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Preface

A Brief Journey through “Cognitive Wireless Communication Networks”

Ekram Hossain, University of Manitoba, Winnipeg, Canada
Vijay Bhargava, University of British Columbia, Vancouver, Canada

Introduction

Cognitive radio has emerged as a promising technology for maximizing the utiliza-
tion of the limited radio bandwidth while accommodating the increasing amount of
services and applications in wireless networks. A cognitive radio (CR) transceiver
is able to adapt to the dynamic radio environment and the network parameters to
maximize the utilization of the limited radio resources while providing flexibility in
wireless access. The key features of a CR transceiver are awareness of the radio envi-
ronment (in terms of spectrum usage, power spectral density of transmitted/received
signals, wireless protocol signaling) and intelligence. This intelligence is achieved
through learning for adaptive tuning of system parameters such as transmit power,
carrier frequency, and modulation strategy (at the physical layer), and higher-layer
protocol parameters.

Development of cognitive radio technology has to deal with technical and prac-
tical considerations (which are highly multidisciplinary) as well as regulatory re-
quirements. There is an increasing interest on this technology among the researchers
in both academia and industry and the spectrum policy makers. The key enabling
techniques for cognitive radio networks (also referred to as dynamic spectrum ac-
cess networks) are wideband signal processing techniques for digital radio, advanced
wireless communications methods, artificial intelligence and machine learning tech-
niques, and cognitive radio-aware adaptive wireless/mobile networking protocols.

This book on Cognitive Wireless Communication Networks includes a rich set of
research articles featuring recent advances in theory, design, and analysis of cognitive
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wireless networks. The aim of this book is to provide a unified view on the state-of-
the-art of cognitive wireless communication networking technology. It consists of 15
invited articles from distinguished contributors in this field. The contributed articles
cover a wide range of topics from the fundamental challenges and issues in design-
ing cognitive radio systems to the information-theoretic analysis of such systems,
spectrum sensing and co-existence issues, adaptive physical layer protocols and link
adaptation techniques for cognitive radio, orthogonal frequency division multiple ac-
cess (OFDM) and ultra wide band (UWB)-based cognitive radio, different techniques
for spectrum access by distributed cognitive radio, cognitive medium access control
(MAC) protocols, decentralized learning-based dynamic spectrum access methods
as well as microeconomic models for spectrum management in cognitive radio.

Cognitive Radio: Signal Processing and Communication –
Theoretic Perspective

Chapter 1, authored by Simon Haykin, provides a comprehensive survey on the fun-
damentals of cognitive radio and the major research challenges mostly from a signal-
processing and communication-theoretic perspective. The author presents several
ideas and/or algorithms for some of the fundamental tasks of cognitive radio includ-
ing spectral estimation of a radio frequency (RF) band/spectrum hole identification,
extraction of channel state estimation, and transmitter power control. Spectral infor-
mation of the radio environment (or RF stimuli) and spectrum hole identification in
the neighborhood of a receiver as well as information on the evolution of the spec-
trum holes are required for the cognitive radio transmitter for efficient utilization the
radio spectrum. These information can be used by the cognitive radio transmitter,
for example, to select the appropriate modulation and coding format, and transmis-
sion power level. The transmit power control problem is basically to determine the
transmit power levels for the cognitive transmitters to maximize their data transmis-
sion rates under constrained interference temperature limits in the frequency bands
occupied by the spectrum holes. The channel state information is required by the
cognitive radio receiver for efficient reception/detection performance. For this, the
receiver may use a semi-blind training procedure. In this procedure, the receiver has
two modes of operations: supervised training mode to estimate the channel state, and
tracking mode which is performed in an unsupervised manner during the course of
data transmission.

For a multiuser distributed cognitive radio network, cooperation and competition
are two basic mechanisms which enable it to achieve self-organization. By coop-
eration (either through a distributed or a centralized way) the cognitive nodes can
share network information among each other to achieve a coordinated and efficient
spectrum management. However, it may require synchronization among the nodes
which results in a more complex network design. In contrast, a competitive (or non-
cooperative) approach may simplify the network design, however, at the expense of
network performance. The author formulates the distributed transmit power control
problem in a non-cooperative environment using a game-theoretic framework where
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each user follows the criterion of competitive optimality to maximize its own trans-
mission rate.

Cognitive Radio: Information Theory Perspective

Chapter 2, authored by Natasha Devroye et al., addresses the problem of determining
the capacity of a cognitive radio network from an information theoretic point of view.
This chapter summarizes some of the most important results in this topic consider-
ing three types of cognitive radio behavior: interference mitigating cognitive behav-
ior, interference-free (or collaborative) cognitive behavior, and interference avoiding
cognitive behavior. In the interference mitigating behavior, a cognitive radio trans-
mitter can transmit simultaneously with other cognitive radio transmitter or a primary
transmitter. However, the interference among the users can be mitigated by utilizing
the spectrum sensing information, for example, through asymmetric transmitter co-
operation (i.e., asymmetric cognitive behavior) or symmetric transmitter cooperation
(i.e., cooperative behavior). Again, there could be no cooperation at all among the
transmitters (i.e., competitive behavior). In the collaborative behavior, cognitive ra-
dio devices collaborate with the primary users by acting as relays (and therefore,
there is no interference in the system). In interference avoiding behavior, a cognitive
radio user transmits only when there is no other transmission, and therefore, it avoids
interference completely.

The authors show that with asymmetric cognitive behavior and single antenna
at each node, a cognitive radio user is able to communicate at a non-zero rate in
a 2 sender, 2 receiver Gaussian noise channel without affecting the primary user,
and therefore, higher spectral efficiency can be achieved. However, the multiplexing
gain (which intuitively represents the number of information streams that can be
pushed through the channel) of this cognitive radio channel is observed to be 1.
It is shown, however, that, there are other cognitive channels (2 sender, 2 receiver
Gaussian noise channel) in which partial asymmetric knowledge about the messages
at the transmitters can provide a multiplexing gain greater than 1 which is achievable
through appropriate coding and multiple antenna at the transmitters. The authors
refer to such a channel as the cognitive X-channel.

With collaborative cognitive behavior, the network capacity depends on the chan-
nel quality between the source and the relay nodes. In case of interference avoidance
cognitive behavior, the communication between the cognitive transmitter and the re-
ceiver would be successful if they both choose the same spectrum hole. Coordination
of this selection of spectrum holes, however, may result in a loss of network capacity.

Coexistence Scenarios in Cognitive Radio Networks

Chapter 3, authored by Sofie Pollin, presents a taxonomy and classification of coexis-
tence (or dynamic spectrum sharing) scenarios in cognitive radio networks. Dynamic
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spectrum sharing can be of two types: horizontal spectrum sharing and vertical spec-
trum sharing. In the former case, all of the users have equal regulatory status to access
the radio spectrum where the nodes may use similar wireless access technology (i.e.,
homogeneous networks) or different wireless access technique (i.e., heterogeneous
networks). In case of vertical spectrum sharing, the radio spectrum is licensed to the
primary user only, while the secondary user(s) can access the spectrum opportunisti-
cally without affecting the primary users’ performance.

Irrespective of the type of coexistence model, three tasks, namely, spectrum sens-
ing (or detection of spectrum holes and/or higher layer information in the transmis-
sion protocol stack), spectrum analysis (i.e., building a model of the RF scene), and
spectrum decision (i.e., whether and how to access the spectrum), are fundamental
to any spectrum sharing process. The author outlines the major challenges related to
spectrum sensing, spectrum analysis, and spectrum decision and some of the possible
solutions from a system’s perspective. A centralized or a distributed network archi-
tecture can be used for spectrum analysis and spectrum decision. Again, spectrum
decision can be taken in a cooperative way (i.e., based on global optimization) or a
non-cooperative way (i.e., based on local optimization). To coordinate the spectrum
decision, a common control channel and/or a synchronization mechanism between
the transmitter and the receiver can be used.

The author also presents an overview of the IEEE 802.22 standard for Wireless
Regional Area Networks (WRAN) which is the first cognitive radio standard. IEEE
802.22 networks will coexist with the legacy TV transmissions. The spectrum sens-
ing, spectrum analysis, and spectrum decision for IEEE 802.22 standard are sum-
marized. To this end, as a case study, the author also addresses the dynamic spec-
trum sharing problem between IEEE 802.15.4 sensor networks and IEEE 802.11g
WLANs both operating in the 2.4 GHz ISM band. Specifically, distributed channel
selection algorithms to optimize the performance of 802.15.4 networks in presence
of interference from 802.11g networks are discussed. These algorithms take into
consideration the energy cost of sensing operation and operate without the use of
a common control channel. Also, learning-based spectrum analysis (i.e., quality of
channels) and spectrum decision methods are discussed.

Spectrum Sensing in Cognitive Radio Systems

Chapter 4, authored by Khaled Ben Letaief and Wei Zhang, presents a survey of
spectrum sensing techniques for cognitive radios. Spectrum sensing is basically a
binary hypothesis testing problem and the key performance measures for a spectrum
sensing method are the probability of correct detection, probability of false alarm,
and probability of miss. The pros and cons of the several signal detection techniques,
namely, energy detection, matched filter detection, cyclostationary detection, and
wavelet detection methods are discussed. Due to the wireless fading and shadowing
effects, spectrum sensing performance can be degraded significantly. To overcome
this problem, cooperative spectrum sensing can be used where multiple cognitive
radios cooperate on spectrum sensing to achieve sensing diversity gain.
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In a cooperative spectrum sensing scheme, distributed cognitive radios perform
local spectrum sensing independently and then fuse their local decisions together.
However, impairments in the reporting channels (i.e., channels used to convey the
sensing information from cognitive radios to the common receiver) may degrade the
performance of cooperative spectrum sensing. By exploiting cooperative diversity,
where the neighboring cognitive radios exchange their spectrum sensing decisions
and then send all the decisions to a common receiver, cooperative spectrum sens-
ing performance can be improved. Another technique to improve the performance of
cooperative spectrum sensing is to exploit multiuser diversity where distributed cog-
nitive radios are organized into different clusters and only the cluster head with the
highest channel quality in the reporting channel participates in the spectrum sensing
decision fusion process.

One important issue in cooperative spectrum sensing is the communication over-
head for transmitting the local sensing decisions to the common receiver. By using
a censored decision approach, where unreliable decisions are censored and excluded
from the final decision, the communication overhead can be significantly reduced.

Radio Link Adaptation Techniques for Cognitive Radio

Chapter 5, authored by Michael B. Pursley and Thomas C. Royster IV, presents a
framework for adaptive modulation and coding, and power adjustment at the cog-
nitive radio transmitters (i.e., spectrum decision) in order to achieve reliable com-
munication without causing interference to other radios. In the proposed framework,
the cognitive radios do not employ any channel estimation and/or measurement tech-
nique for dynamic link adaptation. Instead, demodulator and decoder statistics for a
packet derived in the receiver (such as the average Euclidean distance for the modu-
lation symbols in a packet, number of errors in the binary symbols at the demodulator
output, number of iterations performed by the decode for a packet), are exploited.

For dynamic link adaptation, the authors propose two spectrum etiquette mea-
sures, namely, the time-bandwidth product (i.e., the product of the bandwidth and
the session’s data transmission time) and the resource consumption. These etiquette
measures are functions of bandwidth, transmission time, and power. The modulation
and coding scheme can be selected such that the resource consumption is minimized
subject to the QoS constraints. Alternatively, for a given modulation scheme and a
fixed bandwidth, the code rate can be selected such that the transmission time is min-
imized. In general, there is a tradeoff between these two etiquette measures. That is,
a modulation and coding scheme with a small time-bandwidth product has a large
value of resource consumption and vice versa.

A power adjustment protocol is necessary at the beginning of a new session to
adjust the transmission power at a satisfactory level within the first few packets.
The power adjustment protocol presented in this chapter uses some adaptation statis-
tics derived in the destination’s demodulator and decoder. Power adjustment is also
necessary when the channel attenuation becomes too high to be offset by adjusting
the modulation and the coding rate. The authors demonstrate the performances of
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the proposed link adaptation protocols for AWGN channels with fixed but unknown
propagation loss and for dynamic channels with time-varying propagation loss.

Agile Physical Layer Transmission Techniques
for Cognitive Radio

OFDM-Based Cognitive Radio

Chapter 6, authored by Rakesh Rajbanshi et al., focuses on the design and imple-
mentation of multicarrier modulation (MCM)-based transmission technique for cog-
nitive radio. Specifically, one variant of orthogonal frequency division multiplexing
(OFDM) called non-contiguous OFDM (NC-OFDM) is considered in which subcar-
riers can be selectively deactivated based on the spectrum sensing measurements.
Efficient implementation of NC-OFDM transceivers is the focus of this chapter.

OFDM-based transceivers employ fast Fourier transform (FFT) and inverse fast
Fourier transform (IFFT) algorithms for efficient modulation and demodulation of
subcarriers. For NC-OFDM transceivers, methods are required to efficiently imple-
ment the FFT blockes when several subcarriers are deactivated. In a wideband cog-
nitive radio system with a highly sparse spectrum occupancy, the relative number of
zero valued inputs in the FFT can be quite large, and therefore, computation time
and/or hardware complexity can be significantly reduced by pruning the FFT algo-
rithm (i.e., by removing operations on input values which are zeros and on output
values which are not required). This is very desurable for hardware-constrained cog-
nitive radios operating in a dynamic environment. Again, with NC-OFDM-based
transmission, since the power of the deactivated subcarriers can be redistributed to
active subcarriers, the bit error rate (BER) performance can be improved as compared
to conventional OFDM.

Similar to OFDM signals, NC-OFDM signals also suffer from the peak-to-
average power ratio (PAPR) problem. PAPR characterizes the envelope variations
of the signal in time domain. With high PAPR, the digital-to-analog (D/A) convert-
ers and power amplifiers at the NC-OFDM transmitter require a large dynamic range
in order to avoid amplitude clipping. This increases both power consumption and
component cost of the NC-OFDM transceiver. Reduction in PAPR can be achieved
only at the expense of increased system complexity, reduced data rate, or degraded
BER performance. Also, due to the different statistical properties of the PAPR for
NC-OFDM signals compared to those for OFDM signals, the PAPR reduction tech-
niques proposed for conventional OFDM systems may need to be modified. In a
cognitive radio environment, the PAPR reduction techniques should be able to adapt
to the dynamic variations in the total number of active subcarriers and their locations.

System performance in an NC-OFDM-based cognitive radio system can be en-
hanced by non-uniform bit allocation across the subcarriers under given objective
function and constraints. The complexity of the non-uniform bit allocation can be
reduced by exploiting the information on incumbent spectral occupancy.
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Chapter 7, authored by Gaurav Bansal et al., presents some of the research chal-
lenges along with their solutions related to the design of link adaptation algorithms
(e.g., adaptive power and bit loading) for OFDM-based cognitive radio systems. Dif-
ferent power, bit or both power and bit loading schemes can be designed for cognitive
radios (i.e., secondary users) which exploit the time varying nature of fading gains
across the OFDM subcarriers. However, one of the challenges here is to ensure that
the interference caused to the primary users remains below the target interference
threshold. Therefore, not only the fading gains, but also the spectral distance of the
subcarriers from the primary user’s band need to be considered.

The authors formulate the power and bit loading problem in an OFDM-based
cognitive radio system as a constrained optimization problem the objective of which
is to maximize the transmission capacity of the cognitive radio users while keeping
the interference caused to the primary users below a specified threshold. The amount
of transmit power and the transmission capacity depend on the interference threshold.
It is observed that, for a given interference threshold, assuming that the transmission
rate can be varied continuously, the optimal scheme increases the transmission ca-
pacity of cognitive radio users compared to the uniform bit loading scheme as well
as the water-filling scheme. For a given interference threshold, compared to the two
other schemes, the optimal scheme allows more power to be transmitted. Note that,
with the uniform power loading policy, the total transmit power is allocated equally
among all the subcarriers while with the water-filling policy, more power is allocated
to the subcarriers having better channel quality.

The authors also investigate the case of discrete (or integer) rate adaptation. A
sub-optimal scheme for integer bit loading is presented which approximates the opti-
mal continuous rate value to the nearest integer. The authors also present two modifi-
cations of the two well-known algorithms for integer bit loading in order to minimize
interference to the primary users.

In an OFDM-based cognitive radio system, interference to the primary users can
be reduced by nulling the adjacent subcarriers. However, if the time-varying nature of
the fading gains is not considered while nulling the adjacent subcarriers, it may affect
the achievable transmission capacity of cognitive radio users. The authors demon-
strate that, for a given interference threshold, nulling degrades the transmission ca-
pacity compared with the optimal scheme.

UWB Cognitive Radio Transmission

Chapter 8, authored by Hüseyin Arslan and Mustafa E. Şahin, investigates the poten-
tial of the UWB technology to implement cognitive radio networks. Ultra wideband
(UWB) wireless technology is considered as one of the enabling technologies for
cognitive radio networks due to its potential to fulfill some of the key cognitive radio
requirements. UWB is defined as a wireless technology using a bandwidth greater
than 500 MHz or a fractional bandwidth (i.e., 2(fh−fl)

fh+fl
, where fh and fl denote, re-

spectively, the upper and lower edge frequencies) greater than 0.2. According to the
current FCC regulations in USA, UWB systems are allowed to operate in the 3.1–
10.6 GHz band without any licensing requirement. To ensure that the UWB systems
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do not affect the licensed operators in this band, the maximum transmission power
should be limited to −42 dBm/MHz (FCC Part 15 limit).

UWB is commonly implemented as an impulse radio-based UWB (IR-UWB)
or OFDM-based UWB (UWB-OFDM). In IR-UWB, extremely low power pulses
which are on the order of nanoseconds are transmitted. IR-UWB provides flexibil-
ity in modulation methods (e.g., on–off keying (OOK), pulse amplitude modulation
(PAM), pulse position modulation (PPM), phase shift keying (PSK) etc.), transmit
power, receiver types (e.g., coherent receivers, non-coherent receivers), and pulse
shaping. It also possesses an excellent multipath resolving capability. In UWB-
OFDM, the entire UWB bandwidth is divided into multiple subbands with each
subband containing a number of orthogonal subcarriers. To avoid interference to li-
censed users, in a UWB-OFDM transmitter, the subcarriers can be selectively turned
off.

UWB can be implemented in both underlay and overlay modes. Adaptability in
spectrum occupancy and data rate can be achieved by varying the pulse duration
and/or shape (in IR-UWB systems) or by turning off subcarriers (in UWB-OFDM
systems). Adaptability in multiple access can be achieved, for example, by changing
the number of chips in a frame (in IR-UWB systems) or by changing the number of
subcarriers assigned to each user (in UWB-OFDM systems).

Besides the above adaptive communication capabilities, UWB technology may
offer other supplementary services for cognitive radio networks. Among these ser-
vices include estimating the locations and speeds of the nodes and providing aware-
ness of the physical environment (e.g., moving objects).

Dynamic Spectrum Access Techniques in Cognitive Radio
Networks

One of the major challenges in developing cognitive radio networks is the design
of dynamic spectrum access techniques among the distributed cognitive radio users.
A range of dynamic spectrum access techniques can be developed based on the de-
gree of cooperation among the cognitive radios. These techniques may vary from
completely distributed non-cooperative scheme on one extreme to a completely cen-
tralized scheme at the other extreme.

Degrees of Cooperation in Dynamic Spectrum Access

Chapter 9, authored by Zhu Han, describes different dynamic spectrum access tech-
niques exploiting different degrees of cooperation, possible network scenarios they
are suitable for, and the underlying tradeoffs.

In a non-cooperative spectrum access environment, the cognitive radios act self-
ishly in a distributed fashion without cooperating with each other. Dynamic spectrum
access in this case can be modeled as a game where each player of the game (i.e., a
cognitive radio) tries to optimize its own utility function. Nash equilibrium is a well-
known solution concept for a game which denotes a set of strategies, one for each
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player, such that no player has any incentive to unilaterally deviate from its strategy.
In the equilibrium, each player selects a utility-maximizing strategy given the strate-
gies of other players. There might be more than one Nash equilibrium in which case
the optimal one needs to be selected based on an optimality criterion.

Correlated equilibrium is another solution concept (more general than Nash equi-
librium). The correlated equilibrium defines a probability distribution for the strategy
profile. The Nash equilibrium corresponds to the special case where the probability
distribution is a product of each individual player’s probability for different actions.
In a dynamic opportunistic spectrum access model for cognitive radios, there could
be solutions corresponding to correlated equilibria which achieve strictly better per-
formance compared to the Nash equilibrium in terms of spectrum utilization and
fairness. The optimal correlated equilibrium can be found, for example, based on
criterion such as the maximization of the sum of utilities of the cognitive radios or
ensuring max–min fairness.

In a distributed cognitive environment, the game solutions can be achieved
through an adaptive learning process. For a class of algorithms called regret-matching
(or no-regret) algorithms, the probability for a player i to take action ri is a linear
function of the regret which can be interpreted as the average payoff that user iwould
have obtained if it had played r

′

i instead of ri. The stationary solution of such a algo-
rithm exhibits no regret. Learning algorithms for distributed opportunistic spectrum
access can be also developed based on finite-state Markov decision process (MDP),
reinforcement learning algorithms such as Q-learning, etc.

When the distributed learning-based approaches lead to undesired equilibria, the
outcome of non-cooperative competition can be improved by using a referee-based
approach where the referee collects the information necessary to improve the equi-
librium and instruct the cognitive radios to change the game rules. The author in
Chapter 8 illustrates the application of this approach to perform channel assignment,
adaptive modulation, and power control for a multi-cluster cognitive network.

In general, non-cooperative dynamic spectrum access (e.g., based on Nash equi-
librium) results in inefficient system performance. By enforcing cooperation among
the distributed cognitive radios, the system performance can be significantly im-
proved. The repeated game framework provides a mechanism to enforce coopera-
tion. In a repeated game, the players are able to obtain information on the other
players’ strategies in the past and exploit those information to obtain better equilib-
rium. To enforce cooperation in such a repeated game, a method would be required
to introduce punishment to the defecting users. For this, the cognitive radios need to
determine if any user is deviating from cooperation (e.g., through information such
as successful transmission rate, network throughput etc.). Upon detection of any de-
viating behavior, a cognitive radio switches to a punishment phase (which lasts for
an optimal punishment time) during which the players play a static Nash equilibrium
the outcome of which is much worse than that generated by a cooperative strategy.
Therefore, the deviating cognitive radios will have much lower payoff in the punish-
ment phase. If the punishment time is designed such that the gains by the deviating
cognitive radios during the non-cooperation phase is outweighed by the punishment,
they will not have any motivation to deviate from cooperation. The author illustrates
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the application of the above framework for optimal rate control in a distributed cog-
nitive radio network.

Auction theory can be also used for radio resource allocation and management
in cognitive wireless networks. For this, some nodes (e.g., cluster heads) can serve
as auctioneers to handle the bidding among the cognitive nodes for spectrum allo-
cation. Methods for spectrum allocation among the bidders (i.e., cognitive nodes)
based on some design criteria (e.g., maximize total utility, minimize variance in util-
ity) and payments (i.e., how the bidders pay the auctioneer) need to be designed. The
cognitive nodes follow the instructions from the auctioneer for spectrum usage.

For cooperative resource allocation among the cognitive radios, the idea of mu-
tual benefits using bargaining can be used where the cognitive radios exchange in-
formation among themselves locally for the bargaining. Fair solutions for dynamic
spectrum access can be achieved, for example, through Nash bargaining solution, in
a self-organized way.

In a cooperative spectrum access scenario, the mutual benefits can be also ob-
tained through coalition. For this, all of the cognitive radios “put their cards on the
table” and determine the best strategies for coalition. That is, a contract is signed
among the cognitive radio users which ensures that the benefit of coalition is higher
than that without coalition. The benefits of cooperation are shared among the cogni-
tive users in a fair way.

Dynamic spectrum access in a cognitive radio network can be performed in a cen-
tralized manner where the cognitive radios communicate with a common controller
node (e.g., a base station/access point), and thereby, they fully cooperate and follow
the instructions from the centralized node. The resource allocations problems among
the cognitive radios are then formulated as constrained optimization problems and
solved by the central controller. Methods such as Lagrangian method, mathematical
programming (e.g., linear programming, convex programming, nonlinear program-
ming, dynamic programming) can be used to obtain the solution of the optimization
formulation. Such a centralized scheme can offer the best network performance, but
at the expense of considerable signaling and computation overhead.

Decentralized Medium Access Control (MAC) Protocols for Dynamic
Spectrum Access: Decision Theoretic Framework

Chapter 10, authored by Qing Zhao, Yunxia Chen, and Ananthram Swami, presents a
cross-layer design framework for decentralized MAC protocols for cognitive radios
in a non-cooperative dynamic spectrum access scenario. Specifically, the joint opti-
mization of the physical layer (PHY) sensing policy and the MAC layer access policy
is sought for when the issues such as channel fading, activity of the primary users,
sensing errors, and energy constraints and hardware limitations in the cognitive ra-
dio need to be also taken into consideration. While the sensing policy specifies which
channel to sense, the access policy determines whether to transmit or not based on
the sensing outcome. The access policy can be an aggressive one or a conservative
one depending on the sensor operating characteristics. With an aggressive spectrum
access policy, miss detections by the spectrum sensor (i.e., a busy channel is sensed
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to be idle ) may cause collisions with primary users. With a conservative spectrum
access policy, false alarms may cause wasted spectrum opportunities.

The authors consider a system model involving a spectrum sensor at the physical
layer and a sensing policy and an access policy at the MAC layer. The joint PHY-
MAC design problem is formulated as a constrained Partially Observable Markov
Decision (POMDP) process for which the knowledge of the current spectrum occu-
pancy state based on the past sensing and access actions can be summarized by a
belief state. The sensing policy is given by a sequence of functions each of which
maps this belief state at the beginning of a time interval (e.g., time slot) to a chan-
nel to be sensed. An access policy is given by a sequence of functions where each
function maps the belief state and the sensing outcome of the chosen channel to
an access action. The objective of the POMDP formulation is to obtain the optimal
sensing and access policies along with the optimal sensor operating point such that
the total expected throughput of a cognitive radio is maximized over a finite time
interval.

The optimal transmission probabilities depend only on the sensor operating char-
acteristics (e.g., probability of miss detection) and the maximum allowed probability
of collision (and hence independent of belief state). When the probability of miss
detection is high, the access policy should be conservative to ensure that the proba-
bility of collision remains below the threshold. In this case, even when the channel is
sensed to be idle, the cognitive radio should transmit with a probability less than 1.
In contrast, when the probability of false alarm is high (i.e., an idle channel is sensed
to be busy), the access policy should be aggressive. That is, it should always transmit
when the channel is sensed to be idle and transmit with a non-zero probability even
when the channel is sensed to be busy.

The authors show that the joint design problem can be separated into two prob-
lems, namely, the design of optimal spectrum sensor operating point and spectrum
access policy, and design of the sensing policy. The optimal sensor operating point is
the point where the maximum allowed probability of collision is equal to the prob-
ability of miss detection and the optimal access policy is to always trust the sensing
outcome (i.e., deterministic). The optimal sensing policy is one of sequential deci-
sion making which exploits the entire history of sensing outcome (i.e., it depends on
the belief state).

The authors also study the impact of channel fading on the optimal sensing and
access policies when the energy constraint in a cognitive radio is also taken into ac-
count. Depending on the fading condition, a cognitive radio may have to use different
power levels for spectrum access. The problem of opportunistic spectrum access un-
der energy constraint is formulated as an unconstrained POMDP. A policy of this
POMDP is a sequence of functions each of which maps the belief state (i.e., past
decisions and observations as well as the residual energy level) to a sensing decision
and a set of access decisions. The design objective here is to obtain the optimal pol-
icy, i.e., the policy for which, the total expected number of information bits that can
be transmitted successfully by a cognitive radio during its battery lifetime (i.e., total
expected reward), can be maximized. The computational complexity of the optimal
policy increases exponentially with the number of channels and battery lifetime. A
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suboptimal solution to the problem is then proposed which reduces the computational
complexity significantly with only moderate loss in performance.

The essence of the optimal sensing and access policy is that it achieves a tradeoff
among gaining instantaneous reward, gaining information for future use, and conser-
vation of energy. Specifically, the optimal sensing decision (i.e., to sense or not to
sense) strikes a balance between gaining reward and conserving energy. The optimal
access policy depends on the energy consumption due to sensing and the channel
fading conditions. If the energy consumption due to sensing is negligible, under poor
channel conditions, a cognitive radio should wait for the best channel condition. On
the other hand, if the sending energy consumption is large, it should access the chan-
nel regardless of the fading condition.

Decentralized Dynamic Spectrum Access: Game Theoretic Learning Model

As has been stated before, game theory provides useful models for developing dy-
namic spectrum access techniques which involve multiple competing cognitive ra-
dios. Chapter 11, authored by Michael Maskery, Vikram Krishnamurthy, and Qing
Zhao, presents a game theoretic learning model for dynamic spectrum access in a
distributed cognitive radio environment. Specifically, a decentralized game theoretic
reinforcement learning scheme is proposed for slotted carrier sense multiple access
(CSMA)-based channel access for cognitive radios. Each radio competes for oppor-
tunistic access to a number of channels used by the primary users. The objective of
each radio is to select a subset of the unoccupied channels to satisfy its current de-
mand level. Each cognitive radio aims at maximizing its utility which is formulated
as a function of its demand level, channel usage pattern of primary users, number of
competing users for a given channel, pricing for the available radio channels, and the
throughput achieved. The utility function is used to guide a modified regret-based re-
inforcement learning procedure. This decentralized procedure allows each cognitive
radio to perform channel access satisfactorily through repeated channel selections
and corresponding performance measurements. Regret-based learning procedures
are simple to implement and their convergence properties are well understood.

The proposed learning algorithm is game theoretic in nature since each cogni-
tive radio adopts a channel allocation that maximizes its own utility in response to
the actions by other cognitive radios (i.e., competitive optimality). In a regret-based
learning algorithm, a regret matrix is used by each user, which tracks for every pair
of actions ai, aj the difference in utility if the user had taken action ak in the past
everywhere he took action aj . Given that the action taken by the user at time instant
n is aj , the probability of choosing action ak at time instant n + 1 is proportional
to the regret value from aj to ak. The learning process proceeds through exploration
by switching among different actions. Since the algorithm requires that a use knows
the utility he would have received for each action even if that action was not taken,
which might not be feasible in practice, a stochastic approximation is used to com-
pute the regret values. The modified regret-based learning algorithm converges to a
set of correlated equilibria. As we described before, correlated equilibrium is a more
general equilibrium concept than Nash equilibrium.
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The performance of a decentralized spectrum access scheme may be improved by
occasionally adjusting the behavior of the cognitive radios, for example, by periodi-
cally broadcasting parameter (e.g., spectrum price) updates from a central controller.
These updates can be used by the cognitive radios to update their utility function.
This adjustment may improve the equilibrium behavior from a global perspective,
for example, improve the spectral efficiency of the cognitive radio system (i.e., aver-
age proportion of radio channels used by the cognitive radios). The pricing parameter
should be determined such that it maximizes the global utility which is a function of
the equilibrium behavior of the cognitive radios under the utility determined as a
function of this pricing parameter. Since it is difficult (if not impossible) to deter-
mine the equilibrium behavior a priori, a stochastic approximation approach is used
to find the optimal value of the pricing parameter.

Decentralized Dynamic Spectrum Access in Cognitive Networks: A Local
Coordination/Bargaining-Based Approach

Chapter 12, authored by Haitao Zheng and Lili Cao, presents a decentralized ap-
proach for spectrum sharing where the cognitive users perform local coordinations
to modify their spectrum usage (to adapt to the variations in network topology) to
achieve a conflict-free spectrum assignment which maximizes the system utility. In
the considered system model, cognitive radios select communication channels and
adjust transmission power accordingly so that they do not cause interference to the
primary users. The system utility is measured in terms of proportional fairness (i.e.,
total logarithmic user throughput) among the cognitive radios. For local coordina-
tion, the cognitive radios consider both the needs of neighboring devices and spec-
trum availability to determine their spectrum usage. Upon detection of suboptimal
spectrum usage (e.g. due to user mobility), the coordination/bargaining protocol is
triggered to apply local adjustments among the neighboring radios. During local co-
ordination, sets of neighboring cognitive radios self-organize themselves into coordi-
nation/bargaining groups and each such group modifies spectrum assignment within
the group to improve system utility. The major challenge in designing a local coordi-
nation protocol is to ensure that the local improvements approach the global optimal
solution and the convergence speed is fast.

Two different approaches can be used for local coordination, namely, the explicit
bargaining-based approach and the implicit rule-based approach. In the former ap-
proach, the cognitive radios negotiate spectrum usage through message exchange,
while in the latter approach the radios observe the behaviors of neighboring nodes
and independently adjust spectrum usage following predefined rules. The explicit
approach will incur overheads in terms of communication signaling and transmis-
sion energy. The implicit approach may be simpler to implement with significant
reduction in signalling traffic among the radios and power consumption.

To facilitate bargaining in the explicit bargaining-based approach, the authors
propose two constraints, namely, the limited neighbor bargaining constraint and the
self-contained group bargaining constraint. With the former constraint, bargaining
within a group is coordinated by a central leader, and it is limited among the leader
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and its k-hop neighbors. With the latter constraint, bargaining inside each group
should not disturb the spectrum assignments in other groups. Therefore, a local im-
provement should lead to a system improvement. Under this constraint, the number
of channels which are exchanged among nodes inside a bargaining group is limited
and also the members of any two bargaining groups are not directly connected.

The authors propose a local bargaining protocol, namely, Fairness Bargaining
with Feed Poverty based on the explicit negotiation approach. In this protocol, a cog-
nitive radio willing to improve its spectrum usage starts bargaining with its neighbors
on a one-to-one basis to improve system utility. However, if there is no negotiable
channel found between it and any of its neighbors, the node initiates a Feed Poverty
Bargaining so that the neighboring nodes can collaborate together to feed it with
some channels. For this protocol, the lower bound on the throughput performance
(i.e., poverty line) for each of the nodes is obtained. Simulation results show that
compared to a centralized approach (e.g., based on a graph multi-coloring approach),
the proposed local bargaining approach incurs much lower communication overhead
while achieving similar performance (in terms of fairness utility). Note that, each
iteration of spectrum assignment/bargaining involves a four-way handshake (i.e., re-
quest, acknowledgment, action, acknowledgment) among neighbors. As expected,
the complexity of the bargaining approach increases with increase in the rate of
change of network topology (i.e., user mobility). System utility scales inversely with
increase in user density. With a fixed user density, the system overhead scales linearly
with the number of users. Therefore, the local bargaining-based approach would be
suitable for large scale networks.

MAC Protocols for Hardware-Constrained Cognitive Wireless Networks

Chapter 13, authored by Qian Zhang, Juncheng Jia, and Xuemin Shen, presents a
single radio multi-channel MAC protocol for hardware-constrained cognitive wire-
less networks. The cognitive radios need to sense spectrum before transmission. The
MAC layer in a cognitive radio determines when and which channel it should sense
and then physical layer techniques (e.g., energy detection, matched filter detection,
etc.) are used to detect the primary users’ signal. The hardware constraints in a cog-
nitive radio are due to the sensing constraint and transmission constraint. Since at a
given time a practical cognitive radio may be able to sense only a small portion of
the radio spectrum, this gives rise to the sensing constraint. The transmission con-
straint arises due to the spectrum fragmentation (e.g., a cognitive radio may be able
to spread the transmission signal within a limited number of spectrum fragments).
Again, there is a constraint on the maximum amount of time a primary user can
tolerate interference from the secondary user (as in IEEE 802.22) – this is referred
to as the transmission parameter limitation. This parameter dictates how quickly a
cognitive radio must be able to detect incumbents. The problem is then to optimize
the sensing decision during each sensing and transmission interval. Note that, the
more spectrum is sensed, the more spectrum opportunity can be explored. The pro-
posed hardware-constrained MAC protocol takes the sensing constraint and sensing
overhead as well as the transmission parameter limitation into account.
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The authors model the sensing process as an optimal stopping problem with a fi-
nite horizon which can be described as the problem of choosing a time to take an ac-
tion based on sequentially observed random variables in order to maximize/minimize
an expected payoff/cost. Such a problem can be solved by using the backward induc-
tion principle. However, it incurs exponential computational complexity. To reduce
the complexity for a practical MAC protocol, the authors use a k-stage look-ahead
rule at each stage to decide whether to stop or continue sensing.

In the considered system model, a common control channel is used for contention-
based random access (e.g., based on IEEE 802.11 DCF) by the cognitive radios to
reserve the time interval for spectrum sensing and subsequent data transmission be-
tween a cognitive radio transmitter and receiver. The time frame in HC-MAC is di-
vided into three parts: contention, sensing, and transmission. The contention part
is used to reserve the sensing period. During the sensing part, the cognitive radio
transmitter and the receiver sense the spectrum channels and determine whether a
channel is available at both the sides. The optimal stopping rule is used to decide
when to stop sensing. In the transmission part, actual data transmission takes place.
Simulation results show that, under different system configurations, the proposed
HC-MAC protocol achieves better system throughput compared to a static sensing
scheme where the cognitive radios always sense a fixed number of channels.

Microeconomic Models for Dynamic Spectrum Management

Chapter 14, authored by Dusit Niyato and Ekram Hossain, investigates the problem
of dynamic spectrum sharing and pricing using the oligopoly market models from
microeconomic theory. In an oligopoly market model, a number of producers (i.e.,
oligopolists) compete with each other independently to maximize their utility by
controlling the quantity and/or the price of the supplied commodity. The classical
oligopoly models include Cournot, Stackelberg, and Bertrand models which differ
from one another in terms of the nature of the competition. In the Cournot model,
producers compete in terms of amount of commodity to be supplied to the market.
In the Stackelberg model, some producers referred to as leaders are able to make
decisions on the amount of supplied quantity before other producers referred to as
followers. The followers make decision on the amount of supplied quantity by taking
the leader’s decision into account. In the Bertrand model, all producers make decision
simultaneously in terms of price. All of these models can be analyzed by using game
theory.

Oligopoly market models can be used for analyzing dynamic spectrum manage-
ment in cognitive radio networks. One of the objectives of spectrum management
here is to maximize the profits of the cognitive radios (e.g., in terms of spectrum
share) and/or the primary service providers/users (e.g., in terms of spectrum price).
This is the same as the objective of an oligopoly competition. The oligopoly mar-
ket models were well studied in economics. Also, they are computationally simple,
and therefore, suitable for implementation in resource-limited software defined radio
transceiver.
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The authors demonstrate the applications of Cournot, Stackelberg, and Bertrand
models of competition for spectrum/bandwidth sharing and pricing in cognitive wire-
less networks. Specifically, these three different models for oligopoly are applied to
obtain the optimal size of spectrum/bandwidth sharing and the charging price. The
Cournot game model is used for the case where multiple cognitive radios share the
spectrum/bandwidth with a primary user and the objective is to maximize the profit
of the cognitive radios. Here, all the cognitive radios can completely observe the
strategies and the payoffs of other secondary users. The profit of a cognitive radio is
a decreasing function of the amount of spectrum requested (and subsequently allo-
cated) to other users (i.e., their strategies). Again, the profit is an increasing function
of the amount of spectrum allocation and the quality of the corresponding spectrum
opportunity. The Nash equilibrium is considered as the solution of the spectrum com-
petition which ensures that all of the cognitive radios are satisfied with the solution.
The Nash equilibrium is obtained by using the best response functions.

In the Bertrand model, several service providers (or primary users) compete with
each other in terms of price to gain the highest profit under QoS constraints for
the primary users. Here, the bandwidth demand of the cognitive radios is established
based on a utility function which depends on the quality of transmission (i.e., channel
quality) in the available spectrum as well as the spectrum price charged by the pri-
mary user/service provider. The payoffs for the primary users are determined based
on the spectrum price and the spectrum demand from the secondary users and the
cost of sharing the spectrum with the secondary users. In addition, the authors con-
sider spectrum substitutability in the formulation which represents the ability of a
cognitive radio to switch among the frequency spectra offered by different primary
users. Again, the Nash equilibrium is obtained as the solution of this price competi-
tion.

The Stackelberg leader-follower competition is used to model the problem of
optimal sharing and pricing under elastic bandwidth demand from the cognitive ra-
dios. The authors illustrate the application of this competition model in the context
of spectrum sharing in an integrated WiMAX/WiFi network where the WiFi nodes
share the licensed WiMAX spectrum for broadband Internet access. The WiMAX
base stations (BSs) and the WiFi access points (APs) are operated by different ser-
vice providers. The WiMAX BS and the WiFi APs are the leader and the followers,
respectively. The Stackelberg equilibrium is considered as the solution of this spec-
trum sharing game.

Numerical performance evaluation results are presented for all of these oligopoly
competition models to show their efficacy in allocating radio resource in cognitive
radio environments.

Analysis of Cognitive Radio Dynamics

Chapter 15, authored by Maria-Gabriella Di Benedetto et al., presents a mathematical
framework for analyzing the behavior of a self-organizing cognitive radio network
where continuous dynamics and discrete processes tightly interact. This framework
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is based on the hybrid system modeling approach. In a hybrid system, continuous
and discrete variables interact and determine the system evolution. The system state
is made of a discrete state (from a finite set) and a continuous state. The evolution
of the discrete state is governed by using a discrete finite-state automaton, where for
each state, state-specific rules of operation govern the evolution of the network. There
are both discrete and continuous control inputs and disturbance variables as well as
both discrete and continuous output variables. The authors illustrate the application
of the hybrid system formalism in a cognitive radio network where the cognitive
nodes adapt the transmission parameters such as pulse shape, transmission power in
response to RF stimuli from the environment.

Conclusion

We have provided a summary of the contributed articles in this book. We hope this
summary would be helpful to follow the rest of the book easily. We believe that the
rich set of references in each of the articles will be invaluable to the researchers. We
would like to express our sincere appreciation to all of the authors for their excellent
contibutions and their patience during the publication process of the book. We hope
this book will be useful to both researchers and practitioners in this emerging area.
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Fundamental Issues in Cognitive Radio

Simon Haykin

McMaster University, Canada
Haykin@mcmaster.ca

1.1 Introduction

The electromagnetic radio spectrum is a natural resource, the use of which by trans-
mitters and receivers (transceivers) is licensed by government agencies. However,
this resource is presently underutilized. In particular, if we were to scan the radio
spectrum, including the revenue-rich urban areas, we would find that some frequency
bands in the spectrum are unoccupied some of the time, some other frequency bands
are only partially occupied, and the remaining frequency bands are heavily used. It
is therefore not surprising to find that underutilization of the radio spectrum is be-
ing challenged on many fronts, including the Federal Communications Commission
(FCC) in the United States of America.

Cognitive radio1 offers a novel way of solving spectrum underutilization prob-
lems. It does so by sensing the radio environment with a twofold objective: identify-
ing those subbands of the radio spectrum that are underutilized by the primary (i.e.,
legacy) users and providing the means for making those bands available for employ-
ment by unserviced secondary users. To achieve these goals in an autonomous man-
ner, multiuser cognitive radio networks would have to be self-organized. Moreover,
there would have to be a paradigm shift from transmitter-centric wireless communi-
cations to a new mode of operation that is receiver-centric, so as to maintain a limit
on the interference produced by secondary user.

The underutilized frequency bands of the radio spectrum, owned by legally li-
censed (primary) users, are referred to as spectrum holes, which are formally defined
as follows [1]:

1 Cognitive radio is a constituent of the emerging discipline: Cognitive Dynamic Systems;
see the point-of-view article in [2]. This discipline, motivated by the human brain, includes
other constituents: cognitive radar and cognitive immunity. Unlike traditional radar, cog-
nitive radar includes feedback from the receiver to the transmitter, resulting in immense
benefits to radar performance. The purpose of cognitive immunity is to resist cyber attack
in dynamic software systems.
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A spectrum hole is a band of frequencies assigned to a primary user, but
at a particular time and specific geographic location, the band is not being
utilized by that user.

The operation of cognitive radio hinges on the availability of spectrum holes.
The identification and exploitation of spectrum holes presents technical challenges
grouped under two categories, one rooted in computer software and the other rooted
in signal-processing and communication technology. These technical challenges are
further compounded by the fact that the spectrum holes come and go in a stochastic
manner.

Much of the material presented in this article focuses on signal-processing and
communication-theoretic aspects of cognitive radio. Specifically, the material is or-
ganized as follows. The notion of cognition is discussed in Sect. 1.2. Section 1.3
describes two complementary visions of cognitive radio, one addressing software ar-
chitectural aspects of cognitive radio and the other addressing signal-processing and
communication-theoretic aspects of the subject. Section 1.4 deals with radio-scene
analysis, which encompasses the sensing of the radio environment and identifying
the specific locations of spectrum holes in the radio spectrum. Section 1.5 deals with
two related issues: channel-state estimation and predictive modeling, both of which
are fundamental to efficient utilization of the radio spectrum and coherent detection
of the information-bearing signal at a user’s receiver. Information gathered by the
receiver on its local environment is sent to the transmitter via a low bit-rate feedback
channel, which is discussed in Sect. 1.6.

Up to this point in this chapter, the discussion is focused on issues relating largely
to a single user (i.e., transmitter linked to its receiver). The rest of the chapter, be-
ginning with Sect. 1.7, is devoted to self-organized multiuser cognitive radio net-
works, with emphasis on the complementary use of cooperation and competition.
Section 1.8 discusses the function of dynamic spectrum management, where the use
of orthogonal frequency-division multiplexing (OFDM) based on cooperative com-
munication is advocated. Based on this encoding strategy, Sect. 1.9 describes a sta-
tistical model of cognitive radio networks, which sets the stage for formulation of
the transmit-power control problem in Sect. 1.10. Section 1.11 views the multiuser
cognitive radio network, operating in a non-cooperative manner, as a game-theoretic
problem. Section 1.12 describes an iterative waterfilling algorithm for resolving the
issue of transmit-power control, followed by Sect. 1.13 on the emergent behavior of
cognitive radio networks. Section 1.14 briefly discusses a plan for distributed traffic
coordination of cognitive radio users in an ad hoc network environment. Then the
chapter concludes with some final remarks.

1.2 Cognition

In a way, it can be argued that cognitive radio draws its inspiration from cognitive sci-
ence. The roots of cognitive science are intimately linked to two scientific meetings
that were held in 1956 [3]:
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• The Symposium on Information Theory, which was held at the Massachusetts
Institute of Technology (MIT). That meeting was attended by leading authori-
ties in the information and human sciences, including Allen Newell (computer
scientist), the Nobel Laureate, Herbert Simon (political scientist and economist),
and Noam Chomskey (linguist). As a result of that symposium, linguists began
to theoretize about language, which was to be found subsequently in the theory
of computers: the language of information processing.

• The Dartmouth Conference, which was held at Dartmouth College, New Hamp-
shire. The conference was attended by the founding fathers of artificial intel-
ligence, namely, John McCarthy, Marvin Minsky and Allen Newel. The goal
of this second meeting was to think about intelligent machines. The Dartmouth
Conference was also attended by Frank Rosenblatt (psychologist), the founder
of (artificial) neural networks. At the conference, Rosenblatt described a novel
method for supervised learning, which he called the perceptron.2 However, in-
terest in neural networks was short lived: in a monograph published in 1969,
Minsky and Papert used mathematics to demonstrate that there are fundamen-
tal limits on what Rosenblatt’s perceptron could compute. The Minsky–Papert
monograph, coupled with a few other factors, contributed to the dampening of
interest in neural networks in the 1970s. We had to wait for the pioneering con-
tributions of John Hopfield on neurodynamic systems and Rumlehart, Hinton and
Williams on supervised learning in the 1980s for the revival of research interest
in neural networks.3

In a book entitled “The Computer and the Mind,” Johnson-Laird [4] postulated the
following tasks of a human mind:

• To perceive the world
• To learn, to remember and to control actions
• To think and create new ideas
• To control communication with others
• To create the experience of feelings, intentions and self-awareness

Johnson-Laird, a prominent psychologist and linguist, went on to argue that theories
of the mind should be modeled in computational terms.

Much of what has been identified by Johnson-Laird as the mind’s main tasks and
their modeling in computation terms apply equally well to cognitive radio. Indeed,
we can go on to offer the following definition for cognitive radio involving multiple
users.

The cognitive radio network is an intelligent multiuser wireless communica-
tion system that embodies the following list of primary tasks:

• To perceive the radio environment (i.e., outside world) by empowering each
user’s receiver to sense the environment on continuous time

2 The perceptron provided the inspiration for Widrow and Hoff to develop the least-mean-
square (LMS) algorithm, which has established itself as the workhorse for adaptive filtering
for close to 50 years.

3 For a historical account of neural networks, see Haykin [5].
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• To learn from the environment and adapt the performance of each transceiver to
statistical variations in the incoming RF stimuli

• To facilitate communication between multiple users through cooperation in a
self-organized manner

• To control the communication processes among competing users through the
proper allocation of available resources

• To create the experience of intentions and self-awareness

The primary objective of all these tasks, performed in real time, is twofold:

• To provide highly reliable communication for all users
• To facilitate efficient utilization of the radio spectrum in a fair-minded way

1.3 Two Complementary Visions of Cognitive Radio

In the first doctoral dissertation on cognitive radio published in 2000, Joseph Mitola
described how a cognitive radio could enhance the flexibility of personal wireless
services through a new language called the radio knowledge representation language
[6]. Mitola followed this dissertation with the publication of a book on cognitive ra-
dio architecture [7]. A distinctive feature of both publications is a cognitive computer
cycle, which encapsulates the various actions expected from a cognitive radio, as de-
picted in Fig. 1.1. Through deployment of the right software control, it is envisioned
that a cognitive radio could orient itself by establishing priorities, then create plans
decide and finally take the appropriate action in response to sensing of the RF envi-
ronment. As envisioned in Fig. 1.1, provisions are also made for the cognitive radio
to do two things:

• Bypass the planning phase and go directly to the decision phase in the event of
an urgent situation

• Bypass the two phases of planning and decision-making by proceeding immedi-
ately to the action phase in the event of an emergency.

In the first journal paper published in 2005, Simon Haykin presented detailed expo-
sitions of the signal-processing, adaptive and learning procedures that lie at the heart
of cognitive radio [2]. In particular, the paper identifies three specific tasks:

1. Radio-scene analysis (RSA), which encompasses
• Estimation of interference temperature of the radio environment localized

around a user’s receiver
• Detection of spectrum holes
• Predictive modeling of the environment.

2. Channel identification, which is needed for improved spectrum utilization and
coherent detection of original information-bearing signal at the user’s receiver.

3. Dynamic spectrum management (DSM) and transmit-power control (TPC),
which culminates in decision-making and action taken by the user’s transmit-
ter in response to the analysis of RF stimuli picked up by the receiver.
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Fig. 1.1. Cognitive computer cycle. ( c©2006 Joseph Mitola III. Reprinted, with permission
from [7, p. 135]).

Tasks (1) and (2) are performed in the receiver, and task (3) is performed in the trans-
mitter, as depicted in the cognitive signal-processing cycle in Fig. 1.2; the depiction
is presented in the context of a multiuser network.

For the transmitter to work harmoniously with the receiver,4 there is an obvi-
ous need for a feedback channel connecting the receiver to the transmitter as shown
in Fig. 1.2. Through the feedback channel, the receiver is enabled to convey to the
transmitter two essential forms of information:

• Information on the performance of the forward link for adaptive modulation
• Information on the spectral state of the RF environment in the local neighborhood

of the receiver

The cognitive radio is therefore, by necessity, an example of a global closed-loop
feedback control system.

4 Every node of the network is equipped with a transceiver (i.e., transmitter/receiver com-
bination). Accordingly, the transmitting part of the node can analyze the radio scene in
its local neighborhood, and thereby identify the spectrum holes available for use by the
transmitter for communication with the receiver of some other node.
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Fig. 1.2. Basic signal-processing cycle for user m in a cognitive radio network; the diagram
also includes elements of the receiver of user m.

The pioneering contributions made by Mitola and Haykin are in fact complemen-
tary, with Mitola’s contribution focusing on software computer aspects of cognitive
radio, and Haykin’s contribution focusing on signal-processing and communication-
theoretic aspects of this exciting multidisciplinary subject.

One other relevant comment is in order. A broadly defined cognitive radio tech-
nology accommodates a scale of differing degrees of implementation. At one end
of the scale, the user may simply find a spectrum hole and build its cognitive cycle
around that hole. At the other end of the scale, the user may employ multiple imple-
mentation technologies to build its cognitive cycle around a wideband spectrum hole
or a set of narrowband spectrum holes to provide the best expected performance in
terms of spectrum management and transmit-power control, data rate, and reliable
communication, and do all this in the most secure manner feasible.

1.4 Radio-Scene Analysis

With the background material covered in the previous three sections at hand, we are
now ready to address the issues involved in radio-scene analysis (RSA). This section
is organized as follows:

• We first describe the notion of interference temperature, followed by the issue of
the non-stationary character of RF stimuli.
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• Next, we describe the multitaper method as the preferred method for non-
parametric estimation of the power spectrum of incoming RF stimuli.

• We then describe a spatio-temporal procedure for estimating the interference
temperature across the prescribed frequency band.

• We next describe how the occupancy of the radio spectrum in its contiguous
subbands is classified.

• Finally, the need for a predictive model describing the evolution of spectrum
holes is addressed.

1.4.1 Interference Temperature

Currently, the wireless communication environment is transmitter-centric, in the
sense that the transmitted power is designed to approach a prescribed noise floor at
a certain distance from the transmitter. However, it is possible for the RF noise floor
to rise due to the unpredictable appearance of new sources of interference, thereby
causing a progressive degradation of the signal coverage. To guard against such a
possibility, the FCC Spectrum Policy Task Force [8] has recommended a paradigm
shift in interference assessment, that is, a shift away from largely fixed operations
in the transmitter and toward real-time interactions between the transmitter and re-
ceiver in an adaptive manner. The recommendation is based on a new metric called
the interference temperature,5 which is intended to quantify and manage the sources
of interference in a radio environment. Moreover, the specification of an interference-
temperature limit provides a “worst-case” characterization of the RF environment in
a particular frequency band and at a particular geographic location, where the re-
ceiver is expected to operate satisfactorily.

The FCC’s recommendation is made with two key benefits in mind:

1. The interference temperature at a receiving antenna provides an accurate mea-
sure for the acceptable level of RF interference in the frequency band of interest;
any transmission in that band is considered to be “harmful” if it would increase
the noise floor above the interference-temperature limit.

2. Given a particular frequency band in which the interference temperature is not
exceeded, that band could be made available to unserviced users; the interference-
temperature limit would then serve as a “cap” placed on potential RF energy
that could be introduced into that band. Logically, the licensed legacy users
(i.e., primary owners of the radio spectrum) would be responsible for setting
the interference-temperature limit.

5 We may also introduce the concept of interference temperature density, which is defined as
the interference temperature per capture area of the receiving antenna [9]. The interference
temperature density could be made independent of the receiving antenna characteristics
through the use of a reference antenna.

In a historical context, the notion of radio noise temperature is discussed in the literature
in the context of microwave background, and also used in the study of solar radio bursts
[10,11].
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What about the unit for interference temperature? Following the well-known defi-
nition of equivalent noise temperature of a receiver [12,13], we may state that the
interference temperature is measured in degrees Kelvin. Moreover, the interference-
temperature limit, Tmax, multiplied by Boltzmann’s constant, κ = 1.3807 × 10−23

Joules per degree Kelvin, yields the corresponding upper limit on permissible power
spectral density in a frequency band of interest, and that density is measured in watts
per hertz.

Summarizing, we may therefore say:

Given an estimate of the power spectral density in a specific subband of the
radio spectrum, we may determine the corresponding value of the interfer-
ence temperature in that subband by dividing the estimate by Boltzmann’s
constant κ.

This statement emphasizes the need for reliable estimation of the power spectral
density of the received RF signal.

1.4.2 Stochastic Approach for Dealing with Non-stationarity

The stimuli generated by radio emitters are non-stationary spatio-temporal signals
in that their statistics depend on both time and space. Correspondingly, the passive
task of radio-scene analysis involves space–time processing, which encompasses two
adaptive, spectrally related functions, namely, estimation of the interference tem-
perature and detection of spectrum holes, both of which are performed at a user’s
receiver.

Unfortunately, the statistical analysis of non-stationary signals, exemplified by
RF stimuli, has had a rather mixed history. Although the general second-order theory
of non-stationary signals was published during the 1940s by Loève [14,15], it has not
been applied nearly as extensively as the theory of stationary processes published
only slightly previously and independently by Wiener and Kolmogorov.

To account for the non-stationary behavior of a signal, we have to include
time (implicitly or explicitly) in a statistical description of the signal. Given the
desirability of working in the frequency domain for well-established reasons, we
may include the effect of time by adopting a time-frequency distribution of the
signal. During the last three decades, many papers have been published on vari-
ous estimates of time–frequency distributions; see, for example [16] and the ref-
erences cited therein. In most of this work, however, the signal is assumed to be
deterministic. In addition, many of the proposed estimators of time–frequency dis-
tributions are constrained to match time and frequency marginal density condi-
tions. However, the frequency marginal distribution is, except for a scaling fac-
tor, just the periodogram of the signal. At least since the early work of Lord
Rayleigh [17], it has been known that the periodogram is a badly biased and in-
consistent estimator of the power spectrum. We therefore do not consider matching
marginal distributions to be important. Rather, we advocate a stochastic approach
to time–frequency distributions which is rooted in the works of Loève [14,15] and
Thomson [18].
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For the stochastic approach, we may proceed in one of two ways:

1. The incoming RF stimuli are divided into a continuous sequence of succes-
sive sections (blocks), with each section being short enough to justify pseudo-
stationarity and yet long enough to produce an accurate spectral estimate.

2. Time and frequency are considered jointly under the Loève transform.

Approach (1) is well suited for wireless communications by virtue of the fact that
the transmitted signal is typically transmitted on a packet-by-packet basis; we may
thus form each section from several adjacent packets, depending on the desired accu-
racy. In any event, we need a non-parametric method for spectral estimation that is
both accurate and principled. For reasons that will become apparent in what follows,
multitaper spectral estimation is considered to be the method of choice.

1.4.3 Multitaper Spectral Estimation

In the spectral estimation literature, it is well known that the estimation problem
is made difficult by the bias-variance dilemma, which encompasses the interplay
between two points:

• Bias of the power-spectrum estimate of a time series, due to the sidelobe leakage
phenomenon, is reduced by tapering (i.e., windowing) the time series.

• The cost incurred by this improvement is an increase in variance of the estimate,
which is due to the loss of information resulting from a reduction in the effective
sample size.

How can we resolve this dilemma by mitigating the loss of information due to taper-
ing? The answer to this fundamental question lies in the principled use of multiple
orthonormal tapers (windows),6 an idea that was first applied to spectral estimation
by Thomson in 1982 [18]. The idea is embodied in the multitaper spectral estimation
procedure.7 Specifically, the procedure linearly expands the part of the time series in
a fixed bandwidth f−W to f+W (centered on some frequency f ) in a special family
of sequences known as the Slepian sequences.8 The remarkable property of Slepian
sequences is that their Fourier transforms have the maximal energy concentration in
the bandwidth f −W to f +W under a finite sample-size constraint. This property,
in turn, allows us to trade spectral resolution for improved spectral characteristics,

6 Another method for addressing the bias-variance dilemma involves dividing the time series
into a set of possible overlapping sections, computing a periodogram for each tapered (win-
dowed) section, and then averaging the resulting set of power spectral estimates, which is
what is done in Welch’s method [19]. However, unlike the principled use of multiple or-
thogonal tapers, Welch’s method is rather ad hoc in its formulation.

7 In the original paper by Thomson [18], the multitaper spectral estimation procedure is
referred to as the method of multiple windows. For detailed descriptions of this procedure,
see [18] and Chap. 7 of the book by Percival and Walden [20].

8 The Slepian sequences are also known as discrete prolate spheroidal sequences. For de-
tailed treatment of these sequences, see the original paper by Slepian [21], the appendix to
Thomson’s paper [18] and Chap. 8 of the book by Percival and Walden [22].
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namely, reduced variance of the spectral estimate without compromising the bias of
the estimate.

Given a time series {xt}N
t=1, representing the baseband version of the received

RF signal with respect to the center frequency of the RF band under scrutiny, the
multitaper spectral estimation procedure determines two things:

1. An orthonormal sequence of K Slepian tapers denoted by {w(k)
t }N

t=1

2. The associated eigenspectra defined by the Fourier transform

Yk(f) =
N∑

t=1

w
(k)
t x(t)e−j2πft, k = 0, 1, . . . K − 1. (1.1)

The energy distributions of the eigenspectra are concentrated inside a resolution
bandwidth, denoted by 2W . The time–bandwidth product

p = 2NW (1.2)

defines the degrees of freedom available for controlling the variance of the spectral
estimator. The choice of parameters K and p provides a tradeoff between spectral
resolution and variance.9 A natural spectral estimate, based on the first few eigen-
spectra that exhibit the least sidelobe leakage, is given by [18]

Ŝ(f) =

K−1∑

k=0

λk(f) |Yk(f)|2

K−1∑

k=0

λk(f)

(1.3)

where λk is the eigenvalue associated with the kth eigenspectrum. The denominator
in (1.3) makes the estimate Ŝ(f) unbiased.

The multitaper spectral estimator of (1.3) is intuitively appealing in the way it
works: as the number of tapers, K, increases, the eigenvalues decrease, causing the
eigenspectra to be more contaminated by leakage. But, the eigenvalues themselves
counteract by reducing the weighting applied to higher leakage eigenspectra.

It is also noteworthy that in [24], Stoica and Sundin show that the multitaper spec-
tral estimation procedure can be interpreted as an “approximation” of the maximum-
likelihood power spectrum estimator. Moreover, they show that for wideband signals,
the multitaper spectral estimation procedure is “nearly optimal” in the sense that it

9 For an estimate of the variance of a multitaper spectral estimator, we may use a resam-
pling technique called jackknifing [23]. The technique bypasses the need for finding an
exact analytic expression for the probability distribution of the spectral estimator, which is
impractical because time-series data (e.g., stimuli produced by the radio environment) are
typically non-stationary, non-Gaussian, and frequently contain outliers. Moreover, it may
be argued that the multitaper spectral estimation procedure results in nearly uncorrelated
coefficients, which provides further justification for the use of jackknifing.
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almost achieves the Cramèr–Rao bound for a non-parametric spectral estimator.10

Most important, unlike the maximum-likelihood spectral estimator, the multitaper
spectral estimator is computationally feasible.

1.4.4 Adaptive Modification of Multitaper Spectral Estimation

While the lower-order eigenspectra have excellent bias properties, there is some
degradation as the order K increases toward the time–bandwidth product 2NW .
In [18], Thomson introduces a set of adaptive weights, denoted by {dk(f)}, which
downweight the higher order eigenspectra. Using a mean-squared error optimization
procedure, the following formula for the weights is derived:

dk(f) =
√
λkS(f)

λkS(f) + E[Bk(f)]
, k = 0, 1, . . . ,K − 1 (1.4)

where S(f) is the true power spectrum, Bk(f) is the broadband bias of the kth
eigenspectrum, and E is the expectation operator. Moreover,

E[Bk(f)] ≤ (1 − λk)σ2, k = 0, 1, . . . ,K − 1 (1.5)

where σ2 is the process variance defined by

σ2 =
1
N

N−1∑

t=0

|x(t)|2. (1.6)

In order to compute the adaptive weights dk(f) using (1.4), we need to know the true
spectrum S(f). But if we did, then there would be no need to perform any spectrum
estimation at all. Nevertheless, the formula of (1.4) is useful in setting up an iterative
procedure for computing the adaptive spectral estimator

Ŝ(f) =

K−1∑

k=0

|dk(f)|2Ŝk(f)

K−1∑

k=0

|dk(f)|2
(1.7)

where
Ŝk(f) = |Yk(f)|2, k = 0, 1, . . . ,K − 1. (1.8)

Note that if we set {dk(f)}2 = λk for all k, then the estimator of (1.7) reduces to
that of (1.3).

10 In [22], a comparative evaluation of the multitaper method (MTM) and maximum-
likelihood (ML) method is presented for angle-of-arrival estimation in the presence of
multipath. The results reported therein give consistent results for low grazing angles. The
MTM is found to be slightly superior to ML, but the difference between them is not
overwhelming.
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Next, setting S(f) equal to the spectrum estimator Ŝk(f) in (1.4), then substitut-
ing the new equation into (1.7) and collecting terms, we get (after simplifications)

K−1∑

k=0

λk(Ŝ(f) − Ŝk(f))
(λkŜ(f) + B̂k(f))2

= 0 (1.9)

where B̂k(f) is an estimate of the expectation E[Bk(f)]. Using the upper bound of
(1.5), we have

B̂k(f) = (1 − λk)σ2, k = 0, 1, . . . ,K − 1. (1.10)

We now have all that we need to solve for the null condition of (1.9) via the recursion

Ŝ(j+1)(f) =

[
K−1∑

k=0

λkŜk(f)
(λkŜ(j)(f) + B̂k(f))2

][
K−1∑

k=0

λk

(λkŜ(j)(f) + B̂k(f))2

]−1

(1.11)
where j denotes an iteration step. To initialize this recursion, we may set S(j)(0)
equal to the average of the two lowest order eigenspectra. Convergence of the re-
cursion is usually rapid, with successive spectral estimates differing by less than 5%
in 5–20 iterations. For a more accurate (also more complex) estimate of Bk(f), see
[18,22]. In any event, the result obtained from (1.11) is substituted into (1.4) to obtain
the desired weights, dk(f).

A useful by-product of this adaptive spectral estimation procedure is a stability
measure of the estimates, given by

v(f) = 2
K−1∑

k=0

|dk(f)|2 (1.12)

which is the approximate number of degrees of freedom for the estimator Ŝk(f)
expressed as a function of frequency f . If v̄, denoting the average of v(f) over fre-
quency f , is significantly less than 2K, then the result is an indication that either the
windowW is too small, or additional prewhitening of the time series x(n) should be
used.

The importance of prewhitening cannot be stressed enough for RF data. In
essence, prewhitening reduces the dynamic range of the spectrum by filtering the
data, prior to processing. The resulting residual spectrum is nearly flat or “white.” In
particular, leakage from strong components is reduced, so that the fine structure of
weaker components is more likely to be resolved. In actual fact, most of the theory
behind spectral estimation is smooth, almost white-like spectra to begin with, hence
the need for “prewhitening” [22].

1.4.5 Summarizing Remarks I

1. Estimation of the power spectral density based on the multitaper method of (1.3)
is said to be incoherent, because the kth magnitude spectrum |Yk(f)|2 ignores
phase information for all k.
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2. For the parameters needed to compute the multitaper spectral estimator (1.3),
recommended values are:

– Time-bandwidth product: NW = 6, possibly extending up to 10.
– Number of Slepian tapers: K = 10, possibly extending up to 16.

These values are needed, especially when the dynamic range of the RF data is
large.
As an illustrative example, in [25] describing the application of the multitaper
method to radar sea-clutter classification, the number of available samples in
each section of the radar data was relatively small, namely, 256. Reasonably
good results were obtained using NW = 6 and K = 10 within each section.

3. If and when the number of tapers is increased toward the time–bandwidth prod-
uct 2NW , then the adaptive multitaper spectral estimator should be used.

4. Whenever possible, prewhitening of the data, prior to processing, should be ap-
plied.

1.4.6 Space–Time Processing

With cognitive radio being receiver-centric, it is necessary that the receiver be pro-
vided with a reliable spectral estimate of the interference temperature. We may sat-
isfy this requirement by doing two things:

1. Use the multitaper method to estimate the power spectrum of the interference
temperature due to the cumulative distribution of both internal sources of noise
and external sources of RF energy. In light of the findings reported in [24], this
estimate is near-optimal.

2. Employ a large number of sensors to properly “sniff” the RF environment, wher-
ever it is feasible. The large number of sensors is needed to account for the spatial
variation of the RF stimuli from one location to another.

The issue of multiple-sensor feasibility is raised under point (2) because of the
diverse ways in which wireless communications could be deployed. For example,
in an indoor building environment and communication between one building and
another, it is feasible to employ a large number of sensors (i.e., antennas) placed
at strategic locations in order to improve the reliability of interference-temperature
estimation. On the other hand, in the case of an ordinary mobile unit with limited
real estate, the interference-temperature estimation may have to be confined to a few
sensors beamed at different directions.

Let M denote the total number of sensors deployed in the RF environment. Let
Y

(m)
k (f) denote the kth eigenspectrum computed by the mth sensor. We may then

construct the M -by-K spatio-temporal complex-valued matrix [26]

A(f) =

⎡

⎢⎢⎢⎢⎣

a1Y
(1)
0 (f) a1Y

(1)
1 (f) . . . a1Y

(1)
K−1(f)

a2Y
(2)
0 (f) a2Y

(2)
1 (f) . . . a2Y

(2)
K−1(f)

...
...

...

aMY
(M)
0 (f) aMY

(M)
1 (f) . . . aMY

(M)
K−1(f)

⎤

⎥⎥⎥⎥⎦
(1.13)
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where each row is produced using stimuli sensed at a different gridpoint, each col-
umn is computed using a different Slepian taper, and the {am}M

m=1 represent variable
coefficients accounting for relative areas of the gridpoints.

Each entry in the matrix A(f) is produced by two contributions, one due to
additive ambient noise in the sensor and the other due to the interfering RF stimuli.
Insofar as radio-scene analysis is concerned, however, the primary contribution of
interest is that due to RF stimuli. An effective tool for denoising is the singular
value decomposition (SVD), the application of which to the matrix A(f) yields the
decomposition [27]

A(f) =
K−1∑

k=0

σk(f)uk(f)v†
k(f) (1.14)

where σk(f) is the kth singular value of matrix A(f), uk(f) is the associated left
singular vector, and vk(f) is the associated right singular vector; the superscript †
denotes Hermitian transposition. In analogy with principal components analysis, the
decomposition of (1.14) may be viewed as one of principal modulations produced
by the external RF stimuli. According to (1.14), the singular value σk(f) scales the
kth principal modulation of matrix A(f).

Forming theK-by-K matrix product A†(f)A(f), we find that the entries on the
main diagonal of this product, except for a scaling factor, represent the eigenspectrum
due to each of the Slepian tapers, spatially averaged over the M sensors. Let the
singular values of matrix A(f) be ordered |σ0(f)| ≥ |σ1(f)| ≥ . . . ≥ |σK−1(f)| >
0. The kth eigenvalue of A†(f)A(f) is |σk(f)|2. We may then make the following
statements:

1. The eigenvalues are proportional to average power, expressed as a function of
frequency f . In particular, the largest eigenvalue |σ0(f)|2, measured across the
frequency band of interest, provides an estimate of the interference temperature
in that band, except for a constant. This estimate would be improved by using a
linear combination of the largest two or three eigenvalues: |σk(f)|2, k = 0, 1, 2.

2. The left singular vectors uk(f) for k = 0, 1, . . . ,K − 1, provide information
on the spatial distribution of the interferers. Most importantly, this information
could be used for wavenumber spectrum estimation or adaptive beamforming;
here, it is assumed that the number of sensors (i.e., spatial degrees of freedom)
is large enough.

3. The right singular vectors vk(f) for k = 0, 1, . . . ,K−1, provide the multitaper
coefficients for the interferers’ waveforms.

1.4.7 Summarizing Remarks II

In space–time processing, the spatial and temporal dimensions are distinct. The
RF data therefore represent a multivariate time series, whose spectral structure is
summed up in the matrix A(f) of (1.13). Accordingly, we can make the following
statements:

1. The two-dimensional tapers of the time–space processor are the tensor products
of the standard one-dimensional Slepian tapers.
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2. The time–space processor is coherent and therefore richer in the extent of infor-
mation it extracts from the RF environment. Specifically, it is capable of provid-
ing joint estimates of the interference temperature across a frequency band of
interest and the angles-of-arrival of the interfering RF signals emitted by other
users.

3. However, this rich source of information on the RF environment is obtained at
the expense of a significant increase in computational complexity.

1.4.8 Spectral Classification

In passively sensing the radio scene and thereby estimating the power spectra of
incoming RF stimuli, we have a basis for classifying the spectra into three broadly
defined types, as summarized here:

1. Black spaces, which are occupied by high-power “local” interferers some of the
time.

2. Gray spaces, which are partially occupied by low-power interferers.
3. White spaces, which are free of RF interferers except for ambient noise, made

up of natural and artificial forms of noise:
• Broadband thermal noise produced by external physical phenomena such as

solar radiation
• Transient reflections from lightening, plasma (fluorescent) lights and aircraft
• impulsive noise produced by ignitions, commutators and microwave appli-

ances
• thermal noise due to internal spontaneous fluctuations of electrons at the

front end of individual receivers

White spaces (for sure) and gray spaces (to a lesser extent) are potential candidates
for use by unserviced operators. Of course, black spaces are to be avoided whenever
and wherever the RF emitters residing in them are switched ON. However, when at a
particular geographic location those emitters are switched OFF and the black spaces
assume the new role of “spectrum holes,” cognitive radio provides the opportunity for
creating significant “white spaces” by invoking its dynamic-coordination capability
for spectrum sharing.

From the picture of the radio scene presented in this section, it is apparent that a
reliable strategy for the detection of spectrum holes is of paramount importance to
the design and practical implementation of cognitive radio systems. Moreover, the
multitaper method combined with singular-value decomposition, hereafter referred
to as the MTM-SVD method,11 provides the method of choice for solving this detec-
tion problem by virtue of its accuracy and near-optimality.

11 Mann and Park [26] discuss the application of the MTM-SVD method to the detection of
oscillatory spatial-temporal signals in climate studies. They show that this new method-
ology avoids the weaknesses of traditional signal detection techniques. In particular, the
methodology permits a faithful reconstruction of spatio-temporal patterns of narrowband
signals in the presence of additive spatially correlated noise.
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By repeated application of the MTM-SVD method to the RF stimuli at a partic-
ular geographic location and from one section of data to the next, a time–frequency
distribution of that location is computed. The dimension of time is quantized into dis-
crete intervals separated by the section duration. The dimension of frequency is also
quantized into discrete intervals separated by resolution bandwidth of the multitaper
spectral estimation procedure.

LetL denote the number of largest eigenvalues considered to play important roles
in estimating the interference temperature, with |σl(f, t)|2 denoting the lth largest
eigenvalue produced by the section (block) of RF stimuli received at time t. Let N
denote the number of frequency resolutions of width Δf = 2W , which occupy the
frequency subband (space) under scrutiny. Then, setting the discrete frequency

f = flow + v ·Δf, v = 0, 1, . . . , N − 1

where flow denotes the lowest end of a black, gray or white space, we may define the
decision statistic for classifying the subbands as

D(t) =
L−1∑

l=0

N−1∑

v=0

|σl(flow + v · Δf, t)|2Δf. (1.15)

Let Dmin denote the minimum possible value that could be assumed by the
decision statistic D(t) due to the ambient noise floor, and let Dmax denote its max-
imum permissible value corresponding to the prescribed temperature limit. Let Dav

denote the average value ofD(t), computed over a number of successive sections of
the incoming RF signal. We may then classify the frequency subband (space) under
scrutiny as follows:

• If Dmax − δ1 ≤ Dav ≤ Dmax, then the subband is said to be a black space.
• If Dmin ≤ Dav ≤ Dmin + δ2, then the subband is said to be a white space.
• Otherwise, the subband is declared to be a gray space.

The parameters δ1 and δ2 are chosen by the system designer, depending on how fine
a spectral classification is described. Moreover, the specifications ofDmax andDmin

are location-specific. For example, if the spectral classification is performed in the
basement of a building, then the spacing between Dmax and Dmin is expected to be
significantly smaller than in an open environment.

1.4.9 Spatio-temporal Evolution of Spectrum Holes

From a cognitive radio user’s viewpoint, the following pieces of information are
needed:

1. The location of spectrum holes
2. The variance of the interference plus noise in each spectrum hole
3. The duration for which the spectrum hole is likely to be available for use
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The MTM-SVD method addresses points (1) and (2). To address point (3), we need
a predictive model of the evolution of spectrum holes over time, as discussed next.

The existence of spectrum holes is directly related to the primary user’s traffic
patterns, which can be of a deterministic or stochastic kind:

• Deterministic traffic patterns are attributed to television and AM/FM radio sta-
tions and/or air-traffic control radar and weather radar installations. The traf-
fic patterns produced by these primary users are known on a daily basis, which
makes their predictability a straightforward matter.

• Stochastic traffic patterns arise from wireless communication devices.

The availability of traffic patterns at different times of the day and different geo-
graphic locations, desirably provided by legacy users and/or government agencies,
could form the basis of a spatio-temporal prediction model of traffic behavior. Such
a model could make it possible to predict the duration of time for which spectrum
holes are likely to be employable, thereby enhancing coexistence between legacy
users and secondary users.

1.5 Extraction of Channel-State Information (CSI)

Section 1.4 on radio-scene analysis dealt with issues pertaining to spectral infor-
mation on the radio environment, which is needed by the transmitter for efficient
utilization of the radio spectrum. In this section, we deal with another function of the
receiver, namely, the extraction of channel-state information (CSI), which is needed
by a user’s receiver for coherent detection of the transmitted information-bearing
signal. This section is organized as follows:

• First, we set the stage for semi-blind training, which offers a compromise be-
tween two extreme approaches: differential detection for unsupervised transmis-
sion and pilot-assisted transmission for supervised training.

• Next, we describe a channel-tracking procedure that is basic to the semi-
supervised training procedure.

1.5.1 Semi-supervised Training

To deal with the channel-state estimation problem, traditionally we have proceeded
in one of two ways:

• Differential detection, which lends itself to implementation in a straightforward
fashion, using M -ary phase modulation.

• Pilot-assisted transmission, which involves the periodic transmission of a pilot
(training sequence) known to the receiver.

The use of differential detection offers robustness and simplicity of implementation,
but at the expense of a significant degradation in the frame-error rate (FER) versus
signal-to-noise ratio (SNR) performance of the receiver. On the other hand, pilot-
assisted transmission (PAT) offers improved receiver performance, but the use of a
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pilot is wasteful in both transmit power and channel bandwidth, the very thing we
should strive to avoid. What then do we do, if the receiver requires knowledge of
CSI for efficient receiver performance? The answer to this fundamental question
lies in the use of semi-blind training of the receiver, which distinguishes itself from
the differential detection and PAT procedures in that the receiver has two modes of
operations:

1. Supervised training mode. During this mode, the receiver acquires an estimate
of the channel state, which is performed under the supervision of a short training
sequence, consisting of fewer symbols than that required with PAT. As with PAT,
the training sequence is known to the receiver. It is sent over the channel for a
limited duration by the transmitter prior to the actual data-transmission session;
the pilot transmission is repeated periodically.

2. Tracking mode. Once a reliable estimate of the channel state has been achieved,
the training sequence is switched off, actual data transmission is initiated and the
receiver is switched to the tracking mode; this mode of operation is performed
in an unsupervised manner on a continuous basis during the course of data trans-
mission.

1.5.2 Channel Tracking

The evolution of CSI with time is governed by a state-space model comprised of two
equations:

1. Process equation. The state of a wireless link is defined as the minimal set of
data on the past behavior of the link that is needed to predict the future behavior
of the link. For the sake of generality, we consider a multiple-input, multiple-
output (MIMO) wireless link12 of a narrowband category. Let hjk,t denote the

12 The use of a MIMO link offers several important advantages:
1. Spatial degree of freedom, defined by N = min{N, L}, where N and L denote the

numbers of transmit and receive antennas, respectively [28].
2. Increased spectral efficiency, which is asymptotically defined by

lim
N→∞

C(N)

N
= constant

where C(N) is the ergodic capacity of the link, expressed as a function of L = N . This
asymptotic property provides the basis for a spectacular increase in spectral efficiency by
increasing the number of transmit and receive antennas.

3. Diversity, which is asymptotically defined by

lim
ρ→∞

log FER(ρ)

log ρ
= −do

where do is the diversity order and FER(ρ) is the frame-error rate expressed as a function
of the signal-to-noise ratio ρ.

These benefits (gained at the expense of increased complexity) commend the use of MIMO
links for cognitive radio, all the more so considering the fact that the primary motivation
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channel coefficient from the kth transmit antenna to the jth receive antenna at
time t, with k = 1, 2, . . . , N and j = 1, 2, . . . , L. We may then describe the
scalar form of the state equation as

hjk,t+1 =
M∑

l=0

(βl,t) (hjk,t−1) + vjk,t (1.16)

where the βl,t are time-varying autoregressive (AR) coefficients and vjk,t is the
corresponding dynamic noise, both at time t. The AR coefficients account for
the memory of the channel due to the multipath phenomenon. The upper limit of
summation in (1.16) namely, M , is the model order.

2. Measurement equation. The measurement equation for the MIMO wireless link,
also in scalar form, is described by

yj,t =
N∑

k=1

(sk,t) (hjk,t) + nj,t for j = 1, 2, . . . , L (1.17)

where sk,t is the encoded symbol transmitted by the kth antenna at time t, and
nj,t is the corresponding measurement noise at the input of jth receive antenna
at time t. The yj,t is the signal observed at the output of the jth antenna at time t.

The state-space model comprised of (1.16) and (1.17) is linear. The property of
linearity is justified in light of the fact that the propagation of electromagnetic waves
across a wireless link is governed by Maxwell’s equations that are inherently linear.

What can we say about the AR coefficients, the dynamic noise, and measurement
noise, which collectively characterize the state-space model of (1.16) and (1.17)? The
answers to these questions determine the choice of an appropriate tracking strategy.
In particular, we say the following:

1. AR model. A Markov model of order one offers simplicity and sufficient accuracy
to model a Rayleigh-distributed time-varying channel.

2. Noise processes. The dynamic noise in the process equation is Gaussian, but
the noise in the measurement equation is likely to be non-Gaussian due to the
presence of impulsive noise generated in the radio environment. (The impulsive
noise is attributed to different sources such as automobile engine noise in an
outdoor environment and microwave devices in an indoor environment.)

Point (1) directly affects the design of the predictive model, which is an essential
component of the channel tracker. Point (2) prompts the search for a tracker outside
of the classical Kalman filters, whose theory is rooted in Gaussian statistics.

Two different channel-tracking procedures are described in [29] and [30]; herein,
we briefly highlight the procedure described in [30].

Rewriting (1.16) in matrix form, under the assumption of an AR model of order
one, we have

for cognitive radio is the attainment of improved spectral efficiency. Simply put, a MIMO
wireless link is not a necessary ingredient for cognitive radio but a highly desirable one.
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ht+1 = β0,tht + vt (1.18)

where ht denotes the vector representation of the channel matrix Ht by stretching
the columns of Ht one over another, and vt denotes the corresponding vector repre-
sentation of the dynamic noise. The key objective of the channel tracker is to estimate
the update equation for posterior probability density function of the sequence

h1:t = {hi}t
i=1

when we are given the entire set of measurements

y1:t = {yi}t
i=1.

That is, the posterior density of the channel state is updated in accordance with the
equation

p (h1:t|y1:t) =
p(yt|ht)p(ht|ht−1)
p(yt|y1:t−1)

p(h1:t−1|y1:t−1). (1.19)

Reference [30] describes a novel procedure for computing this update equation,
using a particle filter. The main idea of the procedure is to introduce a correction
factor in the predicted estimate of the channel state, with the correction being based
on an approximate maximum-likelihood (ML) estimate of the channel state. Specifi-
cally, the corrected channel estimate is defined by the convex combination of the old
value of the channel state and the current maximum-likelihood estimate, as shown
by

hC
t|t−1 = (1 − α)ht|t−1 + αhML

t (1.20)

where α, lying in the range between zero and one, is a weight given to the confidence
in the ML estimate; the value assigned to this weight depends on the signal-to-noise
ratio (SNR) and the fading rate of the wireless environment. For example, at low
SNR, we are less confident in the current estimation of the channel state and therefore
a small value is assigned to α. Likewise, for a highly time-selective channel, we
have less confidence in the ML estimate, in which case we also assign less weight
to α. Choosing the “optimal” α is problem-specific and may therefore require the
inclusion of an adaptive loop in the estimation procedure for online operation.

The motivation behind the convex-combined predictive channel estimate is to
“guide” the particles in the tracking filter toward a high probability region of the
density; as such, it may be viewed as a more refined approach than that taken in [29].
As the combined step in the state update incorporates recent measurements, the state
space is efficiently exploited so as to improve the sampling efficiency. Indeed, in [30],
Monte Carlo simulation results are presented for a radio environment assuming:

• The use of a frequency-flat time-selective channel based on the Jakes model
• The use of a Middleton Class-A model for an impulsive measurement noise

The simulations compare the performance of a wireless system using two channel
trackers, one incorporating the approximate ML channel estimate in the particle filter
to select informative particles as described herein and the other incorporating gradi-
ent information in the selection of the particles as described in [29]. The results of
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the simulation presented in [30] reveal that unlike the channel tracker based on gra-
dient particle filtering, the asymptotic performance gap between the genie scenario
(assuming that the channel state is known) and the corresponding scenario involving
the use of the new channel tracker is essentially uniform for increasing SNR, which
is desirably how it should be.

1.6 Feedback Channel

As pointed out previously, the primary motivation of cognitive radio is improved
utilization of the radio spectrum, hence the requirement for identification of spectrum
holes in the local neighborhood of a user’s receiver. Having performed this function
by the radio-scene analyzer in the receiver, we need a feedback channel to send
relevant information of the receiver to the user’s transmitter for appropriate action by
that user. This information consists of two constituents:

• The center frequencies and bandwidths of the spectrum holes
• The combined variance of interference and thermal noise in each spectrum hole

Later on, we will also find that there is an additional role for the feedback channel:

• A measure of the signal-to-noise ratio at the output of the transmitter–receiver
wireless link, which is needed by the adaptive modulator in the transmitter.

Rather than send the actual values of the various parameters identified here, the prac-
tical approach is to feed their respective quantized values back to the transmitter. To
do this, a predetermined list of quantized values pertaining to the following parame-
ters is kept in the receiver:

• Center frequencies and bandwidths of all possible spectrum holes
• Variance of interference plus noise in each possible spectrum hole
• Output signal-to-noise of the pertinent wireless link

Given such a list, the receiver picks the closest entries in the list that are less than the
actual values of the parameters. In so doing, the bit rate of the feedback channel is
minimized.

Putting it altogether, the feedback channel plays a fundamental role in the design
and operation of cognitive radio. Indeed, we may go on to say that feedback is the
facilitator of intelligence, without which the radio loses its cognitive capability.

1.7 Multiuser Cognitive Radio Networks

As it is with every other communication network, the deployment of a cognitive radio
network can be justified in financial terms if, and only if, the network is utilized by a
multiple users.

Mobile wireless communication networks are centralized, in that an infrastruc-
ture of base stations is deployed to route calls from one user to another. In con-
trast, for both civilian and military applications, it is desirable for cognitive radio
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networks to be decentralized. In other words, the network is configured in a self-
organized manner [31,32], which makes it possible to dispense with the need for a
costly pre-established infrastructure. With this objective in mind, the adoption of ad
hoc networks [33,34] is the logical basis for cognitive radio networks.

From what we know about brain theory [35] and neural networks [5], self-
organization builds on two basic mechanisms: cooperation and competition; these
two mechanisms operate in a complementary manner so as to “bring order in the
network out of disorder.” In a similar sort of way, we may envision a self-organized
cognitive radio network, in which cooperation and competition are purposely con-
figured to perform complementary functions. Specifically:

• Cooperation is used to facilitate communication across the nodes of the network
without any fixed infrastructure.

• Competition is used to provide control over the power transmitted from each
individual node of the network to maintain the interference temperature at a re-
ceiving node below a prescribed limit.

In a cognitive radio network built on ad hoc wireless principles, the network is
basically an association of nodes that cooperate. Insofar as network coordination is
concerned, for example, we may simply require each pair of neighboring nodes be
in direct communication. Thus, in the communication scenario, each node creates a
transmit–receive schedule; the schedule is communicated to a nearest neighbor only
when a source node’s schedule and that of a neighboring node permit the source node
to transmit the schedule and the neighboring node is able to receive it. In [36], it is
shown that under reasonable assumptions, such a completely decentralized network
can scale to an almost arbitrary number of nodes. It is therefore feasible to develop a
dynamic frequency selection policy that supports utilization of the network by more
users through a built-in cooperative mechanism. The capacity of wireless networks
is discussed in [37,38].

Turning next to the benefit that could be gained from competition, it will be
shown in Sect. 1.12 that by adopting a non-cooperative (i.e., competitive) game-
theoretic approach, it is possible to design an efficient and effective transmit-power
control policy. Most important, this policy does not require synchronization among
the multiple users, thereby simplifying the design of the network.

1.8 Dynamic Spectrum Management

The primary motivation of cognitive radio is to improve utilization of the radio spec-
trum, subject to two requirements:

1. Secondary users of the spectrum’s unoccupied subbands must coexist with the
primary users.

2. Interference temperature at the receiver input of each user in the network does
not exceed a prescribed limit.



1 Fundamental Issues in Cognitive Radio 23

Requirement (2) is considered later in Sect. 1.12. In this section, we address require-
ment (1).

We first note that by having the network operate in a decentralized cooperative
manner, information-bearing signals could hop from one node of the network to
a neighboring node, thereby facilitating communication across the entire network.
Moreover, the spectrum holes come and go. Accordingly, we may formulate the dy-
namic spectrum management problem as follows:

Given a set of spectrum holes detected by the radio-scene analyzer and
whose composition is likely to change from one time instant to another,
devise a decentralized dynamic spectrum management policy that enables
secondary users to employ these spectrum holes without disruption to the
primary users.

For the policy to be decentralized, we need a random (probabilistic) multiple-access
technique. Here we have the choice between two protocols: Aloha and carrier-
sense multiple-access (CSMA). For terrestrial networks, CSMA is the preferred
choice [39].

In its simplest form, CSMA operates as follows:

1. If the wireless channel is sensed to be idle (i.e., a spectrum hole is available), the
user transmits its packets.

2. If the channel is sensed to be busy (i.e., the spectrum hole has become occupied),
the transmission of packets is scheduled for a later time according to a specified
random distribution.

3. At the new point in time, the user senses the channel and repeats the algorithm.

If the transmissions were instantaneous, then collisions would occur in the CSMA
protocol only if two users transmitted at exactly the same time; this should be a rare
occurrence but nevertheless, it could happen.

In a modified form of CSMA called carrier-sense multiple-access with collision
avoidance (CSMA/CA) each node of the network must inform other nodes in the
network of the intent to transmit packets, and it is only then that transmission can take
place. In so doing, packet collisions are prevented, because all nodes in the network
have been made aware of packet transmission before it occurs. Such a protocol is
indeed feasible by virtue of the cooperative communication built across the network.

1.8.1 Modulation Format

The next issue to be considered is the choice of a modulation format for the actual
transmission of packets over the selected spectrum hole. For this purpose, we con-
sider orthogonal frequency-division multiplexing as a method of choice [40,41]. We
say so for the following reasons:

• OFDM is a bandwidth-efficient signaling scheme, which converts a difficult
frequency-selective channel into a parallel collection of frequency-flat subchan-
nels, whose subcarrier frequencies form an orthogonal set.
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• Unlike ordinary frequency-division multiplexing (FDM), the spectra of the indi-
vidually modulated subcarriers in OFDM overlap mutually and thereby optimally
occupy the frequency response of the channel.

• The choice of OFDM fits perfectly into the design of the transmit-power con-
troller.

Orthogonality of the subcarriers over the duration of a symbol is achieved by having
the frequency spacing between them equal to the reciprocal of the symbol duration.

There are some other practical requirements that need to be satisfied:

1. The modulation format must be impervious to that of the primary user, so as not
to violate the coexistence requirement.

2. The modulation format must be adaptive, so as to account for the time-varying
conditions of the radio environment.

3. Due to channel noise and interference from other users, reliable communication
must be maintained between the wireless link that connects the transmitting node
to the receiving node.

To satisfy these requirements, we may use the concatenated coding scheme depicted
in Fig. 1.3, where the concatenation of channel encoder and space–time encoder is
performed on a symbol-by-symbol basis [40].

To explain, the data bits produced by the OFDM are first channel-coded by a
turbo convolutional encoder [42], which is followed by a pseudo-random block in-
terleaver. Next, the adaptive quadrature amplitude modulator (QAM) selects a mode
of modulation from the set (for example):

• Binary phase-shift keying (BPSK)
• Quadrature phase-shift keying (QPSK)
• 16-QAM
• 64-QAM

This selection is made by the adaptive modulator in response to the quality of signal
reception measured at the receiving node; in effect, feedback is needed between each
pair of neighboring nodes in the network for adaptive modulation to be feasible.

Finally, the modulated symbol is space–time block encoded [43], with the en-
coding being performed in the frequency domain. Here, it is assumed that a set of
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Fig. 1.3. Block diagram of adaptive OFDM transmitter.
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adjacent subcarriers in the OFDM signal, belonging to the same space–time encod-
ing block, have approximately the same signal-to-noise ratio. The space–time code,
involving the use of multiple transmit as well as receive antennas, provides diver-
sity to combat multipath; reliability of communication across the network is thereby
further enhanced.

1.9 Statistical Modeling of Cognitive Radio Networks

To set the stage for formulating the transmit-power control problem considered in
the next section, we need a statistical model for cognitive radio networks. In what
follows, we assume that the wireless channel linking one node in the network to
a neighboring node is frequency-selective. As pointed out in the previous section,
OFDM is well suited for dealing with such a channel, the use of which converts a
frequency-selective channel into a set of frequency-flat subchannels whose individ-
ual subcarriers are ideally orthogonal to each other. In practice, however, we find
that OFDM is sensitive to frequency offset in the channel, which arises because the
subcarriers are inherently closely spaced in frequency, compared to channel band-
width; consequently, the tolerable frequency offset is a small fraction of the channel
bandwidth.13

Let f0 denote the frequency spacing between adjacent subcarriers, and Δf de-
note the frequency offset. The baseband version of the OFDM signal radiated by the
transmitter of a user labeled m is thus defined by

s(m,n) = cn exp[j2πn(f0 −Δf)] (1.21)

where n denotes one of the N subcarriers in the OFDM signal, and cn is the mod-
ulated amplitude of the nth subcarrier. To simplify the notation, we have omitted
the dependence on time t in s(m,n). Correspondingly, the signal picked up by the
intended receiver of user m is given by14

y(m,n) =
M∑

k=1

g(m, k, n)s(k, n) + w(m,n) (1.22)

whereM is the total number of users. The term g(m, k, n) is the combined effect of
two factors:

• Propagation path loss from the transmitter of user k to the receiver of user m at
subcarrier n; this loss also includes the effects of lognormal and Rayleigh fading
phenomena.

• Subcarrier amplitude reduction due to the frequency offset Δf.

13 Moose [44] describes an algorithm, based on maximum-likelihood estimation, for fre-
quency offset correction.

14 In the notation used herein, user m refers to the combination of a transmitter at one end of
a wireless link and its intended receiver at the other end of the link.
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The w(m,n) denotes the zero-mean Gaussian thermal noise at the receiver input of
user m on the nth subcarrier.

Next, we isolate the contribution due to k = m in the summation term in (1.22)
and rewrite that equation in the desired form:

y(m,n) = g(m,m, n)s(m,n) +
M∑

k=1

k �=m

g(m, k, n)s(k, n) + w(m,n). (1.23)

The first term on the right-hand side of (1.23) is due to user m acting alone.
The second term is the total interference produced at the receiver of user m due to
the signals transmitted by all the other users: 1, 2, . . . ,m − 1,m + 1, . . . ,M ; this
interference is attributed to the frequency offsetΔf as well as other imperfections in
the network.

Let P (m,n) denote the average power transmitted by user m on the nth subcar-
rier n, and σ2

w(m,n) denote the variance of zero-mean thermal noise w(m,n). We
may then express the signal-to-interference plus noise ratio (SINR) at the receiver
input of user m on the nth subcarrier as

SINR(m,n) =
|g(m,m, n)|2P (m,n)

M∑

k=1

k �=m

|g(m, k, n)|2|s(k, n)|2 + σ2
w(m,n)

=
P (m,n)

M∑

k=1

k �=m

α(m, k, n)P (k, n) + v(m,n)

(1.24)

where, in the last line, the denominator is normalized with respect to the factor
|g(m,m, n)|2 that pertains completely to user m. Specifically, we have:

P (k, n) = |s(k, n)|2 (1.25)

α(m, k, n) =
|g(m, k, n)|2
|g(m,m, n)|2 (1.26)

and

v(m,n) =
σ2

w(m,n)
|g(m,m, n)|2 . (1.27)

The numerator of (1.24) represents power transmission and reception by user
m over a direct lossless path. The denominator of this equation represents the nor-
malized value of the total interference plus noise measured at the receiver input of
user m.
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Fig. 1.4. Depiction of the equivalent additive noise model for user m operating on subcarrier
n in the OFDM format.

Examination of this equation also leads us to make another important observa-
tion. Insofar as user m of the cognitive radio network is concerned, we may view
the wireless channel connecting its receiver to the transmitter as the equivalent of a
single-user additive-noise channel, as depicted in Fig. 1.4, where the noise variance
refers to the variance of total interference plus thermal noise (i.e., the denominator
of (1.24)). For analytic purposes, it is assumed that the channel noise in this figure
is zero-mean Gaussian. It would be tempting to justify this assumption by recogniz-
ing the large number of users responsible for the overall interference, and therefore
invoking the central limit theorem. Typically, however, we find that a few of the in-
terferers are dominant and a large number of them are weak. Hence, in reality, the
additive noise in the model of Fig. 1.4 may not be strictly Gaussian.

1.10 Formulation of the Transmit-Power Control Problem

Under the assumptions made in Sect. 1.9, we may now invoke Shannon’s celebrated
information capacity theorem for an additive Gaussian noise channel [45] to express
the maximum achievable rate of data transmission over the wireless channel con-
necting the transmitter of user m to its receiver as follows:

R(m,n) = log2[1 + SINR(m,n)] bits per use of subchannel n (1.28)

where SINR(m,n) is the signal-to-interference plus noise ratio defined in (1.24).
The multiuser coding scheme needed to achieve the data-transmission rate R(m,n)
is implementable, since the only item that needs to be measured is the variance of the
interference plus noise at the receiver input of userm for each n. In other words, from
a practical perspective, no user in the cognitive radio network would need to identify
the sources of interference or noise affecting its operation; rather, it is sufficient for
the user to merely measure the variance of the overall interference plus thermal noise
at its receiver input for each subcarrier frequency n. This measurement is the function
of the radio-scene analyzer to undertake.

Consider then a non-cooperative multiuser cognitive radio network using OFDM
for data transmission among its M users. The transmit-power control problem for
this network may now be stated as follows:
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Given:

1. a set of spectrum holes known to be adequate to support the data-transmission
needs of M secondary users, and

2. measurements of the variance of interference plus noise at the receiver input at
each of the N subcarriers of the OFDM for every user,

determine the transmit-power levels of the M secondary users so as to jointly max-
imize their data-transmission rates, subject to the constraint that the interference-
temperature limits in the subfrequency bands occupied by the spectrum holes are not
violated.

It may be tempting to suggest that the solution of this problem is attained by sim-
ply increasing the transmit-power level of each secondary user. However, increasing
the transmit-power level of any one user has the undesirable effect of also increasing
the levels of interference to which the receivers of all the other users are subjected.
The conclusion to be drawn from this reality is that it does not make practical sense
to represent the overall performance of the cognitive radio network by means of a
single index of performance. Rather, we have to adopt a tradeoff among the data
rates of all secondary users in some computationally tractable fashion.

Ideally, we would like to find a global solution to the constrained optimization
of the joint set of data-transmission rates under study. Unfortunately, finding this
global solution requires an exhaustive search through the space of possible power
allocations for all M users, which is impractical for two reasons:

• The computational complexity needed to attain the global solution may assume
a prohibitively high level.

• The time needed to find the solution could become unacceptably long.

To mitigate these practical difficulties, we relax the statement for global optimality
by adopting competitive optimality as the criterion for solving the transmit-power
control problem. Specifically, we now state:

Given a multiuser non-cooperative cognitive radio network using OFDM as
described above, optimize the performance of secondary user m, regardless
of what all the other secondary users do, subject to the constraint that the
interference-temperature limit at the receiver input of userm is not violated.

This formulation of the distributed transmit-power control problem leads to a solu-
tion that is of a local nature. Although, of course, the solution is suboptimum, it is not
only insightful but also practically feasible. Most important, the local optimization
envisioned here is a basic ingredient of self-organization.

To set the stage for presenting an iterative procedure (based on competitive op-
timality) for solving the transmit-power control problem, we find it informative to
digress briefly to first think in terms of game theory.



1 Fundamental Issues in Cognitive Radio 29

1.11 The Multiuser Non-cooperative Cognitive Radio Network
Viewed as a Game-Theoretic Problem

Game theory15 is a well-established discipline; it deals with the mathematical mod-
eling of practical situations, which involve the following ingredients:

• Multiple players who, by virtue of their responsibilities as decision-makers, are
required to take specific actions.

• The actions may lead to consequences, which could be of mutual conflict to the
players themselves.

The formulation of a mathematical framework for a non-cooperative game rests on
three basic realities:

• State space that is the product of the individual players’ states
• State transitions that are functions of joint actions taken by the players
• Payoffs to individual players that depend on joint actions as well

This framework is found in stochastic games [46], which, also occasionally appear
under the name “Markov games” in the computer science literature.

A stochastic game is described by the five tuple {N ,S,−→A ,P,−→R}, where

• N is a set of players, indexed 1, 2, . . . ,M .
• S is a set of possible states.
• −→A is the joint-action space defined by the product set

−→A1 × −→A2 × . . . × −→AM ,
where

−→Am is the set of actions available to the mth player.
• P is a probabilistic transition function, an element of which for joint action a

satisfies the condition
∑

s∈S
Pa

ss′ = 1 for all s′ ∈ S and a ∈ −→A . (1.29)

• −→R = r1 × r2 × . . .× rM , where rm is the payoff for the mth player and which
is a function of the joint actions of all M players.

One other notational issue: the action of player m ∈ M is denoted by am, while the
joint actions of the other M − 1 players in the set M are denoted by a−m.

Stochastic games are the supersets of two kinds of decision processes, namely,
Markov decision process and matrix games, as illustrated in Fig. 1.5. A Markov
decision process is a special case of a stochastic game with a single player, that
is, M = 1. On the other hand, a matrix game is a special case of a stochastic game
with a single state, that is, |S| = 1.

15 In a historical context, the formulation of game theory may be traced back to the pioneer-
ing work of John von Neumann in the 1930s, which culminated in the publication of the
co-authored book entitled “Theory of Games and Economic Behavior” [47]. For modern
treatments of game theory, see the books under [46,48]. Game theory is widely used in the
study of economics [49]; it has also been applied in other areas such as machine learning
[50] and neuroscience [51]. For the use of game theory in cognitive radio, see [52].
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Fig. 1.5. Highlighting the differences between Markov decision processes, matrix games and
stochastic games.

1.11.1 Nash Equilibrium

In [53,54], John Nash focused his study of game theory on a class of games described
as non-cooperative, simultaneous-move, one-shot, finite games with complete infor-
mation, where

• “Simultaneous-move” means that each player picks a strategy without knowledge
of the other players’ strategies

• “One-shot” implies that the game is played once and once only
• “Finite game” refers to the fact the game involves a finite number of players, with

each player taking only a finite number of possible actions

In the context of this background, Nash introduced the concept of an equilibrium of
a game, which is defined as follows:

A Nash equilibrium is defined as an action profile (i.e., vector of players’
actions) in which each action is a best response to the actions of all the other
players [53].

Consider, for example, a multiple-access game [55] involving two transmitters (i.e.,
players) p1 and p2 who respectively want to send data packets to their receivers r1
and r2 over a shared channel. In each time slot, each player can decide to transmit a
packet or to remain quiet (i.e., not to transmit); these two actions are denoted by T
and Q, respectively. Let c denote the cost incurred in the transmission of a packet,
where 0 < c < 1. With the channel being shared, transmissions by both players
result in a collision, in which case, packets are lost. Thus, in strategic terms, the
multiple-access is represented by Fig. 1.6. From this figure, it is apparent that the
optimal solution to the multiple-access game is as follows:
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Fig. 1.6. Tabular representation of the multiple-access game.

• If player p1 decides to transmit, then the best response for player p2 is to remain
quiet.

• Conversely, if player p2 decides to transmit, the best response for player p1 is to
remain quiet.

From this example, we see that Nash equilibrium is a stable operating (i.e., equi-
librium) point in the sense that there is no incentive for any player involved in a
finite game to change strategy, given that all the other players continue to follow
the equilibrium policy. The important point to note here is that the Nash-equilibrium
approach provides a powerful tool for modeling non-stationary processes. Simply
put, it has had an enormous influence on the evolution of game theory by shifting its
emphasis toward the study of equilibria as a predictive concept.

The Nash equilibrium features prominently in the study of game theory; indeed,
it earned John Nash the Nobel Prize in Economics in 1994. This concept works
perfectly well provided two assumptions are satisfied:

1. The players engaged in a game are all rational.
2. The underlying structure of the game is common knowledge to all the players.

Under these two assumptions, the Nash equilibrium offers an intuitively satisfying
approach that predicts the equilibrium outcome of the game as follows. Any player,
being “rational,” will play a “best-response” strategy. Moreover, under the “common
knowledge” assumption, this strategy is known to all the other players and, being ra-
tional, they will therefore play their own “best-response” strategies, which therefore
leads the game to a Nash equilibrium.

1.12 Iterative Waterfilling Algorithm

Now that we understand the importance of the Nash equilibrium in the study of game
theory, we can proceed with the solution to the transmit-power control problem in a
non-cooperative multiuser cognitive radio network using OFDM. We begin with the
statement:

When users of such a network operate under the common knowledge that
each user will follow the criterion of competitive optimality for maximizing
its own data-transmission rate, subject to an interference-temperature con-
straint, the strategy so adopted will lead to a Nash equilibrium.
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In information-theoretic terms, maximization of the data-transmission rate of each
user in accordance with (1.28) over each subcarrier frequency of the user is similar
to the idea of waterfilling. In the classical description of waterfilling [45], water is
poured over the inverse of noise variance at each subcarrier frequency. In our situa-
tion, on the other hand, water is poured over the inverse of the combined interference
plus noise. We may therefore modify the above statement as follows:

If the users of a non-cooperative radio network perform “waterfilling” with
respect to the combined variance of interference plus noise at each subcarrier
frequency of the OFDM, subject to an interference-temperature constraint,
then the network will reach a Nash equilibrium.

Although the multiuser solution produced by this strategy is suboptimal, it offers
the practical virtue of eliminating the need for synchronization among users of the
network insofar as transmit-power control is concerned. The fundamental question
is: How do we perform the waterfilling procedure in an efficient manner?

This very question is addressed in the iterative waterfilling algorithm for mul-
tiuser data transmission systems. The algorithm was originally described in [56,57]
in the context of discrete multitones (DMT); it is expanded on in [58]. Much of that
theory is also applicable to frequency-selective channels using OFDM, since DMT
and OFDM belong to the same family of multichannel transmission systems [13,59].

To simplify the presentation of the iterative waterfilling algorithm for a multiuser
cognitive radio network using OFDM, we assume that each iteration of the algorithm
starts with user 1 and ends with user M . Each iteration consists of an inner loop
followed by an outer loop. In the inner loop of iteration j, say, each user maximizes
its data transmission rate, subject to an interference-temperature constraint. In the
outer loop of iteration j, the power allocation among the M users is adjusted up or
down. The iterative waterfilling computation is terminated after a total of J iterations
when a prescribed tolerance ε is attained.

Note also that at iteration j, the interference plus noise (IN) at the receiver input
of receiver m at subcarrier frequency n has the fixed value [see the denominator of
(1.24)]

IN(j)(m,n) =
m−1∑

k=1

α(m, k, n)P (j)(k, n)

+
M∑

k=m+1

α(m, k, n)P (j−1)(k, n) + v(j)(m,n). (1.30)

The first summation term of (1.30) represents the normalized contributions made by
users 1 tom− 1 processed during the current iteration j, and the second summation
term represents the normalized contributions made by users m + 1 to M processed
during the previous iteration j − 1. With IN(j)(m,n) fixed, it follows that placing a
limit on the total interference temperature at the receiver input of user m is actually
equivalent to the imposition of a corresponding limit on the total transmit power of
user m.
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We are now ready to describe the iterative waterfilling algorithm as follows:

1. Initialization j = 0
Unless prior knowledge is available, the power distribution across the users,m =
1, 2, . . . ,M , is set equal to zero.

2. Inner loop: iteration j = 1, 2, ...
In this iteration, user m maximizes its total data transmission rate through wa-
terfilling, subject to a total power constraint. In mathematical terms, for iteration
j we write:

Maximize R(j)(m) =
N∑

n=1

log2

(
1 +

P (j)(m,n)
IN(j)(m,n)

)

subject to the constraint
N∑

n=1

P (j)(m,n) ≤ P̄ (m) (1.31)

where the permissible transmitter power P̄ (m) is determined as follows: the
total power measured at the receiver input of userm, summing the contributions
due to its own transmission and ambient noise plus those due to the remaining
M − 1 interferers, is defined by:

Ptotal(m) =
N∑

n=1

(
M∑

k=1

|g(m,m, n)|2P (k, n) + σ2
w(m,n)

)
. (1.32)

Given that the interference-temperature limit Tmax must not be exceeded by user
m, we require:

Ptotal(m) ≤ κTmaxBm (1.33)

where κ is Boltzmann’s constant and Bm is the bandwidth of the spectrum hole
being occupied by user m. Using the definition of (1.27) and (1.28) and recog-
nizing that α(m,m, n) = 1 for all n, we write:

N∑

n=1

P (m,n) ≤ P̄ (m) (1.34)

where P̄ (m) is defined by:

P̄ (m) =
κTmaxBm

|g(m,m, n)|2 −
N∑

n=1

⎛

⎜⎜⎜⎜⎜⎝

M∑

k=1

k �=m

α(m, k, n)P (k, n) + v(m,n)

⎞

⎟⎟⎟⎟⎟⎠
. (1.35)

Here it is presumed that the spectrum hole being occupied by userm is , at least,
partially filled to permit P̄ (m) to assume a positive value. Bearing in mind that
cognitive radio is receiver-centric, the determination of P̄ (m) requires knowl-
edge of two quantities for user m:
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(i) Total interference plus noise measured at its own receiver input.
(ii) The path loss |g(m,m, n)|2 from its transmitter to the receiver.
The measurement of item (i) is performed at the receiver and supplied to the
respective transmitter via the feedback channel. The calculation of item (ii) is
performed by the transmitter itself, knowing how far away its own receiver is
from it.
The above-stated constrained maximization problem is a convex optimization
problem, coupled across the set ofN subcarrier frequencies. It may therefore be
solved using dual decomposition [60]. Specifically, we first set up the Lagrangian

L(j)(m)=
N∑

n=1

log2

(
1 +

P (j)(m,n)
IN(j)(m,n)

)
−λ(j)(m)

(
N∑

n=1

P (j)(m,n) − P̄ (m)

)

(1.36)
where λ(j)(m) is the Lagrangian multiplier for userm at iteration j. Next, invok-
ing the orthogonality property of the OFDM subcarriers, the convex optimization
problem is decomposed into N suboptimization problems, as shown by

Maximize log2

(
1 +

P (j)(m,n)
IN(j)(m,n)

)
− λ(j)(m)P (j)(m,n) (1.37)

for n = 1, 2, . . . , N.

Solutions of this optimization are obtained by waterfilling [45]. A subgradient
search is used to find the optimal value of the Lagrange multiplier λ(j)(m) for
each user m; this optimal value is denoted by λ∗(j)(m).

3. Outer loop: iteration j = 1, 2, ...
After the inner loop of iteration j is completed, the power allocation among the
M users is adjusted. Specifically, for user m the optimal power

P ∗(j)(m,n) =
(

1
λ∗(j)(m)

− IN(j)(m,n)
)†

(1.38)

is computed, such that the total power constraint

N∑

n=1

P ∗(j)(m,n) = P̄ (m)

is satisfied.
4. Confirmation step

After the power adjustments for the M users have been made, the condition

M∑

m=1

N∑

n=1

|P (j)(m,n) − P (j−1)(m,n)| < ε (1.39)

is checked for the prescribed tolerance ε at iteration j. If this tolerable condition
is satisfied, the computation is terminated at j = J . Otherwise, the iterative
process (encompassing both the inner and outer loops) is repeated.
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1.12.1 Robustification of the Algorithm

In describing the iterative waterfilling algorithm, we have made a fundamental as-
sumption:

• The normalized parameter α(m, k, n), denoting the combined effect of (1)
propagation-path loss from the transmitter of user k to the receiver of user m
at subcarrier n, and (2) frequency offset in the OFDM, is maintained constant
throughout the entire sequence of iterations j = 1, 2, ..., J of the algorithm.

This assumption is highly likely to be violated in practice, particularly when deal-
ing with a rapidly changing wireless channel. It could also be aggravated by varia-
tions in the frequency offset Δf with time. The implication of these realities is that
the multiuser cognitive radio problem should be modeled as a partially observable
Markov decision process. For a possible cure, we could mitigate the effect of these
sources of uncertainty by including a signal-to-noise ratio gap in formulating the
data-transmission rate of each user m = 1, 2, . . . ,M . In effect, this gap is chosen
large enough to provide reliable communication under practical operating condi-
tions of the multiuser cognitive radio environment. Let the signal-to-noise ratio gap
be denoted by Γ . We then rewrite the information capacity formula of (1.28) in the
expanded form

R(m,n) = log2

[
1 +

SINR(m,n)
Γ

]
bits per use of subchannel n (1.40)

which applies to all users m = 1, 2, . . . ,M and subcarrier frequencies n =
1, 2, . . . , N . Accordingly, the iterative waterfilling procedure is modified in a cor-
responding way.

1.12.2 Summarizing Remarks

Based on the criterion of competitive optimality, the iterative waterfilling algorithm
is user-centric and therefore a selfish, greedy, and sub-optimal algorithm for solving
the transmit-power control problem in a multiuser cognitive radio network using
OFDM. Nevertheless, practical virtues of the algorithm include:

• The algorithm functions in a self-organized manner, thereby making it possible
for the network to assume an ad hoc structure.

• It avoids the need for communication links (i.e., synchronization) among the mul-
tiple users, thereby significantly simplifying the design of the network.

• By using convex optimization [60], the algorithm tends to converge relatively
rapidly to a Nash equilibrium; however, once this stable condition is reached, no
user is permitted to change its transmit-power control policy unilaterally.

• Computational complexity of the algorithm is relatively low, being on the order
of two numbers: the number of secondary users and the number of spectrum
holes available for utilization.
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1.13 Emergent Behavior of Cognitive Radio Networks

In light of the material presented in the preceding sections, we may characterize the
multiuser cognitive radio network as a complex, stochastic and time-varying feed-
back control system that exhibits the following unique combination of attributes
(among others): partial observability, adaptivity, learning, self-organization, coop-
eration, competition and exploitation. Given this characterization, we may wonder
about the emergent behavior of a cognitive radio environment by virtue of what we
know on two relevant fields: self-organizing systems and evolutionary games.

First, we note that the emergent behavior of a cognitive radio environment,
viewed as a self-organized network is influenced by the degree of coupling that may
exist between the actions of different users (i.e., transmitter–receiver linkages) oper-
ating in the network. The coupling may have the effect of amplifying local perturba-
tions in a manner analogous with Hebb’s postulate of learning, which accounts for
self-amplification in self-organizing systems [5]. Clearly, if they are left unchecked,
the amplifications of local perturbations would ultimately lead to instability. From
the study of self-organizing systems, we also know that competition among the con-
stituents of such a system can act as a stabilizing force [5]. By the same token, we
expect that competition among the cognitive radio users for limited resources (e.g.,
transmitted power) may have the influence of a stabilizer, provided, of course, that
the competition is carried out on the basis of the common application of the com-
petitive optimality criterion by all the users. However, the tendency of one or more
users to exploit the limited resources for selfish interests may drive the network into
instability and possibly a chaotic state.16

For additional insight, we next look to evolutionary games. The idea of evolu-
tionary games, developed for the study of ecological biology, was first introduced by
Maynard Smith in 1974. In his landmark work [62,63], Maynard Smith wondered
whether the theory of games could serve as a tool for modeling conflicts in a popula-
tion of animals. In specific terms, two critical insights into the emergence of so-called
evolutionary stable strategies were presented by Maynard Smith, as succinctly sum-
marized in [51,63]:

• The animals’ behavior is stochastic and unpredictable, when it is viewed at the
microscopic level of actions taken by individual animals.

• The theory of games provides a plausible basis for explaining the complex and
unpredictable patterns of the animals’ behavior.

16 The traditional method of studying the stability of a time-varying feedback control system
is to apply the Lyapunov stability theory [61]. To apply this theory, we need to formulate
a Lyapunov function for a multiuser cognitive radio network, which can be a hard task to
do. The problem is complicated further by the stochastic nature of the network. For these
reasons, we advocate the approach described in this section on evolutionary games.
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Two key issues are raised here:

1. Complexity.17 The emergent behavior of an evolutionary game may be complex,
in the sense that a change in one or more of the parameters in the underlying
dynamics of the game can produce a dramatic change in behavior. Note that the
dynamics must be nonlinear for complex behavior to be possible.

2. Unpredictability. Game theory does not require that animals be fundamentally
unpredictable. Rather, it merely requires that the individual behavior of each
animal be unpredictable with respect to its opponents.

From this brief discussion on evolutionary games, we may conjecture that the
emergent behavior of a multiuser cognitive radio network is explained by the unpre-
dictable action of each user, as seen individually by the other users (i.e., opponents).

1.13.1 State of the World

In light of the conflicting influences of cooperation, competition and exploitation
on the emergent behavior of a cognitive radio environment, we may identify two
possible end-results for the state of the (wireless) world [64]:

1. Positive emergent behavior, which is characterized by order, and therefore a
harmonious and efficient utilization of the radio spectrum by all primary and
secondary users of the cognitive radio. (The positive emergent behavior may be
likened to Maynard Smith’s evolutionary stable strategy).

2. Negative emergent behavior, which is characterized by disorder, and therefore a
culmination of traffic jams, chaos,18 and therefore unused radio spectrum.

From a practical perspective, what we therefore need are, first, a reliable criterion for
the early detection of negative emergent behavior (i.e., disorder) and, second, cor-
rective measures for dealing with this undesirable behavior. With regards to the first
issue, we recognize that cognition, in a sense, is an exercise in assigning probabili-
ties to possible behavioral responses, in light of which we may say the following. In
the case of positive emergent behavior, predictions are possible with nearly complete
confidence. On the other hand, in the case of negative emergent behavior, predictions

17 The new sciences of complexity (whose birth was assisted by the Santa Fe Institute, New
Mexico) may well occupy much of the intellectual activities in the twenty-first century
[64–67]. In the context of complexity, it is perhaps less ambiguous to speak of complex be-
havior rather than complex systems [68]. A non-linear dynamic system may be complex in
computational terms, but it is incapable of exhibiting complex behavior. By the same token,
a non-linear system can be simple in computational terms, but its underlying dynamics are
rich enough to produce complex behavior.

18 The possibility of characterizing negative emergent behavior as a chaotic phenomenon
needs some explanation. Idealized chaos theory is based on the premise that dynamic noise
in the state-space model (describing the phenomenon of interest) is zero. However, it is un-
likely that this highly restrictive condition is satisfied by real-life physical phenomena. So,
the proper thing to say is that it is feasible for a negative emergent behavior to be stochastic
chaotic [69].
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are made with less confidence. There is therefore the need to formulate a likelihood
function based on predictability as a criterion for the onset of negative emergent
behavior. The key question is how to do it effectively and efficiently?

Given a multiuser non-cooperative cognitive radio network based on OFDM and
designed along the lines described in Sect. 1.13 on iterative waterfilling, we know
the following: when all the users of the network use competitive optimality as their
common criterion to satisfy their individual transmit-power control requirements, the
network will reach a Nash equilibrium, that is, an orderly behavior throughout the
network. On the other hand, when any of the users exploit the limited resources (i.e.,
transmitted power and spectrum holes) for selfish interest, there is the likelihood
that the network will assume a disorderly behavior. It would therefore seem logical
to look to the Nash equilibrium as the basis for designing a maximum-likelihood
processor capable of detecting the emergence of disorderly behavior in the network;
recall that the Nash equilibrium is a prediction concept.

To summarize, what we are advocating here is an expansion of the game-theoretic
viewpoint of multiuser cognitive radio networks to embrace evolutionary games as
described originally by Maynard-Smith. By so doing, we may be able to quantify the
predictability of individual users’ behavior. In particular, the expansion could facil-
itate the design and development of a maximum-likelihood processor for detecting
the onset of the disorderly utilization of limited resources in the network due to the
misbehavior of one or more users.

1.14 Distributed Traffic Coordination
in Cognitive Radio Networks

The material presented up to this point in this chapter has focused on signal-
processing and communication-theoretic issues relating to the identification of spec-
trum holes, the extraction of channel-state information, dynamic spectrum manage-
ment, and transmit-power control. With the emphasis on a self-organized ad hoc
network as the structure for building a cognitive radio network, we need a protocol
for the distributed traffic coordination of secondary users of the network in such an
environment. Needless to say, the development of this protocol is a challenging task.

Basically, the issue to be addressed is summed up as follows:

In a self-organized and decentralized cognitive radio network, how can we
establish the dissemination of control traffic signals between neighboring
secondary users of the network, which is rapid, robust and efficient?

The requirement that the dissemination of control traffic signals be rapid is essential,
because the secondary user could be faced with a limited duration of time for which
spectrum holes are likely to be available. The dissemination has to be robust with
respect to external attack not only for reasons of security but also to prevent disrup-
tions in network use due to traffic congestion. Lastly, it has to be efficient so as to
minimize the use of energy and computing resources.
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For self-organized coordination among neighboring secondary users to be feasi-
ble, we expect two provisions:

1. Each user has knowledge of all the spectrum holes that are locally available.
2. Neighboring users have reasonably similar views of their respective spectral

scenes, so as to guarantee the availability of common wireless channels.

Given these two provisions, which are provided by the radio-scene analyzer, we
may then envision a self-organized traffic-coordination protocol that proceeds as fol-
lows [70]:

1. By exploiting the availability of similar spectrum holes, each local group of
neighboring users forms a mini-multihop network with a common coordination
channel. This could be achieved through broadcasting a beacon and recursive
voting procedure, whereby the channel with the highest level of connectivity is
selected by all the users in the mini-multihop network as the common coordina-
tion channel.

2. Through the availability of one or more spectrum holes common to adjoining
mini-multihop networks, communication across the cognitive radio network is
established.

3. Through eavesdropping on coordination messages from “bridge” users, a new
user may join an existing mini-multihop network and thereby quickly subscribe
to appropriate channels.

In a loose sense, point 1 of the procedure described herein is similar to what goes on
in the formation of a self-organizing map in neural networks [5].

For an alternative solution to the traffic-coordination problem, one may look to
the use of an out-of-band licensed channel as the dedicated common channel. In [70],
Zhao, Zheng and Yang present simulation results that compare the performance of
the self-organized coordination approach against an approach based on the dedicated
common channel; the results presented therein appear to show that the self-organized
approach outperforms the dedicated common channel approach, in terms of both
throughput and processing delay.

Conclusion

Cognitive radio holds the promise of a new and exciting frontier in wireless com-
munications. Most importantly, the development of an orderly dynamic spectrum-
sharing process will make it possible to improve the utilization of radio spectrum
under constantly changing user conditions. For the spectrum-sharing process to be-
come a reality, two basic issues have to be in place:

1. There has to be a paradigm shift in wireless communications from transmitter-
centricity to receiver-centricity, which, in turn, means that interference power at
the receiver rather than transmitted power at the transmitter is regulated.
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2. A new generation of wireless communication systems is developed, in which
awareness of the radio environment and the ability to adapt to the environment
and learn from it feature prominently.

Specifically, from a signal-processing and communication-theoretic perspective, we
need to develop new algorithms that operate satisfactorily and in a robust manner in
a wireless communications environment to perform the following functions:

• Identification of spectrum holes for employment by secondary users
• Channel-state estimation for improved utilization of the radio spectrum
• Adaptive modulation format that is impervious not only to the modulation format

of the primary user but also to varying received signal-to-noise conditions
• Transmit-power control to support the transmission needs of multiple users
• Development of a decentralized radio network that is efficient in the use of re-

sources and effective in performance
• Detection of the onset of instability whenever the network is misused
• Coordination of distributed traffic in the network.

The ideas and algorithms described in this chapter (building on [1]) should be viewed
as starting points for a long road ahead, which will occupy the ingenuity and exten-
sive research and development efforts of numerous researchers.

This immense effort is justified, given the potential of cognitive radio to make
a significant difference to wireless communications; hence the reference to it as a
“disruptive, but unobtrusive technology.” In the final analysis, however, the key issue
that will shape the evolution of cognitive radio in the course of time, be that for
civilian or military applications, is trust. By this we mean, trust by users of cognitive
radio, and trust by all other users who could be interfered with. For this trust to be a
reality, cognitive radio will not only have to improve spectrum utilization but also do
so in a robust, reliable and affordable manner.
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2.1 Introduction

Cognitive radios have recently emerged as a prime candidates for exploiting the in-
creasingly flexible licensing of wireless spectrum. Regulatory bodies have come to
realize that most of the time, large portions of certain licensed frequency bands re-
main empty [1]. To remedy this, legislators are easing the way frequency bands are
licensed and used. In particular, new regulations would allow for devices which are
able to sense and adapt to their spectral environment, such as cognitive radios, to
become secondary users.1 Such users are wireless devices that opportunistically em-
ploy the spectrum already licensed to primary users. Primary users generally asso-
ciate with the primary spectral license holder, and thus have a higher priority right to
the spectrum.

The intuitive goal behind secondary spectrum licensing is to increase the spectral
efficiency of the network, while, depending on the type of licensing, not affecting
higher priority users. The exact regulations governing secondary spectrum licensing
are still being formulated [2], but it is clear that networks consisting of heterogeneous
devices, both in terms of physical capabilities and in the right to the spectrum, will
emerge.

Among the many questions that remain to be answered about cognitive networks,
is that of the fundamental limits of possible communication. Although this may be
defined in various ways, information theory is an ideal tool and approach from which
to explore the underlying, implementation-independent limits of such heterogeneous
networks. In this chapter, we will outline the current state of the art in information
theoretic analysis of cognitive systems.
1 In this chapter, we will use the terms secondary user and cognitive user interchangeably.

Cognitive radio will be clearly defined in Sect. 2.1.2, and can be thought of as “smart”
radios which are able to adapt to their environment for now.
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2.1.1 Secondary Spectrum Licensing

The emergence of the FCC’s Secondary Markets Initiative (SMI, [2]) was brought
on by both the obvious desire for spectral efficiency, as well as empirical measure-
ments showing that most of the time certain licensed frequency bands remain unused.
The goal of the SMI is to remove unnecessary regulatory barriers to new secondary
market oriented policies such as

• Spectrum leasing, which allows non-licensed users to lease any part, or all of the
spectrum from the licensed user.

• Dynamic spectrum leasing, which is a temporary and opportunistic usage of
spectrum rather than a longer-term sub-lease.

• Private commons, whereby a licensee could allow non-licensed users access to
his/her spectrum without a contract, optionally with an access fee.

• Interruptible spectrum leasing, which would be suitable for a lessor that wants
a high level of assurance that any spectrum temporarily in use, or leased, to an
incumbent cognitive radio could be efficiently reclaimed if needed. A prime ex-
ample would be the leasing of the generally unoccupied spectrum allotted to
the US government or local enforcement agencies, which in times of emergency
could be quickly reclaimed.

Of interest in this chapter is the dynamic spectrum leasing, in which some wire-
less devices opportunistically employ the spectrum rather than opt for a longer term
sub-lease. In order to exploit the spectrum, we require a device which is able to sense
the communication opportunities, and then take actions based on the sensed infor-
mation. In this chapter, such actions will include transmitting (or refraining from
transmitting) and adapting their modulation and/or coding strategies so as to “better”
employ the sensed spectral environment. Cognitive radios are prime candidates for
such actions.

2.1.2 Cognitive Radios and Behavior

Over the past few years, the incorporation of software into radio systems has be-
come increasingly common. This has allowed for faster upgrades, and has given
these wireless communication devices the ability to transmit and receive using a vari-
ety of protocols and modulation schemes (enabled by reconfigurable software rather
than hardware). Furthermore, as their name suggests, such radios can even become
“cognitive”, and, as dictated by the software, adapt their behavior to their wireless
surroundings without user intervention. According to the FCC, software defined ra-
dios (SDR) encompasses any “radio that includes a transmitter in which operating
parameters such as frequency range, modulation type or maximum output power can
be altered by software without making any changes to hardware components that
affect the radio frequency emissions.” Mitola [3] took the definition of an SDR one
step further, and envisioned a radio which could make decisions as to the network,
modulation and/or coding parameters based on its surroundings, and called such a
“smart” radio a cognitive radio. Such radios could even make decisions based on
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the availability of nearby collaborative nodes, or on the regulations dictated by their
current location and spectral conditions.

The spectral conditions sensed by the cognitive radio may be utilized in many
ways. In this chapter, we consider and survey the information theoretic results on
three main categories of cognitive behavior:

1. Interference mitigating cognitive behavior: This behavior allows two users to
simultaneously transmit over the same time or frequency band(s). Under this
scheme, a cognitive radio will listen to the channel and, if sensed idle, could
transmit during the void, not worrying about interference to the primary user
(who is not transmitting). On the other hand, if another sender is sensed, the ra-
dio may decide to proceed with simultaneous transmission. The cognitive radio
need not wait for an idle channel to start transmission. There will be interfer-
ence between the primary and secondary users, but as we will show, this could
potentially be mitigated. Here, the sensed information is fully utilized as side
information, which will be the main aid in interference mitigation.

2. Collaborative behavior (interference-free cognitive behavior): When cognitive
devices exist in a network but have no information of their own to transmit, they
could potentially act as relays, and collaborate with the primary users. Rather
than cause interference to the primary link, they boost it. Neglecting any other
possibly active cognitive clusters [4], this system is interference-free. Incentives
for cognitive radios to collaborate with primary users is beyond the scope of this
chapter, but must also be considered. Here the sensing capability of the cognitive
radio is used to obtain the message of the primary user, in order to relay it.

3. Interference avoiding cognitive behavior: In current FCC proposals on oppor-
tunistic channel usage, the cognitive radio listens to the wireless channel and de-
termines, either in time or frequency, which part of the spectrum is unused [1]. It
then adapts its signal to fill this void in the spectral domain, by either transmit-
ting at a different time, or in a different band. A device transmits over a certain
time and/or frequency band only when no other user does, thus avoiding inter-
ference, rather than mitigating it. Such behavior employs the sensing capability
to determine a suitable moment, protocol, and band to transmit in.

2.1.3 Chapter Outline

The chapter is structured as follows. In Sect. 2.2, we look at interference-mitigating
cognitive behavior, where a prime example is the cognitive radio channel. We out-
line strategies and their resulting achievable rate regions (for general discrete mem-
oryless cognitive radio channels [5]) and capacity regions (for Gaussian cognitive
radio channels [6]). We also demonstrate applicable and related results on interfer-
ence channels with degraded message sets [7] and interference channels with uni-
directional cooperation [8]. In Sect. 2.3 we demonstrate that the multiplexing gain
of the cognitive radio channel is 1. This somewhat pessimistic result motivates the
definition of the cognitive X-channel in Sect. 2.4. We study an achievable rate re-
gion for this channel before demonstrating that it achieves a multiplexing gain of 2
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Fig. 2.1. (a) Competitive behavior, the interference channel. The transmitters may not cooper-
ate. (b) Cognitive behavior, the cognitive radio channel. Asymmetric transmitter cooperation.
(c) Cooperative behavior, the two antenna broadcast channel. The transmitters, but not the
receivers, may fully and symmetrically cooperate.

in Sect. 2.5. In Sect. 2.6, the limits of collaborative communications [9] are exam-
ined. There, the cognitive radio serves as a relay, and many of the previous idealistic
assumptions often encountered in the relay channel literature are removed in estab-
lishing achievable rate regions. In Sect. 2.7, we take a look at the capacity limits
of interference-avoiding cognitive behavior. The problem of tracking and matching
the cognitive transmitter and receiver channels in a distributed and dynamic spectral
environment is posed, and capacity inner and outer bounds are examined.

2.2 Interference-Mitigating Cognitive Behavior: The Cognitive
Radio Channel

We start our discussion by looking at the simplest possible scenario in which a cog-
nitive radio could be employed. We assume there exists a primary transmitter and
receiver pair (S1 → R1), as well as the cognitive secondary transmitter and receiver
pair (S2 → R2). As shown in Fig. 2.1, there are three possibilities for transmitter
cooperation in these two point-to-point channels. We have chosen to focus on trans-
mitter cooperation because such cooperation is often more insightful and general
than receiver-side cooperation [10, 11]. We thus assume that each receiver decodes
independently. Transmitter cooperation in this figure is denoted by a directed double
line. These three channels are simple examples of the cognitive decomposition of
wireless networks seen in [4]. The three possible types of transmitter cooperation in
this simplified scenario are

1. Competitive behavior: The two transmitters transmit independent messages.
There is no cooperation in sending the messages, and thus the two users com-
pete for the channel. This is the same channel as the two sender, two receiver
interference channel [12].
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2. Cognitive behavior: Asymmetric cooperation is possible between the transmit-
ters. This asymmetric cooperation is a result of S2 knowing S1’s message, but
not vice versa. As a first step, we idealize the concept of message knowledge:
whenever the cognitive node S2 is able to hear and decode the message of the
primary node S1, we assume it has full a priori knowledge. We call this the
genie assumption, as these messages could have been given to the appropriate
transmitters by a genie. The one-way double arrow indicates that S2 knows S1’s
message but not vice versa. This is the simplest form of asymmetric non-causal
cooperation at the transmitters. We use the term “cognitive behavior” to empha-
size the need for S2 to be a “smart” device capable of altering its transmission
strategy according to the message of the primary user. We can motivate consid-
ering asymmetric side information in practice in three ways:
• Depending on the device capabilities, as well as the geometry and channel

gains between the various nodes, certain cognitive nodes may be able to hear
and/or obtain the messages to be transmitted by other nodes. These messages
would need to be obtained in real time, and could exploit the geometric gains
between cooperating transmitters relative to receivers in, for example, a two-
phase protocol [5].

• In an Automatic Repeat reQuest (ARQ) system, a cognitive transmitter, un-
der suitable channel conditions (if it has a better channel to the primary trans-
mitting node than the primary receiver), could decode the primary user’s
transmitted message during an initial transmission attempt. In the event that
the primary receiver was not able to correctly decode the message, and it
must be re-transmitted, the cognitive user would already have the to-be-
transmitted message, or asymmetric side information, at no extra cost (in
terms of overhead in obtaining the message).

• The authors in [7] consider a network of wireless sensors in which a sensor
S2 has a better sensing capability than another sensor S1 and thus is able to
sense two events, while S1 is only able to sense one. Thus, when they wish to
transmit, they must do so under an asymmetric side-information assumption:
sensor S2 has two messages, and the other has just one.

3. Cooperative behavior: The two transmitters know each others’ messages (two-
way double arrows) and can thus fully and symmetrically cooperate in their
transmission. The channel pictured in Fig. 2.1(c) may be thought of as a two
antenna sender, two single antenna receivers broadcast channel [13].

Many of the classical, well-known information theoretic channels fall into the
categories of competitive and cooperative behavior. For more details, we refer the in-
terested reader to the cognitive network decomposition theorem of [4]. We now turn
to the much less studied behavior which spans and in a sense interpolates between
the symmetric cooperative and competitive behaviors. We call this behavior asym-
metric cognitive behavior. In this section, we will consider one example of cognitive
behavior: a two sender, two receiver (with two independent messages) interference
channel with asymmetric and a priori message knowledge at one of the transmitters,
as shown in Fig. 2.1(b). Certain asymmetric (in transmitter cooperation) channels
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have been considered in the literature: for example in [14], the capacity region of a
multiple access channel with asymmetric cooperation between the two transmitters
is computed. The authors in [8] consider a channel which could involve asymmetric
transmitter cooperation, and explore the conditions under which the capacity of this
channel coincides with the capacity of the channel in which both messages are de-
coded at both receivers. In [15] the authors introduced the cognitive radio channel,
which captures the most basic form of asymmetric transmitter cooperation for the
interference channel. We now study the information theoretic limits of interference
channels with asymmetric transmitter cooperation, or cognitive radio channels.

Our survey on the work on the two sender, two receiver channel with asymmetric
cooperation at the transmitters will proceed as follows. First, we will define and
demonstrate an achievable rate region for the case of two independent messages for
the discrete memoryless cognitive radio channel. This will be followed by the results
of [6], who, under certain channel conditions, find the capacity region of the Gaussian
interference channel with degraded message sets, a formulation equivalent to the
Gaussian cognitive radio channel. We then consider the work of [7] on the general
discrete memoryless interference channel with degraded message sets. In particular,
they look for conditions under which the derived achievable rate regions are tight. In
the Gaussian noise case, their result explicitly equals that of [6]. We then look at the
work of [8] on the interference channel with unidirectional cooperation, where the
capacity region of the cognitive radio channel when both messages are to be decoded
at both receivers, under certain strong interference conditions, is derived. We proceed
to explore the multiplexing gain of the Gaussian cognitive radio channel, which turns
out to be 1. Motivated by this result, we define and derive an achievable rate region
for the Gaussian X-channel with partial asymmetric (or cognitive) side information
at the transmitter. In this case, the multiplexing gain turns out to be 2.

2.2.1 Cognitive Radio Channel: An Achievable Rate Region

We define a 2×2 genie-aided cognitive radio channelCCOG, as in Fig. 2.2, to be two
point-to-point channels S1 → R1 and S2 → R2 in which the sender S2 is given, in
a non-causal manner (that is, by a genie), the message X1 which the sender S1 will
transmit. LetX1 andX2 be the random variable inputs to the channel, and let Y1 and
Y2 be the random variable outputs of the channel. The conditional probabilities of the
discrete memoryless CCOG are fully described by P (y1|x1, x2) and P (y2|x1, x2).

In [16], an achievable region for the interference channel is found by first con-
sidering a modified problem and then establishing a correspondence between the
achievable rates of the modified and the original channel models. We proceed in the
same fashion.

The channel Cm
COG, defined as in Fig. 2.2 introduces many new auxiliary random

variables, whose purposes can be made intuitively clear by relating them to auxiliary
random variables in previously studied channels. They are defined and described in
Table 2.1. Standard definitions of achievable rates and regions are employed [15,17]
and omitted for brevity. Then an achievable region for the 2 × 2 cognitive radio
channel is given by
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Fig. 2.2. The modified cognitive radio channel with auxiliary random variables M11, M12

and M21, M22, inputs X1 and X2, and outputs Y1 and Y2. The auxiliary random variable
A11, A12 associated with S2, aids in the transmission of M11 and M12, respectively. The
vectors V11, V12, V21 and V22 denote the effective random variables encoding the transmission
of the private and public messages.

Table 2.1. Description of random variables and rates in Theorem 2.1.

(Random) variable names (Random) variable descriptions

M11, M22 Private information from
S1 → R1 and S2 → R2 resp.

M12, M21 Public information from
S1 → (R1,R2) and S2 → (R1,R2) resp.

R11, R22 Rate between
S1 → R1 and S2 → R2 resp.

R12, R21 Rate between
S1 → (R1,R2) and S2 → (R1,R2) resp.

A11, A12 Variables at S2 that aid in
transmitting M11, M12 resp.

V11 = (M11, A11), V12 = (M12, A12) Vector helping transmit the
private/public (resp.) information of S1

V21 = M21, V22 = M22 Public and private message of S2.
Also the auxiliary random variables
for Gel’fand–Pinsker coding

W Time-sharing random variable,
independent of messages

Theorem 2.1. Let Z
�
=(Y1,Y2,X1,X2,V11,V12, V21, V22,W ), be as shown in Fig. 2.2.

Let P be the set of distributions on Z that can be decomposed into the form

P (w) × [P (m11|w)P (m12|w)P (x1|m11, m12, w)]

× [P (a11|m11, w)P (a12|m12, w)]

× [P (m21|v11, v12, w)P (m22|v11, v12, w)]

× [P (x2|m21, m22, a11, a12, w)] P (y1|x1, x2)P (y2|x1, x2), (2.1)
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whereP (y1|x1, x2) andP (y2|x1, x2) are fixed by the channel. Let T1
�
= {11, 12, 21}

and T2
�
= {12, 21, 22}. For any Z ∈ P , let S(Z) be the set of all rate tuples

(R11, R12, R21, R22) (as defined in Table 2.1) of non-negative real numbers such
that there exist non-negative reals L11, L12, L21, L22 satisfying

⋂

T⊂{11,12}

(
∑

t∈T

Rt

)
≤ I(X1;MT |MT ) (2.2)

R11 = L11 (2.3)

R12 = L12 (2.4)

R21 ≤ L21 − I(V21; V11, V12) (2.5)

R22 ≤ L22 − I(V22; V11, V12) (2.6)

⋂

T⊂T1

(
∑

t1∈T

Lt1

)
≤ I(Y1,VT ;VT |W ) + f(VT |W ) (2.7)

⋂

T⊂T2

(
∑

t2∈T

Lt2

)
≤ I(Y2,VT ;VT |W ) + f(VT |W ) (2.8)

where f(vT ) denotes the divergence between the joint distribution of the random
variables VT in (2.1) and their product distribution (where all components are in-
dependent). T denotes the complement of the subset T with respect to T1 in (2.7),
with respect to T2 in (2.8), and VT denotes the vector of Vi such that i ∈ T . Let
S be the closure of ∪Z∈PS(Z). Then any pair (R11 + R12, R21 + R22) for which
(R11, R12, R21, R22) ∈ S is achievable for CCOG.

Proof outline: The main intuition is as follows: the equations in (2.2) ensure that
when S2 is presented withX1 by the genie, the auxiliary variablesM11 andM12 can
be recovered. Equations (2.7) and (2.8) correspond to the equations for two overlap-
ping MAC channels seen between the effective random variables VT1 → R1, and
VT2 → R2. Equations (2.5) and (2.6) are necessary for the Gel’fand–Pinsker [18]
coding scheme to work (I(V21;V11, V12) and I(V22;V11, V12) are the penalties for
using non-causal side information. The f(VT ) terms correspond to the highly un-
likely events of certain variables being correctly decoded despite others being in
error. Intuitively, the sender S2 could aid in transmitting the message of S1 (the A11,
A12 random variables) or it could dirty paper code against the interference it will
see (theM21,M22 variables). The theorem smoothly interpolates between these two
options. Details may be found in [5]).

2.2.2 Achievable Rates for the Gaussian Cognitive Radio Channel

The previous section proposed inner and outer bounds on the capacity of the cog-
nitive radio channel for discrete memoryless channels. Although the regions can be
succinctly expressed, as done in Theorem 2.1, because this expression involves eval-
uation of the mutual information terms over all distributions of the specified form,
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Fig. 2.3. Rate regions (R1, R2) for 2 × 2 wireless channels.

it is unclear what these regions look like in general (and numerically intractable to
try all possible input distributions). When the channel is affected by additive white
Gaussian noise, as is often done in the literature, one can assume the input distribu-
tions to be of a certain form, and thus obtain a possible achievable rate region (not
necessarily the largest one). In this section, we use this approach to arrive at the inner
and outer bound regions shown in Fig. 2.3.

We consider the 2 × 2 Gaussian cognitive radio channel described by the input,
noise and output relations:

Y1 = X1 + a21X2 + Z1 (2.9)

Y2 = a12X1 +X2 + Z2 (2.10)

where a12, a21 are the crossover (channel) coefficients, Z1 ∼ N (0, Q1) and Z2 ∼
N (0, Q2) are independent AWGN terms, X1 and X2 are channel inputs con-
strained to average powers P1 and P2, respectively, and S2 is givenX1 non-causally.
Thus the Gaussian cognitive radio channel is simply the cognitive radio channel,
where we have specified the conditional distributions which describe the channel,
p(y1, y2|x1, x2) to be of the above (2.9), (2.10) form. In order to determine an achiev-
able region for the modified Gaussian cognitive radio channel, specific forms of the
random variables described in Theorem 2.2 are assumed, and are analogous to the
assumptions.
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The resulting achievable region, in the presence of additive white Gaussian noise
for the case of identical transmitter powers (P1 = P2) and identical receiver noise
powers (Q1 = Q2), is presented in Fig.2.3. The ratio of transmit power to receiver
noise power is 7.78 dB. The cross-over coefficients in the interference channel are
a12 = a21 = 0.55, while the direct coefficients are 1.

In the figure, we see four regions. The time-sharing region (1) displays the result
of pure time sharing of the wireless channel between usersX1 andX2. Points in this
region are obtained by letting X1 transmit for a fraction of the time, during which
X2 refrains, and vice versa. The interference channel region (2) corresponds to the
best known achievable region [16] of the classical information theoretic interference
channel. In this region, both senders encode independently, and there is no a pri-
ori message knowledge by either transmitter of the other’s message. The cognitive
channel region (3) is the achievable region described here. In this case, X2 received
the message of X1 non-causally from a genie, and X2 uses a coding scheme which
combines interference mitigation with relaying the message of X1. We see that both
users – not only the incumbent X2 which has the extra message knowledge – bene-
fit from using this scheme. This is as expected: the selfish strategy boosts R2 rates,
while the selfless one boostsR1 rates, and so gracefully combining the two will yield
benefits to both users. Thus, the presence of the incumbent cognitive radio X2 can
be beneficial toX1, a point which is of practical significance. This could provide yet
another incentive for the introduction of such schemes.

The modified MIMO bound region (4) is an outer bound on the capacity of
this channel: the two antenna Gaussian broadcast channel capacity region [13],
where we have restricted the form of the transmit covariance matrix to be of the

form

(
P1 c
c P2

)
, to more closely resemble our constraints, intersected with the ca-

pacity bound on R2 ≤ I(Y2;X2|X1) for the channel for X2 → Y2 in the absence of
interference from X1. Let H1 = [1 a21] and H2 = [a12 1]. Then modified MIMO
bound region is explicitly given by the set:

Convex hull {(R1, R2) :

R1 ≤ 1
2 log2

(
H1(B1+B2)H

T
1 +Q1

H1B2HT
1 +Q1

)

R2 ≤ 1
2 log2

(
H2B2HT

2 +Q2
Q2

)

R2 ≤ 1
2 log2

(
1 + P2

Q2

)
⋃

R1 ≤ 1
2 log2

(
H1B1Ht

1+Q1
Q1

)

R2 ≤ 1
2 log2

(
H2(B1+B2)H

T
2 +Q2

H2B1HT
2 +Q2

)

R2 ≤ 1
2 log2

(
1 + P2

Q2

)

for any 2 × 2 matrices B1, B2 such that

B1 	 0, B2 	 0

B1 +B2 

(
P1 c
c P2

)

c2 ≤ P1P2}.
Here X 	 0 denotes that the matrix X is positive semi-definite.
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2.2.3 Further Results on the Cognitive Radio Channel

Following the introduction of the cognitive radio channel Jovicic and Viswanath [7],
Wu et al. [8], and Devroye et al. [16] considered the Gaussian cognitive radio chan-
nel, albeit under different names, and subsequently obtained its capacity in weak
interference. The authors in [8] consider a channel which could involve asymmet-
ric transmitter cooperation, and explore the conditions under which the capacity of
this channel coincides with the capacity of the channel in which both messages are
decoded at both receivers. We briefly review the results of these three works.

The authors of [6] consider a two-sender two-receiver channel which consists of
a primary user and a secondary, or cognitive user. Like in the cognitive radio channel,
each has its own independent message to send, and the cognitive user is assumed to
know, a priori, the message of the primary user. They term their channel the inter-
ference channel with degraded message sets (IC-DMS). This work is particularly in-
terested in determining the maximal rate at which the secondary cognitive user may
transmit such that the primary user’s rate remains unchanged (that is, the primary
user’s rate continues to be the same as if there were no interference), in the Gaus-
sian noise channel. This would correspond to a single point in the capacity region
of the channel in general. They furthermore require the primary receiver to employ
a single-user decoder, which would be the case if no cognitive user were present. In
essence, these two conditions, which they term co-existence conditions, require the
cognitive user to remain transparent to the primary user. In fact, the only difference
between the IC-DMS and the cognitive radio channel is that the IC-DMS, and all
the results pertaining to it, are only valid in the Gaussian noise case. In addition,
the co-existence conditions are not explicitly required in cognitive radio channel.
In [6], these co-existence conditions are also relaxed (allowing for joint codebook
design between primary and secondary users), and the authors show that the capac-
ity achieving coding/decoding scheme in fact satisfy these co-existence conditions,
that is, that the primary user decoder behaves as a single user decoder.

Let R1 and R2 denote the rates achieved by the primary and cognitive users,
respectively. The main results of [6] stated in their Theorems 3.1 and 4.1 are sum-
marized in the following single theorem. Here the primary user is expected power
limited to P1, the secondary user is expected power limited to P2, and the noises at
the two receivers are Gaussian of zero mean and variance N1 and N2 respectively.
The conditions, and notation, which are the same as in the Gaussian cognitive radio
channel of Sect. 2.2, save the co-existence conditions.

Theorem 2.2. The capacity region of the IC-DMS defined in (2.9), (2.10) is given by
the union, over all α ∈ [0, 1], of the rate regions

0 ≤ R1 ≤ 1
2 log2

(
1 + (

√
P1+a21

√
αP2)

2

1+a2
21(1−α)P2

)

0 ≤ R2 ≤ 1
2 log2 (1 + (1 − α)P2) .

In particular, the maximal rateR2 (or capacity) at which a cognitive user may trans-
mit such that the primary user’s rate R1 remains as in the interference-free regime
(R1 = 1

2 log2 (1 + P1/N)) is given by
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R1 = 1
2 log2

(
1 + P1

N

)

R2 = 1
2 log2 (1 + (1 − a∗)P2) .

as long as a21 < 1, and a∗ is

a∗ =

⎛

⎝
√
P1

(√
1 + a2

21P2(1 + P1) − 1
)

a21

√
P2(1 + P1)

⎞

⎠

1
2

.

Both these results are obtained using a Gaussian encoder at both the primary and
cognitive transmitters. For more precise definitions of achievability in this channel,
we refer to [6]. We paraphrase their achievability results here. The primary user
generates its 2nR1 codewords,Xn

1 (block length n), by drawing the coordinates i.i.d.
according to N (0, P1), where we recall P1 is the expected noise power constraint.
Then, since the cognitive radio knows the message the primary user, it can form the
primary user’s encoding Xn

1 , and performs superposition coding as

Xn
2 = X̂n

2 +
√
αP2

P1
Xn

1

where α ∈ [0, 1]. The codeword X̂n
2 encodes one of the 2nR2 messages, and is

generated by performing Costa precoding [19] (dirty-paper coding). Costa showed
that to optimize the rate achieved by this dirty-paper coding, one selects X̂n

2 statis-
tically independently from Xn

1 , and thus i.i.d. Gaussian. Encoding is done using a
standard information theoretic binning technique, which treats the message Xn

1 as
non-causally known interference. In order to satisfy the average power constraint of
P2 on the components ofXn

2 , X̂n
2 must be N (0, (1−α)P2). A converse, resulting in

the capacity region of the cognitive radio channel under weak interference, is given
in [6] and is based on the conditional entropy power inequality, and results from [13].

Whereas the paper [6] considers only the Gaussian IC-DMS with specific co-
existence conditions, the work [7] considers the discrete memoryless IC-DMS (not
necessarily Gaussian), and looks at the Gaussian IC-DMS as a special case. The
authors in this work are motivated by a sensor network in which one sensor has bet-
ter sensing capabilities than another. The one with the better channel is thus able
to detect two sensed events, while another is only able to detect one. This problem
then reduces to the interference channel with degraded message sets (where the mes-
sage of one user is a subset of the other user’s message). The authors define three
types of weak interference (as opposed to the very strong and strong interference
typically seen in the interference channel literature [12]), an achievable rate region,
outer bounds, and conditions under which these outer bounds are tight. They then
look at a Gaussian noise example in which their region is tight, and for which the
result is as described in the capacity region of [6]. We summarize some of their main
results in the single following theorem. It provides an inner and an outer bound on
the IC-DMS, which turns out to be the capacity region for the types of interference
specified.
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Theorem 2.3. Inner bound Let Rin be the set of all rate pairs (R1, R2) (same as in
the cognitive radio channel) such that

R1 ≤ I(V,X1;Y1)
R2 ≤ I(U ;Y2) − I(U ;V,X1)

for the probability distribution p(x1, x2, u, v, y1, y2) that factors as

p(v, x1)p(u|v, x1)p(x1|u)p(y1, y2|x1, x2).

Then Rin is an achievable rate region for the IC-DMS where transmitter S2 knows
both messages and transmitter S1 only knows one.
Outer bound: Define Ro to be the set of all rate pairs (R1, R2) such that

R1 ≤ I(V,X1;Y1)
R2 ≤ I(X1;Y2|X1)

R1 +R2 ≤ I(V,X1;Y1) + I(X2;Y2|V,X1)

for the probability distribution p(x1, x2, v, y1, y2) that factors as

p(v, x1)p(x2|v)p(y1, y2|x1, x2).

Then Ro is an outer bound for the capacity of the IC-DMS.
Capacity conditions: If there exists a probability transition matrix q1(y2|x2, y1) such
that

p(y2|x1, x2) =
∑

y1

p(y1|x1, x2)q1(y2|x2, y1)

or if there exists a probability transition matrix q2(y1|x1, y2) such that

p(y1|x1, x2) =
∑

y2

p(y2|x1, x2)q2(y1|x1, y2)

then the set of all rate pairs (R1, R2) such that

R1 ≤ I(V,X1;Y1) (2.11)

R2 ≤ I(X2;Y2|V,X1) (2.12)

for the probability distribution p(x1, x2, y1, y2) that factors as

p(v, x1)p(x2|v)p(y1, y2|x1, x2)

is the capacity region of the IC-DMS.

Since the channel of [7] is the same as the cognitive radio channel [5], direct com-
parisons between their respective bounds may be made. Whereas the outer bounds
are equivalent, due to the fact that the inner bounds for the discrete memoryless chan-
nel involve non-trivial unions over all distributions of a certain form, it is unclear a
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priori which region will be larger. However, the authors demonstrate that all Gaus-
sian weak interference channels satisfy the capacity conditions of the theorem, and
thus the region of (2.11) and (2.12) is the capacity region. This capacity region in the
Gaussian noise case is shown to be explicitly equal to that of [6], and, numerically
specialized to the Gaussian noise case.

Finally, the work [8] considers again the cognitive radio channel, referred to as
the interference channel with unidirectional cooperation. There, one set of condi-
tions for which the capacity region of the channel coincides with that of the chan-
nel in which both messages are required at both receivers is derived. Notice that
in the cognitive radio channel this added condition, of being able to decode both
messages at both receivers, is not assumed. This is related to the work [20] on the
compound multiple access channel with common information, in which the capacity
region for another set of strong interference-type conditions is computed. Notice that
whereas [7] considers weak interference conditions, [8] considers strong interference
conditions. Their results on the cognitive radio channel capacity read as follows:

Theorem 2.4. For an interference channel with unidirectional cooperation satisfying

I(X2;Y2|X1) ≤ I(X2;Y1|X1)
I(X1,X2;Y1) ≤ I(X1,X2;Y2)

for all joint distributions on X1 and X2, the capacity region C is given by

C =
⋃

{(R1, R2) :

R2 ≤ I(X2;Y2|X1)
R1 +R2 ≤ I(X1,X2;Y1)}

where the union is over joint distributions p(x1, x2, y1, y2).

2.2.4 Cognitive Radio Channel Conclusions

As we have seen, various authors have studied the fundamental information theoretic
limits of cognitive behavior, albeit sometimes under different names, with the com-
mon idea of partial asymmetric side information at one transmitter. In addition, in
Gaussian noise, it can be seen that cognitive behavior allows for a secondary user to
transmit at a non-zero rate while the primary user remains unaffected. Alternatively,
tradeoffs between the primary and secondary users’ rates can also be analyzed. The
capacity regions are known under certain conditions, but as is the case for the interfer-
ence channel, the capacity region of the most general discrete memoryless cognitive
radio channel remains an open problem.

2.3 The Multiplexing Gain of Cognitive Radio Channels

The previous section showed that when two interfering point-to-point links act in a
cognitive fashion, or employ asymmetric non-causal side information, interference
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may be at least partially mitigated, allowing for higher spectral efficiency. That is,
it is possible for the cognitive user to communicate at a non-zero rate while the pri-
mary user suffers no loss in rate. Thus, at medium SNR levels, there is an advantage
to cognitive transmission. One immediate question that arises is how cognitive trans-
mission performs in the high SNR regime. The multiplexing gain is defined as the
limit of the ratio of the maximal achieved rate to the log(SNR) as the SNR tends to
infinity. That is,

multiplexing gain = lim
max SNR→∞

R(SNR)
log(SNR)

.

The multiplexing gain of various multiple input multiple output (MIMO) systems
has been extensively studied in the literature [21]. For the single-user point-to-point
MIMO channel with MT transmit and NR receive antennas, the maximum multi-
plexing gain is known to be min(MT, NR) [22, 23]. For the two user MIMO multi-
ple access channel withNR receive antennas andMT1 ,MT2 transmit antennas at the
two transmitters, the maximal multiplexing gain is min(MT1 + MT2 , NR). For its
counterpart, the two user MIMO broadcast channel with MT transmit antennas and
NR1 , NR2 receive antennas at the two transmitters, respectively, the maximum multi-
plexing gain is min(MT, NR1 +NR2). These results, as outlined in [21] demonstrate
that when joint signal processing is available at either the transmit or receive sides
(as is the case in the MAC and BC channels), then the multiplexing gain is signifi-
cant. However, when joint processing is neither possible at the transmit nor receive
side, as is the case for the interference channel, then the multiplexing gain is severely
limited. Results for the maximal multiplexing gain when cooperation is permitted at
the transmitter or receiver side through noisy communication channels can be found
in [24, 25]. In the cognitive radio channel, a form of partial joint processing is pos-
sible at the transmitter. It is thus unclear whether this channel will behave more like
the cooperative MAC and BC channels, or whether it will suffer from interference at
high SNR as in the interference channel. We thus outline results on the multiplexing
gain in this scenario, under additive white Gaussian noise [26].

We expect the multiplexing gain (which intuitively corresponds to the number
of information streams one can push through a channel) to lie somewhere between
1 and 2, as we have two independent messages, and single antennas at all nodes.
One can show that the sum-rate of the Gaussian cognitive radio channel, with two
independent messages S1 → R1 and S2 → R2, as shown in Fig. 2.4(a) scales at best
like logP (not 2 logP ). In other words, although partial side information may help
the interference channel in a medium SNR-regime [5, 6], at high SNR, one cannot
improve the scaling law of the sum-rate.

Theorem 2.5. Consider a Gaussian interference channel defined in (2.9), (2.10), and
where additionally S2 has non-causal knowledge of the message of S1. Then the sum-
rate capacity of this channel satisfies

lim
P→∞

max(R1,R2)∈C R1 +R2

logP
= 1 (2.13)
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Fig. 2.4. Both channels are additive Gaussian noise interference channels with cross-over
parameters α12, α21, transmitted encodings X1, X2 with expected transmit power limitations
P1 and P2, and received signals Y1 and Y2. (a) Cognition in the interference channel: there
are two information streams (X1 → Y1) and (X2 → Y2), and X1 is the asymmetric side
information known at X2. (b) Cognition in the X-channel: there are four message streams
(A1 → Y1), (A2 → Y2), (B1 → Y1) and (B2 → Y2). A1 is the partial and asymmetric
message knowledge at X2.

where Ri corresponds to the rates from the i-th source to the i-th receiver, P is the
expected transmit power constraint at each transmitter and C is the capacity region
of the channel.

Proof. : The a21 ≤ 1 condition ensures that we are operating in the weak interference
regime. Consider the capacity region denoted by C claimed in (24) and (25) of [6].
Notice that a21 ≤ 1 corresponds to a ≤ 1, P1 = Pp, P2 = Pc, and R1 = Rp, R2 =
Rc in the notation of [6]. If Pp = Pc = P , then it follows that

lim
P→∞

max(R1,R2)∈C R1 + R2

log P
(2.14)

= lim
P→∞

maxα
1
2

log
((

1 + (
√

P+a
√

αP )2

1+a2(1−α)P

)
· (1 + (1 − α)P )

)

log P
(2.15)

= 1. (2.16)

For the case when a21 > 1 the sum-rate again scales like log(P ), which can be
seen by using Theorem 2.2.

2.4 The X-Channel with Asymmetric Side Information

Section 2.2 showed that when two non-overlapping single sender, single receiver
channels act in a cognitive fashion, or employ asymmetric non-causal side informa-
tion, interference may be at least partially mitigated, allowing for higher spectral
efficiency. In this scenario, the two senders and the two receivers were independent.
However, at high SNR, the multiplexing gain was limited to 1. This is in fact equal
to that of a channel with no cognition. We ask ourselves if there are other cognitive
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channels in which partial asymmetric message knowledge does provide a multiplex-
ing gain greater than 1. The answer, as we will see in the next section, is yes. The
channel for which the multiplexing gain using partial asymmetric side information
is the cognitive X-channel, which we define next. This channel is equivalent to the
cognitive version of the X-channel, defined in [21,27], where the degrees of freedom,
or multiplexing gain, is considered in the multiple antenna, non-cognitive case. We
will ultimately be interested in the multiplexing gain for Gaussian noise channels,
and so introduce the Gaussian cognitive radio channel, and the Gaussian cognitive
X-channel.

Repeating for clarity, in the cognitive radio channel, defined in Sect. 2.2.1 and
shown in Fig. 2.4(a), there are two messages, one from (S1 → R1), and the other
from (S2 → R2). There is no cross-over information from (S1 → R2) or (S2 →
R1). Here S2 knows the message X1, as seen by the directed double arrow in Fig.
2.4(a). The multiplexing gain of this channel is 1. Consider now the same two sender,
two receiver Gaussian noise channel as Fig. 2.4(a) except that here we do have cross-
over information. That is, each sender has an independent message destined to each
receiver, for a total of four messages, as shown in Fig. 2.4(b). S1 wishes to send
message s11 ∈ {1, 2, · · · 2nR11}, encoded as A1 ∈ A1 to R1 (at rate R11) and
s12 ∈ {1, 2, · · · , 2nR12}, encoded as A2 ∈ A2 to R2 (at rate R12) in n channel uses.
Similarly, S2 wishes to send message s21 ∈ {1, 2, · · · 2nR21}, encoded as B1 ∈ B1

to R1 (at rate R21) and s22 ∈ {1, 2, · · · , 2nR22} encoded as B2 ∈ B2 to R2 (at
rate R22) in n channel uses. The double arrow from X1 to X2 denotes partial side
information, specifically, that the encoding A1 is known fully, non-causally (or a
priori) to the second transmitter. Notice also that only one of S1’s messages is known
to S2, that is, only partial knowledge is used in the following. We could alternatively
have allowedA2 to be known at the second transmitter. This would lead to analogous
results when indices are permuted. The channel is still an additive Gaussian noise
channel with independent noise at the receivers, so the received signals are

Y1 = A1 +A2 + a21(B1 +B2) +N1 (2.17)

Y2 = a12(A1 +A2) + (B1 +B2) +N2. (2.18)

Standard definitions of achievable rates and regions are employed in [15, 17]
or chapters 8 and 14 of [17]. Although our achievable rate region will be defined
for finite alphabet sets, in order to determine an achievable region for the Gaus-
sian noise channel, specific forms of the random variables described in Theorem 2.6
are assumed. As in [17,20,29], Theorem 2.6 can readily be extended to memoryless
channels with discrete time and continuous alphabets by finely quantizing the input,
output, and interference variables (Gaussian in this case).

We now outline an achievable region for this Gaussian noise channel. The ca-
pacity region of the Gaussian MIMO broadcast channel [13] is achieved by Costa’s
dirty-paper coding techniques [19]. In the X-channel, at S1, the encodingsA1 andA2

may be jointly generated, for example using a dirty-paper like coding scheme. That
is, one message may treat the other as non-causally known interference and code so
as to mitigate it. At S2, not only may the encodings B1 and B2 be jointly designed,
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but they may additionally use A1 as a priori known interference. Thus, transmitter
2 could encode B2 so as to potentially mitigate the interference Y2 will experience
from A1 as well as B1.

We demonstrate an achievable region for the discrete, finite alphabet case in The-
orem 2.6 and look at the achieved rate scalings in the Gaussian noise case, assuming
specific forms for all involved variables in Theorem 2.6. Let R11 be the rate from
A1 → Y1, R12 from A2 → Y2, R21 from B1 → Y1 and R22 from B2 → Y2.

Theorem 2.6. Let Z
�
= (Y1,Y2,X1,X2,A1,A2,B1,B2), and let P be the set of distri-

butions on Z that can be decomposed into the form

p(a1|a2)p(a2)p(b1)p(b2|a1, b1)
p(x1|a1, a2)p(x2|a1, b1, b2)
p(y1|x1, x2)p(y2|x1, x2)

(2.19)

where we additionally require p(a2, b2) = p(a2)p(b2). For any Z ∈ P , let S(Z) be
the set of all tuples (R11, R12, R21, R22) of non-negative real numbers such that

R11 ≤ I(A1; Y1|B1) − I(A1; A2)
R21 ≤ I(B1; Y1|A1)

R11 + R21 ≤ I(A1, B1; Y1) − I(A1; A2)

⎫
⎬

⎭

MAC
(A1, B1)
↘↙
Y1

R12 ≤ I(A2; Y2|B2)
R22 ≤ I(B2; Y2|A2) − I(B2; A1, B1)

R12 + R22 ≤ I(A2, B2; Y2) − I(B2; A1, B1)

⎫
⎬

⎭

MAC
(A2, B2)
↘↙
Y2

Let S be the closure of ∪Z∈PS(Z). Then any element of S is achievable.

Proof. The codebook generation, encoding, decoding schemes and formal probabil-
ity of error analysis are deferred to the manuscript in preparation [26]. Heuristically,
notice that the channel from (A1, B1) → Y1 is a multiple access channel with en-
coders that are possibly correlated [29, 30] and employ dirty paper coding [18, 19].
However, by (2.19) we see that A1 and B1 are in fact independent, and thus the
regular MAC equations hold. A1 does use a binning scheme with respect to A2, but
this does not alter the (A1, B1) → Y1 MAC equations other than reduce the rate
R11 by I(A1;A2) (like in Gel’fand–Pinsker [18] coding). Similarly, for the MAC
(A2, B2) → Y2 the encodings A2 and B2 are independent (this is true in particular
in the Gaussian case of interest in the next subsection, and so we simplify our the-
orem by ensuring the condition p(a2, b2) = p(a2)p(b2)) so that the regular MAC
equations also hold here. Again, there is a penalty of I(B2;A1, B1) for the rate R22

incurred in order to guarantee finding an n-sequence b2 in the desired bin that is
jointly typical with any given a1, b1 pair.
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2.5 Multiplexing Gains in Overlapping Cognitive Broadcast
Channels

The multiplexing gain of the Gaussian cognitive radio channel was shown to be 1. We
now proceed to examine the multiplexing gain of the cognitive Gaussian X-channel.
We wish to see how the achievable rate tuple varies as a function of the transmit
powers, or equivalently, of the SNRs when the white Gaussian noise variance is held
fixed. To do so, the achievable rate region is evaluated in the proof of the following
corollary, which emphasizes that the sum-rate of two the X-channel with partial
non-causal side information has a multiplexing gain of 2.

Corollary 2.1. Consider the Gaussian X-channel with asymmetric side information
described in Theorem 2.6. Then

lim
P→∞

max(R11,R12,R21,R22)∈COBC R11 + R12 + R21 + R22

log P
= 2 (2.20)

where COBC is the capacity region of the cognitive X-channel.

Proof: First, note that the multiplexing gain of a single sender, 2 receiver broadcast
channel is 2, and as this channel’s capacity region provides an upper bound to our
channel’s region, we cannot have a multiplexing gain larger than 2. We will in fact
prove that 2 is achievable using the scheme of Theorem 2.6. To prove this result, we
specify forms for the variables, and then optimize the dirty paper coding parame-
ters, similar to Costa’s technique [19]. The Gaussian distributions we assume on all
variables are of the form

A1 = U1 + γ1U2 U1 ∼ N (0, P11)
A2 = U2, U2 ∼ N (0, P12)
B1 = V1, V1 ∼ N (0, P21)
B2 = V2 + γ2(V1 + a12U1) V2 ∼ N (0, P22)

X1 = U1 + U2 ∼ N (0, P1) P1 = P11 + P12

X2 = V1 + V2 ∼ N (0, P2) P2 = P21 + P22

Y1 = U1 + U2 + a21(V1 + V2) + N1 N1 ∼ N (0, N1)
Y2 = a12(U1 + U2) + (V1 + V2) + N2 N2 ∼ N (0, N2).

Here the variables U1, U2, V1, V2 are all independent, encoding the four mes-
sages to be transmitted. Notice that here p(a1, b1) = p(a1)p(b1) and p(a2, b2) =
p(a2)p(b2) as needed in Theorem 2.6. The sum rates R1 = R11 + R21 and
R2 = R12 + R22 to each receiver can be calculated separately. Each can be maxi-
mized with respect to the relevant dirty-paper coding parameter (γ1 for S1, and γ2
for S2). The bounds of Theorem 2.6 may be evaluated by combining the appropri-
ate determinants of sub-matrices of the overall covariance matrix E[ΘΘT] where

Θ
�
= (A1, B1, A2, B2, Y1, Y2). The details may be found in [26]. The main idea is

that when the dirty paper coding parameters are properly chosen, and when we let
the powers P11 = P12 = P21 = P scale like P → ∞ while keeping P22 fixed, then
the multiplexing gain of 2 is achieved. Keeping P22 fixed is crucial for achieving the
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logP scaling in R1. Intuitively, this is because of asymmetric message knowledge;
the interference the second cognitive transmitter causes the first is not mitigated.
Keeping P22 constant still allows the second transmitter to dirty paper code, or miti-
gate the interference caused by A1 and B1 to the second receiver’s signal Y2, while
causing asymptotically (as P11, P12, P21 → ∞) negligible interference to Y1. This
is a remarkable fact: only partial side information is needed to attain the full multi-
plexing gain of a broadcast channel with a two antenna transmitter.

2.6 Collaborative Communications

We now consider another example of cognitive behavior where rather than having
two independent messages to be transmitted, there is only one message to be sent
from a given source to a given destination, possibly with the help of a relay. This relay
help can be considered as asymmetric transmitter cooperation, or cognitive behavior.
We first survey some relay channel results before moving onto the case considered in
[9], which has removed many of the classical, and somewhat unrealistic constraints,

2.6.1 The Relay Channel

The relay channel, which in its simplest and most classical form is a three-terminal
channel with one source, one relay (without its own information to transmit) and
one destination, is another example of cognitive behavior. Relay channels were in-
troduced by van der Meulen [14], and various variations of the problem were later
studied by others [31, 32]. The current state of the art is well summarized in [33].

The classical relay channel is shown in Fig. 2.5. It consists of a source, with infor-
mation, a relay, with no independent information of its own, and destination. Here,
as in the cognitive radio channel, full channel-state information is assumed at all
terminals. The paper [31] introduced two fundamental coding schemes for the relay
channel often called Decode-and-Forward (DF, Theorem 2.1) and Compress-and-
Forward (CF, Theorem 2.6). This formulation may be extended to multiple relays,
as done in [32, 34] and improved in [35, 36]. We defer to the very informative and
insightful [33] for further information on relay channels.

Three major issues are ignored in the classical relay channel framework: the half-
duplex constraint of most practical wireless systems, the compound nature, and the
non-degraded nature of most wireless channels. To elaborate,

1. The first constraint often ignored in the classical relay-channel framework is
the duplex constraint. Most of the results on relay channel assume full-duplex
relays, that is, relays which may receive and transmit simultaneously. In realistic
wireless channel, this assumption begins to break down, since the intensity of the
near-field of the transmitted signal is much higher than that of the far field of the
received signal. In essence, a full-duplex relay would, in practice, interfere with
itself. Cognitive relay schemes which operate under a half-duplex constraint,
that is, where a node cannot simultaneously transmit and receive data, must be
considered.



2 Information Theoretic Analysis of Cognitive Radio Systems 65

ds

r

Source

Relay

Destination

Fig. 2.5. The classical relay channel has a source, with information, a relay, with no informa-
tion, and a destination. The relay aids the source in transmitting its message to the destination.

Although the capacity of a half duplex relay channel is yet to be found, there
has been a large body of work to understand optimal schemes in the asymptotic
regimes of low and high signal to noise ratio (SNR) in slowly fading wireless
channels [38–41]. In large SNR, the outage capacity of such a channel has been
analyzed in [39, 41]. Interestingly, it is proved that for small multiplexing gains,
the diversity gain achieved by the relay channel matches the maximum diversity
gain achieved by max-flow min-cut bound in Rayleigh fading channels [39]. In
other words, for small multiplexing gains r, i.e., r ≤ 1

2 , the relay channel can
provide the same diversity gain as that of a system with two transmit antennas
and a receiver with a single antenna. This result is achieved by a variation of de-
code and forward (DF) scheme in which the relay starts forwarding the message
as soon as it can decode the message.
As for the low SNR regime, it has been recently shown that the decode and for-
ward scheme is strictly suboptimal in terms of outage capacity [40]. It is further
proved that a bursty variant of the Amplify and Forward cooperation scheme
in which the source broadcasts with a larger power P

α for a short fraction α of
the transmission time and then remains silent for the rest of the time [38, 40], is
outage optimal for Rayleigh fading channels. Intuitively, sending bursty signals
with high power significantly improves the quality of the received signal at the
relay. This scheme turns out to be optimal not only for Rayleigh fading channels,
but also for a wide class of channel distributions, namely the distributions that
are analytic in the neighborhood of zero [37].

2. The second assumption often made in the context of wireless communications
is the quasi-static fading model. That is, traditionally many authors assume that
the fading coefficients remain fixed for the entire duration of the transmission
frame. In an information theoretic framework, where block lengths tend to infin-
ity, all realizations of a channel are thus not experienced in a frame, and ergodic
capacity results seem limited in their applicability. This, in addition to the fact
that the channel state is often not known to the transmitters but only to receivers
motivates the study of more realistic compound channels [42, 43].

3. Finally, while the degraded relay channel has been completely solved [31, 44],
in wireless systems most noise is due to thermal noise in the receiver frontend.
While it may be reasonable to assume that the relay has a better signal to noise
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ratio (SNR) than the ultimate receiver, it is unrealistic to assume that the receiver
is a degraded version of the relay.

These three drawbacks of traditional approaches to the relay channel motivate
the study of non-degraded compound relay channels which satisfy the half-duplex
constraint. In [9] the authors investigate a bandwidth efficient decode and forward
approach that does not employ predetermined phase durations or orthogonal sub-
channels to resolve the half-duplex constraint: each relay determines based on its
own receive channel when to listen and when to transmit. Furthermore, the trans-
mitters are not aware of the channel and no assumption of degradedness are made:
the noise at the relays is independent of that at the destination. Also, as opposed
to previous relay and collaborative literature, the results still hold under a bounded
asynchronous model. Finally, in the case of multiple relays assisting the source, their
approach permits one relay to assist another in receiving the message, a feature not
present in much of the early work on communications over compound channels.
However, more recent work along this line may be found in [39, 45].

2.6.2 Collaborative Communications

We now present a brief summary of this important and alternate view of the com-
pound relay channel [9], which is a prime example of cognitive behavior in a net-
work where the cognitive nodes do not have information of their own to send. The
authors of [9] use the term collaborative communications to describe their category
of work. This falls into the category of cognitive behavior in the setting considered
here.

Spatial diversity is the term often used to capture the potential gain (reliability in
this case) of independent paths between sources and destinations which result from
spatial separation of nodes or antennas. Of primary interest then is to determine if one
can achieve the genie bound on diversity: the diversity gain that would be achieved
if all the transmit antennas of the source and relay nodes were in fact connected to a
single node (in [41,46] this is referred to as the transmit diversity bound). For exam-
ple, consider the three transmit collaborators and one receiver node scenario (each
equipped with a single antenna) as illustrated in Fig. 2.6. If all the collaborators were
aware of the message a priori, one could in principle achieve the ideal performance
of a 3 × 1 space-time system between the transmit cluster and the receiver node.
However, only the source node in the transmit cluster is aware of the message a pri-
ori. The other two nodes in the cluster must serve as relays and are not aware of the
message a priori. There will be a loss in performance (as measured by the probabil-
ity of outage) compared to the idealized 3 × 1 space-time system. In particular, the
authors in [9] are interested in determining sufficient conditions on the geometry and
signal path loss of the transmitting cluster for which performance close to the genie
bound can be guaranteed.

To determine an upperbound on this loss, the authors [9] derive a novel approach
to the compound relay channel. This approach is best summarized as follows. In a
traditional compound channel, a set of possible channel realizations are given and
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Fig. 2.6. Is an ideal 3 × 1 space-time gain achievable with three separate transmit nodes and
one receive node?

one seeks to prove the existence of a code (with maximal rate) which is simultane-
ously good on all channel realizations. In [9], the problem is framed in the opposite
direction. They fix a rate and ask how large the set of compound channels can be
made while guaranteeing that the code is still good.

Consider three nodes denoted as source (s), relay (r) and destination (d) as illus-
trated in Fig. 2.7 and each equipped with Ns, Nr and Nd antennas, respectively (the
results readily generalize to multiple relay nodes).

It is assumed that while listening to the channel, the relay may not transmit, satis-
fying the half-duplex constraint. Hence, the communications protocol proposed is as
follows. The source node wishes to transmit one of 2nR messages to the destination
employing n channel uses. While not transmitting, the relay node listens. Due to the
relay node’s proximity to the source, after n1 samples from the channel (a number
which the relay determines on its own and for which the source has no knowledge),
it may correctly decode the message. After decoding the message, it then proceeds to
transmit for the remaining n−n1 transmissions in an effort to improve the reception
of the message at the destination. The destination is assumed to be made aware of n1

before attempting to decode the message. This may be achieved by an explicit low-
rate transmission from the relay to the destination. Alternatively, if the value of n1

is constrained to some integer multiple of a fundamental period n0 (say n0 ∼ √
n),

then the destination may estimate n1 accurately using power detection methods. De-

d
n1 symbols 
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n symbols 

n-n1 symbols 

X1
n1 

Y1
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X1
n 

Un1+1
n 

Z1
n Hs
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Fig. 2.7. The collaborative communications problem for two transmit collaborators and one
receiver.
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note the first phase of the n1 transmissions as the listening phase and the last n− n1

transmissions as the collaboration phase.
All channels are modeled as additive white Gaussian noise (AWGN) with quasi-

static fading. In particular,X andU are column vectors representing the transmission
from the source and relay nodes respectively and denote by Y and Z the received
messages at the relay and destination respectively. Then during the listening phase,

Z = HsX +NZ (2.21)

Y = HrX +NY (2.22)

where the NZ and NY are column vectors of statistically independent complex
AWGN with variance 1/2 per row per dimension, Hs is the fading matrix between
the source and destination nodes and likewise, Hr is the fading matrix between the
source and relay nodes. During the collaboration phase,

Z = Hc[XT, UT]T +NZ (2.23)

where Hc is a channel matrix that contains Hs as a submatrix (see Fig. 2.7).
It is further assumed that the source has no knowledge of theHr andHc matrices

(and hence the Hs matrix too). Similarly, the relay has no knowledge of Hc but is
assumed to know Hr. Finally, the destination knows Hc.

Without loss of generality, we will assume that all transmit antennas have unit
average power during their respective transmission phases. Likewise, the receive
antennas have unit power Gaussian noise. If this is not the case, the respective H
matrices may be appropriately scaled row-wise and column-wise.

Under the above unit transmit power per transmit antenna and unit noise power
per receive antenna constraint, it is well known that a multiple input multiple out-
put (MIMO) system with Gaussian codebook and with rate R bits/channel use can
reliably communicate over any channel with transfer matrix H such that R <

log2 det(I + HH†)
�
= C(H) 2 [22, 24], where I denotes the identity matrix and

H† is the conjugate transpose of H .
Intuition for the above problem then suggests the following. During the lis-

tening phase, the relay knowing Hr listens for an amount of time n1 such that
nR < n1C(Hr). During this time, the relay receives at least nR bits of information
and may reliably decode the message. The destination, on the other hand, receives
information at the rate of C(Hs) bits/channel use during the listening phase and at
the rate of C(Hc) bits/channel use during the collaborative phase. It may reliably
decode the message provided that nR < n1C(Hs) + (n−n1)C(Hc). In the limit as
n → ∞, the ratio n1/n approaches a fraction f and one may conjecture that there
exists a “good” code of rate R for the set of channels (Hr,Hc) which satisfy

R ≤ fC(Hs) + (1 − f)C(Hc) (2.24)

R ≤ fC(Hr) (2.25)

2 Here, C(H) does not, in general, designate the capacity of each link as is witnessed by
the fact that only for a special subset of matrices is capacity achieved by placing an equal
transmit power on each antenna.
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for some f ∈ [0, 1]. Note that if the channel between the source and the relay is
particularly poor, one may fall back on the traditional point-to-point communications
paradigm and add the following region to that given in (2.24) and (2.25)

R ≤ C(Hs). (2.26)

The above intuition is not a proof of achievability but it does provide an upper
bound on the performance of the protocol. The essential difficulty in proving that
there exists a code which is “good” for any such pair of channels (Hr,Hc) is two-
fold. The problem considered is a relay channel which is also a compound channel:
the authors seek to prove the existence of a code which performs well over an entire
set of channels (unknown to the transmitters). The key will be to show the existence
of a code that may essentially be refined. Regardless of the actual value of n1, there
exists a codebook for the source which, starting at time n1 + 1, may be layered with
the transmission of the relay and perform just as well as if the value of n1 had been
known to the source. For a formal statement and proof of these results, we defer
to [9].

The authors simulated the outage probability of their scheme under a quasi-static
Rayleigh fading assumption. These numerical and simulation results showed that if
the intra-cluster communication has a 10 dB path loss advantage over the receiver
at the destination node, in most cases there is essentially no penalty for the intra-
cluster communication. Physically, in a two collaborator scenario, this corresponds to
a transmit cluster whose radius is 1/3 the distance between the source and destination
nodes. By comparison, for a time-division scheme (first the source sends to the relay
for a half of the time rather than the adjustable fraction f allowed by the authors,
then the relay and source send to the destination for the remaining half) with a 5
dB geometric penalty, the allowable cluster size is at most 0.178 times the distance
between the source and the destination. This work demonstrates the power of this
flexible technique with more realistic assumptions on the wireless channel.

2.7 Interference Avoiding Cognitive Behavior

Up to now the schemes for channels employing cognitive radios have either involved
simultaneous transmission, over the same time and frequency, of the primary and sec-
ondary users’ data (using an interference-mitigating technique), or have not caused
any interference at all (collaborative communications). The primary user’s message
was used as side-information at the secondary transmitter in order to mitigate in-
terference effects. Another way cognitive radios may improve spectral efficiency is
by sensing and filling in spectral gaps. This can be seen as interference-avoiding
cognitive behavior. Suppose the wireless spectrum is populated by some primary
users, transmitting on any number of bands. At any point in time, a number of fre-
quency bands will be occupied by primary users, leaving the remainder unoccupied.
If a cognitive radio can sense these spectral nulls, it can opportunistically transmit
during these times at these frequencies. The work in [47] and [48] addresses issues
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involved in the opportunistic sensing of and communication over spectral holes. We
outline some of these results next.

The authors in [47,48] are interested in deriving capacity inner and outer bounds
for a cognitive transmitter–receiver pair acting as secondary users in a network of
primary users. The capacity is limited by the distributed and dynamic nature [47] of
the spectral activity which these cognitive radios wish to exploit. To illustrate these
points, consider a cognitive transmitter (T) and receiver (R) pair denoted by the grey
circles in Fig. 2.8. Each of these is able to sense transmissions within a certain cir-
cular radius around themselves, denoted by the dotted circles. Thus, each transmitter
and each receiver has a different local view of the spectrum utilization. The white
circles indicate the primary users (PU), which may or may not be transmitting at a
particular point in time. The authors use the term distributed to denote the different
views of local spectral activity at the cognitive transmitter T and receiver R. In addi-
tion to the spectrum availability being location-dependent, it will also vary with time,
depending on the data that must be sent at different moments. The authors use the
term dynamic to indicate the temporal variation of the spectral activity of the primary
users.

Communication by the cognitive transmitter–receiver pair takes place as follows.
The transmitter senses the channel and detects the presence of primary users. If pri-
mary users are detected, the secondary user refrains from transmission. If not, the
cognitive user may opportunistically transmit to the receiver. The cognitive receiver
may similarly sense the presence of primary users. If none are present, it may oppor-
tunistically receive from the secondary transmitter. If primary users are present, in
a simplified model, these will cause interference at the receiver, thus making the re-
ception of a cognitive transmission impossible. Cognitive transmission may thus take
place when both the cognitive transmitter and the cognitive receiver sense a spectral

S T

PU
PU

PU

Fig. 2.8. The grey cognitive transmitter (T) receiver (R) pair each have a radius in which
they can sense the transmissions of primary users (PU). This leads to different views of lo-
cal spectral activity, or a distributed view on the spectral activity. The PU may change their
transmissions over time, leading to dynamic spectral activity.
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S T

ST

SR

X Ychannel

Fig. 2.9. The two switch channel model representing the distributed and dynamic nature of
the cognitive channel spectral activity. For successful transmission of the encoded message X
to the received message Y in the secondary link S → T , both switches ST and SR must be
closed, and have a value of 1 in (2.27).

hole. The communication opportunities detected at the transmitter T and the receiver
R are in general correlated but not identical. The authors in [47] wish to quantify the
effect of this distributed nature of the spectral environment. To do so they model the
channel as a switched channel, shown in Fig. 2.9. The inputX is related to the output
Y (all of the cognitive link) as

Y = (XST +N)SR (2.27)

where N is the additive white Gaussian noise, and ST, SR ∈ {0, 1} are binary
random variables modeled as switches that represent communication opportunities
sensed at the transmitter and the receiver respectively. An ST or SR value of 0 indi-
cates that communication is not possible at that end of the cognitive link. The authors
proceed to model and analyze this switched model using causal and non-causal side
information tools [11]. The capacity of the channel depends on whether the trans-
mitter, the receiver, or both, know the states of the switches ST and SR. Knowing
whether the switch is open at the transmitter allows it to transmit or remain idle. This
side information allows the secondary link to transmit more efficiently. Intuitively,
if the transmitter lacks this side information (on whether the channel is unoccupied
or not), power will be lost in failed transmissions, which are caused by collisions
with primary user messages. Similarly, power will also be more efficiently used if
the transmitter is aware of the receiver’s switch state SR, as it will refrain from trans-
mission if SR = 0. However, the distributed nature of the channel will cause a loss
in the capacity of such systems, as analyzed in [47]. The effect of the dynamic, or
temporal variation in the spectral activity is also considered.

In [47], the capacity limits of a secondary cognitive radio link is explored in terms
of how well the spectral holes at the transmitter and the receiver are matched, that is,
as a function of the state switches ST and SR and how well they are known to the
cognitive transmitter and receiver. In the work [48], a similar switching framework
is used to analyze the effect of spectral hole tracking. That is, once the detection of
spectral holes is complete, the secondary cognitive user selects one of the locally
free spectral segments for opportunistic transmission. The cognitive receiver must
also select one of the locally free spectral segments to monitor in order to detect and
decode this cognitive message. For communication to be successful, the transmitter
and receiver must select the same spectral hole, which must also be empty (of pri-
mary users) at both ends. To coordinate the selection of opportunistic spectral holes,
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Fig. 2.10. The tracking model of [48]. Secondary transmitter S wishes to communicate with
the secondary receiver T on one of two channels. The primary user occupancy on the two
channels are modeled as binary random processes S1

PU, S2
PU ∈ {0, 1}. The cognitive user

may be in one of three states indicated by ST, and the cognitive receiver may listen to one of
the two channel, as indicated by SR. For successful communication, ST must equal SR (they
must be matched).

protocols resulting in transmission overhead could be used. The purpose of [48] is
to determine the cost and benefits, in terms of capacity, of these overheads to the
cognitive user.

Their model is depicted in Fig. 2.10 for the case of two spectral channels. Here,
the primary user occupancy on the two channels are modeled as binary random pro-
cesses S1

PU, S
2
PU ∈ {0, 1}. A value of 0 indicates that a primary user is transmit-

ting on the channel indicated by the superscript, while a 1 indicates that channel
is free for the secondary user. These processes are modeled as independent identi-
cal Markov chains. The cognitive user may be in one of three states, as indicated
by ST ∈ {0, 1, 2}. If ST = 0 then the cognitive transmitter is idle, if is it 1 or 2, it
means the cognitive user is transmitting on channel 1 or 2 respectively. The cognitive
receiver monitors the channel indicated by SR ∈ {1, 2}. When the cognitive trans-
mitter and receiver states are matched, that is, ST = SR, then the input and output
are related through the channel model (in [48] this is a Q-ary symmetric channel),
and when they are not matched the cognitive receiver sees random signals. Thus, it is
of interest to calculate the channel capacity assuming that the transmitter knows only
ST and the receiver knows only SR. They can of course exchange this information,
but this would cause a loss in capacity. The goal of [48] is to evaluate this loss.

Capacity inner and outer bounds of this cognitive tracking channel are deter-
mined and simulated. The inner bounds consist of suggesting particular spectral hole
selection strategies at the transmitter and receiver, and seeing what fraction of the
time these match up (or track each other). Outer bounds are constructed using a ge-
nie that gives the transmitter and receiver various amounts of side information, which
can only improve what can be achieved in reality. For details, we refer to [48, 49].
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Conclusion

Due to their ability to adapt to their spectral environment, cognitive radios allow
for much more flexible and potentially more spectrally efficient wireless networks.
Heterogeneous networks consisting of both cognitive and non-cognitive devices will
soon be a reality. In order to exploit the full capabilities of cognitive radios, many
questions must be addressed. One of the foremost, from a physical layer, commu-
nications perspective, is that of the fundamental limits of the communication possi-
ble over a network when using cognitive devices. In order to effectively study this
question, researchers have looked at simplified versions of the problem which cap-
ture the essence of the communication characteristics particular to such devices. For
example, cognitive devices allow for asymmetric side information between transmit-
ting nodes. Information theoretic limits of cognitive channels have been studied in,
among others, [5–8, 15, 47, 48]. In this chapters, we summarized some of the most
important results in these works. They all had the property that the primary and
secondary users had independent information to transmit, and did so by either miti-
gating the interference using non-causal side information at the cognitive transmitter,
or by filling in spectral gaps. Alternatively, when cognitive radios do not have any
information of their own to transmit, they can act as relays, a form of asymmetric
behavior. As an example, we outlined the work of [9], where some of the idealistic
assumptions of relay channels are removed. The benefits and feasibility of cognitive
behavior are intimately linked to the topology of the network: poor primary to sec-
ondary user wireless links will make the partial asymmetric side information inherent
in cognitive behavior to become very costly to obtain. The value of side-information
in wireless networks, in terms of diversity, multiplexing, or delays gains, is another
fundamental, and not yet fully understood research problem. In summary, research
has thus far looked at simplified scenarios in which cognitive radios may be used.
Even there many open problems remain. However, the true question that must be
answered in order to understand the limits of communication using cognitive radios,
is how their capabilities may be harnessed in order to optimize some network com-
munication utility function. We hope that the research outlined in this chapter serves
as a first step to this ultimate goal.

References

1. FCC.
2. FCC, “Secondary markets initiative.”
3. J. Mitola, “Cognitive radio,” PhD Thesis, Royal Institute of Technology (KTH), 2000.5.

N. Devroye, P. Mitran, and V. Tarokh, “Achievable rates in cognitive networks,” in 2005
IEEE International Symposium on Information Theory, Sept. 2005.

4. N. Devroye, P. Mitran, and V. Tarokh, “Cognitive decomposition of wireless networks,”
in Proc. of CROWNCOM, Mar. 2006.

5. N. Devroye, P. Mitran, and V. Tarokh, “Achievable rates in cognitive radio channels,”
IEEE Trans. Inf. Theory, vol. 52, pp. 1813–1827, May 2006.



74 Natasha et al.

6. A. Jovicic and P. Viswanath, “Cognitive radio: An information-theoretic perspective,”
submitted to IEEE Trans. Inf. Theory, 2006.

7. W. Wu, S. Vishwanath, and A. Arapostathis, “On the capacity of the interference channel
with degraded message sets,” submitted to IEEE Trans. Inf. Theory, June 2006.

8. I. Maric, R. Yates, and G. Kramer, “The strong interference channel with unidirectional
cooperation,” in Information Theory and Applications ITA Inaugural Workshop, Feb.
2006.

9. P. Mitran, H. Ochiai, and V. Tarokh, “Space-time diversity enhancements using collabo-
rative communication,” IEEE Trans. Inf. Theory, vol. 51, pp. 2041–2057, June 2005.

10. C. T. K. Ng and A. Goldsmith, “Capacity gain from transmitter and receiver cooperation,”
in Proc. IEEE International Symposium on Information Theory, Sept. 2005.

11. S. Jafar, “Capacity with causal and non-causal side information – a unified view,” submit-
ted to IEEE Trans. Inf. Theory, Oct. 2005.

12. A. Carleial, “Interference channels,” IEEE Trans. Inf. Theory, vol. IT-24, pp. 60–70, Jan.
1978.

13. H.Weingarten, Y. Steinberg, and S. Shamai, “The capacity region of the Gaussian MIMO
broadcast channel,” IEEE Trans. Inf. Theory, vol. 52, pp. 3936–3964, Sept. 2006.

14. E. C. van der Meulen, “Three-terminal communication channels,” Adv. Appl. Prob., vol.
3, pp. 120–154, 1971.

15. N. Devroye, P. Mitran, and V. Tarokh, “Achievable rates in cognitive radio channels,” in
39th Ann. Conf. Inf. Sci. Syst. (CISS), Mar. 2005.

16. T. Han and K. Kobayashi, “A new achievable rate region for the interference channel,”
IEEE Trans. Inf. Theory, vol. IT-27, no. 1, pp. 49–60, 1981.

17. T. Cover and J. Thomas, Elements of Information Theory. New York: Wiley, 1991.
18. S. Gel’fand and M. Pinsker, “Coding for channels with random parameters,” Probl. Contr.

Inf. Theory, vol. 9, no. 1, pp. 19–31, 1980.
19. M. Costa, “Writing on dirty paper,” IEEE Trans. Inf. Theory, vol. IT-29, pp. 439–441,

May 1983.
20. I. Maric, R. Yates, and G. Kramer, “The strong interference channel with common infor-

mation,” in Proc. of Allerton Conference on Communications, Control and Computing,
Sept. 2005.

21. S. Jafar, “Degrees of freedom on the MIMO X channel – optimality of zero forcing and
the MMK scheme,” submitted to IEEE Trans. Inf. Theory, Sept. 2006.

22. I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans. Telecommun.,
vol. 10, no. 6, pp. 585–595, 1999.

23. G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environ-
ment when using multiple antennas,” Wireless Personal Commun., vol. 6, pp. 311–335,
1998.

24. A. Host-Madsen, “Capacity bounds for cooperative diversity,” IEEE Trans. Inf. Theory,
vol. 52, pp. 1522–1544, Apr. 2006.

25. A. Host-Madsen, “The multiplexing gain of wireless networks,” in Proc. of ISIT, Sept.
2005.

26. N. Devroye and M. Sharif, “The value of partial side information in interfering channels,”
in preparation.

27. M. Maddah-Ali, A. Motahari, and A. Khandani, “Combination of multi-access and broad-
cast schemes,” in Proc. IEEE International Symposium on Information Theory (Seattle,
WA), pp. 2104–2108, July 2006.

28. R. G. Gallagher, Information Theory and Reliable Communication, ch. 7. New York:
Wiley, 1968.



2 Information Theoretic Analysis of Cognitive Radio Systems 75

29. T. Cover, A. E. Gamal, and M. Salehi, “Multiple access channels with arbitrarily corre-
lated sources,” IEEE Trans. Inf. Theory, vol. IT-26, pp. 648–657, Nov. 1980.

30. F. Willems and E. van der Meulen, “The discrete memoryless multiple-access channel
with cribbing encoders,” IEEE Trans. Inf. Theory, vol. IT-31, pp. 313–327, Nov. 1985.

31. T. M. Cover and A. E. Gamal, “Capacity theorems for the relay channel,” IEEE Trans.
Inf. Theory, vol. 25, pp. 572–584, Sept. 1979.

32. M. Aref, “Information flow in relay networks,” Technical report, Stanford University,
1980.

33. G. Kramer, M. Gastpar, and P. Gupta, “Cooperative strategies and capacity theorems for
relay networks,” IEEE Trans. Inf. Theory, vol. 51, Sept. 2005.

34. P. Gupta and P. R. Kumar, “Towards an information theory of large networks: An achiev-
able rate region,” IEEE Trans. Inf. Theory, vol. 49, pp. 1877–1894, Aug. 2003.

35. L.-L. Xie and P. R. Kumar, “A network information theory for wireless communication:
Scaling laws and optimal operation,” IEEE Trans. Inf. Theory, vol. 50, pp. 748–767, May
2004.

36. L.-L. Xie and P. R. Kumar, “An achievable rate for the multiple level relay channel,”
submitted to IEEE Trans. Inf. Theory, vol. 51, no. 4, April 2005.

37. G. Atia, M. Sharif, and V. Saligrama, “On optimal outage in relay channels with general
fading distributions,” in Proc. of Allerton Conference on Communications, Control and
Computing, Oct. 2006.

38. A. E. Gamal, M. Mohseni, and S. Zahedi, “On reliable communication over additive white
gaussian noise relay channels,” IEEE Trans. Inf. Theory, 2006.

39. K. Azarian, H. El Gamal, and P. Schniter, “On the achievable diversity-multiplexing trade-
off in half-duplex cooperative channels,” IEEE Trans. Inf. Theory, Dec. 2005.

40. A. S. Avestimehr and D. N. Tse, “Outage-optimal relaying in the low SNR regime,” in
Proc. IEEE International Symposium on Information Theory, Sept. 2005.

41. J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in wireless net-
works: Efficient protocols and outage behavior,” IEEE Trans. Inf. Theory, 2004.

42. J. Wolfowitz, Coding Theorems of Information Theory. New York: Springer-Verlag, 1978.
43. I. Csisz’ar and J. K¨orner, Information Theory: Coding Theorems for Discrete Memory-

less Systems. New York: Academic Press, 1981.
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3.1 Introduction

Wireless technology has enabled the development of increasingly diverse applica-
tions resulting in an exponential growth in usage and services. To cope with the
demand, network design has been focusing on increasing the spectral efficiency by
designing more and more complex algorithms to be used by powerful portable de-
vices. In parallel, complex protocols have been developed to adaptively deliver the
required quality of service (QoS) to the heterogeneous applications. This has resulted
in the introduction of different standards specifying the physical (PHY) or medium
access control (MAC) layers for a range of wireless communication technologies.

Clearly, the increasing diversification of possible application, devices and access
technologies has resulted in a complex wireless communication scene with various
types of networks coexisting. In response to this, physical layer design started fo-
cusing on offering flexible solutions, to be used by reconfigurable devices. Com-
bined with adaptive protocol solutions, this potentially allows users to seamlessly
roam across wireless access technologies and search for the best-fit solution, given
the environment and application requirements. Intelligent dynamic sharing rules are
needed to use the spectrum most efficiently.

In this chapter, such intelligent dynamic sharing is discussed, focusing on coex-
istence or sharing between networks of varying regulatory status and equipped with
heterogeneous intelligent capabilities. In Sect. 3.2 the technological trends that moti-
vate the evolution toward dynamic sharing are discussed. In Sect. 3.3 an overview of
the various types of coexistence and dynamic sharing in wireless networks is given.
In Sect. 3.4, the different tasks involved in dynamic sharing are discussed.

To illustrate the main concepts, two case studies are treated in more detail in
Sects. 3.5 and 3.6. The first example focuses on the coexistence of a primary licensed
network with secondary or license-exempt users. In this context, it is discussed how

∗ Portions reprinted with permission from Pollin et al. [1] [ c©2006 IEEE]. Figs. 3.12 and
3.13 reprinted with permission from [2] [ c©2005]. The IEEE disclaims any responsibility
or liability resulting from the placement and use in the described manner.
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the dynamic or opportunistic channel access is organized in the IEEE 802.22 stan-
dard. Secondly, a case study is discussed where networks of equal regulatory status
coexist. The focus is on spectrum sharing between 802.15.4 and 802.11 networks.

3.2 Cognitive Radio:
Innovative Concept Building on Technological Trends

Interest in wireless technology has been increasing exponentially over the last
decade. New standards are being released at a fast rate to improve the achieved per-
formance, diversify the possible applications and open up new frequency bands [3].
Recently, advances in reconfigurable hardware have paved the way to flexible radios
(or software-defined radios (SDR) [4]) that can adapt their air interface and commu-
nication protocol to operate using a range of existing standards or access technologies
(Fig. 3.1). The advantages to the user are twofold. First, it is now possible to use a
range of applications, relying on different wireless communication techniques, in a
single portable device. The second added value lies in the fact that users can now
seamlessly and opportunistically roam across various wireless access networks in
the search for more throughput or cheaper bandwidth. This second advantage from a
user point of view, maybe the most attractive.

However, the realization of true seamless handover requires a tight coupling of
the hardware flexibility with the higher layer protocol layers. Intelligent schemes for
environment awareness, hand-off and distributed QoS control are needed. The com-

Fig. 3.1. The wireless communication scene.
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bination of flexibility and increased protocol intelligence has recently led to the novel
concept of a cognitive radio (CR) that adapts to the current environment and spec-
trum use [5]. In its most generic form, this is an innovative technology to exploit the
available dynamics leveraging reconfigurability, increased awareness and intelligent
control. In a more restricted definition, cognitive devices use their increased flexibil-
ity and awareness to control channel access dynamically, i.e., to achieve a dynamic
spectrum access (DSA) [6]. Such flexible behavior can result in a very efficient use
of the spectrum. The spectrum efficiency gains increase with the dynamics present in
the wireless communication and with the number of spectrum bands opened for such
opportunistic access. The latter is taken care of by spectrum regulation authorities,
e.g., the Federal Communications Commission (FCC) is opening up the TV bands
for opportunistic access as a first initiative [7].

In this section, we first give an overview of the many dynamics present in wireless
communication that motivate the need of dynamic sharing. Next, we define in more
detail the two important technical requirements to achieve DSA as a first step toward
CRs. It will be shown that the innovative concept of a CR for DSA is technically
possible today.

3.2.1 There are Dynamics to Exploit

Since wireless technology has become so cheap and reliable, more and more applica-
tions use the technology. First, wireless technology was mainly used to replace wires
in existing applications. More importantly, a broad range of new mobile applications
became possible thanks to the introduction of wireless communication. These range
from mobile multimedia applications for mobile terminals, ad hoc file transfer, ad
hoc mesh networking applications (such as distributed gaming and disaster manage-
ment) or even large networks of tiny sensors for environment monitoring. Obviously,
the QoS requirements for each of those applications are very different. As a result
the spectrum access pattern varies significantly across applications.

Next to the range of possible applications, the demand and QoS requirements
vary significantly over the lifetime of some applications. This is the case for, e.g.,
variable bit rate video applications where the frame size and hence throughput de-
mand is very different from frame to frame. On top of this uncontrolled dynamic
behavior, scalable applications exist that actively adapt, e.g., the bit rate, to the cur-
rent environment [8]. QoS requirements are hence not only application dependent,
but also time varying.

On top of that, there clearly exist patterns in the use of wireless applications.
Depending on the time of the day, or even day in the week, the use of voice, data
or video streaming applications varies drastically. While wireless communication is
useful in a surprisingly broad range of average users’ occupations, the type of task
and involved technology varies significantly, e.g., from cellular over Internet access
to DVB. The use pattern of these technologies is typically very predictable.

Wireless communication in itself is very dynamic in nature. Due to mobility of
the users or movements in the neighborhood, the channel is varying over time, fre-
quency and space. These variations are enlarged when we add to this the varying
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impact of other interfering wireless transmissions. Even from the network point of
view wireless networks vary since wireless communication allows node mobility.
Nodes join and leave the network, resulting in very dynamic traffic scenarios.

Clearly, given all the dynamics present in wireless communication, is it required
to design flexible and adaptive solutions for spectrum allocation? Indeed, a static de-
sign that is based on the worst case, i.e., largest spectrum needs of all users, would
not be feasible since such an amount of spectrum might not exist. Alternatively, a
static allocation based on average spectrum requirements might not achieve the re-
quired performance at all time. Alternatively, adapting to the dynamics present in
wireless communication is clearly a nice opportunity to overcome spectrum scarcity
and improve application QoS. Next to spectrum regulation challenges, this opportu-
nity relies on the availability of flexible systems that can be controlled intelligently.
In the next section, we introduce two important technology trends that will allow the
design of such wireless systems.

3.2.2 Cognitive Radio for Dynamic Access

Next to regulatory issues related to spectrum licensing, this innovative concept also
involves some technological challenges. It is required to build flexible hardware so-
lutions that can easily be tuned to the current band or access technique that is the
most appropriate. Next, in order to know the most appropriate band or technique,
the systems needs to be aware of the environment, and intelligent control solutions
need to be added to current protocols. In this section it will be shown that both the
trend toward flexible hardware and the evolution toward more adaptive protocols are
present in the current wireless technology design advances. As a result the innovative
cognitive radio concept can be evolved from those advances.

As illustrated in Fig. 3.2, improvements in wireless processor technology have
enabled the development of fast physical layer schemes to improve spectral effi-
ciency and hence throughput [9]. However, in order to achieve the required QoS for
a range of applications and users, increasing the throughput is typically not sufficient.
Simultaneously, developments in distributed control of channel access and resource
control enable distributed QoS control and optimization [10]. Protocols achieve such
improved QoS through adapting to the specific QoS requirements of the application.

In a next phase, advances in hardware design have enabled the design of flex-
ible systems, allowing adaptation to the dynamic application demands or wireless
communication environment. In [11] for example, a flexible power amplifier (PA) is
proposed that allows to effectively trade-off the performance versus effective power
consumption of the PA which is a crucial hardware component in each transmitter.
With that PA, it becomes possible to implement transmit power control which is
an important aspect of spectrum sharing for ad hoc networks [10]. Next, the phys-
ical layer standardized in IEEE 802.11a/g [12] enables adaptation of the code rate
or modulation order in state-of-the art WLAN transceivers. Considering the IEEE
802.11 medium access control (MAC) layer, QoS extensions are standardized in the
IEEE 802.11e and a range of tunable MAC parameters are enabled to tune the QoS
achieved in wireless networks [13].



3 Coexistence and Dynamic Sharing in Cognitive Radio Networks 83

(e.g., MIMO)

Rate/Power
Control

Adaptable

Spread
UWB

Spectrum

(e.g, 802.11a)
Selection

Frequency
Dynamic

Wideband
Radios

Reconfigurable
Flexible

Etiquette

Radio−level
Spectrum

Protocol

Ad−hoc,
multi−hop

collaboration

Protocol

PHY bitrate
increase

Hardware Complexity and Flexibility

Awareness

Adaptation
and

Complexity

Degree of 

Intelligent

Static

Handoff

Capability
Cognitive

QoS
Sensing

Differentiation

Spectrum

Dynamic Spectrum Access

Fig. 3.2. Cognitive radio design space.

The trend toward more flexibility in radio implementations is expected to result
in software-defined radios which are, ideally, transceivers that can be tuned to a range
of possible networking standards (both physical and medium access control layers)
depending on the instantaneous environment scenario. With the help of those radios,
it is possible to adaptively tune the wireless communication to that technology or
spectrum access method that is currently the most efficient in terms of throughput
or cost. However, to be effective, this SDR technology needs to be complemented
with intelligent spectrum scanning, seamless hand-off, a spectrum etiquette proto-
col and distributed ad hoc and multi-hop networking functionalities. A combination
of these important tasks enables dynamic spectrum access (DSA). Eventually, this
process toward more reconfigurability, awareness and intelligent control will lead
to the concept of true cognitive radio. In this chapter, the focus is, however, on dy-
namic spectrum sharing as an important milestone in this evolution toward more and
more cognitive capability. Concepts such as dynamic spectrum access and dynamic
spectrum sharing are introduced in the next section.
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3.3 Coexistence and Spectrum Sharing

As introduced in the previous section, dynamic spectrum access technology is needed
to achieve a better use of the spectrum, given the many variations present in wire-
less communication. DSA is the opposite of the current static spectrum management
policy. However, various approaches are possible to make the spectrum management
more adaptive, as presented in Fig. 3.3. In this chapter, the focus will be on those
approaches that involve coexistence, or dynamic spectrum sharing. The different fla-
vors for DSA are first briefly defined.

Asymmetric

(Dynamic Exclusive Use)
Dynamic Licensing Dynamic Sharing

(Coexistence)

Dynamic Spectrum Access

Vertical Sharing

Underlay Overlay

Horizontal Sharing

Homogeneous
Networks

Heterogeneous
Networks

Symmetric

Fig. 3.3. Dynamic spectrum access, classification along regulatory status.

3.3.1 Dynamic Licensing

Dynamic licensing results in a dynamic spectrum allocation that gives exclusive use
to the technology or network that currently has the most profit of spectrum use. It
is similar to the current spectrum regulation in that it licenses spectrum bands for
exclusive use. This dynamic licensing is, however, much more flexible, to be able
to adapt to the wireless communication dynamics. Two approaches have been intro-
duced: spectrum property rights [14, 15] and dynamic spectrum allocation [16]. The
first approach allows licensed users to sell spectrum freely. The main idea behind this
strategy is that economy will automatically drive the users toward more effective and
hence profitable use of the spectrum. So, although spectrum sharing is not mandatory
in this model, licensed users will be motivated to share following the rules of supply
and demand. The second approach is followed by the European DRiVE project [16].
It dynamically adapts spectrum allocation as a function of the variations present in
the wireless communication scene. This adaptation can be in time or in space, at a
much finer granularity than the current spectrum regulation variations over time or
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space. The efficiency will depend on the ability to predict traffic load (or spectrum
occupancy).

3.3.2 Coexistence or Dynamic Sharing

The above-presented models are still based on an exclusive-use model. As a result,
they are expected to be limited regarding the adaptation speed. Ideally, spectrum
sharing should adapt very fast to all dynamics present in wireless communication,
which can be caused by the channel variations or because of the bursty application
demands. Coexistence or dynamic sharing allows such sharing, in theory, on a packet
per packet basis since it licenses spectrum to networks simultaneously, while relying
on in-network spectrum sharing techniques to avoid conflicts. In this section, the
various coexistence scenarios that can be encountered are classified.

3.3.2.1 Horizontal Spectrum Sharing

This model for spectrum sharing assumes that all networking nodes have equal regu-
latory status. As a result, this model is also referred to as open sharing model [17] or
as spectrum commons [18, 19]. Medium access protocols for wireless networks are
working according to this model, and considerable literature can be found on both
centrally controlled or distributed access techniques for spectrum sharing between
nodes of a single network. Next to that, techniques exist for spectrum planning be-
tween different networks using the same access technology. Also, techniques are
being developed for spectrum sharing across heterogeneous networks. This is es-
pecially useful in the unlicensed ISM and U-NII bands for which a broad range of
technologies exist. We briefly give an overview of the main techniques for spectrum
sharing across homogeneous networks and heterogeneous networks. The focus is on
inter-network sharing only.

Homogeneous Networks

Spectrum sharing between networks has typically been solved by careful spectrum
planning. With the introduction of the 802.11a standard for WLAN communica-
tion in the U-NII 5 GHz frequency band, dynamic frequency selection (DFS) was
introduced. 802.11a base stations can autonomously and dynamically select the best
channel for their WLAN access network while avoiding interference to existing com-
munication. Next to the current channel, transmit power control was added for inter-
ference mitigation between neighboring 802.11a networks.

A distributed spectrum sharing scheme for wireless Internet service providers
that share the same spectrum is proposed in [20]. A distributed QoS based dynamic
channel reservation (D-QDCR) is proposed. Depending on the QoS requirement of
its users, a base station of a certain service provider will compete with interfering
base stations for spectrum. Control and data channels are split, which means that
spectrum competition is done using a dedicated common control channel (CCC).
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Various competition policies are proposed as a function of the traffic type of the
users.

Game-theoretic concepts are used in [21] to determine the transmit power set-
tings of users in a distributed way. Cooperative and non-cooperative (i.e., when the
users are considered to be selfish) algorithms exist for distributed sharing solutions.
Next to distributed solutions, centrally controlled techniques are often proposed.

For dynamic spectrum sharing between different cognitive radio networks, a
spectrum policy server (SPS) for central spectrum coordination is proposed in [21].3

Each operator bids for the spectrum indicating the cost it will pay for the duration
of the usage. The SPS then allocates the spectrum by maximizing its profit from
these bids. The operators also determine the price for the users, upon which users
can freely select which operator to use for a given traffic type. When compared to
the case where each operator is assigned an equal share of the spectrum, a higher
throughput, which means lower price or higher revenue, is achieved.

Heterogeneous Networks

Due to the success of the unlicensed ISM and U-NII bands, spectrum sharing be-
tween heterogeneous networks of equal regulatory status is possible. The problem
was first noticed in the coexistence of 802.11b and 802.15.1 (Bluetooth) networks. To
address this, the IEEE 802.15.2 working group has been established to solve the co-
existence problems. The 802.15.1 PHY is based on FHSS (frequency hopping spread
spectrum), which means that every physical layer symbol is formed by a frequency
hopping sequence. To avoid the harmful interference of 802.11b networks, adaptive
frequency hopping has been proposed for Bluetooth. Alternatively, approaches that
rely on a cooperation between 802.11 and 802.15.1 have been proposed, such as de-
terministic frequency nulling or a time division multiple access scheduling of both
technologies.

Alternatively, the common spectrum coordination channel (CSCC) [22] etiquette
protocol is proposed for coexistence of IEEE 802.11b and 802.16a networks. It re-
quires that users of both technologies have cognitive capabilities, i.e., each node has
to be equipped with a cognitive radio and a low bit rate control radio. The coexis-
tence is achieved by sending information to the different networks through broadcast
messages over the control channel. Using this information, each user locally decides
the channel it can use and the appropriate power level.

In the above-discussed case for coexistence, both considered networks adapt their
transmission schemes as function of the environment. This is because both networks
can benefit from avoiding the mutual interference, and both networks have (limited)
adaptive or cognitive capabilities. In this case, spectrum sharing can be classified
as symmetric in nature. Alternatively, it is possible that only one of the involved

3 It should be noted that a central spectrum policy server acting as a superbasestation for
spectrum access is also used in dynamic licensing. However, the SPS considered here co-
ordinates access between homogeneous networks, and can hence be considered as an in-
network spectrum sharing solution.



3 Coexistence and Dynamic Sharing in Cognitive Radio Networks 87

networks dynamically adapts its spectrum access. This can be because the other co-
existing network has no incentives to adapt, or because the other network has no
adaptive capabilities. The former case will be discussed in more detail in Sect. 3.6,
where the coexistence of powerful 802.11 networks with low-power 802.15.4 net-
works will be discussed. The latter case is possible when the coexistence of legacy
technology with adaptive cognitive radio technology is considered.

This asymmetric spectrum sharing, in which only one of the technologies is adap-
tive, is somewhat similar to vertical spectrum sharing as will be introduced next.

3.3.2.2 Vertical Spectrum Sharing

The initial definition of spectrum sharing assumes the existence of a primary and
a secondary user. While the spectrum has been licensed to the primary user only,
the secondary user can use it opportunistically provided this does not affect the pri-
mary users’ performance. Two approaches exist for spectrum access to minimize the
interference caused to the primary users by the secondary users’ communication:
spectrum overlay and spectrum underlay (Fig. 3.4). The underlay approach severely
constrains the transmission power of the secondary users, so that the interference for
the primary users is below a certain level. This is possible by spreading the commu-
nication signals over a very wide band (i.e., ultra-wideband communication). This
approach is, however, not yet adaptive to the communication statistics of the primary
users? Indeed, the transmission levels are still based on the worst case assumption
that primary users communicate constantly. In dynamic sharing, the goal is, however,
to adapt to the communication dynamics.

Spectrum overlay was first envisioned by Mitola [23], using the terminology
spectrum pooling. In this access method, radios seek spectrum holes for their com-
munication. A spectrum hole is defined in space, time and frequency. Within such a

Fig. 3.4. Various types of coexistence.
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hole, no restrictions on the transmission of the secondary users are imposed. Adap-
tation to spectrum dynamics is only limited by the granularity for defining the holes
in time, space, or frequency. Also, this approach fits well with existing spectrum
allocation. Legacy systems continue their operation without being affected by the
secondary users. As a result, this promising concept was picked up by the DARPA
XG program [24] who introduced the term opportunistic spectrum access (OSA).
The first worldwide standard based on the cognitive radio technology uses this def-
inition of cognitive radio [25]. This IEEE 802.22 project was started in 2004 and
targets the definition of a cognitive wireless regional area network for operation in
the TV bands, as will be discussed in Sect. 3.5.

3.4 Dynamic Sharing and the Cognition Cycle

Irrespective of the type of coexistence considered, or the level of reconfigurability or
spectrum awareness, it is possible to identify three important steps in the dynamic
sharing process. In this section, an overview of these steps that together represent a
cognition cycle for dynamic sharing is presented.

3.4.1 Basic Cognition Cycle for Dynamic Sharing

Crucial in the design of dynamic sharing techniques is the cognitive capability of
the radio systems. Such cognitive capability allows the fast interaction with the envi-
ronment to dynamically determine the best communication or spectrum access strat-
egy. The main cognitive tasks required to achieve dynamic sharing are depicted in
Fig. 3.5, and are referred to as cognitive cycle. The three main steps [26] of this cycle
are spectrum sensing, spectrum analysis and spectrum decision:

• Spectrum sensing: To be able to adapt to the dynamics present in the wireless
communication scene, it is imperative to monitor it in detail. Typically, spectrum
sensing is defined as monitoring the available spectrum bands to detect spectrum
holes. The main challenge is to do this energy efficiently. Also, the hardware cost
for this sensing should be taken into account. Next to sensing the spectrum, it will
be shown later that it can be useful to monitor other information in the wireless
communication scene.

• Spectrum analysis: Based on the measurements obtained through spectrum sens-
ing, it is required to build a model of the wireless communication scene. Due
to hardware and energy budget limitations, it will be impossible to monitor the
whole spectrum or scene continuously and in great detail. Also, as will be shown
later, wireless networks are spread in space which makes it difficult to build a
model of the full spectrum scene. To improve the accuracy of the model, coop-
eration between nodes has been proposed in [27], at the cost of increased com-
munication overhead. Often, the spectrum model will be built on local partial
information. Techniques for local spectrum analysis are an important research
objective for this task.
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Fig. 3.5. Cognitive cycle for dynamic sharing.

• Spectrum decision: The spectrum decision is about whether and how to access
the spectrum. The more reconfigurability present in the cognitive radio, the more
optimization options are available. The optimal spectrum access option is the
one that maximizes the application or user requirements given the environment
or spectrum policy constraints. The spectrum decision is framed as an optimiza-
tion problem using the model built during spectrum analysis. This optimization
problem can have a local or a global optimization goal. Next, the spectrum deci-
sion should be communicated across users, which is often done through a com-
mon channel. Since the availability of such channel cannot be relied on in the
context of dynamic opportunistic spectrum access, the major spectrum decision
challenge relates to the development of spectrum coordination techniques that do
not rely on such a common channel.

3.4.2 Spectrum Sensing

Cognitive capability relies to a large extent on the awareness of the environment
dynamics. For dynamic spectrum sharing, important information is related to the
spectrum use by other nodes in the network. These other users can be primary users
that should not be interfered with. Alternatively, they can be users of equal regulatory
status that occupy the channel. These other users are not necessarily equipped with
cognitive capability, and more importantly, they can be much more powerful. In all
cases, it is necessary to become aware of the presence of the different other users.

Wireless communication typically involves a transmitter and one or more re-
ceivers. Depending on the type of the other users, and depending on the optimization
goal of the cognitive or sensing user, it is required to get information on other trans-
mitters or alternatively other receivers. In case the other users are primary users that
should not be interfered with, the sensing user should obtain information on primary
receivers involved in communication. When communicating, the cognitive radio will
cause harmful interference to receivers in its interference range (Fig. 3.6). As a result,
the sensing node should be able to detect whether receivers are present in this range.
Alternatively, when the cognitive radio is mainly interested in avoiding interference
by other users in the network, it has to determine if there are harmful transmitters
in the neighborhood. If the cognitive sensing radio is currently not in a transmitter



90 S, Pollin

Fig. 3.6. Transmitter detection versus receiver detection.

detection area (Fig. 3.6), it can communicate without interference. Finally, next to
listening to the spectrum itself, a cognitive radio can capture important information
by listening to its peer nodes. Sensing information can be exchanged in order to im-
prove the accuracy of the spectrum awareness, or alternatively information can be
exchanged to improve and harmonize the decisions of cognitive users. The more en-
vironment knowledge a cognitive radio can rely on, the better it can optimize the
performance of its transmissions. In the next subsections, we will discuss transmitter
detection, receiver detection and network monitoring (Fig. 3.7).

3.4.2.1 Sense for Other Transmitters

Three approaches exist for transmitter detection, based on the sensing users’ knowl-
edge on the transmitted signals. A matched filter is the most powerful approach,
but it, however, relies on synchronization and knowledge of the primary users’ sig-
naling. Energy detection is a non-coherent detection method that needs only basic
information on the signals. The drawback of this energy detection is that it is less ac-
curate than matched filter detection, for a given number of samples or sensing time.
The third method, cyclostationary feature detection, improves the performance of
the energy detection by exploiting the inherent periodicity present in communication
signals [28].

The main problem is the energy and hardware cost of wide-band sensing. Wide-
band analog systems are difficult to design, and fast analog-to-digital converters typ-
ically consume a lot of energy. In [29] approaches are proposed to sense the full
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Fig. 3.7. Spectrum sensing options.
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spectrum in two steps: a first inaccurate wide-band step and a second focused step to
refine the sensing where appropriate. Alternatively, it is possible to couple the sens-
ing strategy to the higher layers operation to determine the minimal frequency band
and time period for sensing.

As illustrated in Fig. 3.6, sensing for other transmitters is not sufficient to avoid
interference caused to other (primary) users in the network. This is the hidden node
problem that can be solved by an additional control message exchange prior to each
communication (e.g., the Request to Send (RTS) and Clear to Send (CTS) messages
in 802.11 networks). However, in the case of dynamic spectrum access, cooperation
and communication between heterogeneous users cannot be relied on. As a result, it
is not possible to gather sufficient information by local transmitter detection only. In
[27], it is proposed that sensing information is exchanged across the network. When
sensing nodes collaborate, the information they can potentially gather is much more
detailed and a better view of the wireless communication scene can be established.
This approach is also followed in the first standard for cognitive radio [7] as will be
shown in Sect. 3.5.

In [30], two distinct networks are deployed separately. A first sensor network is
deployed for cooperative spectrum sensing only and an operational network is used
for data transmission. The sensor network is deployed in the target sensing area. A
central controller processes the information gathered from the sensors and makes the
spectrum occupancy map for the operational network.

3.4.2.2 Sense for Other Receivers

As explained before, to detect the presence of other communication that should not
be interfered with, it is necessary to be able to detect the receivers involved in that
communication. The easiest technique for receiver detection is relying on cooper-
ation from those receivers. This is the case in the RTS/CTS exchange proposed in
802.11 to solve the hidden node problem: the receiver itself helps in avoiding the
problem by transmitting a sequence, i.e., the CTS message in this case. Typically, it
is, however, not possible to rely on this active cooperation from the receiver. This is
mainly because this receiver is typically a device without cognitive capability, and
hence not aware of the other devices present in the network.

A first approach for receiver detection that does not rely on receiver cooperation
is proposed in [31], for the application of secondary wireless networks operating in
the TV bands. It is based on detecting the local oscillator (LO) leakage power in the
receiver. However, this approach suffers from a long detection time and a very short
detection range. In [31], they propose to deploy large sensing networks dedicated to
this spectrum opportunity detection task, with sensors close to each receiver.

Another approach models the total interference temperature at each location in
the network. This interference temperature results from summing the contributions
from each transmission in the cognitive network. Communication is allowed when
the interference is below a certain threshold at each possible moment and location,
i.e., low enough not to harm receivers. This is in fact the spectrum underlay shar-
ing approach. As mentioned before, the drawback of this approach is that it does
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not adapt or take advantage of spectrum holes and often maintains very pessimistic
interference temperature levels.

3.4.2.3 Sense for Cross-Layer Information

Next to information about the use of the spectrum or the physical channel, it can
be useful to gather information related to the higher layers of the communication
protocol stack. For instance, information about the application that is currently used
can help to establish the appropriate model of the spectrum use dynamics. Listen-
ing to routing protocol messages can help to establish a model of the mobility of
the users in the network. The beacons sent by the medium access (MAC) protocol,
typically contains useful information about the transmission and sleep schedule of
the network. If the signals of the primary or competing users can be detected, they
can contain a lot of useful information. This information detection is called out-of-
network monitoring.

It is, however, also useful to monitor information from other, cooperative, cog-
nitive users, which is referred to as in-network monitoring. Indeed, wireless com-
munication involves typically a transmitter and a receiver. In order to find a proper
frequency band for communication, it is required that the transmitter could harmo-
nize its local decision with the receiver. For that purpose, listening to information of
the intended receiver can help the transmitter choose a channel that is optimal for
both. It will be shown in Sect. 3.6 that listening to beacons can help improve the
connectivity and robustness of the network.

3.4.3 Spectrum Analysis

By analyzing the information measured, it is now possible to identify spectrum op-
portunities. Intuitively, a spectrum opportunity can be considered to be a spectrum
unit that is currently not used by another user. A spectrum unit is defined in time,
frequency, or space. Whether a spectrum unit is an opportunity depends on the shar-
ing type considered, as mentioned before and as illustrated in Fig. 3.6. Indeed, if the
main goal of the sharing is to avoid causing interference to primary or other users
present in the area, an opportunity is present if there are no receivers active in a cer-
tain time, space or frequency spot. Alternatively, if the main goal of the sharing is to
avoid interference caused by other users, then an opportunity is present if there are
no transmitters active in the considered spectrum unit.

Typically, the information gathered by a cognitive or sensing node is not com-
plete or very accurate. This is because wide-band sensing is very hardware and en-
ergy costly. Also, because of the spatial distribution of communication nodes in a
network, local sensing or data gathering does not give the complete information.
Finally, because of the dynamic nature of wireless communication, it is often diffi-
cult to react timely, and also estimates of future spectrum access changes are needed.
In any case, the spectrum model will be probabilistic in nature. If the dynamics of
the wireless scene are not varying too fast, the model can be made more accurate
by taking into account a history of spectrum information. In [32], this is modeled
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as a partially observable markov decision process (POMDP). In [1], how machine
learning techniques can help in this spectrum analysis phase is explored. This will
be explained in more detail in Sect. 3.6.

The spectrum analysis can be carried out locally in each node, or alternatively it
is possible to carry out the analysis centrally by a more powerful device (e.g., in the
IEEE 802.22 standard).

The spectrum model built can finally be classified as follows (Fig. 3.8). Some
spectrum models base their analysis on the current spectrum sensing results only.
If the spectrum is idle, it can be used. Alternatively, if another user is detected, the
channel is vacated. Other models keep track of the spectrum usage history, assuming
that the spectrum use is rather slowly varying. This allows to save energy or hardware
for spectrum sensing. Alternatively, it is possible to embed the variation probabilities
in the spectrum model.

3.4.4 Spectrum Decision

The spectrum decision is about whether and how to access the spectrum. This deci-
sion is based on the model derived after spectrum analysis. Given the stochastic na-

Centralized

Architecture

Instantaneous

Spectrum Model

Spectrum Analysis

Learned spectrum map

Learn best betLearn dynamics

Distributed

Fig. 3.8. Spectrum analysis classification.

Non−cooperative

Spectrum Decision

Architecture

Centralized Distributed

Control Only

Coordination

Common Channel No Common Channel

Data Channel

Cooperative

Optimization behavior

Fig. 3.9. Spectrum decision classification.



94 S, Pollin

ture of that model, a spectrum decision is sometimes better described as a spectrum
bet. The goal of the spectrum decision or bet is to best meet the user communication
requirements, while satisfying a set of constraints, e.g., the acceptable interference
that can be caused to other users in the spectrum. The optimization goal, i.e., the out-
come that best meets the user requirements, can be a local or a global criterion. Next,
it is important that the spectrum decision is coordinated across cognitive users in the
network (Fig. 3.9). Typically, approaches rely on a common control channel (CCC)
to achieve this. Relying on the availability of such channel is dangerous, and alter-
native approaches will be addressed below. Finally, in this section, it is shown that
the spectrum decision can impact the future spectrum sensing and hence the amount
of “learning” the wireless communication scene. This effect results in the additional
arrow connecting spectrum sensing and decision in Fig. 3.5.

3.4.4.1 Local Versus Global Optimization

Two types of behaviors are possible to decide on the spectrum use. More specifically,
the optimization objective can be a local one, in which case the decision is taken in
a non-cooperative way. Alternatively, cognitive users can aim to optimize a global
performance or cost, which results in cooperative behavior. Cooperative decisions
typically consider the effect of a decision or a transmission on the other nodes [32].
While all the centralized solutions can be regarded as cooperative, there also exist
distributed cooperative solutions. Non-cooperative spectrum sharing is more selfish
and only considers the node itself and its local optimization goal. While such selfish
behavior might result in a reduced performance for the network, the communication
cost involved in those local decision algorithms is typically much lower.

The two approaches have typically been compared by means of throughput, fair-
ness or spectrum efficiency. In [33], both centralized and distributed spectrum al-
location algorithms are compared, and cooperative and non-cooperative approaches
are compared. It is shown that cooperative behavior outperforms non-cooperative
spectrum allocation. Distributed optimization techniques closely approach the per-
formance of centrally controlled algorithms while minimizing the control overhead.

Finally, it should be clear that the optimal decision for communication also de-
pends on the receiver. As mentioned earlier, if information about the receiver is over-
heard by in-network monitoring, such information can already be considered in the
spectrum model. This will be illustrated in Sect. 3.6.

3.4.4.2 Coordination Mechanisms

After the best spectrum opportunity is selected, the decision should be communicated
through the network. If the spectrum decision was taken in a centralized way, both
receiver(s) and transmitter should be informed. In case of distributed decision taking,
only the intended receiver(s) should be updated with the new access strategy. Typical
approaches tend to rely on the availability of a common control channel (CCC),
which is a channel that is guaranteed to be available to all the cognitive nodes and
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can be used for control information exchange.4 This is the approach taken in the first
cognitive radio standard 802.22, and in many other projects such as the European
DRiVE and OverDRiVE [16]. The advantage is clearly that the spectrum decision
can be fully coordinated.

A first main drawback of this approach is that it is typically not possible to rely
on a predefined common control channel in a dynamic cognitive radio context. Even
if the common channel could be selected adaptively, it is typically even not possible
to guarantee the availability of a single common channel for a large network. The
availability of spectrum holes varies often drastically over space, which can be due to
a varying availability of networking technologies but also due to small-scale fading
effects. As a result, a channel that is available in one spot might be unavailable in
another part of the network. A second limitation is that relying on a common control
channel for the network limits the scalability of the approach. When the network size
increases, the common channel often gets congested [34].

Alternatively, approaches exist that do not rely on a common control channel.
Stations can change their frequency according to a predetermined pseudo-random
pattern. This pseudo-random sequence can be completely specified by knowing two
parameters: current channel number and the seed. This method assumes every sta-
tion is assigned a seed that is different from all other stations. It also assumes that
stations are aware of each others’ hopping pattern. Transmitters migrate to the cur-
rent channel of the intended receiver, until the current channel is found to be free and
communication is possible. The disadvantage of this approach is the potential long
delay before a free channel is found.

In [17], a different approach is taken. They propose a distributed channel selec-
tion algorithm to optimize the next channel decision. They assume that transmitter
and receiver synchronize, and then follow the same distributed channel selection
algorithm and hence keep synchronized. The initial handshake (where they synchro-
nize to a point from which they can start hopping around together) is receiver based.
Each receiver has a set of channels on which it should regularly receive to see if a
transmitter is looking for it. Transmitters announce pending communication through
a handshake message on the subset of the receiver channels that is currently free.
The disadvantage of this approach is, however, that receiver and transmitter need to
be synchronized in time accurately, to be able to keep hopping together.

3.4.4.3 Spectrum Decision Trade-Off

As shown in Fig. 3.5, the spectrum decision potentially affects future spectrum sens-
ing. Due to hardware limitations and energy cost of spectrum monitoring, users can-
not sense the full spectrum continuously. As mentioned also in [17], an optimal sens-
ing decision is to catch a spectrum opportunity for immediate access and obtain sta-
tistical information on spectrum occupancy so that more rewarding decisions can be
made in the future. A trade-off has to be reached between these two often conflicting

4 Some common control channels are reserved for control information exchange only, while
others can be used for data transmission too.
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objectives. This trade-off between exploration and exploitation will be illustrated in
detail in Sect. 3.6.

3.5 IEEE 802.22 Proposed Approaches for Spectrum Sharing

In this section, some proposed techniques from the IEEE 802.22 WG are discussed,
as an illustration and instantiation of the many possible techniques for spectrum
sharing. First, the application domain for devices operating under this standard is
addressed. Next, spectrum sensing, spectrum analysis and spectrum decision are dis-
cussed in more detail. For a more detailed overview of the IEEE 802.22, we refer
to [7, 25, 35].

3.5.1 Overview of 802.22

The IEEE 802.22 Working Group (WG) was formed in November 2004, after the
FCC released its Notice of Proposed Rule Making (NPRM) for the TV bands in May
2004. This WG specifies an air interface (including PHY and MAC specifications)
for wireless regional area networks (WRAN) to coexist with legacy TV transmission
relying on cognitive capability. First, the application domain is discussed briefly, to
better understand the ultimate goal of the standard and hence the decisions made for
spectrum sensing, analysis and decision. Next, a short system overview is given.

3.5.1.1 Application

The main application target for 802.22 systems is wireless broadband access in rural
and remote areas. Typical broadband access involves data, voice and QoS support.
The use of the lower frequency bands are particularly useful for rural access because
of the favorable propagation conditions encountered for those lower frequencies. Al-
though the population density is often very small in rural areas, large coverage areas
might render the deployment of 802.22 base stations (BSs) a profitable business.
These lower frequency bands are licensed for TV broadcasting and wireless micro-
phones. However, many TV channels are largely unoccupied in many parts of the
United States, and often TV is delivered through cable access or satellite. As a re-
sult, opening up those bands for WRAN systems makes a good case, both from
business and technical points of view. Next to the main WRAN application domain,
802.22 networks can also be used for smaller markets such as small businesses or
home offices.

3.5.1.2 System Architecture

An example of a deployed 802.22 network is given in Fig. 3.10. The 802.22 networks
operate in a fixed point-to-multi-point topology where a BS controls a cell consisting
of a number of consumer premise equipments (CPEs). The BS is an entity installed
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by an operator and controls the cell strictly. Next to more traditional medium access
control, that addresses when to transmit, it decides on how CPEs should access the
spectrum. Moreover, the BS maintains control of a distributed sensing strategy to
keep track of potential primary users (TV or wireless microphone signals). Clearly,
it is possible to have multiple 802.22 cells that interfere. This is aggravated because
of the very large transmission area of those systems. Coexistence issues of 802.22
cells are hence also addressed in the 802.22 standard.

Fig. 3.10. 802.22 deployment scenario.

3.5.2 Spectrum Sensing

One of the important components of the 802.22 draft MAC to achieve the required
cognitive capability is related to spectrum measurements. The spectrum measure-
ment in 802.22 is primarily based on transmitter detection. In order to check the
presence of primary signals, 802.22 devices need to be able to detect signals at very
low signal-to-noise ratio (SNR) levels. Since the detection is done at low SNR, it is
assumed that the detection of TV signals is done in a non-coherent manner, which
means that no synchronization is needed [35].

The required accuracy of the spectrum sensing, the frequency band and time
period, is determined in a centralized way by the BS. Using the local measurements,
the BS can establish a spectrum occupancy map. The BS does not require the same
sensing accuracy of each CPE, and algorithms to optimize or distribute the sensing
load across CPEs can be used.

To optimize the sensing, 802.22 devices are supposed to be equipped with a
dedicated omnidirectional antenna for sensing. This is in addition to a directional
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Fig. 3.11. The two-phase in-band sensing.

antenna which is used for data transmission in the target direction, minimizing the
interference area. To be able to optimize the sensing accuracy of the omnidirectional
antenna, it would most likely have to be mounted outdoors [35].

802.22 devices can be instructed to perform in-band or out-of-band sensing,
where a band denotes the TV band currently used by the cell. For in-band sensing,
the 802.22 communication needs to be temporarily halted, in order not to interfere
with the sensing. There clearly is a trade-off between speed at which a primary TV
signal can be detected and the efficiency or throughput achieved by the 802.22 cell.
To avoid too frequent long connectivity halts, a two-phase sensing mechanism is pro-
posed (Fig. 3.11). Fast sensing, i.e., based on a simple and fast sensing technique, is
performed more frequently. After one (or more) fast sensing period the BS can de-
cide whether to perform a fine sensing. This fine sensing takes more time but should
in fact only be carried out if the fast sensing results are not sufficient to draw conclu-
sions. Given the fact that TV signals do not come on the air frequently, this two-phase
sensing method proves highly effective [35].

If multiple 802.22 cells operate in the same area, it is required that their sens-
ing strategy is synchronized (i.e., they should halt communication when other cells
sense). Since coexistence among different 802.22 cells is an important issue, such
synchronization is embedded in the 802.22 standard.

Contrary to the TV signals detection, sensing of wireless microphone transmis-
sions is much harder as these transmit at a much lower power and occupy much lower
bandwidths. Therefore, in addition to transmitter detection, a second sensing option
is enabled in the 802.22 standards. This second option relies on the transmission of
beacons by the microphones themselves or a special device carried by microphone
operators. This primary network information monitoring is embedded in the 802.22
MAC.

3.5.3 Spectrum Analysis

As mentioned before, transmitter detection is not the optimal sensing strategy, since
to avoid causing interference to primary communication, it is in fact required to de-
tect primary receivers. It might be the case that a node is outside the transmission
range of a primary transmitter, but still capable of interfering with a primary re-
ceiver (Fig. 3.6). As a result, to optimize the probability of transmitter detection, it
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is possible to combine measurements from different CPEs and hence from different
locations into a single spectrum occupancy map. The BS might use techniques such
as data fusion and referendums over all measured data to obtain a reliable spectrum
occupancy figure [35].

The BS vacates a channel if licensed signals are detected above certain well-
defined thresholds at any receiver [35]. Depending on the type of primary signals
(analog or digital TV or wireless microphones), the thresholds vary. Next, the BS
can compute a keep-out region based on the information gathered from local mea-
surements. In [35] it is shown that a WRAN station should typically protect an area
of 155 km around a TV transmitter when transmitting at maximum EIRP. Depend-
ing on the actual distance to the transmitter, or depending on the current propagation
conditions, the transmit power can be adjusted.

The spectrum occupancy map can be used to update the spectrum usage table.
This table classifies channels as per availability, which can be occupied (by a primary
user or another 802.22 user), free for use or prohibited (cannot be used at all by
802.22) [35]. Entries in this table might also be filled in by a system operator (e.g.,
setting some channels prohibited).

3.5.4 Spectrum Decision

Based on the spectrum occupancy map, the BS decides on spectrum access for each
of the CPEs. Spectrum availability might vary over time and frequency, and effective
use of the spectrum hence relies on the availability of a very flexible physical layer.
In this section, the control options of the 802.22 PHY are given. Next, the MAC is
introduced.

3.5.4.1 How to Send

The 802.22 PHY is based on multi-carrier modulation which makes it possible to
define time and frequency slots in a very flexible way depending on the interference
constraints and user requirements. More specifically, the 802.22 PHY is based on
OFDMA enhanced with channel bonding. This channel bonding makes it possible to
use different TV bands for a single transmission. Next, the modulation and coding
is adaptive, resulting in a variable throughput or SNR requirement. Clearly, a lot of
configuration options are available to the BS, that should be equipped with powerful
optimization schemes.

3.5.4.2 Coordination

Communication between BS and CPEs follows a well-defined structure as illustrated
in Fig. 3.12. Each frame consists or a preamble for synchronization and a separated
downlink (DL) and uplink (UL) slot. In the downlink part, the BS sends control
information and data to each of the associated CPEs. In the uplink phase, data trans-
mission from CPEs to base station is scheduled. Next to the scheduled uplink slots,
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a contention interval can be used for initialization, bandwidth request and urgent
coexistence situation notification. In the uplink slot, the BS can also schedule the
broadcast of synchronization messages to synchronize different 802.22 cells for co-
existence.

The above-presented frame structure, however, assumes that each CPE is asso-
ciated, and hence synchronized, with the BS. Initialization or association of a new
CPE with a BS, is however, a difficult problem. Indeed, the new CPE cannot know in
which channel to look for the BS. Moreover, because of the channel bonding, the new
CPE does not even know exactly how the channel is defined. To facilitate network
entry and initialization, a superframe structure has been proposed (Fig. 3.13) [35].
At the beginning of each superframe, the BS sends a special preamble and super-
frame control header (SCH) containing information on the BS channel selection.
This preamble and SCH is sent on any of the TV channels that are free. After a CPE
has decided on the locally free channels, it then scans each of those channels for
the duration of a superframe period. Once a preamble and SCH is detected, the CPE
has sufficient information to associate with the BS and get synchronized with the
communication of frames as depicted in Fig. 3.12.

3.5.4.3 Spectrum Decision Trade-Off

As mentioned earlier, a decision to sense often impacts the current operation, so
there is a trade-off between exploration and exploitation. In case of 802.22 networks,
this has been solved to a large extent by the introduction of the two-phase sensing
scheme. Fast sensing limits the impact on performance, unless when more fine sens-
ing really makes sense.
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3 Coexistence and Dynamic Sharing in Cognitive Radio Networks 101

Fig. 3.13. 802.22 MAC superframe structure proposal. From [2]; [ c©2005] IEEE. All rights
reserved.

3.5.5 Summary

The spectrum sensing, spectrum analysis and spectrum decision for 802.22 are sum-
marized in Table 3.1. 802.22 dynamic spectrum sharing is essentially based on co-
operative sensing, a centralized analysis of the sensed information and a decision
coordination relying on a common channel. In the next section a solutions for co-
existence of 802.15.4 with 802.11 will be introduced that was proposed in [1]. This
solution implements a local spectrum sensing, local analysis and does not rely on
communication for the decision coordination.

3.6 802.15.4 and 802.11 Coexistence

3.6.1 Introduction

In this section we focus on the coexistence between two major wireless standards that
operate in the 2.4 GHz ISM band, namely 802.11g wireless LAN [12] and 802.15.4
sensor networks [36]. Their overlapping frequency channels are shown in Fig. 3.14.
This special case of coexistence has started to receive attention since it has been
shown in [37] that the impact of 802.11 on the sensor network is large and leads
to above 92% of packet loss. An adaptive scheme using multiple radios has been
proposed in [38] to overcome this, but this solution assumes that communication
between nodes on a channel is possible, even after interference has been detected
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Table 3.1. Spectrum sensing, analysis and decision for 802.22 networks and for the 802.15.4
coexistence schemes proposed in Sect. 3.6.

802.22 802.15.4 distributed coexistence [1]

Spectrum sensing
Information Transmitter detection Transmitter detection

Optional out-of-network beacon
detection for microphone detection

In-network beacon detection

Architecture Distributed/cooperative sensing Local sensing

Spectrum analysis
Architecture Centralized analysis Local sensing with local analysis

Local analysis by CPE
at initialization

Model Instantaneous clearage of channel
upon incumbent detection

Comparison of techniques with
and without history learning

Spectrum usage table for history

Spectrum decision
Optimization Cooperative decision by central BS Cooperative local decision
Architecture Centralized Distributed, local
Coordination Common channel – data and con-

trol on same channel
No common channel

on that channel. This is not robust to the extreme interference patterns which are
encountered in this context.

The characteristics of both networks are very different, resulting in a problem
that is asymmetric in nature. Indeed, the output power of 802.15.4 devices is typi-
cally as low as 0 dBm [39], whereas the output power of 802.11g devices is typically
15 dBm or above. Also, 802.15.4 sensor networks are designed to monitor the envi-
ronment or buildings, and can be very large, while 802.11 networks are mostly local
hotspots organized around an access point (AP). Finally, sensor network applications
are not demanding in terms of throughput, but, however, require a high reliability and
robustness against attacks or unknown events. They should also be self-organizing
since it is impossible to maintain such large networks efficiently. In comparison,
802.11 networks are typically used by a limited number of throughput-intensive ap-
plications. There is in fact only one common requirement: both 802.15.4 and 802.11
devices are battery-powered so that energy consumption is a major design criterion.
Any algorithm for those networks should take the energy cost into account, including
the non-negligible hardware power contribution associated with idle mode operation,
scanning and receive processing.

In this context, distributed channel selection algorithms to optimize the 802.15.4
performance under varying 802.11 interference patterns have been proposed in [1].
The considered algorithms are fully distributed to improve scalability (since sensor
networks are large), robustness (which is an important requirement for sensor net-
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Fig. 3.14. 802.11 and 802.15.4 channels in the 2.4 GHz ISM band.

work applications) and adaptability. Next, the energy cost of the sensing algorithms
are considered in the problem statement.

In this section, the algorithms presented in [1] are discussed. A first reason to
choose this case study is that it is one of the few examples discussed in the literature
discussing asymmetric coexistence in the ISM band. More importantly, it is one of
the first examples proposing a fully distributed and statistical coordination that does
not rely on any common channel establishment. Next, the algorithms proposed take
into account the energy cost of the sensing. Also, a comparison is given between
different spectrum analysis models (i.e., with and without spectrum learning). And
finally, the case study allows for a nice illustration of the coupling between spectrum
exploration and exploitation.

First the system model is discussed. Next, the spectrum sensing, analysis and
decision are detailed. Finally some results are given.

3.6.2 System Model

In this section, we give a detailed overview of the models used for the sensor net-
work and for the wireless LAN interference pattern as defined in [1]. The consid-
ered energy and performance metrics that are relevant for the investigated scenario
are introduced next. These metrics will be used to evaluate the proposed distributed
adaptation algorithms in [1].

3.6.2.1 802.15.4 Network Model

In [1] the 802.15.4 network is represented by a large number of nodes N that are
arranged in a string or a rectangular topology. AnN×N connectivity matrix C(N,N)

is used to denote which sensors can overhear each others. It is assumed that this is the
case for all sensors in a range Rd from each other, where d is the inter-node distance
and R is a parameter. In Fig. 3.15 a simple string topology is presented with R = 2.
Each of the sensor nodes operates in one frequency channel among F possible ones,
with F = 16 for 802.15.4 networks operating in the 2.4 GHz ISM band. A N -
dimensional vector tN keeps track of the current frequency fi(i ∈ [1, . . . , F ]), which
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Fig. 3.15. Considered 802.15.4 network affected by 802.11 interference.

the different nodes are using to transmit. Although transmission is only possible on
one frequency, nodes can be designed to scan or receive on multiple channels at the
cost of increased scanning energy consumption and hardware.

The 802.15.4 medium access control can operate in different modes, depend-
ing on the use or absence of beacons. In [1] solutions are proposed that operate in
the beacon-enabled mode, which results in a so-called superframe structure [36].
Such a superframe typically consists of a beacon, a contention access period and a
contention-free period. More importantly, it is typically followed by an inactive pe-
riod, during which the involved nodes are put asleep. It is assumed that sensors can
change their channel without extra energy cost, when they wake-up from sleep mode.
As a result, it is assumed that the sensors potentially swap frequency every inter-
beacon period, which ranges from 15 ms to above 4 min according to the standard.
The frequency swapping strategy will be determined by the distributed adaptation
algorithms discussed below.

On top of this medium access, three types of networks can be formed: star, peer-
to-peer and cluster-tree. For the algorithms introduced in [1], the 802.15.4 network
is assumed to consist of nodes of equal importance that are connected in a mesh
network through peer-to-peer connections. These connections are reflected in the
connectivity matrix C introduced earlier in this section. Each of those connections in
such type of networks is maintained by scanning for the beacons sent by the peer.

3.6.2.2 802.11 Interference Model

For the performance analysis in [1], they use a large 802.15.4 network, which is
affected by 802.11 interference. As it will be described hereafter, this 802.11 inter-
ference can vary over frequency, time and space.

The variations in frequency result from the fact that different 802.11 networks
can operate using different channels (Fig. 3.9). Dynamic frequency selection (DFS)
is a new functionality currently added to most of those 802.11 networks [40]. It is
developed to optimize the frequency allocation of 802.11 networks that are subject
to interference. As a result of this DFS, 802.11 interference is varying over time. It
can be seen in Fig. 3.9 that each 802.11 network covers four consecutive 802.15.4
channels. The power distribution over these channel is more or less flat, especially
for the OFDM-based 802.11g which is getting widely used thanks to its throughput
improvement w.r.t. conventional 802.11b networks [12].
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The variation in time results from the fact that the use of 802.11 networks is
varying over time since user activities vary over time. Different timescales can be
considered for these variations, where the smallest timescale considers packet bursts.
In [1], only 802.11 traffic variations of minutes to hours are taken into account. These
variations result from 802.11 ad hoc networks that are opportunistically established
to transfer a large file, or from 802.11 hotspots that become operational when users
join the network, as it was analyzed in [41]. It can thus reasonably be assumed that
the 802.11 interference stays constant for several minutes to hours, and hence several
(thousands) of 802.15.4 inter-beacon periods.

The spatial variations considered in [1] result from the fact that 802.15.4 net-
works are typically deployed over a large area (e.g., for monitoring purpose). As a
result, the 802.15.4 networks are expected to be large both in terms of the area they
cover and the number of nodes they consist of. The theoretical transmission, and
hence also interference, range of 802.11 networks is 100 m to even 250 m. Although
this is a significant range, sensor networks can cover larger areas since they consist
of a large number of nodes in a mesh topology. Also, due to obstacles and walls, the
effective range of 802.11 networks can be considerably smaller than this theoretical
range. As a result, the 802.11 interference is assumed to affect large geographical
subsets of the 802.15.4 nodes (Fig. 3.15).

For simplicity, it is assumed in [1] that an active or interfering 802.11 network
will always be detected by the 802.15.4 nodes. In real systems, however, some noise
should be considered in this detection of 802.11 interferers, since the 802.15.4 nodes
could be scanning during a short inactive burst in between 802.11 packets. As the
802.15.4 beacon period is typically large compared to the 802.11 beacon or packet
burst periods, this noise can be considerably reduced under the assumption that the
802.15.4 nodes scan during the whole period.

The 802.11 interference can thus finally be modeled as a N × F matrix I(N,F ).
Each interfering network i then corresponds to a submatrix of dimensions Ni × 4,
where Ni denotes the number of nodes that are in the range of network i (depending
on its output power), and where it is taken into account that every 802.11 interference
pattern has a width of four 802.15.4 channels. Networks can swap frequency over
time, disappear or appear, but this time variation is assumed to be slow compared to
the 802.15.4 frequency adaptation.

3.6.2.3 Performance and Energy Measures

The relevant performance metric used in [1] is delay since throughput requirements
in sensor networks are typically low. More precisely, assuming that sensors monitor
a variable that should be communicated to a central sink the delay is the average
number of periods required to forward a measurement to a fixed central sink. This
average is computed over time and over the nodes in the network. The more the
network is affected by interference, the more periods will be required on average to
reach the sink. For the delay computation, in [1], it is assumed that every packet is
forwarded only once during each period, to the node closest to the sink that can be
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reached during that period. As a result, packets travel the largest possible distance
each period.

The energy cost is fixed per period, and hence independent of the actual packets
sent, received or beacons overheard. This is a valid assumption since throughput is
very low in sensor network applications, and moreover the system transmit power
cost PTx is typically lower than the receive power cost PRx [39]. Moreover, since
the full receive chain is required to be on for scanning, the power consumption in that
mode is the same as the power cost in the receive mode. During every superframe,
each node is awake to listen at least to its current frequency channel. The quality of
a frequency channel can be assessed by counting the number of overheard beacons
of neighbors. If no beacons are heard, energy detection, which is part of the 802.15.4
specifications, can be used to detect interference on the channel. As a result, in [1],
the energy consumption only varies with the number of channels that are scanned (or
listened to) in parallel.

Etot = fscan × Tactive × PRx (3.1)

where fscan is the number of frequencies considered and Tactive is the active period
per superframe.

3.6.3 Distributed Spectrum Sharing

In this section, the distributed channel selection algorithms to improve the 802.15.4
performance and robustness in presence of 802.11 interference, that are introduced in
[1], are discussed. The algorithms do not rely on any coordination between the nodes
(which would otherwise require a dedicated interference-free channel). Indeed, they
should be robust against virtually any interference, since in the 2.4 GHz ISM band
such dedicated interference-free bands do not exist. The algorithms are discussed in
terms of the cognition cycle given in Fig. 3.5.

3.6.3.1 Spectrum Sensing

The main goal of the 802.15.4 sensing is to get informed about harmful 802.11 trans-
missions. As a result, transmitter detection will be carried out. Energy detection as it
is enabled in the 802.15.4 standard [36] will be used for this purpose.

Secondly, the goal of the 802.15.4 nodes is to send their data through the network.
For that purpose, they want to connect to other 802.15.4 nodes. Assuming that all
nodes send beacons, it is possible to detect the current channel of other 802.15.4
nodes by listening to their beacons.

3.6.3.2 Spectrum Analysis

Spectrum Quality Metric

The quality metric is computed based on one hand on the output of the built-in
802.15.4 energy detector [36] that enables to capture the presence of 802.11 interfer-
ence and on the other hand on the number of beacons heard in the scanned channel.
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It is assumed that no beacons can be heard in the presence of 802.11 interference.
The metric G is defined as:

G =

{∑
beacons heard + 1, if no energy detected

0, if energy detected.
(3.2)

When 802.11 interference is present, the channel quality is assumed to be equal
to 0 (worst case). When no 802.11 interference is present, the channel quality is
assumed to be proportional to the number of heard beacons, augmented by one to
distinguish from the aforementioned worst case.

Spectrum Quality Predictions

Next, in [1], spectrum analysis techniques are proposed that learn the quality of each
channel. The goal is to derive spectrum decisions based on experience rather than on
expensive scanning.

In the considered spectrum learning model, a policy is represented by a two-
dimensional lookup table indexed by states and actions. In the considered problem
statement, both a current state and action correspond to a channel frequency: fs and
fa. The reward function (Q∗) represents for each state and action the expected re-
wards when taking that action:

Q∗(fs, fa) = G(fa) −G(fs). (3.3)

This means that the expected reward, which is expressed by the quality function
G, is the expected quality improvement by moving to the new state fa. The problem
is now that the Q∗ function should be approximated (learned) online by an estimate
Q̂∗. To do so, for every possible action (channel selection fa), the available estimate
Q̂∗ should be updated as:

Q̂∗(fa) = (1 − α)Q̂∗ + αG(fa) (3.4)

where α is a learning parameter.
To conclude, this model learns the expected quality of a given channel fa. Alter-

natively, it is possible to actually scan the channel and determine the channel quality
G directly.

3.6.3.3 Spectrum Decision

Various spectrum decision algorithms are proposed in [1]. All are distributed, but
they differ in the amount of scanning required, or in the model that is used for the
local decision. It is important to note that because of the local sensing and decision
taking, the techniques scale well for large networks, which is very useful for sensor
networks.
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Random Frequency Selection

The simplest distributed frequency selection solution is a scheme where nodes ran-
domly (following a uniform distribution) pick a channel every period. Packets are
forwarded to any other node closer to the sink within communication range that hap-
pened to pick the same channel. It can of course be expected that the average delay
in this scheme will be large. However, since it does not rely on any coordination
between the nodes and does not rely on an environment model, it can adapt to any
possible event.

Simulated Annealing

It is possible to outperform the random frequency selection algorithm described
above, since the considered 802.11 interference does not vary every 802.15.4 pe-
riod (once an interference-free channel is found for the whole network, the nodes
should indeed continue using that channel until adaptation is required.) In [1] a new
approach relying on the simulated annealing optimization method is proposed. This
technique can be elegantly implemented in the considered network setup. Simulated
annealing is a very effective heuristic optimization strategy for finding a global opti-
mum, developed by Metropolis et al. [42]. The basic idea of the method is to sample
the search space using a Gaussian distribution, and to anneal this distribution as the
optimum is approached.

Applied to the present context (i.e., optimizing the frequency allocation over a
large sensor network affected by dynamic interference), nodes have to keep looking
for another channel (i.e., sampling the search space). Since the 802.11 interference
probability over the 802.15.4 channels is uniformly distributed, this search space
sampling can be done uniformly. Every period, next to the node i’s current frequency
channel fi, another channel frandom is considered and its performance is assessed.
This is done according to the given channel quality metric G.

In simulated annealing, exploration is embedded in the algorithm to allow the
system to jump out of a local optimum. This means that a new channel frandom can
be accepted even if it is measured to be worse than the current channel fi accord-
ing to the quality metric G. This happens with a certain probability that should be
decreased (i.e., annealed) when the system converges to its optimal solution. In this
dynamic context, no annealing is, however, used. The probability to select the cur-
rent frequency even if it is scanned to be worse depends on the quality metric G. In
the algorithm proposed in [1], frandom is accepted with probability:

exp(−G(fi)/A) × {G(frandom) > 0} (3.5)

whereA is the annealing temperature and where the second condition (G(frandom) >
0)) avoids the system to swap to a new channel when 802.11 interference is present
(corresponding to G = 0). Further exploring a channel that is known to be bad is
indeed clearly a waste of resources.

As far as energy is concerned, the considered algorithm requires to scan the cur-
rent channel fi and an extra channel frandom, so that the energy cost is doubled with
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respect to the random frequency selection algorithm. Obviously, it is possible to in-
crease the number of channels to sample simultaneously in the proposed algorithm,
and continue the basic algorithm with the best one in terms of G. In [1], the case
where two random channels are selected at every iteration of the algorithm, at the
cost of an increased energy consumption, is also covered.

Learning-Based Distributed Approaches

Alternatively, in [1], distributed channel selection schemes are proposed that are
based on a learned estimate of the channel quality, rather than an estimate based
on instantaneous sensing. This estimate of the quality implicitly defines a greedy
policy that selects the action fa with the largest expected reward:

fa = max Q̂∗(fa). (3.6)

It is important to note that the learning algorithm updates the estimate for each
action, but in fact does not specify what actions should be taken. The learning allows
arbitrary experimentation while at the same time preserving the current best estimate
of states’ values. This is an important property in a time-varying environment and
allows decoupling the learning phase from the decision policy.

In [1] the authors proposed the following algorithm to select the next channel.
When experimentation (i.e., learning) is allowed, a random frequency fa is selected
with a probability similar to that in (3.5) used for the simulated annealing algorithm.
Since the frequency fa was not scanned before selecting it, the second factor in (3.5)
cannot be included in this exploration factor. This probability writes thus:

exp(−G(fi)/A). (3.7)

When no experimentation is required (i.e., experience), the greedy policy defined
in (3.6) is used.

To sum up, the learning algorithm selects a frequency fa for the next period
that is expected to maximize the reward or quality G. This optimal policy is learned
online and some exploration is allowed to adapt to varying interference patterns.
It is clear that during every superframe period only one frequency is scanned, so
that the energy consumption is similar to that of the random selection algorithm.
However, it is possible that a channel is chosen with interference since the decision
is taken before the channel is actually scanned. In simulated annealing, no decisions
are made before the channel is scanned. This costs scanning energy but allows to
avoid interference more proactively. In the results section we will investigate how
the predictions based on learning compare with the more costly approaches based on
scanning.

3.6.4 Simulation Results

Simulation results are given for the proposed distributed channel selection schemes.
Networks of different size (N ∈ [50, 100, 200]) in a simple string topology are con-
sidered, with varying average interference (25 or 50% of affected nodes) and differ-
ent time variations. Traffic is generated randomly in the sensors and forwarded to the
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sink node located at the end of the string topology. The connectivity range of each
node is assumed to be R = 10. The performance measure is the average number of
periods it takes for each packet to reach the sink, compared to the expected delay in
case of ideal channel allocation (which could only be achieved by a central entity that
can monitor the whole network interference). For the considered R andN , this ideal
average number of periods can be shown to be of 3, 5.5 and 10.5 for N respectively
equal to 50, 100 and 200. The algorithm parameters are set to A = 4 and α = 0.1.

The simulation results in [1] showed that it is indeed possible to design fully
distributed algorithms, that do not rely on a common control channel, and achieve a
performance close to the optimum. Fig. 3.16 shows that both the algorithms based
on scanning, and those based on an estimate of the spectrum, achieve a performance
within a factor 2 of the optimum. Surprisingly, the very simple learning scheme pro-
posed in [1] achieves a performance that is very close to the scanning based approach.
The learning approach results in energy and hardware savings of 50%.

3.6.5 Summary

In this section, distributed channel selection algorithms have been discussed for
802.15.4 networks subject to interference from 802.11 networks. These distributed
channel selection algorithms operate without the use of a common control channel,
which is a very important characteristic in the context of dynamic spectrum sharing.
Because of the lack of a common communication channel, the sensing is carried out
locally. Next, different spectrum analysis methods were considered and compared.
Finally, in this section, it has been illustrated how the spectrum decision affects spec-
trum sensing.
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Conclusion

In this chapter, the use of cognitive radio for dynamic spectrum sharing has been
introduced. First, it is shown that dynamic use of the spectrum is required to meet
the increasing quality requirements of applications. However, it is also shown that
recent trends in hardware development and protocol design have the potential to
evolve toward solutions for such cognitive radios. Following the motivation for dy-
namic spectrum sharing, a taxonomy and classification has been given for coexis-
tence and dynamic sharing scenarios. Next, the cognitive capability required to im-
plement dynamic sharing has been introduced: spectrum sensing, spectrum analysis
and spectrum decision. The main challenges related to each of the subtasks have been
identified, and solutions in the literature are listed. Finally, two relevant cases for co-
existence are discussed, to illustrate the introduced concepts in more detail. First,
the coexistence of wireless regional area networks with TV transmitters is discussed,
which is an example of vertical coexistence between primary licensed users and sec-
ondary unlicensed users. In this case, which is covered by the IEEE 802.22 standard
proposal, spectrum sensing is carried out in a distributed way through transmitter
detection. Spectrum analysis is mainly done centrally. Finally, for the spectrum de-
cision coordination, a common channel is considered. Next, the relevant problem of
coexistence of IEEE 802.15.4 with 802.11 in the ISM band is assessed. For this hor-
izontal coexistence between systems of equal regulatory status, algorithms are dis-
cussed that do not rely on a common channel for the decision coordination. Spectrum
sensing is carried out locally and different spectrum analysis models are discussed.
These two considered case studies cover many of the important issues encountered
in coexistence or dynamic sharing problems.
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4.1 Introduction

With the rapid growth of wireless applications and services in the recent decade,
spectrum resources are facing huge demands. The radio spectrum is a limited re-
source and is regulated by government agencies such as the Federal Communica-
tions Commission (FCC) in the United States. Within the current spectrum regu-
latory framework, all of the frequency bands are exclusively allocated to specific
services and no violation from unlicensed users is allowed. The spectrum scarcity
problem is getting worse due to the emergence of new wireless services. Fortunately,
the worries about spectrum scarcity are being shattered by a recent survey made by a
Spectrum Policy Task Force (SPTF) within FCC. It indicates that the actual licensed
spectrum is largely under-utilized in vast temporal and geographic dimensions [1].
For instance, a field spectrum measurement, which is taken in New York City, has
shown that the maximum total spectrum occupancy is only 13.1% from 30 MHz
to 3 GHz [2]. The exciting findings shed light on the problem of spectrum scarcity
and motivate a new direction to solve the conflicts between spectrum scarcity and
spectrum under-utilization.

A remedy to spectrum scarcity is to improve spectrum utilization by allowing
secondary users to access under-utilized licensed bands dynamically when/where
licensed users are absent. Recently, FCC has issued a Notice of Proposed Rule Mak-
ing (NPRM-FCC 03-322 [3]) advocating cognitive radio technology as a candidate
to implement opportunistic spectrum sharing. Meanwhile, IEEE has also endeav-
ored to formulate a novel wireless air interface standard based on cognitive radios:
the IEEE 802.22 working group. The IEEE 802.22 WG aims to develop wireless
regional area network physical (PHY) and medium access control (MAC) layers for
use by unlicensed devices in the spectrum allocated to TV bands [4].

Cognitive radio is a novel technology which improves the spectrum utilization
by allowing secondary networks (users) to borrow unused radio spectrum from pri-
mary licensed networks (users) or to share the spectrum with the primary networks
(users) [5–7]. As an intelligent wireless communication system, cognitive radio is
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aware of the radio frequency environment, selects the communication parameters
(such as carrier frequency, bandwidth and transmission power) to optimize the spec-
trum usage and adapts its transmission and reception accordingly. One of most crit-
ical components of cognitive radio technology is spectrum sensing. By sensing and
adapting to the environment, a cognitive radio is able to fill in spectrum holes and
serve its users without causing harmful interference to the licensed user. To do so, the
cognitive radio must continuously sense the spectrum it is using in order to detect the
re-appearance of the primary user. Once the primary user is detected, the cognitive
radio should withdraw from the spectrum instantly so as to minimize the interference
it may possibly incur. This is a very difficult task as the various primary users will be
employing different modulation schemes, data rates and transmission powers in the
presence of variable propagation environments and interference generated by other
secondary users. Another great challenge of implementing spectrum sensing is the
hidden terminal problem, which occurs when the cognitive radio is shadowed, in se-
vere multipath fading or inside buildings with high penetration loss while a primary
user is operating in the vicinity [8]. Due to the hidden terminal problem, a cognitive
radio fails to see the presence of the primary user and then will access the licensed
channel and cause interference to the licensed users. In order to deal with the hidden
terminal problem in cognitive radio networks, multiple cognitive users can cooperate
to conduct spectrum sensing.

Cooperative communications has been recently recognized as a powerful solu-
tion that can overcome the limitation of wireless systems [9]. The basic idea behind
cooperative transmission rests on the observation that in a wireless environment, the
signal transmitted or broadcast by a source to a destination node, each employing
a single antenna, is also received by other terminals, which are often referred to as
relays or partners. The relays process and retransmit the signals they receive. The
destination node then combines the signals coming from the source and the partners,
thereby creating spatial diversity and taking advantage of the multiple receptions of
the same data at the various terminals and transmission paths. In addition, the inter-
ference among terminals can be dramatically suppressed by distributed spatial pro-
cessing technology. By allowing multiple cognitive radios to cooperate in spectrum
sensing, the hidden terminal problem can be addressed [10, 11].

Cooperative spectrum sensing in cognitive radio networks has an analogy to a
distributed decision in wireless sensor networks, where each sensor makes a local
decision and those decision results are reported to a fusion center to give a final
decision according to some fusion rule [12]. The main difference between these two
applications lies in the wireless environment. Compared to wireless sensor networks,
cognitive radios and the fusion center (or common receiver) are distributed over a
larger geographic area. This difference brings out a much more challenging problem
to cooperative spectrum sensing because sensing channels (from the primary user to
cognitive radios) and reporting channels (from cognitive radios to the fusion center
or common receiver) are normally subject to fading or heavy shadowing.

In this chapter, a survey of cooperative spectrum sensing for cognitive radios is
given. We shall also review some well-known spectrum sensing techniques and in-
troduce the concept and principle of cooperative spectrum sensing. The performance
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analysis of cooperative spectrum sensing over realistic fading channels is given. Sev-
eral robust cooperative spectrum sensing techniques are are also proposed.

4.2 Spectrum Sensing

Spectrum sensing is a key element in cognitive radio communications as it should
be firstly performed before allowing unlicensed users to access a vacant licensed
channel. The essence of spectrum sensing is a binary hypothesis-testing problem:

H0 : Primary user is absent.
H1 : Primary user is in operation.

The key metric in spectrum sensing are the probability of correct detection, proba-
bility of false alarm and probability of miss, which are given by respectively,

Pd = Prob{Decision = H1|H1} (4.1)

Pf = Prob{Decision = H0|H0} and (4.2)

Pm = Prob{Decision = H0|H1}. (4.3)

4.2.1 Spectrum Sensing Techniques

To enhance the detection probability, many signal detection techniques can be used
in spectrum sensing. In the following, we give an overview of some well-known
spectrum sensing techniques. For further details, interested readers are referred to
[10, 13–17].

4.2.1.1 Energy Detection

The energy detection method is optimal for detecting any unknown zero-mean con-
stellation signals [13]. In the energy detection approach, the radio frequency energy
in the channel or the received signal strength indicator (RSSI) is measured to deter-
mine whether the channel is occupied or not. The energy detection implementation
for spectrum sensing is shown in Fig. 4.1a. The received signals x(t) sampled in
a time window are first passed through an FFT device to get the spectrum X(f).
The peak of the spectrum is then located. After windowing the peak in the spectrum
of x(t), we get Y (f). The signal energy is then collected in the frequency domain.
Finally, the following binary decision is made,

{
H1, if

∑
|Y (f)|2 ≥ λ

H0, otherwise. (4.4)

Although the energy detection approach can be implemented without any prior
knowledge of the primary user signal, it still has some drawbacks. The first problem
is that it can only detect the signal of the primary user if the detected energy is above
a threshold. Another challenging issue is that the energy approach cannot distinguish
between other secondary users sharing the same channel and the primary user [14].
The threshold selection for energy detection is also problematic since it is highly
susceptible to the changing background noise and interference level.
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Fig. 4.1. Implementation of various detection approaches for spectrum sensing. x(t) and X(f)
denote the time domain and frequency domain of the observed signal, respectively. S(f)
denotes the power spectral density of x(t). S(f, α) represents the cyclic spectrum.

4.2.1.2 Matched Filter

A matched filter is an optimal detection method as it maximizes the signal-to-
noise ratio (SNR) of the received signal in the presence of additive Gaussian noise.
A matched filter is obtained by correlating a known signal, or template, with an
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unknown signal to detect the presence of the template in the unknown signal. This
is equivalent to convolving the unknown signal with a time-reversed version of the
template. Matched filters are commonly used in radar transmission. In the cognitive
radio scenario, however, the use of the matched filter can be severely limited since
the information of the primary user signal is hardly available at the cognitive radios.
If partial information of primary user signal such as pilots or preambles is known, the
use of matched filter is still possible for coherent detection [10]. For example, in or-
der to detect the presence of a digital television (DTV) signal, we may detect its pilot
tone by passing the DTV signal through a delay-multiply circuit. If the squared mag-
nitude of the output signal is larger than a threshold, the presence of the DTV signal
can be detected. The detailed matched filter implementation for spectrum sensing is
shown in Fig. 4.1b.

4.2.1.3 Cyclostationary Detection

If the signal of the primary user exhibits strong cyclostationary properties, it can be
detected at very low SNR values. A signal is said to be cyclostationary (in the wide
sense) if its autocorrelation is a periodic function of time t with some period. The
cyclostationary detection can be performed as follows [15]. Firstly, one can calculate
the cyclic autocorrelation function (CAF) of the observed signal x(t), Rx(τ), as

Rx(τ) = E[x(t+ τ)x∗(t− τ)e−j2παt]

where E[·] denotes the statistical expectation operation and α is called cyclic fre-
quency. The discrete Fourier transformation of the CAF can then be computed to
obtain the spectral correlation function (SCF), S(f, α), also called cyclic spectrum,
which is a two-dimensional function in terms of frequency and cyclic frequency.
Finally, the detection is completed by searching for the unique cyclic frequency cor-
responding to the peak in the SCF plane. The detailed cyclostationary detection im-
plementation for spectrum sensing is shown in Fig. 4.1c. This detection approach is
robust to random noise and interference from other modulated signals, because the
noise has only a peak of SCF at the zero cyclic frequency and the different modulated
signals have different unique cyclic frequencies.

4.2.1.4 Wavelet Detection

For signal detection over wideband channels, the wavelet approach offers advan-
tages in terms of both implementation cost and flexibility in adapting to the dynamic
spectrum as opposed to conventional use of multiple narrowband bandpass filters
(BPF) [16]. In order to identify the locations of vacant frequency bands, the en-
tire wideband is modeled as a train of consecutive frequency sub-bands where the
power spectral characteristic is smooth within each sub-band but changes abruptly
on the border of two neighboring sub-bands. By employing a wavelet transform of
the power spectral density (PSD) of the observed signal x(t), the singularities of the
PSD S(f) can be located and thus the vacant frequency bands can be found. The de-
tailed wavelet detection implementation for spectrum sensing is shown in Fig. 4.1d.
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Table 4.1. Advantages and Disadvantages of Spectrum Sensing Techniques.

Spectrum sensing Advantages Disadvantagesapproach

Does not need any prior Cannot work in low SNR
Energy detection information cannot distinguish users

low computational cost sharing the same channel

Optimal detection
Matched filter performance Requires a prior knowledge of

low computational cost the primary user

Requires partial information of
Cyclostationary Robust in low SNR the primary user
detection robust to interference high computational cost

Does not work for spread
Wavelet Effective for wideband spectrum signals;
detection signal high computational cost

One critical challenge of implementing the wavelet approach in practice is the high
sampling rates for characterizing the large bandwidth.

The advantages and disadvantages of the aforementioned spectrum sensing tech-
niques are summarized and compared in Table 4.1.

4.2.2 Performance of Spectrum Sensing

It has been found that the optimal detector for detecting a weak unknown signal from
a known zero-mean constellation is the energy detector, even though there are some
fundamental limits when SNR is below a certain threshold [13]. The energy detection
is performed by measuring the energy of the received signal in a fixed bandwidthW
over an observation time window T . The performance analysis of the energy detector
has been studied for AWGN channels in [18, 19] and for Rayleigh fading channels
in [20–22]. In the following, we briefly present the main results that describe the
performance of the energy detector over Rayleigh fading channels. The details of the
proof are omitted here and can be found in [20, 21].

We assume that each cognitive radio performs local spectrum sensing indepen-
dently. For simplicity, we consider the ith cognitive radio (1 ≤ i ≤ K) only to see
how the energy detector works. The local spectrum sensing is to decide between the
following two hypotheses,

xi(t) =
{
ni(t), H0

his(t) + ni(t), H1
(4.5)

where x(t) is the observed signal at the ith cognitive radio and s(t) is the signal trans-
mitted from the primary user, ni(t) is the additive white Gaussian noise (AWGN) and
hi is the complex channel gain of the sensing channel between the primary user and
the ith cognitive radio.
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As shown in Fig. 4.1a, the energy collected in the frequency domain is Di =∑
|Y (f)|2 which serves as a decision statistic with the following distribution

Di ∼
{
χ2

2u, H0

χ2
2u(2γi), H1

(4.6)

where χ2
2u denotes a central chi-square distribution with 2u degrees of freedom and

χ2
2u(2γi) denotes a non-central chi-square distribution with 2u degrees of freedom

and a non-centrality parameter 2γi, respectively. γi is the instantaneous SNR of the
received signal at the ith cognitive radio and u = TW .

For the ith cognitive radio with the energy detector, the average probability of
false alarm, the average probability of detection, and the average probability of miss
over Rayleigh fading channels are given by, respectively,

Pf,i = Eγi
[Prob{Di > λ|H0}]

=
Γ(u, λi

2 )
Γ(u)

, (4.7)

Pd,i = Eγi
[Prob{Di > λ|H1}]

= e−
λ
2

u−2∑

n=0

1
n!

(
λi

2

)n

+
(

1 + γ̄i

γ̄i

)u−1

×
[
e−

λi
2(1+γ̄i) − e−

λi
2

u−2∑

n=0

1
n!

(
λiγ̄i

2(1 + γ̄i)

)n
]

(4.8)

and

Pm,i = 1 − Pd,i (4.9)

where λi and γ̄i denote the energy threshold and the average SNR at the ith cognitive
radio, respectively. Eγi

[·] represents the expectation over the random variable γi.
Likewise, Γ(·, ·) is the incomplete gamma function and Γ(·) is the gamma function.

In Fig. 4.2, complementary receiver operating characteristic (ROC) curves (Pm

versus Pf ) of the energy detection for one cognitive radio are plotted for a variety of
SNR values according to (4.7) and (4.9). It shows that the energy detection perfor-
mance of one cognitive radio becomes worse when SNR decreases.

4.3 Cooperative Spectrum Sensing

One of the most critical issues of spectrum sensing is the hidden terminal problem,
which happens when the cognitive radio is shadowed. In Fig. 4.3, cognitive radio 1
is shown to be shadowed by a high building over the sensing channel. In this case,
the cognitive radio cannot reliably sense the presence of the primary user due to
the very low SNR of the received signal. Then, this cognitive radio assumes that the
observed channel is vacant and begins to access this channel while the primary user is
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Fig. 4.2. Complementary ROC curves in a Rayleigh fading channel with SNR γ̄ = 5, 10, 15
and 20 dB for one cognitive radio.

still in operation. To address this issue, multiple cognitive radios can be coordinated
to performance spectrum sensing cooperatively. Several recent works have shown
that cooperative spectrum sensing can greatly increase the probability of detection
in fading channels [22]. In general, cooperative spectrum sensing is performed as
follows:

DTV Transmitter

DTV Receiver

CR 3

CR Base Station

CR 2

CR 1

Fig. 4.3. Cooperative spectrum sensing in cognitive radio (CR) networks; CR 1 is shadowed
over the sensing channel and CR 3 is shadowed over the reporting channel.
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• Step 1: Every cognitive radio performs local spectrum measurements indepen-
dently and then makes a binary decision.

• Step 2: All the cognitive radios forward their binary decisions to a common re-
ceiver which is an access point (AP) in a wireless LAN or a base station (BS) in
a cellular network.

• Step 3: The common receiver combines those binary decisions and makes a final
decision to infer the absence or presence of the primary user in the observed
band.

In the above cooperative spectrum sensing algorithm, each cooperative partner makes
a binary decision based on its local observation and then forward one bit of the deci-
sion to the common receiver. At the common receiver, all one-bit decisions are fused
together according to an “OR” logic. This cooperative sensing algorithm is referred
to as decision fusion. An alternative form of cooperative spectrum sensing can be
performed as follows. Instead of transmitting the one-bit decision to the common
receiver in Step 2 of the above algorithm, each cognitive radio can just send its ob-
servation value directly to the common receiver [23]. This alternative approach can
then be seen as data fusion for cooperative networks. Obviously, the one-bit decision
needs a low bandwidth control channel. Moreover, it has been recently found that a
hard decision approach can perform almost as well as that of the soft decision one in
terms of detection performance [24].

4.3.1 Cooperative Spectrum Sensing Performance

In cooperative spectrum sensing, all cognitive radios measure the licensed spectrum
and make the decisions independently. If the decision in one cognitive radio is H0,
then a symbol {−1} will be transmitted to the BS. IfH1 is true, then {1} is forwarded
to the BS. The transmission of the decisions from all cognitive radios to the BS can
be seen as a multiuser access protocol, which can be based on TDMA or FDMA.
The BS collects all K decisions and makes the final decision using an OR rule. Let
Z denote the decision statistic in the BS, then it can be described as

Z ∼
{
{HBS,1

0 , · · · ,HBS,K
0 }, H0 (signal is absent)

otherwise, H1 (signal is present)
(4.10)

where HBS,i
0 denotes the decision H0 received from the ith cognitive radio at the

BS for i = 1, · · · ,K. The expression (4.10) demonstrates that the BS decides the
signal is absent only if all cognitive radios decide the absence of the signal. On the
other hand, the BS assumes that the primary user is present if there exists at least one
cognitive radio which assumes the presence of the primary user signal. Therefore,
the false alarm probability of the cooperative spectrum sensing is given by

Qf = Prob{H1|H0}
= 1 − Prob{H0|H0}

= 1 −
K∏

i=1

(1 − Pf,i) (4.11)



124 K. B. Letaief, W. Zhang

where Pf,i denotes the false alarm probability of the ith cognitive radio in its local
spectrum sensing.

The miss probability of cooperative spectrum sensing is given by

Qm = Prob{H0|H1}

=
K∏

i=1

Pm,i (4.12)

where Pm,i denotes the miss probability of the ith cognitive radio in its local spec-
trum sensing.

Assume that every cognitive radio achieves the same Pf and Pm in the local
spectrum sensing, the false alarm probability and the miss probability of cooperative
spectrum sensing over Rayleigh fading channels are then given by

Qf = 1 − (1 − Pf)K

Qm = (Pm)K .
(4.13)

Figure 4.4 shows that the performance curves of cooperative spectrum sensing for
different number of cognitive radios over Rayleigh fading channels with the average
SNR γ̄ = 10 dB. It is obvious that the probability of miss is greatly reduced with a
larger value K for a given probability of false alarm. As such, we may refer to K as
the sensing diversity gain of the cooperative spectrum sensing.
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Fig. 4.4. Complementary ROC curves in Rayleigh fading channels with SNR γ̄ = 10 dB for
different number of cognitive radios (CRs), K = 1, 2, 3, 4.
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It can be seen that cooperative spectrum sensing will go through two successive
channels: (1) sensing channel (from the primary user to cognitive radios); and (2)
reporting channel (from the cognitive radios to the common receiver). The merit of
cooperative spectrum sensing primarily lies in the achievable space diversity brought
by the independent sensing channels, namely sensing diversity gain, provided by the
multiple cognitive radios. Even though one cognitive radio may fail to detect the
signal of the primary user, there are still many chances for other cognitive radios
to detect it. With the increase of the number of cooperative cognitive radios, the
probability of missed detection for all the users will be extremely small. Another
merit of cooperative spectrum sensing is the mutual benefit by communicating with
each other to improve the sensing performance [25]. When one cognitive radio is far
away from the primary user, the received signal may be too weak to detect. However,
by employing a cognitive radio who is located nearby the primary user as a relay, the
signal of the primary user can be detected reliably by the far user.

4.3.2 Performance in Realistic Fading Channels

In practice, the reporting channels between the cognitive radios and the common
receiver will also experience fading and shadowing such as cognitive radio 3 in
Fig. 4.3. This will typically deteriorate the transmission reliability of the sensing re-
sults reported from the cognitive radios to the common receiver. For example, when
one cognitive radio reports a sensing result {1} (denoting the presence of the pri-
mary user) to the common receiver through a realistic fading channel, the common
receiver will most likely detect it to be the opposite result {0} (denoting the absence
of the primary user) because of the disturbance from the random complex channel
coefficient and random noise. Eventually, the performance of cooperative spectrum
sensing will be degraded by the imperfect reporting channels.

Definition 4.1. The probability of reporting errors of the ith cognitive radio, denoted
by Pe,i, is defined as the error probability of signal transmission over the reporting
channels between the ith cognitive radio and the common receiver.

Theorem 4.1. Let Qf and Qm denote the probability of false alarm and probability
of miss of cooperative spectrum sensing, respectively. Then,

Qf = 1 −
K∏

i=1

[(1 − Pf,i)(1 − Pe,i) + Pf,iPe,i] (4.14)

Qm =
K∏

i=1

[Pm,i(1 − Pe,i) + (1 − Pm,i)Pe,i] (4.15)

where Pf,i and Pm,i are the false alarm probability and miss probability of the local
spectrum sensing of the ith cognitive radio, respectively.

Corollary 4.1. Suppose that the local spectrum sensing conducted by cognitive ra-
dio i results in Pf,i = Pf and Pm,i = Pm, for all i = 1, · · · ,K, and that the
probabilities of reporting errors are identical for all cognitive radios, then
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Fig. 4.5. Cooperative spectrum sensing performance (probability of missed detection versus
probability of false alarm) for different number of cognitive radios.

{
Qf = 1 − [(1 − Pf)(1 − Pe) + PfPe]

K

Qm = [Pm(1 − Pe) + (1 − Pm)Pe]
K
.

(4.16)

Furthermore, Qf is bounded by

Qf ≥ Q̄f � limPf→0Qf = 1 − (1 − Pe)K ≈ KPe. (4.17)

Figure 4.5 shows the ROC curves (probability of miss, Qm versus probability
of false alarm, Qf ) of cooperative spectrum sensing under imperfect reporting sce-
narios for different number of cognitive radios. Both sensing channels and reporting
channels are simulated as flat Rayleigh fading. The SNR of the sensing channels and
the reporting channels are taken as 10 and 25 dB, respectively. Energy detection is
used for local spectrum sensing at each cognitive radio and the decision fusion is em-
ployed for reporting the sensing results to the common receiver. Obviously, when the
number of cognitive radios increases, the miss probability becomes smaller for any
given false alarm probability. However, it can be seen in Fig. 4.5 that each curve is
chopped by a vertical line, which is called the false alarm wall, denoted by Q̄f . This
implies that the false alarm probability cannot be sufficiently small due to the bound.
It can be shown from (4.17) that the false alarm wall results from the reporting error
probability, Pe, which characterizes the error probability when the sensing result is
transmitted from one cognitive radio to the common receiver over an imperfect re-
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porting channel. Furthermore, it can be seen that the false alarm wall Q̄f becomes
higher when the number of cognitive radios increases. Therefore, for the case that
the desired false alarm probability is smaller than Q̄f , cooperative spectrum sensing
will be completely invalid.

4.4 Robust Cooperative Spectrum Sensing Techniques

It has been shown that the use of multiple cognitive radios to perform spectrum
sensing cooperatively may improve the detection probability but the performance is
limited by the realistic reporting channels. To alleviate the performance degradation
resulting from the imperfect reporting channels, in the following, we propose several
robust cooperative spectrum sensing techniques.

4.4.1 Cooperative Diversity for Cooperative Spectrum Sensing

Multiple antennas technology has been shown as an efficient way to provide superior
reception performance due to the potential high-space diversity [26]. In cognitive ra-
dio networks, implementing multiple antennas at each cognitive radio is not practical
due to the increasing cost and hardware complexity. However, a virtual antenna array
can be formed by allowing multiple cognitive radios to cooperate. Hence, the clas-
sical space–time coding approaches [27] which have been widely used in multiple-
input multiple-output (MIMO) systems can be used in cognitive radio networks so as
to achieve a high cooperative diversity. Consider the case when two-located cognitive
users cooperate on spectrum sensing, as illustrated in Fig. 4.6. Since the two users are
close, the channels between two users can be assumed to be ideal. Firstly, the two
users perform local spectrum sensing independently and obtain the sensing results
D1 and D2 for user 1 and user 2, respectively. Then, they exchange their decisions
and send them alternatively in two time slots, with user 1 transmitting {D1,D2} and
user 2 transmitting {−D2,D1}. By doing so, each decision is reported to the com-
mon receiver through two independent fading channels. This gives rise to a space

Cognitive Radio

Cognitive Radio
Base Station

Fig. 4.6. Cooperative diversity technique for cooperative spectrum sensing. The two co-located
cognitive radios exchange their local decisions and form a distributed antenna array over the
reporting channels.
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diversity gain of 2. When the number of cognitive radios in cooperative spectrum
sensing is K, it can be expected that a diversity gain of K will be achieved.

For high data rate wireless communications, channel frequency selectivity be-
comes a critical challenging issue that can significantly affect the system perfor-
mance. Orthogonal frequency division multiplexing (OFDM) is a powerful tool that
can deal with the detrimental effects of multipath fading [28] and has been adopted in
many wireless standards such as DTV and wireless LAN. In particular, an OFDM-
based cognitive radio system structure is considered by the IEEE 802.22 working
group for wireless regional area networks (WRAN). For OFDM-based cognitive ra-
dios, cooperative diversity technique can be performed as follows. The two users
exchange their local spectrum sensing decisions. Then, the decisions will be sent
through two separated sub-channels from each user to the common receiver. By
doing so, a frequency diversity gain of 2 can be achieved over frequency-selective
fading channels. Therefore, by exploiting a cooperative diversity among co-located
cognitive radios, we can reduce the reporting error probability and then enhance the
cooperative spectrum sensing performance.

4.4.2 Relay Diversity for Cooperative Spectrum Sensing

When the reporting channels of some cognitive radios experience heavy shadowing,
the local decisions in these cognitive radios cannot be forwarded to the BS. Then,
the maximum cooperative diversity gain of cooperative spectrum sensing will be
reduced. Assume that cognitive radio i fails to send its decision Xi to the BS due to
heavy shadowing in its reporting channel. This is the case when the received signal
power is so weak that it is merged into the noise. In this case, BS has to make a
random decision between H1 and H0 if it incorporates such an unreliable cognitive
radio into the cooperative decision. Hence, using some unreliable cognitive radios
cannot improve the cooperative spectrum sensing performance. To address this issue,
BS could censor the SNR of the received signal to check whether or not this cognitive
radio is reliable enough before counting it into the cooperative decision. If the SNR
of the received signal from the cognitive radio i is lower than a predesigned threshold,
then the cognitive radio i will be labeled as an unreliable one. Under the supervision
of the BS, the unreliable one can relay its local spectrum sensing result to other
cognitive radios which are in enough good channel state, as shown in Fig. 4.7.

With the relay technique, we see that cooperative spectrum sensing achieves the
full cooperation among cognitive radios by avoiding transmission of local sensing
results over bad reporting channels. Suppose that M out of K cognitive radios ex-
perience heavy shadowing. Without any relay, the diversity gain of the cooperative
spectrum sensing is only (K − M). However, with the help of other relay cogni-
tive radios, it is demonstrated that the maximum cooperative diversity gain K can
be achieved. Although relay-based cooperative spectrum sensing can exploit the full
cooperation of all cognitive radios in the case of heavy shadowing, the bound Q̄f will
also increase with an increase in the number of cooperative cognitive radios, as can
be seen from (4.17). To decrease the bound Q̄f while maintaining the maximum co-
operative diversity, it is of interest to explore a coding approach combined with relay
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Cognitive Radio
Base Station

Fig. 4.7. Relay diversity technique for cooperative spectrum sensing. The cognitive radio in
heavy shadowing relays its local decision to a neighboring cognitive radio.

diversity. Here, we employ an algebraic coding approach [29] to achieve signal space
diversity for relay cognitive radios. Assume that cognitive radio i experiences heavy
shadowing and cognitive radio j experiences Rayleigh fading. In order to achieve
the maximum cooperative diversity, cognitive radio i will relay its decision Xi to
cognitive radio j. Then, the two decisions Xi and Xj which are BPSK symbols are
encoded as

[Ci Cj ]T = Θ[Xi Xj ]T

where Θ is a 2 × 2 rotation matrix and the superscript T denotes the transpose of
a vector or matrix. Subsequently, Ci and Cj are sent through orthogonal channels
Hj(mi) and Hj(mj), respectively. At the common receiver, the received symbols
will be jointly decoded and then forwarded to perform a joint decision. A 2 × 2
matrix Θ can be given by

Θ =
1√
2

(
1 ejπ/4

1 ej5π/4

)
(4.18)

which can guarantee a diversity gain of 2 over Rayleigh fading channels [29].
Figure 4.8 shows the performance of the cooperative spectrum sensing with the

proposed relay diversity and algebraic coding for two cognitive radios. The average
SNRs of the sensing channels of the two cognitive radios are both γ̄ = 15 dB and
the average SNR of the reporting channel of the first cognitive radio is η̄ = 14 dB.
The second cognitive radio experiences heavy shadowing in its reporting channel
and cannot forward the decision to the BS. For comparison, we have also plotted
the complementary ROC curve without the use of relays. It can be seen that the
curve without relay has the worse performance among the three examined cases at
a large value of Qf . This implies that without relay, the sensing diversity order of
cooperative spectrum sensing is lost under this scenario. Meanwhile the other two
curves have a similar performance when Qf is larger than their lower bounds. This
indicates that the diversity gain of cooperative spectrum sensing can be retrieved
by relaying the decision of the second cognitive radio to the first cognitive radio.
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Fig. 4.8. Cooperative spectrum sensing performance with relay diversity and algebraic coding
for two cognitive radios. Both sensing channels have an average SNR γ̄ = 15 dB. The report-
ing channel of the first cognitive radio has average SNR η̄ = 14 dB. The reporting channel of
the second cognitive radio experiences heavy shadowing.

However, it can be also observed that the lower bound Q̄f in the case of relay is
larger than that in the case of without relay. This substantiates (4.17) and indicates
that cooperative spectrum sensing with many cognitive radios will induce an increase
of the lower bound of Qf . The curve of relay with algebraic coding has the best
performance in Fig. 4.8 and achieves both cooperative diversity and lower bound
Q̄f . This is because relay diversity allows us to achieve the maximum diversity and
algebraic coding results in lowering the bound of Qf .

4.4.3 Multiuser Diversity for Cooperative Spectrum Sensing

In order to reduce the reporting error probability, we may take advantage of multiuser
diversity in cooperative spectrum sensing. Multiuser diversity is a form of selection
diversity in which the user with the highest SNR is chosen as the only physical trans-
mission link [30]. In cognitive radio networks, cognitive radios are scattered. This
results in different distances between the cognitive radios and the common receiver.
Thus, the SNR of the reporting channels between the cognitive radios and the com-
mon receiver are varied and are also independently changing due to the independent
fading. By taking advantage of these independent fading channels, multiuser diver-
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Cognitive Radio
Base Station

Fig. 4.9. Multiuser diversity technique for cooperative spectrum sensing. Cognitive radios are
separated into a few clusters and only the cluster head (with the highest SNR of the reporting
channel) participates in the reporting process.

sity can be exploited in cooperative spectrum sensing. Figure 4.9 shows a cognitive
radio network with a two-layer hierarchy in implementing the multiuser diversity
technique. In the first layer, all cognitive radios are configured into few clusters ac-
cording to some distributed clustering method. Then, a cluster head is chosen in each
cluster according to the highest SNR of the reporting channels. Once every cogni-
tive radio in the same cluster finishes the local spectrum sensing, the sensing results
will be reported to the cluster head which will then make a preliminary cooperative
decision according to an “OR” logic rule. In the second layer, only cluster heads are
required to report to the common receiver with their preliminary cooperative deci-
sions and based on these decisions, the common receiver will make a final decision
according to an “OR” logic rule. The advantages of this cluster-based cooperative
spectrum sensing are twofolds [31]: firstly, only the user with the highest SNR is
chosen as the cluster head to report the decisions to the common receiver. By doing
so, it produces a selection diversity gain to reduce the reporting error probability.
Secondly, the total amount of sensing bits reported to the common receiver can be
greatly reduced since the work of reporting has been taken by the cluster heads, not
all cognitive radios, thereby facilitating a low bandwidth control channel.

Figure 4.10 demonstrates the cooperative spectrum sensing performance using
cluster-based method, where energy fusion and decision fusion are both considered
at the cluster head. For comparison, the conventional method without clustering is
simulated. In the simulation, seven cognitive radios are considered and separated
into two clusters. The SNR of the sensing channels for two clusters are 10 and 5 dB,
respectively, and the SNR of the reporting channels are 10 dB for both clusters. It
can be observed that the sensing performance are improved by using cluster-based
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Fig. 4.10. Performance comparison of cooperative spectrum sensing among using conven-
tional method, cluster-based method with energy fusion (EF) and decision fusion (DF).

method. This results from the fact that the multiuser diversity can reduce the report-
ing error probability with the best user selection.

4.4.4 Censored Decision for Cooperative Spectrum Sensing

For a cognitive radio network with a large number of cognitive radios, the total num-
ber of sensing bits transmitted to the common receiver tends to be very large and
this will require a high demand in terms of control channel bandwidth and also result
in a long sensing time. Note that since the local decision D ∈ {0, 1} is obtained
by comparing the local observation O with a predesigned threshold λ, the observa-
tion values in the vicinity of the detection threshold are not reliable enough due to
the noise disturbance. To exclude the ambiguous detection region around the thresh-
old, a censored decision approach can be used in cooperative spectrum sensing. By
carefully setting the ambiguous detection region as the interval [λ1, λ2], only the cog-
nitive radios having the observation values out of this region are required to report to
the common receiver. Specifically, the cognitive radio will report a local decisionD:

D =
{

0, 0 ≤ O ≤ λ1

1, O ≥ λ2.
(4.19)
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But if λ1 < O < λ2, the cognitive radio will not report anything to the com-
mon receiver. The probability of the event that one cognitive radio participates in the
reporting process can be calculated by

K̄ = 1 − Prob{λ1 < O < λ2}. (4.20)

Therefore, the average number of sensing bits (one bit for one active cognitive
radio in reporting) is K̄K. The normalized amount of sensing bits over total num-
ber of cognitive radios is K̄. It can be expected that by using the proposed censored
decision approach, the average transmitted sensing bits will be greatly reduced with-
out much affecting the sensing performance much. This is because those unreliable
decisions are censored and excluded from the final decision.

Figure 4.11 shows the miss probability in terms of the normalized amounts of
the sensing bits under several given false alarm probabilities. It can be seen that with
increase of K̄, the miss probability is reduced. However, when K̄ is above 0.5, the
miss probability will change slightly. It implies that employing half of total number
of cognitive radios for cooperative spectrum sensing will not necessarily lead to the

K

Fig. 4.11. Performance of cooperative spectrum sensing using censored decision. K̄ denotes
the normalized amounts of sensing bits.
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loss of performance. This is because the other half of total number of cognitive radios
has a local decision in ambiguous region which will be much unreliable and cannot
improve the sensing performance.

Conclusion

Cognitive radio is an agile radio technology that can efficiently utilize the spectrum
holes of the licensed channels in different locations and times. To detect the spectrum
holes accurately and quickly, spectrum sensing is a critical component in cognitive
radio systems. In this chapter, a survey of spectrum sensing techniques for cognitive
radios has been presented. The conventional spectrum sensing methods have firstly
been introduced and their advantages and disadvantages have been discussed. In or-
der to deal with the hidden terminal problem, which is commonly seen in wireless
networks, cooperative spectrum sensing has been considered. By allowing a num-
ber of cognitive radios to perform local spectrum sensing independently and fusing
their local decision results together at common receiver, the spectrum sensing perfor-
mance is greatly enhanced. Cooperative spectrum sensing has also been considered
for realistic fading scenarios, where both the sensing channels and reporting chan-
nels are subject to fading and/or shadowing. Performance analysis of cooperative
spectrum sensing under realistic fading channels has been given and a limitation of
the cooperative spectrum sensing has been observed. To address this and other co-
operative spectrum sensing challenges, several robust cooperative spectrum sensing
techniques have been proposed. Further research on cooperative spectrum sensing
can be envisioned on wideband sensing.
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Appendix

Proof of Theorem 4.1: In the following, we assume that the common receiver is a
base station (BS). Then, the whole sensing and reporting process can be described as
the following flowchart:

H0/H1(PU) −→ H0/H1(CR) −→ H0/H1(BS). (4.21)

In the first stage, one cognitive radio performs local spectrum sensing to get the
local decision HCR

0 or HCR
1 . Then, the local decision is reported to the BS through

reporting channels which are usually subject to fading and hence the local decision
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will be contaminated by the fading channels and additive noise. After signal recovery
at the BS, HBS

0 or HBS
1 is decoded.

Let Prob{HBS
0 |H0,H

CR
0 } denote the probability of the event:

H0(PU) −→ H0(CR) −→ H0(BS).

Then,

Prob{HBS
0 |H0,H

CR
0 } = (1 − Pf)(1 − Pe). (4.22)

Let Prob{HBS
0 |H0,H

CR
1 } denote the probability of the event:

H0(PU) −→ H1(CR) −→ H0(BS).

Then,

Prob{HBS
0 |H0,H

CR
1 } = PfPe. (4.23)

Therefore,

Prob{HBS
0 |H0} = (1 − Pf)(1 − Pe) + PfPe. (4.24)

Likewise, we can obtain

Prob{HBS
0 |H1} = Pm(1 − Pe) + (1 − Pm)Pe. (4.25)

Next, consider a cognitive radio network with K cognitive users. The decision
statistic for the cooperative spectrum sensing can be given by (4.10). Hence,

Qf = Prob{H1|H0}
= 1 − Prob{HBS,1

0 , · · · ,HBS,K
0 |H0}

= 1 −
K∏

i=1

Prob{HBS,i
0 |H0}. (4.26)

By substituting (4.24) into (4.26) results in (4.14). Likewise,

Qm = Prob{H0|H1}
= Prob{HBS,1

0 , · · · ,HBS,K
0 |H1}

=
K∏

i=1

Prob{HBS,i
0 |H1}. (4.27)

By substituting (4.25) into (4.27) results in (4.15). �

Proof of Corollary 4.1: By substituting Pf,i = Pf and Pm,i = Pm for all i =
1, · · · ,K into (4.14) and (4.15), immediately we get (4.16).
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For given Pe and K, it can be seen from (4.16) that the minimization of Qf is
equivalent to the maximization of

(1 − Pf)(1 − Pe) + PfPe = (1 − Pe) − Pf(1 − 2Pe).

Because we always have Pe < 0.5, we obtain

minQf = lim
Pf→0

Qf

= 1 − (1 − Pe)K

≈ KPe. (4.28)

�
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5.1 Introduction

In this chapter, a protocol suite is presented for initiating and controlling transmis-
sions among cognitive radios in dynamic spectrum access networks. A framework
is provided for the selection of the initial modulation to be used in a session after a
frequency band has been selected. During the first few packet transmissions in a new
session, a power-adjustment protocol compensates for uncertainties in the interfer-
ence and propagation characteristics in the designated frequency band. Throughout
the session, an adaptive transmission protocol compensates for variations in the com-
munications environment. Because increases in transmitter power can disrupt other
sessions that are underway in the network, adaptation of modulation and coding is the
preferred mechanism for responding to increased interference or propagation loss.
For a wide range of modulation techniques and channel models, performance results
for our protocols are compared with performance results for ideal protocols that are
furnished perfect channel-state information.

A suite of protocols is required for cognitive packet radios that wish to initiate
and maintain reliable communications in a wireless ad hoc dynamic spectrum access
network. The session initiation process begins when one wireless communications
device, referred to as the source, wishes to set up a session to send a sequence of
packets to another wireless communications device, the destination. For the packet
sizes that we consider, a session for the transfer of a 1MB file requires the deliv-
ery of approximately 2000–8000 packets, depending on the rate of the error-control
code. Other wireless communications devices that are within range of the source are
referred to as unintended receivers. These devices may receive interference from the
source’s transmissions if they are operating in the same frequency band.

In this chapter, it is assumed that the source and destination are within range of
each other; relaying of packets is not required. The wireless communications devices
employ half-duplex packet transmission, so simultaneous two-way communication
is not possible. The only feedback information is provided in acknowledgment pack-
ets, so the goal of the adaptive transmission protocol is to respond to such channel



140 M. B. Pursley, T. C. Royster

variations as those due to changes in shadow loss or propagation distance between
the source and destination.

Once an available frequency band is identified for the session, a modulation-
selection protocol must choose a modulation technique according to the capabili-
ties of the radios, the established etiquette for transmission in the network, and the
quality-of-service (QoS) priorities for the session. Because of the uncertainties in
the propagation characteristics in the frequency band that is selected for the session,
a power-adjustment protocol must adjust the transmitter power during the first few
packets. In this chapter, a packet is an information packet unless specified otherwise
(e.g., an acknowledgment packet). The adjusted power level must be high enough
to provide dependable delivery of packets to the destination but not so high that the
transmissions waste energy and cause unnecessary interference to other radios in the
network. As the session continues, the communications environment may change, so
an adaptive transmission protocol must modify the modulation and coding as needed
to maintain reliable communications without increasing interference to other radios.
At the end of the session, the adaptive transmission protocol can supply information
to the modulation-selection and power-adjustment protocols if there is to be another
session in the same frequency band involving the same source and destination.

The radios in the network are cognitive radios (e.g., [1] or [2]) that extract infor-
mation about their environments. The information they extract permits other radios
to adapt their transmission parameters to changes in propagation loss or interference.
For our protocols, the cognitive radios are not required to employ channel estimation
techniques or even make measurements of received power. Instead, the destination
obtains simple statistics from its demodulator and decoder, chooses the modulation
format and code for the next packet, and communicates these choices to the source
in the acknowledgment packet. We avoid the use of complex channel measurements
so that the protocols can be implemented with modest complexity and employed in
half-duplex packet radios using current and near-term future technology.

We provide a framework for modulation selection that accounts for the three pri-
mary spectrum etiquette parameters (time, bandwidth, and power) for each of the
modulation formats. We define and evaluate a power-adjustment protocol that con-
verges within the first few packets of a session, and we describe a family of adaptive
transmission protocols and provide performance evaluations for static channels with
unknown parameters and dynamic channels with time-varying parameters. Our pro-
tocols are applicable to any modulation format. For illustrative purposes, we give
performance results for a wide range of modulation formats, including quadrature-
amplitude modulation (QAM), phase-shift keying (PSK), binary orthogonal modu-
lation, nonbinary biorthogonal modulation, and complementary code keying (CCK).
Each of the modulation techniques can be employed with direct-sequence (DS) or
frequency-hop (FH) spread spectrum.

Because of the nature of dynamic spectrum access networks, we do not con-
sider adaptive transmission protocols that increase transmitter power as the primary
response to deteriorating channel conditions. The increased interference that results
from ramping up the transmitter power degrades frequency reuse in the network and
it may disrupt ongoing sessions and prevent the initiation of new ones. The preferred
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alternative is to use adaptive coding and modulation to respond to an increase in
propagation loss or interference. The desire to minimize interference to other radios
and the need for energy conservation, particularly for hand-held mobile communica-
tions devices, lead us to design protocols that increase the transmitter power only as
a last resort.

5.2 Modulation Formats

The combinations of error-control coding and data modulation that we selected to
illustrate the performance of the protocols are forms of bit-interleaved coded mod-
ulation [3]. The encoding, modulation, demodulation, and decoding are depicted in
Fig. 5.1. Spread-spectrum techniques [4] may be applied to the coded modulation.
As shown in Fig. 5.1, a signature sequence (e.g., a pseudo-random sequence) can be
applied at the modulator output to give DS spread spectrum. If DS spread spectrum is
not employed, the system of Fig. 5.1 is modified by removing the signature sequence
generators and multipliers or by letting the signature sequence be a sequence of 1 s
so that it has no effect. For FH spread spectrum, the sequence generator and multi-
plier are replaced by a frequency hopper in the transmitter and a frequency dehopper
in the receiver. The modulation techniques can also be used with various forms of
multi-carrier modulation [5] such as orthogonal frequency-division multiplexing [6]
or multi-carrier DS spread spectrum (e.g., see [7] or [8]), and it is easy to modify the
protocols that we provide to accommodate multicarrier transmission.

We evaluate the performance of our adaptive transmission protocols for static
channels with unknown parameters and for dynamic channels with time-varying
parameters whose variations are modeled by finite-state Markov chains. Our per-
formance results are for turbo product codes, S-random [9] or helical [10] inter-
leaving, and soft-decision iterative decoding. The turbo product codes are available
commercially on a single chip [11]. Similar results would be obtained for standard
convolutional codes, except that higher power levels are required. Hypothetical ideal
protocols with perfect channel-state information are used to provide performance
bounds for dynamic channels.

The rows of an N×N Hadamard matrix provide an N -orthogonal signal set. If
M=2N , then the orthogonal signals and their complements give anM -biorthogonal
signal set. QAM has both inphase and quadrature modulation, as does QPSK. If the
inphase and quadrature signals are M -biorthogonal, then we get I–Q biorthogonal
modulation with M2 signals in the set. M2 I–Q biorthogonal modulation requires
half the bandwidth of standard M -biorthogonal modulation for the same informa-
tion rate. The 11 Mb/s CCK signal set for IEEE 802.11b [12] has 256 signals, so
we denote it by 256-CCK. For the same information rate, 256-CCK has the same
bandwidth as 256 I–Q biorthogonal modulation. For the turbo product code of rate
approximately 1/2, frames that represent approximately 2000 bits, and an additive
white Gaussian noise (AWGN) channel, 256 I–Q biorthogonal modulation gives bet-
ter performance than 256-CCK by more than 1.5 dB. For the NASA-standard con-
volutional code of constraint length K = 7 and rate 1/2 with soft-decision Viterbi
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decoding, the performance advantage of 256 I–Q biorthogonal modulation over 256-
CCK is more than 2 dB.

5.3 Code and Modulation Parameters

We denote the set of modulation techniques by {Mj : 1 ≤ j ≤ nm} and the set of
codes by {Ci : 1≤ i≤ nc}, where the codes are indexed in the order of increasing
rates (i.e., r1<r2< · · ·<rnc). It is convenient to index code–modulation combina-
tions with a single subscript, so we let n=ncnm and denote the set of combinations
by {Dk : 1≤k≤n} for an arbitrary one-to-one mapping between the pairs (i, j) and
the indices k. If a definite mapping is desired, we can use k= i+nc(j−1).

A signature sequence can be applied to some modulation formats to provide
spread-spectrum multiple-access capability [4], which permits multiple simultane-
ous sessions to be accommodated in the same frequency band. Frequency hopping
can be applied for the same purpose. For modulation format Mj , let ηj denote the
number of signature sequence chips per modulation chip and let qj denote the num-
ber of frequency slots over which the signal is hopped. If a signature sequence is not
used, then ηj = 1; if there is no frequency hopping, then qj = 1. The modulation
chip is the elemental pulse used by the data modulation waveform. For example, a
set of M -orthogonal modulation symbols of duration T = MTc is obtained if each
modulation symbol is a sequence of M rectangular pulses of duration Tc and the
sequences of pulse amplitudes for different symbols correspond to different rows of
an M ×M Hadamard matrix (e.g., see [4] or [13]). Let mj denote the number of
binary symbols per modulation symbol and let Lj denote the number of modulation
chips per modulation symbol. For example, if Mj is standard QPSK with no spread-
spectrum modulation, thenmj =2 and Lj =ηj =qj =1, but if Mj is standard BPSK
without spread spectrum, thenmj =Lj =ηj =qj =1. If Mj is the modulation format
for the reverse link of the TIA-95 cellular CDMA system [14], then ηj = 4, mj =6,
Lj =64, and qj =1. If Mj is 256-CCK modulation, then mj =Lj =8 and neither a
signature sequence nor frequency hopping can be used if the signals must conform
to the IEEE 802.11b standard [12].

In Table 5.1, several modulation formats are listed along with their null-to-null
bandwidths for transmission of uncoded data at an information rate of 1 b/s with no
spread spectrum (i.e., ηj = qj = 1). Nonbinary orthogonal modulation formats are
not listed in Table 5.1 becauseM -orthogonal modulation has twice the bandwidth of
M -biorthogonal modulation for the same information rate. Binary orthogonal mod-
ulation (e.g., BFSK) is also not included in the table. Its approximate bandwidth is in
the range 3.0–4.0 Hz, depending on the signal design. Although QAM gives the best
spectral efficiency among the modulation formats in Table 5.1, it has no multiple-
access capability so it is not suitable for a shared frequency band. On the other hand,
the orthogonal and biorthogonal modulation formats can tolerate multiple-access or
multipath interference, especially when a signature sequence is applied. Even for the
AWGN channel, orthogonal and biorthogonal signals require less energy per bit than
QAM, BPSK, or QPSK. Orthogonal modulation, biorthogonal modulation, and PSK
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Table 5.1. Bandwidths for several modulation formats (1 b/s, no spread spectrum).

Modulation Bandwidth (HZ)
64-Biorthogonal 10.67
32-Biorthogonal 6.40
16-Biorthogonal 4.00
256 I–Q Biorthogonal 2.00
256-CCK 2.00
BPSK 2.00
QPSK/4-QAM 1.00
16-QAM 0.50
64-QAM 0.33

do not have the amplitude fluctuations of QAM and they do not require amplitude
reference levels for their demodulation.

For our numerical results, the codes in the set {Ci : 1≤ i≤5} are turbo product
codes. We consider fixed-length packets with nb = 4096 binary code symbols per
packet. If a packet is encoded with code Ci, then it represents ki = rinb bits of
information. The code block length is 4096 for each of the three primary codes C2,
C3, and C5, which have 1331, 2028, and 3249 information bits per block, respec-
tively. The corresponding approximate rates are 0.325, 0.495, and 0.793. Code C1

has block length 2048 with 484 information bits per block, which gives an approxi-
mate rate of 0.236. The block length for code C4 is 1024, and it has 676 information
bits per block for an approximate rate of 0.660. There is one code word per packet
for each of the primary codes, two code words per packet forC1 and four code words
for packet for C4. Because the encoders and iterative decoders for all five codes are
available on a single chip [11], the set {Ci : 1≤ i≤ 5} is very attractive for use in
adaptive-rate coding.

For systems that demodulate coherently, the log-likelihood-ratio (LLR) metric
(e.g., see [15–17]) is used for all modulation formats except QAM. A simpler dis-
tance metric [16] with approximately the same performance as the LLR metric is
employed for QAM. For noncoherent demodulation of binary orthogonal signals,
we employ the log-ratio metric, which is the logarithm of the ratio of the outputs of
the two noncoherent detectors (e.g., envelope detectors).

For a channel with no fading, the energy per information bit is denoted by Eb and
the energy per binary code symbol is denoted by Es. If the error-control code has rate
r, then the two energies are related by Es = rEb. For QAM, these energies are not
the same for all points in the constellation, so Eb and Es denote the average energies
for the information bits and binary code symbols, respectively. The receiver’s ther-
mal noise is modeled as white Gaussian noise with one-sided power spectral density
N0. Although each of our channel models includes additive white Gaussian noise
(AWGN), we reserve the phrase AWGN channel for a channel that has no fading and
no other noise or interference. Power and energy ratios are expressed in dB by defin-
ing such parameters as ENR = 10 log10(Eb/N0) and SENR = 10 log10(Es/N0).
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Table 5.2. Required ENR for 10−2 packet error probability for five turbo product codes
(AWGN channel, coherent BPSK).

Rate Block Capacity
Code (ri) length limit(dB) ENR Difference (dB)
C1 0.236 2048 −0.8 1.5 dB 2.3
C2 0.325 4096 −0.5 1.1 dB 1.6
C3 0.495 4096 0.2 1.7 dB 1.5
C4 0.660 1024 1.0 2.9 dB 1.9
C5 0.793 4096 2.0 2.9 dB 0.9

The energy requirements for the five turbo product codes when used with BPSK
and coherent demodulation on an AWGN channel are listed in Table 5.2. The values
of ENR required by five turbo product codes are compared with the capacity lim-
its for the five rates. The three primary codes are within 1.6 dB of their respective
capacity limits. Table 5.2 is also valid for QPSK.

For the Rician fading channel, the energy per binary code symbol for the specular
(unfaded) component is Es, the same as for the AWGN channel. The average energy
per binary symbol in the diffuse (Rayleigh faded) component is denoted by Ed and
the average total energy per binary symbol for the received signal is denoted by Ea.
Numerical results are presented in terms of SPENR = 10 log10(Es/N0), DENR =
10 log10(Ed/N0), and SENR = 10 log10(Ea/N0). The Rician fading parameter γ
is the square-root of the ratio of the average energy in the diffuse component to the
energy in the specular component; that is, γ2 = Ed/Es. The AWGN channel (γ2 =0)
and the Rayleigh fading channel (γ2 =∞) are obtained as special cases.

5.4 Time-Bandwidth Product: A Basis for Modulation Selection

The source and destination are part of a dynamic spectrum access network, so their
first step is to select (or be assigned) an available frequency band that meets the
requirements for the session. Next, they must identify modulation and coding tech-
niques that are usable by both radios and satisfy any constraints imposed by the
frequency band that was chosen. For example, it may be that the destination cannot
demodulate some of the source’s modulation techniques, or it may be that some mod-
ulation techniques that are usable by both devices exceed the available bandwidth at
the chosen frequency. Within the set of modulation and coding methods that are com-
patible with both radios, the source must choose methods that conform to established
etiquette for the spectrum access network and accommodate the QoS priorities for
the session. For example, subject to constraints imposed by spectrum etiquette, it
may be desirable to maximize throughput or minimize delay for the session traffic.

We introduce a spectrum-etiquette measure for use in the selection of the initial
modulation and coding for a new session. The spectrum-etiquette measure is a func-
tion of the three etiquette parameters that have the greatest impact on other users of
the spectrum access network: bandwidth, transmission time, and power. The measure
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of transmission time that we use is the session’s data-transmission time, which is the
total time that the source is actively transmitting data during the session. The influ-
ence of bandwidth and time are clear. If a session uses more bandwidth for a longer
time, then there are fewer opportunities for other sessions. The power level used
by the source is equally important, because it determines the number of unintended
receivers that experience interference during the session.

For simplicity, let each packet contain the same number nb of binary code sym-
bols, but of course the number ki = rinb of information bits that a packet represents
depends on the code Ci that is used for the packet. The spectral occupancy parame-
ter that we use is normalized relative to uncoded BPSK. For code Ci and modulation
format Mj , the spectral occupancy parameter is defined as

λi,j =
ηjqjLjnb

mjki
. (5.1)

Notice that λi,j =1 for uncoded BPSK. The spectral occupancy parameter is related
to the null-to-null bandwidth as follows: For a rectangular chip waveform and an
information rate of Rb b/s, the null-to-null bandwidth for modulation format Mj

and code Ci is Bi,j = 2λi,jRb Hz. If the modulation incorporates spread spec-
trum, then Bi,j is the spread bandwidth for the signal. For a FH system, qj > 1
and we can view Bi,j/qj as the null-to-null bandwidth for each frequency slot. If
the chip waveform is not rectangular, then the factor of 2 is replaced by an appro-
priate constant; for example, the constant is 3 for the half-sinewave pulse used in
minimum-shift keying (MSK). Similarly, measures of bandwidth other than null-to-
null bandwidth are accommodated by adjusting the constant appropriately, but the
choice of constant is relatively unimportant because comparisons between different
combinations of coding and modulation are dependent only on the ratios of their
bandwidths. Thus, if the information rates are the same for two combinations, then
the spectral occupancy parameter λi,j contains all the information that is needed to
determine the best combination. If the null-to-null bandwidth is fixed at B Hz, then
the information rate that can be accommodated with modulation format Mj and code
Ci is Ri,j = B/(2λi,j) b/s.

If a session that employs modulation format Mj and codeCi is required to deliver
Nb bits of information, then it must deliver Ni = Nb/ki� ≈ Nb/ki packets. The
expected number of packet transmissions required to complete the session, including
retransmissions of any failed packets, isNi/Qi,j , whereQi,j = 1−Pi,j is the packet
success probability and Pi,j is the packet error probability. If the frequency band for
the session provides null-to-null bandwidth Bi,j , then the average data-transmission
time per session is closely approximated by

Ti,j ≈ 1
kiQi,j

[
2ηjqjLjnbNb

mjBi,j

]
. (5.2)

The approximation is exact if Nb/ki is an integer. From (5.2) we obtain the very
important conclusion that the average data-transmission time for a given modulation
format Mj and a fixed bandwidth Bi,j = B is minimized by the code that maxi-
mizes the expected throughput Si,j = kiQi,j , which is the approach that we use for
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adaptive coding in Sect. 5.8. The time required by packet headers or preambles (e.g.,
for synchronization) is not included in (5.2), but it is straightforward to incorporate
such overhead times into the analysis [18].

An important spectral etiquette measure is the product of the bandwidth and the
session’s data-transmission time. The time-bandwidth product Ψi,j for a session that
employs code Ci and modulation format Mj is Ψi,j = Ti,jBi,j . From (5.2) we see
that

Ψi,j ≈ 1
kiQi,j

[
2ηjqjLjnbNb

mj

]
(5.3)

and we observe there is no dependence on i among the terms inside the brackets of
(5.3). Thus, for modulation format Mj , the code with the largest expected through-
put provides the smallest time-bandwidth product. If we divide the time-bandwidth
product by the constant 2Nb, then we obtain

τi,j =
Ψi,j

2Nb
≈ 1
kiQi,j

[
ηjqjLjnb

mj

]
(5.4)

which we refer to as the normalized time-bandwidth product. It follows from (5.4)
that τi,j is approximately equal to the average number of transmitted chips per deliv-
ered information bit. If Nb/ki is an integer, then the approximations in (5.3) and
(5.4) are exact.

5.5 Resource Consumption

Assume the source, which is randomly placed in the plane, wishes to initiate a ses-
sion, and the unintended receivers are randomly and independently located according
to a uniform distribution in a region whose boundaries are far beyond the transmis-
sion range of the source. It is desired that the packet success probability for the
session be no less than Q. The source has a set {Dk : 1≤ k ≤ n} of combinations
of codes and modulation formats from which it selects one combination D to use at
the beginning of the session. For the remainder of this section, the code-modulation
combination D is fixed, and the requirement for the packet success probability is
Q; consequently, the subscripts i and j are omitted for the symbols that appear in
(5.1)–(5.4).

The average power density for a transmission is the average power divided by the
bandwidth B. If the source uses code-modulation combination D and average power
density ζ in a frequency band of widthB Hz for an average of T seconds per session,
then the frequency band available for receptions by the N unintended receivers that
are within range of the source’s transmission is reduced byB for a time period whose
average duration is T . The average power density ζ for the transmission is deter-
mined by the power-adjustment protocol. For a perfect power-adjustment protocol, ζ
is the minimum average power density that provides packet success probability Q at
the destination. In Sect. 5.7, it is shown that the power-adjustment protocol can set
the average power density close to this minimum.
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If the source’s transmission prevents one radio from receiving in a band of width
1 Hz for a time period of 1 s, then we say that one unit of resource has been consumed
by the transmission. For code-modulation combination D, the source’s transmission
at power density level ζ prevents N radios from receiving in a band of width B Hz
for an average of T seconds, so the average resource consumption for the session is

RC = T BN . (5.5)

We adopt a simple threshold model for the acceptable level of interference in
each radio. A radio that receives interference with an average power density greater
than the threshold is said to be in the interference region for the source’s transmis-
sion, and the interference area is the area of the interference region. Let N be the
average number of unintended receivers that are in the interference region when the
source employs code-modulation combination D. Without loss of generality, we let
the threshold level be one, so the power-density unit that is used to specify ζ is equal
to the interference threshold for the unintended receivers. If unintended receivers do
not have the same sensitivity to interference, then we use the minimum tolerable
interference among the unintended receivers as the threshold. Because we are inter-
ested only in comparisons of resource consumption for different code-modulation
combinations, multiplicative constants are unimportant. For simplicity, we set each
such constant equal to one as it arises in our development of an expression for the
resource consumption.

If the unintended receivers are uniformly distributed, then the average number
of them that receive interference power density greater than one unit is proportional
to the interference area, and this area is a function of the transmission’s range. For
transmissions using code-modulation combination D, the relationship between the
range ρ and the transmitted power density ζ is obtained from ζ ρ−α = 1, where α
is the propagation loss exponent [19]. The propagation loss exponent is typically in
the interval 2≤α≤6, and normally α<2 only for short-range, indoor, line-of-sight
communications [20]. For an arbitrary exponent, the range is

ρ = ζ1/α. (5.6)

The interference area A is proportional to the square of the range, regardless of the
beamwidth of the source’s antenna. Because the constant of proportionality is unim-
portant, we let

A = ρ2. (5.7)

From (5.6) and (5.7), we see that A = ζ2/α. For most communication environments,
the maximum area for the interference region is A = ζ, which occurs if α=2 (free-
space propagation). Because the location of the source is arbitrary and the terrain
around it is unknown, we use a small value for the propagation loss exponent in the
development of a measure for resource consumption. As a consequence, it is very
unlikely that the source’s transmission produces an interference density greater than
the interference threshold for any radio outside the interference region. The average



5 Protocols for Cognitive Radios in Dynamic Spectrum Access Networks 149

number of unintended receivers that are in the interference region is proportional to
the area, so we conclude that

N = ζ . (5.8)

It follows from (5.5) and (5.8) that the resource consumption is

RC = T Bζ (5.9)

for a session that uses bandwidthB, has average data-transmission time T , and trans-
mits average power density ζ. The transmitted power is Pt = Bζ. If the transmitted
power is held constant after the initial power adjustment, then the average transmitted
energy per session is Esession ≈ PtT , so the resource consumption is approximately
equal to the average transmitted energy for the session. The approximation is accu-
rate because the power-adjustment protocol converges within the first few packets in
a session that typically requires the delivery of a few hundred to several thousand
packets.

The units for power, time, and bandwidth are unimportant, because we are inter-
ested only in comparisons of the resource consumption for different code-modulation
combinations. Consequently, we can use any convenient normalization. The normal-
ized resource consumption is

R =
G

NbN0
RC =

T Bξ
NbN0

=
PrT
NbN0

(5.10)

where G is the channel gain from the source to the destination, ξ=Gζ is the power
density for the received signal at the destination, and Pr =GPt is the received power
at the destination. It follows from (5.10) that R = Eb/N0, where Eb is the aver-
age received energy per information bit. For convenience, we assume that Nb is a
multiple of k, the number of information bits per packet, so the approximations in
(5.2)–(5.4) are exact. It follows from (5.4) that T B=2Nbτ , so (5.10) implies

R =
2τ ξ
N0

= P τ (5.11)

where τ is the normalized time-bandwidth product and P = 2ξ/N0 is proportional
to the received power density at the destination.

Values for the normalized resource consumption R are given in Table 5.3 for
several combinations of turbo product codes and modulation formats. The values for
R are determined from R = Eb/N0, and the values for Eb/N0 are determined from
simulations of the iterative decoding of packets at a success probability of Q=0.99.
The values for the normalized time-bandwidth product τ are computed analytically
from (5.4). From the table, we see that smaller values for the resource consump-
tion are obtained for combinations that compromise between the power density and
the time-bandwidth product. In particular, each combination with a very small time-
bandwidth product has a relatively large resource consumption. In [21], we determine
the Shannon bounds on resource consumption, and we show that these bounds also
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Table 5.3. Resource consumption for a 10−2 packet error probability.

Modulation Code, rate P τ R
64-Biorth C1, 0.236 0.10 22.83 2.3
64-Biorth C2, 0.325 0.12 16.58 2.0
64-Biorth C3, 0.495 0.15 10.88 1.6
64-Biorth C5, 0.793 0.24 6.79 1.6

256 I–Q Biorth C3, 0.495 0.81 2.04 1.7
256-CCK C3, 0.495 1.22 2.04 2.5

QPSK C2, 0.325 0.83 1.55 1.3
QPSK C3, 0.495 1.45 1.02 1.5
QPSK C5, 0.793 3.07 0.64 2.0

64-QAM C2, 0.325 6.71 0.52 3.5
64-QAM C3, 0.495 14.73 0.34 5.0
64-QAM C5, 0.793 45.02 0.21 9.5

predict that the best modulation formats are compromises between low power density
and small time-bandwidth product. The Shannon bounds give accurate guidelines if
good error-control codes are used (i.e., codes that give performance near the capacity
limit for the modulation format that is used). If the bandwidth is held constant, the
duration of the session is proportional to τ and the transmitted power is proportional
to P . Thus, the tradeoff we obtain from Table 5.3 when the code-modulation com-
binations are required to have the same bandwidth is between the amount of power
that is required to achieve Q = 0.99 and the amount of time required to complete
the session. The lowest resource consumption is obtained by compromising between
these two performance measures.

We envision a wide range of applications for the concept of resource consump-
tion. As we have indicated, one application is to provide a quantitative basis for the
selection of the initial modulation and coding for a session. The protocol for selec-
tion of modulation and coding might minimize R, perhaps subject to QoS constraints
(e.g., delay) or limitations on resources (time, bandwidth, power). However, for wire-
less communications, a communications channel can be arbitrarily poor for arbitrar-
ily long periods of time, so it may not be feasible to impose firm constraints. A more
reasonable approach is to employ resource consumption in conjunction with QoS
priorities to perform tradeoffs between session duration, bandwidth requirements,
energy consumption, and interference effects. If the radios in a dynamic spectrum
access network must pay for the use of spectrum, then the resource consumption
could be the basis for determining the fee. For an ad hoc network in which packets
must be relayed between the source and destination, the resource consumption is a
suitable link resistance metric for use in least-resistance routing (e.g., see [22] or
[23]).
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5.6 Statistics for Power Adjustment and Adaptive Transmission

Each packet has a header and a payload. The payload carries the information bits
for the packet, and the header includes a few bits that specify the modulation and
error-control code that are used for the payload. For the packet formats in this chap-
ter, the payload represents many more bits than the header, and the transmission time
for the header is negligible compared to the transmission time for the payload. The
number of binary code symbols represented by the payload is constant, independent
of the code rate, so the number of information bits per packet varies with the code
rate. We assume the radios employ half-duplex packet transmission, which implies
that feedback information from the destination cannot be received during the trans-
mission of a packet. However, the header of each acknowledgment packet includes a
field that carries a few bits of feedback information from the destination. The use of
the header in the acknowledgment packet may be different for the power-adjustment
period than for the longer-term adaptive-transmission period.

Our protocols are not given any channel-state information; instead, power adjust-
ment and adaptive transmission are driven by statistics that are derived in the receiver.
The feedback may consist of the receiver statistics or, equivalently, it may consist of
commands that are derived from the statistics (e.g., a command to increase the code
rate or change the modulation format). Because of the variability in the amount of
time between consecutive packet transmissions and the desire to minimize complex-
ity, we do not require channel estimation techniques or measurements of received
power. Instead, the destination extracts simple statistics from the demodulator and
decoder and sends to the source either a representation of these statistics or the com-
mands that are derived from them. Depending on whether the feedback consists of
the statistics or adaptation commands, the source or the destination will choose the
modulation format and code for the next packet. In our preferred mode of operation,
the destination sends an acknowledgment packet in response to each packet that
it receives from the source. If an acknowledgment is not received, then the source
retransmits the packet, perhaps using a more powerful code or modulation format.
In one alternative mode, which is not evaluated in this chapter, a single acknowledg-
ment packet is sent in response to a specified number of consecutive packets from
the source.

Examples of statistics that are derived in the receiver are shown in Fig. 5.2. The
iteration count for a received word is the number of iterations performed by the
decoder for the word, and the iteration count for a packet is the average of the iter-
ation counts for the words in the packet. The error count for a packet is the number
of errors in the binary symbols that are derived from hard decisions made at the
demodulator output. As illustrated in Fig. 5.2, the error count can be determined
for a correctly decoded packet (e.g., as verified by a CRC code) by encoding the
information symbols at the output of the soft-decision decoder and comparing the
resulting code symbols with the hard-decision demodulated binary symbols. If there
are multiple code words per packet, then the error count for the packet is the sum
of the error counts for the received words. The type of demodulator statistic that is
employed for adaptation depends on the modulation format, and it may also depend
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on the soft-decision metric that is used for decoding. For each modulation symbol
in a packet that uses M -biorthogonal modulation, the magnitudes of the M/2 cor-
relator outputs are examined and the ratio of the largest output to the second largest
is computed. This measure of the quality of a demodulated symbol was originally
devised by Viterbi [24] for anti-jam communications. Applications to soft-decision
decoding are given in [17]. The average r̄ of the ratios for the modulation symbols
in the packet is determined, and the demodulator statistic for the packet is 1− r̄.
For QPSK and QAM, the Euclidean distance between each received symbol and its
closest point in the signal constellation is determined, and the demodulator statistic
for each packet is the average Euclidean distance for the modulation symbols in the
packet.

5.7 Power Adjustment

When a new session between the source and destination is to be conducted in a
different frequency band than any of their recent sessions, the propagation loss is very
difficult to predict. Several empirical formulas for outdoor propagation are reviewed
in [6] and [20], and each formula includes modifications and correction factors that
depend on terrain, antenna height, etc. In the Hata model [25] for the frequency band
100–1500 MHz, the correction factors differ by several decibels, even for a suburban
area as compared with an open area. For indoor communications, a common model
includes a Gaussian random variable that has a standard deviation as large as 10 dB
for certain types of buildings (e.g., see [20]). Shadow loss in urban areas can vary by
20 dB or more [09].

Because the source typically does not know the propagation loss in the assigned
frequency band, the initial power may be too low or too high. It is especially detri-
mental to the network if the initial power level greatly exceeds the power needed
to obtain a satisfactory packet error rate. Equipment designers may even include a
positive bias in the initial power setting to increase the chances that the session’s
first packets are received and acknowledged, because the acknowledgments provide
important feedback information for subsequent transmissions. It has minimal impact
on other sessions to transmit excessive power for ten to twenty packets if the sessions
involve thousands of packets, but it is very disruptive to other sessions to continue
emitting excess power that is perhaps 10 dB or more greater than what is required.
Eliminating the excess power also reduces energy consumption at the source. Of
course, the problem is that the source does not know how much of the power is
excess power, so a protocol is required to obtain the necessary statistics in the des-
tination receiver and use them efficiently to adjust the power to a satisfactory level
within the first few packets of a new session.

Our power-adjustment protocols use one or more adaptation statistics that are
derived in the destination’s demodulator and decoder, as shown in Fig. 5.2. If only
a single statistic is used for power adjustment, then a demodulator statistic gives
the best performance. For each modulation format, a simple interval test is used to
select the power level for the next packet, and a stopping condition is applied to
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Table 5.4. Accuracies for the power-adjustment protocol.

Modulation Statistic Δ1 (dB) Δ2 (dB)

64-Biorth. Ratio 0.3 1.1
QPSK Distance 0.1 1.2
16-QAM Distance 0.3 1.8

the sequence of demodulator statistics from consecutive packets to determine when
to terminate the power adjustment. The feedback, which consists of the statistics
or a decision based on the statistics, is included in the acknowledgment packet. If an
acknowledgment is not received for a packet that is sent during the power-adjustment
phase of a session, then the source increases the power by a fixed amount for the next
packet. For our numerical results, a power increase of 5 dB was employed in response
to unacknowledged packet transmissions during the power-adjustment period.

For each code-modulation combination D there is a received power level Pmin

(in dB) that is the minimum possible received power that gives a packet success
probability of Q or larger when D is used for the packet. We set the target power
level at Ptar = Pmin +0.5 to give a margin of 0.5 dB. We conducted simulation
tests to verify the convergence and accuracy of the power-adjustment protocol when
it is employed with the appropriate demodulator statistics. Each test consists of a
sequence of 10,000 sessions. The random initial power for each session has a uniform
distribution on the interval from 15 dB below the target to 15 dB above the target.
The initial power levels for different sessions are independent. Each of the three
modulation formats in Table 5.4 was employed with the turbo product code of rate
0.793. For each session in the simulation of 10,000 sessions, the received power level
when the power-adjustment protocol was stopped was in the range from Pmin+Δ1

to Pmin+Δ2, and the number of packets transmitted when the demodulator statistic
triggered the stopping condition was never more than eight. In each of the 10,000
sessions for each modulation format, the received power level at the time the power
adjustment was stopped was above Pmin.

5.8 Adaptation of the Code Rate

After the power adjustment is completed (usually within the first seven or eight pack-
ets of a session), the system applies adaptive protocols to change the coding and
modulation as required by any changes that occur in the communications environ-
ment during the session, such as an increase in the propagation loss, perhaps due
to shadowing. The system could respond to such an increase by transmitting more
power, but that would raise the interference level in the network. It is much better to
increase the transmitter power only if the propagation loss increases so much that it
cannot be offset by changes in modulation and coding. We begin by considering the
adaptation of the error-control code. Some results on the adaptation of the modula-
tion are given in Sect. 5.11.
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In the adaptive-coding protocol, the feedback from a packet reception is used to
adapt the rate of the error-control code for the next packet that the source will send.
If the source transmits a packet but an acknowledgment is not received, then the
source retransmits the packet, perhaps using a code of lower rate. According to our
results in Sect. 5.4, we should choose the code that maximizes the expected through-
put. The expected throughput is the number of information bits per packet times the
probability of success for the packet (i.e., kiQi,j in the notation of Sect. 5.4). The
corresponding performance measure for a session is its average throughput, which is
defined as the total number of information bits in packets that are decoded correctly
at the destination divided by the total number of packet transmissions that are made
by the source (including retransmissions). An information bit is not counted in the
numerator of the throughput expression unless the entire packet is decoded correctly.
All packet transmissions, whether they are decoded correctly or not, are counted in
the denominator, so the protocol is penalized for failed packets.

The protocol strives to achieve the best balance between a high-rate code, which
represents a larger number of information bits per packet but may have a lower suc-
cess probability, and a low-rate code, which may have a higher success probability
but carries fewer information bits in each packet. The best choice depends on the
channel state, which is unknown to the protocol. The protocol selects the code for
the next packet transmission according to one or more adaptation statistics from the
previous packet transmission. In addition to the turbo product code, a high-rate CRC
code is employed to verify the decoder output is correct before the error count or
iteration count is determined. If the previous transmission was not decoded correctly,
then the code rate is reduced by one step if possible (i.e., if the code of lowest rate
was not used); otherwise, the code rate is unchanged for the next transmission. If the
packet is decoded correctly, then the choice of code rate for the next packet is based
on comparisons of the adaptation statistics with a fixed set of adaptation parameters.

5.9 Adaptive-Coding Protocol Performance for Static Channels

The first performance results for our adaptive-coding protocol are given in Fig. 5.3
for coherent demodulation of 64-QAM on an AWGN channel with fixed but unknown
propagation loss, so the value of SENR is unknown to the protocol. The throughput
curves for the adaptive-coding protocols are shown along with the five throughput
curves for fixed-rate coding with the same five turbo product codes that are used
in the adaptive-coding system. The statistic for one adaptive-coding protocol is the
error count and the statistic for the other is the iteration count. In each case, a sim-
ple interval test is applied to the statistic to decide which code to use for the next
packet. Each curve that is labeled by a code rate is for fixed-rate coding with the
corresponding turbo product code. The upper envelope of these curves represents the
performance of an ideal protocol that is told the exact value of SENR and uses the
code that maximizes the throughput for that value. The performance of our adap-
tive protocol, which is given only the error count or iteration count for the previous
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Fig. 5.3. 64-QAM with coherent demodulation for an AWGN channel.

packet, is almost as good as the performance of an ideal protocol that is given perfect
channel-state information (i.e., the exact value of SENR).

The performance results shown in Fig. 5.4 are for a Rician fading channel whose
parameters γ2 and SENR are fixed but unknown to both the transmitter and receiver.
These results also represent the steady-state performance of our protocol following a
change in the channel parameters. Our protocol is given no information about the val-
ues of γ2 and SENR; instead, it uses only the error count from the most recent packet
transmission to select the code rate for the next packet transmission. Also shown in
Fig. 5.4 are the individual throughput curves for each of the five turbo product codes.
The upper envelope of the five dashed curves in Fig. 5.4 represents the performance
of an ideal protocol that is told the exact values for γ2 and SENR and uses the code
that maximizes the throughput for those values. The performance of our adaptive pro-
tocol, which is given only the error count for the previous packet, is almost as good
as the performance of the ideal protocol that is given perfect channel-state informa-
tion. The comparison between the upper envelope and the throughput curve for our
adaptive-coding protocol implies that there is very little to be gained from making
channel measurements or using other receiver statistics in addition to the error count.
For the same modulation and channel model, we also evaluated the adaptive-coding
protocol with the iteration count, and we found that its throughput curve is approx-
imately the same as the throughput curve in Fig. 5.4. Additional results and more
discussion of the system and channel models are given in [26].
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Fig. 5.4. Throughput for binary orthogonal modulation, noncoherent demodulation, frequency
hopping, and a static Rician-fading channel with γ2 = 0.3.

5.10 Adaptive Coding Results for Dynamic Channels

Each time-varying parameter for a dynamic channel is modeled by the Markov chain
illustrated in Fig. 5.5. The state is fixed for the duration of a packet, but it can
change from one packet to the next. If the time-varying parameter is the propagation
loss, then the K states correspond to excess propagation losses L1, L2, . . . , LK , in
increasing order. The excess propagation loss is the amount in dB by which the actual
propagation loss exceeds some reference level. The reference level corresponds to
state 1, so the excess path loss for state 1 is always L1 = 0 dB. The results presented
here are for a four-state Markov model with p=0.1 and Lk = (k−1)Δ for 2≤k≤4
and Δ = 1.5 dB. We have also investigated six-state models with Δ = 2 dB.

In order to obtain benchmarks against which to compare our protocols for
dynamic channels, we evaluate two hypothetical protocols in which perfect infor-
mation is supplied to the protocol about the past (previous state) or the future (next
state). Perfect previous-state information consists of the exact value of the path loss
on the channel for the previous packet transmission, and perfect next-state informa-
tion consists of the exact value of the path loss on the channel for the next packet

. . . K1

p

p1–p 1–p

p p

p p

1–2p

2

Fig. 5.5. Markov model for changes in channel parameters.
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transmission (i.e., the transmission for which the code is being selected by the pro-
tocol). In either case, the hypothetical protocol selects the code that maximizes the
conditional expected throughput given the perfect channel-state information.

From simulation results for the individual fixed-rate codes, such as those shown
as dashed lines in Fig. 5.4, we can determine analytically the average throughput for
each of the hypothetical protocols. The throughput that is achieved by code Ci when
the channel is in state k is denoted by s(i|k). The transition probability p(k|j) is
the probability that the next state is k given that the previous state is j. First, con-
sider the protocol with perfect previous-state information. The conditional expected
throughput for code Ci is

s̄(i|j) =
K∑

k=1

s(i|k) p(k|j). (5.12)

When the previous state is j, code Cij
is selected for the next transmission if

s̄(ij |j) = max{s̄(i|j) : 1≤ i≤nc}. (5.13)

If πj denotes the steady-state probability for state j in the Markov chain, then the
average throughput for the protocol with perfect previous-state information is

S̄1 =
K∑

j=1

πj s̄(ij |j). (5.14)

Now, consider the protocol with perfect next-state information. The conditional
expected throughput for code Ci given that the next state is k is s(i|k). When the
next state is k, code Cik

is selected for the next transmission if

s(ik|k) = max{s(i|k) : 1≤ i≤nc} (5.15)

and the resulting average throughput for the protocol with perfect next-state infor-
mation is

S̄2 =
K∑

k=1

πk s(ik|k). (5.16)

The analytical performance results for the protocol with perfect next-state infor-
mation represents an upper bound on the throughput for any protocol that uses the
five codes listed in Table 5.2. The five turbo product codes are also employed with the
protocol that has perfect previous-state information to give a more realistic bench-
mark for our protocols. It is unrealistic to assume that the protocol will have perfect
knowledge of the future channel state, so the best we can hope for is to use statistics
that provide adequate information about the previous channel state.

The performance results for Fig. 5.6 are for adaptive coding for 16-QAM on a
channel with time-varying propagation loss that is modeled as a four-state Markov
chain with Δ = 1.5 dB and transition probability p = 0.1. The nominal value
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Fig. 5.6. Throughput for 16-QAM with adaptive coding on a channel with time-varying prop-
agation loss.

of the binary code symbol energy to noise density ratio for the AWGN channel is
denoted by SENR, and the actual value when the channel is in state k is SENRk =
SENR − Lk. Our protocols do not know the value of SENR or the state of the
channel. In Fig. 5.6, the throughput graphs for the error count and the iteration count
are compared with the throughput graphs for the two ideal protocols that have perfect
channel-state information and use the same five turbo product codes that our protocol
uses. We see from Fig. 5.6 the protocol that uses only the error count and the protocol
that uses only the iteration count have nearly the same average throughput as the
protocol that is given perfect previous-state information, including the exact value
of SENR. Our results show that more complex methods of estimating the previous
channel state are not needed and will not give better average throughput than we
achieve with the iteration count or the error count. We have found that the error count
gives good performance with other coding systems as well (e.g., convolutional codes
with Viterbi decoding or Reed–Solomon codes with bounded-distance decoding).

We next consider 64-biorthogonal modulation that employs a signature sequence
with one sequence chip per modulation chip (i.e., ηj = 1). The performance of the
adaptive-coding protocol is evaluated for a time-varying multipath channel in which
there are two specular components with a separation (i.e., differential delay) of 32
chips, which corresponds to the 64-biorthogonal symbol duration. The four states in
the Markov chain represent four relative strengths for the two multipath components.
We refer to the first-arriving multipath component as the primary component and the
second-arriving component as the secondary component. The receiver is based on
standard matched filters or correlators; it is not a rake receiver. As a result, the sec-
ondary component acts as an interference signal. The multipath power ratio is the
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Fig. 5.7. Throughput for 64-biorthogonal modulation with adaptive coding on a dynamic two-
component specular multipath channel.

ratio of the power in the primary component to the power in the secondary compo-
nent. The four states correspond to multipath power ratios of −2 dB, 0 dB, 3 dB, and
∞; the latter is a channel with no secondary component. The transition probability
is p = 0.1.

The throughput results for the adaptive-coding protocol with three different adap-
tation statistics are shown in Fig. 5.7 as a function of SENR, the ratio (in dB) of the
binary symbol energy for the primary component to the noise density. The three
adaptation statistics are the error count, the iteration count, and the ratio statistic.
Included for comparison is the throughput graph for the ideal protocol with perfect
next-state information. The throughput graphs for our three protocols are nearly the
same as the throughput graph for the ideal protocol, which again indicates that the
adaptation statistics provide all the necessary information for adaptive coding. Addi-
tional statistics or channel measurements would be of no value. In [27], comparisons
are made with the upper bounds on throughput that correspond to the ideal protocol
with perfect next-state information and five capacity-achieving codes of the same
rates as the turbo product codes.

5.11 Adaptive Modulation for Dynamic Channels

For adaptive M -biorthogonal modulation, the value of M is adapted as the channel
changes, but we hold the chip rate constant. By keeping the chip rate constant, we
maintain a constant bandwidth as the modulation is adapted. Because the number
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Fig. 5.8. Adaptive M -biorthogonal modulation for a time-varying propagation loss.

of binary code symbols per packet is fixed (nb = 4096), the number of chips per
packet changes as M changes. For fair comparisons among the different values of
M , the throughput measure that is used for adaptive M -biorthogonal modulation is
normalized by dividing by the number of chips per packet. Thus, the normalized
throughput shown in Fig. 5.8 is the throughput per transmitted chip. The parameter
CENR is the ratio of the energy per chip to the one-sided noise density.

The results in Fig. 5.8 are for a channel with a time-varying propagation loss that
is modeled by a four-state Markov chain with Δ = 1.5 dB and transition proba-
bility p = 0.1. The iteration count, error count, and ratio statistic give nearly equal
throughput for each value of CENR, and their throughput graphs are very close
to the throughput graphs for ideal protocols with perfect channel-state information.
Although we initially considered all powers of 2 in the range 4≤M ≤64, we found
that only three modulation formats are needed for good results: M =4, M =8, and
M = 64. Similarly, we found that only four of the five codes are needed for good
results: C1 (rate 0.236), C2 (rate 0.325), C3 (rate 0.495), and C5 (rate 0.793).

Conclusion

We have provided a framework for modulation selection and we have presented and
evaluated protocols for initial power adjustment, adaptive coding, and adaptive mod-
ulation in cognitive radios. Protocols for the adaptation of coding and modulation are
important for dynamic spectrum access networks, because they permit the radios to
respond to changes in propagation and interference without increasing power, which
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would increase interference to other users of the network. The new protocols require
no channel measurements; instead, they rely only on a few bits of information that
can be supplied in acknowledgment packets. The adaptation statistics used by the
protocols are very simple and are obtained easily from the demodulator and decoder.
Performance results for static channels with unknown parameters and for dynamic
channels with time-varying parameters show that our protocols perform almost as
well as ideal protocols with perfect channel-state information.
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6.1 Introduction

With the advent of new wireless applications, as well as growth of existing wire-
less services, demand for additional bandwidth is rapidly increasing. As a result, the
possibility of spectrum scarcity becomes more of a reality. Existing “command-and-
control” spectrum allocations defined by government regulatory agencies prohibit
unlicensed access to licensed spectrum, constraining them instead to several heavily
populated, interference-prone frequency bands. This spectrum scarcity is apparent
since it has been shown that the spectrum is not utilized efficiently. For instance, mea-
surement studies have shown that many licensed bands are relatively unused across
time and frequency [1]. To make better use of radio spectrum resources, govern-
ment regulatory agencies such as the Federal Communications Commission (FCC)
are currently working on the concept of unlicensed users “borrowing” spectrum
from incumbent license holders. This concept is called dynamic spectrum access
(DSA) [2, 3]. Wireless communication technology needs to be sufficiently agile in
order to perform DSA such that spectrum utilization is improved while not interfer-
ing with incumbent user transmissions.

The development of software-defined radio (SDR) technology has made modern
wireless transceivers more versatile, powerful, and portable, by performing baseband
processing, such as modulation/demodulation and equalization, entirely in software
and digital logic. With the ease and speed of programming baseband operations, SDR
technology is a prime candidate for DSA networks. In addition to the agility of the
SDR technology, the radio needs to be spectrally aware as well as autonomous in
order to dynamically utilize spectrum. A radio that can adapt its transmitter param-
eters based on interaction with the environment1 in which it operates is known as
cognitive radios [4]. With recent developments in cognitive radio technology, it is
now possible for these systems to simultaneously respect the rights of incumbent
license holders while providing additional flexibility and access to spectrum.

1 These changing environments can be at the physical, network, and/or application layers of
the system.
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Research and development of cognitive radios involves experts from various dis-
ciplines, including but not limited to the following categories:

• Spectrum sharing policy: Regulatory agencies assign radio spectrum to license
holders, which maintain exclusive rights to a finite bandwidth. However, since
radio transmissions propagate throughout space, it is necessary to define enforce-
able rules and regulations that guarantees the rights of the incumbent license
holders [5]. Simultaneously, it is possible to grant access to the unlicensed users
to enable the secondary spectrum utilization.

• Artificial intelligence (AI): The radio should autonomously and dynamically
determine the appropriate radio parameters without intervention from the user
in order to enable the efficient secondary spectrum utilization [6].

• Cognitive network protocols: The coordination of cognitive radios require the
sharing of information in order to agree upon communication parameters dynam-
ically. Dissemination of control traffic among the users is quite important for
effective and efficient spectrum sharing [7].

• Reconfigurable hardware: Adaptation to dynamically changing operating param-
eters require the cognitive radio hardware to be rapidly reconfigurable. There-
fore, software defined radios and FPGA-based techniques are prime candidates
to build a cognitive radio [8, 9].

• Agile physical layer transmission techniques: As with any wireless communi-
cations system, including cognitive radios, the choice of a physical layer trans-
mission technique is an important design decision [10]. The primary goal of a
transmission technique employed by the cognitive radio unit would be to achieve
sufficient agility enabling unlicensed users to transmit in a licensed band while
not interfering with the incumbent users.

Therefore, cognitive radio research is highly interdisciplinary and various issues need
to be addressed to meet the regulatory requirements before becoming a reality.

In this chapter, we will focus on the design and implementation of agile physical
layer transmission techniques for cognitive radios. To support throughput-intensive
applications, multi-carrier modulation (MCM) techniques can be employed due
to its ability for handling distortions introduced by frequency selective channels
[11–13]. Moreover, cognitive radio transceivers based on MCM can readily enable
DSA networks by employing spectrum pooling, where secondary users may tem-
porarily rent spectral resources during the idle periods of licensed users [14].

One form of MCM that possesses an efficient implementation is orthogonal
frequency division multiplexing (OFDM). One variant of OFDM that is capable
of deactivating subcarriers across its transmission bandwidth which could poten-
tially interfere with transmissions from other users, is non-contiguous OFDM (NC-
OFDM) [15–20]. NC-OFDM is designed to support a high aggregate data rate with
the remaining active subcarriers while simultaneously transmitting in the proximity
of other users in the same region of frequency spectrum.

Despite the advantages of NC-OFDM, there exist several issues with this tech-
nique. First, all OFDM-based implementations employ the fast Fourier transform
(FFT) at the core of its design. The FFT blocks are used for modulating and demod-



6 OFDM-Based Cognitive Radios for Dynamic Spectrum Access Networks 167

ulating the individual subcarriers to different center frequencies. When a significant
number of subcarriers are deactivated, the computation time of FFT-based modu-
lation can be optimized by reducing the total number of multiply/add operations.
Second, OFDM-based systems suffer from a high peak-to-average power ratio phe-
nomenon, requiring the components, such as power amplifier (PA), digital-to-analog
(D/A) converters, and analog-to-digital (A/D) converters, to have large dynamic
ranges in order to avoid any clipping or non-linear distortions of the signal [21].
Third, OFDM subcarrier parameters can be individually altered in order to enhance
overall system performance. However, the process by which to optimize these param-
eters must be both fast and efficient. In this chapter, solutions to these issues that have
been proposed in the literature will be investigated.

The rest of this chapter is organized as follows: In Sect. 6.2, an overview of DSA
techniques is presented. Section 6.3 provides a brief introduction to the NC-OFDM
framework, as well as FFT pruning technique used to improve the efficiency of the
FFT computation. Moreover, the error performance of the NC-OFDM technique is
analyzed. Section 6.4 describes the peak-to-average power ratio problem in an NC-
OFDM system. Non-uniform bit allocation employed to improve the performance of
the NC-OFDM technique is presented in Sect. 6.5, and several concluding remarks
are presented.

6.2 Dynamic Spectrum Access Techniques

Spectrum sharing can mitigate the apparent spectrum scarcity problem and improve
spectrum efficiency. Several spectrum sharing strategies have been proposed in liter-
ature, which can be broadly categorized based on [22]:

1. Network architecture
(i) Centralized approach

(ii) Distributed approach
2. Spectrum allocation behavior

(i) Cooperative approach
(ii) Non-cooperative approach

3. Spectrum access technique
(i) Underlay approach

(ii) Overlay approach

The following sections describe these categories in greater detail.

6.2.1 Centralized and Distributed Spectrum Sharing Approaches

In a centralized spectrum sharing approach, a centralized entity coordinates with
arbitrary wireless technologies and manages access to arbitrary radio spectra by issu-
ing clients temporary leases for parts of the radio spectrum [23]. In this model, a cen-
tralized server collects information from a collaborating group of secondary users,
which learn about the primary user transmission characteristics, along with primary
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Fig. 6.1. a Centralized and b distributed spectrum sharing.

user cooperation, if possible,2 and manages a database for the spectrum access and
availability information. The users communicate with the centralized server using a
pre-assigned dedicated radio control channel (RCC). A basic framework for a cen-
tralized spectrum sharing model is shown in Fig. 6.1(a). In the figure, the dashed
RCC link between the primary user and the centralized server implies that the pri-
mary user may or may not choose to cooperate, whereas the solid RCC link between
the secondary user and the centralized server implies that they must cooperate with
each other. This form of spectrum management offers simpler and coordinated spec-
trum access, which enables efficient spectrum sharing and utilization in wireless
environments.

2 Since spectrum sharing techniques generate additional interference to the primary user, and
the process of cooperation implies the addition of overhead for the incumbent license hold-
ers, primary user cooperation would not be easily anticipated without providing significant
benefit to the incumbent users.
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Even though a centralized server can optimize across network-wide information,
there are two serious limitations [24]:

• The spectrum server and all secondary users need to communicate using a pre-
assigned dedicated RCC. As the network grows in density, a pre-defined control
channel can limit the bandwidth available for data communication.

• As the number of users grows, the server processing complexity will scale at least
polynomially [24]. Therefore, any central spectrum server can quickly become a
computational bottleneck in the system.

Several centralized spectrum sharing approaches have been proposed in the lit-
erature, including the dynamic intelligent management of spectrum for ubiquitous
mobile access networks (DIMSUMnet) [25], which can be employed as a regional
spectrum broker, and the dynamic spectrum access protocol (DSAP) [26], which can
be used as a spectrum broker for heavily-used, densely-populated localized areas
where lease updates can occur frequently.

In a distributed spectrum sharing approach, each node is responsible for its own
spectrum allocation and access based on primary user transmissions in its vicin-
ity and policies [27, 28]. In this model, since secondary users can sense and share
the local spectrum access information among themselves, primary user contribu-
tions need not be enforced. Therefore, this model poses an advantage for the pri-
mary license holders, since there would be no overhead involved with the incum-
bent users. A basic framework for a distributed spectrum sharing model is shown in
Fig. 6.1(b). In the figure, the dashed RCC link between the primary user and other
secondary users implies that the primary user may or may not choose to cooper-
ate, whereas the solid RCC link among the secondary users implies that they must
cooperate with each other. Since individual nodes are responsible for maintaining
the correct information about current spectrum usage, distributed spectrum sharing
results in increased overhead communications among the secondary users. However,
cooperative distributed algorithm can produce effects similar to global optimization
through cooperative local actions distributed throughout the system [24]. One of
the serious drawbacks of the distributed spectrum sharing approach can be a hid-
den node problem, where the secondary users fail to detect incumbent users3 and
result inadvertently interfering with the incumbent user transmissions [29]. More-
over, large amounts of measurement information gathered by the secondary users
terminals during the detection cycle need to be transmitted to the other users, which
can be a significant overhead in the system.

6.2.2 Cooperative and Non-cooperative Spectrum Sharing Approaches

Spectrum sharing techniques can be classified into cooperative and non-cooperative
spectrum sharing based on the spectrum allocation behavior. In cooperative spec-
trum sharing, the primary and secondary users can cooperate and share spectrum

3 The secondary user may fail to detect incumbent user because of its low power, inactivity,
distance, or the poor channel conditions.
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occupancy information with each other to improve the spectral usage. The model
can either use centralized server sharing [26], where a centralized entity maintains
the database of the spectrum usage and coordinates the spectrum access informa-
tion among the users, or distributed sharing [27, 28], where each user maintains
the information about the local spectrum usage and share its knowledge with other
nearby users to improve spectrum utilization efficiency. Even though the cooperative
approach seems to be the most straightforward method, the primary user must be
involved for efficient sharing of spectrum access information among the secondary
users, which is often an unwanted burden on the part of the primary users. On the
other hand, secondary users may cooperate with each other without any involvement
of primary users and share information to detect the presence of a primary user to
achieve significant performance enhancements on spectrum utilization and interfer-
ence avoidance [30].

Cooperative approaches may lead to results that closely approximate the optimal
spectrum allocation among the users. However, a cooperative approach model may
heavily depend on the communication resources of the DSA networks. As a result,
this communication overhead might limit the available spectrum for data communi-
cations. Since the ultimate goal of the cooperative approach is to achieve acceptable
overall spectrum utilization, the users must be somewhat selfless, occasionally sacri-
ficing local performance to improve overall system utility [31].

In a non-cooperative spectrum sharing approach, information exchange among
the users is kept to a minimum, such that the secondary users independently inter-
pret the spectrum usage and availability, while not interacting with the primary users
[32, 33]. The non-cooperative approaches result in minimal communication require-
ments among the nodes at the expense of poor spectrum utilization efficiency. The
non-cooperative approaches may act in a selfish, greedy, or rational way [34].

6.2.3 Underlay and Overlay Spectrum Sharing Approaches

Spectrum sharing techniques can be classified into underlay and overlay spectrum
sharing based on the spectrum access techniques. Underlay systems use spread spec-
trum techniques, such as ultrawide band (UWB) [35, 36] and code division multi-
ple access (CDMA) [37], to transmit the signal below the noise floor of the spec-
trum [38]. An example of the time and frequency domain information of an under-
lay spectrum sharing system is shown in Fig. 6.2(a). In the figure, we see that the
underlay systems use wide band low power signals for transmissions. However, this
technique can increase the overall noise temperature and thereby worsening error
robustness of the primary users as compared to the case without underlay systems.
To avoid any interference to the primary users, underlay system can use interference
avoidance techniques, such as notching [39] and waveform adaptation [40].

To improve the spectral efficiency, overlay systems utilize the unused portions of
the spectrum. The spectrum holes4 filled in by secondary transmissions in an overlay
system is shown in Fig. 6.2(b). As shown in the figure, the overlay systems use the

4 A spectrum hole is an unused portion of the licensed spectrum [41].
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Fig. 6.2. a Overlay and b underlay spectrum sharing.

unoccupied portions of the spectrum with a reasonable amount of guard intervals for
secondary transmissions keeping the interference to the primary users to a minimum.
Since the licensed system has privileged access to the spectrum, it must not be dis-
turbed by any secondary transmissions. This results in two main design goals for an
overlay system [42]:

• Minimum interference to licensed transmissions
• Maximum exploitation of the gaps in the time-frequency domain.

In order to achieve these goals, the overlay system needs information about the spec-
trum allocation of the licensed systems by regularly performing spectrum measure-
ments. When interference among the users is high, it has been shown that frequency
division multiplexing is an optimal technique [34].

To enhance spectral efficiency, an approach called spectrum pooling is proposed,
which enables secondary access to licensed frequency bands by filling in the spec-
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trum holes with secondary user transmissions without requiring any changes to the
primary licensed systems. Spectral pooling represents the idea of merging spectral
ranges from different spectrum owners (military, trunked radio, etc.) into a com-
mon pool, where users may temporarily rent spectral resources during idle periods
of licensed users, thereby enabling the secondary utilization of already licensed fre-
quency bands [14]. In spectrum pooling system, a centralized entity can collect mea-
surement information gathered by the secondary user terminals during the detec-
tion cycle, and maintain the spectrum usage information. The centralized entity is
responsible for making decisions on granting portions of the spectrum to the sec-
ondary users. With the use of a centralized entity, the information management of a
spectrum access network would be relatively simple. However, this same entity can
also easily be a bottleneck for the network, as already explained in Sect. 6.2.1. Since
the overlay systems can readily exploit the unused portions of the spectrum without
interfering with the incumbent users and without increasing the noise temperature of
the system, we will consider overlay systems from this point forward.

One of the most challenging problems of spectrum sharing systems is their suc-
cessful co-existence in the same frequency band, i.e. an overlay system should not
degrade the performance of systems already 1working in the target frequency band.
For instance, out-of-band radiation has to be reduced in order to enable co-existence.
The transmitter spectral mask is a measure of the transmitter spectral profile in order
to verify that the device is not transmitting excessive amounts of energy outside its
assigned channel bandwidth. Several approaches have been proposed in literature for
suppressing the sidelobe levels, such as the deactivation of subcarriers lying at the
borders of an OFDM spectrum [43], windowing [44], subcarrier weighting [45], and
insertion of cancellation carriers [46].

6.3 Non-Contiguous Transmission

As mentioned previously, MCM is highly suited for high-speed data transmissions,
due to its ability to efficiently handle the distortion introduced by frequency selec-
tive channels [11]. Moreover, MCM techniques, such as OFDM, can provide the
necessary agile spectrum usage, when portions of the target licensed spectrum are
occupied by both primary and secondary users. This is achieved by deactivating (i.e.
nulling) subcarriers that can potentially interfere with other users. This form of an
OFDM, where the implementation achieves the high data rates via collective usage
of a large number of non-contiguous subcarriers, is called NC-OFDM. A frequency
spectra for 16-subcarrier NC-OFDM with nine active and seven deactivated subcarri-
ers is shown in Fig. 6.3, where the subcarriers are orthogonally overlapped. The sub-
carriers corresponding to the spectrum occupied by incumbent user transmissions,
which are determined from the spectrum sensing measurements, are deactivated.5

In this section, we present a brief overview of the NC-OFDM framework, efficient

5 The deactivated subcarriers implies that no information is transmitted over these
subcarriers.
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Fig. 6.3. Frequency spectra of NC-OFDM subcarriers.

implementations of NC-OFDM transceivers, and conduct a performance analysis of
the system.

6.3.1 Non-contiguous OFDM Framework

A general schematic of an NC-OFDM transceiver is shown in Fig. 6.4. Without loss
of generality, a high-speed data stream, x(n), is modulated using eitherM -ary phase
shift keying (PSK) or M -ary quadrature amplitude modulation (QAM). The modu-
lated data stream is then split into N slower data streams using a serial-to-parallel
(S/P) converter. Note that the subcarriers in the NC-OFDM transceiver do not need to
be all active as in conventional OFDM transmission. Moreover, the active subcarri-
ers are located in the unoccupied spectrum bands, which are determined by dynamic
spectrum sensing and channel estimation techniques [15, 34, 47]. The inverse fast
Fourier transform (IFFT) is then applied to these streams, modulating them to dif-
ferent subcarrier center frequencies. The output of the IFFT block for the mth NC-
OFDM symbol is given by

Ym,n =
1√
N

N−1∑

k=0

Xm,k exp(j2πkn/N) n = 0, 1, . . . , N − 1 (6.1)

where Xm,k is the symbol of the kth subcarrier,6 and j =
√
−1. The symbol over

the kth deactivated subcarrier is Xm,k = 0.
Prior to transmission, a guard interval of length greater than the channel delay

spread is added to each NC-OFDM symbol, known as a cyclic prefix (CP). This block
is used to mitigate the effects of intersymbol interference (ISI). Following parallel-to-
serial (P/S) conversion, the baseband NC-OFDM signal, s(n), is then passed through
the transmitter radio frequency (RF) chain, which amplifies the signal and upconverts
it to the desired center frequency.

The receiver performs the reverse operation of the transmitter, mixing the RF
signal to baseband for processing, yielding the signal r(n). Then, the signal is con-
verted into parallel streams using S/P converter, the CP is removed, and the fast
Fourier transform (FFT) is applied to transform the time domain data into the fre-
quency domain. After compensating for distortion introduced by the channel using

6 For example, Xm,k ∈ {1,−1} for BPSK signaling and Xm,k ∈ {1,−1, j,−j} for QPSK
signaling.
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Fig. 6.4. Schematic of an NC-OFDM transceiver. a NC-OFDM Transmitter. b NC-OFDM
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equalization techniques, the data in the active subcarriers is multiplexed using a P/S
converter, and demodulated into a reconstructed version of the original high-speed
input, x̂(n).

The “null carrier selection” block at the NC-OFDM transmitter periodically col-
lects information about the spectrum occupancy from the spectrum sensing measure-
ments. Then, the subcarriers corresponding to the incumbent user transmissions are
deactivated at the transmitter for avoiding any interference to the primary license
holders. This information can be transmitted to the receiver via control channel
before any data communication process begins so that the data over the active sub-
carriers are demodulated correctly.
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6.3.2 Efficient Modulation

As we have seen in the previous section, OFDM-based transceivers employ IFFT and
FFT blocks. The FFT algorithm make modulation and demodulation of the subcar-
riers highly efficient in terms of hardware and computational complexity [48]. How-
ever, an NC-OFDM transceiver may have several subcarriers that are deactivated in
order to avoid any interference to the incumbent user transmissions. These deacti-
vated subcarriers would result in zero-valued inputs to the IFFT and FFT blocks.
Thus, the hardware resources of the FFT are not fully exploited since the compu-
tations involving zeroes are unnecessary. Therefore, an approach is needed to effi-
ciently implement the FFT blocks when several subcarriers are deactivated.

It has been shown that for situations in which the relative number of zero-valued
inputs is quite large, significant time savings can be obtained by “pruning” the FFT
algorithm7 [49]. Several algorithms have been proposed in the literature for enhanc-
ing the efficiency of the FFT algorithm based on the decimation-in-time (DIT) and
the decimation-in-frequency (DIF) algorithms [50–57]. However, most of these algo-
rithms are suitable only for systems with specific zero-input pattern distributions.
Nevertheless, there exists several algorithms in the literature that prune the FFT for
any zero-input pattern, yielding an efficient implementation with respect to compu-
tational time [58, 59].

In a wide-band communication system, a large portion of frequency channels
may be occupied by primary or other secondary transmissions. As a result, these
frequencies are considered occupied and an NC-OFDM transceiver must deactivate
subcarriers in the vicinity of these other transmissions. For highly sparse unoccupied
spectrum, the number of zero-valued inputs in the FFT may be significant relative to
the total number of the usable subcarriers. When the relative number of zero-valued
inputs is quite large, significant time savings can be obtained by pruning the FFT
algorithm [49].

6.3.2.1 An FFT Pruning Example

A 16-point DIF FFT butterfly structure is shown in Fig. 6.5, where ai represents
the ith input signal to the FFT block. Suppose incumbent users are located at sub-
carriers a2, a3, a5, a7, a10, a11, a13 and a15. As a result, these subcarriers must be
nulled in order to avoid interference with the existing signals. Thus, some of the
multiplies and adds associated with the nulled subcarriers can be removed. For a
conventional FFT algorithm, the total number of multiplications and additions would
be N log2N . However, with an FFT pruning algorithm, the unnecessary multiplica-
tions and addition operations at the stages b2, b3, b5, b7, b10, b11, b13, b15, c3, c7, c11,
and c15 can be pruned as their values will always be zeros. Moreover, multiplications
and additions at nodes c1, c2, c5, c6, c9, c10, c13, c14, d1, d3, d5, d7, d9, d11, d13, and

7 FFT pruning refers to the procedure for improving the efficiency of the fast Fourier trans-
form by removing operations on input values which are zeros, and on output values which
are not required [49].
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pruned.

d15 can be replaced with simple “copy” operation, whereas addition operations in
nodes c1, c3, c5, and c7 can be pruned to save the FFT computation time. Therefore,
the FFT computation time can be significantly improved with partial and complete
pruning.
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In wideband communication systems, the channel conditions and incumbent
spectral occupancy8 (ISO) varies over time. Thus, the FFT pruning algorithm should
be able to design an efficient FFT implementation every time the channel condition
and/or ISO changes [58].

In [58], an FFT pruning algorithm designed for NC-OFDM transceivers was pre-
sented that can quickly design an efficient FFT implementation for any zero-input
pattern. Consider a radix-2 FFT algorithm with N levels. First, the algorithm gener-
ates a matrix M , with N columns and 2N rows, where each element of the matrix
corresponds to an addition/multiplication node of the FFT flow graph. The node
needs to be computed if the corresponding element in the matrix M is non-zero
and vice-versa. Second, the FFT pruning algorithm uses the information provided
by the M to prune unnecessary computations at the corresponding nodes, hence
reducing the execution time for the FFT computation and/or reducing the hardware
components, such as addition/multiplication blocks. From the simulation results, it
was demonstrated that pruning the FFT yields an implementation possessing a faster
execution time. Given that cognitive radio units employing NC-OFDM would need
to quickly adapt to the changing operating environment, with hardware resources
of a small form factor cognitive radios being limited, such an algorithm would be
very beneficial for its ability to reduce the computation time and/or the hardware
components.

6.3.3 Performance Evaluation

NC-OFDM is sufficiently agile with respect to spectrum usage, “filling in” the avail-
able spectral gaps within a transmission bandwidth partially occupied by other users
(incumbent and other unlicensed) while not sacrificing its error robustness [18, 19].
Since power of the nulled subcarriers can be redistributed to the active subcarriers
to improve signal-to-noise ratio (SNR) in NC-OFDM systems, their bit error rate
(BER) performance can be improved as compared to conventional OFDM.

The SNR is defined as the ratio of the desired signal power to the noise power
[59]. The SNR indicates reliability of transmission link between the transmitter and
receiver, and is accepted as a standard measure of signal quality.

Assuming a wide sense stationary uncorrelated scattering (WSSUS) channel [60],
the instantaneous SNR of an NC-OFDM signal is given by

γ =
|X · H|2

|ñ|2 =
|X|2 · |H|2

|ñ|2 . (6.2)

where X is a vector of symbols from theN subcarriers, H is a vector of the channel
frequency response for theN subcarriers, and ñ = FFT(n), with n being a vector of
zero-mean complex Gaussian independent random variables across N subcarriers.

Therefore, the mean SNR can be given by [61]

8 Incumbent spectral occupancy (ISO) is defined as the fraction of the intended transmission
bandwidth occupied by incumbent user transmissions.
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E(γ) =
E(|X|2 · |H|2)

E(|ñ|2) =
E(|X|2) · E(|H|2)

E(|ñ|2) (6.3)

where E(·) denotes an expectation operator.
In the following two paragraphs, we present the SNR analysis for the NC-OFDM

system over additive white Gaussian noise (AWGN) and Rayleigh fading chan-
nels [18, 19].

6.3.3.1 AWGN Channel

Consider an AWGN channel with noise spectral density N0 and bandwidth B, the
noise power is given by

E(|ñ|2) = σ2
N = N0B (6.4)

while the SNR is given by

E(γ) = 10 log10

(
E(|X|2)
σ2

N

)
= 10 log10

(
E(|X|2)
N0B

)
. (6.5)

Suppose the incumbent spectral occupancy9 (ISO) is α, then the total available
bandwidth would be (1 − α)B. Since the channel response is assumed to be flat,
the signal power would remain constant, irrespective of the available bandwidth.
However, the effective noise power would be

σ2
N = N0(1 − α)B (6.6)

with the SNR given by

E(γ) = 10 log10

(
E(|X|2)
σ2

N

)
= 10 log10

(
E(|X|2)

N0(1 − α)B

)
. (6.7)

Therefore, the SNR gain is

SNRgain = −10 log10 (1 − α) . (6.8)

However, the total throughput would also be reduced to (1 − α)NRb, where Rb

represents the bit rate over an individual subcarrier.

6.3.3.2 Rayleigh Fading Channel

Suppose we consider a frequency non-selective slow fading channel, i.e. flat channel
response, where the channel magnitude response E(|Hi|2) is flat over the spectrum
band. The deactivation of subcarriers due to incumbent users will result in a non-zero
ISO. This would also filter out a portion of the channel magnitude response, which

9 Incumbent spectral occupancy (ISO) is defined as the fraction of the intended transmission
bandwidth occupied by incumbent user transmissions.



6 OFDM-Based Cognitive Radios for Dynamic Spectrum Access Networks 179

results in an increase in the magnitude of E(|Hi|2). As a result, the SNR gain is
given by

SNRgain = 10 log10

(
E(|X|2) · E(|H|2)/(1 − α)

N0(1 − α)B

)

− 10 log10

(
E(|X|2) · E(|H|2)

N0B

)

= −10 log10 (1 − α)2 .

(6.9)

In case of a frequency selective multipath channel, the channel magnitude response
is not flat over the spectrum. Thus, deactivating a portion of the spectrum would also
flatten a portion of the channel magnitude response, which results in an increase in
E(|H|2). Therefore, the SNR gain would not be linear as in the case with a flat
AWGN channel.

6.4 Peak-to-Average Power Ratio Reduction for NC-OFDM

An OFDM signal consists of a sum of independent signals modulated over several
orthogonal subcarriers of equal bandwidth. Therefore, when added up coherently,
the OFDM signal may exhibit large peaks, while the mean power remains relatively
low. Being a variant of OFDM, NC-OFDM signals also suffer from this same prob-
lem. By definition, the peak-to-average power ratio (PAPR)10 is the ratio of the peak
instantaneous power to the average power of a given signal, which characterizes the
envelope variations of the signal in time domain, namely [21]:

PAPR(s(t)) =
max

0≤t≤T
|s(t)|2

E{|s(t)|2} (6.10)

where E{.} denotes the expectation operator. Without loss of generality, we can
safely neglect the cyclic extension from the analysis since it does not contribute to
the PAPR problem. The continuous time PAPR of s(t) can be approximated using
the discrete time PAPR, which is obtained using samples of the NC-OFDM signal,
s(n). It has been shown that an oversampling factor of four is sufficient to estimate
the continuous PAPR of a BPSK system [62, 63].

When signals with the same phase are added together, the highest PAPR occurs.
When high PAPR occurs, the digital-to-analog (D/A) converter and power ampli-
fier of the transmitter would require a large dynamic range in order to avoid ampli-
tude clipping, thus increasing both power consumption and component cost of the
transceiver.

Numerous techniques have been proposed in the literature that attempt to reduce
PAPR of an OFDM signal. These solutions include clipping/filtering [64, 65], error

10 Several authors refer to Crest factor (CF) as a measure of envelope variations in the time
domain, where CF is given by the square root of the PAPR.
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control coding [66, 67], and constellation shaping techniques (phase, power, or
both) [68–70]. The PAPR reduction techniques can achieve a decrease in PAPR, but
at the cost of increased system complexity, reduced information rate, or degraded
BER performance. Moreover, due to non-contiguous subcarriers, the PAPR reduc-
tion techniques proposed for the OFDM signals may need to be modified for reduc-
ing the values of PAPR for NC-OFDM signals. Design requirements of the PAPR
reduction techniques for NC-OFDM signals will be addressed later.

6.4.1 Motivations for Reducing PAPR

When the PAPR of an NC-OFDM transmission is high, the D/A converters and
power amplifiers require a large dynamic range to avoid clipping of the given signal
mitigating undesirable consequences, such as signal distortion and spectral spillage.
Moreover, a large dynamic range implies increased complexity, reduced efficiency
and increased cost of the components. The motivations for reducing PAPR will be
elaborated in the following two sections.

6.4.1.1 Dynamic Range of D/A Converters and Power Amplifiers

Amplitude clipping of an NC-OFDM signal causes several undesirable outcomes,
such as signal distortion and spectral regrowth [64]. It also causes in-band noise,
which results in bit error rate (BER) performance degradation, and higher-order har-
monics that spill over into out-of-band spectrum. It has been shown that filtering after
the power amplifier to remove this spectral leakage is very inefficient with respect
to power usage, thus making it an undesirable solution [71]. Therefore, the dynamic
range of D/A converters should be large enough to accommodate large peaks of
signals, i.e. high PAPR. A high-precision D/A converter supports high PAPR with
reasonable quantization noise, but may be very expensive for a given sampling rate
of the system. On the other hand, low-precision D/A converter would be cheaper, but
quantization noise will be significant which reduces signal SNR, when the dynamic
range of the D/A converter is increased to support high PAPR. Otherwise, the D/A
converter will saturate and clipping will occur [21].

Similarly, the dynamic range of the power amplifiers should also be large to
accommodate large PAPR. Otherwise, power amplifiers may saturate, resulting in
amplitude clipping. The component cost of the D/A converters and power amplifiers
increase with the increase in the dynamic range.

6.4.1.2 Power Savings

Power amplifiers with a high dynamic range exhibit poor power efficiency, which
is the ratio of power delivered to the load and total power consumed. For a given
NC-OFDM signal, the average input power needs to be adjusted such that the peaks
of the signal are rarely clipped. Therefore, the efficiency of the power amplifiers
is inversely proportional to the PAPR. Therefore, the net power savings is directly
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proportional to the desired average output power and is highly dependent upon the
clipping probability level. Therefore, PAPR reduction leads to significant power sav-
ings, making it highly desirable [72].

NC-OFDM system utilizes non-contiguous blocks of subcarriers for high data
rate transmissions. When the number of deactivated subcarriers is large, the com-
mon assumption of the input symbols being identically and independently distributed
(i.i.d.) may not hold. This results in a different statistical properties of the PAPR for
NC-OFDM signals as compared to that for OFDM signals.

6.4.2 Statistical Analysis

The complementary cumulative distribution function (CCDF) of the PAPR denotes
the probability of an NC-OFDM signal exceeds a given threshold [21]. It is the most
frequently used parameter to characterize PAPR and also as performance measures
for PAPR reduction techniques.

In Fig. 6.6(a), we present the CCDF of PAPR with the fixed number of active
subcarriers and different numbers of deactivated subcarriers. From the results, we
observe that the probability of occurrence of high PAPR increases with the increase
the total number of subcarriers, for a given number of active subcarriers. In Fig. 6.6(b),
we show the CCDF of PAPR for various number of active subcarriers, while the total
number of subcarriers are kept constant. The CCDF of PAPR shows the probability
of getting high PAPR increases with the increase in the number of active subcarriers,
even though the total number of subcarriers is kept constant.

6.4.3 Design Requirements

The conventional PAPR reduction techniques for OFDM systems inherently assume
a contiguous set of subcarriers. Therefore, PAPR reduction techniques proposed for
OFDM systems would need to be adapted to a system employing NC-OFDM. In
spectrum opportunistic systems, the active subcarriers are located in proximity to
the incumbent user transmissions. As a result, both intersymbol interference (ISI)
and intercarrier interference (ICI) may cause distortion in the primary user transmis-
sions. Therefore, time-domain-based or distortion-based techniques, such as clipping
and filtering [73], and frequency domain-based techniques assuming contiguous sub-
carriers, such as coding [66], cannot be used for reducing the PAPR of NC-OFDM
signals. However, frequency-domain PAPR reduction techniques are better suited,
since it is easier to sort out the nulled subcarriers avoiding any interference to exist-
ing user transmissions. The techniques, such as interleaving [74], selected mapping
(SLM) [75], and partial transmit sequences (PTS) [76], need to be aware of the loca-
tions of the active subcarriers. Moreover, in a dynamic spectrum access network, the
total number of active subcarriers and their locations might change continuously and
the PAPR reduction techniques should be able to adapt to these changes.
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Fig. 6.6. CCDF of PAPR for random location distributions of active subcarriers, where ca/ct is
ratio of the number of active subcarriers over the total number of subcarriers. a Fixed number
of active subcarriers. b Fixed number of total subcarriers.
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6.5 Non-uniform Bit Allocation

To exploit the flexibility offered by cognitive radio transceivers and NC-OFDM, bit
allocation can be employed to enhance system performance. The process of bit allo-
cation involves tailoring the subcarrier signal constellations to the prevailing channel
conditions in order to meet a specified objective (e.g., enhanced error robustness,
increased data throughput). Moreover, since the distortion affecting the subcarriers
across the channel may not be uniform, the best-possible choice for a signal constel-
lation can vary across the subcarriers. As a result, there exist several algorithms in
the literature designed to solve for a bit allocation given an objective function and
constraints (see [77] and references therein).

Mathematically, the process of performing bit allocation in order to increase the
overall throughput of the system while ensuring the mean BER, P̄ , is below a speci-
fied mean BER limit, PT , can be defined by the following optimization problem:

max
bi

N−1∑

i=0

bi (6.11)

subject to

P̄ =
(N−1∑

i=0

biPi

)/(N−1∑

i=0

bi

)
≤ PT (6.12)

where bi is the number of bits per symbol for subcarrier i, N is the number of sub-
carriers, and Pi is the BER for subcarrier i, which is computed from the subcarrier
SNR, γi, via closed form expressions [59].11

Although bit allocation offers the potential for improved throughput or error
robustness, its main disadvantage is the amount of overhead information generated.
To reduce the overhead information, one solution is to perform uniform bit alloca-
tion. As opposed to non-uniform bit allocation, where the subcarrier signal constel-
lations can vary [77], uniform bit allocation imposes the additional constraint of

b0 = b1 = . . . = bN−1 (6.13)

when trying to solve for the objective function of (6.11). Another solution that
employs some of the flexibility offered by multicarrier modulation is to assign a sig-
nal constellation to a block of B subcarriers. The bit allocation process would assess
the average SNR of each block of subcarriers, and then select an appropriate signal
constellation for each block, insuring that the BER constraint of (6.12) is satisfied
while attempting to increase the system throughput in (6.11).

The throughput performance of a cognitive radio transceiver employing NC-
OFDM employing either uniform or non-uniform bit allocation was examined in [20].
To reduce the overhead information and the bit allocation algorithm complexity, the
transceiver was implemented to assign the same signal constellation and activity

11 In a practical implementation, the BER values would be stored in a look-up table.
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level to blocks of subcarriers. The simulation results showed that for low spectral
occupancy by the incumbent users, the cost of using blocks of subcarriers to reduce
overhead was acceptable relative to the throughput penalty incurred by using blocks.
However, as the incumbent spectral occupancy increases, the benefits in reduced
overhead relative to the throughput penalty diminished very quickly. Therefore, it
was recommended that one adaptable parameter to be included is an algorithm that
decides on a value for the subcarrier block size, which is a function of the incumbent
spectral occupancy.

Conclusion

DSA techniques can enable the secondary utilization of the spectrum, thereby
improving the spectrum efficiency and mitigate the apparent spectrum scarcity. In
this chapter, we presented non-contiguous OFDM (NC-OFDM) as a viable transmis-
sion technology for cognitive radio transceivers operating in DSA networks. While
operating in an DSA network, it was shown that NC-OFDM can be optimized with
respect to computational complexity through FFT pruning, PAPR reduction, and
overall data throughput via bit allocation.
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7.1 Introduction

Radio spectrum is one of the most scarce and valuable resources in wireless com-
munications. Given this fact, new insights into the use of spectrum have challenged
the traditional static spectrum allocation approach to spectrum management. Actual
measurements have shown that most of the allocated spectrum is largely underuti-
lized [1]. The Spectrum-Policy Task Force appointed by the Federal Communica-
tions Commission (FCC) drew a similar conclusion. Specifically, FCC reported vast
temporal and geographic variations in the usage of allocated spectrum, with utiliza-
tion ranging from 15 to 85% [2].

Spectrum utilization can be significantly improved by giving opportunistic access
to the frequency bands instead of employing static spectrum allocation. According
to the opportunistic spectrum access policy, a group of potential users may use a
frequency or spectrum band for wireless communications provided that the legacy
users of this band are not deprived of their priority right to use the band. On the other
hand, development of software-defined radio (SDR) technology [3] has enabled radio
transceivers to perform baseband processing functionalities, e.g., modulation and
demodulation, using software and digital logic. Software-defined radio, therefore,
becomes the promising technology in developing versatile wireless transceivers that
will have the capability of accessing different radio networks with different technolo-
gies. In order to facilitate opportunistic spectrum access, this versatile transceiver
needs to be spectrally aware, which motivates the design of cognitive radio (CR)
technology [4]. Cognitive radio technology is an innovative radio design philosophy
that involves smartly sensing the swaths of spectrum and then determining the trans-
mission characteristics (e.g., symbol rate, power, bandwidth, latency) of a group of
secondary users (also referred to as CR users)1 based on the behavior of the users to
whom the spectrum has been licensed [5, 6]. As such cognitive radio has been pro-
posed as a way to improve spectrum utilization by exploiting unused spectrum in a
dynamically changing environment.

1 Throughout this chapter, we use the terms secondary users and CR users interchangeably.
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However, in order to fully exploit the CR paradigm, adaptive access technologies
must be developed for CR systems. Therefore, the current main focus of the wire-
less communication research community is to research and develop such enabling
adaptive radio access technologies. Before CR systems become a reality, extensive
research in the following two major areas is required.

• Spectrum sensing: In order to identify and access a suitable portion of spectrum
with a minimum interference to the legacy users, i.e., the primary users, the first
critical design challenge is to monitor the activity levels of the legacy users. This
monitoring or sensing is critical in the sense that it needs to process a very wide
bandwidth and reliably detect the presence of primary users. Therefore, spectrum
sensing techniques should have a very high sensitivity, linearity and dynamic
range of circuitry in the radio frequency front-end. In pursuit of these goals, var-
ious digital signal processing techniques, for example, matched filtering, energy
detection and cyclostationary feature detection, have already been studied in the
literature [7]. In order to develop an effective spectrum sensing algorithm, the
computational complexity, storage requirements, total search time as well as the
knowledge the CR has regarding the primary user signal characteristics must be
considered. The burden on the signal processing techniques can be alleviated to
a large extent by using cooperative diversity between CR spectrum sensors [8].
Few CR spectrum sensors under independent fades can help in reducing individ-
ual sensitivity requirements.

• Efficient spectrum utilization: Based on the available spectrum information as
determined by the sensing algorithms, the next challenging task is for the sec-
ondary users to utilize it in an efficient fashion. As such the transmission capac-
ity of the secondary users is maximized while the interference introduced to the
primary users remains within the tolerable range. Once an unused or suitable por-
tion of the licensed spectrum is identified by the secondary users, a number of
challenging questions arise. For example, what would be the physical layer trans-
mission parameters, e.g., transmission power and rates of the secondary users?
Due to the great flexibility in dynamically allocating the unused spectrum among
the secondary users as well as the ease of analysis of the spectral activity of
the primary users [9], orthogonal frequency division multiplexing (OFDM) has
already been recognized as a potential transmission technology for CR systems.

This chapter focuses on exploring some of the research challenges involved in the
design of adaptive power and bit loading algorithms for an OFDM-based CR system
where the secondary users access unused portions of the spectrum using an OFDM
technique. Our objectives are threefold. First, we explore some of the research chal-
lenges involved in the design of link adaptation algorithms, i.e., power and bit load-
ing algorithms, for an orthogonal frequency division (OFDM)-based cognitive radio
(CR) system. In such a system, the secondary users (also referred to as CR users)
are considered to co-exist with the primary users by filling the unused portions of
the frequency band and using OFDM modulation at the air interface. Second, we
provide some solutions to these challenging problems. More specifically, we study
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interference versus capacity performance of the existing power and bit loading algo-
rithms when they are employed in an OFDM-based CR system. An optimal power
and bit loading algorithm for such a scenario is devised by formulating the loading
problem as a constrained optimization problem. In order to minimize the level of
interference to the primary users’ band, a suboptimal loading algorithm for discrete
bit loading is proposed and the well-known discrete bit loading algorithms, which
were proposed earlier for conventional wireless networks, are modified. Third, the
effect of subcarriers’ nulling on system performance is presented.

The rest of the chapter is organized as follows. In Sect. 7.2, we present an
overview of opportunistic spectrum access architecture with a specific focus on spec-
trum pooling. Section 7.3 describes the research challenges involved in designing
adaptive power and bit loading algorithms for an OFDM-based cognitive radio sys-
tem. Specifically, an optimal loading algorithm for the continuous rate variation case
is studied. The performance of the optimal scheme is compared with a classical load-
ing algorithm. In this section, the effect of subcarrier nulling mechanism is also pre-
sented. Section 7.4 examines the interference versus transmission rate performance
of well-known existing discrete bit loading algorithms that have been proposed pre-
viously for conventional wireless networks. In order to minimize the interference to
the primary user’s band, a suboptimal scheme is presented, and the existing schemes
are modified. The effect of subcarrier nulling mechanism on different integer bit
loading schemes is also presented in this section. Finally, we conclude the chapter.

7.2 Opportunistic Spectrum Access Strategy: Overview

One of the most challenging problems in opportunistic spectrum sharing is the suc-
cessful co-existence of primary and secondary users in the same frequency band.
Several strategies have been proposed in the literature for opportunistic spectrum
access. Examples of these strategies have been surveyed in [10] and include spec-
trum pooling [9], the CR approach to usage of the virtual unlicensed spectrum
(CORVUS) [1], DARPA’s neXt Generation (XG) program [11, 12], IEEE 802.22
[13], dynamic intelligent management of spectrum for ubiquitous mobile network
(DIMSUMnet) [14], the OFDM-based cognitive radio (OCRA) network [15] and
European dynamic radio for IP services in vehicular environments (DRiVE) [16]. In
spectrum pooling architecture, the CR system is highly flexible, since in this manner,
the spectrum bands that are left idle by the licensed users can be efficiently filled. The
goal of this architecture is to overlay secondary users on the existing licensed users
without requiring any changes to the licensed system, and thereby increase spectrum
utilization.

7.2.1 Spectrum Pooling

According to the spectrum pooling strategy of opportunistic spectrum sharing, sec-
ondary users access licensed frequency bands by filling the unused portion of the
spectrum without making any changes to the primary users’ system. The notion of
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spectrum pooling was first introduced in [17]. Basically, spectrum pooling involves
merging spectral ranges from different licensed owners (GPRS, UMTS, military,
emergency services, TV band, etc.) into a common pool. Unused portions of the
spectrum can then be assigned to the cognitive users from this common pool. The
spectrum pooling strategy shown in Fig. 7.1 depicts secondary users co-existing in
the same band with primary users by filling the unused or idle portions of the primary
users’ bands.

According to spectrum pooling strategy, both secondary and primary users co-
exist side by side in the same band but may have different access technologies.
Therefore, mutual interference is the limiting factor for the performance of both
networks. Specifically, in [17] the authors have shown that using OFDM modula-
tion causes mutual interference between the primary and CR users due to the non-
orthogonality of the transmitted signals. The amount of interference introduced to
the primary user’s band by a CR user’s subcarrier depends on the power allocated to
that subcarrier as well as the spectral distance between the subcarrier and the primary
user’s band. The study also showed that the subcarrier’s nulling mechanism reduces
interference in the primary user’s band.

The model presented in Fig. 7.1 is a generalized picture of co-existence of both
types of users according to a spectrum pooling strategy. The interference model
presented in [17], indicates that a secondary user’s transmission in a given unused
portion of the spectrum produces higher interference to the adjacent primary user’s
band. In other words, the interference introduced into a primary user’s band is dom-
inated by the adjacent secondary users’ transmission. Interference from the distant
secondary users decays as distance increases. Therefore, if we consider only two
dominant interferers, two possible co-existence scenarios, which we designate sce-
nario 1 and scenario 2, can be imagined, as shown in Fig. 7.2. Scenario 1 shows that
secondary user(s) may be located in the middle of the primary users. In scenario 2,
secondary users access the left and right side of the unused portion of the primary

Fig. 7.1. Co-existence of primary and cognitive users according to a spectrum pooling strategy.
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users’ band. In this chapter, we limit our study to scenario 2. Scenario 1 may be
studied using a similar methodology but it will result in a different loading profile.

In scenario 2, it is assumed that frequency band B, which has been occupied by
the primary user(s), is known and is located in the middle (see Fig. 2(b)). The mid-
dle band can be occupied by more than one primary users. Since we are considering
overall interference in the primary user band, without loss of generality we assume
that only one primary user is using the middle band. Hence interference introduced
to this primary user is the limiting factor for the successful co-existence of the pri-
mary and secondary users in the same band. Since in this chapter we do not consider
the subcarrier allocation problem among the secondary users, we assume that all of
the unused spectrum is used by a single cognitive user employing the OFDM modu-
lation format at the air interface. One of the main advantages of using OFDM is that
the specific subcarrier can be deactivated by feeding it with zero power. The other
advantage of using OFDM is that the M -fast Fourier transform (FFT) used in the
OFDM transmission can also be used to analyze the spectral activity of the licensed
users. The available bandwidth for CR transmission is divided into N subcarriers,
N/2 on each side, and each with a bandwidth of Δf. Further, it is assumed that the

(a) Scenario 1.

(b) Scenario 2.

Fig. 7.2. Possible co-existence scenarios.
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cognitive user does not have any knowledge of the primary users’ access method,
whether it is also OFDM or not. If the primary user also uses OFDM modulation and
the secondary user has knowledge of it, their transmission could be made orthogo-
nal. However, in practice the primary user might not be using OFDM, even if it is, it
would be very difficult for the cognitive radio user to know the required parameters
of the primary user in order to maintain orthogonality. Due to the co-existence of
primary and secondary users in this fashion, there are two types of interference in
the system [17]. One is introduced by the primary user into the CR user band and
the other is introduced by the cognitive user into the primary user band as described
below.

7.2.1.1 Interference Introduced by the Secondary User’s Signal

The power density spectrum of the ith subcarrier in the CR user’s band can be written
as [17]

φi(f) = PiTs

(
sinπfTs

πfTs

)2

(7.1)

where Pi is the total transmit power emitted by the ith subcarrier in the CR user’s
band and Ts is the symbol duration. The interference introduced by the ith subcarrier
to the primary user’s band is the integration of the power density spectrum of the ith
subcarrier across the primary user’s band, and can be written as

Ii(di, Pi) = PiTs

∫ di+B/2

di−B/2

(
sinπfTs

πfTs

)2

df (7.2)

where di represents the spectral distance between the ith subcarrier of the CR user’s
band and the primary user’s band. Ii(di, Pi) represents the interference introduced
by the ith subcarrier for a transmit power, Pi, into the primary user’s band.

7.2.1.2 Interference introduced by the primary user’s signal

The power density spectrum of the primary user’s signal after the M -fast Fourier
transform (FFT) processing can be expressed by the following expected value of the
periodogram [17]:

E{IN (w)} =
1

2πM

∫ π

−π

φPU(ejw)
(

sin(w − ψ)M/2
sin(w − ψ)/2

)2

dψ (7.3)

wherew represents the frequency normalized to the sampling frequency and φPU(ejw)
is the power density spectrum of the primary user’s signal. The primary user’s signal
has been taken as an elliptically filtered white noise process with amplitude PPU [17].
The interference introduced by the primary user’s signal to the ith subcarrier will be
the integration of the power density spectrum of the primary user’s signal across the
ith subcarrier, and can be written as
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Ji(di, PPU) =
∫ di+Δf/2

di−Δf/2

E{IN (w)}dw (7.4)

where Ji(di, PPU) represents the interference introduced by the primary user’s signal
into the ith subcarrier of the CR user’s band. In the study presented in this chapter,
we assume this interference to be additive white noise to the secondary user.

7.3 Adaptive Power and Bit Loading

Since different subcarriers in an OFDM system may have different fading gains in
a given channel access, use of the same modulation order in all subcarriers leads to
inefficient utilization of the overall spectrum [18]. Assuming that the channel state
information (CSI) is available at the transmitter, different power, bit or both power
and bit loading schemes have been proposed in literature. These loading schemes
exploit the time varying nature of fading gains across the OFDM subcarriers in order
to improve overall system performance. Different loading algorithms have different
end goals [19]. One broad class of bit loading algorithms minimizes the transmit
power while attaining a fixed transmission rate as well as a given target bit error
rate (BER) (see, for example, [20, 21]). In another version of bit loading algorithms,
instantaneous capacity is maximized at a fixed transmit power. All these algorithms
maximize the transmission capacity of OFDM-based systems and are useful for con-
ventional wireless networks where there is only one group of users i.e., primary
users. As mentioned earlier in this section, there is mutual interference between the
primary and secondary users when both types of users co-exist. Therefore, use of
the classical loading algorithms, e.g., the uniform power but variable rate algorithm
and the water-filling algorithm for the secondary user’s transmission may result in
higher mutual interference to the primary user’s band. Throughout this chapter, we
consider a CR downlink scenario where interference introduced to the primary user,
rather than the transmit power is limiting factor. In fact, such an interference-limited
scenario limits the transmit power as well as the achievable transmission capacity of
the secondary users. Hence, the design problem is given an interference threshold
prescribed by the primary users to determine how much power and how many bits
should be loaded into each subcarrier such that the overall transmission capacity of
the CR user is maximized.

According to the classical power and bit loading schemes, e.g., the water-filling
algorithm,2 more power and bits should be loaded into the subcarrier that has the
higher channel gain. However, the amount of interference introduced by allowing
transmission in a secondary user’s subcarrier depends on the location of the sub-
carrier with respect to the primary user’s spectrum. From the interference point of
view, more power should be loaded into a distant subcarrier. Therefore, a judicious
loading policy is required that considers not only the fading gains of the subcarriers

2 Although we are assuming no constraint on the transmit power for the downlink CR sce-
nario, later on we will compare the performance of the water-filling algorithm in detail.
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but also the spectral distance of the subcarriers from the primary user’s band. The
authors in [22] have proposed an unequal bit loading algorithm for a non-contiguous
(NC)-OFDM-based CR system. However, in this scheme uniform power allocation
among the OFDM subcarriers is used. Later in this chapter, we will see that the use
of uniform transmit power in each subcarrier can significantly reduce the transmis-
sion capacity of the secondary user. In what follows, we formulate the power and
bit loading algorithm for an OFDM-based CR system as a constrained optimiza-
tion problem. This optimization problem maximizes the transmission capacity of the
secondary subcarriers while keeping the interference introduced to the primary user
below a specified threshold.

In the formulation, it is assumed that each subcarrier goes under frequency flat
fading and the instantaneous fading gains are perfectly known at the transmitter.
The transmit power and bits are adaptively loaded in each subcarrier. With an ideal
coding scheme, the transmission rate at the ith subcarrier, Ri for transmit power, Pi

and channel fading power gain hi is connected via the Shannon capacity formula,
and is given by

Ri(Pi, hi) = Δf log2

(
1 +

hiPi

σ2 + Ji

)
(7.5)

where σ2 denotes the single-sided noise power spectral density and Ji denotes the
interference introduced by the primary user into the ith subcarrier. If the system
can tolerate some transmission error instead of having an error-free transmission, a
practical modulation and coding scheme can be used. In this case the transmission
rate, Rprac

i corresponding to the transmit power Pi and fading power gain hi can be
approximated using the well-known SNR gap approximation [23]

Rprac

i (Pi, hi) = Δf log2

(
1 +

hiPi

Θ(σ2 + Ji)

)
(7.6)

where Θ is a coding and modulation dependent parameter. For example, with
uncoded M -ary quadrature modulation (M-QAM), Θ can be calculated as [23]

Θ =
1
3

[
Q−1

(
BER0

4

)]2
(7.7)

where Q−1(·) is the inverse standard Gaussian Q-function and BER0 is the target
BER. In the following formulation, we assume an ideal error-free transmission sce-
nario. The extension for a given target BER is quite straightforward.

7.3.1 Optimal Scheme: Continuous Case

Since the design goal is to maximize the instantaneous transmission capacity of the
CR user while keeping the instantaneous3 interference introduced to the primary

3 It is a system requirement that the interference introduced to the primary user should not
go beyond some threshold at any instant. Thus, constraint is used in an instantaneous sense
here.
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users below a certain threshold, it can be formulated as the following constrained
optimization problem

C = max
Pi

N∑

i=1

Ri(Pi, hi) (7.8)

s.t. :
N∑

i=1

Ii(di, Pi) ≤ Ith (7.9)

where C denotes the total transmission capacity of the CR user and Ith denotes the
interference threshold prescribed by the primary user. As we will see that this inter-
ference threshold limits the transmit power as well as the achievable transmission
capacity of the CR user. The optimization problem in (7.8) and (7.9) can be solved
using the Lagrange method [24]. Skipping all the details of this solution, the optimal
transmit power, P ∗

i in the ith subcarrier can be written as

P ∗
i =

1
λKi

− σ2 + Ji

hi
(7.10)

where Ki is a constant defined as

Ki = Ts

∫ di+B/2

di−B/2

(
sinπfTs

πfTs

)2

df. (7.11)

The parameter λ in (7.10) is the Lagrange multiplier which can be obtained from the
following equation:

N∑

i=1

Ii(di, P
∗
i ) = Ith (7.12)

where Ii(di, P
∗
i ) is the interference introduced into the primary user’s band for trans-

mit power P ∗
i in the ith subcarrier and is given in (7.2). It should be noted that power

can come out to be negative for some subcarriers using (7.10) and (7.12). In this case,
zero power is assigned to that subcarrier whose power has the highest negative value.
The whole scheme is then reiterated for the remaining subcarriers. Hence, by using
the above scheme the optimal power allocation policy, which maximizes the trans-
mission capacity of the secondary user while keeping the interference introduced to
the primary user below the specified threshold, can be obtained.

7.3.2 Comparison with Uniform Power Loading/Water-Filling Schemes

As mentioned earlier, a number of loading algorithms exist that can improve the per-
formance of conventional OFDM-based systems. In situations where there is a power
constraint, the capacity maximizing power allocation policy is the well-known water-
filling policy in the frequency domain [25]. This policy suggests that more power
should be allocated to the subcarriers that have relatively better channel quality and
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that less power should be allocated to those with poor channel quality. Due to the
implementation complexity of water-filling policy, uniform power loading was pro-
posed later on. According to uniform power loading policy, the total transmit power
is allocated equally among all the subcarriers. However, the transmission rate should
be adjusted according to the subcarriers’ fading gains. This scheme is similar to a
fixed power but variable rate transmission scheme and the degradation in capacity
due to varying only rate is very negligible [26].

It is obvious that both uniform power loading and water-filling schemes are sub-
optimal for the interference-limited CR system as they do not have any constraint on
interference. In order to make a fair comparison with the optimal scheme presented in
Sect. 3.1, all the schemes considered should maintain a given interference threshold.
Then it would be interesting to observe which scheme offers a higher transmission
rate for the CR user. Intuitively, different schemes may require different amounts of
transmit power for a given interference threshold as this threshold limits the amount
of power that can be transmitted by the CR user. In other words, power as well as
the transmission capacity of each scheme is determined by the interference thresh-
old. Therefore, for a fair comparison, at first we determine how much power can be
transmitted using a uniform power allocation scheme for a given interference thresh-
old. Then this total power is divided equally among the subcarriers. According to the
uniform power allocation policy, the transmit power, P U

i per subcarrier for the given
interference threshold Ith can be written as

P U
i =

Ith∑N
i=1Ki

. (7.13)

For distributing power according to the water-filling policy, we first determine
the total power used by the uniform scheme for a given interference threshold. Using
total power as the instantaneous power constraint, we determine power for each sub-
carrier using the water-filling algorithm. Then for this distribution of power, we cal-
culate the capacity achieved by the CR users and the interference introduced to the
primary user’s band.

7.3.3 Numerical Results: Continuous Case

In the numerical results presented in this section, we use values for Ts, Δf, and B
of 4 μ s, 0.3125 MHz, and 0.3125 MHz, respectively. Additive white Gaussian noise
(AWGN) variance of 10−3 is assumed. The channel power gain hi is assumed to be
Rayleigh fading with an average channel power gain of 10 dB. The value of ampli-
tude PPU is assumed to be 10 mW. Further, we assume that there are 10 subcarriers
for the CR user, five on each side of the primary user’s band. Since the channel fading
power gains for different realizations of hi can be different, an average transmission
capacity of 100,000 independent simulation runs is considered.

The sample average transmission rate of CR user versus interference introduced
to the primary user’s band for the optimal scheme is plotted in Fig. 7.3. In order
to compare the performances of the uniform power but variable rate transmission
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Fig. 7.3. Transmission capacity of CR user versus interference threshold.

scheme and the water-filling scheme, the interference versus capacity curves of these
schemes are also plotted in Fig. 7.3. From this figure, it can be seen that for a given
interference threshold, the uniform loading and water-filling schemes degrade the
capacity of the CR user. The optimal scheme, on the other hand, increases transmis-
sion capacity as it allows more judicious transmission of power. In Fig. 7.4, the trans-
mit power of the CR user is plotted for different values of the interference threshold
for the schemes under consideration. It is observed from Fig. 7.4 that the optimal
scheme allows more power to be transmitted than the other schemes do for a given
interference threshold. The uniform power loading and water-filling schemes load
less power as they do not judiciously take interference into account in their loading
policy for a given interference threshold.

For a given realization of subcarriers’ fading power gains, power profiles are
plotted in Fig. 7.5 for various schemes.

7.3.4 Effect of Subcarrier Nulling Mechanism: Continuous Case

In [17], the authors studied the effect of subcarrier nulling mechanism. They showed
that the interference introduced to the primary user’s band can be reduced by nulling
the adjacent subcarriers since the adjacent subcarriers produce higher interference
than the subcarriers that are located far apart from the primary user’s band. Nulling
more than one adjacent carrier was also shown to decrease the interference intro-
duced to the primary user’s band assuming uniform power loading in each subcar-
rier. For example, if one adjacent subcarrier is nulled, there is a significant reduction
in interference for the same amount of total transmit power. If two adjacent subcar-
riers are nulled, the reduction in interference to the primary user’s band is not as
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Fig. 7.4. Transmit power of CR user versus interference threshold.

(a) Uniform power loading (b) Water-filling loading

(c) Optimal loading

Fig. 7.5. Power profile of different loading schemes.
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high as it is when one subcarrier is nulled. Although this study is very interesting
from the interference reduction point of view, it does not explore the reduction in
capacity for different nulling cases. Since the adjacent subcarrier is the dominant
interfering subcarrier, it may be expected that higher transmission capacity can be
achieved by nulling adjacent subcarriers. This is because one may expect that for
a given interference threshold, nulling dominant interfering subcarriers may allow
the CR user to transmit more power to the remaining active subcarriers in order to
achieve higher transmission capacity. However, when nulling adjacent subcarriers,
the time varying nature of their fading gains cannot be exploited. In other words,
the adjacent subcarrier is always assigned zero power, even when it has very good
channel gain. Therefore, nulling creates a trade-off between the amount of interfer-
ence that can be reduced and the achievable transmission capacity. In this section,
we discuss the effect of the nulling mechanism on the uniform power loading and
water-filling schemes.

The transmission capacity of the CR user versus interference introduced to the
primary user’s band is plotted for uniform power loading schemes for various nulling
scenarios in Fig. 7.6. Similar plot has been shown for water-filling case in Fig. 7.7.
Here, one nulling means that one adjacent subcarrier from each side of the primary
user’s band has been assigned zero power. Similarly, for the two nulling case, two
subcarriers from each side have been assigned zero power. For the sake of compari-
son we have also plotted the transmission capacity of the optimal scheme in Figs. 7.6
and 7.7. It can be observed from Figs. 7.6 and 7.7 that after nulling, the performance
of the uniform power loading and water-filling scheme improves compared with the
no nulling case. However, the optimal scheme still achieves the highest capacity for
a given interference threshold. Interestingly, it can also be observed from Figs. 7.6
and 7.7 that both uniform power loading and water-filling schemes degrade the per-
formance for the two nulling case compared to the one nulling case. This is because
of the tradeoff between the interference that can be reduced by nulling additional
subcarriers and the capacity that can be achieved by keeping them active. From this
selected numerical results it can be concluded that nulling additional subcarriers does
not always help to improve overall system performance. We did not consider further
nulling as the associated performance degradation has been checked via simulation.

In Fig. 7.8, we present the curves for the transmit power of the CR user versus
interference introduced to the primary user’s band for the uniform power loading
scheme, for various nulling cases. Similar plot has been shown for water-filling case
in Fig. 7.9. In order to make a comparison, the transmit power of the CR user for
the optimal scheme is also plotted in Figs. 7.8 and 7.9. The interesting observation
from these figures is that for some interference threshold, the uniform power loading
and water-filling schemes can load more power than the optimal scheme for the two
nulling case. However, the transmission capacity is always lower than for the optimal
scheme because it completely loses the opportunity of using these two subcarriers
even if they have superior channel qualities.
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Fig. 7.6. Transmission capacity of CR user versus interference to the primary user for various
nulling using uniform loading scheme.

Fig. 7.7. Transmission capacity of CR user versus interference to the primary user for various
nulling using water-filling scheme.
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Fig. 7.8. Transmit power of CR user versus interference introduced to the primary user’s band
for various nulling scenarios using uniform loading scheme.

Fig. 7.9. Transmit power of CR user versus interference introduced to the primary user’s band
for various nulling scenarios using water-filling scheme.
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7.4 Discrete Bit Loading Algorithms

In Sect. 7.3, an optimal power and bit loading algorithm has been formulated and
studied. It has also been shown that the uniform power loading scheme and water-
filling policy both degrade the transmission capacity of the OFDM-based CR sys-
tem. The study was based on the operating assumption that the transmission rate
can be varied continuously. Most of the coding and modulation schemes that are
used in practice provide a discrete or integer transmission rate which has led the
researchers to develop discrete bit loading algorithms for OFDM-based systems. In
this context, a number of algorithms have been proposed in the literature. Exam-
ples of well-known algorithms include the Hughes–Hartogs [27] and the Chow et.
al. [25] algorithms. These algorithms are not directly applicable to an OFDM-based
CR system as the interference they introduce to the adjacent primary user’s band may
increase significantly. In this section, our focus is to modify these algorithms so that
they will be applicable to the OFDM-based CR system.

First we present a suboptimal scheme for an integer bit loading case. The algo-
rithm is suboptimal in the sense that it approximates the optimal continuous rate
value to the nearest integer value. Then the we modify Hughes–Hartogs and the
Chow et al. algorithms to minimize the interference to the primary user’s band.

Scheme A. The goal is to minimize the instantaneous interference to the adjacent
primary user’s band while transmitting at a fixed data rate, Rspec and a specified
BER, BERspec. This scheme can be written mathematically as follows:

min
Ri∈R

N∑

i=1

Ii(di, Pi(Ri)) (7.14)

s.t. :
N∑

i=1

Ri = Rspec (7.15)

BERi(Pi, Ri, hi) ≤ BERspec (7.16)

where R = {0, 1, 2, · · · } represents the integer transmission rate and BERi denotes
the BER for the ith subcarrier for a transmission rate Ri specified as [26]

BERi = 0.2 exp
[

−1.6Pihi

(σ2 + Ji)(2Ri − 1)

]
. (7.17)

The nature of the optimization problem in (7.14), (7.15) and (7.16) is combi-
natorial and is difficult to solve. Therefore, we assume that the rate Ri can have
continuous value and then the optimal transmission rate is rounded to the nearest
integer value. Hence, the scheme is suboptimal for the discrete rate adaptation case.
Using the Lagrange formulation and assuming continuous rate variation, the optimal
solution is derived as follows:
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Ri =
Rspec

N
+

1
N

N∑

i=1

log2

[
−Ki ln(5BERspec)(σ2 + Ji) ln(2)

1.6 × hi

]

+ log2

[
−1.6hi

Ki ln(5BERspec)(σ2 + Ji) ln(2)

]
(7.18)

where Ki and Ji have been defined in (7.11) and (7.4), respectively. If Ri in (7.18)
is negative for some subcarriers, zero bit is assigned to them and we reiterate the
whole scheme for the remaining subcarriers. Since the rates Ri can only be inte-
gers, we round Ri to the nearest integer Rqi and determine the round-off error as
follows: ΔRi = Ri − Rqi. The next part of the scheme is adopted from [25]. The
sum

∑N
i=1Rqi is calculated. If it is larger (smaller) than the Rspec, then the rate

of the channel with the largest (smallest) ΔRi is incremented (decremented). The
algorithm stops when

∑N
i=1Rqi = Rspec.

7.4.1 Modifications of the Existing Schemes

Scheme B. The Hughes-Hartogs algorithm [27] incrementally allocates an integer
number of bits at the cost of high computational complexity. The algorithm adds
bits successively to the subcarrier that will require the least amount of power for
the specified BER. But for the CR scenario, the goal is to minimize the interference
introduced to the primary user’s band. Hence, we allocate bits successively to the
subcarrier that will introduce the least amount of interference to the primary user’s
band. The modified algorithm works as follows:

1. The subcarrier is searched that will introduce the least interference to the primary
user’s band for the specified BER in assigning one more bit.

2. The bit is assigned to the subcarrier that introduces the minimum interference.
3. The above steps are repeated until the given data rate is achieved.

It is obvious that the above algorithm requires extensive searching and hence is slow.
However, it is optimal as the bits are loaded in a manner that minimizes total inter-
ference. Although Scheme B is optimal, it is very slow for practical applications
compared with Scheme A which has a closed-form expression.

Scheme C. The Chow et al. algorithm [25] omits intensive sorting as it allocates rate
among the subcarriers according to channel capacity approximation. The goal of the
algorithm is to minimize the transmitted power or to maximize the noise margin
given a data rate and a target BER. Noise margin (γmargin) is defined as the amount
of additional noise that can be tolerated, while still achieving the specified BER. The
algorithm can be described as follows [25]:

1. Initialize γmargin = 0, IterateCount(number of iterations) = 0, UsedCar(total
number of subcarriers) = N and ε(i)(energy of a particular subcarrier) = 1.

2. For ∀i calculate

R(i) = log2

(
1 +

SNR(i)
τ + γmargin

)
(7.19)
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where τ is the SNR gap in the gap approximation [23].

R̂(i) = round[R(i)] (7.20)

where R̂(i) is an integer number of bits that are assigned to a particular subcar-
rier.

diff(i) = R(i) − R̂(i). (7.21)

If R̂(i) = 0,UsedCar = UsedCar − 1. (7.22)

Now, if Rtotal =
∑N

i=1 R̂(i) = 0, the algorithm is stopped.
3. If Rtotal �= 0, the new γmargin is calculated according to:

γmargin = γmargin + 10 log10(2
Rtotal−Rspec

UsedCar ) (7.23)

where Rspec is the given data rate. Increment IterateCount by 1.
4. IfRtotal �=Rspec and IterateCount<MaxCount (maximum number of allowed

iterations), let UsedCar =N and go to step 2, else go to step 5. It should be noted
that if the algorithm does not converge afterMaxCount iterations, convergence
is forced using step 5.

5. If Rtotal > Rspec, then one bit is subtracted from the subcarrier that has the
minimum diff(i) and it is repeated until Rtotal becomes equal to Rspec. On the
other hand, if Rtotal < Rspec, then one bit is added to the subcarrier which has
the maximum diff(i) and this is repeated until Rtotal becomes equal to Rspec.

6. The power of each subcarrier is adjusted such that the BER of each subcarrier
(here, we exclude the subcarriers that have been assigned 0 bits) is equal to the
specified BER for the given bit allocation R̂(i).

Basically, the algorithm first finds the optimal system performance margin (in steps
1–4), and then if the algorithm does not converges in MaxCount iterations, forced
convergence is imposed (in step 5). Finally, the input energy distribution is adjusted.

For the CR scenario, we change Eq. (7.19) so that the bits are allocated more
to the subcarriers that are far from the primary user’s band, as they introduce less
interference. We define const(i) as follows:

const(i) = (1/k(i))/
N∑

i=1

(1/k(i)). (7.24)

It should be noted that the subcarriers which are near to the primary user’s band
introduce more interference and hence, has a higher value of k(i) as compared to
the subcarriers which are far from the primary user band. For the CR scenario, we
modify (7.19) as follows:

R(i) = log2

(
1 +

const(i)SNR(i)
τ + γmargin

)
. (7.25)

Hence, by introducing const(i), we are allocating less bits to subcarriers which are
near to the primary user band as they produce more interference and more bits are
given to the subcarriers that are far from the primary user’s band as they produce less
interference. The rest of the algorithm remains same.
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7.4.2 Numerical Results: Discrete Case

In the numerical results presented in this section, we use values for Ts, Δf and B
of 4μ s, 0.3125 MHz, and 0.3125 MHz, respectively. Noise variance of 10−6 is
assumed. The channel fading power gain hi is assumed to be Rayleigh faded with an
average channel power gain of 5 dB. A specified BER of 10−7 is used and the value
of τ is taken to be 9.8 dB as in [25]. The amplitude PPU is assumed to be 1 mW.
MaxCount is taken to be 10.

In Fig. 7.10, we present the interference introduced to the primary user’s band
versus given data rate plots for the proposed schemes A, B, and C, as well as the
conventional Hughes-Hartogs scheme and the Chow et al. scheme. The plotted data
rates represent an average of 100,000 independent simulation runs. From Fig. 7.10,
we observe that for a given data rate, the existing Hughes-Hartogs and Chow et
al. schemes introduce more interference to the primary user’s band compared with
schemes A, B, and C. Scheme B is optimal and introduces the minimum interference
to the primary user’s band. Scheme A is suboptimal and introduces less interference
than does the suboptimal scheme C and the same as optimal scheme B. It should be

Fig. 7.10. Interference introduced to the primary user’s band versus given data rate for discrete
case (BER = 10−7).
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noted that the suboptimal scheme A has similar performance to the optimal scheme
B because the quantization error does not produce any visual degradation in perfor-
mance. Further, in Fig. 7.10 we have marked the power values for some selected
data rates. We observe from these values that the conventional optimal Hughes-
Hartogs scheme, which minimizes the power, requires the least power for a given
data rate. Our proposed schemes A, B, and C require higher transmit power than
does the Hughes-Hartogs scheme as they assign more power to the distant subcar-
riers than to the nearest subcarriers in order to reduce interference to the primary
user’s band.

7.4.3 Effect of Subcarrier Nulling Mechanism: Discrete Case

In this section, we study the effect of nulling on various discrete bit loading algo-
rithms proposed in Sect. 7.4. Since scheme B performs optimally, we do not study
the effect of nulling for this scheme and so is for scheme A.

In Fig. 7.11, the interference versus data rate for the proposed scheme C is plot-
ted under various nulling scenarios. Similar curves are plotted in Figs. 7.12 and 7.13
for the Hughes-Hartogs scheme and the Chow et al. scheme, respectively. In these
figures, we have also plotted the data rate of the optimal scheme for the sake of com-
parison. From Figs. 7.11–7.13, we observe that the performances of Scheme C, the
Hughes-Hartogs scheme and the Chow et al. scheme are improved for several data
rates after nulling compared with the no nulling case. However, the optimal scheme
achieves the highest transmission rate for a given interference threshold. We did not
consider additional nulling as we know from simulation that this causes the perfor-
mance to degrade. These figures also indicate that the two nulling case performs the
worst for most of the data rates. In Figs. 7.11–7.13, we have also identified the power

Fig. 7.11. Interference introduced to the primary user’s band versus data rate (BER = 10−7)
for Scheme C under various nulling scenarios.
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Fig. 7.12. Interference introduced to the primary user’s band versus data rate (BER = 10−7)
for Hughes–Hartogs scheme under various nulling scenarios.

Fig. 7.13. Interference introduced to the primary user’s band versus data rate (BER = 10−7)
for Chow et al. scheme under various nulling scenarios.

values that are required by different schemes under various nulling scenarios. These
values can be used as important parameters in designing an OFDM-based cognitive
radio system.

Conclusion

In this chapter, we have explored some of the challenges involved in the design
of adaptive power and bit loading algorithms for an OFDM-based CR system.
For a given interference constraint, we presented a downlink transmission capacity
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maximization power and bit loading algorithm. The performance of the existing load-
ing algorithms used in conventional OFDM-based systems are compared with the
optimal scheme. For the continuous rate variation case, the results show that for a
given interference constraint, the uniform power but variable bit loading algorithm
has a high-capacity degradation compared with the optimal scheme. In other words,
the optimal scheme allows more power to be loaded to achieve a higher transmission
capacity for a given interference threshold. For the integer rate adaptation case, a sub-
optimal bit loading algorithm is presented as well as the well-known algorithms are
modified in order to minimize interference to the primary user’s band. The results in
this case showed that suboptimal and modified algorithms can significantly reduce
interference. We also studied the effect of nulling mechanism in both the contin-
uous and discrete cases. Selected numerical results showed that nulling degrades
the transmission capacity for a given interference threshold compared with the opti-
mal scheme. We found that nulling of one subcarrier yields better performance than
nulling of two or zero subcarriers.
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8.1 Introduction

As wireless communication systems are making the transition from wireless tele-
phony to interactive internet data and multi-media type of applications, the desire for
higher data rate transmission is increasing tremendously. As more and more devices
go wireless, it is not hard to imagine that future technologies will face spectral crowd-
ing, and coexistence of wireless devices will be a major issue. Considering the lim-
ited bandwidth availability, accommodating the demand for higher capacity and data
rates is a challenging task, requiring innovative technologies that can offer new ways
of exploiting the available radio spectrum. Ultra-wideband (UWB) and cognitive
radio are two exciting technologies that offer new approaches to the spectrum usage.

Ignited by the earlier work of Mitola [1], cognitive radio is a novel concept for
future wireless communications, and it has been gaining significant interest among
the academia, industry, and regulatory bodies [2]. Cognitive radio provides a tempt-
ing solution to spectral crowding problem by introducing the opportunistic usage of
frequency bands that are not heavily occupied by their licensed users. Cognitive radio
concept proposes to furnish the radio systems with the abilities to measure and be
aware of parameters related to the radio channel characteristics, availability of spec-
trum and power, interference and noise temperature, available networks, nodes, and
infrastructures, as well as local policies and other operating restrictions. The primary
advantage targeted with these features is to enable the cognitive systems to utilize the
available spectrum in the most efficient way. An interconnected set of cognitive radio
devices that share information is defined as a cognitive network. Cognitive networks
aim at performing the cognitive operations such as sensing the spectrum, manag-
ing available resources, and making user-independent, intelligent decisions based on
cooperation of multiple cognitive nodes. In order to be able to achieve the goals of
the cognitive radio concept, cognitive networks need a suitable wireless technology
that will facilitate collaboration of the nodes.
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Ultra-wideband is defined as any wireless technology that has a bandwidth
greater than 500 MHz or a fractional bandwidth1 greater than 0.2. Ultra-wideband
systems have been attracting an intense attention from both the industry and aca-
demic world since 2002, when the US Federal Communications Commission (FCC)
released a spectral mask officially allowing the unlicensed usage of UWB. There are
two commonly proposed means of implementing UWB. These two technologies are
the Orthogonal Frequency Division Multiplexing based UWB (UWB-OFDM) and
the impulse radio based UWB (IR-UWB).

Under the current FCC regulation, UWB is a promising technology for future
short- and medium-range wireless communication networks with a variety of through-
put options including very high data rates. UWB’s most significant property is
that it can coexist in the same temporal, spatial, and spectral domains with other
licensed/unlicensed radios because it is an underlay system. Other tempting features
of UWB include that it has a multi-dimensional flexibility involving adaptable pulse
shape, bandwidth, data rate, and transmit power. On top of these, UWB has a low
power consumption, and it allows significantly low complexity transceivers leading
to a limited system cost. Another very important feature of UWB is providing secure
communications. It is very hard to detect UWB transmission as the power spectrum
is embedded into the noise floor. This feature introduces very secure transmission in
addition to other higher layer encryption techniques.

When the wireless systems that are potential candidates for cognitive radio are
considered, UWB seems to be one of the tempting choices because it has an inher-
ent potential to fulfill some of the key cognitive radio requirements. Along with the
inherent UWB attributes mentioned, especially IR-UWB offers some extraordinary
uses that can add a number of extra intellective features to cognitive systems. These
special uses are brought by the high multipath resolution property, which enables
UWB to act as an accurate radar, ranging, and positioning system. Examples of
specific UWB features include sensing the physical environment to enable situation
awareness, and providing geographical location information.

Owing to all its distinctive properties mentioned, in this chapter, UWB is con-
sidered as one of the enabling technologies of cognitive radio networks. The flow of
this chapter is as follows. Cognitive radio and cognitive networks are described in
Sect. 8.2. The basics of UWB and its suitability for cognitive networks are addressed
in Sect. 8.3. Finally, in Sect. 8.4, various UWB cognitive networks related issues are
discussed in detail.

8.2 Cognitive Networks and Cognitive Radio

When we look at the evolution of wireless standards and technologies, it can be seen
that the adaptive features and intelligent network capabilities are gradually adapted
as the hardware and software technologies improve. Especially, with the recent trend

1 Fractional bandwidth = 2 · FH−FL
FH+FL

, where FH and FL are the upper and lower edge fre-
quencies, respectively.
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and interest in software defined radio based architectures, cognitive radio and cog-
nitive networks attracted more interest. In addition to these, the increasing demand
for wireless access along with the scarcity of the wireless resources (specifically the
spectrum) bring about the desire for new approaches in wireless communications.
Therefore, even though cognitive networks and cognitive radio terms have recently
become popular, it is actually a natural evolution of the wireless technologies. With
the emergence of cognitive radio and cognitive network concepts, this evolution pro-
cess has been more formalized and structured. Also, with these new concepts the
perception of adaptation and optimization of wireless communication systems gained
new dimensions and perspectives. Especially, the emergence of cognitive networks
(with cooperative functions and cognitive engine concepts) is a promising solution
for the barrier that arises from the flaws of the conventional layered design architec-
ture.

The term “cognitive radio” defines the wireless systems that can sense, be aware
of, learn, and adapt to the surrounding environment according to inner and outer stim-
uli. Overall cognition cycle can be seen as an instance of artificial intelligence, since
it encompasses observing, learning, reasoning, and adaptation. Adaptation itself in
the cognition cycle is a complex problem, because cognitive radio needs to take
into account several inputs at the same time including its own past observations as
a result of learning property. Although the adaptation of wireless networks is not a
new concept, the previous standards and technologies strive to obtain an adaptive
wireless communication network from a narrower perspective (commonly focused
on a single-layer adaptation with a single objective function) as compared to that of
cognitive radio, which considers a global adaptation that includes multiple layers and
goal functions.

For many researchers and engineers, the cognitive radio concept is not limited to
a single intelligent radio, but it also includes the networking functionalities. However,
within this chapter, we will use the term of cognitive networks to define the network-
ing functionalities of the cognition cycle. Hence, cognitive networks can be defined
as intelligent networks that can automatically sense the environment (individually
and collaboratively) and current network conditions, and adapt the communication
parameters accordingly. Comparing the cognitive radio and cognitive networks defi-
nition, it can be seen that the definitions are similar, except cognitive networks have
more broader perspective that also include all the network elements.

Cognitive networks are expected to shape the future wireless networks with
important applications in dynamic spectrum access, and co-existence and interop-
erability of different wireless networks. Among the special features of cognitive
networks, the leading ones are advanced interference management strategies, effi-
cient use of wireless resources, safe and secure wireless access methodologies, and
excellent Quality of Service (QoS). In spite of all these great features and possibil-
ities, being a new concept, the cognitive radio network poses many new technical
challenges. As it will be described in the subsequent sections, such networks have
requirements in dynamic spectrum management, power and hardware efficiency,
complexity and size, spectrum sensing and interference identification, environment
awareness, user awareness, location awareness, new distributed algorithm design,
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distributed spectrum measurements, QoS guarantees, and security. Addressing these
requirements is very critical for the success of these networks in wireless communi-
cation market, and the authors of this chapter believe that ultra-wideband technology
and networking has the capability to accommodate some of these key requirements
as it will be discussed throughout this chapter.

8.3 UWB Basics and UWB’s Suitability for Cognitive Networks

The two main techniques considered for UWB physical layer are the impulse radio
and OFDM. In this section, first, the fundamentals of both of these technologies will
be given to provide a technical background. Then, by providing a one-by-one match-
ing between various cognitive radio needs and UWB properties it will be explained
how suitable UWB is for cognitive networks.

8.3.1 Background on UWB

According to the current FCC regulations in the USA, UWB systems are allowed
to operate in the 3.1–10.6 GHz band without a license requirement. However, the
transmit power of these systems is strictly limited. Both in indoors and outdoors,
UWB systems are not permitted to transmit more than −42 dBm/MHz in the spec-
ified band. This limitation ensures that the UWB systems do not affect the licensed
operators that use various frequency bands in the UWB band. However, it should also
be kept in mind that it is not unlikely that revisions can be made in the UWB-related
FCC regulations, especially regarding the transmit power limits. In the near future, if
the UWB radios are provided with cognitive properties that allow them to sense the
spectrum to determine the occupancy of their target bands and to ensure the absence
of licensed users, it is possible that regulatory agencies may consider to offer more
freedom to UWB.

Impulse radio based implementation of UWB is carried out by transmitting
extremely short low-power pulses that are on the order of nanoseconds [3,4] as illus-
trated in Fig. 8.1. Impulse radio UWB is advantageous in that it enables to employ

Fig. 8.1. Impulse radio based UWB pulses and the spectrum of a single pulse.



8 UWB-Based Cognitive Radio Networks 217

various types of modulations, including on-off keying (OOK), pulse amplitude mod-
ulation (PAM), pulse shape modulation (PSM), pulse interval modulation (PIM),
pulse position modulation (PPM), and phase shift keying (PSK) [5].

For multi-user access, IR-UWB systems employ time hopping (TH) codes that
are specific to each user [6]. These specific pseudo-random noise (PN) codes enable
the UWB system to provide access to multiple users conveniently. The multi-user
parameters can be adaptively modified according to the change in number of users.
To enable more users to communicate, for example, the UWB system can increase
the number of chips in each frame at the expense of decreasing each user’s data rate.

Different types of receivers can be utilized for IR-UWB communications which
include coherent receivers (such as Rake and correlator receivers) as well as non-
coherent ones such as energy detector and transmitted reference receivers. Along
with the flexibility in modulation methods and receiver types, IR-UWB also offers a
variety of options regarding the shapes of the transmitted pulses. Various analog and
digital methods to implement pulse shaping for impulse radio can be found among
others in [1,3–39].

Besides being a communication system, IR-UWB is a precise radar technology
as well as a highly accurate ranging and positioning system. These extra features
are owed to the fact that IR-UWB systems have an excellent multipath resolving
capability because of the extremely wide frequency band that they occupy.

In OFDM-based UWB, orthogonal subcarriers are employed to modulate the
transmitted data. Figure 8.2 shows a typical OFDM waveform in frequency domain.
As long as the total occupied bandwidth is not less than 500 MHz, the number of
subcarriers and the subcarrier spacing may be assigned various values according to
the needs. In the current multi-band OFDM planning, which divides the entire UWB
band into 14 subbands, each subband is considered to be 528 MHz and contain 128
subcarriers. The subcarrier spacing is usually chosen to be less than the channel
coherence bandwidth. This enables that each subcarrier goes through a flat fading
channel. Hence, the UWB-OFDM receiver needs a simple equalizer implementation
to recover the originally transmitted signal. One of the most tempting properties of

Fig. 8.2. OFDM based UWB waveform.



218 H. Arslan, M. E. Şahin

Fig. 8.3. Narrowband systems and UWB spectrum.

UWB-OFDM is the easiness of avoiding interference to licensed systems. A UWB-
OFDM transmitter can avoid jamming a licensed signal by simply turning off the
subcarriers that overlap with the spectra of the licensed system.

The final significant feature of UWB is its interference immunity. UWB has a
considerable resistance against the multi-user access interference (MAI), which is
investigated in detail in [4, 35–38]. UWB systems are immune to not only MAI,
but also against narrowband interference (NBI), which is caused by the licensed and
unlicensed systems that exist in the frequency band occupied by the UWB system
[5, 17–37], which are illustrated in Fig. 8.3.

8.3.2 Cognitive Radio Requirements vs. UWB Features

One of the main goals targeted with cognitive radio is to utilize the existing radio
resources in the most efficient way. To ensure the optimum utilization, cognitive
radio requires a number of conditions to be satisfied. A wireless system that is a
potential candidate for cognitive radio applications is expected to fulfill some of
these conditions.

The primary cognitive radio requirements include

• negligible interference to licensed systems,
• capability to adapt itself to various link qualities,
• ability to sense and measure critical parameters about the environment, channel,

etc.
• ability to exploit variety of spectral opportunity,
• flexible pulse shape and bandwidth,
• adjustable data rate, adaptive transmit power, information security, and limited

cost.

At this point, if the main properties of UWB are considered, it is seen that there
is a strong match between what the cognitive radio requires and what UWB offers.
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In the following, the primary features of UWB will be investigated from the point of
satisfying the requirements of cognitive radio.

Cognitive radios aim at an opportunistic usage of frequency bands that are owned
by their licensed users. Therefore, one of the most significant requirements of cog-
nitive radio is that the interference caused by cognitive devices to licensed users
remains at a negligible level.

UWB offers the possibility of being implemented both in underlay and overlay
modes. The difference between the two modes is the amount of transmitted power.
In the underlay mode, UWB has a considerably restricted power, which is spread
over a wide frequency band. In this mode, it complies with the corresponding reg-
ulations of the FCC in the USA. When a UWB system is operating in the underlay
mode, it is quite unlikely that any coexisting licensed system is affected from it. On
top of this, underlay UWB can employ various narrowband interference avoidance
methods.2 In the overlay mode the transmitted power can be much higher. How-
ever, this mode is only applicable if the UWB transmitter ensures that the targeted
spectrum is completely free of signals of other systems, and, of course, if the reg-
ulations allow this mode of operation. If these conditions are met, the transmitted
UWB power can be increased to a certain level that is comparable to the power of
licensed systems. UWB can also operate in both underlay and overlay modes simul-
taneously. Depending on the spectrum opportunities, the signaling and the spectrum
of the transmitted signal can be shaped in such a way that part of the spectrum
is occupied in an underlay mode and some other parts are occupied in an overlay
mode.

Apparently, in any mode of operation, UWB causes negligible interference to
other communication systems, if it does at all. This special feature of UWB makes it
very tempting for the realization of cognitive radio.

One of the main features of the cognitive radio concept is that the targeted fre-
quency spectrum is scanned periodically in order to check its availability for oppor-
tunistic usage. According to the results of this spectrum scan, the bands that will be
utilized for cognitive communication are determined. Since at different times and
locations the available bands can vary, cognitive radio is expected to have a high
flexibility in determining the spectrum it occupies.

Flexible spectrum shaping is a part of UWB’s nature. In IR-UWB, since the
communication is basically realized via the transmission of short pulses, varying the
duration or the form of the pulses directly alters the occupied spectrum. In UWB-
OFDM, on the other hand, spectrum shaping can be conveniently accomplished by
turning some subcarriers on or off according to the spectral conditions.

The availability of unused bands is of vital importance for the continuity of com-
munications in cognitive radio. Any increase in the utilization of the bands by the
licensed systems directly results in narrowed freedom for the cognitive radio, which
can force it to decrease its data rate and QoS, or even to terminate its communication.
Therefore, cognitive radio systems are expected to be able to adjust their throughput

2 For a detailed discussion of narrowband interference avoidance and cancelation methods in
UWB systems, the readers are referred to [37].



220 H. Arslan, M. E. Şahin

according to the available bandwidth. They should also provide a solution for the
cases when the available bandwidth is so limited that the communication cannot be
continued.

UWB systems are able to make abrupt changes in their data rates. An IR-UWB
system responds to a decrease in available bandwidth by switching to a different
pulse shape that is wider in shape. If there is more band to use, it can respond by
doing the opposite. The adjustment of the occupied bandwidth in UWB-OFDM is
much simpler. The subcarriers that overlap with the occupied bands are turned off,
and this way, the data rate is decreased.

On top of its flexible data rate property, UWB provides an exceptional solution
regarding the dropped calls. As mentioned earlier, UWB can be performed both in
underlay and overlay modes. Assuming that the normal operation mode is overlay,
in cases when it becomes impossible to perpetuate the communication, UWB can
switch to the underlay mode. Since the licensed systems are not affected by UWB
when it is in the underlay mode, this gives the UWB the opportunity to maintain the
communication link even though it is at a low quality.

The existence of licensed systems and other unlicensed users is not the only lim-
itation regarding the secondary usage of the spectrum. The spectral masks that are
imposed by the regulatory agencies (such as the FCC in the USA) are also determi-
native in spectrum usage in that they set a limit to the transmit power of wireless
systems. UWB offers a satisfactory solution to the adaptable transmit power require-
ment of cognitive radio. Both UWB-OFDM and IR-UWB systems can comply with
any set of spectral rules mandated upon the cognitive radio system by adapting their
transmit power.

Since the cognitive radio concept includes free utilization of unused frequency
bands, there will be a number of users willing to make use of the same spectrum
opportunities at the same time. Therefore, cognitive radio networks should be able to
provide access to multiple users simultaneously. During the operation of a cognitive
radio, changes may occur in the overall spectrum occupancy, or the signal quality
observed by each user can fluctuate because of various factors. These changes may
require the cognitive radio to modify its multiple access parameters accordingly.

UWB is very flexible in terms of multiple access. In IR-UWB, by modifying the
number of chips in a frame, the number of users can be determined. In UWB-OFDM,
on the other hand, the subcarriers assigned to each user can be decreased in order to
allow more users to communicate. Therefore, also from the point of adaptive multiple
access, UWB proves to be a proper candidate for cognitive radio applications.

The primary objectives targeted with cognitive radio include preserving the pri-
vacy of information. UWB is one of the systems that have information security in
their nature. If a UWB system is working in the underlay mode, because of the very
low power level, it is impossible for unwanted users to detect even the existence of
the UWB signals. Therefore, underlay UWB is a highly secure means of exchanging
information. Overlay mode UWB, on the other hand, can also be considered a safe
communication method. In overlay IR-UWB, multiple accessing is enabled either
by time hopping or by direct sequencing. Therefore, receiving a user’s information
is only possible if the user’s time hopping or spreading code is known. UWB-OFDM
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also provides security by assigning different subcarriers to different users. The level
of security can be increased by periodically changing these subcarrier assignments.
Apparently, UWB is a secure way of communicating in both its underlay and over-
lay modes. Hence, UWB can be considered a strong candidate for cognitive radio
applications in terms of information security.

Being a future wireless concept, cognitive radio targets at a low cost for each
of its components. This is necessary for the system to be able to reflect the profit
earned by using the spectrum in an opportunistic way (rather than purchasing a
license) to its subscribers. UWB signals can be generated and processed by inex-
pensive transceiver circuitries. The RF front-end required to send and capture UWB
signals are also quite uncomplicated and inexpensive. Therefore, UWB communica-
tion can be accomplished by employing very low cost transmitter and receivers. This
property of UWB makes it very attractive for cognitive radio, which aims at limited
infrastructure and transceiver costs.

8.4 Cognitive UWB Network Related Issues

As it is pointed out throughout the previous section, UWB is highly competent in
satisfying many basic requirements of cognitive radio. Therefore, employing UWB
in cognitive radio networks could be very instrumental for the successful penetration
of cognitive radio into the wireless world. Nevertheless, since today’s spectrum reg-
ulations prohibit employing UWB systems in the overlay mode, UWB based imple-
mentation of cognitive radio might not become a reality in the near future. However,
besides being a strong candidate for practical cognitive radio implementation, UWB
can be considered as a supplement to cognitive radio systems that are realized by
means of other wireless technologies. Therefore, it can be concluded that this way or
the other, UWB will be an inseparable part of cognitive radio applications.

UWB can offer various kinds of support to cognitive radio network. These
include sharing the spectrum sensing information via UWB, locating the cognitive
nodes in a cognitive network by means of IR-UWB, and sensing the physical envi-
ronment/channel with IR-Radar. In the following, various cognitive UWB networks
related issues including these supplementary uses of UWB will be discussed.

8.4.1 Spectrum Sensing Information Exchange in Cognitive Networks

In order to be able to opportunistically utilize the available licensed frequency bands,
cognitive radio systems periodically scan their target spectrum and detect the spec-
trum opportunities. In cognitive networks, it is mandatory that all nodes agree on
the spectral opportunities to be utilized. Therefore, it is a major issue for a cognitive
node to share the spectrum sensing information with the other nodes. In some works
in the literature, it is considered to have an allocated control channel to transmit
this information [33]. In some other works, it is proposed to have a centralized con-
troller that gathers this information, decides for spectrum availability, and allocates
distinct bands to different cognitive users [8, 10]. An alternative to these methods
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is to transmit spectrum sensing results via low power UWB signaling that com-
plies with the FCC regulations [34]. Since this transmission will be accomplished
in an underlay manner, it can be done simultaneously with the real data communi-
cation without affecting it regardless of the wireless technology employed to realize
the cognitive radio itself. Considering the relatively low throughput needed to trans-
mit the sensing information as well as the low cost transceiver requirement, it turns
out to be a proper option to use an uncomplicated non-coherent receiver such as an
energy detector, and to employ on-off keying (OOK) modulation.3 By using a proper
mapping scheme (from sensing information to binary codewords), coding, and OOK
modulation, spectrum information can be conveniently shared between the nodes.

A cognitive network (see Fig. 8.4) can be realized by allowing its nodes to com-
municate with each other using UWB to exchange spectrum information. One of the
aims of cognitive radio is to increase the range of communication as much as pos-
sible, and at the first glance, UWB signaling may not seem to be very appropriate
for this purpose because of the limited range of underlay UWB. The answer to this
question can be obtained by looking at the bit error rate (BER) expression for OOK
modulated UWB signals. This BER expression can be stated as

BER = Q
(√NsAEp

2N0

)
(8.1)

where Ns is the number of pulses per symbol, A is the pulse amplitude, Ep is the
normalized pulse energy, and the additive white Gaussian noise (AWGN) has a dou-
ble sided spectrum of N0

2 . In this expression, it is seen that increasing the number of

Fig. 8.4. Network of cognitive transceivers.

3 The implementation issues regarding the OOK based energy detector receivers such as
estimating the optimal threshold and determining the optimum integration interval can be
found in [24].
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pulses per symbol results in lower BER. Increasing Ns requires a repeated transmis-
sion of data, i.e. processing gain. By applying the necessary amount of processing
gain, it can be made possible that the farthest nodes in a cognitive network can share
the spectrum sensing information. Although this comes at the expense of lowered
throughput, it is not a limiting factor in this case because a quite low data rate is
enough to transmit the spectrum sensing information. By enabling all the nodes in a
cognitive network to talk to each other via UWB, there is no need

• either to allocate a separate channel for sharing the sensing information,
• or to employ a centralized controller that collects this information, processes it,

and sends it to the cognitive users in the network.

Spectrum information can also be shared in an ad-hoc multi-hopping scheme
that uses UWB. This way, long range transmission is not needed. Multiple nodes
collaboratively share the information and route this information to other nodes using
low power, low cost UWB technology. In essence, a UWB based sensor network
with the collaboration of multiple radios is formed.

8.4.2 Receiving Sensitivity of Cognitive Nodes and Size of Cognitive Networks

In cognitive radio networks, in order to make sure that the intended frequency spec-
trum is being used by its licensed user, all nodes involved in communication have to
scan the spectrum and inform each other about the spectral conditions. It is not hard
to imagine that there should not be a physical gap between the sensing ranges of
the nodes. If the sensing ranges are not at least partially overlapping, there is always
a risk that a licensed user located inside the gap between the sensing ranges is not
detected, which would cause the cognitive nodes to jam the licensed user’s signal.
Therefore, the receiving sensitivity of the nodes in the network has an integral role
in determining the range of communication. As an example, assume a rather high
sensitivity around −120 dBm to −130 dBm and consider free space propagation, in
which the transmitted power (Ptx) and received power (Prx) are related to each other
by the Friis equation (ignoring the system loss and antenna gains)

Prx =
Ptx λ

2

(4π)2 d2
(8.2)

where λ is the wavelength and d is the distance. With these assumptions, it is seen
that the distance between two cognitive nodes can go up to 50–150 m, getting the
cognitive network classified as a medium-sized network according to its coverage
area.

The sensing information received from all the other nodes in the network can
be combined in each node, and pulse design can be done according to the common
white (unused) spaces. Increasing the network size results in an increased probability
of overlapping with licensed systems. This fact sets a practical limit to the size of the
cognitive network, because continuing to enlarge the network, the common available
spectra become less and less, and after some point their amount becomes insufficient
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to ensure the minimum QoS. For the details of how the common white bands are
going to be shared by the cognitive nodes in the network, the readers are referred to
[9, 11] and [22].

8.4.3 Locating the Cognitive Nodes via IR-UWB

Owing to the extremely wide band they occupy, IR-UWB systems have an advanced
multipath resolving capability. This desirable feature enables these systems to be
considered as a means of highly accurate (centimeter range) positioning besides
being communication systems [16]. Because of this reason, IR-UWB is the primary
candidate for the IEEE 802.11.4a standardization group, which aims at determining a
new physical layer for very low power, low data rate communications with a special
emphasis on accurate location finding.

The positioning capability can make IR-UWB systems an excellent supplement
for small sized cognitive networks. Since such networks aim at not interfering with
other radios in their physical environment, it can be very beneficial for them to be
able to determine the locations of the nodes in the network closely. Having infor-
mation about the precise locations of the nodes in a cognitive network, accurate and
high efficiency beamforming [20] can be achieved towards the direction of the tar-
get nodes. Also, spatial nulls can be generated towards undesired receivers/signal
sources to avoid interference. Beamforming can be accomplished by planar antenna
arrays, which can be put onto very small areas for high-frequency systems (such as
60 GHz radios), and these arrays can be employed even by wireless nodes that are
smaller than a hand palm in size.

The accurate positioning capability of IR-UWB can also be utilized to determine
the transmit power adaptively. Using the positioning data, the distance between the
transmitting and receiving nodes can be found, and based on the distance information
the radiated power can be set. Such an implementation would not only optimize the
power consumption but also help to ensure the link quality between the distant nodes.

Another nice utilization of the positioning capability can be tracking cognitive
nodes or devices that are mobile. Updating the corresponding positioning informa-
tion in a frequent manner, a cognitive node can be tracked in space. This way, any
communication link directed to it would not be lost although its location is changing
continuously.

Examples of using the positioning feature to augment the cognitive communi-
cation quality can be increased. All these examples lead to the idea that IR-UWB
can leverage cognitive radio networks by providing a very strong support through its
accurate positioning capability.

8.4.4 Sensing the Physical Environment of Cognitive Radio Network with
Impulse Radar

Among the various impulse radio UWB applications, impulse radar is one of the old-
est, and it has been used especially for military purposes [29, 40]. Practical imple-
mentations of impulse radar have been addressed in [4, 31–41]. As in the case of
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the other IR-UWB applications mentioned so far, impulse radar can improve cogni-
tive communications from a number of aspects when combined with cognitive radio
systems.

One of the potential uses of impulse radar can be to determine objects and walls
in the indoor environments. Determining the objects can yield a rough estimation of
the directions of multipath components, which can improve the channel estimation.
Determining the walls, on the other hand, yields information about the physical bor-
ders of an indoor network, which may be very useful when establishing a cognitive
network.

In mobile applications, impulse radar can allow to estimate the speed of the
mobile users, it can enable a cognitive mobile device to measure its own speed. Such
a capability would result in being able to estimate the Doppler spread and the channel
coherence time, which are important parameters to know in mobile communications.

Impulse radar can also be used to detect the movement of human beings in the
wireless channel, which can be very effective on the link quality between cogni-
tive nodes especially for extremely high-frequency systems such as the 60 GHz
radios [15].

8.4.5 A Cognitive Network Case Study

In order to provide a case study, computer analysis and simulations are performed
regarding the practical implementation of a cognitive radio network. These simula-
tions are related to the transmission of spectrum sensing results via UWB, the range
of a cognitive network, and the capability of a cognitive network to detect a licensed
system. In the simulations regarding the UWB signaling, the channel model CM3
in [13], which corresponds to an office environment with line-of-sight (LOS), is uti-
lized. All parameters used in these simulations are listed in Table 8.1.

Table 8.1. List of simulation parameters for UWB signaling.

Parameter Value

−10 dB Bandwidth 500 MHz
Freq. range 3.1–3.6 GHz
Geometric center freq. 3.34 GHz
Channel model Office LOS (CM3)
Reference path loss 35.4 dB
Path loss exponent (n) 1.63
Rx antenna noise fig. 17 dB
Implementation loss 3 dB
Throughput (Rb) 20 Mbps
Integration interval 30 ns
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0 20 40 60 80 100 120 140 160
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Distance (m)

B
E

R

Fig. 8.5. BER vs. distance between the nodes for UWB signaling.

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

Number of Nodes

D
et

ec
tio

n 
P

ro
ba

bi
lit

y 
(%

)

   Node Sensitivity = −130 dBm
   Node Sensitivity = −120 dBm

Fig. 8.6. Probability of the licensed transmitter being detected by the cognitive network.

A theoretical analysis is performed to investigate the performance of OOK mod-
ulated UWB data transmission, which is used to share the spectrum sensing results
in a cognitive network, depending on the distance between a cognitive transmitter–
receiver pair. According to [13] the path loss assumed can be shown as

L(d) = L0 + 10n log10

(
d

d0

)
(8.3)
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where the reference distance (d0) is set as 1 m, L0 is the path loss at d0, and n is the
path loss exponent. The average noise power per bit is

N = −174 + 10 log10(Rb) (8.4)

where Rb is the throughput. In Fig. 8.5, the effect of distance on the probability of
error is demonstrated. The results show that the BERs obtained for up to 40 m are
still acceptable. For further distances, however, some processing gain is definitely
needed.

Another simulation is done to investigate the effect of the number of nodes
on the probability of a licensed system being detected by the cognitive network.
Figure 8.4 demonstrates a network composed of cognitive radio devices. The nodes
in the network are randomly distributed in a 200 m × 200 m area inside a building. It
is assumed that there is a licensed transmitter, which is a GSM900 cell phone trans-
mitting at −60 dBm, whose location is random, as well. Depending on the level of
the node sensitivity, the number of nodes required to make a reliable detection might
vary. The results of this simulation are demonstrated in Fig. 8.6. It is seen that an
increase in the number of nodes certainly increases the detection probability. How-
ever, a low node sensitivity may lead to a considerably high number of nodes to be
employed.

Conclusion

In this chapter, the attractiveness of the UWB technology for purposes of implement-
ing cognitive radio networks is investigated from two main approaches. The first one
considers UWB as a direct means of practical cognitive radio realization. Under
this approach, the UWB features such as negligible interference to licensed sys-
tems, dynamically adjustable bandwidth and data rate, and adaptive transmit power
and multiple access are discussed emphasizing their closeness to the cognitive radio
requirements. UWB is shown to be a proper candidate for implementing the cogni-
tive radio networks. The concern regarding UWB’s being the technology of cognitive
radio is that the overlay mode operation of UWB is currently not allowed by regula-
tory agencies. Therefore, this option may have to be deferred until it is proven that
licensed systems can co-exist with specifically designed overlay UWB systems that
have advanced sensing and spectrum shaping capabilities.

The second approach considers UWB as a source of supplementary uses for cog-
nitive radio networks. Among the numerous uses that will enhance cognitive com-
munications, some significant ones such as sharing the spectrum sensing information
via UWB, locating the cognitive nodes using UWB, and providing awareness via
impulse radar are addressed in this chapter.

It should be emphasized that even in the case that the impulse radio UWB is
not accepted as the means of implementing the cognitive radio networks, its supple-
mentary uses are so beneficial that UWB cannot be separated from cognitive radio
systems of future.
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9.1 Introduction

The Federal Radio Act under Federal Communications Commission (FCC) allows
predetermined users the right to transmit at a given frequency. Non-licensed users are
regarded as “harmful interference” and not allowed to transmit in a certain frequency
bands. As the demands for wireless communication become more and more perva-
sive, the wireless devices must find a way for the right to transmit at frequencies in
the extremely limited radio band. However, there exist a large number of frequency
bands that have considerable, and sometimes periodic, dormant time intervals. In the
literature, those frequency bands refer to spectrum holes [1,2]. So there is a dilemma
that on one hand the mobile users have no spectrum to transmit, while on the other
hand some spectrums are not fully utilized.

In order to cope with the dilemma, the FCC has recently investigated the effi-
cient spectrum usage for cognitive radios, which is a novel paradigm that improves
the spectrum utilization by allowing secondary networks (users) to borrow unused
radio spectrum from primary licensed networks (users) or to share the spectrum with
the primary networks (users). As an intelligent wireless communication system, cog-
nitive radios are aware of the radio frequency environment, select the communica-
tion parameters (such as carrier frequency, bandwidth and transmission power) to
optimize the spectrum usage and adapt the transmission and reception accordingly.
Cognitive radios can bring a variety of benefits: for a regulator, cognitive radios
can significantly increase in spectrum availability for new and existing applications.
For a license holder, cognitive radios can reduce the complexity of frequency plan-
ning, facilitate the secondary spectrum market agreements, increase system capac-
ity through access to more spectrum and avoid interference. For equipment manu-
facturers, cognitive radios can increase demands for wireless devices. Finally, for
a user, cognitive radios can bring more capacity per user, enhance inter-operability

∗ Table 9.2 and Figs. 9.1–9.7 reprinted, with permission, from [3–7] c©[2004], [2005], [2007]
IEEE.
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and bandwidth-on-demand and provide ubiquitous mobility with a single user device
across disparate spectrum access environments.

The process for spectrum access is first to sense what the available spectrum
is, then to get access to some of the available spectrum, next to use the available
spectrum and finally to release the used spectrum. Significant research is necessary to
investigate how to dynamically access the spectrum, which enables the opportunistic
management of radio resources within a single access system or between different
radio access systems. As a result, dynamic spectrum access can improve spectral
efficiency, increased capacity and improve ease of access to the spectrum. In the
literature, much work [8,9] has been done for dynamic spectrum access.

In this chapter, we classify some of the dynamic spectrum access techniques
for cognitive radios, according to the degrees of cooperation. The relations between
distributed cognitive radios ranges from complete autonomy and non-cooperation, to
full obeyance to the centralized controller. Specifically, we will discuss the following
techniques for different degrees of cooperation:

1. Non-cooperative competition (Sect. 9.2)
2. Learning for better equilibria (Sect. 9.3)
3. Referee mediation (Sect. 9.4)
4. Threat and punishment from repeated interactions (Sect. 9.5)
5. Spectrum auction (Sect. 9.6)
6. Mutual benefits via bargaining (Sect. 9.7)
7. Contract using cooperative game (Sect. 9.8)
8. centralized scheme (Sect. 9.9)

There are some tradeoffs for different types of approaches. For example, for non-
cooperative competition, the transceiver is simple but the performance can be inferior
due to the extensive non-cooperation. On the other hand, the centralized scheme can
achieve the optimal solution, but it is necessary for extensive measuring of channels
and signaling to exchange channel information. Our goals are to investigate those
different approaches with different degrees of cooperation, study in which network
scenarios the approaches fit most and understand the underlying tradeoffs for the
wireless cognitive network design.

9.2 Non-cooperative Competition

In cognitive wireless networks, it is hard for an individual cognitive user to know the
channel conditions of the other users. The cognitive users cannot cooperate with each
other for spectrum usage. They act selfishly to maximize their own performances
in a distributive fashion. Such a fact motivates us to adopt game theory. Dynamic
spectrum access can be modeled as a game that deals largely with how rational and
intelligent individuals interact with each other in an effort to achieve their own goals.
In this game, each cognitive user is self-interested and trying to optimize its utility
function, where the utility function represents the cognitive user’s performance and
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controls the outcomes of the game. There are many advantages of applying game
theory to dynamic spectrum usage for cognitive radios:

1. Only local information and distributive implementation: The individual cogni-
tive user observes the outcome of the game and adjusts only its parameters in
response to optimize its own benefit. As a result, there is no need for collecting
all the information and conducting optimization in a centralized way.

2. More robust outcome: For the centralized optimization, if the information for
optimization is not quite accurately obtained, the optimized results can be far
away from optimality. In contrast, the local information is always accurate, so
the outcome of the distributed game approaches is robust.

3. Combinatorial nature: For traditional optimization technique such as program-
ming, it is hard to handle the combinatorial problems. For game theory, it is nat-
ural to discuss the problem in a discrete form. In the problems such as spectrum
access, to analyze the combinatorial problems by game theory is considerably
convenient.

4. Rich mathematics for optimization: There are many mathematical tools available
to analyze the outcome of the game. Specifically, if the (non-cooperative) game
is played once, the static game can be studied. If the game is played multiple
times, dynamic game theory is employed. If some contracts and mutual benefits
can be obtained, cooperative game explains how to divide the profits. Auction
theory studies the behaviors of both seller and bidder. We will study some of
those techniques in the following sections.

Next, we define some basic game concepts and study two ways to present a game.
Then we give some properties of the game, such as dominance, Nash equilibrium,
Pareto optimality and mixed strategies. Further, we discuss the low efficiency of the
outcome for non-cooperative static games. Finally, some methods are briefly dis-
cussed to improve the game outcomes.

A game can be roughly defined as each user adjusts its strategy to optimize its
own utility to compete with others. Strategy and utility can be defined as:

Definition 9.1. A strategy σ is a complete contingent plan, or a decision rule, that
defines the action an agent will select in every distinguishable state Ω of the world.

Definition 9.2. In any game, utility (payoff) u represents the motivations of players.
A utility function for a given player assigns a number for every possible outcome of
the game with the property that a higher (or lower) number implies that the outcome
is more preferred.

One of the most common assumptions made in game theory is rationality. Gener-
ally speaking, rationality implies that all players are motivated by maximizing their
own utilities. In a stricter sense, it implies that every player always maximizes its
utility, thus being able to perfectly calculate the probabilistic result of every action.
A game can be defined as follows.

Definition 9.3. A game G in the strategic form has three elements: the set of players
i ∈ I, which is a finite set {1, 2, ...,K}; the strategy space Ωi for each player i; and
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utility function ui, which measures the outcome of the ith user for each strategy pro-
file σ = (σ1, σ2, ..., σK). We define σ−i as the strategies of player i’s opponents, i.e.,
σ−i = (σ1, ..., σi−1, σi+1, ..., σK). In static games, the interaction between users
occurs only once, while in dynamic games the interaction occurs several times.

One of the most simple games is the non-cooperative static game which can be
presented by the strategic (normal) form.

Definition 9.4. A non-cooperative game is one in which players are unable to make
enforceable contracts outside of those specifically modeled in the game. Hence, it is
not defined as games in which players do not cooperate, but as games in which any
cooperation must be self-enforcing.

Definition 9.5. A static game is one in which all players make decisions (or select a
strategy) simultaneously, without knowledge of the strategies that are being chosen
by other players. Even though the decisions may be made at different points in time,
the game is simultaneous because each player has no information about the decisions
of others; thus, it is as if the decisions are made simultaneously.

Definition 9.6. The strategic (or normal) form is a matrix representation of a simul-
taneous game. For two players, one is the “row” player, and the other, the “column”
player. Each row or column represents a strategy and each box represents the payoffs
to each player for every combination of strategies.

To analyze the outcome of the game, the Nash equilibrium is a well-known con-
cept which states that in the equilibrium every agent will select a utility-maximizing
strategy given the strategies of every other agent.

Definition 9.7. Define a strategy vector σ = [σ1 . . . σK ] and define the strategy vec-
tor of the ith player’s opponents as σ−1

i = [σ1 . . . σi−1 σi+1 . . . σK ], where K is
the number of users and σi is the ith user’s strategy. ui is the ith user’s utility. Nash
equilibrium point σ∗ is defined as:

ui(σ∗i , σ
−1
i ) ≥ ui(σ̃i, σ

−1
i ), ∀i, ∀σ̃i ∈ Ω, σ−1

i ∈ ΩK−1, (9.1)

i.e., given the other users’ resource allocations, no user can increase its utility alone
by changing its own resource allocation.

In other words, a Nash equilibrium, named after John Nash, is a set of strategies,
one for each player, such that no player has incentive to unilaterally change its action.
Players are in an equilibrium if a change in strategies by any one of them will lead
that player to earn less than if it remains with its current strategy.

Until now, we have only discussed the strategy that is deterministic, or pure strat-
egy. A pure strategy defines a specific move or action that a player will follow in
every possible attainable situation in a game. Such moves may not be random, or
drawn from a distribution, as in the case of mixed strategies.
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Definition 9.8. Mixed Strategy: A strategy consisting of possible moves and a prob-
ability distribution (collection of weights) which corresponds to how frequently each
move is about to play. A player will only use a mixed strategy when it is indifferent
about several pure strategies. Moreover, if the opponent can benefit from knowing
the next move, the mixed strategy is preferred since keeping the opponent guessing is
desirable.

There might be an infinite number of Nash equilibriums. Among all these equi-
libriums, we need to select the optimal one. There are many criteria by which to
judge if the equilibrium is optimal or not. Among these criteria, Pareto optimality is
one of the most important definitions.

Definition 9.9. Pareto optimal: Named after Vilfredo Pareto, Pareto optimality is a
measure of efficiency. An outcome of a game is Pareto optimal if there is no other
outcome that makes every player at least as well off and at least one player strictly
better off. That is, a Pareto optimal outcome cannot be improved upon without hurt-
ing at least one player. Often, a Nash equilibrium is not Pareto optimal implying that
the players’ payoffs can all be increased.

Since the individual user has no incentive to cooperate with the other users in
the system and imposes harm to the other users, the outcome of the non-cooperative
static game might not be optimal from the system point of view. To overcome this
problem, pricing (or taxation) has been used as an effective tool both by economists
and researchers in computer networks. The pricing technique is motivated by the
following two objectives:

1. The revenue for the system is optimized.
2. The cooperation for resource usage is encouraged.

An efficient pricing mechanism can make the distributed decisions compatible with
the system efficiency obtained by centralized control. A pricing policy is called
incentive compatible, if pricing enforces a Nash equilibrium that achieves the system
optimum. Specifically, the new utility with pricing is

u′ = u− αQ (9.2)

where u is the original utility, α the price for user’s resource Q and the price can be
different for different users. It is known that the above utility function can achieve
Pareto optimality, if the utility is quasi-convex or quasi-concave.

In cognitive radio literature, it is worth mentioning the following games that can
be modeled for spectrum access technology. First, a game is considered a potential
game if the incentive of all players to change their strategy can be expressed in one
global function, the potential function. The potential function is a useful tool to ana-
lyze equilibrium properties of games, since the incentives of all players are mapped
into one function, and the set of pure Nash equilibria can be found by simply locating
the local optima of the potential function. In [10], a potential game was utilized for
problems such as interference avoidance.
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In [11], a Cournot game was used to model the spectrum sharing problem as an
oligopoly market in which a few firms compete with each other in terms of amount
of commodity supplied to the market to gain the maximum profit. In this case the
secondary users are analogous to the firms who compete for the spectrum offered
by the primary user and the cost of the spectrum is determined by using a pricing
function. Both static and dynamic Cournot games were investigated.

In some cognitive scenarios, the primary users and secondary users can be for-
mulated as the multiple level market game, so that both types of users can be satisfied
with the shared spectrum size and the charge pricing. The available techniques are the
demand-and-request functions [17], Stackleberge game [13] and so on. The multiple
level game is non-cooperative game and Nash equilibria can be derived for spectrum
usage.

9.3 Correlated Equilibrium Through Learning

One of the major design challenges for cognitive radios is to coordinate and coop-
erate in accessing the spectrum opportunistically among multiple distributive users
with only local information. In this section, we study the behavior of an individual
distributed secondary user to control its rate when the primary user is absent. Each
secondary user seeks to maximize its rates over different channels. However, exces-
sive transmissions can cause the collisions with the other secondary users. The col-
lisions reduce not only the system throughput but also individual performances. We
propose a new solution concept, the correlated equilibrium, which is better compared
to the non-cooperative Nash equilibrium in terms of spectrum utilization efficiency
and fairness among the distributive users. Using the correlated equilibrium concept,
the distributive users adjust their transmission probabilities over the available chan-
nels, so that the collisions are avoided and the users’ benefits are optimized. We
exhibit the adaptive no-regret algorithm [24] to learn the correlated equilibrium in a
distributed manner. We show that the proposed learning algorithm converges to a set
of correlated equilibria with probability one.

For the system model, we consider the general models for dynamic opportunis-
tic spectrum access for cognitive radios, in which there exist several primary users
with a set of available channels and a large number of secondary users. The channel
availability of secondary users inherently depends on the activities of the primary
users. Moreover, the secondary users have to compete for the idle channels among
the interfering secondary users. If collisions occur, there are some penalties in the
forms of packet loss and power waste. This is the major focus here. We consider that
there are N channels in the wireless network. Without loss of generality, each chan-
nel has a unit bandwidth. These channels are shared amongM primary users and K
secondary users seeking channel access opportunistically.

For adjacent secondary users, they can interference with each other. We use inter-
ference matrix L to depict the interference graph. The interference matrix has the
dimension of K by K, and its elements are defined as
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Lij =
{

1, if i and j interfere with each other
0, otherwise.

(9.3)

The interference matrix depends on the relative location of secondary users.
Next, we define channel availability matrix as aK byN matrix, A(t). Each user

can transmit over a specific channel with a set of different rates. The elements of the
matrix are defined as

Ain(t) =
{

1, if channel n is available for secondary user i at time t
0, otherwise.

(9.4)

We note that the channel availability matrix A(t) varies over time. This matrix
is the result of a sensing task done by secondary users and depends on the primary
users’ traffic, relative location between the secondary users and the primary users.
Notice that each individual secondary user only knows its corresponding row of
matrix L and A(t).

Define the set of secondary user i as I which is the finite set {1, 2, . . . ,K}.
For each available channel, a secondary user can select L + 1 discrete rates Υ =
{0, υ1, . . . , υL}. The strategy space Ωi for secondary user i is on the available chan-
nels and can be denoted as Ωi =

∏N
n=1 ΥAin . The action of user is rn

i = υl

representing secondary user i occupies channel n by rate υl. We define the strat-
egy profile rn = (rn

1 , r
n
2 , . . . , r

n
K)′, and we define rn

−i as the strategies of user
i’s opponents (interference neighbors defined in L) for channel n. We also define
ri = (r1i , . . . , r

N
i )′ as the action of secondary users over all channels, and r−i as the

secondary user i’s opponents’ actions.
The utility function Ui measures the outcome of secondary user i for each strat-

egy profile r1, . . . , rN over different channels. We define the utility function as the
maximum achievable rate for the secondary users over all the available channels as:

Ui =
N∑

n=1

AinRi(rn
i , r

n
−i) (9.5)

where Ri(rn
i , r

n
−i) is the outcome of resource competition for user i and the other

users. Notice that the utility function represents the maximum achievable rate. In
practice, the secondary users need not occupy all the available channels.

We consider un-slotted One-persistent CSMA as the random multiple access pro-
tocol for the secondary users. Since the channel can be occupied by the primary user
again in the near future, each secondary user transmits whenever the channel is idle.
From [14], we have

Ri(rn
i , r

n
−i) =

{
rn

i Sn

∑
i rn

i
, if G ≤ G0

0, otherwise
(9.6)

where

Sn =
Gn[1 +Gn + τGn(1 +Gn + τGn/2)]e−Gn(1+2τ)

Gn(1 + 2τ) − (1 − e−τGn) + (1 + τGn)e−Gn(1+τ)
, (9.7)
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Gn =
∑

i r
n
i , and τ is the propagation delay over packet transmission time. When

the network payload increases, more collisions happen and consequently the average
delay for each packet increases. For some types of payloads like multimedia services,
the delayed packets can cause significant QoS loss. In [15], it has been shown that the
average delay can be unbounded for a sufficiently large load. Moreover, for cognitive
radios, since the primary users can reoccupy the channel in the near future, a certain
delay can cause the second user to lose the opportunity for transmission entirely. So
we define G0 as the maximum network payload. Any network payload larger than
G0 will cause an unacceptable average delay. As a result, the utility function is zero.

In the following, we first propose a new solution concept, correlated equilibrium.
Then, we investigate a linear programming method to calculate the optimal corre-
lated equilibrium. Finally, we utilize a no-regret algorithm to learn the correlated
equilibria in a distributed way.

To analyze the outcome of the game, Nash equilibrium is a well-known con-
cept, which states that in the equilibrium every user will select a utility-maximizing
strategy given the strategies of every other user. If a user follows an action in every
possible attainable situation in a game, the action is called pure strategy, in which
the probability of using action νl, p(rn

i = νl), has only one non-zero value 1 for all
l. In the case of mixed strategies, the user will follow a probability distribution over
different possible action, i.e., different rate l.

In Table 9.1, we illustrate an example of two secondary users with different
actions. In Table 9.1a, we list the utility function for two users taking action 0 and 1.
We can see that when two users take action of 0, they have the best overall benefit.
We can see this action as a cooperative action (in our case the users transmit less
aggressively). But if any user plays more aggressively using action 1 while the other
still plays action 0, the aggressive user has a better utility, but the other user has a
lower utility and the overall benefit is reduced. In our case, the aggressive user can
achieve a higher rate. However, if both users play aggressively using action 1, both
users obtain very low utilities. This situation represents the congested network with
low throughput of CSMA. In Table 9.1b, we show two Nash equilibria, where one
of the users dominates the other. The dominating user has the utility of 6 and the
dominated user has the utility of 3, which is unfair. In Table 9.1c, we show the mixed
Nash equilibrium where two users have the probability 0.75 for action 0 and 0.25 for
action 1, respectively. The utility for each user is 4.5.

Table 9.1. Example of two secondary users game (a) reward table (left most); (b) Nash equi-
librium (middle left); (c) mixed Nash equilibrium (middle right); (d) correlated equilibrium
(right most).

0 1
0 (5,5) (6,3)
1 (3,6) (0,0)

0 1
0 0 (0 or 1)
1 (1 or 0) 0

0 1
0 9/16 3/16
1 3/16 1/16

0 1
0 0.6 0.2
1 0.2 0
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Next, we study a new concept of correlated equilibrium which is more gen-
eral than Nash equilibrium and was first proposed by Nobel Prize winner, Robert J.
Aumann [16], in 1974. The idea is that a strategy profile is chosen randomly accord-
ing to a certain distribution. Given the recommended strategy, it is to the players’
best interests to conform with this strategy. The distribution is called the correlated
equilibrium.

We assume N = 1 and we omit the notation n. Define a finite K-user game in
strategic form as G = {K, (Ωi)i∈K , (Ui)i∈K}, where Ωi is the strategy space for
user i and Ui is the utility function for user i. Define Ω−i as the strategy space for
user i’s opponents. Denote the action for user i and its opponents as ri and r−i,
respectively. Then, the correlated equilibrium is defined as:

Definition 9.10. A probability distribution p is a correlated strategy of game G, if
and only if, for all i ∈ K, ri ∈ Ωi, and r−i ∈ Ω−i,

∑

r−i∈Ω−i

p(ri, r−i)[Ui(r′i, r−i) − Ui(ri, r−i)] ≤ 0,∀r′i ∈ Ωi. (9.8)

By dividing inequality in (9.8) with p(ri) =
∑

r−i∈Ω−i
p(ri, r−i), we have

∑

r−i∈Ω−i

p(r−i|ri)[Ui(r′i, r−i) − Ui(ri, r−i)] ≤ 0,∀r′i ∈ Ωi. (9.9)

The inequality in (9.9) means that when the recommendation to user i is to choose
action ri, then choosing action r′i instead of ri cannot obtain a higher expected payoff
to i.

We note that the set of correlated equilibria is non-empty, closed and convex in
every finite game. Moreover, it may include the distribution that is not in the convex
hull of the Nash equilibrium distributions. In fact, every Nash equilibrium is a corre-
lated equilibrium and Nash equilibria correspond to the special case where p(ri, r−i)
is a product of each individual user’s probability for different actions, i.e., the play of
the different players is independent [16–18]. In Table 9.1b and c, the Nash equilib-
ria and mixed Nash equilibria are all within the set of correlated equilibria. In Table
9.1d, we show an example where the correlated equilibrium is outside the convex
hull of the Nash equilibrium. Notice that the joint distribution is not the product of
two users’ probability distributions, i.e., the two users’ actions are not independent.
Moreover, the utility for each user is 4.8, which is higher than that of the mixed
strategy.

The characterization of the correlated equilibria set illustrates that there are solu-
tions of correlated equilibria that achieve strictly better performance compared to the
Nash equilibria in terms of the spectrum utilization efficiency and fairness. How-
ever, the correlated equilibrium defines a set of solutions which is better than Nash
equilibrium, but it does not tell any more information regarding which correlated
equilibrium is most suitable in practice. We propose two refinements. The first one
is the maximum sum correlated equilibrium that maximizes the sum of utilities of
the secondary users. The second is the maxmin fair correlated equilibrium that seeks
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to improve the worst-case situation. The problem can be formulated as a linear pro-
gramming problem as:

max
p

∑

i∈K

Ep(Ui) or max
p

min
i
Ep(Ui) (9.10)

s.t.

{
p(ri, r−i)[Ui(r′i, r−i) − Ui(ri, r−i)] ≤ 0
∀ri, r′i ∈ Ωi,∀i ∈ K

whereEp(·) is the expectation over p. The constraints guarantee the solution is within
the correlated equilibrium set.

Next, we will exhibit a class of algorithm called regret-matching algorithm [18].
In particular, for any two distinct actions ri �= r′i in Ωi and at every time T , the regret
of user i at time T for not playing r′i is

RT
i (ri, r′i) := max{DT

i (ri, r′i), 0} (9.11)

where

DT
i (ri, r′i) =

1
T

∑

t≤T

(U t
i (r

′
i, r−i) − U t

i (ri, r−i)). (9.12)

DT
i (ri, r′i) has the interpretation of average payoff that user i would have

obtained, if it had played action r′i every time in the past instead of choosing ri.
The expression RT

i (ri, r′i) can be viewed as a measure of the average regret. The
probability pi(ri) for user i to take action ri is a linear function of the regret. The
algorithm was named regret-matching (no-regret) algorithm, because the stationary
solution of the learning algorithm exhibits no regret and the play probabilities are
proportional to the “regrets” for not having played other actions. The detail regret-
matching algorithm is shown in Table 9.2. The complexity of the algorithm is O(L).

For every period T , let us define the relative frequency of users’ action r played
till T periods of time as follows

zT (r) =
1
T

#{t ≤ T : rt = r} (9.13)

where #(·) denotes the number of times the event inside the bracket happens and
rt is all users’ action at time t. The following theorem guarantees that the adaptive
learning algorithm shown in Table 9.2 has the property that zT converges almost
surely to a set of the correlated equilibria.

Theorem 9.1. [18] If every player plays according to adaptive learning algorithm in
Table 9.2, then the empirical distributions of play zT converge almost surely to the
set of correlated equilibrium distributions of the game G, as T → ∞.

In the simulations, we employ the maximal sum utility function as the objective.
In Fig. 9.1a, we show the different equilibria as a function of G0 for the three-user
game. We show the results of the gain obtained by the greedy user in the Nash equi-
librium point (NEP), the gain obtained by the victim of the greedy user in NEP,
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Table 9.2. The regret-matching learning algorithm c© 2007 IEEE. Reprinted, with permission,
from [4]].

Initialize arbitrarily probability for taking action of user i,
p1i (ri), ∀i ∈ K
for t = 1,2,3,...
1. Find DT

i (ri, r′i) as in (9.12)
2. Find average regret RT

i (ri, r′i) as in (9.11)
3. Let ri ∈ Ωi be the strategy last chosen by user i,

i.e., rt
i = ri. Then probability distribution action for

next period, pt+1
i is defined as

pt+1
i (r′i) = 1

μRT
i (ri, r′i) ∀r′i �= ri

pt+1
i (ri) = 1 −

∑
r′i �=ri

pt+1
i (r′i),

where μ is a certain constant that is sufficiently large.

the learning result and the optimal correlated equilibrium calculated by linear pro-
gramming. Here the action space is [0.1, 0.2, . . . , 1.5]. When G0 is large, there is
less penalty for greedy behaviors. So all users tend to transmit as aggressively as
possible. This results in the prisoners’ dilemma [19], where all users suffer. When
G0 is less than 2.8, the greedy user can have better performance (NEP best) than
that (NEP worst) of the cooperative user. Due to the less significant penalty if all
users transmit aggressively, the game will not degrade to the prison dilemma. How-
ever, the performances are quite unfair for the greedy users with best NEP and the
cooperative users with worst NEP. All users have the same utility in the correlated
equilibrium and learning result. So fairness is better than that of the NEP. When G0

is from 2.2 to 2.8, the correlated equilibrium has a better performance even than that
of the greedy user (NEP best). When G0 is from 1.4 to 2.8, the optimal correlated
equilibrium has a better performance than that of the learning result. When G0 is
sufficiently small, most of the uncooperative strategies are eliminated by significant
penalty. Consequently, the learning result has the same performance as that of the
optimal correlated equilibrium.

In Fig. 9.1b, we show the network performance of the proposed algorithm. For
simplicity, we assume the hidden terminal problem [14] has been solved. We show
the average user utility per channel as a function of the network density. When the
network density is small, the average utility increases since there is an increasing
number of users occupying the channel. When the user density is sufficiently large,
the utility begins to decrease due to the collisions. The best NEP and worst NEP
are different while the correlated equilibrium and learning result achieve almost the
same performance as the best NEP and 5–15% better than the worst NEP.

There are many other works for learning based on finite-state Markov decision
process (MDP), such as the decentralized cognitive medium access based on partial
observable Markov decision process (POMDP), which is presented in [20]. Some
other learning schemes include reinforcement learning, Q-learning and so on. All
these techniques can be utilized for the spectrum access for cognitive radios.
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Fig. 9.1. (a) Utility function versus. G0 (for three users) and (b) network performances [ c©
2007 IEEE. Reprinted, with permission, from [4]].

9.4 Referee for Mediation

In this section, a concept of virtual referee [5,21] is introduced to improve wire-
less resource usage of cognitive radios. We use this referee approach for an example
application to conduct channel assignment, adaptive modulation and power control
for multi-cluster cognitive networks. The goal is to minimize the overall transmitted
power under the constraints that each cognitive user has the desired throughput and
each cognitive user’s power is bounded. Each cognitive user in the different clusters
minimizes its own utility function, e.g., transmitted power, in a distributed and non-
cooperative game by employing water-filling scheme [22]. We define the channel set
that the ith cognitive user can allocate to its throughput Ri as transmission channel
set Si. Each channel can be occupied by more than one cognitive user but not neces-
sarily by all users. Within the transmission channel set, the user would allocate the
throughput to different channels by the algorithms, such as water-filling [22], so that
the utility such as the power can be optimized. When the interferences are severe, the
channel will be over crowded with users and consequently, the radio resource cannot
be efficiently utilized. Under this condition, a virtual referee will be introduced to
mediate the resource usage, so that the game outcome can be improved. This vir-
tual referee can be the base station, access point or cluster head. This approach can
significantly improve the network performance without adding much hardware to
cognitive networks.

The K co-channel clusters are taken into consideration. Each cluster consists of
one cognitive radio link. The total number of channels is L. The ith user’s signal to
interference noise ratio (SINR) at channel l can be expressed as:

Γ l
i =

P l
iG

l
ii∑

k �=i P
l
kG

l
ki +N0

(9.14)
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where P l
k and Gl

ki is the transmitted power and propagation loss from the kth cog-
nitive source to the ith cognitive destination in the lth channel, respectively, andN0

is the thermal noise level.
Rate adaptation such as adaptive modulation provides each channel with the abil-

ity to match the effective bit rates, according to the interference and channel condi-
tions. MQAM is a modulation method with high spectrum efficiency. In [23], for a
desired rate rl

i of MQAM, the BER of the lth channel of the ith user can be approx-
imated as a function of the received SINR Γl

i by:

BERl
i ≈ c1e

−c2

(
Γ l

i /2rl
i−1

)

(9.15)

where c1 ≈ 0.2 and c2 ≈ 1.5 with small BERl
i. Rearranging (9.15), for a specific

desired BERl
i, the ith user’s transmission rate of the lth channel for the SINR Γ l

i

and the desired BERl
i can be expressed as:

rl
i = W log2(1 + ci3Γ

l
i). (9.16)

In order to compare the Nash equilibriums (NEP) and the optimal solution for
power minimization, a simple two-user two-channel example is illustrated as follows.
The simulation setup is: BER = 10−3,N0 = 10−3, the maximal power for each user
over different channels is Pmax = 104 and channel gain matrices are

G1 =
[

0.0631 0.0100
0.0026 0.2120

]
, G2 =

[
0.4984 0.0067
0.0029 0.9580

]
.

Figure 9.a shows the overall power contour as a function of two users’ rate allo-
cations, where each user’s minimal rate requirement R1 = R2 = 6. The two curves
show the minimal locations for the two users’ own power when the interference from
the other user is fixed, respectively. Each user tries to minimize its power by adjusting
its rate allocation so that the operating point is more close to the curve. Consequently,
the cross is a Nash equilibrium, where no user can reduce its power alone. We can
see that the Nash equilibrium under this setup is unique and optimal for the overall
power. (It is worth mentioning that the feasible domain is not convex at all.) Fig-
ure 9.b shows the situation when R1 = R2 = 8. Because the rate is increased, the
co-channel interferences are increased and the NEP is no longer the optimum. There
exists more than one local optimum, and the global optimum occurs when user does
not occupy the channel 1. Figure 9.c shows the situation when R1 = R2 = 8.5. The
contour graph is not connected. There are two NEPs and two local optima. Under
the above two conditions, we need to remove users from using the channels. If we
further increase R1 = R2 = 10, there exists no feasible area, i.e., neither user can
have a resource allocation that satisfies both power and rate constraints. In this case,
the minimal rate requirement should be reduced.

From the above observations, we can see that the behaviors of the optimal power
minimization solution and NEP depend on how severe interferences are. In order
to let NEP converge to the desired solution, we need to find a criterion to decide
whether the users can make a good use of the channels like the situation in Figure 9.a.
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Fig. 9.2. Two-user example [ c© 2007 IEEE. Reprinted, with permission, from [5]].
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If not, we should decide which user should be kicked out of using specific channels.
The criterion is to check whether the KKT condition [24] is satisfied. Specifically, if
the co-channel interferences are too severe, the constraints of throughput and maxi-
mal transmitted power are not satisfied. As a result, NEP is not a local optimum.

Before developing the proposed algorithm, we analyze two extreme cases. In the
first case, the groups of channels are assigned to different clusters without overlap-
ping such that there are no co-channel interferences among clusters. We call it the
fixed channel assignment scheme. However, this extreme method has the disadvan-
tage of low spectrum efficiency because of the low frequency re-usage. In the second
extreme case, all cognitive users share all the channels. We call it pure water-filling
scheme. From Fig. 9.b and Fig. 9.c, we can see that the system can be balanced at
the undesired point, because of the severe inter-cluster co-channel interferences. So
the facts motivate us to believe that the optimal resource allocation is between these
two extreme cases, i.e., each channel can be shared by only a group of selected users
for transmission.

In Fig. 9.3, we show the block diagram of the proposed algorithm from system
point of view. We initially set Si to have all channels. Then the non-cooperative
competition for radio resources is employed. After the system is iteratively balanced
by the water-filling among cognitive radio users, if the system is balanced in a desired
solution, the water-filling is continuously employed. Otherwise, some users must
remove some channels from the transmission group Si. If the removal can make all
users balanced in the desired NEP, the algorithm continues in the water-filling step.
Otherwise, the user removal step is continued, until no user can be removed or the
desired NEP is achieved. If no user can be removed and the desired NEP is still not
achieved, the desired throughput requirement Ri has to be reduced.

Iterative Waterfilling
Non-cooperative

Game in S 1
Non-cooperative

Game in S K

R1, S1 RK, SK

Desired NEP
Y

Reduce
S 1

     N

Desired NEP
Y

     N

Game
Mediator

K User

Cadidate?

Reduce
R 1

Y
Cadidate?

Reduce
S K

Y

Reduce
R K

     N      N

Fig. 9.3. Proposed distributed referee approach [ c© 2007 IEEE. Reprinted, with permission,
from [5]].
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The complexity of the proposed referee-based scheme is O(N logN), where N
is the number of channels. The convergence speed of the non-cooperative competi-
tion is similar to that of closed-loop power control proposed in [25,26]. The over-
head for the proposed scheme occurs only when the system cannot be balanced in
a good Nash equilibrium. Under this condition, a referee needs to collect informa-
tion from all the co-channel interfered clusters. The frequency for this overhead is
much lower than that of the non-cooperative competition. The collected informa-
tion includes power value, channel gain value and noise-plus-interference variance
value over all channels. Since all these values are consistently obtained by all the
distributed users at any time, there is no need for extra measurement. The amount of
this information is also small and can be exchanged among the cells with few pack-
ets. So the overhead is negligible. In summary, this referee-based scheme imposes
little burden on wireless sensor network implementation.

We consider the simulations with 32 channels and seven cognitive radio links.
The overall bandwidth is 6.4 MHz. The receiver thermal noise is −70 dBm. The
required BER of the transmitted symbols is 10−3 for every subchannel and user.
We define the reuse factor Ru as the distance between two base stations D over the
cell radius r which is set as 100 m, which is one of the main factors to affect the
severeness of co-channel interference. The rate constraint is set as 10 Mbits for each
user. In Fig. 9.4a, we show the average number of users per channel. In Fig. 9.4b,
we show the overall transmitted power versus reuse distance Ru for the pure water-
filling algorithm and the proposed algorithm. The smaller the reuse distance Ru is,
the higher the co-channel interference. We can see that the proposed algorithm can
reduce the overall power about 90% when the co-channel interferences are severe
(Ru = 2), because more users are kicked out in this case. When Ru increases, the
co-channel interferences reduce. Consequently, water-filling and proposed schemes
yield the same overall transmitted power.

The referee-based approach creates a virtual referee to mediate the network per-
formances. If the autonomous cognitive users cannot share the network resources
efficiently, the referee will make some mandatory changes for resource usage so as
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to improve the system performances and game outcomes. There is no need to add
additional hardware, while the performances can be greatly improved.

9.5 Threat and Punishment Using Repeated Interactions

In some types of the autonomous and distributed wireless cognitive radio networks,
tasks need to be performed cooperatively while greediness might lead to the perfor-
mance breakdown. The individual user may act cooperatively such that the overall
system performance is high, or they may act non-cooperatively where everybody suf-
fers low efficiency. However, if only one user deviates from the cooperative agree-
ment, it can get benefits. In order to prevent users from greediness, repeated inter-
action, such as repeated game, is proposed to enforce cooperation among cogni-
tive users. The basic rationale is to punish the user that deviates by playing non-
cooperatively in the near future, such that the benefits obtained in a short-term devi-
ation will be eliminated by a long-term punishment. In this section, we outline the
punishment approach and give two examples.

The basic idea of the threat and punishment using repeated game comes from the
concept of Cartel in the economics literature [7]. Cartel means the combination of
independent commercial or industrial enterprises designed to limit competition. The
soul of Cartel maintenance is to construct contracts among independent individuals
for cooperative benefits and non-cooperative punishment, so as to limit inefficient
competition. Next, we combine the idea with the repeated game theory, so that the
new approach will punish anyone who deviates from cooperation.

To analyze the outcome of a game, the Nash equilibrium is a well-known concept,
which states that in the equilibrium every agent selects a utility-maximizing strategy
given the strategies of other agents. However, one problem with an NEP is that it is
not necessarily very efficient in performances. If the users can play cooperatively,
the performances can be greatly improved. Thus, the question arises as to how to
enforce the greedy users to cooperate with each other. The repeated game provides
us possible mechanisms to enforce the users to cooperate by considering long-term
scenarios. In the repeated games, the players face the same static game in every
period, and the player’s overall payoff is a weighted average of the payoffs in each
stage over time. In the repeated game, the players can observe some information
reflecting their opponents’ past play. Hence, they are able to condition their future
plays on the observed information in history to obtain better equilibriums.

Definition 9.11. Let G be a static game and β be a discount factor. The T -period
repeated game, denoted asG(T , β), consists of gameG repeated T times. The payoff
for such a game is given by

Vi =
T∑

t=1

βt−1ut
i (9.17)

where ut
i denotes the payoff to player i in period t. If T goes to infinity, thenG(∞, β)

is referred as the infinitely repeated game. In the following, we use infinitely repeated
game.
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Now the question is whether cooperation among users can be enforced by
the repeated games to generate better performances. The Folk’s theorem [19] for
infinitely repeated games asserts that if the player’s discount factor β approaches 1,
any feasible, individually rational payoff can be enforced by an equilibrium. This
equilibrium can yield better performances than those of static game NEP. We need to
further develop the game rule for enforcing cooperation among users to achieve this
better equilibrium.

The basic idea for the proposed Cartel maintenance repeated game framework is
to provide enough threat to greedy users so as to prevent them from deviating from
cooperation. First the cooperative point is obtained so that all users have better per-
formances than those of non-cooperative NEP. However, if any user deviates from
cooperation while others still play cooperatively, this deviating user has a better util-
ity, while others have relatively worse utilities. If no rule is employed, the cooperative
users will also have incentives to deviate. Consequently, the network deteriorates to
non-cooperation with inefficient performances. The proposed framework provides a
mechanism so that the current defecting gains of the selfish user will be outweighed
by future punishment strategies from other users. For any rational user, this threat of
punishment prevents them from deviation. So cooperation is enforced.

To implement the mechanism, we propose a trigger strategy to introduce punish-
ment on the defecting users. In the trigger strategy, the players start with coopera-
tion. Assume that each user can observe the public information (e.g., the outcome
of the game), Pt at time t. Examples of this public information can be the success-
ful transmission rate, network throughput, etc. Notice that such public information
is mostly imperfect or simply partial information about the users’ strategies. Here
we assume a larger Pt stands for a higher cooperative level, resulting in higher per-
formances for all users. Let the cooperative strategies be λ̄ = [λ1, λ2, ..., λK ]T and
the non-cooperative strategies be s̄ = [s1, s2, ..., sK ]T, respectively. The trigger-
punishment game rule is characterized by three parameters: the optimal punishment
time T , trigger threshold P ∗ and the cooperative strategy λ̄. Trigger punishment
strategy (λ̄, P ∗, T ) for distributed user i is given as follows:

(a) User i plays the strategy of the cooperative phase, λ̄, in period 0.
(b) If the cooperative phase is played in period t and Pt > P ∗, user i plays the

cooperative phase in period t+ 1.
(c) If the cooperative phase is played in period t and Pt < P ∗, user i switches to

a punishment phase for T − 1 periods, in which the players play a static Nash
equilibrium s̄ regardless of the realized outcomes. At the T th period, play returns
to the cooperative phase.

Note that s̄ generates the non-cooperative outcome, which is much worse than that
generated by the cooperative strategy λ̄. Therefore, the selfish users that deviate will
have much lower utilities in the punishment phase. Moreover, the punishment time
T is designed to be long enough to let all cheating gains of the selfish users be
outweighed by the punishment. So the users have no incentive to deviate from coop-
eration, since the users aim to maximize the long-run payoffs over time.
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Fig. 9.5. (a) Wireless network block diagram, (b) Punishment for deviation [ c© 2004 IEEE.
Reprinted, with permission, from [7]].

Next, we study two examples using the proposed framework. The first one is for
cognitive radio multiple access networks. The second example further investigates
the learning schemes if the cognitive radio users do not know how to cooperate.

In the first example, we employ the proposed framework to a multi-user network
shown in Fig. 9.5a. There are many distributed users and one communication node
(e.g., cluster head). Each user can transmit its data packets to the communication
node by using the multiple access protocols such as Aloha, CSMA, etc. The com-
munication node has the ability to transmit the data packets to the remote destination
via a wireless link. We assume that there is a reliable feedback channel. So, the sys-
tem can be described as multiple users sharing a communication link. Each user can
control its transmission rate. The users need to compete with each other for the com-
munication link which is fluctuating due to the wireless channel conditions. Thus
one user’s rate can affect the performances of other users and the whole system. So
it is necessary to find a rate control algorithm such that the system can operate at the
optimal point. Moreover, it is hard to have communication channels among cognitive
users. Therefore, a distributed algorithm is required for rate control.

For distributed users in the network, there are costs to transmit their packets and
benefits if their packets are successfully transmitted. Each user’s profit is defined as
the benefits minus the cost. The users are able to adapt their packet transmission rates
for the cooperation or punishment play. They can observe their successful packet
transmission probability, and correspondingly play cooperation or non-cooperation.
Based on the proposed framework, we derive the optimal parameters of the packet
transmission rate, punishment time and trigger threshold for the distributed greedy
users. In Fig. 9.5 b, we show how the scheme punishes the cheating user. We assume
one user deviates from the cooperative rate λ∗ and transmit at the higher rate s, while
others transmit at λ∗. We show that the profit of this deviating user fluctuates over
time. For comparison, we also show the average profits (as the straight lines) when
the user transmits at optimal rate from overall system point of view, cooperative rate
λ∗ and non-cooperative rate. We can see that at first the user does get more profit than
the mean without the deviated user by diverging from λ∗. However, this deviation is
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soon detected by others’ and the punishment phase is performed by other users. The
non-cooperation mean is much lower than that during cooperation. The mean of this
deviated user is lower than the mean without the deviated user, because the deviation
gain is eliminated by others over time. This shows the reason why the proposed
scheme can enforce cooperation among users by threatening punishment.

In the second example, we further investigate the combination of learning schemes.
In some ad hoc cognitive networks, cognitive users need to forward others’ packet
so as to communicate with each other. Forwarding the others’ packets consumes
the user’s own limited battery resource. Therefore, it may not be of the autonomous
user’s best interest to forward all the arriving packets. In fact, it is reasonable to
assume that the users are selfishly maximizing their own benefits by dropping oth-
ers’ packets. However, not forwarding others’ packets will severely affect the net-
work connectivity and the proper functionality of the network, which in turn impairs
the users’ own benefits as well. The non-cooperation usually causes very low sys-
tem and users’ performances. Therefore, it is very crucial to design a mechanism
to enforce cooperation among greedy users. Moreover, even though the users would
like to cooperate, they might not know how to cooperate. So it is important to develop
self-learning algorithms so that the cooperative points can be studied distributively
in the autonomous users.

We try to propose a distributed self-learning repeated game framework to enforce
cooperation in performing packet-forwarding tasks as shown in Fig. 9.6a. The frame-
work has two major schemes: first, an adaptive repeated game scheme ensures
cooperation among ad hoc cognitive users, which maintains the current coopera-
tive packet-forwarding probabilities. The repeated game scheme provides the users
with a mechanism that any deviating user would be punished enough by others in the
future, so that no user has incentive to deviate. Second, a self-learning scheme tries to
find the better cooperative probabilities that are feasible and benefit all users. Start-
ing from non-cooperation, the above two proposed schemes are employed iteratively.
Better cooperation is discovered and maintained over iterations, until convergence to
some close optimal solution.

In Fig. 9.6b, we show the simulation results of the proposed framework for utility
and packet forwarding probability over time. Initially, packet-forwarding probability
α = 0, because of the non-cooperative transmission. Then the system tries to find a
better packet transmission rate. When it finds a better solution, all users adapt its α
to the value. However, since the punishment period T is not adjusted to an optimal
value, the deviation can have benefits. So there exists a period that the utility and
α switch from cooperation to non-cooperation. In this period, T is increased until
every user realizes that there is no benefit for deviation because of the long period of
punishment. If the system is stable for a period of time, a new α is determined to see
whether the performance can be improved. If so, the new value is adopted, otherwise
the original value is restored. So the packet-forwarding probability is adjusted until
the optimal solution is found, and the learned utility function is a non-decreasing
function.



9 Degrees of Cooperation in Dynamic Spectrum Access 251

Initialization

Non-cooperation

Detect

Deviation

Stable

New

Cooperation

Update New

Cooperation

Punishment

System

Better?
Restore

No

Yes

No

Yes

No

YesRepeated

Game

Self-study

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Utility and Forward Probability over Time F/G=1

Time

U
til

ity
 a

nd
 

Packet Forward Probability
Utility

Fig. 9.6. (a) Proposed self-learning repeated game and (b) self-learning curve [ c© 2005 IEEE.
Reprinted, with permission, from [6]].

9.6 Spectrum Auction

In this section, we first discuss the basics of auction theory. Then we investigate the
mechanism design for auctions. Finally, we use an example to explain how to utilize
the auction theory for spectrum usage in cognitive radios.

Auction theory is important for practical, empirical and theoretical reasons. First,
a large amount of wireless networking and resource allocation problems can be for-
mulated as auction theory. For example, the routing problem for self-interested users
is studied in [27]. Second, the auction theory has a simple game setup, and many
theoretical results are available for analysis. The definition of auction is as follows.

Definition 9.12. A market mechanism in which an object, service or set of objects, is
exchanged on the basis of bids submitted by participants. Auction provides a specific
set of rules that will govern the sale or purchase (procurement auction) of an object
to the submitter of the most favorable bid.

The interactions and outcome of an auction are determined by the rules, which
include four components:

• Information: what the auctioneer and bidders know before the auction starts.
• Bids: what the bidders submit to the auctioneer to express their interests in the

good.
• Allocation: how the good is allocated among the bidders as a function of the bids.
• Payments: how the bidders pay the auctioneer as functions of the bids and allo-

cation.
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To implement auction theory in wireless networking and resource allocation, the
credit-based system is usually proposed. The individual user can select to pay for
some kind of services such as a route. The payment can be implemented via a cer-
tain central “bank” system. However, this requires more control than the other game
theory approaches, such as non-cooperative games. Moreover, in order to achieve
different design goals such as the network total benefit, the auction method shall be
designed according to different available information. Mechanism design is the tool
for game and auction design.

Mechanism design is the subfield of microeconomics and game theory that con-
siders how to implement good system-wide solutions to problems that involve mul-
tiple self-interested agents, each with private information about their preferences.
The goal is to achieve a social choice function implemented in distributed systems
with private information and rational agents. The design criteria can be different as
follows:

1. Efficiency: select the outcome that maximizes total utility.
2. Fairness: select the outcome that minimizes the variance in utility.
3. Revenue maximization: select the outcome that maximizes revenue to a seller (or

more generally, utility to one of the agents).
4. Budget-balance: implement outcomes that have balanced transfers across agents.
5. Pareto optimality.

One well-known auction mechanism that achieves the efficient allocation is the
Vickery–Clarke–Groves (VCG) auction [28]. In a VCG auction, the bidders are
asked to reveal their bids simultaneously, from which the auctioneer determines the
efficient allocation. The auctioneer then asks each bidder i to pay for the “perfor-
mance loss” of other bidders due to bidder i’s participation in the auction, which
involves solving one additional optimization problem for each bidder. It is well
known that it is a (weakly) dominant strategy for the bidders to bid truths in the
VCG auction, i.e., revealing their true rate increase functions. As a result, the VCG
auction achieves the efficient allocation.

The limitations of the VCG auction for cognitive radio users are as follows.
First, the users (bidders) need to submit the complete information to the central con-
trol unit serving as the auctioneer, which involves revealing users’ complete private
information. This might be overheard by other users and so can lead to security
problems. Also, accurately specifying the information requires much signaling over-
head and communication bandwidth, which may significantly reduce the network
performance. Furthermore, it is usually computationally expensive for solving the
optimization problems.

Due to these concerns, in [29], two simpler share auctions are proposed for cog-
nitive radios. First, we discuss the system model. SupposeK user-CDMA is utilized
with processing gain B. The received SINR is given by

Γi =
PiGii

N0 + 1
B (
∑

j �=i PjGji)
(9.18)
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where Pi is the transmit power, Gij is the channel gain and N0 is the thermal noise
power. User i receives a strictly concave increasing utility as Ui(Γi, θi), where θi is
user-dependent priority parameter.

Next, we discuss the two share auctions, namely the SNR auction and the power
auction. The main advantages of the two auctions are the simplicities of bids and
allocation. The rules of the two auctions are described below, with the only difference
being in payment determination.

9.6.1 Share Auction

• Information: The auctioneer (which can be a cluster head) announces a positive
reserve bid ζ > 0 and a unit price π > 0 to all users before the auction starts.
Here ζ ensures unique outcome, and π is for unit SINR or received power.

• Bids: User i submits bi ≥ 0 to the auctioneer.
• Allocation: The auctioneer allocates transmit power according to

PiGii =
bi∑N

j=1 bj + ζ
P (9.19)

where P is the overall allowable power.
• Payments: In an SNR auction, cognitive user i pays the auctioneer

Ci = π� SNRi. (9.20)

In a power auction, source i pays the relay

Ci = πPiGii. (9.21)

A bidding profile is defined as the vector containing the users’ bids, b = (b1, ..., bK).
The bidding profile of user i’s opponents is defined as b−i = (b1, ..., bi−1,bi+1, ..., bK),
so that b = (bi; b−i) . User i chooses bi to maximize its payoff Ui (bi; b−i, π). The
desirable outcome of an auction is called a Nash equilibrium (NE), which is a bidding
profile b∗ such that no user wants to deviate unilaterally, i.e.,

Ui

(
b∗i ; b

∗
−i, π

)
≥ Ui

(
bi; b∗−i, π

)
,∀i ∈ 1, . . . ,K,∀bi ≥ 0. (9.22)

Define user i’s best response (for fixed b−i and price π) as

Bi (b−i, π) = {bi|bi = arg max
b̃i≥0

Ui(b̃i; b−i, π)} (9.23)

which in general could be a set. An NE is also a fixed point solution of all users’ best
responses. In [29], the following four questions for both auctions are answered. First,
an NE does exist, and in some mild conditions, the NE is unique. This NE can be
converged by using a distributed iterative algorithm with some partial information
that is private and local. The SNR auction with log utility can achieve weighted
max–min fairness, while the power auction can achieve social optimum for large
bandwidth.
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9.7 Mutual Benefits Through Bargaining

In order for the distributed cognitive users to cooperate with each other, one method
is to give the individuals mutual benefits for cooperative behavior. In most existing
literature, the benefit incentive approach is performed in a framework of “pricing
anarchy,” where a price is announced by the system, so that the distributed users
have to pay high price for non-cooperation and the cooperative behaviors will be
rewarded. However, there are many potential design challenges for the pricing tech-
nique to be employed in cognitive networks. First, the price itself may not represent
the true benefits of the cognitive users. Instead, the price might be artificial so that
autonomous users may just ignore it. Furthermore, pricing technique needs a lot of
computation power and signaling to calculate the optimal price. This is especially
hard to implement in cognitive networks. In addition, if the utility of each user is not
convex, there might be many local optima for the pricing methods. Finally, for the
heterogeneous networks and for the resource allocation with integer/combinatorial
optimization, the pricing techniques are hard to be effective. Because of the above
reasons, we need to have novel perspective and find new approaches to give users
mutual benefits to cooperate.

In daily life, a market is served as a central gathering point, where people can
exchange goods and negotiate transactions, so that people will be satisfied through
bargaining. Similarly, in wireless cognitive networks, there exist some nodes, like
cluster heads, that can serve as a function of the market. The distributed cognitive
users can negotiate via these nodes to cooperate in making the decisions on the
resource usage, such that each of them will operate at its optimum and joint agree-
ments are made about their operating points. Such a fact motivates us to employ the
cooperative game theory [3,30,31], which can achieve the crucial notion of fairness
and maximize the overall system performances. The idea is to negotiate among users
so that the mutual benefits can be obtained, which enlightens us with the new per-
spective on how to provide incentive for cooperation. In the following, we list one
possible problem formulation, a basic illustration of the proposed approaches and
some simulation results.

We have proposed the cooperative game theory approaches for resource allo-
cation in multiple-user multiple-channel scenario within a cluster of cognitive net-
works. The problem can be formulated in the following example. There are K users
and a total of N channels. Each channel can be occupied by only one user so as to
avoid severe co-channel interferences and maintain the basic link quality. Since a
channel condition for a specific channel may be good for more than one user, there
is a competition among users for their transmissions over these good channels. So
this is where the game concept comes in. Moreover there are some other practical
constraints. For example, the maximal transmitted power for each user is bounded by
the maximal transmitted power Pmax, and each user has a minimal rate requirement
Ri

min. To formulate the problem, we define aij = [A]ij = 1, if the ith user occu-
pies the jth channel; aij = 0, otherwise, and [P]ij as the corresponding power. One
example of the optimization goal is to determine different users’ channel assignment
matrix A and power matrix P such that the network objective function U will be
maximized, i.e.,
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max
A,P

U (9.24)

subject to

⎧
⎨

⎩

Assignment:
∑K

i=1 aij = 1,∀j
Minimal rate: Ri ≥ Ri

min,∀i
Maximal power:

∑N
j=1 Pij ≤ Pmax,∀i

where Ri is the ith user’s rate and U can have different definitions for network
objectives such as:

• Maximal rate: U =
∑N

i=1Ri.
• Max–min fairness: U = minRi.
• Nash bargaining solutions: U =

∏K
i=1

(
Ri −Ri

min

)
.

The first two network objectives are widely studied in the literature. In [3], we pro-
posed the concept of Nash bargaining solution (NBS), because of the following two
reasons: first, it can be shown that this network objective will ensure NBS fairness of
allocation in the sense that this NBS fairness is a generalized proportional fairness.
From the simulation results, this NBS fairness ensures that users’ allocated resources
are not affected by other users’ situations. Second, cooperative game theories prove
that there exists a unique and efficient solution under the six axioms shown in [19].
The intelligent merit of this NBS solution is that it can provide a special new tradeoff
between the fairness and efficiency, which is widely researched recently in academia
and industry.

The difficulty to solve (9.24) by traditional methods lies in the fact that the
problem itself is a constrained combinatorial problem and the constraints are non-
linear. Thus the complexities of the traditional schemes are high especially with a
large number of users. Moreover, distributed algorithms are desired for cognitive
networks, while centralized schemes are dominant in the literature. To develop algo-
rithms that can be easily deployed in distributed cognitive networks, we outline the
ideas of the proposed approaches as follows:

Bargaining for two-user case: Due to the facts that in social life most negotiations
are taken between two parties, we first consider the case in which the number of users
K = 2 and we will develop a fast two-user bargaining solution. Since different users
might have different gains over the same channel, the intuitive idea is to allow two
users to negotiate and exchange their occupied channels such that mutual benefits
will be obtained. The difficulty is to determine how to optimally exchange channels,
which is a complex integer programming problem. An interesting low complexity
algorithm was given in [22]. The idea is to sort the order of channels first and then
to use a simple two-band partition for the channel assignment. When signal to noise
ratio (SNR) is high, the two-band partition for two-user channel assignment can be
near optimal for the optimization goal. The possible solution has the complexity
of O(N2) and can be further improved by using a binary search algorithm with a
complexity of only O(N logN).

Multiple users using coalitions: For the case in which the number of users
is larger than two, the computational complexity is very high with respect to the
number of channels. Here, we propose a two-step iterative scheme: first, users are
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Fig. 9.7. (a) Each user’s rate versuss. D2 and (b) overall rate versus. number of users [ c©
2005 IEEE. Reprinted, with permission, from [3]].

grouped into pairs, which are called coalitions. Then with each coalition, the two-
user solution is employed for two users to negotiate and improve their performances
by exchanging channel sets. Further, the users are regrouped and then renegotiated
again. The above regrouping-and-negotiation iteration is repeated until convergence.
By using this scheme, the computational cost can be greatly reduced. Some algo-
rithms such as Hungarian method [32] can be utilized to find the optimal coalition
pairs in each round. These minimal optimization efforts can be performed in the cen-
tral point, such as the cluster head, while lower implementation costs are imposed
on the distributed less-sophisticated users. Moreover, the above-mentioned approach
can also be generalized to other formulated problems dealing with multi-user com-
munications with different optimization goals and constraints.

To demonstrate the effectiveness of the proposed scheme, a simulation is con-
ducted for a multiple-cognitive-user cluster with 32 channels. In Fig. 9.7a, a two-
user case is studied. The rates of both users for the NBS, maximal rate and max–min
schemes are shown versus the second user’s distance from base stationD2. Here the
first user’s location is fixed at 100 m (D1 = 100). For the maximal rate scheme,
the user closer to the base station has a higher rate, and the rate difference is very
large when D1 and D2 are different. For the max–min scheme, both users have the
same rate which is reduced when D2 increases. This is because the system has to
accommodate the user with the worst channel condition. While for the NBS scheme,
user 1’s rate is almost the same regardless of D2 and user 2’s rate is reduced when
D2 increases. This shows that the NBS solution is fair in the sense that the user’s
rate is determined only by its channel condition and not by other interfering users’
conditions.

In Fig. 9.7b, we show the sum of all users’ rates versus the number of users in the
system for three schemes. We can see that all three schemes have better performances
when the number of users increases. This is because of multi-user diversity, provided
by the independent varying channels across the different users. The performance
improvement saturates gradually. The NBS scheme has a similar performance to that
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of the maximal rate scheme and has a much better performance than that of the max–
min scheme. The performance gap between the maximal rate scheme and the NBS
scheme reduces when the number of users is large. This is because more bargain
pair choices are available to increase the system performance. The simulation results
show that the proposed NBS scheme achieves a good tradeoff between fairness and
efficiency.

We propose the idea of mutual benefits using bargaining for ensuring cooperation
of resource allocation. By using cooperative game theory such as Nash bargaining
solution and coalition, users’ performances can be improved by locally exchang-
ing the resources. The wireless cognitive network performance can be significantly
improved and fairness among distributed users can be ensured in a self-organized
way. Many other works are based on the proposed idea. In [33], a dynamic spectrum
access scheme was proposed for ad hoc networks using the bargaining scheme. In
[34], the idea was extended to cognitive radios. In [35], mesh networks were investi-
gated, and in [36], multimedia source coding was also considered.

9.8 Contract Using Cooperative Game

Until now, we have discussed how to play the cooperative game and obtain mutual
benefits by bargaining. To further analyze the benefits and rewards, we investigate
a game coalition that describes how much collective payoff a set of nodes can gain
and how to divide the payoff. The associated analysis concepts include core, Shapley
function and nucleolus. In the following, we will explain these concepts and explain
how to use them in the cognitive radio networks.

Definition 9.13. A coalition S is defined to be a subset of the total set of player K,
S ∈ K. The users in a coalition try to cooperate with each other. The coalition
form of a game is given by the pair (K, v), where v is a real value function, called
characteristic function. v(S) is the value of the cooperation for coalition S with the
following properties:

1. v(∅) = 0
2. (Superadditivity) if S and T are disjoint coalitions (S ∩ T = ∅), then v(S) +
v(T ) ≤ v(S ∪ T ).

The coalition states the benefit obtained via cooperation agreement. But we still need
to study how to divide the benefit to the cooperative users. One of the possible prop-
erties of an agreement is mutual benefit. The agreement is stable since no coalition
shall have the incentive and power to upset the cooperative agreement. The set of
such division of v is called the core defined in the following definitions.

Definition 9.14. A payoff vector x = (x1, . . . , xK) is said to be group rational or
efficient if

∑K
i=1 xi = v(K). A payoff vector x is said to be individually rational if

the user can obtain the benefit no less than acting alone, i.e., xi ≥ v({i}), ∀i. An
imputation is a payoff vector satisfying the above two conditions.
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Definition 9.15. An imputation x is said to be unstable through a coalition S if
v(S) >

∑
i∈S xi, i.e., the users have incentive for coalition S and upset the pro-

posed x. The set C of a stable imputation is called the core, i.e.,

C = {x :
∑

i∈K

xi = v(K) and
∑

i∈S

xi ≥ v(S), ∀S ⊂ K}. (9.25)

Core gives a reasonable set of possible shares. A combination of shares is in a
core if there exists no subcoalition in which its members may gain a higher total
outcome than the share of concern. If the share is not in a core, some members may
be frustrated and may think of leaving the whole group with some other members
and form a smaller group.

To illustrate the idea of core, we give the following example. Suppose the game
with the following characteristic functions:

v(∅) = 0, v({1}) = 1, v({2}) = 0, v({3}) = 1, (9.26)

v({1, 2}) = 4, v({1, 3}) = 3, v({2, 3}) = 5, v({1, 2, 3}) = 8.

By using v({2, 3}) = 5, we can eliminate the payoff vector (such as (4, 3, 1)),
since user 2 and user 3 can achieve better payoff by forming coalition themselves.
Using the same analysis, the final core of the game is (3,4,1), (3,3,2), (3,2,3), (3,1,4),
(2,5,1), (2,4,2), (2,3,3), (2,2,4), (1,5,2), (1,4,3) and (1,3,4).

Core concept defines the stability of an allocation of payoff. However, it does not
define how to allocate the utility. Next, we study each individual player’s power in
the coalition by defining a value called Shapley function.

Definition 9.16. A Shapley function φ is a function that assigns to each possible
characteristic function v a real number, i.e.,

φ(v) = (φ1(v), φ2(v), . . . , φK(v)) (9.27)

where φi(v) represents the worth or value of player i in the game. The Shapley
axioms for φ(v) is

1. Efficiency:
∑

i∈K φi(v) = v(K).
2. Symmetry: If i and j are such that v(S ∪ {i}) = v(S ∪ {j}) for every coalition
S not containing i and j, then φi(v) = φj(v).

3. Dummy Axiom: If i is such that v(S) = v(S ∪ {i}) for every coalition S not
containing i, then φi(v) = 0.

4. Additivity: If u and v are characteristic functions, then φ(u+ v) = φ(v + u) =
φ(u) + φ(v).

It can be proved that there exists a unique function φ satisfying the Shapley
axioms. To calculate the Shapley function, suppose we form the grand coalition by
entering the players into this coalition one at a time. As each player enters the coali-
tion, he receives the amount by which his entry increases the value of the coalition he
enters. The amount a player receives by this scheme depends on the order in which
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the players are entered. The Shapley value is just the average payoff to the players if
the players are entered in completely random order, i.e.,

φi(v) =
∑

S⊂K,i∈S

(|S| − 1)!(K − |S|)!
K!

[v(S) − v(S − {i})]. (9.28)

For the example in (9.26), it can be shown that the Shapley value is φ =
(14/6, 17/6, 17/6).

Another concept for multiple cooperative games is nucleolus. For a fixed charac-
teristic function, an imputation x is found such that the worst inequity is minimized,
i.e., for each coalition S and its associated dissatisfaction, an optimal imputation is
calculated to minimize the maximum dissatisfaction. First we define the concept of
excess which measures the dissatisfactions.

Definition 9.17. The measure of the inequity of an imputation x for a coalition S is
defined as the excess:

e(x, S) = v(S) −
∑

j∈S

xj . (9.29)

Obviously, any imputation x is in the core, if and only if all its excesses are
negative or zero.

Among all allocation, kernel is a fair allocation, defined as in the following

Definition 9.18. A kernel of v is the set of all allocations x such that

max
S⊆K−j,i∈S

e(x, S) = max
T⊆K−i,j∈T

e(x, T ). (9.30)

If players i and j are in the same coalition, then the highest excess that i can make
in a coalition without j is equal to the highest excess that j can make in a coalition
without i.

Finally, we define nucleolus as follows.

Definition 9.19. Nucleolus is the allocation x which minimizes the maximum excess.

x = arg min
x

(max e(x, S), ∀S). (9.31)

The nucleolus has the following property: the nucleolus of a game in coalitional
form exists and is unique. The nucleolus is group rational, individually rational and
satisfies the symmetry axiom and the dummy axiom. If the core is not empty, the
nucleolus is in the core and kernel. In other words, the nucleolus is the best allocation
with the min–max criteria.

To utilize the cooperative game in dynamic spectrum allocation for cognitive
networks, the cognitive users sign a contract for spectrum usage before accessing the
spectrum. This contract ensures that the benefits of cooperation are greater than those
of the individual actions. The core concepts can test whether or not the cooperation
is stable. Then if the average fairness is considered, Shapley values can allocate
different cognitive users their share of cooperation benefits. On the other hand, if the
max–min fairness is considered, the concepts of excess, kernel and nucleolus define
the allocation. Overall, the cognitive users seek the contracts for resource usage that
can benefit all.
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9.9 Centralized Optimization

In this section, we discuss how to formulate the centralized optimization for resource
allocation of cognitive radios. Specifically, we study what the resources are, what
the parameters are, what the practical constraints are and what the optimized per-
formances across the different layers are. In addition, we address how to perform
resource allocation in multi-user scenarios. The tradeoffs between the different opti-
mization goals and different users’ interests are also investigated. This centralized
optimization can serve as the performance upper bound for the other approaches and
can also provide insights for the design of other schemes.

Many resource allocation problems for cognitive radios can be formulated as
constrained optimization problems, which can be optimized from the network point
of view or from the individual point of view. The general formulation can be written
as:

min
x∈Ω

f(x) (9.32)

s.t.

{
gi(x) ≤ 0, for i = 1, . . . ,m
hj(x) = 0, for j = 1, . . . , l

where x is the parameter vector for optimizing the resource allocation, Ω is the feasi-
ble range for the parameter vector and f(x) is the optimization goal matrix, objective
goal or utility function that represents the performance or cost. Here, gi(x) and hj(x)
are the inequality and equality constraints, respectively, for the parameter vector. The
optimization process finds the solution x̄ that satisfies all the inequality and equality
constraints. For the optimal solution, f(x̄) ≤ f(x), ∀x ∈ Ω.

If the optimization goal, the inequality constraints, and the equality constraints
are all linear functions of the parameter vector x, then the problem in (9.32) is called
a linear program. One important characteristic of a linear program problem is that
there is a global optimal point that is very easy to obtain by linear programming.
But on the other hand, one major drawback of linear program is that most of the
practical problems in wireless networking and resource allocation are non-linear.
Therefore, it is hard to model these practical problems as linear programs. If either
the optimization goal or the constraint functions are non-linear, the problem in (9.32)
is a non-linear program. In general, there are multiple local optima in a non-linear
program, and to find the global optimum is not an easy task. Furthermore, if the
feasible set Ω contains some integer sets, the problem in (9.32) is an integer program.
Most integer programs are NP-hard problems which cannot be solved by polynomial
time.

One special kind of non-linear program is a convex optimization problem in
which the feasible setΩ is a convex set, and the optimization goal and the constraints
are convex/concave/linear functions. A convex set is defined as follows.

Definition 9.20. A set Ω is a convex set if for any x1, x2 ∈ Ω and any θ with 0 ≤
θ ≤ 1, we have θx1 + (1 − θ)x2 ∈ Ω.

A convex function f is defined as follows.
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Definition 9.21. A function f is a convex function in x, if the feasible range Ω of
parameter vector x is a convex set, and if for all x1, x2 ∈ Ω and 0 ≤ θ ≤ 1,

f(θx1 + (1 − θ)x2) ≤ θf(x1) + (1 − θ)f(x2).
A function f is strictly convex if the strict inequality holds whenever x1 �= x2 and

0 < θ < 1. A function f is called concave if −f is convex.

If function f is differentiable, and if either the following two conditions hold,
then f is a convex function.

First order condition: f(x2) ≥ f(x1) + ∇f(x1)T (x2 − x1).
Second order condition: ∇2f(x) 	 0.

One important application of the convex function is Jensen’s inequality. Suppose
function f is convex and the parameter x has any arbitrary random distribution over
Ω then the following equality holds

f(E(x)) ≤ E(f(x))
where E denotes expectation.
The advantages of convex optimization for wireless-networking-and-resource-

allocation problems are shown as follows:

• There are a variety of applications such as automatic control systems, estimation
and signal processing, communications and networks, electronic circuit design,
data analysis and modeling and statistics.

• Computation time is usually quadrature. Problems can then be solved, very reli-
ably and efficiently, using interior-point methods or other special methods for
convex optimization.

• Solution methods are reliable enough to be embedded in a computer-aided design
or analysis tool, or even a real-time reactive or automatic control system.

• There are also theoretical or conceptual advantages of formulating a problem as
a convex optimization problem.

The challenges of the convex optimization are to recognize and model the problem
as a convex optimization. Moreover, there are many tricks for transforming problems
into convex forms.

We have discussed the basics for constrained optimization problems. Next we
will see how the problem can be formulated. In resource allocation for cognitive
networks, the parameters, functions and constraints in (9.32) can have the following
physical meaning:

• Parameters

1. Physical layer: transmitted power, modulation level, channel coding rate,
channel/code selection and others.

2. MAC layer: transmission time/frequency, service rate, priorities for transmis-
sion and others.

3. Network layer: route selection, routing cost and others.
4. Application layer: source-coding rate, buffer priority, packet arrival rate and

others.

• Optimization Goals
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1. Physical layer: minimal overall power, maximal throughput, maximal rate
per joule, minimal bit error rate, and others.

2. MAC layer: maximal overall throughput, minimal buffer overflow probabil-
ity, minimal delay and others.

3. Network layer: minimal cost, maximal profit and others.
4. Application layer: minimal distortion, minimal delay and others.

• Constraints
1. Primary user: channel occupancy, interference level and others.
2. Physical layer: maximal mobile transmitted power, available modulation

constellation, available channel coding rate, limited energy and others.
3. MAC layer: contentions, limited time/frequency slot, limited information

about other mobiles and others.
4. Network layer: maximal hops, security concerns and others.
5. Application layer: the base layer transmission, limited source rate, strict delay

requirement, security and others.

After formulating the constrained optimization problem for resource allocation over
cognitive networks, we need to find solutions. In general for centralized optimization,
we classify the different approaches as the following categories.

• Closed-form solution: One of the most important methods used to find a closed
form solution for constrained optimization is the Lagrangian method, which has
the following steps
1. Rewrite (9.32) as a Lagrangian multiplier function J as

J = f(x) +
m∑

i=1

λigi(x) +
l∑

j=1

μjhj(x) (9.33)

where λi and μj are Lagrangian multipliers.
2. Differentiate J over x and set to zero as

∂J

∂x
= 0. (9.34)

3. From (9.34), solve λi and μj .
4. Replace λi and μj in the constraints to get optimal x.
Notice that the difficulty in the Lagrangian method is Step (3) and Step (4), where
the closed form solution is obtained for the Lagrangian multipliers. Some approx-
imations and mathematical tricks are necessary to obtain the closed form solu-
tions.

• Mathematical programming: If the optimization problem is used to find the
best objective function within a constrained feasible region, such a formulation
is sometimes called a mathematical program. Many real-world and theoretical
problems can be modeled in this general framework. There are the four major
subfields of the mathematical programming:
1. Linear programming studies the case in which the objective function is linear

and the feasible set is specified using only linear equalities and inequalities.
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2. Convex programming studies the case where the constraints and the opti-
mization goals are all convex or linear.

3. Non-linear programming studies the general case in which the objective func-
tion or the constraints or both contain non-linear parts.

4. Dynamic programming studies the case in which the optimization strategy
is based on splitting the problem into smaller subproblems, or considers the
optimization problems over time.

• Integer/combinatorial optimization: The discrete optimization is the problem in
which the decision variables assume discrete values from a specified set. The
combinatorial optimization problems, on the other hand, are problems of choos-
ing the best combination out of all possible combinations. Most combinatorial
problems can be formulated as integer programs. In cognitive radio resource allo-
cation, many variables have only integer values such as the modulation rate, and
other variables such as the channel allocation have a combinatorial nature. Inte-
ger optimization is the process of finding one or more best (optimal) solutions in
a well-defined discrete problem space. The major difficulty with these problems
is that we do not have any optimality conditions to check if a given (feasible)
solution is optimal or not. There are several possible solutions such as relaxation
and decomposition, enumeration, cutting planes and the knapsack problem.

Overall, the centralized scheme has the best performance but needs considerable
signaling and overheard. The centralized scheme can fit the network scenarios where
the topology is simple, or can be served as a performance upper bound to compare
with other more practical schemes.

9.10 Degrees of Cooperation

In this section, we conclude this chapter by discussing the degrees of cooperation
for the different approaches. As we have mentioned previously, the non-cooperation
among cognitive radios can significantly reduce the network performances and in
turn the users’ own benefits. The cooperation can bring mutual benefits to cognitive
radio users. However, these benefits do not come for free. Some network infrastruc-
ture is needed to build up these mutual benefits, which cause some design issues.
In the previous sections, we have already discussed the different approaches. Next,
we concentrate on the design issues such as signaling and complexity. Then the pros
and cons are investigated. We further study the best network scenarios under which
a certain approach fits best. By understanding the above issues, finally, we compare
the different approaches.

In cognitive networks, in order to obtain the information such as channel con-
ditions, signaling is performed so that resource allocation can be conducted in an
optimal way. However, signaling incur considerable communication overhead. Most
of the current wireless networks have more than 20% of overhead. Reducing the
overhead can greatly enhance the spectrum utilization, increase the number of users
and improve the network performance. One of the possible ways to reduce overhead
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is to conduct resource optimization using only local information. This is very impor-
tant especially if the system topology is distributed as in cognitive radio networks.

Since the cognitive radios are usually equipped with simple transceivers, the
complexity issue has to be considered. There are two concerns for optimization com-
plexity. First one is how complex the optimization algorithm is, and the second one
is where the optimization is performed. A large number of optimization problems
especially for those with integer nature are NP-hard. To solve the problem, some
suboptimal simple solutions should be developed. Currently, the common hardware
and software can solve the problems with the complexity up to ON2 where N is the
bottleneck parameter. The complexity for the distributed cognitive radio users should
be even lower.

The next important problem for design of wireless cognitive networks is mobility.
Due to the topology changes and channel variation, the optimization needs to be
performed in a timely fashion. This requirement casts a significant challenge for the
iterative solutions and demand for the information without delay. The convergence
speed for the iterative algorithms should be at least as fast as the variation caused
by mobility. For example, in a 3G UMTS system, the closed-loop power control
signal is performed 1500 times per second. This fast update for the iteration can
improve the convergence speed, but on the other hand cause additional overhead for
the signaling. For a non-iterative algorithm, the information must be accurate without
delay. Otherwise, the optimization results will become obsolete and generate inferior
performances.

Different approaches have their own pros and cons, and there is no one “elixir”
that can handle all design problems for all types of networks. In addition, there are
some other design issues that need to be paid attention to. So we need to understand
the strength and weakness for different schemes, so that we can select the one that
fits the network scenario best. In the sequel, we discuss and compare all types of
schemes discussed in this chapter. Table 9.3 summarizes some of the discussions.

• Non-cooperative competition: The cognitive radio users have their own auton-
omy and they access the spectrum in a fully distributed way. The cognitive users
utilize only local information for resource allocation, and no signaling or over-
heard is necessary. The complexity of the non-cooperative competition algo-
rithms is usually low, due to the commonly used convex (or concave) utility
function. This type of approaches can fully adapt to the user mobility, since
the users can simply change their strategies for better payoff if the situations
change. All the above factors are the advantages of non-cooperative competition.
However, the significant problem for such approaches is the possible low per-
formance, due to the severe non-cooperation. Even though the problem can be
improved using techniques such as pricing, the solutions do not come for free.
For example, calculating the optimal price is a difficult problem and might need
considerable signaling, which counteracts the advantages for such approaches.
So the best network scenarios for non-cooperative competition are those where
the Nash equilibria have similar performances to those of the optima. Specifically
for the interference avoidance, if the clusters are located sufficiently far away, the
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Table 9.3. Degrees of cooperation.

Types Cooperation Signaling Pros Cons

Non-cooperative Nash None No overhead, Less
competition equilibria simple efficient
Correlated Outside None No overhead, Convergence
equilibrium convex hull better slow,
and of Nash performance little
learning equilibria mobility
Referee Only good Some for Better Bad stability,
mediation Nash equilibria referee performance low mobility
Repeated Any feasible Perfectly Local No mobility,
interaction solution observed information, need mutual

better than public better dependency,
Nash equilibria information performance false war

Spectrum Nash Some for Simple, No mobility,
auction equilibria auctioneer fair signaling
Bargaining Fair Pareto Only to Simple, Monopoly

optimum partners mobility
Cooperative Fair mutual Global Stable, Signaling
game benefits information fair, before

before autonomous contract,
participation no mobility

Centralized Global Global Optimum, Overhead,
optimization optimum information mobility estimator errors

non-cooperative competition has good performance due to less co-channel inter-
ference.

• Learning for better equilibria: Nash equilibria might not be the best equilibria for
distributed cognitive radio users. Learning scheme can achieve the better equi-
libria using only the past history and without requiring more signaling and over-
head. The complexity of learning algorithms can be relatively high. Moreover,
there is a tradeoff between the convergence speed and complexity. To achieve the
fast convergence speed, the complexity of the learning algorithms can be high.
Some simple learning algorithms have been proved to converge to the optimal
solution with sufficiently long learning time. However, the long learning time
causes a problem for mobility. If the users move frequently, before the learning
algorithms converge, the situations such as network topologies and channel con-
ditions may change. This is similar to slope overload distortion in ADPCM or
delta modulation. Moreover, if the non-cooperative competition is too severe, the
learning algorithms might converge too slowly, fluctuate or become very sensi-
tive to randomness. So the learning schemes fit the situation in which the non-
cooperative competition is not so severe; there is an achievable gap between Nash
equilibria and the optimal solutions; and the network mobility is sufficiently low.
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• Referee mediation: To overcome the challenges for the learning schemes, a vir-
tual referee can improve the outcome of non-cooperative competition by inter-
vening in the game rules. The virtual referee needs to collect the information
so as to improve the equilibria. However, this information exchange burden is
not severe since it is only necessary when the networks are balanced to unde-
sired equilibria. The complexity for this type of approaches is relatively low.
Mobility is not an issue, if the network changes can be handled mostly by the
non-cooperative competitions and the frequency for virtual referee’s mediation
is not too high. However, the referee mediation approaches require the assump-
tions that all the cognitive radios are able to follow the instructions to change the
game rules. So the cognitive radio users are not fully autonomous. Moreover, too
much intervention by the virtual referee can cause a network stability problem.
This type of approach fits the similar scenarios like the learning schemes except
that the cognitive users can have a certain extent of mobility.

• Threat and punishment from repeated interactions: If the cognitive radio users
belong to different authorities, they will not listen to the virtual referee. Under
this condition, threat and punishment from repeated interactions can be utilized to
enforce user cooperation. There is public information that needs to be received
accurately by all cognitive users who use this information to determine if any
other user deviates from cooperation. Because of this reason, if this public infor-
mation is not accurate, some “false war” can happen among distributed cognitive
users. To a certain extent, the network can deteriorate to total non-cooperation.
The complexity of such an approach is not high, since only detection, coop-
eration and non-cooperation need to be performed. This approach can hardly
handle the mobility, since the deviating users can move from cluster to cluster
to escape future punishment, or equivalently saying that mobile users might not
care too much about future punishment so that they would rather behave non-
cooperatively now. In addition, if some cognitive users have less dependency
on other users, the other users can arbitrarily play non-cooperatively with these
users without worrying about revenge. So this type of approach fits the network
scenarios where the cognitive users have less mobility, have mutual dependency,
and can access public information accurately.

• Spectrum auction: Similar to an auction in real life, a spectrum auction requires
an auctioneer who can handle the bidding and resulting resource allocations. The
information exchange requires the signaling of bidding and allocation results,
which can be relatively trivial. The complexity of auction algorithms can be very
high, for example the VCG auction. But the computation burden is for the auc-
tioneer only. The spectrum auction cannot handle mobility. If the mobile users
move, a new auction needs to be implemented. Similar to the referee case, the
cognitive users are required to follow the instructions for resource usage from
the auctioneer. The spectrum auction fits the network scenario without mobility,
and there should be some semi-centralized nodes, such as cluster heads, that can
serve as auctioneers.

• Mutual benefits via bargaining: The bargaining approach can provide the local
mutual benefits to the adjacent cognitive radios. The cognitive users can exchange
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the information locally to bargain on spectrum usage. The overhead is limited to
local users only and the complexity of algorithms is usually low. This type of
approach can handle the mobility, since the bargaining can take place whenever
new mutual benefits appear. Moveover, this bargaining process fits the situations
with integer and combinatorial optimization well. However, if one user occupies
most of the spectrum, it is less efficient for the other cognitive users to negotiate
with this monopolist.

• Contract using cooperative game: This approach is similar to a spectrum auction,
except that there is no need for an auctioneer. Instead, all participant users “put
their cards on the table” and figure out the best strategies for coalitions. The
resulting mutual benefits are divided to cognitive radios according to different
fairness criteria. A lot of information signaling is necessary before the contract
is agreed by all users, but no signaling is needed after that. The complexity of
coalition formation can be high. The mobility is required to be limited, otherwise
the contract becomes obsolete too quickly. The cooperative game fits better if the
users are located densely, so that the information exchange can be easy.

• Centralized scheme: The cognitive radios are the slave type, which means the
users fully cooperate and follow the instructions from the centralized node. The
optimization requires the accurate channel information without delay. For the
scenario of multiple cognitive radio users talking to one common destination
such as a base station, centralized control can be utilized since the channel infor-
mation is constantly collected by the destination to maintain the links. On the
other hand, for the network scenarios like the ad hoc case or the multiple cluster
case, it is very difficult for the channel information to be exchanged over different
destinations. In this situation, the centralized control can hardly be implemented
but can serve as a performance upper bound for the other distributed schemes.
The complexity of the centralized schemes are usually high, due to the non-linear,
non-convex and probably integer or dynamic nature of the optimization prob-
lem. However, the optimization is usually performed in the destination where the
computation ability is relatively high. For mobility, if the channel information is
prompt, the centralized scheme is robust with the channel variation. However, if
the channel information needs to be feeded back or sent via signaling, the delay
can significantly degrade the performance of the centralized scheme.
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10.1 Introduction

The paradox between the overly crowded spectrum and the pervasiveness of idle fre-
quency bands in both time and space indicates that spectrum shortage results from the
current static spectrum management policy rather than the physical scarcity of usable
radio frequencies [1]. To improve spectrum efficiency, researchers in the engineering,
economics, and regulation communities have been actively searching for better spec-
trum management strategies. Under the general term of dynamic spectrum access,
various spectrum reform ideas have been proposed. We provide below a taxonomy
to illustrate the relationship among these diverse ideas.

10.1.1 Dynamic Spectrum Access

The term “dynamic spectrum access” has broad connotations that encompass vari-
ous approaches to spectrum reform, and should be contrasted with the current static
spectrum management policy. As illustrated in Fig. 10.1, dynamic spectrum access
strategies can be generally categorized under three models.

1. Dynamic exclusive use model: This model maintains the basic structure of the
current spectrum regulation policy: spectrum bands are licensed to services for
exclusive use. The main idea is to introduce flexibility to improve spectrum effi-
ciency. Two approaches have been proposed under this model: spectrum property
rights [2, 3] and dynamic spectrum allocation [4]. The former approach allows
licensees to sell and trade spectrum and to freely choose technology. Economy

† This work was supported in part by the Army Research Laboratory CTA on Communication
and Networks under Grant DAAD19-01-2-0011 and by the National Science Foundation
under Grants CNS-0627090 and ECS-0622200.
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Open Sharing Model
Dynamic Exclusive Use Model

(Spectrum Commons Model)
Hierarchical Access Model

Dynamic Spectrum Access

(Ultra Wide Band)
Spectrum Property Rights Dynamic Spectrum Allocation

Spectrum Underlay Spectrum Overlay
(Spectrum Pooling, OSA)

Fig. 10.1. A taxonomy of dynamic spectrum access.

and market will thus play a more important role in driving toward the most prof-
itable use of this limited resource. Note that even though licensees have the right
to lease or share the spectrum for profit, such sharing is not mandated by the
regulation policy.
The second approach, dynamic spectrum allocation, was brought forth by the
European DRiVE project [4]. It aims to improve spectrum efficiency through
dynamic spectrum assignment by exploiting the spatial and temporal traffic
statistics of different services. Similar to the current static spectrum allotment
policy, such strategies allocate, at a given time and region, a portion of the spec-
trum to a radio access network for its exclusive use. This allocation, however,
varies at a much faster scale.
Based on an exclusive-use model, these approaches cannot eliminate white space
in spectrum resulting from the bursty nature of wireless traffic.

2. Open sharing model: Also referred to as spectrum commons [5, 6], this model
employs open sharing among peer users as the basis for managing a spectral
region. Advocates of this model draw support from the phenomenal success of
wireless services operating in the unlicensed ISM band (e.g., WiFi). Central-
ized [7, 8] and distributed [9–11] spectrum sharing strategies have been initially
investigated to address technological challenges under this spectrum manage-
ment model.

3. Hierarchical access model: Built upon a hierarchical access structure with
primary and secondary users, this model can be considered as a hybrid of the
above two. The basic idea is to open licensed spectrum to secondary users and
limit the interference perceived by primary users (licensees). Two approaches to
spectrum sharing between primary and secondary users have been considered:
spectrum underlay and spectrum overlay.

The underlay approach imposes severe constraints on the transmission power
of secondary users so that they operate below the noise floor of primary users. By
spreading transmitted signals over a wide frequency band (UWB), secondary users
can potentially achieve short-range high data rate with extremely low transmission
power. Based on a worst-case assumption that primary users transmit all the time,
this approach does not exploit spectrum white space.

Spectrum overlay was first envisioned by Mitola [12] under the term “spec-
trum pooling” and then investigated by the DARPA XG program [13] under the
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term “opportunistic spectrum access (OSA)”. Differing from spectrum underlay, this
approach does not necessarily impose severe restrictions on the transmission power
of secondary users, but rather on when and where they may transmit. It directly tar-
gets at spatial and temporal spectrum white space by allowing secondary users to
identify and exploit local and instantaneous spectrum availability in a non-intrusive
manner.

Compared to the dynamic exclusive use and open sharing models, this hierarchi-
cal model is perhaps the most compatible with the current spectrum management pol-
icy and legacy wireless systems. Furthermore, the underlay and overlay approaches
can be employed simultaneously to further improve spectrum efficiency.

We point out that the hierarchical access model is sometimes categorized under
the open sharing model (see, e.g., [6]). Spectrum sharing between primary and sec-
ondary users is, however, fundamentally different from spectrum sharing among peer
users in both technical and regulatory aspects. We have thus separated the hierarchi-
cal access model from the open sharing model in the above taxonomy.

10.1.2 Cognitive Radio

Cognitive radio is often used as a synonym for dynamic spectrum access. We provide
below a brief introduction to software-defined radio and cognitive radio.

The terms “software-defined radio” and “cognitive radio” were coined by Mitola
in 1991 and 1998, respectively. Software-defined radio, sometimes shortened to soft-
ware radio, is generally a multi-band radio that supports multiple air interfaces and
protocols and is reconfigurable through software run on DSP or general-purpose
microprocessors [14]. Cognitive radio, built upon a software radio platform, is a
context-aware intelligent radio capable of autonomous reconfiguration by learning
and adapting to the communication environment [15]. While dynamic spectrum
access is certainly an important application of cognitive radio, cognitive radio repre-
sents a much broader paradigm where many aspects of communication systems can
be improved via cognition.

10.2 Cognitive MAC for Opportunistic Spectrum Access

In this chapter, we focus on the overlay approach under the hierarchical access model
(see Fig. 10.1). The term opportunistic spectrum access (OSA) will be adopted
throughout. Our emphasis is on the design of cognitive medium access control
(MAC) protocols for secondary users in OSA networks.

10.2.1 Basic Components of Cognitive MAC

Basic design components of cognitive MAC for OSA include (1) a sensing policy for
real-time decisions about whether to sense and where in the spectrum to sense and (2)
an access policy that determines whether to access based on the sensing outcomes.
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The purpose of the sensing policy is twofold: to identify a spectrum opportunity
for immediate access and to obtain statistical information on spectrum occupancy
for improved future decisions. A balance must be reached between these two often
conflicting objectives, and the trade-off should adapt to the bursty traffic and energy
constraint of the secondary user. For example, when there are energy costs associated
with sensing, a secondary user may decide to skip sensing when its current estimate
of spectrum occupancy indicates that no channels are likely to be idle. Clearly, such
decisions should balance the reward in energy savings with the cost in lost spectrum
information and potentially missed spectrum opportunities.

The objective of the access policy, on the other hand, is to minimize the chance of
overlooking an opportunity without violating the constraint of being non-intrusive.
Whether the secondary user should adopt an aggressive or a conservative access
policy depends on the operating characteristics (probability of false alarm vs. prob-
ability of miss detection, and permissible level of interference) of the spectrum sen-
sor. A joint design of MAC protocols and spectrum sensors at the physical layer is
thus necessary to achieve optimality. Energy constraints will further complicate the
design of access policies. For energy-constrained OSA in fading environments, the
secondary user may avoid transmission when the sensed channel is in a deep fade.
Even the residual energy level will play an important role in decision-making. When
the battery is depleting, should the user wait for increasingly better channel condi-
tions for transmission or should it lower the requirement on channel conditions given
that sensing also costs energy? How is such a decision affected by the accuracy and
energy consumption characteristics of the spectrum sensor? And how sensitive are
such policies to incomplete models and inaccurate model parameter estimates?

The above discussion highlights some of the complexities in the design of a cog-
nitive MAC for OSA in a dynamic network environment with fading, sensing errors,
and energy constraints. It demonstrates that the optimal design of cognitive MAC for
OSA calls for a cross-layer approach that integrates signal processing with network-
ing.

In this chapter, we aim to illuminate the interactions between the physical and
the MAC layers in OSA networks. We focus, in particular, on the impact of sens-
ing errors and channel fading conditions at the physical layer on the optimal sensing
and access policies at the MAC layer. In particular, we present a decision-theoretic
framework first developed in [16–19]. Based on the theory of partially observable
markov decision process (POMDP), this framework integrates the basic components
of OSA, leading to an optimal joint design of signal processing algorithms for oppor-
tunity identification and MAC protocols for opportunity exploitation.

10.2.2 Related Work

A majority of the existing work focuses on spatial spectrum opportunities that are
static or slowly varying in time. Example applications include the reuse of certain
TV-bands that are not used for TV broadcast in a particular region. Due to the slow
temporal variation of spectrum occupancy, real-time opportunity identification is not
as critical a component in this class of applications, and the prevailing approach
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to OSA tackles network design in two separate steps: (1) opportunity identification
assuming continuous full-spectrum sensing; (2) opportunity allocation among sec-
ondary users assuming full knowledge of spectrum opportunities. Opportunity iden-
tification in the presence of fading and noise uncertainty has been studied in [20–24].
Spatial opportunity allocation among secondary users can be found in [25–28] and
references therein. Differing from these works, we focus on the exploitation of tem-
poral spectrum opportunities resulting from the bursty traffic of primary users, For
an overview of challenges and recent development in OSA, readers are referred
to [29, 30].

10.3 The Network and Protocol Model

10.3.1 The Network Model

Consider a spectrum consisting of N channels,1 each with bandwidth Bn (n =
1, · · · , N ). TheseN channels are licensed to a primary network whose users commu-
nicate according to a synchronous slot structure. The traffic statistics of the primary
network are such that the occupancy of these N channels follows a discrete-time
Markov process with 2N states. Specifically, the network state in slot t is given by

S(t) Δ= [S1(t), · · · , SN (t)] where Sn(t) ∈ {0 (occupied) , 1 (idle) } is the occupancy
state of channel n. The state diagram forN = 3 and a sample path of the state evolu-
tion are illustrated in Figs. 10.2 and 10.3, respectively. We assume that the spectrum
usage statistics of the primary network remain unchanged for T slots. We further
assume that the state transition probabilities of the underlying Markov model are

known: Ps,s′
Δ= Pr{S(t + 1) = s′ |S(t) = s}, for every s, s′ ∈ {0, 1}N . In Sec-

tion 10.4.3, we discuss OSA with unknown or mismatched Markov model.
We consider a secondary network that seeks spectrum opportunities in these N

channels (see Fig. 10.3). We focus on an ad hoc network where secondary users
join/exit the network and sense/access the spectrum independently without exchang-
ing local information. In each slot, a secondary user chooses a set of channels to
sense and a set of channels to access. Limited by its hardware constraints and energy
supply, a secondary user can sense no more than L1 (L1 ≤ N ) and access no more
than L2 (L2 ≤ L1) channels in each slot.2 For the ease of presentation, we assume
L1 = L2 = 1. Results presented in this chapter can be extended to general cases as
discussed in [17, 18, 31].

Our goal is to develop cognitive MAC protocols for the secondary network. For
an ad hoc OSA network without a central coordinator or a dedicated communica-
tion channel, it is desirable to have a decentralized MAC protocol where each sec-
ondary user independently searches for spectrum opportunities, aiming at optimizing

1 Here we use the term channel broadly. A channel can be a frequency band with specified
bandwidth, a collection of spreading codes in DS-CDMA network, a set of hopping codes
in FH-SS, or a set of subcarriers in an OFDM system.

2 In principle, we can let L2 = N , i.e., access decisions need not be confined to the currently
sensed set of channels.
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its own performance. Such decentralized protocols do not rely on cooperation among
secondary users.

10.3.2 The Basic Protocol Structure

Without delving into protocol details (which are given in Sect. 10.6), we present
here the basic protocol structure. At the beginning of each slot,3 a secondary user
with data to transmit chooses a channel to sense and decides whether to access based
on the sensing outcome. When the secondary user decides to transmit, it generates a
random backoff time, and transmits when this timer expires and no other secondary
user has already accessed that channel during the backoff time. At the end of the slot,
the receiver acknowledges a successful data transmission. The basic slot structure is
illustrated in Fig. 10.4.

3 Secondary users can synchronize to a slot structure broadcasted by the primary network.
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10.4 The Impact of Sensing Errors on Non-intrusive Cognitive
MAC

We study the impact of sensing errors at the physical layer on the design of cognitive
MAC protocols. We formulate the joint PHY-MAC design of OSA networks as a
constrained partially observable Markov decision process (POMDP). Involved in the
design are three basic components: a spectrum sensor at the physical layer; a sensing
policy, and an access policy, both at the MAC layer.

10.4.1 Problem Formulation

10.4.1.1 Spectrum Sensor

The spectrum sensor of a secondary user detects, at the beginning of each slot, the
availability of the chosen channel. It essentially performs a binary hypotheses test:
H0 (null hypothesis indicating that the sensed channel is idle) vs. H1 (alternative
indicating a busy channel). Let Θa be the sensing outcome (the result of the hypothe-
ses test): Θa = 1 (idle) and Θa = 0 (busy).

If the sensor mistakes H0 for H1, a false alarm occurs, and a spectrum oppor-
tunity is overlooked by the sensor. On the other hand, when the sensor mistakes H1

for H0, we have a miss detection. Let ε
Δ= Pr{Θa = 0 |Sa = 1} and δ

Δ= Pr{Θa =
1 |Sa = 0} denote, respectively, the probabilities of false alarm and miss detec-
tion. The performance of a sensor is specified by the receiver operating character-
istic (ROC) curve which gives the probability of detection 1 − δ as a function of ε
(see Fig. 10.5). We point out that analyzing the ROC curve of the spectrum sensor
in a wireless network environment can be complex. We assume here that the ROC
curve of the spectrum sensor has already been obtained, and we focus on the tradeoff
between false alarm and miss detection. Specifically, we seek to answer the following
question: which point δ on the given ROC curve should the spectrum sensor operate
at?

If the secondary user completely trusts the sensing outcome in decision-making,
false alarms result in wasted spectrum opportunities whereas miss detections lead
to collisions with primary users. To optimize the performance of the secondary user
while limiting its interference to the primary network, we should carefully choose the
sensor operating point. Meanwhile, the spectrum access decisions should be made
by taking into account the sensor operating characteristics. A joint design of the
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spectrum sensor at the physical layer and the access policy at the MAC layer is thus
necessary to achieve optimality.

10.4.1.2 Sensing and Access Policies

The sensing policy specifies, in each slot, which channel to sense, and the access
policy determines whether to transmit based on the sensing outcome. At the begin-
ning of a slot, a secondary user with data to transmit chooses a channel a ∈
{1, . . . , N} to sense. Based on the sensing outcome Θa, the secondary user decides
whether to transmit over the sensed channel: Φa ∈ {0 (no access), 1 (access)}.
At the end of the slot, the receiver acknowledges a successful data transmission:
Ka ∈ {0 (unsuccessful), 1 (successful)}. Note that an acknowledgement Ka = 1 is
obtained if and only if the secondary user chooses to access Φa = 1 and the channel
is idle Sa = 1, i.e.,

Ka = 1[Sa=1,Φa=1]. (10.1)

A reward R(a,Φa)
Ka

is accrued depending on Ka. Assuming that the number of infor-
mation bits that can be transmitted is proportional to the channel bandwidth, we
define the reward R(a,Φa)

Ka
obtained by choosing sensing and access action (a,Φa) as

R
(a,Φa)
Ka

= KaBa. (10.2)

Due to partial spectrum monitoring and sensing errors, the secondary user and
the receiver cannot directly observe the current state of the spectrum occupancy. We
thus have a POMDP.

It has been shown in [32] that the knowledge of the current spectrum occu-
pancy state based on all past decisions (i.e., sensing and access actions) and obser-
vations (i.e., acknowledgements) can be summarized by a belief state
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λ(t) Δ= {λs(t)}s∈{0,1}N , where
∑

s λs(t) = 1. Each element λs(t) of the belief
state λ(t) is the conditional probability (given the decision and observation his-
tory) that the current spectrum occupancy state is given by s ∈ {0, 1}N prior to the
state transition in slot t. Hence, a sensing policy πs is given by a sequence of func-
tions: πs = [μ1, . . . , μT] where μt : [0, 1]2

N → {1, . . . , N} maps the belief state
λ(t) ∈ [0, 1]2

N

at the beginning of slot t to a channel a ∈ {1, . . . , N} to be sensed.
An access policy πc is given by a sequence of functions: πc = [ν1, . . . , νT] where
νt : [0, 1]2

N × {0, 1} → {0, 1} maps the belief state λ(t) ∈ [0, 1]2
N

and the sensing
outcome Θa ∈ {0, 1} of the chosen channel a to an access action Φa ∈ {0, 1}.

10.4.1.3 Design Objective

We want to determine the optimal sensor operating point δ and the optimal sensing
and access policies {πs, πc}. The objective is to maximize the total expected reward
(equivalently the throughput of the secondary user) in T slots under the collision
constraint:

{δ∗, π∗s , π∗c} = arg max
δ,πs,πc

E{δ,πs,πc}

[
T∑

t=1

R
(a,Φa)
Ka

(t)

∣∣∣∣∣λ(1)

]

s.t. Pa(t) = Pr{Φa(t) = 1 |Sa(t) = 0,λ(t)} ≤ ζ holds

for any a and t such that Pr{Sa(t) = 0 |λ(t)} > 0 (10.3)

where E{δ,πs,πc} is the expectation given that sensing and access policies {πs, πc}
are employed and sensor operates at point δ, λ(1) is the initial belief state which is
usually given by the stationary distribution of the spectrum occupancy states. Note
that when Pr{Sa(t) = 0 |λ(t)} = 0, i.e., channel a is available with probability 1
in slot t, the constraint in (10.3) becomes irrelevant and the secondary user’s access
decision is simply Φa(t) = 1. In the rest of this section, we consider the non-trivial
case where Pr{Sa(t) = 0 |λ(t)} > 0 in any channel a and slot t.

10.4.2 Separation Principle for Optimal Joint Design

The design objective given in (10.3) is a constrained POMDP, which usually requires
randomized policies to achieve optimality. In this case, a sensing policy determines
the mapping from the current belief state to the probability of choosing each chan-
nel and an access policy the mapping from the current belief state to the transmis-
sion probabilities under different sensing outcomes. Since there exist uncountably
many probability distributions, randomized policies are computationally prohibitive.
In this section, we establish a separation principle for the optimal joint design. This
separation principle reveals the existence of deterministic optimal sensing and access
policies, leading to significant complexity reduction. It also enables us to obtain, in
closed-form, the optimal sensor operating point and the optimal access policy.
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10.4.2.1 The Impact of Sensor Operating Point on Access Policy

Let fθ
a (λ(t), t) be the probability of transmitting over chosen channel a given sens-

ing outcome Θa = θ and belief state λ(t) at the beginning of slot t. In Theorem 10.1,
we provide closed-form optimal transmission probabilities (f1

a (λ(t), t), f0
a (λ(t), t))

for different sensor operating points δ.

Theorem 10.1. The optimal access policy is time-invariant and belief-independent.
Specifically, the optimal transmission probabilities are solely determined by the sen-
sor operating point δ and the maximum allowed probability of collision ζ, i.e., for
any chosen channel a, belief state λ(t), and slot t, we have

(f1
a (λ(t), t), f0

a (λ(t), t)) =

⎧
⎪⎨

⎪⎩

(1, ζ−δ
1−δ ), δ < ζ

(1, 0), δ = ζ

( ζ
δ , 0), δ > ζ.

(10.4)

Proof. See [33] for details.

Theorem 10.1 enables us to study the impact of sensor operating characteristics
on the optimal access policy. As illustrated in Fig. 10.6, the ROC curve can be par-
titioned into two regions: the “conservative” region (δ > ζ) and the “aggressive”
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Fig. 10.6. The partition of an ROC curve.
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region (δ < ζ). When δ > ζ, the spectrum sensor is more likely to misidentify
an opportunity (i.e., a busy channel is sensed to be idle). Hence, the access policy
should be conservative to ensure that the probability of collision is bounded below
ζ. Specifically, even when the sensing outcome Θa = 1 indicates that the channel is
available, the user should only transmit with probability ζ

δ < 1. When the channel
is sensed to be busy: Θa = 0, the user should trust the sensing outcome and refrain
from transmission. On the other hand, when δ < ζ, the spectrum sensor is more
likely to overlook an opportunity (i.e., an idle channel is sensed to be busy). Hence,
the user should adopt an aggressive access policy: always transmit when the chan-
nel is sensed to be available and transmit with probability ζ−δ

1−δ > 0 even when the
channel is sensed to be busy. When δ = ζ, the optimal access policy is deterministic:
always trust the sensing outcome.

10.4.2.2 The Separation Principle

Given belief state λ(t) at the beginning of slot t, we rewrite the design constraint in
(10.3) as

Pa(t) =
1∑

θ=0

Pr{Φa = 1 |Θa = θ}Pr{Θa = θ |Sa(t) = 0}

= δf1
a (λ(t), t) + (1 − δ)f0

a (λ(t), t). (10.5)

Careful inspection of (10.4) and (10.5) reveals that the constraint given in (10.3) is
satisfied regardless of the chosen channel. We thus have a separation principle (Theo-
rem 10.2) for the optimal joint OSA design, which decouples the design of spectrum
sensor and access policy from that of sensing policy. Following this separation prin-
ciple, we obtain closed-form optimal sensor operating point δ∗ and access policy π∗c
in Theorem 10.3.

Theorem 10.2. Separation Principle The joint design of OSA formulated in (10.3)
can be obtained in two steps without losing optimality. First, choose sensor operating
point δ and access policy πc according to (10.4) to maximize the expected immediate
reward. Second, choose sensing policy πs to maximize the expected total reward.

Proof. See [33] for details.

Theorem 10.3. The optimal sensor operating point is δ∗ = ζ. The optimal access
policy π∗c is given by Φ∗

a = Θa.

Proof. See [33] for details.

Theorem 10.3 reveals the existence of deterministic optimal access policy for the
constrained POMDP given in (10.3). Specifically, the optimal access policy π∗c is to
simply trust the sensing outcome: Φ∗

a = Θa, i.e., access if and only if the channel is
detected to be available.
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10.4.2.3 The Optimal Sensing Policy

In Theorem 10.3, we have obtained the optimal sensor operating point δ∗ and the
optimal access policy π∗c . Since δ∗ and π∗c have been chosen to ensure the constraint
regardless of the chosen channel, we are free to search for the optimal sensing policy
π∗s over the whole design space. The design of the sensing policy thus becomes an
unconstrained POMDP, where optimality can be achieved by deterministic policies.

Let Vt(λ(t)) denote the maximum total expected reward obtained from slot t,
1 ≤ t ≤ T , given the belief state λ(t) at the beginning of slot t. Given sensor
operating point δ∗ and access policy π∗c , we obtain Vt(λ(t)) recursively by

Vt(λ(t)) = max
a

∑

s∈{0,1}N

∑

s′∈{0,1}N

λs′(t)Ps′,s

1∑

ka=0

Qs(ka)

× [kaBa + Vt+1(T (λ(t) | a, ka))], 1 ≤ t < T

VT(λ(T )) = max
a

∑

s∈{0,1}N

∑

s′∈{0,1}N

λs′(t)Ps′,sQs(1)Ba (10.6)

where Qs(0) = 1 − Qs(1), Qs(1) Δ= Pr{Ka = 1 |S(t) = s} = 1[sa=1](1 − ε∗)
is the probability of successful transmission when the current spectrum occupancy
S(t) is in state s = [s1, . . . , sN ]. Note that 1[sa=1] indicates whether channel a is idle
given S(t) = s and ε∗ is the probability of false alarm that can be achieved when the
spectrum sensor operates at δ∗. The updated belief state λ(t+ 1) = T (λ(t) | a, ka)
can be obtained via Bayes rule as

λs(t+ 1) =

∑
s′∈{0,1}N λs′(t)Ps′,sQs(ka)

∑
s∈{0,1}N

∑
s′∈{0,1}N λs′(t)Ps′,sQs(ka)

. (10.7)

The optimal sensing policy π∗s can be obtained by solving the optimality equation
given in (10.6). It is shown in [32] that Vt(λ(t)) is piecewise linear and convex,
leading to a linear programming procedure for calculating π∗s .

Suboptimal sensing policies with reduced complexity are developed in [16, 17, 34].

10.4.3 Simulation Examples

In this section, we provide simulation examples to study the cognitive nature of the
MAC protocols developed within the POMDP framework and the impacts of sensor
operating point δ and mismatched Markov model on the performance of the opti-
mal OSA.

10.4.3.1 Simulation Setup

We consider N = 3 independently evolving channels with the same bandwidth
Bn = 1. As illustrated in Fig. 10.7, the state transition of spectrum occupancy can be
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Fig. 10.7. The Markov model of independently evolving channels.

characterized by α
Δ= [α1, α2, α3] and β

Δ= [β1, β2, β3], where αn denotes the proba-
bility that channel n transits from state 0 (busy) to state 1 (idle) and βn denotes the
probability that it stays in state 1. We assume that the spectrum occupancy dynamics
remain unchanged over T = 10 slots. The throughput of the secondary user is mea-
sured by the expected total reward per slot, i.e., V1(λ(1))/T , where λ(1) is given by
the stationary distribution of the underlying Markov process.

At the beginning of each slot, the spectrum sensor takes M measurements
{Yi}M

i=1 of the chosen channel. We assume that both the channel noise and the signal
of primary users can be modeled as white Gaussian processes N . Then, the spectrum
sensor performs the following hypotheses test:

{
H0 (idle channel) : Yi ∼ N (0, σ2

0), i = 1, · · · ,M
H1 (busy channel) : Yi ∼ N (0, σ2

1), i = 1, · · · ,M

where σ2
0 is the noise power and σ2

1 is the primary signal power. The energy detector
is optimal under Neyman–Pearson (NP) criterion [35, sect. 2.6.2]:

M∑

i=1

Y 2
i ≷H1

H0
η (10.8)

where the threshold η determines the false alarm and miss detection rates of the
detector. The ROC curve of the energy detector is given by [35, Sect. 2.6.2]

1 − δ = 1 − γ
(
M

2
, η
σ2

0

σ2
1

)
, ε = 1 − γ

(
M

2
, η

)
(10.9)

where (σ2
1 −σ2

0)/σ2
0 is the SNR and γ(n, a) = 1

Γ(n)

∫ a

0
tn−1e−t dt is the incomplete

gamma function. In all the figures, we assume M = 10 and SNR = 5 dB.

10.4.3.2 The Cognitive Nature of POMDP Modeling

As discussed in Sect. 10.2.1, a fundamental tradeoff in the design of sensing poli-
cies is between obtaining immediate spectrum access and gaining spectrum statis-
tical information for future use. To illustrate this, we consider a simple static sens-
ing strategy that chooses the channel most likely to be available (weighted by its
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bandwidth) based on the stationary distribution of the underlying Markov process.
In this case, the secondary user simply waits on a particular channel predetermined
by the spectrum occupancy statistics and the channel bandwidths. Such an approach
ignores information, about the underlying state of the Markov process, that can be
obtained from the sensing outcomes. Missing in this approach is that every sensing
outcome provides information on the state of the underlying Markov process. Chan-
nel selection should be based on the a posterior distribution of channel availability
that exploits the whole history of sensing outcomes, i.e., the belief state. As demon-
strated in this section, the optimal sensing strategy is one of sequential decision mak-
ing that achieves the best trade-off between gaining immediate access in the current
slot and gaining system state information for future use. We illustrate in Fig. 10.8
the potential gain of optimally using the observation history assuming perfect sens-
ing. Plotted in Fig. 10.8 is the throughput of the secondary user as a function of
time. We see from this figure that the performance of the optimal approach improves
over time, which results from the increasingly accurate information on the system
state obtained by accumulating observations. Approximately 40% improvement is
achieved over the static approach.

10.4.3.3 Impact of Sensor Operating Point on MAC Performance

Figure 10.9 illustrates the impact of sensor operating point δ on the throughput and
the optimal access policy of the secondary user. The upper figure plots the maxi-
mum throughput of the secondary user for each given sensor operating point δ. The
optimal access policy is specified by the transmission probabilities (f0

a , f
1
a ), which

are shown in the middle and the lower figures, respectively. We can see that the
maximum throughput is achieved at δ∗ = ζ = 0.05 and the transmission probabil-
ities change with δ as given by Theorem 10.1. Interestingly, the throughput curve
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Fig. 10.8. The cognitive nature of POMDP modeling.
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Fig. 10.9. The impact of sensor operating point on the throughput in normalized units. α =
[0.2, 0.4, 0.6], β = [0.8, 0.6, 0.4], ζ = 0.05.

is concave with respect to δ in the “aggressive” region (δ < ζ) and convex in the
“conservative” region (δ > ζ). The performance thus degrades at a faster rate when
the sensor operating point drifts toward the “conservative” region. This suggests that
miss detections (which lead to collisions) are more harmful to the performance of
OSA than false alarms (which represent missed opportunities).

10.4.3.4 OSA with Unknown or Mismatched Model

If the transition probabilities of the Markov model are unknown, formulations and
algorithms for POMDP with an unknown model exist in the literature [36] and can
be applied to the problem of OSA design. Here we study the impact of mismatched
Markov model on the performance of the optimal OSA.

We assume that the spectrum occupancy evolves according to the transition prob-
abilities given by α and β while the secondary user employs the optimal OSA policy
based on inaccurate transition probabilities α′ and β′. In the upper plot of Fig. 10.10,
we plot the relative throughput loss of the secondary user as a function of the rela-

tive error ψ in transition probabilities which is given by ψ = α′
n−αn

αn
× 100% =

β′
n−βn

βn
× 100%. Clearly, the maximum throughput is achieved when the relative

error is zero (i.e., the secondary user has accurate information on transition proba-
bilities). Inaccurate transition probabilities can cause performance loss. We find that
the relative performance loss is below 4% even when the absolute relative error is
up to 20%. In the lower figure, we examine the probability of collision perceived by
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Fig. 10.10. The impact of inaccurate transition probabilities on the throughput of the secondary
user. α = [0.2, 0.4, 0.6], β = [0.8, 0.6, 0.4], ζ = 0.05.

the primary network. We find that the probability of collision is not affected by mis-
matched transition probabilities. The reason behind this observation is the separation
principle: the optimal sensor operating point and the optimal access policy, which
determine the probability of collision, are independent of the spectrum occupancy
dynamics.

10.5 The Impact of Fading on Energy-Constrained Cognitive
MAC

In this section, we study the impact of channel fading conditions at the physical layer
on the design of cognitive MAC protocols under energy constraints. We show that
the problem can again be formulated within the framework of POMDP. Optimal and
suboptimal sensing and access policies with reduced complexity are obtained for
energy-constrained OSA networks in fading environments. To isolate the effect of
energy constraint on the design of cognitive MAC, we assume that sensing errors are
negligible.

10.5.1 Energy and Fading Model

The network model is the same as that given in Sect. 10.3. We present below the
energy and channel fading model.

We assume that channels between the secondary user and its destination follow
a block fading model. That is, the channel gain in a slot is a random variable (RV)
identically and independently distributed (i.i.d.) across slots but not necessarily i.i.d.
across channels.
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Let Es(n) and Etx(n) denote, respectively, the energy consumed in sensing and
accessing channel n in a slot. For simplicity, we assume that sensing energy con-
sumption Es(n) is identical for all channels: Es(n) = es for every n. Note that
the transmission energy consumption Etx(n) is a RV depending on the current fad-
ing condition of channel n. In general, the better the channel condition, the lower
the required transmission energy. Let L be the number of power levels at which the
secondary user can transmit and εk the energy consumed in transmitting at the kth
power level in a slot. The transmission energy consumption Etx(n) thus has realiza-
tions restricted to a finite set Etx given by

Etx(n) ∈ Etx
Δ= {εk}L

k=0 (10.10)

where 0 < ε1 < · · · < εL < ∞ and ε0 = 0 indicates that the secondary user does
not transmit. We also consider the energy ep consumed in the sleeping mode of the
secondary user.

Let E denote the residual energy level of a secondary user at the beginning of a
slot. Note that E is an RV determined by the channel conditions and the sensing and
access decisions in all previous slots. Thus, E belongs to the finite set Er given by

E ∈ Er
Δ= {e : e = E0 −

L∑

k=0

ck(es + εk) − cep, e ≥ 0, c, ck ≥ 0, c, ck ∈ Z} ∪ {0}

(10.11)
where ck is the number of slots when the secondary user chooses to sense a channel
and then transmit over it at the kth power level and c is the number of slots when
the secondary user turns to sleeping mode. Section 10.6 discuses how the secondary
user can obtain knowledge of the required power level.

10.5.2 Optimal Energy-Constrained OSA

The energy-constrained OSA can be formulated as a constrained POMDP, which is
usually more difficult to solve than an unconstrained one. By absorbing the resid-
ual energy level of the secondary user into the state space, we reduce a constrained
POMDP to an unconstrained one. Based on the theory of POMDP, we obtain the
optimal sensing and access policies.

10.5.2.1 An Unconstrained POMDP Formulation

State Space. In each slot, the network state is characterized by the current spectrum
occupancy S ∈ {0, 1}N and the residual energy level E ∈ Er of the secondary user
at the beginning of this slot. The state space S can be defined as

(S,E) ∈ S Δ= {(s, e) : s ∈ {0, 1}N , e ∈ Er}. (10.12)

Action Space. After the state transition of spectrum occupancy at the beginning
of each slot, the secondary user can either choose a channel a ∈ {1, . . . , N} to
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sense or go to sleep (a = 0). If the secondary user chooses channel a to sense,
then it will obtain a sensing outcome Θa ∈ {0, 1, . . . , L} which reflects the occu-
pancy state and the fading condition of the chosen channel: Θa = 0 indicates that
channel a is busy (i.e., Sa = 0) and Θa = k (k = 1, . . . , L) indicates that chan-
nel a is idle (i.e., Sa = 1) and the fading condition requires the secondary user
to transmit at the k-th power level (i.e., Etx(a) = εk). Given sensing outcome
Θa, the secondary user decides whether to transmit over the chosen channel. Let
Φa(k) ∈ {0 (no access), 1 (access)} (k = 0, . . . , L) denote the access decision under
sensing outcome Θa = k. Since we have assumed perfect spectrum sensing, the
access decision under Θa = 0 (busy) is simple: Φa(0) = 0 (no access). In this case,
secondary users will not collide with primary users.

The action space A consists of all sensing decisions a and access decisions

Φ̄a
Δ= [Φa(1), . . . ,Φa(L)]:

(a, Φ̄a) ∈ A Δ= {(0, [0, . . . , 0])} ∪ {(a,φ) : a ∈ {1, . . . , N}

φ
Δ= [φ(1), . . . , φ(L)] ∈ {0, 1}L}. (10.13)

Note that the access decision Φ̄0 associated with sensing action a = 0 (sleeping
mode) is determined by Φ0(k) = 0 for all 1 ≤ k ≤ L.

Network State Transition. Recall that the network state consists of two parts: the
spectrum occupancy S and the residual energyE of the secondary user. At the begin-
ning of each slot, the spectrum occupancy S transits independently of the residual
energy E according to transition probabilities {Ps,s′}. As stated in Section 10.3,
we assume that the spectrum occupancy dynamics {Ps,s′} are known and remain
unchanged during the battery lifetime of the secondary user.

If the secondary user decides to sense channel a ∈ {1, . . . , N} in this slot,
then it will consume es in sensing and Φa(Θa)εΘa

in transmitting. Thus, at the
end of this slot, the residual energy of the secondary user reduces to
E′ = TE(E | a,Θa,Φa(Θa)):

TE(E | a,Θa,Φa(Θa)) =

{
E − ep, a = 0
max{E − es − Φa(Θa)εΘa

, 0}, a �= 0
(10.14)

where ep is the energy consumed in the sleeping mode.

Observations. Due to partial spectrum sensing, the secondary user does not have full
knowledge of the spectrum occupancy state in each slot. It, however, can obtain the
occupancy state of the chosen channel a ∈ {1, . . . , N} from sensing outcome (i.e.,
observation) Θa ∈ {0, 1, . . . , L}. Let q(a)

s (k) be the probability that the secondary
user observes Θa = k in the chosen channel a given current spectrum occupancy
state S = s. Under perfect spectrum sensing, we have that

q(a)
s (k) = Pr{Θa = k |S = s} =

{
1[k �=0]pa(k), if a �= 0, sa = 1
1[k=0], if a �= 0, sa = 0

(10.15)



10 Cognitive MAC Protocols for Dynamic Spectrum Access 289

where pa(k) Δ= Pr{Etx(a) = εk} is the probability that the fading condition of chan-
nel n requires the secondary user to transmit at the k-th power level, and 1[x] is the
indicator function: 1[x] = 1 if x is true and 0 otherwise. Note that {pa(k)}L

k=1 are
determined by the fading statistics of channel a and are independent of the spectrum
occupancy state. From (10.15), we can see that

∑L
k=0 q

(a)
s (k) = 1 for any spectrum

occupancy state s ∈ S and any chosen channel a ∈ {1, . . . , N}.
Note that if the secondary user turns to sleep, then it will not have any sensing

outcome. We can define {q(0)s (k)} as arbitrary values that satisfy
∑L

k=0 q
(0)
s (k) = 1.

For simplicity, we define q(0)s (k) = 1[k=0].

Reward Structure. At the end of each slot, the secondary user obtains a non-negative
reward R(a,Φa(Θa))

E,Θa
depending on its residual energy E at the beginning of this

slot, the sensing outcome Θa, and the sensing and access decisions (a,Φa(Θa)).
Assuming that the number of information bits that can be transmitted over a channel
in one slot is proportional to the channel bandwidth, we define immediate reward
R

(a,Φa(Θa))
E,Θa

as

R
(a,Φa(Θa))
E,Θa

Δ=

{
0, a = 0
Φa(Θa)Ba1[E−es−εΘa≥0], a �= 0.

(10.16)

That is, a reward is obtained if and only if the secondary chooses to sense and access
(i.e., a �= 0, Φa(Θa) = 1) an idle channel (i.e., Θa �= 0) and its residual energy is
enough to cope with the channel fade in the selected channel (i.e.,E−es−εΘa

≥ 0).
Note that no reward will be accumulated once the battery energy level drops below
es + ε1, where ε1 is the least required transmission energy. Hence, the total expected
accumulated reward represents the total expected number of information bits that can
be delivered by the secondary user during its battery lifetime.

Belief State At the beginning of a slot, the secondary user has the information of
its own residual energy E but not the current spectrum occupancy state S. As stated
in Section 10.4, its knowledge of S based on all past decisions and observations can
be summarized by a belief state λ = {λs}s∈{0,1}N [32], where λs is the conditional
probability (given the decision and observation history) that the spectrum occupancy
is in state s at the beginning of this slot prior to the state transition.

At the end of a slot, the secondary user can update the belief state λ for future
use based on sensing action a and sensing outcome Θa in this slot. Specifically,

let λ′ Δ= Tλ(λ | a, k) denote the updated belief state whose element λ′s denotes the
probability that the current spectrum occupancy state is S = s given belief state λ at
the beginning of this slot and the observation Θa = k of the chosen channel a in the
current slot. Applying Bayes rule, we obtain λ′s as

λ′s = Pr{S = s |λ, a, k}

=

⎧
⎪⎨

⎪⎩

∑
s′ λs′Ps′,s, a = 0∑

s′ λs′Ps′,s1[sa=1[k �=0]]∑
s

∑
s′ λs′Ps′,s1[sa=1[k �=0]]

, a �= 0
(10.17)
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where the summations are taken over the space {0, 1}N of spectrum occupancy state
S. Note that when the secondary user turns to sleeping mode (a = 0), no obser-
vation is made and the belief state is updated according to the spectrum occupancy
dynamics {Ps,s′}.

Unconstrained POMDP Formulation. We have formulated the energy-constrained
OSA as a POMDP problem. A policy π of this POMDP is defined as a sequence of
functions:

π
Δ= [μ1, μ2, . . .], μt : [0, 1]2

N × Er → A
where {a, Φ̄a} = μt(λ, E) maps every information state (λ, E), which consists
of belief state λ ∈ [0, 1]2

N

and residual energy E ∈ Er, at the beginning of
slot t to a sensing decision a ∈ {0, 1, . . . , N} and a set of access decisions
Φ̄a = [Φa(1), . . . ,Φa(L)] ∈ {0, 1}L.

The design objective is to find the optimal policy π∗ that maximizes the total
expected reward:

π∗ = arg max
π

Eπ

[ ∞∑

t=1

R
(a,Φa(Θa))
E,Θa

(t)

∣∣∣∣∣ λ0

]
(10.18)

where λ0 is the initial belief state given by the stationary distribution of spectrum
occupancy. We thus have an unconstrained POMDP.

10.5.2.2 Optimal Policy

Let V (λ, E) be the value function, which denotes the maximum expected remaining
reward that can be accrued when the current information state is (λ, E). We notice
from (10.16) that the value function is given by V (λ, E) = 0 for any information
state (λ, E) with residual energy E < es + ε1. For any other information state, its
value function V (λ, E) is the unique solution to the following equation:

V (λ, E) = max
(a,φ)∈A

L∑

k=0

u
(a)
k [R(a,φ(k))

E,k + V (Tλ(λ | a, k), TE(E | a, k, φ(k)))]

(10.19)
where Tλ(λ | a, k) is the updated belief state given in (10.17), TE(E | a, k, φ(k))
is the reduced battery energy given in (10.14), and u(a)

k
Δ= Pr{Θa = k |λ} is the

probability of observing Θa = k given belief state λ, which is determined by the
spectrum occupancy dynamics and the channel fading statistics:

u
(a)
k =

∑

s′∈{0,1}N

λs′
∑

s∈{0,1}N

Ps′,s q
(a)
s (k). (10.20)

In principle, by solving (10.19), we can obtain the optimal sensing and access
actions (a∗, Φ∗

a) that achieve the maximum expected reward V (λ, E) for each pos-
sible information state (λ, E). We can also obtain the maximum expected number
of information bits Vopt that can be delivered by a secondary user during its battery
lifetime as Vopt = V (λ0, E0), where λ0 is the initial belief state.
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10.5.3 Optimal Policy with Reduced Complexity

Although the value function given in (10.19) can be solved iteratively, it is computa-
tionally expensive. In this section, we first identify the sources of high complexity of
the optimal policy and then reduce the complexity accordingly.

10.5.3.1 Complexity of the Optimal Policy

We measure the computational complexity of a policy as the number of multiplica-
tions required to obtain all sensing and access actions during the secondary user’s
battery lifetime T when initial belief state and battery energy are given.

We notice from (10.19) that the optimal sensing and access action in the first slot
depends on the value functions of all possible information states during the battery
lifetime T . Hence, the computational complexity of the optimal policy is determined
by the number of multiplications required to calculate the value functions of all pos-
sible information states.

Following the complexity analysis in [34], we can calculate the number of
all possible information states (λ, E) during the secondary user’s battery lifetime.
Specifically, noting from (10.17) that the updated belief state is the same under
all non-zero sensing outcomes (k �= 0), we can see that each information state
(λ, E) can transit to at most L+ 1 different information states under sensing action
a �= 0 but only one under sensing action a = 0. Hence, for fixed initial informa-
tion state (λ0, E0), the number of all possible information states is on the order of
O((N(L + 1))T−1), which is exponential in the battery lifetime T and polynomial
in the number N of channels. Moreover, from (10.19) and (10.20), we can see that
it requires O(3|A|2N2N (L + 1)) multiplications to calculate each value function,
where |A| is the size of the action space, 2N is the dimension of the belief state, and
L+1 is the number of possible observations. Therefore, the computational complex-
ity of the optimal policy is on the order of O(3|A|2N2N (L + 1)(N(L + 1))T−1).
We can see that the complexity is mainly caused by the following three factors: (1)
the number O((N(L+1))T−1) of possible information states; (2) the size |A| of the
action space, and (3) the dimension 2N of the belief state. We will address the first
factor in Section 10.5.4. In this section, we focus on the other two factors.

10.5.3.2 Reduction of Action Space Size

Careful inspection of (10.14), (10.16) and (10.19) reveals that the quantityR(a,φ(k))
E,k +

V (Tλ(λ | a, k), TE(E | a, k, φ(k))) inside the square parenthesis of (10.19) only
depends on the k-th entry φ(k) of the access decision φ̄ and is independent of φ(i)
(i �= k). We can thus simplify (10.19) as

V (λ, E) = max
a∈{0,1,...,N}

{
L∑

k=0

u
(a)
k max

φ(k)∈{0,1}
[R(a,φ(k))

E,k

+ V (Tλ(λ | a, k), TE(E | a, k, φ(k)))]}.
(10.21)
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The maximization in (10.21) is taken over a space with size O(2NL), increasing
linearly with the number L of power levels, while that in (10.19) is taken over the
action space A whose size O(N2L) increases exponentially with L.

Proposition 10.1 states that the optimal access decision Φ∗
a is a threshold policy.

Proposition 10.1. Given the belief state λ and the residual energy level E of the
secondary user at the beginning of a slot, there exists a threshold k∗a associated
with sensing action a ∈ {1, . . . , N} such that the optimal access decision Φ∗

a =
[φ∗a(1), . . . , φ∗a(L)] is given by

φ∗a(k) =

{
1, if k ≤ k∗a
0, if k > k∗a.

(10.22)

Proof. See [18].

Proposition 10.1 can help us avoid the search for optimal access decisions in
some scenarios, resulting in further complexity reduction. Specifically, for each sens-
ing action a �= 0, we can calculate the optimal access decisions φ∗a(k) in a decreas-
ing order of sensing outcome k. Once we have φ∗a(k∗) = 1 for a certain value of k∗,
we can determine the optimal access decisions for all remaining sensing outcomes
k < k∗ without further computation.

10.5.3.3 Reduction of Belief State Dimension

Assume that the spectrum occupancy evolves independently across channels. It has

been shown in [16] that ω
Δ= [ω1, . . . , ωN ], where ωn denotes the probability (con-

ditioned on all previous decisions and observations) that channel n is available at
the beginning of a slot prior to the state transition, is a sufficient statistic for belief
state λ. Note that the dimension of ω increases linearly O(N) with the numberN of
channels while that of λ increases exponentially O(2N ).

Using the belief state ω, we can simplify the value function given in (10.21).
Specifically, let αn = Pr{S′

n = 1 |Sn = 0} denote the probability that channel n
transits from 0 (busy) to 1 (idle) and βn = Pr{S′

n = 1 |Sn = 1} the probability that
channel n remains idle. Then, (10.21) reduces to

V̂ (ω, E) = max
a∈{0,1,...,N}

{(1 − ω′
a)V̂ (T̂λ(ω | a, 0), TE(E | a, 0, 0))

+ ω′
a

L∑

k=1

pa(k) max
φ(k)∈{0,1}

[R(a,φ(k))
E,k + V̂ (T̂λ(ω | a, k), TE(E | a, k, φ(k)))]}

(10.23)

where ω′
0

Δ= 0, ω′
a = ωaβa + (1 − ωa)αa (a ∈ {1, . . . , L}) is the probability that

channel a is available in the current slot given ω, TE(E | a, k, φa(k)) is the reduced

battery energy given in (10.14), and the updated belief state ω̂
Δ= [ω1, . . . , ωN ] =

T̂λ(ω | a, k) is given by
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ω̂n =

⎧
⎪⎨

⎪⎩

0, if a �= 0, n = a, k = 0
1, if a �= 0, n = a, k �= 0
ω′

n, otherwise.

(10.24)

10.5.4 Suboptimal Cognitive MAC with Reduced Complexity

We notice from (10.19) that the optimal sensing and access decisions in a slot rely
on the value functions of all possible information states in the remaining slots, which
significantly increases the computational complexity of the optimal policy. In this
section, we provide a suboptimal solution to energy-constrained OSA, which reduces
the number of value functions used in decision-making. We show that the computa-
tional complexity of this suboptimal strategy can be very favorably traded off with
its performance.

10.5.4.1 The Greedy-w Approach

Referred to as greedy-w approach, the proposed strategy maximizes the total expected
reward in a time window ofw slots. Let Y (a)

w (λ, E) denote the maximum reward that
can be accumulated in a window of w slots given information state (λ, E) and sens-
ing action a. We can calculate Y (a)

w (λ, E) recursively by

Y
(a)
0 (λ, E) = 0

Y (a)
w (λ, E) =

L∑

k=0

u
(a)
k max

φ(k)∈{0,1}
[R(a,φ(k))

E,k

+ max
b∈{0,1,...,N}

Y
(b)
w−1(Tλ(λ | a, k), TE(E | a, k, φ(k)))]

(10.25)

where u(a)
k , Tλ(λ | a, k), and TE(E | a, k, φ(k)) are given in (10.20), (10.17), and

(10.14), respectively. From (10.25), we can see that for any w, Y (a)
w (λ, E) = 0 if

E < es + ε1.
Given belief state λ and residual energy E of the secondary user at the beginning

of a slot, the greedy-w approach chooses channel aw that maximizes the reward
obtained in the next w slots to sense, i.e.,

aw = arg max
a∈{0,1,...,N}

Y (a)
w (λ, E). (10.26)

Given sensing outcome k ∈ {1, . . . , L}, the access decision φaw
(k) of the greedy-w

approach is given by

φaw
(k) = arg max

φ∈{0,1}
{R(aw,φ)

E,k

+ max
b∈{1,...,N}

Y
(b)
w−1(Tλ(λ | aw, k), TE(E | aw, k, φ))]}.

(10.27)
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Next, we consider two extreme cases of the greedy-w strategy.
Case 1: When w = 1, the greedy-1 approach focuses solely on maximizing the
immediate reward. Specifically, the secondary user employing greedy-1 approach
chooses the channel with the maximum expected immediate reward and transmits
whenever the channel is sensed to be available:

a1 = arg max
a∈{1,...,N}

L∑

k=1

u
(a)
k R

(a,1)
E,k

φa1(k) = 1[k �=0].

(10.28)

The greedy-1 approach has the lowest computational complexity.
Case 2: Consider the case when window size w exceeds the maximum battery life-
time of the secondary user. In this case, the network reaches a terminating state in
less than w slots regardless of the sensing and access strategies. Since no reward is
accumulated after the network reaches a terminating state, the greedy-w approach is
equivalent to the optimal strategy.

10.5.4.2 Complexity Vs. Performance

We can see from (10.26) and (10.27) that the sensing and access decisions made by
the greedy-w approach in a slot only depend on the value functions of all possible
information states in the next w slots. Hence, the total number of value functions
required to determine the sensing and access decisions during battery lifetime T is
on the order of O((N(L+1))w−1T ), which is linear in T . Clearly, the computational
complexity of greedy-w approach increases with w.

Next, we compare the performance of the greedy-w approach with the optimal
performance V (λ0, E0). In Fig. 10.11, we plot the total expected number of informa-
tion bits that can be delivered by the secondary user during its battery lifetime. We

w = 1 w = 2 w = 3 Optimal

100%

98.6%
97.0%96.9%

Fig. 10.11. Throughput comparison of the greedy-w and the optimal approaches.
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consider N = 2 independently evolving channels with different occupancy dynam-
ics. As the window size w increases, the performance of the greedy-w approach
improves. It quickly approaches the optimal performance as w increases.

The above observations show that the computational complexity of the greedy-w
approach increases while its performance loss as compared to the optimal perfor-
mance decreases as the window size w increases. Hence, by choosing a suitable w,
usually small, the greedy-w approach can achieve a desired tradeoff between com-
plexity and performance.

10.5.5 Numerical Examples

Equation (10.19) indicates that a sensing and access action (a,φ) ∈ A affects the
total expected reward in three ways: (1) it yields an immediate reward R(a,φ(k))

E,k in
this slot; (2) it transforms the current belief state λ to Tλ(λ, a, k) which summarizes
the spectrum occupancy information up to this slot; (3) it causes a reduction in bat-
tery energy from E to TE(E, a, k, φ(k)), decreasing the remaining battery lifetime.
Hence, to maximize the total expected reward during battery lifetime, the optimal
sensing and access policy should achieve a tradeoff among gaining instantaneous
reward, gaining information for future use, and conserving energy. In this section,
we study the impact of spectrum occupancy dynamics, channel fading statistics, and
energy consumption characteristics on the optimal sensing and access actions.

10.5.5.1 To Sense or Not to Sense?

The secondary user may choose to sense in order to gain immediate reward and spec-
trum occupancy information, but not to sense in order to conserve energy. Hence,
the optimal decision on whether to sense should strike a balance between gaining
reward/information and conserving energy. In Table 10.5.5.1, we study the opti-
mal sensing decision 1[a∗ �=0] in a particular slot under different spectrum occupancy
dynamics and belief states.

We consider N = 2 independently evolving channels with identical spectrum
occupancy dynamics α1 = α2 = α and β1 = β2 = β. We assume that β = 1 − α.
Hence, the stationary distribution of spectrum occupancy state S is given by ω1 =
[0.5, 0.5]. Consider another belief state ω2 = [0, 0] with which the secondary user
has full information on the spectrum occupancy prior to the state transition in this

Table 10.1. The impact of spectrum occupancy dynamics α and belief states ω on the optimal
sensing decision 1[a∗ 	=0]. N = 2, [B1, B2] = [1, 1], E0 = 4, es = 0.6, ep = 0.1, L = 2,
Etx = {1, 2}, pn(1) = pn(2) = 0.5 for n = 1, 2.

α 0.05 0.1 0.4 0.8
ω [0.5,0.5] [0,0] [0.5,0.5] [0,0] [0.5,0.5] [0,0] [0.5,0.5] [0,0]

Sense X X X X X X
Do not sense X X
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slot. Conditioned on the belief states at the beginning of this slot, the conditional
probability that channel n is available can be calculated as Pr{Sn = 1 |ω1} = 0.5
and Pr{Sn = 1 |ω2} = α for n = 1, 2. From Table 10.5.5.1, we find that the
secondary user chooses not to sense only when the conditional probability Pr{Sn =
1 |ω} that the channel is available is very small. We also find that the secondary user
always chooses to sense if the belief state is given by the stationary distribution ω1

of the spectrum occupancy states. The reason behind this is the monotonicity of the
value function V̂ (ω, E) in terms of battery energy E. Specifically, if the secondary
user chooses not to sense, then its belief state at the beginning of next slot will remain
ω1 but its battery energy will be reduced by ep due to energy consumption in the
sleeping mode. The maximum total expected reward that can be obtained is thus
given by V̂ (ω1, E − ep). Since V̂ (ω, E) increases with the battery energy E for
every fixed ω, we have V̂ (ω1, E) ≥ V̂ (ω1, E − ep) and hence the secondary user
should choose to sense whenever it has a stationary belief state.

10.5.5.2 To Access or Not to Access?

Without an energy constraint, the secondary user should always access the channel
that is sensed to be available. However, under the energy constraint, the access deci-
sion should take into account both the energy consumption characteristics and the
channel fading statistics. For example, when the sensed channel is available but has
poor fading condition, should the secondary user access this channel to gain immedi-
ate reward or wait for better channel realizations to conserve energy? In Table 10.2,
we study the impact of sensing energy consumptions es and channel fading statis-
tics {pn(k)}L

k=1 on the optimal access decision φ∗(k) under different observations
k. We find that when sensing energy consumption es is negligible, the secondary
user should refrain from transmission under poor channel conditions and wait for the
best channel realization. However, when es is large, it should always grab the instan-
taneous opportunity regardless of the fading condition because the sensing energy
consumed in waiting for the best channel realization may exceed the extra energy
consumed in combating the poor channel fading.

The access decision should also take into account the channel fading statistics.
Comparing the optimal access decisions in the two cases of Table 10.2 when sens-

Table 10.2. The impact of sensing energy consumptions es and channel fading statistics on
the optimal access decision φ∗(k) under different observations k. N = 2, [B1, B2] = [1, 1],
E0 = 8, ep = 0.1, L = 3, Etx = {1, 2, 3}. Case 1: pn(1) = 0.5, pn(2) = 0.3, pn(3) = 0.2
for n = 1, 2, 3. Case 2: pn(1) = 0.3, pn(2) = 0.3, pn(3) = 0.4.

Sensing energy es 0 0.7 0.8 1.0
Observation k 1 2 3 1 2 3 1 2 3 1 2 3

Case 1 Access X X X X X X X X
Do not access X X X X

Case 2 Access X X X X X X X X X
Do not access X X X
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ing energy is es = 0.8. We find that if the probability that the channel experiences
deep fading is small (case 1), the secondary user should avoid transmitting under
poor channel realizations because the waiting time for a better channel realization is
short and hence the energy wasted in waiting can still be lower than the extra energy
needed to combat the poor channel condition. On the other hand, if the channel tends
to have poor fading conditions (case 2), the secondary user should focus on gaining
immediate reward because of the long waiting time for better channel realizations.

10.6 Protocol Specifics of Decentralized Cognitive MAC

In this section, we present protocol specifics of the cognitive MAC strategies pre-
sented in Sects. 10.4 and 10.5.

10.6.1 Transceiver Synchronization

Without a dedicated communication or control channel, transceiver synchronization
is a key issue in distributed cognitive MAC for OSA networks [16, 17, 37]. Specif-
ically, a secondary user and its intended receiver need to hop to the same channel
at the beginning of each slot in order to carry out the communication. The synchro-
nization problem can be separated into two phases: the initial handshake between the
transmitter and the receiver and the synchronous hopping in the spectrum after the
initial establishment of communication.

There are a number of standard implementations to facilitate the initial hand-
shake. As given in [16, 17, 37], we can borrow the idea of receiver-oriented code
assignment in CDMA ad hoc networks [38]. Specifically, each secondary user is
assigned a set of channels (not necessarily unique) which it monitors regularly to
check whether it is an intended receiver. A user with a message for, say, user A will
transmit a handshake signal over one of the channels assigned to userA. Once the ini-
tial communication is established, the transmitter and the receiver will implement the
same spectrum sensing and access strategy which governs channel selection in each
slot. As detailed in [17,18], the sensing and access strategies presented in Sects. 10.4
and 10.5 ensure synchronous hopping between the transmitter and the receiver in the
presence of collisions, sensing errors, and fading.

Specifically, the structure of the cognitive MAC protocols developed within the
POMDP framework ensures that both the transmitter and the receiver have the same
information on the occupancy state and the fading condition of the sensed channel in
each slot. Hence, at the end of each slot, the transmitter and the receiver will reach
the same updated belief state λ. Since the channel selection is determined by the
information state λ, the transmitter and the receiver will hop to the same channel in
the next slot, i.e., transceiver synchronization is maintained.

10.6.2 Identification of Spectrum Opportunity and Fading Condition

When every secondary user is affected by the same set of primary users, the state of
a channel is the same at both the transmitter and the receiver. Detection of spectrum
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opportunity can thus be carried out at the transmitter alone. When secondary users
are affected by different sets of primary users, however, the state of spectrum occu-
pancy is location dependent; a channel that is idle at a transmitter may not be idle at
the corresponding receiver. In this case, spectrum opportunities need to be identified
jointly by the transmitter and the receiver4 [17, 34]

To achieve joint opportunity identification at both transmitter and receiver, a
scheme based on RTS-CTS exchange is proposed in [17, 37]. We briefly comment
on this scheme using the energy-constrained cognitive MAC given in Sect. 10.5 as an
example, where we show that this scheme also facilitates the estimation of channel
fading conditions.

At the beginning of a slot, the transmitter and the receiver hop to the same chan-
nel. If the channel is sensed to be available, the transmitter generates a random back-
off time. If the channel remains idle when its backoff time expires, it transmits a short
request-to-send (RTS) message to the receiver, indicating that the channel is avail-
able at the transmitter. Upon receiving the RTS, the receiver estimates the channel
fading condition using the RTS, and then replies with a clear-to-send (CTS) message
if the channel is also available at the receiver. The receiver also informs the transmit-
ter of the current fading condition by piggybacking the estimated channel state to the
CTS. After a successful exchange of RTS-CTS, the transmitter and the receiver can
communicate over this channel. At the end of this slot, the receiver acknowledges
every successful data transmission. Note that at the beginning of each slot, the trans-
mitter and the receiver can also choose not to hop to any channel and turn to sleep
mode until the beginning of next slot.

We point out that the RTS-CTS exchange has multiple functions. Besides facil-
itating opportunity identification and channel fading estimation, it also mitigates
the hidden and exposed terminal problem as in a conventional communication net-
work [39]. Other collision avoidance schemes such as busy tone and dual busy tone
may be incorporated to further reduce the occurrence of collision among secondary
users.

Conclusion

In this chapter, we have discussed some of the technical challenges of cognitive MAC
for OSA and made an initial attempt to establish a theoretical framework within
which these challenges can be systematically and collectively addressed. In partic-
ular, the framework of POMDP makes the MAC cognitive; an opportunistic user
makes optimal decisions for sensing and access based on the belief state that summa-
rizes the knowledge of the network state based on all past decisions and observations.

4 In this case, Sn(t) = 1 if channel n is available at both the transmitter and the receiver.
Otherwise, Sn(t) = 0. Strictly speaking, the availability of a channel at the secondary
transmitter is determined by primary receivers rather than primary transmitters in its neigh-
borhood [29]. The detection of primary receivers can be transformed to the detection of
primary transmitters. A detailed presentation can be found in [29].
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This decision-theoretic framework also allows the integration of sensing errors, hard-
ware limitations, and energy constraints into the modeling of cognitive MAC design.
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11.1 Introduction

This chapter deals with game theoretic methods for dynamic spectrum access in
cognitive radio systems. Cognitive radio systems need to employ dynamic spectrum
access methods to efficiently share radio spectrum with other cognitive radios while
avoiding interference with legacy systems. Due to the inherent decentralized nature
of cognitive radio, dynamic spectrum access strategies need to be decentralized. To
address this, we formulate a model in which cognitive radios are players competing
for spectrum resources in a game theoretic setting. The players need to access chan-
nels in a dynamic and uncertain environment to satisfy demand while respecting
system-imposed sharing incentives.

The reader is undoubtedly familiar with the term Nash equilibrium in non-
cooperative games. In this paper we use a more general equilibrium concept called
correlated equilibrium. The concept of correlated equilibria in game theory was
introduced by Aumann [1,2].3 Correlated equilibria are easier to characterize and
more natural to decentralized adaptive algorithms such as those considered here.

The problem of non-cooperative radio resource allocation is addressed elsewhere
in [2–4] from a non-game theoretic perspective, and in [5,6] from a game theoretic
one. Of these, [7] is auction-based and does not fit in our framework. Reference [5]
is very similar to our approach, even employing similar learning-based ideas, but for
a fundamentally different scenario.

Before presenting our main results, including our game theoretic dynamic spec-
trum access model and adaptive learning algorithm, we begin by reviewing the main
ideas in dynamic spectrum access and game theory.
3 Aumann was awarded the 2005 Nobel Prize in Economics. The Nobel Prize press release

in October 2005 reads: “Aumann also introduced a new equilibrium concept, correlated
equilibrium, which is weaker than Nash equilibrium, the solution concept developed by
John Nash, an Economics Laureate in 1994. Correlated equilibrium can explain why it
may be advantageous for negotiating parties to allow an impartial mediator to speak to the
parties either jointly or separately, and in some instances give them different information”.
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11.1.1 Brief Overview of Dynamic Spectrum Access

The proliferation of a wide range of wireless devices and their applications has
resulted in an overly crowded radio spectrum; almost all usable frequencies have
already been assigned. This makes one pessimistic about the feasibility of integrat-
ing emerging wireless services such as large-scale sensor networks into the existing
communication infrastructure.

In contrast to the apparent spectrum scarcity is the pervasiveness of spectrum
opportunity. Extensive measurements indicate that, at any given time and location, a
large portion of licensed spectrum lies unused. For example, over 62% white space
exists in the spectrum under 3 GHz [8]. This paradox between the overly crowded
spectrum and the pervasiveness of idle frequency bands in both time and space indi-
cates that spectrum shortage results from the spectrum management policy rather
than the physical scarcity of usable frequencies.

The underutilization of spectrum has stimulated a flurry of exciting activities in
search for dynamic spectrum access strategies for improved efficiency. Approaches
envisioned for dynamic spectrum access fall under three general models: dynamic
exclusive use, open sharing and hierarchical access.

The dynamic exclusive use model aims to introduce flexibility to the current
command-and-control spectrum regulation policy while maintaining the spectrum
licensees’ right of exclusive use. Specific approaches include spectrum property
rights [9] and dynamic spectrum allotment brought forth by the European DRiVE
project [10]. The open sharing model, also referred to as the spectrum commons
model [11], draws support from the phenomenal success of wireless services oper-
ating in the unlicensed ISM band. It employs open sharing among peer users as
the basis for spectrum management. The hierarchical access model can be consid-
ered as a hybrid of the above two. The basic idea is to open licensed spectrum to
secondary users and limit the interference perceived by primary users (licensees).
One approach to spectrum sharing between primary and secondary users is spectrum
overlay, which was first envisioned by Mitola [12] under the term “spectrum pooling”
and then investigated by the DARPA XG program [13] under the term “opportunistic
spectrum access”. Another approach is spectrum underlay enabled by the technology
of ultra wide band. A more detailed taxonomy of dynamic spectrum access can be
found in Chapter 10.

In this chapter, we focus on the overlay approach to dynamic spectrum access.
This approach directly targets at idle frequency bands in both time and space by
allowing secondary users to identify and exploit instantaneous and local spectrum
availability without causing unacceptable interference to primary users.

While conceptually simple, spectrum overlay presents technical challenges across
the entire networking protocol stack. Basic components of spectrum overlay include
spectrum opportunity identification and spectrum opportunity exploitation. The
opportunity identification module is responsible for accurately identifying and intel-
ligently tracking idle frequency bands that are dynamic in both time and space. The
opportunity exploitation module takes input from the opportunity identification mod-
ule and decides whether and how a transmission should take place. The overall design
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objective of OSA is to provide sufficient benefit to secondary users while protecting
spectrum licensees from interference. We present below a brief overview of major
technical issues and recent development in each module. A more detailed survey of
technical and regulatory issues in spectrum overlay can be found in [14].

11.1.1.1 Spectrum Opportunity Identification

As shown in [15], in a general network setting with spatially varying primary user
activity, spectrum opportunity detection needs to be performed jointly by a secondary
transmitter and its intended receiver. Specifically, a channel is an opportunity when
no primary users in the neighborhood of the secondary transmitter are receiving over
this channel and no primary users in the neighborhood of the secondary receiver are
transmitting over this channel. Spectrum opportunity detection thus has both signal
processing and networking aspects. The problem can, however, be reduced to a clas-
sic signal processing problem: detecting the presence of primary users’ signals [15].
Based on the secondary user’s knowledge of the signal characteristics of primary
users, three traditional signal detection techniques can be employed: matched filter,
energy detector (radiometer) and cyclostationary feature detector [16]. A matched
filter performs coherent detection. It requires the least number of samples to achieve
a given detection power but relies on synchronization and a priori knowledge of pri-
mary users’ signaling. On the other hand, the non-coherent energy detector requires
only basic information of primary users’ signal characteristics but suffers from long
detection time. Cyclostationary feature detector can improve the performance over
an energy detector by exploiting an inherent periodicity in the primary users’ signal.
Details of this type of detectors can be found in [17]. While classic signal detec-
tion techniques exist in the literature, detecting primary transmitters in a dynamic
wireless environment with noise uncertainty, shadowing, and fading is a challenging
problem that has attracted much research attention [18].

Due to hardware limitation and energy cost associated with spectrum monitoring,
a secondary user may not be able to sense all channels in the spectrum simultane-
ously. In this case, the secondary user needs a sensing strategy for intelligent channel
selection to track the time varying spectrum opportunities. The purpose of the sens-
ing strategy is twofold: catch a spectrum opportunity for immediate access and obtain
statistical information on spectrum occupancy so that more rewarding sensing deci-
sions can be made in the future. A tradeoff has to be reached between these two often
conflicting objectives. Within the framework of partially observable Markov decision
processes, optimal opportunity tracking strategies have been studied in [3, 19] and
reviewed in Chapter 10.

11.1.1.2 Spectrum Opportunity Exploitation

Once spectrum opportunities are detected, secondary users need to decide whether
and how to exploit them. Specific issues include whether to transmit given that oppor-
tunity detectors may make mistakes, what modulation and transmission power to use
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and how to share opportunities among secondary users to achieve a network-level
objective.

The optimal design of spectrum access strategies in the presence of spectrum
sensing errors has been addressed in [20,21]. Specifically, the interaction between
the spectrum access protocols at the MAC layer and the operating characteristics
of the spectrum opportunity detector at the physical layer is quantitatively charac-
terized, and the optimal joint design of opportunity detectors, access strategies and
opportunity tracking strategies is obtained. A review of these results is given in Chap-
ter 10.

Modulation and power control in spectrum overlay networks also present unique
challenges not encountered in the conventional wired or wireless networks. Since
secondary users often need to transmit over non-contiguous frequency bands, orthog-
onal frequency division multiplexing (OFDM) has been considered as an attractive
candidate for modulation in spectrum overlay networks [21–23]. Power control for
secondary users needs to take into account the detection range of the opportunity
detector, the maximum allowable interference level and the transmission power of
primary users [15]. This complex networking issue remains largely open.

Spectrum opportunity sharing among secondary users has been addressed in the
context of exploiting locally unused TV broadcast bands (see [1,2,24,25] and refer-
ences therein). For this type of applications, spectrum opportunities are considered
static or slowly varying in time. Real-time opportunity identification is not as criti-
cal a component as in applications that exploit temporal spectrum opportunities. It is
often assumed that spectrum opportunities at any location over the entire spectrum
are known.

In this chapter, we focus on distributed sharing of slowly varying spectrum
opportunities among competing secondary users. Differing from the graph coloring
approach considered in [1,24], game theory is employed to capture the distributed
interaction among selfish secondary users with individual resource demands.

11.1.2 Organization of Chapter

The rest of this chapter is organized as follows. In Sect. 11.2 we introduce the game
theoretic equilibrium and learning concepts that are needed to analyze our decen-
tralized spectrum access model. In Sect. 11.3 we present the spectrum access model
itself, along with algorithms for estimating channel competition, simultaneous adap-
tive learning of distributed resource allocation policies and centralized optimization
of system-level spectral efficiency. The chapter concludes with a brief summary and
discussion.

11.2 Review of Nash and Correlated Equilibrium in Games

Because our dynamic spectrum access model relies on a decentralized decision
approach among secondary users, we rely on game theory to provide operational
algorithms and performance analysis in this chapter. Thus, in this section, we present
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a brief discussion of game theoretic concepts which are to be used, such as Nash and
correlated equilibria, as well as an overview of game theoretic learning algorithms
by which cognitive radios can adaptively discover how to allocate resources in a
competitively optimal fashion.

11.2.1 Equilibrium Definitions

For a game with L players, the problem of each player l = 1, 2, . . . , L is to devise a
rule for selecting their own action X l from a set Sl (with size Sl), in order to maxi-
mize the expected value of a given utility function ul(X1,X2, . . . ,XL). Since each
player only controls one of L variables, the problem requires careful consideration
of the actions of other players, which are unknown in advance.

The central concept in non-cooperative game theory is an equilibrium, which
identifies stable operating points of the system under certain conditions, such as com-
mon knowledge of rationality. The most common such equilibrium is due to Nash
[24], defined as follows:

Definition 11.1. For each player l, who takes random action X l, define a strategy
πl to be a probability distribution on Sl, so that πl(xl) = Pr(X l = xl) for all
xl ∈ Sl. Label the joint (random) action of all players by X, and define the strategy
profile π to be the product of all individual strategies, so that π(x) = Pr(X = x) =∏L

k=1 π
k(xk). (X resides on the space S = S1 × S2 × . . . × SL.) We may write

any strategy profile π as (πl, π−l) for any l, where π−l is the strategy profile of all
players but l. The expected utility to l resulting from π is

ul(π) =
∑

x∈S

ul(x)π(x). (11.1)

Now, π is a Nash equilibrium if each πl is an optimal response to the collection π−l

of strategies of other players. That is,

ul(πl, π−l) ≥ ul(σl, π−l) (11.2)

for all l = 1, 2, . . . , L and all possible alternative strategies σl.

The notation (σl, π−l) means that l uses strategy σl instead of πl.
In this chapter, we find it useful to focus on an important generalization of the

Nash equilibrium, which was proposed in [1,2] and is known as the correlated equi-
librium. This is defined as follows:

Definition 11.2. Define a joint strategy π to be a probability distribution on the prod-
uct space S = S1 × S2 × . . . × SL. That is, π(x) = Pr(X = x) for joint actions
X, x ∈ S. (The expected utility to l resulting from π is again as in (11.1).) We
may decompose any strategy π into marginals (πl, π−l) for any l, where πl is the
marginal action distribution (strategy) of l, and π−l is the marginal strategy of all
players but l. Now, π is a correlated equilibrium if
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ul(πl, π−l) ≥ ul(σl, π−l), (11.3)

for all l = 1, 2, . . . , L and all possible alternative marginal strategies σl that are a
function of πl.

In the correlated equilibrium, strategy π provides each player l with an action
“recommendation” al. Based on this, and knowing π, a player could calculate an
a posteriori probability distribution for the actions of other players, and hence an
expected utility for each action. The equilibrium condition states that there is no devi-
ation rule (represented by a function σl of πl) that would award l a better expected
utility. Combining (11.1) and (11.3), we obtain the equivalent condition:

∑

x−l∈S−l

π(j, x−l)[ul(k, x−l) − ul(j, x−l)] ≤ 0 (11.4)

for all l = 1, 2, . . . , L, and j, k ∈ Sl. That is, for any recommendation j to l, there is
no profitable deviation k. The correlated equilibria comprise a convex set, given by:

CE = {π ∈ Δ(S) : πsatisfies (11.4) ∀ l, j, k}. (11.5)

The correlated equilibrium concept permits coordination between players, and
can lead to improved performance over a Nash equilibrium [1]. If a correlated
equilibrium distribution π(s) can be written as a product of independent marginals
π(s) =

∏L
k=1 π

k(sk), then it also satisfies the definition of a Nash equilibrium. The
set (11.5) is also structurally simpler than the set of Nash equilibria; it is a convex
set, whereas the Nash equilibria are isolated points at the extrema of this set [25].
Since the set of correlated equilibria is convex, fairness between players can also
be addressed in this domain. Finally, decentralized, online adaptive procedures (see
below) naturally converge to (11.5), whereas the same is not true for Nash equilibria
(the so-called law of conservation of coordination [26]).

11.2.2 Adaptive Learning of Equilibria

A particularly interesting application of game theory is its usefulness in develop-
ing adaptive procedures in multiagent environments. Such procedures enable com-
ponents of a system to learn a satisfactory (in game theory, equilibrium) policy for
action through repeated interaction with their common environment. Moreover, these
procedures are completely decentralized; each component interacts with others only
through the effects of the environment, so explicit coordination is not necessary.

We outline the most well-known adaptive game theoretic learning schemes. In
what follows, let n = 0, 1, 2, . . . be discrete time, let X l

n denote the action of player
l at time n, and let X−l

n denote the joint actions of all players but l at time n.

1. Best response: If the common interaction between players is ignored, each player
will simply attempt to maximize its performance, assuming the environment will
remain the same. In the best response scheme, each player simply takes action
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X l
n+1 = argmaxx∈Sl{ul(x,X−l

n )}.

That is, each player l acts optimally, assuming the other players will repeat their
previous actions. Although it fails to account for simultaneous adaptation from
multiple players, this approach can be shown to converge in some special cases,
such as two-player zero-sum games, supermodular games, potential games and
certain types of submodular games.

2. Fictitious play: The most well-known procedure, fictitious play was introduced
in [27] and has been extensively studied since, see [28]. In this scheme, each
player calculates a best response assuming the historical distribution of play is a
good predictor of future actions. That is,

X l
n+1 = argmaxx∈Sl{ul(x, z̄−l

n )}

where z̄−l
n is the empirical joint distribution of play up to time n. Fictitious

play enjoys good convergence properties in practice, although convergence to
Nash equilibrium is known to be false in general. One drawback is the need to
explicitly observe and model the behavior of all opponents, which may not be
appropriate for cognitive radios with limited awareness.

3. Regret-based algorithms: More recently, a general class of algorithms has been
proposed in the form of regret-based learning [28–31]. Regret-based algorithms
are, in a sense, a generalization fictitious play, which replace explicit opponent
modeling with an implicit “regret matrix,” θl

n. This tracks, for every pair of
actions j, k ∈ Sl, the difference in utility if l had taken action k in the past
everywhere it took action j. Given X l

n = j, the probability of X l
n+1 = k is

proportional to θl
n,jk, the regret from j to k. Learning proceeds by exploring

and switching to actions that are perceived as “better” according to this regret
measure.

In this paper we focus on regret-based procedures, as they are simple to imple-
ment and have well-understood convergence properties. Maintenance of θl

n requires
minimal computation and no explicit awareness of other players. The main disadvan-
tage is that players are required to know ul(k,X−l

n ) for all possible k ∈ Sl at each
n. This requirement is removed in modified regret matching [29], which is presented
(modified for our purposes) in Algorithm 11.1.

11.3 Decentralized Dynamic Spectrum Access Through Adaptive
Reinforcement Learning

We consider a system of L cognitive radios, competing for access to C wireless com-
munication channels which may be occupied at any time by primary users, who
have priority in access. At successive time intervals of length Λ, each radio deter-
mines which of the C channels are unoccupied by primary users, and of these, the
transmission rate (quality) sustainable by each channel. The objective of each radio
l = 1, 2, . . . , L is to select a subset of unoccupied channels for use, in order to satisfy
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its current demand level. However, since there is competition, there is no guarantee
that the selected channels will be captured for exclusive use by l. Instead, we consider
a simple slotted CSMA scheme for sharing each channel among users who select it,
and propose a decentralized reinforcement learning scheme that allows each radio to
find a satisfactory channel allocation through repeated channel selections and perfor-
mance measurements.

Once each radio selects a subset of channels for use in a particular time interval,
repeated competition takes place for each selected channel, as follows. Divide time
into K subintervals of length λ/K. In each subinterval k = 1, 2, . . . ,K, all radios l
active on channel i generate a backoff time τ l

k(i); the smallest backoff time captures
the channel for transmission for the remainder of the subinterval, as in a typical
CSMA MAC protocol.

The history of successes and failures over these K channel capture attempts is
used to give performance feedback to each user, i.e., as a sample of how much data it
can expect to transmit over each selected channel. However, we can get more infor-
mation out of these attempts. Specifically, we show how to couple the success/failure
history with the history of backoff times used to estimate the number of users com-
peting for these channels in Sect. 11.3.2. This extra information allows us to increase
the level of cooperation in the cognitive radio problem; instead of merely trying to
satisfy their own demand, users can attempt to minimize their interference with each
other by explicitly favoring uncrowded channels over crowded ones. The complete
radio utility function to accomplish this is formulated in Sect. 11.3.1.

We assume that the environment of the cognitive radio users varies slowly in
time relative to the decision interval length λ. The variation we consider here is in
terms of the channel occupancy of primary users, and the traffic demand level of
individual cognitive radios. Furthermore, the cognitive radio utility function may be
periodically updated by a central base station (see below). These slow variations
in parameters motivate us to consider an adaptive reinforcement learning strategy,
which allows radios to respond to changes in their environment without discarding
everything they have learned to date. This adaptive strategy is based on the decen-
tralized, game theoretic learning procedure of modified regret matching [29], and is
outlined in Sect. 11.3.3.

Finally, even when radios act in the decentralized fashion described above, we
may be able to improve performance by occasionally adjusting the behavior of each
radio from a central controller. Since each radio acts to maximize a utility in our
framework, we propose a scheme which parameterizes the radio utility, and periodi-
cally broadcasts parameter updates from a central controller, or base station, so as to
improve global system performance.

We formulate this parameter adjustment scheme as an optimal “pricing” prob-
lem for the system, which we approach through stochastic optimization techniques.
Suppose that a parameter (price) φ can be periodically broadcast (on a slow time
scale) to each radio. Upon receiving the price update, each radio adjusts its utility
as a function of φ and continues its usual behavior under the new utility. The aim of
the central controller is to discover that φ which maximizes a global utilityG(π(φ)),
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where π(φ) is the long-run (equilibrium) behavior of the radios under the utility
priced by φ.

Since π(φ) and hence G(π(φ)) is difficult or impossible to calculate a priori, a
stochastic approximation approach is necessary for the discovery of the optimal φ.
We propose to investigate Robbins–Monro type algorithms for this purpose [32]. By
estimating the derivative g(φ) ≈ dG(π(φ))/mathrmdφ, we can use for example
the steepest ascent method

φ̂k+1 = φ̂k + αkĝ(φ̂k) (11.6)

to successively approach an optimal φ, where αk > 0.
We propose to use spectral efficiency for our performance measure G(π(φ)),

which measures the time average proportion of available channels actually used by
cognitive radios during a given period. Since radio decisions are decentralized, we
do not expect the spectral efficiency to be 100%, but we hope to make incremental
improvements through our pricing procedure.

A block diagram of our system is given in Fig. 11.1. In total, there are four time
scales in our problem formulation. At the slowest time scale, the base station sets
pricing parameters. Next is the time scale of variation of primary user activity and
demand levels. Third, and much faster, is the decision time scale (intervals of length
λ) of the cognitive radios themselves, and fourth, the fastest time scale (intervals of
length λ/K), are the CSMA channel access attempts. For definiteness, we assume
that pricing changes are on the order of hours, while primary user and demand vari-
ations are on the order of seconds. We take λ to be approximately 1 ms, andK ≈ 10
CSMA attempts per channel allocation decision.

11.3.1 Decentralized Dynamic Spectrum Access Model and Radio Utility

In this section we present a mathematical outline of the decentralized dynamic spec-
trum access problem, which is used to formulate a utility function which each cog-
nitive radio user attempts to maximize.

As above, we divide time into equal slots of length λ, and label each slot by
n = 1, 2, . . . . At the beginning of the nth time slot, we assume each cognitive radio
l = 1, 2, . . . , L has the following information:

1. C, the number of channels available for transmission use in the radio system.
2. C ∈ R

C , a vector giving the quality (bits transmissible per time slot) of each
available channel.

3. Yn ∈ Ψ = {x ∈ R
C : x(i) ∈ {0, 1} for all i = 1, 2, . . . , C}, a vector

showing the current channel usage pattern of primary users; channel i is in use
if Yn(i) = 1.

4. dl
n ∈ R, the current demand level of the cognitive radio user l (in bits per time

slot).
5. A pricing parameter φ(i)n for each channel i = 1, 2, . . . , C, obtained from the

base station.
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Fig. 11.1. Block diagram of decentralized learning system for cognitive radio dynamic spec-
trum access.

All these quantities are static or vary slowly in time, hence each radio knows their
value before a channel allocation decision is made. For example, we will suppose
that the primary user activity Yn evolves according to a Markov chain with transition
matrix I+εQ,where 0 < ε� 1 andQ is a generator matrix with each row summing
to zero.

Next, each radio l chooses a channel allocation action X l
n, according to the learn-

ing scheme outlined in Sect. 11.3.3. For any y ∈ Ψ, define

Ψ⊥(y) = {x ∈ Ψ : x · y = 0} (11.7)

to be the set of vectors in Ψ orthogonal to y. Action X l
n then belongs to the slowly

varying space Sl
n = Ψ⊥(Yn). That is, each player can select any collection of unused

channels. For notational convenience, we adopt the following definition:

Definition 11.3. For any index i = 1, 2, . . . , C and any vector x ∈ Ψ, we say that
i ∈ x if and only if x(i) = 1.

We also denote the joint action of all l decision makers by Xn.
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The joint channel allocation action Xn is then fixed for K successive CSMA
transmission slots n1, n2, . . . , nK , each of length Λ/K. In each transmission slot nk,
each radio l generates a backoff time τ l

nk
(i) for each selected channel i ∈ X l

n. Back-
off times are generated according to a uniform distribution on the interval (0, τmax)
for some fixed parameter τmax. Each radio waits until its backoff time expires then
transmits data in the remainder of the slot only if the channel is sensed clear. If
the smallest backoff time is sufficiently smaller than the next smallest backoff time
(allowing time to sense the channel clear and switch from receive to transmit mode),
then the radio with the smallest backoff time transmits successfully. Otherwise, there
is a collision since two radios will have sensed the channel to be clear and transmitted
data. Thus, each transmission slot is used at most by one radio. For each n, i ∈ X l

n,
and k = 1, 2, . . . ,K, define

γl
nk

(i) = I{ channel i captured by l in slot nk} (11.8)

where I{·} is the usual indicator function.
At the end of the decision time slot n (of length Λ), each radio l has collected the

following information on its CSMA attempts:

γl
n =

{
γl

nk
(i) : i ∈ X l

n, k = 1, 2, . . . ,K
}

(11.9)

τ l
n =

{
τ l
nk

(i) : i ∈ X l
n, k = 1, 2, . . . ,K

}
. (11.10)

This information is used for performance feedback. For each i ∈ X l
n, we calcu-

late the proportional throughput achieved:

Rl
n(i) =

1
K

K∑

k=1

γl
nk

(i). (11.11)

Since the CSMA MAC is random, (11.11) is a random function of the joint deci-
sion Xn. We note that we can take Rl

n(i) = 0 for all i �∈ X l
n, and that E[Rl

n(i)]
clearly decreases in the contention level

∑L
l=1 X l

n(i).
Section 11.3.2 also shows how to use (γl

n, τ
l
n) to obtain an estimate N̂ l

n(i) for the
number of users contending for channel i in decision time slot n.We show there that
the maximum likelihood estimate for the contention level is given by N̂ l

n(i) = 1+θ,
where θ solves ∑

k:γl
nk

(i)=0

aθ
k log(ak)
1 − aθ

k

=
∑

k:γl
nk

(i)=1

log(ak) (11.12)

where ak = 1 − (τ l
k(i) + δ)/τmax, for CSMA parameters (δ, τmax). We will also

give an approximate solution to (11.12).
Given the information from (11.11) and (11.12), we propose a utility function to

guide the reinforcement learning procedure. The utility for radio user l is given by:

ûl(Yn, d
l,X l

n) = −(dl −
C∑

i=1

C(i)Rl
n(i))2 −

C∑

i=1

φ(i)N̂ l
n(i)Rl

n(i). (11.13)
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The following remarks on (11.13) are in order:

1. The utility is implicitly a function of Xn, the actions of all players, through
N̂ l

n(i) and Rl
n(i).

2. It is negative; to maximize (11.13), a radio must match its resources to its
demand (first term), and simultaneously avoid designated crowded channels
(second term).

3. The objective of avoiding other users as directed by the base station, and not
exceeding the demand level dl, enables cooperation between cognitive radio
users.

The observed utility (11.13) is used as feedback to guide future channel allocation
decisions in a decentralized fashion. To accomplish this, each radio takes a sequence
of actions {X l

1,X
l
2, . . . , X

l
n} and observes corresponding rewards {ul

1, u
l
2, . . . , u

l
n}.

This data is used to generate a new action X l
n+1 through a decentralized, adaptive,

regret-based reinforcement learning procedure, as described in Sect. 11.3.3. This
procedure is game theoretic in nature, that is, it converges even when other cognitive
radio users are simultaneously adapting their behavior. This is a critical observation,
since naive, single-agent reinforcement learning procedures rely heavily on a static
environment for convergence, which is not present in a multiagent situation. Game
theoretic algorithms such as the one studied here enables cognitive radio activity to
converge to an equilibrium (specifically a correlated equilibrium), which implies that
each radio adopts a channel allocation that maximizes its own utility in response to
the actions of others. This allows the cognitive radio system to learn, in a completely
decentralized manner, to equitably share the available radio channels.

11.3.2 Channel Contention Estimate

In this section we show how to use the information obtained from repeated CSMA
attempts to estimate the number of cognitive radio users competing for a given
channel. This estimate is required for computing the utility (11.13) for reinforce-
ment learning, and is based solely upon the history of successes and failures of
repeated CSMA channel access attempts over a fixed period, along with the asso-
ciated backoff times used in each attempt. This information is given in (11.9)
and (11.10).

Consider a fixed channel i and a specific active user l.We wish to estimate N̂ l
n(i),

the number of users competing for resource i during decision slot n, based on K
CSMA channel access attempts within that slot.

First, consider a single, general CSMA channel access attempt on channel i, and
suppose there are θ(i) other active users competing for that channel. Each of these
users m �= l chooses a random backoff time τm(i) uniformly on (0, τmax). If l
chooses τ l(i) = t, it captures the channel if t < τm(i) + δ for all θ(i) users m �= l,
where δ is the time required to sense the channel clear and switch from RX to Tx
mode. The probability of this event is given according to the order statistic τ (1)

θ(i), by

Pr(l captures channel) = Pr
(
τ

(1)
θ(i) > t+ δ

)
. (11.14)
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Likewise, we have

Pr(l fails to capture channel) = Pr
(
τ

(1)
θ(i) < t+ δ

)
. (11.15)

It is well known that the order statistics for uniform random variables are given
by the beta distribution. For the first order statistic τ (1)

θ on the interval (0, τmax), the
distribution simplifies to:

Pr
(
τ

(1)
θ(i) > t+ δ

)
=

{(
1 − t+δ

τmax

)θ(i)

, t ≤ τmax − δ
0, t > τmax − δ.

(11.16)

A bit of reflection reveals that this indeed satisfies probabilistic intuition.
Suppose now that during decision interval n, l has recorded the success or fail-

ure of K CSMA attempts, along with the backoff time used in each attempt. These
attempts are labeled n1, n2, . . . , nK . Note that θ(i) is held fixed over theK attempts
by the decision structure. Then l can obtain a maximum likelihood estimate for the
θ(i) by maximizing the quantity:

L(θ(i)) =
∏

k:γl
nk

=1

Pr
(
τ

(1)
θ(i) > τ

l
nk

(i) + δ
)
·
∏

k:γl
nk

=0

Pr
(
τ

(1)
θ(i) < τ

l
nk

(i) + δ
)

(11.17)

=
∏

k:γl
nk

=1

(
1 −

τ l
nk

(i) + δ
τmax

)θ(i)

·
∏

k:γl
nk

=0

⎛

⎝1 −
(

1 −
τ l
nk

(i) + δ
τmax

)θ(i)
⎞

⎠

(11.18)

where τ l
nk

(i) is the backoff time of user l at time index k on channel i and γl
nk

(i)
denotes success or failure of the corresponding CSMA attempt, as in (11.8). The
MLE is simply N̂ l

n(i) = 1 + arg maxθ L(θ(i)).
Differentiating the likelihood (or log likelihood) with respect to θ, we obtain that

the maximizing θ must solve

∑

k:γl
nk

(i)=0

aθ
k log(ak)
1 − aθ

k

=
∑

k:γl
nk

(i)=1

log(ak) (11.19)

where ak = 1 − (τ l
k(i) + δ)/τmax.

Equation (11.19) is difficult to solve analytically. Numerically, we can state the
following general properties:

1. N̂ l
n(i) increases with the number of channel access failures.

2. N̂ l
n(i) increases on average with the maximum successful backoff time.

3. N̂ l
n(i) increases on average with the minimum unsuccessful backoff time.
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Fig. 11.2. Numerical plot of the (log) average of estimates N̂ l
n(i). z denotes the number of

failed CSMA attempts out of K = 10, and the maximum backoff time is τmax = 1. Each data
point represents an average over 5000 randomly generated observations satisfying the given
limits for success and failure times.

A plot of N̂ l
n(i) is given in Fig. 11.2 for K = 10 CSMA attempts and δ = 0.

For each data point, we specified the number of CSMA channel access failures z =
1, 3, 5, 7, 9 as well as the maximum and minimum backoff times of the successful
and unsuccessful CSMA attempts, respectively (τmax is normalized to one). We then
generated 5000 data samples corresponding to the specified limits and plotted an
average of the results on a logarithmic scale, to emphasize the importance of the
number of failures z on the estimate.

If we approximate ak on the left-hand side by

ā0 =
1
|I0|

∑

k:γl
nk

(i)=0

ak

where |I0| =
∑K

k=1(1 − γl
nk

(i)) is the number of terms in that summation (the
number of channel access failures), (11.19) becomes:
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|I0|
āθ
0 log(ā0)
1 − āθ

0

=
∑

k:γl
nk

(i)=1

log(ak). (11.20)

The approximation in (11.20) corresponds to replacing the backoff times of failed
channel access attempts by their average. From this, we can obtain an analytic solu-
tion:

θ = − log

(
1 +

|I0| log(ā0)∑
k∈I1

log(ak)

)
/ log(ā0). (11.21)

Numerical studies show that the approximation (11.21) is quite accurate on aver-
age, but can have a large variance in unfavorable conditions. Experimentally, it can
be shown that the approximation error in (11.21) is small when either the number of
channel access failures |I0| is small, or when the successful backoff times are small.
In other cases, it may be preferable to use (11.21) to generate an initial guess, which
may be refined by the Newton–Raphson method.

11.3.3 Adaptive Learning for Channel Allocation

In this section we describe our decentralized learning approach to the cognitive
radio dynamic spectrum assignment problem. Our approach is based on the mod-
ified regret matching procedure of [29], which is formulated here as a distributed
stochastic approximation algorithm. This formulation allows us to specify an adap-
tive variant of the original procedure, called “modified regret tracking,” which uses
a constant stepsize to dynamically adapt to time varying conditions, thus allowing
users to function in a changing environment.

As is usual in reinforcement learning, each user takes a sequence of actions
{X l

n ∈ Sl
n : n = 0, 1, 2, . . .} and observes a sequence of rewards {ul

n ∈ R :
n = 0, 1, 2, . . .}. The action at time n + 1 is a random function of this history of
actions and rewards.

At each decision period n, users take joint action Xn ∈ S, with user l taking
action X l

n ∈ Sl. To implement the algorithm, each user l uses the observed utilities
associated with past joint actions {Xn : n = 1, 2, . . .} to derive regret values θl

n,jk :
j, k ∈ Sl, according to:

θl
n,jk =

∑

τ≤n:Xl
τ=k

ετ−1(
n−1∏

σ=τ

(1 − εσ))
pl

τ (j)
pl

τ (k)
ul(k,X−l

τ )

−
∑

τ≤n:Xl
τ=j

ετ−1(
n−1∏

σ=τ

(1 − εσ))ul(j,X−l
τ ). (11.22)

If ετ = 1/(τ + 1), this is simply the average:

θl
n,jk =

1
n

∑

τ≤n:Xl
τ=k

pl
τ (j)
pl

τ (k)
ul(k,X−l

τ ) − 1
n

∑

τ≤n:Xl
τ=j

ul(j,X−l
τ ). (11.23)
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If ετ = ε, it is the exponentially weighted moving average:

θl
n,jk =

∑

τ≤n:Xl
τ=k

ε(1 − ε)n−τ p
l
τ (j)
pl

τ (k)
ul(k,X−l

τ )

−
∑

τ≤n:Xl
τ=j

ε(1 − ε)n−τul(j,X−l
τ ). (11.24)

These values are computed recursively in the algorithm below.
To gain some intuition, we refer back to the original regret matching algorithm

of [28]. Here, the regret value is taken as the simple time average

θl
n,jk =

1
n

∑

τ≤n:Xl
τ=j

(
ul(k,X−l

τ ) − ul(j,X−l
τ )
)
. (11.25)

That is, the regret measures the average gain that l would have received had he
played k in the past instead of j. If the gain is positive, then clearly l should be more
likely to switch to action k in the future, and in fact regret matching does exactly
this by switching to each action k at time n+ 1 with probability proportional to the
positive component of θl

n,jk. Note, however, that (11.25) requires that l knows what
utility he would have received for each action, even if that action was not taken. To
overcome this difficulty, [29] approximates the first term of the summation (11.25)
by the first summation in (11.23).

The complete procedure, including the exact formulation of action probabilities,
is summarized in Algorithm 11.1, which is carried out independently by each user.

Algorithm 11.3.1 Adaptive Learning for Channel Allocation: The regret-based
algorithm for user activation has parameters (ul, μ, δ, {εn : n = 1, 2, . . .}, θl

0,X
l
0),

where ul are the user utilities, μ is a function of the utilities as in (11.29), δ is a
small probability with which actions are chosen from a uniform distribution, {εn} is
a small stepsize, and θl

0,X
l
0 are arbitrary initial regrets and actions.

Define the Sl × Sl matrix with entries:

H l
jk(Xn) = I{X l

n = k} p
l
n(j)
pl

n(k)
ul(k,X−l

n ) − I{X l
n = j}ul(j,X−l

n ). (11.26)

The Procedure Is As Follows:

1. Initialization: Set n = 0 and take action X l
0. Initialize regret θl

0 = H l(X0).
Repeat for n = 0, 1, 2, . . .:
Action update: Choose X l

n+1 = k with probability

Pr(X l
n+1 = k|X l

n = j, θl
n = θl)

=

⎧
⎨

⎩
(1 − δ)min

(
max{θl

jk, 0}/μ, 1
Sl−1

)
+ δ

Sl , k �= j,

1 −
∑

i�=j

[
(1 − δ)min

(
max{θl

ji, 0}/μ, 1
Sl−1

)
+ δ

Sl

]
k = j.

(11.27)
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Regret value update: Calculate H l(Xn+1), and update θn+1 using the stochas-
tic approximation (SA):

θl
n+1 = θl

n + εn(H l(Xn+1) − θl
n). (11.28)

In (11.27), μ is a normalization constant, which is chosen

μ > (Sl − 1)(ul
max − ul

min) (11.29)

over all l = 1, 2, . . . , L, where (ul
max, u

l
min) are obtained from (11.13).

Note that θl
n is a moving average of the updates {H l(Xk) : k = 1, 2, . . . , n}.

Because of this, Algorithm 11.1 can be viewed as a stochastic approximation with
a constant stepsize εn ≡ ε > 0; actions are chosen with probability proportional to
their (moving) average potential performance in the past. (This differs from best
response, which would base action choices on the immediately previous result,
essentially setting ε = 1.) For the original modified regret matching algorithm of
[29], one would instead use εn = 1/(n+ 1).

Since the utility varies, a constant stepsize in Algorithm 11.3.1 is needed to keep
users responsive to the changes.

11.3.3.1 Convergence of Regret-Based Learning

When a decreasing stepsize εn = 1/(n+1) is used in Algorithm 11.1, it is proven in
[29] that the global empirical distribution of play (defined below) converges almost
surely to the set of ε-correlated equilibria. If, in addition, the “tremble” term δ in
(11.27) is decreased sufficiently slowly, convergence is to the set of correlated equi-
libria proper (11.5).

It is therefore reasonable to expect similar convergence results of the constant
stepsize version of Algorithm 11.3.1, with fixed small εn = ε and a fixed small
tremble δ. The general relation between decreasing and constant stepsize stochastic
approximation (SA) algorithms is well known [32]. Essentially, when a decreasing
stepsize SA converges almost surely, it can be shown that the constant stepsize ver-
sion converges weakly, as the stepsize ε → 0. Intuitively then, our adaptive version
of Algorithm 11.3.1 should track the set of correlated equilibria, with the benefit that
changes to the utility functions are handled smoothly by the constant stepsize.

We now describe in detail what is meant by this type of convergence. First, con-
vergence is stated in terms of the empirical distribution of play, which can be viewed
as a diagnostic that monitors the performance of the entire cognitive radio network.
This is defined as follows:

Definition 11.4. The empirical distribution of play up to time n is:

z̄n =
∑

τ≤n

ετ−1(
n−1∏

σ=τ

(1 − εσ))eXτ
(11.30)

where ex = [0, 0, . . . , 1, 0, . . . , 0] with the one in the xth position.
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Here εn is a weighting factor. If εn = 1/(n + 1), the empirical distribution is
simply

z̄n = 1/n
∑

τ

eXτ
. (11.31)

If εn ≡ ε > 0 is constant, it is the exponentially weighted moving average

z̄n = ε
∑

τ

(1 − ε)n−τeXτ
. (11.32)

Note that in both cases z̄n is an empirical frequency, since
∑

i z̄n(i) = 1.
We point out here that z̄ satisfies the following recursion:

z̄n+1 = z̄n + εn(eXn+1 − z̄n) (11.33)

where Xn+1 is constructed according to Step (2a) of Algorithm 11.3.1. When a
decreasing stepsize εn = 1/(n + 1) is used, (11.33) directly yields (11.31). With
a constant stepsize εn = ε, (11.33) directly yields (11.32).

Second, in contrast to most convergence results, convergence of the empirical
distribution of play for Algorithm 11.3.1 is not to a specific point, but to the set of
correlated equilibria (CE). This property is as follows:

Definition 11.5. z̄n converges to the set CE if for any ε > 0 there exists N0(ε) such
that for all n > N0 we can find ψ ∈ CE at a distance less than ε from z̄n.

The actual proof of weak convergence for the adaptive modified regret track-
ing algorithm can be approached in two ways. First, one can attempt to adapt the
original proof in [29] for a constant stepsize. Second, one can take a differential
inclusion approach, similar to that found in [31,33]. The first approach appears plau-
sible, but technically difficult. The proof in [29] is based on the idea of Blackwell
approachability [34], to which the existence of a decreasing stepsize is central. One
would therefore be forced to begin by modifying Blackwell’s 1956 result, then pro-
ceed to carry the modifications through the proof in [29]. The differential inclusion
approach therefore appears more promising. Although [31,33] still assumes here a
decreasing stepsize, it treats the convergence of the original (non-modified) regret
matching algorithm of [28] in such a way that the constant stepsize result can easily
be obtained through the methods of [32]. Since the modified procedure (used here)
of [29] is obtained from [28], it should not be too difficult to use similar methods
here.

11.3.4 Stochastic Optimization of Spectral Efficiency via Centralized Pricing

In this section we describe a simple stochastic optimization approach for improving
spectral efficiency in the decentralized channel access learning environment. The
approach relies on a base station, which monitors only the outcome of cognitive
radio activities. That is, the base station is not aware of the actions of individual
cognitive radios, but only of how often free channels are used by the group for data
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transmission. It attempts to influence the behavior by periodically broadcasting a
common C-valued parameter vector to each radio, which is used by the cognitive
radios to update their utility function. The results of this section are not integral to the
decentralized learning scheme; the pricing scheme describes a way to improve the
equilibrium behavior obtained in the previous sections from a global perspective, but
is not necessary to the operation of the cognitive radio system as already described.

Recall the utility function (11.13) of cognitive radio users, which is parameter-
ized by pricing vector φ. For each channel i, φ(i) represents a unit interference
penalty; user l essentially pays a cost φ(i) for each portion of channel i it uses
and each user present on channel i. This is meant as a simple disincentive so that
a base station, seeing that channel i is too crowded, can encourage users to move to
other channels by imposing a high cost φ(i). Conversely, users may be attracted to
low-cost channels in order to balance load across the spectrum.

Although it is possible to devise much more sophisticated incentive rules, pos-
sibly through mechanism design theory, than the one presented here, we feel that at
least elementary control can be imposed through our formulation, and that it pro-
vides a sufficient proof of concept of stochastic optimization-based pricing for tun-
ing cognitive radio networks. Moreover, the basic stochastic optimization approach,
which we outline here, will remain the same regardless of the particular pricing
parametrization used.

The objective of the base station is to discover, through experimentation, a pricing
parameter φ which maximizes the spectral efficiency of the cognitive radio system.
The spectral efficiency is defined as the average proportion of available radio chan-
nels that are used by the cognitive radios, which may be sampled over T decision
intervals as:

ŜE(φ) =

∑T
n=1

∑L
l=1 min

{∑C
i=1 C(i)Rl

n(i), dl
}

∑T
n=1

∑C
i=1[C(i)(1 − Yn(i))]

. (11.34)

Note that (11.34) is based only on the observable channel usage.
To incrementally improve the spectral efficiency, we propose the following algo-

rithm:

Algorithm 11.3.2 Stochastic Optimization-Based Pricing: For large T, set pric-
ing interval length TΛ. A decision time n of the cognitive radios (on time scale Λ)
is said to belong to pricing interval m if mT + 1 ≤ n ≤ (m + 1)T. For pricing
intervals m = 0, 1, 2, . . . , repeat the following:

1. Monitor the decisions in pricing intervalm. That is, collect data Yn(i) andRl
n(i)

for i = 1, 2, . . . , C, l = 1, 2, . . . , L, and n in pricing interval m.
2. At the end of interval m, calculate the spectral efficiency according to (11.34)

using the data gathered. Estimate the derivative d̂SE/dφ.
3. Broadcast a new pricing vector for pricing interval m+ 1, according to

φ̂m+1 = φ̂m + αm
d̂SE
dφ

(φ̂m). (11.35)
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The derivative may be estimated using standard approximation methods, for
example the finite difference or simultaneous perturbation methods [36].

Conclusion

In this chapter we have presented an iterative, decentralized method for discovering
efficient dynamic spectrum access policies for cognitive radio. Under the spectrum
overlay model, we have shown how the spectrum access problem can be treated as a
game theoretic problem and given algorithms that allow cognitive radios to indepen-
dently assess and adapt to their environment in real time.

The key advantage of our approach is complete decentralization, that is, the lack
of requirement for any collaboration or communication between cognitive radios.
We do require, in the centralized pricing scheme of Sect.11.3.4, the ability to receive
occasional updates from a central base station, but this feature is meant only as an
optional enhancement to the decentralized system. We are able to obtain effective
performance from the decentralized scheme essentially for two reasons. First, since
radios are aware of the presence of competitors, they are able to estimate and adapt to
channel competition by leveraging game theoretic algorithms specifically designed
to converge in a multiuser setting. Second, we have built cooperative tendencies into
the utility function (11.13) itself; radios are penalized for obtaining more resources
than they require and are bound to obey direction from the base station through
the pricing function φ. While this second consideration might be negated by selfish
design, the structural results would not change; the equilibrium obtained would sim-
ply be less efficient than that obtained through cooperative design. Let us emphasize:
cooperative design in essentially decentralized systems allows us to achieve many of
the benefits of a completely integrated architecture without the same costly infras-
tructure.

The constant step size learning algorithm presented in this chapter converges
weakly to the set of correlated equilibria of a non-cooperative game. Moreover,
the algorithm can be used to track a slowly time varying correlated equilibrium
set caused due to changing activity of primary users, with the limiting behavior
of the algorithm captured by a differential inclusion. Suppose we were to assume
that primary user activity evolves according to a slow Markov chain with transition
probability matrix I + εQ (where ε > 0 is a small parameter and Q is a generator
matrix with each row summing to zero). With this assumption, how can one ana-
lyze the tracking performance of the learning algorithm with step size ε? Note that
the adaptation speed (step size ε) of the algorithm matches the speed at which the
correlated equilibrium set changes (transition matrix (I + εQ)). In our recent work
[36,37], we have shown that the limiting behavior of the stochastic approximation
algorithm for tracking a parameter evolving according to a Markov chain is captured
by a Markovian switched ordinary differential equation. This result was somewhat
remarkable, since typically the limiting process of a stochastic approximation algo-
rithm is a deterministic ordinary differential equation. We conjecture that the limiting
behavior of Algorithm 11.3.1 is captured by a Markovian switched differential inclu-
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sion (see [38]). This analysis requires use of yet another extremely powerful tool in
stochastic analysis namely, the so-called “martingale problem” of Strook and Varad-
han, see [41,42] for comprehensive treatments of this area.

There are many other interesting avenues for continuation of this research. Aside
from improving and validating the algorithms presented here, one can modify the
problem to consider the case of partial channel observation. This is especially impor-
tant when the number of channels becomes too large for simultaneous monitoring.
Moreover, for this situation, it is important to identify initial methods for eliminating
a large number of channels from consideration, in order to improve the convergence
rate and memory requirements of the adaptive learning approach considered here.
Finally, we can expand our scope from static games to stochastic games, in which
the player actions not only determine their immediate utility, but also give a proba-
bility distribution over new games to be played in future rounds. A stochastic game
approach for similar sensor-based systems has been carried out in [41,42].
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12.1 Introduction

Wireless devices are becoming ubiquitous – they are a vital component in our daily
life. Unfortunately, the deployment and expansion of new wireless technologies is
being slowed down or even blocked by the inefficient access of radio spectrum. His-
torical (and current) spectrum allocation policies assign a fixed spectrum band to
each wireless technology. Over the time, this static assignment results in an artifi-
cial “spectrum scarcity,” including over-allocation and under-utilization of licensed
bands, and an increasingly crowded unlicensed band [1].

To address spectrum scarcity and realize the potential of radio spectrum, we
need new mechanisms to dynamically distribute spectrum among competing wire-
less devices according to their demand and usage. Dynamic spectrum allocation is
feasible since new generation of wireless devices can quickly adjust their radio trans-
mission frequencies with a wide range of spectrum, enabled by recent advance in
Cognitive Radio hardware [2, 3]. While maximizing spectrum utilization is the pri-
mary goal of dynamic spectrum systems, a good allocation scheme needs to provide
fairness across users.

Dynamic spectrum management is challenging, particularly in large-scale wire-
less networks. Due to the phenomenon of radio interference [4], allocation of spec-
trum exhibits a form of externality. A user seizing spectrum without coordinating
with others can cause harmful interference with its surrounding neighbors, and thus
reducing spectrum utilization and degrading others’ performance. Therefore, spec-
trum allocation needs to address the constraint of radio interference, which makes
the problem NP-hard [4, 5].

There are multiple complimentary ways to address the problem of spectrum
allocation, using approximation algorithms. The widely used approach is central-

∗ Portions reprinted, with permission, from “Distributed Spectrum Allocation via Local Bar-
gaining” by Lili Cao and Haitao Zheng, published at the Proceedings of IEEE Communi-
cations Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks
(SECON), 2005. c©[2005] IEEE.
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ized approximations. Given a fixed topology, prior work [5, 6] reduces the alloca-
tion problem into a conventional graph coloring problem or its variants. A central
manager obtains the conflict topology that specifies interference constraints among
users [4], and performs coloring algorithms to derive a conflict-free spectrum assign-
ment that intends to maximize a system utility. While operating based on global
network knowledge, good centralized algorithms like graph-coloring face high com-
plexity cost, and hence are not efficient in dynamic or large-scale networks. In par-
ticular, a topology-optimized allocation algorithm begins with no prior information,
and assigns each user a close-to-optimal assignment. When network topology or
spectrum availability change, the network needs to completely recompute spectrum
assignments for all users after each change, resulting in high computational and com-
munication overhead. This costly operation needs to be repeated frequently to main-
tain spectrum utilization and fairness. In addition, centralized algorithms require the
existence of a centralized server.

In this chapter, we consider a decentralized approach to spectrum allocation
where instead of relying on any central servers, users perform local coordinations
to modify their spectrum usage to approach a new conflict free spectrum assign-
ment that maximizes system utility. In addition to being low-cost, this approach pro-
vides quick adaptation to topology variations. When network dynamics occur, our
approach starts from the previous spectrum allocation, and performs a limited num-
ber of computations to arrive at a new solution to the new topology and spectrum
availability.

The rest of the chapter is organized as follows. We begin in Sect. 12.2 by defin-
ing the spectrum allocation problem and the system utility functions. Next, we pro-
pose a local coordination framework in Sect. 12.3 and develop specific strategies
to improve system utilization and fairness in Sect. 12.4. We then in Sect. 12.5 pro-
vide a set of theoretical analysis to evaluate system utility and algorithm complexity.
Next in Sect. 12.6, we conduct experiments to evaluate the performance of bargain-
ing strategy and validate the theoretical lower bound. We summarize related work
in Sect. 12.7, discuss implications and future directions before we conclude the
chapter.

12.2 The Problem of Spectrum Allocation and Its Solution via
Centralized Approximation

As background, we describe in this section the problem of spectrum allocation, and
the solutions via centralized approximation algorithms. We start with the theoretical
model used to represent the general allocation problem, and two utility functions that
maximize spectrum utilization and fairness. We describe how to reduce the optimal
allocation problem to a variant of a graph multi-coloring problem and describe the
previous solutions that optimize the spectrum allocation for a given topology.



12 Decentralized Spectrum Management Through User Coordination 329

12.2.1 Problem Model and Utility Functions

We consider the case where the collection of available spectrum ranges forms a spec-
trum pool, divided into non-overlapping orthogonal channels. We assume a network
of N users indexed from 0 to N–1 competing forM spectrum channels indexed 0 to
M–1. Each user can be a transmission link or a broadcast access point. We consider
an Open Spectrum based system where users can only access a spectrum channel
if the usage will not produce interference to any primary users.1 Users select com-
munication channels and adjust transmit power accordingly to avoid interfering with
primaries. The channel availability and throughput for each user can be calculated
based on the location and channel usage of nearby primaries. The spectrum access
problem becomes a channel allocation problem, i.e. to obtain a conflict free channel
assignment for each user that maximizes system utility. The key components of our
model are:

Channel availability L(n). Γ = {lm,n|lm,n ∈ {0, 1}}M×N is an M by N binary
matrix representing the channel availability: lm,n = 1 if and only if channel m is
available at user n. In general, lm,n = 0 when channel m is occupied by a primary
user who conflicts with user n, so that the transmissions of n on this channel will
interfere with the primary’s activity if they use channel m concurrently. Let L(n) =
{0 ≤ m ≤M − 1|lm,n = 1} be the set of channels available at n.

Interference constraint C. Let C = {cn,k|cn,k ∈ {0, 1}}N×N , an N × N matrix,
represents the interference constraints among users. If cn,k = 1, users n and
k would interfere with each other if they use the same channel. The interfer-
ence constraint depends on the signal strength of transmissions and the distance
between users. A simple model of interference constraint is the binary geometry
metric, i.e. two transmissions conflict if they are within π distance from each other.
This provides an approximation to the effects of interference in real wireless sys-
tems.

It should be noted that the interference constraint could also depend on the fre-
quency location of the channel (i.e. m), since power and transmission regulations
vary significantly across frequencies. The work in [5, 7] considers the channel-
dependency and uses an M × N × N interference matrix C. In this chapter, for
simplicity, we consider a channel-independent interference constraint, assuming
channels have similar power and transmission regulations. It is straightforward to
extend the proposed approaches to account for channel-dependent or other interfer-
ence conditions.

User dependent channel throughput B. Let B = {bm,n > 0}M×N describe the
reward that a user gets by successfully acquiring a spectrum band, i.e. bm,n represents
the maximum bandwidth/throughput that user n can acquire through using spectrum
band m (assuming no interference from other neighbors). Let bm,n = 0 if lm,n = 0.
So that B represents the bandwidth weighted user available spectrum.

1 In Open Spectrum Systems [8, 9], primaries have the highest priority to access spectrum.
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Conflict free assignment A. A = {am,n|am,n ∈ {0, 1}}M×N where am,n = 1
denotes that spectrum band m is assigned to user n, otherwise 0. A satisfies all the
constraints defined by C, that is,

am,n + am,k ≤ 1, if cn,k = 1,∀ n, k < N,m < M.

Let ΛN,M denote the set of conflict free spectrum assignments for a given set of N
users and M spectrum bands.

User throughput of a conflict free assignment. Let TA(n) represent the throughput
that user n gets under assignment A, i.e. TA(n) =

∑M−1
m=0 am,n · bm,n.

Given this model, the goal of spectrum allocation is to maximize network utiliza-
tion, defined by U . We can define the spectrum assignment problem by the following
optimization function:

A∗ = max
A∈ΛN,M

arg max U(A).

System Utility Function U . We can obtain utility functions for specific application
types using sophisticated subjective surveys. An alternative is to design utility func-
tions based on traffic patterns and fairness inside the network. In this chapter, we con-
sider and address fairness based system utility. Consistent with prior work [10–12],
we address fairness for single-hop flows since they are the simplest format in wire-
less transmissions. We postpone the discussion of routing related utility functions
to the future work. Similar to [11], we define fairness in terms of maximizing total
logarithmic user throughput, refereed to as proportional fairness. The utility can be
expressed as

U(A) =
N−1∑

n=0

log TA(n) =
N−1∑

n=0

log
M−1∑

m=0

am,n · bm,n. (12.1)

As a reference, another utility function is the total spectrum utilization in terms
of total user throughput

U(A) =
N−1∑

n=0

TA(n). (12.2)

Maximizing utilization does not consider fairness, and the resulting channel assign-
ment is in general unbalanced. Note that the two key goals of a spectrum allocation
algorithm are spectrum utilization and fairness. Combinations of these two goals
form specific utility functions that can be customized for different types of network
applications.

12.2.2 Color-Sensitive Graph Coloring

The work in [5, 7] shows that by mapping each channel into a color, the spectrum
assignment problem can be reduced to a graph multi-coloring (GMC) problem.
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Definition 12.1. Given the channel assignment problem in above, the system can be
represented by a Conflict GraphG = (V,E,B) where V is a set of vertices denoting
the users that share the spectrum, B represents the bandwidth weighted available
spectrum, mapping to the color list at each vertex, and E is a set of undirected edges
between vertices representing interference constraint between two vertices defined
by C. For any two distinct vertices u,v ∈ V , an edge between u and v, is in E if and
only if cu,v = 1.

Figure 12.1 illustrates an example of GMC graph. There are five colors available.
The numbers outside the brackets attached to each node denote the colors assigned
to that node, while the numbers inside the brackets denote the available color list of
each node.

A GMC problem is to color each vertex using a number of colors from its color
list, and find the color assignment that maximizes system utility. The coloring is
constrained by that if an edge exists between any two distinct vertices, they can-
not be colored with the same color. Most importantly, the objective of coloring
is to maximize system utility. This is different from traditional graph color solu-
tions that assign one color per vertex. Notice that the solution to this graph col-
oring problem is to maximize system utility for a given graph, i.e. a given topol-
ogy and channel availability. This characterizes the optimal solution for a static
environment.

The optimal coloring problem is known to be NP-hard [14]. Efficient algorithms
to optimize spectrum allocation for a given network topology exist. In [7], the authors
presented a set of sequential heuristic based approaches that produce good coloring
solutions. The algorithm starts from an empty color assignment and iteratively assign

0,1,2
(0,1,2,3,4)

3,4
(2,3,4)

0,2
(0,2,3)

1
(0,1,3)

Fig. 12.1. An example of GMC graph [ c© 2005 IEEE. Reprinted, with permission, from [13]].
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colors to vertices to approximate the optimal assignment. In each stage, the algorithm
labels all the vertices with a non-empty color list according to some policy-defined
labeling. The algorithm picks the vertex with the highest valued label and assigns
the color associated with the label to the vertex. The algorithm then deletes the color
from the vertex’s color list, and from the color lists of the constrained neighbors.
The color list and the interference constraint of a vertex keep on changing as other
vertices are processed, and the labels of the colored vertex and its neighbor ver-
tices are modified according to the new graph. The algorithm can be implemented
using a centralized controller who observes global topology and makes decisions,
or through a distributed algorithm where each vertex performs a distributed voting
process. Results in [5, 7] show that the heuristic based algorithms perform similarly
to the global optimum (derived off-line for simple topologies), and the centralized
and distributed algorithms perform similarly.

12.3 Decentralized Coordination Framework

The approach described in Sect. 12.2 attempts to globally optimize spectrum allo-
cation for a given topology. In a mobile network model, node movements lead to
constant changes in network topology. Using the existing approach, we can reap-
ply the spectrum allocation algorithm after each change in the conflict graph. This
approach assumes no prior allocation information, and incurs high computation and
communication overheads. Finally, to efficiently perform the graph-coloring, the sys-
tem requires a central controller who has access to the global information and per-
forms the coloring algorithm.

To reduce these overheads and avoid the dependence on the central server, we
propose the use of an adaptive and robust distributed algorithm that takes prior allo-
cation into account in new spectrum assignments. More importantly, users consider
both needs of neighboring devices and available spectrum when determining its spec-
trum usage. When sub-optimal spectrum usage is detected, users trigger coordination
events among nearby peers and apply local adjustments to approach a globally opti-
mized spectrum assignment.

12.3.1 Overview

An efficient dynamic allocation algorithm can run every time user movement causes
a change in the corresponding network conflict graph. Therefore, an adaptive algo-
rithm needs to only compensate for small changes affecting a local network region.
The algorithm starts from a non-optimal spectrum allocation, which can be con-
structed from the allocation prior to the topology change. Consider a conflict graph
with N nodes (indexed from 0 to N − 1) and M channels (indexed from 0 to
M−1), where the optimized assignment isAM×N . When a new node (indexed asN )
joins the network, the assignment after introduction of the node becomesA′

M×(N+1)

where
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A′
m,n =

{
Am,n : 0 ≤ n ≤ N − 1, 0 ≤ m < M

0 : n = N, 0 ≤ m < M.

Or if a primary user i enters the network and wants to use channel m0, the nodes
within impact of primary i (denoted by R(i)) need to stop using channel m0 within
a given time. Hence, the assignment becomes A′

M×N such that

A′
m,n =

{
0 : m = m0 and n ∈ R(i)

Am,n : otherwise.

Assuming the spectrum allocation was near optimal before the topology change,
local coordination between affected vertices can quickly optimize allocations for uti-
lization and fairness. During local coordination, sets of neighboring vertices, each of
which form a connected component of the conflict graph, self-organize into coordina-
tion groups. Each group modifies spectrum assignment within the group to improve
system utility while ensuring that the change in spectrum assignment does not require
any change at other nodes outside the group (due to interference constraints). Note
that a node can represent a transmission link or an access point. Coordination related
to a transmission link is carried out by the transmitter or receiver while coordination
related to an access point is carried out by the access point.

There are two types of coordination: an explicit bargaining-based approach
where devices negotiate spectrum usage through message exchange [13], and an
implicit rule-based approach where devices observe behavior of neighbors and inde-
pendently adjust usage following predefined rules [15].

The main challenge in designing a good decentralized framework is how to use
recursive local improvements to approach the global optimal, particularly how to
avoid ping-pong effects and provide fast convergence. Next, we show that by impos-
ing reasonable constraints, designing an efficient coordination protocol, our proposed
approach is a low-complexity alternative to the centralized approximations. Note that
the detailed coordination procedure depends on the format of system utility function,
hence we provide a design example in Sect. 12.4 using proportional fairness as the
utility function.

12.3.2 Explicit Coordination via Bargaining

In explicit coordination, users self-organize in local bargaining groups defined by
physical proximity, and adjust spectrum allocation within each group to maximize
local system utility metrics such as proportional fairness. Groups form on-demand
when a non-optimal band allocation is discovered, and dissolve following negotia-
tions for spectrum. By participating in different groups at different times, a device
can repeatedly negotiate with multiple neighbors to improve system performance.

12.3.2.1 Bargaining Constraints

To perform bargaining/coordination, we must first determine the size and member-
ship of local coordination groups. Large groups increase the complexity of coordina-
tion due to high synchronization and communication costs. In addition, interactions
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might occur between groups if they share neighboring users. To facilitate bargaining,
we propose two constraints to regulate the procedure and simplify the process.

Constraint 1: Limited Neighbor Bargaining
While pair-wise bargaining is already a hard convex optimization problem, bargain-
ing within a large group implies even higher computation and communication over-
heads. Coordinating around a central leader per group can greatly simplify spectrum
assignment. In this chapter, we propose a simple group formation where a node that
wants to improve its spectrum assignment broadcasts a bargaining request to its k-
hop neighbors, where k is the ratio of interference range to transmission range. These
neighbors are connected to the node in the corresponding conflict graph. Neighbors
willing to participate reply to the sender and form a bargaining group. Note that it is
possible that two connected neighbors in a conflict graph might not be able to com-
municate directly with each other, i.e. when k > 1. The bargaining information can
be relayed by the nodes in between. These relay nodes do not necessarily participate
in the bargaining group. In this following, we will use node to present any vertex in
a conflict graph.

For each bargaining group, the requester becomes the group coordinator and per-
forms the bargaining computation. The bargaining strategies can be divided into the
following formats:

(1a) One-to-One Bargaining: Node n1 who initiates the bargaining can choose to
coordinate with only one neighboring node n2 at a time. They exchange some chan-
nels to improve system utility while complying with the conflict constraints from the
other neighbors. This is the simplest bargaining process and the requester only needs
approval from one of his neighbors to perform the bargaining. When multiple neigh-
bors, e.g. n2 and n3 acknowledge the bargaining request, n1 can sequentially com-
pute assignment assuming bargaining with n2 first, and then with n3. n1 broadcasts
the assignment to both n2 and n3. This expands the bargaining group to (n1, n2, n3)
without adding extra signaling overhead. However, this also requires that n1 chooses
a sequential bargaining order and gets approval from all the group members on the
order before conducting bargaining. If one of neighbors disapproves the request, n1

needs to perform another request. Hence, for simplicity, we restrict this format to
only one-to-one bargaining. Figure 12.2 illustrates an example of one-to-one bar-
gaining.

(1b) One-Buyer-Multi-Seller Bargaining: A buyer node n1 purchases a set of
channels M0, from its neighbors who are currently using any channel in M0,
such that to improve system utility. In this case, the bargaining requires concurrent
approval from multiple neighbors. As we will show later, this type of bargaining is
necessary to eliminate user starvation. Figure 12.2 illustrates an example with one
buyer and four sellers.

Constraint 2: Self-contained Group Bargaining
Once the bargaining groups are organized, the bargaining inside each group

should not disturb the spectrum assignment at nodes outside the group. That is, after
the bargaining, the modified channel assignment should not lead to any conflict with
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Fig. 12.2. An example of bargaining groups [ c© 2005 IEEE. Reprinted, with permission, from
[13]].

nodes outside the group. This helps to maintain system stability, so that a bargain-
ing may not invoke a series of reactions due to violations in interference constraints.
More importantly, this guarantees that if a bargaining improves the utility in a local
area, it also improves the system utility. Or in other words, a local improvement will
lead to a system improvement. This constraint has two components.

(2a) Restricted negotiable channels: This restricts the set of channels that are
exchangeable between nodes inside each bargaining group, such that when a node
gets one channel from its neighbor, the assignment does not conflict with its neigh-
bors outside the bargaining group.

(2b) Isolated bargaining group: This not only restricts each node to participate in
at most one bargaining group at any time, but also requires that the members of any
two bargaining groups cannot be directly connected. Having nodes between groups
regulate spectrum adjustment and prevents conflict between groups. The necessity
of this requirement can be explained by the following example. Assume there are
two neighboring nodes A and B (two nodes in the conflict graph connected with an
edge) who are the members of two different bargaining groups. Before assignment,
A and B are not using channel 0. After the bargaining, both A and B are granted with
channel 0 from their bargaining neighbors. However, as A and B conflict with each
other if using the same channel, the bargaining produces interference conflict among
nodes. The detailed procedure to form isolated bargaining groups will be introduced
in Sect. 12.3.2.2. An example of isolation between bargaining groups is shown in
Fig. 12.2.
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12.3.2.2 Bargaining Steps in Detail

We design a local bargaining procedure based on the above constraints, assuming a
distributed architecture. We propose a distributed, iterative grouping and bargaining
process. We assume that nodes periodically broadcast their current channel assign-
ment and interference constraints to their neighbors. Each node has three states: bar-
gaining, disabled and enabled (see Fig. 12.3). Only enabled nodes can perform bar-
gaining. The actual bargaining involves the following four steps, and repeats until no
further bargaining can improve system utility. Here nodes refer to the vertices in the
conflict graph, and two “connected” nodes might be physically k (k > 1) hops away.
Information exchange between them is done through relay.

1. Initialize bargaining request: In general, nodes affected by mobility events initial-
ize bargaining. Based on broadcasts of channel assignments and interference con-
straints from neighbors, an enabled node determines if bargaining with a neighbor
will lead to an improvement in system utility. If such neighbors exist, the node
broadcasts a coordination request to the neighbors along with its current channel
assignment and interference constraints. Such broadcasts reduces communication
overhead. As we will show in Sect. 12.4.3, additional criterion exists to guide
nodes on generating bargaining requests.

2. Acknowledge bargaining request: Neighbors who are enabled and willing to coor-
dinate reply an ACK message with its current channel assignment and interference
constraints. We assume that nodes are willing to collaborate to improve system
utility, and accept requests that improve system utility even if it might degrade
their individual channel assignments. Incentive systems to encourage such col-
laboration will be investigated in a future work. If a node receives multiple con-
current requests from its neighbors, it acknowledges the request that leads to the
highest bargaining gain calculated from information embedded in the request.

Fig. 12.3. Node state and transitions [ c© 2005 IEEE. Reprinted, with permission, from [13]].
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3. Bargaining group formation: When the requester receives the replies, it selects the
members of the bargaining group, and broadcasts this information along with the
proposed modification of the channel assignment to neighbors. Once the bargain-
ing group is set, its members enter bargaining state. They broadcast a DISABLE
message with a timer equal to the estimated duration of the coordination pro-
cess to neighbors not in the bargaining group. Note that the DISABLE message
can be embedded in the ACK messages to reduce overhead. Nodes receiving the
message enter disabled state for the duration of the timer. This procedure pre-
vents nodes who are neighbors of existing bargaining group to participate in any
future bargaining before the timer expires. Following this, all bargaining groups
are isolated.

4. Negotiation: Once all members acknowledge the changes to the channel assign-
ment, each member updates its local channel assignment. This is straightforward
for one-to-one bargaining. For one-buyer-multiple-seller bargaining, interactions
among members can be coordinated by the bargaining requestor. After bargain-
ing, each member enters enabled state. Figures 12.3 and 12.4 illustrate the node
state transition and messages during bargaining.

12.3.3 Implicit Coordination via Rules Based Adjustment

For energy-constrained devices such as sensors and mobile ad hoc devices, fre-
quent communication between devices is undesirable. In addition, future networks
are likely to have heterogeneous devices and access technologies [16], making the
implementation of a common coordination protocol a significant challenge. For these
types of networks, we propose a device-centric management scheme, where users

Fig. 12.4. Messages exchanged during bargaining [ c© 2005 IEEE. Reprinted, with permission,
from [13]].
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observe local conditions and neighbors’ actions, and independently adapt their spec-
trum usage using a set of rules predefined by spectrum regulators. In contrast to an
explicit bargaining-based approach, users tend to prioritize their own performance
with minimal regard to system utility. Their compliance with the rules promotes
efficient and fair spectrum sharing. This implicit approach greatly simplifies imple-
mentation and significantly reduces coordination traffic. In this approach, users rely
on the rules to determine the appropriate channels to use. The spectrum rules are the
key to making these tradeoffs, and are highly dependent on the format for system
utility. The work in [15] proposed five rules to address different network scenarios.
Interesting readers should refer to [15] for the detailed rule design.

12.3.4 Coordination to Improve Utilization

Once the local bargaining procedure is set, the specific bargaining strategy may
be customized for different utility functions. It is easy to show that for utilization
based utility (total user throughput), the optimization can be reduced to solving
M optimization problems for each color respectively. On each color, the corre-
sponding optimization problem is exactly a Weighted Independent Set (WIS) prob-
lem [17]. WIS problem is a special case of Weighted Set Packing problem, and
can be approximated by a local improvement heuristic algorithm, generally called
t − improvement [17, 18]. It is straightforward to convert this algorithm to local
bargaining among neighbors. We omit the bargaining procedure due to space con-
straints, and next focus on the local bargaining strategy for the fairness-based utility.

12.4 Decentralized Coordination to Improve Fairness

In this section, we focus on the coordination strategy optimizing for fairness.2 Based
on its definition in (12.1), the optimization aims to maximize the total logarithmic
user throughput, i.e. the product of user throughput. Therefore, the global fairness
utility increases if nodes with many assigned channels “give” some channels to nodes
with few assigned channels.

We start by describing basic one-to-one bargaining where two unbalanced nodes
exchange channels to improve the local throughput product. We show that such bar-
gaining is limited by the number of negotiable channels and thus not effective against
the node starvation problem. We then develop a special case of one-buyer-multi-
seller bargaining, referred to as Feed Poverty to eliminate node starvation. We also
derive a theoretical lower bound of user throughput using local bargaining under a
simplified network configuration.

We first define the following notations.

n: a node n in the conflict graph (0 ≤ n ≤ N − 1);

2 In this section, we focus on the procedure for explicit bargaining-based coordinations. The
detailed rule design for implicit coordination is omitted due to space limit. Readers can
refer to [15] for detailed description.
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R(n) = {v ∈ V |(n, v) ∈ E}: neighbors of n;

R(X) =
⋃

n∈X R(n) \X: neighbors of node set X;

fA(n) = {0 ≤ m ≤M−1|am,n = 1}: the set of channels assigned to node n under
current assignment A.

12.4.1 One-to-One Fairness Bargaining

As we described, one-to-one bargaining allows two neighboring nodes n1 and n2

to exchange channels to improve system utility while complying with conflict con-
straints from the other neighbors. For n1 and n2 to negotiate, they need to first obtain
the channels that are negotiable to avoid disturbing other neighbors, referred to as
Cb(n1, n2):

Cb(n1, n2) = L(n1) ∩ L(n2) ∩ {{0..M − 1} \
⋃

n∈R(n1,n2)

fA(n)}.

Given Cb(n1, n2), we can define the one-to-one bargaining regarding fairness as
follows:

Definition 12.2. For an assignment AM×N , an One-to-One Fairness Bargaining
finds nodes n1 and n2, and their bargaining channel set Cb(n1, n2), and modifies
AM×N to A′

M×N related to n1, n2 and channels Cb(n1, n2), such that

TA′(n1) · TA′(n2) > TA(n1) · TA(n2).

The One-to-One Fairness Bargaining increases the product of the bargaining
users while other nodes’ throughput values remain unaffected. Hence, the system
fairness increases with each bargaining. The improvement between each pair of
nodes (n1, n2) can be calculated as G(n1, n2) = TA′ (n1)TA′ (n2)

TA(n1)TA(n2)
− 1. This is used in

the bargaining process (in Sect. 12.3) to determine whether a bargaining can improve
system utility.

Given (n1, n2), assigning channels to n1 and n2 to maximize their throughput
product is a difficult task. This is because node throughput depends on all channels
(including non-negotiable ones) assigned to a node, and the available bandwidth on a
channel differs between nodes. The problem is shown to belong to the class of convex
programming problems [19]. When the number of negotiable channels (|Cb(n1, n2)|)
is small (e.g. |Cb(n1, n2)| < 10), exhaustive search may be feasible. Otherwise we
need to use approximations based on heuristics such as the one given in [19]: first
sort channels in Cb(n1, n2) (by channel bandwidth), then use a two-band partition to
determine the allocation.

The effectiveness of One-to-One Fairness Bargaining is constrained by the size
of Cb(n1, n2). In general, due to heavy interference constraints among neighbor-
ing nodes, Cb(.) could be very small. Figure 12.5 illustrates an example where the
conflict graph is a chain topology consisting of three nodes A, B, and C. Node B
is not assigned with any channel and the system utility is zero. We refer to this as
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A B C

1,2,3 1,2,3

Fig. 12.5. An example of starvation [ c© 2005 IEEE. Reprinted, with permission, from [13]].

user starvation. Node A and B cannot negotiate due to the constraint from C (i.e.
Cb(A,B) = ∅), while node b and c also cannot negotiate due to the constraint from
a (i.e. Cb(B,C) = ∅). Hence, the Fairness Bargaining is not effective to eliminate
user starvation.

12.4.2 Feed Poverty Bargaining

We observe that user starvation in most cases is a result of the lack of flexibility in
bargaining. As for the example in Figure 12.5, by allowing A and C to give up chan-
nel 1 at the same time and feed it to B, we can remove the starvation at B. This is
an example of one-buyer-multi-seller bargaining. In this chapter, we propose a spe-
cial one-buyer-multi-seller bargaining, called Feed Poverty where if a node (buyer)
has very poor channel assignment, the neighboring nodes can collaborate together to
feed it with some channels.

Definition 12.3. For an assignmentAM×N , a feed poverty bargaining is to find some
node n0 and channel m0, modify AM×N to A′

M×N , such that

A′
m,n =

⎧
⎨

⎩

1 : m = m0 and n = n0

0 : m = m0 and n ∈ R(n0)
Am,n : otherwise

(intuitively, the assignment lets some of n0’s neighbors give up channelm0 and feed
it to n0) and

GFP (n0) = (TA′(n0)) ·
∏

n∈R(n0)∧Am0,n=1

(TA′(n))

− (TA(n0)) ·
∏

n∈R(n0)∧Am0,n=1

(TA(n))

> 0.

This means the product-throughput of the users involved in the bargaining is locally
increasing, while the other users’ throughput are not affected. So generally the bar-
gaining improves system utility, except that, in case of starvation of other users, the
system utility remains −∞. A special case of Feed Poverty is when Am0,n = 0 for
all n ∈ R(n0). This means none of n0’s neighbors are using channel m0, and n0

simply seizes it.
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When there is no feasible One-to-One Fairness Bargaining, i.e. |Cb| = ∅, the
requestor initializes a Feed Poverty Bargaining on all neighbors who acknowledge
the request. The requestor sequentially selects multiple channels to maximize group
utility.

12.4.3 BF-Optimal Assignment

We propose to combine One-to-One Fairness Bargaining and Feed Poverty Bargain-
ing into a Fairness Bargaining with Feed Poverty (BF). Each node who wants to
improve its spectrum usage starts with negotiating One-to-One Fairness Bargaining
with its neighbors to improve system utility. If there is no negotiable channel between
it and any of its neighbors, a poor node can broadcast a Feed-Poverty request to its
neighbors to initialize Feed Poverty Bargaining. Overall, a channel assignment A is
said to be BF-optimal if no further Fairness Bargaining with Feed Poverty can be
performed.

12.5 Theoretical Analysis

In this section, we perform theoretical analysis on the explicit negotiation approach.
We examine system utility, user throughput and algorithm complexity for BF-optimal
assignments. The analytical results provide insights to fairness provided and system
efficiency.

12.5.1 Lower Bound on User Throughput

We first examine the user throughput under any BF-optimal assignment, i.e. the user
performance when system stabilizes. With the goal of maximizing system propor-
tional fairness, we show that each user’s throughput is lower-bounded.

Theorem 12.1. Under a BF-optimal assignment A, for each vertex n in the conflict
graph G, 0 ≤ n ≤ N − 1, its throughput T (n) has a lower bound, i.e.

T (n) >
B(n)
d(n) + 1

− MB(n)

B(n) �
M−1∑

m=0

bm,n

MB(n) � M−1
max
m=0

bm,n (12.3)

where d(n) represents the number of conflicting neighbors of n or the degree of n
in the conflict graph, B(n) represents n’s total available bandwidth, and MB(n)
represents n’s maximum channel bandwidth.



342 H. Zheng, L. Cao

The proof is included in Appendix.
Theorem 12.1 shows that the lower bound of each user’s throughput depends

on its interference condition. First, the bound of user n scales inversely with the
number of competing users in n’s neighborhood, i.e. d(n) + 1. A user should obtain
less throughput in crowded areas (with more conflicting neighbors) than in sparse
areas. This scaling, also the spirit of centralized greedy allocation algorithms [5, 7],
provides an immediate intuition of fairness.

Second, the bound scales linearly with the node’s total available throughput
B(n). This trend demonstrates that the proposed strategy provides similar level of
fairness to users regardless of their channel conditions. If a user improves its chan-
nel bandwidth using sophisticated physical layer techniques, without changing its
interference condition, the throughput bound increases linearly, but the number of
assigned channels remains the same. This also shows that our proposed strategy will
not favor users in good channel conditions and starve users in bad channel conditions.

Under certain circumstances, channel quality fluctuates due to fading, shadow-
ing and environmental factors, making it impractical to collect channel quality of
neighbors in real time. Hence, a reasonable approach is to assume all channels are
identical (i.e. with bandwidth 1 if it is available, and with bandwidth 0 if it is not).
Next, we show that Theorem 12.1 can be reduced to the following:

Theorem 12.2. Under a BF-optimal assignment A, for each vertex n in the conflict
graph G, 0 ≤ n ≤ N − 1 with degree d(n) and channel availability list L(n), its
spectrum usage T (n) has a lower bound, i.e.

T (n) ≥
⌊

|L(n)|
d(n) + 1

⌋
� Γ(n).

The proof is straightforward using Theorem 12.1, included in Appendix. Theo-
rem 12.2 shows that the proposed Fairness Negotiation with Feed Poverty guaran-
tees a poverty line Γ (n) to each vertex n. The poverty line provides a guideline in
negotiation in real systems where a vertex is entitled to request negotiation if its
current throughput is below its poverty line. We refer to this as the Poverty guided
negotiation.

It is easy to show that if channels are fully available at each vertex, i.e. |L(n)| =
M , a BF-optimal assignment can eliminate user starvation if the number of channels
M ≥ Δ + 1, where Δ is the maximum degree in the graph Δ = max0≤n<N d(n).
This matches to the well-known conclusion in graph coloring where the chromatic
number of a graph is at most Δ + 1 [20]. It can also be shown that the bound in
Theorem 12.2 is tight, for several types of network topology: clique, ring, star, and
straight line. We omit the proof due to space constraints. For randomly generated
topologies, we obtain statistical results on the tightness of the bound using experi-
ments in Sect. 12.6.2.

12.5.2 Bound on Complexity of Poverty Guided Negotiation

Using Poverty Guided Negotiation (PGB), only the node below its poverty line is
qualified to initiate a negotiation. The requestor n can sequentially select the best (i.e.
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providing the highest improvement to system utility) channels, and negotiate with
the neighboring nodes to take over these channels. Following the detailed proof for
Theorem 12.2, we can show that after each negotiation iteration, one node will reach
its poverty line. When the system reaches an equilibrium, every node is guaranteed
with its poverty line. This also allows us to derive an upper bound on the number of
negotiation iterations.

Theorem 12.3. In a system with N nodes, with uniform channel bandwidth, the
Poverty guided negotiation will reach an equilibrium after an expected number of
at most O(N2) iterations. By optimizing the order of negotiation, the system can
reach an equilibrium in at most N iterations.

The proof is in Appendix.

12.5.3 Theoretical Distance to Social Optimal

We also compare the performance of the proposed negotiation strategy, to the social
optimal assignment. A social optimal assignment maximizes the global system util-
ity. We focus on the price of anarchy (POA) [21], defined as the ratio of the system
utility of social optimal assignment over the worse case of the proposed assignment
strategies. However, without restriction on channel bandwidth or number of nodes,
the POA is unbounded in general. Therefore, we restrict ourselves to the case with
uniform channel bandwidth, i.e. bm,n = 1 for all m,n, and a system of N users.
Next we derive the upper bound of the POA.

Theorem 12.4. For a topology with uniform channel availability and channel band-
width, i.e. bm,n = 1, lm,n = 1, and M > Δ,3 the price of anarchy for a BF-optimal
channel assignment is at most

MN ·
∏

〈u,v〉

(
dv

du+dv

) 1
du ·
(

du

du+dv

) 1
dv

∏N−1
n=0

⌊
M

dn+1

⌋ . (12.4)

The proof can be found in [13].

12.6 Experimental Results

We conduct experimental simulations to quantify the performance of bargaining-
based spectrum allocation. We also validate the proposed local bargaining algorithms
against the theoretical lower bounds. For simulations, we assume a noiseless, mobile
radio network. We simulate an ad-hoc network by randomly placing a set of nodes
on a 100 × 100 area. We assume that each active node broadcasts data packets to
some of its neighbors. We further abstract the network into a Conflict Graph where

3 Otherwise there may exist starvation and the ratio may be meaningless.
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each vertex represents a transmitting node. Any two nodes interfere with each other
(i.e. connected in the conflict graph) if they are within distance of 20. The actual
distance threshold depends on the choice of transmission power and radio hard-
ware. We simply use 20 as an illustrative example. For default scenarios, we assume
that channels are equally weighted and all the channels are available for each node,
i.e. ln,m = 1, bn,m = 1. In terms of traffic demands, all transmitting nodes are
assumed backlogged. We focus on maximizing fairness, because bargaining under
utility based on spectrum utilization can be reduced to the classical local search of
weighted independent set problem, and has been investigated extensively.

Under the simulation settings, for One-to-One Fairness Bargaining, the optimal
assignment of channels between two nodes (n1, n2) can be derived easily to maxi-
mize the product of the number of channels assigned to n1 and n2. For Feed Poverty
Bargaining, we select channelm0, i.e. that produces the minimum disturbance to the
neighbors,

m∗
0 = arg min

m0

∏

n∈Nbr(n0)∧Am0,n=1

TA(n)
TA′(n)

.

Topology dynamics are modeled by having nodes randomly moving to new loca-
tions. We divide time into slots, and in each time slot, p% of nodes move to a new
randomly selected location. The model captures the way mobility is manifested in ad
hoc networks without delving into complex protocols. A moving node takes the origi-
nal channel assignment but disables the channels that conflict with its new neighbors.
In each time slot, after the topology change, nodes adjust their channel usage.

We use two metrics to evaluate the performance.

• System utility: We consider fairness defined in (12.1). Note that if there exists a
user with no channel assigned, the utility becomes −∞. For better representation,

we modify the utility to U(A) = N

√∏N−1
n=0 TA(n) and U(A) = 0 if there is any

TA(n) = 0.
• Communication overhead: We quantify algorithm complexity as the communica-

tion overhead, i.e. total number of messages exchanged among nodes, since trans-
mission and handling of messages will likely dominate computations for chan-
nel assignment. In both local bargaining and graph coloring approaches, each
iteration of spectrum assignment or bargaining involves a four-way handshake
between neighbors, i.e. (request, acknowledgement, action, acknowledgement).

We first compare the performance of local bargaining to the graph coloring
approaches that approximate to the solution that maximizes system utility for a
given conflict graph [5,7]. We also validate the impact on system performance using
poverty line guided bargaining. We also examine the effectiveness of using local
bargaining to optimize spectrum assignment for fixed topologies and algorithm scal-
ability.
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12.6.1 Comparison with Centralized Graph Coloring Approach

We compare the proposed local bargaining to the graph-coloring approach. We refer
to these two as BARGAINING and GREEDY, respectively. We randomly deploy
40 links with 30 channels in a given area and produce the corresponding conflict
graph. We use the graph coloring approach to derive an initial spectrum assignment
for the given conflict graph. We simulate mobility events in the next 100 time slots,
one event per time slot where up to six nodes move to new locations. After each
event, we apply both local bargaining and graph-coloring approaches to derive the
new spectrum allocation.

Figure 12.6a illustrates the sorted fairness utility using both approaches, and local
bargaining performs nearly as good as the graph coloring approach. The graph col-
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Fig. 12.6. Performance comparison of GREEDY and BARGAINING. a. System utility.
b. Algorithm complexity. [ c© 2005 IEEE. Reprinted, with permission, from [13]].
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oring approach makes decisions with the knowledge of global topology, while using
local bargaining, each user makes decisions based on only neighbor information.
Figure 12.6b compares the communication overhead in each time slot. We observe
that local bargaining achieves similar performance while incurring much lower com-
plexity in terms of messages exchanged. This significant overhead reduction allows
quick adaptation to network dynamics. In Fig. 12.6a, we also examine the perfor-
mance of local bargaining using only one-to-one fairness bargaining, without Feed
Poverty Bargaining. The results confirm that Feed Poverty Bargaining is required to
eliminate starvation.

Next, we extend the simulation to allow p% of vertices to move to new randomly
selected locations. In general, larger p implies more disturbance to the conflict graph
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Fig. 12.7. Performance comparison of GREEDY and BARGAINING under different level of
network dynamics. a System utility. b Algorithm complexity. [ c© 2005 IEEE. Reprinted, with
permission, from [13]].
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and thus more vertices will perform bargaining to adapt their spectrum usage to the
new topology. Figure 12.7 illustrates the system utility and algorithm overhead for
local bargaining and graph coloring for increasing values of p. The utility is geomet-
rically averaged over 100 time slots, and overhead is averaged over 100 time slots.
As before, local bargaining performs similarly to graph coloring approach in system
utility. The overhead of graph coloring is not sensitive to the value of p as it mainly
depends on the number of vertices and channels. The overhead complexity of local
bargaining increases with p as more vertices need to perform bargaining. We observe
that even under 100% mobility, local bargaining reduces overhead by half compared
to the graph coloring approach. Therefore, local bargaining appears to be an attractive
alternative to graph coloring for spectrum allocation on a given network topology.

In Fig. 12.8, we examine the impact of the number of vertices at p = 20% mobil-
ity and 40 channels. Increasing vertex density results in additional interference and
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increases average vertex degree in the conflict graph. Therefore, system utility scales
inversely with the number of vertices while the algorithm complexity increases. As
before, results show that local bargaining compares favorably to graph coloring in
quality of allocation while incurring significantly less overhead.

12.6.2 Tightness of the Poverty Bound

We now examine the appropriateness of the user poverty bound derived in Theo-
rem 12.2. Figure 12.9 illustrates the histogram of the ratio of the actual user through-
put and the poverty bound assuming 40 vertices and 100 time slots. Results show
that the theoretical bound is valid and fairly tight. As we described, nodes can use
the poverty line to decide whether further local bargaining is necessary. A vertex
with an assignment below the poverty line should bargain with additional neigh-
bors to acquire additional channels. In Fig. 12.8, we also compare the performance
of Poverty guided bargaining to the graph coloring and bargaining approaches. We
show that Poverty guided bargaining performs close to that of the bargaining but with
10% less overhead, again demonstrating the tightness of the poverty line bound.

Next, we examine the impact of primary user deployment on the bound. We ran-
domly deploy 10 and 30 primary users to our previous experiments. Primary users
have the same interference range as secondary users, and occupy one randomly cho-
sen channel. Figure 12.10 shows the CDF of the ratio between actual node through-
put and lower bound. We observe that the bound becomes slightly looser as the num-
ber of primary users increases. This is mainly due to the mismatch between L(n)
and d(n). We calculate d(n) to include all the interfering neighbors who has at least
one channel in common with n. Therefore, d(n) is the upper bound of the conflicting
neighbors on each channel.
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When channel bandwidth is non-uniform, we compute the bound following The-
orem 12.1. Figure 12.11 compares the tightness of the bound when channel band-
width varies between 1–3 and 1–5. The result is relatively smoother by eliminating
the truncation effect in Theorem 12.2. We see that the bound is looser compared to
that of the uniformed bandwidth. This is mainly due to the fact that the lower bound
is only a sub-bound, i.e. a node’s throughput is always strictly larger than the bound.
The figure also shows that the bound is sensitive to the variance in bandwidth across
channels.
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12.6.3 Use Local Bargaining to Optimize For a Given Topology

As stated before, it is possible to use local bargaining to approximate the graph col-
oring approach and derive the spectrum allocation for a given topology. Local bar-
gaining starts from a random allocation and gradually improve the system utility.
Figure 12.12 compares the system utility and algorithm complexity using graph col-
oring (GREEDY), local bargaining (BARGAINING) and random assignment (RAN-
DOM). User starvation is common when using random assignment, resulting in
many zero values for system utility. Local bargaining can effectively eliminate user
starvation and performs only slightly worse compared to graph coloring approach.
Figure 12.12b shows that local bargaining can significantly reduce communication
overhead.
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12.6.4 Scalability of Local Bargaining

We also evaluate the complexity of bargaining in large scale networks. We measure
the total system overhead, i.e. the total number of message exchanges for a system
to reach an equilibrium. We keep the user density constant and vary the system scale
from 200 to 1000, and assume 20% of node mobility. Results in Fig. 12.13 together
with those in Fig. 12.8b indicates that the system overhead scales linearly with the
number of users. Hence, the average overhead per user is roughly constant, eight
messages or two bargaining iterations under the above system configurations. This
result demonstrates the efficiency of the proposed approach.

12.6.5 Comparison of Explicit and Implicit Coordination Approaches

Figure 12.14 compares all three approaches, graph coloring (CA (graph coloring)),
explicit (CA (bargaining)) and implicit coordination (rule B, C, D) approaches. There
is a noticeable performance gap between rule and collaboration based approaches.
This confirms the effectiveness of using explicit collaboration when power and com-
plexity are not considered. Compared to the explicit bargaining approach approach,
rule based approach leads to a graceful 8% degradation in utilization and 25% (on
log-scale) in fairness.
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Fig. 12.13. System overhead in large scale networks [ c© 2005 IEEE. Reprinted, with permis-
sion, from [13]].
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Fig. 12.14. Utilization and fairness comparison of different coordination schemes for 20 chan-
nels and 40 users [ c© 2005 IEEE. Reprinted, with permission, from [15]].

12.7 Related Work

Optimal conflict-free channel assignment satisfying a global optimal objective is
often NP-hard, even when global topology information is available [22]. Central-
ized approximations are widely used in single hop wireless networks such as cellular
networks. This can be easily extended to multi-hop wireless networks by flooding
connectivity and traffic requirements across the network, and requiring all users to
run a variant of the centralized algorithm. However, this approach clearly does not
scale as networks become larger and more dynamic.

An alternative decentralized allocation, where users act based on locally avail-
able information is much more attractive. Both analytical framework and practical
strategies have been proposed. Analytical frameworks in [10,11] address fairness for
single-hop flows, and derive an estimate of the rate at each flow to achieve max-min
fairness. However, there is no guarantee that a feasible scheme exists to achieve the
rate.

Practical strategies have been proposed for sharing a single channel. Contention
based schemes invoke a random access protocol like ALOHA and CSMA, where
users contend in time to share a common channel [10, 11, 22]. While this scheme
provides fairness and utilization on a single channel system probabilistically, its
application to a multi-channel system requires each user to know how many and
which channel(s) to access. Another approach, conflict free time slot scheduling,
provides guaranteed channel usage by reserving time slots for each flow. Solutions
in [6, 23, 24] assign exactly one time slot to each flow. This approach can be used
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in multi-channel systems if each user uses only one channel. Another solution [12]
allows users to use multiple slots/channels to achieve Max–Min–fair, but does not
consider interference from neighbor transmissions.

Multi-channel assignment strategies were developed mostly for cellular net-
works. The work in [25] provides solutions to assign frequency bands among base
stations to minimize call blocking probability for voice traffic. There is no notion of
fairness as the traffic determines the number of channels each base station should
use. In [26], the authors proposed a graph-theoretic model and discussed the price
of anarchy under various topology conditions such as different channel numbers and
bargaining strategies. The main difference between [26] and the proposed work is
that the proposed model allows multi-coloring of a vertex, while in [26] each vertex
can only be assigned with at most one color.

In [5, 7], the authors presented a generalized spectrum allocation problem where
interference constraint C is channel dependent. The authors developed a set of
greedy coloring approach to optimize spectrum allocation for a given conflict graph.
We use the proposed approaches in [5, 7] as the reference algorithm, i.e. GREEDY
in this chapter.

Cooperative/non-cooperative bargaining is also used in previous research to opti-
mize channel allocation for cellular networks. In [27] and [28], the authors proposed
a set of bargaining strategies for OFDMA based network, focusing on one-to-one
bargaining. In these cases, nodes are mutually interfered, i.e. the corresponding con-
flict graph is fully connected. Forming bargaining group is to find any two users
network and let them exchange certain channels to improve system performance.
The main difference between these work and the proposed work is that the pro-
posed work provides solutions for general conflict graphs where group setup needs to
consider local topology (i.e. isolated group and self-contained channel adjustment).
We propose a feed-poverty bargaining to eliminate user starvation which can not be
addressed by one-to-one bargaining. In addition, the proposed work derives a lower
bound for each node’s channel assignment that does not limit to fully connected
topology.

Conclusion

In this chapter, we present an adaptive and distributed approach to spectrum alloca-
tion in wireless networks. Instead of relying on any central servers, users perform
local coordinations to modify their spectrum usage to approach a new conflict free
spectrum assignment that maximizes system utility. Both theoretical and experimen-
tal results show that the proposed approaches perform similarly as the topology-
optimized approach but with much less complexity.

Appendix

Proof of Theorem 12.1: We prove the theorem by contradiction: Assume that the
bound (12.3) does not hold for node n under a BF-optimal assignment, i.e.
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T (n) ≤ B(n)
d(n) + 1

−MB(n). (12.5)

In the following we will show that n can request a Feed Poverty Bargaining to
improve the system utility. This contradicts with the assumption that assignment A
is BF-optimal.

We divide the proof into two steps. First, we demonstrate how to find the proper
channel to feed n. Next, we prove that system utility increases from this channel
feed.

Step 1: channel selection. We assume that user n has d(n) neighbors indexed
{0, 1, · · · , d(n) − 1}. We assume that the channels assigned to user n, fA(n) are
indexed by {M − 1,M − 2, · · · ,M −|fA(n)|}. We define t � M −|fA(n)|, where
t is the number of channels not assigned to n. For each user n, we can organize the
assignment matrix A using the following table, where an element is 1 if the channel
indexed by the row number is assigned to the user indexed by the column number.

Index 0 · · · d(n)-1 n · · ·

0 · · · · · · · · · 0 · · ·
...

...
. . .

... · · ·
...

t− 1 · · · · · · · · · 0 · · ·
t 0 · · · 0 1 · · ·
...

...
. . .

...
...

...
M-1 0 · · · 0 1 · · ·

We focus on the first t rows and first d(n)+1 columns (i.e. column 0, 1, · · · , d(n)
–1, n) of matrixA since they represent the channel assignment at user n’s neighbors.
We also examine d(n) neighbors to exclude any starved user k, i.e. T (k) = 0. Let
d represent the number of non-starved neighbors of n, d ≤ d(n), we re-index the
neighbors of n to (0, · · · , d− 1). In addition, from (12.5) we have

T (n) ≤ B(n)
d(n) + 1

−MB(n) ≤ B(n)
d+ 1

−MB(n). (12.6)

IntegratingAwith channel bandwidth matrixB, we construct an auxiliary matrix
R with t rows and d+ 1 columns. The element of R can be represented as

Rm,i =

{
Am,i·bm,i

T (i) : 0 ≤ i ≤ d− 1, 0 ≤ m ≤ t− 1
bm,i

B(i)/(d+1) : i = n, 0 ≤ m ≤ t− 1.

It is straightforward to show that for each column 0 ≤ i ≤ d− 1,

t−1∑

m=0

Rm,i =
t−1∑

m=0

Am,i · bm,i

T (i)
= 1. (12.7)

and
t−1∑

m=0

d−1∑

i=0

Rm,i =
d−1∑

i=0

t−1∑

m=0

Rm,i = d. (12.8)
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We can also show that for column n,

t−1∑

m=0

Rm,n =
t−1∑

m=0

bm,n

B(n)/(d+ 1)

=
∑t−1

m=0 bm,n

B(n)/(d+ 1)

=
B(n) − T (n)
B(n)/(d+ 1)

(by(12.6)) ≥
B(n) − (B(n)

d+1 −MB(n))
B(n)/(d+ 1)

> d. (12.9)

Combining (12.8) and (12.9), we prove that

t−1∑

m=0

Rm,n >

t−1∑

m=0

d−1∑

i=0

Rm,i.

Therefore, there must exist a channel m0, s.t.

Rm0,n >

d−1∑

i=0

Rm0,i. (12.10)

Next we show that we can improve system utility by letting user 0 to d− 1 give
up channel m0 and feed user n.

Step 2. Verify system utility. First we show that

Rm0,n ≤ 1. (12.11)

From (12.5),

B(n)
d+ 1

−MB(n) ≥ T (n) ≥ 0

=⇒ B(n)
d+ 1

≥MB(n) ≥ bm0,n

=⇒ Rm0,n =
bm0,n

B(n)/(d+ 1)
≤ 1.

Combining (12.11) with (12.10), we have

d−1∑

i=0

Rm0,i < 1,

Rm0,i < 1, 0 ≤ i ≤ d− 1. (12.12)
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This shows that for each neighbor i, m0 is not the only channel assigned. There-
fore, after feeding user n with channel m0, each neighbor has at least one channel
assigned. The system utility after the feeding, depends on the value of T (n) before
the feeding.
Case 1) T (n) = 0. From (12.12), the feeding will increase T (n) to bm0,n without
starving any neighbor (0 to d− 1). Clearly, the system utility is improved from −∞
if n is the only starved user in the network before the feeding. However, when there
are multiple starved users, the system utility remains −∞. In this case, we define
increasing system utility by reducing the number of starved users or improving the
fairness utility of the non-starved users. Through a similar process, we can continue
to remove other starved users to improve system utility.
Case 2) T (n) > 0. The ratio of system utility after the feeding to that before the
feeding can be derived as

GFP =
(T (n) + bm0,n) ·

∏d−1
i=0 (T (i) −Am0,i · bm0,i)

(T (n)) ·
∏d−1

i=0 (T (i))

=
T (n) + bm0,n

T (n)
·
(

d−1∏

i=0

T (i) −Am0,i · bm0,i

T (i)

)

=
(

1 +
bm0,n

T (n)

)
·

d−1∏

i=0

(
1 − Am0,i · bm0,i

T (i)

)

=
(

1 +
bm0,n

T (n)

)
·

d−1∏

i=0

(1 −Rm0,i) . (12.13)

We can show that

1 +
bm0,n

T (n)

(by(12.5)) ≥ 1 +
Bm0,n

B(n)
d(n)+1 −MB(n)

≥ 1 +
Bm0,n

B(n)
d(n)+1 −Bm0,n

=
B(n)

d(n)+1

B(n)
d(n)+1 −Bm0,n

=
1

1 −Rm0,n
. (12.14)

In addition, using (12.12) and Lemma 12.1, we have

d−1∏

i=0

(1 −Rm0,i) ≥ 1 −
d−1∑

i=0

Rm0,i

(by(12.10)) > 1 −Rm0,n. (12.15)
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By combining (12.14) and (12.15) into (12.13), we get

GFP >
1

1 −Rm0,n
· (1 −Rm0,n) = 1. (12.16)

From the above, the system utility increases after the feeding. This contradicts
with the assumption that assignment A is BF-optimal. �

Lemma 12.1. Suppose a1, a2, · · · , an ≥ 0, and a1 + a2 + · · · + an = p < 1. Let
f(a1, a2, · · · , an) = (1−a1)(1−a2) · · · (1−an). Then f(a1, a2, · · · , an) ≥ 1−p.

Proof. f is minimized when there is only one non-zero number, i.e. ai = p and
aj = 0 for j �= i. To prove this, let us assume that there are two non-zero numbers,
i.e. ai �= 0 and aj �= 0. We modify a′i = ai + aj and a′j = 0, so ai + aj = a′i + a′j .
However,

(1− a′i)(1− a′j) = 1− ai − aj < 1− ai − aj + aiaj = (1− ai)(1− aj). (12.17)

Thus, when there are more than one non-zero numbers in ai, 1 ≤ i ≤ n, we
can modify the ais to reduce f . This shows that f is minimized by having only one
positive ai, and f = 1 − p. �

Proof of Theorem 12.2: By Theorem 12.1, when all channels have bandwidth 1,
we have

T (n) >
|L(n)|
d(n) + 1

− 1.

Since T (n) is an integer, this is equivalent to

T (n) ≥
⌊

|L(n)|
d(n) + 1

⌋
.�

Proof of Theorem 12.3: We denote a user as “satisfied” if it is on or above its
poverty line, otherwise “unsatisfied”. First we prove a key property of the PGB:

Property 12.1. With a bargaining iteration in which channels are fed to n, if a neigh-
bor n1 is converted from “satisfied” to “unsatisfied”, then Γ(n) < Γ(n1).

Proof. First we assume node n is below its poverty line Γ(n). From the proof of
Theorem 12.1, by combining (12.13), (12.14) and (12.16), we show that for channel
m0,

1
1 −Rm0,n

·
d−1∏

i=0

(1 −Rm0,i) > 1.

Under uniform channel bandwidth, this shows that before the bargaining,

(
1

1 − d+1
|L(n)|

)
·

d−1∏

i=0

(
1 − 1

T (i)

)
> 1.
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Since (1 − 1
T (i) ) < 1 and d+1

|L(n)| ≤
1

Γ (n) , this implies that for any neighbor n1,
0 ≤ n1 ≤ d− 1 involved in the bargaining,

Γ(n)
Γ(n) − 1

· T (n1) − 1
T (n1)

> 1

and therefore, T (n1) > Γ(n). Hence, after feeding channel m0 to n, no neighbor’s
throughput is reduced to below Γ(n). Hence, if the throughput of n1 is reduced to
below Γ(n1), then it must be the case where Γ(n) < Γ(n1). �

Proof (Proof for Theorem 12.3). From Property 12.1, if the PGB can be conducted
such that the user with lower poverty line among its (one-hop) neighborhood wins the
priority to be feeded first, then each “satisfied” user will never become an “unsatis-
fied” user after it is feeded by the PGB. Hence, the number of iteration is at most N .
If the user to be feeded is selected randomly among requestors, then a user with
lower poverty line among its neighborhood will wait for an expected number of
O(N) interations to win the opportunity, because at each iteration the number of
users who request a PGB is bounded by N . The total number of iterations until the
system reaches an equilibrium is O(N2). �
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13.1 Introduction

Wireless industry has been undergoing a rapid development in recent years. New
technologies, new devices and new services related to wireless communication are
emerging rapidly in various environments (home, office, public zone and so on).
The exponential growth in wireless devices and services has resulted in an overly
crowded spectrum. It is known that radio spectrum is a shared media and that inter-
ference will occur among different devices using the same spectrum frequency. To
eliminate the interference between different wireless services, command and control
policy is adopted nowadays to allocate a fixed portion of spectrum to each service.
There is a common belief that we are running out of usable radio frequencies under
such a spectrum sharing policy. The overly crowded US frequency allocation chart
and the multi-billion-dollar price at European 3G spectrum auction have certainly
strengthened this belief. However, actual spectrum usage measurements indicate the
significantly unbalanced use of licensee in different spectrum band: with a small por-
tion of spectrum (e.g., cellular band, unlicensed band) increasingly crowded, most of
the rest allocated spectrum is underutilized [1,2]. This paradox indicates that spec-
trum shortage results from the inefficiency of spectrum management policy rather
than the physical scarcity of usable frequencies.

With the underutilization of valuable spectrum resource and the increasing
demand of spectrum for wireless communication services, efficient spectrum man-
agement schemes are needed. This drives the emergence of concept of open spec-
trum, the basic idea of which is to open licensed spectrum to unlicensed users
(secondary users) and limit the interference perceived by licensees (primary users).
The essential of open spectrum system is opportunistic spectrum access, which
allows secondary users to identify available spectrum resources that not occupied
by primary users and communicate in a manner that limits the level of interfer-
ence perceived by the primary users. The open spectrum system has been studied
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in many projects, such as DARPA XG program [3,4], DIMSUMnet project [5],
DRiVE/OverDRiVE project [6], etc. The open spectrum system uses a cognitive
radio to recognize the status of radio spectrum environment and change its transmis-
sion parameters online, i.e., has the spectrum sensing ability and frequency agility.
The ultimate goal is for the secondary network equipped with cognitive radio (call
it as cognitive network) to efficiently utilize the available spectrum by intelligently
sensing and accessing spectrum opportunity.

With such powerful cognitive radio technology, wireless devices will have the
capability to recognize the radio environment around it. Physical layer implemen-
tation of cognitive radio is critical, but how to leverage the advanced features of
cognitive radio (e.g., spectrum sensing and adaptation) in upper layers is also of par-
ticular importance. In this chapter, we investigate the media access control (MAC)
protocol which is of significant importance in an ad hoc cognitive network, where
there is no central controller for the entire system. The cognitive MAC should fully
utilize the advanced capability provided by cognitive radio to improve the network
performance. Specifically, cognitive MAC should make the appropriate sensing deci-
sion to explore spectrum opportunity, which is different from the physical layer issue
of how to detect the existence of primary signal, and to utilize such opportunity to
conduct data transmission. Since there is no centralized controller in an ad hoc cog-
nitive network, such sensing and transmission operation must be coordinated among
multiple secondary users, which brings further challenges.

Several cognitive radio MAC protocols have appeared in the literature to address
various issues in cognitive network. In the IEEE 802.22 standard, distributed sensing
and synchronization are coordinated by a base station [7]. Two-stage sensing, i.e.,
fast sensing using energy detection and fine sensing using feature detection, are used
to balance the tradeoff between primary user detection accuracy and time overhead
of spectrum sensing. Dynamic open spectrum sharing (DOSS) MAC allows nodes
to adaptively select an arbitrary spectrum for the incipient communication subject
to spectrum availability which makes good use of idle spectrum [8]; ad hoc sec-
ondary MAC (AS-MAC) was proposed for secondary users to coexist with GSM
network where the issues of transmission status management of secondary users are
addressed [9,10]. However, all these aforementioned protocols, with or without the
aid of infrastructure, pay little attention to the hardware limitation of cognitive radio.
They either use just a few fixed number of spectrum channels or assume the full-
spectrum sensing ability for wide spectrum band. To the best of our knowledge,
decentralized cognitive MAC (DC-MAC) is the first work that assumes the partial
sensing ability of the cognitive radio in a spectrum management system and stud-
ies a joint sensing and transmission decision [11]. However, the influence of sensing
overhead for the multiple channel opportunity is not fully considered. Besides the
open spectrum context, there are many existing research works about multiple chan-
nel MAC design. The absence of primary users makes them fundamentally different
from cognitive MAC design.

Different from the existing approaches, we observe the current spectrum sens-
ing limitation for practical cognitive radios. We identify the hardware constraints
in two main aspects: (1) Sensing constraint: for a given geometrical area, spectrum



13 Optimal Spectrum Sensing for Hardware-Constrained Cognitive Networks 367

opportunity of interest may span a wide range of bandwidth. However, at any given
period, accurate and fine sensing can only be conducted within a small portion of
spectrum. (2) Transmission constraint: spectrum used by secondary users has the
maximum bandwidth limits and spectrum fragmentation number limits which stems
from the number of radios and orthogonal frequency-division multiplexing (OFDM)
technology limitations [12]. These constraints bring new research challenges and
also opportunities in cognitive MAC design. Here, we consider the common situ-
ations where secondary users are all equipped with a single cognitive radio. The
cognitive radio cannot sense and transmit simultaneously, and discontinuous OFDM
is used for spectrum aggregation but the maximum spread bandwidth and the num-
ber of fragments are limited. To protect primary users, a maximum detection time
interval is used similar to that in IEEE 802.22, which represents the maximum time
of interference from secondary signal a primary user can tolerate before it wants to
use the spectrum.

These constraints and assumptions impose a limit on continuous transmission by
secondary users and require the secondary users to sense spectrum before transmis-
sion. It is known that, only when a certain band of spectrum is sensed, the status
of the band is known for secondary users. There is a tradeoff between spectrum
opportunity and sensing overhead. For a single transmission pair, the more the spec-
trum is sensed, the more the spectrum opportunity can be explored, however, the
larger the sensing overhead will be. A fundamental problem is how secondary users
sense the spectrum intelligently (e.g., whether or not to sense further based on the
current situation) and optimize the expected throughput. To solve this problem, we
propose a new cognitive MAC, hardware-constrained multi-channel cognitive MAC
(HC-MAC), which incorporates the sensing overhead and the transmission param-
eter limitations into the MAC design. We model the sensing process as an optimal
stopping problem which can be solved by the principle of backward induction. How-
ever, the computation overhead of such optimal solution is quite large which is not
suitable for real-time MAC protocols. We use k-stage look-ahead method to approx-
imate the optimal solution with reduced overhead. In the practical protocol design,
sender and receiver synchronization is an issue because of the spectrum heterogene-
ity. Moreover, the multiple user contention for available spectrum should be con-
sidered, such as the hidden terminal problem. In the proposed HC-MAC, we use a
common channel for control messages and contention of secondary users; the sens-
ing and transmission of single pair is reserved to prevent message collisions from
neighboring nodes, and makes use of the block of sensing decision as a basic com-
ponent. Further, the protocol does not require global time synchronization.

The remainder of the chapter is organized as follow. In Sect. 13.2, we introduce
the preliminaries of open spectrum system and some related work. The system archi-
tecture under the hardware constraint will be given in Sect. 13.3. The optimal sens-
ing decision is discussed in Sect. 13.4, with approximation algorithms and numerical
results. Sect 13.5 gives the detailed protocol design for cognitive network. We use
NS2 simulator to evaluate the performance of the HC-MAC protocol in Sect. 13.6.
Then we conclude the chapter.
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13.2 Preliminaries and Related Work

In this section, we give a brief description of the open spectrum system, and then
some existing work related to cognitive MAC and multi-channel MAC design are
discussed.

13.2.1 Preliminaries of Open Spectrum System

Current fixed allocation of radio spectrum results in significant underutilization of
spectrum resources. The open spectrum system makes flexible use of the radio spec-
trum resources. In an open spectrum system, some spectrum bands can be shared by
primary users and secondary users. Primary users possess the license of these spec-
trums which are granted by government. Normally, these primary users are legacy
systems previously deployed in an area and the actuall utilization of their spectrum
is quite low. Since little spectrum is available in this area, new spectrum-based com-
munication systems cannot be deployed. However, with the help of open spectrum,
secondary users are able to request the opportunistic usage of these spectrums from
the primary users. Secondary users can only use the spectrum on a lease or non-
interference basis. Therefore, both primary users and secondary users can benefit
from open spectrum system: primary users may generate revenue from the leasing
contract while secondary users can enable the communication which is not possible
before.

Generally, channel availability from a secondary device perspective can be mod-
eled in two ways: first, a binary model, in which the secondary device considers a
channel to be occupied or available depending on whether it does or does not detect
the presence of any primary device signal on that channel; and second, interference
temperature model, in which the secondary device considers a channel to be unavail-
able for transmission if its transmission on that channel would result in increase
of interference temperature beyond the predefined threshold within its interference
range. Typically in both the models, the operations of secondary devices usually have
two stages: sensing and transmission. In this chapter, we assume the sequential exe-
cution of these operations (as shown in Fig. 13.1). During sensing stages, PHY-layer
sensing and MAC-layer sensing are used to detect the primary users and protect
their service quality. PHY-layer sensing adapts modulation schemes and parame-
ters to measure and detect the primary users’ signals on different channels while
MAC-layer sensing is used to determine when and which channel the secondary
user should sense. Techniques such as cyclostationary signal processing, matched fil-
ters and radiometric detectors (or energy detectors) are generally used by secondary
devices for PHY-sensing. Please refer to [13] for a comparative study of different
PHY sensing techniques. Note that MAC-layer sensing decision is the main focus
in this chapter. After the information of spectrum has been collected in the sensing
stage, actual data transmission can be conducted on the channels underutilized by
primary users during the transmission stage.
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Fig. 13.1. Basic operations taken by a secondary device.

13.2.2 Related Work

Several MAC protocols have been developed for more flexible and efficient use of
spectrum resource built on top of the cognitive radio. Some issues in the design of
cognitive MAC also arise in general MAC protocol. In this section, we will briefly
summarize these related works.

13.2.2.1 Cognitive MAC

There are several research efforts on cognitive MAC protocol design in both industry
standardization and academic research projects. From the standardization point of
view, the current IEEE 802.22 draft is the first worldwide standard related to cogni-
tive radio. Its MAC employs the superframe structure [7]. Synchronized distributed
sensing, fast sensing using energy detection and fine sensing using feature detection,
are used. At the beginning of every superframe, the base station (BS) sends special
preamble and SCH (superframe control header) through each and every TV chan-
nel (up to three contiguous) that can be used for communication and is guaranteed
to meet the incumbent protection requirements. Because of the limited number of
channels IEEE 802.22 adopts, the sensing overhead is not a major issue. In addition,
IEEE 802.22 is operated in the point-to-multiple model, which is comparably easier
than the cases without the control of the BS.

There are several ad hoc model MAC protocols for cognitive radio in academic
research projects. Most of them do not consider the hardware constraints on spectrum
sensing ability and assume full-spectrum sensing in a particular portion of spectrum.
Dynamic open spectrum sharing (DOSS) MAC [8] protocol allows nodes to adap-
tively select an arbitrary spectrum for the incipient communication subject to spec-
trum availability. In this protocol, after the operation of detection of primary users’
presence, three operational channels (a busy tone band, a control band and a data
band) are set up. The biggest concern with this protocol is the need for multiple
transceivers: one transceiver for each channel. Thus this protocol is not suitable for
nodes with only one half-duplex radio. In [9], AS-MAC protocol was proposed to
coexist with a GSM cellular system; one of the control channels in GSM band is
used as the secondary common control channel. A common control channel facili-
tates many spectrum-sharing functionalities such as transmitter receiver handshake,
communication with a central entity or sensing information exchange.

The sensing decision under hardware constraints of cognitive radio was first con-
sidered in [11]. It is not assumed that each secondary user has full knowledge of
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the availability of all channels, which implies continuous full-spectrum sensing by
secondary users. With the channel occupancy by the primary network assumed to
follow a discrete-time Markov process, at the beginning of each slot, a secondary
user with data to transmit needs to choose a set of channels to sense and a set of
channels to access based on the sensing outcome. Such spectrum sensing and access
decisions are made to maximize the throughput of the secondary user while limiting
the interference to the primary network by fully exploiting the sensing history and
the spectrum occupancy statistics. Joint sensing and access decision was formulated
as a partially observable Markov decision process (POMDP). However, the tradeoff
between sensing overhead and transmission throughput gain was not considered.

13.2.2.2 General Multi-Channel MAC

Many MAC protocols have been proposed to exploit the multiple channels to
increase the network capacity by using either multiple radios or just one single radio.
A multi-radio multi-channel MAC in general assigns the radios of each node to dif-
ferent channels and enables more simultaneous transmissions so that multiple chan-
nels can be used simultaneously for each user. For single-radio multi-channel MAC,
the idea is to let different users transmit in parallel on distinct channels, which also
increases the throughput and reduces the delay.

For the dynamic channel assignment (DCA) algorithm [14], control messages
(RTS/CTS) are exchanged over a control channel and data transfer takes place over a
number of data channels. The dedicated radio at the control channel and the problem
of control channel saturation are the main concerns. Slotted seeded channel hopping
(SSCH) algorithm [15], where a number of channels are available for use and nodes
exchange pseudo-random schedules for accessing the medium in a time-slotted man-
ner. No dedicated control channel is needed so that the problem of control channel
saturation is avoided. Multi-channel MAC (MMAC) [16] is proposed for single-radio
ad hoc networks. Multi-channel hidden terminal problem is addressed within syn-
chronized slotted frames. The assumption of global synchronization may incur great
overhead for large systems. These works provide solutions for the problems in cog-
nitive wireless network. However, note that, the presence of primary users makes a
fundamental difference for MAC protocol design for cognitive wireless networks.

Optimal stopping rules were used by some of the existing works on MAC pro-
tocols. Multi-channel opportunistic auto-rate (MOAR) [16] explores opportunity to
skip frequency channels in search for better quality channels. To balance the tradeoff
between the time and resource cost of channel measurement/channel skipping and
the throughput gain available via transmitting over a better channel, optimal stop-
ping rule was devised to maximize the expected throughput. In our chapter, we focus
on the gain from the simultaneous use of several channels with cognitive radio.
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13.3 System Architecture of Hardware-Constrained Cognitive
Network

In this section, we will first describe the practical hardware constraint of cognitive
radio. Then we will present system architecture for a single cognitive radio MAC
protocol and its key issue of sensing and access decision.

13.3.1 Hardware Constraints in Cognitive Radio

Current hardware development of cognitive radio is still at its infancy. One currently
available cognitive radio product was developed by Adapt4 Inc., which can only
work on the frequency band 217–220 MH and support 45 channels. Even in the
future when cognitive radio is powerful enough to change its sensing and transmis-
sion parameter at its will, the cost to achieve this may still be quite high. Within the
predictable near future, cognitive radio must have certain constraints as follows.

For wideband spectrum sensing, there exist certain limitations such as time con-
sumption and energy constraints. Therefore, a common assumption is for a sin-
gle cognitive radio, it can only sense a limited bandwidth of spectrum during a
certain amount of time (call it sensing constraint). For different spectrum sensing
approaches and different types of primary users, the time overhead varies.

Due to the dynamic behavior in the primary devices, secondary device can even-
tually find multiple discontinuous spectrum holes (fragmented spectrum) for poten-
tial transmission. Spectrum aggregation is a promising technology to leverage multi-
ple available spectral fragments simultaneously to provide effective wide bandwidth
communication services. However, for a single secondary device to utilize multiple
fragmented spectrum for transmission, the hardware cost may be large [12]. Two
potential hardware design options are available: a receiver chain per spectrum frag-
ments provided that only a few fragments are to be aggregated or a single wide-band
receiver for many fragments. The former is achievable using narrowband technolo-
gies but increasing component count may be a problem as the number of fragments
increases. The latter, although more elegant, is more difficult due to technological
limitations of wideband components, antenna sharing, and the challenge of manag-
ing inter-modulation products. Orthogonal frequency division multiplexing (OFDM)
is very suitable to aggregating discontinuous spectrum due to the ability to switch off
unwanted subcarriers, and hence produces a signal with a non-contiguous frequency
spectrum which may be tailored to transmitting in available spectrum fragments, as
shown in Fig. 13.2.

Because of the limited size and cost of the secondary device, in this chapter we
consider the secondary networks consisting of devices equipped with single cognitive
radio which can spread signal within a limited number of spectrum fragments in a
spectrum band with limited bandwidth (call it transmission constraint). According
to the recent report of Ofcom [12], using today’s hardware technology, it is possible
to aggregate fragments over a limited number of bands, each band being at most 50
MHz wide. The center frequencies of these bands can be anything from 100 MHz up
to 1.5 GHz, and it is possible to have tunable bands in a single aggregating device.
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Fig. 13.2. Discontinuous OFDM for using fragmented spectrum.

The increased RF hardware costs for a two-fragment solution ranged between 70%
and 600% depending on the technology and type of service involved.

13.3.2 System Architecture

The protection of privileges of primary users is of paramount importance in open
spectrum system. In this chapter, we borrow some basic concepts, such as channel
detection time from the MAC design of IEEE 802.22. Since the opportunistic spec-
trum access by secondary devices is completely transparent to primary users, the pri-
mary users may experience a short but measurable interference as soon as they start
transmission on a channel that is currently used by a secondary device for its data
transmission. In our system, we define a parameter as the maximum transmission
time, which is the time during which an incumbent operation can withstand interfer-
ence before the secondary device detects it. In other words, this parameter dictates
how quickly and how well a secondary device must be able to detect incumbents.

The two limitations, i.e., sensing constraints and transmission constraints, raise
the problem of how to optimize the sensing decision for each sensing slots. A sim-
ple example shown in Fig. 13.3 is used to illustrate the need for the sensing decision
making. Each channel has the same bandwidth,B; the sensing time for a single chan-
nel is t and the maximum transmission time is T . Suppose that starting at the time t0,
a secondary user is about to take the next round of sensing and transmission. With
the channel conditions unknown at that moment, it has to sense the spectrum. After
two slots of sensing, the secondary user can just stop at time t2 and use the available
channels (one available channel) for transmission during the maximum transmission
time of T with the achievable data rateBT/(T +2t), which is depicted in decision A
(Fig. 13.3a). Instead, it can aggressively continue to sense the next unknown channel
as shown in decision B, which results in the data rate 2BT/(T + 3t) if this channel
is available as in Fig. 13.3b and BT/(T + 3t) if unavailable as in Fig. 13.3c. More
spectrum band may be available for transmission, if more bands are sensed, but the
sensing overhead is also increased. Moreover, the degree of availability of spectrum
channels also influences the decision-making. The sensing decision made at each
sensing slot, which is whether to stop sensing or continue sensing, then determines
the achievable throughput. An alternative way is to simply fix the number of sensed
channels. Although simples, it is suboptimal since the decision is not based on the
information of spectrum availability.
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Besides the sensing overhead (t in the above example), we also know that the
fragmented spectrum which can be utilized by a single secondary node for its trans-
mission is also limited by hardware transmission constraint. Therefore, the sensing
decision should take both hardware constraints (sensing and transmission) and spec-
trum opportunity into consideration.

As presented in the next section, we formulate the above decision problem with
sensing and transmission constraints as an optimal stopping problem. In our MAC
design, we use the simple design principle: sensing mechanism is used as a basic
component in the protocol, where high throughput is achieved for a single transmis-
sion pair by using the efficient approximation algorithm; under the assumption that
there exists a common available channel, contention-based random access in con-
trol channel is used by multiple secondary users to reserve the time interval for the
following sensing and transmission.

13.4 Sensing and Accessing Decision

13.4.1 Channel Diversity and Sensing Overhead

There are multiple channels under consideration, and each channel is occupied by
random primary traffic, which exposes itself as a spectrum opportunity with certain
probability. According to the Shannon theory [17], for a single secondary user, the
theoretical throughput upper bound is proportional to the bandwidth used:

R = W log(1 + SNR) (13.1)

where R is the data rate, W is the transmission bandwidth, and SNR is the received
signal strength and noise rate. Therefore, if a secondary user can exploit more chan-
nels and utilize available channels, significant throughput increase can be achieved.

However, the idle channels at each node may be different because of the pri-
mary traffic variation and mobility. For the protection of primary users and for the
exploitation of the spectrum opportunities, secondary users must sense channels with
unknown condition before they can actually use them. Further negotiation between
a sender and a receiver is also needed for exchanging their channel availability con-
ditions. Only if a channel is available at both sides, it can be utilized for secondary
use of that link. These operations consume the effective transmission time of the
secondary users. Therefore, there is a tradeoff between exploring more idle channels
and encountering more sensing overhead, which is of great importance in the design
of a multiple channel cognitive MAC protocol. To express this issue more explicitly,
suppose the maximum continuous transmission period for a secondary link is T , the
sensing and negotiation overhead is t. Then the problem becomes how many chan-
nels a secondary user should explore so that the expected throughput is maximized.

13.4.2 The Theory of Optimal Stopping

The theory of optimal stopping is concerned with the problem of choosing a time to
take an action based on sequentially observed random variables in order to maximize
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an expected payoff or to minimize an expected cost. Problems of this type are found
in the area of statistics, where the action taken may be to test a hypothesis or to
estimate a parameter, and in the area of operations research, where the action may
be to replace a machine, hire a secretary or reorder stock, etc. The following is the
definition of optimal stopping problems.

Stopping rule problems are defined by two objects:

1. A sequence of random variables,X1,X2, . . ., whose joint distribution is assumed
to be known,

2. A sequence of real-valued reward functions,

y0, y1(x1), y2(x1, x2), . . . , y∞(x1, x2, . . .).

Given these two objects, the associated stopping rule problem may be described
as follows [18,19]. The sequence of X1,X2, . . . can be observed for as long as pos-
sible. For each n = 1, 2, . . ., after observing X1 = x1,X2 = x2, . . . , Xn = xn,
the decision may be to stop and receive the known reward yn(x1, . . . , xn) or may
be to continue and observe Xn+1. If the decision is not to take any observations, the
received reward is a constant amount, y0. If never stopping, the received reward is
y∞(x1, x2, . . .).

The goal is to choose a time to stop such that the expected reward is maxi-
mized. It is allowed to use randomized decisions. That is, given that the process
reaches stage n having observed X1 = x1, . . . , Xn = xn, it is to choose a proba-
bility of stopping that may depend on these observations. We denote this probability
by φn(x1, . . . , xn). A (randomized) stopping rule consists of the sequence of these
functions,

Φ = (φ0, φ1(x1), φ2(x1, x2), . . .) (13.2)

where for all n and x1, . . . , xn, 0 ≤ Φn(x1, . . . , xn) ≤ 1. The stopping rule is said
to be non-randomized if each φn(x1, . . . , xn) is either 0 or 1. Thus, φ0 represents
the probability that no observations is taken at all. Given that the first observation is
taken, and X1 = x1 is observed, φ1(x1) represents the probability to stop after the
first observation, and so on. The stopping rule Φ and the sequence of observations
X = (X1,X2, ...), determine the random time N at which stopping occurs, 0 ≤
N <∞, where N = ∞ if stopping never occurs.

A stopping rule problem has a finite horizon if there is a known upper bound on
the number of stages at which one may stop. If stopping is required after observing
X1,X2, . . . , XT , we say the problem has a horizon T . A finite horizon problem is a
special case of the general stopping rule problem with yT+1 = . . . = y∞ = −∞.
Finite horizon stopping rule problems can be solved by the method of backward
induction [18]. Since we must stop at stage T , we first find the optimal rule at stage
T − 1. Thus, knowing the optimal rule at stage T − 1 we find the optimal stopping
rule at stage T − 2 and so on, until back to the initial stage. In particular, we define

V
(T )
T = yT (x1, x2, . . . , xT ) (13.3)

and then inductively for
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V
(T )
j = max{yj(x1, . . . , xj), E(V (T )

j+1(x1, . . . , xj ,Xj+1)|X1 = x1, . . . , Xj = xj)}.
(13.4)

13.4.3 Optimal Stopping of Spectrum Sensing

The spectrum sensing decision problem can be formulated as an optimal stopping
problem. Let Xn denote the 0–1 (occupied–idle) state of the nth channel probed
and the probability Pr(Xn = 1) = p is assumed to be equal. The expected value
of Xn is u = E(Xn). Let yn denote the expected payoff of stopping probing and
transmission after probing n channels. yn is a function of the aggregated channel
availability and depends on the radio technology. Here we generalize the constraints
for the cognitive radio: the maximum number of adjacent channels a single secondary
user can simultaneously use is W , the maximum number of spectrum fragments
it can aggregate is F [12]. For a band of spectrum with adjacent channels {i, i +
1, . . . , j}, we denote the number of fragments as Frag(i, j). Let bn be the maximum
number of idle channels within n adjacent channels (starting from 1), subject to the
above constraints (W,F ), namely

bn(x1, . . . , xn) = max
1≤i≤j≤n

j−i+1≤W

Frag(i,j)≤F

j∑

k=i

xk. (13.5)

The reward function yn can be written as

yn(x1, . . . , xn) =
T

T + nt
bn(x1, . . . , xn) =

c

c+ n
bn(x1, . . . , xn) (13.6)

where c = T/t. yn is actually the effective data rate during the time interval T after
make the stopping and transmission decision.

Assume the maximum number of channels a user can probe before make a stop-
ping decision is at most K(K ≤ N), which means this is a finite horizon problem,
solvable by using the backward induction principle. Denote

V
(K)
K (x1, . . . , xK) = yK(x1, . . . , xK) =

c

c+K
bK(x1, . . . , xK). (13.7)

Then

E(V (K)
K (x1, . . . , xK−1,XK)|X1 = x1, . . . , XK−1 = xK−1)

=
c

c+K
[p× bk(x1, . . . , xK−1, 1) + q × bK(x1, . . . , xK−1, 0)] (13.8)

where p, q are the probabilities ofXk = 1 andXk = 0, respectively; and inductively
for n = K − 1 backward to n = 2,
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V (K)
n (x1, . . . , xn)

= max{yn(x1, . . . , xn), E(V (K)
n+1(x1, . . . , Xn+1|X1 = x1, . . . , Xn = xn))}

E(V (K)
n (x1, . . . , xn−1,Xn)|X1 = x1, . . . , Xn−1 = xn−1)

= p× V (K)
n (x1, . . . , xn−1, 1) + q × V (K)

n (x1, . . . , xn−1, 0). (13.9)

Obviously, we should have a sensing at the beginning, with result x1, since E(V2) ≥
0. Then we compare y1 with E(V2), make the decision and so on. At each stage,
{E(Vn)} defines the optimal stopping rule.

13.4.4 Complexity Reduction

Such a backward induction solution is a type of dynamic programming, which has
the exponential complexity. For a small number of channels, direct computation is
possible. However, with the increase in the number of channels, computation time
grows exponentially. For a practical MAC protocol, we have to reduce the compu-
tational complexity to a reasonable level. In the following, we introduce the k-stage
look-ahead rules to approximate the optimal stopping rule.

The k-stage look-ahead rules decide at each stage whether to stop or continue
according to whether the optimal rule among those truncated k stages ahead stops
or continues. Thus at stage n, if the optimal rule among those truncated at n + k
continues, the k-stage look-ahead rules continue; otherwise, the k-stage look-ahead
rules stop. The stopping time Nk is defined as

Nk = min{n ≥ 0 : yn(x1, . . . , xn)

≥ E(V (n+k)
n+1 (x1, . . . , Xn+1, . . . , Xn+k)|X1 = x1, . . . , Xn = xn)}.

(13.10)

When k = K−n, it is optimal. This is the tradeoff between the degree of optimality
and computational cost.

We use numerical results to show the performance of approximations. Figure
13.4 shows the approximation results with different setups. From Fig. 13.4a, we can
see the difference between 1-stage look-ahead and k-stage look-ahead (k > 1) is
small. According to the numerical results in Fig. 13.4b, 1-stage or 2-stage look-ahead
is almost optimal. As a comparison, if a fixed number of channels is to be sensed,
the results are much worse than the optimal and approximation ones, as shown in
Fig. 13.4c. Optimal stopping and its approximation results are always better than
the fixed one because their decision is based on the previous observation in each
individual sensing process. In this paper, we approximate the optimal result using
1-stage or 2-stage look-ahead approach.
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Fig. 13.4. Numerical results for approximation rules (c = 10, p = 0.5, W = 6, F = 2).
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13.5 HC-MAC: Hardware-Constrained Multi-Channel Cognitive
MAC

In this section, we present the design for our proposed hardware-constrained multi-
channel cognitive MAC protocol, HC-MAC, which will take the following chal-
lenges into consideration:

1. Spectrum sensing for existence of primary users before data transmission. Since
the channel conditions are not known in advance, to protect primary users,
the shared spectrum band must be sensed first. The best sensing decision for
expected data rate is made according to the optimal stopping rule previously
described.

2. Synchronization between transmitter and receiver. The sensing results at the
transmitter and the receiver need to be exchanged because of the spectrum het-
erogeneity seen by them. The overhead for these information exchanges is also
included in the calculation of the optimal stopping rule. Final sensing stopping
and transmission decisions are after the last message exchange.

3. Multi-channel hidden terminal problem. In multi-channel systems, especially
those consisting of single-radio equipped devices, new hidden terminal prob-
lems arise. This is because a single-radio device may listen to different channels,
which makes it difficult to use virtual carrier sensing to avoid the hidden terminal
problem.

Before we present the detailed HC-MAC, some necessary assumptions are summa-
rized as follows:

1. There are totallyN frequency channels of interest, {chi}N . Here the term chan-
nel refers to the physical channel which is a spectrum band with a certain amount
of bandwidth. We do not consider the logical channels such as the spreading
codes in CDMA systems. For simplicity, we assume each channel has the same
bandwidth B. These channels may not be continuous.

2. A common channel ch0 is available for secondary users at any time. This can be
in the unlicensed band in practice. This common channel is used as the control
channel where secondary users make competition and collaboration as described
later.

3. We consider a general case in which primary users are randomly distributed in
an area, using N channels for their data transmissions. The state of N channels
at time t is given by {X1(t),X2(t), . . . , XN (t)}, where Xi(t) ∈ {0 (occupied),
1 (idle)}. If traffic of primary users follows Poisson traffic model, the probability
of the states {Xi(t)} can be determined.

4. Each secondary node is equipped with a single cognitive radio. The radio can
either transmit or listen (sense), but cannot do both simultaneously. Based on
the hardware costs, there may be limitations on the maximum number of idle
channels and the maximum number of spectrum fragments a cognitive radio can
use for transmission; a simple case is for a cognitive radio to utilize any idle
channels for transmission. The time for primary signal detection depends on
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different spectrum sensing mechanisms and also the primary signal type. We use
ts to denote the time to detect primary signal in a single channel and it cannot be
neglected. The sensing results are assumed to be accurate.

5. There exists a certain degree of interference from secondary users’ activity
which is tolerable for primary users. Since our focus is on the overlay perspec-
tive of spectrum sharing, we use maximum tolerable interference time T as a
hard protection criteria [7]. Let each primary activity in a channel lasts for a rel-
ative long time compared with T . Therefore, as long as a secondary user’s data
transmission ruled by the designed cognitive MAC protocol does not exceed the
time limit T , it is considered safe for the primary users. In this chapter, the same
T applies to all primary users.

With these assumptions, we present the challenges to design a cognitive MAC which
explores the opportunity of transmission within multiple available channels.

13.5.1 Protocol Overview

We first give an overview of the protocol design. The time frame in HC-MAC is
a unit of secondary operations depicted in Fig. 13.5. The whole time frame can be
separated into three parts: contention, sensing, transmission. Three types of packets
are introduced to facilitate these operations:

1. C-RTS/C-CTS: contention and spectrum reservation in contention part.
2. S-RTS/S-CTS: exchange channel availability information between sender and

receiver in each sensing slot.
3. T-RTS/T-CTS: notify the neighboring nodes the completion of the transmission.

Figure 13.6 shows the state diagram for our HC-MAC. If one node wants to
transmit, it first sends a C-RTS on ch0 after random backoff. The intended receiver
replies C-CTS on ch0. Any secondary node hearing either the C-RTS or C-CTS

Fig. 13.5. HC-MAC operation phases.
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Fig. 13.6. State transition diagram of HC-MAC.

message will defer their operation and wait for the notification message on ch0. After
reserving the sensing period, the transmission pair conducts sensing in each channel
and exchange another S-RTS and S-CTS if that channel is available for both sides. A
failure of such S-RTS/S-CTS in a channel indicates that the channel is not available.
The optimal stopping rule described in the previous section is used to decide the time
to stop probing. When an agreement is made between a sender and a receiver, data
transmission is conducted in the selected channels. When the transmission finishes,
they will switch back to the control channel and exchange T-RTS/T-CTS. This T-
RTS/T-CTS exchange ends other neighbors’ deferment and the neighboring node
participates in another round of contention.

13.5.2 Protocol Design

13.5.2.1 Contention

HC-MAC does not require global synchronization. Any node entering the network
first listens to control channel ch0 for a time interval td = tpK + T . This allows the
new node to observe the current spectrum activities. Since any of the neighboring
nodes cannot sense more than time tpK and transmit more than time T , a new node
will not miss any control packet in its neighborhood. During the period, if a C-RTS
(C-CTS) is received, it will defer and wait for the T-RTS (T-CTS). If T-RTS (T-
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CTS) is received or time td is expired before receiving a T-RTS (T-CTS), new node
participates in the contention process if it wants to transmit.

During the contention period, a multiple access scheme similar to IEEE 802.11
DCF model is used. A node reserves time for the following sensing and transmis-
sion operations within the neighborhood through the control channel by exchanging
RTS/CTS messages with the target node. When a node wants to send packets to
another node, it first sends a C-RTS packet to the destination through the control
channel. The receiver, upon receiving the C-RTS, will reply a C-CTS packet. Other
nodes overhear these packets defer their sensing and transmission, and wait for the
notification from the transmitter/receiver pair or a timeout.

When a transmission is finished by a pair of nodes, other neighboring nodes
contend the control channel with random backoff. Each of them chooses a back-
off counter within a contention window. Each node maintains a variable cw, the
contention windows size, which is reset to a value CWmin initially. The counter is
deducted by one after each time slot. When the backoff counter reaches zero, the
node will try to reserve the control channel by sending a C-RTS to the destination. If
the C-RTS packets from neighboring nodes collide, they will double their contention
window which lowers the probability of another collision. The node with the small-
est contention window wins, and starts the next stage while other nodes freeze the
counter until next contention period.

13.5.2.2 Sensing

A transmission pair which wins the contention will reverse the channels and starts to
sense the spectrum. The sensing phase has one or several sensing slots, each of which
includes the actual spectrum sensing and negotiation between sender and receiver.
Since the transmitter and the receiver are now synchronized, they sense each channel
with the same amount of time interval ts. After getting the results, if the spectrum
at the transmitter is available, it will send S-RTS to the receiver. If the spectrum is
also available at the receiver side, the receiver will reply with S-CTS packet. Upon a
successful exchange made between them, the spectrum availability for this channel
is observed. When there is a channel occupied at any side of the transmission pair,
either explicit message exchange with S-RTS (S-CTS) or timeout mechanism can be
used. The negotiation message is quite short, so the interference for the primary user
can be neglected. Since we use the timeout mechanism, i.e., no successful exchange
before a timeout implies the occupation, another overhead comes from the exchange
of another S-RTS and S-CTS if that channel is available for both sides, which is
denoted by te. The total cost to obtain the status information of a channel is t =
ts + te.

A sensing stopping or continuing decision is made at the end of each spectrum
sensing slot. The decision follows the optimal stopping rule described previously.
The unit spectrum sensing time t, the maximum transmission time T and the hard-
ware constraints (we assume they are identical for all nodes) are used to achieve the
stopping decision. The decision is made by the sender and the receiver simultane-
ously and does not need any further negotiation.
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For the probabilities of channel availability, they are assumed to be known for the
secondary nodes. In the case that the probability for channel availability is not known
in advance, the probability can be estimated with the information collected at each
sensing of the channels. If channel conditions are similar for all the channels, the
aggregated information for all channels is used to estimate the common availability
probability; otherwise, separated probability is estimated for each of the channels.
An estimation window with the size EW is used to approximate the probability with
the information collected within the past EW sensing slots. The previous estima-
tion between the transmitter and receiver must be synchronized, otherwise different
decisions will occur. This is achieved by piggybacking RTS/CTS exchanges in con-
tention and sensing stages. Each RTS/CTS exchanges the estimation, while the final
decision uses the average of these two.

13.5.2.3 Transmission

After the transmission pair make the stopping decision, they begin to use a set of
available channels to transmit packets. The transmission can include multiple data
packets and corresponding ACK packets, when there is much data to transmit. The
maximum transmission time is equal to T . After finishing the transmission, the trans-
mitter will send a T-RTS to announce the completion of transmission; upon receiving
the T-RTS, the receiver replies T-CTS. This information exchange ends the deferring
of the neighboring node and starts the next round of contention.

One simple example is shown in Fig. 13.7, where pairs A–B and C–D contend
for transmission. In the figure, node B is about to send packets to node A, while node
C is targeting at node D. After pair A–B obtains the control channel ch0 (indicated
by the number in the parenthesis) via C-RTS/C-CTS control message exchange, pair
A–B starts to sense while pair C–D freezes its state and backs off. When finishing
the sensing of two channels (ch1, ch2) and exchanging the S-RTS/S-CTS messages,
pair A–B makes a decision to stop sensing and enters to transmission stage. It uses
the two available channels simultaneously to transmit two DATA packets and the
associated ACK packets. Then the maximum transmission time T is almost used, it
stops transmission and switches back to the control channel. To notify the completion
of this round of spectrum usage, T-RTS/T-CTS messages are sent. Upon receiving of
this last message exchange, pair C–D resumes its counting down of backoff timer
and completes with pair A–B for the next round of spectrum access.

13.6 Performance Evaluation

In this section, we present the simulation results for the performance evaluation of
the protocol. The simulations are conducted by ns-2 with version 2.29 [20]. We first
consider a fully connected topology consisting of two transmission pair covered by
a single primary user. The network throughput for HC-MAC and that for a fixed
number of sensed channels are compared. The influence of different primary traffic
usage, different transmission parameter setup on the secondary user’s performance
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Fig. 13.7. An example of two competing flows.

is evaluated. The adaptation feature of HC-MAC is also demonstrated. After that,
spectrum heterogeneity with fully connected topology is investigated with two pri-
mary users covering different sets of secondary users. Random topology is simulated
to manifest the influence of primary user and secondary user density.

In all the following simulation setups, the bandwidth of each channel B = 1
MHz, and the secondary users have the same hardware constraints, maximum spread
bandwidth W = 6 channels, and maximum fragments F = 2 fragments. Saturated
CBR traffic flows are used by secondary users. In many of the simulations below, we
compare our HC-MAC which makes intelligent sensing decision with the intuitive
scheme which fixes the number of channels sensed.

13.6.1 Fully Connected, Spectrum-Homogeneous Topology

Figure 13.8 shows the first considered topology, where one primary user is cov-
ering two secondary transmission pairs. These two pairs are fully connected, thus
the performance difference due to the topology is avoided. In addition, the spec-
trum opportunities exposed to two pairs are identical. The performance comparison
for our MAC protocol with optimal stopping approximation (1-stage look-ahead)
and with fixed number of sensed channels is given in Fig. 13.9. The approximation
scheme is better than the fixed scheme which is consistent with our previous numer-
ical results. We also examined the performance under different parameter settings.
As shown in Fig. 13.10, with increasing number of total channels, the throughput
of secondary users increases. This is because more bandwidth can be used simulta-
neously. In Fig. 13.11, when the probability of channel availability increases, the
secondary throughput is also increased. Similar observation is shown in Fig. 13.12
for maximum transmission time interval.
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Fig. 13.9. Variation in throughput with different fixed numbers of sensing channels.

We further present the performance of HC-MAC under the situation when pri-
mary user’s spectrum usage was alternating. The result is compared with the fixed
scheme with a certain value for the number of sensed channels in Fig. 13.13. Since
our scheme is adaptive in that the exploration of spectrum opportunity is according
to the actual primary spectrum utilization, the throughput changes with the spectrum
availability and is better than the fixed scheme.

13.6.2 Fully Connected, Spectrum-Heterogonous Topology

For the second considered topology, two primary users are covering two secondary
transmission pairs shown in Fig. 13.14. The spectrum heterogeneity is examined with
different spectrum availability for the two flows (p = 0.4 for flow 1–2, p = 0.8
for flow 3–4) while other parameters are the same as before (10 total channels,
0.01 s max transmission time). In Fig. 13.15, the performance is compared with fixed
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Fig. 13.11. Variation in throughput with different probability of channel availability.

scheme with five sensed channels. The adaptive decision makes our scheme outper-
form the fixed one. The overall throughput of flow 3–4 is greater than flow 1–2, since
there exists more spectrum opportunity for flow 3–4. The fluctuation of the curves is
due to the contention between these two flows.

13.6.3 Random Topology

We consider the random topology with the size of 1500 × 1500. Four non-overlaying
primary users are located in the topology with same parameters for simplicity (spec-
trum availability probability p is 0.5). Secondary users are uniformly distributed
within the area. We give the results of network throughput for secondary users with
different numbers of secondary single hop flows shown in Fig. 13.16. Our scheme
performs better than the fixed scheme with four sensed channels. The performance in
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Fig. 13.15. Individual throughput for two secondary pairs in Fig. 13.14.
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Fig. 13.17. A random topology with 15 secondary flows (p = 0.4 during 10–35 s, p = 0.8
during 35–60 s).

a single random topology with 15 secondary flows and time-varying primary traffic
is shown in Fig. 13.17. Spectrum availability probability p is 0.4 during the first half-
timeand 0.8 for the secondary one. Again our scheme is more efficient in capturing
the spectrum opportunity than the fixed scheme.

Conclusion

In this chapter, we have proposed a MAC protocol that utilizes multiple spectrum
opportunities (channels) to improve the cognitive network throughput and overall
spectrum utilization. We took practical considerations of hardware constraints of
cognitive radio used by secondary users: sensing constraints and transmission con-
straints. In our proposed system, the primary users had certain specifications of their
maximum tolerable interference from the secondary users. We then identified the
problem for each secondary user on how to maximize their throughput by opti-
mizing the sensing decision in a sequence of sensing processes. This problem can
be mapped to a well-defined optimal stopping problem. Both optimal solution and
approximation rule were obtained. Based on this sensing decision, we designed a
HC-MAC for hardware-constrained cognitive networks. Nearby transmission pairs
were regulated so that the interference among the secondary users was mitigated.
Simulation results showed the achievable throughput of secondary users for various
system configurations.
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14.1 Introduction

Software-defined radio technique [1] was invented to improve adaptability and flex-
ibility of wireless transmission so that the network performance can be improved.
Developed based on software-defined radio, “cognitive radio” has been identified as
a new paradigm for designing next generation wireless networks. A cognitive radio
transceiver has the ability to observe, learn, optimize, and adapt the transmission
parameters (e.g., transmission power, modulation level) according to the ambient
environment [2]. Also, with this agility of the cognitive radio transceiver, frequency
spectrum can be shared among licensed and unlicensed services, i.e., the primary
and secondary services, respectively, to improve the spectrum utilization. The basic
components/processes to achieve adaptability of wireless transmission in cognitive
radio are described below.

• Observation process: The observation process typically consists of measurement
and noise reduction mechanisms. The radio transceiver can silently listen to the
environment, or the special messages and signals are transmitted and measured
to obtain information about the surrounding environment. Estimation techniques
play an important role in the observation process [3].

• Learning process: This refers to the process of extracting useful information
from collected data. A learning process utilizes data obtained from observation
process, previous decisions and actions.

• Planning and decision making process: This refers to the process of using the
knowledge obtained from learning to schedule and prepare for transmission in
the future. If multiple choices of actions are available, a transceiver must decide
to choose the best strategy to achieve the objective. This planning and decision
making process will change the current state of the transceiver, and subsequently,
the surrounding environment which is observed by all the users.

• Action: This refers to the process of responding to the environment. The action
of a transceiver is controlled by the planning and decision making process.
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Fig. 14.1. Basic components and their interactions to achieve adaptivity in cognitive radio.

Figure 14.1 shows the interactions among these components.
Dynamic spectrum sharing is a challenging problem in cognitive radio network

due to the requirement of “peaceful” co-existence of both licensed (primary) and
unlicensed (secondary) users as well as the optimal utilization of radio spectrum. If
the primary user cannot fully utilize the allocated spectrum, it results in spectrum
hole which can be used by the secondary user(s) to improve the spectrum efficiency.
In a scenario where the primary and the secondary services are provided by differ-
ent operators, the secondary user(s) will require to pay the primary user(s) or ser-
vice provider(s) for sharing the spectrum. Pricing is an important issue which affects
dynamic spectrum sharing in cognitive radio networks. Channel allocation and spec-
trum sharing can be performed through the coordination of the service providers so
that the spectrum owners can achieve their objectives. A negotiation protocol [4]
is required for information exchange among the spectrum owners. The amount of
shared bandwidth and the pricing should be determined such that the profit/utility of
the service provider(s) is maximized while the quality of service (QoS) requirements
of the the user(s) are satisfied. The dynamics of bandwidth sharing and pricing in
a cognitive radio environment would depend on factors such as the number of pri-
mary users (or service providers), primary users’ QoS requirements, and bandwidth
demand of the secondary users.
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14.2 Motivation, Contribution, and Organization of this Chapter

Game theory, widely used in microeconomics, can be effectively applied to address
the problem of dynamic spectrum sharing, and in general, to the planning and
decision-making process in a cognitive radio system. This is due to the fact that,
in an environment where multiple agents interact with a view to achieve their own
interests, in many cases, these objectives conflict with each other. Game theory can
provide the basis to resolve this conflict so that all the agents are satisfied.

In this chapter, we investigate the problem of spectrum sharing and pricing in a
cognitive radio environment using the game-theoretic oligopoly model from microe-
conomic theory. In microeconomics, oligopoly is defined as a situation where a small
number of producers (i.e., oligopolists) dominate a particular market. In this market
structure, producers compete with each other independently to achieve their objec-
tives (i.e., maximize profit) by controlling the quantity or the price of the supplied
commodity. The supply quantity and/or the price offered by one producer will affect
the profit of other producers. For example, if one producer increases its supply to
the market, the price for the entire market will decrease. As a result, profit of other
producers tends to decrease.

Oligopoly is the more general case of a duopoly market (i.e., in duopoly market,
the number of players is two), game theory can be used to analyze and predict the
behavior of the producers. Each producer makes his decision independently, but the
decision of one producer impacts the decision (i.e., profit) of other producers. The
classical oligopoly models analyzed by game theory are Cournot, Stackelberg, and
Bertrand game models. These models differ in market structure and competition. In
particular, in Cournot model, producers compete in terms of quantity of supply to
the market. All the producers make their decisions at the same time. On the other
hand, in Stackelberg model, there are some producers (referred to as leaders) who
are able to make decisions on the amount of supplied quantity before other producers
(i.e., followers). Then, these followers make decision on the best amount of supplied
quantity by taking into account the decision of the leader. Finally, in Bertrand model,
all producers make decision simultaneously in terms of price. These different market
structures result in different game formulations and also affect the behavior of the
producers to achieve the best decision.

We demonstrate the applications of Cournot, Stackelberg, and Bertrand mod-
els of competition for spectrum/bandwidth sharing and pricing in cognitive wire-
less networks. Specifically, these three different models for oligopoly are applied
to obtain the optimal size of spectrum/bandwidth sharing and the charging price.
The oligopoly market models were well studied in economics. Also, they are com-
putationally simple, and therefore, suitable for implementation in resource-limited
software-defined radio transceiver.

The Cournot game model is used for the case where multiple secondary users
share the spectrum/bandwidth with a primary user and the objective is to maximize
the profit of the secondary users. Here, all secondary users can completely observe
the strategies and the payoffs of other secondary users.
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In the Bertrand model, several service providers (or primary users) compete with
each other in terms of price to gain the highest profit under QoS constraints for
the primary users. Here, the bandwidth demand of the secondary users is established
based on a utility function which depends on the quality of transmission (i.e., channel
quality) in the available spectrum. In addition, we consider spectrum substitutabil-
ity which represents the ability of a secondary user to switch among the frequency
spectra offered by different primary users.

Lastly, the Stackelberg leader-follower competition is used to model the problem
of optimal sharing and pricing under elastic bandwidth demand from the secondary
users. Numerical performance evaluation results are presented for these oligopoly
competition models to show their efficacy in allocating radio resource in cognitive
radio environments.

The rest of the chapter is organized as follows. Section 14.3 reviews the related
works in the literature. The general characteristics of the three oligopoly competition
models considered in this chapter are presented in Sect. 14.4. Section 14.5 presents
the Cournot game model and its performance for dynamic spectrum sharing among
multiple secondary users. The Bertrand game model for spectrum pricing under com-
petition is presented in Sect. 14.6. Section 14.7 presents the Stackelberg game model
for optimal pricing and sharing under elastic bandwidth demand. Then, the chapter
is concluded.

14.3 Related Work

A partially observable Markov decision process (POMDP) was used for dynamic
spectrum access in an ad hoc network [5]. An opportunistic spectrum access method
was developed to allow secondary users to use the radio spectrum by using a decen-
tralized cognitive medium access control (MAC) protocol. In the problem formula-
tion, the state of the system was defined in terms of the availability of each channel
and the action was defined as sensing and accessing the channel if available. The
reward was defined as the amount of transmitted data. A heuristic algorithm was
used to obtain the solution which was observed to be as good as the optimal algo-
rithm but with much lower computational complexity.

In [6], a cognitive radio-based MAC layer scheduling algorithm was proposed for
multihop wireless networks. An integer linear programming (ILP) model was formu-
lated to solve the scheduling problem for time slot and channel allocation among the
wireless nodes in the network. Also, to reduce the computational complexity, a dis-
tributed heuristic algorithm was devised to obtain the near optimal solution.

In [7], a pricing scheme for spectrum usage was presented where the price was
described as a function of allocated spectrum, traffic intensity, and spectral efficiency
of transmission. The pricing for spectral occupation under power constraints was
obtained through an optimization formulation.

In [8], a game-theoretic adaptive channel allocation scheme was proposed to cap-
ture the selfish and the cooperative behaviors of the wireless nodes in the network.
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The strategies of these players were defined in terms of channel selection. Two pay-
off calculation schemes were used both of which depend on the level of interference.
Also, a no-regret learning algorithm was used to learn the historical actions of other
players. It was shown that the solution of this game formulation converges to the
deterministic Nash equilibrium strategy.

In [9], the convergence dynamics of different types of games in cognitive radio
was studied (i.e., coordinated behavior, best-response, and better response for dis-
counted repeated games, S-modular games, and potential games, respectively). Also,
a game theory framework was proposed for distributed power control to achieve
agility in spectrum usage in a cognitive radio network. The problem of competitive
channel allocation among multiradio devices was considered in [10]. Noncooperative
game theory was used to analyze the dynamics of channel allocation where the strat-
egy of a user was defined in terms of channel allocation and the payoff was obtained
through a utility function of transmission rate. An algorithm was presented to achieve
a channel allocation configuration which was shown to be both Pareto-optimal and
system-optimal.

In [11], the problem of dynamic spectrum access in open spectrum wireless net-
works was modeled by using a continuous-time Markov model. Also, a distributed
algorithm modeled as a multiplayer game was proposed.

Oligopoly market model was used extensively to analyze the behavior of elec-
tricity market [13–15]. In the electricity market, there are several producers who
generate electricity to supply to the load (i.e., consumers). In general, the producers
have to compete with each other by adjusting the price/supplied power to the load to
achieve the maximum profit. A Cournot game model was used to analyze the power
bidding in electricity market [13]. Since the transmission line from generator to the
load is capacity limited, there is a constraint on the transmission network which was
considered in the model [14].

An oligopoly model was used to analyze and develop network resource alloca-
tion [16, 17]. In [16], the resource allocation problem in wired networks was for-
mulated by using a Cournot model. In the considered system model, a user chooses
the transmission rate and the links set the suitable price according to the marginal
cost of the total rate allocation. In [17], a resource-trading mechanism for efficient
distribution of large-volume contents in peer-to-peer networks was proposed. The
objective of this mechanism was to maximize network capacity for higher revenue.
The proposed mechanism was shown to be able to achieve Cournot equilibrium for
resource-trading.

The problem of spectrum management and pricing can be formulated as an
oligopoly market for which the product is the spectrum access opportunity (e.g.,
time, frequency, and code for time-division multiple access (TDMA), orthogonal
frequency-division multiple access (OFDMA), and code-division multiple access
(CDMA) networks, respectively). Game theory can be used to analyze the equilib-
rium of sharing and pricing so that all the service providers are satisfied with the
solution.
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14.4 Oligopoly Market Models

The general description of the game formulation for an oligopoly competition pre-
sented in microeconomic literature is as follows [24]:

• Players: The players of an oligopoly competition are the producers (oligopolists).
• Strategies: The strategy for each producer corresponds to the supplied quantity

(for the Cournot and the Stackelberg models) and the offered price (for Bertrand
model).

• Payoffs: The payoff for the producer is the profit which can be determined based
on the inverse demand function and the strategies adopted by all the producers in
the market.

To illustrate the oligopoly market models (i.e., Cournot, Bertrand, and Stack-
elberg), we consider a market with only two producers (i.e., duopoly), so that the
decisions (i.e., strategies) of the producers and their impacts can be presented by a
two-dimensional graph. However, the same approach can be applied to the case of
more than two producers (i.e., oligopoly). In order to study these oligopoly models, a
demand function is required. In this case, we consider a linear inverse demand func-
tion in which the price of the product is determined from the total amount of supply
to the market. This function can be defined as P (Q) = A−Q, where P is the price
for unit amount of supplied quantity, Q is the total amount of supplied quantity, and
A > 0 is the parameter of the inverse demand function. This demand function is
shown in Fig. 14.2.

Supply quantity (Q)
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e 
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)
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Fig. 14.2. Inverse demand function.

14.4.1 Cournot Competition

In Cournot competition, all producers who are the players of the game, make deci-
sions (i.e., choose strategies) simultaneously on the amount of supplied quantity.
Then, the total supplied quantity (i.e., aggregated supply) is used to determine the
price which can be obtained from the given inverse demand function. The simplest
case, to analyze this Cournot competition, assumes that all producers supply the same
product, and therefore, there is no difference for the market to buy from a particu-
lar producer. Also, the cost of production for one unit of product is constant and is
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denoted by C and there is a fixed cost of production which is denoted by Cf . The
objective of all of the producers is to maximize their profits by adjusting the supplied
quantity to the market.

If Qi and Qj denote supply quantities from producer i and j respectively, the
strategic form [12] of this game can be expressed as follows:

0 · · · Qm
j

0 (π1(0, 0), π2(0, 0)) · · · (π1(0, Qm
j ), π2(0, Qm

j ))
1 (π1(1, 0), π2(1, 0)) · · · (π1(1, Qm

j ), π2(1, Qm
j ))

...
... · · ·

...
Qm

i (π1(Qm
i , 0), π2(Qm

i , 0)) · · · (π1(Qm
i , Q

m
j ), π2(Qm

i , Q
m
j ))

, (14.1)

where π1(Qi, Qj) and π2(Qi, Qj) denote the profit functions of producers i and j,
respectively. This strategic form shows the market for which the supplied quantity is
an integer, and producer i chooses a strategy in the rows and producer j chooses a
strategy in the columns.

The Nash equilibrium, which is the solution of the game, can be used to deter-
mine the decision of the producer. This Nash equilibrium will provide the optimal
strategy for each of the players where all the players are rational. This rationality
indicates that all the players are willing to maximize their payoffs.

To obtain Nash equilibrium, best response or reaction function is typically used.
This best response function is the optimal strategy of one producer given the strate-
gies of other producers. If Qj denotes the given strategy of producer j, profit of
producer i can be expressed as follows:

πi(Qi, Qj) = P (Qi +Qj)Qi − CQi − Cf (14.2)

= (A−Qi −Qj)Qi − CQi − Cf . (14.3)

The response function is the strategy that maximizes this profit. By differentiating the
profit with respect to the available strategyQi, the best response function is obtained
as follows:

∂πi(Qi, Qj)
∂Qi

= A− 2Qi −Qj − C (14.4)

0 = A− 2Qi −Qj − C (14.5)

Q∗
i (Qj) =

A−Qj − C
2

. (14.6)

Similarly, the best response function of producer j is obtained as Q∗
j (Qi) =

A−Qi−C
2 . As an example, Fig. 14.3 shows profit of producer i when for A = 10,

C = 0.5, and Cf = 1. The best responses for which the maximum profit is achieved
are also shown. We observe that if producer j increases its supply, profit of producer
i decreases, and also the best response of producer i (in terms of supplied quantity)



398 D. Niyato, E. Hossain

0 1 2 3 4 5 6 7
0

5

10

15

Q
i

π i(Q
i,Q

−
j)

Q
j
=2

Q
j
=3

Q
j
=4

Best response

Fig. 14.3. Profit function.

decreases. This is due to the higher amount of total supply which results in lower
market price. Therefore, the revenue becomes smaller while the cost remains the
same.

The best response function of each of the producers given the other producer’s
strategy is shown in Fig. 14.4 for C = 0.5 and Cf=1. The best response of one
producer decreases as the other producer increases its supply. When the value of the
parameter A in the inverse demand function increases, the best response function
shifts to the larger supplied quantity since the price is higher at the same aggregated
supplied quantity. The same effect is observed when the cost per unit of product
increases. However, this best response is not affected by the fixed cost.

The solution of the Cournot game model (i.e., the Nash equilibrium) gives the
optimal supplied quantity that maximizes the profits of the firms. The Nash equi-
librium of a game is a strategy profile (list of strategies, one for each player) with
the property that no player can increase his payoff by choosing a different action,
given the other players’ actions [12]. In the context of Cournot model, this Nash
equilibrium can be expressed as follows:

Q∗
i (Q

∗
j ) = Q∗

j (Q
∗
i ). (14.7)

The Nash equilibrium is graphically shown in Fig. 14.4. This equilibrium is the
point where the best responses intersect with each other, and it can be expressed as
follows:

(Q∗
i , Q

∗
j ) =

(
A− C

3
,
A− C

3

)
. (14.8)

Note that, the profits of both the producers are the same, which is consistent with the
assumption that both have the same information and they make decisions simultane-
ously.

At this Nash equilibrium, none of the producers can have better profit without
adjustment in the supplied quantity of another producer. For example, if producer i
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tries to increase its supplied quantity, the price will decrease. As a result, producer
j must also increase its supplied quantity to gain higher profit. However, this will
reduce the profit of both the producers. As a result, producer i is forced to reduce its
supplied quantity. This process will repeat until the equilibrium is reached. This is
referred to as the dynamic behavior of the Cournot model.

14.4.2 Bertrand Competition

Different from Cournot and Stackelberg competitions in which the producers com-
pete in terms of supplied quantity, in Bertrand competition the producers compete
by adjusting the price of the product. Before supplying the product to the market, all
producers make decision on the price and announce to the market. Then, based on
the demand function, a consumer decides the quantity to buy from each producer.
The objective of this competition is again to maximize the profit of the producers.

However, in this Bertrand competition, the solution depends mainly on the sub-
stitutability of the products. If the products from the different producers are identical,
then they are said to be totally substitutable. On the other hand, if the products are
different, the products may be partly substitutable or may be completely unsubsti-
tutable. The basic model of Bertrand competition considers the cases of identical
and totally different products as described below.

In the case of identical or homogeneous products, the products from all the pro-
ducers are totally substitutable, i.e., buying from one producer is not different from
buying from others. Therefore, the consumer will alway choose to buy from the pro-
ducer offering the lowest price. Furthermore, the entire market will buy from that
producer, and other firms will have zero profit. Studies have shown that there is a
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unique Nash equilibrium in which the price charged by all producers are identical.
In particular, at the Nash equilibrium, the price is equal to the production cost. When
one producer decreases the price, that producer will capture the entire market. As
a result, other producers will try to decrease their price to gain positive profit. Any
price which is larger than the production cost is not equilibrium since one producer
can gain higher profit by reducing the price.

In the case of differentiated products, the demand functions for the products from
the different producers are different. Therefore, the market could buy different quan-
tities of products from different producers where the prices are different. To describe
the Bertrand competition in case of differentiated products, we consider the follow-
ing demand functions:

Qi(Pi, Pj) = A− Pi +BPj (14.9)

Qj(Pi, Pj) = A− Pj +BPi (14.10)

where A and B are constants. Here, B also represents the substitutability of the
products. Similar to the previous model, to obtain the Nash equilibrium of the game,
the best response of producer i (i.e., which maximizes its profit) can be derived as
follows:

πi(Pi, Pj) = PiQi − CQi − Cf (14.11)

= (A− Pi +BPj)Pi − C (A− Pi +BPj) − Cf . (14.12)

Differentiating πi(Pi, Pj) with respect to Pi we obtain the best response as follows:

∂πi(Pi, Pj)
∂Pi

= A+BPj − 2Pi + C = 0 (14.13)

P ∗
i =

A+ C +BPj

2
. (14.14)

Similarly, the best response function of producer j is

P ∗
j =

A+ C +BPi

2
. (14.15)

The Nash equilibrium for the charging price can be found to be

(P ∗
i , P

∗
j ) =

(
A+ C
2 −B ,

A+ C
2 −B

)
. (14.16)

The Nash equilibrium of the above Bertrand competition is shown in Fig. 14.5 for
A = 5, C = 0.5, and Cf = 1. Again, the Nash equilibrium is located at the
point where the best responses of both the producers intersect with each other. Also,
parameter B, which represents the substitutability of the products impacts the slope
of the best response curves and hence the Nash equilibrium.
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Fig. 14.5. Nash equilibrium for Bertrand competition.

14.4.3 Stackelberg Competition

In Stackelberg model, similar to Cournot model, the producers compete with each
other in terms of supplied quantity. However, in the Stackelberg competition, there
is at least one producer (referred to as the leader) who can commit the chosen strat-
egy (i.e., supplied quantity) before other producers (referred to as the followers). An
extensive form game [12] (as shown in Fig. 14.6) is used to present the Stackelberg
competition model. This extensive form shows the sequence of decision making in
which producer i is a leader and producer j is a follower. In this Stackelberg compe-
tition, since the leader will make the decision before the followers, the followers will
choose their optimal strategy based on the observation from the leader. As a result,
the solution of this game is a set of strategies where the profit of the leader is max-
imized for which the followers choose their best responses given the strategy of the
leader.

In order to determine the equilibrium in a Stackelberg competition, backward
induction is used. With backward induction, the best response of the follower is
obtained at the last decision-making period. Again, the profit of the follower is com-
puted from

πj(Qi, Qj) = (A−Qi −Qj)Qj − CQj − Cf . (14.17)

The best response of the follower is given as follows:

Q∗
j (Qi) =

A−Qi − C
2

. (14.18)

Then, we backtrack to the decision of the leader. Here, the leader makes a deci-
sion based on the assumption that the follower will react with its optimal strategy
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Leader
(producer i)

Follower
(producer j)

( i(1,1) j(1,1))

…

( i(1,2) j(1,2))
( i(1,3) j(1,3))

( i(2,1) j(2,1))
( i(2,2) j(2,2))

( i(Qi,Qj) j(Qi,Qj))
…

…

Qi Qj

Fig. 14.6. Extensive form for the Stackelberg game.

(i.e., best response), and the objective of the leader is to maximize its profit. There-
fore, we have

πi(Pi, Pj) = (A−Qi −Qj)Qi − CQi − Cf (14.19)

=
(
A−Qi −

A−Qi − C
2

)
Qi − CQi − Cf . (14.20)

Differentiating this profit function with respect to the strategy of the leader, which is
Qi, we obtain

∂πi(Pi, Pj)
∂Pi

= A− 2Qi −
A

2
+Qi +

C

2
− C (14.21)

0 =
A− C

2
−Qi (14.22)

Q∗
i =

A− C
2

. (14.23)

This is the subgame perfect Nash equilibrium or the optimal strategy for the leader if
the leader can make a decision before the follower. Again, this optimal strategy for
the leader will influence the decision of the follower. Based on the optimal strategy
of the leader, the optimal strategy for the follower is

Q∗
j =

A− C
4

. (14.24)

This Stackelberg equilibrium is graphically shown in Fig. 14.7, and it can be
expressed mathematically as follows:

(Q∗
i , Q

∗
j ) =

(
A− C

2
,
A− C

4

)
. (14.25)

Note that, the optimal strategy of the leader is at the point where the leader predicts
that the supplied quantity of a follower is zero. However, the follower will react with
a non-zero supplied quantity.
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At the Stackelberg equilibrium, the leader will offer a larger amount of supplied
quantity than that of a follower. Consequently, the profit of the leader is higher. This
higher profit of the leader in a Stackelberg competition is also known as the first-
move advantage in which the player of the game with the ability to make decision
before other players will gain larger payoff.

In the following sections, we demonstrate the applications of the oligopoly mar-
ket models to the spectrum/bandwidth sharing and pricing problem in cognitive radio
networks. In particular, the three different oligopoly models described above are
applied to obtain the optimal size of spectrum/bandwidth sharing and the charging
price.

14.5 A Cournot Game Formulation for Dynamic Spectrum
Sharing among Multiple Secondary Users

In this section, we formulate the problem of spectrum sharing among the primary
user1 and multiple secondary users as an oligopoly market competition. The objec-
tive of this spectrum sharing is to maximize the profit of secondary users by utilizing
the concept of equilibrium. A Cournot game model is formulated for the case where
a secondary user is assumed to have the knowledge on the strategies and the payoffs
of other secondary users.

1 We use “primary/secondary service” and “primary/secondary user” interchangeably.
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14.5.1 System Model and Assumptions

We consider a wireless system with a primary user and multiple secondary users (i.e.,
total number of secondary users is denoted by N ) who want to share the spectrum
allocated to the primary user (Fig. 14.8) [18]. In this case, the primary user is willing
to share some portion of the spectrum (Qi) with secondary user i. The primary user
charges the secondary user for the spectrum at a rate of c(b) per unit bandwidth,
where b is the amount of available bandwidth that can be shared. After allocation,
the secondary users transmit in the allocated spectrum using adaptive modulation to
enhance the transmission performance.

…
Secondary user 1

Primary user

Secondary user N

Total spectrum

Q1 ... QN

Requested spectrum share

Price charging by primary user

Fig. 14.8. System model for Cournot game spectrum sharing.

With adaptive modulation, the transmission rate can be dynamically adjusted
based on the channel quality. For uncoded quadrature amplitude modulation (QAM)
with square signal constellation (e.g., 4-QAM, 16-QAM) the bit-error-rate (BER)
in single-input single-output Gaussian noise channel can be well approximated as
follows [19]:

BER ≈ 0.2 exp
(

−1.5γ
(2k − 1)

)
(14.26)

where γ is the SNR at the receiver and k is the spectral efficiency of the modulation
scheme used. Without loss of generality, we assume that the spectral efficiency is a
non-negative real number (which can be obtained given any BER). To guarantee the
quality of transmission, BER must be maintained at the target level (i.e., BERtar

i ).
Therefore, spectral efficiency of transmission for secondary user i can be obtained
from

ki = log2(1 +Kγi) (14.27)

where

K =
1.5

ln
(
0.2/BERtar

i

) . (14.28)
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We assume that the received SNR information is available at the transmitter by
channel estimation. In short, for secondary user i, given the received SNR γi, target
BERtar

i , and assigned spectrum Qi, the transmission rate (in bits per second) can be
obtained.

The revenue of secondary user i is denoted by ri per unit of achievable trans-
mission rate. It is assumed that a secondary user can communicate with the primary
user but not with any other secondary users. Therefore, the adaptation for spectrum
sharing is performed between each of the secondary users and the primary user only.

14.5.2 Cournot Game Formulation

Based on the above system model, a Cournot game can be formulated as follows:

• Players: The players in this game are the secondary users.
• Strategies: The strategy of each of the players is the spectrum size requested

(denoted by Qi for secondary user i) which is nonnegative.
• Payoffs: The payoff for each player is the profit (i.e., revenue minus cost) of

secondary user i (denoted by πi) in sharing the spectrum with the primary user
and the other secondary users.

Note that, the commodity of this oligopoly market is the frequency spectrum.
For the primary user, we assume that the pricing function used to charge the

secondary users is given by

P (Q) = x+ y

⎛

⎝
∑

j

Qj

⎞

⎠
τ

(14.29)

where x, y, and τ are nonnegative constants, τ ≥ 1, and Q denotes the set of strate-
gies of all secondary users (i.e., Q = {Q1, . . . QN}). Let w denote the worth of the
spectrum for the primary user. Then, the condition P (Q) > w ×

∑
j Qj is neces-

sary to ensure that the primary user is willing to share spectrum of size Qj with the
secondary users. Note that, the primary user charges all of the secondary users at the
same price.

The revenue of secondary user i can be obtained from ri × ki × Qi, while the
cost of spectrum allocation is QiP (Q). Therefore, the profit of the secondary user i
can be obtained as follows:

πi(Q) = rikiQi −QiP (Q) (14.30)

= rikiQi −Qi

⎛

⎝x+ y

⎛

⎝
∑

j

Qj

⎞

⎠
τ⎞

⎠ . (14.31)

The marginal profit function for secondary user i can be obtained from

∂πi(Q)
∂Qi

= riki − x− y

⎛

⎝
∑

j

Qj

⎞

⎠
τ

− yQiτ

⎛

⎝
∑

j

Qj

⎞

⎠
τ−1

. (14.32)



406 D. Niyato, E. Hossain

Let Q−i denote the set of strategies adopted by all except secondary user i (i.e.,
Q−i = {Qj |j = 1, . . . , N ; j �= i} and Q = Q−i ∪ {Qi}). In this case, the optimal
allocated spectrum size to one secondary user depends on the strategies of other
secondary users. Therefore, Nash equilibrium is considered as the solution of the
game to ensure that all secondary users are satisfied with the solution.

In this case, we obtain the Nash equilibrium by using the best response function
which is the best strategy of one player given others’ strategies. The best response
function of secondary user i given the allocated spectrum size to other secondary
users Qj , where j �= i, is defined as follows:

BR i (Q−i) = arg max
Qi

πi(Q−i ∪ {Qi}). (14.33)

The set Q
∗ = {Q∗

1, . . . Q
∗
N} denotes the Nash equilibrium of this game if

Q∗
i = BR i(Q

∗
−i), ∀i (14.34)

where Q
∗
−i denotes the set of best responses for secondary users j for j �= i. Math-

ematically, to obtain the Nash equilibrium, we have to solve the following set of
equations:

∂π1(Q)
∂Q1

= 0 = r1k1 − x− y

⎛

⎝
∑

j

Qj

⎞

⎠
τ

− yQ1τ

⎛

⎝
∑

j

Qj

⎞

⎠
τ−1

...

∂πN (Q)
∂QN

= 0 = rNkN − x− y

⎛

⎝
∑

j

Qj

⎞

⎠
τ

−QNyτ

⎛

⎝
∑

j

Qj

⎞

⎠
τ−1

.

14.5.3 Performance Evaluation

14.5.3.1 Parameter Setting

We consider a cognitive radio environment with a primary user and two secondary
users sharing a frequency spectrum of size 15 MHz. The target BER for both the
users is BERtar

i = 10−4. For the pricing function of primary user, we use x = 0 and
y = 1, while τ is adjusted based on the evaluation scenario (e.g., τ = 1.0), and the
worth of spectrum for primary user is w = 1. The revenue of a secondary user per
unit transmission rate is ri = 10, ∀i.

14.5.3.2 Numerical Results

Figure 14.9 shows the best response of both secondary users in the Cournot game.
The best response of each secondary user is a linear function of the other user’s strat-
egy. The Nash equilibrium is located at the point where the best responses of both
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Fig. 14.9. Best responses and Nash equilibrium under different channel qualities.

the users intersect. We observe that the Nash equilibrium varies under different chan-
nel qualities. The adaptation of Nash equilibrium under different channel qualities is
presented in Fig. 14.10. As expected, when the channel quality for a secondary user
becomes better, the size of the spectrum allocated to that secondary users becomes
larger. Also, we observe that the channel quality of one secondary user impacts the
size of the allocated spectrum to other secondary user.

Figure 14.11 shows the impact of pricing function on the revenue of the primary
user. When the value of the parameter τ increases, the primary user benefits from
charging higher price to the secondary users. However, at a particular point (i.e.,
τ = 1.9), the revenue gained by the primary user decreases since the price of the
spectrum becomes too high and the secondary users request much smaller spectrum
size. Therefore, the revenue from the secondary users increases at a rate smaller than
the worth of spectrum to the primary users. Also, this result suggests that there is
an optimal value for the pricing parameter τ which maximizes the revenue of the
primary user.

14.6 Bertrand Game Model for Spectrum Pricing Under
Competition

In this section, we consider a competitive situation for spectrum management where
a few primary users offer spectrum access to the secondary users. For a primary
user, the cost of sharing the frequency spectrum is modeled as a function of QoS
degradation. The Nash equilibrium is considered as the optimal solution of this game.
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14.6.1 System Model and Assumptions

14.6.1.1 Primary and Secondary Users

We consider a wireless system with multiple primary users (total number of pri-
mary users is denoted by M ) operating on the different frequency spectrum and a
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Primary
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Fig. 14.12. System model of spectrum sharing and pricing for the Bertrand game model.

group of secondary users is willing to share these spectrum with the primary users
(Fig. 14.12) [20]. In this case, primary user i wants to sell portions of the available
bandwidth (e.g., time slots in a TDMA scheme) at price Pi (per unit bandwidth) to
this group of secondary users. The spectrum can be shared by multiple terminals
(i.e., secondary users) in which the base station (BS) or access point (AP) governs
transmission in the allocated spectrum. The secondary users use adaptive modulation
for transmissions in the allocated spectrum in a time-slotted manner. The spectral
efficiency of the transmission for secondary user i is denoted by ki. The spectrum
demand of the secondary users depends on the transmission rate in the allocated
frequency spectrum and the price charged by the primary user.

14.6.1.2 Cost Function of the Primary User

To develop a cost function, the QoS performance of the primary user needs to be
considered. Degradation in the QoS performance of the primary user is expected if
some portion of the frequency spectrum (i.e., in time domain or in frequency domain)
is given to the secondary users. We consider the average delay as the QoS measure
which is obtained for transmissions at the primary user based on an M/D/1 queueing
model. Let λi denote the traffic arrival rate of the primary user, and k(p)

i (Wi − Qi)
denote the service rate, where k(p)

i andQi represent spectral efficiency of the wireless
transmission by the primary user i, and the portion of frequency spectrum that is
given to the secondary users. The average delay is defined as follows:
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Di(Qi) =
1
2

λi(
k

(p)
i (Wi −Qi)

)2

− λik
(p)
i (Wi −Qi)

(14.35)

whereWi is the total spectrum size of primary user i. The cost function can be simply
defined as

Ci(Qi) = dDi(Qi) , (14.36)

where d is a constant.

14.6.1.3 Utility of Secondary User

To quantify the spectrum demand, we consider the utility gained by the secondary
users (e.g., if the spectrum creates high utility, the demand is high). We adopt a
commonly used utility function in the economics defined as follows [21]:

U(Q) =
M∑

i=1

Qik
(s)
i − 1

2

⎛

⎝
M∑

i=1

Q2
i + 2Δ

∑

i�=j

QiQj

⎞

⎠+ J (14.37)

where Q is the set consisting of the size of the spectrum available from all the primary
users, i.e., Q = {Q1, . . . , Qi, . . . , QM}, and

J = −
M∑

i=1

PiQi (14.38)

where Pi is the price offered by primary user i. Note that, k(s)
i denotes the spec-

tral efficiency for transmission by the secondary user (e.g., BS/AP in Fig. 14.12)
operating on the frequency spectrum offered by the primary user i. This utility func-
tion takes the spectrum substitutability into account through parameter Δ. That is, if
the secondary users use multi-interface radio, they can switch among the frequency
spectra freely depending on the offered price. This spectrum substitutability param-
eter (i.e., Δ ∈ [−1.0, 1.0]) is defined as follows. When Δ = 1.0, the secondary user
cannot switch among the frequency spectrum, while for Δ = 0.0 the secondary user
can switch among the operating frequency spectra freely.

When Δ < 0, the spectrum sharing by the secondary user is complementary.
That is, when the secondary user wants to share one frequency spectrum, it will be
required to buy one or more additional spectrum simultaneously (e.g., one spectrum
for uplink transmission and another for downlink transmission) from the same or
different primary users.

To derive the demand function of the secondary user who operates on the spec-
trum offered by primary user i,2 we differentiate U(Q) with respect to Qi and then
the optimal value of Qi can be obtained.

2 For brevity, we call it spectrum i.
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The demand function is defined as the size of shared spectrum that maximizes
the utility of the secondary user given the prices offered by the primary user [21],
that is,

Qi =
k

(s)
i − Pi − Δ(k(s)

j − Pj)
1 − Δ2

. (14.39)

14.6.2 Bertrand Game Model

Based on this system model, a Bertrand game can be formulated as follows:

• Players: The players are the primary users.
• Strategies: The strategy of each of the players is the price per unit of spectrum

(denoted by Pi) which is nonnegative.
• Payoffs: The payoff for each player is the profit (i.e., revenue minus cost) of

primary user i (denoted by πi) in selling spectrum to the secondary user.

Based on the demand function in (14.39) and the cost function in (14.36), the
profit of each primary user/service provider can be expressed as follows:

πi(P) = QiPi − Ci(Qi) (14.40)

where P denotes the set of prices offered by all players in the game (i.e., P =
{P1, . . . , Pi, . . . , PM}).

Again, the Nash equilibrium is considered as the solution of this game, and it is
obtained by using the best response function. The best response function of primary
user i given the prices of other primary users Pj , where j �= i, is defined as follows:

BR i (P−i) = arg max
Pi

πi(P−i ∪ {Pi}) (14.41)

where P−i represents the set of prices offered by other players except player i (i.e.,
P = P−i ∪ {Pi}).

The set P
∗ = {P ∗

1 , . . . , P
∗
M} denotes the Nash equilibrium of this game if and

only if
P ∗

i = BR i(P
∗
−i), ∀i (14.42)

where P
∗
−i denotes the set of best responses for player j for j �= i. Mathematically,

to obtain the Nash equilibrium, we have to solve the set of equations ∂πi(P)
∂Pi

= 0 for
all i where

πi(P) = Pi

k
(s)
i − Pi − Δ(k(s)

j − Pj)
1 − Δ2

− dλi

2 (Wi −Qi)
2 − 2λi(Wi −Qi)

.

We have to solve

0 =
k

(s)
i − 2Pi − Δ(k(s)

j − Pj)
1 − Δ2

+
d λi

1−Δ2 (4Qi − λi)

(2Q2
i − 2Qiλi)

2 (14.43)

where

Qi = Wi −
k

(s)
i − Pi − Δ(k(s)

j − Pj)
1 − Δ2

. (14.44)
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14.6.3 Performance Evaluation

14.6.3.1 Parameter Setting

We consider a cognitive radio environment with two primary users and one sec-
ondary user/a set of secondary users (e.g., controlled by the the BS/AP in Fig. 14.12).
The total frequency spectrum available to each primary user is 5 MHz. The target
BER for the secondary user is BERtar

i = 10−4. Traffic arrival rate at a primary user
is 1 Mbps, and we assume d = 1 for the cost function used by a primary user. The
channel quality of the secondary user varies in the range of 10–20 dB.

14.6.3.2 Numerical Results

Figure 14.13 shows the demand function of the secondary user, and the revenue, cost,
and profit of the first primary user under different pricing options. In this case, we
set λ1 = 4, γ1 = 15 dB, γ2 = 18 dB, Δ = 0.4, P2 = 1. As expected, when the first
primary user increases the price, the secondary user demands a smaller spectrum size
since the utility from the allocated spectrum decreases. Also, the cost for the primary
user decreases since the secondary user demands smaller spectrum size. Therefore,
the size of the remaining spectrum becomes bigger which results in smaller delay.
However, the revenue and profit of the primary user first increase, and after a certain
point it starts decreasing. Since at a small price the first primary user can sell a bigger
spectrum size to the secondary user, the revenue and profit increase. In contrast,
when the spectrum price becomes higher, a smaller amount of spectrum is sold to
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Fig. 14.13. Demand function of the secondary user, and revenue, cost, and profit of the first
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Fig. 14.14. Best response and Nash equilibrium under different channel quality (γ1, γ2).

the secondary user and this results in smaller revenue. We can observe that there is
an optimal price for which the profit is maximized and this price is referred to as the
best response of the corresponding primary user.

Then, the variations in the best response functions of both the primary users
are shown in Fig. 14.14 under different channel quality (γ1, γ2) for the secondary
user when Δ = 0.4. As expected, when the channel quality becomes better, since
the secondary user can transmit at a higher rate due to the adaptive modulation, the
spectrum demand increases. As a result, the primary user can offer higher price. The
Nash equilibrium is located at the point where the best response functions of both
the primary users intersect.

Figure 14.15 shows the Nash equilibrium of the primary users under variations
in channel quality when Δ = 0.4. As expected, the price at the Nash equilibrium is
higher for the spectrum with better channel quality. This is due to the larger demand
(which is a function of utility) generated by the secondary user. Also, we observe
that the channel quality of the spectrum offered by one player impacts the strategies
adopted by the other player. When the demand for spectrum offered by one player
changes, the other player must adapt the price to gain the highest profit.

Then, we investigate the impact of QoS requirements of the primary users on
the the Nash equilibrium. Figure 14.16 shows the Nash equilibrium of the secondary
user as functions of traffic arrival rate at the second primary user λ2. In this case,
γ1 = 15 dB and γ2 = 18 dB. Since this arrival rate λ2 affects the cost of the second
primary user in offering spectrum to the secondary user, at the Nash equilibrium
the price offered by the second primary user increases significantly. When the traffic
arrival rate increases, at the same spectrum size, traffic delay increases and the cost of
primary user increases accordingly. However, this traffic arrival rate has only small
impact on the price offered by the other player.
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Fig. 14.15. Nash equilibrium under different channel qualities of the secondary user.
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14.7 Stackelberg Game Model for Optimal Pricing and
Bandwidth Sharing Under Elastic Demand

In this section, we model the spectrum sharing problem between a primary user and
multiple secondary users by a Stackelberg game model. The objective is to maxi-
mize the payoff of the service provider (leader) where the payoff considers price-
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elastic bandwidth demand of the secondary users. All the followers choose their best
responses given the strategy of the leader.

14.7.1 System Model and Assumptions

The game model is described in the context of resource allocation/sharing in an inte-
grated WiMAX/WiFi network where the WiMAX base stations (BSs) and the WiFi
access points (APs)/routers are operated by different service providers. In the system
model under consideration, the WiMAX BS charges the WiFi APs/routers for sharing
the licensed WiMAX spectrum to provide mobile broadband Internet access to the
WiFi clients. Each AP/router has a dual radio transceiver which can work by using
both 802.11 and 802.16 interfaces. Traffic is transmitted from the BS using WiMAX
radio interface and relayed through the WiFi AP/router using WiFi interface to the
WiFi nodes.

The WiMAX subscriber stations (SSs) have fixed bandwidth demand, and there-
fore, subscribe at a flat rate to the WiMAX BS. On the other hand, the WiFi net-
works have elastic demand depending on the number of nodes and their preferences.
Therefore, the WiMAX service provider charges the WiFi networks with adjustable
pricing (i.e., P1 and P2 for WiFi router one and two, respectively, in Fig. 14.17). In
this environment, the WiMAX and the WiFi service providers have to negotiate with
each other to determine the optimal price such that their profits are maximized [22].

We formulate the pricing problem as a Stackelberg game in which the profit of the
WiMAX BS is maximized and also the WiFi routers are satisfied with the bandwidth
sharing and pricing. The WiMAX BS is the major player in this game – the deci-
sion on bandwidth allocation by the base station to the subscriber stations influences
the decision of the WiFi APs/routers. Therefore, we consider this as a Stackelberg
leader-follower game in which the WiMAX BS and the WiFi APs/routers are the
leader and the followers, respectively. The solution of this game, i.e., the Stackelberg
equilibrium, can be obtained easily if the information of all service providers and
customers are available.

14.7.2 Stackelberg Game Model

14.7.2.1 Revenue and Elastic Demand

The revenue of the WiMAX BS from the service provided to the SSs is a function of
the corresponding QoS performance. On the other hand, the WiMAX BS charges dif-
ferent prices to the different WiFi APs/routers depending on the bandwidth demand
from the WiFi clients. This type of pricing model is particularly suitable for an envi-
ronment in which the SSs serve real-time traffic (e.g., those for real-time polling
service (rtPS)), while the WiFi networks serve best-effort traffic.

For the SSs, the queueing delay is the QoS metric and the revenue of the WiMAX
BS is expressed as

r(s) =
Nss∑

i=1

(
ai − eiD(λi, Q

(s)
i )
)

(14.45)
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where ai and ei are constants (e.g., ai = 1 and ei = 1), D(λi, Q
(s)
i ) is the queueing

delay, λi is the traffic arrival rate at SS i (e.g., λi = 0.2 Mbps), Q(s)
i is the allocated

bandwidth, and Nss is the total number of SSs.
The bandwidth demand by a WiFi node depends on the price charged by the WiFi

AP/router. We assume a linear demand function [23] which is expressed as follows:

Q̃j = ej − djP
(wf)
k (14.46)

where Q̃j is the bandwidth demand of node j served by WiFi AP/router k, ej and dj

are constants (e.g., ej = 2.0 and dj = 0.4), and P (wf)
k is the price charged at WiFi

AP/router k. Therefore, the revenue of the WiFi network k is obtained from

r
(wf)
k =

N
(wf)
k∑

j=1

P
(wf)
k Q̃j (14.47)

and the cost is calculated from

C
(wf)
k = P

(bs)
k

N
(wf)
k∑

j=1

Q̃j + F (wf)
k (14.48)

where P (bs)
k is the price charged by the WiMAX BS to the WiFi AP/router k, N (wf)

k

is the number of WiFi nodes served by router k, and F (wf)
k denotes the fixed cost

for WiFi router k. Note that, this demand function can be empirically obtained as
in [23].
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14.7.2.2 Stackelberg Game Formulation and the Equilibrium

We apply the Stackelberg game structure to obtain the equilibrium of bandwidth
sharing and pricing between WiMAX and WiFi service providers. With the assump-
tion that the WiMAX and the WiFi service providers are rational to maximize their
profits, the game can be described as follows:

• The players: The WiMAX BS (i.e., leader) and the WiFi APs/routers (i.e., fol-
lowers) are the players of this game.

• The strategies: For the WiMAX BS, the strategy is the price P (bs)
k charged to

the WiFi APs and for a WiFi AP the strategy is the required bandwidth Q(wf)
k =

∑N
(wf)
k

j=1 Q̃j .
• The payoffs: For both the WiMAX BS and the WiFi APs/routers, the payoffs are

the corresponding profits.

We first consider the payoff for a WiFi AP/router. Given the price charged by the
WiMAX BS, P (bs)

k , the profit of AP k is

π
(wf)
k = r

(wf)
k − C(wf)

k (14.49)

=
N

(wf)
k∑

j=1

P
(wf)
k

(
ej − djP

(wf)
k

)
− P (bs)

k

N
(wf)
k∑

j=1

(
ej − djP

(wf)
k

)

−F (wf)
k . (14.50)

Therefore, the optimal price charged to a WiFi node (i.e., P (wf)
k ) can be obtained

by differentiating the profit function and then setting it to zero. Then, given price
P

(wf)
k , the bandwidth demand for all WiFi nodes in hotspot k can be obtained. Based

on the best response of the WiFi AP/router, the WiMAX BS can adjust the price
P

(bs)
k charged to router k to achieve the highest payoff. The payoff (i.e., profit) of

the WiMAX BS can be defined as follows:

π(bs) = r(s) +
Nr∑

k=1

r
(wf)
k (14.51)

=
Nss∑

i=1

(
ai − eiD(λi, Q

(s)
i )
)

+
Nr∑

k=1

P
(bs)
k Q

(wf)
k (14.52)

where Nr is the total number of WiFi APs/routers.
The Stackelberg equilibrium is defined as the strategy profile that maximizes the

leader’s payoff while the follower plays his/her best response [24]. We consider this
equilibrium as the solution of the bandwidth sharing and pricing game to ensure that
the profit of the WiMAX BS, which is the major player of this game, is maximized.
In the case that all information on demand function are completely known, the equi-
librium can be obtained easily by differentiating the profit function of the WiMAX
BS and solving it for the price P (bs)

k .
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14.7.3 Performance Evaluation

14.7.3.1 Parameter Setting

We consider a single BS with multiple connections from SSs and WiFi APs/routers
using the TDMA/TDD access mode based on single carrier modulation (e.g., Wire-
lessMAN-SC). We consider downlink transmission from the WiMAX BS, and the
frame size is assumed to be 5 ms. The total bandwidth of operation for the WiMAX
BS is 20 MHz, and for transmission the BS uses QPSK modulation and a coding rate
of 1/2.

14.7.3.2 Numerical Results

First, we show the bandwidth demand of the WiFi routers under different prices
charged by the WiMAX BS (in Fig. 14.18). We consider the case of a homogeneous
demand function for all WiFi nodes. This bandwidth demand represents the best
response of the WiFi AP/router (i.e., follower) in the Stackelberg game formulation
given the price charged by the WiMAX BS (i.e., leader). The best response for a WiFi
AP/router can be obtained from the point at which the profit of the WiFi AP/router
is maximized. The bandwidth demand decreases as the price increases since a WiFi
router has to charge higher price to the WiFi nodes. As a result, the profit of the
corresponding WiFi AP/router decreases. Also, as expected, when the number of
WiFi nodes increases, the bandwidth demand of the WiFi AP/router increases.

Next, the profit of the WiMAX BS is shown in Fig. 14.19. Here, the WiFi routers
serve 4 and 6 WiFi nodes, and the number of SSs is 10. The profit changes due to
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the different prices charged to the WiFi APs/routers, and also there is a point where
the profit of the WiMAX BS is maximized. This point is the equilibrium of this
Stackelberg game formulation. As is evident from Fig. 14.19, this profit, which is a
function of price, is unimodel.

Figures 14.20a and b show optimal price for the WiMAX BS to charge the WiFi
routers and the bandwidth to share with the WiFi routers. We consider the case
when the first and the second WiFi AP/router serve 4 and 6 WiFi nodes, respec-
tively. All the SSs have the same traffic arrival rate. Interestingly, even though the
prices charged to the first and the second WiFi AP/router are formulated as differ-
ent strategies in the game, at the equilibrium they are always equal. This implies
that the WiMAX BS should charge the same price to the WiFi routers even though
their bandwidth demands may be different. Also, as expected, when the traffic arrival
rate increases, the WiMAX BS needs to increase the price charged to the WiFi
routers to compensate the loss in revenue due to the degraded QoS performance (i.e.,
higher delay) for the SSs. Consequently, the bandwidth demand of both the WiFi
APs/routers decreases. At the same price, bandwidth demand of the first WiFi router
becomes smaller than that of the second router due to the smaller number of WiFi
nodes.

Then, we vary the number of WiFi nodes served by router two and observe the
price and the amount of bandwidth shared at the equilibrium (Fig. 14.21). We set the
number of SSs to 16 and traffic arrival rate is assumed to be 0.5 Mbps. As expected,
when the number of nodes increases, the bandwidth demand from the WiMAX BS
increases. Consequently, the price charged to the WiFi APs/routers increases.

We observe that the bandwidth allocated to WiFi router two increases signifi-
cantly while that to WiFi router one slightly decreases (which is due to the higher
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Fig. 14.20. (a) Price and (b) bandwidth sharing at the equilibrium under different traffic load
at the subscriber stations.

price). We observe that with smaller number of SSs and lower traffic arrival rate (e.g.,
λi = 0.1 Mbps) the price does not change significantly. This is due to the fact that
the WiMAX BS can take some bandwidth from the SSs (instead of taking bandwidth
from other WiFi routers) with only slight degradation in their delay performances.
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Conclusion

In this chapter, we have demonstrated the applications of oligopoly market models
from microeconomics to solve the problem of spectrum/bandwidth sharing and pric-
ing in cognitive radio environment. In microeconomics, oligopoly is used to describe
a market situation which is composed of several producers, and the producers have
their own interests to maximize their profits. We have considered three different
oligopoly models, namely, Cournot, Stackelberg, and Bertrand models which have
been analyzed by game theory techniques. In Cournot competition, producers com-
pete in terms of supplied product quantity, and all of them make decisions simul-
taneously. In Stackelberg model, producers compete in terms of supplied quantity,
but there are some producers who can make decision before the rest. In Bertrand
competition, producers compete by varying the product price.

In the Cournot game model of bandwidth sharing, multiple secondary users (i.e.,
players) share the spectrum opportunity offered by a primary user. The Nash equi-
librium of the game gives the bandwidth share for each secondary user such that
the profits (or payoffs) for all the secondary users are maximized. Numerical per-
formance evaluation results for this bandwidth sharing model in a cognitive wireless
environment have been presented considering different channel qualities and prices
(per unit bandwidth).

The Bertrand game model of bandwidth sharing and pricing considers multiple
primary users (i.e., players) offering spectrum access to a secondary user and the
objective is to maximize the profit of the primary users considering the degrada-
tion in QoS for the primary users due to spectrum sharing. The spectrum demand
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of the secondary user is obtained from its utility which is a function of spectrum
price offered by the primary users and the corresponding channel quality such that
the utility is maximized. The Nash equilibrium of the game is considered as the opti-
mal solution of the game which gives the optimal price offered by the primary users.
Numerical performance evaluation results have been presented under different chan-
nel qualities for the spectrum access by the secondary user, spectrum substitutability
factor, and different traffic arrival rate at the primary users.

The Stackelberg game model of bandwidth sharing and pricing considers one
leader (service provider) and multiple followers (secondary users) with time-varying
demand function. The model has been used to obtain an optimal pricing scheme in
an integrated WiMAX/WiFi network where the WiFi APs/routers share the WiMAX
spectrum with the licensed WiMAX subscriber stations. The bandwidth demand of
the WiFi APs/routers depends on the bandwidth demands by the WiFi nodes which
depend on the price charged by the WiMAX BS. The Stackelberg equilibrium gives
the optimal bandwidth share and the pricing for which the revenue of the service
provider (i.e., leader) is maximized. The potential QoS degradation at the subscriber
stations (i.e., licensed users) is considered while calculating the revenue for the ser-
vice provider. Numerical performance evaluation results on price and bandwidth
sharing at the equilibrium have been shown under different traffic load at the WiMAX
subscriber stations and different number of WiFi nodes.

With oligopoly market model, the players in the game can adaptively adjust their
strategies when only limited network information (e.g., the strategies adopted by
other players, profit information) is available. Therefore, a learning algorithm would
be required for the players to make their decisions effectively. Another possible
research direction is the consideration of uncertainties in the model. In this case,
the demand function can be random due to the time-varying traffic and QoS require-
ments of the users. Also, the payoff can be random due to the channel variation
(e.g., fading). These issues should be addressed for competitive spectrum sharing in
a practical cognitive radio environment.
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15.1 Introduction

The cognitive concept of a radio capable of adapting to the environment and of
adjusting its operation as a function of both external and internal unpredictable events
forms the conceptual basis for the design of future wireless communication systems.
Designing and developing smart wireless devices able to sense the environment,
and to modify accordingly spectral shape and other features of radiated signals is
extremely appealing [1,2]. In particular, by defining and developing technologies
that can enable a radio device to adapt its spectrum according to the operating envi-
ronment, that is, to be aware of the scenario in which it operates, design innovation
is taking its first step toward conceiving wireless networks that cooperatively coex-
ist with other wireless networks and devices. The coexistence principle is intrinsic
to innovative technologies such as ultra wide band (UWB) radio [3], although the
concept has a rather broader acceptation.

Cognitive radio focuses on improving efficiency in the use of the wireless
resource and applies basically to the behavior of one node. By introducing cogni-
tive principles in the logic of the wireless network one extends the cognitive concept
to rules of interaction between nodes. In order to optimize the design one must there-
fore model the set of wireless nodes as a social network forming one single entity.

Time scale is particularly important when conceiving adaptive mechanisms that
should allow the update of system configuration. System operation is ruled by clocks,
that must be tuned according to the granularity that is requested by a specific opera-
tion. In the case of spectrum sensing, for example, it might be desirable to force the
system to being continuous, in order to incorporate the capability of detecting sud-
den and unpredicted changes in the environment. Conversely, it might be desirable
for other operations to be ruled on different time scales.
∗ This work has been partially supported by the HYCON Network of Excellence, con-

tract number FP6-IST-511368, Integrated Project PULSERS II, contract number FP6-IST-
506897, and by Ministero dell’Istruzione, dell’Università e della Ricerca under Project
SCEF (PRIN05).
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The problem that must be analyzed is therefore related to asynchronicity of phe-
nomena that would force a node to change its state of operation with respect to input–
output dynamics of the node. Mobility is an example of such phenomena. Other types
of perturbations, such as atmospheric changes, have the additional complex feature
of being unpredictable. Continuous and discrete dynamics must be integrated in the
mathematical model that describes the node. Hybrid systems (see, e.g., [4]) offer a
challenging framework for formalizing such a complex system [5].

In this chapter, we propose a model that generalizes those proposed in [6] and
[7] for UWB networks, to the case of a self-organizing network of nodes that operate
under the coexisting principle. We formalize the model by using hybrid systems that
offer in fact the analytical framework for modeling complex systems where continu-
ous dynamics and discrete processes tightly interact.

The chapter is organized as follows. In Sect. 15.2, we define the problem and
set the basis and main assumptions. Section 15.3 contains the rules for governing
resource in the network, in terms of computing transmission power levels of nodes.
Section 15.4 describes the application of hybrid system modeling to the system under
consideration that incorporates the cognitive radio concept. In particular, we show
how the proposed model represents the behavior of each node and of the population
of nodes that form the network. In Sect. 15.4, we present some concluding remarks
highlighting open problems that may be formally stated and analyzed using the pro-
posed hybrid model.

15.2 Problem Statement and System Description

We consider the formation of a self-organizing network of nodes that adopt a mul-
tiple access scheme in which coexistence is foreseen, that is signals originating
from different users share in principle a same resource in terms of time and fre-
quency. Users separation is obtained by appropriate coding. Code division multiple
access (CDMA) as well as time hopping multiple access (THMA) are possible access
schemes. In general terms, the multiple access scheme may be based on any coding
scheme that allows resource sharing while providing acceptable system performance
at the receiver. In such a context, the receiver is supposed to operate in a correlation
mode, that is to be capable of sensing the presence of a useful signal by appropriate
synchronization in encoded time instances. The dominant noise is interference noise,
with a dominant component formed by multi-user interference (MUI).

Call PTX the average transmitted power. This power is upper-bounded by a max-
imum power Pmax that can be determined from recommendations on emission lev-
els as well as technological limitations. Tb is the bit repetition period. The impulse
response of the pulse shaper is indicated by pw(t). Furthermore, we indicate by
vaj

(t) the data-modulated multi-pulse signal made of the sum of NS shifted, and
eventually amplitude modified, versions of pw(t), where NS is the number of chips
forming one bit of the data sequence {aj}. Chip duration is thus TS = Tb/NS. Note
that pw(t) has a direct impact on the power spectral density of transmitted signals
and that therefore by selecting a specific pulse shape one may adapt spectral features
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of radiated emissions as a function of the environment, i.e., for example specific
interference patterns. An important hypothesis that is fundamental in our model is
the possibility of selecting one pulse shaper among many [8]. We therefore assume
W different pulse shapes pw(t), with w = 1, ...,W .

A general flat additive white Gaussian noise (AWGN) channel model is assumed.
The impulse response for the channel between a reference transmitter TX and a refer-
ence receiver RX is indicated by h(t) = αδ(t−τ), and is characterized by a constant
amplitude gain α and a constant delay τ . The signal at RX input writes:

r(t) = α
√
PTXTS

∑
j
vaj

(t− jTb − τ) + n(t)

=
√
PRXTS

∑
j
vaj

(t− jTb − τ) + n(t) (15.1)

where PRX = α2PTX is the average received power and n(t) is the cumulative noise
at the receiver input. It is well known that, under the above conditions, single-user
reception is optimal when the receiver is composed of a coherent correlator followed
by a maximum likelihood detector [3]. The output of the correlator within a bit period
Tb is indicated by Z. It is on the basis of Z that the ML detector takes a decision,
that is, we suppose decision is taken on a bit period, i.e., based onNS pulses forming
one multi-pulse (soft detection). According to this scheme, the received signal is
thus cross-correlated with a correlation maskmw(t) that is matched with the train of
pulses representing one bit. The correlator output Z is given by

Z =
∫ τ+Tb

τ

r(t)mw(t− τ) dt. (15.2)

The decision variable Z in (15.2) is compared against a zero-valued threshold
according to the following rule: when Z > 0, decision is “0,” while when Z < 0,
decision is “1,” or vice versa. Then, for independent and equiprobable transmitted
bits, given a transmitted bit b0 = 0 the average bit error rate (BER) is:

BER = Prob { Z < 0|b0 = 0 } . (15.3)

It is essential to set a hypothesis on the capability of the system to synchronize.
By analyzing (15.2), we notice that a necessary condition for the receiver to properly
function is that the correlator mask must be aligned with s(t− τ). In other terms, the
receiver must be capable of estimating the delay introduced by propagation over the
channel and synchronize with the received signal. In order to achieve this function
one can suppose for example to send within each data packet a specific sequence
to be used for synchronization purposes and that is known by both the transmitter
and the receiver [9]. In any case, system performance depends on the accuracy that
can be achieved in synchronization. This accuracy is in turn related to signal to noise
ratio and in particular to the receiver ability of extracting one single pulse from noise.
Detecting the first pulse of the synchronization trailer for example might be crucial
for correct operation. One system specification is thus the level of signal to noise
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ratio that can be achieved on the single pulse. We call SNR0 the minimum signal to
noise ratio over a single pulse that is required by system specification. A condition
for correct reception is therefore that signal to noise ratio on the pulse be SNRp >
SNR0 [10].

The topology of the network is a star, that is, nodes communicate through the
network controller. We suppose that the node that has the role of network controller
also implements the cognitive radio paradigm. The role of controller can be played
by any of the devices in the network but in our analysis we suppose that the controller
is the node that starts the network by activating a beacon on a broadcast channel.

Multiple access is based on code division either in the time domain (time hop-
ping) or amplitude-based (direct sequence). As a consequence, system performance
is limited by multi-user interference (MUI). We suppose that the set-up of a link
between a node and the coordinator occurs on a dedicated channel that is identified
by a specific code.

The received signal of (15.1) that incorporates MUI can be expressed as follows:

r(t) = ru(t) + ne(t) + nmui(t) (15.4)

where ru(t) is the useful received signal, nmui(t) accounts for MUI, and ne(t) incor-
porates thermal noise and external interference introduced by wireless belonging to
coexisting networks. In the present case, the decision variable at the output of the
correlator is made of three terms: a useful contribution Zu, external noise Ze, and
MUI Zmui and writes Z = Zu + Ze + Zmui. Signal to noise ratio SNR at the
correlator output for one link is thus:

SNR =
Eu

ηe + ηmui
(15.5)

where Eu is the received useful energy per bit for the reference link, and ηe and ηmui

are the variance of Ze and Zmui. If all signals are received with same power,

Eu = (NS)2 PRXTS (15.6)

and

ηe = NS ηp(w) (15.7)

ηmui = NSσ
2
m(w)(N − 1)PRX (15.8)

in which σ2
m(w) is a term that depends upon the mask shape of the correlator and

ηp(w) is noise variance on one pulse. Note that according to (15.7) and (15.8), both
noise and interference depend on pulse shaping. If Rb = 1/Tb is the bit rate for the
link under examination, then the signal to noise ratio on the reference link can be
obtained by combining (15.6), (15.7), (15.8), and (15.5) as follows:
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SNR =
N2

s TSPRX

Nsηp(w) + σ2
m(w)Ns (N − 1)PRX

=
1
Rb

PRX

ηp(w) + σ2
m(w) (N − 1)PRX

.

(15.9)
The BER of (15.3) can be expressed in a closed form as a function of SNR

of (15.9) if ηe(t) and ηmui(t) have statistical properties that are known. If ηe(t)
and ηmui(t) can be modeled as white Gaussian random processes, the relationship
between BER and SNR becomes

BER =
1
2
erfc

(√
SNR

2

)
(15.10)

where erfc(x) is the complementary error function of x. Based on (15.9) the signal
to noise ratio on the pulse SNRp is

SNRp =
TSPRX

ηp(w) + σ2
m(w) (N − 1)PRX

. (15.11)

Note that since we are considering an active connection, the following relation-
ship holds:

SNRp ≥ SNR0. (15.12)

15.3 Rules by Which a Node Communicates with the Coordinator

We assume that data flows are grouped into packets and that each packet is seg-
mented into MAC frames. These frames are transmitted over the radio interface. The
MAC frames have standard format and each of the frames is composed of a header
and a payload. The header typically contains the MAC address as well as the syn-
chronization trailer.

The system supports the best-effort data sources which do not require the use
of a minimum value for the transmission rate and are not bound by maximum delay
specifications. In other terms, best-effort sources do not require any quality of service
guarantee and are allowed to transmit, i.e., are admitted in the network, if their pres-
ence does not disturb the operation of other sources that cannot tolerate end-to-end
delay D (s) greater than specific values, and that require at least a F percentage of
packets to reach destination within D. These different sources, called quality of ser-
vice sources are characterized by the characteristics of the traffic that they generate
and by their required specifications D and F . We suppose that the traffic generated
by the sources in the network is shaped by a standard dual leaky bucket (DLB) [11]
that functions as an interface between the source and the system and that outputs
traffic described by the four following parameters: the peak rate p (bits/s), the aver-
age rate r (bits/s), the token buffer dimension b (bits) and the maximum packet size
M (bits). Rates p and r do not account for the overhead introduced at the MAC and
physical layers, and can thus be lower than binary rate Rb of (15.9).
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In this section we illustrate the principles of operation of a network of N nodes,
and we define the basic principles of the admission control function. The admission
control function for UWB nodes proposed in [6] can be generalized for the present
analysis case. We summarize here the rules for power assignment for convenience
of the reader. We refer to [6] for a full coverage of the topic and full description of
the admission control function that includes the rules by which both best-effort and
quality of service nodes compute their rate of transmission. As indicated above, a
star topology is taken into consideration. As a consequence the analysis is focused
on the uplink connections.

Different pulses pw(t), with w = 1, ...,W can be used for shaping the spec-
tra of radiated signals and adapt this shape to the features of the channel. It is the
controller that has the capability of sensing the channel, and therefore, of appropri-
ately selecting the “best” impulse response of the pulse shaper. The controller node
computes ηp(w) of (15.7) and σ2

m(w) of (15.8) for all possible pulse shapes that is
w = 1, ...,W , and based on ηp(w) and σ2

m(w), estimates Pmin(w) as follows:

Pmin (w) =
ηp (w)
TS

(
1

SNR0
− σ2

m (w)
TS

(N − 1)
)−1

. (15.13)

The above equations provide the minimum power that the controller must receive
from each node in order to comply with (15.12). The “best” pulse shaper can be thus
defined as the one that provides the lowest Pmin(w) value. As a consequence, each
node j must use a transmission power Pj that can be computed as follows:

Pj = Pmin(w∗) Aj j = 1 , ... , N (15.14)

whereAj is the attenuation characterizing the link between node j and the controller.

15.4 Admission Control by Hybrid Modeling

Hybrid system formalism offers the framework for modeling the behavior of self-
organizing networks. Thanks to this formalism, we can characterize self-organizing
network dynamics as a discrete finite-state automaton where, for each state, state-
specific rules of operation govern the evolution of the network itself. In this section,
we first illustrate the fundamental principles of hybrid system modeling. We then
describe the application of hybrid system modeling to the system under consideration
that incorporates the cognitive radio concept.

15.4.1 Basic Principles of Hybrid Modeling

Hybrid systems are dynamical systems where continuous and discrete dynamics are
embedded together to propositional logic. Continuous and discrete variables inter-
act and determine the hybrid system evolution. The hybrid state of a hybrid system
is made of two components: The discrete state belonging to a finite set Q and the
continuous state belonging to a linear subspace of R

n. The evolution of the discrete
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state is governed by an automaton, while the evolution of the continuous state is
given by a dynamical system controlled by a continuous input and subject to con-
tinuous disturbances. Whenever a discrete transition occurs, the continuous state is
instantly reset to a new value. Even if the intuitive notion of hybrid system is simple,
the combination of discrete and continuous dynamics and the mechanisms that gov-
ern discrete transitions create serious difficulties in defining its operation precisely.
Other complexity stems from the continuous state reset that occurs when the system
undergoes a discrete transition. This is why we need formal definitions of the vari-
ables that characterize a hybrid system as well as of their evolution in time, as will
be defined below:

1. The state variable of a hybrid system H is made of two components: the discrete
state q and the continuous state x. The discrete state belongs to a finite set Q
= {qi, i ∈ J} , J = {1, 2, ..., N}, N ∈ N and the continuous state takes value
in R

n. The set Ξ = Q × R is the hybrid state space of H and its elements
ξ = (q, x)∈ Ξ are the hybrid states.

2. The control input variable of H is made of two components: the discrete control
input σc and the continuous control input u. The discrete control input belongs
to a finite set Σc and the continuous control input to the set R

m, m ∈ N. We
assume that the input functions u : R → R

m are piecewise continuous.
3. The disturbance variable of H is made of two components: the discrete distur-

bance σd and the continuous disturbance input d. The discrete disturbance takes
value in a finite set Σd and the continuous disturbance in the set R

r, r ∈ N. We
assume that the disturbance functions d : R → R

r are piecewise continuous.
4. The output variable of H is made of two components: the discrete output p and

the continuous output y. The discrete output is assumed to belong to a finite
set P and the continuous output to the set R

s, s ∈ N. The continuous output
functions y : R → R

s are assumed to be piecewise continuous.

The evolution of the discrete state q of hybrid system H depends on the initial dis-
crete state as well as on the discrete input σc, the discrete disturbance σd, and the
continuous state x, and is driven by events forcing discrete states to jump. There are
three types of discrete transitions:

1. Switching transition, forced by a discrete disturbance σd ∈ Σd

2. Invariance transition, determined by the continuous state x reaching some regions
of the continuous state space; events inducing invariance transitions are assumed
to belong to the finite set Σi and are internally generated by the hybrid system

3. Controllable transition, determined by a discrete control input σc ∈ Σc

We denote by Σ the set of all events causing discrete transitions of discrete states.
A relation represents the collection of all discrete transitions e = (q, σ, q′)∈ E ⊂
Q × Σ × Q taking the discrete state from q to q′ if the event σ ∈ Σ occurs. The
evolution of the continuous state x depends on the initial continuous state and on the
evolution in time of the continuous input u, the continuous disturbance d, and the
discrete state q. The continuous state and output evolution between two consecutive
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discrete transitions is modeled by a dynamical system S(q) that is assumed to be
linear for simplicity and governed by the following equations:

ẋ(t) = Ax(t) +Bu(t) +Dd(t)
x(t) ∈ R

n, u(t) ∈ R
m, d(t) ∈ R

r, t ≥ 0. (15.15)

During its evolution in time, the hybrid state ξ = (q, x) has to satisfy the so-called
invariance condition x ∈ Inv(q), where Inv(.) is called the invariance map. When-
ever a discrete transition e = (q, σ, q′) ∈ E occurs, the hybrid state ξ = (q, x−) has
to satisfy the so-called guard condition x− ∈ G(e), where G(.) is called the guard
map and the continuous state instantly jumps from x− ∈ R

n to a new value x+ ∈
R(e, x+), where R(., .) is called the reset map.

15.4.2 Hybrid Modeling of Self-Organizing Networks

We describe now how hybrid system formalism can be used for modeling the behav-
ior of self-organizing networks. Different models are possible, depending on the role
of the discrete state. In the model proposed in [6], each discrete state of the automa-
ton corresponds to the presence in the network ofN active nodes and one controller.
In each discrete state, the system receives different inputs ranging from RF stimuli
from the environment, that are processed by the controller, to indicators of the atten-
uation that is present over the N active links. These attenuation indicators are used
by the active nodes for evaluating potential transmission parameters as well as their
capability to comply with the above.

We generalize here the hybrid model proposed in [7] for UWB networks. Each
discrete state of the automaton corresponds to an operation mode, described by the
waveform used for pulse shaping. In addition, one particular state of the automa-
ton corresponds to the admission control mode, where the controller evaluates the
possibility of admitting a new node in the network. A transition to this state takes
place when a new node is asking for admission in the network and, for simplicity, we
assume that the control procedure requires a negligible time to be performed. The
automaton is represented in Fig. 15.1 for the very simple case of two waveforms,
namely w1 and w2.

A continuous variable N(t), the current number of active nodes that are allowed
to transmit data over the wireless channel, is associated to each discrete state of the
automaton. This variable is reset to a new value whenever a transition occurs, as
described in the next subsection.

In each state, the system receives different inputs ranging from radio frequencies
(RF) stimuli from the environment, to indicators of the attenuation that is present
over the active links. These attenuation indicators are used by the active nodes for
evaluating at time t both potential transmission parameters as well as their capability
to comply with the transmission constraints that are communicated by the controller
through a time-dependent set of parameters named K(t). This time-varying set of
parameters K(t), is formed as follows:
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w1 q̂q̂ w2

N := N

N := N

N := N N := N

N := N

N := N

N := N-1

N := N-1

N := N-1

N := N+1

N := N+1

Controlled transition

Uncontrolled transition (switching transition)

Condition-dependent transition (invariance transition) 

Fig. 15.1. Hybrid model.

1. The waveform w∗ that must be used for pulse shaping. Different pulse shapes
can be selected for transmitting data over the wireless channel; w∗ is the one that
better adapts with the environment, as well as with thermal noise and multi-user
interference (MUI) patterns.

2. The power level Pmin(w∗) that is required at the controller in order to comply
with the requirement of a given signal to noise ratio threshold.

3. The noise level ηp(w∗) that is currently measured at the coordinator.
4. The MUI weight σ2

m(w∗).
5. The number of active nodes N .

Within the above set, the first two parameters w∗ and Pmin(w∗) can be considered
as constraints that are imposed to the nodes in the network. The noise level ηp(w∗)
can be interpreted as a continuous disturbance. The MUI weight σ2

m(w∗) and the
number of active nodes N are information characterizing the current system state.
The time-varying set of parameters K(t) is evaluated at the coordinator. We suppose
that the signal containing the above information is sent by the controller at a fixed
power level that is pre-determined and known by all nodes.

Each active node j receives the signal conveying K(t) and, on the basis of
received power level, can estimate the attenuation Aj characterizing its path to the
coordinator. Node j determines both power and rate to be used in its future trans-
missions (see Sect. 15.3). We assume for now that the possible variations in the
environment that reflect in K(t) are tolerable by all nodes.

In the next subsection, we formally describe the network dynamics using the
hybrid systems formalism.
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15.4.3 The Hybrid Model

A hybrid model H for the network can be defined by introducing the tuple H =
(Ξ,Σ, S, E,R):

• Ξ = Q × R is the hybrid state space; Q = W ∪ {q̂}, W is the finite set of
waveforms that can be used for pulse shaping; the state q̂ represents the fact that
a candidate node is waiting for admission in the network.

• Σ is the set of discrete inputs; Σ = Σc ∪ Σd ∪ {σ̂}, where Σc is the set of
discrete controls and Σd is the set of discrete disturbances and

Σc = Σc
W ∪ Σc

a

Σc
W = {σij , i, j ∈ J}

Σc
a = {OK,NO}

Σd = {σa, σl} .

The discrete controls σij model the decision taken by the coordinator to com-
mute from pulse shape wi to pulse shape wj . The discrete controls {OK,NO}
correspond, respectively, to the decision taken by the coordinator to accept or
not to accept a candidate node in the network. The discrete disturbances σa and
σl represent, respectively, the request by some candidate node to enter the net-
work and the event that a node leaves the network. Finally, the discrete input σ̂ is
an endogenous signal that is generated when changes in the environment and in
radio propagation are no more compliant with node requirements.

• S is a map associating to every discrete state in Q, a dynamical system.

– If the discrete state is wi ∈ W , then the dynamical system S (wi) is
described by the equations:

Ṅ(t) = 0

Ki(t) =

⎛

⎜⎜⎜⎜⎝

wi

pi(t)
ηp (wi)
σ2

m (wi)
N(t)

⎞

⎟⎟⎟⎟⎠

where

pi(t) = Pm (wi, t)

Pm (wi, t) =
ηp (wi)
TS

(
1

SNR0
− σ2

m (wi)
TS

(N(t) − 1)
)
.

N(t) is the continuous state at time t, i.e., the number of current nodes in the
network; Ki(t) is the output, where pi(t) is the power that the coordinator
must receive from theN(t) active nodes in order to comply with the require-
ments of a threshold SNR0, when the pulse shape is wi, and TS is the pulse
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repetition period. ηp (wi) and σ2
m (wi), represent the discrete state dependent

disturbances. The initial value for the continuous state is N(0) = 1 (at the
beginning, the coordinator is the only node of the network). The value of the
state is reset whenever a transition occurs.

– If the discrete state is q̂, then S (q̂) is described by the equations

Ṅ(t) = 0

K̂(t) =

⎛

⎜⎜⎜⎜⎝

w∗ = arg minw∈W P̂min (w)
p̂(t)

ηp (w∗)
σ2

m (w∗)
N(t) + 1

⎞

⎟⎟⎟⎟⎠

where

p̂(t) = P̂m (w∗, t)

P̂m (w∗, t) =
ηp (w∗)
TS

(
1

SNR0
− σ2

m (w∗)
TS

N(t)
)
.

N(t) is the continuous state at time t, K̂(t) is the output produced by the coor-
dinator at time t. The state q̂ corresponds to the control admission mode and
the role of the output K̂(t) is therefore discussed in Sect. 15.4.4 describing the
admission control algorithm.

• E ⊂ Q × Σ × Q is a collection of transitions.

E = Ec ∪ Ed ∪ Einv

where

Ec = Ec
W ∪ Ec

a, Ed = Ed
a ∪ Ed

l

Ec
W = {(wi, σij , wj) , σij ∈ Σc

W , w ∈ W }
Ec

a = {(q̂, σ, w) , σ ∈ Σc
a, w ∈ W }

Ed
a = {(w, σa, q̂) , w ∈ W }
Ed

l = {(w, σl, w) , w ∈ W }
Einv = {(w, σ̂, w) , w ∈ W } .

– The transitions in Ec are controlled (in Fig. 15.1 these transitions are repre-
sented by solid arrows).

– A transition (wi, σij , wj) in Ec
W models the decision, taken at some time t

by the coordinator, of commuting from pulse shape wi to pulse shape wj , for
transmitting data over the wireless channel. This transition takes place when
wj is the pulse shape that, at time t, better adapts to the time-varying environ-
ment, as well as thermal noise and MUI patterns, or when pi(t) > Pm (wj , t).
In the latter case, wj is such that Pm (wj , t) ≤ Pm (wh, t), ∀wh ∈ W .
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– The transitions in Ec
a occur when the coordinator decides to accept or not to

accept a candidate node in the network.
– The transitions {(w, σa, q̂) , w ∈ W } are not controlled (switching transi-

tions) and represent the request of entering the network by some candidate
node.

– The transitions {(w, σl, w) , w ∈ W } (dashed arrows in Fig. 15.1) are not
controlled and represent the fact that a node could leave the network because
its activity is terminated for reasons that range from no more data packets to
transmit, to node failure, to power exhaustion.

– The transitions in Einv (dot-line arrows in Fig. 15.1) occur because changes
in the environment (as sensed by the coordinator) and in radio propagation
(as perceived by the active nodes) are no more compliant with node’s require-
ments. Then, the node leaves the network.

For simplicity, we assume that simultaneous transitions are not allowed.

• R : Ξ × E → Ξ and

R ((qi, x) , e) = (qh, x) , e = (qi, σ, qh) ∈ Ec
W

R ((qi, x) , e) = (qh, x+ 1) , e = (qi,OK, qh) ∈ Ec
a

R ((qi, x) , e) = (qh, x) , e = (qi,NO, qh) ∈ Ec
a

R ((qi, x) , e) = (q̂, x) , e = (qi, σ, q̂) ∈ Ed
a

R ((qi, x) , e) = (qi, x− 1) , e = (qi, σ, qi) ∈ Ed
l

R ((qi, x) , e) = (qi, x− 1), e = (qi, σ, qi) ∈ Einv

15.4.4 The Control Algorithm

The main control objective is to maximize the number of active nodes in the network,
while preserving transmission requirements. In fact, when a node asks for admission,
i.e., when the current discrete state at time t is q̂, the coordinator evaluates the possi-
bility of admitting the new element in the network, by computing a hypothetical set
of parameters K̂(t). The use of this information is twofold. First, it serves to the cur-
rent active nodes in order to check whether constraints for transition are compatible
with their specifications and informs the coordinator. Willingness to transition of all
nodes is a necessary condition for transition. Second, the information in K̂(t) is used
by the candidate node for evaluating its willingness to join the network. A candidate
node that listens to K̂(t) must agree in accepting those constraints for the transition
to take place. The two conditions above correspond to guard conditions that must be
satisfied in order for the transition (q̂,OK, w∗) ∈ Ec

a to take place (where w∗ is the
first component of K̂(t)). If the above conditions are not fulfilled, then a transition
(q̂,NO, wh) in the setEc

a takes place, where wh = arg minw∈W Pm (w). Therefore,
a new node is admitted only if none of the current active nodes is forced to leave the
network as a result of its admission.

At each time, the network is controlled so that the power level is minimum with
respect to the number of active nodes, possible choices of pulse shaping, and envi-
ronmental parameters. As a consequence, the described control strategy minimizes
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the energy consumption in the network, which is a beneficial effect in wireless com-
munication.

Conclusion

Based on hybrid system formalism we described self-organizing network dynamics
as a discrete finite-state automaton where, for each state, state-specific rules of oper-
ation govern the evolution of the network itself. By doing so, we modeled network of
radio devices that must coexist with severely interfered environments, and therefore
must control their behavior and adapt to ever-changing operating conditions in order
to favor coexistence. In the proposed model, this is achieved by introducing cognitive
mechanisms in the analysis process that is used by nodes for determining whether
changes in the global network state are appropriate.

Several benefits are obtained by introducing the hybrid system model for the
design of cognitive networks:

• The formal description resulting from the adoption of the hybrid system formal-
ism allows a better understanding of some important properties of the system.
As an example, it is possible to characterize the trade-off that exists between
the complexity of a real-time and precise scanning of the external environment
vs. the improvement in system efficiency that is achieved when the nodes can
rapidly adapt themselves to the varying conditions of the operating scenario.
Based on this trade-off, we could investigate the existence of suboptimal but
computational-efficient strategies, where the capability of the nodes to adapt to
the external environment is limited and depends upon the current state of the
automaton.

• Using the hybrid system model, it is possible to optimize the distribution of func-
tional specifications among the different components of the system. For example,
we can analyze how system performance is affected whenever some of the func-
tionalities that are related to active nodes are related to the coordinator and vice
versa.

• The hybrid formalism may help to predict in which states the automaton will
spend most of the time or the maximum number of nodes of the network. This
information is of fundamental importance for network designers.

• The characterization of the wireless network as a hybrid system facilitates the
analysis of the stability [8] of the overall system. This task is by no means trivial
since we assume that the nodes dynamically adapt transmission parameters and
rules of operation to external stimuli.
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