V. Figure 9.5.17b shows the voltage dependence of the
switching charge used for the data conversion. Because of the linear character of
this curve below 2 V, for 1.8 V pulses, the conversion relation can be written as

Voff ¼ A � DP (9:5:71)

with A ¼ 0:041V cm2=mC. Finally Fig. 9.5.17c shows the determined depen-
dence of Voff on the exposition time and temperature.

A feature of the voltage offset, which is often discussed in the literature, is
its increasing dependence on the film thickness (Grossmann et al., 2002b;
Dimos et al., 1994; Abe et al., 1997). Data illustrating this trend for built-in
internal bias in BaTiO3 films and for photoinduced imprint in PZT films are
presented in Fig. 9.5.18. The interpretation of this trend still remains unclear.
The point is that in all these papers the internal bias effect is attributed either
to nearby-electrode charge trapping (Dimos et al., 1994; Grossmann et al.,
2002b) or to the nearby-electrode strain gradient (Abe et al., 1997) mechan-
isms. At the same time, as shown above in this section, the strain gradient
mechanism implies no explicit thickness dependence of the voltage offset,
whereas the charge trapping mechanism predicts a certain thickness depen-
dence of the voltage offset only in a rather special case43 where d=kd44h=kf.
(In this case, k�d entering the expressions for the amplitude V0 (cf. Eqs.
(9.5.33), (9.5.47), (9.5.51), and (9.5.51a) is inversely proportional to the film
thickness. This leads to a thickness dependence of Voff, which however is not
linear.) So, there seems to be a problem with the interpretation of this
phenomenon in terms of the model used by these authors. This suggests
that other voltage offset mechanisms (related to the depletion effect or
reorientable defects) providing a linear thickness dependence of Voff (see
discussion above in this section) may apply to these systems. Alternatively,
an implicit thickness dependence of the voltage offset, e.g., through the
remanent polarization, might give an explanation in terms of the interface-
controlled mechanisms.

Experimental investigations of the built-in voltage offset in Pt/PZT/Pt thin
film capacitors clearly reveal a composition dependence of this phenomenon;
specifically, it was documented that the higher the titanium concentration,
the stronger the built-in voltage offset (Kholkin et al., 1998; Lee et al.,
1997a,b; Hiboux and Muralt, 2001). This effect is illustrated in Fig. 9.5.19a
where the built-in field of sputtered 300 nm thick PZT films is plotted as a
function of Zr content. This effect was equally reported for sputtered and

43 In the paper by Dimos et al. (1994), a relation Eq. (1), which predicts a linear thickness
dependence of Voff, was used in the discussion. This relation is valid only in the absence of
charges on the electrodes. The formulae, taking into account these charges, Eqs. (9.5.27) and
(9.5.35) of this book, do not predict such dependence.
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sol-gel deposited films. The original voltage offset was found to be removable

by annealing at 350–450 8C (Kholkin et al., 1998; Lee et al., 1997a; Hiboux,

2001). This is illustrated in Fig. 9.5.19b. Kholkin et al. have interpreted the

annealing-assisted removal of the voltage offset in terms of the depletion-

Fig. 9.5.18 Thickness dependence of the voltage offset measured (a) in BaTiO3 films with
built-in internal bias (after Abe et al., 1997) and (b) in PZT films with photoinduced imprint.
Materials of the bottom electrodes and substrates are indicated. Materials of the top and
bottom electrodes are identical. Reprinted with permission from Dimos et al. (1994). Copy-
right (1994), American Institute of Physics
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assisted scenario. In as-fabricated PZT capacitors, the Pt top electrode is

deposited at room temperature, whereas the bottom electrode/PZT interface

is exposed to 600–6508C for some 15–30 min. This creates an asymmetry in

the depletion of electrons from deep trapping states in PZT. Specifically, no

depletion at the top electrode in the as-fabricated capacitor is expected,

because the room temperature is presumably too low to establish

Fig. 9.5.19 (a) Effect of Zr/Ti ratio on the voltage offset evaluated from the piezoelectric and
polarization loop measurements. After Hiboux andMuralt (2001). (b) Effect of annealing at
350–4508C on the voltage offset for different values of the Zr/Ti ratio. After Lee et al.
(1997a)
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electrochemical equilibrium near this electrode. In terms of the theoretical

treatment given above in this section, this is equivalent to a difference in the

built-in surface potentials in Eq. (9.5.69) and (9.5.70), which can lead to a

built-in voltage offset. After the annealing, electrochemical equilibrium is

expected to be established at the top electrode leading to the equilibration of

the built-in surface potentials and suppression of the built-in voltage offset.

The thickness dependence of the voltage offset reported by Kholkin et al.

(1998) is qualitatively compatible with the theoretical predictions of Eqs.

(9.5.69) and (9.5.70).
At this point it is instructive to draw the reader attention of to the

difference between built-in internal field and built-in polarization. There

are many ways of determining the former (as discussed above), while the

latter can be practically determined only from pyroelectric (Takayama and

Tomita, 1989) or piezoelectric measurements. It is typically evaluated from

the d33 offset of the piezoelectric hysteresis loop (Kholkin et al., 1998). In

principle, the behavior of the built-in internal field and of the built-in polar-

ization may be very different, since the built-in polarization gives informa-

tion both on the asymmetry of switching in the active part of the film and on

the net polarization of the non-switchable (frozen) part of the film, whereas

the built-in internal field gives information only on the former. A correlation

between these parameters, e.g., as a function of the films composition, and

their uncorrelated behavior have both been reported (Kholkin et al., 1998;

Hiboux and Muralt, 2001).
The built-in internal field has been reported to be influenced by the value

of the oxygen pressure maintained during cooling the films from the crystal-

lization temperature down to room temperature (Lee et al., 1995a; Pike

et al., 1995). This effect is illustrated in Fig. 9.5.20 where the voltage sift of

the P� E hysteresis loops as a function of oxygen pressure is shown for a

Fig. 9.5.20 Effect on the
built-in internal field of the
oxygen pressure at which a
PZT capacitor with oxide
electrodes was maintained
during cooling. The voltage
offset of the P–E loop
increases with decreasing
oxygen pressure. After Lee
et al. (1995a)
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PZT capacitor with oxide electrodes. The authors attributed this effect to

the coupling of the ferroelectric polarization with oxygen vacancies (the

concentration of the latter is assumed to be correlated with the oxygen

pressure maintained during cooling). Experimental data, which can also

attest to the role of oxygen vacancies in the formation of built-in field in

PZT thin films, have been reported on imprint in donor-doped (Nb, Ta, and

W substitutions for Ti) films (Warren et al., 1995a). In this work, doping was

found to reduce the thermally induced imprint. This reduction was connected

to that of the oxygen vacancy concentration accompanying the doping (similar

to the case of bulk PZT ceramics). Remarkably, in the same material, the

authors found that UV light illumination-assisted (optical) imprint was vir-

tually insensitive to this kind of doping. This suggests that electronic defects

rather than oxygen vacancies are active in optical imprint. This observation,

together with other observations from the literature, suggests that more that

one imprint mechanism can be active in one material.
The dependence of the imprint-induced voltage offset on the exposition

time has been found to be logarithmically slow. For an empirical fit of this

dependence different single functions and combination of functions have

been used,—for instance, a single logarithm function (Traynor et al., 1997),

two logarithm functions with different parameters at small and large times

(Schorn et al., 2003), and a stretched exponential function (Dimos et al.,

1994). The experimental data on the exposition time and temperature depen-

dence of the imprint-induced voltage offset in PZT films have been analyzed

in terms of the electrode-adjacent trapping model discussed earlier in this

section. Grossman et al. (2002b) performed numerical simulations in terms of

this model assuming Pool–Frenkel emission (with activation barriers of

0.35 eV) to be the conduction mechanism in the nearby-electrode passive

layer. The imprint data by Tagantsev et al. (2004b), already shown in 9.5.17c,

have been fitted in terms of the analytical theory for the electrode-adjacent

trapping model—Eqs. (9.5.47), (9.5.51), and (9.5.52),—for the case of ther-

moionic or Pool–Frenkel emission. A fit of the time dependence of the

voltage offset is shown in Fig. 9.5.17c. The parameters of the theory, V0

and t0, determined from this fit, are plotted as functions of temperature in

Fig. 9.5.21. It is seen that the theory provides a good description of the time

dependence of imprint observed in this experiment. The theoretical predic-

tions for the temperature dependence of V0 and t0 are also in qualitative

agreement with the trends observed experimentally: The experimentally

determined value of t0 is an exponential function of temperature (with an

activation energy of 0.27 eV), whereas V0 is a linear function of temperature.

However, it is clear that the theory is too rough to give a thorough quanti-

tative description of the experimental observations. For example, the theory

predicts no offset in the linear temperature dependence of V0 when a sub-

stantial negative offset is seen in Fig. 9.5.21b.
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9.6 Small-Signal Response

In ferroelectric thin films, both intrinsic and extrinsic (domain) contribu-

tions to the dielectric permittivity are influenced by a number of factors

which are of minor importance or absent in the case of bulk ferroelectrics

such as small thickness, mechanical impact of the substrate/electrode inter-

face, semiconductor ferroelectric/electrode phenomena, etc. In this section

we will present the theoretical results related to these phenomena and

compare these results with the available experimental data. In the follow-

ing three sections we will address the effects related to the lattice contribu-

tion to the permittivity in the paraelectric phase. Further on we will

discuss domain-related phenomena.

Fig. 9.5.21 Temperature
dependence of the
parameters V0 and t0 in the
analytical theory for imprint
due to electrode-adjacent
charge trapping (see Eqs.
(9.5.47), (9.5.51), and
(9.5.52)). These parameters
have been determined from
the fit of the time
dependence of the voltage
offset shown in Fig. 9.5.17c.
After Tagantsev et al.
(2004b)
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9.6.1 Intrinsic Contribution—Effect of Passive Layer

It is obvious that the dielectric response of a sandwich structure consisting of
two, ferroelectric and dielectric, layers is sensitive to the presence of the dielec-
tric layer. In terms of simple electrostatic consideration it is also clear that the
out-of-plane and in-plane components of the effective permittivity of the system
are differently affected by this layer since the first case corresponds to the ‘‘in-
series’’ connection of the layers whereas, in the second case, it is the ‘‘parallel’’
connection. Such a consideration leads to well-known expressions for effective
permittivity of the system keff:

hþ d

keff
¼ d

kd
þ h

k
(9:6:1)

and

ðhþ dÞkeff ¼ dkd þ hk (9:6:2)

for out-of-plane and in-plane case, respectively. Here h and d are the thicknesses
of the ferroelectric and dielectric, k and kd being their permittivities. These
formulae are strictly applicable to the situation where the permittivity of the
ferroelectric k is controlled by the lattice contribution. In the case where the
domain contribution to k is essential, their application may be limited (see Sect.
9.6.5). In situations of practical interest, the dielectric has much smaller thick-
ness and permittivity than the ferroelectric so that Eqs. (9.6.1) and (9.6.1.2) can
be simplified down to the forms

k�1eff ¼ k�1 þ d

h
k�1d ; (9:6:3)

keff ¼ k
h� d

h

� �
: (9:6:4)

The relations given above may be relevant to the dielectric response of real
ferroelectric thin films.Actually, a number of reasonsmay cause ferroelectric thin
films to exhibit a dielectric response identical or similar to that of the sandwich
structure discussed above. The simplest possibility is the presence of a secondary
phase at the surface of the films. In addition, there exist two intrinsic reasons for
this kind of dielectric behavior, which are related to surface-adjacent variation of
the polarization (field induced or spontaneous) and to the charge distribution in
the electrodes.

The charge distribution in the electrodes becomes important when the film is
characterized by using a parallel plate capacitor. The origin of the phenomenon
is the fact that the free charges in the electrode form a layer of finite thickness.
For this reason, the gravity center of the charges in the electrode is separated by
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some distance from the polarization bound charge in the ferroelectric. If the
dielectric response of a film is monitored by using a parallel plate capacitor, the
free charges in the electrode behave as a capacitor connected in series with the
material of the films (Batra and Silverman, 1972; Tilley and Zeks, 1992).
Treatment of the electron gas in the electrode in the Thomas–Fermi approx-
imation (Ziman, 1972) shows that this capacitor has the capacitance per unit
area of e0=ls where ls is the Thomas–Fermi screening length. This leads to an
expression for the apparent out-of-plane dielectric permittivity of the film,
which is similar to that given by Eq. (9.6.3):

k�1eff ¼ k�1 þ 2ls
h
: (9:6:5)

The impact of the surface-adjacent variation of the polarization (field-
induced or spontaneous) on the effective permittivity of the film was first
theoretically addressed byKretschmer and Binder (1979). Below wewill present
the results of their theory for the paraelectric phase, which are generalized to the
case of non-zero background dielectric susceptibility of the ferroelectric, kb � 1,
which was ignored in their work.

The starting point of the model by Kretschmer and Binder is the assumption
that the surface value of the polarization in a ferroelectric is not affected by the
applied electric field as strongly as that in the bulk. This is consistent with the
microscopic argument that the ferroelectric softness of the lattice is somehow
suppressed near to the surface. The simplest modeling of this point can be
performed in the framework of the continuous Landau theory for a situation
where the polarization at the two surfaces of the film is completely blocked. The
linear polarization response in this case can be described by using the following
equation for the polarization in the film:

E ¼ aP� d
@2P

@x2
(9:6:6)

with the boundary conditions

Pð0Þ ¼ 0 and PðhÞ ¼ 0; (9:6:7)

where the surfaces of the films are at x = 0 and x = h. Equation (9.6.6) is a
literalized version of Eq. (8.4.24) written for the paraelectric phase.

In the case of the in-plane component of the effective permittivity of the
system, which is typically monitored using the planar capacitor setup (with the
gap between the electrodes gmuch greater than the film thickness) the expected
inhomogeneity of polarization across the film is mainly transversal, which does
not create a depolarizing field. Thus, the field E entering Eq. (9.6.6) is equal to
the ‘‘applied field’’ Eext ¼ V=g, where V is the voltage applied to the gap. In this
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case, the distribution of the polarization across the film can be readily found in
the form

PðxÞ ¼ Eext

a
1�

cosh x�h=2
x

cosh h
2x

 !
; (9:6:8)

where

x ¼
ffiffiffi
d
a

r
(9:6:9)

is the so-called correlation radius evaluated in the paraelectric phase. The
physical meaning of this parameter was discussed above in Sect. 6.2, where it
was introduced for the ferroelectric phase. Typically, x rarely exceeds a few
nanometers. For the case of practical interest where h44x, Eq. (9.6.8) leads to
the following value of the average polarization in the films:

�P ¼ 1

h

Zh

0

PðxÞdx ¼ Eext

a
1� 2x

h

� �
: (9:6:10)

This corresponds to an effective dielectric permittivity of the system:

keff ¼ k
h� 2x

h

� �
: (9:6:11)

This equation means that, effectively, in this case there are two layers
of thickness x having the dielectric constant much smaller than x so that they do
not actually contribute to the polarization response. Alternatively, these layers can
be considered as connected in parallel with a ferroelectric film of thickness h – 2x.

In the case of the out-of-plane component of the effective permittivity of the
system, which corresponds to the situation of a parallel plate capacitor, the
polarization is normal to the plane of the films and its variation is longitudinal,
which does create a depolarizing field. This is a crucial difference compared to
the previous case. The relation between the ‘‘applied field’’ Eext ¼ V=h and the
field seen by the ferroelectric can be found from the Poisson equation. Taking
into account the background contribution to the displacement44 e0kbE (where
kb is the contribution to the electric permittivity from the nonferroelectric
lattice modes of the crystal, typically kb55k), the Poisson equation in our
case is dðe0kbEþ PÞ=dx ¼ 0 leading to the relationship

E ¼ Eext �
1

e0kb
ðP� �PÞ: (9:6:12)

44 Making allowance for the background permittivity becomes often important when the
depolarizing effect is involved, cf. Sects. 2.2.3 and 2.3.6.
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Using this relationship, Eq. (9.6.6) can be rewritten as

Eext � a �P ¼ aþ 1

e0kb

� �
ðP� �PÞ � d

@2ðP� �PÞ
@x2

: (9:6:13)

The solution to this equation that satisfies the boundary conditions
Eq. (9.6.7) reads

PðxÞ ¼ Eext

a
1�

cosh x�h=2
x1

cosh h
2x1

 !
1

1þ 2 k
kb

x1
h tanh

h
2x1

; (9:6:14)

where x1 ¼ x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k=kb

p
� x=

ffiffiffiffiffiffiffiffiffiffi
k=kb

p
¼ ffiffiffiffiffi

kb
p ffiffiffiffiffiffiffi

de0
p

has the meaning of the
scales on which, in this geometry, the polarization changes appreciably near
the film surfaces. Note that x1 is smaller than x so that, in any situation of
practical interest, x1=h551. Under this conditions, Eq. (9.6.10) leads to the
following expression for the effective dielectric permittivity of the film:

k�1eff ¼ k�1 þ k�1b

2x1
h
: (9:6:15)

This relation corresponds to the in-series connection of the ferroelectric film
with two dielectric layers of thickness x1 and dielectric permittivity kb.

Thus we see that the surface region with partially suppressed dielectric
response behaves as a passive layer; however, in contrast to a real dielectric
layer its thickness is essentially different for in-plane and out-of-plane geometries.

The above theoretical treatment of the problem has been presented for the
situation, where the polarization at the surfaces of the film is completely
blocked (cf. Eq. (9.6.7)). The more general situation where the blocking is not
complete can be simulated by using the mixed boundary conditions

Pð0Þ � l
@P

@x






x¼0
¼ 0 and PðhÞ þ l

@P

@x






x¼h
¼ 0: (9:6:16)

These conditions interpolate the situation between blocked (l ¼ 0) and free
(l!1) polarizations at the surfaces of the film. After this modification, the
above results, Eqs. (9.6.11) and (9.6.15), still hold however but with the
substitutions

x) x
1þ l=x

and x1 )
x1

1þ l=x1
: (9:6:17)

Thus, as one can expect, the weakening of the surface blocking leads to a
reduction of the effective passive layer thickness, the effect vanishing in the limit
of free polarization at the film surface (l!1).
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It is instructive to illustrate schematically the difference between the spatial

distribution of the polarization for the ‘‘in-plane’’ and ‘‘out-of-plane’’ situations

(Fig. 9.6.1). In the ‘‘in-plane’’ situation, where there is no depolarizing effect, the

polarization reaches the bulk value Eext=a (i.e., the value expected in the bulk

sample for the same value of the applied field) exponentially fast. On the other

hand, in the ‘‘out-of-plane’’ situation, due to depolarizing effects, the polariza-

tion changes yet faster with the distance from the electrode, but finally reaches a

value which is smaller than Eext=a. This figure also illustrates the geometrical

meaning of parameter l as the so-called extrapolation length.

All in all, the two models of interfacial polarization blocking predict an

increasing thickness dependence of the effective dielectric permittivity of the

films, see Eqs. (9.6.11) and (9.6.15).
Let us now address the applicability of these predictions to real experimental

situations in (Ba,Sr)TiO3 films, the material for which the discussed size effect is

of practical importance. To do so, some information on the correlation length x
in the material is needed in addition to its known dielectric parameters. This

information may be extracted from the data on dispersion of the soft-mode

phonons. Based on the experimental data (Tagantsev et al., 2001a; Yamada

et al., 1969) and neglecting the anisotropy of the correlation length, Tagantsev

et al. (2003, 2005) have evaluated the temperature-independent parameter

x=
ffiffiffi
k
p
¼

ffiffiffiffiffiffiffi
de0
p

as 0.03 Å for BaTiO3 and 0.08 Å for SrTiO3. For k ¼ 1600, this

leads to the estimates for the correlation radius x as 1.2 Å for BaTiO3 and 3.2 Å

for SrTiO3. Using the recent data by Hlinka and Matron for BaTiO3 (2006)

given in Table 2.3.1, one finds a strong anisotropy and larger values of the

parameter
ffiffiffiffiffiffiffi
de0
p

:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1111e0
p

� 0:7 Å and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1212e0
p

� 0:1. These values are

Fig. 9.6.1 Schematic
distribution of polarization
across a film of thickness h
for the out-of-plane (a) and
in-plane (b) cases.

DPa=Eext ¼ 2ðk=kbÞðx1=hÞð1þ l=x1Þ�1
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relevant to the longitudinal (out-of-plane geometry) and transverse (in-plane
geometry) variations of the polarization, respectively. Though, these estimates
are contradictory, these enable us to draw important conclusions about the
applicability of the model.

(i) For situations of practical interest, the expected thickness dependence of the
in-plane component of the measured permittivity is very weak. According to
Eq. (9.6.11) the expected relative correction to the bulk permittivity is about
2x=h. For 200 nm thick films, this makes a 1% correction atmost. However,
this result may be taken only as a qualitative one since the theoretical
situation corresponds to the limit of the range of applicability of the con-
tinuous theory; the latter is applicable if the typical scale of the polarization
variation (x in this case) is substantially larger than the lattice constant of the
material (4 Å in the case of (Ba,Sr)TiO3), which is clearly not the case.

(ii) For the out-of-plane component of the measured permittivity, a much
stronger impact of the surface blocking of the polarization is found.
According to Eq. (9.6.15), the expected relative correction to the bulk
permittivity is about 2ðx1=hÞðk=kbÞ, that is some

ffiffiffiffiffiffiffiffiffiffi
k=kb

p
times larger

than in the case of the in-plane component. On the other hand, assuming
kb ffi 10, the scale x1 ¼

ffiffiffiffiffi
kb
p ffiffiffiffiffiffiffi

de0
p

(i.e., 0.2–2 Å) is below the value of the
lattice constant of the material, so that the use of this theoretical predic-
tion, even as an order-of-magnitude estimate, can hardly be justified.
Nevertheless, the physics standing behind Eq. (9.6.15), namely the in-series
connection of the surface passive layer with the ‘‘bulk’’ ferroelectric part of
the film, sounds reasonable. In this context, Eq. (9.6.15) might be used as a
semi-empirical relation, x1=kb being a fitting parameter. An analysis of the
thickness dependence of the out-of-plane component of the dielectric con-
stant in terms of Eq. (9.6.15), performed by Vendik and Zubko (2000) for
(Ba,Sr)TiO3 thin films, yields values of x1=kb in the range 0.2–2.5 Å. Good
examples of the experimental data on the thickness dependence of the out-
of-plain permittivity of (Ba,Sr)TiO3 thin films, which can be successfully
fitted to Eq. (9.6.15), are shown in Fig. 9.6.2a and b (Streiffer et al., 1999;
Basceri et al., 1997), in both cases x1=kb being about 0.5 Å. In these papers,
a convincing breakdown of this kind of data is presented.

Unlike the surface polarization blocking scenario, the mechanisms related to
the free charge distribution in the electrodes stands on more solid grounds. The
prediction of this mechanism, Eq. (9.6.5), which can be strictly justified math-
ematically (e.g., in terms of Thomas–Fermi approximation), is identical to the
result for the out-of-plane permittivity of the ferroelectric/dielectric sandwich
with d=kd ¼ 2ls. Experimental data (Vendik and Zubko, 2000) for (Ba,Sr)TiO3

thin films place d=2kd in the range 0.2–2.5 Å, which is comparable to typical
values of the Thomas–Fermi screening length in metals ls � 0:5Å.

One more useful qualitative conclusion can be drawn on the basis of the
above modeling for the out-of-plane component of the permittivity. Namely, its
thickness dependence may be sensitive to the electrode material since the
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effective thickness of the surface dead layer is a function of the boundary

conditions at the electrodes, which in turn may be dependent on the electrode

material. Here a number of scenarios have been discussed in the literature.
First, it has been suggested by Vendik and Zubko (1997) that the surface

blocking of polarization is much less pronounced in the case of a similarity

between the ferroelectric and electrode, specifically, when the electrode is oxide

and the ferroelectric is an oxide perovskite.
Other scenarios, by Tagantsev and Stolichnov (1999) and by Gerra et al.

(2006), are explained as follows. The mechanisms of formation of effective

passive layers (additional capacitors) at the ferroelectric/electrode interface

discussed above (due to Thomas–Fermi screening length and the polarization

variation at the interface) can be viewed more fully. The first mechanism is

related to the fact that when free charges in the electrode approach the

ferroelectric–electrode interface to screen the bound charge of the ferroelectric,

they form a layer of finite thickness (Thomas–Fermi screening length). There-

fore, the center of gravity of the free charges is displaced with respect to the

interface, creating a double electric layer (capacitor). On the other hand, the

polarization cannot drop abruptly in going from the ferroelectric to the metal

(the effect which in continuous theory is described by Eq. (9.6.14)). For this

reason, the center of gravity of the bound charge is shifted away from the metal,

creating another capacitor. These two mechanisms, shown schematically in

Fig. 9.6.3a, may act simultaneously as two back-to-back in-series capacitors.

In an effort to improve the performance of ferroelectric thin film devices, it was

found that the surface capacitor effect is much weaker when the electrodes are

conductive metal oxides, such as RuO2, IrO2, or SrRuO3. Unlike the case of

simple Pt electrodes, for such materials no additional surface capacitor has been

revealed by dielectric measurements (Lee et al., 1995b). When looking for the

Fig. 9.6.2 (a) Film thickness dependences of the inverse zero-bias capacitance density of
Ba0.7Sr0.3Ti1+yO3+z film-based plate capacitors at different Ti contents y. Reprinted with
permission from Streiffer et al. (1999). Copyright (1999), American Institute of Physics
(Streiffer et al., 1999). (b) The inverse of the zero-bias capacitance density of Ba0.7Sr0.3TiO3

film-based plate capacitors as a function of film thickness at different temperatures. Reprinted
with permission from Basceri et al. (1997). Copyright (1997)
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reason that makes the screening more efficient in the case of oxide electrode one

distinguishes the following possibilities. One possibility (Tagantsev and Stolich-

nov, 1999) is an enhanced concentration of free charge carriers in the first few

layers of the ferroelectric, for example, as a result of doping (Tagantsev and

Stolichnov, 1999) or of contact phenomena (Ohtomo and Hwang, 2004). This

possibility is schematically illustrated in Fig. 9.6.3b. We can say that in this case

the free charges move to where the bound charges are situated, so as to screen

them ‘‘in situ.’’ Here we are dealing with a kind of short-circuiting of the

electrode-adjacent layer containing the polarization bound charge. The second

possibility (Gerra et al., 2006) is the penetration of the bound polarization

charges into the electrode. In the case of oxide electrodes, this is made feasible

by their ionic structure. We can imagine that the ionic displacements that

produce the polarization in the ferroelectric might continue for some distance

into the metal oxide structure, leading again to in situ screening. This scenario is

schematically illustrated in Fig. 9.6.3c. It is worthy of note that whichever the

mechanism behind it, in situ screening can essentially cancel out the destructive

effect of the additional surface capacitor, thus explaining the enhanced perfor-

mance of oxide electrodes.
For the moment, there is neither experimental nor theoretical results sup-

porting the short-circuiting scenario, while the results of ab initio modeling

reported for SrRuO3/BaTiO3/SrRuO3 stack by Gerra et al. (2006) demon-

strated that the presentation of polarization into the electrode takes place in

this system resulting an approximately two times increase in the parasitic

capacitance associated with the electrode/ferroelectric interface.
This modeling supports the interpretation of the reduced size effect on

permittivity in systems with oxide electrodes related to the penetration of

Fig. 9.6.3 The surface capacitor effect shown schematically. (a) A finite thickness of the
bound charge associated with the variation of the polarization at the electrode and a finite
thickness of the free charge in the electrode can be related to two capacitors connected in series
with the ferroelectric. (b) Compensation of the bound charge by the presence of free charge
carriers in the ferroelectric, for example, as a result of doping or contact phenomena.
(c) Penetration of the ionic polarization into the metal, for example, as a result of the
mechanical relaxation of the electrode ions in response to the ferroelectric distortion of the
adjacent lattice. The gradient in shading represents the concentration of free charge carriers,
while the solid line represents the absolute value of polarization
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polarization into the oxide electrode. However, there is no consensus on this

issue in the literature (see Stengel and Spaldin, 2006).
To conclude the discussion of passive layer effects, it is instructive to give a

table (Table 9.6.1) for the thicknesses of a dielectric layers with kd ¼ 1, producing

the same effect as each of the passive layer mechanisms considered in this section.

9.6.2 Intrinsic Contribution—Depletion Effect

The impact of the depletion effect on the polarization response of ferroelectric

thin films was already discussed in this chapter in the context of their switching

behavior (Sects. 9.5.2 and 9.5.3). In this section we will address the impact of the

built-in space charge induced by the depletion effect on the lattice contribution

to the small-signal polarization response of a ferroelectric film in the para-

electric phase. We will consider the cases of full and partial depletion illustrated

in Fig. 9.5.9. We will show that, for the small-signal response, the depletion

effect manifestation is similar to that of a passive surface layer. This result is

consistent with that obtained by Bratkovsky and Levanyuk (2000b), who first

treated the problem for the case of full depletion.
The impact of the depletion space charge on the effective dielectric permit-

tivity of a parallel plate capacitor containing a ferroelectric can be elucidated

with the following simple arguments. The built-in depletion charge results in a

certain built-in electric field which in turn creates a built-in x-dependent polar-

ization PbðxÞ, x being the coordinate normal to the plane of the films. For the

dielectric response of the film, this implies a local, x-dependent permittivity.

Table 9.6.1 Thickness of a dielectric layer with kd ¼ 1, which impacts the dielectric permit-
tivity of the film identical to the effects listed in the first column

In-plane permittivity Out-of-plane permittivity

Real layer with kd ¼ 1 d d

Full surface blocking of polarization x x1=kb ¼ x=
ffiffiffiffiffiffiffiffi
kkb
p

Partial surface blocking of polarization x
1þ l=x

x1=kb
1þ l=x1

Electrode effect – ls
Partial depletion effect, h > 2 W – hd ¼ e0br20 W

3

Full depletion effects, h < 2 W – hd
h

2W

	 
3

h, film thickness
d, thickness of the layer
x, correlation radius
k and kb, permittivity and background permittivity of the ferroelectric
l, extrapolation length for the polarization boundary conditions
ls, Thomas–Fermi screening length
b, coefficient of the dielectric nonlinearity
r0, space charge density in the depletion layer
W, depletion layer width
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Using the equation of state of the ferroelectric, E ¼ aPþ bP3, the out-of-plane
component of the local permittivity can be written as45

klocðxÞ ¼
1

e0

@E

@P

� ��1





P¼Pb

¼ e�10

aþ 3bP2
bðxÞ

: (9:6:18)

Taking into account the ‘‘in-series’’ geometry of the problem the effective
dielectric constant of the system can be found by averaging 1=klocðxÞ across the
film thickness:

1

keff
¼ 1

h

Zh

0

dx

klocðxÞ
¼ 1

k
þ 3be0

h

Zh

0

P2
bðxÞdx; (9:6:19)

where k ¼ 1=e0a is the relative permittivity of the ferroelectric. The exact value
of PbðxÞ can be obtained from a rather cumbersome solution to the equation of
state for the ferroelectric and the Poisson equation

dðe0kbEþ PbðxÞÞ
dx

¼ rðxÞ; (9:6:20)

where rðxÞ is the density of the built-in charge. This solution should also obey
the condition

Zh

0

Edx ¼ 0: (9:6:21)

A good approximation for the built-in polarization can be readily obtained
if, in Eq. (9.6.20), one neglects the term e0kbE. This approximation is justified
by a large value of the dielectric permittivity of the ferroelectric (i.e., k44kb).
Then, Eqs. (9.6.20) and (9.6.21) yield

PbðxÞ ¼ ðx� h=2Þr0 (9:6:22)

for the full depletion case, where h52W, and

PbðxÞ ¼ ðx�WÞr0 05x5W

PbðxÞ ¼ 0 for W5x5h�W

PbðxÞ ¼ ðx� hþWÞr0 h�W5x5h

(9:6:23)

for the case of partial depletion, where h42W. Here r0 ¼ eNd is the space
charge density in the depleted regions andW is the depletion layer width, e and

45 Here, as mainly in this book, we neglect the difference between D and P in ferroelectrics.
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Nd being the charge and the volume density of ionized impurities in the deple-
tion regions.

Using this result for the built-in polarization and Eq. (9.6.19) we find that the
depletion leads to a reduction of the effective dielectric permittivity of the film.
In the cases of the partial and full depletion, one finds

1

keff
¼ 1

k
þ 2e0br20 W

h

3

(9:6:24)

and

1

keff
¼ 1

k
þ e0br20 h

4

2

; (9:6:25)

respectively. Equations (9.6.24) and (9.6.25) imply that, for the effective dielec-
tric permittivity of the film, the depletion effect is equivalent to the in-series
connection of the ferroelectric with a linear capacitor. In the case of partial
depletion, this capacitance is independent of film thickness, so that the film
behaves like a film with a real passive layer, while in the case of full depletion,
according to Eq. (9.6.25) this capacitance goes as h�3. A comparison of the
‘‘passive layer’’ effect due to depletion with other passive layer effects is pre-
sented in Table 9.6.1.

It is instructive to evaluate the potential impact of depletion effect on
permittivity. Numerically, it is not substantial; it is, however, comparable
with that of the effective passive layers discussed in the previous section.
For values of W and r0 compatible with the data on ferroelectric perovs-
kites with metallic electrodes, i.e., W ¼ 0:2 mm, b ¼ 8
 109 JC�4 m5, and
r0 ffi 1:6
 10�19 
 1018 C=cm3 ¼ 0:16C=cm3 (Tagantsev et al., 2003; Waser
and Klee, 1992; Brennan, 1995; Tagantsev et al., 1994), one finds that, in
the case of partial depletion (where h42W), a single depletion layer works
as a dielectric layer with kd ¼ 1 and thickness hd ¼ e0br20 W

3 � 0:15 Å. In
the case of full depletion, the depletion effect on permittivity can be readily
identified with a strong reduction of the effect with decreasing film thick-
ness (see Eq. (9.6.25)). It is also worth mentioning that, as for any ‘‘in-
series model,’’ the impact of depletion on the dielectric constant of a
ferroelectric material in the paraelectric phase is formally equivalent to a
lowering of its Curie–Weiss temperature (Bratkovsky and Levanyuk,
2000b).

9.6.3 Intrinsic Contribution—Strain Effect

As it was discussed in Sect. 9.3.2 the clamping of the in-plane lattice constant of
a film deposited onto a substrate significantly influences the single-domain state
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of the material. Specifically, the clamping modifies the temperatures of ferro-

electric phase transitions, TC, and the corresponding Curie–Weiss tempera-

tures, T0. The result of importance for the dielectric permittivity in the para-

electric phase addressed this section is a linear dependence of T0 on the parent

misfit strain. This link will obviously lead to a modification of the value of the

film permittivity and its temperature dependence. The latter effect is due to the

temperature dependence of the parent misfit strain inevitable when the tem-

perature expansion coefficients of the substrate and the film are different. Let us

illustrate this phenomena with some relations for a most often addressed situa-

tion: (001) and (111) films of BaTiO3-type ferroelectrics deposited onto a

dissimilar substrate. We will address the case where the misfit strain is isotropic

in the plane of the film, i.e., ePab ¼ ePdab. In this case, according to Pertsev et al.

(1998) and Tagantsev et al. (2002a) (see also Eqs. (9.3.22) and (9.3.24)), the

quadratic in polarization terms of the thermodynamic potential, which control

the polarization response in question, reads

DG ¼ T� T0 � AineP
2e0C

ðP2
1 þ P2

2Þ þ
T� T0 � AiouteP

2e0C
P2
3; (9:6:26)

where, for the (001) films

Ain ¼ 2e0C
Q11 þQ12

s11 þ s12
; Aout ¼ 2e0C

2Q12

s11 þ s12
; (9:6:27)

and, for (111) films46

Ain¼ 2e0C
4ðQ11þ2Q12þQ44=2Þ

4s11þ8s12þ s44
; Aout¼ 2e0C

4ðQ11þ2Q12�Q44Þ
4s11þ8s12þ s44

; (9:6:28)

where P3, P1, and P2 stand for the out-of-pane and two in-plane components of

the polarization, respectively; the rest of notation is consistent with those used

above in Sects. 2.3 and 9.3.2. The values of parameters Ain and Aout for some

perovskite ferroelectrics are listed in Table 9.6.2.
The parameters given in the Table 9.6.2 clearly suggests that the polarization

response of the strained films is anisotropic. Taking into account the tempera-

ture dependence of eP given by Eq. (9.3.28) one readily finds the Curie–Weiss

temperatures, Tin, Tout, and the Curie–Weiss constants ,Cin, Cout, for the in-

plane and out-of-plain components of the permittivity, as (Streiffer et al., 1999;

Pertsev et al., 1999a)

46 The following relations correspond to those from paper by Tagantsev et al. (2002a) to
within the difference in the definition of Q44.
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Cin; out ¼
C

1� ADa
¼ Cþ ADa

1� ADa
C; (9:6:29)

Tin; out ¼
T0 þ AðeP0

� DaTGÞ
1� ADa

; (9:6:30)

where the corresponding value of Ain and Aout should be used for A,
Da ¼ aTS � aTF is the difference between the thermal expansion coefficient of
the substrate and the ferroelectric, and ePo is the misfit strain at the deposition
temperature TG. The equation for Tin;out was obtained under the assumption
that below TG no dislocation-assisted release of the misfit strain takes place.

The effects predicted by Eqs. (9.6.29) and (9.6.30) may be appreciable.
For realistic parameters of ferroelectric thin films one may expect
Da ¼ ð2� 6Þ 
 10�6, according to Table 9.6.2 and Eq. (9.6.29) this may lead
up to a 30% modification of the Curie–Weiss constant.

The strain-induced changes of the Curie–Weiss temperatures can also be
significant. In the case of ultrathin film (below 50 nm), the epitaxial misfit strain
may achieve a value of one percent. This corresponds, according to Table 9.6.2
and Eq. (9.6.30), to a shift of T0 up to AeP0

ffi 500K. In the opposite limiting
case of rather thick films, where the strain release at the deposition temperature
is very strong, eP0

is typically of secondary importance compared to the thermal
strains. In this case, setting eP0

¼ 0 in Eq. (9.6.30) one gets an estimate

Tin; out � T0 �
ADa

1� ADa
ðTG � T0Þ: (9:6:31)

This estimate corresponds to somehow smaller effects. However, according
to it there may be combinations of material parameters providing a 100–200 K
shift of the Curie–Weiss temperature.

The predictions of the theoretical approach overviewed above corroborates
with experimental observation in perovskite thin films. A few examples are
given below.

Table 9.6.2 Parameters controlling the impact of the misfit strain on the temperature anom-
aly of dielectric permittivity of typical ferroelectric films

001 111

Ain; 10
4 K Aout; 10

4 K Ain; 10
4 K Aout; 10

4 K

PbTiO3 3 –2.5 2.7 0.16

BaTiO3 3.6 –4.7 2.3 –0.32

SrTiO3 3 –1.5 1.8 1.2

The experimental data used for calculations are taken from the papers by Pertsev et al. (1998)
andUwe and Sakudo (1976) and from a reference book (Landolt-Börnstein, 1981). In the case
of SrTiO3, the whole set of data for Q’s is contradictory; a self-consistent subset of these data
has been used in calculations. A discussion of the inaccuracy of evaluation of the strain effects
on permittivity in SrTiO3 can be found in the paper by Haeni et al. (2004).
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In the case of relatively thick films, the theory states (cf. Eqs. (9.6.29) and
(9.6.31)) that the variation of the Curie–Weiss temperature and that of the
Curie–Weiss constant are controlled by the sign of ADa=ð1� ADaÞ (actually
it is the sign of ADa) and correlated: a decrease in T0 implies an increase in C
and vice versa. This kind of behavior was reported by Pertsev et al. (1999a)
for BaTiO3 and SrTiO3 films deposited onto Si. The authors found the
experimentally observed variation of Tout, and Cout to be in reasonable
agreement with the theory presented above. In the case of an ultrathin
(12 nm) film of BaTiO3 deposited onto a compressive SrTiO3substrate, a
500 K increase in the transition temperature was documented from the out-of-
plane dielectric testing of the material (Yoneda et al., 1998). The value of Aout

corresponding to this situation, 4:7
 104 K, leads to a shift of the Curie–Weiss
temperature up for some 500 K for an in-plane strain of 1%. This value is
comparable to the data on the in-plane lattice constant of the BaTiO3 films
reported in the same paper. A clear manifestation of the strain effects on the
permittivity in films of SrTiO3 has been reported by Haeni et al. (2004). They
observed (see Fig. 9.6.4) a strong enhancement of the permittivity in the case of
DyScO3 substrate (with eP ¼ 0:008 at room temperature) and a strong reduction
of the permittivity in the case of (LaAlO3)0.29 (SrAl0.5Ta0.5O3)0.71 substrate (with
eP ¼ �0:009 at room temperature). The variations of permittivity observed are
compatible with the predictions of Eqs. (9.6.29) and (9.6.30). For example,
according to these equations and Table 9.6.2, the misfit strain of eP ¼ 0:008
should lead to a 240 K increase in the Curie–Weiss temperature whereas some
250 K increase has been observed.

9.6.4 Extrinsic Contribution—Mechanical Effects

In this section we will address the dielectric response of equilibrium

domain patterns of a ferroelectric film, which is determined by the

mechanical coupling between the film and the substrate. Application of

Fig. 9.6.4 In-plane dielectric
constant measured at a
frequency of 10 GHz in
500 Å thick epitaxial (100)
SrTiO3 films deposited on
(110) DyScO3 and (100)
(LaAlO3)0.29
(SrAl0.5Ta0.5O3)0.71
substrates. See the text.
After Haeni et al. (2004)
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an electric field to such pattern will modify it leading to a change of the

net spontaneous polarization of the sample. To describe the corresponding

dielectric response, one should relate this change to the value of the

applied field. In this section we present a solution to this problem for

the case of the a/c pattern in a (001) film of a BaTiO3-type tetragonal

ferroelectric (see Fig. 9.2.1) and will give some results for the a1/a2-pattern.

For more information on the problem we refer the reader to the compre-

hensive paper by Koukhar et al. (2001).
Themain features of the phenomenon can be identified in terms of the simple

mean-strain theory by Roytburd (see Sect. 9.3.3). We will start with the situa-

tion where the film is thick enough so that the domain pattern is dense and it is

fully controlled by the energy of average mechanical strain in the system.

Further on we will discuss the thickness effects. In this situation according to

Eq. (9. 3.40) the energy density of the a/c-pattern reads

FelðaÞ ¼ auc þ ð1� aÞua � að1� aÞuac; (9:6:32)

where a is the volume fraction of c-domains, uc and ua are the elastic energy

densities of the c- and a-single-domain states, and uac is the energy density

corresponding of the indirect long-range interaction between domains through

the substrate. The energy uac serves as the driving force for the domain forma-

tion in the film. According to Eq. (9. 3.41) uac can be found as a function of the

tetragonality strain eT � ðc� aÞ=a, the Poisson ratio n, and the Youngmodulus

E of the ferroelectric:

uac ¼
1

2

Ee2T
1� n2

: (9:6:33)

The rigidity (with respect to variations of a) of the equilibrium domain

pattern that corresponds to the minimum of Fel(a) is obviously proportional

to this energy density so that the domain contribution to permittivity, kdomij ,

should be inversely proportional to it. The explicit expression for kdomij can be

readily found as

kdomij ¼ 1

e0

@Pi

@Ej
¼ 1

e0

@a
@Ej

DPi ¼
DPiDPj

2e0uac
: (9:6:34)

Here Pi ¼ aPðcÞi þ ð1� aÞPðaÞi and DPi ¼ P
ðcÞ
i � P

ðaÞ
i with P

ðcÞ
i and P

ðaÞ
i being

the vectors of the spontaneous polarization in c- and a-domains, respectively.

To obtain the result given by Eq. (9.6.34), one first finds a as a function of the

applied field Ei by minimizing the energy (9.6.32) appended with the term�PE.
Now, setting the polarization in the c- and a-domains as 0 0 PSð Þ and
PS 0 0ð Þ, respectively, we find for the matrix of kdomij
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kdomij ¼
A 0 A

0 0 0

A 0 A

0
B@

1
CA A ¼ ð1� v2ÞP2

S

Ee0e2T
: (9:6:35)

A few features of this result are worth commenting. First, as was first recog-
nized by Pertsev with coworkers (1996), the contribution of this domain pattern
to the permittivity is independent of the domain wall density (period of the
pattern). This makes a striking difference with the case of domains in a mechani-
cally free ferroelectric crystal where the motion of domain walls is controlled by
local pinning forces, e.g., interaction with defects. In the latter case, the domain
contribution to the permittivity is obviously proportional to the density of the
domain walls in the sample. This difference corresponds to the difference in the
type of the pinning forces: the local wall/defect coupling in the case of the crystal
and the long-range mechanical interaction in the case of the film. Second, using
the results of Landau theory for the parameters entering Eq. (9.6.35), one can
show that the considered extrinsic contribution is proportional to the lattice part
of the permittivity along the c-axis, kc, with a weakly temperature-dependent
proportionally factor of the order of unity. In the framework of the Landau
theory of the second-order phase transition, where P2

S / 1=kc and
eT / P2

S / 1=kc, the factor A=kc is just a numerical constant. This factor can
be readily evaluated from the material parameters of the ferroelectric. At
room temperature for PbTiO3, using the set of these parameters already
used when obtaining the estimate for Eq. (9.3.71), we find A=kc � 0:8.

The results of the Roytburd’s theory enable also assessing the thickness
dependences of the contribution of the a/c-pattern to the permittivity of the
film. The important result of the theory is that the indirect long-range interac-
tion between domains through the substrate, which is responsible for the for-
mation of the domain pattern, weakens on decreasing the film thickness. An
important manifestation of this phenomena is the narrowing of the interval of
existence of the a/c-variant on decreasing the films thickness as clearly seen in
Fig. 9.3.11. The implication of this phenomenon for our problems is that the
domain contribution to the permittivity should increase in decreasing film
thickness. Quantitatively, this thickness effect (see Eq. (9.3.60)) is incorporated

into the Roytburd’s theory by substitution u12 1�
ffiffiffiffiffiffiffiffiffiffi
h0=h

p� �
for u12 where h0 is

the critical thickness defined by Eq. (9.3.56). For the domain contribution to

permittivity, this translates into a 1= 1�
ffiffiffiffiffiffiffiffiffiffi
h0=h

p� �
times increase in kdomij . One

should mention that the practical use of his result is very limited since the
Roytburd’s theory is strictly applicable at roughly h430h0 so that only a very

small (<2%) thickness-dependent variations of the kdomij is legible to be

described by it. To check whether the expected trend can lead to significant

increase on kdomij , a more involved mathematical analysis of the problem is

needed. Such analysis has been offered by Pertsev with coworkers (1996).
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They have shown that indeed a decrease in h can lead a substantial amplification
of the domain contribution to the permittivity. Their calculations yielded a 100

times increase in kdomij in films of PbTiO3 with h � h0 and for a value of the

relative coherence strain allowing the existence of the a/c-domain pattern for
such small h. It is, however, worthmentioning that an experimental observation
of this phenomenon seems to be a very difficult task because of a too small film
thickness required: According to the estimates from Sect. 9.3.3, at h � h0, the
film should be thinner than the domain walls.

The above consideration can be readily extended to the case of the a1/
a2-pattern, which is possible in the same kind of epitaxial films (see
Fig. 9.2.1). It leads to results qualitatively identical to those obtained for
the a/c pattern. Specifically, now, using the results of Eqs. (9.3.46) and
(9.3.47), we find

kdomij ¼
Aa Aa 0

Aa Aa 0

0 0 0

0
B@

1
CA Aa ¼

ð1þ vÞP2
S

2Ee0e2T
(9:6:36)

instead of (9.6.35). Comparing (9.6.35) with (9.6.36) we see that the magnitude
of the effect is a factor of 2ð1� nÞ smaller for the case of the a1/a2-pattern. For
the component kdom11 for PbTiO3, this makes a factor of about 1.4. Concerning
the thickness effects, no results of more advanced calculations for the polariza-
tion response of the a1/a2-pattern are presently available.

The results presented above were obtained in the approximation where a
variation of the spontaneous polarization due to the average stress in the film
was neglected. This effect was incorporated into the theory by Koukhar et al.
(2001). The results obtained within this theory are illustrated in Fig. 9.6.5 where
the lattice and domain contributions to the dielectric permittivity of a (001)
PbTiO3 epitaxial film are shown as functions of the parent misfit strain at room

Fig. 9.6.5 Dependences of the relative permittivity of a (001) PbTiO3 film on the parent misfit
strain eP calculated for temperature of 25 8C. The dashed lines show the components of
permittivity of PbTiO3 films with pinned domain walls. In the intervals where no dashed
lines are shown, the domain contributions are absent and the solid lines show the lattice
contributions to the permittivity. After Koukhar et al. (2001)
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temperature. Comparing the plots shown in this figure with the prediction of
the simple theory (domain contributions evaluated above should be compared
to the difference between the dashed and solid lines) we see that the mean-field
approach provides a good approximation to the results of more exact theory by
Koukhar et al.

9.6.5 Extrinsic Contribution—Electrostatic Effects

The extrinsic (domain) contribution to the dielectric permittivity of a ferroelectric
thin film may be affected by electrostatic effects. This happens when the electric
field in the film is not fully controlled by the potential difference between the
electrodes of the capacitor but also is sensitive to variations of the domain
pattern. This situation readily occurs when the ferroelectric capacitor contains
a passive electrode-adjacent layer, so that the field in the ferroelectric differs from
the applied one by the depolarizing field. A simple and general approach to this
problem is to consider the ferroelectric and the passive layer as two capacitors
connected in series. In the previous section, this approach was applied to the
analysis of switching. Though simple and physically transparent, this approach is
limited since it deals with values of the electric field and polarization averaged
over the capacitor area. This description may not be adequate when the ferro-
electric film contains an array of domains crossing the film from one electrode to
the other (the so-called through domains). As was discussed in Sect. 9.4, an
adequate description of this system requires taking into account not only the
aforementioned average values of the electrical variables but also their stray
components. In that Section, we have considered the theory of the equilibrium
domain pattern in a ferroelectric capacitor containing passive electrode-adjacent
layers and an array of ‘‘through’’ 1808 domains (see Fig. 9.4.1) to reveal an
important role of stray electric fields in this phenomenon. As was shown by
Kopal et al. (1999) (see also later works by Bratkovsky and Levanyuk, 2000a and
2001c) stray fields can also essentially control the small-signal dielectric response
of this system so that the simple in-series capacitors approach may readily fail in
its original formulation. However, a further analysis of the problem by Mokry
et al. (2004) showed that, for a typical experimental situation of dense domain
patterns and a finite wall mobility, the in-series capacitors formula remains valid
thoughwith amodified value (i.e., different from the real value of thematerial) of
the permittivity of the passive layer.

Let us consider the linear dielectric response of the aforementioned ‘‘passive
layers’’ system (see Fig. 9.4.1). Specifically, following Mokry et al. (2004) we will
address the situation of a non-poled domain pattern of periodW, which however
may be different from its equilibrium value. This is a reasonable approximation to
a realistic situation in the system, since reaching the equilibrium domain config-
uration can easily be impeded by coupling of domains with crystalline defects in
the ferroelectric. The out-of-plane component of the permittivity of the
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ferroelectric itself k ¼ km þ kc is equal to the sum of the intrinsic lattice contribu-
tion, kc, and the extrinsic of one, km, which is associated with the domain wall
motion controlled by coupling between the wall and crystalline defects (defect
pinning). In a capacitor containing the ferroelectric and passive layers, there are
three factors that govern the linear dielectric response: (i) the rigidity of the
crystalline lattice, which controls the intrinsic contribution kc, (ii) the electrostatic
energy of system, and (iii) the coupling of the domain walls with the imperfections
of the system, which controls the extrinsic contribution km. In terms of the
thermodynamic potential, the description of the linear response requires taking
into account only the terms linear and quadratic in the net spontaneous polariza-
tion of the ferroelectric

PN ¼ aPS � ð1� aÞPS; (9:6:37)

where a is the volume fraction of the positively poled domains in the pattern. (In
the considered situation, a follows the variation of the applied field staying close
to 1/2.) The part of this potential related to the electrostatic energy of system
can readily be found by expanding in PN the earlier obtained expression
Eq. (9.4.3). This expansion yields

Gel=S ¼ h
P2
N

2e0kel
� PNV=h

1þ kcd=ðkdhÞ

� �
; (9:6:38)

where

1

kel
¼ d

kdhþ kcd
þ 2W

ph

X1
n¼1

ð�1Þn

nDn
(9:6:39)

with Dn coming from Eq. (9.4.4); see for the rest of notations Sect. 9.4.1. Here
the parameter 1=kel has the meaning of the contribution to the inverse dielectric
susceptibility of the system, which is controlled by the electrostatic energy of the
domain pattern.

The part of the thermodynamic potential of the system related to the domain
wall pinning by defects can be presented in the following form:

Gm=S ¼
hP2

N

2e0km
; (9:6:40)

where km is the extrinsic contribution to the permittivity of the ferroelectric
itself already introduced. (Below we will justify this relation.) Thus, for the
thermodynamic potential of the system associated with the domains we have

Gtot=S ¼ h
P2
N

2e0kw
� PNV=h

1þ kcd=ðkdhÞ

� �
; (9:6:41)

672 9 Ferroelectric Thin Films



where

1=kw ¼ 1=kel þ 1=km: (9:6:42)

The response of the net spontaneous polarizationPN to the voltageV applied
to the capacitor can be found from the condition for the minimum of the
thermodynamic potential Gtot:

@Gtot=@PN ¼ 0: (9:6:43)

Now, the validity of Eq. (9.6.40) can be readily verified. In the absence of the
passive layer (d! 0) the restoring force associated with the electrostatic energy
is expected to vanish (1=kel ! 0); this can be formally shown using Eqs. (9.6.39)
and (9.4.4). Thus, from Eqs. (9.6.41), (9.6.42), and (9.6.43) we get
PN ¼ e0kmV=h in accordance with the definition of km.

To calculate the effective permittivity of the system, keff 	 Cðhþ dÞ=e0S
where C is its capacitance, one uses Eqs. (9.6.38), (9.6.39), (9.6.40), (9.6.41),
(9.6.42), and (9.6.43) and the relation

C=S ¼ PN=Vþ e0kc
1þ kcd=ðkdhÞ

(9:6:44)

that can be obtained from the Poisson equation (Kopal et al., 1999; Bratkovsky
and Levanyuk, 2001c). Finally, Eqs. (9.6.38), (9.6.39), (9.6.40), (9.6.41),
(9.6.42), (9.6.43), and (9.6.44) yield (Mokry et al., 2004)

hþ d

keff
¼ h

kc þ kw
þ d

kd
1� kw

kc þ kw

� �2
h

hþ hc

" #
; (9:6:45)

where

hc ¼
d

kw

k2c
kc þ kw

: (9:6:46)

Though formula (9.6.45) is similar to the in-series capacitors formula given
by Eq. (9.6.1), the contribution of domain wall motion to the dielectric response
of the system kw contains the function kel, which, in general, depends on the film
thickness. Thus, in general, Eq. (9.6.45) can exhibit a thickness dependence of
the effective permittivity qualitatively different from that of the in-series capa-
citors formula. However, in the case of practical interest, where the domain
pattern is dense (W5h) and the passive layer is thin (d5h), this relation can be
simplified down to the following form (Mokry et al., 2004), which we will refer
to below as dense pattern approximation:
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Se0
C
	 hþ d

keff
¼ h

k
þ d

kmod
; (9:6:47)

where

kmod ¼
kd

1� ðkm=kÞ2xð2d=WÞ
; (9:6:48)

xðtÞ ¼ 2kd
pt

X1
n¼1

ð�1Þn=n
kd cothðnptÞ þ

ffiffiffiffiffiffiffiffiffi
kcka
p : (9:6:49)

Here xðtÞ is a function decreasing from 1 to 0 with increasing t. The plots of
this function for three sets of parameters of the problem are shown in Fig. 9.6.6.

Thus, one arrives at the simple in-series capacitors formula, Eq. (9.6.1),

where, however, the real value of the passive layer permittivity kd is replaced

by its apparent value kmod. The physical reason for the simplification of the

model is the following. In the case of a dense domain pattern, the stray fields

created by the periodic charge distribution at one electrode essentially decay

with the distance from this electrode. For this reason, the distribution of the

electric field in the vicinity of an electrode (closer to the electrode thanW, which

is55h) can be associated with a capacitor whose capacitance is independent of

the film thickness. Thus, the film behaves as a ferroelectric capacitor corre-

sponding to the ‘‘bulk’’ of the film connected in series with two capacitors which

are associated with the distribution of the electric field in the vicinity of the

electrodes.
Comparing the result obtained, Eq. (9.6.47), to the simple ‘‘in-series’’ for-

mula, Eq. (9.6.1), we see that though the slope of the h dependence of the inverse

capacitance is the same (the permittivity of the ferroelectric itself), in the

polydomain case, the offset of this dependence brings information not only

on the permittivity of the passive layer kd but also on the period of the domain

pattern and the distribution of the dielectric response of the ferroelectric mate-

rial itself between the intrinsic, kc, and extrinsic, km, contributions.

Fig. 9.6.6 Function xðxÞ
given by Eq. (9.6.49) plotted
for kd ¼

ffiffiffiffiffiffiffiffiffiffi
kcka
p

(dash-dotted
line), kd ¼ 0:3

ffiffiffiffiffiffiffiffiffiffi
kcka
p

(dashed
line), and kd ¼ 0:1

ffiffiffiffiffiffiffiffiffiffi
kcka
p

(solid line). After Mokry
et al. (2004)
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The effect of domain period on the offset of the h dependence of the inverse
capacitance predicted by Eq. (9.6.47) is illustrated in Fig. 9.6.7. It is seen that, in
the polydomain case, this offset can be substantially smaller than that predicted
by the simple ‘‘in-series’’ formula (shown with dashed line). In this figure, the
predictions of the dense pattern approximation, Eq. (9.6.47), are compared to
those of the exact formula Eq. (9.6.45). We see that, for dense domain patterns,
i.e., for h4W, the former provides a very good approximation.

The sensitivity of the extrapolated offset of the h dependence of the inverse
capacitance to the distribution of the dielectric response of the ferroelectric
material between the extrinsic and intrinsic contributions is illustrated in
Fig. 9.6.8. It is seen that the effect can be appreciable.

Two qualitative predictions following from the results obtained above are
worth mentioning. First, since xðd=WÞ ! 0 as d=W!1, in the limit of a thick
passive layer d44W, the dense pattern approximation, Eq. (9.6.47), reduces to
the simple in-series capacitors formula with the true permittivity of the passive
layer, Eq. (9.6.1), disregarding the other parameters of the system. For the
special case of infinite domain wall mobility, i.e., in the limit km !1 (so that
k!1), this result reduces to the relation Se0=C ¼ d=kd derived by47 Kopal
et al. (1999).

The second prediction relates to the situation where the domain period
significantly exceeds the thickness of the passive layer, i.e., W44d. In this
case, xðd=WÞ ! 1 so that Eqs. (9.6.47) and (9.6.48) can be simplified as

Fig. 9.6.7 Effect of domain period W on the offset of the film thickness ðhÞ dependence of the
factor Se0=C for the model discussed in Sect. 9.6.5. The dashed line corresponds to the simple in-
series capacitors formula, i.e., to Eq. (9.6.47) with kmod ¼ kd; physically, this corresponds to the
response in the paraelectric phase. The thinner dashed lines marked with ‘‘approximation’’ show
the results obtained in the dense pattern approximation, i.e., using Eqs. (9.6.47), (9.6.48), and
(9.6.49). The solid lines correspond to the exact formulae, i.e., toEq. (9.6.45), (9.6.46), and (9.6.39).
The calculations have been performed for kd ¼ 20 and d ¼ 2 nm. After Mokry et al. (2004)

47 This relation was also later obtained by Bratkovsky and Levanyuk (2000a). However, in
this paper it was argued that it holds not only for d44W. This statement contradicts the
results of detailed calculations given in the original paper by Kopal et al. (1999).
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hþ d

keff
¼ h

k
þ d

kd
1� k2m
ðkc þ kmÞ2

 !
: (9:6:50)

It is clear from this equation that when the dielectric response is dominated
by the extrinsic contribution, i.e., km44kc so that km=ðkm þ kcÞ ! 1, the
‘‘suppressive’’ effect of the passive layer drastically weakens.

This phenomenon can be rationalized as follows. The restoring force keeping
the domain parent in the unpoled state is controlled by the electrostatic energy
of the bound chargers of the spontaneous polarization at the ferroelectric/
passive interface, UelðaÞ. For the situation considered, i.e., for h44d, this
energy is close to that of the electric field in the passive layer. Thus, it can be
approximated as UelðaÞ / ahE2

þi þ ð1� aÞhE2
�i where hE2

þi and hE2
�i are the

average of the squares of the electric field in the segments of the passive layer
contacting the ends of the positively and negatively poled domains. In the limit
W44d, the absolute values Eþ and E� are very close to PS=ðe0kdÞ, except for
small regions close to the domain walls and virtually independent of a. This
implies UelðaÞ independent of a in the limit d=W! 0 and vanishing of the
‘‘suppressive’’ effect of the passive layer. In contact in the opposite case
W55d, Eþ � E� � PN=ðe0kdÞ, and UelðaÞ / P2

N / ð2a� 1Þ2. Now it is this
strong a dependence of UelðaÞ that controls the ‘‘suppressive’’ effect of the
passive layer leading to the ‘‘in-series’’ formula, Eq. (9.6.1).

Numerical simulations illustrating the reduction of the ‘‘suppressive’’ effect
of the passive layer at W44d can be found, for the case km=ðkm þ kcÞ ¼ 1, in
the paper by Bratkovsky and Levanyuk (2001c).

A prediction of the theory that can be checked experimentally is the tem-
perature dependence of the extrapolated offset of the Se0=C vs. h dependence.

Fig. 9.6.8 Graph shows how the offset of the thickness dependence of the factor Se0=C is
affected by the distribution of the dielectric response of the ferroelectric k ¼ km þ kc between
the intrinsic kc and extrinsic km contributions, for a dense domain pattern withW ¼ 400 nm.
The dashed line corresponds to the in-series capacitors formula, while the solid line to the dense
pattern approximation. The calculations have been performed for kd ¼ 20 and d ¼ 2 nm.
After Tagantsev and Gerra (2006)
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Namely, in films where the dielectric data in the paraelectric phase suggest the
presence of a passive layer, in the ferroelectric phase, this offset may be essen-
tially temperature dependent due to the expected temperature dependence of
the ratio km=kc. According toMokry et al. (2004) the dielectric behavior of thin
films of ferroelectric copolymer of vinydilene fluoride and tetrefluoroethylene
might be interpreted in terms of this scenario.

The model discussed above has practical significance: On the one hand, it
shows the possibility of justifying the classical ‘‘in-series’’ formula for the case
of films with dense domain patterns (though with an effective permittivity of
the passive layer); on the other hand, it reveals some non-trivial features of
the system, such as the reduced ‘‘suppressive’’ action of the passive layer on the
extrinsic contribution to the permittivity. At the same time, when using the
results provided by this model one should recognize its limitations. Among
these the most important seems to be the neglect of possible domain wall
bending and that of possible impact of the charge transport across the passive
layer, which has been discussed in Sects. 9.5.2 and 9.5.3.

9.7 Polarization Fatigue in Thin Ferroelectric Films

This section is devoted to the phenomenon of polarization fatigue, which
consists of deterioration of switching ability of a ferroelectric capacitor after
it has been subjected to multiple polarization reversals. This phenomenon is
typically characterized by monitoring the switchable and non-switchable
polarizations, Psw and Pns (see Sect. 9.5.2 for the definitions), as functions of
the number of switching cyclesN. Reduction of Psw or Psw � Pns withN is used
to quantify the polarization fatigue of the capacitor.

From the point of view of classical physics of ferroelectrics, the polarization
fatigue should not necessarily take place in ferroelectric capacitors. We mean
that in terms of the classical switching scenario (nucleation of reverse domains,
their forward growth, their sideway expansion, and merging) there is no princi-
pal limitation on the multiple repetition of the switching cycle. The fact that the
polarization fatigue does often occur in real ferroelectric capacitors indicates
that the switching cycling induces some modifications in the system, which are
beyond the simple switching scenario. In very general terms, these modifica-
tions can be associated with creation of new imperfections in the system or/and
a redistribution of those already existing in it. The polarization fatigue, then,
can be viewed as a consequence of the ‘‘damage’’ imposed by these defects on the
switching process in the ferroelectric. Thus, when exploring the phenomenon of
polarization fatigue, we can distinguish two questions: (i) How does multiple
electric stress of the capacitor lead to creation or redistribution of the imperfec-
tions? (ii) What are these imperfections and how do they affect the switching
performance of the ferroelectric capacitor? In this section we will discuss these
questions.
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Most of the experimental and theoretical studies on polarization fatigue
have been performed for ferroelectric-thin-film-based capacitors since they
have been found suitable for memory applications based on the detection of
the difference Psw � Pns. These studies led researchers to realize that it is a
complicated phenomenon extremely sensitive to the materials of the ferro-
electric and electrodes as well as to the conditions of polarization cycling
(temperature, driving field amplitude, switching pulse length, etc.). In addi-
tion, the body of experimental data on polarization fatigue is very contra-
dictory (see for review, Tagantsev et al., 2001b) strongly suggesting that this
phenomenon is controlled by numerous mechanisms of different nature. At
the moment of writing this book, though a certain progress in understanding
of these mechanisms is available, one should recognize that this understanding
is still limited. For this reason, a consistent overall picture of polarization
fatigue in ferroelectric-thin film capacitors cannot be presented in this book.
One the other hand, the ideas, approaches, and models developed in the field
are worth the readers’ attention. We will discuss these in the present section
and support them with available experimental data on Pb(Zr,Ti)O3 (PZT)-
based thin films.

9.7.1 How Can Imperfections Influence Polarization Switching
in Ferroelectric Capacitor?

Testing the switching performance of a ferroelectric capacitor, one typically
monitors the switchable polarization, Psw, which mainly controls the dif-
ference Psw � Pns essential for the memory applications. In this section we
will discuss how Psw can be reduced by the imperfections appeared or
redistributed in the ferroelectric capacitor during switching cycling. In
answering this question, the following possibilities can be distinguished:
(i) reduction of the measured polarization due to a decrease in the effective
electrode area; (ii) reduction of the electric field seen by the ferroelectric;
(iii) the polarization switching itself becomes more difficult. Let us consider
these possibilities.

9.7.1.1 Reduction of the Effective Electrode Area

An increasing (with the number of switching cycles) fraction of the volume of a
capacitor can cease to contribute to the total polarization response as a result of
burning or delamination of the electrode(s) provoked by voltage cycling. For-
mally this process is equivalent to a reduction of the area of the ferroelectric
capacitor. Monitoring the evolution of several parameters of the capacitor
during fatigue cycling one can easily identify this mechanism. If this mechanism
governs the fatigue, all of the polarization parameters of the P–E loop, e.g., Pr,
Psw, and Pns (defined in Fig. 9.5.2) as well as the small signal dielectric constant
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and the conduction of the sample should scale down by the same factor.
Manifestations of this kind of mechanism have been demonstrated in PZT
thin films (Johnson et al., 1990; Colla et al., 1998b) by analyzing a correlation
between conduction, dielectric constant, and Pr.

Though this mechanism can be a reason for a reduction of switchable
polarization of a ferroelectric capacitor, it can be typically eliminated by
optimizing electrode deposition, so that it does not seem to be the matter of
concern for practical applications of ferroelectric films.

9.7.1.2 Reduction of the Electrical Field Seen by Ferroelectric

If the switching cycling results in the appearance of a electrode-adjacent low
dielectric constant or non-switchable layer (passive layer) in the ferroelectric
capacitor, the field seen by the ferroelectric will be different from that applied.
The appearance of such layer was put forward as a possible fatigue mechanism
by Larsen et al. (1994). The description of the impact of the passive layer on the
switching performance of a ferroelectric capacitor was discussed in Sect. 9.5.2
where two models were considered. In these models the passive layer was
treated (i) either as absolutely insulating dielectric layer or (ii) as a dielectric
layer with threshold conduction. According to the first model the growth of the
passive layer will result in a reduction of remanent (and switchable polarization)
and a tilt of polarization loop. These features are typical for the evolution of the
hysteresis loop in fatigued capacitors (Paton et al., 1997; Pawlaczyk et al., 1995;
Majumder et al., 1997; Al-Shareef et al., 1996). However, modeling the whole
set of parameters of the hysteresis loop in terms of growing passive-layer
mechanism has not been found in reasonable agreement with experimental
observation (Tagantsev et al., 1995b). The description of switching in terms of
the second model is focused on the behavior of coercive field of the polarization
loop. According to this model, a growing passive layer should lead to an
increase in the coercive field, which does not seem to be typical for polarization
fatigue. Thus, for the moment, it is difficult to judge whether the growing
passive-layer mechanism is relevant to the polarization fatigue taking place in
ferroelectric thin films.

9.7.1.3 Mechanisms of Switching Modification

The third principal possibility for the reduction of switching polarization dur-
ing switching cycling is related to a change in the switching process itself. The
switching process can be divided into two stages: (i) nucleation of new (reverse)
domains and (ii) growth of existing domains. As discussed in Sect. 8.7.2 the
domain nucleation in defect-free ferroelectrics typically has too low probability
to provide realistic switching rates. In real materials, the switching from a poled
state should start either at sites where the activation energy of the new domain
nucleation is locally reduced (due to defects or a special local electrode
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geometry) or at residuals of the reverse domains, which have survived at the end
of the polarization reversal due to a special environment. Both types of sites
may play the role of seeds for the formation of new domains inside single-
domain regions. In this context, the suppression of switching should be asso-
ciated with blocking the growth of these seeds.

One may consider two ways this process can occur, corresponding to two
basic mechanisms of switching suppression. These mechanisms can be summar-
ized as follows. First, a seed gives a macroscopic domain whose boundaries are
pinned (somehow immobilized). If this domain does not contain seeds of
reverse domains, the area occupied by the domain does not contribute to
switching anymore. This is the so-called ‘‘wall pinning’’ mechanism. Second,
in a region of the film, all the seeds of domains with reverse polarization are
inhibited (somehow made unable to produce macroscopic domains). As a
result, this area ceases to contribute to switching. This is the scenario of the
so-called ‘‘seed inhibition’’ mechanism. There exists also the third reason to
make the switching more difficult, which is related to electrostatic effect of
charges trapped at the ferroelectric/electrode interface. This can be called ‘‘local
imprint’’ mechanism because it is conceptually close to that of imprint. Let us
consider below these mechanisms.

9.7.1.4 Wall Pinning Mechanism

Under certain conditions, the wall pinning (immobilizing domain walls caused
by their interaction with defects) results in suppression of the switching ability
of a ferroelectric domain. These conditions are (A) all the walls surrounding the
domain are immobilized and (B) the domain does not contain seeds for reverse
domain formation. If condition (B) is not met, new mobile domain walls can
appear to allow further switching. In this context, the fatigue is considered as a
process of domain wall pinning by defects, density of which is great enough to
satisfy the two aforementioned conditions. An essential feature of the fatigued
state produced by this mechanism is a dense domain structure. According to
condition (B) the fatigued state should be close to the ‘‘one domain per one
seed’’ structure. The virgin and aforementioned fatigued states of the capacitor
are schematically illustrated in Fig. 9.7.1a and b.

The nature of the pinning which contributes to this mechanism is believed to
be the interaction between the bound charges on the domain walls and the
mobile carriers (Warren et al., 1995b). The bound charges of the wall appear
due to a local violation of the condition of wall electroneutrality, div~P ¼ 0.
These charges appear, for instance, on a 1808 wall, which is not exactly parallel
to the polarization direction in the domains (Fig. 9.7.1b). The electrostatic
coupling between the bound charge of the wall and mobile carriers results in
the formation of complexes, ‘‘wall + compensating charge.’’ This complex is
immobilized if the carriers of the complex are trapped at deep levels in the
forbidden gap of the ferroelectric. One should note that the wall pinning
mechanism can also take place if non-charged defects migrate to walls and
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pin them. However, this mechanism is not usually discussed as less efficient

compared to the first one.
This wall pinning mechanism for suppression of polarization reversal has

been proposed by a group from Sandia National Laboratories (Warren et al.,

1995b).

9.7.1.5 Seed Inhibition Mechanism

The alternative scenario for suppression of the polarization reversal is related to

the first stage of switching–nucleation of reverse domains. The key difference

between this scenario and that discussed above is that the switching ability of

the seeds is now suppressed in the embryonic state before they create a macro-

scopic domain. The basic points of this scenario are as follows:

(i) A ferroelectric film is divided into regions, which switch independently.
This means that, in each region, the switching is provided by a finite
number of seeds belonging to it.

(ii) A given ‘‘independent’’ region of the film loses its ability to switch when all
the nucleation seeds for one domain polarity are blocked in their embryo-
nic state. This is schematically shown in Fig. 9.7.1c.

Fig. 9.7.1 Two scenarios of fatigue via modification of the switching process. (a) Schematic
drawing of a section of a ferroelectric thin film capacitor in the virgin state. The electrodes are
shown with hatched pattern. The active seeds of nucleation of new domains with the upward
and downward directions of the polarization are shown with open and filled triangles,
respectively. The arrows show the direction of the spontaneous polarization. (b) Schematic
drawing of the same section in the state fatigued according to the ‘‘wall pinning’’ scenario.
Dashed lines stand for domain walls. (c) Schematic drawing of the same section in the state
fatigued according to the ‘‘seed inhibition’’ scenario. The circled triangles stand for the
nucleation seeds which have become inactive. After Tagantsev et al. (2001b)
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(iii) The active seeds are located at the ferroelectric/electrode interfaces.
There are the following reasons for this. First, near the interface, both
the usually elevated defect density and the electrode roughness create
conditions for formation of nucleation seeds. Second, as already dis-
cussed in Sect. 9.5.2, the electric field near the electrodes is expected to be
different from the applied field by a value of the depletion-effect-induced
built-in electric field that has different signs at the two electrodes. Thus,
for each sense of switching, the most favorable conditions for the growth
of the seeds take place near the electrodes, specifically, for one sense of
switching, near one electrode and, for the other sense of switching, near
the other. At the ‘‘favorable’’ electrode the applied field sums up with the
built-in one.

(iv) Fatigue is associated with blocking seeds by ionic or electronic defects
accumulated near the interface. These can be created by charges injected
from the electrode or the charges that can arrive from the bulk of thematerial
as a result of electromigration during the electric stressing of the capacitor.

This, seed inhibition, mechanism for suppression of polarization reversal has

been proposed by a group from Swiss Federal Institute of Technology (EPFL)

(Colla et al., 1997).

9.7.1.6 Experimental Evidence forWall Pinning and Seed InhibitionMechanisms

Analysis of the macroscopic manifestations of these two mechanisms can read-

ily reveal a common feature which is unfortunately shared with the passive layer

scenario making identification of the mechanisms difficult. Namely, all three

scenarios predict a tilt of polarization loop during fatigue cycling. This trend

has been already discussed for the passive layer scenario. As for the other two

scenarios it can be explained as follows. Fatigue usually occurs via an inhomo-

geneous (region-by-region) loss of the switching ability of the film. Thus,

roughly, the integral loop of the sample corresponds to a weighted average of

the original loop of the virgin sample (fromworking regions) and hysteresis-free

response of the areas where the switching is blocked. Clearly, the obtained

integral response yields a polarization loop more tilted than the original one.

Thus, using only data on the loop tilt these three scenarios cannot be distin-

guished. However, as has been demonstrated by Klissurska et al. (1997), one

can really distinguish between the passive layer scenario and the other two by

monitoring a set of parameters of the polarization loop rather than just its tilt.

To the best of our knowledge this method has not been applied for analysis of

fatigue data.
An interesting approach has been proposed by Colla et al. (1998c) and

Taylor et al. (1999) for experimental discrimination between the wall pinning

and the seed inhibition mechanisms. It is based on salient features of these

mechanisms listed below.
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(i) The key step of the wall pinning mechanisms is the migration of free carriers
toward the bound charges of the domain walls. This process requires time so
that the mechanism should be more efficient the longer the period of time
during which the system is exposed to the charge migration. In other words,
the slower the switching, the stronger the fatigue caused by the wall pinning
mechanisms. No dependence of this type is expected for the seed inhibition
mechanism.

(ii) For the same reason, the fatigue associated with the pinning scenario should
be very sensitive to the shape of the driving pulses. Rectangular pulses
should produce less polarization degradation than those of the same length
but triangular or of a rounded form. The most damaging should be pulses
with a long plateau on the level of the coercive field since during this plateau
the sample contains themaximum concentration of domainwalls. However,
no effect of this type is expected for the seed inhibition mechanism.

(iii) The fatigued state created by the seed inhibition mechanism may contain
relatively large single-domain regions corresponding to the regions of inde-
pendent switching since one seedmay be responsible for initiation of switch-
ing in a large region. In contrast, the fatigued state createdby thewall pinning
mechanism should contain a high concentration of domains with immobi-
lizedwalls. In this case, in the poled state, the total areaof domainwalls of the
fatigued material should be much greater than that of the virgin material.
Though inefficient for switching, these walls should still contribute to the
small-signal dielectric constant of the film. Thus, the polarization fatigue, if it
follows the pinning scenario, should be accompanied by an increase in the
small-signal dielectric permittivity measured in the poled state.

(iv) The increase in the concentration of pinned domain walls in the sample
corresponding to the wall pinning mechanism can also be detected by analyz-
ing the behavior of constant a in the relation for nonlinear dielectric response
in the case of Rayleigh-type dielectric response (see Eqs. (8.7.41) and (8.7.42)).
This constant is conditioned by irreversible domain wall displacements and, if
the population of pinned domain walls increases, a should increase as well.

Based on the features listed above several experimental tests have been

performed.
A clear manifestation of the wall pinning mechanism can be revealed by using

the sensitivity of this mechanism to the time during which the capacitor is in a

state containing the maximum amount of the domain walls. That was done in

fatigue experiments performed at a very slow cycling on relatively thick

(1,400 nm) PZT films (Colla et al., 1998c). As shown in Fig. 9.7.2a, a variation

of the profile of the fatiguing signal from rectangular to that with a plateau at the

coercive field level dramatically changes the fatigue rate. The profile with the

plateau corresponds tomuch longer time duringwhich the capacitor is exposed to

a field close to the coercive field, where the sample contains the maximal amount

of the domain walls. The observed correlation between the profile of the driving

field and the fatigue rate is consistent with the ‘‘wall pinning’’ mechanism.
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Another way to identify the ‘‘wall pinning’’ mechanism is to monitor increas-

ing population of the pinned domain walls in the fatigued state. Features (iii)

and (iv) from the above list can be employed for such monitoring. The corre-

sponding tests have been performed on 1,400 nm thick PZT films. One has

monitored the dielectric permittivity in the poled state, kp, during electrical

stressing with a wave of triangular shape at a very low frequency (1.7 mHz) and

with a square-wave profile at 30 kHz (Colla et al., 1998c). It was found that in

the slow cycling case, the polarization degradation is very fast (see Fig. 9.7.2b)

Fig. 9.7.2 (a) Suppression of switchable polarization by square ac pulses and by cycling with a
long exposure at a field close to Ec. The pulse duration is 300 s. After Colla et al. (1998c).
(b) Two types of suppression of switching polarization: by ac cycling at 30 kHz (lower axis;
logarithmic scale (!)) and by slow cycling at 1.7 mHz, (upper axis; linear scale (!)). After Colla
et al. (1998c). (c) Evolution of the Rayleigh coefficient a as a function of number of fast
(squares) and slow (circles) switching cycles. After Taylor et al. (1999)
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and is accompanied by an increase in kp (about 15%). In the case of high-
frequency cycling, the polarization degradation is much slower and is accom-
panied by a slight decrease in kp during the cycling. In identical experiments,
one has also monitored the Rayleigh constant a. It was found (see Fig. 9.7.2c)
that a is really sensitive to fatigue treatment (it increases during cycling) only
in the case of very slow cycling (Taylor et al., 1999). These two experiments
suggest that the mechanisms governing fatigue in the two considered regimes
are very different and that the case of slow cycling is consistent with the wall
pinning mechanism. In the case of high-frequency cycling, the fatigue was
attributed to the seed inhibition mechanism (Colla et al., 1998c). However,
one should note that this test does not provide enough information to distin-
guish between the seed inhibition mechanism and a formation of a switching-
induced passive layer.

A fingerprint of the seed inhibition mechanism is the partition of fatigued
films into large single-domain frozen areas. A micron-size pattern of this type
has been observed (Colla et al., 1998c) by using scanning force microscopy. A
more detailed discussion of investigations of polarization fatigue by means of
scanning force microscopy will be given in Sect. 9.8.

It should be stressed that the clear evidence for the participation of the wall
pinning mechanism in polarization fatigue discussed above has been obtained
by using a rather special material (1,400 nm thick PZT film) and special
conditions of fatigue (very slow cycling with a pulse shape different from
rectangular). However, the cycling performed with a square-wave voltage
profile does not seem to activate this mechanism. According to Tagantsev
et al. (2001a,b), in ‘‘normally thin’’ (100–300 nm) PZT films, even the use of
low frequencies and special fatiguing profiles does not activate the wall pinning
mechanism. These authors also conclude that, though being an efficient tool of
artificial polarization suppression (e.g., in experiment involving combined
action of dc field, illumination, and heat treatment—see the paper by Warren
et al. (1995b)) the wall pinning mechanism does not play any significant role in
polarization fatigue in PZT films of thickness typically used for memory appli-
cations (100–300 nm). This conclusion, however, contradicts that drawn from
the data reported by Ramesh et al. (1992) and Majumder et al. (1997). These
authors observed a frequency dependence of fatigue of the type expected for the
wall pinning mechanisms in relatively thin films.

9.7.1.7 Fatigue as ‘‘Local Imprint’’

One should also mention one additional mechanism that may be responsible for
making switching more difficult. The key point of this scenario is that the fatigue
corresponds to the appearance of regions in the ferroelectric capacitor where the
screening charge (which originally has been on the electrodes) has partially
moved into the ferroelectric and trapped there (Shur et al., 2001a). This means
that, on the local scale, this mechanism of fatigue is basically equivalent to the
injection-assisted imprint mechanism (see Sect. 9.5.3). If the trapped fraction of
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screening charge is large enough, both the wall motion and nucleation of
reversed domains can be substantially impeded in the region. In simple words,
one can say that in these regions the ferroelectric polarization are pinned by the
attraction between the polarization bound charge and the trapped screening
charge. On the scale of the whole capacitors, the difference between the fatigue
and imprint scenarios is that, in the imprinted state, the whole capacitor is
imprinted in the same direction, whereas in the fatigued sample, these directions
are not the same in different parts of it. Due to this similarity the considered
fatigue mechanism can be called ‘‘local imprint’’ mechanism. This mechanism
enables rather simple modeling of the dielectric properties in the fatigue states so
that its relevance to the degradation phenomena in real ferroelectric capacitors,
in principle, can be reliably established. For the moment, we would like to point
out only one evident macroscopic manifestation of this phenomenon. According
to this mechanism, the fatigue state can be roughly represented as a parallel
connection of three types of capacitors which exhibit (i) the virgin polarization
loop, (ii) loops with a positive voltage offset, and (iii) loops with a negative
voltage offset. It is easy to conclude that the integral loops of the capacitors
should be somehow pinched. Thus, an expected manifestation of this mechanism
is progressive pinching of the polarization loop during fatigue treatment. To the
best of our knowledge, this trend has not been experimentally observed. The
available to date experimental data are not enough to judge the relevance of this
mechanism to fatigue in real ferroelectric thin films.

9.7.2 What Are These Imperfections and How Do They Affect
the Switching Performance of Ferroelectric Capacitor?

All of the mechanisms previously discussed (except for the electrode-degrada-
tion mechanism) involve a variation in the density of imperfections of the
ferroelectric itself. In the case of the wall pinning mechanism, we have consid-
ered electronic free carriers as the ‘‘working imperfections’’ that block domain
wall motion. Conceptually similar domain blocking scenario has been modeled
by Brennan et al. (1994) who considered oxygen vacancy redistribution toward
head-to-head (tail-to-tail) domain configurations. For the functioning of the
‘‘passive layer’’ and ‘‘seed-inhibition’’ mechanisms, an increase in the defect
concentration near the ferroelectric/electrode interface is required. Two
hypotheses have been put forward to provide such increase. First, it was
suggested that the switching cycling leads to redistribution of the oxygen
vacancies existing in the ferroelectric (Yoo and Desu, 1992; Scott et al., 1991).
Second, it was suggested that the cycling leads to creation of new defects due to
electron injection from the electrodes (Mihara et al., 1994; Stolichnov et al.,
2000; Tagantsev and Stolichnov, 1999; Du and Chen, 1998). Below we briefly
discuss these hypotheses basically following the critical analysis offered by
Tagantsev et al. (2001b).
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9.7.2.1 Oxygen Vacancy Redistribution Mechanism

Oxygen vacancies are natural and the most mobile ionic defects of perovskite
materials like PZT. For this reason, the redistribution of oxygen vacancies has
been put forward by many authors as the driving force of polarization fatigue
(Yoo and Desu, 1992; Scott et al., 1991). These authors suggested that the
depletion-induced built-in electric field is responsible for the oxygen vacancy
accumulation at the ferroelectric/electrode interface. Oxygen vacancies are
often involved in the interpretation of experimental data on polarization fatigue
in terms of a concept that can be called ‘‘oxygen vacancy hypothesis.’’ This
hypothesis implies, first, that an increase in oxygen vacancy concentration is in
general detrimental for switchable polarization and, second, that the driving ac
electrical field is responsible for the redistribution of these species. In principle,
being appended with the ‘‘passive layer’’ or ‘‘seed inhibition’’ scenario this
hypothesis may make the driving force element for a fatigue mechanism. How-
ever, there is very limited experimental support for this hypothesis. The stron-
gest indirect argument in favor of this hypothesis is related to the fatigue
endurance of PZT-containing capacitors with electrodes made of conductive
oxides (e.g., SrRuO3, RuO2, IrO2), which was found much better than that of
the PZT capacitors with metallic (e.g., Pt) electrodes (Bernstein et al., 1993;
Auciello et al., 1995; Cross et al., 1998). By assuming that oxide electrodes
represent an efficient sink for oxygen vacancies, Al-Shareef et al. (1996)
explained the positive effect of the oxide electrodes on the fatigue endurance
of PZT capacitors as a result of reduction of the oxygen vacancy concentration
in the ferroelectric, thus supporting the oxygen vacancy hypothesis. At the same
time, the rest of the experimental results relevant to this hypothesis do not
clearly support it. For example, the data on the effect of donor and acceptor
doping on polarization fatigue in PZT films are contradictory while, if the
oxygen vacancy concentration were decisive for the fatigue endurance, donor
doping would always slow down the fatigue rate and acceptor one would always
accelerate it (a more detailed discussion of the experimental situation can be
found in the paper by Tagantsev et al. (2001b). The results of more direct
investigation of the problem are also ambiguous. The work by Brazier et al.
(1999) where a non-monotonical dependence of the fatigue endurance of PZT
thin films on the partial oxygen pressure has been reported is to be mentioned.
If just enhanced oxygen vacancy concentration were detrimental for polariza-
tion switching, this dependence would be monotonical. Another direct test for
the ‘‘fatigue-oxygen vacancy migration’’ correlation has been performed by
Schloss et al. (2002) who used O18 isotope tracer to monitor oxygen vacancy
migration in PZT thin films during switching cycling. No clear correlation of
this kind has been reported. All in all, it does not seem that an increased
concentration of oxygen vacancies itself is sufficient for enhancement of polar-
ization fatigue at least in PZT thin film capacitors. It is important to indicate
that this conclusion does not exclude some correlation between the oxygen
stoichiometry and the fatigue performance of PZT capacitors since these species
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are strongly involved in the defect chemistry of the material whereas polariza-
tion fatigue, in general, is a defect-chemistry-related phenomenon.

9.7.2.2 Injection Mechanism

Free carriers injected from the electrodes into the ferroelectric film can be trapped
at deep levels and immobilized producing charged defects. The resulting defects
can make the driving force for phenomenological scenarios of fatigue discussed in
the previous section. Specifically, these defects can participate either in the forma-
tion of a non-switching electrode-adjacent layer, in the inhibition of seeds of
reverse domains, in bulk pinning of the domain walls, or finally, in the ‘‘local
imprint’’ mechanism. The role of the injection in polarization fatigue has been
pointed out by several authors (Scott et al., 1991; Mihara et al., 1994; Stolichnov
et al., 2000; Tagantsev and Stolichnov, 1999; Du and Chen, 1998). The conclusion
ofMihara et al. (1994) was based on a rather weak temperature dependence of the
fatigue endurance of Pt/PZT/Pt capacitors. Du and Chen (1998) have demon-
strated an improved fatigue endurance of PZT capacitors with Pt electrodes
appended with a thin SiO2 layer between PZT and the top electrode. They have
interpreted this improvement as a result of suppression of the injection into the
capacitor, the injection being considered as the driving force of fatigue.

When discussing the injection-assisted polarization fatigue one distinguishes
the case of injection associated with the current passing through the ferro-
electric capacitor and the case of the so-called nearby-electrode injection,
where the injected chargers enter only a thin electrode-adjacent layer of the
ferroelectric. According to Tagantsev et al. (2001b) the first case does not seem
to be relevant, at least, to the real experimental situation in PZT thin film
capacitors. As for the nearby-electrode injection, two ways to relate injection
with polarization switching have been discussed (Tagantsev et al., 2001b). First,
it was suggested that the charge injection is promoted by the elevated electrical
field that accompanies the nucleation of reverse domains. Alternatively, the
injection is viewed as induced by the elevated electrical field that develops in an
effective low dielectric constant surface layer. This kind of injection has been
addressed in Sect. 9.5.2, in the context of the size effect on switching. To date,
the injection scenario of polarization fatigue has not been entitled to compre-
hensive theoretical treatment. Simple modeling of some relevant issues as well
as some qualitative predictions of this fatigue scenario can be found in the paper
by Tagantsev et al. (2001b).

9.7.3 Overall Picture of Polarization Fatigue in PZT Thin Films

In the previous section, we have classified and discussed the principal phenom-
enological scenarios of suppression of switching ability of ferroelectric thin films
as well as the microscopic aspect of fatigue mechanisms in these systems. The
obtained classification can be visualized as the scheme depicted in Fig. 9.7.3,
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which has been offered by Tagantsev et al. (2001b). In this scheme, the numbers

from 1 to 5 indicate the fatigue scenarios which, according to these authors, are

most relevant to experimental situation in PZT thin films. These scenarios are

1. The bulk pinning of domain walls, which results in the formation of a
domain structure where the individual domains do not contain active
centers of reverse domain nucleation. The most probable driving force for
this mechanism is the migration and trapping of free electronic carriers. The
mechanism can be active in the suppression of switchable polarization for
special types of cycling. However, for typical fatigue tests of PZT capaci-
tors, it does not look to be of importance.

2. Inhibition of the seeds of reverse domain nucleation caused by the nearby-
electrode injection is a good candidate for the fatigue mechanism in PZT
thin films. Many features of the polarization fatigue can be explained in
terms of this mechanism.

3. Formation of a passive surface layer that modifies the electric field seen by
the ferroelectric film. The most probable driving force of this mechanism is
the nearby-electrode injection of electrons. Some features of polarization
fatigue can be interpreted in terms of this mechanism. However, no decisive
experimental tests for this mechanism have been performed.

Fig. 9.7.3 The relationship between the phenomena associated with polarization fatigue
according to different fatigue models. After Tagantsev et al. (2001b)
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4. Nearby-electrode screening of ferroelectric polarization with low-mobility
free carriers. Fatigued capacitors can be presented as a parallel connection
of small regions where the polarization is strongly ‘‘imprinted’’, the direc-
tion of blocked polarization being different in different regions. It is the so-
called ‘‘local imprint’’ mechanism. No experimental evidence is available to
support this mechanism.

5. An always-possible source of loss in switchable polarization during cycling
is an effective reduction of the electrode area due to electrode burning or
delamination. Usually one can cope with this problem by optimization of
the processing so that this mechanism does not look to be a matter of real
concern for memory applications.

A general remark concerning all listed scenarios can be made. Being physi-
cally substantially different, these scenarios, in principle, can be distinguished
by their typical experimental manifestations. However, this distinction, as a
rule, requires a complex study of the phenomena whereas monitoring a single
property could be misleading. For instance, progressive tilt of polarization
hysteresis loops is an evident manifestation of growing passive layer scenario
(no. 3 in the list). However, taken alone this feature cannot be considered as a
strong argument in its favor since scenario nos 1 and 2 can also manifest
themselves in progressive tilt of the loops.

9.8 Scanning Force Microscopy Study of Polarization Reversal

The Scanning force microscopy (SFM) as a tool for the investigation and
control of ferroelectric domains was already discussed in Sect. 4.5. In ferro-
electric thin films, this technique resulted in a real breakthrough providing an
opportunity for nanoscale characterization and control of domain patterns.
Some results obtained with SFM were already mentioned in present chapter
when discussing the structures of ‘‘natural’’ domain patterns in the films. In this
section we will discuss the applications of SFM to investigation of polarization
reversal in ferroelectric thin films. The foregoing two sections are devoted to the
results obtained using two modifications of the SFM technique, which are
mainly used for this purpose.

The technique mostly used for investigation of domain dynamics in ferro-
electric films is the traditional top-electrode-free piezoelectric force microscopy
(PFM) which was already discussed in Sect. 4.5.8 as a technique for the
characterization of bulk ferroelectric materials. In this technique, the voltage
consisting of the quasistatic ‘‘poling’’ and ac ‘‘testing’’ components is applied to
the sample through a metallized SFM tip. The amplitude of the former is much
greater than that of the latter. The tip displacements at the ac frequency of the
testing signal are detected. The role of the first component of the applied field is
to modify the domain structure of the sample whereas the role of the second
part is to monitor the local piezoelectric response in it by comparing the
amplitude and the phase of the testing signal with those of the detected
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mechanical response. In this technique, the electric field in the ferroelectric is

strongly localized near the tip. This enables the domain manipulation and

characterization down to the nanometer scale. At the same time, the switching

conditions in the inhomogeneous field near the tip may be very different from

those in parallel plate capacitors typically used in application of ferroelectric
thin films. This is a serious drawback of this technique if one is interested in

switching performance of ferroelectric thin film capacitors. Another problem

with the top-electrode-free PFM is poor time resolution, since acquisition of an

SFM image requires a time period of the order of minutes.
The second modification of SFM technique, which can be called ‘‘through-

electrode’’ PFM, is free from some drawbacks of the top-electrode-free method.

For the first time, this technique was used by Gruverman (Auciello et al., 1997)

and later was extensively used by the EPFL group (Colla et al., 1998a; Hong
et al., 1999b). The setup used in this method is schematically shown in Fig. 9.8.1

The external voltage (both switching and imaging components) can be applied

either by using an additional conductor attached to the top electrode or directly

through the conductive PFM tip. In both cases the piezoelectric displacement is

probed locally by the SFM tip and the spatial distribution of the piezoelectric
response is imaged through the top electrode. In such a configuration, a homo-

geneous electric field is generated throughout the ferroelectric film, which

allows quantitative treatment of domain wall dynamics and investigation of

polarization reversal mechanism in ferroelectric capacitors. Due to the reduced
time constant, fast pulse switching and transient current measurements can be

accomplished in submicron capacitors, thus making PFM suitable for memory

device testing. However, the presence of the top electrode (typically at least

100 nm thick) lowers the lateral resolution of the technique compared to that
of the electrode-free method. The through-electrode and electrode-free

methods also differ in the information that they can provide on the distribution

Fig. 9.8.1 Schematic of a
setup used for the ‘‘electrode
through’’ PFM imaging.
SFM tip and top electrode
(shown in black) are
grounded. The bottom
electrode (shown in black) is
used to apply an ac probing
signal. The bottom electrode
is also used to apply the
controlling voltage that
manipulate the domain state
of the sample (shown in
hatched pattern). The circuit
for application of the
controlling voltage is not
shown
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of the piezoelectric response across the film thickness: The electrode-free
method senses the piezoelectric response averaged over some tip-adjacent
region whereas the through-electrode method senses the response averaged
over the whole film thickness.

The information on the local piezoelectric response obtained in both tech-
niques is translated into that on the polarization state of the sample. As was
discussed in Sect. 4.5.8, the sign of the local piezoelectric response (actually the
phase difference between the testing voltage and the piezosignal) is interpreted
as the sign of the spontaneous polarization in region tested for a given position
of the tip. In thin films this interpretation holds as far as the tested region is
single domain. If this region is polydomain, the sign of the piezoresponse is
customarily interpreted as the sign of the net polarization averaged over the
testing volume. In general, the correlation between the signs of the average
piezoresponse and net polarization may not take place since, in general, on
average nonpolar sample can be piezoelectric. In the case of switching domi-
nated by the 180o polarization reversal (the situation typical for thin films), such
correlation may be justified, however, with a reservation that the ac piezo-
electric signal should be acquired in the absence of the poling voltage. This
condition is clear in the context of Sect. 8.7.7 where was shown that, under a dc
bias, even in 1808 domain patterns, the changes of sign of the polarization and
piezoelectric coefficient may take place at different values of the applied field.
The interpretation of the amplitude of the local piezoelectric response is not
always straightforward. In the case where the tested region near the tip is single
domain, the amplitude brings information on the value and orientation of the
spontaneous polarization and on the degree of mechanical clamping by the
substrate. If this region is multidomain, the amplitude is also dependent on the
fractions of different ferroelectric domain states in the region.

In what follows we will overview the results obtained by both PFM techni-
ques and the traditional topographical scanning.

9.8.1 Top-Electrode-Free PFM

Most of SFM studies of the polarization reversal in ferroelectric thin films have
been performed using the top-electrode-free PFM technique. The results
obtained with this technique have provided new information on details of
polarization reversal in these systems as well as direct experimental support
for the knowledge already developed from indirect experiments and theories.
Below we will discuss some of these results.

Domain wall mobility in very thin (30–80 nm) PZT (20/80 on SrTiO3:Nb
electrode) films has been evaluated in the experiments performed by the group
of Triscone (Tybell et al., 2002). In these studies, an SFM tip was, first, used to
create a reverse domain near and under the tip by application of a voltage
pulse. Then the size of the domain obtained was measured by PFM scanning
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of the top surface of the film with ac voltage which was small enough not to

distort the domain pattern created at the poling stage of the experiment. It was

found that, in a few decades of the values, the wall velocity follows the

‘‘activation field dependence’’ expð�E0=EÞ, shown in Fig. 9.8.2, with the

activation field of the order of 20 MV/cm. Such a law has been known for

domain wall motion in BaTiO3 single crystal, through with some 107 times

smaller value of the activation field. In the case of BaTiO3, this field depen-

dence is consistent with the Miller–Weinreich theory (see Sect. 8.4.2) for the

thermally activated motion of domain walls in the Peierls lattice potential. In

the case of PZT film, the value of the activation field is too large to be

interpreted in them of the Miller–Weinreich theory. The authors have attrib-

uted their observation to a manifestation of the defect-controlled creep

motion of the domain wall (see Sect. 8.4.5).

Useful information has been obtained on the interaction between the 1808
domain walls, grain boundaries, and 908 domain walls. As clear from theore-

tical analysis given in Sect. 9.3, in thin films on a substrate, displacements of 908
(ferroelastic) domain walls are strongly limited by the clamping effect of the

substrate. Thus, the switching is basically supported by the motion of 1808
domain walls that travel in the film, in general, through a network of gain

boundaries and 908 domain walls.
The poling/scanning technique described above enables the visualization

of coupling between 1808 domain walls and the grain boundaries. It has

been often observed (see, e.g., Roelofs et al., 2000) that grain boundaries

can stop the motion of 1808 domain wall so that the grain and domain

boundaries roughly coincide. However, as documented by Gruverman et al.

(1998a) under appropriated applied field some propagation of a switching

front through grain boundaries is also possible. This is illustrated in

Fig. 9.8.3.

Fig. 9.8.2 The domain wall
velocity in a PZT film as a
function of the inverse of the
applied field for films of
different thicknesses. The
velocity is evaluated from
PFM data. After Tybell
et al. (2002)
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Interesting information on coupling between 180 and 908 domain walls has

been obtained by Roelofs et al. (2002). In this work, (001) PZT (20/80) films on

SrTiO3 substrate with oxide bottom electrode have been characterized with

PFM. The cross-hatched domain pattern of narrow a-domains embedded in a

c-domain matrix, shown in Fig. 9.2.4, is typical for this kind of films. The film

was switched from original negatively poled state to that positively poled by

scanning with a volatage of –8 V by conductive SFM tip. The out-of-plane and

in-plane PFM images shown in Fig. 9.8.4 were taken before and after switching.

These images show that the switching of the out-of-plane component of the

polarization in the c-domains (seen in the out-of-plane PFM image) is accom-

panied by that of the in-plane component of the a-domains (seen in the in-plane

PFM image). The driving force of this correlated switching of c- and a-domains

is the fact that the ‘‘head-to-head’’ and ‘‘tail-to-tail’’ 908 domain walls are

charged and, for this reason, energetically unfavorable. As clear from

Fig. 9.8.4, the polarization reversal only in c-domains (with the directions of

the polarization in the a-domains kept unchanged) would lead to the creation of

these energetically unfavorable situations. This coupling between 180 and 908
domain walls impacts motion of the former. It has been documented (Roelofs

et al., 2002) that 908 domain walls represent an obstacle for motion of 1808
walls. However these obstacles can be finally overcome with the walls. PFM

experiments in these kinds of films have revealed other interesting features of

Fig. 9.8.3 Domain dynamics observed in a PZT 53/47 film. (a) Topographic image with the
white cross indicating the tip position during dc voltage application. (b, c, d) Piezoresponse
images showing domain sidewise growth and apparent domain expansion into a neighboring
grain. (b) Original domain structure. (c, d) Domain structures after application of a 8 V pulse
of different durations: (c) –50 ms and (d) –150 ms. After Gruverman et al. (1998a). Reprinted,
with permission, from theAnnual Review ofMaterials ResearchVolume 28# 1998 by Annual
Reviews. www.annualreviews.org
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the polarization reversal in these systems. Due to the presence of an internal bias

field in these films, the positively poled state was found to be metastable

exhibiting spontaneous backswitching. It was observed that this backswitching

can start with the reverse domain nucleation at immobile 908 domain walls.

PFM images (Ganpule et al., 2000a) illustrating this kind of nucleation and the

initial growth of reverse domains are shown in Fig. 9.8.5.
As has been repeatedly indicated above in this chapter, ferroelastic domain

pattern are mainly controlled by the clamping effect of the substrate. For this

Fig. 9.8.4 Piezoresponse images of a polydomain PZT film in an as-grown state, (a) and (b),
and after poling, (c) and (d). The ‘‘out-of-plane’’ PFM signals is shown in (a) and (c) whereas
the ‘‘in-plane’’ signals in (b) and (d). Regions with bright, dark, and intermediate contrasts
correspond to different orientations of the polarization in ferroelectric domains, as shown
schematically in the sketches below the PFM images. Ellipse in (c) and (d) demonstrates a
specific region, where the polarization orientation remains unchanged after poling. It is seen
that the reverse of the contrast of c-domains (dark and bright in (a) to (c)) correlates with that
of a-domains (dark and bright in (b) to (d)). Sketches below (c) and (d) show that the correlated
switching of a- and c-domains ensures the electroneutrality of the domain walls separating
them. The inset in (c) is an image taken later from the same area. It shows that it is from the
non-switchable region that the polarization backswitching starts. Reprinted with permission
from Roelofs et al. (2002). Copyright (2002), American Institute of Physics
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reason one cannot expect any electric-field-driven global rearrangement of the
ferroelastic domain pattern of the film since such rearrangement would lead to a
strong increase in the elastic energy of the system. At the same time, in principle,
local rearrangement of this kind may be possible. Another situation where 908

domain walls are less blocked by the clamping effect of the substrate occurs in
islands of the film having dimensions comparable to its thickness. Both of these
situations have been identified by using the PFM imagining.

Chen et al. (2004) has studies the polarization reversal in PZT (20/80) films
with typical cross-hatched pattern shown in Fig. 9.2.4. It has been found that
the polarization reversal in a c-domain induced by a voltage loaded SFM tip,
which primarily results in formation of a cylindrical reverse c-domain, can also
lead to the creation of new a-domains. Figure 9.8.6 shows the creation of one
new a-domain. This phenomenon can be rationalized as follows. When the
reverse cylindrical domain appeared is objected to the electric field parallel to its
polarization, it cannot freely increase its height and shrink in width as being
clamped in by the matrix which is not subjected to the electric field induced by
the SFM tip. Thus, under the applied voltage the reverse domain is under an
in-plane tensile stress. This stress can be released by formation of one or several
a-domains around the reverse c-domain.48 It is not a priori clear that the
resulting structure will be energetically favorable since the appearance of the

Fig. 9.8.5 PFM images of a region of a PTZ film scanned with tip biased at –10 V. The black
and white contrasts correspond to c-domains (with the polarization normal to the plane of the
film). The grey contrast corresponds to a-domains (with the in-plane orientations of the
polarization). Figures (a), (b), (c), and (d) are recorded as functions of time of scan,
(a) –1,500, (b) –2,000, (c) –4,000, and (d) –4,500 s. It is seen how a nucleus of reverse
polarization appears at a narrow stripe of a-domain and subsequently grows. Reprinted
with permission fromGanpule et al. (2000a). Copyright (2000), American Institute of Physics

48 This effect is similar to the formation of a-domains in ferroelectric films under tensile misfit
strain (c.f. Sect. 9.3.3)
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a-domains would increase the energy of the system due to the misalignment of

the polarization and field in the a-domains. An estimate of the energy balance in

the system shows (Chen et al., 2004) that this phenomenon can be expected in

PZT (20/80) films but not in films of PZT (50/50). This is compatible with the

experimental PFM results on PZT (50/50) where the aforementioned formation

of new a-domains has not been observed.
Electrode-free PFM studies provide conclusive evidence that, in islands of

ferroelectric films having dimensions comparable to the film thickness, 908
domain walls do become mobile: They can appear and disappear during the

polarization reversal and significantly contribute to the piezoelectric response

of the film. Figure 9.8.7 shows the PFM images obtained by Nagarajan et al.

(2003) from a 1 mm2 island of 1 mm thick PZT (20/80) film for the as deposited

(a) and differently poled states (b, c, and d). Appreciable evolution of the 908
domain wall pattern is clearly seen in these images. The PFM obtained data by

Buhlmann et al. (2002) shown in Fig. 9.8.8 document a tremendous increase in

the piezoelectric response of islands of a 200 nm thick PZT (20/80) film obtained

as a result of the decrease in their aspect ratios. This increase of some 300%

cannot be interpreted in terms of the lattice contribution to the piezoresponse

Fig. 9.8.6 (a) PFM domain structure image of the PZT film before local switching; (b) PFM
image after a local switching with a –12 V pulse for 3 s applied at the point shown with the
cross. Formation of a new a-domain at the border of the switched area is seen. Reprinted with
permission from Chen et al. (2004). Copyright (2004), American Institute of Physics

Fig. 9.8.7 The evolution of the ferroelastic domain structure as a function of applied electric
field for a 1 mm2 island of a 1 mm thick PZT film. Piezoresponse images before and after
application of various dc bias voltages (by scanning with a dc-biased SFM tip). The film
mainly contains c-domains. a-domains are seen as narrow straight stripes. It is seen that the
application of the field leads to appreciable modification of ferroelectric domain pattern.
Arrows indicate the places where such modification can be seen. After Nagarajan et al. (2003)
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clearly attesting to the contribution from displacements of ferroelastic walls
which are less mechanically clamped in smaller islands.

PFM images enable characterization of the temporal evolution of reverse
domains written with a voltage-loaded SFM tip. The written domains may be

very stable. For PZT films thinner than 100 nm, at least several-day room tempera-
ture stability of written reverse domains has been reported by Hidaka et al. (1997)
and by the group of Triscone (Tybell et al., 2002). It has been shown that poling
pulses of 10–12 V and 50–100 ms duration are sufficient for writing stable domains
with the diameter about the film thickness. Another example of stable reverse

domains has been documented by Gruverman and Tanaka (2001), for 200 nm
thick SrBi2Ta2O9 films on IrO2 electrodes, though with a much longer writing time
(8 V/1 s). At the same time, these authors have found that similar films but with Pt
electrodes exhibit appreciable relaxation of reverse domains. The relaxation rate has

been found to be strongly dependent on the width and the amplitude of the writing
pulse as well as on the poling prehistory of the sample (a domain written for the
second time at the same place is more stable). These dependences are illustrated in
Figs. 9.8.9 and 9.8.10. The time dependence of the relaxation of SFM-written

reverse domains has been found to follow dynamics that is clearly slower than
exponential and can be fitted to logarithmic (Gruverman and Tanaka, 2001; Jo
et al., 2000) or stretched exponential laws (Ganpule et al., 2000b; Fu et al., 2003).

It is generally accepted that the driving force of backswitching behind the
domain relaxation is the built-in internal bias field. Actually any of the mechan-
isms of built-in internal bias field discussed earlier in this chapter may lead to

backswitching in the film. The slow relaxation kinetics of reverse domains is
attributed to various mechanisms such as a wide spectrum of relaxation times
(Jo et al., 2000), a mechanism linked to a random-walk process (Gruverman

Fig. 9.8.8 Piezoelectric
hysteresis loops of a PZT
film. The loops are taken
with electrode-free PFM
from the unpatterned film
and from square-patterned
islands with the lateral sizes
from 100 to 200 nm
(indicated in the figure).
Reprinted with permission
fromBuhlmann et al. (2002).
Copyright (2002), American
Institute of Physics
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Fig. 9.8.9 Polarization retention in a SrBi2Ta2O9 film with Pt bottom electrode. Normalized
retained polarization was calculated as a ratio of domain area at a certain time to this domain
initial area (approximately 1 min after the domain was written by voltage pulse application to
a selected point, i.e., by immobile tip). (a) Dynamics of retention loss for different poling
times. The poling voltage is –6 V. (b) Effect of the poling voltage on domain stability. The
poling time is 3 s. Reprinted with permission fromGruverman and Tanaka (2001). Copyright
(2001), American Institute of Physics

Fig. 9.8.10 Piezoresponse
images of a SrBi2Ta2O9 film
with Pt bottom electrode
illustrating the effect of
switching prehistory on
retention behavior. (a) As-
grown domain structure.
(b), (c), and (d) Retention
loss after application of the
first switching pulse of –6 V,
1 s; (e), (f), and (g) retention
loss after application of the
second but identical
switching pulse. Reprinted
with permission from
Gruverman and Tanaka
(2001). Copyright (2001),
American Institute of
Physics
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et al., 1997) or a Kolmogorov–Avrami mechanism with the electric field seen by
the domain walls corrected according to the fraction of the backswitched volume
of the film (Ganpule et al., 2002). All in all, there are many scenarios for the
relaxation of SFM-written domains discussed; however, the understanding of the
problem developed so far is not sufficient to distinguish between them.

9.8.2 Through-Electrode PFM

The through-electrode PFM imaging enables getting information on the spatial
distribution of polarization in ferroelectric capacitors. Here of interest is the
information on polarization distribution during switching as well as in the
fatigued and imprinted states.

A comprehensive study of polarization distribution during switching has
been performed by Hong et al. (1999a) and Hong and Setter (2002). PFM
images from PZT film-based capacitors were taken in the pulse mode, i.e.,
these were taken at zero bias after application of poling field pulses of different
amplitudes, between the pulses the material being always set at the remanence.
The analysis of the PFM images revealed an inhomogeneous (over the capacitor
area) character of switching, which can be readily expected. As was pointed out
by Hong et al. (1999b) and Hong and Setter (2002), another remarkable feature
of the typical PFM images is that the switching is accompanied with essential
reduction of the average amplitude of the local piezoelectric signal in a rather
wide interval of the poling field. At the same time, the change of the average
phase takes place in a rather narrow interval of the poling fields close to the
coercive field. This behavior is illustrated in Fig. 9.8.11 for a 295 nm thick
Pb(Zr0.45Ti0.55)O3 film of (111) orientation with 100 nm thick top electrode. The
lateral resolution of this image is not better than 100 nm due to the electrode
thickness. PFM images of higher resolution taken from similar films but with
much thinner top electrode (it was polished down to 10–15 nm) obtained by
Stolichnov et al. (2005a) (see Fig. 9.8.12) document the same behavior but at a
smaller spatial scale: Though the amplitude in the major part of the area scanned
is close to the saturation, apart from the clearly seen domain boundaries there are
regions where the amplitude is essentially reduced.

FollowingHong et al. (1999b) andHong and Setter (2002), the aforementioned
reduction of the amplitude of the PFM signal during polarization reversal can be
readily discussed in terms of a simplified switching model where the polarization
reversal is promoted with 1808 switching with the direction of the polarization
normal to the electrodes and the new domain always nucleates at the electrodes
with domain walls which make small angles with the polarization direction.49 In

49 In (111) Pb(Zr0.45Ti0.55)O3 films discussed, the spontaneous polarization may not be
directed normal to the electrodes so that the real situation may be more complicated than
the considered model. However, this complication does not affect the qualitative conclusions
of the consideration given below in the text.
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Fig. 9.8.11 (a) Through-electrode PFM images of an area of ferroelectric capacitor contain-
ing a PZT film; amplitude—above, phase—below. The images are taken after the applica-
tion of voltage pulses of increasing amplitude (from left to right). The image size 10
 10mm.
(b) The amplitude and phase of the PFM signal averaged over the images taken in the same
experiment plotted as functions of the pulse amplitudes. (Sengbum Hong, private commu-
nication). It is seen in (a) and (b) that the phase switches in a narrower field interval than the
amplitude

Fig. 9.8.12 Images of the
phase (left) and amplitude
(right) of the local
piezoelectric response
measured through a 10 nm
thick top electrode of a Pt/
PZT/Pt capacitor partially
switched with voltage pulses
of 1.2 (a), 1.6 (b), and 2 V (c).
The lateral spatial resolution
of about 20 nm is seen. In the
amplitude image, thin dark
stripes corresponding to the
lowered amplitude at domain
boundaries are seen. After
Stolichnov et al. (2005a,b)
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this framework, two basic scenarios can be distinguished. In the first, traditional

scenario, the switching rate is limited by domain nucleation or/and domain wall

side motion while the time of the forward grows of the nucleated domains is

neglected. In this scenario, the domain pattern during switching should mainly

consist of ‘‘through domain’’ as illustrated in Fig. 9.8.13a and b. We will call it

through scenario. In the alternative scenario, the rate-limiting stage of switching is

the forward growth of newly nucleated domains with ‘‘through domains’’ appear-

ing only at the final stage of the polarization reversal. A polarization distribution

across the film cross-section with a zigzag domain pattern, which is typical for

intermediate stages of switching in this scenario, is schematically shown in

Fig. 9.8.13c. We will call it zigzag scenario.

These scenarios can be readily distinguished using through-electrode PFM

imaging if the image resolution L is better than the typical domain size

(Fig. 9.8.13a). In this case, obviously, the through scenario corresponds to the

amplitude of the piezoresponse, which basically stays during switching at its

saturated (single domain) value, except the narrow vicinity of the domain walls.

At the same time according to the zigzag scenario, a substantial reduction of the

amplitude is possible in an appreciable interval of poling fields. Based on this

reasoning Hong et al. (1999a,b) and Hong and Setter (2002) has interpreted their

results (with an essential amplitude reduction) in terms of the zigzag scenario.
In the case where the typical domain site is smaller than the image resolution

L illustrated in Fig. 9.8.13b, the above reasoning does not hold anymore. In this

case, the piezoelectric response is averaged over L
 L area so that, in the

through scenario, the amplitude can be significantly smaller than its single-

domain value. Thus, if the polarization reversal occurs via the through scenario

with the typical domain spacing smaller than the image resolution, a substantial

reduction of amplitude of the piezoresponse will also be expected.
Finally we see that the PFM results just discussed above are consistent with

both the zigzag scenario and the through scenario with narrow domains.

Fig. 9.8.13 Schematics of
cross-section of a film
containing 1808 domains
(shown in black and white)
with the spontaneous
polarization normal to its
plane. L is the lateral spatial
resolution of PFM. See the
text
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Distinction between these scenarios does not seem possible without additional

experiments. Useful information can be provided by PFM images taken with

different top-electrode thicknesses: In the through scenario, for thinner electro-

des (better resolution) higher amplitudes of the piezoresponse are expected

whereas, in zigzag scenario such dependence is not expected.
Another kind of inhomogeneity of the polarization reversal has been

observed in small capacitors based on (111)-modified PZT films (Stolichnov

et al., 2002a). It has been found that switching of the capacitor can be accom-

panied by backswitching of its central part, the phenomenon taking place for

both direction of switching. PFM images documenting this phenomenon in

2
 3
 0:135 mm3 capacitors are shown in Fig. 9.8.14. The authors (Stolichnov

et al., 2002a) did not observe this effect in capacitors of significantly smaller and

larger areas; however, later the effect has been observed in smaller area capa-

citors as well (A. Gruverman, private communication). The interpretation of

this phenomenon was based on the assumption that, first, the single-domain

state map of PZT (111) film is similar to that PbTiO3 (111) film shown in

Fig. 9.3.7 and, second, the state of the film is close to the line of isomorphic

phase transition. The main point of the interpretation is that the states of the

central (more stressed) and outer (less stressed) parts of the capacitor corre-

spond to the different sides of this transition line. It was shown that in this

situation the antiparallel orientation of out-of-plane component of

Fig. 9.8.14 Maps of the phase (left) and amplitude (right) of piezoelectric response of a capacitor
2
 3 mm containing a (111)-oriented PZT film. (a) Capacitor under dc a voltage of+3V applied
to the bottom electrode. (b) The same measurement repeated after the dc voltage has been
switched off. (c) Capacitor under a dc voltage of –3 V. (d) The same measurement repeated
after the dc voltage of –3 V dc has been switched off. After Stolichnov et al. (2002)
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spontaneous polarization in the central and outer parts of the capacitor may be

energetically favorable (Stolichnov et al., 2002a).
Through-electrode PFM studies also provide information on the state of

ferroelectric capacitors prone to the polarization fatigue and on the imprint

degradation in these systems. It has been found that these phenomena often

occur inhomogeneously across the capacitor area. Gruverman et al. (2003) has

evaluated the imprint in ferroelectric capacitors with (111)-modified PZT films

to find that the central areas of them are stronger prone to imprint than those

peripheral. Through-electrode PFM characterization of PZT by Colla et al.

(1998a) has documented a ‘‘region-by-region’’ type of ‘‘polarization freezing’’

during fatigue testing of the capacitor. PFM images shown in Fig. 9.8.15

illustrate this type of evolution of the local polarization state of ferroelectric

capacitor during a fatigue test.

9.9 Films of Proper Ferroelectric–Ferroelastics

The ferroelectric materials commonly used for thin film processing belong to

the same ferroic class, the class of proper ferroelectrics–improper ferroelastics.

In the previous sections of this chapter, we considered various properties of thin

films of these materials. One of the conclusions that can be drawn from this

consideration is that these properties are strongly affected by the mechanical

coupling between the ferroelectric film and substrate. In this context, it is clear

Fig. 9.8.15 Phase of ‘‘through–electrode’’ PFM images of a Pt/PZT/Pt capacitor: (a) ‘‘As-
prepared’’ and (b) poled. The bright and dark parts of (b) were obtained by poling with
opposite polarity of the applied field, positive and negative, respectively. Images (c) and (d)
were taken from the same capacitor but after 105 and 107 switching cycles followed with
negative poling, respectively. The bright areas in (c) and (d) represent the areas where the
polarization cannot be switched. After Colla et al. (1998a)
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that films of proper ferroelectrics–improper ferroelastics and that of proper
ferroelectrics/ferroelastics can significantly differ in their dielectric, switching,
and domain properties. The origin of this difference is the type of polarization–-
strain coupling in these materials: In the paraelectric phase of proper ferro-
electrics/ferroelastics, the bilinear (piezoelectric) coupling between the polar-
ization and strain takes place whereas in proper ferroelectrics–improper
ferroelastics this coupling is absent. In this section we will discuss the properties
of films of proper ferroelectrics/ferroelastics as they are predicted by the phe-
nomenological theory. Since proper ferroelectrics–ferroelastics are very rare
among ferroelectrics and no experimental information on the films of these
materials is presently available, we will restrict ourselves to a consideration of
one example of such a system. Specifically, we will consider ferroelectric proper-
ties of a film of a KDP-type material on a dissimilar substrate, the direction of
the ferroelectric polarization being normal to the substrate plane. Films of this
orientation are expected to be the most sensitive to the clamping effect of the
substrate since, for this orientation, the ferroelectric polarization is always (at
any temperature) coupled to the shear strain in the plane of the films, which in
turn is fully clamped by the substrate.Wewill consider the problem of the phase
transition into the single-domain ferroelectric state and the dielectric permittiv-
ity of the polydomain state of this system following the paper by Tagantsev
(2005). Films of proper ferroelectrics/ferroelastics are also of interest from the
point of view of the choice of the order parameter in Landau theory. We will
comment on this issue at the end of this section.

The phase transition to the single-domain ferroelectric state can be
approached in terms of Landau theory. According to the results obtained in
this framework for proper ferroelectrics–improper ferroelastics (see Sect. 9.3.2)
the Curie–Weiss temperature T0 in the films may significantly differ from its
value for the bulk material, the effect being driven by the electrostrictive
coupling between the polarization and strain. The essential feature of this effect
is that it vanishes if the parent misfit strain, ePab, is zero. Another manifestation
of the electrostrictive coupling is a renormalization of the coefficient of the
dielectric nonlinearity of the film, which may influence the order of the transi-
tion into the single-domain ferroelectric state. One can readily check that these
effects hold for proper ferroelectrics–ferroelastics. However in the latter, there
exist other effects related to the transition to the single-domain ferroelectric
state. Namely, in proper ferroelectrics–ferroelastics, (i) the mechanical clamp-
ing imposed on the film by the substrate may lead to a shift of T0 even at
vanishing parent misfit strain, ePab ¼ 0 and (ii) the component of parent misfit
strain, which is linearly coupled with the polarization suppresses the phase
transition in the film working like a dc electric field.

We evaluate these effects by using the Gibbs energy expansion for the KDP-
type ferroelectrics given by Eq. (2.3.27) where we keep, apart from the out-of-
plane component of the polarization P3, only one component of stress, which is
linearly coupled with P3, i.e., the in-plane shear stress s6. The rest of the terms
will manifest itself in the effects which are common for proper
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ferroelectrics–improper ferroelastics and proper ferroelectrics/ferroelastics and
discussed in Sect. 9.3.2. Thus, we start from the expansion

F ¼ Fo þ
ao
2
ðT� ToÞP2

3 þ
b
4
P4
3 þ

g
6
P6
3 �

1

2
sP66s

2
6 � b36P3s6: (9:9:1)

It leads us to the following equations of state of the film:

e6 ¼ �
@F
@s6
¼ sP66s6 þ b36P3; (9:9:2)

E3 ¼
@F
@P3
¼ a0ðT� T0ÞP3 þ bP3

3 þ gP5
3 � b36s6: (9:9:3)

For a film deposited onto a substrate, the in-plain shear strain is controlled
by the corresponding component of the parent misfit strain, i.e., e6 ¼ eP6, so
that, from Eqs. (9.9.2) and (9.9.3), we arrive at the equation for the polarization
in the film:

E3 þ
b36

sP66
eP6 ¼ a0ðT� T0 þ dT0ÞP3 þ bP3

3 þ gP5
3; (9:9:4)

dT0 ¼
b236
a0sP66

¼ b236c
P
66e0C; (9:9:5)

where a0 ¼ 1=ðe0CÞ, cP66 ¼ 1=sP66, and C is the Curie–Weiss constant. We clearly
see that the impact of eP6 component of the parent misfit strain is identical to
that of an electric field of Eeff ¼ b36c

P
66eP6 applied normally to the film. Thus,

this component of the parent misfit strain leads to a poling of the film in the
absence of the electric field. Experimentally, this will result in a smearing of the
dielectric anomaly at the Curie–Weiss temperature. According to (9.9.4), the
latter is also modified in the film. It is shifted down, the shift being independent
of the value of the parent misfit strain, in contrast to the case of proper
ferroelectrics–improper ferroelastics. The value of the shift is controlled by
the coupling constant between the polarization and stress b36 and by the in-
plane shear modulus of the ferroelectric cP66. As one could naturally expect, at
b36 ! 0 or cP66 ! 0, the mechanical clamping by the substrate ceases to influ-
ence the order parameter of the transition and dT0 vanishes.

It is instructive to estimate the size of aforementioned effects for KDP films
of the considered orientation. Using the parameters of KDP crystals (Jona and
Shirane, 1962), b36 ¼ 0:15m2=C, cP66 ¼ 0:6
 1010 N=m2, and C ¼ 3250 K, we
find

dT0 � 4K and Eeff � 9eP6
MV=cm: (9:9:6)
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The predicted shift of the Curie–Weiss temperature in theKDP films is small,
though it might be detected experimentally. The poling effect of the film/
substrate lattice mismatch may occur only in the case of a low in-plane sym-
metry of the substrate, which can provide eP6

6¼ 0. The size of this effect is
difficult to evaluate since no information is available on the possible values of
the in-plane shear component of the parent misfit strain in films of KDP-type
ferroelectrics.

In the single-domain state, as is clear from Eq. (9.9.2), the ferroelectric film
considered is stressed. The stress can be released by formation of a 1808 domain
pattern where the sign of the spontaneous deformation eS6 alternates. Elasti-
cally, such domain pattern is similar the a1=a2 domain pattern in tetragonal
(001) perovskite films (see discussion in Sect. 9.3.3.) and it is more energetically
favorable than the metastable single-domain state. However, the dielectric
responses of these systems are quite different.

To illustrate this issue, we will consider the small-signal dielectric response of a
defect-free KDP-type film so that the domain wall motion is not affected by the
pinning caused by defects.We will do it for the situation where the domain pattern
is in equilibrium and dense (film thickness is much greater than the domain period)
and the substrate does not impose parent shear misfit strain on the film (i.e.,
e6 ¼ 0), the situation similar to that addressed in Sect. 9.6.4 for films of a proper
ferroelectric–improper ferroelastic. In this case, the domain states are ‘‘elastically
equivalent’’ (like in the a1=a2 pattern) having the same volume fractions in the
absence of an electric field. The application of the field changes these fractions;
however, the condition e6 ¼ 0 always holds on average (over the volume of the
film), although the local value of the shear strain e6 alternates from domain to
domain. Another essential feature of the system is that, because the domain pattern
is dense, in the main part of the film (except a substrate-adjacent layer having
thickness about the domain period) stress s6 can be treated as homogeneous.Using
the above arguments and averaging Eq. (9.9.2), we readily find a relation

s6 ¼ �cP66b36P3 (9:9:7)

between s6 and the average polarization:

�P3 	 Pþð1=2þ DÞ þ P�ð1=2� DÞ ¼ 2DPS þ
dPþ þ dP�

2
; (9:9:8)

where dPþ ¼ Pþ � PS and dP� ¼ P� þ PS. Here Pþ, P�, and PS are the polar-
ization in the positively and negatively poled domains of the film, and the absolute
value of the spontaneous polarization in the bulk andmechanically free material,
respectively;D is the deviationof the fraction of the positively poled domains from
1/2. Relation (9.9.7) substantially simplifies the calculation of the dielectric
response of the system. In these calculations, first, we find the polarization in the
domains, Pþ and P�, and the average polarization P3 for given D and E3 and,
second,wedetermineDasa functionofE3 to finallyarriveatP3 asa functionofE3.
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The polarization in domains of the dense pattern is controlled by Eq. (9.9.3)
where the stress comes from Eq. (9.9.7). According to the latter, in the non-
poled pattern (i.e., at �P3 ¼ 0) the domains are not stressed so that, in the
absence of the field, their polarization equals �PS. To find the deviations of
the polarization in the domains from these values, dPþ and dP�, which are
driven by the asymmetry of the pattern or/and applied field, Eq. (9.9.8) should
be also take into account. Since we are interested in the small-signal response,
i.e., jdPþj, jdP�j55PS, we can linearize Eq. (9.9.3). Finally, from Eqs. (9.9.3),
(9.9.7), and (9.9.8) we get

dPþw�1 þ cP66b
2
36 2DPS þ

dPþ þ dP�
2

� �
¼ E3; (9:9:9)

dP�w�1 þ cP66b
2
36 2DPS þ

dPþ þ dP�
2

� �
¼ E3; (9:9:10)

for the positive and negative domains, respectively, where
w�1 ¼ a0ðT� T0Þ þ 3bP2

S þ 5gP4
S is the lattice permittivity in the ferroelectric

phase of the bulk material. Further, from Eqs. (9.9.9), (9.9.10), and (9.9.8) we
readily obtain the polarization in the domains and the average polarization of
the domain pattern at given values of E3 and D:

dPþ ¼ dP� ¼
E3 � 2DPSc

P
66b

2
36

w�1 þ cP66b
2
36

; (9:9:11)

�P3 ¼
E3 þ 2DPSw�1

w�1 þ cP66b
2
36

: (9:9:12)

To obtain the asymmetry parameter D as a function of the field we will
consider the average thermodynamic function of the film corresponding to the
condition of fixed electric field ~G:

~G 	 ~Gþð1=2þ DÞ þ ~G�ð1=2� DÞ; (9:9:13)

where ~Gþ and ~G� are the thermodynamic function (cf. Eq. (9.3.19))

~G ¼ Fþ e1s1 þ e2s2 þ e6s6 � P3E3 (9:9:14)

calculated for the two domain states in the film. Using Eqs. (9.9.7), (9.9.8), and
(9.9.11), ~G can be expressed in terms of D and E3 as follows:

~G ¼ 2w�1PS

w�1 þ cP66b
2
36

b236c
P
66PSD

2 � E3D
� �

: (9:9:15)
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Being interested in the small-signal response, we have kept in this expression
only linear and quadratic terms in D. The minimization of this expression with
respect to D gives D as a function of the field:

D ¼ E3

2PSc
P
66b

2
36

: (9:9:16)

Combining (9.9.12) and (9.9.16) we find for the dielectric susceptibility of the
polydomain film

wtot ¼
P3

E3
¼ 1

cP66b
2
36

: (9:9:17)

Interestingly, as seen from Eqs. (9.9.11) and (9.9.16), the polarization in the
domains is not affected by the application of the electric field, since the dielectric
response (from E3) is exactly compensated by the piezoelectric response (from
s6 via D), so that dPþ ¼ dP� ¼ 0.

Thus, we find that the susceptibility of the polydomain state of the film is
independent of temperature. Using the material parameters of KDP given
above, the corresponding value of the relative permittivity can be evaluated as
wtot=e0 � 840. Not too close to the phase transition, this value substantially
exceeds the lattice contribution to the permittivity in the bulk material. This
situation significantly differs from that in the films of proper ferroelectric–im-
proper ferroelastics addressed in Sect. 9.6.4. In the latter case, the domain and
lattice contribution to the permittivity of the film were of the same order, having
similar temperature dependences.

The results obtained above can be illustrated with the calculated temperature
dependence of dielectric permittivity in the KDP film of the considered orienta-
tion, which is shown in Fig. 9.9.1. When plotting this curve, we used Eq. (9.9.4)
for the paraelectric phase and Eq. (9.9.17) for the ferroelectric phase. In addi-
tion it was assumed that, in the film, the phase transition from the paraelectric
to the ferroelectric polydomain state of the film takes place at Tpolyd which is
very close to the transition temperature in the bulk material, T0. This is justified

Fig. 9.9.1 Relative dielectric
susceptibility of a
ferroelectric/ferroelastic
thin film with a dense
domain pattern calculated
for the parameters of KDP.
After Tagantsev (2005)
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for films which are thick enough. The point is as follows. In the dense domain
pattern the material is on average non-stress; this favors the transition to the
multidomain state at T0. However, the gain in the bulk energy of the ferro-
electric state is opposed by the energy of the stray elastic field at the substrate/
ferroelectric interface and the self-energy of the domain walls. The gain in the
bulk energy is obviously proportional to the film thickness h whereas, as was
discussed in Sect. 9.3.3, the optimized sum of the latter two contributions to the
energy of the system is proportional to

ffiffiffi
h
p

. Thus, the thicker the film, the more
dominant the role of the bulk energy and, therefore the closer Tpolyd to T0. For
the moment, no quantitative theory, which could specify T0 � Tpolyd vs. h
dependence for KDP-type films is available in the literature. However, this
difference can be roughly evaluated as (Tagantsev, 2005; Bratkovsky and
Levanyuk, 2001a,b)

T0 � Tpolyd ffi dT0a=h (9:9:18)

where dT0 is coming fromEq. (9.9.5) and a is the atomic spacing in the material.
This implies that, in realistically thick KDP films, the difference T0 � Tpolyd is
really small.

The result obtained above that the permittivity of polydomain proper fer-
roelectric–ferroelastic films is temperature independent (in contrast to a pro-
nounced temperature dependence in films of proper ferroelectric–improper
ferroelastics) can be readily elucidated at least not too close to the phase
transition where the results of the Roytburd mean-strain theory are applicable.
As clear from Sect. 9.6.4, the domain contribution to the dielectric constant
from a ferroelastric domain pattern in a film clamped by a substrate is propor-
tional to P2

S and inversely proportional to the spontaneous deformation
squared. At the same time the spontaneous deformation is proportional to PS

in proper ferroelectric–ferroelastics and to P2
S in proper ferroelectrics–improper

ferroelastics. This implies the domain contribution to the permittivity, which is
temperature independent in proper ferroelectric–ferroelastics whereas in proper
ferroelectrics–improper ferroelastics it goes as 1=P2

S.
To conclude this section wewould like to discuss onemore remarkable feature

of films of proper ferroelectric/ferroelastics. Namely, this system makes an
exemplary case where the choice of the order parameter (between variables
with the same transformation properties) is crucial. In the KDP-type materials,
many features can be described equally well using either P3 or e6 as the order
parameter. In the above analysis we have used P3 as the order parameter. Such
choice corresponds to the case of KDP, the classical example of the system under
consideration, where there is no freedom in choice betweenP3 or e6 since with the
strain as the order parameter one fails to explain the absence of the temperature
anomaly of cP66, which is experimentally documented (Jona and Shirane, 1962).
At the same time, in principle, one may address the same problem using e6 as the
order parameter. Such analysis has been performed by Bratkovsky and Leva-
nyuk (2001a,b) who have arrived at conclusions which are totally different from
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those presented above. Specifically, their theory predicts absolute instability of
the single-domain state (at any temperature) and suppression of the domain
contribution to the dielectric permittivity (in the linear approximation). Here it
is worth mentioning that some of the properties of the system considered may be
rather insensitive to the order parameter choice. For example, though the afore-
mentioned approach by Bratkovsky and Levanyuk is absolutely inapplicable to
the description of the dielectric properties of KDP thin films, the description of
the equilibrium domain pattern obtained within this approach makes a reason-
able approximation.
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Appendix A

32 Point Groups: Notations, Symmetry Elements,

Crystalline Classes, Group Orders, Subgroups,

and Supergroups

Table A.1 Stroganov’s table for 32 point groups

Mono niccli

Triclinic

Orthorhombic

Trigonal

Hexagonal

Tetragonal

Cubic

polar centrosymmetric

2 m 2/m

mm2 mmm222

(C1 ) (Ci )

(C2 ) (Cs ) (C2h )

(C2v ) (D2 ) (D2h )

(C3 ) (S6 ) (C3v ) (D3 ) (D3d )

(S4 ) (D2d )(C4 ) (C4h ) (C4v ) (D4 ) (D4h )

(C3h ) (D3h )(C6 ) (C6h ) (C6v ) (D6 ) (D6h )

(T) (Th ) (Td ) (O) (Oh )
432m323 43m m3m

6/mmm6mm6 62m 6226/m6

3 323m 3m3

1 1

4mm 4224 4/m 4/mmm4 42m

A.K. Tagantsev et al., Domains in Ferroic Crystals and Thin Films,
DOI 10.1007/978-1-4419-1417-0, � Springer ScienceþBusiness Media, LLC 2010
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Table A.2 Group orders, subgroups, and supergroups among the 32 point groups

The second column gives the order of the group. The asterisk at the top of each vertical
column indicates the supergroup. The �’s vertically below it indicate the subgroups which
belong to this supergroup. Adapted from Bloss (1971).
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Appendix B

Ferroic Species

Table B.1 Ferroic species

1 Species no. 2 Species designation 3 nF 4 q 5 qP 6 q" 7 qd 8 qs 9

001 m�3m� d� �43m 1 2 0 1 2 1

002 m�3m� 432 1 2 0 1 0 1 "[V2]

003 m�3m�m3 1 2 0 1 0 1 {V2V2}

004 m�3m� d� 23 1 4 0 1 2 1 RR

005 m�3m� "s� �3xyzm�xy 4 4 0 4 0 4

006 m�3m� P"ds� 3xyzm�xy 4 8 8 4 8 4

007 m�3m� "ds� 3xyz2�xy 4 8 0 4 8 4

008 m�3m� "s� �3xyz 4 8 0 4 0 8

009 m�3m� Pds� 3xyz 4 16 8 4 16 8 RR

010 m�3m� "s� 4z=mxmymz 3 3 0 3 0 3

011 m�3m� "ds� �4z2xymx 3 6 0 3 6 3 1

012 m�3m� "ds� �4z2xmxy 3 6 0 3 6 3 1

013 m�3m� P"ds� 4zmxmxy 3 6 6 3 6 3

014 m�3m� "ds� 4z2x2xy 3 6 0 3 6 3

015 m�3m�"s�4z/mz 3 6 0 3 0 6

016 m�3m� "ds� �4 3 12 0 3 12 6 RR

017 m�3m� P"ds� 4 3 12 6 3 12 6

018 m�3m� "s�mxmymz 1 6 0 6 0 6

019 m�3m� "s�mxym�xymz 3 6 0 6 0 6

020 m�3m� P"ds�mxmy2z 3 12 6 6 12 6

021 m�3m� P"ds�mxym�xy2z 3 12 6 6 12 6 RR

022 m�3m� P"ds�m�xymz2xy 6 12 12 6 12 6 RR

023 m�3m� "ds� 2x2y2z 1 12 0 6 12 6

024 m�3m� "ds� 2xy2�xy2z 3 12 0 6 12 6 RR

025 m�3m� "s� 2xy=mxy 6 12 0 12 0 12 2 IRs

026 m�3m� "s� 2z=mz 3 12 0 12 0 12 RR

027 m�3m� P"ds�mz 3 24 24 12 24 12 2 IRs

028 m�3m� P"ds�mxy 6 24 24 12 24 12

029 m�3m� P"ds� 2xy 6 24 12 12 24 12

030 m�3m� P"ds� 2z 3 24 6 12 24 12 RR

031 m�3m� "s� �1 1 24 0 24 0 24 2 IRs

032 m�3m� P"ds� 1 1 48 48 24 24 24 2 IRs



Table B.1 (continued)

1 Species no. 2 Species designation 3 nF 4 q 5 qP 6 q" 7 qd 8 qs 9

033 �43m� 23 1 2 0 1 1 1 "[V2]

034 �43m� P"ds� 3xyzm�xy 4 4 4 4 4 4

035 �43m� P"ds� 3xyz 4 8 4 4 4 8

036 �43m� "ds� �4z2xmxy 3 3 0 3 3 3

037 �43m� "ds� �4z 3 6 0 3 6 6

038 �43m� P"ds�mxym�xy2z 3 6 6 6 6 6

039 �43m� "ds� 222 1 6 0 6 6 6

040 �43m� P"ds�mxy 6 12 12 12 12 12 2 IRs

041 �43m� P"ds� 2z 3 12 6 12 12 12 RR

042 �43m� P"ds� 1 1 24 24 24 24 24 2 IRs

043 432�d�23 1 2 0 1 2 1

044 432� "ds� 3xyz2�xy 4 4 0 4 4 4

045 432�P"ds�3xyz 4 8 8 4 8 8

046 432�"ds�4z2x2xy 3 3 0 3 3 3

047 432�P"ds�4z 3 6 6 3 6 6

048 432�"ds�2x2y2z 1 6 0 6 6 6

049 432� "ds� 2xy2�xy2z 3 6 0 6 6 6

050 432�P"ds�2xy 6 12 12 12 12 12

051 432�P"ds�2z 3 12 6 12 12 12 RR

052 432�P"ds�1 1 24 24 24 24 24 2 IRs

053 m�3� d� 23 1 2 0 1 2 1

054 m�3� "s� �3xyz 4 4 0 4 0 4

055 m�3� P"ds� 3xyz 4 8 8 4 8 4

056 m�3� "s�mmm 1 3 0 3 0 3

057 m�3� P"ds�mxmy2z 3 6 6 3 6 3

058 m�3� "ds� 222 1 6 0 3 6 3

059 m�3� "s� 2z=mz 3 6 0 6 0 6

060 m�3� P"ds�mz 3 12 12 6 12 6

061 m�3� P"ds� 2z 3 12 6 6 12 6 RR

062 m�3� s� �1 1 12 0 12 0 12

063 m�3� P"ds� 1 1 24 24 12 24 12

064 23�P"ds�3xyz 4 4 4 4 4 4

065 23�"ds�222 1 3 0 3 3 3

066 23�P"ds�2 3 6 6 6 6 6

067 23�P"ds�1 1 12 12 12 12 12

068 6=mmm� d� �6zmy2x 1 2 0 1 2 1

6=mmm� d� �6zmx2y
069 6/mmm�Pd�6mm 1 2 2 1 2 1

070 6/mmm�d�622 1 2 0 1 2 1

071 6/mmm�6/m 1 2 0 1 2 1 "V[V2]

072 6=mmm� d� �6 1 4 0 1 4 1 RR

073 6/mmm�Pd�6 1 4 2 1 4 1 RR

074 6=mmm� s� �3zmx 1 2 0 1 2 2

6=mmm� s� �3zmy

075 6=mmm� Pds� 3zmx 1 4 2 1 4 2 RR

6=mmm� Pds� 3zmy
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Table B.1 (continued)

1 Species no. 2 Species designation 3 nF 4 q 5 qP 6 q" 7 qd 8 qs 9

076 6=mmm� ds� 3z2x 1 4 0 1 4 2 RR

6=mmm� ds� 3z2y
077 6=mmm� s� �3 1 4 0 1 0 4 RR

078 6/mmm�Pds�3 1 8 2 1 8 4 RR

079 6=mmm� "s�mxmymz 3 3 0 3 3 3

080 6=mmm� P"ds�mxmy2z 3 6 2 3 6 3

081 6=mmm� P"ds�mxmz2y 3 6 6 3 6 3

6=mmm� P"ds�mymz2x
082 6/mmm�"ds�222 3 6 0 3 6 3

083 6=mmm� "s� 2x=mx 3 6 0 6 0 6

6=mmm� "s� 2y=my

084 6/mmm�"s�2z/mz 1 6 0 6 0 6

085 6/mmm�P"ds�mx 3 12 12 6 12 6 RR

6/mmm�P"ds�my

086 6/mmm�P"ds�mz 1 12 12 6 12 6

087 6=mmm� P"ds� 2x 3 12 6 6 12 6 RR

6=mmm� P"ds� 2y
088 6/mmm�P"ds�2z 1 12 2 6 12 6

089 6=mmm� s� �1 1 12 0 12 0 12

090 6/mmm�P"ds�1 1 24 24 12 24 12 RR

091 �6m2� d� �6 1 2 0 1 2 1

092 �6m2� Pds� 3m 1 2 2 1 2 2

093 �6m2� ds� 32 1 2 0 1 2 2

094 �6m2� Pds� 3 1 4 2 1 4 4 RR

095 �6m2� P"ds�mxmz2y 3 3 3 3 3 3

096 �6m2� P"ds�mz 1 6 6 6 6 6

097 �6m2� P"ds�mx 3 6 6 6 6 6

098 �6m2� P"ds� 2y 3 6 3 6 6 6

099 �6m2� P"ds� 1 1 12 12 12 12 12

100 6mm�d�6 1 2 1 1 2 1

101 6mm�ds�3zmx 1 2 1 1 2 2

6mm�ds�3zmy

102 6mm�ds�3 1 4 1 1 4 4 RR

103 6mm�"ds�mxmy2z 3 3 1 3 3 3

104 6mm� P"ds�mx 3 6 6 6 6 6

6mm� P"ds�my

105 6mm�"ds�2z 1 6 1 6 6 6

106 6mm�P"ds�1 1 12 12 12 12 12

107 622�Pd�6 1 2 2 1 2 1

108 622�ds�3z2x 1 2 0 1 2 2

622��ds�3z2y
109 622�Pds�3 1 4 2 1 4 4 RR

110 622�"ds�2x2y2z 3 3 0 3 3 3

111 622� P"ds� 2x 3 6 6 6 6 6

622� P"ds� 2y
112 622�P"ds�2z 1 6 2 6 6 6

Appendix B 717



Table B.1 (continued)

1 Species no. 2 Species designation 3 nF 4 q 5 qP 6 q" 7 qd 8 qs 9

113 622�P"ds�1 1 12 12 12 12 12

114 6=m� d� �6 1 2 0 1 2 1

115 6/m�Pd�6 1 2 2 1 2 1

116 6=m� s� �3 1 2 0 1 0 2

117 6/m�Pds�3 1 4 2 1 4 2 RR

118 6/m�"s�2/m 1 3 0 3 0 3

119 6/m�P"ds�m 1 6 6 3 6 3

120 6/m�P"ds�2 1 6 2 3 6 3

121 6=m� "s� �1 1 6 0 6 0 6

122 6/m�P"ds�1 1 12 12 6 12 12 RR

123 �6� Pds� 3 1 2 2 1 2 2

124 �6� P"ds�m 1 3 3 3 3 3

125 �6� P"ds� 1 1 6 6 6 6 6

126 6�ds�3 1 2 1 1 2 2

127 6�"ds�2 1 3 1 3 3 3

128 6�P"ds�1 1 6 6 6 6 6

129 �3m� Pd� 3m 1 2 2 1 2 1

130 �3m� d� 32 1 2 0 1 2 1

131 �3m� s� �3 1 2 0 1 0 2

132 �3m� Pds� 3 1 4 2 1 4 2 RR

133 �3m� "s� 2=m 3 3 0 3 0 3

134 �3m� P"ds�m 3 6 6 3 6 3

135 �3m� P"ds� 2 3 6 6 3 6 3

136 �3m� "s� �1 1 6 0 6 0 6

137 �3m� P"ds� 1 1 12 12 6 12 6

138 3m�ds�3 1 2 1 1 2 2

139 3m�P"ds�m 3 3 3 3 3 3

140 3m�P"ds�1 1 6 6 6 6 6

141 32�Pds�3 1 2 2 1 2 2

142 32�P"ds�2 3 3 3 3 3 3

143 32�P"ds�1 1 6 6 6 6 6

144 �3� Pd� 3 1 2 2 1 2 1

145 �3� "s� �1 1 3 0 3 0 3

146 �3� P"ds� 1 1 6 6 3 6 3

147 3�P"ds�1 1 3 3 3 3 3

148 4=mmm� d� �4z2xmxy 1 2 0 1 2 1

4=mmm� d� �4z2xymx

149 4/mmm�Pd�4mm 1 2 2 1 2 1

150 4/mmm�d�422 1 2 0 1 2 1

151 4/mmm�s�4/m 1 2 0 1 0 2

152 4=mmm� ds� �4 1 4 0 1 4 2 RR

153 4/mmm�Pds�4 1 4 2 1 4 2 RR

154 4=mmm� "s�mxmymz 1 2 0 2 0 2

4=mmm� "s�mxym�xymz

155 4/mmm�P"ds�mymz2x 2 4 4 2 4 2

4=mmm� P"ds�m�xymz2xy
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Table B.1 (continued)

1 Species no. 2 Species designation 3 nF 4 q 5 qP 6 q" 7 qd 8 qs 9

156 4/mmm�P"ds�mxmy2z 1 4 2 2 4 2 RR

4=mmm� P"ds�mxym�xy2z
157 4=mmm� "ds� 2x2y2z 1 4 0 2 4 2 RR

4=mmm� "ds� 2xy2�xy2z
158 4=mmm� "s� 2x=mx 2 4 0 4 0 4

4=mmm� "s� 2xy=mxy

159 4/mmm�"s�2z/mz 1 4 0 4 0 4 RR

160 4=mmm� P"ds�mx 2 8 8 4 8 4 RR

4=mmm� P"ds�mxy

161 4/mmm�P"ds�mz 1 8 8 4 8 4

162 4=mmm� P"ds� 2x 2 8 4 4 8 4 RR

4=mmm� P"ds� 2xy RR

163 4/mmm�P"ds�2z 1 8 2 4 8 4 RR

164 4=mmm� "s� �1 1 8 0 8 0 8

165 4/mmm�P"ds�1 1 16 16 8 16 8 RR

166 �42m� ds� �4 1 2 0 1 2 2

167 �42m� P"ds�mm2 1 2 2 2 2 2

168 �42m� "ds� 222 1 2 0 2 2 2

169 �42m� P"ds�mxy 2 4 4 4 4 4

170 �42m� P"ds� 2x 2 4 4 4 4 4

171 �42m� P"ds� 2z 1 4 2 4 4 4 RR

172 �42m� P"ds� 1 1 8 8 8 8 8

173 4mm�ds�4 1 2 1 1 2 2

174 4mm� "ds�mxmy2z 1 2 1 2 2 2

4mm� "ds�mxym�xy2z
175 4mm� P"ds�mx 2 4 4 4 4 4

4mm� P"ds�mxy

176 4mm�"ds�2 1 4 1 4 4 4 RR

177 4mm�P"ds�1 1 8 8 8 8 8

178 422�Pds�4 1 2 2 1 2 2

179 422� "ds� 2x2y2z 1 2 0 2 2 2

422� "ds� 2xy2�xy2z
180 422� P"ds� 2x 2 4 4 4 4 4

422� P"ds� 2xy
181 422�P"ds�2z 1 4 2 4 4 4 RR

182 422�P"ds�1 1 8 8 8 8 8

183 4=m� d� �4 1 2 0 1 2 1

184 4/m�Pd�4 1 2 2 1 2 1

185 4/m�"s�2/m 1 2 0 2 0 2

186 4/m�P"ds�m 1 4 4 2 4 2

187 4/m�P"ds�2 1 4 2 2 4 2 RR

188 4/m�"s��1 1 4 0 4 0 4

189 4/m�P"ds�1 1 8 8 4 8 4 RR

190 �4� P"ds� 2 1 2 2 2 2 2

191 �4� P"ds� 1 1 4 4 4 4 4

192 4�"ds�2 1 2 1 2 2 2
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Table B.1 (continued)

1 Species no. 2 Species designation 3 nF 4 q 5 qP 6 q" 7 qd 8 qs 9

193 4�P"ds�1 1 4 4 4 4 4

194 mmm� Pd�mxmy2z 1 2 2 1 2 1

mmm� Pd�mxmz2y
mmm� Pd�mymz2x

195 mmm� d� 222 1 2 0 1 2 1

196 mmm� "s� 2x=mz 1 2 0 2 0 2

mmm� "s� 2y=my

mmm� "s� 2z=mx

197 mmm� P"ds�mx 1 4 4 2 4 2 RR

mmm� P"ds�my

mmm� P"ds�mz

198 mmm� P"ds� 2x 1 4 2 2 4 2 RR

mmm� P"ds� 2y
mmm� P"ds� 2z

199 mmm� "s� �1 1 4 0 4 0 4 RR

200 mmm� P"ds� 1 1 8 8 4 8 4 RR

201 mm2� P"ds�mx 1 2 2 2 2 2

mm2� P"ds�my

202 mm2� "ds� 2 1 2 1 2 2 2

203 mm2� P"ds� 1 1 4 4 4 4 4 RR

204 222�P"ds�2x 1 2 2 2 2 2

222�P"ds�2y
222�P"ds�2z

205 222� P"ds� 1 1 4 4 4 4 4 RR

206 2=m� Pd�m 1 2 2 1 2 1

207 2=m� Pd� 2 1 2 2 1 2 1

208 2=m� "s� �1 1 2 0 2 0 2

209 2=m� P"ds� 1 1 4 4 2 4 2 RR

210 m� P"ds� 1 1 2 2 2 2 2

211 2� P"ds� 1 1 2 2 2 2 2

212 �1� Pd� 1 1 2 2 1 2 1

Column 1: sequential number of the species. Column 2: symbol of the species. Column 3:
number of equivalent subgroups F. Column 4: total number of domain states. Column 5:
number of ferroelectric domain states. Here 0 means that F is nonpolar while 1 means that F is
pyroelectric with only one orientation of PS (or better to say, of the pyroelectric coefficient).
Column 6: number of ferroelastic domain states. Number 1 means that F is nonferroelastic.
Column 7: number qd of domain states differing in the piezoelectric tensor or, more generally,
in the tensor of symmetry V[V2] or [V2]V. Here number 0 means that F is not piezoelectric
while 1 means that F is piezoelectric but has no new components of the appropriate tensor.
Column 8: number of ferrobielastic domain states. Here 1 means that the compliance matrix
has no new components in the distorted phase. Column 9: the lowest order tensor in which
some domain states are distinguished for higher order ferroics; symbols ‘‘2 IRs’’ and ‘‘RR’’
indicate that the transition is induced by two different irreducible representations or by a
reducible representation, respectively
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Appendix D

Spontaneous Polarization, Spontaneous Strain,

and Orientation of Domain Walls in Ferroic

Species

In the tables of this appendix, one finds the information on the spontaneous
polarization, spontaneous strain, and orientation of domain walls (DW) in all
ferroic species. These tables are compiled by Dr. J. Erhart based on his paper
(2004) with corrections.

Table D.1 gives the general information on the ferroic domain states, types of
the domain wall separating them, and the number of the table (from Tables. D.2,
D.3,D.4,D.5,D.6,D.7,D.8,D.9,D.10,D.11,D.12,D.13,D.14,D.15,D.16,D.17,
D.18, D.19, D.20, D.21, D.22, D.23, D.24, D.25, D.26, D.27, D.28, D.29, and
D.30) containing the detailed information for a given species. The table number
applies to the species of the same line and all following ones until a new table
number appears. Tables D.2, D.3, D.4, D.5, D.6, D.7, D.8, D.9, D.10, D.11, D.12,
D.13, D.14, D.15, D.16, D.17, D.18, D.19, D.20, D.21, D.22, D.23, D.24, D.25,
D.26, D.27, D.28, D.29, andD.30 give the wall orientations in the case where these
are conditioned by the mechanical effects, i.e. in the case ofW1 walls no informa-
tion on the wall orientation is given. The wall orientation is specified with the
components of its normal vector expressed in orthogonal or hexagonal basis
(standard crystallographic coordinate choice). The coordinate system is adopted
the same as in parent phase. In the titles of Tables D.2, D.3, D.4, D.5, D.6, D.7,
D.8,D.9,D.10,D.11,D.12,D.13,D.14,D.15,D.16,D.17,D.18,D.19,D.20,D.21,
D.22, D.23, D.24, D.25, D.26, D.27, D.28, D.29, and D.30, the change of the
crystalline class at the phase transitions addressed in the table is indicated.

Table D.1 General information on domain states and types of the domain wall

1 Species
no.

2 Species
designation

3
q"

4
qP

5 Domain wall pairs
Charge/neutrality of domain walls

6 Table
no.

212 �1! 1 1 2 WN
1 �WC

1 D.2

207 2=m! 2 1 2 WN
1 �WC

1 D.9

206 2=m! m 1 2 WN
1 �WC

1
211 2! 1 2 2 WN

f � SC D.3

210 m! 1 2 2 WC
f � SN

209 2=m! 1 2 4 WN;C
f � SC;N

208 2=m! �1 2 0 Wf � S

194 mmm! mm2 1 2 WN
1 �WC

1 D.21

197 mmm! mx 2 4 WN;C
f �WC;N

f D.10



Table D.1 (continued)

1 Species
no.

2 Species
designation

3
q"

4
qP

5 Domain wall pairs
Charge/neutrality of domain walls

6 Table
no.

198 mmm! 2x 2 2 WN
f �WN

f

196 mmm! 2x=mx 2 0 W f �W f

201 mm2! mx 2 2 WN
f �WC

f

204 222! 2x 2 2 WN
f �WN

f

202 mm2! 2z 2 1 WN
f �WN

f D.11

200 mmm! 1 4 8 WN;C
f � SC;N D.4

199 mmm! �1 4 0 Wf � S

203 mm2! 1 4 4 WN
f � SC, WC

f � SN

205 222! 1 4 4 WN
f � SC

149 4=mmm! 4mm 1 2 WN
1 �WC

1 D.28

153 4=mmm! 4 1 2 WN
1 �WC

1
184 4=m! 4 1 2 WN

1 �WC
1

178 422! 4 1 2 WN
1 �WC

1
154 4=mmm! mxmymz 2 0 W f �W f D.22

155 4=mmm! 2xmymz 2 4 WN;C
f �WC;N

f

156 4=mmm! mxmy2z 2 2 WN
f �WN

f

157 4=mmm! 2x2y2z 2 0 W f �W f

168 �42m! 2x2y2z 2 0 W f �W f

174 4mm! mxmy2z 2 1 WN
f �WN

f

179 422! 2x2y2z 2 0 W f �W f

167 �42m! mxym�xy2z 2 2 WN
f �WN

f D.23

162 4=mmm! 2x 3 4 WN
f �WN

f , W
N;C
f � SC;N D.12

160 4=mmm! mx 3 8 WN;C
f �WC;N

f , WN;C
f � SC;N

158 4=mmm! 2x=mx 3 0 Wf �W f, W f � S

170 �42m! 2x 3 4 WN
f �WN

f , W
C
f � SN

175 4mm! mx 3 4 WN
f �WC

f , W
C
f � SN

180 422! 2x 3 4 WN
f �WN

f , W
N
f � SC

163 4=mmm! 2z 4 2 WN
f �WN

f , S
N � SN D.13

161 4=mmm! mz 4 8 WN;C
f �WC;N

f , S� � S�

159 4=mmm! 2z=mz 4 0 W f �W f, S� S

171 �42m! 2z 4 2 WN
f �WN

f , S
N � SN

176 4mm! 2z 4 1 WN
f �WN

f , S
N � SN

181 422! 2z 4 2 WN
f �WN

f , S
N � SN

187 4=m! 2z 2 2 SN � SN

186 4=m! mz 2 4 S� � S�

185 4=m! 2z=mz 2 0 S� S

190 �4! 2z 2 2 SN � SN

192 4! 2z 2 1 SN � SN

169 �42m! mxy 4 4 WN
f �WC

f , W
N
f � SvC D.14

165 4=mmm! 1 8 16 R, WN;C
f � SC;N D.5

164 4=mmm! �1 8 0 R, W f � S

172 �42m! 1 8 8 R, WN
f � SC, WC

f � SN

177 4mm! 1 8 8 R, WN
f � SC, WC

f � SN

182 422! 1 8 8 R, WN
f � SC

189 4=m! 1 4 8 R, WN;C
f � SC;N
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Table D.1 (continued)

1 Species
no.

2 Species
designation

3
q"

4
qP

5 Domain wall pairs
Charge/neutrality of domain walls

6 Table
no.

188 4=m! �1 4 0 R, W f � S

191 �4! 1 4 4 R, WN
f � SC

193 4! 1 4 4 R, WN
f � SC

129 �3m! 3m 1 2 WN
1 �WC

1 D.28

132 �3m! 3 1 2 WN
1 �WC

1
141 32! 3 1 2 WN

1 �WC
1

144 �3! 3 1 2 WN
1 �WC

1
134 �3m! mx 3 6 WN;C

f � SC;N D.15

135 �3m! 2x 3 6 WN;C
f � SC;N

133 �3m! 2x=mx 3 0 W f � S

139 3m! mx 3 3 WC
f � SN

142 32! 2x 3 3 WN
f � SC

137 �3m! 1 6 12 R, WN;C
f � SC;N D.6

136 �3m! �1 6 0 R, W f � S

140 3m! 1 6 6 R, WC
f � SN

143 32! 1 6 6 R,WN
f � SC

145 �3! �1 3 0 R

146 �3! 1 3 6 R

147 3! 1 3 3 R

69 6=mmm! 6mm 1 2 WN
1 �WC

1 D.28

73 6=mmm! 6 1 2 WN
1 �WC

1
107 622! 6 1 2 WN

1 �WC
1

115 6=m! 6 1 2 WN
1 �WC

1
75 6=mmm! 3zmx 1 2 WN

1 �WC
1 D.28

78 6=mmm! 3 1 2 WN
1 �WC

1
92 �6m2! 3zmx 1 2 WN

1 �WC
1

94 �6m2! 3 1 2 WN
1 �WC

1
109 622! 3 1 2 WN

1 �WC
1

123 �6! 3 1 2 WN
1 �WC

1
117 6=m! 3 1 2 WN

1 �WC
1

79 6=mmm! mxmymz 3 0 W f �W f D.24

80 6=mmm! mxmy2z 3 2 WN
f �WN

f

81 6=mmm! 2xmymz 3 6 WN;C
f �WC;N

f

82 6=mmm! 2x2y2z 3 0 W f �W f

95 �6m2! mx2ymz 3 3 WN
f �WC

f

103 6mm! mxmy2z 3 1 WN
f �WN

f

110 622! 2x2y2z 3 0 W f �W f

87 6=mmm! 2x 6 6 WN
f �WN

f , W
N;C
f � SC;N D.16

85 6=mmm! mx 6 12 WN;C
f �WC;N

f , WN;C
f � SC;N

83 6=mmm! 2x=mx 6 0 W f �W f, W f � S

97 �6m2! mx 6 6 WN
f �WC

f , W
N
f � SC, WC

f � SN

104 6mm! mx 6 6 WN
f �WC

f , W
C
f � SN

111 622! 2x 6 6 WN
f �WN

f , W
N
f � SC

88 6=mmm! 2z 6 2 WN
f �WN

f , S
N � SN D.17

86 6=mmm! mz 6 12 WN;C
f �WC;N

f , S� � S�
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Table D.1 (continued)

1 Species
no.

2 Species
designation

3
q"

4
qP

5 Domain wall pairs
Charge/neutrality of domain walls

6 Table
no.

84 6=mmm! 2z=mz 6 0 W f �W f, S� S

96 �6m2! mz 6 6 WN
f �WC

f , S
� � S�

105 6mm! 2z 6 1 WN
f �WN

f , S
N � SN

112 622! 2z 6 2 WN
f �WN

f , S
N � SN

120 6=m! 2z 3 2 SN � SN

119 6=m! mz 3 6 S� � S�

118 6=m! 2z=mz 3 0 S� S

124 �6! mz 3 3 S� � S�

127 6! 2z 3 1 SN � SN

98 �6m2! 2y 6 3 WN
f �WN

f , W
N
f � SC, WC

f � SN D.18

90 6=mmm! 1 12 24 R, WN;C
f � SC;N D.7

89 6=mmm! �1 12 0 R, W f � S

99 �6m2! 1 12 12 R, WN
f � SC, WC

f � SN

106 6mm! 1 12 12 R, WN
f � SC, WC

f � SN

113 622! 1 12 12 R, WN
f � SC

122 6=m! 1 6 12 R, WN;C
f � SC;N

121 6=m! �1 6 0 R, W f � S

125 �6! 1 6 6 R, WC
f � SN

128 6! 1 6 6 R, WN
f � SC

5 m�3m! �3xyzm�xy 4 0 W f �W f D.30

6 m�3m! 3xyzm�xy 4 8 WN;C
f �WC;N

f

7 m�3m! 3xyz2�xy 4 0 W f �W f

8 m�3m! �3xyz 4 0 W f �W f

9 m�3m! 3xyz 4 8 WN;C
f �WC;N

f

34 �43m! 3xyzm�xy 4 4 WN
f �WC

f

35 �43m! 3xyz 4 4 WN
f �WC

f

44 432! 3xyz2�xy 4 0 W f �W f

45 432! 3xyz 4 8 WN;C
f �WC;N

f

54 m�3! �3xyz 4 0 W f �W f

55 m�3! 3xyz 4 8 WN;C
f �WC;N

f

64 23! 3xyz 4 4 WN
f �WC

f

10 m�3m! 4z=mzmxmy 3 0 W f �W f D.29

13 m�3m! 4zmxmxy 3 6 WN;C
f �WC;N

f

11 m�3m! �4z2xymx 3 0 W f �W f

12 m�3m! �4z2xmxy 3 0 W f �W f

14 m�3m! 4z2x2xy 3 0 W f �W f

15 m�3m! 4z=mz 3 0 W f �W f

16 m�3m! �4 3 0 W f �W f

17 m�3m! 4 3 6 WN;C
f �WC;N

f

36 �43m! �4z2xmxy 3 0 W f �W f

37 �43m! �4 3 0 W f �W f

46 432! 4z2x2xy 3 0 W f �W f

47 432! 4 3 6 WN;C
f �WC;N

f

18 m�3m! mxmymz 6 0 R, W f �W f D.25

20 m�3m! mxmy2z 6 6 R, WN
f �WN

f , W
N;C
f �WC;N

f
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Table D.1 (continued)

1 Species
no.

2 Species
designation

3
q"

4
qP

5 Domain wall pairs
Charge/neutrality of domain walls

6 Table
no.

23 m�3m! 2x2y2z 6 0 R, W f �W f

39 �43m! 222 6 0 R, W f �W f

48 432! 2x2y2z 6 0 R, W f �W f

56 m�3! mmm 3 0 R

57 m�3! mxmy2z 3 6 R

58 m�3! 222 3 0 R

65 23! 222 3 0 R

21 m�3m! mxym�xy2z 6 6 WN
f �WN

f , W
N;C
f � SC;N D.26

19 m�3m! mxym�xymz 6 0 W f �W f, W f � S

24 m�3m! 2xy2�xy2z 6 0 W f �W f, W f � S

49 432! 2xy2�xy2z 6 0 W f �W f, W f � S

22 m�3m! 2xym�xymz 6 12 WN;C
f �WC;N

f , WN;C
f � SC;N D.27

38 �43m! mxym�xy2z 6 6 WN
f �WN

f , W
C
f � SN

29 m�3m! 2xy 12 12 R, WN
f �WN

f , W
N;C
f � SC;N D.19

28 m�3m! mxy 12 24 R, WN;C
f �WC;N

f , WN;C
f � SC;N

25 m�3m! 2xy=mxy 12 0 R, W f �W f, W f � S

40 �43m! mxy 12 12 R, WN
f �WC

f , W
N
f � SC, WC

f � SN

50 432! 2xy 12 12 R, WN
f �WN

f , W
N
f � SC

30 m�3m! 2z 12 6 R, WN
f �WN

f , W
N;C
f � SC;N,

SN � SN
D.20

27 m�3m! mz 12 24 R, WN;C
f �WC;N

f , WN;C
f � SC;N,

S� � S�

26 m�3m! 2z=mz 12 0 R, W f �W f, W f � S, S� S

41 �43m! 2z 12 6 R, WN
f �WN

f , W
C
f � SN, SN � SN

51 432! 2z 12 6 R, WN
f �WN

f , W
N
f � SC, SN � SN

61 m�3! 2z 6 6 R, WN
f �WN

f

60 m�3! mz 6 12 R, WN;C
f �WC;N

f

59 m�3! 2z=mz 6 0 R, W f �W f

66 23! 2z 6 6 R, WN
f �WN

f

32 m�3m! 1 24 48 R, WN;C
f � SC;N D.8

31 m�3m! �1 24 0 R, W f � S

42 �43m! 1 24 24 R, WN
f � SC, WC

f � SN

52 432! 1 24 24 R,WN
f � SC

63 m�3! 1 12 24 R, WN;C
f � SC;N

62 m�3! �1 12 0 R, W f � S

67 23! 1 12 12 R, WN
f � SC

1 m�3m! �43m 1 0

2 m�3m! 432 1 0

3 m�3m! m�3 1 0

4 m�3m! 23 1 0

33 �43m! 23 1 0

43 432! 23 1 0

53 m�3! 23 1 0

68 6=mmm! �6zmy2x 1 0

70 6=mmm! 622 1 0
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Table D.1 (continued)

1 Species
no.

2 Species
designation

3
q"

4
qP

5 Domain wall pairs
Charge/neutrality of domain walls

6 Table
no.

71 6=mmm! 6=m 1 0

72 6=mmm! �6 1 0

74 6=mmm! �3zmx 1 0

76 6=mmm! 3z2x 1 0

77 6=mmm! �3 1 0

91 �6m2! �6 1 0

93 �6m2! 32 1 0

108 622! 3z2x 1 0

114 6=m! �6 1 0

116 6=m! �3 1 0

130 �3m! 32 1 0

131 �3m! �3 1 0

148 4=mmm! �4z2xmxy 1 0

150 4=mmm! 422 1 0

151 4=mmm! 4=m 1 0

152 4=mmm! �4 1 0

166 �42m! �4 1 0

183 4=m! �4 1 0

195 mmm! 222 1 0

100 6mm! 6 1 1

101 6mm! 3zmx 1 1

102 6mm! 3 1 1

126 6! 3 1 1

138 3m! 3 1 1

173 4mm! 4 1 1

Column 1: sequential number of the species. Column 2: symbol of the species. Column 3:
number of ferroelastic domain states. Column 4: number of ferroelectric domain states.
Column 5: type of permissible pairs of domain walls (domain wall orientation symbols:
W1-arbitrary,Wf -fixed, S-dependent on spontaneous strains,R-no walls). Charge/neutrality
of ferroelectric domain walls is labeled by superscript C, N, respectively For centrosymmetric
parent phases both superscripts are used in some cases, i.e. the same domain wall is either
charged or neutral according to the choice of spontaneous polarization pair (antiparallel
spontaneous polarizations are allowed in such species). When the charge/neutrality of a
domain wall depends on the specific values of spontaneous strains, it is labeled by super-
script*. Column 6: number of the table containing the detailed information on domain states
and orientations of domain walls for given species. The table number applies to the species of
the same line and all following ones until a new table number appears.The last 34 rows: species
belonging to high-order ferroics where the domain states are distinguishable neither by
spontaneous polarization nor by spontaneous strain. Here, the domain walls are of W1
type and electroneutral for any orientation.
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Table D.2 Triclinic to triclinic

Species strains �1! 1 polarizations

1 "1 "2 "3
"4 "5 "6

� �
P1 P2 P3ð Þ

�P1 �P2 �P3ð Þ

Table D.4 Orthorhombic to triclinic

All species
mmm! 1
mmm! �1ðP ¼ 0Þ mm2! 1 222! 1

strains polarizations polarizations polarizations

1 "1 "2 "3
"4 "5 "6

� �
P1 P2 P3ð Þ P1 P2 P3ð Þ P1 P2 P3ð Þ
�P1 �P2 �P3ð Þ

2
"1 "2 "3
"4 �"5 �"6

� �
�P1 P2 P3ð Þ �P1 P2 P3ð Þ P1 �P2 �P3ð Þ
P1 �P2 �P3ð Þ

3
"1 "2 "3
�"4 "5 �"6

� �
P1 �P2 P3ð Þ P1 �P2 P3ð Þ �P1 P2 �P3ð Þ
�P1 P2 �P3ð Þ

4
"1 "2 "3
�"4 �"5 "6

� �
P1 P2 �P3ð Þ �P1 �P2 P3ð Þ �P1 �P2 P3ð Þ
�P1 �P2 P3ð Þ

Table D.3 Monoclinic to triclinic

All species m! 1

2=m! 1
2=m! �1ðP ¼ 0Þ
2! 1 (upper polarizations only)

strains polarizations polarizations

1 "1 "2 "3
"4 "5 "6

� �
P1 P2 P3ð Þ P1 P2 P3ð Þ

�P1 �P2 �P3ð Þ

2
"1 "2 "3
�"4 "5 �"6

� �
P1 �P2 P3ð Þ �P1 P2 �P3ð Þ

P1 �P2 P3ð Þ

S 1 2

1 N/A ð010ÞN

ð10aÞC

2 ð010ÞC
ð10aÞN

N/A

a ¼ "4="6
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mmm! 1, mmm! �1ðP ¼ 0Þ (above diagonal)
mm2! 1 (below diagonal)

S 1 2 3 4

1 N/A ð100ÞC
ð01aÞN

ð010ÞC
ð10bÞN

ð001ÞC
ð1c0ÞN

2
ð100ÞC
ð01aÞN

N/A ð001ÞN

ð1�c0ÞC
ð010ÞN

ð10�bÞC

3
ð010ÞC
ð10bÞN

ð001ÞN

ð1�c0ÞC
N/A

ð100ÞN

ð01�aÞC

4
ð001ÞN

ð1c0ÞC
ð010ÞC
ð10�bÞN

ð100ÞC
ð01�aÞN

N/A

222! 1

S 1 2 3 4

1 N/A ð100ÞN

ð01aÞC
ð010ÞN

ð10bÞC
ð001ÞN

ð1c0ÞC

2 N/A
ð001ÞN

ð1�c0ÞC
ð010ÞN

ð10�bÞC

3 N/A
ð100ÞN

ð01�aÞC
4 N/A

a ¼ "5="6; b ¼ "4="6; c ¼ "4="5

Table D.4 (continued)
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Table D.9 Monoclinic to monoclinic

All species 2=m! m 2=m! 2

strains polarizations polarizations

1 "1 "2 "3
0 "5 0

� �
P1 0 P3ð Þ 0 P2 0ð Þ

�P1 0 �P3ð Þ 0 �P2 0ð Þ

Table D.10 Orthorhombic to monoclinic

All species
mmm! mx mm2! mx(upper
polarizations only)

mmm! 2x
mmm! 2x=mxðP ¼ 0Þ
222! 2x (upper
polarizations only)

strains polarizations polarizations

1 "1 "2 "3
"4 0 0

� �
0 P2 P3ð Þ P1 0 0ð Þ

0 �P2 �P3ð Þ �P1 0 0ð Þ

2
"1 "2 "3
�"4 0 0

� �
0 �P2 P3ð Þ �P1 0 0ð Þ
0 P2 �P3ð Þ P1 0 0ð Þ

S 1 2

1 N/A ð010ÞC
ð001ÞN

2 ð010ÞN
ð001ÞN

N/A

Table D.11 Orthorhombic to monoclinic

Species mm2! 2z

strains polarization

1 "1 "2 "3
0 0 "6

� �
0 0 P3ð Þ

2
"1 "2 "3
0 0 �"6

� �
0 0 P3ð Þ

S 1 2

1 N/A ð100ÞN
ð010ÞN

2 N/A
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Table D.12 Tetragonal to monoclinic

All species 4mm! mx

4=mmm! 2x
4=mmm! 2x=mxðP ¼ 0Þ
422! 2x(upper polarizations only) �42m! 2x 4=mmm! mx

strains polarizations polarizations polarizations polarizations

1 "1 "2 "3
"4 0 0

� �
0 P2 P3ð Þ P1 0 0ð Þ P1 0 0ð Þ 0 P2 P3ð Þ

�P1 0 0ð Þ 0 �P2 �P3ð Þ

2
"2 "1 "3
0 �"4 0

� �
�P2 0 P3ð Þ 0 P1 0ð Þ 0 �P1 0ð Þ �P2 0 P3ð Þ

0 �P1 0ð Þ P2 0 �P3ð Þ

3
"1 "2 "3
�"4 0 0

� �
0 �P2 P3ð Þ �P1 0 0ð Þ �P1 0 0ð Þ 0 �P2 P3ð Þ

P1 0 0ð Þ 0 P2 �P3ð Þ

4
"2 "1 "3
0 "4 0

� �
P2 0 P3ð Þ 0 �P1 0ð Þ 0 P1 0ð Þ P2 0 P3ð Þ

0 P1 0ð Þ �P2 0 �P3ð Þ

4mm! mx; 4=mmm! mx (above diagonal)
4=mmm! 2x, 4=mmm! 2x=mxðP ¼ 0Þ,422! 2x (below diagonal)

S 1 2 3 4

1 N/A ð110ÞC
ð1�1�aÞN

ð010ÞC
ð001ÞN

ð1�10ÞC
ð11aÞN

2 ð110ÞN

ð1�1�aÞC
N/A ð1�10ÞC

ð11�aÞN
ð100ÞC
ð001ÞN

3 ð010ÞN
ð001ÞN

ð1�10ÞN

ð11�aÞC
N/A ð110ÞC

ð1�1aÞN

4 ð1�10ÞN

ð11aÞC
ð100ÞN
ð001ÞN

ð110ÞN

ð1�1aÞC
N/A

�42m! 2x:

S 1 2 3 4

1 N/A ð110ÞC
ð1�1�aÞN

ð010ÞN
ð001ÞN

ð1�10ÞC
ð11aÞN

2 N/A ð1�10ÞC
ð11�aÞN

ð100ÞN
ð001ÞN

3 N/A ð110ÞC
ð1�1aÞN

4 N/A

a ¼ "4=ð"2 � "1Þ
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Table D.14 Tetragonal to monoclinic

Species �42m! mxy

strains polarizations

1 "1 "1 "3
�"5 "5 "6

� �
P1 �P1 P3ð Þ

2 "1 "1 "3
"5 "5 �"6

� �
�P1 �P1 �P3ð Þ

3 "1 "1 "3
"5 �"5 "6

� �
�P1 P1 P3ð Þ

4 "1 "1 "3
�"5 �"5 �"6

� �
P1 P1 �P3ð Þ

S 1 2 3 4

1 N/A ð010ÞN
ð10�aÞC

ð001ÞN
ð�110ÞC

ð100ÞN
ð01aÞC

2 N/A ð100ÞN
ð01�aÞC

ð001ÞN
ð110ÞC

3 N/A ð010ÞN
ð10aÞC

4 N/A

a ¼ "5="6

Table D.15 Trigonal to monoclinic

All species

�3m! 2x �3m! 2x=mxðP ¼ 0Þ
32! 2x(upper polarizations only)

�3m! mx

3m! mx(upper
polarizations only)

strains polarizations polarizations

1 "1 "2 "3
"4 0 0

� �
P1 0 0ð Þ 0 P2 P3ð Þ
�P1 0 0ð Þ 0 �P2 �P3ð Þ

2
"
0
1 "

0
2 "3

�"04 �"05 �"06

� �
�P01 P

00

1 0
� �

�P02 �P002 P3

� �
P
0

1 �P001 0
� �

P
0

2 P
00

2 �P3

� �

3
"
0
1 "

0
2 "3

�"04 "
0

5 "
0

6

� �
�P01 �P001 0
� �

P
0

2 �P002 P3

� �
P
0

1 P
00

1 0
� �

�P
0

2 P
00

2 �P3

� �

"
0

1 ¼ ð1=4Þð"1 þ 3"2Þ; "
0

2 ¼ ð1=4Þð3"1 þ "2Þ; "
0

6 ¼ ð
ffiffiffi
3
p

=2Þð"1 � "2Þ; "
0

5 ¼ ð
ffiffiffi
3
p

=2Þ"4; "
0

4 ¼ ð1=2Þ"4
P
0

1 ¼ ð1=2ÞP1;P
00

1 ¼ ð
ffiffiffi
3
p

=2ÞP1;P
0

2 ¼ ð
ffiffiffi
3
p

=2ÞP2;P
00

2 ¼ ð1=2ÞP2
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�3m! 2x, �3m! 2x=mxðP ¼ 0Þ, 32! 2x (above diagonal)
�3m! mx, 3m! mx(below diagonal)

S 1 2 3

1 N/A ð11�20ÞN
ð1�10aÞC

ð1�210ÞN
ð10�1aÞC

2 ð11�20ÞC
ð1�10aÞN

N/A ð2�1�10ÞN
ð01�1aÞC

3 ð1�210ÞC
ð10�1aÞN

ð2�1�10ÞC
ð01�1aÞN

N/A

a ¼ �
ffiffiffi
3
p

"4=ð"2 � "1Þ

Table D.15 (continued)

Table D.16 Hexagonal to monoclinic

All species

6=mmm! 2x
622! 2x(upper polarizations only)
6=mmm! 2x=mxðP ¼ 0Þ

6=mmm! mx

6mm! mx(upper
polarizations only) �6m2! mx

strains polarizations polarizations polarizations

1 "1 "2 "3
"4 0 0

� �
P1 0 0ð Þ 0 P2 P3ð Þ 0 P2 P3ð Þ
�P1 0 0ð Þ 0 �P2 �P3ð Þ

2
"
0

1 "
0

2 "3
"
0
4 "

0
5 "

0
6

� �
P
0

1 P
00

1 0
� �

�P002 P
0

2 P3

� �
P
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� �
�P01 �P001 0
� �

P
00
2 �P02 �P3

� �

3
"
0
1 "

0
2 "3

�"04 "
0
5 �"06

� �
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1 0

� �
�P002 �P02 P3

� �
�P002 �P02 P3

� �
P
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� �

P
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2 P
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� �

4
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5
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0
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P
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P
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1 P
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1 0
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6
"
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1 "
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P
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1 �P001 0
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P
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2 P

0
2 P3

� �
�P002 �P02 �P3

� �
�P01 P

00
1 0

� �
�P002 �P02 �P3

� �
"
0
1 ¼ ð1=4Þð"1 þ 3"2Þ; "

0
2 ¼ ð1=4Þð3"1 þ "2Þ; "

0
6 ¼ ð

ffiffiffi
3
p

=2Þð"1 � "2Þ; "
0
5 ¼ �ð

ffiffiffi
3
p

=2Þ"4; "
0
4 ¼ ð1=2Þ"4

P
0
1 ¼ ð1=2ÞP1;P

00
1 ¼ ð

ffiffiffi
3
p

=2ÞP1;P
0
2 ¼ ð1=2ÞP2;P

00
2 ¼ ð

ffiffiffi
3
p

=2ÞP2

6=mmm! 2x, 6=mmm! 2x=mxðP ¼ 0Þ, 622! 2x (above diagonal)
6=mmm! mx, 6mm! mx (below diagonal)

S 1 2 3 4 5 6

1 N/A ð10�10ÞN
ð1�21�aÞC

ð11�20ÞN
ð1�10�aÞC

ð01�10ÞN
ð0001ÞN

ð1�210ÞN
ð10�1aÞC

ð1�100ÞN
ð11�2aÞC

2 ð10�10ÞC
ð1�21�aÞN

N/A ð01�10ÞN
ð2�1�1�aÞC

ð1�210ÞN
ð10�1�aÞC

ð0001ÞN
ð1�100ÞN

ð2�1�10ÞN
ð01�1aÞC

3 ð11�20ÞC
ð1�10�aÞN

ð01�10ÞC
ð2�1�1�aÞN

N/A ð1�100ÞN
ð11�2�aÞC

ð2�1�10ÞN
ð01�1�aÞC

ð0001ÞN
ð10�10ÞN

4 ð01�10ÞC
ð0001ÞN

ð1�210ÞC
ð10�1�aÞN

ð1�100ÞC
ð11�2�aÞN

N/A ð10�10ÞN
ð1�21aÞC

ð11�20ÞN
ð1�10aÞC

5 ð1�210ÞC
ð10�1aÞN

ð0001ÞN
ð1�100ÞC

ð2�1�10ÞC
ð01�1�aÞN

ð10�10ÞC
ð1�21aÞN

N/A ð01�10ÞN
ð2�1�1aÞC

6 ð1�100ÞC
ð11�2aÞN

ð2�1�10ÞC
ð01�1aÞN

ð0001ÞN
ð10�10ÞC

ð11�20ÞC
ð1�10aÞN

ð01�10ÞC
ð2�1�1aÞN

N/A
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�6m2! mx

S 1 2 3 4 5 6

1 N/A ð10�10ÞN

ð1�21�aÞC
ð11�20ÞC

ð1�10�aÞN
ð01�10ÞN

ð0001ÞC
ð1�210ÞC

ð10�1aÞN
ð1�100ÞN

ð11�2aÞC2
N/A ð01�10ÞN

ð2�1�1�aÞC
ð1�210ÞC

ð10�1�aÞN
ð0001ÞC

ð1�100ÞN
ð2�1�10ÞC

ð01�1aÞN3
N/A ð1�100ÞN

ð11�2�aÞC
ð2�1�10ÞC

ð01�1�aÞN
ð0001ÞC

ð10�10ÞN4
N/A lð10�10ÞN

ð1�21aÞC
ð11�20ÞC

ð1�10aÞN5
N/A ð01�10ÞN

ð2�1�1aÞC6
N/A

a ¼ "4=ð"2 � "1Þ

Table D.16 (continued)
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Table D.18 Hexagonal to monoclinic

Species �6m2! 2y

strains polarizations

1 "1 "2 "3
0 "5 0

� �
0 P2 0ð Þ

2
"1

0
"2

0
"3

"
0
4 "

0
5 "

0
6

� �
P
00

2 �P02 0
� �

3
"1

0
"
0

2 "3
"
0

4 �"05 �"06

� �
�P002 �P02 0
� �

4
"1 "2 "3
0 �"5 0

� �
0 P2 0ð Þ

5
"
0

1 "
0

2 "3
�"04 �"05 "

0
6

� �
P
00

2 �P02 0
� �

6
"
0

1 "
0

2 "3
�"04 "

0
5 �"06

� �
�P002 �P02 0
� �

"
0

1 ¼ ð1=4Þð"1 þ 3"2Þ; "
0

2 ¼ ð1=4Þð3"1 þ "2Þ; "
0

6 ¼ ð
ffiffiffi
3
p

=2Þð"1 � "2Þ;
"
0

5 ¼ ð1=2Þ"5; "
0

4 ¼ ð
ffiffiffi
3
p

=2Þ"5
P
0

2 ¼ ð1=2ÞP2;P
00

2 ¼ ð
ffiffiffi
3
p

=2ÞP2

S 1 2 3 4 5 6

1 N/A ð10�1�aÞN

ð1�210ÞC
ð11�2�bÞC
ð1�100ÞN

ð2�1�10ÞN
ð0001ÞN

ð1�21�bÞC
ð10�10ÞN

ð1�10�aÞN

ð11�20ÞC

2 N/A ð01�1�aÞN

ð2�1�10ÞC
ð1�21bÞC
ð10�10ÞN

ð0001ÞN
ð11�20ÞN

ð2�1�1�bÞC
ð01�10ÞN

3 N/A ð1�10aÞN

ð11�20ÞC
ð2�1�1bÞC
ð01�10ÞN

ð0001ÞN
ð1�210ÞN

4 N/A ð10�1aÞN

ð1�210ÞC
ð11�2bÞC
ð1�100ÞN

5 N/A ð01�1aÞN

ð2�1�10ÞC

6 N/A

a ¼ "5=ð"2 � "1Þ; b ¼ 3a
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Table D.21 Orthorhombic to orthorhombic

Species mmm! mxmy2z

strains polarizations

1 "1 "2 "3
0 0 0

� �
0 0 P3ð Þ

0 0 �P3ð Þ

Table D.22 Tetragonal to orthorhombic

Species
4mm! mxmy2z
422! 2x2y2zðP ¼ 0Þ

4=mmm! mxmy2z
4=mmm! 2x2y2zðP ¼ 0Þ
�42m! 2x2y2zðP ¼ 0Þ

4=mmm! 2xmymz

4=mmm! mxmymz

(P¼ 0)

strains polarizations polarizations polarizations

1 "1 "2 "3
0 0 0

� �
0 0 P3ð Þ 0 0 P3ð Þ P1 0 0ð Þ

0 0 �P3ð Þ �P1 0 0ð Þ

2
"2 "1 "3
0 0 0

� �
0 0 P3ð Þ 0 0 �P3ð Þ 0 �P1 0ð Þ

0 0 P3ð Þ 0 P1 0ð Þ

4mm! mxmy2z, 422! 2x2y2zðP ¼ 0Þ; 4=mmm! mxmy2z, 4=mmm! 2x2y2zðP ¼ 0Þ,
�42m! 2x2y2zðP ¼ 0Þ(above diagonal)
4=mmm! mxmymzðP ¼ 0Þ, 4=mmm! 2xmymz(below diagonal)

S 1 2

1 N/A ð110ÞN
ð1�10ÞN

2 ð110ÞC
ð1�10ÞN

N/A

Table D.23 Tetragonal to orthorhombic

Species �42m! mxym�xy2z

strains polarizations

1 "1 "1 "3
0 0 "6

� �
0 0 P3ð Þ

2
"1 "1 "3
0 0 �"6

� �
0 0 �P3ð Þ

S 1 2

1 N/A ð100ÞN
ð010ÞN

2 N/A
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Table D.24 Hexagonal to orthorhombic

All species

�6m2! mx2ymz

622! 2x2y2zðP ¼ 0Þ
6=mmm! mxmymz (P¼ 0)
6=mmm! 2x2y2zðP ¼ 0Þ 6=mmm! 2xmymz

6=mmm! mxmy2z
6mm! mxmy2z
(upper
polarizations only)

strains polarizations polarizations polarizations

1 "1 "2 "3
0 0 0

� �
0 P2 0ð Þ P1 0 0ð Þ 0 0 P3ð Þ

�P1 0 0ð Þ 0 0 �P3ð Þ

2
"
0
1 "

0
2 "3

0 0 "
0
6

� �
�P002 P

0
2 0

� �
P
0
1 P

00
1 0

� �
0 0 P3ð Þ

�P01 �P001 0
� �

0 0 �P3ð Þ

3
"
0
1 "

0
2 "3

0 0 �"06

� �
�P002 �P02 P3

� �
�P01 P

00
1 0

� �
0 0 P3ð Þ

P
0
1 �P001 0

� �
0 0 �P3ð Þ

"
0
1 ¼ ð1=4Þð"1 þ 3"2Þ; "

0
2 ¼ ð1=4Þð3"1 þ "2Þ; "

0
6 ¼ ð

ffiffiffi
3
p

=2Þð"1 � "2Þ
P
0
1 ¼ ð1=2ÞP1;P

00
1 ¼ ð

ffiffiffi
3
p

=2ÞP1;P
0
2 ¼ ð1=2ÞP2;P

00
2 ¼ ð

ffiffiffi
3
p

=2ÞP2

6=mmm! mxmymzðP ¼ 0Þ, 6=mmm! 2x2y2zðP ¼ 0Þ, �6m2! mx2ymz,622! 222ðP ¼ 0Þ
(above diagonal); 6=mmm! 2xmymz (below diagonal)

S 1 2 3

1 N/A ð10�10ÞC
ð1�210ÞN

ð11�20ÞC
ð1�100ÞN

2 ð10�10ÞN

ð1�210ÞC
N/A ð01�10ÞC

ð2�1�10ÞN

3 ð11�20ÞN

ð1�100ÞC
ð01�10ÞN

ð2�1�10ÞC
N/A

6=mmm! mxmy2z, 6mm! mxmy2z

S 1 2 3

1 N/A ð10�10ÞN
ð1�210ÞN

ð11�20ÞN
ð1�100ÞN

2 N/A ð01�10ÞN
ð2�1�10ÞN

3 N/A
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Table D.25 Cubic to orthorhombic

All species

m�3m! mxmy2z, m�3m! 2x2y2zðP ¼ 0Þ m�3m! mxmymzðP ¼ 0Þ,
432! 2x2y2zðP ¼ 0Þ
�43m! 222ðP ¼ 0Þ Strains 1–3 only for following species:
23! 222ðP ¼ 0Þ , m�3! mmmðP ¼ 0Þ
m�3! 222ðP ¼ 0Þ , m�3! mxmy2z

strains polarizations

1 "1 "2 "3
0 0 0

� �
0 0 P3ð Þ
0 0 �P3ð Þ

2
"3 "1 "2
0 0 0

� �
P3 0 0ð Þ
�P3 0 0ð Þ

3
"2 "3 "1
0 0 0

� �
0 P3 0ð Þ
0 �P3 0ð Þ

4
"2 "1 "3
0 0 0

� �
0 0 P3ð Þ
0 0 �P3ð Þ

5
"3 "2 "1
0 0 0

� �
�P3 0 0ð Þ
P3 0 0ð Þ

6
"1 "3 "2
0 0 0

� �
0 �P3 0ð Þ
0 P3 0ð Þ

m�3m! mxmymzðP ¼ 0Þ, m�3m! mxmy2z, m�3m! 2x2y2zðP ¼ 0Þ, 432! 222ðP ¼ 0Þ,
�43m! 222ðP ¼ 0Þ (all six strains), m�3! mxmy2z , 23! 222ðP ¼ 0Þ , m�3! mmmðP ¼ 0Þ ,
m�3! 222ðP ¼ 0Þ (strains 1–3 only)

S 1 2 3 4 5 6

1 N/A R R ð1�10ÞN
ð110ÞN

ð10�1ÞN

ð101ÞC
ð01�1ÞN

ð011ÞC

2 N/A R ð10�1ÞC
ð101ÞN

ð01�1ÞN
ð011ÞN

ð1�10ÞN

ð110ÞC

3 N/A ð01�1ÞC
ð011ÞN

ð1�10ÞN

ð110ÞC
ð10�1ÞN
ð101ÞN

4 N/A R R

5 N/A R

6 N/A

Table D.26 Cubic to orthorhombic

All species

m�3m! mxym�xymzðP ¼ 0Þ
m�3m! mxym�xy2z
m�3m! 2xy2�xy2zðP ¼ 0Þ upper symmetry operations only for
432! 2xy2�xy2zðP ¼ 0Þ

strains polarizations

1 "1 "1 "3
0 0 "6

� �
0 0 P3ð Þ
0 0 �P3ð Þ

2
"1 "1 "3
0 0 �"6

� �
P3 0 0ð Þ
�P3 0 0ð Þ
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Table D.26 (continued)

All species

m�3m! mxym�xymzðP ¼ 0Þ
m�3m! mxym�xy2z
m�3m! 2xy2�xy2zðP ¼ 0Þ upper symmetry operations only for
432! 2xy2�xy2zðP ¼ 0Þ

strains polarizations

3 "1 "3 "1
0 "6 0

� �
0 P3 0ð Þ
0 �P3 0ð Þ

4
"3 "1 "1
�"6 0 0

� �
0 0 P3ð Þ
0 0 �P3ð Þ

5
"3 "1 "1
"6 0 0

� �
�P3 0 0ð Þ
P3 0 0ð Þ

6
"1 "3 "1
0 �"6 0

� �
0 �P3 0ð Þ
0 P3 0ð Þ

S 1 2 3 4 5 6

1 N/A ð100ÞN
ð010ÞN

ð01�1ÞN

ð�a11ÞC
ð101ÞN

ð1�a�1ÞC
ð10�1ÞC
ð1�a1ÞN

ð011ÞN

ð�a1�1ÞC

2 N/A ð011ÞC
ða1�1ÞN

ð10�1ÞC
ð1a1ÞN

ð101ÞN

ð1a�1ÞC
ð01�1ÞC
ða11ÞN

3 N/A ð110ÞC
ð1�1�aÞN

ð1�10ÞN

ð11�aÞC
ð100ÞN
ð001ÞN

4 N/A ð010ÞN
ð001ÞN

ð1�10ÞC
ð11aÞN

5 N/A ð110ÞN

ð�11�aÞC

6 N/A

a ¼ "6
"3 � "1

Table D.27 Cubic to orthorhombic

All species �43m! mxym�xy2z m�3m! 2xym�xymz

strains polarizations polarizations

1 "1 "1 "3
0 0 "6

� �
0 0 P3ð Þ P1 P1 0ð Þ

�P1 �P1 0ð Þ

2
"3 "1 "1
"6 0 0

� �
P3 0 0ð Þ 0 P1 P1ð Þ

0 �P1 �P1ð Þ

3
"1 "3 "1
0 "6 0

� �
0 P3 0ð Þ P1 0 P1ð Þ

�P1 0 �P1ð Þ

4
"1 "1 "3
0 0 �"6

� �
0 0 �P3ð Þ �P1 P1 0ð Þ

P1 �P1 0ð Þ

5
"3 "1 "1
�"6 0 0

� �
�P3 0 0ð Þ 0 P1 �P1ð Þ

0 �P1 P1ð Þ

6
"1 "3 "1
0 �"6 0

� �
0 �P3 0ð Þ P1 0 �P1ð Þ

�P1 0 P1ð Þ
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S 1 2 3 4 5 6

1 N/A ð10�1ÞC
ð1�a1ÞN

ð01�1ÞC
ð�a11ÞN

ð100ÞC
ð010ÞN

ð101ÞC
ð1�a�1ÞN

ð011ÞC
ð�a1�1ÞN

2 ð10�1ÞC
ð1�a1ÞN

N/A ð1�10ÞC
ð11�aÞN

ð101ÞC
ð1a�1ÞN

ð010ÞN

ð001ÞC
ð110ÞN

ð1�1aÞC

3 ð01�1ÞC
ð�a11ÞN

ð1�10ÞC
ð11�aÞN

N/A ð011ÞN

ða1�1ÞC
ð110ÞN

ð1�1�aÞC
ð100ÞN

ð001ÞC

4 ð100ÞN
ð010ÞN

ð101ÞC
ð1a�1ÞN

ð011ÞC
ða1�1ÞN

N/A ð10�1ÞC
ð1a1ÞN

ð01�1ÞN

ða11ÞC

5 ð101ÞC
ð1�a�1ÞN

ð010ÞN
ð001ÞN

ð110ÞC
ð1�1�aÞN

ð10�1ÞC
ð1a1ÞN

N/A ð1�10ÞC
ð11aÞN

6 ð011ÞC
ð�a1�1ÞN

ð110ÞC
ð1�1aÞN

ð100ÞN
ð001ÞN

ð01�1ÞC
ða11ÞN

ð1�10ÞC
ð11aÞN

N/A

a ¼ "6=ð"3 � "1Þ

Table D.27 (continued)

Table D.28 Tetragonal to tetragonal, trigonal to trigonal, hexagonal to trigonal, and hex-
agonal to hexagonal. Structure of tensor components is the same in all species listed, but the
coordinate system is chosen for parent phase of each species

All species

4=mmm! 4
4=mmm! 4mm
4=m! 4
422! 4

�3m! 3
�3m! 3m
�3! 3
32! 3

6=mmm! 3zmx

6=mmm! 3
6=m! 3
�6m2! 3zmx
�6m2! 3 �6! 3
622! 3

6=mmm! 6mm
6=mmm! 6
6=m! 6
622! 6

strains polarizations polarizations polarizations polarizations

1 "1 "1 "3
0 0 0

� �
0 0 P3ð Þ
0 0 �P3ð Þ

Table D.29 Cubic to tetragonal

All species

m�3m! 4zmxmxy

m�3m! �4z2xmxyðP ¼ 0Þ
m�3m! �4z2xymxðP ¼ 0Þ
m�3m! 4z2x2xyðP ¼ 0Þ
m�3m! �4ðP ¼ 0Þ
m�3m! 4 m�3m! 4z=mzmxmyðP ¼ 0Þ
m�3m! 4z=mzðP ¼ 0Þ

432! 4
�43m! �4z2xmxyðP ¼ 0Þ
�43m! �4ðP ¼ 0Þ
432! 4z2x2xyðP ¼ 0Þ

strains polarizations polarizations

1 "1 "1 "3
0 0 0

� �
0 0 P3ð Þ 0 0 P3ð Þ
0 0 �P3ð Þ 0 0 �P3ð Þ

2
"3 "1 "1
0 0 0

� �
P3 0 0ð Þ P3 0 0ð Þ
�P3 0 0ð Þ �P3 0 0ð Þ

3
"1 "3 "1
0 0 0

� �
0 P3 0ð Þ 0 P3 0ð Þ
0 �P3 0ð Þ 0 �P3 0ð Þ
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S 1 2 3

1 N/A ð10�1ÞC
ð101ÞN

ð011ÞN

ð01�1ÞC

2 N/A ð110ÞN

ð1�10ÞC

3 N/A

Table D.29 (continued)
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Appendix E

Piezoelectric Coefficients in Ferroelectric Phases

of BATiO3-Type Perovskites

Tables of this appendix give the d-piezoelectric coefficients in ferroelectric

phases of BaTiO3-type perovskites calculated as a result of linearization of

the electrostrictive equation. Rows stand for domain states (DS) represented

in Fig. 2.3.5. Piezoelectric coefficients are related to the cubic coordinate

system. The meaning of symbols a, b, c, d, and e in each phase is shown

below each table.
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Appendix F

Tensors: Properties and Notations

Transformation Laws for Tensors

Transformation law for a second-rank tensor:

T 0ip ¼ aijapqTjq:

Transformation law for an nth-rank tensor:

M 0
ij...pt
n

¼ aii 0ajj 0 . . . app 0att 0

n
Mij...pt

n
:

Here n under the lines indicate the number of a’s in the product or total
number of suffices. Summation over repeated (dummy) suffices from 1 to 3 is
implied (Einstein convention). The tensor in the original orthogonal reference
frame X1 X2 X3ð Þ is written without the prime. The tensor in the trans-
formed orthogonal reference frame X01 X02 X03ð Þ is written with the prime.
The table of the direction cosines for transformation of the reference frame
X1 X2 X3ð Þ ) X1

0 X2
0 X3

0ð Þ is denoted as

aij ¼ cosðX 0i ^ XjÞ:

Transformation law for an nth-rank pseudotensor:

M0ij...pt
n

¼ aii0ajj0 . . . app0att0

n
Mij...pt

n
detðaÞ

Voight Notations for Tensors

Stress vector: sn ¼ s11 s22 s33 s23 s13 s12ð Þ
Strain vector: "n ¼ "11 "22 "33 2"23 2"13 2"12ð Þ
Hook’s law: sn ¼ snm"m and "n ¼ snmsm with the summation over dummy

suffices: n;m ¼ 1� 6.



Stiffness and compliance symmetric matrices:

cmn ¼

c1111 c1122 c1131 c1123 c1113 c1112

c2222 c2233 c2223 c2213 c2212

c3333 c3323 c3313 c3312

c2323 c2313 c2312

c1313 c1312

c1212

0
BBBBBBBB@

1
CCCCCCCCA
;

smn ¼

s1111 s1122 s1131 2s1123 2s1113 2s1112

s2222 s2233 2s2223 2s2213 2s2212

s3333 2s3323 2s3313 2s3312

4s2323 4s2313 4s2312

4s1313 4s1312

4s1212

0
BBBBBBBB@

1
CCCCCCCCA
:

Direct and converse piezoelectric effects: Pi ¼ dinsn and "n ¼ dinEi , with the
summation over dummy suffices: n ¼ 1� 6; i ¼ 1� 3:

Matrix of piezoelectric d-coefficients:

din ¼
d111 d122 d133 2d123 2d113 2d112

d211 d222 d233 2d223 2d213 2d212

d311 d322 d333 2d323 2d313 2d312

0
B@

1
CA:

Notation for Symmetry of Tensors

½V2� – symmetric second-rank tensor: qij ¼ qji.
fV2g – antisymmetric second-rank tensor: qij ¼ �qji.
V2 – second-rank tensor.
"½V2� – symmetric second-rank pseudotensor: qij ¼ qji.
"fV2g – antisymmetric second-rank pseudotensor: qij ¼ �qji.
"V2 – second-rank pseudotensor.
½V3� – third-rank tensor symmetric with respect to all indices.
V½V2� – third-rank tensor symmetric with respect to two indices: qijk ¼ qikj.
fV2gV – third-rank tensor antisymmetric with respect to two indices:

qijk ¼ �qjik.
V3 – third-rank tensor.
"V½V2� – third-rank pseudotensor symmetric with respect to two indices:

qijk ¼ qikj.
"fV2gV – third-rank pseudotensor antisymmetric with respect to two

indices: qijk ¼ �qjik.
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½V4� – fourth-rank tensor symmetric with respect to all indices.
V½V3� – fourth-rank tensor symmetric with respect to the last three indices.
½½V2�2� – fourth-rank tensor symmetric with respect to two pairs of indices

under permutations: qijkl ¼ qjikl ¼ qijlk ¼ qklij.
½ðV2Þ�2 – fourth-rank tensor symmetric with respect to the permutations of

the pairs of indices: qijkl ¼ qklij.
fV2 V2g – fourth-rank tensor antisymmetric with respect to the permutations

of the pairs of indices: qijkl ¼ �qklij.
½V2�V2 – fourth-rank tensor symmetric with respect to two indices:

qijkl ¼ qjikl.
V4 – fourth-rank tensor.
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Bornarel, J., Fousek, J., Glogarová, M., Czech. J. Phys. B 22, 864 (1972)
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Carl, K., Härdtl, K.H., Ferroelectrics 17, 473 (1978)
Castellanos-Guzmán, A.G., Campa-Molina, J., Reyes-Gomez, J., Ferroelectrics 172, 151 (1995)
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Tabarez-Muñoz, C., Rivera, J.-P., Bezinges, A., Monnier, A., Schmid, H., Jpn. J. Appl. Phys.

Suppl. 24–2, 1051 (1985)
Tagantsev, A.K., Phys. Rev. B 34, 5883 (1986a)
Tagantsev, A.K., JETP Lett. 45, 447 (1986b)
Tagantsev, A.K., Sov. Ph. Usp. 30, 588 (1987)
Tagantsev, A.K., Ferroelectrics 79, 57 (1988)
Tagantsev, A.K., Phase Transitions 35, 119 (1991)
Tagantsev, A.K., Phys. Rev. Lett. 69, 2760 (1993)
Tagantsev, A.K., Ferroelectrics 184, 79 (1996)
Tagantsev, A.K., Phys. Rev. Lett. 94, 247603 (2005)
Tagantsev, A.K., Fousek, J., Ferroelectrics 221, 193 (1999)
Tagantsev, A.K., Gerra, G., J. Appl. Phys. 100, 051607 (2006)
Tagantsev, A.K., Sonin, E.B., Ferroelectrics 98, 297 (1989)
Tagantsev, A.K., Siny, I.G., Prokhorova, S.D., Izvestiya Akad. Nauk SSSR, ser. fiz. 51, 2082

(1987)
Tagantsev, A.K., Pawlaczyk, C., Brooks, K., Setter, N., Integr. Ferroelectr. 4, 1 (1994)
Tagantsev, A.K., Landivar, M., Colla, E., Setter, N., J. Appl. Phys. 78, 2623 (1995a)
Tagantsev, A.K., Pawlaczyk, C., Brooks, K., Landivar, M., Colla, E., Setter, N., Integr.

Ferroelectr. 6, 309 (1995b)
Tagantsev, A.K., Stolichnov, I.A., Appl. Phys. Lett. 74, 1326 (1999)
Tagantsev, A.K., Courtens, E., Arzel, L., Phys. Rev. B 64, 224107 (2001a)
Tagantsev, A.K., Stolichnov, I., Colla, E.L., Setter, N., J. Appl. Phys. 90, 1387 (2001b)
Tagantsev, A.K., Pertsev, N.A., Muralt, P., Setter, N., Phys. Rev. B 65, 012104 (2002a)
Tagantsev, A.K., Stolichnov, I., Setter, N., Cross, J.S., Tsukada, M., Phys. Rev. B 66, 214109

(2002b)
Tagantsev, A.K., Sherman, V.O., Astafiev, K.F., Venkatesh, J., Setter, N., J. Electroceramics

11, 5 (2003)
Tagantsev, A.K., Muralt, P., Fousek, J.: Shape of piezoelectric hysteresis loop for non-

ferroelastic switching, in Ferroelectric Thin Films XII, edited by Hoffmann-Eifert, S.,
Funakubo, H., Kingon, A.I., Koutsaroff, I., Joshi, V. (Mater. Res. Soc. Symp. Proc.
Volume 784, p. 517, Warrendale, PA, 2004a)

Tagantsev, A.K., Stolichnov, I., Setter, N., Cross, J.S., J. Appl. Phys. 96, 6616 (2004b)
Tagantsev, A.K., Sherman, V.O., Astafiev, K.F., Venkatesh, J., Setter, N., J. Electroceramics

14, 199 (2005)

References 807



Takagi, M., Suzuki, S., Proceedings of the Sixth International Congress for Electron Micro-
scopy, Kyoto 1966. vol. 1, 623 (1966)

Takagi, M., Suzuki, S., J. Phys. Soc. Jpn. 63, 1580 (1994)
Takagi, M., Suzuki, S., Tanaka, K., J. Phys. Soc. Jpn. 23, 134 (1967)
Takagi, M., Akaba, N., Suzuki, S., J. Phys. Soc. Jpn. 46, 1811 (1979)
Tanaka, M., Honjo, G., J. Phys. Soc. Jpn. 19, 954 (1964)
Takahashi, K., Takagi, M., J. Phys. Soc. Jpn. 44, 1266 (1978a)
Takahashi, K., Takagi, M., J. Phys. Soc. Jpn. 44, 1664 (1978b)
Takayama, R., Tomita, Y., J. Appl. Phys. 65, 1666 (1989)
Takashige, M., Fukurai, N., Hamazaki, S.I., Shimizu, F., J. Korean Phys. Soc. (Proc. Suppl.)

32, S721 (1998)
Takashige, M., Hamazaki, S., Takahashi, Y., Shimizu, F., Ferroelectrics 240, 93 (2000)
Tanaka, M., Honjo, G., J. Phys. Soc. Jpn. 19, 954 (1964)
Tanaka, M., Saito, R., Tsuzuki, K., Jpn. J. Appl. Phys. 21, 291 (1982)
Taylor, G.W., Australian J. of Physics 15, 549 (1962)
Taylor, G.W., IEEE Trans. Electron. Comput. EC–14, 881 (1965)
Taylor, G.W., J. Appl. Phys. 37, 593 (1966)
Taylor, D.V., Damjanovic, D., Colla, E., Setter, N., Ferroelectrics 225, 91 (1999)
Terris, B.D., Stern, J.E., Rugar, D., Mamin, H.J., Phys. Rev. Lett. 63, 2669 (1989)
Terris, B.D., Stern, J.E., Rugar, D., Mamin, H.J., J. Vac. Sci. Technol. A8, 374 (1990)
Theis, C.D., Schlom, D.G., J. Mater. Res. 12, 1297 (1997)
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