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Preface

With much excitement and great enthusiasm I introduce this thorough treatise
on the major aspects of domain and domain wall phenomena in ferroics, mostly
ferroelectrics, a major achievement for which there has been a long-standing
need.

Ferroelectric materials possess spontaneous electrical polarization which is
stable in more than one orientation and can be reoriented (switched) by an
applied electric field. This property and its typical derivative characteristics,
e.g., high piezoelectric response and large permittivity, make ferroelectrics
exceedingly useful in diverse applications such as non-volatile memories, ultra-
sonic medical imaging, micro-electromechanical systems, and reconfigurable
high-frequency electronics.

Typically, a ferroelectric material is divided into domains, which are regions
in the material that are polarized in one of the symmetry-permitted polarization
directions. The interfaces between adjacent domains, the domain walls, have a
typical thickness of 1-2 unit cells. The behaviors of domains and domain walls
are fundamental to ferroelectrics and dominate their properties: poling of
ferroelectric ceramics, namely electrical aligning of the polar direction of ferro-
electric domains, is essential for piezoelectric activity; periodically poled crys-
tals are used as nonlinear optic materials for which the width of the inverted
domains controls the desired wavelength of operation. The high permittivity of
ferroelectrics widely used in capacitors is dominated by domain wall contribu-
tions, and domain wall dynamics is responsible for some 50% of the piezo-
electric response in standard transducers and actuators.

Considering the vital role of domains and domain walls, the substantial body
of data, and the resultant theoretical knowledge, it is surprising how limited is
the space given to this subject in the classical books on ferroelectric materials.
Even recent books rarely dedicate entire chapters to this topic. Meanwhile the
importance of domains and domain walls is growing. Thus the study and
manipulation of domain walls can be achieved with much enhanced detail
using new techniques such as piezoelectric force microscopy; new thin-film
growth techniques allow the control of their position, spacing, and response,
and new computation methods aid in revealing their further potential.



vi Preface

It is therefore very timely for the ferroelectric community and for students
and researchers interested in the field of ferroelectrics that the three most
prominent authorities in the field have united to write this major book on
ferroelectric domains in single crystals, ceramics, and thin films, covering all
the important aspects of the field: basic theoretical descriptions of structural
phase transitions that emphasize the symmetry and phenomenological aspects
of their classifications, an overview of typical ferroic materials, a survey of
experimental methods used to visualize domain patterns, aspects of domain
formation and their typical shapes, and the static properties of domain walls are
all addressed. A large section of the book covers theoretical and experimental
aspects of switching and polarization response and overviews comprehensively
domain-related properties of ferroelectric thin films.

This book will be of central importance to anyone interested in ferroelectrics
and their applications: graduate students of materials science, physics, chemistry,
mechanical and electrical engineering, as well as scientists and engineers, whether
new to the field or simply in need of a systematic and thorough review of the vast,
useful, and fascinating field of ferroic domains.

Nava Setter
7.2009, Lausanne
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Chapter 1
A Preview of Concepts and Phenomena

This book covers a large area of material properties and effects connected with
static and dynamic properties of domains. These are relevant to materials
referred to as ferroics. In textbooks on solid state physics, one large group of
ferroics is customarily covered, namely those in which magnetic properties play
a dominant role: magnetically ordered materials which include ferromagnetics
and antiferromagnetics. Numerous books are specifically devoted to such
materials and cover a wide spectrum of magnetic domain phenomena which
also incorporate essential practical aspects such as magnetic memories. In
contrast, in the present monograph attention will be concentrated on domain-
related phenomena in nonmagnetic ferroics. These materials are still only
inadequately represented in solid state physics textbooks—even those which
offer the most interesting properties, namely ferroelectrics. Therefore before
starting with a systematic description of domain phenomena, in the present
chapter we wish to offer the reader an introduction into what this book is all
about.

Domains are a special sort of crystal twins and a few general remarks on
twinning seem appropriate.

The phenomenon of growth twinning in crystals has been a subject of interest
for crystallographers since crystallography started to develop as a scientific
branch. The obvious reasons are the beauty of external shapes of some of the
twinned crystals as well as evident and challenging symmetry relations between
their constituents. Essentially, we speak about a twin when two or more indivi-
dual crystals of the same species intergrow in a crystalline aggregate. Such parts
of the aggregate are referred to as twin components and it is obvious that the
symmetry operation (referred to as twinning operation) which brings one crystal
into coincidence with the other cannot be a symmetry operation of the crystal
itself. Twins are often just the result of an accident during crystal growth: Ions
newly arriving at the surface layer of the growing crystal may have a choice of
sites in which to settle, and one or more of these choices may represent the
nucleus of the same crystal species growing in a different orientation. We then
speak about the growth twins and these were often classified according to the
physical appearance of the twinned crystal. The concepts of penetration twins
(in which components may be of irregular size and shape) and lamellar twins

A K. Tagantsev et al., Domains in Ferroic Crystals and Thin Films, 1
DOI 10.1007/978-1-4419-1417-0_1, © Springer Science+Business Media, LLC 2010



2 1 A Preview of Concepts and Phenomena

(composed of uniform alternating layers and not infrequently named polysyn-
thetic twins) are almost self-explanatory. The boundary separating two consti-
tuents of the twinned crystal is referred to as the twin boundary or composition
plane. Figure 1.1 shows an example of a twinned as-grown crystal. Description
and understanding of growth twins presented many challenges to mineralogy
and crystallography but some of them were and still are also of practical
concern. A good example is offered by crystals of quartz, SiO,: When twinned,
its useful piezoelectric properties are deteriorated. This is because the piezo-
electric responses in different twin components may partly compensate each
other.

Twin components may differ in the orientation of crystallographic axes.
Then, their unit cell dimensions would also differ with reference to the labora-
tory frame. Under applied mechanical force, therefore, the energies of two
neighboring twin components may differ and if this is so one of the components
may grow at the expense of the other. In fact, the applied force may lead even to
nucleation of the more suitably oriented twin component, that is, to the forma-
tion of a twin starting from a single homogeneous crystal. This phenomenon is
called mechanical twinning. It has been known for a long time, especially in some
metals where twins can be relatively easily formed by gliding movement of a
part of the crystal against the other, under a shear stress.

Whether we deal with growth twins or mechanical twins, their crystallo-
graphic description includes two essential issues: What are the symmetry rela-
tions between the twin components and what orientations the composition

Fig. 1.1 Example of a
twinned as-grown crystal
(Rutil TiO,)
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plane may take. Detailed considerations lead to different classifications of twins
and the topic has been treated in detail in a number of books on mineralogy and
review articles (see, e.g., Cahn, 1954; Wadhawan, 1987; Shuvalov, 1988).

In this book we are concerned in the description of properties of a special
kind of twins, traditionally referred to as transformation twins. Their essential
feature is that the mentioned symmetry relations between their components are
fully defined by specifying two crystal structures, say Sg and S, with two
prominent properties: (i) the symmetry of Sr is lower than that of S; and
(ii) Sp arises from S by small distortions of the latter, for instance by small
shifts of some of the ions. In a large number of crystalline compounds, the
structure changes spontaneously from Ss to Sr at a certain phase transition
temperature Ttg, simply to obey the rule that such structure is realized which, at
a given temperature, corresponds to lower free energy of the material. Consider
the simple example illustrated in Fig. 1.2. The structure S¢ has a tetragonal unit
cell. At the phase transition, this structure undergoes changes: The central ion
shifts along the vertical c-axis. The actual displacements of particles may be
very small (typically of the order of 10 2—10"> nm, i.e., a very small fraction of
the unit cell dimension), but even so they violate some of the symmetry opera-
tions of Sg and the resulting structure S has a lower symmetry. The shift of the
central ion can have either sign so that two structures Sr(A) and Sr(B), denoted
further on as S5 and Sy, can form. When no external forces are applied they
have the same energy and therefore in an ideal sample it is unpredictable which
of them will appear. These two structures, resulting from the phase transforma-
tion from a phase with the structure Sg to that with the structure Sg, represent
transformation twins. Herein we will refer to these phases as G and F, respec-
tively. The material undergoing a phase transition such as this one or similar to
it is referred to as a ferroic. Twin components in a real sample which are formed
due to a phase transformation in ferroics are called domains. To avoid mis-
understandings, we stress already at this point that while in this hypothetic
ferroic material only two domain states can exist, with structures S and Sg, in a
sample of it we may have any number of twin components, i.e., any number of
domains each of which represents either S5 or Sg.

S, - view along a-axis

Fig. 1.2 Simple case of two ferroelectric domain states formed in a crystal lattice
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Several thousands of crystalline materials are known to undergo phase
transitions at which the symmetry is lowered, typically on cooling (Toma-
shewski, 1992a,b) or when the ambient hydrostatic pressure is changed (Tonkov,
1992). In all of them, domains may exist and there are manifold reasons for their
occurrence. Static mechanical and electrical boundary conditions of a finite
sample may lead to domain formation, in particular during the phase transfor-
mation process. Presence of defects incorporated into the crystal lattice during
the crystal growth may prefer the coexistence of two domains next to each
other. Metastable domain patterns may exist in a sample as remnants of
dynamic processes which took place in it in the past. And, perhaps most
important of all, domains can be formed intentionally by applying properly
oriented mechanical and/or electrical forces.

Size of domains varies in wide limits, from tens of nanometers to millimeters;
however, if a narrower region should be quoted as typical, linear dimension
between 1 and 100 pm would seem a reasonable hint for the bulk materials,
however, much smaller values are typical for thin films. While the number of
domains is virtually unlimited, a very different rule applies to the count of
“kinds of domains.” It is obvious from the Fig. 1.2 that, starting from a
tetragonal cell, the shift of the central ion along the vertical axis can proceed
in two ways only: upward or downward. This leads to just two possible struc-
tures, S and Sp; these represent the only two possible domain states. Generally,
the number of domain states may be larger than two. We shall show in the
following chapter how it can be determined by simple symmetry considerations.

Compared to growth twins, domains excel in one aspect: The number of
domain states and the symmetry relationship between them can be exactly
formulated, knowing the symmetries of crystal structures S and Sr. We shall
consider these symmetry aspects in some detail in the next chapter.

A phase transition between phases G and F can also be associated with a
change of the form of the unit cell as illustrated in Fig. 1.3, where the unit cell in
F phase becomes orthorhombic. Here the two possible structures of Sy phase,

S, - view along c-axis
| L |
| | - -
| |
SA SB
b

Fig. 1.3 Simple case of two ferroelastic domain states formed in a crystal lattice
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Sa and S, differ from S by the sign of shear deformation in the plane normal
to the fourfold axis of G phase.

What was a twin boundary or a composition plane in the general twinning
narrative becomes a domain wall or domain boundary in the case of domains. But
the concept of twin boundary is also frequently used, especially when speaking
about two neighboring domains which differ in the shape of their unit cells, as
illustrated in Fig. 1.3. Typically, having in mind nonmagnetic ferroics, the
domain wall is an extremely thin region, its thickness ranging from one to
several tens of lattice units. We wish to mention already at this point that, in a
sample of a ferroic material, both phases (with the structures Sg and Sy) may
coexist, usually within a restricted temperature interval around the phase
transition temperature 7Ttr. In this book we shall reserve the term phase
boundary for a narrow transition region separating these two structures.

Figure 1.4 shows an example of real domains. It is a microscopic image of
domains in a plate of barium titanate; the sample surface was etched (Fousek
and Safrankova, 1965). Here, dark and white stripes, which are several micro-
meters wide, correspond to domains representing two possible domain states.
The photograph clearly demonstrates that domain walls are much thinner than
the domain size.

It is obvious from what has been said that, under ideal conditions (perfect
crystal lattice, no applied forces) the energy density of the crystal in the two
domain states (or in any domain state allowed by symmetry), is the same. These
are the ground states of the crystalline system in phase F, degenerate in energy.
But within the domain wall—however thin it may be—the structure must be
distorted, providing a passage between the two structures S, and Sg. Therefore
the wall is characterized by some extra energy; since the wall is very thin we
consider it as a surface energy. It plays a significant role: What size and in
particular what shape domains have largely depend on its magnitude and on the
extent it varies with the wall orientation. If asked for a typical number, the wall
energy density is usually estimated to be of the order between 1 and 10 erg/cm?.

Fig. 1.4 Microscopic picture
of domains in a c¢-plate of
barium titanate; the sample
surface was etched and
observed in reflected light
(Fousek and Safrankova,
1965)
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Up to this point, domains and growth twins seem to have many similar
properties. What makes domains unique are two features. First, the structural
change from S¢ to Sris accompanied by fully predictable macroscopic tensor
properties of the crystal. As a consequence, the difference in the tensor proper-
ties of different domain states (with structures S and Sy in our example) is well
defined. Second, forces may be applied to the ferroic sample, which remove the
energy degeneracy of domain states; again the nature and orientation of these
forces are fully predictable. Often they can be easily realized and are capable of
transforming the crystal from one domain state to another. This process is
referred to as domain state reorientation but many alternative terms are
employed such as switching.

Ferroic crystals, because of the existence of domains and possibility of
reorientation, thus offer qualitatively new properties and effects which cannot
be achieved with “normal” crystalline compounds that exist in one state only.

A simple and at the same time a very realistic illustration of what has been
just said can be based again on the previous simple model. Assuming the central
ion is positively charged, its shift is connected with formation of a dipole. Its
dipole moment, when integrated over a unit volume, defines the polarization
variation associated with the phase transformation. This polarization variation
is customarily termed as spontaneous polarization Ps, associated with the phase
transition from Sg to Sg. Thus the structures S and Sp differ in the sign of Pg.
It is obvious that an applied electric field E pointing downward prefers the
structure S, while the structure Sy is more favorable in the field of opposite
sign. We expect that domains with structures preferred by the applied field, say
Sa, will grow at the expense of domains with structures Sg. As a characteristic
of this process, mapping average polarization vs. field results in the hysteresis
loop. An example of such loop observed in a slowly varying field applied to a
crystal of Gd>,(Mo0Qy,); (abbr. GMO) is shown in Fig. 1.5a (Kumada et al.,
1970). It illustrates the process of polarization reversal. A ferroic with this
property is said to be ferroelectric. Other ferroelectric crystals which serve as
model materials for many aspects of domain properties are barium titanate,
BaTiO3, and (CH,NH,COOH);H,SO, (triglycine sulfate—abbr. TGS).

Similarly, applying a properly oriented shear stress to the system illustrated
in Fig. 1.3 we will make favorable one of the structures S, and Sy, having
different signs of the shear deformation of the unit cell. In practice, the shear
stress is realized as a compressive stress along an axis making an angle of 45°
with the crystal axes and its sign is reversed when compression is applied
perpendicularly to the previous one. In this way we can achieve a hysteretic
dependence of strain on stress, such as shown in Fig. 1.5b (Gridnev et al., 1990).
A ferroic with this feature is called ferroelastic. Here we come very close back to
the concept of mechanical twins but—since we now base our approach on the
existence of the original unperturbed structure S;— families of materials offer-
ing mechanical twins and ferroic materials are not identical. A model ferroe-
lastic crystalline material is lead phosphate, Pb3(POy,)s,.
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Fig. 1.5 (a) Ferroelectric hysteresis loop: hysteretic dependence of polarization on applied
electric field (at a frequency of 1 mHz) in a crystal of gadolinium molybdate (GMO) (Kumada
etal., 1970). (b) Ferroelastic hysteresis loop: hysteretic dependence of deformation on applied
stress in a crystal of KH;(SeO3), (Gridnev et al., 1990). (¢) Hysteretic dependence of deforma-
tion on applied electric field in a crystal of GMO (Kumada et al., 1970). (d) Linear birefrin-
gence of a GMO crystal as a function of applied electric field or mechanical shear stress
(Kumada et al., 1970)

Definitions given above are to a certain extent approximate. We shall pay
more attention to this terminology in the following chapter where also other
kinds of ferroics will be introduced.

The mentioned properties appear even more interesting when we look at
some numerical values. In a normal dielectric like mica or rutile, with the
relative permittivity value say 40, an electric field of 1 kV/cm induces polariza-
tion, equal to the surface charge density, in the amount of about 40 pC/m?. The
same field can bring about polarization reversal in a ferroelectric sample with
spontaneous polarization of 20 pC/cm? and this leads to the surface charge
change of 40 x 10* uC/mz, avalue 10,000 x higher. For a normal elastic material,
whether sodium chloride or copper, the elastic compliance is of the order of
10~"" m?/N so that an applied stress say 2x10* N/m? induces deformation
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2x107". The same strain can cause reversal of spontaneous strain of a ferroe-
lastic crystal in the amount of 2x 107>, For this impressive “amplification” of
effects by a factor of 10%, however, we pay a price in terms of nonlinear and
hysteretic behavior.

Appearance of the spontaneous polarization in F phase, depending on the
symmetry of G phase, can lead to the deformation of the unit cell of the crystal.
In the case of the structure shown in Fig. 1.2 this does not happen. However,
adding more atoms to the unit cell of this structure thus lowering its symmetry,
one can obtain a structure where the appearance of the spontaneous polariza-
tion along the c-axis will be entailed with a shear deformation in the perpendi-
cular plane as shown in Fig. 1.3. It is obvious that in such structure, changing
polarization by electric field may lead to reversing the shear strain at the same
time. We thus observe a hysteretic dependence of strain on applied field. It is
represented in Fig. 1.5¢c. This phenomenon can exist in ferroics which are
simultaneously ferroelectric and ferroelastic. Barium titanate and GMO are
well-studied representatives.

The two domain states in GMO differ also in birefringence and this fact
manifests itself in yet another characteristic of domain reorientation, repro-
duced in Fig. 1.5d. Thus ferroics offer a large variety of characteristic macro-
scopic phenomena.

The hysteresis loop is often considered a defining feature of ferroics and of
ferroelectrics in particular. The stability of either of two states when the applied
force is zero is the basis of a memory device. Switching times of the order of tens
or hundreds of nanoseconds are typically achieved in good single crystals at
high fields. It has been established that domain walls can move faster than the
velocity of sound. In thin films, switching times are not far from hitting the
picosecond limit. A remarkable feature of a ferroelectric loop is that together
with polarization a number of other “coupled” properties are switched, as we
have just demonstrated. This opens a way to alternative methods of detecting in
which state the memory device dwells at any given moment, as well as to many
other application aspects. On the other hand, the polarization reversal is
coupled with behavior of free charge carriers, making processes complicated;
in ferromagnetics, this issue does not exist.

While the states on the hysteresis loop are transient, multidomain states can,
of course, exist also in static conditions, often representing metastable states
with a long lifetime. Multidomain structures which can live for very long time
can also be created artificially. Figure 1.6 gives an example of an artificial
regular domain pattern in a crystal of LiINbO; (Feisst and Koidl, 1985) “engi-
neered” for nonlinear optical applications.

Because domain states differ in the orientation of crystallographic axes, there
exist a large number of methods to observe domain structures, ranging from
surface etching and decoration techniques, polarized light microscopy, and
nonlinear optical scattering to high-resolution electron microscopic methods.

Domain reorientation phenomena as well as characteristics of samples in
multidomain states offer manifold applications. Though, in this book, we are
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Fig. 1.6 Artificially
produced periodic domain
pattern serves to enhance
optical second harmonic
generation. Etched surface
of a LINbO; crystal imaged
by a scanning electron
microscope. Reprinted with
permission from Feisst and
Koidl (1985). Copyright
(1985), American Institute
of Physics

not going to address practical applications of ferroic domain, let us shortly
mention some of them. Domain reorientation is an absolutely essential process
when preparing piezoelectric ceramics; note that a ceramic sample containing
chaotically oriented grains of a typical piezoelectric material would reveal zero
or negligible piezoelectric response. Only when grains are subject to ferroelec-
tric poling which is just the process of domain reorientation pertinent to the
P(E) hysteresis loop, the sample becomes piezoelectric. Most of today’s electro-
acoustic devices utilize such ceramics. Behavior of domain walls in low electric
fields greatly enhances dielectric and piezoelectric response of multidomain
systems, which allows reaching values of material coefficients like permittivity
or piezoelectric constants, which cannot be realized within homogeneous
samples. One of the most characteristic applications of ferroelectric hysteresis
is non-volatile random access memory. Domain processes in ferroelectric
ferroelastics make it possible to electrically control light propagation in the
material, with a number of practical aspects. Engineered domain structures
such as the one shown in Fig. 1.6 offer nonlinear optical elements with greatly
enhanced efficiency of second harmonic generation. Many promising applica-
tions are in the research or development stages. For example, controlled
polarization reversal makes it possible to fix holograms in photorefractive
ferroelectrics. Fast switching processes are often accompanied by bursts of
emitted electrons or light and these phenomena promise several practical
aspects.

The goal of the preceding paragraphs was to give a qualitative and intro-
ductory overview of some of the topics to be discussed in detail in this book. In
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what follows we start with introducing basic theoretical approaches to struc-
tural phase transitions, emphasizing the symmetry and phenomenological
aspects of their classifications (Chapter 2) and give an overview of typical
ferroic materials (Chapter 3). After a survey of experimental methods used to
visualize domain patterns (Chapter 4) we shall review a number of aspects of
domain formation and what their typical shapes are (Chapter 5). Chapter 6 will
address the static properties of domain walls. The short Chapter 7 will be
devoted to the experimental characterization of switching. The largest chapter
of the book, Chapter 8, will cover the theoretical and experimental aspects of
the polarization response of ferroelectrics. In Chapter 9, we have attempted to
give a comprehensive overview of the domain-related properties of ferroelectric
thin films. Originally, we planned to include the book chapters on domains in
bulk ceramics, on domain issues in ferroics revealing an incommensurate phase
and relaxors, and one which would cover practical applications of domain
phenomena in ferroic; however, the time factor urged us to limit the scope of
the book. These issues are only briefly mentioned in places.

This book is intended for students and researchers who are familiar with just a
small part of the whole field or who are beginners. When writing it we have tried
to follow a “bi-modal” approach. If something can be explained or derived in a
relatively simple way, we present a detailed explanation or derivation. On the
other hand, if the relevant story was, in our opinion, complicated, we present only
the results referring the reader to the original papers for the explanations.

Perhaps we can end this chapter by referring to other literature, in the book
form, on domain phenomena in nonmagnetic ferroics. The more recent books
on ferroelectrics include works by Smolenskii et al. (1984), Xu (1991), Strukov
and Levanyuk (1998), Wadhawan (2000), and by Rabe et al. (2007). In all of
them the various domain issues are well treated, of course without going into
details and using quite different approaches. Recently published books edited
by Hong (2004), Alexe and Gruverman (2004), and Kalinin and Gruverman
(2006) offer a wealth of information on domains on nanoscale and their
characterization with Scanning Probe Techniques. The theoretical work of
Toledano and Toledano (1988) provides the reader with the background
required to analyze domain states on the basis of symmetry and thermody-
namics. A small but very informative monograph on some aspects of ferro-
electric domains has been published by Fesenko et al.(1990). Ferroelastic
domain phenomena are treated extensively in Salje’s book (1990) on ferroelas-
tics. A very informative book on the theory of domain-related phenomena was
published by Sidorkin (2006). Close attention was paid to domain phenomena
in several older monographs on ferroelectricity (Jona and Shirane, 1962;
Fatuzzo and Merz, 1966; Lines and Glass, 1977; Burfoot and Taylor, 1979).
There also exist a number of relevant review papers. They will be pointed out
later in the corresponding chapters.



Chapter 2
Fundamentals of Ferroic Domain Structures

2.1 Structural Phase Transitions and Domain States: Basic
Concepts and Classifications

2.1.1 Structural Changes at Phase Transitions: Ferroics

In this section we introduce the basic concepts required to discuss structural
phase transitions in crystals on the basis of a symmetry approach. The latter is
in fact closely connected with the Landau theory of phase transitions, to which
we come later in this chapter. However, for the reader who is more oriented
toward domain properties without studying the nature of phase transitions
themselves, it may be practical to become acquainted with the symmetry
approach in the first place. The analysis of domain states on the basis of
symmetry gives essential information on the number of domain states and on
how they can be distinguished. It is this information that forms the background
of any considerations about domain reorientation processes, about domain
walls, as well as about properties and applications of multidomain samples.

Speaking about a structural phase transition, we always compare two dif-
ferent crystal structures S; and Sy between which the transition is realized. The
difference between S and Sy is not trivial: We have in mind changes in the
crystal structure, which cannot be described by a mere thermal expansion (due
to change of temperature) or by a mere compression (due to change of hydro-
static pressure). Our structural changes are more dramatic, although they are
also brought about by change of temperature or pressure. Such transitions are
known to occur in several thousands of crystalline substances (Tomashewski,
1992a,b; Tonkov, 1992). They can be classified according to a number of
different criteria.

On the first level of categorization we have to distinguish between distortive
and reconstructive transitions (Granicher and Miiller, 1971). In the latter case,
the structures S and Srhave nothing in common except for chemical composi-
tion. A reconstructive transition requires indeed a complete reconstruction of
the atomic structure so that chemical bonds are broken and because of that the
process itself usually involves formation of dislocations and proceeds

A K. Tagantsev et al., Domains in Ferroic Crystals and Thin Films, 11
DOI 10.1007/978-1-4419-1417-0_2, © Springer Science+Business Media, LLC 2010
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Fig. 2.1.1 Models of possible distortions of crystal structure

sluggishly. Figure 2.1.1 (in part reproduced from the book of Rao and Rao
(1978)) shows schematically atomic arrangements in four different crystal
structures. Transformation from the structure (a) to any of the other structures
requires breaking of first coordination bonds and would represent a reconstruc-
tive transition. Well-known examples of such transitions include that between
sphalerite- and wurtzite-type structures in ZnS, one between arsenolite and
clandetite structures of As,Os, or that between the f-phase (body-centered
cubic) and hexagonal or rhombohedral modifications of titanium. Domain
states as they are presented in this book do not concern reconstructive phase
transitions.

In contrast, at a distortive transition the spatial system of crystal bonds
forming the structure S; becomes systematically distorted, without disrupting
the linkage of the network. Thus, in Fig. 2.1.1, the structure (c) or (d) can be
conceived as a slightly changed structure (b), due to coordinated shifts of atoms.
By these distortions the crystal structure goes over into Srand it is obvious that
by doing so the crystal symmetry also changes, from symmetry group G to
symmetry group F. Here G and F'stand for the symbol of 32 point groups. As it
is usual, we shall always use the symbol G or S; when referring to the higher
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symmetry phase and F or Sy when referring to the lower symmetry phase. Thus
for distortive transition the group — subgroup relation holds, namely

FCG. (2.1.1)

This is one of the essential features of distortive phase transitions and offers
different ways for their further classifications. Logically now, the phase with the
symmetry G (or shortly the phase G) is referred to as the parent or prototypic or
high-symmetry phase while the phase with symmetry F (or shortly the phase F) is
called distorted or low-symmetry phase." Since the transition between the two
phases is often monitored as a function of temperature (at some transition
temperature Ttr) and, as a rule, the symmetry is lowered on cooling, phases G
and F are often mentioned as high-temperature and low-temperature phases,
respectively.

Before pursuing further the symmetry issues, however, we mention one
further classification of distortive transitions. Depending on the basic type of
thermal motion of the structural units related to the transition, one distin-
guishes displacive and order—disorder transitions. Speaking about the symmetry
of a crystal, one considers the symmetry of the structure formed by the average
positions of atoms involved in thermal motion. If the atoms controlling the
symmetry change at the transition perform small harmonic oscillations” around
their average positions, one classifies the transition as displacive. In this case,
physically, the symmetry change at the transition is controlled by displacements
of bottoms of the potential wells, where the atoms oscillate. If the atoms
controlling the symmetry change at the transition perform thermally activated
jumps between two or more equilibrium positions, one classifies the transition
as order—disorder. In this case, the symmetry change is controlled by the dis-
tribution of the atoms between these positions: In the high-symmetry phase the
atoms are equally distributed between them, whereas in the low-symmetry
phase, this distribution becomes asymmetric resulting in a displacement of the
average positions of atoms.

In real systems, both types of transitions are represented as well as more
complicated cases with mixed behavior. To illustrate the modifications of a
structure accompanying a real displacive phase transition, we will consider
below the cubic—tetragonal transition in BaTiOj;. Here we will follow the
classical scenario of this transition; however, more complicated scenarios of it
are also under discussion (Stern, 2004).

Figure 2.1.2a illustrates the perovskite-type structure of BaTiO3, in the cubic
phase. On cooling, at Ttg = 126°C it transforms into the tetragonal phase.
Choosing as a reference the positions of barium ions, what happens at Ty (cf.

! Coupling a parent together with something distorted or low symmetry is somewhat ungrace-
ful. Indeed Wadhawan’s (1982) daughter phase would be more elegant.

2 Since these oscillations occur around the equilibrium positions that are temperature depen-
dent, it would be more rigorous to call such oscillation quasi-harmonic.



14 2 Fundamentals of Ferroic Domain Structures

Fig. 2.1.2 Perovskite-type » €9 a
structure of BaTiOj5: (a) unit . Ba ‘ Q B ’
cell in the cubic phase and . . ; :
(b) atomic displacements at O 0 C*) 9
cubic to tetragonal -
transition ® Ti+ o ? ®

Fig. 2.1.2b) is that all titanium ions undergo a small shift along one of the cubic
axes, say “upward.” There are two kinds of oxygen ions in nonequivalent
positions, Op and Oyy; both shift “downward,” though by different amounts.
Itis obvious that these shifts violate several symmetry operations of the original
cell: center of symmetry, mirror plane (001), the twofold axis [010], to name a
few which are obvious from this two-dimensional projection onto the (100)
plane. Considering now the situation in three dimensions, as a result of these
ionic displacements the point group symmetry G = m3m s lowered to F = 4mm
which of course is a subgroup of G.

A classical example of an order—disorder transition is provided by sodium
nitrite, NaNO,. This crystal undergoes the order—disorder transition from G =
mmm to F = mm2 at about Trtgr = 163°C (at this moment we disregard the
intermediate phase which exists in a narrow temperature interval). In Fig. 2.1.3a,
its unit cell is shown schematically in its ferroelectric phase. Here we assume that
the NO, groups are fully ordered, their dipole moments all pointing along the
direction of the b-axis. In fact there is partial disorder, since the probabilities of
finding the NO, groups oriented against the »-axis is not zero so that the net dipole
moment is less than maximum. Above Ttr the probabilities of finding the NO,
groups in two symmetric positions become equal (Fig. 2.1.3b) so that the structure
acquires an additional symmetry element—a mirror plane. Thus the net dipole
moment disappears, and the average symmetry of the lattice becomes higher.

The difference between displacive and order—disorder transitions is vital
when studying lattice dynamics and temperature dependences of some macro-
scopic properties. It does not seem to have a significant bearing on domain
phenomena. On the other hand, properties of domains, their shapes, and
dynamic behavior are closely related to the G—F relations. In this book, there-
fore, we shall base our classifications and many approaches on symmetry
considerations. The symmetry approach is usually based on considering the
point symmetries G, F but also on the possible change of the unit cell volume.
Any phase transition fulfilling relation (2.1.1) is called a ferroic transition and F
itself is the point group of the ferroic phase. Looking at the number of atoms in
the unit cell, there are two possibilities. First, the number of molecular units in
the primitive unit cell, or— less exactly — volume of the unit cell may not change.
That is, the translational symmetry is preserved. Then we speak about a
ferrodistortive ferroic. The phase transition from (b) to (c¢) in Fig. 2.1.1
obviously fulfills this requirement and the previously mentioned example of
BaTiO; belongs to this category. Alternatively, even the translational symmetry
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may change at the phase transformation, as it is obvious in a hypothetical
transition from (b) to (d) in Fig. 2.1.1. The crystal of lead zirconate PbZrO;
provides a well-known example. In its parent phase, its cubic structure is identical
with that of barium titanate shown in Fig. 2.1.2a and its unit cell contains just one
formula unit. At temperature Trr = 230°C the atomic structure undergoes
changes primarily characterized by shifts of lead ions along one of the original
[110] directions which becomes the a-axis of the new orthorhombic phase of
symmetry mm?2. In neighboring cubic cells these shifts are antiparallel. This is an
example of a phase transition which is referred to as antiferrodistortive. This type
of distortion will be accompanied by an increase of the number of formula units
in the primitive unit cell (from one to eight in the case of PbZrQs). Naturally, this
is the same as saying that the translational symmetry has changed. To describe
the unit cell multiplication one introduces the factor

V:ZG/ZF% VG/VF, (212)

where Z 4 is the number of formula units and V', is the volume of the primitive
unit cell (neglecting the effect of thermal dilatation) in the phase of group
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symmetry 4. Materials are known in which the phase transition is accompanied
only by a change of the translational symmetry while the point symmetry
remains the same: G = F but v > 1. These are referred to as nonferroics and
in this book their properties will not be considered. As examples, we can
mention potassium cyanide, KCN, (v = 2) or CH3;NH;CdCly (v = 4). In
some cases, such a transition is characterized by a change of the space symmetry
group but in others even that remains the same in both phases. Tolédano and
Tolédano (1982) performed a symmetry analysis of all possible nonferroic
phase transitions and gave a number of concrete examples.

In the following three sections we shall categorize ferroics according to
macroscopic properties absent in the parent phase but newly revealed in the
ferroic phase, which is the most significant aspect in understanding domain-
related phenomena.

2.1.2 Ferroelectric Phase Transitions

In a way, ferroelectrics are the simplest ferroics since domain states in them
differ in the orientation of a tensor of the lowest possible rank, a vector. Let us
discuss the definition of a ferroelectric phase transition by which is usually
meant a transition from a nonferroelectric phase G into a ferroelectric phase F.
In an uncomplicated approach it is said that the phase transition is ferroelectric
when, as a result of it, there exists spontaneous polarization Pg in the phase F. In
many cases this “Pg definition” is fully satisfactory from most points of view
and we shall be using it— as almost everyone—as a shorthand. However, it
does not respect the problem of determining the notion of polarization itself and
fails to provide an appropriate basis for describing transitions from a phase
which is already polar. We shall, therefore, discuss this point in more detail.

Polarization is customarily defined as the dipole moment per unit volume of
the system of charges in the material. However, as it was recently realized
(Tagantsev, 1987, 1991, 1993; Resta, 1994), for a medium with a periodic
distribution of charge, the dipole moment density cannot be unambiguously
introduced as a bulk property of the system. Clearly, for any finite and electro-
neutral part of this structure, one can calculate, using the charge distribution,
the average dipole moment density. However, the fact that the result of the
calculation depends on the way in which the part was specified shows that this
result does not represent a bulk property of the structure. On the other hand, a
variation of the dipole moment density resulting from small changes of charge
positions is defined unambiguously, not suffering from the aforementioned
dependence. This enables an unambiguous definition of variation of polariza-
tion as that of the dipole moment density. Thus, any rigorous definition of the
ferroelectric phase transition should deal with changes of polarization or its
derivative with respect to other physical variables rather than with the polariza-
tion itself.
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One possibility of such a definition is based on the pyroelectric effect. One
considers the pyroelectric coefficient p, a vector defined as the derivative of
polarization with respect to temperature, at zero electric field in the material. Its

components are
oP;
;= . 2.1.3
» < 8T)E0 (2.1.3)

Clearly, p is a polar vector. The experimental manifestation of the pyro-
electric effect is a change dQ of bound charge density on the surface of a plate-
like sample cut obliquely to p when its temperature is changed by 67. Since
0Q = 0D, = €,0E, + dP,, where 6D,,, OE,,, and d P, are changes of components
(normal to the plane of plate) of the electric displacement, electric field, and
polarization, respectively, the condition £ = 0 implies p = 6Q/0T.

The symmetry of a material puts serious restrictions on the existence and
orientation of p. It can only have nonzero components in samples of materials
represented by one of the point symmetry groups 1, 2, m, mm2, 4, 4mm, 3, 3m, 6,
6mm, or Curie groups co and com. These are referred to as polar groups. While
point groups describe symmetries of crystalline media, the Curie groups oo and
oom have been included since they play a role in nonuniform ferroelectric
systems such as ceramics or polymers. If the group F is polar while G is not,
we speak about a ferroelectric phase transition; F is then the symmetry of the
ferroelectric phase. It may, however, happen that already G is a polar group and
that on transforming from G to F the vector p just acquires new components.
We believe that it is reasonable to call the latter transition ferroelectric to have
uniformity in the definition of all nonmagnetic phase transitions. Thus, we
arrive at the following definition of a ferroelectric transition:

A phase transition is called ferroelectric if it results in a lower symmetry phase
in which the vector of pyroelectric coefficients acquires new components which
were zero, by symmetry, in the high-symmetry phase.

A convenient variable for a description of the properties of material in the
ferroelectric phase is the vector of spontaneous polarization Pg. At a given tem-
perature T in the ferroelectric phase we define it as the change of polarization
during cooling from a temperature in the paraelectric phase 7}, down to T, i.e.,

Ty

Ps(Tf)Z /p(T)dT. (2.1.4)

Ty

Concerning the accepted definition of spontaneous polarization the follow-
ing remarks should be made.

First, as we will see in the section of this chapter devoted to the thermo-
dynamic description of the phase transitions, this definition is in perfect corre-
spondence with that accepted in phenomenological theories.® Second, though

3 Spontaneous polarization at Trr may appear discontinuously. This is so for transitions of
the first order, as discussed in detail in Sect. 2.3. Then the corresponding component of p at
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Eq. (2.1.4) unambiguously defines the variable Pg(7}) called spontaneous polar-
ization at temperature 7%, the values of Pg, in general, cannot be associated with
the average dipole moment density calculated on the basic of the charge density
in the material at this temperature. The reason is that it is not possible to
introduce the dipole moment density unambiguously as a bulk property of
the material as has been discussed at the beginning of this section. Thus, one
should consider the definition given by Eq. (2.1.4) as a convention.

The magnitude of spontaneous polarization depends on temperature. In a
typical case it increases with decreasing 7. Several tens of degrees below Tty it
acquires a value which is characteristic for the given class of materials but
greatly varies for different kinds of materials. For most ferroelectrics this
value lies within limits 10°~1 C/m? (0.1-100 pC/cm?).

One should mention that the direct application of the above definition of the
spontaneous polarization does not provide a convenient method of experimen-
tal determination of Pg. However, based on this definition a much more
practical method can be formulated. As we will see later, in principle, in the
low-symmetry phase, the direction of vector p can be changed by application of
a pulse of electric field or mechanical stress, the absolute value of p being
unchanged. This procedure is called switching. In a typical case, the switching
can result in changing the sign of p. Then, as seen from Eq. (2.1.4), the switching
will result in a change of sign of polarization Pg defined according to this
equation. Thus, in this case, measuring the change of polarization which
accompanies the switching, one gets the values of 2Pg and finally determines
a value of Pg without integration of the pyroelectric coefficient.

A definition which is very often employed states that the phase transition is
ferroelectric when, as a result of it, there exists in the phase F spontanecous
polarization Pg whose direction can be reversed by applied electric field (the
“reversal definition”). It is based on the fact that if the field is applied, the free
energy of the material is minimum when Pg directs along the field. This defini-
tion works well in many real cases. For instance, in a simple example of G = 2/m
and F = 2, it is obvious that Pg may have either sign in F without changing the
symmetry of this phase and can be reversed since it interacts with electric field.
The “reversal definition” has two positive features. First, it stresses the fact that
the medium in the phase F can exist in several states (domain states). Second, it
points to the essential fact that the magnitude and direction of Pg can be
determined by measuring the charge, i.e., by integrating the electric current,
when the direction of Pg is changed by external forces. This is an alternative to
the method based on pyroelectricity and if the material allows it, it represents a
much more practical option.

Trr is represented by a o-function and this must be respected in integral (2.1.4). In real
experiments, every component of P emerges continuously, be it because of even slightly
inhomogeneous distribution of temperature in the measured sample or because a phase
front between the two phases travels across the sample. Thus integrating the electric current
gives a correct information on Ps.
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However, this definition is not general enough to cover all possibilities. First,
the symmetry requirements imposed by condition (2.1.1) may not allow for
reversibility of Pg, i.e., for the change of its sign; rather than that of Py may exist
in several directions which need not include antiparallel pairs of polarization
vectors, as it will be discussed later in detail. This hindrance can be easily
corrected by replacing “reversibility” by “reorientability.” Second and more
important, for a particular material and under given conditions, an experimen-
talist may not be capable of inducing the change of Pg direction. This possibility
is a major setback for the “reversal definition”. It would eliminate from the
family of ferroelectrics many materials in which the change of Pg direction has
not yet been experimentally accomplished although by symmetry requirements
and structural considerations it should be possible. In crystals of lithium
niobate, which undergoes the G = 3m to F = 3m, the change of Pg direction
was not realized for many years and yet it was clear that the material is ferro-
electric; in fact in grown crystals the existence of regions with antiparallel
polarization was well established. We can conclude that the “reversal defini-
tion” describes the sufficient but not necessary condition for ferroelectricity.

In view of the above discussion it appears practical to stress the symmetry
aspect in the definition of a ferroelectric. The phase transition is ferroelectric if
as a result of the transition the pyroelectric vector p acquires new components in
F which were zero, by symmetry, in G. The material in the phase of symmetry F
is ferroelectric if at some temperature and pressure it undergoes a ferroelectric
phase transition from G to F. In some cases, however, even this definition
cannot be literally applied: Some materials, like guanidinium aluminum sulfate
hexahydrate (abbr. GASH), reveal all features typical for a ferroelectric (hys-
teresis loop, domains) at room temperature but on heating they decompose
before the temperature Ty is reached. Then the phase G remains hypothetical;
however, should the phase F be ferroelectric, it must be possible to construct the
S¢ structure of higher symmetry by small distortions of the structure Sp.

One more remark concerning the use of pyroelectric coefficient in the defini-
tion of ferroelectrics should be made. This use, besides the conceptual aspect,
could be of practical interest when determination of polarization change during
switching is experimentally hindered. This situation has been recently encoun-
tered in polymer—ferroelectric thin films, where switching of the sign of the
pyroelectric coefficient has been used for the attribution of the materials’ ferro-
electric character (Bune et al., 1998).

When treating the domain issues, symmetry considerations play an essential
role. In most cases, therefore, we shall stick to the “symmetry definition”.

2.1.3 Ferroelastics and Ferrobielectrics

2.1.3.1 Ferroelastic Phase Transition

In the previous section we have seen that the change of crystal symmetry from G
to F may result in a change of symmetry requirements imposed on the
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pyroelectric coefficient p, a polar vector, and that this leads to the definition of a
ferroelectric phase. Now we shall show that changes in a second-order (sym-
metric) tensor can be treated in a similar way and lead to the definition of
another kind of ferroic. Consider the thermal dilatation tensor which is a
symmetric second-rank tensor with components o;;. The requirements on its
nonzero components and on possible relations between them are the same for
all crystallographic classes which belong to the same system. Thus, for instance,
in all tetragonal classes o, = ,, and o.. are two independent nonzero compo-
nents while o, = 0., = o, = 0; this describes thermal dilatation of a tetra-
gonal cell characterized by two lattice parameters a, ¢. If, as a result of a phase
transformation, the symmetry requirements on the tensor «; change, such a
phase transition, as well as the resulting phase F, is referred to as ferroelastic
(Aizu, 1969; Toledano and Toledano, 1988). The quantitative form of this
definition can be given as follows: A transition is called ferroelastic if it results
in a low-symmetry phase in which the thermal dilatation tensor changes the
number of its independent components with respect to those in the high-
symmetry phase. The low-symmetry phase is referred to as ferroelastic as
well. It is obvious that the tensor a; change is connected with the change of
the unit cell shape.

If this requirement is not met, the phase F and the transition are called
nonferroelastic. It is useful to remark that, since the thermal dilatation tensor
of materials belonging to different groups of the same crystalline class has the
same number of independent components (Nye, 1992), no ferroelastic transi-
tion are possible between G and F belonging to the same class. The same holds
for transitions from a hexagonal G phase to a trigonal phase F. Sometimes the
concept of crystal family of a point group P is defined as including all point
groups belonging to the same crystal system as P with the exception of the
trigonal groups which are attributed, together with the hexagonal groups, to the
hexagonal family. Using this concept, the phase transition is said to be ferroe-
lastic if G and F belong to different crystal families.

2.1.3.2 Natural Spontaneous Strain

Considering a ferroelastic phase F, it is evident that since the shape and size of
the unit cell has changed, this change can be expressed as a deformation
impressed upon the unit cell in G. If we have in mind a uniform sample or
infinite medium, rotations which are a part of the distortion tensor are not
essential (Nye, 1992) and the strain we are interested in can be described by a
symmetric second-rank tensor. Thus, it looks reasonable to use this strain to
characterize material in the ferroelastic state by introducing the concept of
spontaneous strain tensor. It may be defined in different ways, depending on
the purpose for which it should be used. In this section we shall define natural
spontaneous strain, €s. Its components s, describe precisely how the unit cell in
the parent phase has to be deformed to reach the unit cell in the ferroic phase.
To make this definition exact we specify that when evaluating es, at a given
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temperature, the parameters of the unit cell of the parent phase are linearly
extrapolated to this temperature. The natural spontaneous strain can be linked
to the dilatation tensor in a similar way as spontaneous polarization was linked
to the pyroelectric coefficients in the previous section, namely, for a given
temperature Ty in the ferroelastic phase

Ty

s, (Tr) = / (4(T) — a(Ty)) dT, 2.1.5)

Ty

where T}, is a temperature in the parent phase.*

Considering a particular transition, the task of evaluating eg, is twofold.
First, we wish to determine which components of eg are nonzero or what
relations between them are fulfilled; second, we may be interested in the numer-
ical values of the g components.

Let us start with the first question. Consider a particular transition from
cubic G = m3m to orthorhombic F = mm?2. The answer, naturally, depends on
the mutual orientation of the symmetry elements of G and F. Let us fix the cubic
reference frame for both structures (with the z-axes parallel to a fourfold axis of
G and to the twofold axis of F, respectively). Figure 2.1.4a shows the orientation
of the relevant mirror planes in G. There are two possibilities for the orientation
of mirror planes in F, which can be specified as m,m,2. and my,my,2.. We will
use further in the book this self-evident way of notation of the orientation of the
elements in F. In the first case illustrated in Fig. 2.1.4b, the spontaneous strain
tensor has three independent componentses,, €5, , €s... A possible temperature
dependence of the unit cell parameters is shown schematically in Fig. 2.1.5a.
The change of the unit cell in the second case, for F' = my,myx,2., is illustrated in
Fig. 2.1.4c. In this case, clearly, the nonzero natural strain components are

-

(b) (c)

Fig. 2.1.4 Two possible transitions from G =m3m to F = mm2 result in different
spontaneous deformation components: (a) orientation of mirror planes passing through the
z-axis in the point group m3m; (b) and (c) schematic representations of changes of the cubic
unit cell (dashed) into the orthorhombic unit cell at transitions m3m — mym,2. and
m3m — my,my, 2., respectively

* In case of the first-order phase transition the reader should consider a remark similar to that
connected with Eq. (2.1.4).
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Fig. 2.1.5 Temperature dependence of unit cell parameters in the XY plane, schematically: (a)
and (b) apply to (b) and (c¢) in Fig. 2.1.4, respectively. Dotted lines show the cubic lattice
constant linearly extrapolated to the low-symmetry phases, ag. Angle o measures small
rotation of the cubic axis a due to the shear e,,. In (a), arrows show natural spontaneous
strains. In (c¢), arrows show Aizu spontaneous strains for the species illustrated in (a). The
dashed line in (c) corresponds to the conter term in Aizu’s definition of strain

€S, = €s,,» €s,,,Es... In this case, a possible temperature dependence of the cell
parameters is shown in Fig. 2.1.5b. These two examples are simple enough
that the components of natural spontaneous strain can be guessed. In more
complicated cases we have to express the dilatation tensor in the phase F in
the coordinate system of G and compare the result with the dilatation tensor
of G, we see immediately which new components appear in F. According to
Eq. (2.1.5) these new components define the tensor of natural spontaneous
strain.

Table 2.1.1 illustrates how matrices of natural spontaneous strain compo-
nents are determined for the two just mentioned and two additional transitions.
The symbols dey; or g, stand for symmetry-allowed changes of the unit cell,
induced by a change of temperature in the phase of symmetry G or F. These
matrices have the same structure as that of the thermal dilatation tensors.

Table 2.1.1 Thermal strain matrices for four ferroelastic species with the m3m parent phase

G =m3m F=mum,2, F = myymsg,2. F=m. F=my,
[ [ Oexy  Exy Oexy  Exy Oexy  Exy  —Ey:
Oy 0y [ [T €xy Ofxx  Ey:

O€xx O Ocz: O —€y: &y Oz
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However, compared to customary tables given in textbooks on crystal physics,
for each subgroup F they are expressed in the reference frame of G. Each
nonzero component for a given F represents a nonzero component of natural
spontaneous strain. Let us again pay attention to the transition from G = m3m
to F = m,,ms,2.. We see that the strain component e appears newly in the
phase F. It was forbidden by symmetry in the parent phase G and is, therefore,
referred to as the symmetry-breaking strain component. In the table such
components are given without the prefix 6. But there is one more feature in F
which is new as compared to G, namely, that de.. # de .. Thus, also the nonzero
difference s — es., has the property of breaking the symmetry of G. The
reader can easily recognize other symmetry-breaking components of strain for
the transition from G = m3m to F = m,,.

Later we shall present a table of all possible ferroelectric transitions in which
natural spontaneous strain tensor will be given in the just described manner.

The next question is how the components of €5 can be determined numeri-
cally. Here, the answer is easier compared to the situation we faced with the
problem of determining P, since the unit cell is well defined already in the
parent phase and its shape and dimensions can be determined by X-ray
diffraction. The newly appeared components of €g, are always nondiagonal
components; their real values at a temperature 7 < T'rg equal their sponta-
neous values.

Consider now strain components which when standing alone are not sym-
metry breaking. Obviously, what characterizes their newly acquired magnitude
is the difference between the value of the unit cell dimension say ag in the phase
G and that at the considered temperature 77 in the phase F. In order to eliminate
the influence of “normal” thermal dilatation, however, the value attributed to
the phase G should be extrapolated to temperature 7. This is schematically
represented in Fig. 2.1.5a which shows the meaning of the cell parameter ag in
the cubic phase (or extrapolated to the F phase) and parameters arand bpin the
phase ' = mm,2.. In this phase, obviously, all three components of the natural
spontaneous strain can be written as

ar — ag br—ag CF— ag
ESII = a bl 6522 - a ) 6533 - (2.1.6)
G G

where ¢ is the lattice constant along the Z-direction in this phase.
In a general case, the natural spontaneous strain at a given temperature 7;in
the ferroelastic phase F can be defined as

ES’./.(Tf) :f‘:Fi/(Tf) —EG’./.(Tf)7 (2.1.7)

where e, (Tt) and e¢,(T) denote the strain in the phase F and the strain in the
phase G extrapolated to 7%, respectively. Clearly, as defined the natural sponta-
neous strain is independent of the reference states employed for calculations of
EFI/(Tf) and EG;,' ( Tf).
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One can realize that, far from Ty, where the linear extrapolation of thermal
dilatation of the parent phase is losing its accuracy, the natural spontaneous
strain cannot be unequivocally determined from the data on temperature
dependence of the unit cell parameters. However, any modification of the
extrapolation law for e¢,(7t) results in a variation of the natural spontaneous
strain tensor by a constant symmetric second-rank tensor. As we shall see later
in this book, this uncertainty by a constant tensor manifests in no measurable
phenomena, since whenever the spontaneous strain is involved, it is the differ-
ence between its values in different domain states that counts.’

Though the uncertainty in direct experimental evaluation of the values of the
natural spontaneous strain far from 7tr may be considered as a certain incon-
venience, this definition of spontancous strain has clear advantages compared
to alternative Aizu’s definition of spontaneous strain considered later in this
section. First, the variable, which yields the thermodynamic theory of a struc-
tural phase transition, is exactly the natural spontaneous strain. This will be
discussed in the section devoted to the thermodynamic theories. Second, as we
will see later, a certain type of the ferroelastic problems can be treated in terms
of the natural spontaneous strain whereas it cannot be treated in terms of Aizu’s
definition.

To offer an idea about the magnitude of diagonal components of natural
spontaneous strain we quote values for BaTiO; (Wadhawan, 1982; Landolt-
Bornstein, 1990). The crystal has the point symmetry F = 4mm at room
temperature. This phase is ferroelastic as well as ferroelectric, resulting from
the parent phase G = m3m. At room temperature a = 3.992 Aandc = 4.036 A
and natural spontaneous strain components are es, = —3.64 x 1073 and
£5y = 7.36 x 1073,

The case of the transition m3m — My,mg,2; is slightly more complicated
because the conventional axes of the two phases do not coincide and when
investigating the ferroelastic phase by X-ray diffraction, orthorhombic para-
meters ag{ort), b{ort) are determined, measured along axes which make an
angle of 45° with the cubic axes. Then simple geometry gives for the symmetry-
breaking shear strain the relation

_ag(ort) — bp(ort)
s, = 2ac . (2.1.8)

In many ferroelastic crystals a typical value for symmetry-breaking off-
diagonal components of natural spontaneous strain is within the limits of 3 x
10°-102.

> If the elastic compatibility problem between the parent and ferroelastic phase is considered,
within the framework of natural spontaneous strain approach, zero spontaneous strain
should be ascribed to the parent phase.
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2.1.3.3 Aizu’s Definition of Spontaneous Strain

One of the key properties of ferroelastics is that, in the low-symmetry phase,
there exist at least two states of material, which differ in the orientation of the
tensor of spontaneous strain. These states called domain states will be discussed
later in this chapter. This property of ferroelastics has been used by Aizu
(1970a) for a definition of spontaneous strain, which does not face the problem
of equivocal determination from the data on the temperature dependence of the
parameters of the unit cell mentioned in the previous section. He introduced a
modified tensor of spontaneous strain, which we shall refer to as Aizu strain and
denote by ¢, as follows:

i 1
53‘;211 =E&s; — _Z€Sif(k) (219)

where g, (k) is the natural spontaneous strain in the k’s domain state, ¢ being
the total number of the domain states in the low-symmetry phase F. As seen
from Eq. (2.1.9) the Aizu strain is independent of the reference used for the
calculation of the spontaneous strain since any change in the reference state
results in adding the same tensor to all es, (k). This gives to the Aizu strain an
advantage of being unequivocally defined from the experimental data on the
temperature dependence of the parameters of the unit cell. That has determined
a wide use of the Aizu strain in the literature.

It is essential to stress that, for any problems sensitive to the values of
spontaneous strain when the whole sample is in the same ferroic phase F, only
the difference between the spontaneous strains in different domain states mat-
ters. Since the two definitions of spontaneous strain, natural and Aizu, differ
only by a constant tensor which is the same for all domain states of F, for
problems of this kind, spontaneous strains introduced by them can be used in
the calculations and provide the same result.

As an example of both natural and Aizu strains we consider the ferroelastic
species 42m — Peds — 2 with four domain states. Table 2.1.2 shows both forms
of strain; here a = (1/2)(d¢,,~0€y), b = €y, Aizu (1970a) listed the matrices of
e 412U for all ferroelastic species and we show some of them in a slightly
modified form in Table 2.1.3.

It is instructive to compare the physical meaning of the spontaneous strains
introduced according to these definitions. Let us do it for the transition dis-
cussed above, from cubic G = m3m to orthorhombic F = m.m,2. (for features
of the transition, see Fig. 2.1.4). The first conclusion to be drawn is that the
conter term in Aizu’s definition, i.e., the term 522:1 es, (k), is a second-rank
tensor of a cubic symmetry, which can be presented as Ad;;, where J;; is the
Kronecker symbol. Taking the trace and comparing these two expressions one
finds 4 = Tr(es) = 2,3,1:1 es,,» We note that the subtracted term, namely
16 Z;:] €s,.» has the meaning of the strain in a hypothetical cubic structure,
which changes with decreasing temperature with the same variation of the
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Table 2.1.2 Matrices of natural spontaneous strain and Aizu strain for four domain states of
species 42m — Peds — 2,

es(S) ESpin (Si)
S OExy  Exy 0 —a b 0
oy 0 a 0
O€.. 0
55xx —Exy 0 —a —-b 0
S5 Oy 0 a 0
Oc.. 0
Oy, —€x 0 a —b 0
SS 55,x‘,\‘ 0 —a 0
O€-- 0
Oy € O a b 0
Sy oexy 0 —a 0
O¢.. 0

Table 2.1.3 Tensors e5% for domain states S; in selected species
432-422, 3m-2m, m3m-4/mmm

_ -26 0 0 b0 0\ b0 0
fn(s)) = b o], edmS)={ -20 0], dus)=| b 0
b b ~2b

23-eds-222, m3-es—mmm

» a0 0\ c 00y b0 o
efiz(S)) = b 0], efin(s,) = a 0|, ed=(s;) = ¢ 0] wherea+b+c=0

¢ b a

432-eds—2,2,2., 3m—eds—222, m3m—es—m.m,m.

) a 0 0 ) a 0 0 ) c 00
fin(s)) = b 0], edi™(s,) = ¢ 0], edin(s;) = b 0
¢ b a

b 0 0 ) ¢c 00 b 0 0

iz (Sy) = a 0], efin(ss) = a 0|, e (Ss) = c 0
¢ b a

432-eds-2,.2.2, 3m—Peds—m,.m.2 ., m3m—cs—m,.m.m, Designations of these species differ in indices from those
in Table B.1, because here the orthorhombic axis is taken parallel to the cubic x.

—-2b 0 0 -2b 0 0 b 0 d
ehim(sy) = bod|, (s = bo—d |, sy ={ -2 0
b b b

» b0 —d\ b o d . b0 —d
chim(s5,) = 26 0 |, ehim(ss) = b0 |, e§™(Se) = b 0
b —2b -2b

422-222, dmm—mm2, 42m — 222, 42m — mm2, 4/mmm-mmm

0 a O 0 —a 0
E/S\uu (S)) = 0 0|, 6/S\uu ($2) = 0 0
0 0
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Table 2.1.3 (continued)

42,4 -2, 4/m-2/m

—a b 0 a —b 0
edin(s)) = a 0|, ebin(s,) = —a 0
0 b

622-222, 6mm—mm?2, m2—mm2, 6/mmm—mmm

_ a 0 0 v a2 —V3a/2 0 v a2 V3aj2 0
5é‘zu(sl>: a 0], Eéuu(SZ): —0/2 0], 5?”"(83) — —a/2 0
0 0 0

32-2, 3m—m, m-2/m

a 0 a/2 V3al2 —c/2 _ a/2 —V3a/2 —c/2
Eg\"“(sl) — a , Eg\llll(S2> — —a/2 \/§(’/2 , EQ""(S3) — —a/2 \/§C/2
0 0

2222, mm2-2, mm2—m, mmm-2/m
00 b 00 —b
)= 0 0] @msy={ 0 0
0 0

unit-cell volume as that which actually occurs in the F phase. Thus, the Aizu
strain can be interpreted as the spontaneous strain calculated with respect to
this hypothetical structure. Now we recall that, for the considered system, the
natural spontaneous strain is evaluated as spontaneous strain calculated with
respect to a cubic structure that evolves according to the extrapolated thermal
expansion of the parent phase. This is the basis of the difference between the
definitions of spontaneous strain. Thus, for the considered system, the Aizu
strain can be calculated from the equation for the natural spontaneous strain,
Eq. (2.1.6), in which we substitute ag(ext) by (apbper)'. The difference
between these two definitions can also be seen by comparing Fig. 2.1.5a and c.

It is of importance to note that a certain convenience in using the Aizu’s
modified definition of spontaneous strain is not free of charge. The point is that
the subtraction of the conter term in Eq. (2.1.9) results in losing the information
required for solving a certain class of ferroelastic problems. We have in mind,
e.g., the problem of the elastic compatibility between two ferroelastic phases
F1CG and F>CG which could coexist near the morphotropic boundary of the
material, the situation of high practical importance, e.g., in Pb(Zr,Ti)O; ferro-
electric (Jaffe et al., 1971). This problem requires information on the difference
in spontaneous strains g, in both F; and F, phases. If this difference, using
definition (2.1.5), is expressed in terms of natural spontaneous strain, one finds
that it need not be identical to the difference of Aizu strains in the two phases.
The reason is that the conter term in Eq. (2.1.9) is, in general, different in the F)
and F, phases. For example, if the parent phase is cubic the difference in the
spontaneous strain of these phases can be written as follows:

S o N

- , Ve, =V,
_ Aiz Aiz F F
(Es,,)Fl—(Es,,)Fz—(ss,, “)Fl—(as,. “)Fz—é,-ji‘VG X (2.1.10)

ij
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where V stands for the unit cell volume. We see that, since, in general,
Ve, — VE, # 0, the consideration of the problem of elastic compatibility
between two different ferroelastic phases in terms of Aizu stress would lead to
an erroneous result.

Aizu strain is not the only alternative to the natural spontaneous strain.
Another definition of it, denoted here as ¢ g‘f, has been proposed by Wadhawan
(1982), namely

1 3
53::58,7—551726 S (2.1.11)
1

m=

We just note that when discussing compatibility problems involving domain
states in one phase only, the use of this definition is legitimate on the same level
as the use of the Aizu strain. If the parent phase is cubic, both Aizu and
Wadhawan’s spontaneous strains are identical.

2.1.3.4 Ferrobielectrics

Formal aspects of describing properties of crystals by tensors do not distinguish
between differences in the physical nature of phenomena. We can, therefore,
expect that what was said for strain will apply also to other physical properties
characterized by a second-rank symmetric tensor. In addition, the well-known
precept of crystal physics states that if something is allowed by symmetry, it is
there. Thus for ferroelastics we expect that, in the phase F, the spontaneous
(subscript S) components yg, of susceptibility or ks, of permittivity will also
occur. To stress this point, the term ferrobielectric was coined (Newnham and
Cross, 1974a,b) to denote such phases or phase transitions: Any ferroelastic
sample which is also characterized by its dielectric properties (i.e., sample of a
nonmetallic material) is also a ferrobielectric sample. The same argumentation
applies to the reverse tensor of relative permittivity, namely, the tensor OE;/0D;
which is used to characterize the response of the crystal at optical frequencies.
Therefore any ferroelastic phase transition is accompanied by the occurrence of
spontaneous birefringence. Components of tensor properties forbidden by
symmetry in the parent phase but allowed in the ferroic phase are sometimes
referred to as symmetry-breaking properties. The designation “morphic” is often
used in the same sense. Thus any ferroelastic material is also characterized by a
morphic birefringence. We shall discuss it in some detail when treating methods
of observing domains.

2.1.4 Higher Order Ferroics

In the previous two sections we have considered ferroelectric and ferroelastics,
which are also conveniently referred to as primary ferroics. On the basis of this
consideration, we could now easily construct tables showing phase transitions,
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specified by G and F, which are ferroelectric and ferroelastic. Before doing that,
however, we should finish the classification of phase transitions used in this
book. After introducing vectors (polarization) and second-rank tensors (strain)
as characteristic quantities for some phase transitions, we can go further up in
tracking the behavior of other tensors as the symmetry changes from G to F.
The reader is reminded that even if we limit ourselves to tensors of fourth-rank
maximum, we know that useful and observable properties of crystals are
described by more than 20 tensors differing in rank and symmetry (Sirotin
and Shaskol’skaya, 1979). So we could in fact classify phase transitions accord-
ing to criteria based on the occurrence of new components of any of these
tensors and invent names for them, and one might go higher as well. However,
to stay practical we introduce just two more specific kinds of ferroics.

Ferroelastoelectric phase transitions are those characterized by the occur-
rence of new components of the piezoelectric tensor djj in the phase F'compared
to the phase G. By analogy, ferrobielastic transitions are those characterized by
the occurrence of new components of the tensor of elastic compliance tensor s
in the phase F compared to the phase G. Both these represent secondary ferroics
(Newnham and Cross, 1974b) or second-order ferroics (Aizu, 1973b).

It can be easily seen that in any ferroelastoelectric phase also new compo-
nents of the electrooptic coefficient r;; develop, as well as those of tensors
describing nonlinear optical properties like second harmonic generation.

Thus, specifying point group F as a subgroup of G one can unambiguously
determine to which category phase F belongs; whether this phase is ferroelectric
or ferroelastic, ferroelastoelectric or ferrobielastic. All we need is to compare
simple summaries of nonzero components of tensors in point groups (Sirotin
and Shaskol’skaya, 1979). At this point, a question arises. Is it possible to find
such pairs G, Fthat the corresponding transition would not fall into any of these
four categories? The answer is positive. There are four such pairs and we shall
specify them in Table B.1 of ferroic species. In these cases the lowest rank of a
tensor acquiring new components in phase F'is higher than four. Materials that
belong to any of these categories have been named tertiary ferroics (Amin and
Newnham, 1980).

In this book we based the classification of ferroics mainly on one of their
features, namely, on the genesis of new components of tensors in the phase F
which were necessarily 0 in phase G. There is another significant inference,
namely, that the domain states in the phase Finevitably differ in just these new
tensor properties. It is on this basis that higher order ferroics can be optionally
defined (Aizu, 1972; Aizu, 1973b; Newnham and Cross, 1974a.b).

It is obvious that one and the same material (one and the same phase
transition) can be (but need not to be) simultaneously ferroelectric, ferroelastic,
and any higher order ferroic. Actually this is rather a rule than an exception. In
particular when the symmetry G is relatively high and the symmetry F is much
lower, all measurable tensors may acquire new components. Then we usually
ascribe the material into the category corresponding to the lowest rank tensor.
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As an illustration of the tensor changes induced by a phase transition we
consider the transition from G = 42m to F = mm2. Several well-investigated
ferroic materials undergo such a transition: potassium dihydrogen phosphate
(KH,PO,, abbr. KDP), gadolinium molybdate (Gd>(MoQy,);, abbr. GMO),
and tanane. We have in mind macroscopic properties which are described by the
following material relations:

En = SumOm + dinE; + a,AT (2.1.12)
Di = dimOm + €0KijEi +P1AT (2113)
AS = 4,6, + piE; + (%)AT. (2.1.14)

Here the Einstein summation convention was applied with i and j changing
from 1 to 3, n and m changing from 1 to 6. The system of 1-6 indexing for the
elastic variables can be found in Nye’s book (Nye, 1992); for reference it is given
in Appendix F. For the variables and material parameters in these expressions,
the following notations have been accepted:

€,— mechanical stress,

D;—electric displacement,

AS — change of the entropy density,

0,,— elastic strain,

E;—electric field,

AT—temperature change,

s,m— elastic compliance taken at constant electric field and temperature,
d;,,— piezoelectric moduli at constant temperature,

o, — coefficient of thermal dilatation,

K;— relative dielectric permittivity at zero stress and constant temperature,
p:— pyroelectric coefficients at constant stress,

C—heat capacity at zero electric field and stress,

€o— permitivity of vacuum.

It is convenient to represent these coefficients as a matrix which has the
general form shown in Fig. 2.1.6a (valid for the point group 1) and which is
particularized for the group 42m in Fig. 2.1.6b. Figure 2.1.7a and b shows
orientation of the symmetry elements for the aforementioned point groups
with respect to their conventional reference frames. Figure 2.1.8a shows the
matrix of nonzero components of tensors in the conventional coordinate system
of F. However, this matrix cannot be directly used for characterization of the
phase transition. As already mentioned to evaluate the genesis of new compo-
nents of tensors when passing from phase G to F one should compare the
matrices of the tensor properties in the same reference frame. Customarily
one uses the reference frame of the G phase. Thus, as the next step one should
transform the matrix given by Fig. 2.1.8a to reference frame of G phase to find
matrix given by Fig. 2.1.8b. (The information necessary for such kind of
transformation is provided in Appendix F.) Finally, comparing matrices
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Fig. 2.1.6 Matrix of tensor properties (Nye, 1992): (a) in its general form applicable to the
point group 1 and (b) for the point group 42m. Here larger points show nonzero components;
the values corresponding to the linked points are equal
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Fig. 2.1.7 (a) Symmetry elements for the group 42m. Symmetry elements for the subgroup
mm2 C 42m shown in (c) differ in orientations from those in the conventional reference frame
of group mm?2 shown in (b)

shown in Figs. 2.1.6b and 2.1.8b leads to the conclusion that in this case the
phase F'is ferroelectric, ferroelastic, ferroelastoelectric, as well as ferrobielastic.

Thus, the mentioned crystals of KDP and GMO and many isomorphs have
attributes of both primary and secondary ferroics, but routinely they are
referred to as ferroelectrics and ferroelastics.®

® It is amusing how lavishly we throw around the prefix ferro, although nothing here has to do
with iron. But this goes well back in history (Fousek, 1994). The Schrodinger’s proposal of the
concept of a ferroelectric material was forgotten by the time Rochelle salt (Seignette salt) was
discovered as the first ferroelectric material. Then the concept Seignette electric became
common, to be later replaced first by the term ferro-dielectric and then ferroelectric. Quoting
Megaw (1957) “... perhaps the real reason for its [i.e. of the term Seignette-electricity]
rejection ... is its failure to fit comfortably into the English language. As an adjective,
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Fig. 2.1.8 (a) Matrix of tensor properties (Nye, 1992) for the group mm?2 in its conventional
orientation. (b) The same in the orientation satisfying the relation mm2 C 42m. Here larger
points show nonzero components; the values corresponding to the linked points are equal

At the end of this section we wish to remind the reader that here we did not
pay attention to magnetic properties. But in fact when the concept of ferroics
was coined, for both primary (Aizu, 1970) and secondary (Newnham and
Cross, 1974a,b) ferroics, tensor properties related to magnetization were
included in the classification.

2.1.5 Relation Between the Symmetries G and F: Order Parameter

We shall now investigate the relation between point groups G and F in more detail
with the aim of introducing the concept of the order parameter of a phase transition,
which will open a practical way to analyze domain states in the distorted phase.
Let us first recall the well-known Curie principle of crystal physics (Sirotin and
Shaskol’skaya, 1979). This self-evident principle states: “If certain causes end up in
certain consequences, the symmetry elements of the former should manifest
themselves in the latter. If some dissymmetry is observed in any phenomenon,
then this dissymmetry should manifest itself also in the causes which lead to this
phenomenon. Statements opposite to these are incorrect, at least on a practical
level; in other words, the consequences may possess a higher symmetry than the
causes which resulted in them.” The present authors would like to point out that
nowadays it is generally accepted that the last statement does not hold if one takes
into account tensor properties of high enough order. With this reservation the
Curie principle can be formulated in the following way: “If an object of certain
symmetry is subjected to a perturbation, the operations of symmetry of the

>ferroelectric< is euphonius, while >Seignette-electric< grates on the ear.” Here the
Russians seem to stick more to facts than to sounds: their ‘segniettoelektrichestvo’ survives
and no one pretends to deal with iron when investigating barium titanate.
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resulting object are the common operations of symmetry of the original object and
the perturbation.” Thus, we see that unless the perturbation is a scalar, its
application should result in loss of some symmetry elements of the object. Recal-
ling that any ferroic phase transition results in a loss of symmetry elements one can
pose a reasonable question what is the perturbation which is standing behind the
phase transition? The answer to this question is the objective of this section.

2.1.5.1 Transition Without Multiplication of the Unit Cell

Consider the simplest case: a ferroelectric phase transition. Suppose that the occur-
rence of spontaneous polarization Pg can be considered as its cause. Which sym-
metry elements have Pg, a polar vector? They are represented by the continuous
Curie group oom; its set of symmetry elements includes the symmetry axis of infinite
order (allowing for any rotation around it) along the direction of Pg and all mirror
planes containing this axis. Should, therefore, the occurrence of Pg be held respon-
sible for the transition from G to F, we have to determine the symmetry operations
which are common to both groups G and com and check whether the relation

F=oomNG (2.1.15)

holds, when the axis oo is properly oriented in the coordinate system of G. The
symbol N designates the intersection of both groups on its sides. Examining the
foregoing example of the transition from =G = 42m to F = mm2 we see imme-
diately that this relation is satisfied. Thus, in this particular case polarization can be
regarded as fully responsible for the change of symmetry. Groups F satisfying
relation (2.1.15) are called maximum polar subgroups of G. All pairs (G, F) fulfilling
this condition, with specifying the orientation of F with respect to G, were found in
the early stages of investigating ferroelectrics (Zheludev and Shuvalov, 1956).

In the discussed case, the physical quantity which appears in the phase F and
is fully responsible for the symmetry change from G to F is called the order
parameter of the transition. Often it is denoted by 1 and we shall use this
designation throughout this book. We also use the notation H for the group
of symmetry of the order parameter. Thus, in the foregoing case where the point
group symmetry change from G = 42m to F = mm?2 fully characterizes the
transition, with H = ocom, the order parameter transforms as a polar vector and
we feel justified to consider it polarization.

The considered case was, in a sense, a simple one, namely, in the G = 42m group,
one can find only one maximum polar subgroup of the symmetry F = mm2. In
general this is not necessarily the case, e.g., in G = m3m group one finds three
maximum polar subgroups of the type F = 4mm according to the three possible
orientations of the fourfold axis and three possible orientations of the order para-
meter (polarization) axis. To distinguish the orientations of the order parameter 5
and its group H, we attach to them an index i: n; and H;. Thus, the reduction of
symmetry due to the phase transition at which #; occurs can be described as follows:

Fi=HNG. (2.1.16)
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This relation states that the symmetry group F; of the distorted phase is the
maximal subgroup of the symmetry group G of the parent phase, which leaves
the order parameter #; invariant.

The situation discussed above corresponds to ferroelectrics classified as
proper ferroelectrics’ (Dvorak, 1974). However, it is possible to imagine a
ferroelectric transition where polarization does not play the role of the order
parameter. This is, for example, the case of the transition from G = 42m down
to the monoclinic phase with F = 2_. In this case, the symmetry reduction is
more severe than that required by the symmetry com of the polarization so that
the latter cannot play the order parameter role. This kind of ferroelectrics is
classified as improper ferroelectrics (Dvorak, 1972).

It is clear that the approach used for definition of proper and improper
ferroelectrics can readily be applied to the situation with the order parameter 7
of any symmetry. An important example of this kind is the classification into
proper and improper ferroelastics. In this case, the approach is applied with
H = mmm, the symmetry of the elastic deformation.

2.1.5.2 Transition with Multiplication of the Unit Cell

In the case where numbers of formula units in the unit cells of G and F phases
differ as a result of the transition, i.e., v # 1 in Eq. (2.1.2), the order parameter of
the transition should be introduced as a physical quantity which appears in the
phase F and is fully responsible for the change in the spatial group symmetries
between the phases G and F. For such transitions the F phase can be both
ferroelectric and ferroelastic. However, since neither polarization vector nor
deformation tensor is connected with any translational symmetry they cannot
play roles of the order parameters. Thus, we again arrive at the situation of
improper ferroelectrics and ferroelastics just discussed above where the ferro-
electric or ferroelastic phases are results of the phase transition controlled by an
order parameter different from polarization vector or deformation. The exis-
tence of improper ferroelectrics was predicted by Indenbom (1960) from the
point of view of symmetry. A Landau theory approach for the description of
improper ferroelectrics was developed by Levanyuk and Sannikov (1968).
Cross et al. were the first to recognize that crystals of gadolinium molybdate
(GMO) exhibit properties indicating that this material cannot fall into the
category of “normal” proper ferroelectrics (Cross et al., 1968). Dvorak (1971,
1974) then determined the true symmetry of the order parameter in this material
as well as in the boracite Fe;B;0131 (Dvorak, 1972). Both of them belong to the
second mentioned category, undergoing transitions which are ferroelectric but
not equitranslational, with v # 1.

7 In the chapter devoted to the thermodynamic theory we shall point out that there may be
reasons for further and finer classification which includes proper ferroelectrics in contrast to
pseudoproper or weak ferroelectrics. But this is of little importance for understanding
domains on the basis of symmetry.
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Could a material be proper ferroelectric and proper ferroelastic at the same
time? Yes, it can and, in fact, the transition from G = 42m to F = mm?2 without
unit cell multiplication, i.e., with v = 1, provides us with an example. Indeed, we
have already seen that the occurrence of a polar vector parallel to the z-axis in the
phase G = 42m removes all symmetry elements with the exception of the twofold
axis which is parallel to 4 and of mirror planes parallel to it; thus, according to Eq.
(2.1.15), the phase F = mm?2 is proper ferroelectric. Alternatively, we can imagine
that the unit cell whose symmetry corresponds to the group G = 42m is deformed
by a shear strain €., whose symmetry is that of a rhomb-based prism, i.e., H =
mmm with two mirror planes shared with G. In this case, we see from Eq. (2.1.16)
that what is left are again symmetry elements representing the group F = mm2. If
for a given material with the considered transition from G = 42m to F = mm2
there is no change in translational symmetry (i.e., v = 1), the transition is both
proper ferroelectric and proper ferroelastic. This is the case of KDP. If v > 1, it
would represent an improper ferroelectric and an improper ferroelastic; this is the
case of GMO for which v = 2.

2.1.6 Overview of Different Kinds of Phase Transitions: Species

Various classifications of structural phase transitions, which we introduced in
the preceding sections, proved useful in practice. Correct assignment of the
category, to which a particular material (transition) belongs, makes it possible
to predict a multitude of properties, including domain phenomena. Partial
summary of different kinds of phase transitions, which have been described
up to now, is shown in Fig. 2.1.9. Some of their designations contain symbols P,
e, d, or s. P means that this kind of transition is ferroelectric; €, d, and s denote
ferroelastic, ferroelastoelectric, and ferrobielastic transitions, respectively.

We may wish to assign a particular material a symbol which would show
most of the information we have already discussed. This symbol contains the
groups G and F. However, as we have seen above specifying these groups by
their normal crystallographic notation may not be sufficient. Let us consider the
phase transition from G = 42m to F = 2. Here, we should discriminate the
transition where the twofold axis along z survives (this axis is parallel to the
former 4 axis) from that where the twofold axis along x does. We distinguish
these two crystallographically nonequivalent possibilities by marking them with
F = 2_and F = 2, respectively. Specification of G and F, and, when necessary,
with designation of their mutual orientation, defines the species of the phase
transition. To make the notations more informative we shall include, between
the symbols of G and F, also characters denoting newly acquired properties.

The simplest species is 1 — Pd — 1. Here G = 1, F = 1 and on transforming
from G to F within the triclinic system the crystal loses only the inversion center
and acquires spontaneous polarization (symbol P) as well as the piezoelectric
tensor (symbol d). Thus, the phase F is ferroelectric and ferroelastoelectric. A
crystal representing the species m3m —d — 23 stays cubic and becomes
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Fig. 2.1.9 Classification of structural phase transitions. Shaded items correspond to ferroic
transitions

piezoelectric; thus the phase F of symmetry 23 and the transition itself are
ferroelastoelectric. In these cases there is no need to specify the orientation of F
because all of them are equivalent. The two species of the preceding paragraph
are now designated as 42m — Peds — 2. and 42m — Peds — 2,,. Both represent
phase transitions which are simultaneously ferroelectric, ferroelastic, ferroelasto-
electric, and ferrobielastic. The symbol gives no information about the possible
change of translational symmetry. We shall present a table of all species; but
before doing that it is practical to introduce the concept of domain states.

2.1.7 Domain States

2.1.7.1 Basic Concepts

We have practically completed the classification of phase transitions to the
degree that is useful in this book and can now proceed to its vital concept, that
of domain states. Let us start with a simple example. Consider a material
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classified as a proper ferroelectric and revealing a transition from G = m3m to
F = 4mm. For this species polarization plays the role of the order parameter
and the vector Pg is directed along a fourfold axis of the point group F. Let it be
the y-axis direction (see Fig. 2.1.10). Now, let us apply to this state of the crystal
with this orientation of Pg all symmetry operation of G. Clearly, the operations
which are common with those of Fleave the state unchanged whereas the rest of
them will produce, as one can easily check, five additional states which differ in
the directions of Pg. The states of the crystal obtained by this procedure are
called ferroelectric domain states of this species. Using this method we can
define ferroelectric domain states of any ferroelectric species. In the considered
case one can easily count the number of them (six). As it will be shown in the end
of this section, the number ¢ of domain states of a given species can be
determined without performing the transformations by the symmetry opera-
tions of G, namely, it holds

¢ = 1Gl/|F (2.1.17)

where |A4| is the order of the point group A, defined as the number of its
symmetry operations including the identity transformation. We can easily
check this equation for the considered case: |G|=48 and |F|=8, implying
q=06. For the reader’s convenience, Table A.2 makes it possible to find quickly
relations between point groups and their subgroups. The ratio ¢ = |G| / |F] is
also called index of F in G.

This approach can be generalized for any kind of the order parameter 5
responsible for a ferroic transition. States of the crystal in the ferroic phase

X 7 X

Fig. 2.1.10 Six possible 7 N / X
orientations of Pg for species

m3m — Peds — 4mm
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differing in the orientation of #g are referred to as domain states. The expression
for the number of domain states in terms of the orders of point groups of the
parent and low-symmetry phases, Eq. (2.1.17), applies to the general case as
well, for transitions at which the number of formula units in the primitive unit
cell remains constant (v = 1 in Eq. (2.1.2)).

A simple example demonstrating the importance of identifying the true order
parameter when evaluating the number of domain states is provided by the
species 43m — Peds — 3,,.. This is a ferroelectric species and one may be
tempted to proceed by the “geometrical” method mentioned above. This
would lead to four orientations of Pg and might erroneously conclude that
there are four domain states. However, in fact ¢ = 24/3 = 8. This is because
here the order parameter transforms as a third-order tensor d, so that the
transition is improper ferroelectric. This is an example when all domain states
can be grouped into pairs. States in each pair have the same vector Pg but differ
in the orientation of tensor d. To describe this situation we say that the two
domain states in one pair are degenerate domain states with respect to Pg. The
concept of degenerate domain states can be applied to any tensor properties.
For degenerate domain states, several other terms have been proposed like that
of improper domain states (Janovec, 1972) in contrast to proper domain states.
A physical quantity which is newly acquired in the ferroic phase and its
particular value is common to several domain states but not to all is sometimes
referred to as secondary order parameter.

In complicated ferroics, this degeneracy of domain states is rather a rule than
an exception and its understanding may be vital for practical aspects. This
motivates us to consider the question of the degree of degeneracy of domain
states with respect to a given tensor property, denoted here by U. We can answer
this question in a simple way, using the knowledge developed when treating the
problem of number of domain states which differ in the orientation of the order
parameter. We recall that Eq. (2.1.17) determines the number of domain states
which can be obtained from a given state by applying operations of the group G
and which differ in orientations of a tensor property invariant with respect to a
group FCG. Clearly, this equation is valid for any tensor property, not only for
the order parameter. Thus, if we set the group F equal to the group FyCG that
leaves the property U unchanged, then Eq. (2.1.17) will yield the number ¢, of
domain states differing in this property, namely,

qu = |G|/|Ful. (2.1.18)

Let us come back to the previous example of species 43m — Peds — 3.- and
consider the number of domain states which differ in spontaneous polarization.
The appropriate subgroup of G leaving polarization invariant is F; = 3m. Since
|Fy| = 6 and |G| = 24, Eq. (2.1.17) gives gy =4 as the number of domain states
differing in the direction of Pg.

The obtained results enable us to evaluate the degree of degeneracy of
domain states with respect to a given tensor property U, i.e., to determine is
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the number dy; of domain states differing in the order parameter but having the
U property unchanged. We call dy; the degeneracy factor. Evidently

dy = q/qu. (2.1.19)

By introducing the degeneracy factor we have opened the way to a very useful
additional classification of ferroics which was pioneered by Aizu (1970b). If ¢ = gp
we speak about a full ferroelectric species, in which all domain states differ in
polarization. On the contrary, when the species is ferroelectrics (i.e., gp > 1) but the
degeneracy factors g/gp > 1, the material (or species or phase transition) is partial
ferroelectric. Similarly, the conditions ¢ = ¢. and ¢/q. > 1 at g. > 1 define full
ferroelastic and partial ferroelastic, respectively. The classical transition in
BaTiO;— from G = m3m to F = 4mm without unit cell multiplication — provides
an example of a full ferroelectric and partial ferroelastic species. Indeed, we have
checked the ferroelectric feature at the beginning of this section by finding that all
six domain states differ in polarization, i.e.. ¢ = gp = 6. As for strain, the subgroup
of G, which keeps it invariant is F. = 4/mmm. This group contains twice as many
symmetry operations as the group 4mm. That implies ¢. = 3 and ¢/g.=2 > 1.}

At this point one should notice that to give an exhaustive presentation of
domain states, the equation for the number of possible domain states, Eq.
(2.1.17), is to be generalized for the case of transitions with multiplication of
unit cell volume (v > 1). Simple arguing enables us to do that. Let us recall that
Eq. (2.1.17) deals with the indices of the point groups Fand G, i.e., this equation
takes into account only the orientation symmetry of the problem. Thus, this
equation gives the number of domain states that differ in the orientation of
crystallographic axes, i.e., of orientational domain states. If both point group
and translational symmetry change at the phase transition, the crystal can
transform into any of the go = |G| / |F| orientational domain states but each
of them can be subdivided into v translational domain states where v is defined
by Eq. (2.1.2). Thus the total number of domain states is then

q=q0v =175 (2.1.20)

8 As one can notice, the pair of notions of full and partial is very close to that of proper and
improper; however, a comprehensive analysis show that these pairs are not identical (Janovec
et al., 1975). For equitranslational transitions proper—improper and full-partial are not
exactly identical concepts: here all proper ferroelectrics (ferroelastics) are necessarily full
and all partial ferroelectrics (ferroelastics) are necessarily improper. However, there exist
species which are full ferroelectrics (ferroelastics) in Aizu’s wording but may represent
materials which must be classified as improper ferroelectrics (ferroelastics). The species no.
032 (see Table B.1 or C.1), i.e., m3m — Peds — 1, provides an example. Here the order
parameter can transform as a polar vector, as indicated by the symbol P,, P,, P. in the fourth
column of Table C.1. Clearly, in this case the material is proper ferroelectric. Alternatively
(Janovec et al., 1975), the order parameter can transform as a third-rank tensor and polariza-
tion arises as a secondary effect, as indicated by the symbol (Py, P,, P.) in Table C.1. In this
case the material is an improper ferroelectric. In either case, this species is a full ferroelectric
since all domain states can be distinguished by polarization.
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The translational domain states are identical in the orientation of tensor
properties but differ from the point of view of translational symmetry.

Let us illustrate the notions of orientational and translational domain states
by an example of a simple two-dimensional hypothetical structure. In the parent
phase, the structure consists of a square lattice of A atoms with B atoms in the
centers of the squares (see Fig.2.1.11a). In the low-symmetry phase, the B atoms
are shifted by the same distance either in the x-direction or in the y-direction,
the sign of the shifts in neighboring cell being opposite. This transition corre-
sponds to a change of the point group symmetry from G containing eight
symmetry operations (identity, rotations by 90°, 180°, and 270°, as well as
mirror planes) to F containing four operations (identity, rotation by 180° and
two mirror planes). The unit cell doubles at the transition, so that v = 2. Thus,
using Eqgs. (2.1.20) and (2.1.2) we find that within the ¢ = 4 domain states one
can distinguish gy = 2 orientational domain states, with v = 2 translational
states in each of the latter.

O A I
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. | ) — 1|
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Fig. 2.1.11 (a) Parent unit cell of an imaginary two-dimensional structure. A structural
transition corresponding to either vertical or horizontal shifts of B atoms is considered.
(b) Low-symmetry structure containing two orientational domain states in intimate contact.
(¢) Low-symmetry structure containing two translational domain states in intimate contact.
Squares in (b) and (c) represent original unit cells. Dashes indicate orientations of shifts of the
B atoms. In shaded squares the signs of these shifts are opposite to those in non-shaded squares

As an illustration, Fig. 2.1.11b shows the lattice distortions in a two-dimen-
sional sample containing two different orientational domain states while
Fig. 2.1.11c represents the lattice distortions in a two-dimensional sample
containing two translational domain states. Geometrically, the latter is a chess-
board cut into two pieces along a straight line passing between the cells, shifted
by one cell along the line, and glued back. Comparing these drawings we infer a
key difference between the translational and orientational domain states. The
orientational states can be distinguished either when being in an intimate
contact as shown in the figure or by monitoring the bulk properties of the
sample during a domain reorientation process. In contrast, the translational
states can be distinguished only when being in an intimate contact like shown in
Fig. 2.1.11c¢; no tensor properties of a sample offer direct information about the
coexistence of translational domain states in it. Thus, although the notion of
translational domains is of conceptual importance, usually it does not play a
substantial role in the macroscopic properties of a multidomain sample. For
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this reason, in this book we shall be mostly concerned about orientation domain
states since it is these that determine, to a large extent, macroscopic properties
of ferroic samples. When no confusion could arise, we shall omit the adjective
orientational (and use the notation ¢ instead of ¢,) while it will be always
stressed when it is the translational domain states that are addressed in the
given context.

An important issue to be mentioned in this section is related to the definition
of ferroics. The general definition of a ferroic adopted in this book was based on
the symmetry relation (2.1.1) and definitions of particular breeds of ferroics
presented above in Sects. 2.1.2, 2.1.3, 2.1.4, 2.1.5, and 2.1.6 were based on the
appearance of new spontaneous quantities in the distorted phase which were, by
symmetry, nonexistent in the parent phase. But there also exist widely used
alternative definitions, which are based on the differences of these quantities in
different domain states. Quoting Aizu (1970b), “A crystal is provisionally
referred to as being ‘ferroic’ when it has two or more orientation states in the
absence of magnetic field, electric field, and mechanical stress and can shift from
one to another of these states by means of a magnetic field, an electric field, a
mechanical stress or a combination of these.” A similar definition of primary
and higher order ferroics was used by Newnham and Cross (1974a,b). It is a
direct consequence of the symmetry arguments presented above that both of
these two definitions are equivalent to that adopted in this book: If  is the order
parameter responsible for the G-to-F symmetry lowering, the number of
domain (orientation) states given by Eq. (2.1.17) is necessarily larger than 1.
As to the “shifts” (not italicized in quoting Aizu), we shall see that in practice
they may be only theoretically achievable.

For completeness, one remark can be made at this point. For a given ferroic
material and in a sufficiently wide temperature range, there may exist more than
one distorted phases fulfilling relation (2.1.1), of different symmetry groups F,
F,, ..., with no group—subgroup relationship between different groups F;.
Again, the classical example is the sequence of phases in barium titanate: The
parent phase m3m is followed, on decreasing temperature, by phases with
symmetries 4mm, mm2,,, and 3m. Attempts have been made (Guymont, 1981,
1991) to analyze domain states in these cases taking into account the Fi—F;
transition but without involving the G C F; relationship. It was shown (Tole-
dano and Toledano, 1988) that some evidently reconstructive transitions, with
nonexistent parent phase, can be treated by group theory assuming that both
phases have originated from a phase with a higher symmetry corresponding to
the maximum superstructure common to both observed phases; recently an
attempt has been made to introduce the concept of domains into this category
(Tolédano and Dmitriev, 1997).

2.1.7.2 Left Coset Approach

The considerations of the previous chapter left postponed an important point,
namely, the derivation of formula for the number of orientational domain
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states of ferroic species, Eq. (2.1.17). This problem can be solved by using the
approach of left cosets we now discuss.

The procedure described below employing left cosets may seem superfluous
for proper ferroelectrics since it is so easy to apply point group symmetry
operations to vectors just by imagining. If the transition is proper ferroelastic
and the deformation is simple, the number ¢ can still be guessed. But for more
complicated strains, and for order parameters corresponding to higher rank
tensors, to proceed by mere geometrical visualization is hardly possible. The left
coset approach has the advantage that it can be used quite generally, for any
symmetry of the order parameter. It was first suggested by Aizu (1970b, 1972)
and then discussed in more detail by Janovec (1972, 1976). The procedure is
now routinely employed (Zikmund, 1984; Flack, 1987) and we shall give a short
outline of it.

Given G and F C G, one particularly oriented subgroup F is singled out. We
know already that— because of the Curie principle— symmetry operations of
F; are all those from operations in G which do not change (leave it invariant) the
order parameter in its selected particular orientation 7;. Now we choose one
symmetry operation, denoted as say g,, which is contained in G but not in F)
and specify the set of operations g,F;. We continue by choosing an operation g3
which is contained in G but neither in the group F; nor in the set g,F; and form a
new set g3F;. This procedure goes on till all operations of G have been used up.
One can show that these sets have no common elements. Thus we have divided
the group G into disjoint subsets consisting of the same number of operations as
they are in F; we have decomposed the group G into left cosets of the subgroup F.
Formally this is written as

G=F +gF +gk + -+ g (2.1.21)

The number ¢ of left cosets in this decomposition is called index of F in G.
Clearly, the index of F in G equals |G|/|F|, where | 4| is the order of the point
group A4, namely, the number of its symmetry operations. None of the opera-
tions of group F; changes one particular orientation of the order parameter, all
of them leave it invariant. On the other hand, any operation in the set g,F|
changes it into a new orientation and each of them to the same one. This
property of the set g,F; holds for all remaining left cosets. Thus, we see that
the number of orientational domain states g, for the order parameter 7 is just
equal to the index of Fin G. That implies

0 = |G|/|F] (2.1.22)

and brings us back to Eq. (2.1.17). To understand the decomposition in left
cosets can be rewarding since it enables one to single out symmetry operations
that relate order parameters corresponding to different domain states. As an
example, Table 2.1.4 shows the decomposition in left cosets for the ferroelectric
species m3m — Peds — m XymZZXy, based on the analysis of Janovec (1976). This
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Table 2.1.4 Decomposition of m3m into left cosets of Myym-2y,

j Left cosets Pg direction Es

1 1 2 Mgy m. 110 es,
2 1 My, 25 2, 110 s
3 2, 43 ilz m, 110 €S
4 2y 4. 43 s 110 &S
8 2x: 3,\)5 %,\‘y; i"% 011 55(3]
6 2% 3?, %;y: ilz 911 S
1 2y Sos S % 101 &
10 2}'—’ %\‘}75 3xyz 4x 1 01 ES(G)
7 My %X}ﬁ 3g’«: 4}- 011 65(3)
5 Mix- 3%z 34 4? 011 S

- N ) -

12 m,. 3%}5 ?, 4§ 101 €ss)
9 My 33 3% 4. 101 €S

The number j denotes the domain state (cf. Fig. 2.3.5b). Four symmetry operations for each j
define a left coset. Subscripts indicate the orientation of axes in the group G. Symmetry
operations assembled on one line represent one left coset and all of them transform the vector
Ps chosen along [110] into one and the same alternative vector of Pg, which is given in the
column “Pg direction.” There are six different tensors of spontaneous deformation g, which
are not specified here; the aim is only to demonstrate how domain states defined by Pg are
degenerate in strain. After Janovec (1976).

is a phase transition exhibited by barium titanate and several other perovskites,
with ¢ = 48/4 = 12. The analysis starts by choosing Pg along [110] of the cubic
phase. This choice is in fact arbitrary but, since we have prescribed the subgroup
myym:2,, C G asthe group F, it makes sense to choose this particular Pg vector.
Symmetry operations for this subgroup F; are shown in the first row. Now we
choose 1 as the operation denoted by g, above. Any of symmetry operationsin a
left coset g, F) (assembled in the following row) changes the orientation of the
chosen vector [110] into [110], its orientation is shown in the column “Pg
direction.” Each of the following rows shows one of the left cosets whose total
number is 12. We need just one operation from each left cosets to obtain all the
orientations of Pg vectors, i.e., all domain states, starting from the vector [110]
characterizing the chosen domain state.

2.1.8 Ferroic Species

Now we are prepared to present an overview of all possible ferroics taking into
account relationship (2.1.1), that is, we pay attention to point symmetries of the
parent and ferroic phases only and assume that we deal with equitranslational
transitions (v = 1). In the foregoing sections we did not go into details char-
acterizing the symmetry of the order parameter . The thermodynamic theories
of distortive phase transitions are based on the theory of Landau who showed
that the construction of a thermodynamic potential with one order parameter
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puts a restriction on the possible symmetry of n, namely, that the latter trans-
forms according to an irreducible representation of the group G. (The reader
can find an excellent introduction into the concept of representations in con-
nection with the Landau theory in the Toledanos’ monograph (1988)). This
requirement on the symmetry of # imposes a further restriction on the possible
pairs of G and F, in addition to the simple relation (2.1.1). Aizu (1973a) was the
first to come with a list of all conceivable transitions connected with order
parameters transforming according to irreducible representations. However, it
was pointed out (Holakovsky, 1973) that this requirement may not be abso-
lutely essential and that in fact phase transitions can exist where # transforms
according to a reducible representation. Analyses of several materials (summar-
ized by Toledano and Toledano, 1988)) showed that this is indeed the case.
Lifting the condition of irreducible representation on the symmetry of the order
parameter leads to an increase of the number of possible species since now the
only condition is the group—subgroup relation (2.1.1).

The full list of equitranslational ferroic species, partially based on the work
by Janovec et al. (1975), is presented in Table B.1. Some data concerning
ferroelastoelectric and ferrobielastic domain states were completed by Litvin
(Database of ferroic species, unpublished). We use the species assignment as it
was introduced in Sect. 2.1.6. The table should enable the reader to reach the
basic information on domain states once the species of a material has been
established.

In this chapter we yield just a selection of the full table, to exemplify its
system; see Table 2.1.5. The species are ordered according to the point groups G
and, for each G, according to the point groups F, always starting at the high-
symmetry end and progressing toward lower symmetries. The first column gives
the sequential number of the species, which will also be used later in the table of
ferroelectric species. The second column contains the symbol of the species
using the above introduced pattern G—(spontaneously occurring quantities)—F.
The symbol of the point group Fis often provided with subscripts specifying the
orientation of symmetry elements in G, which define the group F; here we follow
the notation of Janovec et al. (1975). This specification is particularly essential
when components of newly acquired tensors are to be itemized, as we shall do it
later for polarization and strain in the table of ferroelectric species. Another
reason for indexing is that in one particular material we may have two differ-
ently oriented phases F belonging to the same species but existing at different
temperature intervals. However, very often it is sufficient to specify the F group
as such without indication of its orientation.

In column 3 we give the number of equivalent subgroups F. Practically, this
number gives the number of possible domain states which differ in the orienta-
tion of the order parameter but not in its sign. In column 4, the total number of
domain states ¢ is shown. We stress again that on the adopted level of point
groups no information is contained about translational domain states and the
given number is simply the index of Fin G (see Eq. (2.1.17)). Column 5 gives the
number gp of ferroelectric domain states. Here 0 means that F'is nonpolar while
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Table 2.1.5 Selection of ferroic species (full content see Table B.1)

1 2 3 4 5 6 7 8 9
Species no. Species designation ng q qp q. q4 qs

001 m3m — d — 43m 1 2 0 1 2 1

002 m3m — 432 1 2 0 1 0 1 e[V
003 m3m — m3 1 2 0 1 0 1 (V3
004 m3m —d — 23 1 4 0 1 2 1 RR
005 m3m — es — 3Xy_-m;‘,- 4 4 0 4 0 4

006 m3m — Peds — 3,.mzx, 4 8 8 4 8 4

009 m3m — Peds — 3xyz 4 16 8 4 16 8 RR
011 m3m — eds — lezxymx 3 6 0 3 6 3 1

012 m3m — eds — 4,2,my, 3 6 0 3 6 3 1

013 m3m — Peds — 4.momy, 3 6 6 3 6 3

022 m3m — Peds — Mgy-2yy 6 12 12 6 12 6 RR
025 m3m — es — 2y, /1y, 6 12 0 12 0 12 2IRs
026 m3m — es — 2./m; 3 12 0 12 0 12 RR
032 m3m — Peds — 1 1 48 48 24 24 24 2 IRs
071 6/mmm—6/m 1 2 0 1 2 1 V[V
082 6/mmm-—eds—222 3 6 0 3 6 3

108 622-ds—3.2, 622-ds-3.2, 1 2 0 1 2 2

208 2/m—es—1 1 2 0 2 0 2

209 2/m — Peds — 1 1 4 4 2 4 2

210 m — Peds — 1 1 2 2 2 2 2

211 2 — Peds — 1 1 2 2 2 2 2

212 1-Pd—1 1 2 2 1 2 1

1 means that F'is pyroelectric with only one orientation of Pg (or better to say,
of the pyroelectric coefficient) and therefore nonferroelectric. Column 6 indi-
cates the number ¢. of ferroelastic domain states. Here 0 does not appear.
Number 1 means that F is nonferroelastic: the shape of the unit cell is not
changed; the thermal dilatation tensor has no new components. Column 7 gives
the number ¢4 of domain states differing in the piezoelectric tensor or, more
generally, in the tensor of symmetry V[V?] or [F]V (see text to Table 2.2.2 or
Appendix F for notation of tensor symmetries). Here number 0 means that F'is
not piezoelectric while 1 means that F is piezoelectric but has no new compo-
nents of the appropriate tensor. Column 8 shows the number ¢, of ferrobielastic
domain states. Here again 0 cannot occur while number 1 means that the
compliance matrix has no new components in the distorted phase.

Four species have neither of the symbols P, ¢, d, s in their designation
meaning that they are higher order ferroics. In these cases we show in column
9 the symmetry of the lowest order tensor in which some domain states are
distinguished (Amin and Newnham, 1980).

Species exist for which the group F may take two different orientations, say
F' and F”, which are crystallographically equivalent but once the axes in a
particular material have been chosen they are clearly distinguishable. These
have been named by Aizu “minor species.” For us it is essential that left cosets of



46 2 Fundamentals of Ferroic Domain Structures

F and F’ in G contain the same symmetry operations which are, however,
differently oriented with respect to the coordinate system of G. Therefore
domain properties are identical. In the present table minor species occupy just
one row (see, e.g., the species 076).

On the other hand, some pairs of species have the same F but their elements
have crystallographically nonequivalent orientations; an example is, for
instance, the species 161 as distinguished from both minor species 160.

We have stressed that Table B.1 (as well as its selection, Table 2.1.5) is based
on the analysis of equitranslational phase transitions. However, as long as we
seek information on orientational domain states, all information remains valid
even for a transition with unit cell multiplication (v # 1).

In a few cases the last column 9 contains some additional information
reserved for readers familiar with the theory of presentation of point groups.
As shown by Janovec et al. (1975), the phase transitions represented by some
species can be achieved by two different irreducible representations and the
ferroic can be either proper or improper ferroelectric (ferroelastic); these cases
are indicated as “2 IRs.” This has little to say about domain states but plays an
essential role in temperature dependences of material coefficients as well as of
spontaneous quantities. Further, the symbol “RR” is added to those species in
which the order parameter does not transform according to an irreducible
representation. Its transformation properties would be given by a combination
of such representations, defining a reducible representation. This fact again
would reflect itself in the temperature dependences of some spontaneously
acquired properties. Both symbols “2 IRs” and “RR” are included to warn the
reader that materials representing these species may reveal unusual properties.
We note that the information indicated by symbols “RR” or “2 IRs” becomes
superfluous for transitions at which the translational symmetry also changes.
Finally, the symbol “1” attached to species 011 and 012 stresses that for them the
order parameter transforms according to different irreducible representations
and therefore they are considered as separate species (Janovec et al., 1975).

It is obvious that this table provides straightforward information about
degeneracy of domain states. The degeneracy factors defined by Eq. (2.1.19),
in particular dp = ¢/qp, d.=q/q., dy = q/qq4, and ds = q/qs, can be immediately
obtained from data in columns 4-8.

Let us show, on a few examples chosen from Table 3.2.1 of selected ferroic
materials, how Tables 2.1.5 and B.1 can be used to obtain useful information.

Consider crystals of quartz, species no. 108, 622—ds—32. We see that in the
ferroic phase the material is nonferroelectric and nonferroelastic. The total
number of domain states is 2 and the symmetry elements of both represent
just one point group. These states, which in fact represent the well-known
Dauphiné twins, differ in the newly acquired forms of both piezoelectric and
elastic compliance tensors. We have no domain degeneracy.

Crystals of PbZrO; represent the species no. 005, m3m — es — 3m. This
particular material changes eight times the unit cell volume as a result of the
transition and so the information available concerns orientational domain
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states only. It becomes neither ferroelectric nor ferroelastoelectric, no polariza-
tion or piezoelectric effect result from the transition. The point group of each of
the four domain states is differently oriented. All of these states differ in some
components of spontaneous strain (or permittivity) as well as in some compo-
nents of elastic compliance.

Crystals of a specific kind of BaTiO; which is hexagonal in its parent phase
belong to the species no. 082, 6/mmm—cds—222. All of the six domain states
differ in the piezoelectric (or electro-optic, for this matter) tensor. They are
nonferroelectric but ferroelastic and ferrobielastic. Each ferroelastic or bifer-
roelastic domain states is doubly degenerate with respect to the domain states
differing in the piezoelectric tensor. Thus, for example, a domain state which is
characterized by one single permittivity tensor is degenerate with respect to
states differing in their piezoelectric response.

Properties of domain states in the ferroelectric phases of “normal” barium
titanate which have been discussed as examples earlier in this chapter are
immediately obvious from data for species no. 013 m3m — Peds — 4 mm, no.
022 m3m — Peds — mm?2, and no. 006 m3m — Peds — 3m.

In the adopted classification of ferroics no attention is paid to tensor proper-
ties transforming as axial tensors. The occurrence of new components of such
tensors in the phase £ may be of great importance for distinguishing nonferroe-
lastic domain states. These cases will be dealt with later in connection with the
so-called twin laws and listed in Tables 2.2.1 and 2.2.2.

Table B.1 offers no detailed information on the transformation properties of
the order parameter and the interested reader is referred to the papers by Aizu
(1973a) or Janovec et al. (1975). In the following section we shall include
another table of ferroelectric transitions alone, with some additional data.

2.1.9 Ferroelectric Species

We have already defined ferroelectric phase transitions as those at which the
vector describing pyroelectric properties acquires a new component which was
not allowed by symmetry in the parent phase. Accordingly, such a phase
transition results in the development of spontaneous polarization components.
Also, some classifications have been introduced in the preceding sections:
proper and improper ferroelectrics, full and partial ferroelectrics. All ferro-
electric species and their full-partial attributes in accompanying ferroelastic,
ferroelastoelectric, and ferrobielastic properties can be easily determined from
Table B.1. However, because ferroelectrics represent the most attractive family
of ferroics and one which receives considerable attention from the point of view
of applications of domain properties, we shall now incorporate some additional
information about their particular species.

Classifications of ferroelectrics on the basis of symmetry approach provided
an attractive subject for crystallographically oriented researchers and can be



48 2 Fundamentals of Ferroic Domain Structures

found in many original papers. The first approach to their determination
offered by Zheludev and Shuvalov (1956, 1959) was based on the idea of F
being the maximum polar subgroup of G, which includes proper ferroelectrics
only. Aizu introduced the concept of species and worked out tables of ferroics
(Aizu, 1966, 1970b, 1973a) whose later versions covered both proper and
improper ferroelectrics. Shuvalov (1970) in his classification of proper ferro-
electrics introduced an interesting designation for species which represents a
modification of symbols proposed by Aizu (1965, 1966).

Speaking about the possible behavior of a particular ferroelectric material,
the most fundamental information contains three items: the symmetry group G,
direction of Pg specified with respect to the symmetry elements of G, and the
symmetry group F. We remind the reader again that, generally, F may not
follow from the simple relation (2.1.15), because in improper ferroelectrics the
symmetry reduction may be more severe.

Information on ferroelectric species is presented in Table C.1 (as well as in its
selection, Table 2.1.6). The number of a species is identical with that in Table
B.1, as well as its designation given in the second column. The third column
indicates the total number ¢ of orientational domain states. This is the total
number of domain states if v = 1 but it is v times smaller than the total number
of domain states if v # 1. In the fourth column are shown nonzero components
of polarization in the phase F. They are specified for the subgroup orientation
shown in the symbol. Here ¢ P, stands for the change of polarization component
which was already permitted by symmetry in the parent phase (i.e., a nonzero
component p, of the pyroelectric coefficient was permitted in G). P, stands for
the newly acquired component of spontancous polarization. More information
about polarization is included that can be obtained on the basis of analysis of
order parameter transformation. P, without brackets means that this is the
“proper” component of polarization (assuming v = 1). This means that Py
serves as the order parameter (fully explaining the symmetry change). If the
symbol is in brackets, (P;) or [P,], that means that this is an “improper”
polarization component, arising as a secondary effect. If both proper and
improper scenarios can be responsible for the development of polarization,
two lines are given in the table, indicating both possibilities. The distinction
between (P,) and [Py] is reserved for a reader familiar with the theory of
representations of point groups: (P;) means that the component of polarization
transforms according to an irreducible representation whereas [P;] means that
its transformation law is more complicated. From the point of view of domain
crystallography there is no difference between Py, (Py), and [P,]. But there may
be substantial differences in other physical properties, e.g., in temperature
dependence of spontaneous polarization.

The following fifth column shows the number gp of domain states differing in
the direction of spontaneous polarization.

Any component P, except that designated by 0P, is “symmetry breaking,”
meaning that it is not allowed in the phase G. In most cases (nine nonpyro-
electric parent phases), G does not allow for any component of polarization.
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In Table C.1 we give information about natural spontaneous strain defined in
Sect. 2.1.3. For this purpose the whole table is divided into six sections according
to the crystal families (cubic, hexagonal, tetragonal, orthorhombic, monoclinic,
and triclinic) of the phase G. At the top of each section we give strain components
de; which are compatible with the symmetry of that crystal family, in the
SeqUENCE O€yy, OEyy, OF-z, O, OE.y, Oy, In fact, these can be understood as
components of the thermal dilatation tensor. For each species, column 6 specifies
strain components de;; which are compatible with the symmetry of the phase F
specified in the species symbol. The sequence of components is the same as before.
It should be stressed again that all these data refer to the coordinate system of G.
If the particular component itself is “symmetry breaking” (not allowed in G), it is
written as e, If it is already allowed in G, it has the prefix 6. In contrast
to polarization, the situation is complicated by the fact that two components
0€ks, O€,,, compatible with the symmetry of G, which are equal in G, may become
different in the phase F. It is then the difference des,, — dcs,,, between them which
“breaks” the symmetry, as already explained in Sect. 2.1.3. Column 7 gives the
number of domain states differing in spontaneous deformation, i.e., the number
of ferroelastic domain states g..

The last column of the table shows the already mentioned symbol proposed by
Shuvalov (1970) which has been used by some lecturers and can be found very
practical. The original Shuvalov’s table included proper ferroelectrics only and
for them the symbol is just reproduced here, including the original designation of
cubic phases m3m and m3 (in keeping with the newer crystallographic standards,
otherwise we employ the designation m3m and 3m in this book). For species in
which F is not the maximal polar subgroup as in Shuvalov’s listing, we have
designed his symbol following the original rules; such a symbol is preceded by an
asterisk (*). The symbol starts with the designation of point group G. This is
followed by the number of axes (in the parenthesis) in the group G along which
spontaneous polarization can be directed (“ferroelectric axes”). If there is just a
single number in the parentheses it indicates that Pg can have two orientations
along each of these axes. If this number is divided by two it indicates that Pg can
have only one of these orientations; it is not reversible. Next is the symbol
specifying the information about the orientation of the ferroelectric axis (axes).
D2, D3, etc., signify that the axis is parallel to the twofold axis or threefold axis in
G, respectively. Dm means that the ferroelectric axis is perpendicular to the
mirror plane in G. In contrast, A2, A3, etc., indicate the ferroelectric axis to be
perpendicular to the twofold or threefold axis, respectively, but otherwise with a
general orientation. Am indicates an arbitrary orientation parallel to the mirror
plane. The next symbol F just stands for “ferroelectric” and is followed by the
symbol of the point group in the ferroelectric phase. Finally, many species are
provided with either = or # symbol. Here = indicates that the crystal lattices for
domain states with antiparallel polarization are collinear. In other words, they do
not differ in spontaneous deformation. In contrast, # means that domain states
with antiparallel P, vectors differ in eg. Obviously, any of these symbols is missing
when Pg is not reversible.
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The information contained in the table also enables classification of ferro-
electrics according to a scheme introduced in the very early stages of their
investigations, namely, uniaxial ferroelectrics are those where Pg can be
oriented along one axis only and have two antiparallel directions; in multiaxial
ferroelectrics with reversible polarization there are more than one such axes,
along each axis Pg can have either sign; in multiaxial ferroelectrics with reor-
ientable polarization Pg can be oriented along more than one axes of the parent
phase but has no equivalent antiparallel direction.

Assigning the correct species to a ferroelectric material contains a wealth of
usable information and we shall give two examples to indicate just a part of it.

Consider one of the bismuth oxide ferroelectrics with a layer structure,
SrBi>Ta,Oy (abbr. SBT), which we assume to represent the species 4/
mmm—Peds—m,m_.2, (no. 155). We see from the table that there are four domain
states, all differing in the direction of Pg which is reversible. The orientation of
the polar axis in the ferroelectric phase tells us that the angle between any two
Ps vectors is either 90° or 180°. There are only two ferroelastic domain states;
changing the sign of Pg does not result in any change of the unit cell shape.
However, all domain states are distinguishable also in the piezoelectric and
compliance tensors. Thus (using Tables B.1 and C.1), the sign of Pg can be
assessed indirectly by monitoring the piezoelectric response.

As another example, consider the species no. 027. The symmetry changes from
cubic m3m to monoclinic m.. The mirror in the phase F is perpendicular to the
fourfold axis of the cubic lattice in the phase G. Spontaneous polarization has two
components in the x, y plane of the group G and the transition can be either
proper or improper. There are altogether 24 domain states and all of them differ
in polarization. However, there are only 12 domain states differing in sponta-
neous strain, ferroelastic domain states. The species is a full ferroelectric and
partial ferroelastic one: Each domain state characterized by a particular strain
can have two alternative (antiparallel) directions of spontaneous polarization.
For a particular domain state corresponding to the indicated subgroup F which is
m;, the symmetry-breaking deformations are €.y, d¢,,~0¢.y, and de..—0¢,,. The
latter statement follows from the comparison of dey, tensors given for this species
and those given for G at the top of the “cubic” section of the table.

We stress again that all these considerations are made on the level of point
symmetries. More detailed classifications have been proposed based on the
changes of space groups (Toledano and Toledano, 1988).

2.2 Coexisting Domain States

In Sect. 2.1.7 we have introduced the concept of domain states and treated them
as independently existing states of a crystal lattice in the phase F. A crystalline
sample whose total volume represents just one of the domain states is a single
domain sample. However, there are a number of factors which make a real
sample multidomain. In it, domains defined as regions whose structures
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represent different symmetry-permitted domain states coexist. Their linear sizes
depend on many factors but, if some often encountered number should be
given, they could range (in bulk samples) between 1 and 100 um. However, to
quote just one number is misleading since in a prevailing majority of cases the
domain shapes are strongly anisotropic, being close to cylinders or slabs.
Domains are separated by domain walls whose thickness is typically much less
than the linear dimensions of domains. The formation of domains may be due
to a large number of factors. These are connected with the crystal growth, with
the process of the phase transformation from the parent phase, with the pre-
sence of defects. We shall discuss these mechanisms in some detail later. What
makes, of course, ferroics particularly attractive materials is the fact that
properly designed and oriented externally applied forces can bring a ferroic
sample from a domain state i to another domain state j. In practice, it is rather a
rule than an exception that the reorientation is accomplished only in some parts
of the sample and we end up again with a multidomain sample.

When no forces are applied or arise due to boundary conditions, a multi-
domain sample of an ideal crystal is not in the ground state of its energy; this is
because of the existence of domain walls separating domains in which crystal
lattices representing the phase F are perturbed. Thus domain walls are in fact
crystal defects.

In this section we wish to discuss properties of a pair of coexisting domain
states, referred to as a domain pair. In a sense, domain pairs actually play the role
of elementary units of the polydomain states. In the following sections, based on
symmetry approach, we will primarily address two questions: (i) how the elements
of a domain pair (i.e., domains) can be distinguished and (ii) how these elements
can coexist in physical contact. In these considerations we will not pay attention to
internal properties of domain walls, which will be discussed in Chap. 6.

2.2.1 Twinning Operations

Consider two domain states resulting from a ferroic phase transition of a G—-F
species. Let us denote the order parameter in these states as #; and ;. As we have
seen in Sect. 2.1, among the symmetry operations of G there are some which
transform 7, into #;. These operations are referred to as twinning operations of
the ordered pair (;, n;). One such operation is denoted as Tj. The whole
ensemble of all twining operations of an ordered pair represents the twinning
complex of the ordered pair.” Generally, it holds that the twinning complex of
the ordered pair (#;, 1;) is not identical with that of the ordered pair (1;, n).1°

® We remark that our twinning operations are what in Aizu’s analyses of domain states (or
simply states in his terminology) has been referred to as F operations (Aizu, 1969, 1970b,
1972), a term used by other authors as well (Wadhawan, 1982).

19 This interesting situation may have many practical consequences; some are connected to
structures of domain walls, others relate to macroscopic phenomena.
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The knowledge of a twinning operation T}; of an (y;, 1;) pair enables us to
compare a given tensor property of the two domain states involved. As we
already discussed in Sect. 2.1, the application of the operation T}; onto a tensor
property in the #-state determines the former in the #,-state. This procedure
makes it possible to determine those macroscopic properties which could be
used for experimental distinction of the two domain states in the pair. Clearly,
these properties are those which change under the application of T7;.

Another utilization of the approach outlined above reveals a situation sub-
stantially different for ferroelastic domain pairs (domain states which differ in
tensor properties described by a symmetric second-rank tensor) and those
which are nonferroelastic.

First, domains forming ferroelastic pairs in transparent crystals can be rela-
tively easily distinguished by optical methods, as we shall discuss in detail in
Chap. 4. Observation methods are more restricted when the domain pair is non-
ferroelastic and there we may be interested in knowing in detail in which macro-
scopic properties the two domains differ. In addition, nonferroelastic domain pairs
receive special attention as domain states carrying information in memory devices.
We shall, therefore, consider them in more detail in the next section.

Second, when two ferroelastic domain states are in physical contact, the
twinning operations as defined above describe the relative orientation of tensor
properties of the two adjacent domains only approximately. This issue deserves
further discussion and we shall come back to it in Sect. 2.2.5 where the necessary
background will be available.

2.2.2 Twin Laws for Nonferroelastic Domain Pairs

This section is devoted to differences in tensor properties of domain states
forming a nonferroelastic domain pair. As we have just mentioned, this issue
is of importance for experimental distinction of such pairs which is often a
difficult task. The information provided in this section enables the reader to
determine tensor properties which can be used to distinguish the states forming
a given pair. We present this information in Tables 2.2.1 and 2.2.2 which are
based on related tables (Janovec et al., 1993; Litvin and Janovec, 1997). The
approach used in these papers can be outlined as follows.

Generally, as indicated in the previous section, the twinning complex of the
ordered pair (1;, 17;) is not identical with that of the ordered pair (1, ;). When
the twinning complexes of pairs (1;, ;) and (»;, ;) are identical, the pair of
domain states is referred to as an ambivalent pair (Janovec, 1972; Janovec et al.,
1993). It can be shown that the pair (y;, ;) is ambivalent if there exists at least
one symmetry operation g; € G which serves as a twinning operation for both
pairs (1, n;) and (y;, n;) at once, i.e.,

Tif = T/, = gg]'. (221)
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Table 2.2.1 Twin laws for nonferroelastic and partially ferroelastic phase transitions

G G F Ji
m3m 43m m3m
m3m 432 m3m
m3m m3 m3m
m3m 23 m3
432
43m
m3m 3 3m
m3m 4 42m
4/m
m3m 4 4/m
422
4mm
43m 23 43m
43m 4 2m
432 23 432
432 4 422
m3 23 m3
6/mmm 6m2 6/mmm
6/mmm 6mm 6/mmm
6/mmm 622 6/mmm
6/mmm 6/m 6/mmm
6/mmm 6 6m2
6/m
6/mmm 6 622
6mm
6/m
6/mmm 3m 6/mmm
6/mmm 3m 3m
6mm
om2
6/mmm 32 3m
622
6m2
6/mmm 3 3m
6/m
6/mmm 3 3
32
3m
6
6
6m?2 6 6m2
6m2 3m 6m?2
6m2 32 6m2
6m2 3 32
3m

(o))
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Table 2.2.1 (continued)
G G F Jix
6mm 6 6mm
6mm 3m 6mm
6mm 3 3m
6
622 6 622
622 32 622
622 3 32
6
6/m 6 6/m
6/m 6 6/m
6/m 3 6/m
6/m 3 6
3
6
6 3 6
6 3 6
3m m3m 3m 3m
3m m3m 32 3m
3m 3 3m
3m m3m 3 3
32
3m
3m 43m 3 3m
32 432 3 32
3 m3 3 3
4/mmm m3m m3m 4/mmm
4/mmm m3m 4dmm 4/mmm
4/mmm m3m 422 4/mmm
4/mmm m3m 4/m 4/mmm
4/mmm 4 4/m
42m
4/mmm 4 4/m
422
dmm
42m 4 42m
4dmm 4 dmm
422 4 422
4/m 4 4/m
4/m 4 4/m
mmm 4/mmm, 6/mmm, m3, m3m 222 mmm
mmm 4/mmm, 6/mmm, m3, m3m mm?2 mmm
2/m mmm, 4/m, 4/mmm, 3m, 6/m, 6/mmm, m3, m3m 2 2/m
2/m mmm, 4/m, 4/mmm, 3m, 6/m, 6/mmm, m3, m3m m 2/m
1 2/m, mmm, 4jm, 4/mmm, 3, 3m, 6/m, 6/mmm, m3, m3m 1 1
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Table 2.2.2 (continued)

F ik LA U T 4 U T 4 T | S L e U U
m3 m3m 0 0 0 0 1 0 1 2
432 m3m 1 0 1 0 0 0 0 0
43m m3m 0 0 0 1 0 0 0 0

F: symmetry of the ferroic phase; Jy: twin law; e: the structures of the two domain states are
enantiomorphous; V: polar vector (spontaneous polarization); e[ ']: axial symmetric second-
rank tensor describing optical activity; the tensor V[V?] describes piezoelectric effect, linear
electrooptic effect, or linear photogalvanic effect; e V[V?]: describes electrogyration; [V*]:
stands for elastic compliance tensor; [/]*: describes electrostriction and piezooptic (photo-
elastic) effects and also the effect of spatial dispersion. The tensor of symmetry [V2]V?
characterizes the flexoelectric effect. For formal definition of the symbols used for the
symmetry of tensors see Appendix F. Number 0 means that the two domain states cannot
be distinguished by a tensorial property represented by the column, be it because the property
is not allowed by symmetry in the ferroic phase or because the two domain states do not differ
in it. Nonzero numbers stand for the count of components of the given tensor by which the
two domain states can be distinguished.

It can be shown that any nonferroelastic domain pair is ambivalent. The
symmetry group of such a pair can be written as

Jit = Fir + gucFik (2.2.2)

where Fy = F; N F; is the intersection of groups F; and F,. The group Jy
specifies in a way the relation between the two domain states 7, kK and has been
named twin law of the ambivalent pair. Now, suppose we are interested in a
tensor material property T. We can then easily find the number m; of indepen-
dent components of T in the group J;; as well as their number m, in the group F.
The difference m»,—m; then gives the number of independent components that
are different in domain states i and k.

Tables 2.2.1 and 2.2.2 enable one to find quickly in which tensor properties
two domain states in a nonferroelastic domain pair differ. In addition, they also
give the numbers of components of tensors up to the fourth rank including two
axial tensors which distinguish these two states. These tables can be used in the
following way. The groups G and F being given, we first determine the corre-
sponding twin law J;; in Table 2.2.1. The twinning complex of a pair is shown as
underlined symmetry operation(s) in the symbol of its twinning law. When G
(for the G, F pair in question) is found in the first column, the transition to ¥ on
the same line is nonferroelastic. When G is given in the second column, the
species G—F is a partial ferroelastic species: For this species only some domain
pairs are nonferroelastic and it is these pairs that we investigate. Next, knowing
Ji and Fwe turn to Table 2.2.2 and find the numbers of components for tensors
of different ranks and symmetries, in which the two domain states differ. In
addition, information is added as to the possible enantiomorphism of structures
representing the two domain states. Understandably, any of this information
can also be found by treating each case individually and employing matrices of
tensors and twinning operations.
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Let us give a few examples to indicate the practical significance of the informa-
tion contained in these two tables. Generally, the presence of enantiomorphism
indicates a possibility of employing optically active etchants differing in handed-
ness for distinguishing domains. In crystals of BisTi3O;, which is a partial ferroe-
lastic (species 4/mmm-—Peds—m,) there are eight directions of Pg and domains with
antiparallel polarizations have collinear lattices. This material was intensively
studied in connection with ferroelectric memories and recently switching proper-
ties of thin films of this material have been of interest. Table 2.2.1 shows that
domain states with antiparallel polarization differ in 10 components of the piezo-
electric tensor; this points to possible importance of stresses on the polarization
reversal process as well as the possibility of accomplishing domain reorientation
based on ferroelastoelectric properties. Possibility of differences in electrogyration
is indicated for many materials like for quartz (species 622-ds—32) or PbsGe;Oy;
(species 6 — Pd — 3). In the low-temperature monoclinic phase of NaH;(SeOs),
(probable species 2/m—Pd—m) gyration might be interesting as a tool to observe
domains. In CsCuCl; crystals (species 6/mmm—d—622) domains, not yet observed,
should be distinguished by optical activity.

These are just a few examples illustrating how the tables of twin laws can give
fast useful information. Others, which, e.g., might concern nondestructive
reading possibilities of ferroelectric non-volatile memories, could also be easily
extracted from these tables.

2.2.3 Domain Wall Orientation: Electrical Compatibility

By introducing the concept of twinning operations in Sect. 2.2.2 we addressed one
of the key problems of ferroics, namely, the question as to what are the relations
between two selected domain states and how their characteristics differ when
related to a single reference system. These are the essential issues when one is
interested in macroscopic properties of multidomain samples. However, these
properties will also be codetermined by other factors, in particular, by the size and
shapes of domains, which in turn will depend on the orientation and properties of
intermediate regions separating domains and domain walls.

In this and the next section we will be discussing the orientation of domain wall
separating a domain pair. In general one can specify four factors controlling the
orientation of a wall: (i) the state of the crystal with the wall of a given orientation
should correspond at least to a local energy minimum,; (ii) electrostatic energy
related to differently oriented Pg vectors in the neighboring domains; (iii) elastic
energy related to differently oriented spontancous strains in neighboring
domains; and (iv) energy of the wall itself. In most practical situations, factors
(i1) and (iii) play the decisive role. Factor (iii) is usually referred to as electrical
compatibility problem. It will be discussed together with factor (i) in this section;
factor (iii), usually referred to as the mechanical compatibility problem, will be
treated in the next section. We postpone the discussion of factor (iv) to Chap. 6
where the necessary background will be available.
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An arbitrarily oriented domain wall between ferroelectric domains, in general,
carries bound charge whose density, according to the Poisson equation, equals

pp = —divP. (2.2.3)

The existence of this charge is not energetically favorable. In principle, it can
be compensated by free carriers. If this is not the case, the energetically prefer-
able orientation of the wall corresponds to its electrically neutral state. It is
determined by Eq. (2.2.3) with p,, = 0. For a wall with normal vector n, which
separates two domains characterized by spontaneous polarization vectors Pga
and Pgg, the condition of wall neutrality reads

(Psa — Psp)n = 0. (2.2.4)

If possible compensation of the bound charge on the wall by free carriers can
be neglected and if the domain pair is nonferroelastic, electrical neutrality plays
the key role in the wall orientation. Two typical situations for mutual orientation
of a planar wall and polarization vectors in neighboring domains apply for the
species m3m — Peds — 4 mm which represents the tetragonal phase of BaTiOs.
They areillustrated in Fig. 2.2.1a and b. The former shows the so-called 180° wall;

(c) (d)

Fig. 2.2.1 (a) 180° ferroelectric domain wall. (b) 90° ferroelectric domain wall. (¢) Involved
domain patterns typical for multiaxial ferroelectrics. Here the 180° walls are assumed nonferroe-
lastic so that the whole domain configuration is mechanically compatible. Head-to-tail coupling
of spontaneous polarization avoids bound charge and is believed to be typical for the geometry of
nonferroelastic 180° ferroelectric structures in coexistence with ferroelastic walls. (d) Electrostatic
energy may also be reduced by dense antiparallel ferroelectric domains which couple head to head
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its electroneutrality is maintained due to the absence of polarization component
normal to the wall. The latter represents the so-called 90° wall which again is
neutral because the polarization component normal to the wall is continuous on
crossing the wall. It is clear that, with 180° walls, domains themselves should have
the shape of slabs or cylinders. We shall see in a later chapter that this is consistent
with experimental observations: It can be considered typical that ferroelectric
domains tend to be elongated along the polar axis.

Domain structures in the given species containing both types of electroneu-
tral walls are possible as well. A structure of this type is shown in Fig. 2.2.1c.
Here one sees that in order to avoid the existence of bound charge we expect that
180° walls will proceed continuously throughout the 90° wall and that, on the 90°
wall, Ps will be coupled “head-to-tail.” Such arrangements are observed in single
crystals of BaTiO; (Merz, 1954; Hooton and Merz, 1955). However, as it was
pointed out (Arlt, 1990), it is reasonable to consider the condition of electroneu-
trality on the average. A configuration with head-to-head coupling where the 90°
walls are electroneutral only on average is illustrated in Fig. 2.2.1d. It is worth
mentioning that, being dense enough, this configuration may be realistic because
of relative ease of compensation of the bound charge by free carriers.

Understandably, in many ferroelectric species domain pairs can exist in
which the Pg vectors make an angle y differing from 180° or 90°; such domain
pairs are occasionally referred to as y-pairs.

The above consideration naturally suggests another question. We have based
our analysis on the fact that the uncompensated bound charge of an electrically
incompatible wall substantially increases the energy of a sample. For an infinite
sample containing one charged domain wall, the additional electrostatic energy
when recalculated to a unit area of the wall results in an infinite increase of its
surface energy density. In this situation the condition of electroneutrality
should be strictly fulfilled. However, in any finite sample the violation of the
wall neutrality results just in an increase of the effective wall energy and may be
compensated at the expense of another contribution to the energy of the system.
Thus, one could conclude that, in principle, a ferroelectric wall might carry any
charge density up to its maximal possible value of 2Ps. However, it turns out
that this statement does not hold.'? The reason is that the field created by a
charged wall not only contributes to the energy of the system but also may
suppress ferroelectricity in the neighboring domains. Thus, there is a limit to the
maximum value of surface charge density beyond which the wall cannot exist.
Applied to the problem of wall orientation, as was pointed out by Chervono-
brodov and Roytburd (1988), this implies a limit to the possible deviation of the
wall from its electroneutral orientation.

' In everyday language, researchers in ferroelectricity often refer to 7 pairs as to y domains.
But the plural is essential; sometimes one can see that just one domain is designated as a 90°
domain or 180° domain, a ridiculous specification.

12 This relates to the case of proper ferroelectrics only; see Sect. 2.1 for definition of proper
and improper ferroelectrics.
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We will illustrate this problem considering a 180° wall in an infinite sample,
whose plane makes an angle i with the direction of the ferroelectric axis Z. To
check the ferroelectric stability we write down the Landau theory equation of
state for the polarization components lying in the plane which contains the
ferroelectric axis and perpendicular to the plane of the wall (we consider the
second-order transition so that o. < 0 and f > 0)

P, + pP: = E., (2.2.5)
P, =¢¢(iy — 1)E,. (2.2.6)

Here P,, P., E,, and E. stand for the corresponding components of the
polarization and electric field; i, is the relative dielectric permittivity in the
direction normal to the spontaneous polarization and g is the vacuum permit-
tivity. The electrostatic boundary conditions at the wall require the continuity
of the tangential component of the electric field and the continuity of the
normal component of the electric displacement (D; = gyE; + P;). Because of
the symmetry of the problem, these conditions can be met only if these compo-
nents are equal to zero. This requirement together with Eq. (2.2.6) enables us to
find the Z-component of the electric field created by the bound charge of the
wall in the form

P, sin®
by O (2.2.7)
o sin” Y + K, cos?
Then Eq. (2.2.5) gives
1 gin2
g STV Ly ey, (2.2.8)

sin® y + K cos?

The condition to have spontanecous polarization in the sample (otherwise
1 2
SV <0 Thus, we
sin” Y+k, cos® Y

arrive at the conclusion that the ferroelectricity can stand the field of the tilted
wall only if the angle Y meets the condition

there is no wall!) requires that in the crystal o, +

lﬁ<',00; tan lﬁo ~ \/5on|“:| ~ \/Kx/2Kz~ (229)

Here x. =1+ 1/(g,2]0-|) is the relative dielectric permittivity along the
polar axis of the material. When deriving Eq. (2.2.9), it has been taken into
account that usually x,>>1.

The walls with y > i, cannot exist. It can be shown that if a “single-
standing” wall is forced to exceed the critical angle v/, it will decay into a zigzag
wall pattern (Chervonobrodov and Roytburd, 1988). As clear from Eq. (2.2.9),
this angle is sensitive to the dielectric anisotropy of the material. In uniaxial
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ferroelectrics where typically k,> >x,, this criterion makes impossible any
strong deviation of the walls from their electro-neutral configurations. At the
same time, in materials close to the morphotropic boundary where the opposite
relation takes place, k. < <k,, condition (2.2.9) does not strongly limit such
deviation. Qualitatively'® this statement applies to BaTiO; where at room
temperature /x> 20.

Another situation which can occur in ferroelastic ferroelectrics will become
apparent in the following section. It will be seen that in a number of species
domain walls satisfying the mechanical compatibility conditions are necessarily
charged. And on the contrary, in these cases, the walls that are electrically
neutral do not satisfy elastic requirements of compatibility. It then depends
on the ratio between the enhancement of mechanical and electrical energies
which wall should be realized.

2.2.4 Domain Wall Orientation: Mechanical Compatibility

For a ferroelastic domain pair the requirement of mechanical compatibility
usually imposes severe restrictions on the orientation of the domain wall. A
generally oriented wall between domains having different spontaneous strain
tensors induces a very substantial level of additional elastic strains. The condi-
tion that the latter does not arise can be expressed as follows. Let the sponta-
neous strain in the domains be £5(A4) and £5(B); then the transformation of any
geometrical figure, which lies in the plane of the wall, due to deformations €5(A)
and gg(B) should be identical up to a rigid body motion. Domain walls oriented
so that this condition is met are called permissible walls or alternatively stress-
free walls, since no additional elastic strains are involved. Mathematically, the
mentioned condition requires (Fousek and Janovec, 1969; Sapriel, 1975) that
any vector ds within the permissible wall fulfills the condition

Aj.dsids; =0, (2.2.10)
where'*
Ay = esj(A) — es(B) (2.2.11)

is a symmetric tensor with up to six independent components. Further mathe-
matical treatment of the problem has been performed by Janovec (1976).

'3 In BaTiOs, the theory should be slightly modified making allowance for the first-order
phase transition.

'* One comes across in the literature the use of condition (2.2.10) with matrix A; defined as the
difference between the squares of the spontaneous strain tensors in the domains. This condi-
tion is not justified unless it leads to results identical to those derived with the use of A;; defined
by Eq. (2.2.11).
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Here one can distinguish four different cases mainly controlled by the rela-
tions between the principal components of symmetric matrix A AD, A® and
A® . Since the volumes of the unit cell in the domains are the same, the trace of
A, should be equal to zero, so that AV + A® + A® = 0.

(A) Ifnone of A equals zero and therefore det Aj; # 0, then Eq. (2.2.10) has no
non-trivial solutions and the two domains cannot be separated by a stress-
free wall. These situations are referred to as R cases.

If detA; = 0, permissible domain walls between the considered domain
states can exist. Condition detA; =0 can take place if either all principal
components are zero or if only one principal component is zero.

(B) Ifall principal components are zero, which means A; = 0 for any i, j, we are
dealing with a nonferroelastic domain pair so that any wall is permissible,
as expected. A wall that from the point of view of mechanical compatibility
conditions may acquire any orientation will be referred to as a W, wall.
The index points to the arbitrariness of the orientation.

(C) If only one principal component of Aj; is zero, say AWM =0, then
A® = —A® and in the principal axis of the matrix A;, Eq. (2.2.10) reads

ds3 = ds3 (2.2.12)
defining two permissible walls which are mutually perpendicular. Here, if,
in addition, in the crystallographic reference frame matrix A; is already
diagonal, then the wall has a crystallographically prominent orientation.
This case is referred to as a Wy wall, the subscript “f” indicating that the
orientation is fixed with respect to the symmetry elements of the lattice.

(D) If the conditions of the previous case are met except for the non-diagonal
form the matrix A; in the crystallographic reference frame, the orientation
of the walls is controlled by a relation between the components of the
matrix. In this case, the permissible wall has a general orientation which in
fact can depend on temperature due to temperature development of spon-
taneous strain. Permissible walls of this kind have been denoted as S
walls."> At the time of their prediction (Fousek and Janovec, 1969) it was
generally believed that any permissible wall must be crystallographically
prominent and the prefix S stood for strange.

The situation covered by cases (C) and (D) can also be identified without
diagonalizing matrix A;;. In this situation, det A;; = 0 coexist with the condition
I, # 0 where I, is a scalar invariant of the matrix (Janovec, 1976):

A Ap
L= . 2.2.13)
? ‘Alz Ay

Az Az Ay Az

’An Az

‘ Ay Axp

15 In the paper of Sapriel (1975) the S walls have been renamed to W walls. Here we shall
adhere to the original notation.
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We thus may encounter three different kinds of permissible walls, namely
W, Wrand S. In addition, it is possible that no permissible walls may exist. In
ferroelectrics, in view of Eq. (2.2.3) some of W;- and S-type walls should be
charged; sometimes we shall add the superscripts C and N to distinguish
between charged and neutral walls.

Which of the cases A, B, C, or D applies to a particular domain pair can be
also found on the basis of symmetry arguments (Fousek and Janovec, 1969;
Janovec, 1976). For instance, if the twinning complex contains a center of
symmetry, walls are of the type W; if it contains a mirror plane, this very
plane constitutes a Wy wall. Table 2.2.3 contains all symmetry criteria.

The information on domain wall orientation specified in Table D.1 will be
illustrated in Sects. 2.2.6 and 2.2.7 where we will give examples of how wall
orientations in particular materials are determined and we will compare the
predictions based on electrical and mechanical compatibilities with the avail-
able experimental data.

The approach presented in this section has been developed and mainly used
for the problem of orientation of a boundary separating two domains of a
ferroic phase. However, it is quite clear that Eq. (2.2.10) can also be applied to
the problem of mechanical compatibility of a boundary separating two different

Table 2.2.3 Relation between twinning operations and permissible walls

If the twinning complex g;F contains Types of permissible walls are
Inversion 1 W
Two non-perpendicular diads® Wy
More than two diads® of different directions W

Diad and rotation of higher order about thesame W,
direction as the diad
Just two perpendicular diads; here for We, Wt both perpendicular to the diads
F=4,4,4/m,3,3 the twinning complex g;H and thus also mutually perpendicular
must be considered where H is the
holosymmetric point group of F
Just one diad but no rotations about an axis W, S mutually perpendicular; Wy is
perpendicular to this diad; here for perpendicular to the diad
F =44, 4/m,3, 3 the twinning complex g
must be considered where H is the
holosymmetric point group of F
Only rotations of a order higher than 2, about the S, S mutually perpendicular
same direction; at least two of them are not
related by 1
One operation of higher order than 2 or twosuch R case
operations related by 1
Operations of higher order than 2 about different R case
axes

% The term diad signifies here a twofold rotation axis or a twofold inversion axis, i.e., a mirror
plane with a normal parallel to the diad. The holosymmetric point group within a crystal
system is one of the highest order (with the largest number of symmetry operations). After
Janovec (1976).
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phases of a ferroic. It could be a boundary between the parent and distorted
phases in the vicinity of a ferroic first-order phase transition or it could be a
boundary between two ferroic phases. The latter situation is actually of prac-
tical importance when one is dealing with a system like Pb(Zr, Ti)O3 in the
vicinity of the tetragonal-rhombohedral morphotropic phase boundary (Jaffe
et al., 1971). However, if Eq. (2.2.10) should be applied to the problem of
mechanical compatibility of a heterophase boundary, an important reservation
should be made. When dealing with domain walls, both natural spontaneous
strain and Aizu strain can be used for calculation of the difference A since, as it
was stressed in Sect. 2.1.3, A;is the same when expressed in terms of any of these
definitions. In contrast, in the case of a boundary between two different phases
of a ferroic, only the natural spontaneous strains'® can be used in the calcula-
tions whereas the Aizu strain would lead to erroneous results. The point is that,
in general (cf. Sect. 2.1.3), the difference A; is not equal to the difference
between Aizu’s strain of the two phases.

When applying the criterion of mechanical compatibility one should realize
that how stringent it is depends on the domain pattern addressed. The point is
that the additional elastic energy associated with its violation is roughly pro-
portional to the typical domain volume in the pattern. Thus, for a single domain
wall in a macroscopic sample, the criterion should be absolutely fulfilled
because, in this case, the additional elastic energy can be considered as infinite.
At the same time, in a fine multidomain pattern, local violations of the mechan-
ical compatibility may take place when the possibly moderate (in this case)
additional elastic energy may be compensated by other factors.

Though the above consideration has addressed only the case of mechanical
matching of two domain states, it can be readily extended to the case of
matching of two systems of lamella domain patterns. In this case, the average
over the pattern of spontaneous strains should be used in Eq. (2.2.11) instead of
the true spontaneous strains. The situations with this “mechanical matching on
average” will be discussed later in the book.

Before proceeding to the next topic, we wish to add several remarks. First,
coming back to walls of the W type, it has to be stressed that in this section we
only considered mechanical compatibility. For this type of walls, the lattices of
the two neighboring domains adhere smoothly to each other along a wall of any
orientation. In contrast, the order parameter changes abruptly. The energy
associated with this change may be a function of the wall orientation. This
should influence the orientation of the W, wall. We shall come back to this
aspect in Chap. 4.

The following remark concerns the S walls. As we pointed out, the orienta-
tion of S walls specified in the reference frame of the parent phase can be
temperature dependent. This rotation of S walls with temperature may involve

1 Or, obviously, any strain, which differs from it by a tensor identical for all phases of the
ferroic.
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a redistribution of volumes pertinent to the two domain states separated by the
S wall and was termed thermal switching (Fousek and Janovec, 1969; Fousek,
1971). We shall give a few examples of this effect in Sect. 2.2.7.

2.2.5 Ferroelastic Domains in Physical Contact

In the preceding paragraphs we investigated mutual relations and domain wall
orientations between two domain states but did not really take fully into
account possible disarrangement of lattices in both neighboring domain states.
For a ferroelastic domain pair, twinning operations are the operations that
exactly relate the crystal structures of different domain states only if sponta-
neous strain is neglected. However, once one makes allowance for the sponta-
neous strain, these operations need not be the symmetry operations relating
crystal structures of two domains which coexist in a sample and are separated
by a permissible wall.

As an example, let us consider species m3m — Peds — 4 mm describing the
tetragonal phase of BaTiO3. A particular pair of domain states with polariza-
tion vectors [100] and [010] can be separated by any of the two crystallographi-
cally prominent walls Wy, Table 2.2.4 specifies their orientations as (110) and
(110), in the coordinate system of the parent phase. As the spontaneous strains
Aajag and Ac/ag (see Fig. 2.2.2) develop in the distorted phase with decreasing
temperature, the orientations (in the coordinate system of the parent phase) of
the composition planes (110) carried by two domain states depart from each
other. If the c-axes were kept fixed in space parallel to the original cubic axes,
the (110) planes in both domains will make an angle 2 where ¢ =
45°—arctan(a/c). To keep the domains in physical contact, each of them must
be rotated by an angle ¢ toward the other one (Fig. 2.2.2). Since spontaneous
strains are small in magnitude, also the angle ¢ is small. From simple geometry
we obtain

Ac— A
20 ~ ‘Ta (2.2.14)

In this particular case, the twinning operation for the given pair of domain
states is a rotation by 90° about the [001] axis. However, when we are interested
in the mutual relation of tensor properties of two coexisting domains, the
rotation which brings into coincidence the principal axes of the tensors is
90°—2¢. The angle 2¢ will be referred to as the “clapping angle”; it can be looked
upon as the angle of mutual rotation of two physically existing single domain
samples required for keeping them in physical contact. Values for the clapping
angle depend on the “degree of ferroelasticity”; for BaTiO; at room tempera-
ture 2¢ =2 34’ (Jona and Shirane, 1962), but for PbTiOj; the value is much larger,
2¢ =2 3.5° (Surowiak et al., 1993). In YBa,Cu305 the clapping angle is 30’ (Salje
and Chrosch, 1996).
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Table 2.2.4 Clapping angles required to keep domains in physical contact

Domain pair Permissible walls Clapping angles

Species with cubic parent phase and tetragonal distorted phase 432-422, 43m — 42m, m3m—4/
mmm

S-S, X=ypy,x=-y @3 = +3b
S-S5 z=X,z=-Xx ¢y = £3b
S, - S5 y=z,y=-z @1 = £3b

Species with tetragonal parent phase and orthorhombic distorted phase 422-222, 4mm-mm2,
42m — 222, 42m — mm?2, 4/mmm—mmm

S]*Sz X:O,y:() <p3=i2a
Species with tetragonal parent phase and monoclinic distorted phase 4-2, 4 — 2, 4/m-2/m
Si-S, X =py.x=-yp @ =+ (@+b)"?
p=b+(@+b)"a
Species with hexagonal parent phase and orthorhombic distorted phase 622-222, 6mm-mm2,
6m2 — mm?2, 6/mmm—mmm

S3 - Sz X = O,y =0

Si-$, x=V3y,y=—3x @ =+V3a

S1-S; x=—V3y,y=3x

Species with trigonal parent phase and monoclinic distorted phase 32-3, 3m-m, 3m — 2/m
S2-S;3 y=0,z=—(afo)x

S -Ss3 y=3x,a(v3y+x)—2ez=0 0 =+V3(d>+A)"?
S-S, y=3x,a(+3y+x) =2z =0

Species with orthorhombic phase and monoclinic distorted phase 222-2, mm?2-2, mm2-m,
mmm-2/m

S]*Sz X:O,ZZO (p:iZb

From Dudnik and Shuvalov (1989). Symbols «, b, ¢ denote components of Aizu’s strains for

these species which are shown in Table 2.1.3.

0 Ll0+A c

Fig. 2.2.2 If the directions of the c-axis in the domains remain parallel to fourfold axes in the
parent phase then, in order to keep the domains in physical contact, each of them must be
rotated by an angle ¢ (clapping angle) toward the other one. The clapping angle shown in this
figure is strongly exaggerated
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To discuss the problem of the clapping angle in the general case, Vagin and
Dudnik (1983) and Shuvalov et al. (1985b), who coined a term of “spontaneous
rotation” for this phenomenon, made use of a general theory of transformation
twinning. The clapping angle ¢ was shown (in the approximation for small
angles) to be given by

20 = £(1)"? (2.2.15)

where I, is defined by Eq. (2.2.13). This approach can be used for domains
separated by both W; walls and S walls. Because it is the difference tensor A
that is involved, both the natural and Aizu spontaneous strains can be used in
these calculations. Table 2.2.4 shows results for the permissible wall orienta-
tions and clapping angles for several ferroelastic species; here the variables a, b,
¢ are defined in Aizu strain matrices shown in Table 2.1.3. Obviously, these
results can be used for a number of partially ferroelastic species as well. For
instance, the rotation angle ¢ = 3b for the species m3m—4/mmm agrees with
that calculated above by simple geometry for BaTiO3; which represents the
species m3m — 4 mm with the same spontaneous strains.

An approach where the clapping angles are neglected is called parent clamp-
ing approximation. Considering a real polydomain sample beyond this approx-
imation, one can come back to the question how many domain states can be
really observed in a sample? Consider the situation in a KH,PO, crystal that
represents species 42m — Peds — mm2. We see from Tables 2.1.3 and 2.2.4 that
there exist two domain states differing in spontaneous strain es,,. Correspond-
ing domains can be separated by permissible walls of either (100) or (010)
orientation. The parent clamping approximation corresponds to the situation
close below the transition temperature when spontaneous strain is negligible.
The transition in this particular crystal is close to second order, but clearly
discontinuous. Thus there is no reason why domain systems with walls of both
permissible orientations should not be nucleated in different parts of the crystal.
As the value of €5, grows with decreasing temperature, rotations of the two
permissible walls by +¢ have to take place. Thus, in the sample, four different
orientations of crystal lattices may develop, as shown schematically in
Fig. 2.2.3. Each domain state splits into two whose lattices make an angle 2¢.
Dudnik and Shuvalov (1989) suggested that such domains in ferroelastics be
designated as suborientational domains. The effect can be easily observable
when ¢ is not extremely small. It can be said, therefore, that due to mechanical
compatibility conditions the number ¢, (real) of ferroelastic domain states
observed in a real sample may exceed that given by Eq. (2.1.17) or (2.1.18),
whichever is applicable; in the given example ¢.(real) = 4 while ¢. = 2. The
increase of the number of observable domain states can be calculated in a
general way based on the concept of the stabilizer of domain pairs, as suggested
by Janovec et al. (1989). However, it is easy to see that simultaneous existence of
mutually perpendicular domain walls of the W or S type is by itself not
mechanically compatible: Inevitably, in a large enough sample they would
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Fig. 2.2.3 Formation of
four suborientational
domains (S%, Sy, S, Sg)
form two domain states (Sa,
Sg) with the spontaneous
shears of opposite sign. The
share strain shown in this
figure are strongly
exaggerated

(010)

(100)

os)
i

intersect each other and in that region compatibility conditions would be
violated. Therefore, while in a real sample domain pattern with ¢. (real) > ¢.
may indeed develop, regions must simultaneously form in which the crystal
lattice is highly strained and whose structure corresponds to none of the domain
states of the material (Afonikova et al., 1987). An overview of theories of such
additional strain fields has been given by Salje (1990).

2.2.6 Examples of Domain Wall Orientations:
Nonferroelastic Walls

How reliable are the predictions concerning the domain wall orientations or the
nonexistence of walls in particular materials? In order not to sojourn only in
abstract speculations we shall now give at least partial answers to this question.
First, let us consider crystals with nonferroelastic domain pairs where mechan-
ical compatibility plays no role and domains are to be separated by W, walls.
Without attempting to introduce some rigid categorization we single out three
cases: W, walls separating ferroelectric nonferroelastic domain pairs, W, in
higher order ferroics, and W, representing antiphase walls between transla-
tional domain states (cf. Sect. 2.1.7).

In ferroelectrics, only 180° walls can be nonferroelastic. As already men-
tioned, the claim of electrical neutrality requires that these walls be parallel to
the ferroelectric axis. Indeed the observations indicate this tendency of 180°
walls, so that the domains themselves attain usually the form of slabs or
cylinders of various cross-sections with walls parallel to Pg and such elongated
domains can be considered typical for 180° walls in nonferroelastic ferroelectrics.
Figure 2.2.4 shows two opposite etched surfaces of a plate-like flux-grown
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Fig. 2.2.4 Etched opposite surfaces of a BaTiO; plate perpendicular to the polar axis.
Reprinted with permission from Hooton and Merz (1955). Copyright (1955) by the American
Physical Society

BaTiO; crystal (Hooton and Merz, 1955). The perfect mirror image attests to
the cylindrical domain shape. Figure 4.7.7 shows such cylindrical domains in
large top-seeded solution-grown crystals of the same material.

However, often cylindrical-shaped domains do terminate inside the sample so
that some sections of domain walls violate the condition of electrical neutrality.
This may have some localized rationale (crystal defects) or it may just reflect the
situation reached by a growing domain (due to applied electric field, for example).
Information about such “internal” domains is not extremely rare but still rather
limited since to make them visible requires either observations of surfaces parallel
to the polar axis, which are rarely performed, or much more sophisticated
methods allowing to see inside the sample. Internal domains were revealed in
crystals of BaTiO5 by X-ray topography (Akaba et al., 1979). Figure 2.2.5 shows
the etched surface of a TGS crystal parallel to the ferroelectric b-axis; the internal
domain is clearly visible. A similar observation was made for LiTaO3 (Kuroda
etal., 1996).

In a static case like this we expect that the bound charge p, = div Pg is
compensated by free carriers. Let us estimate in a simplified way the order of
magnitude of free carrier density required for such a compensation. Consider-
ing a maximum value of Pg in a ferroelectric to be 50 pC/cm? (applicable to
LiTaOs5), the maximum surface charge to be compensated is 100 pC/cm?. This
would require the surface density of electrons of the order of 6 x 10'* cm 2 or,
taking the unit cell parameter as 4 A, 1 electron per unit cell area of a wall
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Fig. 2.2.5 “Internal”
domains revealed on the side
of a single crystal of TGS
parallel to the ferroelectric
axis by powder decoration.
Reprinted with permission
from Chynoweth (1960).
Copyright (1960) by the
American Physical Society

perpendicular to Pg. Many ferroelectrics carry Ps which is by one or two orders
of magnitude lower. Compensation may be easier to achieve in crystals of
semiconductive ferroelectrics like SbSI. Indeed in this material domain struc-
tures with head-to-head arrangements were frequently observed (Grekov et al.,
1976; Kliya and Lyakhovitskaya, 1970b).

Domain situations with charged domain walls must necessarily occur as
transient states during processes of polarization reversal. Figure 2.2.6 shows
growing 180° domains in BaTiOj; single crystal (Kobayashi, 1967); this is an
optical micrograph and the origin of contrast in this case is not simple. The

Fig. 2.2.6 180° domains in
BaTiO; crystal seen in
polarized light during their
growth. The polar axis is
parallel to the wedges. The
width of wedges at their base
is about 6 pm. Reprinted
with permission from
Kobayashi (1967)].
Copyright (1967), Wiley-
VCH Verlag GmbH & Co.
KGaA
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bound charge carried by the head-to-head (tail-to-tail) 180° wall in this tran-
sient event is probably not compensated.

Because of the existence of free charge carriers the electrical neutrality need
not be a decisive factor in shaping domains. Compositional inhomogeneities
occurring involuntarily during the crystal growth process can lead to the for-
mation of domain walls violating the neutrality condition. This was first rea-
lized in case of LiNbOj3, whether as-grown doped or undoped (Nassau et al.,
1965; Peuzin and Tasson, 1976). Systems of antiparallel domains with walls
prevailingly perpendicular to the polar direction have been observed in several
materials with growth layers connected with composition inhomogeneities. In
as-grown crystals of lead germanate the existence of domain systems with
charged walls was suspected on the basis of dielectric response (Cross and
Cline, 1976); indeed such arrangements were visualized by cleaving (Shur
et al., 1993a).

Later, in connection with producing periodic lamellar domain patterns in
crystals of LiINbO; and LiTaO3; methods were mastered to create 180° walls
with head-to-head coupling. As an example we may mention the use of yttrium
periodic doping for this purpose (Chen et al., 1989). It is understood that,
during the crystal growth, the bound charge is automatically compensated by
the charge associated with the modulation of concentration.

Luh et al. (1986) brought attention to yet another possible mechanism of
creating charged walls. They produced crystalline fibers of LiNbOj3 in which the
polar c-axis is perpendicular to the fiber. During the growth process a tempera-
ture gradient is present. It is argued that the temperature gradient leads to an
appreciable electric field in the material due to the thermoelectric effect. This
field is spatially oriented so that it can explain the head-to-head antiparallel
domains in the fiber, which are separated by a domain wall parallel to the fiber
axis. Again, compensation of py, by free carriers is assumed to take place.

The condition of electrical neutrality does not limit the orientation of W
walls as long as they remain parallel to the ferroelectric axis. In many cases, 180°
domains with walls fulfilling this condition show a tendency to form particular
characteristic shapes. Most of such observations apply to quasistatic condi-
tions. Figure 2.2.7 shows domains of lenticular cross-sections which are typical
for crystals of TGS. Figure 2.2.8 gives cross-section of domains in PbsGe;Oy;
(Dougherty et al., 1972). These shapes cannot be explained on the level of the
present discussion. However, it is usually observed that contours of these cross-
sections do reflect the crystal symmetry in the ferroelectric phase. This points to
the fact that the wall orientations forming such shapes are connected with the
crystal structure rather than with macroscopic aspects of the sample. It can be
expected that nonferroelastic walls with different orientations will have differ-
ent internal structures. If so, the surface wall energy will depend on the wall
orientation. This issue will be discussed later in Chap. 6.

It was further observed that nonferroelastic 180° domains can acquire dis-
tinctive shapes during the process of growth or shrinking under the influence of
an electric field. We will discuss this effect later in Chap. 8.
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Fig. 2.2.7 Cleavage surface
perpendicular to the polar b-
axis of TGS reveals 180°
domains with lenticular
shapes typical for this
material, which may be seen
in reflected light using a
differential interference
microscope. Reprinted with
permission from Nakatani
(1989a,b). Copyright (1989),
Taylor & Francis
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Fig. 2.2.8 180° domains in a plate of PbsGe3;0;; perpendicular to the polar c-axis viewed in
polarized light: (a) and (b) analyzer rotated by 2.5° from the crossed Nichol position antic-
lockwise and clockwise, (¢) Nichols prism precisely crossed (Dougherty et al., 1972)

Let us now turn to nonferroelectric ferroics. Table B.1 shows that there are a
number of species which are nonferroelectric and nonferroelastic, so that W,
walls would be expected to exist. The best known representant for which
abundant data are available are crystals of quartz which conform with species
622—ds—32. They may exist in two domain states which are known as electrical
twins and also referred to as Dauphiné twins. Since the ferroic phase is neither
ferroelectric nor ferroelastic the criteria given by Egs. (2.2.4) and (2.2.10) pose
no restrictions on wall orientations. Etching surfaces of quartz plates revealed
(Willard, 1947) that in fact domain walls show large planar sections with well-
defined indices. This is also true (Aizu, 1973b) when domain state reorientation
is brought about by applied elastic stress; on the other hand, however,
highly localized stress produced domains of very irregular shapes (Indenbom,
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1979). While we may suspect again that the wall energy anisotropy plays a role,
it is also possible that spatial inhomogeneity of applied stresses may be the
decisive factor for determining the shape of a new ferrobielastic domain and
thus also for the orientation of walls.

Crystals of NH,CI represent higher order ferroic species m3m — d — 43m.
Pique et al. (1977) found that here the W, domain walls have the orientation
(111). Again the interpretation was based on the wall energy anisotropy. As an
alternative possibility it was suggested that wall orientation can be somehow
connected with the phase boundary existing for the first-order phase transitions.

Finally we turn to the antiphase domain walls. These occur solely in materi-
als with multiplication of the unit cell volume (v # 1) and separate domains
which do not differ in any macroscopic property; for v = 2 they represent just a
mutual shift of the distorted structures by one unit cell parameter of the parent
structure. Therefore as in the preceding case, requirements (2.2.4) and (2.2.10)
are ineffective. Observations made with crystals of Gdy(Mo0Qy); (abbr. GMO)
(Barkley and Jeitschko, 1973) revealed that antiphase walls form irregular
shapes. However, close to the intersections with W, walls, antiphase walls
show a tendency for preferential orientation. This has been interpreted by
wall “reactions” (Janovec, 1976).

2.2.7 Examples of Domain Wall Orientations: Ferroelastic Walls

Now we shall discuss some real data on the orientations of domain walls of the
type Wr and S, separating ferroelastic domain pairs. In most cases, their
orientation was determined by polarized light microscopy.

The predictions for the orientations of Wy walls satisfying requirement
(2.2.10) are unambiguous and accurate. It appears that in all known cases the
predicted orientations of W; walls agree with observations. This is true in
particular when in the sample a system of only one of the two permissible
walls in the conceived pair W Wy, W:S, or SS is realized. Then a laminar
ferroelastic domain system occurs. An example is shown in Fig. 2.2.9a; this is
a micrograph of a system of domains separated by W; walls in a ferroelastic
sample of NdPsO4 (Huang et al., 1995). Systems of parallel walls with less
regularity have been observed in many ferroelastic crystals of good quality,
such as KH2P04 or Gd2(MOO4)3.

Such an ideal situation, however, does not occur very often. We shall men-
tion two factors which often complicate the real wall orientations. First, the
mechanical compatibility criterion as discussed above applies to an infinite
crystal. There its nonfulfillment is impossible since it would result in an infinite
elastic energy. In a finite and often defective sample, on the other hand, it can be
expected that the actual W walls may be slightly misoriented from the predicted
planes; the smaller the sample volume, the larger the possible tilt. Very often Wr
walls form wedge-shaped domains or rather narrow domains confined by two
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Fig. 2.2.9 (a) Ferroelastic plate-like domains, (001) oriented, in a h-plate of neodymium
pentaphosphate seen in polarizing microscope (Huang et al., 1995). The period is about
20 pum. (b) Systems of wedge-shaped domains in the same material, with periods ranging
from 6 to 20 um. Reprinted with permission from Meeks and Auld (1985). Copyright (1985),
American Institute of Physics

parallel properly oriented W; walls which meet inside a crystalline sample to
form a narrowing tip. Figure 2.2.9b shows a system of such wedges, again in
neodymium pentaphosphate. The wedged domain pattern can also be induced
artificially, e.g., by applying non-uniform stress. In Gd>(Mo0O,); wedges have
been formed by bending a sample (Fousek et al., 1976) and in NdPsO;4 by
repeated application of shear stress (Meeks and Auld, 1985). In ferroelectric
ferroelastics the application of properly oriented electric field also produces
wedge-shaped 90° domains. In common samples of ferroelectric perovskites
wedge-shaped domains occur very frequently.

The application of strong electric field can also lead to local deviation on
ferroelectric walls from the permissible orientation. This behavior has been
documented by Fousek and Brezina (1960) in small crystals of tetragonal
BaTiO3, where such deviation up to 22’ has been observed. This effect has
been explained by high non-uniformity of pressure acting on the wall due to
dielectric anisotropy.

Let us now move on to S walls. The prediction of their existence in ferro-
electrics (Fousek and Janovec, 1969) was believed to be confirmed by earlier
observations of walls in some of the boracite crystals, in MgzB,05Cl in parti-
cular (Schmid, 1967). Similarly, the prediction of such walls in nonferroelectric
ferroelastics (Fousek and Janovec, 1970) was substantiated by earlier research of
NaNbO; (Wood et al., 1962). The first targeted experimental study of S walls in a
ferroelectric ferroelastic was performed for KNbO; crystals (Wiesendanger,
1973). Since that time they have been observed in a number of materials. Several
observations identified S walls of relatively large areas, with just two domain
states present. This includes the study of twinning in the mineral Na-feldspar
(species 2/m — es — 1) (Salje, 1990) in which the W;and S walls offer two types of
transformation twins, albite and pericline. In other experiments S walls were
parts of complicated domain patterns involving Wy walls as well. The latter case is
represented in Fig. 2.2.10 which shows S walls in the orthorhombic phase of
KNbO; (Wiesendanger, 1973), species m3m — Peds — ms,m.2y,. It is interesting
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Fig. 2.2.10 Ferroelastic domains in the orthorhombic phase of KNbOs as seen ina (001) plate
(Wiesendanger, 1973): (a) etch pattern, (b) scheme of the corresponding domain pattern. The
arrows represent Pg vectors. Two differently shaped vertical arrows indicate Pg pointing
downward and upward with respect to the plane of the drawing, respectively. The orientations
of the walls are specified with Miller indices

to observe that here a system of .S walls comfortably intersects a system of 90° Wy
walls, although at their crossings elastically stressed regions must form.

We shall represent the procedure of determining orientations of S walls at the
ferroelastic phase transition in CsHSeOy, following the paper of Yokota (1982).
This example illustrates how determining wall orientation may help resolve
symmetry of the crystal. Crystals of CsHSeO,4 at room temperature are mono-
clinic with the space group P2;/c and the unit cell parameters a,, = 7.972 A,
bm = 8427 A, ¢y = 7.811 A, and B = 101.5°. Above 128°C it becomes
tetragonal with unit cell parameters a, = b, = 4.18 A and ¢ = 7.20 A. Below
Trr CsHSeOy has a structure with the cell dimensions doubled along the a- and
b-axes. Thus we have v = 4, the transition is improper ferroelastic. For experi-
mental reasons it was difficult to determine the symmetry of the parent phase and
data were consistent with either of point groups 4/mmm and 4/m. Let us inves-
tigate the species 4/mmm—es—2,/m,. There are four ferroelastic domain states
S1—S4 characterized by symmetric spontaneous strain tensors

56)6)6 0 ng 5€yy 0 0
€S(S1) = 55yy 0 s 5S(S2) = Ocxy —€xz |,
0c.s 0c..
(2.2.16)
55}:,\‘ 0 —Exz 55);); 0 0
6S(S3) = 56}’)1 0 ) €S(S4) = 56)()( Exz
O€:: O¢:-

Using definition (2.1.9) and denoting

a=(en—en)/2, b=cenp (2.2.17)
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we come to Aizu’s strains

—a 0 b a 0 0
ean(S)) = a 0|, &8n(sy) = —a —b |,
0
(2.2.18)
—a 0 —-b a 0 0
e8(S3) = a 0 |, e8im(Sy) = —a b
0 0

The parameters a, b are related to the monoclinic cell parameters by

a=(en—en)/22 (bm — am)/2bm,

b= % tan~! (amz_cjcs?nc;s B) ’ (2.2.19)
which give

a=240x 102 b=794x10"2 (2.2.20)

Using Eq. (2.2.10), Yokota obtained permissible wall orientations (the parent
phase reference frame) listed in Table 2.2.5. Since optical study of wall orienta-
tions have been performed at room temperature and related to the monoclinic
axes, it is useful to rewrite them into the coordinate system of the ferroic phase,
taking into account the relation between the unit cells in both phases (Yokota,
1982; Komukae et al., 1990). The crystallographically nonequivalent permissible
walls have then the following indices: W walls (221), (201), ( 221), and (001); S
walls (1177) and (11n). Here n = 1/2 + (cu/bm)(b/a) sin B. Inserting unit cell
parameters at room temperature it is found that n = 3.04. Optical observations of
crystals confirmed the existence of four domain states which can be optically
distinguished. In untreated crystalline samples walls were detected with indices
(113)and (113), which obviously correspond to the calculated S walls. By applied
compressive stress new domains with boundaries (221), (221), and (201) could be
easily introduced. Thus only walls (001) were not observed.

Table 2.2.5 Permissible wall in species 4/mmm—cs—2,/m,

Domain pair Permissible walls

S, S, X =-y alx—y)—bz =0
S,, S3 xX=y ax+y)+bz=20
S3, S3 X =-y alx—y) + bz=0
S4, S xX=y ax + y)—bz=20
Sl, S3 x=0 z=0

S5, S4 y=0 z=0
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Analogous analysis was also performed assuming that the parent phase is of
symmetry 4/m. This leads to the prediction of only two walls which are different
from any walls observed. Thus domain observations together with the analysis of
their permissible orientations may help determine the correct species of the crystal.
The conclusion of this analysis has been confirmed by later observations by Bala-
gurov et al. (1986), which pointed to the space group /4,/amd for the parent phase.

PbZrOj is a perovskite-type material with orthorhombic symmetry mmm at
room temperature and with a cubic phase above 217°C. The two phases are
separated by a trigonal phase extending over a narrow temperature range only.
At room temperature it represents the species m3m — s — My, My, . Another
perovskite-type crystal is NaNbOj; it is cubic above 640°C and has the orthor-
hombic symmetry mmm at room temperature; this phase can be treated as
representing the same species as in PbZrOj; although here the phases G, F are
separated by other two, also nonpolar phases (Cross and Nicholson, 1955).
Analysis of spontaneous strain in NaNbOj led to the prediction of S walls with
indices {lal} where ¢ may be temperature dependent (Fousek and Janovec,
1970). Full examination (Dec, 1988; Miga et al., 1996) is based on the Aizu
strain tensor for the two domain states making the wall:

c d 0 —2c 0 0
6/S\izu(Sl) _ ¢ 0 ; E?izu(S2) — c dl. (2.2.21)
—2¢ c

Here b, d can be evaluated from the parameters a, b, § of the monoclinic
pseudoperovskite cell:
1 f—90°

c:3—0[0(a—b)7 d = tan 7

(2.2.22)

where ay = [a*b cos(B — 90“)]1/3. From Eq. (2.2.10) we find that in addition to
Wy walls also S walls are permissible described by the relation

3e(x+z) +2dy = 0. (2.2.23)

From here we obtain data specifying the wall orientation. Dec (1988) and
Miga et al. (1996) identified .S walls in both PbZrO3; and NaNbO;. Figure 2.2.11a
shows a photograph in which an inclined S wall projects onto the (001) crystal
surface. The orientation of this wall is explained in Fig. 2.2.11b. For the angle «,
Egs. (2.2.22) and (2.2.23) yield

tano = 3¢/2d (2.2.24)

which can also be rewritten as

a—>b
o = arctan , g=p—-90. (2.2.25)
2[a2b cos )"/ tan(y/2)
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Fig. 2.2.11 An S wall in the orthorhombic phase mmm of NaNbOj3 at room temperature:
photograph of the projection onto (001) plane (a) and schematic explaining its position in the
sample. (b) In the photograph, the scale of one division is 1.9 pm. (¢) Temperature dependence
of the wall orientation: the results of direct observations and calculations using Eq. (2.2.25)
(Miga et al., 1996)

At room temperature, the two crystals are characterized by the following
data given in Table 2.2.6. The agreement is more than satisfactory.

Now, all lattice parameters depend on temperature and so should the orien-
tation of the S wall. The first observation of this effect in NaNbO; was reported
by Zhelnova and Fesenko (1985). In Fig. 2.2.11c we reproduce the temperature

Table 2.2.6 Calculated and measured orientations of S walls in PbZrO; and NaNbO;
¢ d o (calcul.) o (measured)
NaNbO; 0.002989 0.00625 3520/ 33°26/-38°25'
PbZrO; 0.003982 0.0008 82°40/ 79°55'-84°44
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dependence of the angle « as calculated from Eq. (2.2.25) by Dec (1988) and
Miga et al. (1996), together with their experimental data. Thus the effect of
thermal switching in ferroelastics envisaged by Fousek and Janovec (1969) is
real and in multidomain samples it can couple to several other phenomena.
Thermal hysteresis and jumpwise behavior seen in the inset of the figure give
evidence that local structure rearrangement accompanying the rotation of the
domain wall may require overcoming large energy barriers.

Crystals of NaNbO; offer another example of interesting behavior con-
nected with S walls. While the room temperature phase is nonpolar, it was
found (Wood et al., 1962) that a properly oriented electric field transforms the
crystal into a state which can be treated as a ferroelectric with the symmetry
mm?2; this would correspond to the species m3m — Peds — MMz, 2. This indi-
cates that free energies of the original mmm and field-induced mm?2 phases are
close to each other and it is one of the reasons why NaNbO; (and PbZrO; as
well) is referred to as an antiferroelectric. Now let us consider a domain
arrangement as shown in part (a) of Fig. 2.2.12 (Fousek and Janovec, 1970);
the lines indicate the orientation of c-axis in the domains. Compatibility analy-
sis shows that in the phase mmm the planes (110) and (110) represent permis-
sible walls. When the transformation into the polar phase mm2 is accomplished,
the spontaneous polarization along the c-axis develops as shown by the arrows
in Fig. 2.2.12b. The analysis shows that, in the ferroelectric phase, the previous
domain walls are still permissible. However, the 60° W, wall (110) does not
satisfy the neutrality condition (2.2.4). The same domain states can now be
separated by electrically neutral S walls (1al) and (1al) which would then form
an arrangement shown in Fig. 2.2.12¢. The arrangement of such zigzag walls
was indeed observed by Wood et al. (1962). It can be concluded that S walls can
result from a field-induced transition into a ferroelectric phase.

Antiferroelectric Induced ferroelectric

E

E
(110) v

N DR /(20
/ RN
N \:\\ (1a0)

Charged “ 60°” W, -wall Neutral “ 60°” S-walls
(a) (b) (c)

I~
[N
=
o

—

I\
N TN

Fig. 2.2.12 Rearrangement of domain patterns (a) in antiferroelectric NaNbO; when a ferro-
electric phase is induced by applied field (this process corresponds to an mmm to mm?2
transformation). Formation of electrically neutral S walls in (¢) avoids the presence of charged
W walls shown in (b) (Fousek and Janovec, 1970). The orientations of the walls are specified
with Miller indices
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2.3 Thermodynamic Approach

In the previous sections, we introduced in terms of the symmetry approach the
basic notions related to ferroic domains. This approach gives a very good over-
view of the problem and often provides the answers to various questions, actually
without any calculations. On the other hand, when one is interested in quantita-
tive manifestations of the domain structures of a ferroic, one finds that the pure
symmetry arguments do not suffice. For instance, to find the orientation of an S
wall, it is essential to know the temperature dependence of spontanecous strain
which cannot be specified from purely symmetry considerations. Another exam-
ple is domain patterns in ferroelectric thin films: In many cases even the type of
the domain pattern is conditioned by the values of material parameters and here
again we need more than just information on the symmetry of the system. Thus it
is appropriate to combine the symmetry and thermodynamic arguments. In this
approach, often referred to as the thermodynamic approach, all results of the
purely symmetry consideration (though often at the expense of rather compli-
cated calculations) are reproduced. But in addition, it enables a description of
quantitative issues of the problem such as the temperature dependence of para-
meters of domain states, the structure of domain walls. In this book, we discuss
neither conceptual aspect of this approach nor its technical aspect, referring the
reader to an exhaustive coverage of this area in the books by Strukov and
Levanyuk (1998) and by Toledano and Toledano (1988). In the following sec-
tions we will highlight the key points of the approach and illustrate them by using
examples of some favorite ferroics. First, the basic idea of the Landau approach
will be explained in terms of single-component order parameter. Then examples
of Landau theory treatment will be presented for some cases which will be
essentially addressed in the book, specifically uniaxial proper nonferroelastic—
ferroelectric, uniaxial proper ferroelastic—ferroelectric, multiaxial proper ferroe-
lectric—improper ferroelastic, and the uniaxial improper ferroelectric-improper
ferroelastic.

2.3.1 Single-Component Order Parameter

In this section we outline the thermodynamic description of a phase transition
in its simplest possible form. Consider a proper ferroelectric phase transition
where the order parameter is a single component of dielectric polarization; in
other words, we will be dealing with a uniaxial proper ferroelectric. On the basis
of Landau theory of phase transitions, this transition can be described by using
an expansion of a thermodynamic potential with respect to the order para-
meter; in our case, with respect to the mentioned component of polarization,
which we specify as P,. This expansion should be written taking into account
the symmetry of the order parameter and the resulting potential should be
invariant with respect to the symmetry of the parent phase. One can use
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different thermodynamic potentials for this purpose. In many situations the
choice is a matter of convenience. However, for a certain class of problems,
which we will address later, the proper choice is mandated. Here we use a
thermodynamic potential @, called the Gibbs energy, which is a function of
polarization P; and stress tensor ¢; as independent variables. Its differential
reads

dd = E,'dPi — Eljdﬂ,‘j, (231)

where E; stands for the electric field and ¢;; for the strain tensor. (We recall that
the differential of a potential, by definition, is a function of the differentials of
its independent variables.) This expression implies the following equations,
referred to as equations of state:

oD

=E; 232
(31’ i) o (232

oo
= —¢gj. 233
(30' !’/’) o 233
The expansion of ® with respect to the order parameter P,, in general, reads

1 5 1, 1 &

(I):(I)O—’—EOCP},+ZﬁP}J+6'})P}.+"'7 (234)

where @, is the P -independent part of the potential. The expansion contains
only even powers of the order parameter. This corresponds to the fact that, in
the parent phase, the y-direction is nonpolar. The key point of the Landau
approach is that if one assumes that the parameter o is small and changes its sign
as a function of external parameters (e.g., temperature 7 and pressure), the
equation of state related to the order parameter, Eq. (2.3.2), describes the
appearance of the order parameter at the transition as well as its evolution as
a function of external parameters. Let us follow this logic for a temperature-
driven transition, i.e., we set

o= O((](T* T()), oy > 0. (2.3.5)

For the description of the second-order phase transition not close to a
tricritical point, which we are interested in at this moment, one sets f# > 0 and
keeps only the first two terms in this equation, putting y = 0. Thus we have

1 1
O =D+ EacPf, + Z/ij, (2.3.4a)

and via Eq. (2.3.2) we arrive at the equation of state for the order parameter,
namely,

E, =P, + P, (2.3.6)
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The solution to this equation describes the appearance of spontaneous
polarization at £, = 0 and T < Ty Indeed, it yields

P,=0 at T>Ty, (2.3.7)

implying that the parent phase is nonpolar. For T < T, the two solutions
fulfilling the stability condition are

P, = 4P, = +(oy(Ty — T)/B)'"/*. (2.3.8)

One easily checks that at T < T, the solution P, = 0 corresponds to the
maximum of the Gibbs energy (see Fig. 2.3.1) and is unstable. Thus, in the
distorted phase the order parameter may attain two values and these corre-
spond to two domain states already introduced in Sect. 2.1. For both domain
states the Gibbs energy in the ferroic phase is the same, namely,

2
o,
O = @ — ﬁ(To —- 7y (2.3.9)

so that they are degenerate in energy. Both of them correspond to the ground
state of the system and the transition into either of them occurs with the same
probability. From Egs. (2.3.5), (2.3.6), (2.3.7), and (2.3.8) we further obtain for
the dielectric susceptibility y = OP,/OE,

1 E()C
= = for T>T, 2.3.1
L= (=T T—-1, 777" (2:3.10)

E()C/2
= for T<Ty. 2.3.11
r=g. 7 for 0 (2.3.11)
o — 0,
T>T,
T=T,
T<T,
N — p
—P, P, T, T

(a) (b)

Fig. 2.3.1 Ferroelectric second-order phase transition. Schematics for the characteristic
temperature dependences: (a) thermodynamic potential and (b) spontaneous value of the
order parameter Ps and susceptibility y
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Figure 2.3.1 demonstrates schematically how the Gibbs energy function
®(P,) depends on temperature as well as the resulting dependences of PZ and
x- Equation (2.3.10) is the well-known Curie—Weiss law in which C denotes the
Curie-Weiss constant.'”

The important feature of the considered problem is that, in the presence of
electrical field coupled to the order parameter, the two domain states become
energetically nonequivalent. Though it is obvious from the symmetry point of
view, the thermodynamic approach makes it possible to calculate the energies of
these states. At this point one should specify the thermodynamic potential used
for calculations. Up to now the choice of the potential was only a matter of
convenience since we have been using only the equation of state, which is
independent of the thermodynamic potential used. On the basis of general
thermodynamics, relations between the coefficients of different thermodynamic
potentials are determined by the condition that the potentials lead to identical
equations of state for given variables. However, when addressing the question
which of the states (or phases) is energetically more favorable at given fixed
macroscopic variables, one must use the thermodynamic potential in which
these variables play the role of independent variables. Thus, to compare the
“energy” of two domain states in a mechanically free sample (¢; = 0) at a fixed
magnitude of electric field we should use a potential based on stress and field as
independent variables. The potential ® = ® — P;E; possesses this property.
Indeed, one readily finds its differential as

d® = —P; dE; — ¢;; doy; . (2.3.12)

Now the energies of the two domain states when a fixed field E) is applied can
be found from the expression

d =)+ %ocPf, + %ﬁP_“f — P,E, (2.3.13)
where the two stable solutions to Eq. (2.3.6), P. and P_ (corresponding to the
two domain states with the polarization parallel and antiparallel to the field,
respectively), should be used for the values of P,. If the applied field is small
enough so that | P, | — Py << Pyand P;—|P_| << Pj, the energies of these states
can be presented as

®, = ®p — PE, and ®_ = Op + PE, (2.3.14)

respectively, where ®r comes from Eq. (2.3.9). For higher values of the field one
would arrive at more cumbersome expressions.

17 Note that the phenomenologically introduced quantity P, exactly corresponds to sponta-
neous polarization introduced via the pyroelectric coefficient in Sect. 2.1.2 since, first, the
temperature derivative of Pg defined according to Eq. (2.3.8) equals the newly acquired
component of the pyroelectric coefficient (by definition), second, the value of the spontaneous
polarization is opposite for two of the domain states.
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We see that one of the domain states is more energetically favorable than the
other. Thus, it is favorable when the volume of the former increases at the
expense of that of the latter. That means that, in a poly-domain sample, a
volume originally occupied by the unfavorable domain state can be, in princi-
ple, switched to that favorable. (“In principle” means that in reality this is
possible if the domain wall mobility is high enough.) However, if the magnitude
of the field exceeds a critical value E, called thermodynamic coercive field, the
switching is inevitable. The physical meaning of this situation is that, at [E}| >
E.., the energetically unfavorable domain state loses its stability. The magni-
tude of E;, can be determined from the condition of infinite permittivity y (or
1/x(Ey) = 0, ie., dE,/dP, = 0). Applying this condition to Eq. (2.3.6) one
readily obtains

2 fo\'? 1 P P
Evii=——=(2) (T,-1)*=—~"~0222 2.3.15
‘ 3\/§<ﬁ> (To-1) 3V3 1 7 (23.15)

where y comes from Eq. (2.3.11). The meaning of the thermodynamic coercive
field is also specified in Fig. 2.3.2, in terms of the P(E) curve.

At this point an important feature of the considered system should be
stressed: In the ferroelectric phase, there exists a certain interval of values of
the field, in which the system exhibits two stable solutions. In principle this
interval can be as large as from —Ej; to + E;. Thus, as any bistable system the
ferroelectric should exhibit hysteresis phenomena. In the case of the discussed
P(E) curve one speaks about ferroelectric polarization-field hysteresis loop. The
stable parts of the P(E) curve (with 9P/OE>0) linked by the dashed lines as
shown in Fig. 2.3.2 make an example of such a loop.

All the above considerations of this section have been dealing with the case of
a second-order (continuous) phase transition. However, in most ferroics the

Fig. 2.3.2 Dependence of polarization on electric field at three different temperatures in a
ferroelectric with the second-order transition. The stable parts of the curve (with positive
slope) for T' < T¢ together with vertical dashed lines represent a ferroelectric hysteresis loop.
Its central part (with negative slope) corresponds to unstable states. Dashed vertical lines show
transitions from metastable to stable states, “polarization reversal” occurring at critical fields
equal to £F
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phase transition is discontinuous, i.e., the spontaneous value of the order
parameter, in contrast to Eq. (2.3.8), does not grow from zero but acquires a
finite value at the transition temperature. Such transitions can be well described
in terms of the Gibbs function given by Eq. (2.3.4) where § < 0 and y > 0. In this
case the equation of state yields the solutions

P, =0, (2.3.16)

\/ B —doy — B

P, =+Ps with Pg= 3
’ Y

(2.3.17)

Solution (2.3.16) is stable above the temperature 7|, but it is energetically
favorable only at temperatures higher than 7 defined as

3p°
1604y

Te =T+ (2.3.18)

The nonzero solutions (2.3.17) are energetically favorable below T and
stable up to 7§ defined as

ﬂZ

T =T, .
0 0+40€o”/

(2.3.19)

Thus, in the temperature interval between T, and T} the parent phase with
P, = 0 and the ferroic phase with P, # 0 can coexist, one of them being
metastable. The genuine transition temperature 7, therefore, may lie anywhere
between T, and T};, depending on the experimental conditions. The ideal transi-
tion point is T¢, at which the energies of solutions (2.3.16) and (2.3.17) are equal.
Of importance is that at whatever temperature between 7 and 7|; the transition
takes place, the polarization undergoes a discontinuous change between the two
solutions (2.3.16) and (2.3.17). Figure 2.3.3 shows schematically temperature

dependences of the Gibbs energy, polarization, and susceptibilities.

-D
0 Y
T>T,*
T <T<T,
T=T, _
T,<T<T > .
T<TD . |
e
P - T
TO TC

(@) (b) (c)

Fig. 2.3.3 Ferroelectric first-order phase transition. Schematics for the characteristic tem-
perature dependences: (a) thermodynamic potential, (b) spontaneous value of the order
parameter Ps, and (c¢) susceptibility y
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The dielectric anomaly above the first-order phase transition still obeys
Eq. (2.3.10), whereas in the single domain ferroelectric phase, the temperature
dependence of the dielectric susceptibility can be readily found in the form

1

S — (2.3.20)
2P%( + 27 P3)

e
where Pé comes from Eq. (2.3.17). Concerning this formula, two issues are
worth mentioning. First, it is also applicable to the case of a second-order
ferroelectric phase transition. Second, it is strictly valid only for the case of
isothermal and free mechanical conditions. Typical experimental ac measure-
ments of the dielectric susceptibility correspond to the adiabatic thermal con-
ditions whereas the mechanical conditions depend on the measuring frequency
and the dimensions of the sample. Thus, the measured susceptibility of a single-
domain sample may differ from the value given by Eq. (2.3.20); depending on
the parameters of the material the difference may be appreciable. This problem
has been treated based on the general results of the equilibrium thermodynamic
(see, e.g., book by Smolenskii et al. (1984)).

In the case of a first-order phase transition, similarly as for a second-order
transition, the application of electric field which is linearly coupled to the order
parameter (polarization) results in lifting the degeneracy in energy between the
two domain states. The logic of calculation of their energies is straightforward.
Of importance is that in the limit of small applied fields the difference between
the energies of the two domain states obeys the same expression in terms of the
spontaneous polarization independently of the type of the transition, namely,

O —d, =2PE,. (2.3.21)

Similar to the case of a second-order phase transition, the hysteretic P(E)
dependence is expected, however, enriched with new features. Now, in a certain
temperature range close to T, the system has three stable states generically
related to the states with P, = 0, P, = + P;,and P, = —P;at E, = 0. Thus, in
this range, a more complicated P-—F hysteresis behavior involving three states is
expected. Figure 2.3.4 illustrates this behavior in the temperature interval up to
To* and in the interval 75 <T<Tj*

942

T** — T
0 0t 200y

(2.3.22)

where the ferroelectric state can be induced by a large enough dc electric field.
From Figure 2.3.4 one concludes that, in case of a first-order phase transition
not only a simple P(E) hysteresis loop in the ferroelectric phase is expected but
also a double hysteresis loop in the parent phase just above the transition
temperature.

Possibility of phase coexistence in the temperature range between T and T
is the most essential difference between continuous and discontinuous
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P P

(a) (b) () (d)

Fig. 2.3.4 Dependence of polarization on electric field at four different temperatures for a
ferroelectric first-order phase transition: (a) T < Ty, (b) To<T<Tg, (¢) To<T<Ty", and
@ Ty <T

transitions. First, in ferroics with first-order phase transition, this will result in a
temperature hysteresis of all properties of the material. Second, of importance
from the point of view of domain structures is that on cooling down through a
first-order phase transition on the way to a poly-domain state one can pass
through an intermediate heterophase state: In the sample, both the parent and
distorted phases can coexist. This intermediate state can strongly influence the
resulting domain structure of the material.

At this point we stop our discussion of the general (and most simple) scheme
of the thermodynamic description of ferroics. What we are missing at this
moment (to have a proper overview of the problem) is, first, examples of
extension of this scheme to cases of more complicated order parameters and,
second, a discussion of the thermodynamic description of tensor properties, in
which at least some of the domain states differ but which are not identical to the
order parameter itself. In the following sections we will discuss these issues
using examples of various ferroics.

2.3.2 Uniaxial Proper Ferroelectric ( Nonferroelastic)

Consider the phase transition in crystals of triglycine sulfate
(NH,CH,COOH);H,SO,4 (abbr. TGS). This transition is relatively simple and
can provide an illustrative example of many aspects of domain behavior. In this
book we refer to many experiments and theories concerning domains in TGS. It
represents the species 2/m—Pd-2 with v = 1 and the transition is continuous.
X-ray diffraction and neutron scattering studies revealed structural details of
the phase transformation (see, e.g., Xu, 1991). There are two formula units in
the unit cell. Out of three glycine groups in the molecule, the glycine group 11 is
of a non-planar type. Its nitrogen atom moves in a double potential well along



2.3 Thermodynamic Approach 89

the b-axis, with a random distribution above Tc = 49.5°C and acquiring some
degree of ordering below it. Thus the transition is of disorder—order nature and
the average displacement of this atom represents the order parameter 5. The
value of 7 is found proportional to the spontaneous polarization of the crystal
and therefore polarization P, can be, alternatively, taken as the order para-
meter. Thus, we can apply the analysis developed in the previous section for the
description of the critical dielectric behavior of TGS, i.e., the behavior related to
the component of polarization taken for the order parameter. Equation (2.3.8)
gives the temperature dependence of spontancous polarization with oy =
3.5x10" m/F/K, f =7.5 x 10'"" J/C*m® (Hoshino et al., 1957). Equation
(2.3.10) describes the dielectric anomaly of y,, in the parent phase. Using Eq.
(2.3.15) one can evaluate the value of the thermodynamic coercive field E ;. At
Tc—T = 30 K we find E.;; = 150 kV/cm, which is much greater than typical
values (~0.1 kV/cm) of the experimentally observed coercive field in TGS
(Pulvari and Kuebler, 1958b). Thus, we see that, in reality, the switching takes
place at much smaller fields than those needed to make the unfavorable domain
state unstable. This demonstrates a limitation of the considered thermodynamic
approach: The switching is out of its reach and requires making allowance for
the kinetics of the phenomenon. This is the basic issue for this book and we
return to it later.

Looking at the notation of the species 2/m—Pd-2 corresponding to the phase
transition in TGS, we see that the thermodynamic description of this transition
in terms of P, only is not complete enough: We miss information on the piezo-
electric tensor of the domain states. A simple way to get this information is to
take into account in the Gibbs energy all the components of polarization and
the mechanical stress ¢;; (or in the Voigt notation g, with n = 1-6). For the
symmetry G =2/m, using the results of Fousek (1967) we find

1 1 1 1
® =D + P} + i PP} + 5 Py +50-P2 + 0, P P.

2 2 2
1 1
2 2 2
—ES]]O’I —5.8‘220'2 —ES33O'3 — 85120102 — S130103 — §230203
1 1 1 (2.3.23)
2 2 2
- 534404 —55550'5 _5566‘76 — 8150105 — $§250205 — 8350305

— 5460406 — Q1201P} — 00 P} — 0303P; — O5205P;
— 2Q460'4Pxpy - ZQGGO'GPXP}; - 2Q64O'6PZP}, - 2Q44O‘4PZP},.
Recalling the expression of the strain in terms of the Gibbs energy one easily

finds the so-called b-piezoelectric coefficients, which relate the change of polar-
ization to the strain, ¢, i.e., ,=b;,P; (i = 1-3; n = 1-6), as

0
0P,‘80’n '

bin = (2.3.24)
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Now, using Eqgs. (2.3.23) and (2.3.24) and taking into account that in the
parent phase P, = 0 and in the ferroelectric phase P, = Psor P, = —P,
depending on the domain state, we see that while the phase G is non-piezo-
electric, in the ferroelectric phase all the eight piezoelectric coefficients allowed
by its point symmetry 2 are formed, namely, for the domain state where P, =
Ps, we have by; = 2Q15Ps, bay = 202Ps, bys = 203,Ps, bos = 205:Ps, b1y =
2Q46P59 b]é = 2Q66PSa b36 = 2Q64PSn and b34 = 2Q44P5. For the other domain
state, the signs of b’s are opposite.

It is important to stress that the newly acquired piezoelectric coefficients b
for the two domain states differ in sign and the same, of course, is true for any
alternative piezoelectric coefficients coupling P, E, £, and 6. Therefore TGS is a
fully ferroelastoelectric material. We shall see later that this property can be
advantageous when the sign of spontaneous polarization of a sample is to be
determined in an alternative way: determining the sign of d», e.g., allows one to
resolve also the sign of Ps.

According to the notation of the species 2/m—Pd-2 TGS is not ferroelastic
and this is an obvious result of the thermodynamic treatment. First, based on
Eq. (2.3.3) we define the components of strain associated with the transition as

(0D — D)
EpSs = — (T)P (2325)

One can easily check that the strain components defined in this way corre-
spond to natural spontaneous strain introduced'® in Sect. 2.1.3. Second, using
Egs. (2.3.23) and (2.3.25) we find that, in TGS, the spontaneous strain
components

e1s = QuPl, e =0nP;, es=0nP;, es=0aP (23260

are the same for both domains states. In addition, such deformations are
consistent with the symmetry of the phase G where these occur due to thermal
expansion (this can be checked by using Table C.1). In other words, there are no
“symmetry breaking” strain components. The absence of “symmetry-breaking”
strain components and identical spontaneous strain in both domain states
shows that TGS is not ferroelastic.

18 We recall that natural spontaneous strain at a given temperature was defined as a deforma-
tion that should be imposed on the unit cell of the parent phase (real or extrapolated to this
temperature) to get the unit cell of the ferroic phase. In the used thermodynamic approach the
thermal expansion of the parent unit cell is described by the strain ¢, = —(9®¢/00,) p. Thus
one sees that the strain difference given by Eq. (2.3.25) does correspond to natural sponta-
neous strain.
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2.3.3 Uniaxial Proper Ferroelectric—Ferroelastic

As the second example we choose the phase transition in a family of crystals of
the KH,PO, type (abbr. KDP) which corresponds to the species
42m — Peds — mm2 with v = 1. This is a first-order transition occurring at
123 K, close to continuous in most members of the family. Here again the
polarization, namely, its component P,, can be considered the order parameter
so that the results of Sect. 2.3.1 are applicable for the z-axis-related dielectric
properties of these materials. However, the fact that the parent phase is non-
centrosymmetric dramatically affects their mechanical and electromechanical
properties. A full thermodynamic treatment of the phase transition in KDP-
type crystals would be rather cumbersome. Since we are mainly interested in the
qualitative features of phenomena distinguishing domain states we shall make
several simplifying assumptions: We shall include in the Gibbs energy only two
components of stress and keep only the critical component of polarization,
namely, P.. This will lead us to the following expansion of the Gibbs energy

® = + 2 (T = Ty) P? +§Pj_‘ + 1P
| | (2.3.27)
— ES%O’% — ES&O’% — b36PZG6 — Q33P§63.

The first conclusion to be drawn from this expansion is that KDP is ferroe-
lastic. Indeed, making use of the equation of state (2.3.3) we get

g6 = 556(76 + b3 P, (2.3.28)

£3 = 53303 + O3 P2 (2.3.29)

Equation (2.3.28) implies that, in a mechanically free sample (g,=0),
domain states differ in the sign of the shear spontaneous strain: g5 = b36Ps
in the domain state with P, = + Pgand g¢s = —b36Ps in the domain state with
P. = —Pg, where Ps is given by Eq. (2.3.17). Then, the fact that this component
of strain and P, taken for the order parameter are linked by the linear relation
(2.3.28) means that KDP is a proper ferroelastic, so that, in principle, this
transition could be described using 4 as the order parameter. It is instructive
to demonstrate this in another way. If ¢4 also plays a role of the order para-
meter, then according to the general theory of the phase transition the corre-
sponding susceptibility, in this case the elastic compliance s¢6, should manifest a
trend to an unlimited increase for T'— Tj. Let us evaluate this compliance in the
parent phase in the absence of electric field, which we denote as s&. To do it we
use Eq. (2.3.28) and the equation of state (2.3.2) calculated for the Gibbs energy
(2.3.27)

O(()(T— To)PZ - b3666 =0. (2330)
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This equation has been linearized since we are interested in a small-signal
response. Eliminating P, between Eqgs. (2.3.28) and (2.3.30), we find the sought
anomaly of the compliance:

Oe b3
E _ 6 P 36
Sp = < 6) Sg6 T+ =i N (2.3.31)

The interesting feature of KDP as proper ferroelectric—ferroelastic is that a
domain state can be made unstable not only by application of the field E. but
also by application of the shear mechanical stress o¢. By analogy with the
thermodynamic coercive field of mechanically free crystal, E.., treated in
Sect. 2.3.1 one introduces thermodynamic coercive stress of a short-circuited
sample, o In the considered case, these parameters are linked by the relation
E.it = b3s0.i, which is obvious from the comparison of the equations of states
corresponding to these two conditions, namely,

E. = oo(T — Ty)P. + BP> + P, (2.3.32)
0 = oo(T — To)P. + BP3 + P> — bysas, (2.3.33)

where we set g3 = 0 for simplicity.

The last thing we would like to demonstrate is that KDP is also ferroelasto-
electric. This follows from Eq. (2.3.29) which shows that, in the low-symmetry
phase, there appears a new piezoelectric coefficient b33, which acquires in the
two domain states values of 2033 Ps and —2033 P, respectively, depending on the
orientation of spontaneous polarization. The same is true for all other newly
acquired piezoelectric coefficients.

According to the notation of the species 42m — Peds — mm2 KDP-type crys-
tals are also ferrobielastic, i.e., the domain states differ in compliance matrices.
Obviously, the thermodynamic approach can reproduce this feature as well.

A practically important point is that the thermodynamic treatment always
gives a description of the properties of the low-symmetry phase in the conven-
tional reference frame of the parent phase. In the case of the species
42m — Peds — mm?2, as it often happens, this frame is different from that of
the low-symmetry phase: The conventional axis z of the phase F = mm2 is
parallel to that in the phase G = 42m but the axes x, y are rotated by 45° (see
Fig. 2.1.7). Thus, matrices of tensor properties of the low-symmetry phase
obtained from the thermodynamic potential are, in general, different from
those given in reference books where, for a given symmetry, the conventional
reference frame is always used (see Fig. 2.1.8).

2.3.4 Multiaxial Proper Ferroelectric—Improper Ferroelastic

The thermodynamic theory of a particular material has probably achieved its
greatest success in the treatment of BaTiO; developed by Devonshire (1949,
1951). The specially remarkable accomplishment was that his thermodynamic
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approach provided an excellent basis for understanding the sequence of four
phases. On decreasing temperature, the material transforms sequentially from
the parent cubic paraelectric phase into phases of tetragonal, orthorhombic,
and rhombohedral symmetry. All the three transitions are discontinuous and all
the three ferroic phases are proper ferroelectric. In the symmetry-based treat-
ments of phase transitions we just consider two phases G and F, while the
transitions between ferroic phases which do not fulfill the group—subgroup
symmetry relation are not dealt with. Thus in the symmetry approach discussed
in the preceding chapters, we identify each of the three distorted phases of
barium titanate with its own species, namely, m3m — Peds —4mm,
m3m — Peds — ms,ym.2y,, and m3m — Peds — 3m. In contrast, in the thermo-
dynamic approach based on a properly constructed potential, one can compare
the energies of all involved phases and determine which phase at a given
temperature is energetically most favorable.

Conceptually, the thermodynamic treatment of perovskite ferroelectrics like
BaTiOj is very close to those given above so that we will pay our attention
mainly to the newly appearing features of the system. We consider the expan-
sion of the Gibbs energy with respect to the polarization vector P (order
parameter) and stress tensor . According to the m3m symmetry of the parent
phase the Gibbs energy reads (Haun et al., 1987)"

=00 (T-To) (P4 PP AL P PPy L P22 P2 PP
ygl<Pi+P}6>+P§>+7112[Pi(P)zz"’P?)"'Pi(Pi+Pf)+Pj(Pf,+Pi)]
1
7123 P% P ' P2—s11 (07 +05+03)—s12(0102+0103+0203) (2.3.34)

2
1
—s44 (03+02402)—Q11 (01 P240s P}2,+03 P?)

-0l (P§+P§)+62 (P24+-P*)+03 (P§+Pi)]—2Q44 [64P,P-4-65P P-4-06P,P,].

Equation of state (2.3.2) at E = 0 gives a set of equations for the
components of polarization in a mechanically free crystal. One finds that
possible stable solutions®® to this set of equations falls into the following
four types:

1% The factor of 2 multiplying Q.4 is introduced in this energy to respect the Voigt notation, as
defined in Landolt-Bornstein (1993), where Qs = O, for n = 1,2,3 and 2Q;3; = O, for
n = 4,5, 6. In many papers where this energy is used (see, e.g., Haun et al., 1987), the factor in
front of Q44 is omitted; therefore, their Q44 is twice the Q44 defined in the textbooks.

20 The stability condition in this case can be formulated as the requirement that all eigenvalues
of the matrix calculated at the state be positive.

()P )P



94 2 Fundamentals of Ferroic Domain Structures

cubic phase: P, = P, = P. = 0,

tetragonal phase: P, = P, = 0, |P-
Py, and P.,

orthorhombic phase: P, = 0, |Py| = |Py’ = Ps/+/2 and possible permuta-
tions of P, P,, and P,

rhombohedral phase: |P| = |P,| = |P-| = Ps/V/3.

= Pg and possible permutations of P,

Each type corresponds to a possible phase of the system, namely to the
parent phase m3m and three ferroelectric phases, 4mm, mm2, and 3m, respec-
tively. The constant Pg is, in general, different for different phases and has the
meaning of absolute value of spontaneous polarization in the given phase. For
ferroelectric phases, the solutions of each type are degenerate in energy. Solu-
tions belonging to the same type correspond to different domain states. It is easy
to count that in the three phases there exist 6, 12, and 8§ domain states,
respectively, differing in the direction of the polarization (see Fig. 2.3.5). For
each phase, the absolute value of spontaneous polarization Pg can be found
looking for the solutions to the equation of state in the corresponding form
specified above. In this way Eq. (2.3.34) can be simplified down to the form
identical to Eq. (2.3.4) so that Eq. (2.3.17) can be applied for calculation of Ps.
As the next step we can find the energies of all stable phases. Finally, comparing
these energies we find the energetically most favorable phase and finally arrive
at the equilibrium phase diagram of the system.

The approach outlined above has been applied for the description of several
ferroelectric perovskites, e.g., BaTiOs and PbTiO; (species m3m — Peds — 4 mm).
For these materials we give in Table 2.3.1, for reference, the full list of coefficients
in the expansion equation (2.3.34) often employed in thermodynamic
calculations.?!

A new feature of the considered system is that it is ferroelastic though there is
no linear coupling between polarization playing the role of the order parameter,
and deformation, i.e., it is an improper ferroelastic. Let us illustrate this point
for the 4mm phase which has six domain states. Using the Gibbs energy,
Eq. (2.3.34), and the definition, Eq. (2.3.25), we readily find that the sponta-
neous strain does not “feel” the sign of polarization but it is sensitive to its
orientation. Thus, we can distinguish only three ferroelastic domain states
where the tensors of spontaneous strain are

Ou On On
On P, O P, 01 P2. (2.3.35)
Qn On On

2! The information on f and y coefficients for BaTiO; available in the literature is contra-
dictory, e.g., the coefficients given in the classical book of Jona and Shirane (1962) correspond
to a situation where the 4mm phase is always energetically favorable compared to the mm?2 and
3m phases..
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Fig. 2.3.5 Domain states of BaTiOj; represented in the order parameter space: (a) tetragonal
phase 4mm, (b) orthorhombic phase mm2, and (¢) rhombohedral phase 3m. Vectors associated
with points corresponding to domain states represent the Pg vectors. Representative domain
pairs are customarily characterized by angles between the respective Pg vectors: (a) 180° pair
(1,2), 90° pair (1,3); (b) 180° pair (1,2), 90° pair (1,3), 60° pair (11,5), 120° pair (11,7); and (c)
180° pair (1,2), 71° pair (1,3), 109° pair (1,4)

Similar situation takes place in the mm?2 and 3m phases, where 6 and 4
ferroelastic domain states can be distinguished, respectively. Thus, we see that
we are dealing with a partial ferroelastic.

Similar to all ferroelectrics discussed above perovskite ferroelectrics like
BaTiO; are full ferroelectroelastics. For example, using Eqgs. (2.3.24) and
(2.3.34), we find that, in a tetragonal domain state where P, = P, = 0, P, =
Ps, five piezoelectric coefficients acquire nonzero values, namely, b5 = byy =
2Q44Ps, b3y = b3y = 20Q1,Ps, b33=20;1Ps. For reference we give a table of d-
piezoelectric coefficients for all domain states of the three ferroelectric phases of
BaTiO; (Table E.1).



2 Fundamentals of Ferroic Domain Structures

96

*Kyure)1ooun o3Ie] YIM 9[QR[TEAR IO O[B[TRAR JOU ST dN[BA ) - /,

01 ¢ (@)oz a3 9T 6'8 06 ST 08 fOIL9d

4 [ I$ 0°¢ €y I 6 LT €8 forLeq

1101 "¢ 1101 Tl 1101 ‘e 01 770 S aare] 01110 2101 ¥s 201 CIs .01 "s spun [s
Le 19°0 91 Sl 6T 9L 6Ly fOIL9d

6Y St LT+ (0TI-L)XTT0 §9 1'8—(0T1-L)X61°0 L9 801 forLed

0T Tl 0T T Q011 01 'Y Q01 1y 01 n 0. L sjun [§

(8007) eUI[H pue (9007) UOMEN pue eUIH (L861)

‘T 10 uney ‘($'861) SSOID pue [[og Io)je IR "fOLLqd PUe QI ey J10j suid) juarperd pue uoisuedxs A31sus sqqro) ay) jo sidjeweIed [°€°T dqel



2.3 Thermodynamic Approach 97

The P°-thermodynamic Landau expansion addressed above in this section is
presently considered as classical. At the same time, the recent development in
the field has raised a question of upgrading this expansion with the P® terms. Li
et al. (2005) have demonstrated that the expansion modified by the P® terms can
provide a good description of most of the thermodynamic priorities of the
material, however, in contrast to the classical scheme, using a temperature
independent set of anharmonic polarization coefficients. Alternatively, Wang
et al. (2006, 2007b) have documented a very important role of the P® terms for
the adequate description of the cubic—tetragonal phase transition in material.

It is worth mentioning that all perovskite ferroelectrics like BaTiO5 exhibit
first-order ferroelectric phase transitions under the free mechanical conditions.
In the Gibbs thermodynamic potential, this corresponds to the negative sign of
the appropriate P* terms. However, even a partial mechanical clamping leads to
a change of the type of the transition to the second order (see Sect. 9.3.2). This
implies that the negative sign of the P* terms controlling the order of the
transition in mechanically free ferroelectric perovskites is due to a strong
electrostrictive coupling between the polarization and strain.

2.3.5 Uniaxial Improper Ferroelastic—Ferroelectric

In both preceding examples only such variables were involved in thermody-
namic potentials, to which the conjugate forces, namely, electrical field and
mechanical stress, can be realized in the laboratory. Experimentally, this means
that treating the crystal in the parent phase, one can induce a nonzero value of
the order parameter either by inducing the phase transition or, without doing
that, by a mere application of the mentioned “forces.” From the point of view of
thermodynamic description, this means that the problem can be treated in terms
of an expansion of the thermodynamic potential with respect to the macro-
scopic variables only (e.g., polarization and stress have been used above).
However, we have already seen in this chapter that, in many materials, phase
transitions occur whose order parameter 7 is conjugate to no macroscopical
variable. In this case, a thermodynamic description of the transition requires
including in the potential variables corresponding to the order parameter # and
macroscopic variables. Below we will give an example of thermodynamic
description of such a situation. We shall briefly discuss the thermodynamic
theory of the phase transition in Gd>(Mo0Q4,); (abbr. GMO), perhaps the best-
known example of an improper ferroelectric.

Within the description by point group symmetries, this material can be
attributed to the same species as KDP, namely, 42m — Peds — mm2. However,
the number of unit cells doubles at the ferroic phase (v = 2). The order
parameter describing this phase change has two components, #; and 7,
(Dvorak, 1971). They correspond to the amplitudes of two waves of atomic
shifts, whose wavelengths equal to the double lattice period in the direction of
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the modulation. Clearly, no macroscopic field is conjugate to this order para-
meter. Thus, a thermodynamic potential expansion describing this transition
should contain the order parameter components (n; and #,) as well as macro-
scopic electrical (P or E) and mechanical (¢ or ¢) variables. The simplest
mathematical description of basic properties of a mechanically free crystal of
GMO can be obtained in terms of a thermodynamic potential having E and ¢ as
independent variables. We shall use this kind of potential. The full expansion of
any thermodynamic potential of GMO is rather cumbersome (Dvorak, 1974;
Smolenskii et al., 1984) and we are not going to analyze it in detail. In what
follows we focus on comparison of features of proper and improper ferro-
electrics corresponding to the same ferroic species. To do that we keep the
minimal number of terms that make such a comparison possible and to simplify
the treatment we consider the case of a second-order phase transition instead of
the real first-order transition in GMO. We use the following thermodynamic
potential, which is consistent with the symmetry of the order parameter
(Dvorak, 1974; Smolenskii et al., 1984) and with that of the parent phase:

1
d = (I)0+2a(171+112)+ /31(771+772)+ ﬁz’ﬁ’?z

+ (07 —m3)E- + 8(ni —n3)a6 + A(m; — n3)E-03 (2.3.36)

1 1
};3 E2 — 55‘330’% 2S660'6 d36E gg.

Here as usual we assume that all coefficients are temperature independent
except for a=oy(T — Ty). We also set f; > 0 and 5, > f5;.

We start with finding the domain states in a mechanically free and short-
circuited sample. Order parameters defining the domain states can be found
from the condition of minimum of ®. It is convenient to illustrate these states
with points or vectors on the (1, 7,) plane (see Fig. 2.3.6). The structure of the
fourth-order invariants in Eq. (2.3.36) and the condition f, > f; immediately
suggest that minima of @ belong to lines (17, # 0, 7, = 0) or (17> # 0, 7, =0) (see
the same figure). Indeed, the # terms of the expansion can be rewritten as
Lo} +nd) + 183 +n3)° +1(B, — B1)nn3. One sees that the first two
terms are independent of the orientation of the (1;, #,) vector, whereas the
last term does make the directions (; # 0, #, = 0) and (5, # 0, n; = 0)
energetically favorable. The positions of the minima on these directions are
controlled by conditions d®/dy, = 0 and oD/, = 0. Finally, one finds the
four domain states depicted in Fig. (2.3.6): (1 = s, 1> = 0), (n1 = —ns, 1> = 0),
(m = 0,2 = ns), and (71 = 0, 42 = —ns), where g = (—o/B,)'"

Now, let us test the macroscopic properties of the obtained domain states.
Using equations of state following from Eq. (2.3.12), d®/dE; = —P; and
85)/66,, = —g,, we find
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Fig. 2.3.6 Order parameter 1,
plane for an improper .
ferroelectric of GMO
symmetry. Points represent
domain states

P. = 153 E. + dseas — (17 — 13),
g6 = da6 E- + 56606 — 0(7 — 113), (2.3.37)

£3 = S6606 — i(iﬁ — n%)EZ.

First, from these equations we conclude that the domain states that differ
only by the sign of the order parameter (like the pair of states (; = 0, 7, = #s)
and (n; = 0, n, = —#s)) are identical in their macroscopic properties. These are
translational domain pairs discussed in Sect. 2.1.7. It is of importance to stress
that, in accordance with the symmetry analysis, these states are macroscopically
undistinguishable in any approximation on which the thermodynamic expan-
sion is based.

Second, we see that the states which differ in the alignment of the (171, 112) vector
(like the pair (1, = 0,n, = ns) and (1, = 7s, > = 0)) differ also in the sign of the
spontaneous polarization P.g, spontaneous strain e¢s, and piezoelectric coeffi-
cient ds3; for these states, Eq. (2.3.37) yields P.s = yn3, e¢s = yn3, dy3s = in} and
P.s = —n3, ces = —yni, dys = —An3, respectively. That means that these
states are orientational states (according to the terminology of Sect. 2.1.7)
and that GMO itself is ferroelectric, ferroelastic, and ferroelastoelectric.
Comparing the set of newly acquired macroscopic properties of GMO
with that of KDP (see Sect. 2.3.3) we see these are identical as one expects
for two examples of the same species42m — Peds — mm2; we remind the
reader that our definition of ferroic species is based on point symmetry
only, not taking into account possible changes of translational symmetry.

Third, and this of course is connected with the just mentioned reminder,
thermodynamics reveals a tremendous difference in the temperature depen-
dences of the thermodynamic parameters of proper and improper ferroelec-
tric—ferroelastics. In contrast to the properties of KDP, the equation of state
(2.3.37) reveals no singularity in the temperature dependence of dielectric and
elastic responses. In addition, the temperature dependence of spontancous
polarization for proper and improper ferroelectrics is basically different.
According to Eq. (2.3.37), in the latter case P.g n§ o Tc — T instead of the
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classical square root behavior expected for a second-order proper ferroelectric
phase transition.

2.3.6 Limitation of Traditional Thermodynamic Approach:
Pseudo-proper and Weak Ferroelectricity

In the presented above examples of application of Landau theory to the
description of proper ferroelectric phase transitions, we have based our con-
sideration on expansions of the thermodynamic potential in terms of a macro-
scopic variable — polarization. This approach is widely used providing a good
qualitative description for many properties of proper ferroelectrics. However,
when employing this approach, i.e., Landau theory expansion in terms of a
macroscopic variable, one should keep in mind its limitations. Basically this
approach suffers from two intrinsic limitations. First, the Landau theory
ignores the order parameter fluctuations. This limitation is duly discussed in
the literature, e.g., an excellent discussion of the issue can be found in the book
of Strukov and Levanyuk (1998). In our book we are not going to touch this
issue since it is basically essential for the critical behavior of ferroics, which goes
out of the scope of the book. The other limitation is related to the use of a
macroscopic variable as the order parameter. We will address this limitation
below.

Generally speaking, the use of macroscopic polarization as a variable for the
Landau expansion is not fully justified from the point of view of the microscopic
theory. To evaluate the impact of this issue on the applicability of the tradi-
tional phenomenological approach we should remind the reader of the funda-
mentals of the microscopical approach.

On the microscopic level, the polarization of any ferroelectric can be divided
into two parts. The first so-called critical part is related to the so-called critical
displacements of ions, which are responsible for the enhanced dielectric
response and the appearance of spontaneous polarization. In the case of per-
ovskite ferroelectrics these are relatively simple displacements of the ions,
whereas in the case of materials like KDP this is a complex distortion of the
unit cell. The essential point is that these displacements are correlated so that all
of them can be expressed in terms of one amplitude 7, the so-called normal
coordinate of the ferroelectric soft mode. Due to this fact, the critical contribu-
tion to polarization can be presented as

1
Pf = I—/efr]f, (2338)

where V' stands for the unit cell volume and e is the so-called soft-mode effective
charge. In this section, for simplicity, we consider the case of a uniaxial ferro-
electric; the logic of this consideration can be readily translated to the general
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case. Accordingly, Eq. (2.3.38) is written for the projection of the polarization
on the ferroelectric axis of the material. We will keep only this component of
polarization without specifying this further.

The second so-called non-critical part, P,, is the contribution of the other
polar distortions of the unit cell.?* This part can be presented as the sum of the
contributions from the other polar optical modes (systems of correlated dis-
placements of the ions) so that P, can be written as a sum of terms like that given
by Eq. (2.3.38) with the corresponding effective charges and normal coordinates
of these modes. To further simplify the discussion we will keep only the con-
tribution of one of these modes, which hereafter will be called the hard mode.
This way we will arrive at the following expression for the non-critical part of
polarization: P, = en,/V, e, and 5, being the effective charge and normal
coordinate of the hard mode. Finally, the total polarization P can be written
as a sum:

P=P.+ Pr= (e, +emy)/V. (2.3.39)

The essential point is that the two components of the polarization and the
normal coordinates are introduced as decoupled by definition so that there
should be no contribution to the energy of the crystal proportional to their
product.

Using Eq. (2.3.39) let us address the microscopic justification of the Landau
theory. Any microscopic theory operates with microscopic variables. The
microscopic theory of ferroelectrics operates with the soft-mode normal coor-
dinate, ny, as the order parameter and yields as a result an expansion for the free
energy in terms of this variable. Clearly, in terms of the polarization, this leads
to an expansion with respect to the critical part of the polarization, Py, which is,
strictly speaking, not equivalent to that in terms of the total polarization P. On
the other hand, we know that the expansion with respect to the total polariza-
tion often works effectively. This disparity usually does not puzzle workers
dealing with this expansion even if they realize the existence of non-critical
contributions to the polarization. In this case, it is usually said that this
contribution is relatively small so that neglecting this contribution does not
substantially affect the results. However, this is not always the case. Thus, when
dealing with the traditional “P expansion” one should be aware of situations
where the use of this expansion leads to quantitatively erroneous results. These
situations will be discussed below as well as “improved” phenomenological
schemes, namely, the pseudo-proper and weak ferroelectric approaches.

To prepare this discussion we will start with the analysis of two situations
where one can neglect the difference between P and Prand “safely” work with the
traditional “P expansion.” Consider the polarization response of a proper

22 For simplicity we are not discussing here the purely electronic contribution to the polariza-
tion; the incorporation of this contribution into the consideration would affect neither its logic
nor the final conclusions.
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ferroelectric to an external electric field. The latter couples with critical and non-
critical displacements, n¢and #,, via the corresponding effective charges, erand e,.
The values of the field-induced displacements are controlled by two factors: the
restoring force constants of the hard and soft modes and their effective charges.
In the standard situation, the values of these charges are of the same order of
magnitude (about the charge of electron), whereas the restoring constant of the
soft mode is much smaller than that of the hard one by definition. That implies
ne>>n, and finally Pr>> P, for the polarization responses to the external electric
field. Thus, in this situation the difference between P and Py can be neglected.
However, we also see that this may not be justified if the effective charge of the
soft mode is small compared to that of the hard mode, i.e., e <<e;. In this case,
the smallness of the soft-mode restoring constant may be “compensated” by the
smallness of its effective charge so that the polarization response may not be
dominated by the critical contribution Py, while the non-critical part P, may be
appreciable in the total polarization. A similar situation occurs for the calculation
of the spontaneous polarization. If the order parameter #¢acquires a spontaneous
value of 57, the corresponding spontaneous value of the critical part of polariza-
tion, Py, = ey, /V, is not, strictly speaking, equal to the produced value of the
spontaneous polarization Ps. The latter differs from Py, by the contribution of
the non-critical displacements. However, since the linear coupling between 7y and
1 is absent by definition, the spontaneous value of the hard mode #,, appears
only due to a weak non-linear coupling and therefore it is small, i.e., ng, >, . In
the standard situation where er & ¢,, that clearly implies Py, >> P, justifying the
neglect of the difference between P and P;. However, clearly this may not be
justified if the effective charge of the soft mode is small compared to that of the
hard mode. Thus, we have revealed a situation where not making difference
between P and Pyis not justified, namely, the situations where the effective charge
of the soft mode is small. However, this situation is not the only one where not
differentiating between P and Py is illegitimate. The problem of the depolarizing
effect treated below is also the case.

Consider a phase transition in a plate capacitor of a proper ferroelectric. We
are interested in the situation where the spontaneous polarization is normal to
the electrodes, a transition into a single-domain state occurs, and the electrodes
are not short circuited (no screening of the spontaneous polarization). Using the
traditional approach we start with the thermodynamic potential,® Eq. (2.3.13),

& = oy + %Iﬂ + §P4 _ PE, (2.3.40)
where ff > 0, o = ao(T — Tp), g = (50C)71 >0, C being the Curie-Weiss con-
stant, and £ the component of the electric field parallel to the ferroelectric axis

2 1t is useful to note that, for the considered problem, this potential does not reach the
minimum at equilibrium; however, as far as we are interested in the equation of state any
potential can be employed for its derivation.



2.3 Thermodynamic Approach 103

of the material. This leads, via the condition 865/6P =0, to the equation of
state of the ferroelectric:

E =aP+ P (2.3.41)

In our system, the electric field £is not zero due to the depolarizing effect and
can be determined from the Poisson equation which in our one-dimensional
case implies D = Fey + P =0, i.e.,

E=—P/s. (2.3.42)

Eliminating E between Eqgs. (2.3.41) and (2.3.42) we arrive at the equation of
state for the polarization in the system:

ao(T — Ty + AT)P + P> =0, (2.3.43)

where AT = C. Thus, starting from the traditional “P expansion,” we have
found that the depolarization effect results in a shift of the transition tempera-
ture down by a value of the Curie—Weiss constant. However, one can show that
this result is wrong. An adequate treatment of the problem yields a shift which is
many times smaller, namely, AT = C/x,, where ky, is the background dielectric
permittivity of the ferroelectric (in terms of our simple model k4, is the contribu-
tion of the hard mode to the permittivity). Let us show it.

First, let us re-expand the thermodynamic potential in terms of the real order
parameter #¢ or, equivalently, in terms of the critical part of polarization P; =
efg/ V, which is proportional to it:

o

2P%+§ﬁ—ff. (2.3.44)

o= ®y +

Note that the last term of this equation, which is related to the electrostatic

work, still contains the total polarization P = Py + P,.. Then, the condition of

minimality of the potential with respect to the order parameter, 9®/9P; = 0,
yields

E = aP;+ pP} (2.3.45)

Now attributing the background dielectric response to the hard mode, i.e.,
setting P, = (x,— 1)eoE, and using Eqgs. (2.3.39) and (2.3.42) we readily arrive at
the equation of states given by Eq. (2.3.43) with

AT = C/xy. (2.3.46)

The factor x;, can readily be about 10. That makes a 10 times difference
between the result obtained by using the “P expansion” and that of the com-
prehensive consideration. One should stress that this happens even in the case
where the contribution of the background susceptibility is not essential in the
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overall dielectric susceptibility y. In terms of the developed approach, the latter
can be found as

_oP C.
1:67?—5() (|T—To|+xb 1>, (2347)

where Cequals Cat T > Toand C/2 at T < T,

Thus we see that in the situation where the depolarizing effect is involved the
use of the total polarization in the expansion can lead to essentially wrong
results. In this context it is useful to mention that in this situation the error
introduced by the use of the P expansion” may vary. Here an instructive
example is a realistic ferroelectric capacitor, where the regions adjacent to the
ferroelectric/electrode interfaces effectively behave as layers of a low-dielectric-
constant insulator. In contrast to an ideal capacitor, when short circuited in a
single domain state with the spontaneous polarization normal to electrodes,
such capacitor still contains some depolarizing field. This field in turn leads to a
shift of the Curie—Weiss temperature down by (see, e.g., Sherman et al., 2006)

d
AT=C—F— 2.3.46¢
CdeJrth’ (2.3.46a)

where k4 and d are the dielectric constant and thickness of the effective dielectric
layer associated with the ferroelectric/electrode interfaces; / is the thickness of
the ferroelectric. At d> >h, the system becomes formally equivalent to an
isolated ferroelectric plate and, accordingly, Eq. (2.3.46a) transforms into Eq.
(2.3.46). While in the opposite case, Eq. (2.3.46a) becomes independent of the
background permittivity, which means that the difference between the predic-
tions of P and P;expansions disappear.

The scheme presented above is not the only one that provides a description of
the effects related to the background dielectric permittivity. This can also be
done in terms of the so-called pseudo-proper ferroelectric approach introduced
by Petzelt et al. (1974) and Dvorak (1970). This approach deals with the Landau
expansion in terms of an order parameter # which is not the polarization but a
variable linearly coupled with it. In this case instead of Eq. (2.3.44) we use the
expansion
HN(T-Ty) > B

S g n4+an+’2(b PP PE,  (23.48)

D=0+
where 7, = Ky — 1. Now, using the two conditions, 9®/dP = 0 and D /dn = 0,
we readily arrive at the equation for the dielectric susceptibility, Eq. (2.3.47),
where the Curie—Weiss constant C and the transition temperature 7| are
2,2
) C
f‘—/bg" and Ty=T)+—, (2.3.49)
o Zb

C =
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This approach also leads to the correct expression for the depolarizing-
effect-induced shift of the transition temperature, Eq. (2.3.46).

Comparing the pseudo-proper phenomenological scheme with the tradi-
tional proper one, we should distinguish two situations: materials with “nor-
mal” values of the Curie-Weiss constant (210> K for the displace type ferro-
electrics and 210° K for those order—disorder) and material with anomalously
small values of the Curie—Weiss constant. On the microscopic level these situa-
tions correspond to the case of “normal” values of the soft-mode effective
charge (about the charge of an electron) and to those where this charge is
anomalously small.

In the first case, the only new element introduced by the pseudo-proper
approach is an adequate treatment to the background dielectric permittiv-
ity. This is the case of the KDP crystals (C = 3,250 K). It was argued
(Dvorak, 1970) that, for this material, the pseudo-proper approach
brought about qualitatively new features to the phenomenological descrip-
tion. However, one can be shown that as far as the value of the Curie—
Weiss constant is “normal” all these features are beyond the accuracy of
the Landau theory.

In the second case, we find quite a different situation. It was treated by
Petzelt et al. (1974) for (NH4)SO4 (C = 30 K). In this case, the pseudo-proper
approach enables the interpretation of a weak dielectric anomaly as a result of
weak coupling between the polarization and the order parameter (small values
of the f coefficient in Eq. (2.3.48)). In contrast to the first case, now this
approach can also describe qualitatively new features. An example is the
electrostriction effect. In terms of this approach the order parameter/stress
coupling corresponds to the #°¢ terms (in the thermodynamic potential)
instead of the P’¢ terms. One can show that this difference substantially
affects the temperature behavior of the electrostriction coefficients of the
system.

Though the pseudo-proper approach provides an adequate description of the
depolarizing effect and is more advanced, than the traditional approach, in the
description of the properties of the proper ferroelectrics with anomalously small
value of the Curie—Weiss constant, it is still limited. It can be revealed when trying
to describe the unusual features of the proper ferroelectrics with yet smaller
values of C = 2-5 K, e.g., the change of sign of the spontaneous polarization
in Li;Ge;0;5. The reason for that is the use of the total polarization in the
expansion. As we have already pointed out in the beginning of this section, the
polarization does not represent a proper variable for the expansion of the
thermodynamic potential unless the polarization itself is dominated by a con-
tribution of a single mode. Thinking in terms of microscopic justification of the
Landau theory we see that the corresponding polar displacement of the ions, or,
at best, the corresponding normal coordinates, should be used for the expansion.
A phenomenological description which is free from the aforementioned draw-
back is offered by the so-called weak ferroelectric approach (Tagantsev, 1987,
1988; Tagantsev et al., 1987).
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For the simplest case of the model introduced in the beginning of this section,
the basic thermodynamic potential for such a two-mode description reads

~ o o
&= g+ 2+ Dt 2 o — P (2.3.50)

where P = (e, + ene)/V, o = o5, (T — Tp) < <o, and ep < <e,. Note that the
nMeterm is absent according to the definition of . and #¢. Thus, the expansion is
made in terms of two modes: a soft mode which carries a small charge and a
hard one that carries a “normal” charge.

Comparing the weak-ferroelectric approach with two discussed above one
finds that it, on one hand, reproduces all the results of those obtained in their
range of applicability and, on the other hand, enables description of qualitatively
new features. For the dielectric response in the paraelectric phase, via conditions
O®/dn; =0 and dD/dy, = 0, we readily arrive at the standard Curie-Weiss
anomaly appended with the background dielectric susceptibility, Eq. (2.3.47),
with

e% 62
C.=C= = L 1. 2.3.51
* V26006f0 ’ Kb V26006r * ( )

However, in the ferroelectric phase, the weak ferroelectric scheme predicts a
possibility of essential deviation of the temperature dependence of the critical
part of the susceptibility from the classical Curie—Weiss behavior (Tagantsev,
1987, 1988; Tagantsev et al., 1987). This temperature dependence (calculated
based on Eq. (2.3.50)) can be formally described by Eq. (2.3.47) with a tem-
perature-dependent parameter C.:

C(T-Ty+5\°
— (=T 2.3.52
C, 2( 5 ) (2.3.52)

where 0 = l%‘;—:g In addition, this relation controls the temperature depen-
dence of the oscillator strength of the soft mode. The scheme also provides an
expression for the temperature dependence of the spontaneous polarization:

_ﬁ OCfU(T()—T) _TQ_T
Ps=1, 5 (1 5 ) (2.3.53)

It is seen that, in the case where the effective charge of the soft mode ef is
small enough to make the absolute value of 6 comparable to T, — T, the above
expression corresponds to very unusual temperature dependences of the para-
meters of the system. Figure 2.3.7 illustrates the temperature dependences of the
spontaneous polarization expected in this case. Of special interest is the
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Fig. 2.3.7 Temperature
dependence of the
spontaneous polarization in
the weak ferroelectric model
foro = 50 K(1)and § =
—50 K(2). The standard
square root law is also
shown (3)

20 40 60~80 100
T, - TK (1

Polarization [a. u.]

situation where ¢ > 0 where the spontaneous polarization changes its sign at the
temperature

T, =Ty — 35. (2.3.54)

One can show that, under the same conditions, the oscillator strength of the
soft mode also vanishes but at a different temperature

Tir = To — 0. (2.3.55)

This means that the soft mode is expected to disappear from the infrared
absorption spectrum at some temperature below the transition.

These and other predictions of the weak ferroelectric scheme are compatible
with ferroelectric and dielectric properties of a number of materials in which the
effective charge of the soft mode has been shown to lie in the range of 10 °-10°
of an electron charge. A good example of this kind of material is Li,Ge;O;s,
where both the change of the sign of the spontaneous polarization and the
disappearance of the soft mode from the infrared spectrum have been docu-
mented (Bush and Venevtsev, 1986; Kadlec et al., 1995). In addition, this
approach has been extended to relate the symmetry of the parent phase with
the anomalously small charge of the soft mode (Tagantsev, 1986b, 1987, 1988;
Tagantsev et al., 1987).

Thus, the discussion given in this section clearly demonstrates that, though
the symmetry aspect justifies the selection of the polarization for the order
parameter of Landau theory of proper ferroelectrics, the theory developed
this way may fail in the description of certain phenomena. At the same time,
the descriptive ability of such theory can be essentially improved when using
properly selected order parameters of the same symmetry.



Chapter 3
Ferroic Materials

3.1 Sources of Information and Statistics

Classifying phase transitions on the basis of point symmetry changes, Tables B.1
and C.1 show that altogether we can distinguish 212 ferroic species out of which
119 are ferroelectric. Because of the existence of domain states, they offer a huge
variety of macroscopic properties and one may wonder how many of these species
are really represented by presently known crystalline materials. The exact answer
to this question has not and hardly could have been given, but in this chapter we
wish first to give the reader some hints where to look for information on particular
kinds of transitions, quote some results of Tomaszewski’s research, and then
present a table of ferroics whose domain properties have been extensively studied
and which are mentioned in this book in different contexts.

Almost any book on ferroelectrics contains a table of crystals possessing
ferroelectric phases; the contents widely vary and depend, of course, on the date
when the book was written. We can refer to the monographs by Jona and
Shirane (1962), Lines and Glass (1977), Smolenskii et al. (1984), and Xu
(1991) as helpful sources of assembled information on materials, but of course
the most valuable collection of data, including data on symmetry, is offered in
the volumes I11/3 (1969), 111/9 (1975), 111/16a (1981), I11/16b (1982), I11/28a and
I11/28b (1990) of Landolt—Bornstein New Series. An extensive table of almost
200 ferroelastics (including ferroelectric ferroelastics), specifying both space
groups when known, transition temperature, and giving several references for
each compound, has been included in Salje’s monograph (1990). Several extre-
mely useful tables of different kinds of ferroics are presented in the book by
Toledano and Toledano (1988); their data are classified according to the
symmetry of the order parameters, include space groups in both parent and
ferroic phases and thus also information on basic macroscopic properties.
Cummins (1990) worked out a compilation of those ferroics which reveal an
incommensurate phase (a phase where the order parameter is spatially modu-
lated) and most of them possess also a ferroic phase in the sense defined above.
As for higher order ferroics, the original list was compiled by Amin and
Newnham (1980).

A K. Tagantsev et al., Domains in Ferroic Crystals and Thin Films, 109
DOI 10.1007/978-1-4419-1417-0_3, © Springer Science+Business Media, LLC 2010
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With a few exceptions, in this book we pay attention to phase transformations
occurring as a result of the change of temperature at constant ambient pressure.
However, considerable attention has also been paid to transformations induced
by pressure. The most complete collection of data is due to Tonkov (1992).

Speaking about ferroics in general, the most voluminous available database
appears to be that presented by Tomaszewski (1992a). His compilation, pub-
lished in 1992, specifies the chemical formula or name of the crystalline material,
transition temperature, and both G and F symmetries in terms of space groups, if
known. He also gives one basic reference for each compound. No information is
included as to changes of translational symmetry, with the exception of incom-
mensurate phases.

Tomaszewski analyzed his database in another publication (1992b) and it is
worthwhile to point to some of his conclusions. Altogether 3,446 phase transi-
tions are included which were reported to occur in 2,242 crystalline materials;
out of the latter, 128 are organic. From the total number of 2,242, two transi-
tions were reported to occur in 492 crystals, three phase transitions in 208
crystals, and more than three in 80 other crystalline materials. Available data,
understandably, were not complete and only for 2,480 transitions the symme-
tries of both neighboring phases were known. Table 3.1.1 gives more detailed
information about numbers of these well-documented transitions, as they
depend on point symmetries of the high-temperature and low-temperature
phases. The horizontal designation of point symmetries applies to the high-
temperature phase while the vertical column of symbols applies to the low-
temperature phase. Thus the field above the broken line refers to phase transi-
tions at which the point symmetry is lowered on cooling (here represented only
by the change of the crystal system, e.g., from monoclinic to triclinic). The
transitions specified below the line correspond to the opposite case. The analy-
sis presented in the previous chapter is applicable to these cases. Maximum
numbers represent transitions with both G and F orthorhombic phases (255,
i.e., 10.3% out of 2480) and transitions with cubic phase G and tetragonal phase
F (269 cases, i.e., 10.8%). Some symmetry reductions are hardly represented at
all (0 for G hexagonal and F triclinic, 0.5% for G cubic and F triclinic).

Out of the 2,480 well-described transitions, 265 are ferroelectric and a
corresponding overview is included in Table 3.1.2. Here again the horizontal
designation refers to the paraclectric phase. The most frequently represented
ferroelectric transitions are those with tetragonal paraelectric and orthorhom-
bic ferroelectric phase (19%) or with both G,F phases orthorhombic (18%). The
meaning of the broken line in this table is the same as in Table 3.1.1

3.2 Table of Selected Ferroic Materials

Most of those ferroic materials whose domain or related properties are referred
to in this book are shown in Table. 3.2.1; we also include several compounds
whose domain properties might appear interesting but have not been studied
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Table 3.1.1 Number of materials with well-documented phase transitions

111

tricc  mon  orth tetr rhomb  hex cub
tricl 22 50 21 8 26 0 13
mon 6 171 211 130 63 36 71
orth 5 43 255 176 63 69 151
tetr 0 12 33 74 6 10 269
rthomb| 0 22 6 3 48 30 199
hex 2 2 11 5 11 34 65
cub 0 15 9 14 7 29 74

After Tomaszewski (1992a). Columns are specified by the crystal system of the parent phase
given in the uppermost row. Rows represent crystal system of the ferroic phase, as given in the

first column.

Table 3.1.2 Number of materials with well-documented ferroelectric transitions

tricl  mon  orth tetr rhomb hex cub
tricl 2 3 1 0 1 0 2
mon 0 34 13 [§ 4 3 9
orth 0 5 49 51 0 0 25
tetr 0 0 0 23 0 0 17
rthomb | 0 1 0 0 4 2 8
hex 0 0 0 0 0 2 0
cub 0 0 0 0 0 0 0

After Tomaszewski (1992a). Columns specify crystal system of the parent phase given in the
uppermost row. Rows represent crystal system of the ferroelectric phase shown in the first

column.

yet. The table is intended to give the reader a quick reference for all these
crystalline materials, but at the same time its aim is to illustrate the diversity
of ferroic phase transition materials from the point of view of symmetry.
Materials are listed according to the symmetry of the appropriate species,
with no regard of chemical composition, roughly following the sequence used
in Table B.1 of ferroic species. This, of course, brings together materials of a
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3.2 Table of Selected Ferroic Materials
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very different chemical composition but, at the same time, it points to simila-
rities we may expect in their macroscopic behavior connected with domains.

In many materials there exist a sequence of phase transitions and often each
of the ferroic phases can be treated, as far as its symmetry-related domain
properties are concerned, separately as if it arose from a common parent
phase. Then the symmetry G is given only once; but the temperature Trr
indicates the approximate temperature of the transition from the neighboring
phase at higher temperature, in Kelvin. BaTiO; offers the best known example.
The three consecutive rows refer to the sequence of three ferroelectric phases as
temperature is lowered. In terms of symmetry, each phase can be treated
separately as if it arose from the parent cubic phase m3m. The real transition
from 4mm to mm2 occurs at 278 K and domain properties in phase mm?2
correspond, symmetry-wise, to those of the species m3m — Peds — mm2.

When well established, the order (first or second) of the transition is shown
but the table includes no information about thermal hysteresis if the transition
is of first order; temperatures 7r show approximately transition temperatures.
Reported values of these temperatures often vary greatly, being dependent on
crystal quality, thermal hysteresis effects, and boundary conditions. The sym-
bol IC stands for a phase with incommensurate modulation.

When well established, information is also included on whether the transla-
tional symmetry in F differs from that in G (NEQ for non-equitranslational,
v # 1) or it does not (EQ for equitranslational, v = 1).

Some remarks about particular materials are given in the footnotes to the
table.



Chapter 4
Methods for Observation of Domains

4.1 Introductory Remarks

Splitting of a ferroic sample into domains strongly influences most of its
averaged macroscopic properties. Thus by measuring these properties we can
obtain indirect information about the representation of individual domain
states; perhaps the simplest example is the magnitude of macroscopic polariza-
tion of a sample of a uniaxial ferroelectric crystal. In the present chapter we wish
to give an overview of methods which lead to a more detailed knowledge about
shapes and sizes of individual domains. The number of delineating techniques is
large and continuously increases, the push behind this progress being improved
spatial resolution, speed, and possibility to distinguish small domains from
lattice defects which have no relation to the order parameter. We need to detect
small changes in domain shapes to understand phenomena like fixing of photo-
refractive holograms in ferroelectrics based on partial switching. Of particular
interest are domains in ferroelectric thin films.

When imaging domain structures, the symmetry relations between domain
states and real domains which are to be distinguished play a crucial role. All
possible techniques are based on the differences of crystal structures in neigh-
boring domains and can be classified into three broad categories. First, a
number of methods are based on the surface properties of samples; they give
essentially two-dimensional pictures of domains as they terminate on sample
surface. Sometimes these methods can even feel the presence of domains hidden
inside the sample. Surface observations may also provide useful information
about domain walls. Classical etching procedures, manifold decoration meth-
ods, and observations in reflected light belong to this category. More recently,
modern techniques like atomic force microscopy or environmental scanning
electron microscopy are increasingly employed. Second, a large group of meth-
ods are based on the differences in tensor properties of domains. Polarized light
microscopy is the most powerful technique of this kind, nowadays supplemen-
ted with a growing number of methods based on nonlinear optical properties.
Finally, we have methods based directly on the structural differences, including
X-ray and electron diffraction, transmission electron microscopy, and X-ray
topography.

A K. Tagantsev et al., Domains in Ferroic Crystals and Thin Films, 121
DOI 10.1007/978-1-4419-1417-0_4, © Springer Science+Business Media, LLC 2010
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In this chapter we address most methods used for observation of ferroic
domains. For some of them we present short outlines, whereas for the other,
only the basic ideas are mentioned. We will not go into details which would help
the reader to immediately apply any of the methods discussed. However, the
material of the chapter will provide the reader with the basic knowledge and
references needed to get the detailed information on the subject.

4.2 Surface Etching Techniques

Surface etching is usually used to obtain information on domains which cannot
be distinguished by microscopy in polarized light, in particular to reveal ferro-
electric domains with antiparallel polarization in nonferroelastics and to deline-
ate antiphase domain boundaries. Basic domain shapes in nonferroelastic ferro-
electrics were studied by etching. The method also enables the identification of
centers for the reverse domain nucleation. Repeated etching of the same surface
was successfully used to study shapes of growing or shrinking domains as well
as velocities of advancing domain walls.

The etching process is a complex phenomenon involving interactions of ions
of the etching agent with the surface structure of the ideal crystal lattice as well
as with the defect structure of the sample. Etching rates may be different for
neighboring domains, depending on the orientation of crystal structures with
respect to the surface. We expect that two surfaces arising when a crystal is cut
perpendicularly to a polar direction will have different etching rates. The polar
direction is one whose two ends are not related by any symmetry operation of
the point group. It may be one of several polar directions exhibited by a piezo-
electric crystal or it may be unique. Etching rates are also expected to be
different at crystal defects and thus to have the potential of revealing outcrops
of dislocation lines, small-angle grain boundaries, impurity precipitates. Corre-
sponding etch pits or etch hillocks are known to reflect the crystal symmetry
and so again the study of their shapes can distinguish particular domain states.
Domain walls are in a sense also lattice defects and indeed a sensitively engi-
neered etching experiment can visualize walls and give information about their
width at the surface. While the “art and science” of etching crystals have been
reviewed (see, e.g., Heimann, 1982), it appears that particular aspects of etching
multidomain ferroic crystals have not yet been thoroughly discussed from the
point of view of the symmetry of the crystal and of symmetry relations (includ-
ing enantiomorphism) between the etched material and the etching reagent.

Etched surfaces are usually observed in reflected light using a metallographic
microscope. Much higher resolution can be achieved when the etched relief is
accentuated by shadowing and replica techniques are employed for electron
microscopic investigations of the patterns formed in the evaporated film. First a
small quantity of metal (Cr, CrO,, Au are often used) is evaporated onto the
sample in vacuum, under an angle of 30° or less. The purpose is to emphasize
details of the profile by casting shadows. The decorated surface is then covered
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by an evaporated carbon layer and may be further strengthened by another
layer, e.g., of a solution which after evaporation leaves a film of organic
material. This combined surface film is then removed mechanically from the
crystal or simply made free by dissolving the crystal. The film, now offering a
replica of the crystal surface, is then observed in a transmission electron micro-
scope. The resolving power far exceeds that of optical microscopy and details of
domain shapes of size several hundred angstroms can be easily distinguished as
well as exact shapes of etch pits and hillocks.

Probably the first effort when an etching technique was employed in connec-
tion with domains was to visualize twins in quartz. These crystals are usually
etched in commercial 48% hydrofluoric acid for up to several hours at room
temperature. In quartz, “electrical” (Dauphiné) twins can be classified as ferroe-
lastoelectric domain pairs. In addition, quartz crystals may also contain “optical”
twins which have the character of growth twins. All can be distinguished by the
type of etch pits on surfaces perpendicular to the crystallographic axes, as dis-
cussed in detail by Cady (1946). A unique overview of all possible etching figures
of this material was obtained by etching a hemisphere made of quartz and taking
36 pictures from various angles, showing different etching figures (Bond, 1938).

We now present a selected survey of methods used for three “model” ferroic
materials and of issues which could be addressed by etching.

Barium titanate. Antiparallel ferroelectric domains were first revealed by etching
in single crystals of BaTiO; (Hooton and Merz, 1955). As-grown plate-like samples
are immersed for several minutes in concentrated HCI at room temperature, then
rinsed in water, and washed in ethyl alcohol (the “dip technique”). When observed
in reflected light, using magnification from 100x to 200x, domains with antipar-
allel polarization vectors perpendicular to the surface are visible on both sides of
the plates. (An example of the image obtained this way is shown in Fig. 2.2.4.) This
is because the positive end of Pg etches faster than the negative end while the
etching rate of ¢-domains is intermediate between the two. The mechanism pro-
posed to explain the differences in etching rates (Sawada and Abe, 1966) assumes
that the ions Ba® " and Ti* " are decisive for the etching rate. The ion diffusing into
the etchant must overcome a potential barrier which, due to electrostatic interac-
tion, will be lower near the positive end of Pg than at the negative end. Therefore,
ions at the positive ends will diffuse more easily, increasing the etching rate.

Many other studies were performed using different etchants. A series of
alternating steps involving the application of an electric field for a given period
of time, removing the electrodes, and etching in a 0.5% aqueous solution of HF
for about 10 s, made it possible to follow the growth of one particular antiparallel
domain and measure domain wall velocity (Miller and Savage, 1958). Repeated
etching in KCI made it possible to monitor how the shape of a domain changes
when it grows or shrinks (Husimi, 1960). Alternatively, one can observe the
domain pattern (Campbell, 1962) and the formation of nuclei of antiparallel
domains (Stadler and Zachmanidis, 1964a) produced by incomplete poling of the
sample. Etching successively first a sample with “aged” domains and then the
same sample in a poled state brings up hillocks aligned along the original domain
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walls and illustrates the interaction between defects and domain walls (Stadler,
1963). A sequence of etching events in a 4% solution of concentrated HCI and
HF taken during a long period of time gave evidence about the coarsening of
antiparallel domains (Rapoport and Dontsova, 1970). An 85% solution of
H;PO,4 was claimed to be a slow-etching agent revealing only domain boundaries
and dislocations (Eknadiosyants et al., 1978).

Etching was proved useful to provide information on domains even in
BaTiO; ceramic samples; some of the most lucid and informative pictures of
domain patterns were obtained by Arlt and Sasko (1980) by etching polished
surfaces in HCl and HF solutions (Kulcsar, 1956).

Etched surfaces of BaTiOj crystals were also studied with transmission electron
microscopy (TEM). Following the etching procedure, plates were shadowed by
chromium (Spivak et al., 1958) or chromium oxide (Beudon et al., 1988) and
carbon replicas were made. This made it possible to observe in detail complex
180°-90° domain structures (Spivak et al., 1958) as well as individual 180° domain
walls and etched hillocks (Stadler, 1963). Direct TEM observations of domains,
both ferroelastic and nonferroelastic, in very thin BaTiOj3 crystals were presented
by Cameron (1957). Checkerboard patterns observed in the orthorhombic phase
on both sides of thin plates testified that these domains penetrate the whole
thickness of the plate. An example of such observation is shown in Fig. 4.2.1.

Fig. 4.2.1 Pattern of ferroelastic domains with three different directions of polarization in the
orthorhombic phase of BaTiO;. The sample surface was etched; this is an electron
microscopic picture of a replica. In the smoothest and roughest areas, the negative and
positive ends of polarization are at the surface, respectively. In the area of intermediate
roughness, Pg is parallel to the surface. The real horizontal dimension of the pictured area is
about 4um. After Cameron (1957). Reprint courtesy of International Business Machines
Corporation, copyright 1957 © International Business Machines Corporation
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Triglycine sulfate. TGS is a crystal soluble in water and represents a model
material for etching methods. This is a uniaxial ferroelectric exhibiting two
nonferroelastic domain states. Its domain structure was visualized for the first
time (Pearson and Feldmann, 1959) by a simple rub technique. A few drops of
water were put at one corner of a thin cloth placed on a flat plane. The (010)
surface of the crystal was rubbed in circular motions; a few passes suffice to
delineate the domain structure. Microscopic observations in reflected light
show that the positive domains have smooth surfaces while the negative
domains correspond to pebbled areas. The etching rate on the positive domains
is higher than on the negative domains (Nakamura and Nakamura, 1962;
Sawada and Abe, 1967).

Using the dip technique, the sample, usually a plate with (010) major surfaces,
is simply immersed in water; at the end of the required etching period it is
quickly transferred to a bath of ethyl alcohol and dried (Chynoweth and
Feldmann, 1960). This method has several advantages compared to the rub
technique: It does not create pebbled surfaces and has a higher resolution. Even
more important, it can be used even at elevated temperatures. The disadvantage
is that the solubility of TGS in water is rather high and increases with tempera-
ture. Therefore, repeated etching in water with the aim to follow some kinetic
domain processes would mean a considerable loss of material.

A number of alternative etchants were investigated with the aim to slow
down the etching rate or to selectively reveal domains, domain walls, and
dislocations; some of these experiments are included in Table 4.2.1.

Table 4.2.1 Additional information on revealing domains by etching

Compound Method Remark Ref.
BaTiO;, Highly polished Replica technique, Kulcsar (1956), Cook
ceramics samples. Several revealed 90° Jr (1956), and Arlt
drops of 48% HF to domains and Sasko (1980)
100 ml of 5% HCI,
several minutes at
Troom
PbTiO3 HCI or H3POy, at Thin film r.f. sputtered  Surowiak et al.
elevated T up to Tc on MgO. Revealed (1993) and
90° walls and Sviridov et al.
surface relief, not (1984)
180° walls
PbZrO3;, Polished and etched in  Revealed 90° domains.  Goulpeau (1969)
ceramics diluted HCI. Shaded In poled samples

Bal ,\.erTiog

replicas observed in
electron microscope

HCIl or H3POy, in a
large interval of
temperatures

dense stripe pattern
believed to be
antiparallel
domains

Films sputtered on
MgO; both 180° and
90° domain pairs
revealed

Surowiak et al.
(1993)
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Table 4.2.1 (continued)
Compound Method Remark Ref.
YMnO; H;PO,, several Safrankova et al.
minutes at (1967)
130-160°C
LiNDbO3 See text Shadowing with Ge Stadler (1963)
and using replica
technique reveals
hillocks on negative
surfaces (010)
LiNbO3 See text Revealed artificial Ming et al. (1982),
domain patterns on Feisst and Koidl,
(001) or Y-surfaces (1985). Baron et al.
(1996), and
Nakamura (1991)
LiTaO; As for LiINbO;3 Makio et al. (1992)
KNbO; Solution of KHF; and  Negative domain Wiesendanger (1973)

Pb(Zr,Ti;_)O3

PbSGe301 1

BiFeO;

Bi4Ti3012

B15(T13FC)O 15

Gdy(MoOy);

SbSI

TGS

HNO;, 20 min at
100°C

15sin 5% HCI
solution with 5
drops of HF per
100 cm® of solution

HCI and H,O 1:1

HNO; and HF 250:1,
3-5 min at room
temperature

HCl conc. at Tyoom for

S min or boiling
diluted HNO3,
5 min

2-20% HCl

HCl at 18-20°C

CH;COOH with
addition of metallic
Zn and 0.7% H,O
for 1.5 min

etches faster,
1-5 pm/min.
Domains differ in
characteristic etch
pits
Cleaved faces.
Pt-carbon replicas.
Magnification up to
14,000 x
Antiparallel domains
visible on nonpolar
faces

Polycrystalline
samples

Analysis of etch pits
gives information
on possible
direction of Pg

Revealed antiphase
boundaries in
domains of both
polarities

Etching of (110)
surface probably
revealed 180°
domains

Delineates domain
walls. When
0.3-0.7% of
ethylene alcohol or
of HNOj is added,
also domains are
revealed

Eknadiosiants et al.
(1990)

Shur et al. (1989)

Tabarez-Murfioz et al.
(1985)

Eknadiosyants et al.
(1987)

Kubel and Schmid
(1992)

Barkley and
Jeitschko (1973)
and Meleshina
et al. (1974)

Kliya and
Lyachovitskaya
(1970)

Konstantinova
(1962)
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Table 4.2.1 (continued)
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Compound Method Remark Ref.
TGS 30 ml CH3;COOH with  Reveals both wallsand ~ Meleshina (1964)
0.04 ml HNO; and dislocations, has a
0.0236 g of a-alanine good definition of
etch pits. Includes a
table of many
etchants showing
etching rates of
domains and
dislocations
TGS CH3;COOH with Delineates Konstantinova
addition of 1.4% dislocations without (1962)
H»0 and 0.7% revealing domains
HNO;
NaNO, Ethanol with 10% of 3D domain pattern Nomura et al. (1961)
water. Rubbing on and its field-induced
“deer’s buff” gave changes revealed by
high resolution successive etching
and polishing.
Observed
antistripples and
their development
Ca,Sr Methyl alcohol for 30s  Cleavage steps and Chaudhari and
(C,H5CO,)s domain walls Krishnakumar
observed optically (1989)
KTiOPO, H;PO, plus small Replicas by Ivanov et al. (1994)
amount of HF, evaporation of Pt
30-60 min at 130°C and carbon; fixed by
a gelatine solution
KTiOPO,4 2:1 molar mixture of Houé and Townsend
KOH/KNO;s at (1995) and Gupta
220°C for2s et al. (1993)
(NH,4),SO,4 H>0, Troom Revealed lines believed  Tomek et al. (1978)
to be antiphase
boundaries
La,Ti,O4 Boiling aqueous Revealed both Nanamatsu et al.

solution of nitric
acid

domains and etch
pits

(1974)

A detailed study of etching TGS in water gave more insight into the etching

mechanism (Sawada and Abe, 1967). When crystal surfaces with different
orientations with respect to the polar axis were etched under identical condi-
tions, the slope of the area representing the domain wall (i.e., the step in height
divided by the apparent width of wall) was found to be constant, equal to 0.05.
Changing the degree of saturation of the etchant (by adding glycine or sulfuric
acid or by changing temperature) it was established that undersaturation is
essential for revealing domains and high undersaturation for forming disloca-
tion pits. Rapid removal of dissolved ions from the surface is favorable for
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revealing dislocation pits but not for revealing domains. Finally, glycine ions
which are positive were found to play a major role in revealing domains while
negative sulfate ions play a minor one.

Based on these findings, Sawada and Abe developed a model which explains
the difference in etch rates of positive and negative domains as a result of the
difference in the height of the potential barrier, and therefore as consequence of
the difference in rates with which positive ions are removed from the just
dissolving step on the crystal surface.

Several investigators used the dip technique to investigate time changes
occurring in the domain structure after the TGS sample was cooled from the
paraelectric phase to room temperature (Moravec and Konstantinova, 1968;
Dabrowska et al., 1977, Konstantinova and Stankowska, 1971). Repeated
etching shows the time development of a particular domain. Elaborated are
the studies intended to find out how the domain structure of TGS changes with
temperature, which are complicated by the fact that it is often required anneal-
ing and cooling samples in a medium with defined electrical conductivity, air, or
mercury being the extremes. Therefore, to etch the sample at the required time
and temperature it is necessary to transfer it from this medium into the etchant.
On the other hand, the domain structure in TGS was shown to be very sensitive
to thermal shocks (Chynoweth and Feldmann, 1960). Care must be therefore
taken to eliminate any change of sample temperature during its transfer; also it
must be fast since domain patterns develop with time. These requirements could
be met by sophisticated setups (Safrankova, 1970a,b; Strukov et al., 1972a).
An interesting alternative solution consists of irradiating the TGS sample by
X-rays in the required state (i.e., at a given temperature and time) (Gilletta,
1972). It was shown that this “freezes” the domain pattern at the time of
irradiation (Chynoweth, 1959). The sample can be then cooled, shelved, and
observed at one’s convenience. While in all these studies it was the (010) faces
perpendicular to Pg that were etched, it was shown (Chynoweth, 1960) that by
etching sides of a TGS sample parallel to the polar axis it was possible to reveal
“internal” domains, not intercepting the surfaces (cf. Fig. 2.2.5).

Similarly as for BaTiOs, etching figures of TGS are usually observed in
reflected light by an optical microscope. But it is also possible to prepare
shadowed negative replicas of the etched surface relief, e.g., by depositing a
germanium layer (Toyoda et al., 1959).

These etching methods were used for a number of studies on equilibrium
domain patterns in TGS, their spontaneous evolution with time, and even for
measuring wall velocities. Some of these results will be discussed in the corre-
sponding chapters.

Lithium niobate. LiINbOj is another uniaxial ferroelectric in which antipar-
allel domains cannot be optically distinguished by customary methods. When
the polished surfaces (001) are etched for a few minutes in a mixture of one part
HF and two parts HNO; (by volume) at the boiling point (about 110°C),
adjacent domains etch at very different rates, with negative ends being etched
much faster (Nassau et al., 1965; Niizeki et al., 1967). They also show different
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surface structures. Other etchants based on alkalies gave similar etch rates.
Antiparallel domains were also visualized by etching the (010) surface which is
parallel to the ferroelectric axis.

Table 4.2.1 gives information on some additional experiments. Etching has
proved to be powerful. It made possible to obtain information on static structures
but surprisingly it was this classical method which provided data on some slow
dynamic processes like domain wall velocities in barium titanate (Miller and
Savage, 1959b) or the time evolution of antistripples (special kind of antiparallel
domains) in crystals of NaNO, (Hamano et al., 1996, 1995). It has a fairly good
resolution and can be employed for both transparent and nontransparent mate-
rials. It can reveal either domains or just walls including antiphase boundaries; it
can selectively visualize walls or dislocations. In its basic form it is inexpensive for
its simplicity, the only sophisticated instrument being a microscope suitable for
observations in reflected light. The disadvantage is that it gives only surface
picture and is in a sense a destructive method although it can be used repeatedly.
Its limitation is the temperature range in which it can be employed since etching
rates depend on temperature and generally it is difficult to etch at very different
temperatures. The latter problem has been avoided by quenching the slowly
evolving domain structure (Hamano et al., 1995) or by more involved methods
allowing etching at elevated temperatures mentioned above.

4.3 Other Methods Based on Surface Relief

Etching is not the only way in which a relief on the surface of a crystal or ceramic
grain can be achieved. It is obvious that when a domain pair is ferroelastic, a
surface profile will be formed naturally on properly oriented surfaces when the
transition temperature is passed, due to the differences in orientations of unit
cells. This property has not received much attention for an obvious reason,
namely that in most cases a ferroelastic domain pair can be also distinguished
in polarized light. Obtaining some information about ferroelastic domains by
studying surface deformations would be advantageous for nontransparent crys-
tals or for ferroelastics in the form of films deposited on substrates. Using replica
technique, very minute surface details due to domains, inaccessible by optical
methods, can be visualized even for transparent crystals, but real data are scarce.
The surface relief of a BaTiOj5 crystal containing 90° domains was mapped in this
way (Spivak et al., 1958) and observed with magnifications up to 25,000.

There is one point to consider when preparing a sample for the observation of
surface profiles due to ferroelastic domains. If the sample is polished flat in the
multidomain state in the ferroic phase and then transformed—usually by heat-
ing—into the parent phase, its surface will become deformed due to the disappear-
ance of spontaneous deformation and seemingly domains will be detected when
they do not exist anymore. This could lead to erroneous conclusions. Repeated
cycling through a phase transition can then lead to a superposition of “living” and
“fossil” domains, both detectable on the surface at the same time (Schmid, 1993).
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The depth of surface profile can be determined by evaluating stereoscopic
pictures (Igras, 1959). Bhide and Bapat (1963) developed an alternative approach
based on interferometric methods which offers fairly high resolution. The sample
is vacuum coated with a highly reflecting Ag layer and matched against a
correspondingly silvered optical flat. When illuminated by a collimated beam,
multiple beam Fizeau fringes form between the crystal and the flat, which are
microscopically examined. Any changes in level of the crystal surface are depicted
as fringe shifts and a well-adjusted setup can distinguish level changes of several
angstroms (Bhide and Chilmulgund, 1965). This multiple beam interferometry
makes it possible to collect data on surface profile of a BaTiO; crystal due to 90°
domains. Figure 4.3.1a shows schematically the profile due to one c-domain in an
a-domain environment. Obviously, the angle « is related to the tetragonal lattice
parameters a and ¢ by tan o = (c—a)/a. At room temperature the measured value

(d)

Fig. 4.3.1 (a) Surface deformation due to tetragonal spontancous strain. (b) The domain
configuration in deformed BaTiOj3 plate with 90° wedges. Interferograms of the upper (¢) and
lower (d) surface of the plate with the domain configuration shown in (b). Rreprinted with
permission from Bhide (1963). Copyright (1963), American Institute of Physics
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was o = 32" which agrees well with the known lattice constants. Figure 4.3.1c,d
shows interferograms of both surfaces of a BaTiO; plate. Figure 4.3.1b illustrates
how the plate is deformed due to 90° wedge-shaped domains. This method makes
it even possible to observe minute dynamic changes of domains induced, e.g., by
electric field in real time.

Using an interference reflection microscope to observe properly oriented
faces of an as-grown crystal, fringes arranged in interference patterns (giving
evidence about the geometry of domain pattern) could be observed in multi-
domain crystal of any ferroelastic. Weber et al. (1975) showed that domains in
NdPs0,, differing in the sign of spontaneous shear can be well visualized in this
way.

Surface relief corresponding to the geometry of nonferroelastic domains can
be produced in some materials without etching. It was found that even by mere
polishing of the c¢-face of LiNbO; antiparallel domains are revealed (Nassau
et al., 1965), due to a slight difference in hardness.

A unique situation occurs in TGS. It is known that its most pronounced
cleavage plane is perpendicular to the polar b-axis. However, when a TGS
crystal is cleaved in a way that the cleavage crack propagates along the c-axis,
the cleavage planes in neighboring domains with opposite polarization can be
slightly inclined with respect to each other (Nakatani, 1989a; Konstantinova,
1962; Nakatani, 1975). Alternatively, the cleavage planes can be differently
curved in different domains (Nakatani, 1979). Thus the polar surface of the
crystal is spatially modulated in a way corresponding to the domain structure at
the time of cleaving. When the surface is coated with evaporated silver, this
pattern can be seen in reflected light or in a differential interference microscope.
This method of visualizing domains in TGS can be used also at elevated
temperatures and was employed to study domains close below T« (Nakatani,
1989a) when, in an early stage of their evolution, they are too small to be
delineated by liquid crystal decoration (see next sections). The smallest domains
observable with this method are only 20 nm wide.

The cleavage process as a tool to delineate nonferroelastic domains was
found functional also in crystals of PbsGe;O;; (Shur et al., 1993a,b). Here the
pronounced cleavage planes are {1010} parallel to the polar axis. However,
when the cleavage propagates under a small angle to this plane, the cleaved
surfaces show a relief which can be seen in a microscope under oblique illumi-
nation and corresponds to the domain structure.

4.4 Surface Decoration Techniques

Surface decoration techniques are based on interactions between a decorating
agent and the substrate which is a multidomain crystal. Differences in these
interactions, leading to domain revealing, depend on the microscopic atomic
surface structure and its orientation. These techniques led to many useful
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observations but, with the exception of decoration with nematic liquid crystals,
no theoretical attempts seem to have been undertaken to explain the interac-
tions underlying these phenomena.

Decoration methods have a wide range of resolving power, depending on the
size of decorating particles. The latter may be quite large, up to several micro-
meters in diameter. Most of such recipes are nondestructive and require rela-
tively simple observation in reflected light. The other extreme is a resolution of
several nanometers achieved, e.g., by evaporation of thin oriented films. These
methods require that a replica is formed, to be observed in a transmission
electron microscope. Often the substrate, i.e., the crystal under study, has to
be dissolved to free the replica film, which makes the method fatally destructive.

Surface decoration methods usually require carefully prepared surfaces.
Therefore again, as with the etching methods, the frequently studied materials
are those with well-developed cleavage planes (TGS, GASH) or compounds
crystallizing in the form of flat platelets (flux-grown BaTiO3).

4.4.1 Colloidal Suspensions

Particles in a colloid may acquire a double-layer charge when brought in
contact with a liquid. Depending on the orientation of their dipole layers,
they may be attracted to the negatively or positively charged objects. This
idea was developed into a simple decoration technique for visualization of
ferroelectric domains (Pearson and Feldmann, 1959). Powders of sulfur and
lead oxide were used to prepare colloidal solutions in hexane. A few drops of
one colloid solution placed on a cleaved polar surface of TGS, GASH, or
GUSH (guanidinium uranyl sulfate trihydrate) crystal result immediately in
coloring the appropriately charged domain. The yellow powder in the sulfur
colloid deposits on negative domains, leaving positive domains vacant. After
the solution evaporates, positive domains may be colored red by depositing the
lead oxide colloid. Colored domain pattern stays so indefinitely. The resolution
in these experiments was limited by the particle size between 3 and 4 pm.

This method, often referred to as powder deposition, provided information
on domain shapes in TGS, nucleation of new domains, and even on lateral
growth of domains in applied field (Chynoweth and Abel, 1959a,b). It was also
shown (Chynoweth, 1960) that decoration of polar faces can reveal spike-
shaped domains which stop not reaching the crystal surface and, even more
interesting, that such internal domains can be revealed by decorating nonpolar
faces of the crystal.

Several colloidal solutions were tested to reveal domains in Ca,Sr(C,Hs
COO)g¢ crystals (Mochizuki and Futama, 1967) but with an unsatisfactory
resolution.

In the most successful reported modification of this technique a commercial
liquid developer diluted by n-hexane was used (Hatano et al., 1973). The sample
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is immersed in the diluted developer and then rinsed in n-hexane. Carbon
particles are positively charged in the developer and deposit on negative
domains. This method offers a higher spatial resolution; carbon particles
about 0.1 um in diameter coagulate to clusters with the diameter of about
0.5 um. Figure 4.4.1 shows domains on the opposite sides of a TGS sample
revealed by this method by Hatano et al. (1973). The figure indicates the
presence of small domains within the large island-shaped domains. These
authors also showed that the method can be employed at low temperatures by
using n-pentane instead of n-hexane; domains in Rochelle salt were revealed at
—20°C and in thiourea at —130°C. Suda et al. (1978a) showed, observing
domains in GASH, that even large crystal areas can be visualized concurrently
when the decorated surface is projected on a photographic film.

0.2 mm

Fig. 4.4.1 The 180° domains in TGS imaged on opposite sides of a plate by powder pattern
technique. Lines are scratches on the cleaved surfaces. Small dots correspond probably to a
large number of small domains. After Hatano et al. (1973)

This technique was successfully employed for investigations of domain
shapes in TGS (Hatano et al., 1978), even at different stages of polarization
reversal (Nakatani, 1989b), and in TGS doped by alanine (Nakatani, 1991b); it
served to establish that cleaving TGS may result in a domain-related surface
profile (Nakatani, 1975). The method also proved useful for investigating the
patterns due to screw dislocations on the polar faces of GASH crystals (Shur
et al., 1982; Hatano et al., 1985b) which are also connected with charge
distribution.

A remarkable alternative of decoration was proposed quite early (Pearson
and Feldmann, 1959). When a colloid of fine barium titanate powder in hexane
was used, particles deposit at domain boundaries. This may be understood on
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the basis of high permittivity of these particles which are attracted into locations
with high electric field gradient. Interestingly enough, this method does not
seem to have been developed and used any further.

In addition to the just described “powder” methods, other procedures using
somewhat related techniques were suggested. Thus domains on nonpolar faces
of ferroelectric SbSI were visualized by selective crystallization of Sbl; (Kliya
and Lyakhovitskaya, 1970b).

Laurell et al. (1992) pointed out that liquid toners are currently available,
which contain either negatively or positively charged black particles. They can
be easily used for domain decoration with a resolution of several micrometers.
This was demonstrated by visualizing an artificially produced domain pattern
in plate-like samples of ferroelectric KTiOPQOy. This technique was also success-
fully used to picture domains in TGS by Ozaki et al. (1996); their studies pointed
to the important possibility the method offers in studying bound charge com-
pensation phenomena.

4.4.2 Decoration by Sublimation and Vacuum Evaporation

We have already discussed how decoration by deposition in vacuum helps
visualize the surface profile; this shadowing technique is based on the geometry
of the surface. Now we wish to pay attention to decoration techniques in which
the surface relief is nonexistent or not significant. They are based directly on the
interaction between the multidomain sample as a target and landing particles
which are formed by sublimation or vacuum evaporation. Domains are distin-
guished by differences in size or density of deposited particles or by the oriented
epitaxial crystallites.

TGS crystals—what else!—serve to verify the usefulness of sublimation techni-
ques. Sublimated anthraquinone (Kobzareva et al., 1970) produced needle-shaped
crystals with linear dimension of 20-80 pm; the deposited texture distinguished
between the domains but with a resolution corresponding to this size. A better
resolution was achieved with auramin (Shenyavskaya and Distler, 1976). Particles
formed on the TGS surface have a higher density on positive domains; they even
decorate domain walls. Still, their size of 2 um in diameter is not satisfactory.

A considerably higher resolution is offered by methods employing vacuum
evaporation. Particles in the evaporated decorating layer are principally of much
smaller size than particles in colloids or those achieved by sublimation and the
resulting patterns is worth of investigating by electron microscopy. The method
was pioneered by decorating polar surfaces of TGS (Takagi and Suzuki, 1966;
Takagi et al., 1967; Distler et al., 1967, 1968) and NaNO, (Takagi and Suzuki,
1966; Takagi et al., 1967) crystals with silver. Electron microscopic observations
of replicas showed that the density of particles formed on the surface was
considerably higher on negative domains (of the order of 2 x 10'" cm ), where
also their size, generally a very small fraction of a micrometer, was somewhat
larger. Thus domains were revealed with a submicron resolution.
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The method, often referred to as electron microscope decoration technique
(Hilczer et al., 1981, 1989), has been used repeatedly to delineate nonferroelastic
domains in several ferroelectric materials. Understandably, high-quality smooth-
ness of the surface is required to avoid decoration of artifacts; for this reason, by
now investigations have been reported only for cleaved surfaces or crystals
growing in form of smooth plates. The method was considerably improved by
cleaving the crystals when already in high vacuum to avoid contamination of
surfaces, and by fine tuning of the film thickness which can be measured during
the evaporation process by a quartz oscillator. The resolving power under normal
conditions is about 0.1 um but with special care in the decoration process and
using low electron densities in TEM observations of replicas a much higher
resolution may be achieved, assessed to 5 nm (Hilczer et al., 1981, 1989). The
method was shown to be practical at both elevated and low temperatures (Distler
et al., 1967; Gonzales and Serna, 1984; Hetzler and Wiirfel, 1978).

Very good results were reported with AgCl layers; the optimum thickness
appears to be 8 nm for TGS and 20 nm for GASH and LAS (NH4LiSO,)
(Szczesniak et al., 1976; Hilczer et al., 1989; Schmid et al., 1988b). The contrast
revealing the domain structure appears to be in most cases due to the differences
in density and size of the evaporated particles. The amount of information on the
epitaxial relations of deposited particles is still scarce. The diffraction analysis
(Hilczer et al., 1989) showed that, on both domains in TGS, the AgCl particles are
crystallographically oriented in the same way, namely that the direction [100] of
AgCl is parallel to the direction [001] of TGS. On the other hand, on the polar
surface of GASH the epitaxial relations of the deposited particles with respect to
the lattice of the substrate are very different for both domains (Meyer, 1988;
Hilczer et al., 1989; Stasyuk et al., 1997); the analysis of the diffraction patterns
showed that, on positive domains of GASH, the AgCl particles have the (012)
plane as the contact plane while on negative domains the contact plane is (001)
(Meyer, 1988). Figure 4.4.2 shows domains on the surface of a GASH crystals
decorated by AgCl (Szczesniak et al., 1976), imaged soon after the crystal had
been grown. The contrast deteriorates for crystals several years old.

Fig. 4.4.2 TEM picture of a
carbon replica of 180°
domain structure on the
polar face of a GASH
crystal, decorated by AgCl.
Reprinted with permission
from Szczesniak (1976).
Copyright (1976), Wiley-
VCH Verlag GmbH & Co.
KGaA
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The mechanism of decoration is not yet well understood and there are also
many controversies.

In addition to numerous experiments performed with the model and well-
cleavable materials TGS (Szczesniak et al., 1995; Weidmann and Anderson,
1971; Hilczer et al., 1981) and GASH (Szczesniak et al., 1976, 1985,1988; Hilczer
etal., 1989; De Wainer et al., 1980), some other crystals were also investigated by
this method. Thus antiparallel domains in BaTiO5 can be visualized by evapora-
tion of Cd, but only when the crystal has been “presensitized” by immersion into a
solution of AgNOj; in ethyl alcohol (Sawada and Abe, 1966). In the crystals of
LAS, AgCl decoration works well on polar (010) as well as nonpolar (305)
surfaces, both cleaved (Schmid et al., 1988b; Hilczer et al., 1989).

As an alternative to the evaporation of metals or alkali halides the use of
polymers as decorating agents was suggested (Wicker et al., 1990, 1989); how-
ever, the achieved resolution was lower than for the decoration methods
described above.

4.4.3 Deposition in Liquids

Related to the employments of colloids and having some features common with
depositing epitaxial layers are methods in which the crystal is simply immersed
in an appropriate liquid. This was tested for visualizing 180° domains in BaTiO;
(Sawada and Abe, 1966): The crystal is put into concentrated HCI saturated
with PbCl,. Fine crystals of PbCl, are rapidly formed whose density strongly
depends on polarity of the substrate. The resolution is in the range of a few
micrometers.

Another technique was used (Bhalla and Cross, 1977; Cross and Bhalla, 1978;
Bhalla and Cross, 1981) for delineating ferroelectric domains in Gd,(Mo0Qy);. A
polished (001) plate is dipped for a few seconds into dilute HF. In reflected white
light the sample now exhibits brilliant colors which are markedly different on
opposite domains. The analysis showed that a closely adhering film of GdF; is
deposited with thickness—of the order of 200 nm—differing for opposite
domains. Because of large difference between refractive indices of the film and
of the substrate strong interference colors occur in reflected light.

4.4.4 Condensation of Vapor

It was suggested by Toshev (1963a,b) and Strukov and Toshev (1964) that domain
walls could be decorated by condensation of vapor. The technique, often referred
to as solid dew method, consists of cooling down a plate-like ferroelectric sample
to the temperature of liquid nitrogen; the sample is then quickly transferred onto
the microscope stage and observed in reflected light. Water molecules from the air
condense on the surface, preferentially decorating domain walls. The mechanism
is believed (Toshev, 1966) to be connected with the dipole moment of H,O
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molecules which carries them toward the region of high electric field gradients at
the intersections of domain walls with the sample surface. The method gives
quickly basic information about domains in crystals with low transition tempera-
tures and was employed to reveal domain patterns in crystals of KDP,
(NHy4),BeF,4, (NH4)»SO,4, and thiourea (Koptsik and Toshev, 1965; Toshev,
1966) but is very damaging in subjecting the samples to thermal shocks.

This method of vapor condensation can be made more gentle when the
condensed particles are in liquid state (Fousek et al., 1966; Safrankova et al.,
1966). A ferroelectric crystal is placed in a closed chamber into which at a
required moment saturated vapor of a suitable liquid is sucked, having the
temperature slightly higher than the crystal temperature. On its surface conden-
sation takes place whose intensity can be finely adjusted. The chamber is pro-
vided with a window so that the pattern of condensed droplets can be observed in
a metallographic microscope. With butyl alcohol vapor domains in TGS and
TGFB were visualized in this manner (Fousek et al., 1966; Safrankova et al.,
1966). In some cases the condensation took place preferably on domain walls
while in others the density of tiny droplets was different on antiparallel domains.
The resolution of this method in its original version did not exceed 5 pm.

4.4.5 Decoration by Liquid Crystal Layers

The alignment of liquid crystals (LC) on surfaces of solids was investigated
nearly a century ago when it was found (see, e.g., Mauguin, 1911) that on
cleaved surfaces of various minerals nematic LCs can form homogeneous layers
with distinct orientations of optical axes which are in simple relations to the
symmetry of the crystalline substrate. Furuhata and Toriyama (1973) were the
first to succeed in using this principle to visualize domains in a ferroelectric
crystal and as so often triglycine sulfate served as the model material. The
method was further developed by Tikhomirova with coworkers and its princi-
ples were discussed in detail also by Glogarova et al. (1979), Glogarova (1981),
and Nakatani and Hirota (1981). For a long time it was used to study properties
of domains in TGS and it was even possible to investigate some of their dynamic
properties in real time. Later the technique has been shown to be applicable to a
number of ferroelectrics, often under different conditions. Basically, in this
method one uses optical microscopy to observe the result of surface decoration
and thus it is mainly useful for domains which do not enable a contrast based on
intrinsic optical properties of the crystal.

In the basic experimental arrangement, a thin layer of a nematic liquid
crystal (NLC) is inserted between a plate-like sample with a cleaved upper
surface and a glass cover plate. Typically, the layer thickness ranges from a
few micrometers to several tens of micrometers. The NLC molecules may orient
differently above different domains and this leads to an optical contrast in
polarizing microscope. Obviously, the sample itself has to be transparent.
More advanced setups are shown schematically in Fig. 4.4.3. In case (a) bottom
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Fig. 4.4.3 Typical experimental setups for domain decoration by LC layers

surfaces of the sample and of the cover glass are provided with transparent
electrodes (e.g., SnO, layers); thus a voltage can be applied to the system
NLC + crystal and field-induced changes of domains can be observed (Tikho-
mirova et al., 1985a). In case (b) the upper electrode is located on a small side
part of the sample so that simultancously with optical observations in zero field,
capacitance of the sample can also be measured (Nakatani, 1985). For ferro-
electric sample, this makes it possible to determine with high accuracy the
distance of the current temperature from the transition point. The setup is
observed on a microscope stage and can be heated using an appropriate cham-
ber. In yet another modification, NLC layers are inserted between both surfaces
of the sample and glass plates so that the domain pattern corresponding to
either surface of the sample can be observed by proper focusing. In all cases,
typical thickness of the LC layer is a few micrometers while the sample thickness
can reach the order of millimeters.

With only few exceptions, nematic LCs have been used for domain visuali-
zation. In particular, MBBA (p-methoxybenzylidene-p’-n-butylaniline) or a
mixture of MBBA and EBBA (p-ethoxybenzylidene-p’-n-butylaniline) is
often employed. For the ratio 1:3 of these two, the nematic phase is stable
between 22 and 70°C and this makes it practical for observations of TGS
crystals (Nakatani, 1985). For imaging domains in NaNO,, the ratio 3:2 was
employed (Hatano and Le Bihan, 1990), but also mixtures of other NLCs such
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as pentyl- and heptyl-cyano-biphenyl in the ratio 59:41. For high-temperature
observations of the same material alkylphenyl-cyclohexylbenzoate was used
which is nematic between 90 and 185°C (Hatano et al., 1990a).

A very useful setup was designed by Tikhomirova et al. (1991a,b): In a
specially developed cell the sample can be cooled and maintained at a given
temperature to within +0.05°C for a long time using the method of constant-
rate evaporation of nitrogen. This made it possible to investigate domains in
crystals of Li,Ge;0, 5 whose transition temperature is 283 K. The LC used was a
mixture of cyanodiphenyles which does not crystallize down to temperature of
—65°C.

As an example of the possibilities this method offers, Fig. 5.4.2 shows the
time development of domains in TGS (Nakatani, 1985), visualized in the setup
of Fig. 4.4.3b. After keeping the specimen, a plate perpendicular to the polar
direction, well above T¢ for 1 h, it was slowly cooled and in the phase
transition region the cooling rate was reduced to 0.006°C/min. Domain struc-
ture was observed simultaneously with measuring the capacitance and the
temperature of its maximum defined 7. Microphotographs were taken just
below T =49.68°C at intervals of 4 min. Until the temperature reaches T, no
patterns are visible. Immediately below at AT=T¢c — T=0.02°C lamellar pat-
terns narrower than 0.5 pm appear. With further decreasing temperature
and increasing time domains become clear and coarse. Figure 5.4.3 shows that
even if T is then kept constant, the evolution of domains does not cease. Such
observations are unique and hardly another method could provide similar data.
Here the evolution process is rather slow; generally, several authors estimated
that the LC decoration can, in the best case, offer a response time of the order
of milliseconds.

To understand the alignment effect on TGS, we have to realize that NLC
molecules are optically uniaxial rods, long compared to their diameter, with
optic axes parallel to the long axes. They have a permanent dipole moment g
and their anisotropy leads to dielectric anisotropy Ax = x| — x1 of the mate-
rial, where x| and k_ are permittivities in fields parallel and perpendicular to the
long axis of the molecules, respectively. A layer formed by aligned molecules is
birefringent. Since the underlying crystal is also birefringent, the analysis of
optical properties of the whole system may not be simple.

The first qualitative interpretation (Furuhata and Toriyama, 1973) con-
nected the alignment effect with the electric field above the crystal surface,
whose directions may be opposite above domains of opposite polarities. How-
ever, as noticed by Tikhomirova et al. (1978), if long axes of molecules are
parallel to the surface, orienting # up and down would not result in optical
differences of molecules. These authors investigated the behavior of four dif-
ferent NLCs with different dielectric anisotropies, Ak = —0.3, -5, + 10, and
+0.05. In all cases opposite domains are revealed by black/white contrast.
However, changing the sign of Ax results in reversing the contrast: black
domains appear white and vice versa. On freshly cleaved surfaces and on
surfaces cleaved several years ago and exposed to air the contrast is the same.
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On polished or etched surfaces of TGS the static domain structure is not
revealed.

The authors pointed out that there are three essential factors influencing
the LC orientation above the TGS surface. (1) Based on the fact that positive
ends of domains dissolve much faster, it is concluded that in these regions
the screening radius rp is reduced and thus above positive domains the field
extends over a smaller distance from the surface. (2) Because the van der Waals
interactions between NLC molecules and crystal surface are anisotropic,
NLC molecules will have the tendency to be oriented along crystallographic
directions on the cleavage face of TGS. This is true particularly on “—” domains
whose surfaces are poorly soluble. (3) The adsorbed water film may also have
an ordered structure which in turn may induce corresponding orientation
of LC.

Glogarova (1980, 1981) investigated the situation by completing the experi-
mental setup with a cover glass on whose surface an “easy direction” was
produced by rubbing; this direction tends to the orient long axes of LC mole-
cules. Perfect pictures of domains were obtained with nematics with Ax <0
(MBBA or MBBA + EBBA), while nematics with Ax >0 (a mixture of cyano-
biphenyls) offered pictures disturbed by many defects and changed with time.
The analysis of optical observations led to the conclusion that LC molecules
make planar alignment on the surfaces of both domains, however, with differ-
ent easy directions. On minus domains the director is along the [001] direction;
on plus domains it is along one of the [508] or [702] directions. It is natural to
assume that the observed alignment is due to anisotropic surface anchoring and
one can look for easy directions provided by channels in the surface structure of
the ferroelectric crystal. The analysis of TGS structure indicated (M. Glogar-
ova, unpublished) that there exist cleavage planes whose simplified electron
maps indicate the existence of structural channels clearly pronounced along the
c-axis; this would explain the LC orientation on negative domains. However, no
channels were found which could provide the other easy direction [508] or [702];
this orientation might originate in an anisotropic interaction between MBBA
molecules and those parts of TGS molecules which change at switching, i.e.,
mainly NH; groups.

Using the mixture MBBA + EBBA, Glogarova (1981) reached a very inter-
esting result, namely that some domains in TGS remain visible even at tem-
peratures far above T where they do not exist; the contrast of some of them is
fading but these remain encircled by loops. This contrast may be relevant twist
disclinations in the liquid crystal. Lejcek (1983) showed theoretically that above
a domain wall such objects can form, being stable when the ferroelectric is
transformed into the paraelectric phase. The issue of liquid crystal molecule
orientation on TGS surface has been also discussed by several authors (Naka-
tani and Hirota, 1981; Tikhomirova et al., 1978) who suggested alternative
scenarios.

We have discussed in some detail models that have been developed to explain
the mechanism of domain visualizing; all of them applied to TGS since it is for
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this material that reliable data could be obtained most easily. However, the
method itself was used for a number of other ferroelectric materials. Hatano
et al. (1990a) applied the method to crystals of NaNQO,. It has perfect cleavage
planes (101) and (101) which are parallel to Ps and on such surfaces two kinds
of contrast were observed: dark-bright on domains of opposite polarities and
domain wall contrast. Domains on nonpolar surfaces of ferroelectric crystals
were also visualized for LiH3(SeOj), by Anisimova et al. (1984) and for
KTiOPO,4 by Ivanov et al. (1993, 1994).

As already mentioned, in the arrangement shown in Fig. 4.4.3a, it is possible
to apply a voltage to the system crystal-LC layer and observe dynamic proper-
ties of domains. Konstantinova et al. (1978) were probably the first to perform
such experiments, with MBBA layer on TGS. They observed slow switching
processes and estimated that the response time of LC reorientation was less
than 0.1 s. Since then a number of authors employed this method to study
specific dynamic characteristics of ferroelectric switching and domain wall
motion. However, it has to be borne in mind that in this regime the distribution
of electric field is complicated and time dependent: We have a two-layer system
and as the wall moves it creates a layer of bound charge which then is compen-
sated in a not well understood way. Therefore, the obtained data are difficult
to interpret. Indeed Dontsova et al. (1982) and Tikhomirova et al. (1985b)
showed that if the gap between the electrode and sample surface is filled with
an NLC layer, the velocity of sidewise motion of walls is considerably smaller if
metallic electrodes are applied on the sample surface or if electrodes are made of
various electrolytes. This indicates that an NLC layer with low conductivity
produces intermediate conditions for compensation of the formed bound
charge compared to conducting electrodes or to a dielectric gap. The layer
serves as a medium for the transport of charges (its electrical resistivity is of
the order of 10%-10” Qm), which are either inherent charges or charges injected
from electrodes.

To mention some examples, we refer to the work of Dontsova et al. (1981,
1982, 1994) or Tikhomirova et al. (1985b, 1980b) who investigated laws of
domain dynamics in polarization reversal of TGS crystals. It was at these
experiments that an interesting new feature was observed. In most investiga-
tions performed in the earlier stages, TGS crystals had to be cleaved in order
that domains could be visualized by the discussed technique: For cut and
polished samples no contrast was observed under normal conditions, probably
because of the existence of a degradation layer at the surface. However, if an ac
electric field is applied to the NLC-sample system, contrast appears for any
surface. Thus moving domain walls in polished deuterated TGS were visualized
(Tikhomirova et al., 1985b) when in addition to the switching field also a weak
high-frequency ac field was applied. The possible explanation (Tikhomirova,
private communication) is that if a domain wall is moving, the impedance of the
crystal in the region of the wall changes. Therefore, the voltage drop in the LC
layer above the moving wall also changes and this induces local electrohydro-
dynamic instabilities in the LC layer. Yet the contrast origin may be different
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(Tikhomirova et al., 1980a): On polished samples there is no contrast between
domains but domain walls are well visible in both polarized and unpolarized
light as dark lines whose thickness is of the order of the NLC layer thickness. A
large amount of switching or wall velocity data have been collected by this
method; however, because of the presence of the LC layer, the boundary
conditions are relatively complex and evaluation of these data is complicated.

Dynamic observations are not limited to the TGS family of crystals. Hatano
et al. (1990a) as well as Galtsev et al. (1990) visualized moving domain walls in
crystals of NaNO,. Polomska and Jakubas (1990) observed the growth of 180°
domains in (CH;NHj3)5Bi>Br;;. Sakata and Hamano (1992, 1993) investigated
plates of K»>ZnCl, with NLC layers on both surfaces, sandwiched between two
transparent electrodes. The microscope could be focused on either surface of
the sample. In zero field no domains were visible while moving domain walls
when a dc field is applied became visible. Thus the polarization reversal process
can be observed in situ and recorded by a video camera. Vysochanskii et al.
(1992) made similar observations on crystals of ferroelectric semiconductor
Sn2P286.

4.5 Scanning Force Microscopy-Based Techniques

Rapid development of electronic devices based on ferroelectric thin films gen-
erated a strong need for studies of ferroelectric properties at the nanoscale.
Fortunately, this need appeared at the same time as new techniques became
available, which enable materials characterization which has a spatial resolu-
tion of a few nanometers. Specifically, scanning force microscopy (SFM) has
emerged as a powerful tool for high-resolution characterization of virtually all
types of materials, such as metals, semiconductors, dielectrics, polymers, and
biomolecules. A number of papers and books on scanning probe methods have
already been published, which can be used as an introduction to the principles
of scanning force microscopy (see, e.g., Bonnell, 2000). In the field of ferroelec-
tricity, the application of the SFM technique resulted in a real breakthrough
providing an opportunity for nondestructive nanoscale visualization of domain
structures. The employment of SFM made possible nanoscale mapping of the
surface potential, evaluation of local electromechanical properties, and dielec-
tric constant measurements. In other words, characterization by means of SFM
provides crucial information on the dielectric properties of ferroelectrics with
unprecedented spatial resolution.

Scanning force microscopy can be considered as a combination of a surface
force apparatus and a surface profilometer as it is based on local monitoring of
the interaction forces between a probing tip and a sample. The forces acting on
the tip after it has approached the sample surface cause a deflection of the
cantilever to which the tip is attached. This deflection can be detected optically
or electrically with sub-angstrom accuracy and is controlled by a feedback
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device, which regulates the vertical position of the tip as it scans the sample
surface. Scanning is realized by placing the sample on a piezoelectric scanner,
which allows for lateral and vertical positioning of the sample relative to the tip
with nanometer precision. By keeping the cantilever deflection constant during
scanning, a three-dimensional map of the surface topography can be obtained.
Besides this method, called the constant force mode, many other modes have
been developed. The response of the cantilever to the externally modulated
force (for example, due to an applied ac bias) can be used to map such physical
properties as mechanical stiffness, friction, electric fields, and density of elec-
tronic states.

Depending on the type of tip—sample force interaction—attracting or repelling—
the SFM can operate in two different regimes: non-contact or contact. In the
non-contact regime, the tip is scanned over the surface at a distance of 10-100 nm,
which is controlled, for example, by monitoring the resonant frequency of the
cantilever (Martin et al., 1987). The tip—sample interaction in this regime is
dominated by the long-range electrostatic forces. Because of this feature, non-
contact SFM can be used for ferroelectric domain imaging by detecting the
electrostatic field of the surface polarization charges. This mode of SFM is called
electrostatic force microscopy (EFM) (Stern et al., 1988). Quantitative informa-
tion on local surface potential related to spontaneous polarization can be obtained
by means of scanning surface potential microscopy (SSPM) (also called Kelvin
probe force microscopy (KPFM) (Martin et al., 1988; Nonnenmacher et al., 1991;
Barrett and Quate, 1991), a technique complementary to EFM. General disad-
vantages of non-contact methods include sensitivity to screening effects, sensitivity
to sample surface conditions, and low resolution in ambient air.

In the contact regime, the probing tip is in mechanical contact with the sample
surface and senses repulsive short-range forces. The difference in mechanical,
structural, electrochemical, dielectric, and piezoelectric properties of ferroic
domains can provide domain contrast in the SFM contact regime. Contact SFM
methods of domain imaging include a topographic mode of atomic force micro-
scopy (AFM), lateral (friction) force microscopy (LFM), piezoresponse force
microscopy (PFM), and scanning nonlinear dielectric microscopy (SNDM).

A general feature of all scanning force microscopy-based techniques to be
mentioned is their sensitivity solely to the properties of the material in interface-
adjacent areas, except for the “electrode through” version of PFM.

4.5.1 Electrostatic Force Microscopy (EFM)

Imaging of ferroelectric domains in the non-contact mode is based on the
detection of the modulated electrostatic interaction force between the probing
tip and polarization charges. Figure 4.5.1 shows a typical setup used for this
kind of imaging. Using this approach, a pioneering work on SFM domain
imaging has been performed by Saurenbach and Terris (1990) in a single crystal
of gadolinium molybdate. In EFM, the cantilever is made to oscillate near its
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Fig. 4.5.1 Schematic of a setup for electrostatic force microscopy. 1, sample; 2, SFM tip; 3,
piezoelectric bimorph actuator; 4, piece of insulator used for fixing the cantilever to the actuator;
5, input for additional voltage (used only in dual modulation scheme). After Liithi (1993)

resonant frequency using a piezoelectric bimorph. When the tip is brought close
to the surface, the attractive force gradient acting on the tip 0F/0z alters the
force constant k, of the cantilever as k' = kg — OF/0z. This, in turn, leads to the
change in the resonant frequency and in the vibration amplitude. This change is
a key in the EFM domain imaging.

In the non-contact mode of operation two techniques can be used: amplitude
modulation (AM) and frequency modulation (FM). In the AM method, the
cantilever is oscillated at a fixed frequency and a change in its vibration
amplitude, which is caused by the tip—sample interaction, is detected. In the
FM mode, the feedback loop adjusts the tip—sample distance so as to maintain
the amplitude of oscillation constant at the new frequency. In this case the
frequency change, which reflects the force gradient acting on the tip, is detected.
Obviously, in the case of the ferroelectric sample, there is an electrostatic
contribution to the attractive force due to the Coulomb interaction between a
surface polarization charge and an image charge (charge induced in the tip by
the surface charge) Q, in the probing tip. In the Saurenbach and Terris experi-
ment, as the tip crossed the wall, it experienced a change in the force gradient
and the feedback loop altered the tip—sample distance so as to keep the gradient
and the vibration amplitude constant. This produced a variation of contrast in
the feedback signal image, which could be interpreted as an image of the
domain wall (Liithi et al., 1993a,b; Lehnen et al., 2000). Since the Coulomb
force is proportional to the product of the polarization and image charges, the
force gradient signal provides information only on the polarization magnitude
and not the sign. This implies that the contrast of opposite 180° domains will be
the same and that only domain walls will be visible due to the spatial variation
of the charge density in the vicinity of a 180° domain boundary.
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A rather wide image of the domain wall (about 10 pm while the actual wall
thickness is of the order of several lattice constants) obtained by Saurenbach
and Terris had been attributed to the tip—sample separation and the finite size of
the tip, which broadened any sharp changes in the force gradients. Later works
of Liithi et al. (1993a, 1994a,b) and of Eng et al. (1996, 1997, 1999c) demon-
strated that lateral resolution in EFM can be significantly improved: In single
crystals with cleaved polar surfaces, such as GASH and TGS, the width of the
walls measured in EFM was in the range from 8 to 80 nm.

However, this method of domain imaging may suffer from the cross-talk with
other sources of the force gradient, for example, van der Waals forces. As a result,
the force gradient image is usually a superposition of domain and surface topo-
graphic features. In the case of domains of irregular shape and complex surface
topography, the interpretation of the EFM images could be quite difficult. One of
the ways to alleviate this problem is to use a lift-mode technique (tapping mode),
which combines the contact and non-contact modes. In this approach, the tip
scans each line twice: first, recording the topography in the contact regime, and
second, retracing the topographic line at the predetermined height while detecting
the variations in the vibration amplitude. In this case, since the tip—sample
distance is kept constant during the second scan, the force gradient is related to
the surface charge.

Another method to circumvent the cross-talk effect is to use a dual modulation
scheme, developed for the detection of static surface charges (Terris et al., 1989;
1990). In this approach, also used by Saurenbach and Terris, the cantilever is
additionally modulated by an ac voltage V' = V,. cos wt applied between the
probing tip and the bottom electrode. The frequency of the electrostatic modula-
tion is chosen so that it is well below the resonant frequency of the cantilever. Thus,
the force gradient acting on the tip becomes modulated with frequencies w and 2w
so that the resonance frequency of the cantilever (which is much higher than w) also
becomes modulated with these frequencies. One can show that the signal at the first
harmonics is sensitive to the value and sign of the charge located at the surface. For
the case where a permanent charge Qg is located in the area which is much smaller
than the tip—sample spacing, this is clear from the analysis performed by
Saurenbach and Terris. In this case, the force acting on the tip can be written as
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where C is the tip—surface capacitance and z is the tip—surface separation. The
total charge induced in the tip will be Q; = —(Qs + Q) = —(Qs + CV). Here
Q. is the charge on the surface induced by the applied voltage. The force
gradient can be expressed as
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Three terms in Eq. (4.5.2) represent a dc component and first and second
harmonics of the force gradient. It is seen that the first harmonics component is
proportional to the charge located at the surface. Such analysis when being
generalized to the case of the continuous distribution of the surface charge (like
in the situation with the bound charge of the spontaneous polarization) leads to
the conclusion that the first harmonics amplitude (measured in the controlling
circuit with a lock-in amplifies at frequency w) reflects the sign and magnitude
of the bound charge density at the sample interface under the tip. Thus, through
the first harmonics monitoring, the information on the surface charge distribu-
tion becomes available. This method of domain imaging has been used by a
number of groups (Blinov et al., 2001; Luo et al., 2000; Hong et al., 1999a; Eng
et al., 1999a; Tsunekawa et al., 1999b; Hong et al., 1998a,b; Bluhm et al., 1997,
Ahn et al., 1997; Zavala et al., 1997).

Figure 4.5.2 illustrates an application of this technique to domain imaging in
a tetragonal Pb(Zr,Ti)O5 (abbr. PZT) film. Prior to the imaging, a small part of
the film was polarized by scanning with a positively biased tip and two lines
were written across this area with a tip under a negative bias. The positively and
negatively polarized domains appear as bright and dark areas in Fig. 4.5.2,
respectively, due to uncompensated polarization charges of newly switched
domains. At the same time, this image illustrates one of the limitations of the
EFM method. Namely, an unwritten area shows only slight variation of the
contrast, although it contains as-grown domains with polarization normal to
the film surface, which was confirmed by another SFM method. Furthermore,
the contrast of the written structure gradually fades and almost disappears
within several hours. This behavior is due to the accumulation of surface charge
on the film surface, which neutralizes polarization charges and causes a uniform
contrast over the surface due to zero net charge. Therefore, although the EFM
charge detection mode has the advantage of distinguishing between

Fig. 4.5.2 EFM charge
image of a PZT film. Bright
and dark areas correspond
to positively and negatively
poled regions, respectively.
Courtesy of Alexei
Gruverman
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topographic features and the electrostatic signal, the domain contrast in this
mode can be easily obscured. In addition, a surface contamination layer always
present on the sample surface under ambient conditions can change or even
conceal the image of real domain structure. Conducting experiments in vacuum
or in inert atmosphere can eliminate these detrimental effects and make possible
detailed investigation of the spatial distribution of polarization charges and
stray electric fields at ferroelectric surfaces.

4.5.2 Scanning Surface Potential Microscopy (SSPM)

In this method, in contrast to the EFM, the cantilever is not exited mechanically
but a combination of an ac and a dc voltage is applied between the sample and
the tip and the force acting on the tip at the modulation frequency, rather than
its gradient, is monitored. The SSPM method is mainly applied to domain
imaging based on detection of a surface potential associated with spontaneous
polarization. Let us elucidate this method for the case where the spontaneous
polarization is fully screened. Even being fully screened the bound charge of the
polarization will produce a double electric layer modifying the surface potential
of the sample Vs. Thus, the electrostatic force acting on the tip, which depends
on difference between the tip potential Vy = V4. + Ve cos wt and the surface
potential, can be written as

1 ,0C
F=s(Vi=V) 5 (4.5.3)
This leads to the three components of the electrostatic force:
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The absolute value of the surface potential can be measured using the so-
called nulling method (Hong et al., 1998b). In this method, the first harmonic of
the electrostatic force is nullified by adjusting the constant bias on the tip so that
Vie = Vs. By detecting the nullifying V4. value during scanning, a surface
potential image can be obtained. This approach has been extensively used by
Kalinin and Bonnell to study polarization screening processes in ferroelectrics
(Kalinin and Bonnell, 2001a,b; Kalinin et al., 2002). Figure 4.5.3 shows a
simplified schematic diagram of domain structure (a), surface topography (b),
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Fig. 4.5.3 Imaging of
domain pattern in barium
titanate single crystal:

(a) simplified schematic
diagram of domain
structure; (b) surface
topography image;

(¢) SSPM image of the same
area as in (b). After Kalinin
and Bonnell (2001a)
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and surface potential (c) in a single crystal of barium titanate. Corrugated
surface topography is an indication of ¢- and ¢-domain regions (with in-plane
and out-of-plane spontaneous polarization, respectively). SSPM image pro-
vides additional information on the domain structure: Inverted potential
contrast within the c¢-domain region indicates the presence of antiparallel
c-domains (not shown in (a)).

For a comprehensive discussion of EFM and SSPM methods, we refer the
reader an excellent paper by Kalinin and Bonnell (2001a).

4.5.3 Contact Domain Imaging

Figure 4.5.4 shows the block diagram of a possible setup for the contact mode
(Eng et al., 1997). A sharp probing tip mounted on a spring-type cantilever is
brought into mechanical contact with the sample surface. The interaction of the
tip with the sample surface causes bending of the cantilever. In the most
frequently used setup a collimated laser beam is focused on its rear side and
reflected onto segment photodiode which acts as a displacement sensor. Using a
four-quadrant detector one can apply this setup for detection of both vertical
deflections or torsions of the cantilever. Thus, when scanning the sample sur-
face with the tip the vertical and lateral displacements of the tip can be
monitored.

4-quadrance photo electrode

F

normal
—
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>
cantile\\ \'\:Iateral

peltier heating stage “
Fig. 4.5.4 Setup for the
contact mode of scanning =
force microscopy (after Eng
et al., 1997). The force F
acting on the cantilever has a
lateral and a normal X - y piezo scaner

components
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Contact domain imaging can be divided into static and dynamic, or voltage-
modulated, methods. Static imaging methods, such as a topographic mode of
SFM and lateral force microscopy (LFM), make use of the surface domain-
dependent properties of ferroelectrics, such as surface corrugations associated
with the presence of different domains, difference in structure of polar faces of
opposite domains, and variations in friction forces. Dynamic methods, which
include PFM and SNDM, are based on voltage modulation and detection of the
electrical and mechanical response of opposite ferroelectric domains to the
applied ac voltage. The contact SFM imaging methods provide significant
advantages, such as high lateral resolution (well below 10 nm), a possibility of
the three-dimensional reconstruction of domain structure and effective control
of nanodomains. However, interpretation of the domain images could be
complicated by cross-talk between different mechanisms involved in the
domain contrast formation.

4.5.4 Lateral Force Microscopy (LFM)

In this technique, one monitors the lateral friction force acting on the tip during
scanning. The first imaging of antiparallel domains via LFM has been per-
formed by Liithi et al. (1993a,b). Using this approach, domain structure has
been revealed on freshly cleaved surfaces of single crystals of GASH and TGS
(Eng et al., 1996; 1999¢; Gruverman et al., 1996; Correia et al., 1996; Bluhm
et al., 1998). In most of the papers, the imaging mechanism is attributed to the
permanent charging of the probing tip by a ferroelectric surface. The electro-
static tip—sample interaction causes an additional contribution to the lateral
force acting on the tip and results in different torsion of the cantilever when the
tip is scanning surfaces of opposite 180° domains. Consequently, electrostatic
interaction results in different lateral forces acting on the tip from opposite 180°
domains. The lateral resolution has been reported to be about 8 nm. The image
contrast depends on the scanning direction and can be reversed by switching
from forward to backward scan as illustrated in Fig. 4.5.5. This is an indication
of the effect associated with the atomic structure of the surface rather than of
the surface morphology. Figure 4.5.6 shows topography and friction images of
a cleaved surface of TGS crystal recorded simultaneously by Eng et al. (1997).
Ferroelectric domains of typical lenticular shapes are visible in the friction
mode but not in topography.

A complementary mechanism of the domain contrast in LFM can be the
difference in surface structure of opposite domains which gives rise to different
friction coefficients of the regions occupied by these domains (Bluhm et al.,
1995, 1996). One of the greatest limitations of this method is that it is extremely
sensitive to the surface conditions affecting sample tribological properties:
adhesion layers, interfacial wetting, contamination, and roughness. As a result,
its application is mainly limited to crystals with atomically flat surfaces of
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Fig. 4.5.5 Friction force
micrograph of a GASH
cleavage surface. An
imbedded domain exhibits
opposite contrast compared
to the surrounding due to
the difference in tip—surface
friction forces. Scan
direction: (a) left to right;
(b) right to left. Courtesy of
Alexei Gruverman
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Fig. 4.5.6 Images of a TGS crystal surface simultaneously recorded in two contact modes,
topography (a) and friction. (b) The covered area is 40 x 40 pm?. Ferroelectric domains are
visible in the friction mode while the topography mode emphasizes cleavage steps. After Eng
et al. (1997)

cleavage planes, such as GASH and TGS. On atomically flat terraces of the
freshly cleaved surfaces, even small variations in the friction forces can be easily
detected. However, even in these crystals, friction images exhibit a wide diver-
sity and should be interpreted with caution. For example, due to the different
orientation of molecules on the chemically homogeneous terraces comprising
the surface of individual domains, frictional contrast can occur not only
between opposite domains but also inside individual domains (Bluhm et al.,
1995). Long exposure to ambient environment could lead to deterioration of
surface quality and to degradation of the domain contrast.

4.5.5 Domain Imaging via Surface Topography

The conventional topography mode of SFM has been used for domain studies
via investigation of the domain-related surface morphology of ferroelectrics.
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There are several mechanisms which can provide morphological contrast of
ferroelectric domains: (1) topographic steps at domain boundaries due to the
structural difference between positive and negative ends of domains (Nakatani,
1979); (2) inclination of the cleaved surfaces according to the polarity of
domains and the direction of cleavage propagation (Nakatani, 1979; Shur
et al., 1992, 1993b); (3) surface corrugation at the junction of a- and ¢-domains
in perovskite ferroelectrics (Liithi et al., 1993b; Eng et al., 1996; Jona and
Shirane, 1962; Seifert et al., 1995; Munoz Saldana et al., 2001; Eng and
Giintherodt, 2000; Takashige et al., 2000; Gruverman et al., 1998b; Wang
et al., 1998; Ganpule et al., 2002; Gruverman et al., 1997b).

The topographic steps of several angstroms in height have been observed at
the 180° domain boundaries on the cleaved surface of TGS crystals by Bluhm
et al. (1996) and Eng et al. (1999a,b). This effect was explained by the relative
shift of atom positions in opposite domains. An additional factor which can
affect the surface topography and reveal domain structure is the different
etching behavior of positive and negative domains. Selective etching with sub-
sequent topographic imaging has been used to reveal nanoscale domains in
LiNbOj; crystals (Bluhm et al., 1997; Shur et al., 2000b). For hydrophilic
materials, such as TGS and GASH, exposing a sample to humid atmosphere
can reveal domains due to selective surface etching by the water vapor.

Topographic imaging of the etched surface can be used for identification of
domain polarity (Liithi et al., 1994a; Correia et al., 1996; Bluhm et al., 1996).
At the same time, this feature of TGS could be a complicating factor: Fine
morphological structures of ferroelectric domains on opposite cleavage faces of
TGS vary strongly even for domains of equal polarity. Etching of positive
domains can result both in etch hole formation and recrystallization of islands
from the saturated solution at the surface, depending on which molecular layer
is exposed to ambient air after the cleavage. Etch patterns can be easily confused
with domain structure.

Another mechanism which can lead to domain topographic contrast is
surface corrugation at the 90° domain walls separating domains with in-plane
polarization (a-domains) and out-of-plane polarization (c-domains). Using this
approach, a- to c-domain structure has been observed in BaTiO; and PbTiO;
crystals and PZT thin films (Liithi et al., 1993b; Wang et al., 1998; Ganpule
et al., 2002; Gruverman et al., 1997b; Eng et al., 1999b; Shur et al., 2000; Wang
et al., 2000b; Cho et al., 1997b; Cho et al., 1999). A difference between a and ¢
lattice constants of the tetragonal cell produces a lattice distortion at the
junction of a¢- and c-domains and surface inclination as was discussed above
in Sect. 4.3 and illustrated in Fig. 4.3.1a. This inclination can be monitored with
SFM. Thus, SFM can provide a simple and non-destructive method for study-
ing domain patterns in epitaxial ferroelectric films by topographic imaging of
their surfaces. Figure 4.5.7 shows a topographic image of a Pb(Zr »9,Tig 59)O3
film deposited by laser ablation on a LaAlO; substrate. The a- to ¢-domain
arrangement appears as a rectangular structure with height variations in
the range of 1.5-3.5 nm, occurring as a result of twinning between a- and
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Fig. 4.5.7 Topographic
image of a PZT film on a
LaAlOj; substrate showing a
rectangular structure of a-
and c-domains. Courtesy of
Alexei Gruverman

c-domains. A value of surface tilting of approximately 2° was measured at the
90° domain boundaries, which is consistent with the c/a ratio of the unit cell of
the film at room temperature.

There are obvious limitations on the applicability of the SFM topographic
mode for domain imaging. Any treatment of the surface during sample prepara-
tion inevitably eliminates the fine structure of morphological steps associated
with domain patterns. Therefore, only crystals with cleavage planes, like TGS
and GASH, are suitable for SFM topographic studies. Also, since formation of
180° domains cannot be reliably detected on the rather rough surfaces of most
ferroelectric thin films (surface variations associated with the presence of the
domains are much less than surface morphology variations), this method is not
applicable for imaging of domain structure consisting of antiparallel c-domains,
which is of direct interest for investigation of the polarization reversal processes
in ferroelectrics.

4.5.6 Domain Imaging via Nonlinear Dielectric Response
(SNDM )

A purely electrical dynamic method of domain delineation has been developed
by Cho and his coworkers (Cho et al. 1997a,b; 1999; 2002; Odagawa and Cho,
2002). This method, termed scanning nonlinear dielectric microscopy (SNDM),
is based on the detection of the capacitance variation with an alternating electric
field. To measure the capacitance variation, Cho et al. developed a special
lumped constant resonator probe using an electrolytically polished tungsten
needle and a LC resonance circuit operating in the microwave frequency range.
Figure 4.5.8 shows a setup used for SNDM imaging. Application of the mod-
ulation voltage (in the range of 100—1,000 Hz) across the sample leads to the
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Fig. 4.5.8 Probe
configuration in SNDM
(after Cho et al., 1997). The
needle makes capacitor Cg Needle
with backing electrode. The

source of the microwave \ % Specimen
signal (OSC) is connected

Wlth the ring by a lumped 6\/

inductance
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oscillating change AC; in the capacitance between the needle and the bottom
electrode due to the nonlinear dielectric response of the sample with the first
harmonic component proportional to the nonlinear dielectric constant x333:

AC,
AG 3 g cos o, (4.5.7)
Cs K33

where C; and k33 are a static capacitance and a linear dielectric constant,
respectively; the X3 axis is taken normal to the sample surface. The change in
the capacitance is measured by detecting the modulated high-frequency signal
(around 1.3 GHz) of the oscillator using a demodulator and a lock-in amplifier.
The sign of an even rank tensor, such as the linear dielectric constant, does not
depend on the polarization direction. On the other hand, the nonlinear dielec-
tric constant 333 is a third-rank tensor, similar to the piezoelectric constant, so
the sign of k333 changes with inversion of the spontaneous polarization. There-
fore, a map of the polarization sign can be obtained by point-to-point detection
of the field-induced changes in the nonlinear diclectric constant. This method,
as it is designed, allows nanoscale detection of antiparallel 180° domains in the
surface layer with a thickness much smaller than the probe size (<10 nm).
According to Cho and Ohara (2001) sub-nanometer lateral resolution can be
obtained by detecting the higher order nonlinear dielectric constants. However,
in this case the image reflects the state of the material in a yet thinner interfacial
layer. Figure 4.5.9 shows a two-dimensional SNDM image of a- to c-domain
structure in barium titanate single crystal. The sign of 333 in the + ¢ domain is
negative, whereas it is positive in the —c domain. Furthermore, the magnitude of
K333 1S zero in the a-domain (where the spontanecous polarization has no out-of-
plain component so that the k333 component is not induced). It is possible to
measure ferroelectric polarization parallel to the sample surface by detecting
K331 constant (X; axis is chosen and directed among the spontaneous
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Fig. 4.5.9 SNDM image: (a) a sketch of the visualized domain structure and (b) two-dimen-
sional image of the 90° a—¢ domain structure in a BaTiOj3 single crystal. Reprinted with
permission from Cho et al. (1999). Copyright (1999), American Institute of Physics

polarization in the a-domain) using different configuration of electrodes, which
makes SNDM suitable for three-dimensional domain structure reconstruction.

Closely related near-field scanning microwave techniques have been used
for domain imaging and dielectric constant measurements in single crystals
of LiNbO;, BaTiO;, and deuterated triglycine sulfate and thin films of
Bag ¢Sro 4 TiO5 (Gao et al., 1998; Lu et al., 1997; Steinhauer and Anlage,
2001; Steinhauer et al., 1999). However, the lateral resolution has been just
below 1 um due to the size of the inner probe of the resonator.

4.5.7 Domain Imaging via Static Piezoresponse

The next domain imaging method makes use of the piezoelectric properties of
ferroelectrics and therefore is often referred to as piezoresponse. It is based on
the detection of local piezoelectric deformation of the ferroelectric sample
induced by an external electric field. Since all ferroelectrics exhibit piezoelectric
properties, application of an external voltage results in a deformation of the
ferroelectric sample. Depending on the relative orientations of the applied field
and the polarization vector, the sample deformation can be in the form of
elongation, contraction, or shear. For the converse piezoelectric effect, the
field-induced strain ¢; can be expressed as:

& = dijE, (4.5.8)

where d;; is the piezoelectric coefficient and E; is the applied field.
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On the other hand, using the thermodynamic approach it can be shown (see
Chap. 2) that the appearance of the spontaneous polarization Py induces piezo-
electricity or induces new components of the piezoelectric tensor if the para-
electric phase is piezoelectric. Thus, in the ferroelectric phase, one finds

diiy = dy + 21 Qi Ps, (4.5.9)

where y,, is the susceptibility, Q,;; is the electrostriction coefficient, and d,?ij is
the piezoelectric coefficient in the paraelectric phase. In the common experi-
mental situation one deals with centrosymmetric paraelectric phase having
d]?ii = 0. In this situation, the electric field applied normal to the sample surface
(along X3 axis) will lead to the tip displacements due to three piezoelectric
coefficients ds3, dzs, and ds4 (We use a reverence frame with X3 axis directed
along the normal to the sample surface).' As seen from Eq. (4.5.9), for general
orientation of the sample surface, all these coefficients can, in general, have
contributions from all components of the spontaneous polarization. For a
simple case of a BaTiO5 type crystal of tetragonal symmetry with the surface
oriented along a cubic axis of the paraclectric phase the aforementioned coeffi-
cients in the reduced matrix notation can be written as

dy3 = 2)33033 Ps3, (4.5.10a)
d3s = 2733055 Ps1, (4.5.10b)
dyq = 2)33044Ps). (4.5.10¢)

The ds;, or longitudinal piezoelectric coefficient, represents an expansion or
contraction of the sample along the direction of the applied field (normal to the
sample surface). The ds4 and dss coefficients describe field-induced shear defor-
mations of the ferroelectric sample.

The linear relation between the values of the piezoelectric constants and
spontaneous polarization infers that the domain polarity can be determined
from measuring the field-induced strain. In the simple aforementioned case, the
domain polarity can be associated with the sign of the latter. As it follows from
Eq. (4.5.10a), the application of the electric field along the polar direction
results in the elongation of the domain with polarization parallel to the applied
field and in the contraction of the domain with opposite polarization, since
typically Q33>0. The field-induced strain in this case can be written as

A
TL — dssF, (4.5.11)

! The deformations of the sample surface due to d3; and ds; piezoelectric coefficients will not
lead to any tip displacement as far as they are homogeneous in the region sensed by the electric
field of the tip. In principle, these deformations may lead to tip displacements close to domain
walls and grain boundaries.
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where AL is the sample deformation and L is the sample thickness. Equation
(4.5.11) can be rewritten as

AL = —dsyV, (4.5.12)

where V' is an applied voltage. Note that, in this expression, the sign of the
piezoelectric coefficients is correlated to that of the spontaneous polarization in
the domains. Thus as we see, in the considered case of tetragonal ferroelectric,
antiparallel domains with the polarization normal to the crystal surface can be
visualized by monitoring their voltage-induced surface displacement. In general
case, the interpretation of the field-induced surface requires a more cumber-
some analysis in terms of Eq. (4.5.9). The situation can be especially compli-
cated in the case of ferroelectrics exhibiting piezoelectric effect in the para-
electric phase. In this case, if d]?i. is appreciable, the antiparallel domain may not
differ in the sign of the field-induced strain but only in its amplitude.

Due to its extremely high vertical sensitivity, nanoscale topography varia-
tions can be routinely measured in SFM. However, domain imaging based on
detecting the static piezoelectric deformation is difficult to implement unless a
sample has a very smooth surface. In a sample with an average surface rough-
ness of several nanometers per square micron, the static cantilever deflection
due to the piezoelectric deformation (typically of the order of several ang-
stroms) will be superimposed on the much larger deflection signal due to the
surface roughness which will make domain imaging very problematic.

From Eq. (4.5.12) it follows that increasing the imaging voltage can enhance the
contrast between opposite c-domains. However, there is a strict limitation imposed
on this parameter: To perform nondestructive visualization of domain structure,
the imaging voltage should be kept below the coercive voltage of the ferroelectric
sample. In addition, a high imaging voltage will lead to an increased contribution
of the electrostatic signal to the tip-—sample interaction, which in some cases can
obscure the domain image. Given that a typical value of the coercive field in a
200 nm thick Pb(Zr,Ti)O; ferroelectric film is approximately 50 kV/cm, the
imaging voltage should not exceed 1 V, otherwise the imaging process will change
the domain structure by inducing the polarization reversal. In a PZT film with a ds;
constant of about 200 pm/V the surface displacement induced by an external
voltage of 1 V will be only 0.2 nm. Obviously, such a displacement could not be
reliably detected in ferroelectric films where topographic features can be of the
order of several nanometers. The static approach can be applied in some limited
cases, for example, to ferroelectric samples with relatively high values of piezo-
electric constants and coercive fields. Wang et al. (2000b) used this approach to
delineate domains in a doped crystal of Srg 61 Bag 30Nb>Og (SBN) known for a high
concentration of the pinning centers which gives rise to increased local coercive
fields. Due to this feature of the SBN sample, even under an applied voltage of
200 V there exist non-switched c-domains antiparallel to the external field. At the
same time, this voltage is high enough to produce surface indentation of about
2 nm due to contraction and elongation of opposite domains, which makes them
discernible in the topographic mode.
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4.5.8 Domain Imaging via Dynamic Piezoresponse (PFM)

A problem of low sensitivity of a static piezoresponse mode has been circum-
vented by employing a dynamic piezoresponse imaging method based on the
voltage-modulation approach, which increases sensitivity by three orders of
magnitude. In this approach, known as piezoresponse force microscopy (PFM),
an ac modulation (imaging) voltage V' = V; cos wt is applied to the ferroelectric
sample and surface displacement is measured using a standard lock-in techni-
que. In the simplest implementation of PFM technique, one monitors the
vertical vibration of the cantilever, which follows sample surface oscillation.
A domain map can be obtained by scanning the surface while detecting the first
harmonic component of the normal surface vibration (vertical piezoresponse):

AL = ALy cos(wt + ¢) (4.5.13)

where ALy = ds3 V) is a vibration amplitude and ¢ is a phase difference between
the imaging voltage and piezoresponse. As it follows from Eq. (4.5.9), in ferro-
electrics which are not piezoelectric in the paraelectric phase, the PFM signals
from antiparallel domains differ in the phase by 180°. In the case of tetragonal
crystal described by Eq. (4.5.10), since usually Q53 is positive, the signal phase
can be directly related to the domain orientation. With the modulation voltage
applied to the probing tip, positive domains (polarization vector oriented
downward) will vibrate in phase with the applied voltage so that ¢(+) = 0°,
while vibration of negative domains (polarization vector oriented upward) will
occur in counter phase because of the ds; sign ¢(—) = 180°. However, as clear
from Eq. (4.5.9), in ferroelectrics which exhibit the piezoelectric effect in the
paraelectric phase, the sign of ds33 may be the same in antiparallel domains. In
this case, they cannot be delineated by the phase of the PFM signal, and the
information on its amplitude is needed.

The dynamic piezoresponse mode has been developed for detection of polar-
ized regions in ferroelectric copolymer films of vinylidene fluoride and trifluor-
oethylene (Gtithner and Dransfeld, 1992) and quickly became one of the most
widely used methods for nanoscale characterization of ferroelectrics. The pio-
neering studies performed by Franke et al. (1994), Gruverman et al. (1996,
1998a), and Hidaka et al. (1996) demonstrated the applicability of PFM for
high-resolution visualization and modification of domain structure in PZT thin
films.

One of the significant advantages of the PFM method is that it also allows
delineation of domains with polarization parallel to the sample surface (a-
domains) (Ganpule et al., 2002; Eng et al., 1999d; Roelofs et al., 2000). In the
lateral PFM approach (Eng et al., 1999d) a-domains are visualized by detecting
the torsional vibration of the cantilever. Application of the modulation voltage
across the sample generates sample vibration in the direction parallel to its
surface due to the piezoelectric shear deformation. This surface vibration,
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translated via the friction forces to the torsional movement of the cantilever,
can be detected in the same way as the normal cantilever oscillation in vertical
PFM. The PFM amplitudes of the in-plane oscillations (lateral piezoresponse)
are given by

AX()] = d35 V(), (45143)
AXopy = du V. (4.5.14b)

As it follows from Egs. (4.5.10b) and (4.5.10c), in the case of tetragonal
crystal described by these equations, the phase of the lateral PFM signals
directly provides information on the polarization direction in the a-domains.
The information on the vertical and two lateral components of PFM response
can be, in principle, used for the three-dimensional reconstruction of the
domain arrangement. In the case of a BaTiOs-type crystal of tetragonal sym-
metry with the surface oriented normally to a cubic axis of the paraelectric
phase, this can be readily done using relations Eq. (4.5.10). In this simple case,
each component of PFM response controls one component of the spontaneous
polarization. In a more complicated case of an arbitrary sample orientation, a
more involved analysis in terms of Eq. (4.5.9) is required.

It should be noted that to obtain a complete picture of the in-plane distribu-
tion of polarization, X, and X, components of the lateral piezoresponse image
should be recorded by physically in-plane rotating the sample by 90°, in addi-
tion, the quantitative analysis of the lateral piezoresponse signal is rather
difficult due to the complexity of the friction mechanism involved.

Figure 4.5.10 presents experimental results on simultaneous acquisition
topographical, vertical piezoresponse, and lateral piezoresponse images of a
BaTiOj single crystal (a—) (Abplanalp et al., 1998) and PbTiO; multigrain film
(d—f). In both cases the surface normal of the sample is oriented parallel to a
cubic axis of the paraclectric phase of the materials. In image (a), we see a
shaded representation of surface topography, clearly demonstrating a system of
90° domains leading to a surface profile. Dark stripes represent c-domains (Pg is
perpendicular to the surface) and bright stripes correspond to a-domains (Pg
lies in the surface plane). The irregularly shaped regions image topographical
steps in as-grown crystals but could also represent etching figures of previously
existing domains. In (b) the irregular regions are antiparallel c-domains. The
contrast is due to the opposite sign of the longitudinal piezoelectric coefficient.
The gray stripes correspond to a-domains. In (c¢) dark and bright regions are a-
domains with antiparallel Pg vectors; here the contrast is due to the opposite
sign of the shear piezoelectric coefficients. From images (d—f), it is seen that the
grains of the PbTiO; are mainly single domain. Because of the grained structure
of the film its surface is not flat enough to enable a delineation of in-plane and
out-of-plane orientations of the polarization from a topographical image (d).
Grains in the central part of the image exhibit a strong vertical piezoresponse
signal (bright contrast in (e)), while their lateral piezoresponse signal is rather
weak (gray contrast in (f)), suggesting predominantly out-of-plane orientation



160 4 Methods for Observation of Domains

lateral PFM
o § /

B
10pm

lateral PFM

Fig. 4.5.10 Experimental results on simultaneous acquisition topographical, vertical
piezoresponse, and lateral piezoresponse images of a BaTiO; single crystal (a—c) (after
Abplanalp et al., 1998) and PbTiO5; multigrain film (d-f). In topography image (a), dark
stripes represent c-domains (Pg is perpendicular to the surface), bright stripes correspond to
a-domains (Pg lies in the surface plane). The irregularly shaped regions image topographical
steps in as-grown crystals but could also represent etching figures of previously existing
domains. In (b) the irregular regions are antiparallel c-domains. The gray stripes correspond
to a-domains. In (¢) dark and bright regions are a-domains with antiparallel P vectors. From
images (d-f), it is seen that the grains of the PbTiOj; are mainly single domain. The roughness
of the film surface impedes observation of a- and c¢-domains in topographical image (d).
Grains in the center have bright contrast in (e) and gray contrast in (f) suggesting out-of-plane
polarization. Grains in the lower part of the image exhibit gray contrast in (e) and black—white
contrast in (f), which is an indication of the in-plane polarization. The scanning area is 0.9 x
0.9 um?. Courtesy of A. Gruverman and B. Rodriguez

of the polarization vector. On the other hand, grains in the lower part of the
image exhibit gray contrast in (¢) and bright contrast in (f), which is an indica-
tion of in-plane polarization.

In terms of exciting the piezoelectric vibration of the sample, there are two
main approaches in PFM. In one approach, the vibration is generated locally by
applying a modulation voltage between the bottom electrode and the conductive
SFM tip, which scans the bare surface of the film without a deposited top
electrode. A great advantage of this approach is a possibility of establishing
correlation between domain configurations and film microstructure (grain struc-
ture). In addition, this method can be used for nanoscale domain writing and
direct investigation of domain wall interaction with microstructural features,
such as defects and grain boundaries, for local spectroscopy measurements and
investigation of electrical and mechanical coupling between adjacent grains.
Furthermore, this approach offers extremely high resolution, potentially allow-
ing investigation of the microscopic mechanism of the domain wall motion.
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However, the electric field generated by the SFM tip in this configuration is
highly inhomogeneous, which makes quantitative analysis of the field-dependent
parameters difficult. This problem is exacerbated by the likely presence of a con-
tamination layer at the film surface, which increases the resistance of the tip—sample
electric contact. As a result, an increased time constant of the electric circuitry makes
it difficult to extend the experiments on switching behavior to the micro- and
nanosecond range, which is of direct application interest. In an alternative PFM
approach, domain structure can be visualized through the top electrode of a ferro-
electric capacitor (Auciello et al., 1997; Colla et al., 1998a; Hong et al., 1999b;
Gruverman et al., 2003). In this case the piezoelectric vibration is generated in a film
region underneath the deposited top electrode which is much larger than the
tip-sample contact area. The modulation voltage can be applied either by using
an external wire attached to the top electrode or, in the case of a micrometer size
electrode, directly through the conductive SFM tip. In both cases the piezoelectric
displacement is probed locally by the SFM tip. In such a configuration, a homo-
geneous electric field is generated throughout the ferroelectric film, which allows
quantitative treatment of domain wall dynamics and investigation of polarization
reversal mechanism in ferroelectric capacitors. Due to the reduced time constant,
fast pulse switching and transient current measurements can be accomplished in
submicron capacitors, thus making PFM suitable for memory device testing. A
more detailed discussion of this technique, which is of primary interest for monitor-
ing switching in thin film capacitors, can be found in Sect. 9.8 which is devoted to the
SFM investigations of polarization reversal in ferroelectric films.

4.6 Polarized Light Microscopy Based on Unperturbed Linear
Optical Properties

Now we address the question how to distinguish domains by polarized light
microscopy using methods based on linear optical properties of a ferroic crystal:
birefringence, optical activity, and anisotropic light absorption. It is assumed
that the crystal or its parts are not subjected to any external forces or to fields
arising due to the presence of the domain structure itself; these issues will be
mentioned in the subsequent section.

4.6.1 Birefringence
If a ferroic material is transparent, the most natural thing to do is to place a

plate-like sample on the stage of a microscope and observe it in transmitted
polarized white light.> Parameters that can be easily changed are mutual

2 Having made this statement, one has to wonder why this was not done in the earliest stages
of investigations of crystalline plates of Rochelle salt—in particular when dielectric hysteresis
was discovered (Valasek, 1921). The more so, that later Valasek demonstrated his very high
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orientations of polarizer, analyzer, and the crystal itself. In order to obtain
information on domains, the domain states must be distinguishable by their
optical properties and in this section we have in mind unperturbed properties:
Those determining propagation of light falling onto an ideal crystal to which no
forces of mechanical or electrical character are applied—not even forces which
could be generated by boundary conditions. To each domain state a symmetric
polar tensor of second rank B;; determining the optical indicatrix is ascribed.
Distinguishing domains by their indicatrices is possible mainly for ferroelastic
domain pairs only, since both strain and optical permittivity are represented by
symmetric second-rank tensors with the same transformation properties.
Exceptions are offered by materials which allow for the spatial dispersion
effects discussed in Sect. 4.6.2. Except for these rather special cases, the number
of states distinguishable by optical indicatrix in a given ferroic species equals the
number of ferroelastic domain states and Tables B.1 and C.1 and tables of
Appendix D can be used for its determination. The mentioned tables enable one
to find quickly such cases. As always, tensors describing both the mentioned
optical properties should be expressed in one coordinate system common to all
domain states to be distinguished and obviously the system of the phase G is the
most practical. To determine the best conditions for obtaining optical contrast
delineating the domains in question is then the task of linear crystal optics. The
latter is a classical topic highly developed in optical mineralogy on which there
are a number of excellent monographs (see, e.g., Bloss, 1961; Wahlstrom, 1979).
Here we will not go into any details but include a number of remarks specific to
the task of resolving domains.

Spatial resolution is of the order of half a wavelength of visible light, and
optical microscopy can successfully compete with a number of methods which
may be more demanding as for conditions of sample preparation. Here we
require properly oriented transparent samples with optically flat surfaces.
These conditions can be usually met with single crystals but not with samples
of ceramic materials. There, the presence of grain boundaries, pores, and
generally a large density of ferroelastic domains are complicating factors lead-
ing to pronounced light scattering effects. The need to understand the behavior
of domains under applied electric field in some ceramics used for electromecha-
nical applications has made optical studies of ceramic samples desirable (Oh
et al., 1994). One possibility is to isolate a large enough single crystalline grain in
a thin sample; then the conditions come close to those for a crystal. Targeted
manufacturing processes and a careful sample preparation are required
(Schmid, 1993). The other possibility which has been yet very little utilized is
observations in reflected light.

level in optics by many papers, as well as by his valuable book Introduction to Theoretical and
Experimental Optics (John Wiley & Sons, 1960). Perhaps lack of equipment, or preparation of
sample surfaces ....... By performing such observations, ferroelectrics could have “beaten”
ferromagnetics by 10 years (Fousek, 1994).
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The basic required instrument is a good-quality optical microscope for
polarized light, equipped with a calibrated compensator of either Berek or
Sénarmont type to measure retardation. It may be of advantage if the stage or
the sample holder is more universal, allowing for tilting of the crystal plate.
Many optical studies are performed at elevated or at low temperatures, using
heating stages or optical cryostats. Data can be obtained for temperatures up to
several hundred degrees centigrade or down to the liquid helium temperature;
then objectives are used with long working distance of up to several centimeters.
Sample holders can be equipped with electrical contacts or devices which make
it possible to apply electric field or uniaxial stress on the sample. Periodic
dynamic domain processes can be observed using stroboscopic illumination
(Fousek and Brezina, 1960; Brezina et al., 1961), and this method allows one to
achieve maximum spatial resolution together with outstanding time resolution
when very short light pulses are used. Instead of observations by naked eye the
use of CCD cameras is now becoming widespread; a high-resolution CCD
microscope (Oh et al., 1994) makes it possible to reveal details and to monitor
and record dynamic domain processes and proceed later with their analysis.

In most cases the optical contrast originates from the fact that in different
domains the optical indicatrix is differently oriented. Let us recall some basic
concepts. The behavior of light propagating through a nonabsorbing medium is
customarily described by the indicatrix

B[ix,-xj = 1, (461)

where B;;=dE;/dD; are components of optical impermittivity. In the principal
coordinate system, the equation of this ellipsoid simplifies to

Bixi + Box3 + Bix =1, (4.6.2)
where B, = 1/ n,z, n; are the principal refractive indices and their differences
Aljl’l =n;—n; (463)
define the values of principal birefringence. Polarized light microscopy is cus-
tomarily performed with plate-like samples. Intersection of the indicatrix (4.6.1)
with the major plane of the sample is an ellipse whose main axes are xy, x;; in this
coordinate system it is described by

Bixi + Bix] = 1. (4.6.4)

Propagation of the light beam perpendicularly to the plate is governed by
refractive indices ny, n; given by B; = 1 /n%, i=k, l. The difference

Agn = ny — ny, (4.6.5)
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i.e., the birefringence for the given orientation of the plate, determines the
phenomenon of double refraction. Now we are interested in the case where
the plate contains domains representing two domain states 1, 2 of the given
ferroic crystal, whose indicatrices differ in orientation:

B'xixj=1 and B xp; = 1. (4.6.6)

The tensor B;; transforms in the same way as strain. Therefore, observation
methods based on differences in birefringence can only be used for ferroelastic
domain pairs. Tensor components are related by the transformation

By = ayaBy), (4.6.7)
where a;. is the matrix of direction of cosines corresponding to one of the
twinning operations which brings domain state 1 into domain state 2. Intersecting
both indicatrices with one plane representing the crystal plate results, in a general
case, in two ellipsoidal sections differing in both the orientation of main axes as
well as in the value of birefringence. Both these quantities may play a vital role in
distinguishing the two domain states and this is in fact the whole essence of
optical methods based on double refraction. They have two applications. If the
symmetry groups G and F are known, we also know the matrix a;; and our task is
to design the arrangement so that these two indicatrices provide a good optical
contrast. If we see domains but the information about G, F is limited, we try to
analyze mutual relation of the indicatrices to determine the twinning operations.

Consider a birefringent crystal plate of thickness d whose major plane is parallel
to the x;, x; axes placed between crossed polarizers. When illuminated by mono-
chromatic light of wavelength / and intensity /,, the transmitted intensity is

I = Iy sin® 20 sin*(ndAny/7), (4.6.8)

where 0 is the angle between the vibration plane of the polarizer and the
vibration direction of the larger of refractive indices n, n,. If the crystal plate
contains domains representing a ferroelastic domain pair, the optical contrast,
i.e., the difference in intensities 7, may be of one or more of several origins. The
domains may differ in their extinction directions (i.c., angles ), in the values of
Any; or in the sign of the latter. Rotating the sample between crossed polarizers
is usually sufficient to establish contrast in the two first-mentioned cases while a
compensator, adding a path difference, is required in the last case. Which of
these cases are realized depends on the first place on the transformation (4.6.7).
However, we have to recall that when the ferroelastic species is given, the
transformation matrices a;; are defined in the parent clamping approximation;
to ensure coexistence of two domains representing two ferroelastic domain
states, a small rotation given by the clapping angle must be added. We shall
illuminate this point on two examples discussed below.

What has been said in the preceding paragraph refers to the bulk of neigh-
boring domains. If they are separated by a wall which is inclined with respect to
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the plate normal, the light beam hitting the wall propagates successively
through the two domains. In this case in the region on which the inclined wall
projects, we may observe interference effects connected with the wedge-shaped
form of both domains above each other. But sometimes a ferroelastic wall
perpendicular to the plate is often visible by itself, even in nonpolarized light.
The apparent thickness of a 90° wall in tetragonal BaTiOj is several tenths of a
micrometer (Little, 1955). Theoretically, there is a possibility to distinguish
optically domain boundaries themselves since obviously because of the
deformed crystal lattice they differ in optical permittivity from the surrounding
domains. However, most data indicate that domain walls have thickness
far below optical resolution. Thus the direct visibility of a ferroelastic wall has
little to do with its real width. It is mediated by reflection and refraction of light
beam which is not perfectly parallel to the wall. Corresponding refraction
phenomena have been studied for several materials (Tsukamoto et al., 1982,
1984; Koralewski and Szafranski, 1989).

Before giving several examples of typical situations, we wish to discuss the
so-called spontaneous birefringence, a very often used concept. Let the indicatrix
in the parent phase be

BY xix; =1 (4.6.9)
and that in domain state 1 of the ferroelastic phase be
BWxx =1 (4.6.10)
[/ A e

which can be considered as the indicatrix in the parent phase which has been
“deformed” due to the phase transition. This deformation can be described by
the spontaneous changes of impermittivity, namely

3By (T) = B (T) — B (extrap.), (4.6.11)
where the last term denotes the value extrapolated to temperature 7. It is easy to
realize that 5581(-;) (7T) is in fact the exact analogue of natural spontaneous strain
&s;. Since By and ¢; transform in the same way, Table C.1 and Appendix D,
which provide information on ¢;;, can be used to specify components of dsB;; for
all ferroic species. Some components B,gw can equal zero by symmetry; then the
components 5581(-]-1) (T) are newly acquired in the ferroic phase and we call them
“morphic” components. It can be shown (Fousek and Petzelt, 1979) that there
are five different possible types of how the indicatrix of the parent phase is
deformed due to the phase transformation. They fall into three categories:

1. The indicatrix equation contains only diagonal terms in both phases so that
5SB§jl) =0 for i # j. Both phases belong to cubic, optically uniaxial, or
orthorhombic systems. Changes 5SBI<-jl) in diagonal components lead to the
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changes of refractive indices dsn; = —(1/2)n}dsB; and corresponding
change of birefringence

OsAju = Osu; — dsi (4.6.12)

is referred to as the spontaneous birefringence. Note that because of relation
(4.6.11) it may only represent the difference between the actual birefringence
at the given T and the extrapolated birefringence. If in the parent phase the
given component is zero, we speak about the morphic birefringence.

2. One of the nOHdlngl’ldl components 5SB( = 0 (i # ). To be specific, let us
take 55312 # 0; other choices would lead to dnalogous conclusmns Now,
three cases are possible. (2a) n; =n, and 5SB( 1) = 55322 Then the main
indicatrix axes in the ferroic phase make a fixed angle of 45° with the old
axes. In this new coordinate system we have three different morphic principal
birefringence values for cubic to orthorhombic transitions (n; = n, = n3 in the
parent phase) and one principal morphic birefringence dsAn,, for the tetra-
gonal to orthorhombic transition (n; =n, in the parent phase). (2b) n; =n,
and 5SB§1 # 5sB§2 Now the indicatrix rotates about the axis 3. For cubic to
monoclinic transitions three morphic principal birefringence values occur;
for tetragonal to monoclinic transition only dsAn;, is nonzero. (2c) ny # n,.
Since only one nondiagonal 55322 # 0, this is the case of orthorhombic to
monoclinic or monoclinic to monoclinic transitions. No birefringence is
morphic; the indicatrix rotates about the ¢-axis. For monoclinic to mono-
clinic transitions, this rotation is already allowed by symmetry in the parent
phase and the definition of “spontaneous” rotation is similar to that given by
Eq. (4.6.11).

3. In the general case all dgB;; are nonzero. This would correspond either to
transitions into a triclinic ferroic phase or to transformations in which the
indicatrix axes rotate by a fixed spatial angle, changing, e.g., into body
diagonals of the parent cubic cell.

It should be pointed out that since transformation properties of strain ¢; and
optical impermittivity B;; are the same, most of what was said about sponta-
neous strain can be transferred into the realm of optics. However, in practice the
two tensor properties are dealt with in a different way. This is true in particular
when the concept of spontaneous birefringence is used, since it refers to the
coordinate system of the phase F.

We now give several examples of typical situations illustrating how optical
contrast can be achieved between two domain states based on Eq. (4.6.8). Let us
first consider the species m3m — 4 mm. The spontaneous changes of B;; can be
extracted from Table C.1 for the subgroup 4.mm. We have in mind a crystal
plate perpendicular to the cubic z-axis of the parent phase, in which two domain
states S, S represent equivalent subgroups 4,mm and 4,mm, respectively. For
the domain state S the nonzero spontaneous changes of the Bj; tensor are
obviously 6By, =a and 0B, = 6 B,, = b. The twinning operation is a rotation by
90° about the c-axis so that for the domain state Sg we have 0B, =JB..=b and
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0B,,=a. While in the cubic phase the equation of the indicatrix was B, *+ )y +
2% =1, for the two domain states we now have the following cross-sections of the
indicatrices:

Sa 1 (Bo +b)x* + (B + a)y* = 1, (4.6.13a)
Sg : (Bo + a)x* + (By + b)y* = 1. (4.6.13b)

The principal axes for both domain states will be identical with the cubic axes
while the birefringence values

Any,(Sa) = ny —ny, = —(1/2)n3(b — a), (4.6.14a)
Any,(Sg) = ny —n, = (1/2)n (b — a) (4.6.14b)

differ only in sign. Because of this and since the principal axes are the same, the
transmitted light intensity given by Eq. (4.6.8) will be the same for both domain
states. This is, of course, only true in the parent clamping approximation. In
fact the extinction orientations differ by the clapping angle ¢. The geometry of
this case is shown schematically in Fig. 4.6.1a. The clapping angle is usually too
small to become essential in standard observations. The situation changes when
an additional birefringent plate is inserted adding the value A to the optical
paths for both domain states. Then the total optical paths will be A + [(1/2)n,°
(b—a)]t and A —[(1/2)ny’ (b — a)]t, respectively, where 7 is the thickness of the
sample and a high contrast in intensity of the transmitted light will be achieved.
This is how 90° domains in BaTiO5 and other tetragonal perovskites can be
easily distinguished.
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Fig. 4.6.1 Schematic representation of indicatrix sections for different domain pairs. See text.
The sections of the indicatrix ellipsoids specify the symmetry of the observed planes of
neighboring domains. ¢ is the clapping angle, « is the extinction angle
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When in the given crystal plate one of the domain states is Sc corresponding
to the subgroup 4.mm, the domains will be easily distinguishable as shown in
the Fig. 4.6.1b.

As a second example we consider the species 23-2, the case of lagbeinites. We
start again with the isotropic indicatrix By (x> + »* + z%)=1 of the parent
phase. Consider two domain states S, Sp corresponding to positive and
negative spontaneous polarization along the z-axis, i.e., the subgroup 2.. Here
the twinning operation is the twofold axis along x. From the form of sponta-
neous strain specified in Table C.1 we easily deduce that for both domain states
0Byx=a, 6B,,=b,dB.. = cwhile 0B, = d for the state S but 0B, =—d for the
state Sg. Their indicatrices now read

Sa: (Bo4a)x* + (By+b)y* + (B + ¢)2* +2dxy =1,  (4.6.15)
Sp: (By +a)x* + (By + b)y* + (B + ¢)z* — 2dxy = 1.

We now have in mind a plate perpendicular to the z-axis. Principal axes of
the indicatrix sections for the two domain states make an angle o« with the
original axes x, y given by

tan o = ii. (4.6.16)
a—>b
Thus the difference in extinction angles is 2z and both domain states can be
easily distinguished between crossed polarizers. The clapping angle ¢ adds to
the value of «, as shown in Fig. 4.6.1c.
Spontaneous birefringence is given by (Glogarova and Fousek, 1972)

1+

2 bz
Anyy = —n} (d—i— a ) = —njld|

4.6.1
< L @617)

2(tan 205)2]

where the prime symbol emphasizes that birefringence is measured with respect
to the new principal axes. Plates perpendicular to the z-axis containing other
pairs of domain states in this species which involve subgroups 2., 2, or 2., 2,
differ in the value of birefringence only. These pairs actually correspond to the
R cases defined in Sect. 2.2.4. Figure 4.6.1d portrays this situation.

It is essential to note that in this case mutual rotation of the two indicatrices
is independent of the clapping angle which is determined by spontaneous strain.
Both effects may add up. This situation occurs often and by measuring the angle
between extinction positions alone the shear component of spontaneous strain
cannot be reliably determined. The problem was addressed by Koralewski and
Szafranski (1989) who specified the angles between extinction positions as well
as the clapping angles for two materials. In Rochelle salt (species 222-2,) at
T=280K ¢=3',20=2°30". In lithium ammonium tartrate (species (222-2,) at
about 80 K ¢ =2°18', 200 =6°.
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Let us finally inspect the species 42m — mm2, the case of KH,PO, or
Gdy(Mo00Oy); crystals. Using the designation of the previous example, we have
in this case @ =5 so that in the parent clamping approximation the principal
axes of both indicatrices make an angle of 45° with the tetragonal axes. In this
approximation the extinction orientations of both domain states coincide but
again as in the first quoted example, the indicatrix cross-sections are rotated by
90° with respect to each other. To achieve a good contrast a compensator
adding an optical path has to be used. In addition, the clapping angle may
also contribute to the contrast. The situation is depicted in Fig. 4.6.1e.

Analysis of birefringent properties of individual domain states and orienta-
tional relations between the indicatrices together with the orientations of
domain walls represent powerful methods for determining the species of a
particular ferroic, even before a thorough X-ray structural analysis could be
performed. Out of many available examples we mention the determination of
the species pertinent to BiyTizO1,. It was the optical analysis (Cummins and
Cross, 1967, 1968) of coexisting domain states observed in two mutually per-
pendicular plates that led to the recognition of the species 4/mmm—Peds—m.,,.

All that has been said in this section was formulated as if we had in mind
static observations. Very often the most valuable information about domains
can be obtained by monitoring the differences in domain structures when
external forces are or are not applied. Fast kinetic domain processes induced
by periodic forces are conveniently investigated by microscopic observations in
polarized light with a stroboscopic illumination. Motion of ferroelectric—fer-
roelastic domain walls in an ac electric field (Stadler, 1966; Fousek and Brezina,
1960; Shur et al., 1989a) was studied in this way. The method makes it easily
possible to attribute particular domain events to their macroscopic manifesta-
tions such as Barkhausen pulses (Brezina et al., 1961). An alternative to strobo-
scopy is a CCD microscope (Mulvihill et al., 1997).

Optical distinction of domains based on birefringent properties may have a
number of practical applications in displays, optical valves, or as a background
for nondestructive reading of ferroelectric memories.

4.6.2 Spatial Dispersion

In short we wish to mention a special case where domain states can be distin-
guished also by a linear optical property which is different from the simple
linear birefringence discussed above. Additional possibilities for optical deli-
neation of domains occur when the effect of spatial dispersion is taken into
account, i.e., when one takes into account that the optical polarization at a
given point of the crystal depends not only on the local electric field at that point
but also on its value in the surroundings, i.e., on its spatial derivatives:

9E;(r)
axk

07 E;(r)

. 4.6.18
8xk8x| ( )

Pi(r) = o Ej(r) + 7 + B
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Here the term containing the first derivatives is responsible for the phenom-
enon of optical activity, which will be addressed in detail in the next section. The
term containing the second derivatives describes an effect of spatial dispersion
different from optical activity (often shortly called spatial dispersion). The
tensor controlling this effect, B, is of the same symmetry [77?)? as the tensor
of photoelastic constants. This effect contributes to optical permittivity of the
material with a term proportional to f;,,k/k,, where k; are the components of
the light wavevector. This means that, in some experimental situations, the
natural birefringence can be observed in cubic crystals, which is induced by
effect of spatial dispersion.

From the point of view of domain observation, this effect can enable deli-
neation of the domains which differ by a tensor of [*]* symmetry. Species
where this effect could become essential are evident from Tables 2.2.1 and 2.2.2.
Crystals undergoing a phase transition within the cubic system, e.g., those
representing species 432-23 are the best candidates. We know of no cases
where the spontancous birefringence based on spatial dispersion has been
used for domain observation. However, low-angle twins in cubic crystals of
Ni;B,0 ;]I with the symmetry 43m have been delineated on the basis of this
effect (Pastrnak and Cross, 1971).

4.6.3 Optical Activity

We now come to one additional tensor property which may serve for distin-
guishing domains in a polarizing microscope, namely optical activity. As was
mentioned in the previous section, in terms of the constitutive equation, the
effect of optical activity is associated with the lowest gradient term in it. Taking
into account this effect results in a modification of the evolution of polarization
of light when it travels across a crystal. Customarily, this effect is treated in
terms of the so-called gyration tensor g; that can be expressed in terms of the
third-rank tensor y;; from Eq. (4.6.18) (see, e.g., Nye, 1992; Agranovich and
Ginzburg, 1979). The gyration tensor is an axial one. Therefore, its components
in two domain states (A4), (B) are related by the transformation

g = +arag))’ (4.6.19)

in which the sign depends on whether the hand of the axial systems is retained
(sign +) or changed (sign —). In fact, the sign depends on whether the twinning
operation contains reflection or if it is a pure rotation. Gyration tensor has
nonzero components in 15 crystal classes, and in ferroic phases with these
symmetries the optical activity might be useful for optical distinction of
domains if the corresponding domain states differ in g;;. For species of proper
ferroelectrics, Shuvalov and Ivanov (1964) performed a crystallographic ana-
lysis of effects connected with gyration.
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It is important to realize that if, in a crystal, light propagates in a general
direction with respect to the principal indicatrix axes, the effects of optical
activity are superimposed onto the effects of birefringence and can be regarded
as a small perturbation of the latter (Nye, 1992). The task of determining the
gyration tensor components for such propagation directions is difficult and in
fact there are many controversies in literature concerning the validity of pub-
lished data for a number of ferroelectrics. Therefore, in practice, when we face
the task to optically distinguish domains in a ferroelastic domain pair,
obviously the simple method will be based on differences in the indicatrices,
even if the two domains differ also in the tensor g;;.

If the domain pair is nonferroelastic, optical activity may become important.
Tables 2.2.1 and 2.2.2 enable one to see immediately in which ferroic species
nonferroelastic domain pairs can be distinguished by optical activity and to
show how many components of the gyration tensor can be used. Note that if the
two domain states differ in enantiomorphism, they also differ in the optical
activity tensor, but not vice versa. Again, however, for a general propagation
vector the birefringence effects will be overwhelming. We shall see later that
changes of optical activity due to domain reorientation have been observed for
a number of biaxial crystals (see, e.g., Kobayashi, 1991) but the effect is not
suitable for imaging domains, being overshadowed by birefringence effects. A
qualitatively different situation arises when the light propagates along an optic
axis for which birefringence is zero, i.e., we have in mind a crystal plate oriented
so that n,=n; in Eq. (4.6.5). Then the incident linearly polarized light wave
splits into two circularly polarized waves, one right-handed and the other left-
handed (see Heising, 1947 for definitions of handedness and Otko et al., 1989
for more general discussion of optical activity), which propagate with velocities
¢/nyigne and c¢/mieg, respectively. On leaving the crystal plate of thickness ¢ they
combine in a linearly polarized wave whose vibration plane is rotated with
respect to that of the incident plane by the angle

Tt
¢ = T (Pieft — Mright) (4.6.20a)
or
¢ = = Go, (4.6.20b)
)»()n

where /g is the wavelength in vacuum and # is the refractive index that the
crystal would have in the absence of optical activity. The ratio of ¢/t is often
referred to as the rotatory power p for the given orientation. The value of G
depends on the direction cosines /; of the optical wave normal. It is defined by

G() = gi]'lilj7 (4621)

where g;;=g;; is the gyration tensor.
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While optic axes with general orientations can be found even for optically
biaxial phases, the real strength of the effect will manifest itself in cases of
optically uniaxial crystals when plates with crystallographic prominent orienta-
tions are not birefringent but can be optically active.

Crystals of PbsGe;O,; representing the species 6 — Pd — 3 offer the best
known example of the effect. The two domain states have the same uniaxial
indicatrix with the optical axis z but differ in sign of the gyration tensor compo-
nents g;; = g, and gz3 and can be easily distinguished in polarizing microscope
on the basis of Egs. (4.6.20) and (4.6.21). The effect can be observed for crystals of
good quality (Dougherty et al., 1972; Shur et al., 1985b); an example is shown in
Fig. 2.2.8.

Related observations were made even earlier for crystals of quartz. However,
there it is not domains (“electrical twins”) which can be distinguished by optical
activity but rather growth twins (“optical twins”) existing already in the parent
phase.

4.6.4 Optical Absorption and Observation in Reflected Light

In the preceding discussion the concept of optical absorption has not been
mentioned at all. But in fact the optical impermittivities are complex quantities
whose imaginary parts reflect absorption phenomena. Strictly speaking, a
complex refractive index n* =n — ik should be used to characterize a material.
Here k is the extinction coefficient which determines the ratio of intensities /and
Iy of transmitted and incident light, respectively:

k=1 <ﬁ> (4.6.22)

“am \7

Here 4 and ¢ are the light wavelength and the sample thickness, respectively.
In some materials and depending on the light wavelength, the extinction coeffi-
cient and thus optical absorption may be strongly anisotropic, the phenomenon
of linear dichroism. Turmaline provides a well-known example of linear dichro-
ism. In some ferroics—for instance in those containing transition metal ions
with incomplete d-shells—the effect of anisotropic dichroism is superimposed
on the effect of linear birefringence and may contribute to optical distinguish-
ability of ferroelastic domains. Propagation of light in such a system has been
discussed by Rivera (1993). The effect was found to give a contribution to
domain distinction in ferroelastic K3;FesF;5 (Ishihara et al., 1993).

Domains can also be observed in reflected light. The real strength of these
observations manifests itself when ferroelastic domains in nontransparent
materials are investigated. Ferroelastic domains in crystals of YBa,Cu;O7_,
were investigated in this way by Schmid et al. (1988) and others (Vlasko-Vlasov
et al., 1988; Rabe et al., 1989); particularly appealing color plates of domain
patterns in this material have been published (Rabe et al., 1993). It was observed
that for complexes of small domains the analysis of reflected patterns may not
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be simple. When investigating stacks of lamellar domains with a high density of
domain walls such that the domain width is close to or below the resolution of
the microscope, the reflectivity may mimic a symmetry inconsistent with the
X-ray results. One of possible interpretations refers to the possibility that the
domain wall itself is characterized by a complex refractive index which is
slightly different from that of the bulk crystal (Rabe et al., 1990; Schmid, 1993).

4.7 Optical Methods Based on Higher Order Optical Properties

In the previous section we dealt with optical differences of domains, most of
which could be observed under a microscope using linearly polarized light. It was
assumed that the employed optical properties were such as given by basic tensor
properties of individual domain states, the only exception being the existence of
the clapping angle to bring domains into physical contact. No external forces
were assumed to be applied. Therefore, the choice of tensor properties available
to distinguish domains was relatively narrow. If, however, domains are placed
into an electric field or are mechanically stressed, additional properties may lead
to optical contrast if the two domain states differ in some components of electro-
or elasto-optic tensors. Such fields may be applied intentionally but very often
they may be present due to boundary conditions of the sample or due to defects.
The basic information—which fields can be helpful to image domains—is subject
to a similar analysis as for unperturbed properties. We ask, for example, how the
electro- or elasto-optic tensors are transformed from one domain state to the
other and which field component, when applied, would cause differences in
induced birefringence. Twinning operations are helpful in performing this task.
Methods based on perturbed optical properties can be very useful and in the
following paragraph we mention several examples of such approaches.

Still other optical methods for domain visualization rely on nonlinear optical
characteristics. Even more involved optical attributes represent photorefractive
properties of crystals. Both of them require fairly advanced experimental setups
and will be treated in the subsequent sections.

4.7.1 Perturbed Linear Optical Properties: Electro-optics
and Elasto-optics

An illustrative example of the approach based on linear electro-optic effect was
given by Pique et al. (1977). In crystals of NH4Cl (species m3m — d — 43m) the
two domain states differ in the sign of the electro-optic coefficient rg3. When an
electric field is applied along the [001] direction, the Bj; tensor is modified as

53(, = :t}’(,3E3, (471)

where the sign depends on the domain state. A laser beam propagating along
[110] direction experiences optical retardation which is of opposite sign in the
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two domains. This produces optical contrast similarly as if the domains would
differ in spontancous birefringence. Clear pictures of domain patterns were
obtained in fields of 20 kV/cm.

The application of properly oriented electric field was used to visualize domains
also in several classical ferroelectrics. Borodina and Kuznetsov (1984) applied the
field normally to the c-axis of tetragonal BaTiOj; crystals. This leads to an inclina-
tion of the indicatrix by an angle whose sign differs for domains with antiparallel
Ps. In crossed polarizers, domains cannot be distinguished when the light beam is
strictly parallel to the c-axis. However, inclining the sample so that the beam
propagates along the optical axis in domains of one sign, the indicatrix of the
other domain becomes inclined with respect to the beam and optical contrast is
obtained. Otko et al. (1993a) used the same method to image domains in LiNbOs.
These authors have also shown that the required electric fields can also arise due to
the pyroelectric effect. Domain walls which are not parallel to Pg carry bound
charge which can be expected to be compensated by trapped free carriers. A fairly
quick cooling of lithium niobate sample results in an increase of Pg so that
compensation is violated and the excess bound charge induces strong internal
field. This in turn reduces the symmetry of optical indicatrix (“pyroelectrooptical
effect”) and domains become visible in polarized light. In lithium niobate, these
internal fields can survive for several days. These observations show several
characteristic features. The distribution of visible anomalies is extremely uneven,
dependent on the domain shape and observation conditions. Induced optical
anomalies are strongly concentrated in the close vicinity of domain walls so that
one can see the visualized domains as shining transparent envelopes. Superim-
posed on these images are complicated interference patterns. Otko and coworkers
(Otko and Stasyuk 1995; Otko et al., 1997) worked out a theoretical analysis and
computer simulation of such domain images based on the assumption that all
refractive index anomalies are concentrated within a thin layer near domain walls
while the bulk of the domains remains in an undisturbed optically uniaxial state.

The electro-optical method was also employed to map domain patterns in
KTiOPO, (Bierlein and Ahmed, 1987; Ivanov et al., 1994); while such studies do
not offer a very high resolution compared to surface techniques used for this
material (etching, LC decoration), they have the advantage of providing some
information about the representation of domain states along the optical path of
the propagating light beam.

Another remarkable example of employing perturbed linear optical proper-
ties was offered by Aizu (1973b) for quartz. In the species 622—ds—32, the two
domain states (we have in mind Dauphiné twins) differ in components of the
elastic compliance matrix and therefore also in components of the elasto-optic
tensor 7,,, defined by

OB, = Ty0p, (4.7.2)

which is of the same rank but of lower symmetry. The component m4; is of
opposite sign for different domains. This makes possible the delineation of
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domains. A crystal plate with (011) faces is observed in polarized light. The
uniaxial pressure applied along [011] causes rotation of the indicatrix whose
sign differs for the two domains, leading to a pronounced optical contrast.
Dolino (1975) employed a similar technique and described in detail the experi-
mental setup which could also be combined with observing domains on the
basis of their electro-optical properties.

It is obvious that in addition to these engineered experiments, fields in a
multidomain sample may be present due to a number of natural causes. In the
early stages of domain investigations it was frequently noticed that domains
were seen in polarized light when they should not have been. The most often
encountered examples are those of 180° domains in tetragonal BaTiO3. Merz
(1952, 1954) observed dense patterns of them contained between parallel 90°
walls, in light propagating nearly perpendicular to the polar c-axis. There are
many possible sources of such effects. Even slight changes of temperature may
produce an enormous electric field in an isolated ferroelectric crystal if pyro-
electric coefficients of the particular material are high. Alternatively, the field
may result from freshly formed domain patterns containing walls with uncom-
pensated bound charge or simply from the charge —divPg located at the crystal
surface. Similarly, complicated ferroelastic domain patterns necessarily result
in stress fields. All these fields may lead to on optical contrast between domains
which is not compatible with their unperturbed properties.

We now mention observations of domains or domain walls under dynamic
conditions. The real breakthrough in studying polarization reversal process in
BaTiO; was the discovery made by Miller and Savage (1959a) who found that
180° domains produce an optical contrast when placed between crossed
polarizers and viewed along the polar direction in white light. These and the
later data (Merz, 1956; Miller and Savage, 1961; Brezina and Fotcenkov,
1964) relate to observations of domains which have been recently formed or
modified by an applied electric field. Being observed through transparent thin
evaporated gold or liquid electrolyte, the reversed domains generally
appeared darker than the surrounding regions. Nakamura et al. (1963)
obtained very distinct pictures of antiparallel domains in the same geometry;
again, these were only visible for a short time after they had been formed by
applied field. Similarly, Kobayashi (1967) observed narrow 180° domains
during their growth process in an applied electric field in a crystal free of 90°
domains, in light propagating nearly perpendicular to the c-axis. Later, simi-
lar observations were reported by Sinyakov et al. (1972) in samples about 2 um
thick. All these observations corroborates with the X-ray diffraction data for
BaTiO3;, which suggest that the freshly switch arecas are optically biaxial,
probably of monoclinic symmetry (Kobayashi et al., 1963).

The lesson that can be deduced from the described experiments is that even if
the simple symmetry analysis indicates that domain pairs in a particular mate-
rial could not be optically observed directly, there may be many ways how to
circumvent this obstacle and still use the basic optical equipment.
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4.7.2 Nonlinear Optical Properties

We have seen that restricting ourselves to “unperturbed” optical properties,
linear optics can give information on nonferroelastic domains only in rare cases
when spatial dispersion effects can be applied. New possibilities are offered by
nonlinear optical properties and we first give a very brief introduction to the
topic. Noncentrosymmetric classes allow the existence of nonzero components
of the nonlinear susceptibility yj;" in the relation

PNt — kaLEjEk, (4.7.3)

Considering electric field at optical frequencies, this nonlinear dependence
leads to a number of phenomena depending on the frequencies of the fields.
Here we are interested in just one of them, generation of the second optical
harmonics (SH). It is governed by tensor xgﬁ(L(Zw) which is symmetric in the
indices j, k so that its symmetry is the same as that of the piezoelectric coefficient

dy. Assume that the incident light beam propagates along the z-axis, i.e.,
E(w) = Ey cos(wt — ¢;2), (4.7.4)

with velocity w/q; = wn/c. For simplicity we omit indices. To avoid diffraction
from the edges, the beam cross-section must be smaller than the entrance face of
the sample; in turn, the thickness of the latter must be small enough to avoid
broadening of the beam due to diffraction. By virtue of nonlinear properties of the
material at each location the second harmonic polarization wave (“source wave”

P = yN (2w) E} cos(2mt — 24, 2) (4.7.5)
is generated. It serves as a source of a field wave at a frequency 2w

EQw) = E) cos(2wt — ¢z2), (4.7.6)

whose amplitude E; is proportional to y™". Because of the dispersion, n(2w) #
n(w) this wave propagates with a velocity different from the source term, i.e., ¢
# 2¢,. Harmonics generated at different parts of the crystal interfere. This
interference is destructive when the propagating wave covers a distance which
is an even multiple of the coherence length

s A

e = ¢ — 241 - 4n2w) — n(w)]’

4.7.7)

while after an odd number of coherence lengths the second harmonic intensity is
maximum. Here /4 is the free-space wavelength of the fundamental wave.
Typical values of /. are between 1 and 20 pm. Since the crystalline medium is
anisotropic, in many cases a propagation direction of the fundamental wave can
be found for which n(2w) = n(w) so that /. becomes infinite; it is understood that
the fundamental and second harmonic waves can be differently polarized. This
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situation is referred to as phase matching. Understandably, the phase matching
direction depends on the wavelength of the fundamental wave.

Consider crystals of TGS, species 2/m—Pd-2. It is apparent from this symbol
or from Tables 2.2.1 and 2.2.2 that domains with opposite Pg directions differ in
the sign of their nonlinear optical coefficients. This fact was used by Dolino
(1973) for their imaging. A plate-like crystal cut perpendicular to the ferro-
electric axis and provided with transparent liquid electrodes is illuminated by a
laser beam along the phase-matching direction. The cross-section of the beam
scans the whole area of the plate. Figure 4.7.1 shows schematically the situation
with two domains present. Rays such as AB or CD are in phase. But if a ray such
as EG crosses a domain wall there is a destructive interference between the rays
produced in the EF and FG sections since they are of opposite phase. Thus in
projection the wall will appear black. Rotating the sample away from the phase-
matching direction reverses the contrast. This is because the interference of
second harmonic waves is more destructive in the single domain regions than
across the boundary.
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The same method was used to image the topography of Dauphiné twins in
quartz (Dolino et al., 1973), based on the same symmetry arguments. The
resolution is not high; domains are supposed to be large compared to the
wavelength and complicated situations arise when the beam is crossing more
than one domain wall.

Data on scattering of a SH wave provide an alternative indirect tool for
obtaining data on domain shapes and sizes. Dolino et al. (1969) were the first to
investigate the case where the fundamental wave hits many domains differing in
the sign of the susceptibility y™" and is scattered. A laser beam hits a TGS plate
with ferroelectric axis b in the major plane. The angular dependence of the SH
scattered light intensity is measured in a plane perpendicular to b. The scattering
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curve narrows when domains are removed by an applied field. If the funda-
mental wave propagates in the phase-matching direction, formation of domains
decreases the SH intensity for reasons apparent from the preceding paragraph.
In a later work (Dolino et al., 1970) the situation was theoretically analyzed in
detail and further generalization of the theory (Dolino, 1972) offered analysis of
scattering patterns in TGS so that the presence of domains of different shapes
can be identified.

Weinmann and Vogt (1974) measured the angular distribution of the scat-
tered SH intensity for different wave vectors of the incident wave, analyzing the
situation in crystals of NaNO, where similar arguments apply. In both cases
pronounced maxima of I,, are found in multidomain crystals. With T
approaching T these maxima disappear. Theoretical analysis was done based
on the previous knowledge that domains are lamellae perpendicular to a. It is
concluded that with rising 7" the lamellar geometry stays but domains become
narrower, from 30 to 50 pum at room temperature (showed by etching and being
consistent with scattering data) down to 2 pm near the transition point.

An alternative study was performed by Cudney et al. (1997) for crystals of
tetragonal BaTiO; containing only antiparallel domains. Figure 4.7.2a shows
the experimental setup; the sample is oriented with its c-axis perpendicular to
the plane of the drawing. The polarizer blocks the fundamental laser beam but
lets the perpendicularly polarized SH wave through. The crystal is first poled
and then depolarized by an applied field; the degree of depolarization is mon-
itored by measuring the charge. Figure 4.7.2b shows scattering patterns for
poled and 40% depoled sample. The scattered line is structured along the
y-direction while the width along z-direction remains the same; this gives
evidence that domains stretch from one surface to the other. As in the case of
TGS, the nonlinear susceptibility tensor in antiparallel domains differs in sign.
The SH field amplitude E2w) is a function of the wave vector mismatch 2q;—q»

) filters
crystal polarizer I

{t f { CCD

(a) (b)

Fig. 4.7.2 (a) Experimental setup for the analysis of domains by second harmonic scattering.
/=100 mm, pulse intensity 3 MW/cm?, sample dimensions ~2.5 x 5 x 5 mm. (b) Far-field
scattering patterns for a single domain crystal (/ef?) and for a crystal depoled by 40% (right).
After Cudney et al. (1997)
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where q, is the wave vector of the first harmonics and q, stands for that of the
second harmonics. An involved analysis of the situation results in a formula for
the total SGH intensity /,,,(2q;—q,) which is a function of the number of domains
of width a and which predicts the angular variation of the intensity of the
scattered SH wave for a given distribution of domain width g(a). Thus the latter
can be obtained by fitting the scattering profile. The result for a sample with 80%
volume of positive and 20% of negative polarization is shown in Fig. 4.7.3.

Fig. 4.7.3 Example of the % 600 |
analysis of SH scattering S 400 |
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sample depoled by 20%: 2 ]
number g(a) of 180° 3 200 .
domains (assumed to have o 1
square cross-sections) vs. 0 P |

domain width a. After 1 10 100

Cudney et al. (1997) Domain width, a [um]

To summarize, direct observations using SH are limited to very simple
domain structures. Second harmonic scattering may be a useful method
where others fail. However, to analyze data correctly, the domain geometry
has to be assumed or already known from other studies. Then SH scattering
may give additional information on what the domain size distribution is or how
it depends in such factors as temperature. Understandably, the resolution of the
method is limited by the wavelength.

4.7.3 Photorefractive Properties

Some of the ferroelectric materials exhibit photorefractive properties; BaTiOs,
LiNbO; and KNbOj; represent well-investigated examples. The photorefrac-
tion may serve as an auxiliary tool for imaging domain structures. Here we
briefly address its basic principles. Photorefraction has been covered in detail in
several monographs (Sturman and Fridkin, 1992; Giinter and Huignard, 1988).

Photorefractive effects can occur in crystals which contain suitable impu-
rities and exhibit electro-optic properties. A sample is nonuniformly illumi-
nated; the electrons or holes which are excited from the impurity centers by light
of suitable wavelength migrate and are trapped at other locations. They will be
reexcited and retrapped until they drift out of the illuminated region. Together
with the ionized impurities they form a spatial distribution of charge, which
results in a spatially nonuniform electric field. Via the electro-optic effect,
refractive indices of the material are spatially modulated. Figure 4.7.4 illustrates
this phenomenon for the case where the spatial modulation of the light intensity
is sinusoidal. Since in many ferroics (whenever the species designation contains
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the symbol —.Pd..—) the electro-optic tensor can be different in different
domains, the photorefractive pattern can provide information on the domain
pattern in the material.

The idea of implementation of this technique is as follows. When a single
domain crystal is exposed to spatially modulated light intensity (e.g., created by
two interfering beams of light), a homogeneous grating of the refractive index is
formed due to the photorefractive effect. If a ferroic sample contains domains
differing in electro-optical coefficient, the grating becomes spatially modulated
according to the domain pattern revealing it.

Kahmann et al. (1990) have suggested the use of this phenomenon for imaging
antiparallel domains in ferroelectrics by a method named beam coupling topo-
graphy. This method is based on the self-diffraction effect when the two incident
interfering beams cross in a crystal, i.e., diffraction of the beams on the grating
that they have created. The photorefractive grating results in energy transfer from
one beam to the other. In a single domain sample, the sense of the energy transfer
is controlled by the sign of a certain linear combination rey of electro-optic
coefficients of the medium. Thus, in a multidomain sample, the antiparallel
domains can be delineated by the sense of the energy transfer as it is illustrated
in Fig. 4.7.5. The method was first applied to crystals of Ba,Sr;_.Nb,Og:Ce
(Kahmann et al., 1990, 1992, 1994). It is obvious that if the beam mixing takes
place in two or more domains located behind each other, the contrast would
become diffuse or lost. This feature was overcome by Grubsky et al. (1996).
Figure 4.7.6 shows their experimental arrangement. A sample consisting of
antiparallel domains is illuminated with one beam (signal beam) along its polar
axis whereas the second beam (pump beam) is focused to a thin slice which is
perpendicular to it. As a result only within this slice the energy transfer occurs so
that the domain geometry in this slice only is represented in the intensity pattern
of the transmitted signal beam, which is resisted by a CCD camera. When the
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Fig. 4.7.5 Domain contrast formation by beam-coupling topography. A space charge grating
is generated by interfering beams Iz, and /s, independent of domains. In antiparallel domains
(denoted @ and ©), the refractive index grating is shifted by 4/2. The interference of
transmitted and refracted beams amplify the intensity /% and diminish the intensity Ig. The
opposite holds for the domain &. After Kahmann et al. (1992)

slice is scanned across the crystal along the polar axis, a three-dimensional picture
of antiparallel domains can be constructed. The idea was applied to top-seeded
solution-grown crystals of BaTiO;. Figure 4.7.7 shows an example of domain
pattern in a crystal 6.6 mm long (in this picture the polar-axis length has been
artificially compressed to make the distant domains visible). The resemblance of
the pictures in individual slices to slices of “Emmentaler” tempted some research-
ers to refer to the method as the Swiss cheese technique (Grubsky et al., 1996).
Independently, Grabar et al. (1997) used the same method to image domains in
crystals of Sn,P,Sg. Such pictures are unique in their 3D character but the
resolution is limited as in any other optical method. In its present form the
method is suitable for visualizing static patterns.

Pump beam

Cylindrical lens

[
2 BaTiO,
Ar” laser H:j\t CCD
Signal beam
c axis E]

Fig. 4.7.6 Experimental setup for 3D imaging of domains using the Swiss cheese technique.
After Grubsky et al. (1996)
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4.8 Electron Microscopy

The present section gives an overview of several methods used for studying
domains in ferroics based on the interaction of electron beams with a multi-
domain ferroic sample. These techniques may differ essentially in their princi-
ples as well as in the required equipment. It is beyond the scope of this book to
go into a detailed description of the techniques used and rather we shall restrict
ourselves to a discussion of the basic principles of domain imaging in these
techniques, the information they offer, and their limitations.

In any electron microscope, the sample is exposed to an electron beam. There
are two principal imaging techniques in electron microscopy corresponding to
the detection of the electrons emitted back from the sample surface and the
detection of the electrons that have passed through the sample. The first
technique is called scanning electron microscopy (SEM), the second—transmission
electron microscopy (TEM). The application of these techniques for domain
imaging will be addressed in the two following sections. Later we will briefly
discuss one more using electron beam for domain imaging, namely electron
mirror microscopy.

4.8.1 Scanning Electron Microscopy

We have already mentioned that scanning electron microscopy (SEM) is being
used to visualize domains on surfaces of decorated multidomain crystals. There
its advantage is high resolution in distinguishing the density or arrangement of
decorating particles. However, a considerable effort was made to employ SEM
for direct domain observations. After the examination in a scanning electron
microscope the sample may be used again in another experiment since its
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surface has not been damaged. Further, SEM allows for direct observations at
different temperatures as well as for observing slow kinetic processes.

There is a fact that next to all these promising features the method has as its
major setback: Most of the ferroic crystals of interest are good insulators and
samples may get charged during a SEM observation. This charging may impact
the domain pattern of the sample. This was documented by observations such
as of polarization reversal (Sogr and Kopylova, 1995), domain growth (Naka-
tani, 1973), or domain nucleation (Abboud et al., 1993) in crystals of TGS due
to the electron beam itself. In addition, the accumulation of charge may deflect
the electron beam on subsequent scans and so negatively influence the method
itself.

For observation of ferroic domains, two basic modes of operation can be
used. One of them is associated with the secondary electrons and the other with
backscattered electrons. These modes can be elucidated as follows. The cath-
ode which is the electron source is on a high negative potential —V relative to
the grounded anode; V) is typically between 1 and 50 kV. The electrons of the
incoming beam accelerated to the energy el hit the sample surface. As a
result of inelastic scattering processes secondary electrons are produced, with
energy much lower than that of the electrons in the primary beam, typically
below 50 eV. As a result of multiple elastic scattering of the incoming elec-
trons, backscattered electrons emerge from the sample, with a wide distribu-
tion of energies below that of the primary beam. By choosing the electron
detector and its potential, secondary or backscattered mode of observation
can be selected. In a typical SEM setup the sample is in vacuum 10 °-10°
Torr.

For nonmagnetic dielectrics there are two principally different sources of
contrast: spatial variations of topography and surface electrical potential.
Both these factors will influence the number of detected electrons and in
general we may expect that both of them also lead to contrast between
domains. We have already discussed in detail in connection with other meth-
ods that surface topography relief can be expected to exist for ferroelastic
domains and, as a result of sample preparation, for nonferroelastic domains as
well. In fact one of the earliest observations of ferroelastic domains by SEM
was performed for etched crystals of BaTiO; (Robinson and White, 1967), the
contrast being purely of topographic origin. However, for all ferroelastic
domain pairs one can also expect that contrast arises due to the channeling
effect (Unruh, 1963; Sogr and Kopylova, 1996); the latter reflects the fact that
the mutual orientation of the primary electron beam and the crystal lattice is
different in neighboring ferroelastic domains. On the other hand, for non-
ferroelastic— ferroelectric domains the surface relief in the electric potential
and the topographic relief can be expected to control imaging rather than the
channeling effect.

For ferroelectrics in particular the problem of charge accumulation is ser-
ious. This was why the first attempt to observe ferroelectric domains was
performed with WOj; crystals which are semiconductive. Le Bihan and Cella
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(1970) succeeded to observe both 180° and 90° domains as well as surface
topography due to hillocks and found that the domain contrast was the same
in both modes, e.g., with secondary and backscattered electrons, respectively.
However, for a metallized sample the domain contrast disappeared, a clear
indication that domains were visible not due to topography but rather due to
differences in surface potential. This can be understood as differences in the
work function. In fact the difference of work function for antiparallel domains
in TGS was later measured and found to be about 1 eV in samples aged for a few
days after preparation (Le Bihan and Abboud, 1989).

Later experiments with crystals of TGS and other ferroelectrics (Maussion
and Le Bihan, 1976; Le Bihan and Maussion, 1974) showed that the contrast is
always seen in the secondary mode and this mode is now generally employed
with rare exceptions (Oleinik and Bokov, 1975). In fact, when the detector is
typically at a potential of + 10 kV all emitted electrons are detected, but the
secondary electrons constitute the main part of the detected current. The
simplest model of contrast formation is shown schematically in Fig. 4.8.1
(Le Bihan, 1989). A surface layer is formed at antiparallel domains in which
adsorbed molecules also play a role. It is assumed that in this layer electric field
exists correlated with the direction of Pg underneath. This field controls the
intensity of emitted secondary electrons. The layer thickness is usually esti-
mated to be of the order of nanometer to tens of nanometers (Kokhanchik,
1993).
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It has thus become customary to investigate ferroelectric domain structures
with nonmetallized samples. As was mentioned above, since few ferroelectrics
are appreciably conductive the surface charging may pose a problem with
domain delineating based on the surface bound charge of the spontaneous
polarization. The problem of surface charging of weakly conductive samples
was addressed by Le Bihan and Maussion (1971) and by Le Bihan (1989); they
demonstrated possibility of essential suppression of this effect. This possibility
is based on the observation that the ratio of the electron current emitted back by
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the sample to the electron current received by it, the so-called yield J, can be
larger than unity in a certain range of the accelerating potential. Thus there exist
two values V7 and V5, of the acceleration potential (¥, > V), at which 6 =1 so
that at these values the electron beam does not charge the sample surface. The
analysis, taking into account the capacitance and the resistance of the sample,
shows that the value V> of the accelerating potential can correspond to a stable
state of the system (Le Bihan, 1989). Thus working close to this value enables a
substantial suppression of the sample charging, which makes it possible to
successfully read the surface bound charge of ferroelectric domains. In practice,
the condition 6 = 1 is not exactly met. In this case, as follows from the approach
developed by Le Bihan and Maussion (1971) and by Le Bihan (1989), in the
stationary state the sample surface will carry the charge density associated with
the incident electron beam

Osur = thM(5 - 1)7 (481)

where J, is the current density of the primary electrons reaching the sample and
tm 1s the Maxwell relaxation time. Thus, at long exposition time the surface
charging leading to a loss of the contrast between domains typically occurs.
However, even in this regime, domain walls are still contrasted as was reported
for TGS (Le Bihan, 1989), NaNO, (Hatano and Le Bihan, 1990), and Mn-I
boracite (Castellanos-Guzman et al., 1995). This is believed (Le Bihan, 1989) to
be connected with the fact that there is a large potential drop across the wall
creating an intense electric field above it, of the order of 10° V/cm, which
deviates both primary and secondary electrons; thus domain walls remain
uncharged and retain their contrast. However, Aristov et al. (1983, 1984) have
proposed another interpretation suggesting that domain boundaries might have
excess electrical conductivity, whereas Sogr (1989) connected the wall contrast
with the small shifts of domain walls due to the incoming beam.

As an example, Fig. 4.8.2 reproduces the SEM picture of 180° domain walls
in a crystal of GASH (Szczesniak et al., 1995).

While it is generally accepted that the contrast in domains is connected with
the surface potential, observations are available indicating that other mechan-
isms may be involved. It was established (Aristov et al., 1984) that antiparallel
domains in LiNbOj; can be made visible even on the Y-planes which are parallel
to the polarization vector. On repeated irradiation the contrast first inverts but
finally disappears.

In fact, most of the published data on ferroelectric domains obtained by
SEM at non-metallized sample do not excel in spatial resolution. Typically,
pictures of areas are presented with linear dimension of one to several hundreds
of micrometers. This is related to the limitation on the accelerating voltage,
which, in turn, limits the achievable level of magnification. Applying conductive
coatings makes it possible to reach higher magnifications and at the same time
to apply external electric field to the sample in order to influence its domain
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Fig. 4.8.2 Left: SEM picture of domain walls surrounding egg-shaped domains on (0001)
surface of GASH crystal taken in the secondary electron mode at an accelerating voltage of
1 kV (Szczesniak et al., 1995). Right: the same areas, domains decorated by AgCl. Courtesy of
L. Szczesniak. Magnification 440 x

structure. The growth of domains in TGS crystals was observed in such a way
(Grandet et al; 1981). Some other interesting results obtained by SEM include
the influence of pyroelectric charge produced by a small temperature change on
the domain contrast (Averty and Le Bihan, 1993; Ozaki et al., 1996), simulta-
neous observations of domains on perpendicular crystal faces (Maussion et al.,
1986), and higher resolution observations of etched domains (topographic
contrast) formed in LiNbOj3 due to the pyroelectric effect (Pendergrass, 1987).

The SEM method has found increasing applications in evaluating periodic
domain structures for optical applications in crystals of KTiOPO, (Skliar et al.,
1997) and LiNbOj; (Ishigame et al., 1991; Le Bihan et al., 1995). Of practical
importance is the use of environmental SEM which operates at pressures by
four orders of magnitude higher than conventional SEM (Zhu and Cao, 1998).
It was reported that, by using this technique, domains were delineated in
LiTaOs; crystals while the images were found stable with no contrast change
over a period of several hours.

4.8.2 Transmission Electron Microscopy

A transmission electron microscope (TEM) is an electron-optical device where
the electrons passed through the sample are used to obtain the information on its
structure. The focusability and short wavelength of electron beams are respon-
sible for the high resolving power of the TEM. The principles of generation of
the electron beam are the same as for SEM. The electrons are emitted from the
cathode by either thermal emission or field emission and focused on the sample
by electromagnetic lenses. The vacuum (that permits the propagation of the
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electron beam) at the sample is in the range of 10°° Torr. Specially designed
sample holders allow not only tilting the sample in order to control the diffraction
conditions but also to heat or cool the sample for in situ observation of phase
transitions. Modern TEM allow the observation of the atom columns and have a
resolution which has just recently broken the 1 A barrier (O’Keefe et al., 2001).

In this section we introduce the basic principles of TEM and describe the
concepts of bright field imaging, dark field imaging, weak beam dark field
imaging, and high-resolution transmission electron microscopy (HRTEM). We
will also illustrate the application of these methods to visualize ferroic- and
compositional-ordering domains and domain walls. For a complete introduc-
tion to transmission electron microscopy, the reader is referred to specialized
books (e.g., Williams and Carter, 2004).

In a conventional transmission electron microscope, a thin specimen is
irradiated with an electron beam of uniform current density. For HRTEM,
5-20 nm thick samples are used, for other TEM method sample thinness may be
up to 100 nm. The electron energy is most commonly in the range between 100
and 300 keV. Electrons are extracted from a tip or filament in the electron gun
by thermoelectronic or field effect emission. A condenser—lens system permits
variations of the illumination and the area of the specimen illuminated. The
electrons travel through the specimen where they are scattered by various elastic
and inelastic scattering processes. The electrons passed through the sample are
focused by the objective lens and a diffraction pattern is produced in its back
focal plane. This diffraction pattern, where the diffraction spot corresponds to
differently diffracted beams, is the base for different imaging techniques. The
diffraction pattern can be projected onto a viewing screen with further record-
ing on a CCD camera or by direct exposure of a photographic emulsion.
Alternatively, one or all of the transmitted and diffracted beams can be selected
by an aperture introduced in the diffraction plane (back focal plane of the
objective lens) to form an image of the sample. If only one of the beams
(spots of the diffraction pattern) is used, then bright field, dark field, and
weak beam dark field images are obtained. The HRTEM image is obtained
when the result of the interference of many (ideally all) diffracting beams with
the transmitted one is observed at high magnifications.

4.8.2.1 Bright Field Imaging, Dark Field Imaging, Weak Beam Dark Field
Imaging, and Selected Area Electron Diffraction

Figure 4.8.3 explains the selection of the spots of the diffracting pattern to
obtain bright field, dark field, and weak beam dark field images. Diffraction
conditions are best illustrated using the Ewald sphere (locus of all elastically
scattered beams) shown in this figure. The intensity of diffracted beams is
maximal for all reciprocal lattice points that are intersected by the sphere, i.c.,
for which the Bragg condition is satisfied:

—

kg =ko+& (4.8.2)
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k; and Eo are, respectively, the wave vectors of the diffracted and the trans-
mitted beam and g is a reciprocal lattice vector. Due to the particularly small
thickness of TEM samples, the reciprocal lattice points appear as small rods
oriented in the direction of the foil normal. This makes the intersection between
the Ewald sphere and the reciprocal lattice points readily achievable.

The bright field image is obtained by using the transmitted beam (Figs. 4.8.3a
and 4.8.4b). In this case, the image contrast is formed on a uniformly bright
background (therefore bright field). A perfect crystalline lattice produces a
uniform image contrast depending on the diffraction conditions (diffracted
beams are stopped by the objective aperture). Any lattice imperfection will
modify the local diffraction conditions and change the diffracted intensity
resulting in a change of image contrast.

In the case of dark field image, only one diffraction spot is used correspond-
ing to a certain well-chosen orientation of the crystalline lattice (Figs. 4.8.3b
and 4.8.4b), e.g., corresponding to the orientation of one domain when two (or
many) domains with different orientations are in view. Then only areas which
are in diffraction condition for the selected diffraction spot contribute to the
image formation. They will be seen as bright objects on a dark background
(therefore dark field).

diffracted beam
(a) Bright field

Ewald

sphere reciprocal

0 9 lattice plane

Fig. 4.8.3 The selection of

the spots of the diffracting (b) Dark field

pattern to obtain bright

field, dark field, and weak
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direction of the foil normal.

The directions of the (c) Dark field
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shown with arrows pointing
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Fig. 4.8.4 The selection of the spots of the diffracting pattern to obtain bright field, dark field,
and high-resolution (interference) images. FP, focus plane of the objective lens; IP, image
plane of the objective length

For getting a weak beam dark field image, a diffraction direction is chosen
that is slightly out (a well-defined amount) of the exact Bragg condition for a
given reciprocal lattice vector & (Fig. 4.8.3c). This configuration where the
Bragg condition is exactly fulfilled for a farther (3g in this figure) lattice point
and the selected diffraction spot is weakly (therefore weak beam) excited is
favorable for the comprehensive and quantitative study of lattice defects and
interfaces. Because of the involvement of the two Bragg points, the method is
often referred to as two-beam diffraction conditions.

In the case of the dark field imaging in contrast to the bright field imaging,
the incident electron beam is inclined with the respect to the optical axis of the
electron microscope as shown in Fig. 4.8.4b so that the diffracted beam is
centered on the optical axis of the microscope after diffraction.

The area of which an electron diffraction pattern is obtained with a parallel
illumination can be selected using an aperture in the image plane of the objective
lens. This technique is called selected area electron diffraction (SAED). The
diffraction pattern is then obtained by the electrons passing through this area
only. SAED pattern enables the identification and analyzes crystallographic
orientations of objects (domain or grains) in the selected area.

Figure 4.8.5 shows the bright field image (a) and SAED pattern (b) taken
from a thin (010) PbTiOj; film containing of 90° domains with the spontaneous
polarization lying in the plane of the film (the so-called a¢/a domain pattern).
The SAED pattern observed is the superposition of the diffraction patterns of
the two domains separated with a (101) domain wall seen in the selected area in
Fig. 4.8.5a. The splitting of the spots in the image is caused by the misalignment
of the crystalline planes (100) and (001) in the neighboring domains. At the
same time there is no splitting for (202) spots as expected from the mechanical
compatibility conditions.

Figure 4.8.6 shows the dark field and weak beam dark field images taken from
an area of a PbTiO; film containing of 90° domains with the spontaneous
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@) (b)

Fig. 4.8.5 Bright field image (a) and SAED pattern (b) taken from a thin (010) PbTiO; film
containing 90° domains with the spontaneous polarization lying in the plane of the film.
Reprinted with permission from Foeth et al. (1999a). Copyright (1999), Oxford University
Press

Fig. 4.8.6 Dark field (a) and weak beam dark field (b) images taken from an area of a PbTiO3
film containing 90° domains with the spontaneous polarization either normal or parallel to the
plane of the film. Reprinted with permission from Foeth et al. (1999a). Copyright (1999),
Elsevier

polarization either normal or parallel to the plane of the film (the so-called c/a
domain pattern). Only one set of domains is close to Bragg conditions and appears
bright in the dark field image, the other set of domains remains dark (Fig. 4.8.6a).
At the domain boundary, which is slightly inclined with respect to the viewing
direction a fringe pattern is observed. This is the result of multiple scattering at the
inclined walls. In the weak beam dark field image (Fig. 4.8.6b) multiple scattering
is reduced and the well-defined diffraction conditions can be used to numerically
simulate the interference pattern. From comparison of the images with the result
of image simulations one can evaluate the domain wall thickness.

In general, the weak beam dark field imaging (two-beam diffraction condi-
tions) makes a very important tool of domain imaging. It has been extensively
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used from starting the first studies of domain walls in ferroelectrics. We will
address this topic in detail when discussing the experimental investigations of
domain walls in Sect. 6.1.6.

The dark field imaging technique can also be used for detection of domains of
chemical ordering in disordered ferroelectrics. Such work has been performed
(Akbas and Davies, 1997) for mixed perovskite Pb(Mg; 3Ta,/3)0.95Zr 9sO3 where
the occupation of the B-site with Mg or Ta can be progressively tuned from fully
disordered to ordered with the doubling of the lattice parameter. The ordered
areas can be visualized by dark field imaging which is produced for the diffraction
spot 3/2(111) specific for the structure with the doubled period (Fig. 4.8.7). Only
the ordered regions which scatter the electrons into the 1/2(111) direction con-
tribute to the image contrast. It is seen that the ordered regions form domains of
up to 100 nm in size separated by the disordered matrix (dark contrast).

Fig. 4.8.7 B-site

ordered areas in

Pb(Mg, 3Tas3)0.95Z10.0503
visualized by dark field
imaging which is produced
for the diffraction spot
3/2(111), specific for the
structure with the doubled
period. Reprinted with
permission from Cantoni
et al. (2004). Copyright
(2004), American Institute
of Physics

4.8.2.2 High-Resolution Transmission Electron Microscopy

In high-resolution transmission electron microscopy (HRTEM) many diffracted
beams are used to get the image. Technically this is done by selecting many
diffraction spots in the back focal plane of the objective lens using a suitable
objective aperture. The image contrast is formed by the interference of the
selected reflections. Figure 4.8.4 illustrates the difference in the selection of the
diffraction spots in the bright field imaging, dark field imaging, and HRTEM.

HRTEM readily provides atomic level resolution. Figure 4.8.8 shows a typical
high-resolution micrograph of a 90° domain wall in PbTiOj; taken using a Philips
CM-300 FEG microscope with a point-to-point resolution of 0.17 nm.
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Fig. 4.8.8 Typical high-
resolution micrograph of a
90° domain wall in PbTiO3
taken using a Philips CM-
300 FEG microscope with a
point-to-point resolution of
0.17 nm. Reprinted with
permission from Foeth et al.
(1999a,b). Copyright (1999),
Oxford University Press

The theory of the HRTEM imaging is quite involved and goes out of the
scope of this book. Here, we would like to comment the point that it is not
obvious to determine the position of the atomic columns just by contemplating
the experimental micrographs. It can be understood in the simplest approxima-
tion where the electron absorption in the sample is neglected. In this approx-
imation, the diffracted electron wave exhibits only a phase shift after passing
through the sample. The phase shift reflects the crystal potential of the material,
V(x,y), where x and y are the Cartesian coordinates in the plane of the thin
sample. However, the former does not affect the intensity of the diffracted wave
in the x — y plane of the image. The information hidden in the phase of the
diffracted electron wave can be developed after the interference of the diffracted
wave with the un-scattered wave. However, in a real TEM the correspondence
between the crystal potential of the material, V(x, y), and the intensity of the
sum of the diffracted and un-scattered wave, I (x, ), is not straightforward
because of additional phase shifts acquired by the diffracted wave in the device
(defocusing, spherical aberration of the magnetic lens being the most important
ones). This implies that additional tuning, which compensated these shifts is
needed to get the HRTEM which reproduce truly the crystal potential of the
material (specifically the atomic arrays in it). The situation becomes more
complicated when multiple scattering occurs and when the electron absorption
cannot be neglected (for thicker crystals or for crystals containing heavy
atoms). In this case one has to make use of the full dynamical theory of electron
diffraction and imaging in order to quantify the experimental micrographs
(Cowley, 1975, Ishizuka and Uyeda, 1977).
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HRTEM observations have been used for characterization of domain walls
in various ferroelectrics, the structure, thickness, and roughness of the walls
being addressed. Useful information of this kind has been reported for KNbO;
(Bursill et al., 1983), BaTiO5 (Shiojiri et al., 1992; Floquet et al., 1997), and
PbTiO; (Stemmer, 1995; Foeth et al., 1999b).

HRTEM has also been applied of the identification of the type of chemical
ordering in mixed perovskite ferroelectric Pb(Mg)3Taz/3)0.95Z10.0sO3 already
discussed above in the context of the dark field imaging. The latter method, as
was mentioned, enables the detection of the B-cite ordered domains in the
disordered matrix. However, the information provided by this technique is
not enough to determine the microscopical type of ordering. This delicate
identification has been performed by Cantoni et al. (2004) by comparing the
HRTEM images taken for a specially selected setting with the results of com-
puter simulations. Because of its nature (interference contrast) the contrast in
HRTEM images varies strongly with the imaging conditions (focus) and the
specimen thickness. Therefore, an unambiguous identification of the occupa-
tion of atom columns and the measurement of the column spacing is only
possible for special cases where all of the parameters are known and can be
taken into simulations. In these cases, however, HRTEM is a very powerful tool
of direct verification of the microstructure on an atomic level.

4.8.3 Electron Mirror Microscopy

Electron mirror microscopy like SEM provides information on the surface
potential of the material but in contrast to the latter, in this technique the
electrons do not enter the sample but are just reflected by its surface potential.
To achieve this in an electron mirror microscope the sample is kept at a
potential which is slightly more negative then the cathode. The reflected elec-
trons carrying information on the surface potential are collected by the anode.

For visualization of ferroic domains, this method was first used by Spivak
et al. (1959) and theoretically analyzed by Someya et al. (1970). It allowed the
observation of 90° domains in partially electroded BaTiOj; crystal plates as well
as their nucleation in an applied field (English, 1968a). English (1968b) showed
that the method can also be used at elevated temperatures and employed for
observations of boundaries between paraelectric and ferroelectric phases in
grains of PZT ceramics. Maffit (1968) performed interesting experiments when
observing the same spot of a multidomain BaTiOj; crystal grown by the Remeika
method, which was either bare or covered with an electrically conducting layer. In
the former case both surface topography and surface potential contribute to
image contrast. In the latter case only the surface topography is visualized.

The method can be used to observe domain wall motion. This was shown by
Kobayashi et al. (1972) who investigated motion of domain walls in GMO in
real time. The domain observation was relied on the surface topography.
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The spatial resolution as judged by available data is not high. Perhaps one of
the most rewarding ways of utilizing this method was suggested by Le Bihan
and Chartier (1977) and by Le Bihan et al. (1977). In a modified arrangement,
the quantitative electron mirror microscope allowed to determine the difference
in the surface potential of two antiparallel domains; for TGS crystals the value
of about 1 V was obtained.

4.9 Methods Based on Interactions with X-Rays

One can distinguish two principal ways of getting information on ferroic
domains using X-ray radiation: X-ray topography and X-ray diffraction. In
this section we will address the conventional X-ray topography as well as the
synchrotron radiation topography. The X-ray diffraction-based methods will
be discussed in Chap. 9 in the context of domains in ferroelectric thin films.

The concept of X-ray topography covers a number of methods which make it
possible to use the diffraction of X-rays with the aim of imaging a crystal in such
a way that a particular spot in the crystal is assigned a location on its image—
topogram. In X-ray topograms, one distinguished domain bulk contrast and
domain wall contrast. In the first case, different domains are imaged with
different intensities. In the second, alternatively, only domain walls are imaged
with intensity, which is different from those identical for the domains. Topo-
grams represent crystal images which are not magnified; magnification has to be
performed in a photographic manner.

There are a number of topographic methods which differ in experimental
arrangements. The incident X-ray beam may be parallel or divergent, mono-
chromatic or continuous. The diffracted beam can be observed in transmission
or reflection geometries. Sometimes transmission topographs are taken to
observe domains inside the specimen while surface reflection topographs serve
to observe domains near the surface.

The most common technique for the observation of domains is the Lang’s
method. A typical setup is shown in Fig. 4.9.1. By choosing the angle of
incidence of the monochromatic beam the required reflecting plane in the
crystal is selected. The main slit S1 is narrow, adjusted so that the horizontal
divergence of the incident beam is smaller than the difference in Bragg angles of
the chosen reflecting plane (hkl) for the radiation used. The height of the
incident beam allows that the whole vertical dimension of the sample be
irradiated. The receiving slit S2 blocks the primary beam. The crystal and the
photographic plate, usually a nuclear emulsion, can be shifted to obtain the
image of the whole sample.

The spatial resolution of the method is not high, typically 1-3 um. Dense
lamellae of thickness even far above this limit (say 20 um) can only be separated
under optimal projection conditions. Overlapping of lamellae and walls leads to
complicated contrast patterns which are difficult to interpret. Combining
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Fig. 4.9.1 (a) Experimental
arrangement for X-ray
topography. S;, mainslit; S5,
receiving slit; P, nuclear
photographic plate; C,
crystalline sample. (b)
Correspondence between
the crystal section (abcd) and
its image (&', b', ¢, d') on the
photographic plate (Suzuki
and Takagi, 1971)

scintilation
counter

nuclear
photoelectric
plate

195

(a)

source

crystal

|

|

1b‘ d @l incident
> : x-ray

A

b

slit

transmission topographs with observations in reflection in which the penetra-
tion depth may be only several micrometers (Kawata et al., 1981) may allow for
deciphering some details in domain shapes.

The use of X-ray topography to image domains in ferroics was pioneered by
ééslavsky and Polcarova (1964) who investigated the contrast of ferroelastic
domains in BaTiO3 and by Lang (1965) who succeeded to image both Dauphiné
(ferroelastoelectric) and Brazil (growth) twins in quartz crystals. Possible
mechanisms of the origin of contrast were discussed in detail by a number of
researchers (see, e.g., Petroff, 1969; Parpia, 1982a,b; Takahashi and Takagi,
1978b; Suzuki and Takagi, 1971; Capelle et al., 1982) and reviewed by Klapper
(1987).

One distinguishes three situations where the domain bulk contrast appears
(Klapper, 1987): (i) orientational contrast, (ii) structure factor contrast, (iii) and
anomalous dispersion contrast.

In the case of orientational contrast, crystal lattices of the two domains are
not parallel to each other. This is the case of ferroelastic domains. Here the
crystal is imaged in the corresponding reflection, the contrast depends on the
angular divergence of the primary beam; in the Lang’s method, the radiation
with a primary beam divergence of typically 2—5 min is used. If the tilt between
the reflecting planes of the two domains is larger than the beam divergence, only
one domain reflects and we have full-and-zero contrast. In this way domains in
GdDy(MoQOy); were imaged (Capelle and Malgrange, 1982). However, if the tilt
angle is comparable or smaller than the primary beam divergence, a faint
domain image is obtained or the contrast is completely lost.

If the lattices of the two domains are parallel, the reciprocal lattice points
coincide but generally they differ in the moduli of structure factors. Because of
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that the two domains reflect with different intensities and appear by structure
factor contrast. On this mechanism was based imaging of Dauphiné twins in
quartz (Lang, 1965; McLaren and Phakey, 1969).

Finally, if the domains do not differ in the structure factors either, they still can
be distinguished due to the so-called effect of anomalous dispersion. This is the
case of the anomalous dispersion contrast. Imaging of antiparallel domains in
BaTiO; (Niizeki and Hasegawa, 1964; Akaba et al., 1979; Takagi et al., 1979),
NaNO, (Suzuki and Takagi, 1971), and CsH,PO, (Ozaki et al., 1997) were based
on this mechanism. Figure 4.9.2 shows antiparallel domains in NaNO, as imaged
in two different 0k/ reflections: (011) and (031) (Suzuki and Takagi, 1971).

a[100] —»

50 ym

Fig. 4.9.2 X-ray sectional topographs of a NaNO, crystal taken by CuK« radiation with two
of several 0k/ reflections which give the best domain contrast (Suzuki and Takagi, 1971)

Klapper (1987) has formulated a set of practical rules for the selection of
reflections to achieve good domain contrast in case of domains with parallel
lattices.

In real crystals, the domain contrast can be also due to lattice distortions in
the interface adjacent layers. Thus the visibility of 180° domains in thin plates of
BaTiO; was attributed to slight misorientations of polarization vectors near the
surfaces (Kawata et al., 1981).

In many cases the domain bulk contrast is absent and it is the domain walls
which are imaged by X-ray topography. Much effort was devoted to the domain
wall contrast with the aim to obtain data on domain wall thicknesses and
structures. This will be discussed in some detail in Chap. 6.

X-ray topography makes it possible to easily recognize changes in domain
structures induced by applied electric field or stress; such observations were
performed for instance for BaTiO; (Takagi et al., 1979) and NaNO, (Suzuki
and Takagi, 1972). However, the limited spatial resolution makes it difficult to
use this method for solving sensitive issues like nucleation or small modulation
of ferroelectric domain walls due to the presence of free charges. In general,
the significance of X-ray topography is not so much in mapping of domains
but in the investigation of domain walls and the lattice distortions in their
neighborhood.
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It may be pointed out that X-ray topographical observations may not be
totally harmless. It is known that irradiating some ferroelectrics by even small
X-ray radiation doses may lead to profound changes in their switching beha-
vior, indicating a different response of domain walls. Petroff (1969) indicated a
loss of contrast during topographical observations of TGS crystals and Polcar-
ova et al. (1970) detected changes of lattice parameters.

Synchrotron radiation sources are characterized by a high-intensity X-ray
beam with continuous distribution of wavelengths and natural collimation.
When used for topography they offer several advantages as compared to classical
X-ray methods (Robert and Lefaucheux, 1983; Schlenker and Baruchel, 1994).
Exposure times can be greatly reduced, allowing for rapid sequences of topo-
graphs to be taken, which makes it possible to record changes in domain structures
and phase transformations in real time. Because the beam divergence is small,
precise measurements with a quasi-plane wave can be performed. The synchro-
tron technique allows one to select, from the white spectrum, a more suitable
range of wavelengths or even a monochromatic radiation with the chosen wave-
length. This may be found useful for materials with high absorption at wave-
lengths of conventional X-ray sources but also for selecting the origin of contrast.

The method was used to image ferroelastic domains (Aleshko-Ozhevskij
et al., 1985; Aleshko-Ozhevskij, 1983; Jiang et al., 1993; Zhao et al., 1991;
Scherf et al., 1997) and also phase boundaries between parent and ferroic
phases, in wide temperature ranges. Both static imaging and dynamic imaging
have been demonstrated. Studies of ferroelastic domain pairs in the monoclinic
phase of NdPsO14 and other pentaphosphates performed by the Nanjing group
(Huang et al., 1994a,b; Jiang et al., 1993; Hu et al., 1994) offer typical examples
of the orientational bulk and domain wall contrasts.

Because ferroelastic domains can be observed optically with higher resolution,
the real strength of synchrotron radiation topography might rather be in the area
of nonferroelastic domain pairs where the contrast will be based on anomalous
dispersion. Crystals of CsH,PO,4 were studied in this way (Ozaki et al., 1997).
Nonferroelastic domains have also been imaged in other ferroelectrics like
KTiOPO,4 (Wang et al., 1993), KNbOs3, and BSN (Jiang et al., 1993).

4.10 Pyroelectric Mapping

Domain imaging method utilizing pyroelectric effect is based on the relation
AD; = 1okJAE; + p AT, (4.10.1)

where p©“ is the pyroelectric coefficient at constant field and stress. It is
applicable to ferroelectrics since domain states can differ in components of
p©° in them. This equation is to be considered a relation describing the situation
at a certain point in the sample. Local change of temperature causes a local
change of Pg due to the pyroelectric effect; redistribution of polarization leads
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Fig. 4.10.1 Basic scheme for
detecting the pyroelectric
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to the change of electric field which again influences polarization. Figure 4.10.1
shows the very basic arrangement for measuring the pyroelectric properties
(Hadni et al., 1976). Assuming low-level thermal excitation, the sample itself
can be ascribed a linear capacitance C, and resistance R,. In a real experiment it
is connected to an external circuit with input impedance Cy, Ry. The sample
temperature is changed by AT. The magnitude of time constant 1= RC where
C=C, + Cpand 1/R=1/R, + 1/Ry determines the value of the pyroelectric
voltage AV (Hadni et al., 1976). In the simplest case of a single domain sample
the situation is homogeneous, described by a certain value of p?. If the
temperature change is fast compared to ©

ApAT t
AV = Texp(— R)’ (4.10.2)
while for slow rate of change of temperature
dT t
AV = prRa{l fexp<fR—C)}. (4.10.3)

Here A4 denotes the illuminated area of the sample and p is the component of
p“7 normal to the electroded surface of the sample. This voltage leads to an
electric current flowing through the external resistor Ry, with the corresponding
time constant. Its sign is determined by the sign of p; for a single domain
ferroelectric sample p o« dPg/dT and correspondingly its sign depends on the
polarity of Pgs. Chynoweth (1956) was the first to demonstrate that the pyro-
electric signal in barium titanate reveals the sign of Psg.

If the sample is multidomain, the contributions from volume elements to the

change of the surface charge have to be summed up. The total charge is obtained
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by integrating over the sample volume, accounting for the temperature gradient
and depolarizing field. Thus measuring the pyroelectric effect of the whole
sample gives evidence on the average value of spontaneous polarization; it
can be used even in the dynamic regime to investigate slow processes of Pg
reversal (Latham, 1967).

The same principle can be employed to obtain information about spatial
distribution of Pg, i.e., about the domain structure. The sample surface is heated
only locally and the size of the region of elevated temperature determines the
spatial resolution of the method. Scanning the sample surface gives evidence on
the geometry of domains. In the first experiments of Burfoot and Latham
(1963), local heating of barium titanate crystals was produced by a focused
electron beam of 4 um radius. Pyroelectric voltage showed peaks related to
optically visible 90° domain walls.

The method was then fully developed by Hadni et al. (1965) and brought to a
high level in speed, resolution, and insight into the sample. Some of the results
obtained for TGS crystals are unique such as data on nucleation processes and
domain wall velocity (Hadni and Thomas, 1975), domain maps during slow
switching processes (Hadni and Thomas, 1976), or writing microdomains by
heated spots (Hadni et al., 1973).

One of the successful setups of the method, which is often referred to as the
pyroelectric probe technique, was described by Hadni et al. (1976). A He-Ne
laser spot is focused on the crystal plate and displaced in successive lines. The
sweeping device is essentially made of two fast galvanometers with their mirrors
oscillating around two perpendicular axes; the driving frequencies are 3 kHz for
the vertical axis mirror and 20 Hz for the horizontal axis mirror. Both polar
surfaces of the sample are gold plated and connected through a resistor Ry. The
laser beam is modulated by a Pockels cell and gives a sine wave illumination at
frequencies from 10* Hz to 2 x 10° Hz. Due to the pyroelectric effect, a sine-
wave current flows through R;. A phase detector measures the signal whose
amplitude is proportional to the pyroelectric coefficient. It modifies the inten-
sity of a spot on the oscilloscope. The spot is swept in synchronization with the
laser beam. Phase detection determines the sign of the response. Up to 20
images per second could be taken (Hadni and Thomas, 1976; Tran et al.,
1981) and with an Argon blue laser surface resolution of 1 um was achieved
(Hadni, 1993). Figure 4.10.2 offers an example of pyroelectric domain map
(Hadni et al., 1976). The process has been analyzed theoretically, partly analy-
tically, and partly by simulation (Hadni et al., 1976; Kirpichnikova et al., 1993).
Experiment and modeling have also covered complex situations, for example,
where repeated illumination leads to nucleation—on the opposite crystal sur-
face—and growth of domains with opposite polarity.

The pyroelectric mapping method was used to visualize domains in crystal-
line plates of TGS, BaTiOj; (Clay et al., 1974), KTiOPO, (Bierlein and Ahmed,
1987; Ivanov et al., 1994), and also in NaNO, (Tran et al., 1981; Krug et al.,
1993b). For TGS and sodium nitrate, data about domain wall velocities were
also obtained (Tran et al., 1981) by measuring wall positions repeatedly after
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Fig. 4.10.2 Pyroelectric
image of domains in a TGS
plate 10 pm thick. The size of
the image is 130 um.
Reprinted with permission
from Hadni and Thomas
(1976). Copyright (1976),
Taylor and Francis

successive application of a dc field. An interesting modification of this
method was offered by Ungar et al. (1981) and Pradhan et al. (1984) who
showed that it can also be used to visualize domains in plates parallel to the
ferroelectric axis.

It was shown by Krug et al. (1993b) that the same experimental approach can
also be used to visualize domains in nonpyroelectric materials. The response in
the alternatively named “laser scanning microscope” is then due to photoelec-
tricity or thermoelectricity. Krug et al. (1993a,b) described in detail also another
modification of such experimental system. The apparatus was completed with
an optical system allowing monitoring simultaneously the image of the optical
reflection of the sample surface.

4.11 Scanning Optical Microscopy

Discovery of tunneling/atomic force microscopy which is essentially based on
high precise positioning of the sample has also resulted in the development of
scanning optical microscopy. In this technique an optical signal is collected
from a small spot on the surface of the sample, the position of the spot being
scanned with the help of a micro-positioning device. The yield is a map of the
scattering intensity of the sample surface. In this method, as in the classical
optical techniques, the domain contrast is mainly due to the difference of the
optical indicatrices in the domains. In the case of nonferroelastic domains,
where their optical indicatrices are the same, such difference is induced by
application of additional dc electric field. Customary, the informative optical
signal is additionally modulated and lock-in technique is used to increase the
sensitivity of the method and to suppress the unwanted background. In this
section, not going into detail of technical implementations of the method, we
will outline the ideas of its different modifications, illustrate its performance
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with some images, and indicate its limitations. We will discuss confocal scanning
optical microscopy (CSOM), near-field scanning optical microscopy (SNOM?),
and one more relevant technique.

In confocal scanning optical microscopy (CSOM) a laser light is focused to a
diffraction-limited spot on the sample surface, the light reflected back from this
spot is detected using conventional optics. This method has been used for
imaging natural domain patterns in (Ba,Sr)TiO; films (Hubert et al., 1997)
and artificial domain patterns in LiNbO; crystals (Tikhomirov et al., 2000).
The submicron spatial resolution is readily achievable with this method.

Near-field scanning optical microscopy (SNOM) (Betzig and Trautman,
1992) goes beyond the diffraction limit of the /2 =200 nm where A is the
wavelength of the visible light. This method is based on the fact that the classical
diffraction limit of optical resolution is applicable if the detection element or the
light source are located at a distance many wavelengths from the observed
object. If, however, the detector is scanned laterally across the sample surface
in its close proximity, an image of the surface can be created at a resolution
which depends on the size of the light source or the detector and the distance
from them to the surface. The subwavelength resolution can be achieved if the
source having the size smaller than / is placed closer than A to the surface or,
alternatively, if the equally small detector is placed as close to the surface. This
happens due to the so-called near-field effects. SNOM is used in two modifica-
tions: with aperture (a-SNOM) and apertureless (s-SNOM?). The latter mod-
ification is also called scattering SNOM.

A-SNOM itself can function in two modes: excitation mode and collection
mode. In the excitation mode, a metal-coated optical fiber with an open tip is
used to make a light spot on the sample surface and the classical far-field optics
is used for the detection of the scattered light.

In the collection mode, the sample is illuminated with a classical optics
source but a metal-coated optical fiber with an open tip is used for the detection
of the scattered light. In both modes, the spatial resolution of 100 nm is
routinely obtained, which in principle may by improved up to 20 nm (Levy
et al., 2000). The resolution of a-SNOM is fully controlled by the apertures
diameter at the tip, which, for several reasons, cannot be made smaller than
50 nm (Levy et al., 2000; Setter et al., 2006). This technique has been applied for
imaging of domain patterns in BaTiO5, PZT (Smolyaninov et al., 1999, 2001),
and LiTaO3; (Smolyaninov et al., 1999, 2001; Yang et al., 1997). Figure 4.11.1
shows an example of a-SNOM image of a domain pattern in a LiTaOj5 crystal.

The apertureless SNOM circumvents the problem of the aperture diameter
and opens a way to further improvement of the resolution. The idea of this
technique is, while using classical optics light source and detector, to introduce a
subwavelength scatter (e.g., an AMF tip) in the light spot in the close vicinity of

3 N'SOM is also used as abbreviation.
4 Abbreviation ANSOM is also in use.
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Fig. 4.11.1 SNOM
(aperture 60 nm) image 180°
domains in Z-cut of LiTaO3
after domain inversion at
room temperature.
Resolution of the image

200 nm. Reprinted with
permission from Yang et al.
(1997). Copyright (1997),
American Institute of
Physics

the surface. Now if the light, which passes through the scatter, can be distin-
guished from the unwanted background, the scatter itself can play a role of the
light source or detector of a subwavelength size. This technique has been
successfully applied to domain imaging in the samples (Ba, Sr)TiO; (Hubert
and Levy, 1998; Levy et al., 2000) and TGS (Orlik et al., 2000), the spatial
resolution up to 30 nm being reported. Figure 4.11.2 shows an example of
s-SNOM image of 180° domain pattern in a TGS sample plate cleaved perpen-
dicular to the polar axis.

An optical scanning technique conceptually close to s-SNOM has been
recently developed by Eng and coworkers (Otto et al., 2004). In this technique,
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Fig. 4.11.2 Apertureless SNOM image of 180° domain pattern in a TGS sample plate cleaved
perpendicular to the polar axis. Image pixel size is 35 nm. Reprinted with permission from
Orlik et al. (2000). Copyright (2000), American Institute of Physics
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the optical properties of the sample are affected via the electro-optic effect
produced by the electric field of a fully metal-coated AFM tip. If the tip radius
is small and positioned close enough to the surface, the optical properties of the
sample will be modified only in a small area. Thus, if the signal from this area
can be distinguished from the background, by scanning the tip, one gets the map
of the electro-optical coefficient of the sample surface. This information, as in
standard optical techniques, can provide an image of the domain pattern in the
material. This technique has been applied to domain visualization in BaTiO;
with a 250 nm spatial resolution controlled by the confinement of the electric
field of the tip.

4.12 Additional Methods and Concluding Remarks

In the preceding sections we attempted to offer a fairly comprehensive survey of
methods used to visualize ferroic domains or to obtain some information
concerning the distribution of their sizes and shapes. But the list is not and
cannot be complete: new techniques are constantly appearing based either on
improved technical methods or on new physical principles. We shall mention
very shortly some of those which have not yet been mentioned.

When a laser beam propagates through a multidomain ferroic crystal, a
diffraction pattern can be observed bringing information of the domain struc-
ture in the material. This has been demonstrated for KDP (Salomon, 1981),
LiNbO; (Blistanov et al., 1984), and TGS (Shapiro et al., 1966) crystals. A
somewhat related technique, named “laser tomography” by Ratcliffe (1982),
consists essentially of scanning, with an extremely fine beam of light from a
laser, through the specimen and viewing the scattered light in a perpendicular
direction, the specimen being immersed in a fluid chosen so as to match the
appropriate refractive index. A theoretical model relevant to these observations
was addressed by Laikhtman and Petrov (1977a,b).

Scanning acoustic microscopy is customarily applied as a method to study
elastic nonhomogeneities. In this method, leaky surface acoustic waves which
propagate along the interface between a specimen and a liquid coupler are
excited. The reflection of the waves at any texture gives information both on
the location of the latter and on the variation of acoustic impedance. Kojima
(1989, 1983) showed that a commercial scanning acoustic microscope can be
used to obtain some information about ferroelastic domains. When reflected
acoustic waves are analyzed, evidence about the geometry of ferroelastic
domains in Gdy(MoOQOy); and NdPsO,4 crystals was obtained.

The scanning electron acoustic microscopy is a method designed specifically
to observe ferroic domains. The apparatus by Zhang et al. (1996) was based on a
commercial scanning electron microscope. The electron beam injected into the
sample is intensity modulated, typically at a frequency of 40-400 kHz. The
resulting acoustic signal is detected by a piezoelectric transducer, coupled to the
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rear surface of the sample. The obtained acoustic signal is processed to form
electron-acoustic image on an oscilloscope. Yin et al. (1998) succeeded in using
the method to observe domains in BaTiO; ceramics and PMN-PT single crystals.
Liao et al. (1999a,b) observed simultaneously a secondary electron image and
succeeded in using the method to identify changes in domain structures of
BaTiO; crystals due to the application of electric field. Jiang et al. (1999) applied
this method to crystals of NdPsO;4 and BisTi30;, and discussed the phenomena
involved in generating and detecting acoustic waves due to the interaction
between the primary electron beam and the sample. Different mechanisms such
as thermo-elastic effect, piezoelectric, and electrostrictive effect as well as excess
carrier coupling may contribute to the acoustic signal generation depending on
the specimen under investigation. Spatial variations of these properties influence
the reflected signal and give rise to image contrast. Yin et al. (1999) pointed
out that the “thermal wave coupling mechanism,” i.e., local heating leading to
acoustic waves, could also play a role at low-modulation frequencies.

Considerable attention had been paid by the Grenoble group to the y-ray
diffractometry method. Bastie et al. (1976) and Bastie and Bornarel (1979) used
the following system to study domains in ferroelectric—ferroelastic KDP: A
collimated beam of y-rays (1=0.03 A) from a radioactive source enters the
investigated crystal and is diffracted; the transmitted beam is eliminated by a
lead stop. Rotating the sample makes it possible to obtain rocking curves, i.e.,
intensity of the diffracted beam plotted against the angle w corresponding to a
Bragg peak. The integrated reflecting power of each Bragg peak is proportional
to the corresponding diffracted region of the sample. Scanning the sample and
taking rocking curves at different positions give information about the domain
distribution in the sample. This may be proved useful, e.g., for opaque crystals.
At a particular spot of the sample and applying successively electric field,
hysteresis curve can be obtained showing how the two domain states are
represented in the diffracting region during the hysteresis cycle. An improved
version is the differential y-ray diffractometry offered by Bornarel and Bastie
(1980). It permits a study of the effects of applied electric field, which result in
deformations of different sign in domains of opposite polarity.

Some information on ferroelectric domain pattern can be obtained using the
electron emission effect. The mechanism was discussed in some detail by Kugel
et al. (1995), Kugel and Rosenman (1996), Rosenman (1993), and Rosenman
and Rez (1993). The spatial distribution of the emitted electron flux reflects the
domain pattern. Electron flux generated from the sample is amplified and
transferred to a luminescent screen. The spatial resolution of the method is
low, about 10 lines per millimeter. The method was applied to LiNbO3, TGS,
and LiTaOj; crystals.

Several authors studied electron paramagnetic resonance (EPR) spectra of
selected ferroic crystals, paying attention to the influence of domains. Hartmann
and Windsch (1972) were probably the first to observe domain-related EPR
phenomena: They showed that changing the domain pattern of vanadyle-
doped TGS by a thermal shock or electric field application, which results in an
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expected increase of permittivity due to domain wall contribution, is also
reflected by an additional EPR spectrum whose intensity decreases with time.
Up to now this effect was not utilized to reach some new information on changes
in domain patterns. Fujimoto and Sinha (1983) studied EPR spectra of impurity
ions VO** embedded in (NH,);H(SO,), crystals (species 3m — es — 2/m) and
showed how the three domain states can be identified. Interesting results were
obtained by Zapart et al. (1997) for crystals of KSc(Mo0Qy), (at low temperatures,
species 3m — &s — 2/m). By measuring EPR spectra and their line shapes, it was
deduced that the domain width is just twice the domain wall thickness so that the
relative volumes of domain walls and domains are comparable.

Li et al. (1992) showed that the micro-Raman spectroscopy can be used to
identify ferroelastic switching. The changes of spectra due to compression of
PbTiO5 and BaTiOj; crystals were interpreted as due to 90° domain reorientation.

Nuclear magnetic resonance (NMR) spectra can also be used to obtain some
information about domain states represented in ferroic crystals containing ions
with corresponding properties. As an example we mention the study of CsPbCl3
(species m3m — s — 2/m) by Lim and Jeong (1999); the presence of domains
was detected on the basis of NMR signals of '**Cs.

It is obvious that neutron diffraction and X-ray diffraction can be used to
obtain data on the relative volumes occupied by different ferroelastic domain
states. Jex et al. (1982) studied crystals of RbCaF; (species m3m — 4/mmm) by
neutron diffraction, using a four-circle diffractometer. The full set of (311) and
(331) superlattice points was observed as a function of temperature and it was
shown how from their intensities the relative volumes of the three ferroelastic
domain states can be determined. Tietze et al. (1981) solved the same problem
by X-ray diffraction for crystals of KMnF5 (the same species). The method
employed utilized the intensity distribution from symmetrically equivalent
superlattice Bragg peaks. Measured were intensities of properly selected
Bragg reflections from which relative volumes of the three domain states are
calculated.’

From the preceding sections of this chapter as well as from the above
paragraphs it is evident that the number of domain observation methods is
very large; and new methods are still being offered, one a year at least. For a
ferroic species of any symmetry several experimental approaches are available
to obtain information about domains in a particular sample. Yet we could not
state that the extent of this information is always satisfactory. Many of avail-
able methods do not offer a high enough spatial resolution. In addition, a
prevailing number of methods are those which provide information just about
domains which reach the sample surface. Thus shapes and sizes of domains
embedded inside a sample are mostly unknown, especially when domains in
question are nonferroelastic. In particular, the question of built-in nuclei

> Interestingly enough, in both cases it was found that the relative volumes of the three
ferroelastic domain states differ substantially well below the transition temperature but
approach 1/3 close to the transition temperature.
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remains an important unsolved problem of ferroelectric switching. Similarly,
available information on domains inside ceramic grains is rather incomplete,
for obvious reasons. Methods offering the highest and fully satisfactory resolu-
tion are limited to samples of unrealistic thickness, where domain properties
may significantly differ from those in bulk samples.

A very unsatisfactory situation is in the field of dynamic processes. While
classical methods described above can give information about single domain
wall velocities, we have still no reliable way to obtain direct information about
particular dynamic processes which take place during switching of nonferroe-
lastic ferroelectrics or higher order ferroics.



Chapter 5
Static Domain Patterns

5.1 Introductory Remarks and Scheme of the Chapter

After discussing in some detail the theoretical aspects of properties of domain
states and after describing a number of methods to observe domains, we now
wish to deal with some real domain structures in single crystals. Several thou-
sands of papers have been published on observations of domain patterns in
different kinds of ferroics,' offering a large amount of interesting data for
materials listed in Chap. 3 and many others. Some of them are just observations
as it stands, others were performed with the aim to create situations correspond-
ing to theoretically defined conditions.

When treating properties of domain patterns in real ferroic samples, it is
necessary to distinguish features of stable domain structures from those of
dynamic domain phenomena. In the present chapter we have primarily in mind
static and quasistatic domain patterns which can be observed in the absence of
intentionally applied external forces that would tend to change their geometry or
sizes. We define static or quasistatic domain patterns arbitrarily as those which
do not appreciably change on the time scale of hours. These are the patterns
which may correspond to the thermodynamic equilibrium of the sample or which
are metastable with long lifetimes because of large energy barriers that would
have to be overcome to reach more stable configuration.

Available data on domain patterns can be, in some approximation, classified
into three categories. First, we can observe domains in a sample as it stands,
meaning that its history (sample preparation, thermal record, applied forces) is
not known. Second, and perhaps most often, the sample has been treated in a way
which has been planned or which at least is known. Third, the sample quality and
the external conditions (e.g., thermal history) are well defined and carefully
prepared so that we may expect the resulting domain structure to correspond
to minimum energy harmonizing with its intrinsic properties and external condi-
tions; this is often referred to as the “equilibrium domain pattern.”

! We have in mind nonmagnetic ferroics; in the authors’ catalogue of references some 6000
papers are listed. Surely the number of publications dealing with ferromagnetic domains
would be higher by a factor between 50 and 100.

A K. Tagantsev et al., Domains in Ferroic Crystals and Thin Films, 207
DOI 10.1007/978-1-4419-1417-0_5, © Springer Science+Business Media, LLC 2010
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In the present chapter we first discuss, in Sect. 5.2, theoretical aspects of the
last mentioned case, paying attention to the simplest example of equilibrium
domain pattern in ferroelectric samples containing only domains with antipar-
allel orientation of Pg vectors (“180° domains”). Such patterns have been
studied extensively in ferroelectrics, both nonferroelastic and ferroelastic,
with the aim to obtain regular patterns corresponding to thermodynamic
equilibrium. This research was, in its early stages, inspired by successful treat-
ments of equilibrium domain structures in ferromagnets. The role of the energy
of demagnetizing field has its electrical counterpart treated in some detail in the
following section. However, in ferroelectrics the situation is different because of
the existence of free charge carriers that may contribute in a decisive way to the
reduction of depolarization energy. This issue will be addressed in Sect. 5.2 as
well.

In Sect. 5.3 we shall discuss another factor influencing the domain patterns:
Formation of the latter during a first-order transition, when the boundary
separating the parent and ferroic phases, may strongly influence the formation
of domains. The origin of this effect is connected with the elastic and electric
compatibility conditions.

In the most extensive Sect. 5.4, some real domain patterns will be described,
which have been observed in different kinds of ferroics. In fact, compared with
the vast amount of available data, this selection is—due to the lack of space—
rather short. Here we restrict ourselves to single crystals representing different
kinds of species; some observations of domains in thin films will be given in
Chap. 9. In Sects. 5.4.1, 5.4.2, and 5.4.3, we will give examples of patterns in
some “typical” ferroics. In Sect. 5.4.4 we shall present some examples of R cases,
those when no ideal elastically compatible domain walls exist, and will show
how in samples representing such species the problem of multidomain states is
solved in reality. Only marginal attention will be paid to domains in ferroelasto-
electrics, in the Sect. 5.4.5, while the so-called tweed pattern will be shortly
discussed in Sect. 5.4.6.

The present chapter will not address elastic effects on formation of ferroic
domain patterns. This issue will be discussed in Chap. 9 devoted to thin films,
the systems where these effects are often of crucial importance.

5.2 Equilibrium 180° Domain Patterns in a Ferroelectric Plate:
Theories

In this section we deal with theoretical approaches to equilibrium domain
patterns, considering the classical situation of 180° domain structures: A sample
of uniaxial ferroelectric or of a multiaxial ferroelectric in which only domains
with antiparallel polarization exist. Here we will address this problem for the
ideal case where no external means (like short-circuited electrodes) are used
to set the electric field in the sample to zero. In the case of a ferroelectric in a
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short-circuited capacitor, in the first approximation, the splitting into domain
of the sample is not expected. However, more rigorous analysis reveals that this
may not be always the case, especially in ferroelectric thin films. This special
problem with be addressed later in Sect. 9.4.

In Sect. 2.3, the thermodynamic theory considers ferroelectrics for a specified
value of the macroscopic electric field and, in the absence of the latter, a uniform
single-domain state was found energetically favorable. However, such state can
readily cease to be energetically favorable as far as a finite free-standing piece of
the ferroelectric is considered. In this case, the bound chargers of the sponta-
neous polarization on the surface of the sample will create the depolarizing
electric field which will increase the energy of the system. The energy of
depolarizing electric field can be reduced, if the sample is split into domains.
At the same time, the domain formation will increase the energy of the system
by the energy of the appeared domain walls. Allin all, the balance between these
two contributions to the energy will decide whether the material splits into
domains or not and determines the parameters of the domain pattern if its
formation is favorable. It is clear from electrostatic arguments that if the sample
is elongated along the polarization direction, the energy of the depolarizing field
can be rather small and a single-domain state may be readily favorable whereas
in a plate—like a sample with the polarization normal to the plate—the energy
of the depolarizing field is larger and a multidomain state is expected.

In this section we will discuss the latter case. We have in mind a plate of
thickness /1 of a ferroelectric cut perpendicularly to the ferroelectric axis z; the
plate thickness is assumed to be much smaller than its linear dimensions. The
simplest domain pattern expected in such a system (and often experimentally
observed) is schematically shown in Fig. 5.2.1. In real system, this pattern
usually possesses no net polarization, i.e., the fractions of the opposite domains
are equal, and it is dense, i.e., its period W is much smaller that the plate
thickness 4. When corresponding to energy minimum, the period of the pattern
W follows the square root law of /:

W o Vh, (5.2.1)

which is known as the Kittel law in magnetic system; for ferroelectrics, this law
has been obtained by Mitsui and Furuichi (1953). We will come across this law
again in Chap. 9, when discussing the elastic effect on domain formation in
ferroelectric thin films. Below in this section we present the analysis by Mitsui

I w
Fig. 5.2.1 Schematics of a z
ferroelectric plate with l T I l T l T h
lamella domain structure.
I and I1I—free space, X ——

II—ferroelectric i W, W,
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and Furuichi and discuss different aspects of 180° domain structures as well as
different theories dealing with these structures. However, before doing so we
would like first to elucidate the basic origin of the Kittel-Mitsui—Furuichi law.

The Kittel-Mitsui—Furuichi law results from the balance between the energy
of the created domain walls Fyw and the electrostatic energy Fyep. The former is
evidently proportional to the plate thickness and domain density (x 1/ W), thus

Fyw < h/W. (5.2.2)
At the same time, the electrostatic energy obeys a relation
Fep o< W. (5.2.3)

This relation is due to the fact that, in the dense domain pattern, there is a
strong reduction of the electric field at the distances larger than W from the
sample surface; at such distances the contributions from the stripes of positive
and negative bound charges on the surface efficiently compensate each other.
Thus, only the approximately W-thick surface-adjacent layers contribute to the
electrostatic energy of the system. Minimizing the sum of the contributions
given by Eqgs. (5.2.2) and (5.2.3) readily leads to the sought law. One can check
that similar reasoning can be applied to magnetic and elastic systems leading to
the same law for the domain period. Form the above arguments, one can also
conclude that the Kittel-Mitsui—Furuichi law should fail at the point when it
starts predicting the domain period larger than the plate thickness since at this
point the arguments justifying Eq. (5.2.3) fails. This issue will be addressed later
in this section and in Sect. 9.4.

Let us now address the Mitsui and Furuichi theory. To determine equili-
brium domain structures the thermodynamic potential of the plate-like sample
should be minimized, taking into account all electrical and mechanical bound-
ary conditions. This is a complicated task which in the Mitsui and Furuichi
approach is simplified by assuming that the sample behaves as a “hard” ferro-
electric, its dielectric properties being adequately described by the following
linear relations:

Pz(X,yaZ) = :l:PS(xay) + SO(KC - I)Ez(xayaz)7
PXZEO(Ka_ 1)Ex(xayaz)7 (524)
Py = SO(KH - I)Ey(v’C,J/»Z)a

where E is the local macroscopic field and «, . denotes the diagonal component
of the permittivity tensor. Thus we assume the existence of spontaneous polar-
ization with a given magnitude and with two possible orientations along the
z-axis, but neglect nonlinear effects. The plate (medium II) is surrounded by
vacuum (media I and III) as shown in Fig. 5.2.1. This approach is equally
applicable to both proper and improper ferroelectrics although it is approximate
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only and we shall discuss its limitations later. The Maxwell equations require for
the dielectric displacement D in medium 11

diVD[[ = P (525)

here pris the density of free charge in the dielectric. The boundary conditions
for the interface I/1I read

(Dy — Dy)n = oy, (5.2.6a)
(B —Ept=0, (5.2.6b)

where n is the unit vector along the normal pointing from II to I and t denotes
the unit tangential vector; o stands for the surface free charge density. Similar
conditions hold for the interface II/III. At this stage, we do not allow for the
existence of any free charge carriers so that py = g¢ = 0.

Let us first assume that the crystal is single domain with positive sponta-
neous polarization. Then, by symmetry, the involved quantities can depend on z
only. From Eqs. (5.2.5) and (5.2.6a) we find that an electric field Ege,, exists in
the plate, of magnitude

Edep = 7P0/KC'805 (527)

which is directed against spontaneous polarization and is therefore called
depolarizing field. In general this field can be very large. For a crystalline
BaTiO; plate at room temperature, e.g., with Ps 2 0.26 cm 2 and x, = 150
one readily finds Egep 22 2x10® V/m. The electrostatic energy of this field is
referred to as depolarization energy, which can also be substantial. Its spatial
density is generally given by the relation

1 1
~E(D — Ps) = = &0k, E/E;. (5.2.8)

¢dep = 5 5

For our purpose it is useful to integrate it so as to obtain the depolarization
energy Ugep per unit area of the plate. From the two preceding relations we
obtain

Ugep = P3h/2e0ke. (5.2.9)

By formation of domain structure this value can be essentially reduced. Let
us find the depolarizing energy for a periodic domain pattern (W is its period),
in which domains of alternating polarization are lamellae of the width W and
W_ (W, + W_ = W), with walls perpendicular to the x-axis, as shown in
Fig. 5.2.1. For this geometry, the spontaneous polarization in medium II can
be written in the form of Fourier series

W+_W7 i“'PS . 7'L'nW+

Ps(x) = Psot— "= Vs
s() = Psy =5 an WL W

cos nkx.  (5.2.10)
n=1
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It is useful to introduce the following abbreviations:

C=\/Ka/Ke, &= /Kakc = CKe, (5.2.11a)
k=2m/W, A= (W,—W.)/W, (5.2.11b)
R =mch/W. (5.2.11¢)

To calculate the depolarization energy for this case we first have to determine
the spatial field distribution. In region II, the potential ¢y(x, z) must satisfy the
Laplace equation:

Py, Py
Ka o2 + Ke 922 =0. (5.2.12)

Similar equations hold for ¢; and ¢q in regions I and 111, however, with
the permittivity equal to 1. The boundary conditions include the potential
continuity

Pi(z=0)=¢u(z=0), ¢ulz=~h)=¢ulz=—h), (5.2.13)

and the continuity of tangential components of the field which can be written as

09y eLun
o0 (z=0) = o (z=0), (5.2.14a)
dou (2= i) = I (z = —h). (5.2.14b)

Ox ox

The potentials fulfilling these requirements are

1 & 18Psch . A+1 1
=—)>) — k —nk 5.2.15
g 4me ;nz R T + g coth aR-O" vexp(—nkz), a)
PsA 1 K1 8Psch A+ 1 sinh(nR + nkcz)
= — 5.2.15b
P gk, aF 4meg Zl n? R st 2 sinh nR + g cosh nR’ ( )
PsAh 1 S18Psch . A+ 1cos nkxexplnk(z+ h)]
=— — . (5.2.15
P goke  4mey 2 2 R T 1 +gcothnR ( ©)

Using these results one can calculate the electrostatic energy of the system,
which comprises the energy of the field inside the plate, given by Eq. (5.2.8), and
the energy of the field outside it. Thus, for the domain pattern one finds for the
electrostatic energy per unit area of the plate

1P (o A+l 1
=_ 2.1
Udep =57 Eoke ( anZ ( 2 ) 1 + g coth nR> (52.16)
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When looking for domain pattern which minimizes the total energy, one
readily checks that the structures with zero net polarization, i.e., with 4 = 0, are
always more advantageous than electrically unbalanced structures with 4 # 0.
Thus, we continue consideration for the case where W, = W_ = I¥/2. In the
approximation where the electrostatic interaction between the plate surfaces
can be neglected, expression (5.2.16) can be simplified down to the form

13P2 W
Udep = _OBAW (5.2.17)

(T

As can be shown from analysis of series (5.2.16), this approximation is
valid if

W<h, |- (5.2.18)

We will call this situation dense domain pattern. This can be considered as
generalization of the notion of dense domain pattern (defined above by the
relation W < h) to the case of materials with strong dielectric anisotropy.

Now the period of the equilibrium domain structure can be found by mini-
mizing the total energy of the system per unit area of the plate

Uit = Udep + Uw, (5.2.19)

where Uy denotes the energy of domain walls per unit surface of the plate,
which relates to the wall energy per unit area o, as

h
Uw = 2O'WW. (5220)

Now, minimizing total energy with respect to W we obtain for the equili-
brium domain width

Weq/2 = /huh, (5.2.21)

where the characteristic length reads

v = 3.7e0(1 + /Kakc)ow/ P (5.2.22)

This result was first obtained by Mitsui and Furuichi who discussed domain
patterns in Rochelle salt crystals. With this domain structure, the total energy
per unit area of the plate attains the value

1/2

0.26
Upin = 2 |——220% | pehl/2, (5.2.23)

o1+ Vers)
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Using relations (5.2.18) and (5.2.21) one finds the obtained results are valid
for sample thicker than the critical thickness?

herie = 4\ / EhM- (5.2.24)
Ka

Some estimates for /.. for a number of ferroelectrics have been performed
by Kopal et al. (1997). Taking a,, = 10 erg/cm® = 102 J/m? it is found that at
room temperature for TGS /7 = 10> cm, for BaTiOs ey = 10°® cm, for
PbsGe304; heir = 6 x 1077 cm, for Gdy(MoOy); heriy = 4 % 107 cm, for
KH,PO, (at 100 K) /i = 107 cm, and for Rochelle salt (at 273 K) heqe = 3 X
10> cm. Common single crystalline ferroelectric samples prepared in the labora-
tory by cutting and polishing have usually thicknesses 100—500 um; for these, the
dense pattern approximation is fully justified.

These estimates apply to temperatures rather far below the phase transition
points. One might argue that domain structures are usually formed on cooling
at temperatures T¢. It is therefore interesting to estimate how /i.; may depend
on temperature (Kopal et al., 1997). Let us consider ferroelectrics with a second-
order phase transition. For a proper uniaxial ferroelectric material we expect
Pé x (Ty—T), k, x (T — 7) ', and we recall that o,  (Ty-T)*? (see Sect.
6.2.1). Thus Ay scales like (T, — 7')'. For an improper ferroelectric, on the
other hand, we expect Ps o (To— T'), k, = const., and again a,, < (Ty— T')*/* so
that & scales like (To — T )~!2. For the case of cubic ferroelectrics, one can
readily check that /i, also scales like (T, — 7') /%, Thus, the value of /i, may be
quite large close to the phase transition point. Also for ferroelectric transitions
which are discontinuous but close to second order, we may expect that /i will
increase as T¢ is approached from below. However, it practically occurs that it
is in ferroelectric thin films where the dense pattern approximation may not be
valid. This situation will be discussed in Sect. 9.4.

One should note that Egs. (5.2.21), (5.2.22), and (5.2.23) have been repeat-
edly used to discuss observed domain patterns and their time developments. In
particular, many estimates for the energy densities o, were based on observa-
tions of quasi-regular lamellar domain structures and Eqs. (5.2.21) and (5.2.22).

The conclusions obtained above on the structure of the equilibrium domain
pattern have been drawn using several assumptions. One of these was that
regarding the periodicity of the resulting equilibrium pattern. A possibility of
alternative more complicated equilibrium structure has also been discussed in
the literature by Ozaki et al. (1993) who claimed that in crystals of KH,PO, the
antiparallel domain pattern has the form of lamellae, as reported before (Mitsui
and Furuichi, 1953), but that as the crystal plate thickness d increases, the
periodicity. . . W /W_[W . /W_... with W, = W_ becomes broken and more

2 The given expression for the critical thickness is very close to that given by Kopal et al.
(1997).
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complicated yet still periodical sequences of positive and negative domains
occur, falling into the category of fractal patterns. They were interpreted as
periodic patterns representing the so-called prefractals of the pentad Cantor
sets (Ozaki, 1995). The first four prefractal structures, n = 0, 1, 2, 3 are shown in
Fig. 5.2.2 (Ozaki and Ohgami, 1995). In the left half-period L we have N
domain stripes of width W of positive polarity. The n(n+ 1)th prefractal
structure is obtained from the previous one by reversing the polarity of a central
fifth part of every negative domain in the right half-period in the nth structure.
Ozaki and Ohgami calculated the depolarization energy of such patterns,
assuming the equation of state (5.2.4) and working in the dense pattern approx-
imation, to find for the total energy of the system

4PiL
Ut = 5 S OC(I/Z) + (2'1+1 _ 1)
s 80(1 + 1/Kctca)

owh

7 (5.2.25)

o

Fig. 5.2.2 Schematic
drawing of the ‘prefractal’ 1 -
domain patterns of period
2L withn = 0,1, 2, 3 (see
text). Pg is perpendicular to
paper. White and black
correspond to the directions
of polarization up and
down. After Ozaki and
Ohgami (1995) L

w

Here numerical factors are a(0) =2 1.052, (1) =2 0.435, a(2) =2 0.183, o(3) =
0.117, etc. For n = 0 we obtain the situation described by Egs. (5.2.17), (5.2.19),
and (5.2.20). Ugep as a function of » exhibits a minimum for n = 3. At this
configuration the ratio of plus/minus domains is 1.05 in the left half-period and
0.95 in the right half-period; the structure as a whole, of course, is neutral. The
half-period L.q minimizing Uy, is

awn3so(1 + ‘/KcKa)/’l
Leg = ¢/ (271 —1) (5.2.26)
“ \/ 8 Pla(n)
and the corresponding energy is
8o (2 — )]
Unin = 2 |——7 Psh'/?, (5.2.27)
T 80(1 + ‘/cha)
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which exhibits minimum value for n = 0, as given by Eq. (5.2.22) for the previously
considered structure with the simple periodicity. Thus, we see that prefractal
structure does not provide us with a deeper energy minimum for the system.

All the lamella domain patterns considered above can be called “one dimen-
sional” since they are characterized by just one parameter, their width. The
appearance of such patterns can be expected in ferroelectric ferroelastics where
domain wall orientations are strictly limited. At the same time, in the case of
nonferroelastic domain patterns, where the domains are separated with W, walls
parallel to Pg, other “two-dimensional” patterns can occur. Indeed, observations
of 180° domain patterns in such crystals show very often domains of one polarity
in the form of prolonged islands in the sea of the domain state with opposite
polarity of Ps. The question what are equilibrium parameters of two-dimensional
domain patterns was addressed by Fousek and Safrankova (1966). Several types
of two-dimensional domain patterns have been considered; however, no config-
uration giving the minimal energy lower than that of the simple lamella structure
has been found. One of the considered types is explained in Fig. 5.2.3 where the
“unit cell” of this pattern is shown. Figure 5.2.4 shows the dependence of the
minimal energy of the system as the function of the aspect ratio of the cell. It
demonstrates that the lamella structure corresponds to the energy minimum.

LX
Fig. 5.2.3 ‘Unit cell’ of a simple two-dimensional domain pattern. Pg is perpendicular to
paper. White and black correspond to the directions of polarization up and down. After
Fousek and Safrankova (1966)

N
N

normalized energy

-
o
-

u

Fig. 5.2.4 Energy per unit area of the equilibrium patterns showed in Fig. 5.2.3 (normalized to
that of the equilibrium lamella structure with the same material parameters of the
ferroelectric) plotted as a function of the aspect ratio u of the ‘unit cell’. After Fousek and
Safrankova (1966)
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Now we draw the reader’s attention to an implicit assumption behind the
above whole analysis; specifically, the use of the hard-ferroelectric approxima-
tion has implied that the ferroelectric state in the domains remains stable under
the action of the depolarizing field. For the considered case of dense domain
structures, this assumption can be readily justified far for the surface of the plate
where the field is much smaller the value given by Eq. (5.2.7). At the same time,
at distances smaller than the domain period, the field remains strong so that the
stability of the ferroelectric state in these regions to be checked.

Let us evaluate the impact of the depolarizing field on the ferroelectric state
in a dense domain pattern of typical proper ferroelectrics. As is clear from the
result, Eq. (2.3.46), obtained in Sect. 2.3.6, the depolarizing field in a homo-
geneously polarized plate shifts the transition temperature down by C/x;, where
Cis the Curie—Weiss constant and «y, is background dielectric permittivity. This
shift is the results of the depolarizing field created by two layers of the bound
charge (of the spontaneous polarization) on the faces of the plate. In the dense
domain pattern close to the surface of the plate, the field is created only by one
layer of this kind. Thus, in this case, the field and the shift of the transition
temperature are expected to be twice as small. Since for proper ferroelectrics the
magnitude of C is typically 10°-10° K and «;, can be considered to be of the
order of 10, the transition temperature at the surface of the dense domain
pattern should be shifted to lower temperatures by 100-10,000 K and may
become totally unrealistic. This implies that, strictly speaking, in typical proper
ferroelectrics the Mitsui and Furuichi model may readily fail (e.g., for displacive
ferroelectrics where the Curie-Weiss constant is about 10° K) except for mate-
rials with very small value of C, like in weak or pseudo-proper ferroelectrics.
This is actually the failure of the hard-ferroelectric approximation, Eq. (5.2.4),
close to the surface of the ferroelectric plate.

However, in improper ferroelectrics the situation is different. In these sys-
tems, ferroelectricity is not suppressed by depolarizing field, as noted by Leva-
nyuk and Sannikov (1968). The point is that the depolarizing effect has only
slight influence on the temperature of the first-order transition and none at all
on that of the second order. Let us explain the latter case in some detail. The
simplified thermodynamic potential of an improper ferroelectric (it can be
obtained from Eq. (2.3.36) after a change of the variables and the minimization
with respect to the phase of the order parameter) can be written as

1 1 1
O = @, +§oc172 +Z/3;14 +y112P+§aP2, (5.2.28)
where only « = ao(7T — Ty) is a temperature-dependent coefficient, f > 0, and
a>0.Setting 0®/0n = 0,09/0P = E, and depolarizing field £ = E4e, = —P/eo,
we find

o Y 2

=——n". 5.2.29
a—l—l/Son ( )
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Thus, the equation of state for the order parameter reads

0P 2y? 3
=0 =on+ S A— 5.2.3
on 0 =on (ﬁ a+ 1/80)" ’ ( 0

leading to the spontancous values

2 _ o B ay
L ﬁ - (2'))2/“ + 1/80) Ps = \//))(Cl + 1/8()) . 2V2 (52303)

From these equations we see that, in an improper ferroelectric, the depolar-
izing effect does not affect the transition temperature resulting only in a
decrease in the magnitude of spontaneous polarization compared to its value

oy

pPo— %
S Pa — 2y2

(5.2.30b)

for the short-circuited conditions.

All in all, the above analysis shows that the Mitsui and Furuichi model is
fully justified in the cases of improper and weak ferroelectrics whereas, in the
case of typical proper ferroelectrics, formally, this approach fails. However, on
the practical level, this model (for the dense domain pattern) can be viewed as a
reasonable approximation because in the main part of the sample it is fairly self-
consistent. Here one should stress that if the domain wall spacing is larger than
or comparable to the thickness of the sample, in typical proper ferroelectrics,
the hard-ferroelectric approximation may readily fail everywhere so that the
Mitsui—Furuichi-type calculations cannot be used at all for the description of
domain patterns.

One can go beyond the Mitsui-Furuichi approach. At present, there are
three ways to do it: (i) consideration of a “branching” scenario, (ii) abandoning
the hard-ferroelectric approximation, and (iii) taking into account the finite
conduction of the material.

The first possibility to avoid too high electric field at the plate surface has
been suggested by Marchenko (1979). In his model, still working in the hard-
ferroelectric approximation, it is assumed that half-lens-shaped domains exist
at the sample surface, forming a quasifractal structure shown in Fig. 5.2.5. They
are embedded in each other with alternating direction of Ps. There are no
domain walls crossing the whole sample. Calculations lead to the maximum
length L of these domains in a plate of thickness £ as follows:

312

The formation of embedded domains (the so-called branching) stops where
the domain width becomes comparable with the domain wall thickness. It is
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Fig. 5.2.5 Elements of the
branching domain pattern in

the vicinity of the l l
ferroelectric/free space
border. I—free space, 11—
ferroelectric. Arrows show T
directions of spontaneous

polarization. After
Marchenko (1979)

believed that at this point the electric fields near the plate surface become small
enough not to destabilize ferroelectricity.

The second possibility to avoid too high electric field at the plate surface is to
abandon the hard-ferroelectric approximation (at least in the surface-adjacent
areas of the sample). Unfortunately, this approach cannot be implemented purely
analytically requiring numerical solution of Ginzburg—Landau equation for the
polarization (Wang et al., 1995). It has been shown that, in this approach, the
square root law for the thickness dependence of the domain period can also be
reproduced. An advanced analysis performed by De Guerville et al. (2005) has
also revealed some elements of branching in the equilibrium domain pattern
found. We will address these results in more detail later in Sect. 9.4. Discussing
the approach to the equilibrium domain pattern based on the Ginzburg-Landau
equation, one should mention the treatment of the domain formation when
crossing the phase transition from the paraelectric phase (Chenskii, 1972; Chens-
kii and Tarasenko, 1982). In this case, the domain pattern appears as a sinusoidal
modulation of polarization. Remarkably, the period of this modulation also
changes with the plate thickness as v/ We will address the results from the
aforementioned papers in more detail later in Sect. 9.4.

The third approach to the problem is to take into account the possibility of
screening of the bound polarization charge with free carriers. In most of the
previous formulae, the quantity Ps was used as a material parameter defined by
Eq. (5.2.4) but in fact it played only a role of surface density of the bound
charge. Ferroelectric samples were considered of zero electrical conductivity.
This may be a good approximation for many real materials, in particular for
those with low transition temperatures. It is obvious that free charge may
significantly reduce the total surface charge which is the source of depolarizing
field and energy. In fact the high electric field near the surface can be reduced to
an acceptable level due to the surface charge transport. When discussing phe-
nomena connected with compensation of the bound charge by free carriers, in
the simplest approach, the magnitude of P, can be replaced by p Py where the
factor p is the degree of compensation and 0 < p < 1.
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More involved theories to address this problem have been developed (Chens-
kii, 1972; Darinskii et al., 1991; Selyuk, 1971). Not going into details of these
papers we just mention that all these theories predict an increase in the domain
period with increasing free carrier concentration, with a transition to a single-
domain state a high enough level of screening. This behavior is intuitively
expected since the free carrier screening decreases the energy of the depolarizing
field and does not affect the domain wall energy. An essential new feature
brought about by the screening effects is the conclusion that the period of the
domain pattern can essentially deviate from the v/ law in system where without
screening this dependence is expected. According to Darinskii et al. (1991), for
the case of the screening with non-degenerated free carriers, the period of
appeared polarization modulation should follow the relations

1

Wox (5.2.32)
TS
5

hs = 2my [ 228 (5.2.33)
Ka

where Ap is the Debye screening length and ¢ is the correlation coefficient
defined in Eq. (6.2.1).

5.3 Domain Patterns Connected with Phase Boundaries

Considering ferroics with ferroelastic properties one has to take into account
also mechanical aspects of the problem. These issues play a significant role at
the phase transitions of the first order: Mechanical compatibility must be
ensured between the part of a sample in the parent phase and that which has
already transformed into the ferroelastic phase. The problems involved will be
discussed in the following two sections. The approaches discussed below are
also applicable to the problem of mechanical compatibility at a phase bound-
ary, which can appear at the first-order phase transition between two ferro-
electric phases (e.g., between tetragonal and orthorhombic phases in BaTiO3).
We will also discuss this situation at the end of this section.

5.3.1 Perfect Matching

A discontinuous phase transition involves the problem of mechanical compat-
ibility of the parent G and ferroelastic phase F. When a sample passes through
the temperature 7Ttr, new phase usually nucleates in a corner or at an edge. On
decreasing temperature, the volume of F phase increases and the two phases
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become separated by a boundary, often of a planar character. Its existence and
orientation are influenced by the conditions of electrical and mechanical com-
patibility, a problem similar to the compatibility of domain states discussed in
Sects. 2.2.3 and 2.2.4. Here we pay attention to the mechanical aspect.

If the parent phase and the domain state A of the ferroic phase, characterized
by spontaneous strain Ssj should be separated by a mechanically compatible
phase boundary, the latter must satisfy the condition that the following equa-
tion has a nontrivial solution:

8<s?>xixj =0. (5.3.1)

If this is so, this equation in fact determines the orientation of the phase
boundary itself. The analogy with the domain compatibility condition (2.2.10)
is obvious.

For a limited number of ferroelastic species the mechanically compatible
phase boundaries do exist. They were determined by Shuvalov et al. (1985a) on
the basis of the condition just specified. Table 5.3.1 gives examples of their
results; the original table presented the full list of mechanically compatible
boundaries includes orientations of boundaries in the following species:
422222, dmm-mm2, 42m —mm?2, 4/mmm-mmm; 622-222, 6mm—mm?2,
6m2 — mm2, 6/mmm—mmm; 4-2, 4 — 2, 4/m-2/m; 622-2, 6mm-2, 6m2 — m, 6/
mmm-=—2/m; 6-2, 6-m, 6/m—2/m. To ensure physical contact of both phases, one
of them must be rotated by an angle ¢ also specified in the table. Under-
standably, this is in direct analogy with the clapping angle ensuring the physical
contact of two ferroelastic domains. In a similar approach, the problem of
phase boundary orientation was addressed also by Boulesteix et al. (1986).

Thus in all species listed above the two phases can coexist in the way that on
the ferroic side of the boundary a single-domain state is realized. However, in

Table 5.3.1 Phase boundaries and clapping angles for selected ferroelastic species

Clapping angle
between the parent
Species Phase boundary  and ferroic phases®  Note
422-222, x=+t)yx=- ¢3=a The X/, y' axes are rotated by
4mm-mm?2, 45° with respect to x, y
42m — mm?2,
4/mmm—mmm
422-2, 4mm-2, x=+yx=- 3= [(sin?0 - The x/, y' axes are rotated
42m -2, cos’0)a — (2sinf around z by 6 = (1/2)
4/mmm-2/m cost)b arctan (—b/a) with respect
tox,y
222-2, mm2-2, X =Zx =2 ¢o3=b The X/, Z/ axes are rotated by
mm2-m, 45° with respect to x, y

mmm-2/m

*a, b are components of the natural spontaneous strain.
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calculations leading to these results only linear relations between spontaneous
strain and the order parameter have been taken into account, neglecting higher
order terms. From here it follows that these results are only applicable for first-
order phase transitions close to second order. On the other hand, Shuvalov’s
results can be applied even for phase interfaces of species not listed above if
accidentally the decisive component of spontaneous strain is relatively small. As
an example we refer to the case of Pb3(POy4), whose species 3m — 2/m is not
included in the list (Shuvalov, 1985a). The diagonalized tensor of its sponta-
neous strain has three components, €11, €, and &33 of which the last is by an
order of magnitude smaller than the previous two. If we set this component
equal to zero, we reach the conclusion that the stress-free phase boundary exists
whose normal n makes an angle of +-46,65° with the x-axis and +43,35° with the
y-axis. Taking into account the additional rotation of the ferroelastic phase
with respect to the parent phase the conclusion has been reached that for
Pb3(PO,), the angle of the phase boundary with the y-axis should be £49,07°
compared to the experimental value 49+0.5°.

5.3.2 Matching on Average

In many cases, the spontaneous strain tensor is such that phase compatibility
relation (5.3.1) cannot be fulfilled. However, at a discontinuous transition, the
ferroelastic phases may be nucleated in different parts of a sample, grow, and
finally meet inside it. If the elastic misfit is too large, this process may result in
breaking the sample. However, this misfit can be significantly reduced by
splitting the part of the sample in the ferroic phase into ferroelastic domains.
The compatibility conditions can then be satisfied for the averaged spontaneous
strain.

In a general theoretical way the problem was discussed by Wechsler et al.
(1953) and their approach is often addressed when martensitic transformations
are treated. Here we will present a simplified approach (cf. DiDomenico and
Wemple, 1967), following the calculations of Dec (1993). As an example, we
wish to investigate conditions for matching a parent cubic phase with the lattice
constant @y with tetragonal phase with cell parameters a, ¢. Natural sponta-
neous strains in the three ferroelastic domain states are

& 0 0 e 0 0 e 0 0
V=10 & 0f, =10 & 0f, =10 & 0], (532
0 0 & 0 0 e, 0 0 &

where . = (¢ — ag)/ap>0 and &, = (a — ay)/ao <0. Discussing possible coex-
istence of any of these domain states with the parent phase, one can easily check
that the compatibility condition is not satisfied. However, it can be fulfilled if we
consider an interface between the parent phase and a multidomain state. Let us
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check this possibility for two domain states 1 and 2. The average spontaneous
strain of the system of coexisting domains can be written as

gs, = (1 —o)el) +ael’, (5.3.3)
ij i

where o is the volume fraction of domain state 2. To check the possibility of

mechanical compatibility of this mixture with the parent phase we apply the

condition (5.3.1) to this average spontaneous strain. It results in an equation for

o with the solution o = ¢, /(e. — €,). We can easily check that, for this value of «,

the average spontaneous strain has the form

&, 0 0
es=10 e +e 0f, (5.34)
0 0 0

which indeed does satisfy the compatibility condition. The orientation of phase
boundary is given by Eq. (5.3.1) with &; defined by the preceding matrix. That
determines the direction cosines {#k/} of the normal n to the interface in the

form
N\ 12 L\
h— ( a ) k= (ﬂ) L i=0. (5.3.5)

—& Ec

From here we obtain the angles «, f3, y between the normal n and the axes of
the cubic phase.

This theoretical approach provides an explanation to the experimental data on
the m3m — 4 mm phase boundary orientations in several perovskites reported by
Fesenko et al. (1975, 1990). These orientations were found to be (650) for crystals
of BaTiO; and (320) for crystals of PbTiOj3. In fact, in the latter case actually
there exist 32 crystallographically equivalent boundaries. Only eight of them were
realized in a sample if there was no temperature gradient while in a properly
engineered gradient any of these 32 boundaries could be realized. The phase front
was accompanied by a periodic 90° domain pattern. If there was only one phase
front, this 90° pattern did not depend on temperature. If there were more phase
fronts, the 90° domain pattern is complicated and changed with temperature. The
orientations of stable boundary planes are compared in Table 5.3.2 with the
results of calculations according to the above formulae, where excellent agree-
ment between the theory and experiment is evident.

The discussed theoretical approach can also be applied to phase boundaries
that can appear at the first-order phase transition between two ferroelectric
phases (e.g., between tetragonal and orthorhombic phases in BaTiOs). In this
case, however, in general, to both phases the average spontaneous strain can be
ascribed. In this case, the difference in the average spontaneous strain between
both phases (A and B) can be written as

A, B.p
Aj = oeg” = aged?, (5.3.6)
o
B



224 5 Static Domain Patterns

Table 5.3.2 Orientation of phase boundaries between cubic and multi-
domain tetragonal phases

Boundary orientation Ratio of domain volumes
Theory Experiment Theory Experiment
BaTiO; o = 49°40 o= 50°+1° 22 ~2

B =40200 B =40°+1°
7 =90°000  y=90°+1°
PbTiO; o =53°56 o =55+1° 289
p=3604  p=35+1°
y =90°000  y =90°+1°

IR
(98]

. B, . . .
where eéi“ and es_;ﬁ are the natural spontaneous strains’ in the domain states of
1) 1)

the phasés A and B, respectively, indexes o and # numerating these states; o/
and ocg are the fractions of the domain states obeying the normalization condi-
tions. > o® =1 and dp o8 = 1. The information on the orientation of the
phase boundary can now be obtained for Eq. (2.2.10) with A; coming from
(5.3.6). An approach conceptually close to that presented above has been
applied to the tetragonal-orthorhombic phase transition in KNbO; (Metrat,
1980). However, the validity of the results obtained is questionable since a non-
justified criterion of the mechanical compatibility (see the first footnote in Sect.
2.2.4) was used in the calculations.

5.4 Selected Observations of Domains in Crystalline Ferroic
Samples

We now wish to present a representative selection of experimental observa-
tions of domain patterns in selected kinds of ferroics. For several crystalline
ferroelectrics—TGS, barium titanate, KH,POy,, and Rochelle salt in particu-
lar—numerous experiments were performed with the aim to reach and visua-
lize equilibrium domain patterns in the sense of Sect. 5.2. These will be covered
in some detail. But in addition there is an enormous amount of interesting
data on static observations of domains not dealing with these idealized pat-
terns, which have never been summed up and could cover almost the full
volume of this book. In this section we present a very limited selection of data
with the aim to demonstrate some of either typical or challenging domain
configurations in different kinds of ferroics. When comparing any of these
data we have to bear in mind that in most observations the sample quality is
not fully defined, and yet crystal growth conditions and defects play impor-
tant roles. Often the boundary conditions, another essential factor, are not
properly specified either. While we do not wish to describe here effects induced
by intentionally applied external forces, in selected cases we find it

3 In this case the Aizu strain, in general, cannot be used in this equation (see Sect. 2.1.3).
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indispensable to describe domain patterns formed after the application of
such forces. Reported observations are sorted into several categories of fer-
roics which—as it follows from the considerations in Sect. 2.3—differ in their
basic properties. In each of them, only a few of the most studied materials are
covered in some detail.

5.4.1 Uniaxial Ferroelectrics ( Nonferroelastic) with the
Second-Order Transition

5.4.1.1 TGS, Triglycine Sulfate

Triglycine sulfate and isomorphous ferroelectric crystals representing the spe-
cies 2/m—Pd-2 have served as model materials for domain studies and their
domain structures have been described and discussed in about 500 papers.
There are a number of reasons for this popularity. A crystal of TGS can be
relatively easily grown from water solution in a good quality and with the linear
size of several centimeters. Its cleavage plane is perpendicular to the polar axis
which makes it possible to prepare excellent plates of the required orientation.
Also, it is chemically stable and not hygroscopic, although it is soluble in water.
The other incentives for studying this material are the favorable location of
Tc = 49.5°C and the fact that there are several methods to observe domains:
Easy etching, as described in Chap. 4, as well as a number of decoration
methods of which liquid crystal decoration proved to be very effective. In
previous chapters we have already referred to domains in TGS, in particular
in connection with methods for domain observations. Investigations of domain
shapes in TGS will also be mentioned in Chap. 6.

Now let us briefly summarize some selected data on domains in TGS. This is
not a straightforward task since, in the observations, several factors combine
and cannot be well distinguished: sample quality, boundary conditions, tem-
perature, and time.

Although single TGS crystals grown in many laboratories have been of large
size, good quality, and comparable macroscopic properties, it is known that
they contain segments, often referred to as growth pyramids, which strongly
differ in domain patterns and in the response of domains to applied electric
fields. The TGS crystal is grown from a seed and the growth pyramid (kk/) can
be defined as a locus of the natural plane having indices (#k/) throughout the
growing process (Furuhata, 1970). Several authors (Stankowska and Czar-
necka, 1989; Konstantinova and Stankovskaya, 1970; Dontsova et al., 1988;
Konstantinova and Stankowska, 1971) demonstrated the differences of domain
patterns in distinct pyramids. Obviously, these phenomena may be closely
connected with the distribution of additives in different growth pyramids, but
the exact character of defects responsible for this effect is not known. Kon-
stantinova and Stankowska (1971) pointed out that the domain geometry,
domain size, as well as their time development strongly depend on the concen-
tration of Cu"? additives as well as on the growth pyramid from which the
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sample is cut. Dontsova et al. (1988) managed to particularize how these
additives are distributed in various growth pyramids and studied the density
of domain nuclei in growth sectors of TGS crystals doped by various well-
specified admixtures. Although none of these observations have been yet trea-
ted theoretically, we can conclude that the very existence of growth pyramids
represents a warning that some of the obtained results cannot be generalized
and that proper consideration of the influence of defects on the static domain
pattern is essential even in a nonferroelastic material like TGS.

Let us first state that in “as-prepared”—meaning no programmed tempera-
ture—time treatment has been involved—plate-like electrically isolated samples
of TGS, at room temperature, domains of one polarity of Pg form irregular
islands in the sea of the other polarity (see Fig. 4.4.1). Sometimes domain walls
show a preference to be aligned along the a-axis, resulting in lenticular domains
extended along this axis for which their average width can be measured and
specified. Typically, as shown by etching both surfaces (see Fig. 4.4.1), domains
are formed by domain walls parallel to the polar b-axis which ensures their
electroneutrality. Occasionally, however, etching surfaces parallel to the polar
axis may reveal “internal” domains which do not reach the polar surfaces
(Chynoweth, 1960) (see Fig. 2.2.5).

In targeted experiments, first the question if the depolarizing field indeed
plays the expected role is asked. Moravec and Konstantinova (1968) examined
plates of TGS which were short-circuited by applying a layer of silver paste,
then annealed above T, and subsequently cooled to room temperature. By
etching, they were found almost in single domain, in strong contrast to the on
average nonpolar pattern found in insulated samples. This appears to prove
unambiguously the role of depolarization energy when the domain pattern is
formed at the phase transition. These results were later confirmed by Stan-
kowska and Czarnecka (1989). The experiments of Gilletta (1972), however,
indicated a more involved—although not controversial—situation. TGS plates
were cooled alternatively in mercury and in vacuum (or paraffin oil, with the
same result). A few minutes after passing through, T samples were irradiated
by X-rays which, on the basis of previous experience, was believed to freeze, at
that temperature, the domain structure. The latter was then revealed by etching
at room temperature. Domain patterns were similar in both cases except that in
the short-circuited samples domains were of larger size. Gilletta explained these
results by the presence of a surface layer (see Sect. 9.4.1). Indeed, he presented
dielectric data which point to the existence of an intrinsic surface layer on
insulated TGS plates and a much thicker (I um) surface layer in samples with
evaporated Ag electrodes. The nature of the former may be structural perturba-
tions, the latter could be due to chemical interaction with silver. In alternative
experiments, in which domains were revealed by etching, Gilletta showed that,
after shelving the insulated plates for several weeks, large domains developed,
while plates that were immersed in mercury became single domain within hours
or days. We include these observations to indicate the difficulties faced when
obtaining possibly reliable data.
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More distinctive information can be specified for samples which went through
a defined cooling process. Hatano et al. (1977) observed that after annealing a
TGS plate above T¢ and cooling it down to room temperature, first a fairly
periodical stripe structure occurs with well-defined orientations of domain walls,
perpendicular to the crystallographic c-axis. With time the stripes change into
lenticular or elliptical domains. These authors observed an analogical process in
TGSe, where fairly regular plate domains reached after cooling, parallel to the
crystallographic (001) planes, change with time into lenticular domains whose
tips are restricted by walls with the (201) orientation. The shapes of domains in
both these materials have been successfully discussed on the basis of wall energy
anisotropy and we shall come back to this point in Sect. 8.4.6.

Valuable evidence of the influence of crystal quality and the time factor was
obtained by Moravec and Konstantinova (1968). They prepared plates 3-4 mm
thick from four crystals of different degrees of purity: TGSI1 (three times
recrystallized TGS synthesized from three times recrystallized glycocol);
TGS?2 (one time recrystallized TGS synthesized from non-recrystallized glyco-
col); TGS3(Cu) and TGS3(Fe) (grown from TGS2 with addition of Cu and Fe,
respectively). After annealing at 96°C, plates were cooled at a rate of 0.3 K/min
down to room temperature. After a waiting time Zg,eir, up to 500 h, the sample
was etched and photographed. The preferred wall orientation was specified as
perpendicular to the direction [I,0,2]. Then the number N of walls per milli-
meter was counted along this direction. Figure 5.4.1 shows their results. The
value of N was found to depend on #g,.r, Obeying the equation

1 1
= K(tgar — 10). 4.1
N NO (Zshelf tO) (5 )

This behavior demonstrates the aging process of insulated samples. This
result clearly represents the role of crystal quality on the observed domain

100 T T T T T

Fig. 5.4.1 Time dependence
of the number of domain
walls per 1 mm along the
direction perpendicular to
the wall preferred
orientation. o—TGS1;
A—TGS2; +—TGS2, short-
circuited; T—TGS3(Cu™ *);
x—TGS3(Fe™ ™ ™). After
Moravec and
Konstantinova (1968). The
roles of the crystal purity
and of electrical boundary
conditions are clearly

1 1 1 1 1
0 100 200 300 400 500
demonstrated t [hours]
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pattern at a given time: The presence of defects has a profound effect on the rate
of the process with which the domain system changes. The aging process itself
was interpreted as corresponding to a slow compensation of the surface bound
charge by free carriers. This trend can be compared to that expected for an
equilibrium domain pattern, though, the domain patterns observed are not
equilibrium. Namely, the compensation of the surface bound charge should
lead to a reduction of the effective value of Pg in Eq. (5.2.22) and to the
corresponding growth of W... Now, a curve is also included in Fig. 5.4.1,
showing the same type of dependence for samples of TGS2, which were short-
circuited after having been cooled to room temperature and then again after
each etching step. We see that the aging process N(Z,qi1r) Was not influenced and
proceeded as for the insulated sample. There is an analogy with the above-
mentioned Gilletta’s observations, and while we lack an exact interpretation of
this finding one can again deliberate about the influence of a passive surface
layer. Alternatively, it could be that the process of reaching equilibrium at room
temperature is already too slow because well below T¢ the wall mobility is
correspondingly sluggish. While we have already pointed out that there is no
doubt about the role of depolarization energy, we now have to conclude that
once the neutral structure has been reached there is little incentive for proceed-
ing to reach states with further reduced energy.

Considering all complicating factors involved, the differences in data
obtained by different authors are not surprising. Konstantinova and Stan-
kowska (1971) further extended previous study of Moravec and Konstanti-
nova. While the law of Eq. (5.4.1) was confirmed, they showed that not only the
coefficient K, i.e., the aging rate but also the domain geometry is strongly
affected by the crystal growth temperature and by the location of growth
pyramid from which the sample had been prepared. Aging effects were also
studied by Dabrowska et al. (1977) and the role of defects was in particular
demonstrated by Stankowska and Czarnecka (1989). Thus the role of crystal
quality is being repeatedly confirmed. Another elegant demonstration was
offered by Szczesniak and Szczepanska (1990): They showed that the length
of the rejuvenation period (during which the sample is kept above T¢) has a
profound effect on the distribution function of domain width, for samples
which are otherwise identical.

Itis evident that even in the carefully performed experiments just mentioned,
there are two essential factors—temperature and time. In this context, unique
observations made by Nakatani (1985) using liquid crystal decoration technique
deserve special attention. In these experiments, after rejuvenation, the TGS plate
was cooled through T at a rate of 0.006 K/m; capacitance of a small electroded
part made it possible to determine, with a precision and reproducibility of 0.01 K,
the moment when T¢ is passed. A series of photographs shown in Figs. 5.4.2 and
5.4.3 seem to be at present the best available demonstration of how domains form
and develop in a nonferroelastic material with a continuous transition. In
Fig.5.4.2, the domain patterns have been imaged during step cooling every
4 min down to T 0.26 K. A continuous increase with time of the mean domain
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Fig. 5.4.2 Time evolution of domain pattern in TGS on cooling just below T¢c = 49.68°C
imaged by LC decoration. Microphotographs are taken on slow cooling at intervals of 4 min;
temperatures are given. After Nakatani (1985)
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Fig. 5.4.3 Time evolution of domain pattern in TGS at fixed temperature 7 = T¢ — 0.39°C
imaged by LC decoration. Microphotographs are taken at intervals of 4 min. Frames (a)—(h)
correspond to the window shown in Fig. 5.4.2i. Small arrows indicate the shrinking domains
and the protruding boundary. After Nakatani (1985)

(a) AT=T.-T=0.00°C

(i) 0.18 20um

width is seen. This dependence, W(¥), is linear as documented in Fig. 5.4.4a. The
cooling was stopped at T « —0.39 K; however, the domain growth continues (see
Fig. 5.4.3) with the same rate (see Fig. 5.4.4b). These results indicate that it is the
time which is the decisive factor for the domain development rather than tempera-
ture. The linear W(¢) dependence starts to saturate only after about 10 h (Fig. 5.4.4¢).
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Fig. 5.4.4 Temperature/time (a) and purely time (b) dependences of the mean domain width w.
These data were obtained from microphotographs such as in Fig. 5.4.2, taken at intervals of 2 min.
(c) Time dependence of w taken at room temperature and just below 7¢. After Nakatani (1985)

While in the just described experiment the crystal is gently pulled through the
transition point, Tomita et al. (1989) employed the decoration technique to
study the time development of domains in TGS after quenching, a fast cooling
process from above T down to room temperature. Figure 5.4.5 shows some of
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15 min

Fig. 5.4.5 Time evolution of domain pattern in TGS quenched down to room temperature.
After Tomita et al. (1989)

their data. Comparing the domain evolution for the case of slow cooling and
quenching, one distinguishes the same general trend—increases in the mean
domain width with time. As for the difference, it is in the domain shape (in the
quenching case the domains are mainly lenticular) and in the time dependence
of the domain width. According to Tomita et al. (1989), in the quenching
regime, this dependence is much slower than linear: the power law with the
exponent about 0.3.

Among qualitative result related to the domain pattern in TGS one can
mention SFM data obtained in the friction mode (Correia et al., 1996), attesting
to the presence of “domain structure branching” in the material.

All the observation mentioned above can be rationalized in terms of the
general theoretical approach to the domain formation on ferroelectrics: com-
petition between the depolarizing-field and domain wall energies under addi-
tional influence of defects pinning the walls and free charges screening the
surface bound charge. At the same time, quantitative interpretation of these
results in terms of the theory of the equilibrium domain pattern does not seem
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realistic. Here we can mention experimental attempts to quantify the para-
meters of the close-to-equilibrium domain patterns. Safrankova (1970a,b) and
later Strukov et al. (1972a) have investigated the equilibrium domain size Wq
on temperature and sample thickness. Figure 5.5.6 shows the ratio qu /h
calculated by Strukov et al. (1972a) from their experimental data on 200
samples of thicknesses from 0.25 to 2.5 mm. According to Eqgs. (5.2.22) and
(5.2.23), for this material, this ratio should be independent* of sample, tem-
perature, and sample thickness. At the same time Fig. 5.5.6 demonstrates an
essential spread and thickness dependence of this parameter, suggesting that the
observed domain patterns are not close to real equilibrium. The data by
Safrankova (1970a) corroborate this point.
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These and other numerous results on domains in TGS represent some 50% of
all available data on domain patterns in ferroelectrics. Let us briefly summarize
them. (1) There is a profound tendency that neutral structures are formed.
(2) Samples prepared for domain observations may carry a passive surface
layer which imitates an “isolated sample” even if it is provided with short-
circuited electrodes. (3) Both lenticular and stripe shapes are characteristic but
intermediate patterns occur most often. (4) On cooling, a fine domain structure
appears at T¢ and coarsens with time. On slow cooling, it is time rather than
temperature that determines the instantaneous structure. (5) The speed of this
coarsening process depends critically on crystal quality. (6) In good-quality
samples the speed of this process slows down at lower temperatures, requiring
hundreds of hours. (7) The distribution function of domain sizes becomes sharper
for samples annealed above T¢. (8) In TGS, the theoretically substantiated
dependence of the characteristic domain size on plate thickness has not been
clearly demonstrated.

* This follows from the relations valid for TGS: i o< \/Keow /P2, \/%e o 1/Ps, and ow o P.
Here the latter relation follows from Eq. (6.2.10b).
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In short, we may state that in high-quality crystals of TGS we do not really
observe equilibrium domain structures but some which are not far from condi-
tions of theoretical equilibrium.

Closing the discussion of domains in TGS we wish to point out that, in some
of the observation methods, it is difficult to avoid temperature gradients in the
sample or even thermal shocks. Chynoweth and Feldmann (1960) paid special
attention to these two factors. They showed that a warming shock results in a
very regular domain pattern in which domains of one polarity have the shape of
cylinders with lens-shaped cross-sections. A cooling shock resulted in arrays
of very narrow circular domains. A simple model was suggested in explanation
of this effect.

For lack of space, we do not include data on domains in isomorphous
crystals TGFB and TGSe. There are no qualitative differences, although dif-
ferent wall anisotropy leads to other domain shapes (Hatano et al., 1977).

5.4.1.2 Other Representatives

TGS and its isomorphs are the most studied uniaxial nonferroelastic ferro-
electrics from the point of view of domain properties. In this section we shall
now mention only in passing some other materials from this group.

Lead germanate, PbsGe3;O,y, is a good candidate for static observations of
domains. It undergoes a continuous transition at 177°C, representing the
species 6 — Pd — 3, whose interesting property is that domains with antipar-
allel polarization differ in the sign of optical activity. This fact (cf. Sect. 4.6.3)
makes it possible to observe nonferroelastic domains in a polarizing micro-
scope. However, Iwasaki et al. (1972) and Blumberg and Kiirsten (1979)
pointed out that in freshly grown crystals of lead germanate domains cannot
be visualized. Dougherty et al. (1972) were the first to visualize domains in
c-cuts of this material, by means of optical rotation (see Fig. 2.2.8). Hexago-
nal-shaped islands with walls of {1100} orientations were found to be
preferred.

Considerable attention to domain properties of this material was paid by
Shur et al. (1982). They showed that, in a fresh sample, domains become visible
only when an ac field is applied, first with diffuse walls but gradually acquiring a
strong contrast. This was explained by assuming that fresh untrained samples
contain head-to-head domains which are screened by free carriers; these
domains mutually compensate the rotation of polarization. The applied ac
field destabilize this compensation and makes domains penetrate the whole
thickness of a sample and become optically distinguishable. The sample can be
again thermally depolarized which leads to the previous situation, namely to a
large number of antiparallel and head-to-head domains (Shur et al., 1988). In a
later paper, Shur et al. (1985b) studied domain shapes in more detail. They
showed that when the mentioned switching process advances in fields exceeding
2.5 x 10° V/em, domains of irregular shapes are created. If fields are below this
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value, domains have regular shapes, with walls of defined orientation, and
domains of hexagonal or triangular shapes can be deliberately formed.

Seemingly, these facts go beyond the scope of this section in which we discuss
domain shapes without considering changes in domain patterns by external
forces. However, these observations may give the reader a suggestion how to
cope with situations when no domains can be observed although their presence
can be expected on the basis of other considerations.

The last ferroic we wish to mention here is GASH, one of the most
investigated materials within the category of uniaxial ferroelectrics. In con-
trast with the previous two, its transition temperature cannot be reached since
the decomposition process takes place already at about 200°C, still within the
ferroelectric phase. Available data suggest that this material can be treated as
representing the species 3m — Pd — 3m. Its attractiveness is due to the relative
easiness of the growing process and also since several decoration techniques
as well as atomic force microscopy can be applied to observe domains on its
well-defined cleavage planes perpendicular to Pg. Cleaved plates reveal a
central part of hexagonal shape and six outer parts; Le Bihan (1990) showed
that they are in fact growth pyramids, extending from the center of the
crystal.

We give a short overview of selected domain observations, with the aim to
show the diversity of data, demonstrating again the unspecified role of crystal
defects. Hilczer et al. (1975), Szczesniak et al. (1976), and Suda et al. (1978a)
were the first to investigate domain shapes. They found that the central region is
usually single domain while in the outer segments a large number of small
domains occur, both plate like and circular. With decreasing temperature
many new small domains appear and have the tendency to change from circular
to hexagonal cross-sections; this is demonstrated in Fig. 5.4.7. Tikhomirova
et al. (1979) observed a different kind of domains, in the form of narrow loops
and considerable lengths of 10°-10° yum. They begin and terminate at the edges
of the crystal or form close configuration of arbitrary shape. The patterns on
opposite surfaces of a sample 0.2-3 mm thick are absolutely identical; the fact
that these patterns are related to domains is proved by the fact that in an applied
field they expand, symmetrically in both directions. While several authors, e.g.,
Le Bihan et al. (1984) and Szczesniak et al. (1985) confirm that in as-grown
crystals domains exist only outside the central hexagonal zone, Hatano et al.
(1985a,b) observed peculiar spiral domains in this zone and connected them
with the spiral growth theory of the crystal. Galiyarova and Dontsova (1999)
investigated domain shapes with the intention to determine the relation between
their perimeter and area, in connection with the idea of fractal features of
domains. All of the mentioned observations were performed with solution-
grown crystals. Hatano et al. (1990b) prepared gel-grown crystals of GASH.
He showed that in this case the outer six growth sectors are single domain of
alternating polarity, unlike in solution-grown crystals where they are subdi-
vided into domains.
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Fig. 5.4.7 Variation of the
small domain shape with
temperature decrease in a
GASH crystal. (a) 75,

(b) 100, (c) 120, and

(d) 130°C. The edges of the
hexagonal domains are
parallel to the mirror planes.
Bar signs in each figure
indicate length of 20 pm.
After Suda et al. (1978a)

5.4.2 Ferroelastics with a Small Number of Domain States

In this section we present examples of domain patterns in materials exhibiting
two and three ferroelastic domain states. From the latter category, however, we
will not address here perovskite materials; these will be addressed later in Sect.
5.4.3. Giving credit to the historical importance of KDP, this ferroelastic with
two domain states will be discussed separately either.

5.4.2.1 Ferroelastics with Two Ferroelastic Domain States

Let us first discuss simple representatives of proper ferroelastics with two
domain states, necodymium or lanthanum phosphate, NdPsO;4 or LaPsO,.
They exemplify the species mmm—es—2/m and undergo continuous transitions at
413 and 393 K, respectively. The spontaneous shear in the two domain states is
+es,,, and the corresponding component dsB;; of optical indicatrix is large
enough so that domains differing in its sign can be observed optically in samples
of b-cut (normal to the twofold axis). Mechanically compatible domain walls
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are parallel either to the a-axis, i.e., perpendicular to the c-axis of the parent
phase; these are called a-type walls, separating a-type domains (often referred to
as a-type twins). Alternatively, the walls are parallel to the c-axis of the parent
phase; these are called b-type walls, separating b-type twins (Weber et al., 1975;
Huang et al., 1994b).

First optical observations of domains were reported by Weber et al. (1975)
who gave an accurate crystallographic representation of domain pairs and
proved ferroelasticity by switching under applied stress. Indirect domain-
induced effects were reported by several investigators; e.g., Errandonea (1981)
found that the intensity of the Rayleigh line, i.e., of the elastically scattered
beam, is strongly dominated by reflections on a-type walls. Attention to domain
phenomena was inspired in particular by investigations of Meeks and Auld
(1985), who showed that regular domain patterns can be induced in these
crystals.

Huang et al. (1994b) studied static domain properties in crystals of NdPsO14
optically. In plates perpendicular to the b-axis, both orientations of domain
walls were observed, often forming wedge-shaped domains. However, most
observed walls were of the a-type; the b-type walls (parallel to (100) of the
parent phase) are usually formed in the fields of local stress, at elevated
temperatures. This was explained by a higher surface tension of the b-walls.
Indeed, symmetry considerations point to nonequivalency of the two walls.

By both optical microscopy and synchrotron radiation topography it
was found (Huang et al., 1994b) that at elevated temperature the density of
domains increases, sometimes forming a nearly periodic structure. Close to T¢
numerous microdomains fill the crystal, frequently altering from one state to
another. When 7¢ is determined from the temperature dependence of sponta-
neous strain, microdomains disappear at this temperature while large domains
mavy still be visible above T, probably due to local stress in the sample.

While the basic data on domains were obtained by microscopic observations,
other methods provided additional information. Studies by synchrotron X-ray
topography (Hu et al., 1994) in Er-doped LaPsO;4 crystals also recorded
fluctuations of the number of domains at 7. A simple thermodynamic treat-
ment of the transition shows that the energy barrier between the two domain
states varies with temperature as |7 — Tc|? while the wall energy decreases as | T—
Tc|*?. Based on these facts, it can be argued that as T¢ is approached, the
probability of creating new domains by thermal fluctuations increases. In
crystals of this composition, only a-type domains are observed, b-type domains
are not (Huang et al., 1995).

As discussed in Chap. 4, on samples with properly oriented surfaces, ferroe-
lastic domains will form a surface relief. This was demonstrated by Hamazaki
et al. (1996, 1998) for NdPsO,4, whose as-grown (100) surface was observed by
SFM in topographical mode. At the (001) domain walls the surface bends by an
angle of 0.48°. The same method was also used by Takashige et al. (1998). These
crystals, typical ferroelastics, have received attention for investigations also by
other methods based on elastic differences between domains. For example,
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Jiang et al. (1999) used a scanning electron acoustic microscope and Kojima
(1989) used a kind of acoustic microscope.

To summarize, crystals of pentaphosphates represent a classical example of
ferroelastic ferroics of simple symmetry: The phase transition is equitransla-
tional and there are just two orientational domain states. Basic domain proper-
ties are known. However, because these materials undergo the second-order
transition, it appears that they offer an extremely interesting subject for further
research of how the transition proceeds, how ferroelastic domains are formed,
and what—if any—are pretransitional phenomena.

The second ferroelastic material we include in this section is bismuth vana-
date, BiVOy,. It is a proper ferroelastic, customarily considered to represent the
species 4/m—es—2/m in which the symmetry-breaking component of natural
spontaneous strain is &1,. In contrast to pentaphosphates, here we expect only
S walls to exist, of orientations (p, 1, 0) and (1, —p, 0). This was realized by
Manolikas and Amelinckx (1980a); indeed they observed sets of mutually
perpendicular walls, both passing through the c-axis and forming wedges.
From the values of spontaneous strain components they determined the value
of p; for the angle ¢ = arctan(—1/p) which the two walls make with the x- and y-
axes, respectively, they obtained ¢ = 31.4°, in good agreement with the
observed value of ¢ ~ 32°.

Obviously, the value of p is expected to depend on temperature. This pro-
blem was addressed by David and Wood (1983) who measured the temperature
dependence of the orientation of walls, i.e., of the parameter p. Calculations of p
using data on spontaneous strain led to a good agreement between theory and
experimental data, for temperatures between Toom and 220°C. Here p decreases
linearly with 7, within the range of about 0.72-0.65. Later, bismuth vanadate
was investigated by Avakyants et al. (1985) with similar results. In addition,
these authors studied the surface profile of a rod-like sample produced by
perpendicular (nearly perpendicular because the parent clamping approxima-
tion is lifted) S walls; the planar surface is rippled by changes of the order of 1°.

More recently, however, the fairly consistent observations of S walls in this
material have been questioned by Moon et al. (1987) who observed, by X-ray
diffraction and NMR, walls of a new orientation (110). This was confirmed by
Lim et al. (1989) who reported its coexistence with an S wall of indices (1p0)
where p = 0.724. Based on these observations it was suggested that in fact
BiVO, represents the species 4/mmm—es—2/m with four domain states rather
than 4/m—e—2/m. This was supported by additional studies of domain walls in
this material by Lim et al. (1995) which resulted in the conclusion that in the
samples used only W, walls were seen and no S walls. Thus bismuth vanadate,
despite the large number of high-quality papers already published, still offers a
lively area of research.

Another ferroelastic material we would like to discuss is KSCN, representing
species 4/mmm—es—mmm. At Ttr = 415 K it undergoes the transition (of
order—disorder type) which is of first order, although the discontinuity is very
small (Kroupa et al., 1988). This is an improper ferroelastic, its order parameter
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n is connected with ordering of the SCN™ groups. Again, there are two ferroe-
lastic domain states but in contrast to the two previous materials, here the
transition is non-equitranslational: the primitive unit cell doubles. The two
ferroelastic domain states differ in sign of the newly acquired strain component
es,, X n3. Compatibility conditions predict ferroelastic domain walls of Wy type
with the orientations (110) and (110), and in c-oriented plate-like samples these
are indeed observed in a polarization microscope (Schranz et al., 1988). Typi-
cally, just below Trg, dense patterns of narrow domains terminating within the
sample are formed on cooling (Fig. 5.4.8a). Lens-shaped domains occur fre-
quently while planar walls crossing the whole sample are very rare (Schranz and
Rychetsky, 1993). From about 1°C below Ttg down to room temperature no
significant changes in the domain pattern are observed (Schranz et al., 1988).
Perpendicular domain systems, obviously situated above each other in a plate-
like sample, can be seen.

Fig. 5.4.8 Domain pattern
in KSCN. (a) Typical
pattern not too close to T'rg.
(b) Domain pattern at Trg —
0.05 K. On cooling,
junctions ‘+’ and ‘-~ merge
and lens-shaped domains
such as shown in (a) form.
Reprinted with permission
from Schranz, W., Static
and dynamic properties of
the order—disorder phase
transition in KSCN and
related crystals, Phase
Transitions, 51, 1 (1994).
Copyright (1994), Taylor
and Francis
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Schranz and Rychetsky (1993) performed an aimed study of two aspects of
ferroelastic domain patterns in KSCN. First, they paid attention to narrow
lens-shaped domains. On cooling a single-domain sample, they raise a few
degrees below Ttr and show characteristic temperature dependences of their
dimensions—Iength L and width /. Changes of temperature and waiting times
were arranged so that the obtained data would correspond to the states close to
equilibrium. Reproducible results for temperature dependences of L and /1 were
obtained, shown in Fig. 5.4.9. These dependences have been successfully mod-
eled using twinning dislocation approach (cf. the end on this section devoted to
domains in KH,POy), specifically it has been shown that for #/L < 1

L xexpld/es, (T)], hocln Lo Bles, (T), (5.4.2)

where A and B are constants. Figure 5.4.9 demonstrates a good agreement
between the theory and experiment.

The second interesting aspect of ferroelastic domains in KSCN is the coex-
istence of mutually perpendicular wedges. The prevailing wall orientations of
perpendicular wedges are (110) and (110). Any of them are mechanically
permissible but if they meet, a strongly deformed region is formed. The inter-
esting property of KSCN is that since the phase transition is very close to the
second order, near Ttgr the spontancous strain is small. Then the right-angled
walls meet relatively often and an unusual domain pattern is formed as shown in
Fig. 5.4.8b. On cooling, it transforms into a pattern such as that in Fig. 5.4.8a.
Schranz (1994) and Schranz et al. (1993) offered an explanation for this effect.
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Fig. 5.4.9 Temperature dependence of the length (a) and width (b) of lens-shaped domains in
KSCN. Dots are experimental data, curves represent fits to relations (5.4.2). After Schranz and
Rychetsky (1993)
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At the two junctions (“+” and “—” in Fig. 5.4.8b) a strain field is formed leading
to an attractive force F, between them. This force was calculated as

F(r) = _21‘8%_@” In(R/r)/m(1 —v), (5.4.3)

where p is the shear elastic modulus, v stands for the Poisson ratio, and R is the
dislocation core radius. Near Ttr the magnitude of F; is not high enough to
move the junctions. With decreasing temperature spontaneous strain and thus
also F; increase and the two junctions move to each other until they finally
merge to form lens-shaped domains shown in Fig. 5.4.8a.

The doubling of the unit cell at the transition in KSCN makes possible the
existence of the orientational domains divided with antiphase boundaries (see
Sect. 2.1.7). Such domains have been detected with etching technique (Schranz
and Rychetsky, 1993). The antiphase boundaries have been found to make an
angle of 45° with those ferroelastic. It has been demonstrated that the orienta-
tion of the antiphase boundaries consists of the anisotropy of the surface
tension of the boundaries, calculated based on the known parameters of the
Landau energy of the material (Rychetsky and Schranz, 1993).

An example of a two-domain-state ferroelastic is the famous improper
ferroelectric—ferroelastic Gd,(MoQy); (abbr. GMO) with the first-order phase
transition at Trg = 160°C. It corresponds to species 42m — Peds — mm?2, which
allows Wy walls of two orientations ((100) and (010) in the crystallographic
frame of the parent phase), which at the same time are parallel to the direction
of the spontaneous polarization and for this reason are neutral. Because of the
improper character of the transition (unit cell multiplication), antiphase bound-
aries can also form. Barkley and Jeitschko (1973) and Meleshina et al. (1974)
have offered detailed description of the domain patterns in GMO. In contrast to
the just discussed improper ferroelastic KSCN no regular dense domain pattern
is formed after the cooling through the transition. The domain size can be
comparable to the sample size. As for the antiphase boundaries, they seem to
exhibit a little anisotropy of the surface tension and, when far from the ferroe-
lastic walls, they acquire arbitrary shapes, making loops or ending at disloca-
tions (Fig. 5.4.10). According to Meleshina et al. (1974) there exists a strong
attraction between the antiphase and ferroelastic boundaries. When a ferroe-
lastic wall passes through an antiphase boundary it straightens the latter. When
an antiphase boundary ends at a ferroelastic wall, the angle between them
acquires a definite temperature-dependent value. The possibility of ending of
antiphase boundaries at dislocations is its important feature. As can be under-
stood using Fig. 2.1.11 as the definition of the antiphase boundary, any edge
dislocation with the proper Burgers vector should give rise to an antiphase
boundary in the low-symmetry phase: The dislocation provides a missing (or
extra) lattice constant of the parent phase to form the phase shift of the order
parameter across the antiphase boundary. Not all features of the domain
pattern in GMO are rationalized; for example, the temperature dependence of
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0.2 mm

Fig. 5.4.10 Domain pattern revealed by etching on c-cut of Gd>(M0QOy); crystal. A and C
denote domains with the polarization directed into the plane of the image, B denotes a domain
with the opposite direction of polarization. The domain and antiphase boundaries are seen as
straight (dividing A, B, and C areas) and curved lines, respectively. The antiphase boundaries
are imaged by etching only in A and C domains (the etchant is not active at positive domains).
Such distribution of antiphase boundaries is typical in crystals cooled trough Trg when very
little wall movement occurs. Reprinted with permission from Barkley, J.R., Jeitschko, W., J.
Appl. Phys., 44, 938 (1973). Copyright (1973), American Institute of Physics

the angle between the ferroelastic and antiphase boundaries (Barkley and
Jeitschko, 1973) has not yet received its theoretical explanation.

The last example of a two-domain-state ferroelastic we would like to mention
here is Rochelle salt, historically the first ferroelectric compound. It belongs to
the category of proper ferroelectric ferroelastics with two domain states (species
222—Peds—2, Tc = 297 K). In their classical work, Mitsui and Furuichi (1953)
were the first to pay attention to basically periodical domain patterns in a
ferroelectric. A typical domain pattern imaged by the birefringence technique
isshown in Fig. 5.4.11. The lamellar domains shown in this figure are parallel to
the b- and c-axes (the g-axis is taken parallel to the spontaneous polarization)
according to the mechanical compatibility conditions specific for this species.
As a function of the sample thickness, the period of the lamella pattern was
reported to be in compatible with the square root law however with a large
scatter as shown in Fig. 5.4.12. The short-circuiting of the sample (e.g., keeping
for 2 h in an electrolytic solution) was found to reduce the domain density
(Mitsui and Furuichi, 1953), however, only for plates thinner than 400 um. For
Rochelle salt again the complicating time-versus-temperature aspect plays a
role. It was reported (Dabrowska et al., 1977) that in samples that have been
kept below T¢ for 2 h, the domain widths remain constant while in samples that
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Fig. 5.4.11 A typical
domain pattern in Rochelle
salt imaged by the
birefringence technique.
View in the direction of the
spontaneous polarization.
Reprinted with permission
from Mitsui, T., Furuichi, J.,
Phys. Res., 90, 193 (1953).
Copyright (1953) by the
American Physical Society
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were slowly cooled through T7¢ till room temperature, the domain widths
continue to increase for several hours.

5.4.2.2 Ferroelastics with Three Domain States (Not Including Perovskite
Material)

All preceding materials in this section were characterized by just two ferroelas-
tic domain states. Now we shall shortly mention crystals offering three domain
states, namely Pb3(PO,4)> and KFe(M00O,), and their isomorphs. Both repre-
sent the ferroelastic species no. 133, 3m — &s — 2/m.
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Pb;(PO,), undergoes a discontinuous transition from 3m to 2/m, at Trg =
180°C; in Sect. 5.3 we have already discussed the orientation of its phase
boundary. Brixner et al. (1973) reported the basic domain properties of this
material. The twofold axes of the three ferroelastic domain states lie in the (001)
plane of the parent phase and make angles of 120°. The newly acquired shear
components of spontaneous strain are the origin of a relatively involved situa-
tion with elastic compatibility. Any two domain states can be separated either
by a W wall or by an S wall. Thus there are three permissible walls of the Wy
type, namely W5 = (010), W; = (v/310), and W, = (v/310), and three permis-
sible S walls perpendicular to the W¢ walls. The unit cells, symmetry elements,
and domain walls are schematically shown in Fig. 5.4.13 (Otko et al., 1983).
Real domains in single crystals of Pbs(POy), create fairly complicated patterns
but all predicted walls have been actually optically observed and their orienta-
tions were found to fulfill mechanical compatibility conditions (Chabin et al.,
1976, 1977; Vagin et al., 1979; Ayroles et al., 1979). Figure 5.4.14 shows an
example of a domain pattern as seen in a (001) plate in polarizing microscope
(Chabin et al., 1977). Here all three domain states D, D,, and D3 are repre-
sented and can be ecasily identified by extinction positions. The double arrows
indicate the twofold axes. The domains representing D> and D5 are separated by
the W wall or by the S; wall. Ideally, all W;walls should be perpendicular to the
(001) plane while orientation of the S; wall is determined by the values of
spontaneous strain components; at room temperature, this wall makes an
angle of 73° with the (001) sample surface. In fact, the extinction directions in
neighboring domains do not make exactly the angle 60 or 120°, because in
reality the domain clamping approximation is lifted. For the same reason,

D, D,
Fig. 5.4.13 Unit cells and @ @

symmetry elements in the
three domain states of S\ 78,
Pb3(PO,),, schematically. AN b /
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intersections of Wrand S W, AN /
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\

with solid and dashed lines,

respectively). W walls are y D
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Otko et al. (1983) X
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Fig. 5.4.14 Example of domain pattern in Pb;(PO,), as seen in a (001) plate in polarizing
microscope (b) and its assignment (a). After Chabin et al. ( 1977). All three domain states D,
D,, and Ds are represented. Wy walls are perpendicular to the plate, the S wall is oblique
(thickness fringes are seen in (b)). Double-arrowed lines show the orientations of the twofold
axes in the domains

obviously, it was observed that the surfaces of neighboring domains make a
small angle of the order of 1°.

Manolikas and Amelinckx (1980b) investigated domains in isomorphous
crystals of Pb3(VOy), (TTtr = 120°C) by electron microscopy. In addition to
the analysis of wall orientations they presented interesting observations of
unusual regular local domain configurations. Figure 5.4.15a shows an image
of one of such configurations. The identification of the walls and domain states
making this image is given in Fig. 5.4.15b. An infesting feature of this config-
uration is the presence of a triangular area possibly corresponding to the
metastable parent phase (3m symmetry).

For another isomorph, Pb3(AsQy),, detailed observations of domains were
reported by Dudnik et al. (1983). These authors also discussed in detail the
orientations of S walls and found a good agreement with theory. No involved
studies seem to have been made of the temperature dependence of real domain
patterns. It was reported that they change on heating only when Trgr is
approached (Bolshakova et al., 1989).

The same species, namely 3m — &s — 2/m, is represented also by a family of
molybdates and tungstates. Otko and his coworkers (Otko et al., 1983, 1993b)
investigated domain properties in crystals of KFe(Mo00O,), and KIn(WQO,),. In
unstressed samples of the molybdate, domains are commonly separated by Wy
walls. On the contrary, in tungstate samples of good-quality tilted S walls
prevail and Wy walls are observed only exceptionally. The suggested interpreta-
tion is the difference in wall energy densities of the two kinds of walls in the two
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(@) (b)

Fig. 5.4.15 A domain pattern observed in Pb3(VO,), by electron microscopy (a), the plane of
the image is XY plane, and its assignment (b). Domain states are marked as D;, D,, and Ds.
Thick lines—S walls. Thin lines—W walls. The central region, shown as cross-hatched in (b), is
believed to be metastable parent phase. After Manolikas and Amelinckx (1980a,b)

materials: for the molybdate, o, (W;) < ow(S) while for the tungstate the
opposite inequality should hold.

As seen in Figs. 5.4.14 and 5.4.15, for this species, situations often occur
where more than two domain states meet along a line. Understandably, such
intersections are not elastically compatible and these geometries are paid for by
additional elastic energy. Otko et al. (1983) studied which domains occur at the
phase boundary at the transition to the ferroelastic phase and why some of them
disappear on cooling. The authors have specified a series of often occurring
domain geometry transformations which avoid the contact of three domain
states.

5.4.2.3 KH,POy,, A Ferroelectric Ferroelastic

Domain patterns in KH,PO,4 (abbr. KDP) have been the first ferroelectric
domain patterns intensively studied and the researchers are still active in the
field. Despite this, the physics behind these patterns is not yet fully understood.
Below, in this section, we will give a brief overview of the observation of the
domain patterns in this material, though, in many cases, we will not be able to
provide adequate interpretations for the experimental material.

Potassium dihydrogen phosphate, KDP, represents species 42m — Peds — mm?2.
This material was actually the second discovered ferroelectric, in 1935 by Busch and
Scherrer (1935). The transition occurring at 7tg = 123 K is of first order. The
discontinuity in Ps, however, is quite small (Zeyen and Meister, 1976) and KDP
represents one of those discontinuous transitions which are very close to the second
order. Thermal hysteresis of Trr amounts only to several tenths of a degree.
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The alternative material whose domain properties are expected to be very much the
same as those of KDP is its deuterated relative KD,PO, (abbr. DKDP). Its phase
transition occurring at Trg = 210 K is also of first order, with thermal hysteresis
0.2 K.

KDP crystals are grown from water solution, are transparent, and generally
of very high quality. Figure 5.4.16 shows its typical shape and growth sectors
(Abe, 1987); untreated samples prepared from different pyramids of an as-
grown crystal differ in their domain patterns. The pyramidal sector is usually
selected for sample preparations since it is known to be less defective than the
prismatic sector.

(100)
y (101)
- f . (011)
Fig. 5.4.16 Growth sectors pyramidal
in a single crystal of KDP. ) ) (010)
After Abe (1987) prismatic

Spices 42m — Peds — mm?2 exhibits two ferroelectric domain states which can
be joined with domain walls oriented perpendicular to a- and b-axes of the
parent phase. Probably the first evidence of the existence of domains in KDP
was indicated by Zwicker and Scherrer (1944): They found that the effective
birefringence of a c-plate in the ferroelectric phase was zero without biasing
field and nonzero with a biasing field, with the same temperature dependence as
Pg. This was an indirect evidence for the existence of domains while Ubbelohde
and Woodward (1945) demonstrated their presence by X-ray measurements.
Mitsui and Furuichi (1953) were probably the first to observe domains in KDP
in a microscope but only more than 10 years later. Fomichev (1965), Fouskova
et al. (1966), Bornarel et al. (1966), and Toshev (1966) presented pictures of
characteristic patterns and analyzed the basic domain geometry.

Typically, pairs of domain walls several micrometers apart meet inside a c-
oriented plate-like sample, obviously forming a wedge-like closure; near their
tips the two walls cannot be distinguished any longer. Often a system of such
parallel domains forms a quasiperiodic pattern. Two perpendicular systems
may coexist, their boundary having an irregular shape, which may take a
different form on subsequent cooling. Alternatively, the two systems can be
parallel but mutually shifted by about one-half of their period, as reported by
Toshev (1966). Sometimes such systems can be located, when viewing along the
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c-axis, above each other; seemingly a square-like pattern can then be detected
(Koptsik and Toshev, 1965). All these data indicate that the narrow domain
systems are initiated independently in different parts of a sample and meet only
afterwards. Domain geometries known as currently occurring in other ferro-
electric ferroelastics, e.g., Gd,(M00Qy);, namely the existence of only several
parallel domain walls quite apart from each other, are rare in KDP and if they
occur, only so at temperatures well below the transition point. Studies of side-
wise motion of individual ferroelastic—ferroelectric walls, performed for
BaTiO; (Fousek and Brezina, 1964) or GMO (Flippen, 1975; Kumada, 1970),
have never been realized for KDP family of ferroics.

Let us now describe in some detail the most essential or the mostly investi-
gated properties of domain patterns in KDP. Most of available information is
based on microscopic observations of c-plates. At low temperature, a chamber
has to be used in which the requirement of zero temperature gradient is often
violated. Information obtained by X-ray diffraction or by y-diffractometry is
indirect and does not offer data on real geometry of domains. Scanning electron
microscopy was shown to be applicable (Antoshin and Spivak, 1972; Maussion
and Le Bihan, 1976) but it was found that the electron beam may interact with
the domain structure, leading to changes or even to complete disappearance of
domains.

In a c-oriented plate-like sample cooled below Trg, the most typical domain
arrangements are sets of parallel domain walls of orientations (100) or (010) in
accordance with the criterion of the mechanical compatibility. The thickness
dependence of the domain spacing of such patterns has been addressed by many
authors, mainly with the aim to check whether the Mitsui—Furuichi square root
law, Eq. (5.2.1), holds. For KDP samples with thickness of a few mm, this law
was confirmed by Toshev (1966) and Ha and Kim (1985). By contrast, the
observations of Abe (1987) showed an extremely large scatter of the domain
spacing. Figure 5.4.17 summarizes all the mentioned data.

An essential feature of the domain formation in KDP is that, typically, it is not
crucially sensitive to whether the sample is open- or short-circuited. The problem
was first identified by Bjorkstam and Oettel (1967). Contrary to expectations,
they found that, at the transition, a dense domain structure appears which is
identical for an isolated and a short-circuited crystal. Similar observations were
later reported by Nakamura et al. (1984) and by Bornarel et al. (1972). These
observations may be explained by assuming that there is a non-switchable
“passive” layer on surfaces of the plate-like sample. X-ray diffraction data in
favor of such layer have been reported by Afonikova et al. (1987). However,
taking into account the results of the theory for domain formation in the presence
of the passive layer (see Sect. 9.4) so little effect of short-circuiting is difficult to
explain. Alternatively, Nakamura et al. (1984) attributed the domain formation
to the effect close to spinodal decomposition known from binary mixtures.

It is worth mentioning the experiments revealing the importance of the
electrostatic boundary conditions. Bornarel et al. (1972), though reporting
identical domain patterns for open- or short-circuited condition, has found
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Fig. 5.4.17 Domain spacing, /2, as a function of the thickness of KDP plate, 4. (a) Circles—
data by Ha and Kim (1985), line—the W o v/h law. (b) Circles—data by Abe (1987); line—the
W v/l law corresponding to data by Toshev (1966)

that the in-plane shear stress o, needed to remove the formed domain pattern5
is much larger in the open-circuited case. The impact of depolarizing effects of
completely different types has been reported by Ozaki et al. (1993, 1994) and by
Ozaki (1995). These authors calmed that manipulating with electrostatic
boundary conditions one can induce in KDP crystals periodic domain patterns,
which are more complicated than the simple lamella structure, specifically, the
so-called prefractals of the pentad Cantor sets discussed in Sect. 5.2.

Another essential feature of the domain patterns in KDP is that a simple count
of the number of ferroelectric domain state, e.g., using polarization microscopy

5> In KDP 6}, and Ps are linearly coupled in the parent phase (see Eq. (2.3.27)), which enables
mechanical switching.
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or a diffraction technique (Afonikova et al., 1979; Shekhtman et al., 1973;
Aknazarov et al., 1975; Bornarel and Bastie, 1980), will yield four states instead
of two expected. This phenomenon is explained by the clapping-angle effect
addressed above in Sect. 2.2.5. Figure 2.2.3 shows the orientation of the crystal-
line lattice in four suborientational domain states appeared due to this effect. The
existence, in reality, of four domain states which differ in the orientation of the
spontaneous strain tensor poses additional problems with the mechanical com-
patibility inside a multidomain KDP sample. This problem is illustrated in
Fig. 5.4.18a, where the matching of two perpendicular systems of lamella domain
patterns is schematically depicted. The boundaries between such domains have
been addressed by Afonikova et al. (1987) using both X-ray diffraction and
angular scanning topography. Samples prepared by rapid cooling from the para-
electric phase contain a large number of such boundaries. Diffraction patterns
showed a continuous sequence of states between the two domain complexes. This
indicates that the orthorhombic cell angle varies continuously. The data were
interpreted as evidence that a layer of the paraelectric phase exists in the transi-
tory region. The width of this layer was estimated as 1 um and was found to
increase as TR is approached. These layers were found to be easily mobile at
small changes of temperature. Analysis of mechanical matching at the boundary
between the sets of domains enabled description of geometrical features of the
system. It was shown that if a system of domains meets with a perpendicular wall,
the deviation angle o shown in Fig. 5.4.18b depends on the relative volume of the
domain states V7 and Vp and the angle f. It holds that (Abe, 1987)
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Fig. 5.4.18 Mechanical matching of four (I-1V) suborientational domain states in KDP.
After Abe (1987)
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Here 7/2 — f8 is the spontaneous shear strain. For a particular sample, from
the integrated intensities of X-ray reflections the value of the factor was deter-
mined as |V — Vi|/ (Vi — Vi) = 0.38 which gives o = 9.5'. This agreed well
with the observed value.

A problem with perfect mechanical matching also evidently occurs when a
plate-like domain ends inside another domain of opposite polarity. The strain
fields induced by the domain tip has been extensively addressed by Bornarel
with coworkers (Bornarel and Lajzerowicz, 1968, 1972; Bornarel, 1972, 1987)
using the approach of twinning dislocations. Figure 5.4.19 explains how a
deviation of a ferroelastic wall from the permitted orientation can be presented
as system of pieces of the permissible wall shifted by one lattice constant and
interconnected with twinning dislocations. The Burgers vector of the disloca-
tion is a function of spontaneous shear ¢s, and of the lateral displacement a of
the wall. As seen from Fig. 5.4.19b, a step displacement by the lattice spacing
gives the order of magnitude of the smallest Burgers vector: b = 2atan s, ~ 2acs,,.
At 100 K, inserting a = 7.42 A and es,, = 0.008 we get b = 0.12 A. In this
framework an effective Burgers vector B = 2Leg, can be ascribed to the whole
domain tip where L is the domain width. The coupling between the domain tips has
been modeled as that between effective dislocations with such Burgers vector to
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Fig. 5.4.19 Dislocation description of a domain tip in KDP. (a) Distribution of the disloca-
tions along the tip. (b) Drawing for the calculation of the Burger vector for the dislocation
which provides a one unit cell shift of the wall. By using these shifts, a wall inclined with
respect to the permitted orientation can be presented as that consisting of steps of the
mechanically permitted wall. The dislocations needed for such description of the domain tip
are shown in (b). After Bornarel (1972)
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Fig. 5.4.20 Force acting Ay
between the domain tips, F,
in KDP crystal as a function
of the x-coordinate of the ‘)
upper tip in the drawing .
After Bornarel and Yo
Lajzerowicz (1972b) ﬁ
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show a non-monotonic character of this coupling (Fig. 5.4.20). This result enables
explanation of the specific domain configurations. For example, the attraction
between the tips at small distances explains the formation of the flat front of the
tips shown in Fig. 5.4.21a, whereas the repulsion between them helps rationalize
formation of the pattern shown in Fig. 5.4.21b.

Appreciable attention of researchers has been paid to the phase front for-
mation and domain development just at the phase transition in KDP crystals.
For a detailed discussion of this problem we refer the reader to the work of
Bornarel and coworkers (Bastie et al., 1980; Bornarel, 1991; Bornarel and Cach,
1993; Kvitek and Bornarel, 1995, 1997; Bornarel et al., 2000). Here we would
like to give one example of observation of the ferroelectric phase formation in a
DKDP sample with minimal temperature gradient (of the order of 10 K/mm)
schematically shown in Fig. 5.4.22. Here on cooling the ferroelectric phase is
initiated in the corners of a cube-like sample and the phase fronts are quasi-
planar. It was also observed that under these conditions, at the beginning, the
ferroelectric phase contains only a few domains, but rapid formation of
domains begins when both fronts meet in the sample center. Domains traverse
the whole sample and then the phase front disappears. The resulting dense
domain texture is usually dominated by just one of the two domain states.

Concluding presentation on the material of domain issues of KDP we would
like to stress that though an appreciable part of the experimental data can be at
least rationalized in terms of existing theoretical approaches, these exists a body
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Fig. 5.4.21 Patterns consisting of wedged domains in KDP. Reprinted with permission from
Bornarel and Lajzerowicz (1972b). Copyright (1972), Taylor and Francis

(a)

(d)

(b)

(e)

Fig. 5.4.22 Evolution of the phase front during the phase transition in DKDP at homoge-
neous thermal condition (temperature gradient is about 10 K/mm). Arrow shows the
direction of polar c-axis. After Bornarel et al. (2000)
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of experimental information which is not reasonably interpreted. An example
of the question that still waits for the answer is “Why does GMO, belonging to
the same species as KDP, exhibit so different domain patterns?”

5.4.3 Perovskite Ferroics

The ideal cubic perovskite structure (Fig. 2.1.2) is usually unstable on cooling
with respect to polar or nonpolar lattice distortions. Among widely studied
materials only KTaOj; remains cubic at very low temperatures. In the case of the
instability-associated polar distortion, which we term as ferroelectric instabil-
ity, one deals with multiaxial ferroelectrics like BaTiO3, PbTiO3, and KNbOs.
As for the instability associated with nonpolar distortion, which we term here as
structural instability, in perovskites, it is inevitably associated with a transition
with the unit cell multiplication. Such instabilities are very common in these
materials. If the temperatures of the ferroelectric and structural instabilities are
close to each other, the structural transition may strongly affect the dielectric
properties of the material. When the structural transition is slightly above
the temperature of the ferroelectric instability, the so-called antiferroelectric
behavior may occur with double P—FE hysteresis loops and strong dielectric
anomaly.® Good examples of the antiferroelectric behavior are provided by
PbZrO; and of NaNbO3, which correspond to species m3m — es — mmm. If,
however, the ferroelectric and structural instabilities are far from each other in
temperature, the structural transition has a little impact on the dielectric prop-
erties of the material. A well-studied material with such behavior is SrTiO;
(species m3m — &s — 4/mmm). In this section, we will concentrate on the
domain features of single crystals of multiaxial ferroelectric, giving only a few
remarks on the case with the unit cell multiplication. Domain properties of the
corresponding thin films will be addressed in Chap.9.

As we know, any multiaxial ferroelectric must be at least a partial ferroelastic
and this is the case of BaTiOs. It represents, on decreasing temperature, three
species: m3m — Peds — 4 mm, m3m — Peds — mm?2, and m3m — Peds — 3m. We
shall be mostly interested in its tetragonal phase 4mm which results from the
parent phase by a first-order transition and for which the amount of collected
data on domains makes the material competitive with TGS. This may have two
factual reasons: practical applicability of BaTiO; and some isomorphs, like
KNbO3;, and suitably located transition temperatures. Barium titanate has been
so thoroughly investigated also for historical reasons: Its ferroelectric properties

¢ Historically such behavior was attributed to a manifestation of the anti-polar ordering (in
anomaly with antiferromagnets) (Kittel, 1951). However, further analysis has shown that such
behavior can occur at any structural ordering (Balashova and Tagantsev, 1993; Strukov and
Levanyuk, 1998). At the same time, the introduction of the anti-polar ordering itself becomes ill-
defined in the context of the conceptual problem with the notion of polarization (see Sect. 2.1.2).
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were discovered already in the 1940s, independently in three laboratories in the
Soviet Union, USA, and Japan.

First a historical remark: Probably the first observations of domains in
BaTiO; were presented by Matthias and von Hippel (1948). They offered
microscopic photographs of wedge-shaped domains, discussed optical effects
caused by crossing perpendicular systems of such domains, and explained the
optical appearance of a multidomain crystal cube when it is viewed from three
sides. We can state that the basic domain features were understood since this
paper was published.

It was this material that inspired the nomenclature so often used for simple
labeling of observed domains. Merz (1954) considered a plate-like crystal—at
that time the only available geometry for this material—and referred to a
domain with the vector Pg parallel with the sample surface as to an a-domain
while to domain with Pg perpendicular to the surface as to a c-domain. This
description, related to the sample shape, is unambiguous. In contrast, the very
often used designation “180° domains” or “90° domains” is meaningful only
when one describes a domain pair or a system of domains and its usage in
singular is meaningless.

Possible directions of Pg in the discussed species are obvious (see Fig. 2.3.5)
and permissible walls separating any pair of domains can be found in tables of
Appendix D. Let us give an overview of the relatively simplest domain patterns
occurring in plate-like samples of tetragonal barium titanate. Figure 5.4.23
shows a partial selection of observed domain configurations. Compared to
the previous cases of TGS or of ferroelastics with two or three domain states,
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we have a large variety of possible geometries and one can speak about
“domains within domains.” Tetragonal BaTiOj3 is a model phase for the coex-
istence of Wy and W, walls (see Fig. 5.4.23). One can expect that in basic
domain geometries we have only head-to-tail coupling of Pg vectors at 90° walls
which ensures the electroneutrality of the latter. However, in samples which
went through some more complicated history, e.g., having been observed by the
TEM method, “head-to-head” and “tail-to-tail” geometries are realized
(Tanaka and Honjo, 1964). We should note that the energy of electrostatic
field due to bound charges of density v/2Ps would be fairly high unless the
compensation by free charges takes place; this issue was treated in detail by
Yudin et al. (1978).

It may be mentioned that compared to BaTiOs;, in freshly grown crystals of
PbTiO; domain patterns have been found to be less involved (Eknadiosyants
et al., 1997), probably because of higher tetragonality.

We now shortly enumerate factors which seem to be most important in
determining what domain pattern is realized; we have in mind samples which
were not intentionally treated thermally or by application of electrical or
mechanical forces.

Barium titanate crystals are grown at temperatures well above Ttg. If the
Remeika method is employed, plate-like samples are formed in the growth
process and then cooled through Trgr. If the top-seeded solution growth
(TSSG) method is used, the as-grown crystals are bulky. In either case, during
the cooling process the temperature gradient is not controlled and complicated
domain patterns may be formed in as-grown crystals, as a result of elastic
compatibility aspects at the paraclectric—ferroelectric phase boundary as
already pointed out in Sect. 5.3. Obviously, crystal purity and intentional
doping are other factors influencing the domain patterns: Impurities can prefer
specific domain states in different parts of the crystal or induce the presence of a
domain wall in a particular location. Growth pyramids (Park and Chung, 1994)
represent an illustration of this effect. Caslavsky and Polcarova (1965) reported
observations, in c¢-plates, of stripes making an angle +6° with the [010] or [100]
directions. Made visible by X-ray topography or in polarizing microscope, they
disappear above T but reappear after subsequent cooling. It was suggested
that their formation is due to defects which enforce rotation of Pg.

We note in passing that growth pyramids, as well as ferroelastic domains,
have to be strictly distinguished from growth twins. In the latter, the crystal
lattices are mutually disoriented in a way which has nothing to do with ferroic
twinning operations.

The next factor which may strongly influence the domain pattern in a
particular sample is the way it was prepared. Normally, the sample is cut
from an as-grown or larger crystal and polished. The influence of polishing a
BaTiO; sample is well known to experimentalists and has been described by
several authors (Beudon et al., 1988; Park et al., 1998). Beudon et al. (1988)
discussed in some detail how polishing a BaTiOj3 plate in different ways results
in different kinds of domain patterns.
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Miiser et al. (1978) observed that, when a rectangular block is cut from a
BaTiO; crystal prepared by TSSG method, close to its surfaces domains are
seen in a polarizing microscope even at temperatures above Tgr. Interestingly,
the thickness x of this ferroelectric layer is a function of temperature, namely 1/
x = g(T— Ty) where T} = Ttgr. The effect disappeared when a layer about 1 um
thick was etched off from the sample. However, if the cube faces are polished
again, the phenomenon reappears. The conclusion can be drawn that plastically
distorted surface layers, about 1 pum thick, result from the polishing process.
They exhibit an increased transition temperature. Park and Chung (1994) and
later Park et al. (1998) investigated plate-like samples cut from crystals grown
by the same method. They observed that 90° domain patterns depend on the
way a plate-like sample is prepared; also, after polishing its surfaces, domain
patterns were changing in the time scale of minutes. We note in passing that
these authors, in addition to a number of already known domain shapes,
observed a regular zigzag domain wall pattern, attributed to a 90° domain
pair. Domain patterns in BaTiO3; above Tt have also been observed by Bursill
and Peng (1984, 1986) using electron microscopy.

Comparing these and other observations (Beudon and Le Bihan, 1985;
Biedrzycki et al., 1993) it becomes obvious that all mentioned factors, i.c.,
growth method, crystal purity, the way the sample is prepared, its history, but
also the observation method itself, may combine to essentially affect the domain
pattern. As a result, contradictory information on domain pattern can be
reported and its general validity must be taken with caution.

In Sect. 5.4.1 we described some experiments performed with crystalline
plates of TGS, with the aim to prove the role of depolarization energy and
reach domain pattern corresponding to the minimum total energy. Similar
attempts have been made with plates of BaTiO3 grown by the flux (Remeika)
method, by Fousek and Safrankova (1965). Plate-like crystals were first etched
above the Curie point to remove any possible surface layer. Three alternative
procedures were employed to study a large number of samples 20—140 um thick:
(I) Slow cooling at a rate of 1 K/min through the transition point to room
temperature, (Ia) in oil (conductivity at room temperature n = 10 °Q'em™"),
or (Ib) in glycerine with admixture of NaCl (5 = 10°Q'em™"); (II) fast cooling
atarate of 1 K/sin these two media (I1a, IIb). Afterward the samples were etched
to reveal domains and in the regions (which were always larger in slowly cooled
samples) with the c-axis perpendicular to the plane of the plate, the areas, S+, S,
of positive and negative domains, respectively, were measured. Results can be
summarized in the following ways:(a) Procedures Ib, IIb, and Ila led to non-
neutral structures, S, S_ differing by several tens of percents; domains had the
form of chaotically distributed irregular islets. (b) Experiment Ia gave nearly
neutral domain states with S /S_ = 1 + 0.03 and with islet domains prolonged
along the g-axis (Fig. 5.4.24a); in 25% of the cases, the average width of stripes
could be well defined and lay between 1 and 4 um (Fig. 5.4.24b).

The influence of electrical conductivity of the surrounding medium testifies
unambiguously to the role of depolarization energy. On the other hand, the
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Fig. 5.4.24 Neutral 180° domain structures in slowly cooled plates of BaTiOs;, perpendicular
to the c-axis. (a) Islet-shaped domains prolonged in the direction of the a-axis; (b) domain
pattern close to periodic lamellae. After Fousek and Safrankova (1965)

possibility of reaching non-neutral states by fast cooling has no simple explana-
tion. To interpret the latter result as being due to the time required to reach a
neutral domain pattern does not seem to be acceptable since, in such config-
urations, the magnitude of depolarizing field is capable to suppress completely
the phase transition.

We now come back to domain patterns connected with the compatibility of
the phase front, discussed in general terms in Sect. 5.3. Meyerhofer (1958)
observed the formation of domains at the phase boundary of BaTiO; and, as
already mentioned, the problem was addressed in detail by the Rostov-on-Don
group (Fesenko et al., 1973, 1975, 1985; Surowiak et al., 1978), for crystals of
PbTiO;, BaTiO;3, and K(Ta,Nb)O3. Most of the results have been summarized
in the monograph (Fesenko et al., 1990). Let us pay attention to the first two
materials. They differ in Trr (490 and 126°C, respectively), in jump of sponta-
neous strain (¢/a — 1)rg (0.012 and 0.0032), in the jump of polarization (40 and
20 pC/cm?), and also in electrical conductivity at Trg (10" and 10%Q " 'em ™).
These numbers suggest that, in lead titanate, the elastic compatibility may
strongly influence the phase boundary orientation than in barium titanate
while for the electric compatibility the situation is opposite. The given values
are fixed; what can be chosen are conditions of the transition, i.e., temperature
gradient orientation with respect to crystal axes, its magnitude, and the phase
front velocity.

The orientation of the phase boundary is, as already mentioned in Sect. 5.3.2,
of the type (320) for PbTiO; and of the type (056) for BaTiO;. Figure 5.4.25
shows schematically a ferroelastic domain pattern as it forms at the phase
boundary and specifies kinds of domain patterns observed in differently
oriented plates. Relative domain volumes which ensure mechanical compat-
ibility for the two materials have been given in Table 5.3.2. To achieve these
well-defined configurations, the sample must be cooled through 7Trr in a
temperature gradient directed along the normal to the respective phase bound-
ary. If there is only one phase front, this 90° pattern stays permanently. If, for a
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Fig. 5.4.25 Ferroelastic (90°) domain patterns formed at the phase boundary m3m — 4 mm, in
plates differently oriented with respect to the phase front. Arrow indicates the orientation of
the spontaneous polarization. PB indicate the phase boundary and its normal. Reprinted with
permission from Fesenko et al. (1985). Copyright (1985), Taylor and Francis

more general temperature gradient orientation, there are more phase fronts, the
90° domain pattern is complicated and changes with temperature.

Consider now the formation of 180° domain systems imbedded into a system
of 90° walls formed at the transition. Here two factors play a role: the electric
conductivity and the phase boundary velocity v. In PbTiO3 with large conduc-
tivity, for low values of v, domains with antiparallel polarization are absent. At
v exceeding some critical value, which is a function of the sample thickness and
varies in the range 5 x 10°—10"° m/s, such domains are nucleated at the phase
boundary. During the motion of the latter they reach a conical shape and form a
periodical pattern of systems of islands on the sample surface. These systems
have the shape of a stripe parallel to the phase front. Figure 5.4.26a shows
schematically such a pattern in a c-domain. (This pattern itself is an element of a
twin pattern like shown in Fig. 5.4.25.) An essential feature of the bulk domain
structure, revealing itself in this pattern, is the predominance of head-to-head
configuration, which is possible because of a pronounced conductivity of
PbTiO;. In BaTiOj;, though the formation of ferroelastic patterns by the
phase front is similar to that in PbTiOs, the formation of 180° domains differs
a lot. First, they form at any velocity of the front. Second, they have a shape
of continuous “though” domains crossing the whole ferroelastic domain instead
of systems of islands. The details of the final pattern depend of the conditions of
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Fig.5.4.26 (a) Spatial distribution of the polarization in a c-oriented region formed by motion
of a phase boundary in PbTiOs. The direction of motion is shown with black arrow. The
paraelectric and ferroelectric phases are denoted as PP and FP. The region with the ferro-
electric phase consists of two domains predominantly separated with a head-to-head wall.
Direction of the spontaneous polarization is shown with arrows. (b) Etch patterns of the
combined 90 and 180° domain system in BaTiOs, formed as a result of the phase boundary
motion. Symbols ¢ and a denote ¢- and a-domains, respectively. It is seen that the former is
split into 180° domains. The imaged area is about 70 x 70 (um)?. Reprinted with permission
from Surowiak et al. (1978). Copyright (1978), Taylor and Francis

the phase transformation. It may be fairly regular as illustrated in Fig. 5.4.26b.
The shape of 180° boundaries can be also rather irregular. Surowiak et al.
(1978) has reported images of the domain patterns with irregular shape of
180° boundaries, which are very similar to that shown in Fig. 4.5.23a—c. The
difference in the domain formation in PbTiO5 and BaTiOj is evidently related
to the difference in the conductivity of these materials. In BaTiO;, the low
conductivity makes impossible both single-domain twins and head-to-head
configurations.

In the tetragonal phase of BaTiO;, an interesting complex square-net
domain pattern composed of 90° domain walls, here referred to as Forsbergh
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Fig. 5.4.27 Forsbergh
pattern in a BaTiO; plate.
Reprinted with permission
from Forsbergh (1949).
Copyright (1949) by the
American Physical Society

pattern, was reported by Forsbergh (1949) and other authors (Nakamura et al.,
1979; Kirpichnikova et al., 1995). It may arise in plate-like crystalline BaTiO3
samples during slow cooling through the transition point. Figure 5.4.27 shows
such pattern observed in crossed polarizers. The appearance of this kind of
patterns has been linked to crossing of groups of laminar domains; however, no
theory for the formations of such patterns is presently available.

We have shortly described some of the domain observations in the tetragonal
phase of BaTiO;. Much less effort was put on the low-temperature phases mm?2
and 3m of this material. One of the most interesting observations was made by
Cameron (1957). He found that crystals etched in the orthorhombic phase
reveal “checkerboard pattern.” Its etched surface relief was visualized by elec-
tron microscopy and is reproduced in Fig. 4.2.1. The pattern on the opposite
side of the sample is similar but displaced along one of the primitive crystal axes,
the displacement being equal to the thickness of the sample. It seems that exact
assignment of visualized domain states is not available but since domain walls
are planar, we probably see a mechanically non-compatible system of mutually
perpendicular W walls.

Barium and lead titanates are probably the most studied examples of multi-
axial ferroelectrics. Another candidate is potassium niobate, having the same
sequence of phases as BaTiO;. However, at room temperature it represents the
species m3m — Peds — mm?2 and a systematic study of coexistence of 180, 90,
and 60° domain pairs would be of interest. The truth is, however, that more
effort has been put on making these crystals ideally single domain because of
important applications of their nonlinear optical properties. Remarkable obser-
vations of intersecting Wrand S walls in the mm2 phase, made by Wiesendanger
(1973), were mentioned already in Sect. 2.2.7. Jun et al. (1988) reported very
complicated domain patterns in surface layers of Czochralski-grown crystals
and mutually crossing systems of 60 and 90° domain pairs. Lian et al. (1996)
investigated domains in plates of pseudo-cubic orientation, cut from TSS-
grown crystals, at room temperature. Perpendicular systems of 90° lamellar
domains were observed but also 90 and 60° domain walls crossing each other. It
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should be mentioned that here by intersecting walls we mean a situation
different from that analyzed by Yamamoto et al (1977a,b) and discussed by
Salje (1990). In the latter case, e.g., in crystals of Gd,(Mo0Oy);, two mutually
perpendicular W walls meet in the crystal and form a rounded junction whose
radius depends on the elastic stiffness coefficients. This case requires only two
domain states to be represented in the sample. By contrast, the situations
observed in the orthorhombic phase of KNbOj involve four domain states
meeting, in a planar projection, in one point.

Concluding this section we will make some remarks on domain patterns in
perovskites with a phase transition associated with the unit cell multiplication.
An essential feature of these materials is the expected occurrence of antiphase
boundaries because of the cell multiplication at the transition. In practice this
feature has received little attention. However, judging from the diffraction data
on SrTiOs;, these kinds of walls can be quite abundant in perovskites (Wang
et al., 2000a). Between two groups of the material mentioned in the beginning of
this section (with antiferroelectric behavior and without it), in the latter, the
ferroelastic domain patterns have been of very little interest for research, being
typically addressed when these interfere with measurements of other physical
properties. For example, Miiller et al. (1970) polished plates of SrTiOs3, to avoid
undesirable twinning. At the same time, in perovskites with antiferroelectric
behavior, the ferroelastic twinning has been intensively addressed. In Sect. 2.2.7
we have already given examples of studies on the orientations of S domain walls
in m3m — es — mmm species realized in PbZrOs; and NaNbOjs crystals (Dec,
1988; Miga et al., 1996). Investigations of domain patterns in this species have
been reported by several groups (Tanaka et al., 1982; Dec and Kwapulinski,
1989; Balyunis et al., 1993; Jona et al., 1955; Fesenko and Smotrakov, 1976).
The observed patterns have been termed as 60 and 90° structures. Concerning
this terminology, one should be aware that, strictly speaking, it is appropriate to
species m3m — Peds — mm2, but not m3m — es — mmm where already in the
parent clamping approximation (see Sect. 2.2.5) the angles between the indica-
trices in the different domain states are not exactly equal to 60 and 90°. The
domain patterns in PbZrO5 can be very involved containing boundaries where
the mechanical matching between two groups of the twins is possible only on
average. Orientation of such boundaries has been theoretically addressed in
Balyunis et al. (1993); however, the results reported may not be correct as they
were obtained using an unjustified criterion of mechanical compatibility
(Metrat, 1980) (see footnote 14). An interesting feature of PbZrO; is that,
depending on the stoichiometry, the transition from the cubic to the orthor-
hombic phase can be direct or passing through an intermediate ferroelectric
rhombohedral phase (Dec and Kwapulinski, 1989; Ujma et al., 1988). Observa-
tions of domain patterns in the rhombohedral phase as well as the phase
boundaries between the rhombohedral and orthorhombic phases have been
reported by Dec and Kwapulinski (1989), Balyunis et al. (1993), and Bah et al.
(1994).



262 5 Static Domain Patterns
5.4.4 R Cases

By now we have discussed two motives which can result in regular but often
complicated domain patterns: depolarizing fields in ferroelectrics, elastic
matching at phase boundaries in ferroelastics. Situations related to the last
one may occur in ferroic species in which R cases may occur, i.e., in which
domain pairs can be formed with no mechanically compatible walls.

Table D.1 shows that there are a considerable number of species in which no
permissible walls are allowed between some particular domain states. A general
analysis of ferroelastics leads to the conclusion that in the seven following
species no permissible walls between ferroelastic domain states exist at all:
23-222, m3 — mmm, m3 — mm2, m3 — 222, 3-1, 3 — 1, and 3 — 1. It may be
expected that when the phase transition is continuous, non-compatible domain
pairs will not occur at all. No examples of such materials seem to be known.
However, if the phase transition is discontinuous, various domain states can be
nucleated independently in different parts of the sample, and when the transi-
tion is completed the corresponding domains will inevitably face each other.
Then the question arises of how such domains will mutually conform.
Obviously the answer depends on the magnitude of elastic energy that has to
be involved in matching the two domains together. This additional energy will
strongly depend on the values of spontaneous strain components and also on
the area of the domain wall. However, in addition to elastic deformation of the
two domain states, another possibility can be considered, namely that matching
on average will take place, similar to that discussed in Sect. 5.3. One or both
incompatible regions will be subdivided into ferroelastic domain states in a way
that the average spontaneous strain will meet the compatibility condition with
the other region, along a defined boundary.

Let us shortly discuss real situations in three ferroelastic materials in which R
cases are envisaged. Crystals of MASD were reported to represent the species
23—Peds—2. Spontaneous polarization directs along the cubic axes so that in
principle we may have 180 and 90° domain pairs like in the often studied
tetragonal barium titanate. Unlike in BaTiO;, however, antiparallel domains
represent ferroelastic pairs and can be separated by Wy walls of the type [100]. It
was realized already by Jona and Shirane (1962) that here 90° walls are pro-
hibited in a stress-free crystals. However, microscopic observations of samples
which were cemented to a microscope slide before cooling (7tr = 177 K)
testified to the fact that three ferroelastic domains corresponding to three
mutually perpendicular directions of Pg did form. Their boundary orientations
were close to either (111)- or (110)-type planes. No movements of these bound-
aries were observed in applied electric field which, however, resulted in some
polarization reversal due to antiparallel processes (Jona and Shirane, 1962).
Such behavior can be rationalized by assuming that the position of the 90° walls
corresponds to deep minimum of the total mechanical energy of the fully
stressed sample. Frozen position of there ferroelastic walls can also be
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attributed to the effect of cementing the sample (see Sect. 9.3 for a discussion of
similar effect in ferroelectric thin films). Bearing in mind the clamping effects of
the microscope slide, the problem, actually, must be treated in terms of compat-
ibility conditions in a partially clamped sample; relevant theoretical treatments
have been offered by Shuvalov with coworkers (Shuvalov et al., 1987; Dudnik
and Shuvalov, 1989).

In contrast to the species assignment made above, later studies (Glushkov
et al., 1987) of MASD indicated that in fact this crystal belongs to the species
m3 — Peds — mm2. However, even in this case the 180° walls are not permissi-
ble. Measurement of their dielectric properties performed by Glushkov et al.
(1987) provided interesting domain-related information. It was found that the
thinner the multidomain samples, the larger the permittivity value in a con-
siderable range below the transition temperature. This could be explained well
by assuming that “not perfectly permissible,” i.e., somewhat strained walls
indeed do exist in thinner samples and due to their high mobility considerably
enhance the dielectric response.

A comprehensive study of domains was performed for crystals of
Cd»(NH4)>(SOy4); (abbr. CAS) (Glogarova and Fousek, 1972). Here, we would
like to go into detail since, in this crystal, we are dealing with a piece of instructive
information, which however is not fully understood. CAS is an improper ferro-
electric belonging to species 23—Peds—2 (Ttr = 92 K). Ferroelectric domains
correspond to six polarization directions along the cubic axes. While antiparallel
domains are separated by permissible walls of the (100) type, no walls are
permitted for 90° domain pairs (Table D.20). Domains representing all six
domain states can be optically distinguished (Glogarova and Fousek, 1972).
Despite a very low value of the spontaneous polarization (~0.7 uC/cm?), the
domain formation was found very sensitive to the electrical conditions.
Figure 5.4.28 schematically shows typical patterns observed with polarized
microscope in an (001) plate. Figure 5.4.28a images an insulated sample. Here
the stripes with double arrows correspond to a-domains (or 180° patterns of these
domains, which cannot be resolved in this orientation). These stripes are sepa-
rated with those containing dense 180° patterns of ¢c-domains. Figure 5.4.28b
shows a short-circuited plate. Here, much large c¢-domains are seen. In both
images, neighboring 90° domains are observed indeed. Despite the fact that this
neighborhood corresponds to the R case, it was found that the domain states are
divided with two sets of mutually perpendicular domain walls (like in the case of
permitted matching). For domain pairs with Pg vectors [001], [100] or [001], [100]
the wall takes one of two orientations (570) or (750) while for domain pairs [001],
[100] or [001], [100] the wall orientations (750) or (570) were indicated. (In all
these cases the last index 0 is taken with some uncertainty.) It could have been
guessed that they represent on average permissible walls between the [001] domain
and a dense domain pattern of a-domains. However, according to Glogarova and
Fousek (1972), the strain analysis shows that even in this case permissible walls
would not exist. Thus (570) and analogical walls must indeed be only non-
coherent, accompanied by elastic stress. If we assume that a-domains do not



264 5 Static Domain Patterns

(a) (b)

1-(010)

Fig. 5.4.28 Domains in (NH4),Cd,(SO4);, representing the ferroelectric and ferroelastic
species 23—Peds—2 where no 90° permissible walls are allowed; schematic drawings of polar-
ized microscope images. (a) Typical domain patterns as observed in an insulated (001) plate.
The stripes with double arrows correspond to a-domains (or 180° patterns of these domains,
which cannot be resolved in this orientation). These stripes are separated with those contain-
ing dense 180° patterns of c-domains. (b) Typical part of domain patterns in a short-circuited
(001) plate. In contrast to (a), two large c-domains separated with a zigzag wall are seen. In
both images, forbidden 90° permissible walls are seen. After Glogarova and Fousek (1972)

represent 180° patterns, one concludes that these non-coherent walls are also
charged, which is difficult to expect in view of the aforementioned strong sensi-
tivity of the domain pattern to the electric boundary conditions. The feature,
which can be readily rationalized in this complicated system, is the presence of
(110) walls in the insulated sample (Fig. 5.4.8a). This wall can be viewed, in a
good approximation, as the “average” of the sequence of (750) and (570) walls.

Crystals of K,Cd»(SO4); have been reported to represent the species
23—eds—222 (Ttr = 432 K). Here again, no walls strictly comply with mechan-
ical compatibility conditions. However, optical microscopic observations of
Biletskii et al. (1988) and of Vlokh et al. (1997) revealed that in mechanically
free and fairly thick (0.6 mm or more) samples, ferroelastic domain structure
can be observed in a narrow temperature interval below the transition tempera-
ture, both on cooling and on heating. It disappears further down in the ferroe-
lastic phase. When occasionally the domain pattern stayed until room tempera-
ture, microcracks could be observed near the frontier between the polydomain
and single-domain regions, indicating an increase in the mismatch elastic
energy, as the magnitude of spontaneous strain increases on cooling. The
mentioned walls can take one of four well-defined orientations. A more detailed
discussion of Vlokh et al. (1998) indicated that what appears to be domain walls
might be in fact regions several tens of micrometers thick whose optical proper-
ties suggest that they represent slabs of the cubic phase.

We can conclude this section by stating that mechanical contacts of mechani-
cally incompatible domains have been documented. As we have already
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mentioned, the existence of such contacts in finite crystals is not absolutely
impossible since in a finite sample a price of finite additional energy (though
bulk energy) should be paid. However, when an R case is realized, a natural
question of why this energy is acceptably low is to be posed. Is it a particular
relation between the components of the spontaneous strains or is it rather a
feature of the particular domain geometry? Unfortunately, for all of the dis-
cussed materials this question has not been clearly answered. An especially
intriguing situation with CAS is worth mentioning. The mechanically incom-
patible walls increase the energy of the system by an additionally bulk elastic
energy of the domains. For this reason one expects that the favorable orienta-
tion of the non-coherent walls should be different in different domain config-
urations, which is clearly not consistent with the experimental observations
in CAS.

5.4.5 Quartz

Crystal quartz (SiO,) is a secondary ferroic which has met with very wide
success in the marketplace. The world’s secondary timing standards and
many clocks and watches depend upon quartz crystal piezoelectric resonators.
In single crystals of quartz, the presence of domains is unwanted since they
reduce the effective piezoelectric response and, even worse, they change com-
pletely the resonance modes. Thus quartz is historically the first material in
which the presence of ferroic domains plays an essential practical role, though a
negative one.

Quartz represents the ferroelastoelectric and ferrobielastic species
622—ds—32, with the transition temperature 848 K. The transition is equitransla-
tional. In fact, in a narrow temperature range of about 1.4 K between the two
phases of this crystal, there exists an incommensurate phase.

Let us shortly discuss domain properties of quartz as they follow from the
indicated 622 to 32 transition. In both phases there are nonzero piezoelectric
coefficients dy4 = —d>s. In the ferroic phase additional (morphic) coefficients are
newly acquired, namely dy; = —dj» = —(1/2)d». The two domain states are
related by the twofold axis directed along z-axis and differ in sign of the morphic
coefficients. Domain pattern corresponding to this symmetry relation is
referred to as Dauphiné twinning or electrical twinning. Since the given species
is not ferroelastic, mechanical compatibility conditions do not impose any
restriction on the orientation of domain walls.

Both phases of quartz exhibit two enantiomorphic modifications, referred to as
right- or left-handed quartz. These modifications can be obtained one from the
other by a reflection in the mirror plane perpendicular to the x-axis of the structure.
When these modifications coexist in the trigonal phase of a single crystal, they are
separated by (1120) twin boundaries and their structures are related by a reflection
in this plane. Such twins are commonly referred to as Brazilian twins. They differ in
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sign of all piezoelectric coefficients and of optical gyration. It is essential to realize
that these twins do not represent ferroic domains.

The fact that domain states of quartz (Dauphiné twins) differ in the sign of
piezoelectric coefficients specified above attracted great attention to domain
phenomena in this material. For applications in classical resonators, homoge-
neous (single-domain) samples are required. Quartz crystals are found in nature
or “synthetic” single crystals are grown from an aqueous solution at high
pressure and high temperature. They may contain both Dauphiné and Brazilian
twins. Crystals with regions containing the latter are avoided since such twins
cannot be influenced by applied forces. Contrary to that, Dauphiné twins
represent domain pairs of ferroelastoelectric or ferrobielastic label and can be
influenced by simultaneously applied electric field and mechanical force or just
by the latter, properly oriented.

Boundary conditions are not expected to play an essential role in domain
patterns in this family of ferroics. Reported observations of domains in not
specially treated samples of quartz agree upon the fact that as-found crystals
contain rather complicated domain geometries; this was demonstrated, e.g., by
Bond (1938) who observed the etched surface of a sphere-shaped sample. By X-
ray topography, Lang (1965) detected domains of irregular shapes with planar
sections of domain walls, including those totally enclosed within the specimen.
McLaren and Phakey (1969) studied Dauphiné twin boundaries by electron and
X-ray diffraction and stressed that the Dauphiné domains were never observed
to cross Brazil twin boundaries. A short overview of domain patterns was
summarized in the monograph of Klassen-Neklyudova (1964), based on the
observations of etched samples. Generally, the contours of Dauphiné twins can
be wavy, curvilinear, or straight. A detailed study of thermally twinned crystals
showed that Dauphiné twins are sensitive to structural defects; twinning often
follows the growth zones and twin boundaries frequently reveal minute defects
connected with local residual stress. If stress is applied to a quartz plate to reach
the single-domain state (ferrobielastic switching), after its removal, the det-
winned plate restores the twinned regions precisely as before. This clearly
demonstrates the influence of defects on the domain pattern.

In addition to etching and X-ray topography, ferroelastoelectric domains in
quartz can be made visible in crossed polarizers when properly oriented either
electric field or mechanical stress is applied. Aizu (1973a,b) was the first to point
out that if the domain states in quartz are ferrobielastic and differ in elastic
compliances, they must differ also in the corresponding components of other
tensors of the fourth rank, including the tensor describing elasto-optic proper-
ties. His analysis led to the conclusion that if a uniaxial pressure p is applied
along the (011) or (011) axis, the indicatrices of the two domain states rotate
around the x-axis in such a way that they finally make an angle proportional to
the product my35,p Where 75355 is the elasto-optic coefficient. This will lead to a
clear contrast of domains in polarized light, which Aizu confirmed by micro-
scopic observations. In fact, domains with clearly defined planar geometry,
which he observed optically, demonstrate ferrobielastic switching and cannot
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be considered typical for as-grown crystals. But in principle, with small applied
stresses the method could be used to observe the original domain patterns.

Laughner et al. (1981) paid more attention to the situation in quartz under
applied stress. Because the two domain states differ in some components of
elastic compliance, when stress is applied they differ in total strain although the
material is not ferroelastic. These differences, being induced, are small but in
principle one can apply the same elastic compatibility conditions for the orien-
tation of domain walls under applied stress as for ferroelastic crystals. However,
the reported observations of domains formed by stresses applied for differently
oriented cuts showed that the walls did not fulfill these relations, probably
because defects in the used crystals played an essential role.

Domain optical distinction can also be based on the fact that since the two
domain states are ferroelastoelectric, they differ also in some coefficients of the
electro-optic tensor. A general analysis of optical visibility of Dauphiné twins in
crossed polarizers, in applied field or stress, was offered by Dolino (1975). When
the electric field is applied along the x-axis, the two indicatrix ellipsoids rotate and
domains become visible. However, since the involved electro-optic coefficients
are small, a fairly high field of 40 kV/cm has to be used to reach a satisfactory
contrast. Alternatively, Dolino et al. (1973) showed that domain observations
can be based also on nonlinear optical properties. It should be noted thatif quartz
samples are irradiated by a laser beam, attention must be paid to keep the
absorbed energy low since, as shown by Anderson et al. (1976), the thermal
stresses can result in nucleating new domains, obviously due to ferrobielasticity.

Discussing domains in quartz one should indicate that large-scale domain
patterns in the ferroelastoelectric phase of quartz can be related to the dense
domain patterns existing in the narrow temperature range of the aforemen-
tioned incommensurate phase. However, because of the space problem, we do
not address this interesting issue in the book as well as other issues related to the
incommensurate phase.

While considerable attention was paid to domain patterns in quartz little is
known about domains in an isostructural crystal of AIPOg4. Zvereva et al. (1992)
investigated the surface of this crystal by etching to find both right- and left-
handed parts as well as Dauphiné twins.

5.4.6 Tweed Patterns

In the introductory theoretical parts of this book we defined domain states on the
basis of symmetry approach as well as on the basis of thermodynamic treatments
of phase transitions. Domains as we have understood them by now “have the
right” to be formed only when the symmetry of the material changes, i.e., at and
below the transition temperature (pressure may play an analogical role).

In a number of materials, below some temperature—not sharply specified—
small regions, often referred to as microdomains, can be observed. Among the
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methods used are polarized microscopy, X-ray diffraction, and transmission
electron microscopy. They form quasi-regular patterns which on the first sight
do not exactly correspond to the basic symmetry approach to ferroics. In some
cases they are referred to as tweeds. We mention the topic only in short, giving
several references to more involved treatments. In fact, the concept of tweed
patterns is used in more than one meaning. As remarked by Putnis and Salje
(1994), it happens frequently in the study of materials that observations made in
one field are not directly compared with observations in another until each has
evolved its own set of terminologies and interpretations. This statement applies
very well to the studies of tweed microstructures in minerals and metals as
compared to the studies of domains in ferroelastics (whether ferroelectric or
not) with clearly defined phase transformations.

One family of microstructures referred to as tweed texture is connected with
spinodal decomposition in a solid solution (Putnis and Salje, 1994). It results in
modulation of the chemical composition along clearly defined crystallographic
directions. Its wavelength is of the order of 10° A, leading to satellite reflections
around the Bragg peaks. If the process takes place in a structure of high
symmetry, there exist equivalent directions for such a modulation and a micro-
structure can be observed, referred to as tweed pattern.

The concept of tweed patterns is frequently used in connection with struc-
tural phase transitions (Putnis and Salje, 1994). In some minerals, representing
in fact ferroelastic crystalline materials, and below a temperature not sharply
specified, small regions, often referred to as microdomains, have been observed.
These regions differ in their macroscopic symmetry from the average symmetry
of the whole sample. Their typical linear dimension is of the order of 10>~10* A.
Often the whole sample is split into microdomains of lower symmetry, spatially
arranged to form a quasi-regular system and it is such a system which is referred
to as the tweed pattern.

One classical example of real observations of tweed patterns is offered by the
mineral KAISizOg, referred to as K-feldspar. It undergoes the order—disorder
phase transition representing the species 2/m — &s — 1 (Putnis and Salje, 1994).
The equilibrium transition temperature is about 500 K and the phase transfor-
mation is governed by ordering of the Si and Al ions, the process which is rather
slow so that direct experiments on the ordering transition are not possible. The
intermediate states of Si and Al order are represented by “tweed microstruc-
tures,” meaning that the sample is split into small regions, tweeds. They are
observable by polarized microscopy and their boundaries are of two prevailing
mutually perpendicular orientations. On average, the crystal symmetry remains
monoclinic but within tweeds some degree of ordering is already reached, with
the corresponding lowering of symmetry. To interpret these observations, two
possibilities can be considered. First, the observed tweed structure can be
recognized as a stable periodically modulated strain pattern which minimizes
the free energy (the latter of course includes the strain gradient terms). Second,
the tweeds could represent a metastable pattern allowing for local Si/Al order-
ing without the need for a macroscopic change of symmetry. In the vocabulary
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of the present book, the first possibility corresponds to spatial modulation of
the strain but not of the ordering while the second one to a dense classical
ferroelastic domain pattern. According to Putnis and Salje, the available pho-
non spectra point to the first interpretation.

In some minerals undergoing a phase transition, the latter is “smeared out”
and it is difficult to define exactly the transition temperature. Then in many
interpretations it is accepted that the tweed pattern is formed already in the
parent phase and that it represents long-lived fluctuations of the order para-
meter (Salje, 1990). Microregions of low symmetry embedded in the higher
symmetry crystal lattice are sometimes referred to as “embryos.” Their occur-
rence in the higher symmetry phase of a material which undergoes a structural
phase transition is sometimes defined as the “precursor regime.”

Fig.5.4.29 Domain patterns
in YBa,Cu;07 doped with
Co. Concentrations of Co
are (a) 0, (b) 1, (¢) 2, (d) 2.5,
(e)2.8,(f) 3, (g) 5, (h) 7%.
For concentrations higher
than 2.4% the material is
expected to be in the parent
phase. Patterns shown in
images (d)—(f) represent the
so-called tweed patterns.
Reprinted with permission
from Schmahl et al. (1989).
Copyright (1989), Taylor
and Francis
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As discussed in detail by Salje (1990), it is the possibility of this kind of long-
lived fluctuations that may explain the formation of tweed patterns such as
observed optically in the mineral cordierite. Even in the temperature region
where there is still no spontaneous strain present and the crystal must be
considered in the parent phase, the diffraction patterns in some materials
have shown diffuse signals which can be indexed in the low-temperature
phase and interpreted as the tweed structure. At the same time, the superlattice
reflections are not necessarily compatible with the lattice of either phase.

The problem of tweed patterns has been theoretically addressed by Brat-
kovsky et al. (1994). They indicate that the anisotropy of observed patterns can
be linked to the anisotropy of order parameter fluctuations in the parent phase.
Such anisotropic fluctuation patterns were computer simulated.

To summarize, some approaches treat the observed tweed patterns as small-
size quasiperiodic ferroelastic domain structure while the others assume a
coexistence of regions with the parent and ferroelastic symmetry.

Shortly after the discovery of high-temperate superconductivity, a
considerable attention was paid to domains and tweed microstructures in
crystals of superconducting YBa,Cu3z0; , (x = 0.1). It represents the species
4/mmm—es—mmm. The transition can be driven by either temperature
(T¢ =2 700°C in the pure material) or by doping with Co (the critical concentra-
tion is about 2.4% at room temperature) (Schmahl et al., 1989). Figure 5.4.29
(a—h) shows electron micrographs by Schmahl et al. of domain patterns in
YBa,(Cu;_yCo,)O; at different Co concentrations, y. For y<2.4%
(Fig. 5.4.29a—c), we see classical ferroelastic domain patterns. At the concentra-
tion 2.4% of Co, we pass through the transition point; therefore Fig. 5.4.29d-h
should correspond to tweed patterns in the parent phase. The microstructure
whose period is obviously decreasing with increasing x corresponds to lattice
modulation along two directions (110) and (110) in the parent phase. It appears
that in this material the existence of tweeds has been proved beyond any doubt.



Chapter 6
Domain Walls at Rest

This chapter is devoted to the properties of domain walls and let us stress first
that here we have in mind a static situation in a ferroic sample. Problems
connected with domain walls which are not in static or quasistatic equilibrium
will be dealt with separately in Chap. 8. An important aspect of walls has been
already discussed in Chap. 2, namely their orientation from the point of view of
electrical and mechanical compatibilities of neighboring domains. There we
considered walls as infinitely thin two-dimensional objects. Now we focus on its
internal structure and properties governed by this structure. In Chap. 4 we have
pointed out that several domain-imaging methods provided information about
the wall thickness; in Sect. 6.1 we wish to describe some of these observations in
more detail. In this section, we will also present available experimental data on
thickness and surface tension of domain walls.

To address the problem of crystal structure inside the domain wall, the
simplest and most widely used approach is based on thermodynamic theories.
As we have seen in Chap. 2, these theories of ferroic transitions predict that an
ideal crystal in the ferroic phase represents just one of the domain states with
spatially homogeneous value of order parameter. But thermodynamic theories
can also be used to describe multidomain states when the order parameter is
considered as continuous function of the spatial coordinates. In the simplest
situation we prescribe boundary conditions in the two opposite parts of a
sample as representing different domain states S, and Sp, respectively, char-
acterized by values nsa and ngp of the order parameter #. Because of the
transition region between these states, which is the domain wall, the energy of
the system is necessarily enhanced.' The thermodynamic approach can be used
to look for the spatial distribution of the order parameter for which this increase
of total energy is minimal. This distribution represents the structure of the
domain wall. Historically, addressing the domain wall structure researches
were interested in its type, especially in the case where the order parameter
can be easily visualized. Thus, in proper ferroelectrics, the question raised

! This is not the case for the materials where the minimal energy of the crystal corresponds to a
spatially modulated state. These materials are not considered in this book.

A K. Tagantsev et al., Domains in Ferroic Crystals and Thin Films, 271
DOI 10.1007/978-1-4419-1417-0_6, © Springer Science+Business Media, LLC 2010
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already in the early states of research was the following: Does the vector Pg
rotate in space when it has to change, within the domain wall, from say + Pg to
—Ps, which would constitute an electric analogy of the ferromagnetic Bloch
wall? Or does it first diminish to zero and then increase in the opposite direc-
tion? Different answers may be obtained for different kinds of phase transi-
tions, depending on the order parameter and crystal structure. The obtained
spatial distribution of order parameter makes it possible to express the wall
thickness and its excess energy in terms of coefficients of the free energy
function. Considering a domain wall as a two-dimensional object, the excess
energy is represented as surface energy density (or surface tension) o, measured
in J/m>. This kind of theories, where continuous spatial variations of the order
parameter are treated, we will call macroscopic (or continuous) theories. Such
theories have been developed for several kinds of ferroics and we shall pursue
this subject in some detail in Sect. 6.2.

The domain wall structure can also be addressed on the atomistic level. The
first attempts in this direction have been performed in terms of very simplified
discrete models. However, presently, supported with new numerical methods of
quantum chemistry and the immense progress in informatics, quite advanced
modeling of domain walls on atomistic level becomes possible. Section 6.3 will
address this kind of models which we will call microscopic models.

Since, the presence of the wall increases the energy of the system, one may
expect that the energetically favorable walls will be flat. This is true in an ideal
(defect-free) crystal when the thermal fluctuations are neglected. However, in a
real crystal at finite temperature, it is not a priori clear whether the flat wall
configuration is energetically favorable. We devote Sect. 6.4 to this problem. In
this section, we will overview the relevant theoretical results and experimental
findings.

6.1 Thickness and Structure of Domain Walls: Methods and Data

Numerous experimental methods have been employed to obtain data on
domain wall width. Some of them are identical with those used for observing
domain patterns but others have been developed specifically to address the
problem of wall thickness. Most of them are real observation methods but
attempts have also been made to obtain information based on models related
to the measurements of macroscopic properties of the sample. We shall now
briefly describe several of the methods which have been used. Attention will also
be paid to the methods which provide some information on the internal wall
structures.

The domain wall thickness, in simple terms, is conceived as the width of the
region where significant departures of the order parameter from its values deep
inside the two domains, #ga and nsp, occur. There are two obvious difficulties
connected with this definition. First, how large these departures have to be in
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order that the corresponding distorted region still belongs to the domain wall.
Second, a particular method may enable one to observe some properties
coupled to n(x), not the order parameter itself; the changes of these properties
may extend over regions having a different width. What is included in this
chapter are data and methods concerning domain walls at rest. As an exception,
we also include the paragraph on Raman scattering, a method that by now has
been used only to estimate the thickness of a moving domain wall.

In Table 6.1.1 some of the available data are collected on domain wall
thickness in different ferroic materials.

6.1.1 Direct Optical Observations

As we have already pointed out, in ferroelastics, domain patterns are customa-
rily observed in a polarizing microscope and this is usually the first thing an
experimentalist does with a transparent crystal. Hundreds of photographs have
been published. Alternatively, also isolated domain walls themselves can often
be observed. As an example we refer to observations of single crystals of
gadolinium molybdate (abbr. GMO) (Shepherd and Barkley, 1972) performed
with a high-quality plate-like specimen of GMO cut perpendicular to the ferro-
electric c-axis and well polished. By applying a properly oriented stress and/or
electric field it is relatively easy to prepare a sample containing just two domains
separated by one of the permissible (100) or (010) walls. Sections of the two
indicatrices are apparent from Fig. 6.1.1. Viewing along the c-axis in convergent
white light whose polarization plane is aligned parallel to the wall, the wall
appears as a well-defined bright or dark line, depending on the orientation of
the analyzer. With monochromatic and collimated light the width of the wall in
GMO appears larger, presumably due to a combination of refractive—diffrac-
tive effects. Such direct observations were used to give some crude estimations
of the wall thickness, being interpreted as the maximum width of the transition
region for which the lattice distortion produces birefringence different from
that in the bulk of the domains. Based on such observations, Shepherd and
Barkley (1972) estimated the apparent thickness of the 180° wall in GMO to be
3 um; Little (1955), based on similar observations, quoted 0.4 um as the
thickness of the 90° domain wall in tetragonal barium titanate. These data,
however, cannot be considered reliable. They can be influenced by effects like
light deflection on domain walls which was investigated in detail by Tsukamoto
et al. (1980, 1984) in GMO and other ferroelastics.

If the sample is thick, interference pattern in the region surrounding the wall
can be observed. For a 1 cm thick GMO sample and in crossed nichols a large
number of fringes are observed in the microscope on both sides of the wall when
the incident beam is polarized parallel to the wall (Fig. 6.1.1). When its polar-
ization plane makes an angle +45° or —45°, fringes appear on the left-hand or
right-hand side of the wall, respectively. This can be interpreted by the existence
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Fig. 6.1.1 Light intensity
distribution near an isolated
domain wall in GMO (d)—(f)

and the corresponding @
orientations of nichols

(marked with A) and of
polarizer (marked with P)

with respect to crystal axes
(a)—(c). Light propagates

along the c-axis (b)

@

©

© ()

of a region near the wall where the indicatrix is perturbed. The beam propagat-
ing in this region is deviated toward the higher refractive index region. It
interferes with non-deviated beams which cross the sample in the non-perturbed
region and gives rise to fringes parallel to the domain wall.

When properly analyzed, interference patterns could be in principle used for
estimating the wall thickness or, more exactly, thickness of the region in which
the refractive index is perturbed. The problem was discussed theoretically by
Laikhtman and Petrov (1977b). Analyses of the angular intensity distribution
of light diffracted at a domain wall were performed by Suzuki and Takagi
(1971, 1972) and by Esayan et al. (1974).

6.1.2 X-Ray and Neutron Scattering

Neutron and X-ray scattering due to the presence of domain walls has been
analyzed theoretically by Bruce (1981) for both ferroelastic and nonferroelastic
domain walls. A cube-like sample of N* unit cells is considered, consisting of
two domains separated by a wall perpendicular to the y-axis. It has been shown
that if the domain wall were of zero thickness the scattered neutrons would form
lines in reciprocal space, extending from the Bragg points perpendicular to the
plane of the wall. The scattered neutrons are expected to form a set of sharply
peaked ridges in this direction. If the domain pair is ferroelastic, each Bragg
point within these ridges will split into two separate components originating
from the two domains. The essential part of Bruce’s analysis concerns the model
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of a ferroelastic domain wall with finite thickness #,,. The wall perpendicular to
the y-axis is modeled by a layer n = t/a unit cells thick, which has the
unperturbed structure of the paraelectric phase, where « is the corresponding
lattice constant of the material. In this case, the shape of the intensity of
scattered neutrons as a function of the transferred wave vector has been
shown to consist of a broad wing on either side of the Bragg peak as before;
in addition, now the wing is modulated by an oscillatory term. These oscilla-
tions of scattered intensity have two sources: cells in the wall itself, plus the
interference effect between the contributions from the two domains. The first
effect is spurious, connected with the “sharpness” of the wall model used here
while the second effect is real. However, the intensity scattered by one single
wall is expected to be proportional to N> and would be masked by other
processes like Bragg scattering, thermal diffuse scattering, and incoherent
scattering which are proportional to N°. Should the wall effect be observable,
a large number of walls must be present in the scattering volume. For typical
parameters of KDP crystals, the wall scattered intensity has been estimated to
be a factor of 10° weaker than the Bragg scattering.

The neutron scattering experiment (Bruce, 1981) was performed using a
triple-axis neutron spectrometer with a single crystal of KD,POy, at a tempera-
ture 100 K (the transition temperature is 222 K). Comparison of the observed
intensities of scattered neutrons with the results of modeling in terms of the
above approach showed that the maximum allowed domain wall width in this
crystal is 4 unit cells; the best fit is obtained for n = 2.

By means of a two-axis X-ray diffractometer and CuKo,; radiation, Andrews
and Cowley (1986) investigated scattering of X-rays from crystals of KH,PO,4
and KD,POy. The setup made it possible to investigate scattering as a function
of temperature. A strongly temperature-dependent scattering intensity was
found above the transition points and attributed to critical fluctuations. In
the ferroelectric phase, the scattering is expected due to the presence of the
domain walls with perturbed structures. The scattered intensity was theoreti-
cally analyzed for a more realistic model than the “sharp” model used above,
namely, the lattice distortions u# within a wall perpendicular to the y-axis are
taken as being described by the formula resulting from macroscopic theories of
walls in ferroics with the continuous transition

u(y) = up tanh(y /1), (6.1.1)

and it is assumed that displacements of all atoms are governed by this relation.
The scattering intensity distribution in k, direction near the Bragg points has
been evaluated as

A)?
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where 4 is the coefficient proportional to the number of domain walls and u3. In
order to maximize this number, crystals of KDP and DKDP were cooled in zero
field. Scattering from walls consisted of streaks extending from the Bragg
reflections along the [100] and [010] directions in agreement with the orienta-
tions of permissible domain walls. No differences in shape were observed of the
scattering around different Bragg points in the (40/) plane and this gives
evidence that the pattern of displacements remains reasonably constant
through the domain wall. The scattering intensity could be well fitted to
Eq. (6.1.2) over three orders of intensity. The domain wall width 24 in units
of the lattice constant resulting from these data is shown in Fig. 6.1.2 as a
function of temperature.

201 -
Fig. 6.1.2 Temperature

dependence of the domain
wall thickness in KH,PO, as 15+ _
deduced from X-ray
scattering data (Andrews
and Cowley, 1986). The wall
thickness, 24, normalized to
the lattice constant aq =

7.4 A is plotted. Data above 5 7
T = T¢—2K could not be
evaluated because of the

2)/a,

101 -

background caused by 80 60 40 20 0
scattering due to
fluctuations TT’ “TIK

Chrosch and Salje (1994) and Salje and Chrosch (1996) used high-resolution
X-ray diffractometry to investigate the wall thickness in single crystals of high-
Tc superconductor YBa,Cu30-_,. These crystals represent ferroelastic species
4/mmm—es—mmm. Using CuKo, radiation, suitable Bragg peaks like (029) and
(209) were chosen to register rocking curves, i.e., diffraction intensity in depen-
dence on the angle of incidence of the X-ray beam. The diffraction pattern was
analyzed assuming again that the spontaneous strain profile corresponds to
Eq. (6.1.1). Obtained data led to the conclusion that at room temperature the
domain wall is 7 & 2 A thick which is the order of just one lattice constant. It
should be stressed that these data also indicated a very high wall density, that is,
a small inter-wall distance of about 230 A. Thus the ratio of the scattering
intensity from the walls to the total scattering intensity has been found very high
compared to that in other ferroelastic or ferroelectric materials.

X-ray diffraction has also been used to investigate wall thickness ¢, in
ferroelastically twinned LaAlO; (Chrosch and Salje, 1999). In the interval of
300900 K, the wall thickness has been found to change in the range 2-25 nm,
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following the law 1, & (T¢c — T) ", which, however, is hard to explain in terms
of the continuous theory (see Sect.6.2).

6.1.3 X-Ray Topography

Using X-ray topography, considerable effort was devoted to observations of
domain walls and to the analysis of domain wall contrast with the aim to obtain
data on domain wall thicknesses and structures. Klapper (1987) distinguishes
two mechanisms which make the wall appear on an X-ray topograph: kinema-
tical contrast due to lattice strain within the wall, and dynamical contrast due to
scattering caused by the fact that the dynamical X-ray wave fields are out of
phase in the two domains and a phase shift occurs at the wall (interbranch
scattering). In this case a fringe pattern may be observed. The effect is connected
with the fault vector describing the displacement of the two parallel domain
lattices and can be described as a consequence of the phase shift of the structure
factor.

Detailed studies of domain wall contrast for 180° walls in TGS have been
performed by a number of authors (Petroff, 1969; Takahashi and Takagi,
1978a,b; Parpia, 1982a,b) with appreciable difference in the results and inter-
pretation. The majority of authors, however, share the opinion that wall images
can be interpreted as being due to the kinematical contrast. The evaluation of
spatial distribution of strain in the domain wall indicated that the wall thickness
in this material is rather large, of the order of a micrometer. The X-ray
topography estimates for the width of 180° domain walls in tetragonal
BaTiO; have also yielded values in the micron range (Kawata et al., 1981),
the values that are orders of magnitude different from those obtained by other
methods (see Table 6.1.1).

One should mention that X-ray topography estimates for the wall width are
quite indirect. Suzuki and Takagi (1971) pointed out that even the sharpest
observed width D of a wall image does not give direct information on the actual
wall thickness d, because the topographic image is spread out by the diffraction
effect and angular divergence of the beam. To give an idea of the role of
different effect in the formation of the wall image, we will give, without deriva-
tion, the relation used by Suzuki and Takagi in their wall width estimates for
NaNO,:

D=d+iL/d+ oL -3, (6.1.3)

where Z is wavelength of the X-ray beam with angular divergence w, L is the
distance between the crystal and the photographic plate, and ¢ is the distributed
range of developed silver nuclei along the track of the X-ray photon in the
emulsion. Under the experimental conditions chosen for the study of NaNO,
these quantities were A = 1.54 A, 8205 pm, L = 0.7cm,and @ = 1.6x10 *rad
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which give D = d + 1/d + 0.1 um. The value of D observed on the topographs of
this material was 2—3 pm, which limits the allowed range for the wall thickness d
t0 0.35 um < d < 2.7 um.

A detailed analysis of the topographic contrast was also performed for
nonferroelastic walls in NaNO, (Suzuki and Takagi, 1971, 1972; Takagi and
Suzuki, 1994) and thiourea (Aoyama et al., 1992); results obtained for wall
thicknesses are included in Table 6.1.1.

As for the interpretation of fringe patterns which are sometimes observed,
different opinions have been expressed but it appears that conclusions about
mutual shift of domain lattices along the wall by a fraction of unit cell para-
meter in crystals like TGS or LiNH4SO4 have to be taken with caution. On the
other hand, a detailed analysis of sectional topographs of GdDy(MoQy);3
crystals containing antiphase domain walls led to the conclusion (Capelle
et al., 1982) that, in addition to the expected translation of crystalline lattices
of the domains neighboring such a wall, a small additional translation takes
place. This is in qualitative agreement with the evaluation of electron micro-
scopic images (Yamamoto et al., 1977a,b).

6.1.4 Raman Scattering

Asevident from Table 6.1.1, one additional method which led to a surprisingly large
value of the wall thickness is Raman scattering. Such a value has been obtained
by Shepherd and Barkley (1972). In their setup, a GMO crystal containing just
one domain wall was provided with electrodes; thus an ac square-wave field
(w = 400 Hz) can be applied along the c-axis so that the wall oscillates over a
distance of 0.4 mm. An Ar-laser beam parallel to the domain wall was focused in the
center of the region traversed by it and the light scattered at 90° is detected.
Polarizations are chosen such that only phonons of A; symmetry propagating
along the (001) plane contribute to the signal. Three scattering experiments record-
ing phonon spectra were performed: (a) in both paraelectric and ferroelectric phases,
without the wall; (b) with the moving wall, detecting spectra at the frequency w in a
phase which can be adjusted; and (c) with the moving wall, detecting spectra at the
frequency 2w. Due to the fact that the laser beam is focused exactly in the middle of
the region where the wall travels, experiment (b) gives information on the difference
between the domains whereas experiment (¢) makes it possible to see the difference
between scattering from the wall and that from the homogeneous orthorhombic
phase. Three peaks were observed exactly where the differences between scattering
of tetragonal and orthorhombic phases were seen in experiment (a).

The interpretation of observed data was based on the assumption that the
wall structure has a tetragonal component corresponding to the paraelectric
phase. The ratio of the signals at 820 cm ! in experiments (a) and (c) gives
information on the thickness of this tetragonal part of the wall. However, the
time must be known for which the wall is exposed to the laser beam; this was
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estimated by assuming a constant velocity during the wall motion. The obtained
data (Sheperd and Barkley, 1972) led to the conclusion that the wall thickness
(or rather the thickness of the tetragonally distorted region) is 0.8 pm + 10%.

It just appears that all optical data point to a very thick domain wall in
GMO. This contrasts strongly with data obtained by transmission electron
microscopy (cf. Table 6.1.1). In view of this controversy it might be worthwhile
to perform a new detailed analysis of light diffraction data. In the Raman
scattering experiment one might suspect that the assumption of the tetragonal
character of the wall is too simplistic.

6.1.5 Electron Holography

Generally, holographic methods permit that both amplitude and phase distri-
bution of a wave front are recorded in terms of intensity only. A transmission
electron microscope can be used to perform electron holography so that
changes in both amplitude and phase of the transmitted wave front are made
visible. In particular, if electrons are not scattered so that the amplitude of the
transmitted wave is not changed, the alteration of the phase of the wave front
can be visualized, with a high resolution. This change can be brought about by
slight modifications of the crystalline structure through which the wave propa-
gates as well as by electric fields which may be present.

Zhang et al. (1992) utilized this idea to produce a hologram of a 90° domain
wall in tetragonal BaTiOs. The incident electron beam is split so that one half
travels outside the sample and the other half passes through it parallel to the
domain wall. They interfere and produce a hologram (Fig. 6.1.3a). The
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Fig. 6.1.3 (a) Electron hologram taken over an area of a 90° domain wall in BaTiO;. The
fringe spacing is 3.6 A; pairs of arrows indicate the “edges” of the wall. (b) Schematic
representation of the fringe bending and explanation of the phase shift of the electron wave.
Reprinted with permission from Zhang et al. (1992). Copyright (1992), American Institute of
Physics
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interference fringes are straight on both sides of the wall but mutually shifted;
this shift is seen as bending of fringes within a stripe representing the domain
wall. The width of the stripe with bent fringes, shown in Fig. 6.1.3a with arrows,
is related directly to the domain wall thickness. The observed interference
pattern is also schematically shown in Fig. 6.1.3b. The quantitative analysis
of the interference pattern is carried out in terms of the phase change of the
electron wave which travels through the sample (Zhang et al., 1992, 1993; Cao
and Randall, 1993). The two neighboring fringes correspond to the phase shift
of 27. Thus, the relative fringe bending can be directly translated into the phase
change caused by the wall, 4@, as explained in Fig. 6.1.3b. It has been suggested
by Cao and Randall (1993) that this change is mainly due to depolarizing field
produced by bound charges on the sample surface. If the latter were fully
compensated by free charges, the phase change would tend to zero and no
potential contrast could be formed. Assuming that the compensation is only
partial, leading to a proportional reduction of the net polarization, the phase
profile of the wall can be found proportional to that of the spontaneous
polarization, Pg(x). According to Cao and Randall, an additional strain-related
contribution to the phase change, which is proportional to P3(x), can also be
incorporated into the model. Figure 6.1.4 (Cao and Randall, 1993) shows the
experimental data of Zhang et al. (1992) together with fits which were calculated
without and with the correction for strain, assuming the simplest tanh-type
polarization profile in the wall.

Fig. 6.1.4 The phase shift of
the electron wave, A®(x),
(normalized to @, the half
of total phase shift across the
wall) corresponding to the
image shown in Fig. 6.1.3a
(circles). Thin line is a fit to
tanh(z) function. Thick line
is a fit where a strain-related
contribution, which izs -
proportional to tanh“(z), is

also accounted for. After 1 0.5 0 0.5
Cao and Randall (1993) 2x/tyy

AD/D,

-

The detailed interpretation of the phase profile may be subject to further
modifications (Ravikumar et al., 1997). For instance, the interpretation of the
interference pattern could be further complicated when strong dynamic diffrac-
tion occurs: Pronounced electron channeling conditions may lead to a strong
excitation for some of the diffracted beams which then act as independent
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object waves and produce multiple interference regions. A 90° domain wall in
PbTiO; was visualized under such conditions (Ravikumar et al., 1997). Thus, as
with any other method, the data of wall thickness by means of electron holo-
graphy have to be considered with caution. In addition, one has to keep in mind
the extreme requirements on the sample thickness when TEM is used. Under
such conditions domain walls may acquire profiles which differ from those in
bulk samples.

6.1.6 Transmission Electron Microscopy

As was already mentioned in Sect. 4.8, transmission electron microscopy
(TEM) in its different modifications has been successfully used for investigation
of domain wall in ferroics.

The weak-beam dark-field imaging (two-beam diffraction conditions) makes
a very important tool of domain imaging. A typical image obtained using this
technique is shown in Fig. 4.8.6. This technique has been extensively used
starting from the first electron microscopy studies of domain walls in ferro-
electrics, mostly focusing on BaTiO; and PbTiO; single crystals (Blank and
Amelinckx, 1963; Tanaka and Honjo, 1964; Bradt and Ansell, 1967; Shakmanov
and Spivak, 1968; Yakunin et al., 1972; Hu et al., 1986). The main problems that
were addressed by the first TEM observations of the domain walls in barium
titanate were their type, structure, and thickness. Two types of domain walls (90°
and 180°) were readily identified. A better stability of the 90° walls during the
TEM observations was noticed (Bradt and Ansell, 1969). The domain wall
thickness in BaTiO; was first evaluated as about 20 nm by Tanaka and Honjo
(1964) and later as 8 nm in (Ba,Pb)TiO3 by Dennis and Bradt (1974). The direct
TEM observations of the temperature dependence of the domain wall thickness
were performed for the first time in (Ba, Pb)TiO; from —190 to 30°C (Dennis and
Bradt, 1974). The temperature dependence of the 90° domain wall thickness of
PbTiO; has also been evaluated from the analysis of the thickness fringes in
weak-beam dark-field images (Foeth et al., 1999a,b; 2007). Figure 6.1.5 demon-
strates the temperature evolution of such images. The temperature dependence of
the wall thickness calculated from these images is shown in Fig. 6.1.6. Comparing
the values on the wall thickness in PbTiO; estimated in the mentioned papers of
Foeth et al. with other data, one should divide these values by a factor of two to
account for the nonstandard definition of the wall thickness adopted in these
papers.

As mentioned above in Sect. 4.8.2 high-resolution transmission electron
microscopy (HRTEM) has been used for observations of domain walls in
various ferroics. Images and other information on domain walls (often
the wall thickness) have been reported for many materials. For example,
such data are available for KNbOs; (Bursill et al., 1983; Bursill and
Peng, 1986), LiTaO; and Ba,NaNb;O;5 (Bursill and Peng, 1986), BaTiO;
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(a)

Domain 2
200 nm

Fig. 6.1.5 Weak-beam dark-field images of 90° domain wall in PbTiO; taken at different
temperatures. The temperature differences from the transition point 7T'rg are 332 K (a),
132K (b), 37 K (¢), 27 K (d), 12K (e), 7K (f), 2 K (g), and 0 K (h). Tty is fixed by image (h).
Along the bars shown in images (a)—(f), the analysis of the signal has been performed. Foeth
et al. (2007)

(Shiojiri et al., 1992; Floquet et al., 1997; Bursill and Peng, 1986; Tsai et al.,
1992), Pb(Zr, Ti)O5 (Tsai et al., 1992), PbTiO; (Stemmer, 1995; Foeth et al.,
1999a,b), AgNbO; (Verwerft et al., 1989), and YBa,Cu;0,_, (Zhu and Sue-
naga, 1992). Apart from typical non-charged walls in well-insulating ferro-
electrics, in quite conductive PbTiO;, the head-to-tail arrangement of the
domains has been directly observable by HRTEM (Spycher et al., 1987). The
domain wall thickness evaluated from HRTEM data is typically in good
agreement with that obtained from dark and weak-beam dark-field TEM. An
explicit comparison of this kind has been offered by Foeth et al. (1999a,b) for
90° domain walls in PbTiO;. Instructive results on the same system have been
reported by Stemmer et al. (1995). In this study, the lattice displacement profiles
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Fig. 6.1.6 Domain wall thickness evaluated from the analysis of the intensity distribution
shown in Fig. 6.1.5 (dots) fitted to the result of continuous theory for the first-order phase
transitions, Eq. (6.2.12) (curve). All thermodynamic parameters entering Eq. (6.2.13) have
been taken from an independent source, only the correlation coefficient being used as the
fitting parameter. Compared to the original here the y-axis scale is corrected by a factor of 2 to
make allowance for the non-standard definition of the wall thickness adopted in papers by
Foeth et al., (1999a,b; 2007)

for the walls of the same type, which were differently oriented with respect to the
plane of the ferroelectric film, have been investigated (the so-called a/a and c/a
walls). Figure 6.1.7 shows these profiles where an appreciable difference in the
profile abruptness is seen. This clearly shows that the information on formally
the same type of walls can be sensitive to the condition to which these are
exposed. In the considered case, the difference may be related to mechanical
anisotropy of the film deposited onto a substrate.

Lattice Parameter (a. u.)
o
(&)

\

10
Atomic (110) planes Atomic (110) planes

Fig. 6.1.7 Variation in lattice parameters ¢ and ¢ across 90° domain walls in PbTiO; obtained

form HRTEM data: (a) a/c wall and (b) a/a wall. Data are plotted as a function of position in

units of the (101) inter-plane distance. The solid line in (a) is a fit to tanh(z) function assuming

that the wall is centered at a Pb—Ti—O plane; the broken line assumes a central O-only plane. It
is seen that the a/a wall is appreciably narrower than the c/a wall. After Stemmer et al. (1995)
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6.1.7 Surface Methods

In Chap. 4 we have addressed various surface-based methods of imaging of
domains and domain walls. In this section we briefly discuss the application of
these methods to getting information on the thickness and structure of domain
walls in ferroics.

Some of these surface methods are based on surface decoration. The resol-
ving power then depends on the decorating agent and on the observation
method. An approach relying on optical observations with correspondingly
low resolution was used for crystals of GMO (Bhalla and Cross, 1981). Films of
uniform layer of GdF; were produced on the sample surface. When observed in
reflected light, the underlying domain structure was clearly distinguished. This
made it possible to estimate the maximum wall thickness as | pm.

Much higher resolution can be reached when observations are made by
electron microscopy. Again, the surface of a sample containing domains is
decorated and the width of the transient region between two neighboring
domains which are covered by decorating agents is measured. Hilczer et al.
(1981, 1989) used AgCl as epitaxial decorating layers of thickness 820 nm,
evaporated on cleaved polar surfaces of ferroelectric crystals. Then carbon
replicas were made and observed in a transmission electron microscope. The
width of the transition region between two domains decorated with different
density or orientation of particles can be considered to be the maximum width
of the domain wall. Figure 6.1.8 shows an example of a wall separating two
decorated domains. Experiments performed with TGS crystals led to the value
of 12 nm. Another material investigated by this method was NaNO, (Suzuki
and Takagi, 1971). Domain contrast was achieved by evaporating silver
particles and the resulting film was backed by evaporated carbon replica
film. Domain walls were found to be of thickness ranging between 0.3 and
I pm.

A method which promises an extremely high resolution is the scanning force
microscopy (SFM). As we have discussed in the preceding chapter, this

Fig. 6.1.8 TEM picture of a
replica of the surface of a
TGS sample with
antiparallel domains
decorated by AgCl layers of
thickness about 2 nm.
Reprinted with permission
of Politechnika
Wroclawska. After Hilczer
et al. (1981)
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technique can be used for imaging domains in ferroelectric and ferroelastic
crystals provided that the sample has a correspondingly flat surface in the
area where domain walls are located. Observations of domains in cleaved
samples of TGS crystals made it possible to zoom in on domain boundaries
(Eng et al., 1997). Scanning between two domains of opposite polarities led to
the conclusion that the width of the 180° wall at the surface is below 80 A. This
value was found in the friction mode and, interestingly enough, confirmed in the
non-contact mode where the contrast originates from the electric field close
above the sample surface. Similar experiments with the same material were
performed by Ohgami et al. (1996), both in the contact and non-contact modes.
The wall thickness estimated in this paper is 60—80 nm. Similarly as in the paper
by Engetal. (1997), it was concluded that along the wall there is a step in height,
estimated to be 2-3 A high. Such a step, if it always accompanied a domain wall
in this material, would influence a number of phenomena connected with wall
motion.

SFM techniques have been successfully applied to domain wall imaging
in GASH by Liithi et al. (1993b). Figure 6.1.9 demonstrates the image
obtained in non-contact dynamic mode from a GASH crystal and the
signal-intensity profiles for two cross-sections of this image. Here, domain
walls with a thickness of 50-100 nm are seen. This result is not affected by
the instrumental lateral resolution of the method, which has been evaluated
as 1 nm.

Fig. 6.1.9 SFM image
obtained in non-contact
dynamic mode from a ()

GASH crystal (a) and the T’ 1
signal-intensity profiles for WJ\HW/\WM
two cross-sections (shown

with arrows) of this image
(b) and (c). Domain walls
with a thickness of

50-100 nm are seen. The —> ©) -
instrumental lateral 2 2
resolution is 1 nm. After M

Liithi et al. (1993b) 200 nm
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Concerning complications related to SMF investigations of domain walls,
one can mention the problem with the identification of a domain wall with
complete certainty. There may exist other linear artifacts on the crystal
surface which in fact do not represent surface intersections of domain
walls. Perhaps the best possibility will be to identify domains in a low-
resolution mode, in which the wall may be reliably recognized by their
characteristic shapes, and then successively zoom in on the domain wall.
The alternative unmistakable method to identify a 180° domain wall is based
on distinguishing the sign of electric charge on both sides of the wall
(Ohgami et al., 1996). Another complication is that the cleavage process,
for instance, in TGS, itself may produce a surface step at the domain wall
(Suda et al., 1978b; Nakatani, 1979) and its width can be mistakenly con-
sidered the domain wall width.

Scanning near-field optical microscopy (SNOM), especially in its aper-
tureless modification (s-SNOM), can exhibit resolution sufficient for inves-
tigation of the thickness and structure of not too thin domain walls.
SNOM with aperture (a-SNOM) has been used for investigation of domain
wall issues in LiTaO; (Yang et al., 1999, 1997). A wall vertex in this
material imaged with a-SNOM is shown in Fig. 6.1.10, the reported
resolution being 200 nm. Here the wall thickness is about 1,000 nm,
which is orders of magnitude larger than the value documented with
HRTEM (Peng and Bursill, 1982).

Fig. 6.1.10 A wall vertex of
a triangular domain in
LiTaO; imaged with SNOM
with aperture of 60 nm; the
reported resolution is

200 nm. Reprinted with
permission from Yang et al.
(1997). Copyright (1997),
American Institute of
Physics

Several other methods useful for observing domains on surfaces of sam-
ples, like laser scanning microscopy based on pyroelectric signal, offer only
limited resolution and have not yet been proved suitable for domain wall
studies.
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6.1.8 Comments on Available Data

The summary of available data on domain wall thickness in different
ferroelectric and ferroelastic materials as collected in Table 6.1.1 shows
that even for the same material values obtained by different methods vary
widely. Generally speaking, optical and X-ray topography methods have
given much larger values than transmission electron microscopy or elec-
tron holography. To some extent this may be related to the fact that
samples prepared for TEM have to be extremely thin so that boundary
conditions for walls strongly differ from those for a bulk sample. One
could contemplate that this may have a direct effect on the crystal lattice
connecting neighboring domains. But large discrepancies exist even in data
obtained by different surface methods applied to bulk samples. Here it
appears that to obtain really reliable information, one cannot rely on a few
scanning events but many data have to be statistically evaluated to avoid
accidental artifacts. Also, the surface topographic profile may be seriously
affected by the way the sample was prepared. But first of all, an unambig-
uous proof must be available that the object studied is really a domain
wall.

It is evident that very few data are available on the temperature dependence
of the wall thickness. Data obtained with scattering techniques and TEM gave
evidence for a substantial increase of the wall thickness (e.g., in DKDP,
PbTiO;, and LaAlO;) when the transition temperatures are approached. On
the other hand, data on PbsGes;O;; (Cowley et al., 1976) based on neutron
scattering indicate only a small increase.

6.2 Macroscopic Theories of Domain Walls

The treatment of phase transitions based on thermodynamic potentials as
discussed in Chap. 2 referred to spatially homogeneous states: No quantity
was considered that would depend on the coordinates. This approach is
obviously inadequate when domains are present. Two generalizations are pos-
sible. The first one tends to explain the occurrence of a domain pattern as a
whole. This has been discussed in some detail in Chap 5. In an alternative
approach only one domain pair is considered and the aim of the theory is to
describe the domain wall separating the two domains. This section deals with
the latter case, treated in terms of thermodynamic approach where the order
parameter is considered as a continuous function of the spatial coordinates in
the system. For ferroelectrics, this kind of treatment was pioneered by Zhirnov
(1958), Bulaevskii (1964), and Bulaevskii and Ginzburg (1964). The main points
of thermodynamic theory of domain walls in ferroics can be discussed by taking
into account only the energy related to the order parameter itself, not making
explicit allowance for elastic effects. The latter can be of importance, as will be
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discussed later. However, full treatment of domain wall structure can be
reduced, at the price of certain assumptions, to a problem that deals only
with the order parameter itself. This makes it reasonable to address the
main issues of the theory in terms of the order parameter only. This will be
done in the following section. In the subsequent section we will discuss the
effect related to the order parameter/stress coupling. To conclude this
section we will overview the application of the general theory to selected
kinds of ferroics.

6.2.1 Order Parameter Profile in Domain Walls

6.2.1.1 Single-Component Order Parameter

Let us outline the basic features of the theory in terms of a single-component
order parameter 1. The ground states defined by thermodynamic theories
treated in Sect. 2.3 are spatially uniform; therefore any domain wall as a
transition region where the order parameter is necessarily nonhomogeneous
increases the energy of the crystal. The lowest order term representing this
increase is proportional to a bilinear term of components of the order parameter
gradient. For the moment, for simplicity we keep only the (V#)? term so that the
free energy density in its simplest form now reads

1 1 1
(T, n) = Py +§an2+zﬁn4+§5(vn)2, (6.2.1)

with o = 0g(T — Tj), 0 > 0, and f > 0; we have in mind the second-order
transition. Solutions 475 for homogeneous domain states remain unaf-
fected by the gradient term. The latter is sometimes referred to as the
correlation energy (Smolenskii et al., 1984) and the coefficient 6 as the
correlation coefficient. Other names like gradient energy, gradient coeffi-
cient, or Ginzburg coefficient are also used. This energy plays an essential
role when thermal fluctuations of the order parameter are investigated;
since & > 0, this term tends to reduce such fluctuations. Within a domain
wall between the two domain states the values of order parameter change
from +7g to —ns. We assume that the wall is planar and perpendicular to
x. To find the solution n(x) corresponding to minimum total energy of the
sample we prescribe the boundary conditions:  — ng for x — oo and  —
—ng for x — —oco. The spatial distributions #(x) should minimize the free
energy of the sample

+00

O(T) = A / O[T, n(x)] dx, (6.2.2)

—00
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where A4 is the cross-sectional area of the sample. The function #(x) satisfies the
requirement of minimum given by the Euler equation

d 0P 0P
d (a<an/ax>> T Y (623

which leads to a nonlinear differential equation of the second order

d2’1 3
5@ =on+ fn’. (6.2.4)
The solution to this equation satisfying the above boundary conditions reads
(Zhirnov, 1958)

n(x) = ns tanh(
th

ﬁ) = yg tanh <t1) (6.2.5)

where

tiy = \/—20/a (6.2.6)

has the meaning of a spatial scale of the wall. The double of this value is
customarily taken as the wall thickness

ty = 2. (6.2.6a)

This type of the domain wall profile, shown in Fig. 6.2.1 (curve a), will be
referred to as the tanh-type solution; “kink solution” is also a term often used.
In the middle of the domain wall = 0, which corresponds to the parent phase.
Therefore we expect that within some central region the structure is close to that
of the phase G. As we have seen in the previous section, some techniques for the
measurements of domain wall thickness are based on modeling the wall by a
layer whose structure is exactly that of the parent phase.

The quantity t,, expressed in terms of coefficients of the free energy can be
ascribed a more general meaning (Smolenskii et al., 1984). It can be related to
the correlation radius (correlation length) for the ordered phase, which is
customarily defined as

re =t = /o) = | 22 627

To—T

and represents a quantity characterizing the spatial changes of the order para-
meter in the ferroic phase. Its physical meaning can be illustrated by a simple



294 6 Domain Walls at Rest

T T T T T
1F ]
[ a ]
08[ ]
i b f ]
» 06[ ]
£ I ]
T 04l c ]
0.2L e ]

0 1 1 PR 1 1

0 1 2 3 4 5

x/t

th

Fig. 6.2.1 Normalized profile of a half of a domain wall for different values of parameter 4
defined by Eq. (6.2.13): (a) A = 0, a material with the “pure” second-order phase transition, y
= 0; (b) A = 1/2, a material with the tricritical point, § = 0; (¢) A = 2, a material with the
first-order phase transition at T = Ty; (d) 4 = 50 and (e) A = 500 correspond to a material
with the first-order phase transition at the temperatures very close to the transition,
(Tc = T)/(Tc — To) =0.02and (Tc — T)/(Tc — Tp) = 0.002, respectively

model (Strukov and Levanyuk, 1998). Imagine that by some localized applied
force the order parameter on the plane x = xis kept at a value n(x¢) = 1o which
is close to ns. Because of the correlation energy term, # cannot change discon-
tinuously and therefore it gradually tends to its normal equilibrium value #s.
The calculation leads to the spatial dependence

n(x) = (o — ns) exp(—|x — xo|/re) + ns. (6.2.8)

This dependence is sometimes referred to as the Oernstein—Zernicke function
for a one-dimensional case. It is obvious that the correlation length is closely
connected with the spatial relaxation of the order parameter in the vicinity of a
lattice defect. As such it plays an important role when discussing the interaction
between domain walls and defects or between domain walls themselves. In
addition, it determines the spatial scale of thermal fluctuations of the order
parameter around its equilibrium value. In the parent phase, a one-dimensional
decay of the order parameter can also be described by Eq. (6.2.8) where ng = 0
and r. = [8/ag (T — Ty)]"?. This corresponds to introduction of the correlation
length in the parent phase as [6/o (T — Tp)]">.

The spatially dependent solution (6.2.5) necessarily increases the energy of
the crystal compared to the energy of a single domain state. This extra energy
can be ascribed to the domain wall and expressed as the surface energy density
o per unit wall area:

+00

oy — / [@(1(x) — B(n5(x))] dx. (6.2.9)

—00
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From Egs. (6.2.5) and (6.2.9) one readily finds

2262 3 _ 2f 3/25

Tw = 77”

3 (T — T)*? (6.2.10a)

or alternatively

Ow = 2‘f n3(po)'/2. (6.2.10b)

It follows from the preceding formulae that as the temperature of a second-
order transition is approached, the wall thickness ¢, is expected to increase as
1/(Ty — T)"* while its energy density decreases as (T — T)*/?. For the case
of proper ferroelectric, it is also convenient to express o, in terms of the
spontaneous polarization, lattice permittivity, thermodynamic coercive field
(see Eq. (2.3.15)), and the wall thickness:

2
Ow = &t—w = QPsEcritlw. (62100)
6 2
There is another important feature of domain walls that can be specified at
this point. When writing the free energy (6.2.1) we have neglected the aniso-
tropy of the gradient term. In reality it represents a sum of several terms
proportional to g” f;g When taken into account, the anisotropy of the gradient
term will 0bv1ously result in a dependence of the coefficient d [in Eq. (6.2.4)] on
the orientation of domain wall. In turn, via Egs. (6.2.6) and (6.2.10b), it results
in orientational dependence of wall thickness and energy density. Normalizing
tw, 0w, and d to their values for a certain orientation of the wall, #,0, owo, and do,
one obtains

v _ ]9 (6.2.10d)
Owo  Iwo do
This anisotropy of the wall energy can play a role in the wall orientation. In
reality this role is of importance only for the walls whose orientation is not fixed
by the elastic effects (W, walls in terms of the classification introduced in Chap.
2). We will illustrate this point later by an example of walls in TGS crystals.
If the transition is of the first order, the simplest potential reads

1 1 dy
(T, n) = <I>o+2om +— /311 e 6 4= 5(dx), (6.2.11)

with f < 0 and y > 0. Instead of solution (6.2.5) the wall is now described by
sinh(x/ )
A + cosh?(x/ 1)

n(x) = ng (6.2.12)
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20 y
th= 4]y A= (6.2.13)
"\ BB+ 2m]) 2y + (38/212)

Written this way Egs. (6.2.12) and (6.2.13) are also valid for the case of § > 0,
thus also covering the cases of the “pure” second-order phase transition ( > 0 and
y = 0) where A = 0 and the tricritical point (f = 0 and y > 0) where 4 =1/2. The
profile given by Eq. (6.2.12) is not very different from the tanh shape unless the
temperature is not too close to the transition temperature 7, where A is larger than
or of the order of unity. Figure 6.2.1 (curves a—c) shows this profile for 4 = 0, 4 =
1/2, and 4 = 2; the latter value is reached at the temperature equal to the
Curie—Weiss temperature (at 7 = Ty). At T — T, A diverges according to the law

NTC_TO
T T.-T

where

A

(6.2.14)

Very close to the transition temperature (where 4 >> 1) the wall profile depends
strongly on temperature, as illustrated in Fig. 6.2.1 (curves d and e). Here the central
part of the curve e can be interpreted as an onset of appearance of the parent phase in
the wall center (Lajzerowicz, 1981). This actually means that the domain walls can
serve as perfect seeds of the parent phase when passing 7, on heating. In the region
where the low-temperature phase is metastable, i.e., at 7. < T'< Ty, (cf. Eq. (2.3.19)),
the domain wall between the two domain states in question does not exist. In this case,
two domains with the opposite signs of the order parameter can be linked only via a
finite-thickness layer of the parent phase. It is useful to note that the thickness
parameter t,;, given by Eqs. (6.2.6) and (6.2.13) can be written in a generic form

th = \/307 = 2re, (6.2.15)

which is valid for either orders of the phase transition. Here y is the permittivity with
respect to the field conjugated to the order parameter and . is the correlation length.

6.2.1.2 Multi-component Order Parameter

Now we will highlight the features of domain walls separating domain states in
ferroics with multi-component order parameter by using a simple example of a
transition which is driven by a two-component order parameter (41, ). Let us
consider a transition described by the free energy expansion which formally
corresponds to that used in Chap. 2 for discussion of thermodynamics of
improper ferroelectrics:

| 1 1
@ =@ + (i +13) + 7 Bi(nt +113) + 5 Barrins

Lol(om, (o)
+25l<8x> +<8x ’

(6.2.16)
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where o = oo(T— Ty), f> > 1> 0, and 6 > 0. As we have seen in Sect. 2.3.5,
such a transition results in four domain states represented in Fig. 6.2.2: (1, = #s,
n2 = 0), m = —ns,m2 = 0), (n = 0,2 = ns), and (n; = 0, ny = —7s), where
ns = (—o/B)"%. Two types of domain walls, corresponding to order parameter
rotations in the (1, #») plane by 180° and 90°, are possible in this system. We
shall refer to them as to 180° and 90° walls, respectively. They are illustrated in
Fig. 6.2.2 by lines connecting points that represent domain states. The structure
of the walls, i.e., the coordinate dependence of the order parameter, can be
derived from the Euler equation (6.2.3) written for both components of the
order parameter, namely,

52
- 3)}6721 +omy + B3 + Bomni =0,

; (6.2.17)
— 85k + oy + By + Bonynt = 0.

n,

Fig. 6.2.2 Mapping on the order parameter plane of domain states (points [-IV) and domain
walls (curves). Mapping R is shown schematically. The mappings of the walls are labeled as
follows: L, linear solution for the 180° wall; L,,, linear solution for the 90° wall; R, rotational
solution for the 180° wall; Ry, purely rotational solution for the 90° wall

For the 180° wall, e.g., corresponding to a curve connecting points III and I,
the solution of this equation should also meet boundary conditions: (; — #s,
1>, — 0) for x — oo and (y; — — s, 12 — 0) for x — —oo. For the 90° wall, e.g.,
one corresponding to a curve connecting points II and I, the boundary condi-
tions are (17; — #s, 7o — 0) for x — oo and (n; — 0, #, — ng) for x — —oo.

Let us start with the analysis of the 180° wall. One distinguishes two types of
solutions for this kind of wall: The so-called linear solution (line L in Fig. 6.2.2),
where only one order parameter component changes with the coordinate
whereas the other component stays zero, and the so-called rotational solution,
in which both components change in the wall (curve R in Fig. 6.2.2). In the case
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of linear solution, the problem is obviously reduced to the single-component
case with a tanh-type solution for #;, given by Eq. (6.2.5). However, in contrast
to the single-component case, this solution does not always describe a stable
180° wall since under certain condition it is unstable with respect to the appear-
ance of the nonzero second component in the wall. The limit of stability of the
linear solution can be found using the technique developed for this kind of
problems (Bulaevskii and Vekhter, 1986). We look for the minimum eigenvalue
of the functional obtained from the second of Egs. (6.2.17) where we put
n;(x) = ngtanh(x/#y) and linearize it with respect to #,. If it is negative the
linear solution is unstable. One readily finds this functional in the form

62
( 53 T B+ Utanh (x/zm)>n2, (6.2.18)

where B = a/3; U = B,n?/d. Its smallest eigenvalue can be found in the form
(see, e.g., Tagantsev et al., 2001a)

J= (,/4szh +1-1 +2Bt§h)/(2t§h). (6.2.19)

Finally, using Eqgs. (6.2.6) and (6.2.19) we find that the linear solution is
stable if f, > 3f;. When this is not the case, the linear wall is not stable. In
principle, that means either a rotation type of the 180° wall is stable or the 180
wall is unstable with respect to a decay into two 90° walls. For the case described
by free energy equation (6.2.16), as was shown by Sonin and Tagantsev (1988,
1989), the latter possibility takes place. However, once high-order invariants,
ie,y(n? + 11%)3/6, are taken into account in the free energy, the rotation type of
180° wall can be stable (curve R in Fig. 6.2.2). The phase diagram of the states of
the 180° wall in terms of ,—3f; and y has been developed by the same authors.

As it has been shown by Ishibashi and Dvorak (1976), the situation when 8, =
3 corresponds to a special state of the system in which the set of involved
equations reduces to two decoupled equations in terms of the following variables:

Ny =0y + 1,
n_=mny —1Mmn.

(6.2.20)

This is clearly seen if one rewrites Eq. (6.2.17) in terms of these variables:

_5011+ +oan, + ﬂljﬂzn Br—3B1 3/31 Ny ;17 = 0,

Ox2
+ /fIZ/fz Br=3B1 351 =0

Py
—0 G + - N =

(6.2.21)

Thus, the problem of the domain walls structure for small |f, — 3f,|/5;
becomes analytically tractable. The tanh-type solutions of these equations at
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f, = 3, were actually used in the aforementioned analysis of the stability
phase diagram for the 180° wall.

The analysis of the 90° wall structure is more complex. For arbitrary values of
the free energy coefficient no full analytical solutions of the problem is available. A
certain progress in analytical description of the problem has been achieved by
Bulaevskii and Ginzburg (1964) and by Bulaevskii (1964). Later, Cao et al. (1990)
offered a discussion of a numerical analysis of the problem. The full analytical
solution is available if either |8, — 38,|/8; <<1or |, — B;|/B; << 1. For the case
|82 — 3B:1/B, << 1, neglecting weak coupling between the variables in Egs.
(6.2.21), one finds for the spatial dependence of the order parameter in the wall

N = 7’ [1 + tanh(x/twm)], 62.22)
1y =% [1 —tanh(x/1)].

This solution corresponds to a straight line connecting the points I and II in
the order parameter plane (line L, in Fig. 6.2.2).

If, however, |f, — f;|/B; <<, the solution corresponds to a curve which is
very close to an arc linking the points representing the aforementioned domain
states (curve Ry, in Fig. 6.2.2). This solution has been treated by Fouskova and
Fousek (1975) and by Laikhtman and Tagantsev (1975). They considered the
situation of the first-order phase transition setting §;<0 and taking into account
the y(n? + 17%)3 /6, invariant in the free energy. It turned out that the situation for
the first-order and second-order phase transitions is conceptually close. The
condition |f, — f5;]/8; <<1 corresponds to weak anisotropy in the order para-
meter plane, the situation where the potential @ is only weakly dependent on the
angle ¢ characterizing the order parameter. It is clearly seen when, rewriting the
free energy in terms of polar variables

Ny =71 Cos @,

. (6.2.23)
Ny =r sin @,

we obtain

1 1
P ‘I’0+2W 16 (3ﬁ1+ﬂz)r +16(ﬁ1—ﬁ2)”4005 4o

(6.2.24)
1 or ) a(p

instead of Eq. (6.2.16). In polar variables the equations of state for the wall read

5[;;7»4 (%) ] = r[o+ 5 BBy + Ba)r? + 5 (B = Bo)r cosdo],

S 2290 = L(B, — B))rtsin 4o.

(6.2.25)
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The 90° wall corresponds to a solution to Eq. (6.2.25) with boundary condi-
tions r = 5, @ = w/2 for x — oo and r = yg, ¢ = 0 for x — —oco. To within a
small parameter |, — f3,|/8; <<, the purely rotating solution, i.e.,

r=rn, ¢=tan"'fexp(x/m)], = =twv/B1/2(B— B)), (6.2.26)

satisfies Eqs. (6.2.25). The rotational structure of this wall is the reminiscent of
the Bloch wall in magnets. As one can see from Eq. (6.2.26), in the range of
applicability of this solution, the thickness of rotational wall 7z will be much
greater than that of the linear 180° wall #4,. It is worth mentioning that for the
range of parameters where the purely rotational solution gives a good approx-
imation for the structure of the 90° wall, i.e., |, — f;]|/8; <<1, the stability
condition for the 180° wall, , >3p,, is not met. Thus, in this range of para-
meters the 90° wall is the only stable one.

One remark should be made for completeness. In the above analysis we have
been dealing with the free energy containing actually only one anisotropic
invariant 5?75 and with the coefficients fulfilling the specific condition
f>,>f,>0. In the literature, however, the problems of domain wall structure
have been treated for a range of parameters different from f, > 3, >0 as well as
for free energy having an additional invariant (17 — 11%)2. One can show that the
latter problems can be reduced to that treated in this section by rotating the
reference frame in the order parameter plane.

6.2.2 Effects of Strain Induced by the Order Parameter

Above we have treated the structure of a domain wall taking into account the
energy associated with the order parameter only. The results obtained corre-
spond to a problem of domain wall structure when mechanical stresses are
formally set to zero. In reality, one should take into account the energy of
mechanical stresses induced by spatial variation of the order parameter. This
complicates the problem and introduces new features into the phenomenon.
They can be summarized as follows. (i) One-dimensional solution for a domain
wall is impossible in a mechanically free sample (Cao and Barsch, 1990). To get
such a solution one should adopt spatially inhomogeneous mechanical bound-
ary conditions. (ii) Once these conditions are set, the problem can be reduced to
a one-dimensional problem dealing with the order parameter only. Coefficients
in the resulting equation are sensitive to elastic properties of the material and to
crystallographic orientation of the domain wall. (iii) Mechanical effects essen-
tially contribute to the orientational dependences of thickness and energy of the
wall.

In this section we will illustrate all these features considering a simple
example of the 180° wall in the tetragonal phase of a BaTiOs-like structure.
For simplicity we will treat the case of the second-order transition. Let the
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nonzero component of polarization P, be a function of the coordinate x;. We
write down the Euler equation (6.2.3) for this component, using Eq. (2.3.34),
where the P® terms are neglected and which is appended with the correlation
term [(OP./dx,)* + (OP-/9x,)*]d/2. This leads to the following equation:

0*P.
-0 2 + 0P + By P} — 2P.[01105 + Qi2(01 + 62)] =0, (6.2.27)
X7

where the components of stress tensor can be determined using the elastic
equations of state:

&1 = 51101 + 512(03 + 02) + Q12 P2, &1 = 504,
& = 51162+ s12(03 + 1) + Q1 P?, &5 = 55505, (6.2.28)

>
&3 = 81103 +s12(01 +02) + Qu P, & = S6606

provided that the components of the strain tensor satisfy conditions of mechan-
ical compatibility (Love, 1944), namely,

8282 8283_ (9284 3281 8283_ 8285 6281 8282_ 6286

T R N T 4= 6.2.29¢
Ox3  Ox3 0x20x3’ Ox3  Ox} Ox10x3’ Ox3 Ox] Ox20xy ( 2)
8281 1 8284 - 1 8286 + 6285
Ox20x3  20x7  2\0x10x3  0x20x1)’
8282 l% - l 8286 4 8284
8x18x3 2 ax% B 2 8X28X3 8)62(9)61 ’
8283 1 8286 1 6285 8284
—— = — . 6.2.29b
Oxr0x; 2082 2 <aX28X3 * E)xﬁxl) ( )

One can easily check that a one-dimensional solution of this set of equations
for a mechanically free sample, i.e., all g; =0, is impossible. Specifically, there is
a problem with &3 and &. According to Egs. (6.2.28), in a mechanically free
crystal these components should depend on x;. On the other hand, x;-depen-
dent components ¢; and &, are incompatible with the second and third of Egs.
(6.2.29a). However, if one sets these components of strain equal to their spon-
taneous values inside the domains, i.e.,

& =0nP;, &=0uP, (6.2.30)
the problem can be reduced to a one-dimensional one by setting

g1 20’4265266:0. (6231)
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Eliminating ¢, and a3 between Egs. (6.2.27) and (6.2.28) and making use of
Eqgs. (6.2.30) and (6.2.31) we arrive at the following equation for polarization
(Dvorak and Janovec, 1965):

O*P.

— 30—+ B(aP. + B, P3) =0, (6.2.32)
Oxy :
where
1 [(Qu+0n) (0n-0n)
B=1+— + ) (6.2.33)
B S11 + 812 S11 — 812

(Attention, Eqgs. (6.2.32) and (6.2.33), strictly speaking do not hold for a
mechanically free sample with the domain wall! See the further discussion.)
Thus, the problem is reduced to the basic equation for the 180° domain wall
profile, Eq. (6.2.4), which yields the tanh-type solution:

P.(x) = P tanh (;;) i = %, (6.2.34)

where #o = \/—20/a is the wall thickness calculated without taking into
account the stresses induced by the order parameter nonhomogeneity. Thus,
we see that taking into account the stress effect results in a change of the spatial
scale of the wall profile.

Another manifestation of the stress effects is a change of the surface energy
density of the wall. Using relations (2.3.34), (6.2.28), (6.2.30), and (6.2.31) one
can rewrite the thermodynamic potential of the problem in terms of P, only
(Dvorak and Janovec, 1965; Tagantsev et al., 2001a):

NG ASNCIN Y
(peff—§<8xl> +B(§PZ +TP§‘>. (6.2.35)

The surface energy density a,, of the wall calculated with the aid of
Egs. (6.2.9), (6.2.34), and (6.2.35) also scales with a factor of v/B:

0w = vV Bow. (6.2.36)

The above treatment has been dealing with one specified orientation of the
wall. The same approach can be applied for the description of a wall of any
orientation that is allowed by the conditions of mechanical and electrostatic
compatibilities of domains discussed in Chap. 2. To do this, one changes the
crystallographic reference frame (X7, X», X3) to a new one (X', X5/, X3'), where
X' is normal to the wall. Although the calculation is mathematically rather
cumbersome, the scheme of the above treatment can be followed. It results in



6.2 Macroscopic Theories of Domain Walls 303

Egs. (6.2.32), (6.2.34), (6.2.35), and (6.2.36) where the B-parameter is a function
of the wall orientation. For instance, for a wall making an angle of 45° with the
axes X; and X, one finds

B_1 JrLQ%l(Sn + 512 + 544/2) + 208,511 — 4512011012 ' (6.2.37)

B su(si + 812+ 544/2) /2 — 53,

The orientational dependence of B is a consequence of elastic anisotropy in
the (X;, X5), plane. One can check that if this anisotropy is absent, i.e.,
2(s11 — s12) — sa4 = 0, Eqs. (6.2.33) and (6.2.37) give the same value of B. It is
worth mentioning that in the considered case, the orientational dependence of
B is the only source of anisotropy of thickness and energy of the wall, since, in
this case, the correlation energy is isotropic in the (X}, X3) plane so that the
mechanism of orientational dependence discussed in Sect. 6.2.1 cannot be
applied. If the correlation energy is anisotropic we can generalize the equation
for the orientational dependence of wall energy and thickness (6.2.10d) by
including elastic effects, to obtain

Ow 0 B tih 0 BO
Sw o2 w2 )20 6.2.38
Two \/; By tmo \/; B ( )

where By and d are the values of parameters of Band ¢ for a certain orientation
of the wall. The main result of this section, i.e., that it is possible to simplify the
problem involving the stress effects to that dealing with order parameter only,
holds in the case of the first-order phase transition. However, the renormaliza-
tion of the equations for the wall profile and the expressions for the wall
thickness and energy are more complicated than the simple scaling transforma-
tion represented by Eqgs. (6.2.34), (6.2.36), and (6.2.38). In more complicated
problems, e.g., stability of a domain wall in the case of a multi-component order
parameter (like that discussed above in this section) the elastic effects, in
general, can qualitatively change the situation. A discussion of such situation
in SrTiO; can be found in the paper by Tagantsev et al. (2001a).

Concerning the above consideration we would like to stress some important
issues. First, as one can expect, the aforementioned procedure which eliminated
elastic variable is possible only for walls which satisfy the condition of mechan-
ical compatibility of the adjacent domains. Second, though the elastic variables
can be eliminated from the equations, the price of nonzero stress components
01, and 033 in the area of domain wall still has to be paid. For a sample having
the shape of a bar elongated along xi, this requires non-uniform mechanical
boundary conditions on the lateral (elongated) faces of the sample. To satisfy
these conditions, an x;-dependent pressure should be applied to these surfaces.
Clearly, in no real experiments this pressure is applied so that the question arises
of how the result of this section can be applied to any real situation. This
question has been recently addressed by Lee et al. (2003) for a special case of
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a wall in a proper two-dimensional ferroelastic. Being translated into the
language of our consideration the obtained answer to this question is as follows.
Far from lateral faces inside the sample, Eqgs. (6.2.30) are strictly valid. There-
fore &3 and ¢, are equal to their bulk spontaneous values. However, close to
these faces Eqgs. (6.2.30) are violated in a way which ensures free mechanical
boundary conditions on the lateral surfaces of the sample. This will result in
deformation of the lateral surfaces of the bar which lose their planar shape in
the vicinity of the wall, unless plastic deformations occur.

Concluding this section we will discuss one more effect related to the so-
called flexoelectric coupling that plays an appreciable role in description of
phenomena associated with spatial inhomogeneity of the polarization and
strain. In terms of Helmholtz free energy it is described by a bilinear coupling
between the polarization and strain gradient (see, e.g., Tagantsev (1991)), like
shown in the following example where only P; and 5 = 2¢,3 variables are kept:

—1 —1
£33 p2 | S44 Oes
F===p — — Ps. 6.2.39
> P 85+f448x1 3 ( )

As clear from the minimization of this expression, this coupling leads to the
flexoelectric effect, i.e., the linear response of the polarization to the strain
gradient:

O¢
Py = —X33ﬁ14a—;. (6.2.40)

In the mechanically free situation, expansion (6.2.39) also implies the occur-
rence of the linear strain response to the polarization gradient:
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Integration of this equation across a 180° domain wall normal to X3-axis
leads to an offset of mechanical displacement u3 between two domains:

(3u3 = 2544}214]’5. (6.2.42)

It is instructive to evaluate the strength of this effect. We will do this for a
material with high Ps. We take Ps =2 0.9 C /m2 (Meyer and Vanderbilt, 2002)
for PbTiO; at low temperatures and sg4 = 9 x 10712m3/J (see Table 2.3.1).
Following atomic “estimates,” f-coefficients should be of the order of a few
volts (Tagantsev, 1991). This leads us to an appreciable value of a few tenths of
angstrom for the expected mechanical offset between the domains. We will be
back to this effect when discussing the microscopic theories of domain walls.
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6.2.3 Domain Walls in Selected Ferroics

The method of treating domain wall structures outlined above has been widely
applied for the description of walls in different ferroics. In this section we will
present a few examples.

6.2.3.1 Domain Walls in Uniaxial Nonferroelastic—Ferroelectrics

Uniaxial ferroelectric triglycine sulfate (TGS) provides a simple example of the
second-order phase transition driven by a single-component order parameter. It
represents the species 2/m—Pd-2 with Pg directed along the y-axis. Electrically
neutral walls in TGS should be parallel to the y-direction. Since the material is
not ferroelastic, conditions of mechanical compatibility impose no restrictions
on the wall orientation. In this situation, the energetically favorable orientation
of domain walls is controlled by anisotropy of their surface energy density.
Related calculations (Fousek, 1967; Hatano et al., 1976) have been performed
following the approach formulated in the previous sections. Dependences of
thickness and surface energy densities on the angle ¢ between the normal to the
wall and the crystallographic x-direction have been determined. It has been
shown that, after elimination of elastic variables, the problem reduces to
Eq. (6.2.35) with ¢-dependent é and B parameters:

3(@) = 02121 €08% @ + Fp3p3 5in @ — 3123 5in 290,

(6.2.43)
B(@) = 14 2(c k3 + desshy + deyskiks + 2415ks + 4gs,k1) /B

ki = (e15q12 — €11952)/2(eries5 = €15), (6.2.44)

! ! ! ! ! ! /2
ky = (15955 — ¢55q12)/(€11¢55 — €15)-

where cgj and q?i are the elastic constants and “charge/stress” electrostriction
coefficients in the reference frame rotated by angle ¢ with respect to the crystal-
lographic axes?; f is the coefficient of dielectric non-linearity at constant strain;
the J-coefficients correspond to the correlation energy taken in the form
(Fousek, 1969)

1 orP\* 1 P\’ dP, OP,
Deorr = 552121 <8x> +§5323z (82 +02321 o o (6.2.45)

Equation (6.2.35) implies a tanh shape of the polarization profile in the wall,
whose thickness and energy are given by Eq.(6.2.38) where B and § come from
Eq. (6.2.43).

2 Explicit expressions for ¢jyand gj; can be found in the paper by Fouskova and Fousek (1975).
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This theory enables one to estimate numerically parameters of the wall in TGS
and to determine its most favorable orientation. Using an order-of-magnitude
estimate for the correlation parameter, 6 = 5 x 105 x 10"* cm? (in CGS
units) and neglecting its anisotropy, Fousek (1967) obtained ¢y, = 1 x 10 %-3.5 x
10 ® cm and o, = 4-12 erg/cm?. Hatano et al. (1976) discussed the anisotropy of
oy taking into account both angular dependences B(¢) and d(¢). The function
B(¢) can be determined (Hatano et al., 1977) since elastic properties of TGS are
well known. As for the d(¢) dependence, it reflects the anisotropy of the correla-
tion length which can be measured by X-ray critical scattering. From scattering
data the value 0 (20.4°) = 3.6 x 10 ' cm? can be deduced. It was further assumed
(Hatano et al., 1976) that the correlation lengths along the crystallographic
directions [001], [100], and [101] are proportional to the Wigner—Seitz cell dimen-
sions in these directions. This then leads to the values d5;5; = 3.71 x 10 '° cm?,
dr33 = 1.33 x 10 cm?, and 6,3, = —0.27 x 107 cm?. With these data the
anisotropy of the energy and thickness of the 180° wall in TGS was evaluated at
room temperature (Hatano et al., 1977). The results for the wall energy are shown
in Fig. 6.2.3. The wall thickness was found changing in the interval 2035 A. This
figure also contains analogous information for isostructural triglycine selenate
(TGSe). For TGS, the value of o, lies between 0.6 and 1.0 erg/cm?® with a
minimum at ¢ = 97°. This seems to explain the observations which suggest that
domain walls in TGS show a clear tendency to be oriented with ¢ = 90°. A
similar approach was employed to discuss wall energy anisotropy in NaNO,
(Hatano and Le Bihan, 1990).

6.0 T T T T T
109

Fig. 6.2.3 Calculated
orientational dependence of
the wall-energy densities of
TGSe at 0°C and of TGS at L L L L L
room temperature. After 0 90 180
Hatano et al. (1977) ¢ (deg)

One should note that all estimates for the coefficient ¢ are very approximate
and conclusions regarding the magnitudes of wall energy and thickness must be
taken with caution. However, they all point to the fact that the wall thickness in
TGS is rather small, just several unit cell parameters.
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6.2.3.2 Domain Wall in a Multiaxial Ferroelectric: Barium Titanate

The problem of the structure of 180° and 90° domain walls in tetragonal BaTiO;
(species m3m — Peds — 4 mm) has been addressed repeatedly by a number of
authors (Zhirnov, 1958; Kholodenko, 1962; Bulaevskii, 1964; Bulaevskii and
Ginzburg, 1964; Kittel, 1972; Cao and Cross, 1991), the most comprehensive
treatment being recently offered by Hlinka and Marton (2006). The starting
point of the theory is the Gibbs energy for the single domain BaTiOj3 given by
Eq. (2.3.34) and the correlation energy (Cao and Cross, 1991):

oP\? [0P,\* [0P;\*
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The recently undated values of the correlation parameters are given in
Table 2.3.1. The problem is conceptually identical with that presented in
Sects. 6.2.1 and 6.2.2. Let us highlight only the most essential points of its
treatment.

We start with a 180° wall which is perpendicular to the x;-axis and links
the domain states P; = —P,, P1=0, P,= 0 for x; — —occ and P; = P,, P, = 0,
P, = 0 for x; — oo. We assume that the wall carries no bound charge, which is
equivalent to the requirement that P; =0 for any x;. That reduces the number of
involved components of polarization to two and makes possible only solutions
of two types: (i) the “linear” solution where only P5 # 0 and (ii) the “rotational”
solution where P, also changes on crossing the wall. Bulaevskii (1964) has
shown that in BaTiO; the rotational solution is energetically unfavorable. As
for the linear solution, it can be readily treated on the lines of Sect. (6.2.2)
resulting (after elimination of the mechanical variables) in Eq. (6.2.11)
(Bulaevskii, 1964; Cao and Cross, 1991). That leads finally to the wall with
polarization profile typical for systems with the first-order phase transition,
Eq. (6.2.12). The orientational dependence of the wall energy was evaluated by
Dvorak and Janovec (1965) to find extremely small anisotropy of 0.13%. These
authors have taken into account only the “elastic” effect described by B factor
from Eq. (6.2.35). This probably explains the disagreement between their results
and the experimental data (Fousek and Safrankova, 1965). As clear from the
very anisotropic correlation energy (see Table 2.3.1), the phenomenological
theory, in fact, may predict an appreciable anisotropy of the energy of 180°
walls in BaTiOs.

Consider now a 90° wall separating domain states P; = Ps, P, = P3; = 0
and P; = P; = 0, P, = Ps. This wall is a ferroelastic Wi-type wall, its plane is

1
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fixed normal to a (110) direction. The formation of bound charge due to
polarization inhomogeneity is very unfavorable in ferroelectric. This decides
the head-to-tail configuration of the wall. Considering the material as insu-
lator and using the Poisson equation, one concludes that the projection of the
electrical displacement onto the wall normal should be constant throughout
the crystal. This condition can be properly approximated with the condition of
the constancy of the corresponding component of the polarization.® Treating
the problem in the reference frame (X, X1 X3), where the axis X7 is directed
along the wall normal, implies that P = Ps/+/2 throughout the crystal and
the problem reduces to that dealing with a single component of polarization
Pr and mechanical variables.* After elimination of the elastic variables
(cf. Sect. 6.2.2) one arrives at the effective free energy equation (6.2.11) written
in terms of Pt and at the solution given by Eq. (6.2.12). The latter can be
rewritten in the cubic reference frame and describes the polarization profile in
the 90° wall as

r sinh(x/1)
Pi(x) =5 ll [A+COSh2(X/lth)]l/2],

. (6.2.47)
p2<x>=”3l1+ sinh(v/fu) ]

2 [4 + cosh®(x/1w)]"?

The expressions for parameters controlling this profile in terms of the
coefficients of the free energy expansion have been deduced by Bulaevskii
(1964); the correlation coefficient ¢ introduced in this paper should be set
equal to (01111 — J1122)/2 (Cao and Cross, 1991).

Solution (6.2.47) is not exact because it is the component electrical displace-
ment not of the polarization that is fixed by the electrostatics. However, one can
show that inaccuracy associated with this fact is about 1/x. where k. is the relative
dielectric constant along the polar direction of the ferroelectric. According to
Darinskii and Fedosov (1971), at room temperature the difference between wall
energies for the exact and approximate solutions is smaller than 1%. However,
the approximate solution misses an important qualitative feature, namely, it
keeps the value of P; component of polarization exactly constant, equal to
Py = Ps/+/2, whereas in reality Py slightly deviates from this value when cross-
ing the wall. The same authors evaluated the spatial variation of Py (roughly
Pg/k.) the related bound charge, and the profile of the imposed electrostatic
potential. They found that the resulting bound charge forms two back-to-back

3 This is a good approximation in materials with ‘normal’ values of the soft-mode effective
charge (of the order of the charge electronic). In ferroelectrics with anomalously small values
of this charge, like weak ferroelectrics (see Sect. 2.3.6), this approximation fails.

4 Actually, the P, component may also appear in the wall. The stability of the available
solutions for 90° walls with respect to the appearance of this component can be investigated
following the approach outlined in Sect. 6.2.1.
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double electric layers. This kind of charge distribution does not lead to a jump of
electrostatic potential at the wall. However, this distribution was shown to create
a potential well of about 0.5 eV in the wall for a particle having the charge of an
electron. This conclusion may be of importance for mobility and pinning of the
wall by charged defects. The results of recent calculations by Hlinka and Marton
(2006) are in good agreement with these conclusions.

It is worth mentioning that, if the conductivity of the material is not negli-
gible, free carriers could compensate the internal field in the 90° wall. If the
Debye screening length Ap is comparable to the wall thickness ¢, this compen-
sation can be substantial. In this situation the condition of constant Py can be
strongly violated and solution (6.2.47) is no longer applicable. Problem of the
90° wall structure in BaTiO5 under the condition of complete screening of Py
has been in fact addressed by Cao and Cross (1991); they used an implicit
assumption that the bound charges related to the inhomogeneity of the polar-
ization does not create any electric field in the wall. In their approach the
problem has been reduced to that dealing with two components of the polariza-
tion for which, in general, in contrast to the aforementioned “no-compensated”
situation, we do not have a good analytical approximation to the solution. It has
been shown that, for a special set of material parameters, a solution of type
(6.2.47) is also possible in their case. This problem has also been treated recently
by Hlinka and Marton (2006) who obtained its numerical solution for the
realistic set of the thermodynamic parameters of BaTiO;. They have also
performed the comparison of the solutions for “compensated” (ip <<ty) and
“non-compensated” (Ap >> ty,) situations. The derived polarization profiles are
shown in Fig. 6.2.4. An appreciable difference between these solutions is seen.
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Fig. 6.2.4 Polarization profiles in a 90° domain wall calculated for BaTiO5 at room tempera-
ture: Pr, transversal component of the polarization; Py, longitudinal component of the
polarization; P, absolute value of the polarization; (a) the case of insulating crystal where
the long-range electrostatic interaction suppresses variations of Py, (b) the hypothetical case
of highly conductive crystal with the Debye screening length smaller than the wall thickness
where the depolarizing electric field in the crystal is suppressed. After Hlinka and Marton
(2006)
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The principal difference between these situations is that the long-range electro-
static coupling lets the development of the longitudinal component of the
polarization only for about 0.01Ps whereas, in the compensated case, it is
about 0.3P. It is also seen that the long-range electrostatic coupling adequately
taken into account in the non-compensated case leads to an essential shrinkage
of the wall. One should note that, for BaTiOs3, the compensated situation looks
very hypothetical.

To finish the discussion of the application of the continuous thermodynamic
approach to domain walls in this crystal, we will present Table 6.2.1 where
theoretical estimates obtained for the wall energy o, and its wall width ¢, = 2#y,
(normalized to the lattice constant) are summarized.

Table 6.2.1 Results of continuous theories of domain walls in tetragonal phase of BaTiO3

Ow» mJ/m2 twlag Ref.
180° wall 10 2.5-10 Zhirnov (1958)
6 1.5 Hlinka and Marton (2006)
11 3.3 Bulaevskii (1964)
90° wall 2-4 12-50 Zhirnov (1958)
5 5.5 Bulaevskii (1964)
250 Kittel (1972)
- 9 Hlinka and Marton (2006)
7 10 Darinskii and Fedosov (1971)

6.2.3.3 Domain Wall in an Improper Uniaxial Ferroelastic Ferroelectric:
Gadolinium Molybdate

Gadolinium molybdate was the first discovered improper ferroelectric (Cross
et al., 1968; Dvorak, 1974). It represents the species 42m — Peds — mm2 with
v = 2 (the unit cell volume is doubled in the ferroic phase), the total number of
domain states is four. We have discussed its properties in Chap. 2 in terms of a
two-component order parameter (1, 1»), using the Landau theory. Figure
6.2.2 shows the mapping of the four domain states on the order parameter
plane. The description of domain walls linking any two of these states requires
the knowledge of the correlation energy that can be presented in the form
(Laikhtman and Tagantsev, 1975)

L (O (omY (92 (One)
¢corr— 5 l(ax]) +<8X2 + 8)(1 =+ 8X2
87]1 8771 8172 8172 % %
+52[<5X1) <5x2 ox1 ) \ox, 4203 ox; ) \ax (6.2.48)
Lo [ (2omY o (omY’
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One distinguishes two categories of domain walls. Walls of the first category
link domain pairs which differ in orientation of the order parameter in the order
parameter plane by 90° as well as in sign of spontaneous polarization and
spontaneous strain; to be short, we shall call them polarization walls. Walls of
the second category, referred to as antiphase boundaries, link domain pairs
identical in polarization and strain but differing in sign of the order parameter;
in terminology of Chap. 2, these walls link the translational domains. Both
categories of domain walls in GMO have been discussed by a number of authors
(Fousek, 1967; Ishibashi and Dvorak, 1976; Sonin and Tagantsev, 1988, 1989;
Tagantsev and Sonin, 1989; Rychetsky et al., 1992).

Let us start with the polarization wall. The conditions of mechanical compat-
ibility fix its orientation as perpendicular to either the X; or the X, axis of the
parent phase. For this orientation, after eliminating the elastic variables and
making use of the correlation energy given by Eq. (6.2.48) and the Landau
expansion of the thermodynamic potential (Dvorak, 1971) (a simplified version
of the latter being given by Eq. (2.3.36)), one obtains the effective free energy in
terms of the order parameter only. The resulting effective energy has the struc-
ture identical to that of the free energy written neglecting stress effect. After
rotation of coordinates in the order parameter plane the resulting effective free
energy can be presented in the form given by Eq. (6.2.16) to which the isotropic
six-order invariant y(n? 4+ n3)* /6 should be added. In terms of this effective free
energy the problem has been addressed by Fouskova and Fousek (1975) and
Laikhtman and Tagantsev (1975). Both groups of authors have argued that the
evolution of the order parameter in the wall is close to a pure rotation, its spatial
dependence being given by Eq. (6.2.26). Fouskova and Fousek based their
conclusion on the comparison of the energy corresponding to the arc-type
trajectory (R,, in Fig. 6.2.2) linking the domain states in the order parameter
plane and that of the trajectory passing through the point (; =0, n, =0). Laikht-
man and Tagantsev have shown that the purely rotational solution, i.e., Eq.
(6.2.26), gives a good approximation for the exact solution of the problem in the
case of a weak anisotropy in the order parameter plane. They argue that indeed
in GMO this anisotropy is weak, supporting their hypothesis by data on ultra-
sonic scattering on the wall. It has been pointed out that if a purely rotational
profile of the wall takes place, the wall should be anomalously thick.

Antiphase boundaries of two types may exist in GMO, the so-called linear wall
and rotational wall; corresponding trajectories in the order parameter plane are
shown in Fig. 6.2.2 and marked L and R, respectively. The antiphase boundary
has been treated in terms of the aforementioned effective free energy employed
for the treatment of the polarization wall (Fouskova and Fousek, 1975; Ishibashi
and Dvorak, 1976; Sonin and Tagantsev, 1989, 1988), though this is fully justified
only when it is oriented perpendicular to the crystallographic axes of the parent
phase. Analyses close to that outlined in Sect. 6.2.1.2 have been offered. It has
been established that, close to phase transition, the linear type of the wall is the
only stable one (Sonin and Tagantsev, 1989, 1988). The profile of the order para-
meter modulus in the wall was found typical for the case of the first-order phase
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Fig. 6.2.5 The so-called n,
circulation line—
topological defect of the
order parameter, analogue
of the Bloch line in
ferromagnetic domain walls.
Mapping onto the order
parameter plane. Arrows
show the change of the order n,
parameter corresponding to
walking around the defect in
the real space. After
Tagantsev and Sonin (1989)

transition (Fouskova and Fousek, 1975); see Eq. (6.2.12). According to Sonin and
Tagantsev (1989) the parameter G = |1 — Pal/(lay)"/? plays the decisive role in the
stability criteria of the wall. Just below the phase transition (large G) a linear solution
is advantageous while, as G decreases with falling temperature, the boundary
changes into a rotational one or splits into two polarization boundaries. At a certain
temperature, therefore, we may expect a phase transition in the wall structure.
Discussions of this kind of phase transition can be found in papers by Ishibashi
and Dvorak (1976), Lajzerowicz and Niez (1979), Bullbich and Gufan (1989), and
the aforementioned authors (Sonin and Tagantsev, 1989, 1988). The transition has
been found very peculiar, namely, its phase diagram in terms of coefficients of the
free energy expansion contains a multicritical point of the infinite order (Sonin and
Tagantsev, 1989, 1988).

An additional interesting aspect of antiphase walls was pointed out by Tagant-
sev and Sonin (1989). It is obvious that antiphase walls of rotational character
can be represented in the order parameter space by two different paths with the
opposite sense of rotation, clockwise and anticlockwise. It can be shown that
their energies are equal (Fouskova and Fousek, 1975; Tagantsev and Sonin,
1989). In different sections of one domain wall the different solutions may
occur, meeting along a line termed circulation line. This object can also be
classified as an order parameter vortex. Such a line represents an additional,
the so-called topological “defect” within the domain wall. It can be illustrated by
the closed contour in the order parameter plane shown in Fig. 6.2.5. To some
extent the circulation lines are an analogy of the Bloch line in ferromagnetic
domain walls. Within antiphase walls, strain components &, and &y, may be
induced due to energy-invariant coupling order parameter gradients with the
strain tensor, such as &y,[n; (912/0x) — 1> (9n,/0x)]. The two wall sections with
opposite sense of rotation differ in the sign of this invariant. Therefore an applied
shear stress oy, prefers one of the wall paths, clockwise or anticlockwise, and thus
it would exert a pressure on the circulation line. It has been shown that, as one
expects for topological defects, this pressure is proportional to the area of the
corresponding contour in the order parameter plane (Fig. 6.2.3).
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6.2.3.4 Domain Wall in Nonferroelectrics

We now consider examples of nonferroelectric ferroics with three- and two-
component order parameter. A continuum theory of domain walls in proper
ferroelastics corresponding to species m3m — &s — 4/mmm with the first-order
transition, driven by a three-component order parameter, was developed by
Barsch and Krumhansl (1984). This theory is applicable to ferroelastics BiVO,
and Pb3(PO,),. Domain walls in an improper ferroelastic with a three-compo-
nent order parameter (7, %2, 3) corresponding to the same species have been
treated by Cao and Barsch (1990) and the theory was applied to SrTiOs.
Further detailed theoretical analysis of domain walls in this crystal has been
performed by Tagantsev et al. (2001a). The situation has been found typical for
a system with a multi-component order parameter (see Sect. 6.2.1.2) and to a
certain extent similar to that in BaTiO; where the three-component order
parameter is polar, however, much more complicated in several aspects.

First, as we have seen above, in BaTiOj the electrostatic effects do not allow
for “longitudinal” linear 180° walls, i.e., walls where the i-component of polar-
ization changes with the i-component of the coordinate. In the case of SrTiO3,
this limitation is absent and, actually, the boundaries of this type are the most
energetically favorable. This type of boundaries, which are antiphase and “180°
walls” in the order parameter plane, exhibits the traditional tanh-type profile
(Cao and Barsch, 1990). At 40 K the wall thickness, 7, have been evaluated as
some two lattice constants’ (Tagantsev et al., 2001a). Another type of antiphase
boundary links the domain states which differ in sign of the i-component of the
order parameter whereas the plane of boundary is parallel to the i-component
of the coordinate. According to Tagantsev et al. (2001a), the properties of these
walls are very different from those of the longitudinal walls. These are expected
to be much thicker (20-25 lattice constants at 40 K), having the Néel-type
structure (with nonzero longitudinal component of the order parameter in the
wall). In addition, at a temperature of about 40 K the nonpolar SrTiO3 becomes
unstable with respect to the appearance of spontaneous polarization in the body
of the wall, which according to the authors may reach a value of 4 nC/cm?.

In addition, the situation with ferroelastic (90°) walls in SrTiO3 is more com-
plicated than in BaTiOs, since the condition of electroneutrality OP;/dx; = 0 that
made the problem effectively one component (analytically solvable) is here not
applicable. Therefore, in contrast to BaTiOj3, the problem does not have a general
analytical solution. Cao and Barsch (1990) offered an analytical solution for the
case when a special relation between the parameters of the problem is satisfied.
The result obtained actually corresponds to the special case originally discussed by
Ishibashi and Dvorak (1976) (cf. Egs. (6.2.20), (6.2.21), and (6.2.22)).

Among systems with a two-component order parameter, great attention has
been paid to compounds KSCN and Hg,Br,. Both represent the species

5> Cao and Barsch (1990) give a much smaller value for 7, because of a lost numerical factor
(Tagantsev et al., 2001a).
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4/mmm—es—mmm with v = 2 although the microscopic mechanisms of their transi-
tions are very different (Rychetsky and Schranz, 1993). The situation in this
system is similar to GMO: four domain states that can be linked cither by
ferroelastic walls (“90°” walls) or by antiphase boundaries (“180°” walls). For
the ferroelastic walls and antiphase boundaries oriented perpendicular to
either X; or X, axes of the parent phase, after elimination of the elastic vari-
ables, the problem reduces to that treated in detail in Sect. 6.2.1.2 (see
Eqgs. (6.2.17)). For an antiphase boundary with the normal arbitrarily oriented
in the (X7, X>») plane, the coefficients J, o, and f§ in these equations should be
renormalized, the renormalizing factor being different for the first and second
equations and depending on the orientation of the wall. Quantitative analysis
of properties of both types of domain walls in the mentioned materials has been
performed by Rychetsky and Schranz (1993, 1994) and by Rychetsky (1995).
For ferroelastic walls, these authors found that the solution is close to the exact
solution of Ishibashi and Dvorak (1976) (see Egs. (6.2.20), (6.2.21), and
(6.2.22)). For this type of walls, their numerical estimations led to the following
values: at 5K below T¢, for KSCN g, 22 0.26 erg/cm” and 1, 22 26 A, ie., about
4 lattice constants; for Hg,Br, g, 22 0.008 erg/cm2 and 13,2320 A, 1.e.,about 70
lattice constants. As for the antiphase boundary, Rychetsky and Schranz
(1993), using the results of a more general analysis by Bullbich and Gufan
(1989) and by Sonin and Tagantsev (1989), reached the conclusion that, for
Hg,Br», the linear solution (L-curve in Fig. 6.2.2) is unstable whereas, for
KSCN, the wall of this type is stable for any orientation.

6.2.4 Concluding Remarks

Continuum theories of domain walls provide an attractive issue for theoretical
activities and the subject was treated in a large number of papers. We have
demonstrated on several examples that the general approach is the same, as it
was outlined in Sects. 6.2.1 and 6.2.2. It should be noted that, the case of the
multi-component order parameter, the theory often results in coupled Euler
equations which have no analytical solution. Most of the published theories
avoid this problem by choosing particular relations between involved coeffi-
cients by which these equations are decoupled; this then leads to well-known
kink-type solutions. A more accurate approach, however, is to resort to numer-
ical solutions (Cao and Cross, 1994; Hlinka and Marton, 2006).

One can ask the general question to what extent the continuum approach is
justified. We can assume that continuum treatment of inhomogeneities will be
acceptable when the local changes of # across the unit cell distance ay are much
smaller than its spontaneous value in the domains ns. Roughly speaking, we
expect the theory to give a good approximation when the wall thickness #, is
larger than at least a few lattice constants aq (better 10ag). The overview of data
on domain wall thicknesses presented in Table 6.1.1, which are rather contra-
dictory, allows for the possibility that in some materials this condition is
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fulfilled although the truly high-resolution methods suggest that 10q is often
above the upper limit. For example, neutron scattering data (Bruce, 1981) for
KH,PO, led to an outright rejection of any continuum approach in this mate-
rial. In any case, predictions based on continuum theories have proved useful in
several aspects. First, they themselves point out that ferroic walls are very thin;
we have quoted a number of estimates which typically predict ¢y, < 10aq.
Second, the thermodynamic approach shows which material parameters con-
trol domain wall structure and thickness and this may give some guidelines for
assessing domain-conditioned properties of different materials.

An issue in reach of the continuum approach is the behavior of the domain
walls which are close to the sample surface or inside ultra thin films (free
standing or deposited onto thick substrates). It was pointed out above that
even the condition for permissible walls, Eq. (2.2.10), will be influenced by
sample thickness (Shuvalov et al., 1987; Glushkov et al., 1987) so that some
domain pairs can exist, which otherwise represent the R cases. Thus, one can
clearly expect an appreciable impact of the aforementioned factors on the
domain wall structure. This effect may be even of practical importance in
view of increasing applications of ferroelectric thin films. However, because
of the lack of space, in this book, we restrict ourselves only to referring the
reader to some relevant publications (Darinskii et al., 1989a; Novak and Salje,
1998; Lee et al., 2002; Conti and Salje, 2001).

6.3 Microscopic Theories of Domain Walls

In the previous section we have discussed the main issues of theories of domain
walls in ferroics, which are based on the Landau expansions in terms of a
continuous order parameter appended with terms containing the order para-
meter gradient. Though such theories make a convenient tool for theoretical
description of domain walls, their application to real systems is often limited.
First, the value of the gradient term is usually difficult to evaluate. Second, the
domain wall thickness obtained in these theories often occurs to be of the order
of lattice constants of the material. This makes the results obtained in the
continuum theory, at best, marginally justified. All these facts make important
theories of domain walls dealing with atomic displacements rather than with a
continuous order parameter. We will call these theories microscopic in contrast
to the first of theories, which we call macroscopic. In this section we discuss
microscopic theories of domain walls focusing on the most addressed in the
literature examples of BaTiO3 and PbTiOj5 ferroelectrics.

It was the microscopic approach that was used in the first theoretical studies
of domain walls in ferroelectrics (Kinase and Takahasi, 1957). In early papers
treating the problem on the microscopical level (Kinase and Takahasi, 1957,
Kinase et al., 1970; Lawless, 1968), the authors addressed domain walls in
tetragonal BaTiOj; in terms of refinements of the classical Slater model (Slater,
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1950). In these papers, the Ti displacements were treated as the main bearer of
the ferroelectric polarization whereas the ferroelectric instability was described
in terms of an interplay between the short range ionic repulsion and destabiliz-
ing “finite range” part of dipole—dipole interaction (with the contribution of the
macroscopic electric field eliminated). In its original version formulated for the
bulk material, the Slater model provided a reasonable description for the
tetragonal phase in BaTiO3;. When adapted to the problem of domain walls,
the new element of the model was the necessity to evaluate the dipole—dipole
interaction in the case of an inhomogeneous distribution of “ferroelectric”
dipoles. All calculations performed using this method yielded “essentially zero
thickness” for 180° walls in tetragonal BaTiOs. That is compatible with the
prediction of the phenomenological theory which gives the wall thickness close
to the lattice constant. For such thin walls, the wall energy naturally becomes
sensitive to its position in the crystalline lattice. The energies of differently
oriented and centered 180° walls in tetragonal BaTiO3; have been evaluated by
Lawless (1968). He found that the wall preferable orientation is (100) with the
perovskite A-site (i.e., Ba) in its center (see Fig. 6.3.1 and Table 6.3.1 for
explanation and more information). The B-site (i.e., Ti)-centered (100) wall
was found to have a much higher energy. The evaluated energy of 180° walls of
(110) orientation was also found to be a few times larger than that of the A-site-
centered (100) wall. This result is very different from a very small (0.13%)
anisotropy of the energy of this kind of wall predicted by the macroscopic
theory (Dvorak and Janovec, 1965). At the same time, an appreciable aniso-
tropy of the 180°-walls predicted by the microscopic theory is compatible with
the experimental observations of Fousek and Safrankova (1965) who reported
preferable (100) orientation for walls of this kind.

POLAR
AXIS
Oe
PYI
(100y-8 1992 10w (110)-0

Fig. 6.3.1 Schematic drawing of different orientations and positions of a 180° wall in a
tetragonal BaTiOs-like perovskite ferroelectric. Only the B-site (Ti) and oxygen ions lying
just above and below the B-sites are shown. Notations of the planes correspond to those of
Table 6.3.1. Reprinted with permission from Lawless (1968). Copyright (1968) by the
American Physical Society
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Table 6.3.1 Results of microscopic theories of domain walls
(100)-A (100)-B (110)-M (110)-O Barr. ty/a Temp. Ref.

BaTiO; 1.4 ~1 RT Kinase and
180° Takahasi (1957)
1.52 479 453 10.3 46 ~1 RT Lawless (1968)
16 1.4 RT Padilla et al. (1996)
BaTiO3 22.5 36.4 14 9-10 RT Kinase et al., (1970)
90°
PbTiO; 100 220 120 ~1 0K Poykko and Chadi
180° (1999)
132 169 37 ~1 0K Meyer and
Vanderbilt (2002)
PbTiO3 35 1.6 13 0K Meyer and
90° Vanderbilt (2002)

Columns 24 give the energy of the walls as a function of their orientation and the position of
their central plane: A and B indicate the planes passing through A and B perovskite sites;
M indicates a plane passing through the ions of metals; O indicates a plane passing through
the oxygen ions only. Column “Barr.” gives the height of the Peierls barrier. All energies are
given in mJ/m>. The rest of the columns give the wall thickness normalized to the lattice
constant, temperature, and the references

The refined Slater model has also been used for the description of 90° walls in
tetragonal BaTiOj; by Kinase et al. (1970). They have evaluated the energy and
thickness for the walls centered on (110) plane containing metals and (110)
plane containing only oxygens. The wall of the later type was found to be more
energetically favorable. The theory predicted rather thick 90° walls (about 10
lattice constants).

Recent developments of ab initio calculations of crystalline solids make
possible more involved considerations of domain wall in ferroelectrics. Two
approaches have been employed in these considerations, which can be called
true ab initio approach and method of effective Hamiltonian.

The ab initio approach is readily applicable in the case where the ferroelectric
phase of interest is favorable at zero temperature. In this approach, the parameters
of the wall at zero temperature are calculated using the first-principle pseudo-
potential method based on density functional theory (Payne et al., 1992). The
structure of the wall is determined by minimizing (with respect to ionic displace-
ments) the total energy of the system containing the wall; the wall energy is found
by comparing the energy of the system with the wall and without it. The computer
facilities typically enable calculations for systems (supercell) containing up to 15
unit cells of the material with periodically boundary conditions. This technique has
been employed for modeling domain walls in PbTiO; by Poykko and Chadi (1999)
and by Meyer and Vanderbilt (2002). Both groups found that, for (100) 180° walls
have minimal energy if they are A-site centered (see Table 6.3.1). This preferable
position of the wall is the same as in the aforementioned calculations for BaTiO;.
On the same basis, 90° walls in PbTiO; have been addressed by Meyer and
Vanderbilt (2002). The wall energy has been found some four times smaller than
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for the 180° wall. The activation barrier for the wall motion (the Peierls barrier)
was calculated to be much smaller than the wall energy (1.6 compared to 35 mJ/
m?). Both kinds of walls have been found atomically thin. The results of calcula-
tions by Meyer and Vanderbilt for the 180° wall are illustrated in Fig. 6.3.2 where
the ferroelectric polarization is presented as a function of the distance across the
wall. The offset of the Pb position shown in this figure has been estimated as 0.6 A.
This result is compatible with that conditioned by the flexoelectric effect in the
continuum theory (Sect. 6.2.2). However, at present, it is not clear how quantita-
tive comparison of these results can be done.®

() A z /Ti02 - plane
: . PbO - plane
AR
------------------------------------ e Rt EEERECEEEE BECEE L REEE
R 1.00 1.01 OZO 1.01 1.00
z 1.00 1.00 0.80 0.80 1.00 1.00
(b) A z PbO - plane
: /TiOZ-pIane
* l l il l x
----- FEETREY EECERE S PREE EEEPRER—
R.: 1.00 0.96 OiO 0.96 1.00
z 1.00 1.01 0.69 0.69 1.01 1.00

Fig. 6.3.2 Change of polarization across the Pb-centered (a) and Ti-centered (b) 180° walls
calculated for PbTiO; at 0 K. R, denotes the polar distortions of each lattice plane in the
z-direction, in the units of the distortion associated with the bulk spontaneous polarization.
The arrows indicate the sense of these distortions in the metal-oxide planes. The lengths of the
arrows are proportional to the magnitudes of the distortions. Reprinted with permission from
Meyer and Vanderbilt (2002). Copyright (2002) by the American Physical Society

® The problem is that the optical displacements of the ions (or internal strains) are by
definition defined to within an arbitrary constant (see, e.g., a detailed discussion of Tagantsev,
1991). This makes difficult separation between the optical and acoustical displacements
(which enter the deformation tensor) on the two sides of the wall. Without this separation,
one cannot tell what mechanical off-set corresponds to a given profile of atomic displace-
ments. In Meyer and Vanderbilt (2002), this separation has been postulated and mechanical
offset of 0.04 A across the wall has been calculated. However, the interpretation of this result
is not clear because of the apparent ambiguity of the aforementioned separation.
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Another prediction of the ab initio calculations (Meyer and Vanderbilt,
2002) is the offset of the electrostatic potential at 90° walls associated with
nonzero longitudinal component of the polarization in the wall. This predic-
tion is qualitatively different from that of the continuum theory (mentioned in
Sect. 6.2.3 in the context of 90° walls in BaTiOj3). According to the continuum
theory (Darinskii and Fedosov, 1971) the bound charge related to the nonzero
longitudinal component of the polarization forms two back-to-back double
electric layers which do not create a potential offset at the wall (cf. Sect. 6.2.3).

The second ab initio technique, the method of effective Hamiltonian, is sum-
moned when the ferroelectric phase of interest exists only at finite temperatures,
which is the case of tetragonal phase in BaTiO3. The idea of this method is to
calculate the energy of the crystalline structure as an expansion in terms of a
limited number of atomic displacements in a unit cell (counted from the parent
cubic structure) and components of the strain tensor. The coefficients of this
expansion are calculated by using the first-principle approach mentioned above.
The equilibrium state of the system is further determined by using Monte-Carlo
simulations with the Hamiltonian obtained. This method has been successfully
applied to modeling the sequence of the phase transition in the single domain
BaTiO; (Zhonget al., 1995). Using this method, the structure and energy not only
of the ground state but also that of a metastable state containing a domain wall
can be determined. Calculations performed in terms of this approach (Padilla
etal., 1996) gives for the energy of 180° walls in BaTiOs a value of 16 mJ/m?* which
is some 10 times larger than those of the earlier calculations (see Table 6.3.1). The
same authors have found the (100) walls are atomically thin and have lower
energy when centered on A-site plane. These results agree with those of the earlier
calculations in terms of the refined Slater model.

6.4 How Flat Is the Wall?

Considering a ferroic domain wall one reasonably poses a question of how far is
its real shape from an ideally flat surface. It is clear that a flat domain wall which
crosses an ideal crystalline ferroic can adjust its orientation and position with
respect to the crystalline lattice to correspond to the absolute energy minimum
of the system “crystal with a wall.” This means that, at zero temperature and in a
defect-free crystalline material, domain walls in ferroics should be perfectly flat.
However, at finite temperature and in a real crystal containing defects, this may
not be true. Actually, strictly speaking this is never true since both temperature
fluctuations and defects situated close to the wall will inevitably locally bend it.
When domain wall deviates from its ideally flat state one speaks about wall
roughening.

To describe the roughening effect, one uses the scheme that we explain in
terms of a two-dimensional model. It this model, the two adjacent domains
correspond to two areas on the plane and the domain wall dividing the domains
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corresponds to a linear boundary dividing the areas. The finite surface energy of
the wall in this case corresponds to a finite linear tension of this boundary. At
0 K in a defect-free crystal, because of this linear tension the straight “state” of
the boundary is energetically favorable. The temperature and defects will
roughen the boundary, i.e., make it to deviate from the straight “state.”
The notions of the rough and flat walls can be introduced by considering a
segment of the boundary of the length L and look for a rectangle of this length
which in a symmetric way covers an essential fraction (e.g., 50%) of this
segment (see Fig. 6.4.1). The width of the found rectangle is denoted as
w. Clearly, for very small L, the width w will somehow increase with increasing
L. However, with further increase of L two cases are possible: (i) w tends to a
finite limit and (ii) w keeps increasing at L — oo. The boundary is called flat,
when it corresponds to the first case and rough in the second case. This scheme
can be readily generalized to the three-dimensional situation corresponding to a
wall in a ferroic crystal. In this case, to characterize the wall roughening, the
domain wall is to be essentially covered by a parallelepiped. The above defini-
tion of the roughening effect does not exactly correspond to its strict mathe-
matical definition, which we will give below in the text, though it is practically
equivalent to it.

Fig. 6.4.1 Schematic drawing of a segment of length L of a one-dimensional domain wall
which deviates from its flat (straight) state. The width of the rectangle which covers some 50%
of the curved length of this segment is denoted as w

The problem of ferroic domain wall roughening makes a special case of the
problem of interface roughening. More general, it is the problem of roughening
of the so-called topological defects (Chaikin and Lubensky, 1995). This pro-
blem covers the behavior of different systems. The roughening issues of liquid/
vapor interfaces, dislocations, crystal facets, and magnetic flux vortices in
superconductors have been intensively studied by theoreticians and experimen-
talists (see, e.g., Brazovskii and Nattermann, 2004). The general theoretical
approach to the problem is readily applicable to the case of ferroic domain wall,
however, its implication in this case have been rarely discussed (Kolomeisky et al.,
1990; Nattermann, 1983). The experimental studies of the ferroic walls in the
context of roughening phenomena are also very limited. However, we believe that
the basic knowledge on the roughening phenomena may be useful for the researches
working in the field of ferroic domains. This has motivated the inclusion of this
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section in the book. In this section, we will summarize the implication of
the general theory of the interface roughening to the case of ferroic domain
wall, elucidate some of the results in terms of simple scaling arguments, and
discuss the experimental situation. More detailed and advanced discussion
of the matter can be found, e.g., in the review paper by Brazovskii and
Nattermann (2004).

To finish this introductory text to this section we would like to mention that,
in application to ferroic domain wall at rest, the roughening problem appears to
be rather academic. At the same time, a treatment essentially based on the
roughening approach has been found extremely fruitful for the problems of
domain pinning and creep. In this context this section makes a basis for the
discussion of an issue of high practical importance, namely, the role of defects in
switching, which will be addressed in Chap. 8.

6.4.1 Mathematical Problem

For the mathematical description of roughening effect, the following scheme is
used (Chaikin and Lubensky, 1995). One considers the deviation w(xy, x;) of
the wall from its flat position, with (x;, x,) being the in-plane Cartesian coor-
dinates of the considered point on the wall. If the mean square of the difference
w(x1,x2) — w(0,0) increases without saturation with increasing |x; | or/and |x;|,
then one says that the wall is rough, otherwise one says that the wall is flat. To
mathematically quantify the roughness of the wall one introduces the notion of
roughness or wandering exponent ¢. For the case of an in-plane isotropic wall, it
is introduced by the relation

w?(L) = <[w(x1,x2) - w(0,0)]z> o« L* at L — oo, (6.4.1)

where L is the length of the (x, x;) vector and (- - -) stands with thermodynamic
averaging or averaging over defect configurations. If ¢ > 0, the wall is rough,
the case of ¢ = 0 formally corresponding to the case of logarithmic dependence.
In the case of in-plane wall anisotropy, in a similar way, one can introduce the
exponents ¢; and ¢, corresponding to the limits |x;| — oo at x, =0 and
|x2| — oo at x; = 0, respectively.

The absolute value of the typical wall wandering and the wall roughness
exponent are contorted by many factors. These are the temperature, local
surface energy of the wall, additional electrostatic and/or elastic energy arising
when the local orientation of the wall deviates for that permissible (electrically
and mechanically), Peierls potential (see Sect. 8.4), and defects.

In the following, when discussing the impact of defects we will consider only
the case of point defects. Two types of defects are commonly distinguished:
random field (RF) defects and random bond (RB) defects (see, e.g., Levanyuk
and Sigov, 1988). The energy of an RF defect is different for different domain
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states whereas the energy of an RB defect is the same for all domain states but it
is different when the defect is in the bulk of a domain and in a domain wall.
When an RF defect is crossing the plane of a domain wall, the variation of the
energy of the system is step-like, whereas in the case of an RB defect it is a
variation having the form of a smeared 6 function. This is illustrated in Fig. 6.4.2.

(b) 0 X

Fig. 6.4.2 Schematic plot of the energy of a domain wall U(x) as function of the distance
X — xo between the wall and a defect: (a) random field (RF) defect and (b) random bond (RB)
defect

Examples of RF defects are well known for perovskite ferroelectrics (e.g.,
BaTiO; and Pb(Zr,Ti)O3). In these materials, a B-site substitution with an ion
of smaller valence (e.g., Mn"? for Ti"* in BaTiOs; see Sect. 8.6.1) when
compensated with an oxygen vacancy creates an electrical dipole serving as an
RF defect. The examples of RB defects have not been discussed for ferro-
electrics though one may expect appearance of this kind of defects as a result
of isovalent substitutions.

6.4.2 Nonferroelectric| Nonferroelastic Walls

We start from the simplest case of the wall separating domains which cannot be
distinguished neither by spontaneous polarization nor by spontaneous strain.
Examples of such walls are provided by domain wall in high-order ferroics and
by antiphase boundaries in materials exhibiting a transition with unit cell
multiplication. A change of orientation of such walls is not associated with
the appearance of macroscopic electric or elastic fields, in other words, they are
electrically and mechanically permissible for any orientation. Walls of this kind
are “flattened” by the surface tension and the Peierls crystalline potential.
According to existing theories (see, e.g., Chaikin and Lubensky, 1995), in a
defect-free crystal, the competition between thermal fluctuations and the flat-
tening factor leads to the so-called roughening phase transition: At low
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temperatures the wall is localized in one potential minimum of the Peierls
potential whereas above a certain transition temperature the wall becomes
“logarithmically” rough. Well above the transition, the average (6.4.1) charac-
terizing roughness can be found as

w? (L) = ke T In(L/a), (6.4.2)

Oy

where « is the lattice constant and oy, is the surface energy of the wall per unit
area, which is taken isotropic so that the energy of the bent wall can be written
as the following integral over the wall area:

U= ay / [1 + % (Aw)z} ds (6.4.3)

This situation corresponds to the roughness exponent ¢ = 0.

A wall in an ultra thin film where only the in-plane roughness matters
corresponds to an effectively one-dimensional problem. In this case, the integral
in Eq. (6.4.3) can be treated as one dimensional. The change of the effective
dimension of the problem strongly changes the situation; now the wall is rough
at any temperature with the roughness exponent ¢ = 1/2. Specifically, one finds

_ keTL

w(L) = p—t (6.4.4)

where /4 is the film thickness.

The derivation of the above relations is out of the scope of this book.
However, to give the physical idea behind the trends controlling the roughening
phenomena, we will obtain the roughness exponents using the so-called
“Fluery-type” or “Imry-Ma” scaling arguments (Kardar, 1987). In this
approach, one evaluates the energy, Uy, associated with a small bulge on a
wall. Such a bulge is schematically shown in Fig. 6.4.3. In one-dimensional case,
simple geometrical arguments yield’

Uy = ow%wz. (6.4.5)

From this relation, it is seen that for the same energy, larger displacements of
the wall w can be obtained with a larger in-plane size of the bulge L. This
expresses the trend of the wall to roughening. The roughening law is fairly

" Here and thereafter the use of sign ‘=’ means that we are dealing with rough order-of-
magnitude estimates. The exact relations can contain numerical factors varying from a few
tenths to a few units.
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Fig. 6.4.3 Schematic
drawing of a bulge on a
domain wall w

reproduced by the relation between w and L for a typical thermal fluctuation
with the energy kg 7. Indeed, the relation Uy, = kgT yields

2o fTL

w
ow h

(6.4.6)

in qualitative agreement with Eq. (6.4.4).
For a normal two-dimensional wall in a three-dimensional sample the energy
of the bulge (shown in Fig. 6.4.3 with L; = L, = L) can be evaluated as®

Uy 22 g0’ (6.4.7)

In this case, the relation U, = kpT gives w? = kgT/a,, which, being inter-
preted as an indication to the absence of the “power law” roughening, is also
compatible to Eq. (6.4.2).

The above results for the exponents of thermal roughening, ¢4, can be
presented by the formula

2-d
S =5 (6.4.8)

where d stands with the effective dimension of the wall, i.e., d = 2 for a normal
wall and d = 1 for the effectively one-dimensional situation in ultra thin films.

Investigations of systems with defects showed that the thermal roughening
effect discussed above is substantially weaker than that due to the defects. Let us
show this for the case of RF defects using the scaling arguments. Consider a flat
two-dimensional wall in a material with point defects, the average distance
between them being D. The energy of such a wall may be reduced by making
a bulge on it. The reason for it is as follows. By making on the wall a bulge with
dimensions w and L (see Fig. 6.4.3 with L, = L, = L), one changes the energy
of N = L*w/D? defects. Because of the randomness of their orientations, on
average, the variation of the energy of the defects is zero to within -£vv/N, where

8 Here, for simplicity, we consider the case of a domain wall with the isotropic surface tension.
If the surface tension is anisotropic, obviously for the optimal bulges L; # L,. In this case,
however, L; « L, and one can readily show that the roughness exponent will be the same as in
the case of the isotropic surface tension.
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v is the coupling energy per defect. Thus, by bulging the wall may reduce the
energy of the defects in the crystal by a value of

L*w 1/2
Urp = v(F) . (6.4.9)

However, this reduction is limited by the extra surface energy of the bulge,
which is given by Eq. (6.4.7). The relation between the dimensions of the
optimal bulge can be found by minimizing the sum of the surface and defect
energy, Eqgs. (6.4.7) and (6.4.9). This relation reads

1 v 2/3
we o <—> L3 (6.4.10)
Ow

According to this relation, a deviation of the wall from its flat state is
energetically favorable and the larger the wall segment, the stronger this devia-
tion. This relation is also interpreted as the roughening law with the exponent
¢ = 2/3. Thus, we see that the roughening effect of defects is stronger that that
of thermal fluctuations.

Similar consideration gives for the one-dimensional case ¢ = 1. These results
for the case of RF defects are confirmed by a rigorous analysis. They can be
written in the general form

4-d
CRF — T, (641 1)

where d stands for the dimension of the wall (d = 2 for the wall in a bulk crystal
and d = 1 for the effectively one-dimensional situation).

Random bond (RB) defects are also more efficient in roughening than
thermal fluctuations. In this case, the roughness exponent is linked to the
dimension of the wall as

4-d

The value of parameter » = 4.5 has been rigorously established only for
the one-dimensional case. For the case of a wall in a bulk crystal (d = 2), there is
no consensus on the value of b: Values between 4 and 5 have been obtained
in different approaches (Brazovskii and Nattermann, 2004; Kardar, 1987
Nattermann et al., 1990).

6.4.3 Walls in Ferroelectrics and Ferroelastics

The key feature of ferroelectric and ferroelastic domain walls is that their
bending is associated with the appearance of macroscopic (electric and elastic)
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fields. This effect makes an additional flattening factor. Let us illustrate this
point in terms of the scaling arguments for the case of RF defects interacting
with ferroelectric and ferroelastic walls.

Consider the roughening of a 180° ferroelectric/nonferroelastic wall. Bearing
in mind the experience with macroscopic bulging of this type of wall, which is
known to be strongly anisotropic, we assume for the moment that the optimal
bulge should be elongated in the direction of the spontaneous polarization to
reduce the depolarizing energy. Thus it should be characterized with three
spatial scales, L, L,, and w (L, >> L, >>w), as shown in Fig. 6.4.3. For this
configuration, the expression for the surface and RF energies, Eqs. (6.4.7) and
(6.4.9), can be generalized to the following forms:

L
Uy = gyn? =2 (6.4.13)
L,
and
LiLyw 172
Urp = v< le ) . (6.4.14)

The electrostatic energy associated with the depolarizing field can be roughly
estimated as that of an elongated ellipsoid with the semi-axes L;, L,, and w
(Ly>Li>w):

L2 2 ) PZ
Uiep = g in with g=—5, (6.4.15)
2 EoKa

where Ps and k, are the spontaneous polarization and relative permittivity of
ferroelectrics in the direction normal to the spontaneous polarization.” Optimizing
the sum of the surface and depolarizing energy one finds that L, scales as Lf/ 2,
Further optimization which takes into account the RF energy leads to the relations
between the height of the bulge and its in-plane dimensions: w o L}/ ? and
W L;/ 3, Thus, following the arguments used in the previous consideration we
conclude that, in the case of ferroelectric wall, the roughening is anisotropic with
the exponents ¢; = 1/2 and ¢, = 1/3. This implies, as one can expect, a stronger
roughening in the direction normal to the spontaneous polarization.

The above analysis, however, has been performed under the assumption that
the optimal bulge is essentially elongated, i.e., L, >> L;. This is valid only for
distances which are large enough, specifically for

Ly, L >> Lgip = ow/g. (6.4.16)

° Estimate (6.4.15) corresponds to the estimate of the depolarizing energy associated with a
bulge on the wall used by Miller and Weinreih (1960).
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For distances smaller than Lg;, the depolarizing energy is not essential in the
total energy balance so that the result for nonferroelectric/nonferroelastic wall,
Eq. (6.4.10), becomes valid. This can be checked, e.g., by comparing the surface
and electrostatic contribution to the energy, Egs. (6.4.13) and (6.4.15), at
L, x L‘?/ 2, Thus, in general, ferroelectric/nonferroelastic walls can exhibit a
crossover in the roughness exponents from ¢ =2/3 at L<<Lgj, to ¢; = 1/2
and ¢y = 1/3 at L>> Lg;p,.

A ferroelastic wall is yet more rigid than the purely ferroelectric one because
the orientation of the former, when it is homogeneously flat, is fully controlled
by conditions of mechanical domain compatibility whereas the conditions of
domain compatibility only partially controls the orientation of the ferroelectric
wall (keeps it parallel to the direction of the spontaneous polarization). To
evaluate the flattening effect due to the elastic energy, one should incorporate it
into the total energy balance. For an isotropic bulge (shown in Fig. 6.4.3 with
L = L, = L), this energy can be estimated as'®

Ue = cezLw?, (6.4.17)

where eg and ¢ stand for typical values of the spontaneous deformation and
elastic modulus. If L is large enough, i.e.,

L>> Ly = oy/(ced), (6.4.18)

the surface energy given by Eq. (6.4.7) can be neglected comparing to this
contribution. Now, the relation between w and L for an optimal bulge can be
found by equating U, and Ugg, Eq. (6.4.9), to find w independent of L. This
implies ¢ = 0. Thus, we see that the “power law” roughening effect of RF is
suppressed by the ferroelastic nature of the wall. Thus, similar to the previous
case, one finds a crossover in the roughness exponents from ¢ = 2/3 at L << L
tog=0at L>>L,.

The theoretical results obtained on the roughening of ferroelectric and ferroe-
lastic domain walls can be summarized as follows. The long-range interactions
contributing to the energy of the bent walls make roughening of this kind of walls
weaker or suppress it. In the case of thermal roughening it is fully suppressed
(Lajzerowicz, 1980)'! for both ferroelastic and ferroelectric walls. For both the
thermal and defect-driven roughening of ferroelectric-nonferroelastic walls in the
direction normal to the spontancous polarization, the roughness exponents for-
mally correspond to a change of the dimension of the interface fromd = 2tod =
2.51in Egs. (6.4.8), (6.4.11), and (6.4.12)."% In the case of ferroelastic wall, ¢ = 0

10 This estimate can be obtained, for example, using the results on the oscillation spectrum of
ferroelastic walls (Nechaev and Roshchupkin, 1989).

' The conclusion about suppression of thermal roughening for ferroelastic wall obtained in
this paper is correct; however, the calculations have been performed for the correlation
function qualitatively corresponding to a wall in a ferroelectric/nonferroelastic.

12 The result for the RB case is not rigorously justified.
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for both RF and RB cases, which formally correspond to a change of the
dimension of the interface from d = 2 to d = 4 in Egs. (6.4.11) and (6.4.12).
All these conclusions are valid when the roughening is considered at distances
larger than certain spatial scales Lgi, and Lej; at smaller distances the long-range
interactions do not essentially affect the results obtained without these interac-
tions taken into account.

The above results can be applied to both bulk ferroics and ferroic thin
films. However, in the case of thin films, the roughening of ferroelectric
and ferroelastic domain walls can be affected by the electrostatic and
mechanical boundary conditions. Here, different roughening regimes are
possible depending on the relation between the typical spatial scales of
the problem. We will not discuss these regimes though the aforemen-
tioned boundary conditions can be readily incorporated in the above
analysis.

6.4.4 Experimental Data on Roughening of Ferroic Domain Walls
and Experimental Observations

Experimental data which may be related to roughening of ferroic domain walls
are very scarce.

First attempt to analyze data on ferroic domain walls in terms of the rough-
ening effect has been done by Bruce (1981). He developed a theory of elastic
(e.g., X-ray or neutron) scattering from a wall exhibiting the thermal “logarith-
mic” roughening (see Eq. (6.4.2)). The theoretical prediction on the angular
dependence of the scattering intensity has been compared to the data on the
neutron scattering from a domain wall in PbsGe;O;. The qualitative similarity
between the theoretical prediction and experimental data has been interpreted
as a possible evidence of a roughening phase transition occurring at the domain
wall.

A possibility of the direct observation of domain wall bending on nan-
ometer scale with piezoelectric force microscope (PFM) inspired experimen-
tal investigation of domain wall roughness in PZT thin films in the group of
Triscone (Paruch et al., 2005). In tetragonal epitaxial films of thickness
50-100 nm, ferroelectric 180° domains of area of 10-20 pm® have been
written with an AFM tip loaded with a dc voltage. The profile of the domain
boundaries has been imaged using a PFM. The mean square deviation of the
boundary from the flat position w has been evaluated to find it an increasing
function of the length L of the wall segment tested for L <100 nm; for larger
L, a saturation of w has been observed. The w—L relation, obtained at
L <100 nm, has been considered as a manifestation of the roughening effect,
whereas the saturation at larger L has been attributed by the authors to the
incapability of the large wall segments to reach the true energy minimum.
From the analysis of w(L) dependence at L <100 nm, a roughness exponent
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of ~ 0.26 has been estimated. This value has been interpreted as a finger-
print of the roughening caused by RB defects. Rationalizing this value in
terms of Eq. (6.4.12), one sets d = 2.5 (because of ferroelectric/nonferroe-
lastic nature of the wall) to find b = 5.8 which is not far from the theoretical
estimate.



Chapter 7
Switching Properties: Basic Methods
and Characteristics

7.1 Introduction

We approach one of the main issues of the investigations of ferroics: their
properties conditioned by dynamic domain phenomena. It is these properties
that play the decisive role in many recent applications. But before entering this
subject in Chap. 8, we wish to describe experimental methods used for obtaining
integral data about such phenomena. We have in mind the data that reflect
domain wall motion and other mechanisms involved in the processes in which a
ferroic sample changes its domain state under the action of external forces.
These mechanisms involve possible nucleation of new domains, growth of
nucleated or of already existing domains, and their coalescence. Such integral
data provide the basic information on characteristics of the switching process as
a whole, like its speed, its dependence on the applied force, on the boundary
conditions, or on temperature. In this chapter we describe the basic methods to
obtain such data. We will mainly concentrate on the basic characteristics: P(E)
dependences for ferroelectrics and (o) dependences for ferroelastics or alter-
natively e(E) dependences for ferroics which exhibit simultaneously ferroelastic
and ferroelectric properties.

In some cases it may be difficult to measure the primary order parameter as a
function of the conjugate force, such as the P(E) dependence for ferroelectrics.
Then to obtain some information on the switching process one may rely on
measuring other properties which can be believed to be linearly related to the
order parameter. As an example we may mention the measurements of the
pyroelectric coefficient dependence on the applied electric field, in the form of a
hysteresis loop, for ultrathin films of ferroelectric polymers (Ducharme et al.,
1997). There it was difficult to detect directly the small switched charge while
the pyroelectric coefficient was of a large enough magnitude to be detected. This
method of material characterization by measuring properties which are linearly
coupled to the order parameter has become popular since the very beginning of
the research of ferroics. Such data may be useful from the point of view of
applications. In many cases it is relatively easy to measure macroscopic quan-
tities which are coupled to a higher power of the order parameter 5. If they are
proportional to 7 we obtain the so-called butterfly hysteresis loops.

A K. Tagantsev et al., Domains in Ferroic Crystals and Thin Films, 331
DOI 10.1007/978-1-4419-1417-0_7, © Springer Science+Business Media, LLC 2010
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We stress that this chapter covers selected aspects of measuring switching
characteristics of a considerable part or of the whole sample. Here we discuss
neither “local switching” phenomena such as creating a new small domain by
local application of electric field or mechanical stress nor methods for observing
motion of individual domain walls.

7.2 Ferroelectric Hysteresis Loop

In Fig. 7.2.1 the basic circuit is shown for recording the switching process in a
ferroelectric sample. It is often referred to as the Sawyer—Tower circuit, after the
authors who were the first to use this system (Sawyer and Tower, 1930) when
investigating polarization reversal in Rochelle salt crystals. Here the applied ac
voltage U is divided between the sample and the capacitor C connected in series.
On the horizontal axis of the oscilloscope we wish to record the magnitude of
electric field applied to the sample alone. To fulfill this requirement the value of C
has to be large compared to the effective capacitance (the ratio “the maximum
charge over the maximum voltage applied”) of the sample. On the vertical axis,
the recorded voltage corresponds to the instantaneous value of charge Qp repre-
senting the dielectric displacement D = ¢oE + P. In most ferroelectric materials,
the first term is negligible compared to induced polarization. For this reason, the
recorded hysteresis loop is interpreted as the dependence P(E) rather than D(E).

Fig.7.2.1 The Sawyer-Tower circuit: 1, source of ac voltage; 2, oscilloscope; 3, capacitor with
ferroelectric sample; 4, additional capacitor. R} > R,—resistors of the voltage divider

It is obvious that if the sample is lossy, the conductive current flowing through it
has a component which when integrated on the capacitance C produces charge Qon
such that an ellipse Q.on(E) is superimposed on the recorded hysteresis loop. This
ellipse, in addition, is influenced (rotated in the charge—voltage coordinate system)
by stray capacitances of the experimental setup. These effects may distort the
recorded data on the D(E) loop of the ferroelectric and are unwanted; therefore,
the ellipse of proper shape and orientation is to be subtracted from the total
hysteretic response. Modified circuits which allow for such compensations were
proposed by a number of authors (see, e.g., Roetschi, 1962; Gadkari et al., 1986;
Sinha, 1965; Hatano et al., 1992; Diamant et al., 1957).
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The classical Sawyer—Tower technique and its modifications still offer very
effective and inexpensive tools for examining polarization reversal processes in
ac fields. In recent years, in addition to these classical methods, alternative
electronic schemes have been developed. This is the so-called virtual ground
method which, for the first time, was suggested by Glazer et al. (1984). Nowa-
days, this method is widely used in connection with the expanding activities in
the area of ferroelectric thin film memories. As an example, we mention the
setup used by the Radiant Technologies, Inc. Systems and represented schema-
tically in Fig. 7.2.2. In this configuration, the transimpedance amplifier main-
tains the terminal A at a virtual ground potential. Thus the sample is effectively
“grounded” during the switching process. All charge that flows through it as a
result of the applied voltage is collected by an integrator circuit. The voltage
generated on the output of the integrator is then measured and displayed as a
function of the applied voltage. The system makes it possible to measure
accurately a large range of capacitance values at a large range of speeds. The
capacitor in series with the sample required in the Sawyer—Tower circuit is
abolished and thus the effects of possible parasitic impedances are eliminated.
Probably the most important advantage of the system becomes effective when
only one period of ac field is applied. In this case, in the classical Sawyer—Tower
system, after the voltage returns to zero the charge that has been collected in the
sense capacitor generates a voltage V', which is in fact applied to the sample
in the direction opposite to the last applied voltage. This can lead to “back-
switching”: In part of the sample polarization can return back to its previous
orientation. In contrast, in the virtual ground measuring system the Vo
voltage is not generated: In the interval between the two subsequent periods
of applied voltage, typically several seconds long, the sample is virtually short
circuited and backswitching could only be initiated by an internal bias in the
sample.

Driving voltage

/E/ ~«—— Measured sample

Transimpedance
Amlifier

Voltage
Measurement

Integrator —

Fig. 7.2.2 The virtual ground measuring system (Radiant Technologies, RT6000HVS)
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Fig. 7.2.3 (a) Conventional P—E hysteresis loop of a ferroelectric (schematically); (b) ideal
hysteresis loop; and (c¢) double hysteresis loop and its derivative

It is now appropriate to specify the definitions of basic quantities used to
characterize a ferroelectric hysteresis loop. A typical customarily observed P(E)
loop is represented in Fig. 7.2.3a when driven by a continuous ac field. It defines
maximum and remanent polarizations P,,,, and P, as well as the coercive field E,
which corresponds to the points where P =2 D = 0. In general, the values of Py,
and P, do not suffice to determine the value of spontaneous polarization Ps.
However, if the loop is saturated, i.e., the branches of the loop merge before the
tip of the loop, and if the driving field is not too high, the intersection of a tangent
of the loop taken at its tip yields the value of Ps. The meaning of “not too high” is
that the field does not result in appreciable nonlinearity of the lattice dielectric
permittivity. This condition is not always met for characterization of thin films.
There exist materials where Pg can be determined directly from the hysteresis
loop. This is usually the situation of high-quality single crystals when the P(E)
loop is measured far below the phase transition. Such an “ideal loop” is shown in
Fig. 7.2.3b and there is no doubt that the intersection with the vertical axis
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defines the value' of P which equals both P,,,, and P,. Connecting the extreme
points (i.e. Pnax(Em)) of the curves taken at different field amplitudes, we obtain
what is sometimes referred to, not quite logically, as the virgin curve.

As an example, we refer to the delightful hysteresis loops taken for TGS
crystals by Nakatani (1972) and shown in Fig. 7.2.4. As the amplitude E,, of the
applied field E = E,, sin wt increases, the shape of the P(F) dependence changes
from an oblong-like dependence to an ideal hysteresis loop.

The classical Sawyer-Tower method and its analogies have been customarily
used to record hysteresis loops in the frequency region between 1 Hz and 1 kHz
(see, e.g., Campbell, 1957; Shil’nikov et al., 1999a). It may be of interest to
perform measurements at even lower frequencies. Unruh (1965) obtained reli-
able data for hysteresis characteristics of Rochelle salt and triglycine sulfate,
based essentially on the classical method, at frequencies down to 10 >Hz. In the
same way, Shil’'nikov et al. (1999b) measured hysteresis loops of TGS at
frequencies between 0.05 and 90 Hz, for several field amplitudes; their data
are reproduced in Fig. 7.2.5. At these frequencies, the experimentalists may face
the problems connected with surface and bulk electrical conductivity of the
specimen. Then the integral switching process at frequencies below 1 Hz may be
investigated by measuring, instead of polarization itself, some quantities which
are coupled to polarization in a known way and which are not affected by the
electric current due to conductivity. As an example, we refer here to Abe’s
(1964) measurements performed in ac fields of frequencies down to 4 mHz; the
quantity measured as a function of applied field was the integrated intensity of
polarized light passing through a sample. In the case of Rochelle salt this
intensity can be shown to be proportional to the areas of reversed domains
and thus to the average polarization.

Often, the registration of the P(E) dependence offers information not only on
the basic ferroelectric switching process but also on some more involved phe-
nomena. Deformation of the hysteresis loop may give evidence of internal

48 VV/cm

|
g/ 0.2 uC/cm

! Or its projection, if the normal of a plate-like sample is not parallel to the ferroelectric axis.

Fig. 7.2.4 Dependence of
60 Hz hysteresis loop shape
of TGS on applied field, its
amplitude being E,,= 160,
320, 800, 1,600, and 3,200
V/cm, successively from the
internal one. Temperature
—24.5°C. After Nakatani
(1972)
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Fig. 7.2.5 Hysteresis loops of TGS crystals at 18°C demonstrating the influence of field
amplitude and frequency. E,,,= 35, 55, 74, and 92 V/cm (a)—(c) and E,,,= 140, 230, 370, and
550 V/em (d)—(f). Horizontal axes units: 10 V/cm (a)—(c) and 100 V/cm (d)—(f). Vertical axes
units: 107*(a), 1073(b,c) and 102 C/m>(d)—~(f). Reprinted with permission from [Shil’nikov,
A.V., Pozdnyakov, A.P., Nesterov, V.N., Fedorikhin, V.A., Uzakov, R.E., The analysis of
domain boundaries dynamics of TGS single crystals under the ac-Fields of low and ultralow
frequencies, Ferroelectrics, 223, 149 (1999))]. Copyright (1999), Taylor and Francis

biasing field and time changes of the loop shape demonstrate different kinds of
ageing effects. Frequently the so-called double hysteresis loop is observed. It can
be connected with the influence of lattice defects whose presence prefers a
domain pattern with zero average polarization. As an example, Fig. 7.2.2¢c
shows such loops for ceramic samples of BaTiO; doped with Fe (Hagemann,
1978). Alternatively, double hysteresis P (E) loops are observed at temperatures
just above Tty in ferroelectrics with the first-order phase transition; they arise
from inducing the ferroelectric phase by ac biasing field (Merz, 1953, Hatano et
al., 1985a). This is a mechanism analogue to that responsible for the double
ferroelectric loops in antiferroelectrics; it is not defect related.

In connection with the development of ferroelectric thin films it becomes
usual to use just one period of a triangular ac voltage wave for switching
characterization. Figure 7.2.6 shows an example of this kind of data recorded
with an RT-6600S setup (Radiant Technology Inc.). It portraits the switching
processes in PLZT thin films, annealed at different temperatures (Hirano et al.,
1999). Here the triangular-shaped voltage consists of a number of short inter-
vals during which the voltage is constant and the charge is integrated and
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displayed in form of points. The discontinuous jump at zero voltage images the
process taking place during the period between two subsequent cycles. Typi-
cally, the duration of the triangular pulse is 10 ms (corresponding to the
frequency of 100 Hz) with 200 sampling points.

In the classical Sawyer—Tower circuit the capacitor C can be replaced by a
resistor R. In this configuration, what is detected as a function of applied ac
field E = E,, sin wt is the electric current

. dD ODOE oD 5
= =355~ Y3E El —F? (7.2.1)

Here the slope 0D/OE of the hysteresis loop is multiplied by the function
w+/E2 — E?, which is an ellipse. Thus, depending on the shape of the hysteresis
loop and on the applied amplitude, the maximum current may not correspond
to the maximum OD/JE. If the data are taken applying a triangular voltage
wave so that within one half-period the derivative E/Jt is constant, then the
curve of i(E) corresponds to the real derivative of hysteresis loop. In this case
and for a typical unconstricted loop the positions of its maxima are sometimes
considered to represent the coercive fields. Since the slope dD/JE may not reach
its maximum exactly at P = 0, the value of the coercive field defined in this way
can slightly differ from that defined above (Fig. 7.2.3).

It is useful to point out that the area of the hysteresis loop D(F) determines
the effective dielectric losses. Obviously, the density of energy lost in the sample
during one cycle of period T is

T
/iEdt:/%)Edt:%EdD (7.2.2)
0

30 @ (a)P30LZT
- o (b) PLT-P30LZT

Polarization [uC/cm?]
o

-10 J

—20 J
Fig. 7.2.6 Hysteresis loop of _30 |
PLZT thin films obtained

with the system shown in —40 L L I
Fig. 7.2.2. After Harano -450 -300 -150 0 150
et al. 1999 Electric Filed [kV/cm]

1
300 450



338 7 Switching Properties: Basic Methods and Characteristics

and the energy lost (or heat developed) in 1 s equals

0 :f% EdD. (7.2.3)

At the same time, this loss of energy can be conveniently written in terms of
the imaginary part k" of permittivity as

0 = nfi"E2, (7.2.4)

where E,, is the amplitude of ac field of frequency f = 1/T. Thus the imaginary
part of effective permittivity can be related to the area of the loop:

K" = (l/nEfn)j{EdD. (7.2.5)

This equation implies the possibility of a cross-check of the hysteresis loop
itself and the dielectric loss data.

At the end of this section we wish to discuss several artifacts and possible
factors not related to the intrinsic properties of the ferroelectric material itself.

First, the surface conditions can seriously influence the obtained data. Thus
the polarization reversal process can strongly depend on the coupling of the
sample with electrodes. Janovec et al. (1960) showed that a BaTiOj; crystal plate
with two identical liquid electrodes showed a symmetric hysteresis loop with fast
switching. With two identical indium electrodes the loop was also symmetric but
switching was slower. The use of different materials for different electrodes led to
an asymmetric loop, showing that a liquid electrode provided more favorable
conditions for switching starting at that electrode. The existence of a surface
layer located between the homogeneous sample and electrode has a tremendous
effect on the switching properties, as demonstrated by Brezina and Fotchenkov
(1964) and discussed by Drougard and Landauer (1959). Rosenman and Kugel
(1994) showed experimentally that a vacuum gap or a thin teflon layer located
between the sample and the electrode can seriously influence or fully suppress the
switching process. These and similar factors have to be considered when inter-
preting experimental data on switching and we will come back to this problem in
Chaps. 8 and 9.

Second, in a specific device, it may happen that the source of the applied
voltage may not be able to provide the current required for the switching
process to proceed fast enough as determined by its natural domain processes.
This situation can be modeled by a resistor in series with the ac power supply.
As a result, the large slope dD/JE may be reduced so that the hysteresis loop is
deformed.

Third, we wish to note that in exceptional cases, a hysteresis curve of the typical
shape may be observed and yet the material could turn out not to be ferroelectric
at all. If the dielectric response of a material is strongly nonlinear but non-
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hysteretic and at the same time the sample is lossy, one obtains the D(E) curve
strongly resembling a hysteresis loop. This was, ¢.g., the case of LiN,HsSO4 where
seemingly properly shaped loops (Schmidt and Parker, 1972) were explained in
terms of intrinsic protonic conductivity of this material. A similar situation was
recognized for ceramic samples of TITaO3 and some other materials (Le Bihan
et al., 1978). As pointed out by Scott et al. (1993), another example of “false”
hysteresis curves is provided by polymeric electrets. Charges originating in mobile
ions diffusing under applied voltage can slowly accumulate at the surfaces of plate-
like samples of electrets, resulting in a bistable state whose orientation depends on
the polarity of applied voltage. Thus seemingly the electrets can also be switched in
polarity; however, the processes resulting in a measurable hysteresis curve are very
slow (Sessler et al., 1980).

Fourth, one has to realize that, when studying the frequency dependences of
the mentioned quantities Ec, Pp.x, €tc., at higher frequencies, the experimen-
talist may face the problem of self-heating. This is discussed in some detail in the
following section.

7.3 TANDEL Effect

When studying the frequency dependence of coercive field, it was observed
(see, e.g., Campbell, 1957) that E, first increases but then, with further increas-
ing frequency, it starts to decrease again. The explanation was based on the
assumption that due to hysteresis losses (cf. Eq. 7.2.3) the sample heats up and
approaches the Curie point so that the area of the transversed loop decreases.
Later it was found by Shuvalov (1960) that at some critical frequency of the field
applied to the Y-cut of triglycine sulfate crystal the sample increases its tem-
perature with a jump.

Glanc et al. (1964) studied these effects in detail and found that when an ac
voltage of high enough frequency is applied to the Y-cut of a TGS crystal, the
specimen is heated to a temperature Ts close to T¢ and the value of Ty is
stabilized with respect to the ambient temperature 7T of the surroundings.
This was explained by Dvorak et al. (1964) in general terms as the consequence
of negative temperature coefficient of losses. The crystal is in a state of tem-
perature autostabilization and since it reveals nonlinear properties it can be
referred to as “temperature autostabilized nonlinear dielectric element” (TAN-
DEL). In addition to TGS, the effect was later observed in a number of other
ferroelectrics. We give a schematic insight into the phenomenon.

We know (Eq. (7.2.3)) that the rate of heat production Q; in the ferroelectric is
proportional to the area of the D — E hysteresis loop. It is also known the both
height and width of the loop decrease on increasing temperature so that the loop
area and Q, are decreasing functions of temperature. In the stationary state, the
rate heat production Q; should be balanced by the heat dissipation into the
ambient Q», which is proportional to the difference Ts — TA. The cycling of the
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sample leads to an increase in its temperature but the negative temperature
coefficient of losses (decrease of the loop area with increasing temperature) will
result in temperature stabilization. The final temperature of the system is given by
a solution to the equation satisfying the stability condition (Dvorak et al., 1964)

01=02, 001/0T<0Q,/0T. (7.3.1)

This phenomenon was simulated by Fousek (1965a) in the approximation of
rectangular polarization loop. In this approximation, the rate heat production
0, x PyE. where Py, and E_ are the half-height and half-width of the loop,
respectively. It was also assumed that depending on the amplitude of the driving
field E, three regimes are possible: (i) for small fields (Ey<Ep), the loss is
negligibly small and one sets Py = 0; (ii) for intermediate fields (Ey; < Ep < Eg.),
Py x Ey — Ey and E; = Ey; and (i) for large fields (Eo. <Ep), Py = Ps and
E; = Ey. + g(Eo — Eqc), where Py is the spontaneous polarization. The simulation
has been performed for the experimental situation close to that in TGS. This defines
the choice of the temperature dependences of the parameters controlling the
problem: Ey; o< Ey. o< g < \/Tc — T where T is the transition temperature.

Novak and Hrdlicka (1968) confirmed the validity of this model experimen-
tally, for TGS samples. The TANDEL effect was observed in a number of
ferroelectric materials (Malek et al., 1964) as well as in glass ceramics (Lawless,
1987). It represents some danger when data on hysteresis loops are interpreted
without taking the process of self-heating into account.

7.4 Pulse Switching

An ac voltage applied to a ferroelectric sample drives a switching process whose
time development is in some correspondence with the time-dependent magnitude
of the applied field. It is obvious that when the applied field during the whole
operation remains constant, we obtain more straightforward information about
the polarization reversal process. This was for the first time realized by Merz
(1956) who investigated the switching process in barium titanate crystals by
applying rectangular voltage pulses of alternate polarity and detecting the
switching current flowing through the ferroelectric sample. Often a pause with
zero field is inserted between the pulses of opposite polarity. Figure 7.4.1 shows
the basic scheme of the circuit employed and also the typical profiles of the
current #(¢) monitored. The first sharp current peak corresponds to the linear
capacitance of the sample, not connected to any domain phenomena. When the
polarization reversal takes place in the whole volume of the sample, obviously

/ i(1)dt = 2P (7.4.1)
0



7.4 Pulse Switching 341

|

|

wqu |

1 |

== FE !

|

) .
R < TO SCOPE ) LS t

> 1

“g

t

Fig. 7.4.1 Left: Basic scheme for pulse switching; the source S applies voltage pulses of
prescribed polarity. Right: The curve “1” shows the switching current density i which is
typically characterized by the values of iayx, fmax, and ;. The curve “0” shows the response
when the applied field is parallel to spontaneous polarization; it corresponds to linear
capacitance of the sample

In reality, the value of polarization determined in this way may be smaller
than Pg because of certain backswitching after the previous polarization rever-
sal process. It is essential that the output impedance of the current source is low
enough so that the voltage would not drop even when the switching current
reaches its maximum value i,,,.>

Three quantities characterizing the switching process are defined unambigu-
ously, namely, the applied field E, the maximum value i, of the current, and the
time 7, at which it occurs. For practical purposes, the time required to complete
the switching process is an important attribute. In customary measurements, the
length #,,,,; of the applied field pulse should be long enough to virtually complete
the switching process so that integral (7.4.1) taken from 0 to t,,, would be very
close to 2Ps. Otherwise the switching process is completed only partially. As
another characteristic of switching a notion of switching time f; is introduced.
This time is often defined as that necessary to reverse Pg in a certain fraction, e.g.,
95%, of the sample volume (Fatuzzo and Merz, 1966). For convenience, however,
the switching time ¢, is defined in another way, as the time necessary for the
switching current to drop to a certain fraction, e.g., 5% of its maximum value 7,,.

It is this method, when the processes proceed at constant applied field, that
allows for well formulated theoretical discussions. The dependences f((E) and
imax(E) for BaTiO3 and other materials provide the core information on which

2 A number of researchers constructed their own pulse generators; as an example we may
mention the ‘economical’ apparatus designed by Ravi et al. (1980): a bipolar square pulse
generator with a low output impedance, short rise time, variable pulse amplitude, and
repetition frequency. A number of convenient sources are now commercially available.
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theoretical interpretations of switching are based. It is obvious that to obtain
reliable results, again the power of the current source is of importance to
provide the rising time of the applied pulse considerably shorter than .. In
practice, it is required that the value of ¢, should be independent of the
capacitance (area of electrodes, in fact) of the sample.

Apart from the classical transient current method just discussed above an
alternative technique, which can be called poling back technique, has been sug-
gested by the group of Waser (Grossmann et al., 2000). This technique comprises
an application of the pulse sequence shown in Fig. 7.4.2. In this sequence, the first,
the second, and the fourth pulses have the same amplitudes and durations large
enough to perform the full polarization reversal whereas the amplitude, V3, and
length, 75, of the third pulse are variable. The amount of the polarization switched
by the third pulse is determined by switching it back by the fourth pulse. This
method was shown to have a clear advantage compared to the classical one in the
case where the switching is stretched for many decades in time. The reason for that
is an increasing difficulty with reliable monitoring of very small currents that
are typical for the stretched switching. Usually, the transient current method
e