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Preface

Geophysical flows are characterized by their ability to transport heat, mo-
mentum and material quantities large distances. The entire climate system
can be seen as a heat engine, and the solar energy absorbed at the tropics
is transported, by the ocean currents and the global atmospheric circulation,
toward the poles. As a result, the surface temperature of the earth is more
uniform than it would be in the absence of a fluid envelope. Stratospheric
currents induce global transport, and on smaller scales, regional circulations
stir and mix nutrients and pollutants in ocean basins and in the troposphere.
Transport and mixing also affect the functioning of marine ecosystems, where
they are responsible for nutrient and plankton advection, and can determine
the primary productivity of entire oceanic regions.

In this volume, we have collected the lecture notes of some of the contribu-
tions presented during the 2004 Summer Course on “Transport in Geophysical
Flows” of the French–Italian School on “Fundamental Processes in Geophys-
ical and Environmental Flows,” directed by A. Provenzale and J. B. Weiss.
Some time has elapsed since the school, and the notes of the lectures have been
revised by the authors to include more recent material and new perspectives.
Although necessarily incomplete, this collection of notes provides an updated
view of some of the currently active research areas in the study of geophysical
transport processes.

Transport in fluids can be approached from two complementary perspec-
tives. In the Eulerian view of mixing, the focus is on the the concentration field.
Advection stretches and folds the concentration field, and sharpens gradients,
while diffusion smoothes the field. In the Lagrangian view, fluid parcels are
followed around as they move with the flow, experiencing chaotic or stochastic
motion. The lectures consider both passive particles, which they are carried
freely by the flow, and reactive particles, where chemical or biologically reac-
tions change the character of the particles.

The first part of this volume describes theoretical and idealized problems
in transport. The local theory of mixing is discussed in the notes by Jean-Luc
Thiffeault. This approach focuses on linear velocity fields and provides insight
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into the fundamental process of transport. The lecture notes of Guido Boffetta,
Andrea Mazzino and Angelo Vulpiani, and of Yves Pomeau describe several
aspects of the transport of passive and reactive particles. The transport of
radiation in the atmosphere is an essential part of the climate system, yet it is
often ignored by fluid dynamicists. Ed Spiegel’s lecture notes remedy this by
providing an introduction to radiative transfer. In geophysical flows, coherent
vortices are ubiquitous and their impact on transport is discussed in the notes
of Provenzale, Babiano, Bracco, Pasquero and Weiss.

The second part of the volume contains lectures on more realistic exper-
imental and observational aspects of transports. The notes of Wells, Clercx
and van Heijst describe transport in a rotating tank which achieves quasi-two-
dimensional flow. Experiments are conducted using both passive and chem-
ically reacting tracers. Many geophysical flows are dominated by structures
such as vortices, jets and fronts, which generate transport barriers and inho-
mogeneous mixing. The lecture notes of Noboru Nakamura describe a tech-
nique to quantify transport in structured flows by using the passive tracer field
itself as a coordinate. The statistics of Lagrangian data, such as those obtained
from atmospheric balloons and freely drifting ocean floats, are described by
Joe LaCasce. The final chapter by Marina Lévy describes the interaction be-
tween biological reactions and ocean mesoscale turbulence.

Boulder, CO, USA and Torino, Italy, Jeffrey B. Weiss
May, 2007 Antonello Provenzale



Contents

Part I Theory

Scalar Decay in Chaotic Mixing
J.-L. Thiffeault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Advection and Diffusion in a Linear Velocity Field . . . . . . . . . . . . . . . . 6
3 Random Strain Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Transport of Inert and Reactive Particles: Lagrangian
Statistics in Turbulent Flow
G. Boffetta, A. Mazzino, and A. Vulpiani . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2 Transport of Inert Substances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3 Transport of Reacting Substances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Diffusion and Reaction–Diffusion in Steady Flows at Large
Péclet Numbers
Y. Pomeau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2 Effective Diffusion in a Fast Cellular Flow . . . . . . . . . . . . . . . . . . . . . . . 72
3 Reaction–Diffusion in Fast Cellular Flows . . . . . . . . . . . . . . . . . . . . . . . 74
4 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

An Introduction to Radiative Transfer for Geophysicists
E. A. Spiegel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2 Some Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



VIII Contents

3 The Transfer Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4 Equations of the Radiative Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5 The Stationary State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6 The Radiative Heat Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Coherent Vortices and Tracer Transport
A. Provenzale, A. Babiano, A. Bracco, C. Pasquero, and J. B. Weiss . . . 101
1 Coherent Vortices and Background Turbulence . . . . . . . . . . . . . . . . . . . 101
2 Dynamics of Lagrangian Tracers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3 Lagrangian Dispersion in Vortex-Dominated Flows . . . . . . . . . . . . . . . 105
4 Dynamics of Passive and Active Tracers . . . . . . . . . . . . . . . . . . . . . . . . . 110
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Part II Experiments and Observations

Dispersion and Mixing in Quasi-two-dimensional Rotating
Flows
M. G. Wells, H. J. H. Clercx and G. J. F. van Heijst . . . . . . . . . . . . . . . . 119
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
2 Passive Scalar Dispersion in 2D Turbulence . . . . . . . . . . . . . . . . . . . . . . 121
3 Laboratory Experiments of Quasi-2D Turbulence . . . . . . . . . . . . . . . . . 122
4 Laboratory Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Quantifying Inhomogeneous, Instantaneous, Irreversible
Transport Using Passive Tracer Field as a Coordinate
N. Nakamura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
2 Effective Diffusivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
3 Direction of Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
4 Relationship to Eulerian Eddy Diffusivity . . . . . . . . . . . . . . . . . . . . . . . 153
5 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Lagrangian Statistics from Oceanic and Atmospheric
Observations
J. H. LaCasce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
2 Single-Particle Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
3 Multiple Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190



Contents IX

4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

The Modulation of Biological Production by Oceanic
Mesoscale Turbulence
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Scalar Decay in Chaotic Mixing

J.-L. Thiffeault

Department of Mathematics, University of Wisconsin, Madison, WI, USA
jeanluc@mailaps.org

Abstract. I review the local theory of mixing, which focuses on infinitesimal blobs
of scalar being advected and stretched by a random velocity field. An advantage of
this theory is that it provides elegant analytical results. A disadvantage is that it
is highly idealised. Nevertheless, it provides insight into the mechanism of chaotic
mixing and the effect of random fluctuations on the rate of decay of the concentration
field of a passive scalar.

1 Introduction

The equation that is in the spotlight is the advection–diffusion equation

∂tθ + v · ∇θ = κ∇2θ (1)

for the time-evolution of a distribution of concentration θ(x, t), being advected
by a velocity field v(x, t) and diffused with diffusivity κ. The concentration θ
is called a scalar (as opposed to a vector). We will restrict our attention
to incompressible velocity fields, for which ∇ · v = 0. For our purposes, we
shall leave the exact nature of θ nebulous: it could be a temperature or the
concentration of salt, dye, chemicals, isotopes, or even plankton. The only
assumption for now is that this scalar is passive, which means that its value
does not affect the velocity field v. Clearly, this is not strictly true of some
scalars like temperature, because a varying buoyancy influences the flow, but
is often a good approximation nonetheless.

The advection–diffusion equation is linear, but contrary to popular belief
that does not mean it is simple! Because the velocity (which is regarded here
as a given vector field) is a function of space and time, the advection term (the
second term in (1)) can cause complicated behaviour in θ. Broadly speaking,
the advection term tends to create sharp gradients of θ, whilst the diffusion
term (the term on the right-hand side of (1)) tends to wipe out gradients.
The evolution of the concentration field is thus given by a delicate balance of
advection and diffusion.

J.-L. Thiffeault: Scalar Decay in Chaotic Mixing, Lect. Notes Phys. 744, 3–35 (2008)

DOI 10.1007/978-3-540-75215-8 1 c© Springer-Verlag Berlin Heidelberg 2008



4 J.-L. Thiffeault

The advection term in (1) is also known as the stirring term, and the
interplay of advection and diffusion is often called stirring and mixing. As
we shall see, the two terms have very different roles, but both are needed to
achieve an efficient mixing.

To elicit some broad features of mixing, we will start by deriving some
properties of the advection–diffusion equation. First, it conserves the total
quantity of θ. If we use angular brackets to denote the average of θ over the
fixed domain of interest V , i.e.

〈θ〉 :=
1
V

∫
V

θ dV,

then we find directly from (1) that

∂t 〈θ〉 + 〈v · ∇θ〉 = κ
〈∇2θ

〉
. (2)

Because the velocity field is incompressible, we have

v · ∇θ = ∇ · (θ v),

and also ∇2θ = ∇ · (∇θ). Thus, we can use the divergence theorem to write
(2) as

∂t 〈θ〉 = − 1
V

∫
S

θ v · n̂ dS + κ
1
V

∫
S

∇θ · n̂ dS, (3)

where S is the surface bounding V , dS the element of area, and n̂ the outward-
pointing normal to the surface. For a closed flow, two possibilities are now open
to us: (i) the domain V is periodic or (ii) v and ∇θ are both tangents to the
surface S. In the first case, the terms on the right-hand side of (3) vanish
because boundary terms always vanish with periodic boundary conditions (a
bit tautological, but true!). In the second case, both v · n̂ and ∇θ · n̂ vanish.
Either way,

∂t 〈θ〉 = 0 (4)

so that the mean value of θ is constant. Since V is constant, this also implies
that the total amount of θ is conserved. The second set of boundary conditions
we used implies that there is no fluid flow or flux of θ through the boundary
of the volume. It is thus natural that the total θ is conserved! For periodic
boundary conditions, whatever leaves the volume re-enters on the other side,
so it also makes sense that θ is conserved. Because of (4) and because we can
always add a constant to θ without changing its evolution (only derivatives
of θ appear in (1)), we will always choose

〈θ〉 = 0 (5)

without loss of generality. In words: the mean of our scalar vanishes initially,
so by (4) it must vanish for all times.
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Now let’s look at another average of θ: rather than averaging θ itself,
which has yielded an important but boring result, we average its square. The
variance is defined by

Var := 〈θ2〉 − 〈θ〉2, (6)

where the second term on the right vanishes by (5). To obtain an equation for
the time-evolution of the variance, we multiply (1) by θ and integrate:

〈θ ∂tθ〉 + 〈θ v · ∇θ〉 = κ
〈
θ∇2θ

〉
.

We rearrange on the left and integrate by parts on the right, to find
〈
(∂t + v · ∇) 1

2 θ
2
〉

= κ
〈∇ · (θ∇θ) − |∇θ|2〉 .

Now there are some boundary terms that vanish under the same assumptions
as before, and we get

∂tVar = −2κ
〈|∇θ|2〉 . (7)

Notice that, once again, the velocity field has dropped out of this averaged
equation. However, now the effect of diffusion remains. Moreover, it is clear
that the term on the right-hand side of (7) is negative-definite (or zero): this
means that the variance always decreases (or is constant). The only way it can
stop decreasing is if ∇θ vanishes everywhere, that is, θ is constant in space.
But because we have assumed 〈θ〉 = 0, this means that θ = 0 everywhere. In
that case, we have no choice but to declare the system to be perfectly mixed :
there are no variations in θ at all anymore. Equation (7) tells us that variance
tends to zero, which means that the system inexorably tends to the perfectly
mixed state, without necessarily ever reaching it. Variance is thus a useful
measure of mixing: the smaller the variance, the better the mixing.

There is a problem with all this: (7) no longer involves the velocity field.
But if variance is to give us a measure of mixing, shouldn’t its time-evolution
involve the velocity field? Is this telling us that stirring has no effect on mixing?
Of course not, as any coffee-drinker will testify, whether he/she likes it with
milk or sugar: stirring has a huge impact on mixing! So what’s the catch?

The catch is that (7) is not a closed equation for the variance: the right-
hand side involves |∇θ|2, which is not the same as θ2. The extra gradient makes
all the difference. As we will see, under the right circumstances the stirring
velocity field creates very large gradients in the concentration field, which
makes variance decrease much faster than it would if diffusivity were acting
alone. In fact, when κ is very small, in the best stirring flows the gradients
of θ scale as κ−1/2, so that the right-hand side of (7) becomes independent of
the diffusivity. This, in a nutshell, is the essence of enhanced mixing.

Several important questions can now be raised:

• How fast is the approach to the perfectly mixed state?
• How does this depend on κ?
• What does the concentration field look like for long times? What is its

spectrum?
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• How does the probability distribution of θ evolve?
• Which stirring fields give efficient mixing?

The answers to these questions are quite complicated, and not fully known.
In the following sections we will attempt to give some hints of the answers
and provide some references to the literature.

This is not meant to be a comprehensive review article, so entire swaths
of the literature are missing. We focus mainly on local or Lagrangian the-
ories, which involve deterministic and stochastic approaches for quantifying
stretching using a local idealisation of the flow. The essential feature here is
that the advection–diffusion equation is solved along fluid trajectories. These
theories trace their origins to Batchelor [1], who treated constant matrices
with slow time dependence, and Kraichnan [2, 3], who introduced fast (delta-
correlated) time dependence. Zeldovich et al. [4] approached the problem from
the random-matrix theory angle in the magnetic dynamo context. More re-
cently, techniques from large-deviation theory [5, 6, 7, 8] and path integra-
tion [9, 10, 11, 12, 13] have allowed an essentially complete solution of the
problem. It is this work that will be reviewed here, as it applies to the decay
of the passive scalar (and not the PDF of concentration or its power spectrum).
We will favour expediency over mathematical rigour and try to give a flavour
of what these local theories are about without describing them in detail.

The story will proceed from here as follows: in Sect. 2 advection of a
blob by a linear velocity field is considered, with diffusion included. This
problem has an exact solution, but it can be made simpler in the limit of
small diffusivity. Solutions are examined for a straining flow in two and three
dimensions (Sects. 2.2 and 2.4), as well as a shear flow in two dimensions
(Sect. 2.3). Randomness is added in Sect. 3: the strain associated with the
velocity field is assumed to vary, and the consequences of this for a single blob
(Sect. 3.1) and a large number of blobs (Sect. 3.2) are explored. Practical
implementation is discussed in Sect. 4, and a simple model for a micromixer
is analysed in Sect. 4.1. Finally, the limitations of the theory are presented in
Sect. 4.2.

2 Advection and Diffusion in a Linear Velocity Field

We will start by considering what happens to a passive scalar advected by
a linear velocity field. The overriding advantage of this configuration is that
it can be solved analytically, but that is not its only pleasant feature. Like
most good toy models, it serves as a nice prototype for what happens in more
complicated flows. It also serves as a building block for what may be called
the local theory of mixing (Sect. 3).

The perfect setting to consider a linear flow is in the limit of large Schmidt
number. The Schmidt number is a dimensionless quantity defined as

Sc := ν/κ



Scalar Decay in Chaotic Mixing 7

where ν is the kinematic viscosity of the fluid and κ the diffusivity of the scalar.
The Schmidt number may be thought of as the ratio of the diffusion time for
the scalar to that for momentum in the fluid. Alternatively, it can be regarded
as the ratio of the (squared) length of the smallest feature in the velocity field
to that in the scalar field. This last interpretation is due to the fact that if θ
varies in space more quickly than

√
κ, then its gradient is large and diffusion

wipes out the variation. The same applies to variations in the velocity field
with respect to ν. Hence, for large Schmidt number the scalar field has much
faster variations than the velocity field. This means that it is possible to
focus on a region of the domain large enough for the scalar concentration
to vary appreciably, but small enough that the velocity field appears linear.
Because there are many cases for which Sc is quite large, this motivates the
use of a linear velocity field. In fact, large Sc is the natural setting for chaotic
advection. It is also the regime that was studied by Batchelor and leads to
the celebrated Batchelor spectrum [1]. The limit of small Sc is the domain
of homogenisation theory and of turbulent diffusivity models. We shall not
discuss such things here.

2.1 Solution of the Problem

We choose a linear velocity field of the form

v = x · σ(t), Trσ = 0,

where σ is a traceless matrix because ∇·v must vanish. Inserting this into (1),
we want to solve the initial value problem:

∂tθ + x · σ(t) · ∇θ = κ∇2θ, θ(x, 0) = θ0(x). (8)

Here the coordinate x is really a deviation from a reference fluid trajectory.
(In Appendix 1 we derive (8) from (1) by transforming to a comoving frame
and assuming the velocity field is smooth.) We will follow closely the solution
of Zeldovich et al. [4], who solved this by the method of “partial solutions”.
Consider a solution of the form

θ(x, t) = θ̂(k0, t) exp(ik(t) · x), k(0) = k0, θ̂(k0, 0) = θ̂0(k0), (9)

where k0 is some initial wavevector. We will see if we can make this into a
solution by a judicious choice of θ̂(k0, t) and k(t). The time derivative of (9)
is

∂tθ = (∂tθ̂ + i ∂tk · x θ̂) exp(ik(t) · x)

and we have
v · ∇θ = i (x · σ · k) θ̂ exp(ik(t) · x).

Putting these together into (8) and cancelling out the exponential gives

∂tθ̂ + i x · (∂tk + σ · k) θ̂ = −κ k2θ̂.
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This must hold for all x, and neither θ̂ nor k depends on x, so we equate
powers of x. This gives the two evolution equations

∂tk = −σ · k , (10a)

∂tθ̂ = −κ k2θ̂. (10b)

We can write the solution to (10a) in terms of the fundamental solution T(t, 0)
as

k(t) = T(t, 0) · k0 ,

where
∂tT(t, 0) = −σ(t) · T(t, 0), T(0, 0) = Id,

and Id is the identity matrix. The advantage of doing this is that we can
use the same fundamental solution for all initial conditions. We will usually
write Tt to mean T(t, 0). Note that because Tr σ = 0, we have

detTt = 1.

If σ is not a function of time, then the fundamental solution is simply a matrix
exponential,

Tt = exp(−σ t),
but in general the form of Tt is more complicated.

Now that we know the time dependence of k, we can express the solution
to (10) as

k(t) = Tt · k0 , (11a)

θ̂(k0, t) = θ̂0(k0) exp
{
−κ
∫ t

0

(
Ts · k0

)2 ds
}
. (11b)

We can think of Tt as transforming a Lagrangian wavevector k0 to its Eulerian
counterpart k. Thus (11b) expresses the fact that θ̂ decays diffusively at a rate
determined by the cumulative norm of the wavenumber k experienced during
its evolution.

The full solution to (8) is now given by superposition of the partial solu-
tions:

θ(x, t) =
∫
θ̂(k0, t) exp(ik(t) · x) d3k0

=
∫
θ̂0(k0) exp

{
i x · Tt · k0 − κ

∫ t

0

(
Ts · k0

)2 ds
}

d3k0 , (12)

where θ̂0(k0) is the Fourier transform of the initial condition θ0(x).1 Assuming
the spatial mean of θ vanishes, the variance (6) is

1 We are using the convention
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Var =
∫
θ2(x, t) d3x =

∫
|θ̂(k0, t)|2 d3k0 ,

which from (11b) becomes

Var =
∫
|θ̂0(k0)|2 exp

{
−2κ

∫ t

0

(
Ts · k0

)2 ds
}

d3k0 . (13)

We thus have a full solution of the advection–diffusion equation for the case of
a linear velocity field and found the time-evolution of the variance. But what
can be gleaned from it? We shall look at some special cases in the following
section.

2.2 Straining Flow in 2D

We now take an even more idealised approach: consider the case where the
velocity gradient matrix σ is constant. Furthermore, let us restrict ourselves to
two-dimensional (2D) flows. After a coordinate change, the traceless matrix σ
can only take two possible forms:

σ(2a) =
(
λ 0
0 −λ

)
and σ(2b) =

(
0 0
U ′ 0

)
. (14)

Case (2a) is a purely straining flow that stretches exponentially in one di-
rection and contracts in the other. Case (2b) is a linear shear flow in the x1

direction. We assume without loss of generality that λ > 0 and U ′ > 0. The
form σ(2b) is known as the Jordan canonical form and can only occur for
degenerate eigenvalues. Since by incompressibility the sum of these identical
eigenvalues must vanish, they must both vanish. The corresponding funda-
mental matrices Tt = exp(−σ t) are

T
(2a)
t =

(
e−λt 0

0 eλt

)
and T

(2b)
t =

(
1 0

−U ′t 1

)
. (15)

These are easy to compute: in the first instance one merely exponentiates the
diagonal elements, in the second the exponential power series terminates after
two terms, because the square of σ(2b) is zero.

Let us consider case (2a), a flow with constant stretching (the case consid-
ered by Batchelor [1]). The action of the fundamental matrix on k0 for case
(2a) is

θ̂(k) =
1

(2π)d

∫
θ(x) e−ik·x ddx ,

θ(x) =

∫
θ̂(k) eik·x ddk ,

for the Fourier transform in d dimensions.
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T
(2a)
t · k0 =

(
e−λt k01 , eλt k02

)
, (16)

with norm (
T

(2a)
t · k0

)2 = e−2λt k0
2
1 + e2λt k0

2
2 . (17)

The wavevector k(t) = T
(2a)
t · k0 grows exponentially in time, which means

that the length scale is becoming very small. This only occurs in the direc-
tion x2, which is sensible because that direction corresponds to a contract-
ing flow. Picture a curtain being closed: the bunching up of the fabric into
tight folds is analogous to the contraction. (Of course, it is difficult to close
a curtain exponentially quickly forever!) The component of the wavevector in
the x1 direction decreases in magnitude, which corresponds to the opening of
a curtain.

Let’s see what happens to one Fourier mode. By inserting (17) in (11b),
we have

θ̂(k0, t) = θ̂0(k0) exp
{
−κ
∫ t

0

(
e−2λs k0

2
1 + e2λs k0

2
2

)
ds
}
.

The time-integral can be done explicitly, and we find

θ̂(k0, t) = θ̂0(k0) exp
{
− κ

2λ
((

e2λt − 1
)
k0

2
2 −

(
e−2λt − 1

)
k0

2
1

)}
.

For moderately long times (t � λ−1), we can surely neglect e−2λt compared
to 1, and 1 compared to e2λt,

θ̂(k0, t) � θ̂0(k0) exp
{
− κ

2λ
(
e2λt k0

2
2 + k0

2
1

)}
. (18)

Actually, this assumption of moderately long time is easily justified physically.
If κk2/λ� 1, where k is the largest initial wavenumber (that is, the smallest
initial scale), then the argument of the exponential in (18) is small, unless

e2λt � Pe (19)

where the Péclet number is
Pe =

λ

κ k2
. (20)

Thus the assumption that e2λt is large is a consequence of Pe being large, since
otherwise the exponential in (18) is near unity and can be ignored—variance
is approximately constant. We can turn (19) into a requirement on the time:

λ t � log Pe1/2 . (21)

It is clear from (21) that λ−1 sets the time scale for the argument of the expo-
nential in (18) to become important. The Péclet number influences this time
scale only weakly (logarithmically). This is probably the most important phys-
ical fact about chaotic mixing: small diffusivity has only a logarithmic effect.
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Thus vigorous stirring always has a chance to overcome a small diffusivity, no
matter how small: we need just stir a bit longer.

Note that the variance is given by

Var =
∫
|θ̂0(k0)|2 exp

{
−κ
λ

(
e2λt k0

2
2 + k0

2
1

)}
d2k0 ,

which is approximately constant for t � λ−1 log Pe1/2. This does not mean
that the concentration field

θ(x, t) =
∫
θ̂(k0, t) eik(t)·x d2k0 (22)

is constant, even if θ̂(k0, t) is, because k(t) = T
(2a)
t · k0 is a function of time

from (16). This time dependence becomes important for t � λ−1.
The Péclet number may be thought of as the ratio of the advection time

of the flow to the diffusion time for the scalar. It is usually written as

Pe := UL/κ , (23)

where U is a typical velocity and L a typical length scale. Our velocity estimate
in (20) is λ/k, and our length scale is k, which are both natural for the problem
at hand. Just like large Sc, large Pe is the natural setting for chaotic advection.
In fact, if Pe is small then diffusion is faster than advection, and stirring is not
really required! Large Pe means that diffusion by itself is not very effective,
so that stirring is required. We shall always assume that Pe is large.

We return to (18): the striking thing about that equation is its prediction
for the rate of decay of the concentration field. Roughly speaking, (18) predicts

θ(x, t) ∼ exp
{−Pe−1 e2λt

}
(24)

for λt	 1. Equation (24) is the exponential of an exponential—a superexpo-
nential decay. This is extremely fast decay. In fact, unnaturally so: it is hard
to imagine a physically sensible system that could mix this quickly. Something
more has to be at work here.

If we examine (18) closely, we see that the culprit is the term

e2λt k0
2
2 , (25)

which grows exponentially fast. This term has its origin in the Laplacian
in the advection–diffusion equation (1): the contracting direction of the flow
(the x2 direction) leads to an exponential increase in the wavenumber via
the curtain-closing mechanism. This is exactly the mechanism for enhanced
mixing we advertised on p. 5: very large gradients of concentration are being
created, exponentially fast. This mechanism is just acting too quickly for our
taste!

So what’s the problem? We are doing the wrong thing to obtain our es-
timate (24). This estimate tells us how fast a typical wavevector decays, and
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it says that this occurs very quickly. What we really want to know is what
modes survive superexponential decay the longest, and at what rate they de-
cay. Clearly the concentration in most wavenumbers gets annihilated almost
instantly, once the condition (21) is satisfied. But a small number remains:
those are the modes with wavevector closely aligned to the x1 (stretching)
direction or equivalently that have a very small projection on the x2 (con-
tracting) direction. To overcome the exponential growth in (25), we require

k02 ∼ e−λt , (26)

that is at any given time we need consider only wavenumbers satisfying (26),
since the concentration in all the others has long since been wiped out by
diffusion. The consequence is that the k02 integral in (22) is dominated by
these surviving modes. To see this, we blow up the k02 integration by making
the coordinate change k̃02 = k02 eλt in (22):

θ(x, t) = e−λt

∫ ∞

−∞
dk01

∫ ∞

−∞
dk̃02 θ̂0(k01, k̃02 e−λt)

× eik(t)·x exp
{
− κ

2λ

(
k̃0

2

2 + k0
2
1

)}
. (27)

The decay factor e−λt has appeared in front. For small diffusivity, we can
neglect the k0

2
1 term in the exponential (it just smooths out the initial con-

centration field a little).2 We can then take the inverse Fourier transform
of θ̂0(k01, k̃02 e−λt),

θ̂0(k01, k̃02 e−λt) =
1

(2π)2

∫
θ0(x̃) exp (−ik01x̃1 − ik̃02 e−λtx̃2) dx̃1 dx̃2,

and insert this into (27). We then interchange the order of integration: the k01

integral gives a δ-function, and the k̃02 integral gives a Gaussian. The final
result is

θ(x, t) = e−λt

∫ ∞

−∞
θ0(e−λtx1, x̃2)G

(
x2 − e−λt x̃2 ; 


)
dx̃2 , (28)

where
G(x; 
) :=

1√
2π
2

e−x2/2�2 (29)

is a normalised Gaussian distribution with standard deviation 
, and we de-
fined the length


 :=
√
κ/λ .

2 We require the initial condition to be smooth at small scales. Here’s why: for
small κ, k01 needs to be large to matter in the argument of the exponential. But
a smooth θ decays exponentially with k01, so there is no variance in these modes
anyway.
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If the initial concentration decays for large |x2| (as when we have a single blob
of dye), then (28) can be simplified to

θ(x, t) = e−λtG (x2; 
)
∫ ∞

−∞
θ0(e−λtx1, x̃2) dx̃2 . (30)

So the x1 dependence in (30) is given by the “stretched” initial distribution,
averaged over x2. The important thing to notice is that

θ(x, t) ∼ e−λt . (31)

This is a much more reasonable estimate for the decay of concentration
than (24)! The concentration thus decays exponentially at a rate given by
the rate of strain (or stretching rate) in our flow. The exponential decay is
entirely due to the narrowing of the domain for eligible (i.e. nondecayed)
modes. This “domain of eligibility” is also known as the cone or the cone of
safety [4, 14]. (In two dimensions it is more properly called a wedge.) The
concentration associated with wavevectors that fit within this cone is tem-
porarily shielded from being diffusively wiped out, but as the aperture of the
cone is shrinking exponentially more and more modes leave the safety of the
cone as time progresses.

Notice that (31) is independent of κ. This brings us to the second most
important physical fact about chaotic mixing: the asymptotic decay rate of
the concentration field tends to be independent of diffusivity. But note that a
nonzero diffusivity is crucial in forcing the alignment (26). The only effect of
the diffusivity is to lengthen the wait before exponential decay sets in, as given
by the estimate (21). But this effect is only logarithmic in the diffusivity.

We can also try to think of (30) in real rather than Fourier space. Con-
sider an initial distribution of concentration. Our straining flow will stretch
this distribution in the x1 direction and contract it in the x2 direction. Gradi-
ents in x2 will thus become very large, so that eventually diffusion will limit
further contraction in the x2 direction and the distribution will stabilise with
width

√
κ/λ (see Fig. 1). This is what the Gaussian prefactor in (30) is telling

us: the asymptotic distribution has “forgotten” its initial shape in x2. We say
that the contracting direction has been stabilised.

2.3 Shear Dispersion in 2D

So far we have only considered case (2a) in (14). For case (2b), we have
from (15)

T
(2b)
t · k0 = (k01, k02 − U ′t k01)

with norm (
T

(2b)
t · k0

)2 = k0
2
1 + (k02 − U ′t k01)

2
. (32)

Inserting (32) in (12), we have
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Fig. 1. A patch of dye in a uniform straining flow. The amplitude of the concen-
tration field decreases exponentially with time. The length of the filament increases
exponentially, whilst its width is stabilised at � =

√
κ/λ

θ(x, t) =
∫
θ̂0(k0) eik(t)·x exp

{
−κ
∫ t

0

(
k0

2
1 + (k02 − U ′s k01)

2) ds
}

d2k0 .

We can then explicitly do the time-integral in the exponential:

θ(x, t) =
∫
θ̂0(k0) eik(t)·x

× exp
{
−κ k0

2
1 t−

κ

3U ′k01

(
(U ′t k01 − k02)

3 + k0
3
2

)}
d2k0 . (33)

The enhancement to diffusion in this case is reflected in the cubic power of
time in the exponential. This is not as strong as the exponential enhancement
of case (2a), but is nevertheless very significant. This phenomenon is known
as shear dispersion or Taylor dispersion. The mechanism is often called the
venetian blind effect. Assuming the initial distribution θ0 depends only on k01,
the lines of constant concentration which are initially vertical are tilted by the
shear flow, in a manner reminiscent of venetian blinds. The distance between
the lines of constant concentration decreases with time as (U ′t)−1, which gives
an effective enhancement to diffusion. The time required to overcome a weak
diffusivity is thus
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U ′t � (k0
2
1 κ/U

′)−1/3. (34)

If we use k0
−1
1 as a length scale and U ′ as a time scale, we can define a Péclet

number Pe := U ′/(k01
2 κ) and rewrite (34) as

U ′t � Pe1/3 (35)

which should be compared to (21), the corresponding expression for the case
(2a). Here there is a power law dependence on the Péclet number, rather
than logarithmic, so we may have to wait a long time for diffusion to become
important. This makes the linear velocity field approximation more likely to
break down.

Let us consider the time-asymptotic limit U ′t 	 1: we might then be
tempted to neglect everything but the U ′t k01 term in the argument of the ex-
ponential in (33). However, this would be a mistake. To see more clearly what
happens, define the dimensionless time τ := U ′t and the length χ2 = κ/U ′.
Equation (33) then becomes

θ(x, t) =
∫
θ̂0(k0) eik(t)·x

× exp
{−χ2

(
k0

2
1τ + k0

2
2τ + 1

3k0
2
1τ

3 − k01k02τ
2
)}

d2k0 . (36)

The first two terms in the exponential are just what is expected of regular
diffusion in the absence of flow. The next term is the enhancement to diffusion
along the x1 direction: it will force the modes k01 ∼ τ−3/2 to be dominant,
since everything else will be damped away. Similarly, the last term forces k02 ∼
τ−1/2. Assuming these scalings, the only term that can be neglected for τ 	 1
is the very first one, k0

2
1τ .

We make the change of variable k̃01 = τ3/2k01, k̃02 = τ1/2k02 in (36):

θ(x, t) = τ−2

∫
θ̂0(k̃01 τ

−3/2 , k̃02 τ
−1/2) ei(τ−3/2x1−τ−1/2x2)k̃01+iτ−1/2x2k̃02

× exp
{
−χ2

(
k̃0

2

2 + 1
3 k̃0

2

1 − k̃01k̃02

)}
dk̃01 dk̃02 . (37)

If we approximate θ̂0(k̃01 τ
−3/2 , k̃02 τ

−1/2) � θ̂0(0, 0), we can do the integrals
in (37) and find

θ(x, t) � 2
√

3π χ−2 τ−2 θ̂0(0, 0) exp
{
−3x2

1 − 3x1x2τ + x2
2τ

2

χ2τ3

}
. (38)

For moderate values of x1 (x1 � χτ), we have

θ(x, t) � 2
√

3π χ−2 τ−2 e−x2
2/χ2τ θ̂0(0, 0). (39)

The width in the x2 direction of an initial distribution thus increases as
χτ1/2 =

√
κ t. This is independent of U ′ and is exactly the same as ex-

pected from pure diffusion. The width in the x1 direction in (38) increases
as χτ3/2 = U ′t

√
κ t (see Fig. 2).
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Fig. 2. A patch of dye in a uniform shearing flow. The amplitude of the concen-
tration field decreases algebraically with time as t−2. The length of the filament
increases as t3/2, whilst its width increases as t1/2

2.4 Three Dimensions

In three dimensions, there are three basic forms for the matrix σ:

σ(3a) =

⎛
⎝λ1 0 0

0 λ2 0
0 0 −λ1 − λ2

⎞
⎠ ; σ(3b) =

⎛
⎝ 0 0 0
U ′ 0 0
0 U ′ 0

⎞
⎠ ; σ(3c) =

⎛
⎝ λ 0 0
U ′ λ 0
0 0 −2λ

⎞
⎠ ,

with corresponding fundamental matrices

T(3a) =

⎛
⎝e−λ1t 0 0

0 e−λ2t 0
0 0 e(λ1+λ2)t

⎞
⎠ ; T(3b) =

⎛
⎝ 0 0 0

−U ′t 0 0
1
2 (U ′t)2 −U ′t 0

⎞
⎠ ; (40)

T(3c) =

⎛
⎝ e−λt 0 0
−U ′t e−λt e−λt 0

0 0 e2λt

⎞
⎠ . (41)

We can assume without loss of generality that λ1 ≥ 0, λ1 ≥ λ2, and
U ′ > 0, but the sign of λ2 and λ is arbitrary; however, we must have
λ3 = −λ1 − λ2 ≤ 0. The case of greatest interest to us is (3a). The rele-
vant k(t), corresponding to (16), is
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T
(3a)
t · k0 =

(
e−λ1t k01 , e−λ2t k02 , e|λ3|t k03

)
, (42)

which is used in (12) to give

θ(x, t) =
∫
θ̂0(k0) eik(t)·x exp

{
− 1

2κ
(
λ−1

1

(
1 − e−2λ1t

)
k0

2
1

+ λ−1
2

(
1 − e−2λ2t

)
k0

2
2 + |λ3|−1(e2|λ3|t − 1)k0

2
3

)}
d3k0 . (43)

What happens next depends on the sign of λ2: the question is whether e−2λ2t

grows or decays for t	 |λ2|−1. If λ2 > 0, then we have

θ(x, t) �
∫
θ̂0(k0) eik(t)·x exp

{
− 1

2κ
(
λ−1

1 k0
2
1

+ λ−1
2 k0

2
2 + |λ3|−1 e2|λ3|t k0

2
3

)}
d3k0 , (44)

whilst for λ2 < 0

θ(x, t) �
∫
θ̂0(k0) eik(t)·x exp

{
− 1

2κ
(
λ−1

1 k0
2
1

+ |λ2|−1e2|λ2|tk0
2
2 + |λ3|−1 e2|λ3|tk0

2
3

)}
d3k0 . (45)

Both approximations are valid when t 	 max(λ−1
1 , |λ2|−1). For λ2 = 0 the

situation is similar to the 2D case (2a):

θ(x, t) �
∫
θ̂0(k0) eik(t)·x exp

{
− κ

2λ1

(
k0

2
1 + e2λ1tk0

2
3

)}
d3k0 ,

valid when t	 λ−1
1 .

The rest of the calculation is very similar to the 2D case (2a), in going
from (22) to (30). In both (44) and (45) the x3 direction is stabilised, that is
we need to blow up the k03 integral to remove the time dependence from the
exponential and find that the integral is dominated by k03 � 0. The x2 direc-
tion is also stabilised in (45), so we can set k02 � 0. We thus find for λ2 ≥ 0,

θ(x, t) � e−|λ3|tG
(
x3; 
3

) ∫
θ0(e−λ1tx1, e−λ2tx2, x̃3) dx̃3 , (46)

and for λ2 < 0,

θ(x, t) � e−(|λ2|+|λ3|)tG
(
x2; 
2

)
G
(
x3; 
3

) ∫
θ0(e−λ1tx1, x̃2, x̃3) dx̃2 dx̃3 ,

(47)
where 
i :=

√
κ/|λi|. Contracting directions have their spatial dependence

given by a time-independent Gaussian, with an overall exponential decay;
stretching directions do just that: they stretch the initial distribution, with
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no diffusive effect. Solutions of the form (46) are called pancakes, and those
of the form (47) are called ropes or tubes.

There is another way of thinking about the asymptotic forms (30), (46),
and (47) [15]: contracting directions are stabilised near some constant width

j , and expanding directions lead to exponential growth of the width of an
initial distribution along the direction. Thus, the volume of the initial distri-
bution grows exponentially at a rate given by the sum of λis associated with
stretching directions, but the total amount of θ remains fixed (the mean is
conserved). Hence, the concentration at a point should decay inversely pro-
portional to the volume, which is exactly what (30), (46), and (47) predict.

3 Random Strain Models

In Sect. 2 we analysed the deformation of a patch of concentration field (a
“blob”) in a linear velocity field. Though this is interesting in itself, it is a far
cry from reality. We will now inch slightly closer to the real world by giving a
random time dependence to our velocity field.

3.1 A Single Blob

Consider a single blob in a 2D linear velocity field of the type we treated in
Sect. 2.2 (case (2a)). Now assume the orientation and stretching rate λ of the
straining flow change randomly for every time τ . This situation is depicted
schematically in Fig. 3. We assume that the time τ is much larger than a
typical stretching rate λ, so that there is sufficient time for the blob to be
deformed into its asymptotic form (30) at each period, which predicts that
at each period the concentration field will decrease by a factor exp(−λ(i)τ),
where λ(i) is the stretching rate at the ith period. The concentration field
after n periods will thus be proportional to the product of decay factors:

θ ∼ e−λ(1)τ e−λ(2)τ · · · e−λ(n)τ

= e−(λ(1)+λ(2)+···+λ(n)) τ . (48)

We may rewrite this as
θ ∼ e−Λnt, (49)

where t = nτ , and

Λn :=
1
n

n∑
i=1

λ(i)

is the “running” mean value of the stretching rate at the nth period. As
we let n become large, how do we expect the concentration field to decay?
We might expect that it would decay at the mean value λ̄ of the stretching
rates λ(i). This is not the case: the running mean (49) does not converge to the
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e–λ (1) τ e–λ (2) τ e–λ (3) τ

e–λ (4) τ e–λ (5) τ e–λ (6) τ

Fig. 3. A single blob being stretched for a time τ by successive random straining
flows. The amplitude of the concentration field decays by exp(−λ(i)τ ) at each period

mean λ̄. Rather, by the central limit theorem its expected value is λ̄, but its
fluctuations around that value are proportional to 1/

√
t. These fluctuations

have an impact on the decay rate of θ.
The ensemble of variables λ(i) is known as a realisation. Now let us imagine

performing our blob experiment several times and averaging the resulting
concentration fields: this is known as an ensemble average over realisations.
Ensemble-averaging smooths out fluctuations present in each given realisation.
We may then replace the running mean Λn by a sample-space variable Λ,
together with its probability distribution P (Λ, t). The mean (expected value)
of the αth power of the concentration field is then proportional to

θα ∼
∫ ∞

0

e−αΛt P (Λ, t) dΛ . (50)

The overbar denotes the expected value. The factor e−αΛt gives the amplitude
of θα given that the mean stretching rate at time t is Λ, and P (Λ, t) measures
the probability of that value of Λ occurring at time t.

The form of the probability distribution function (PDF) P (Λ, t) is given
by the central limit theorem:
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P (Λ, t) � G
(
Λ − Λ̄;

√
ν/t
)
, (51)

that is, a Gaussian distribution (29) with mean Λ̄ and standard devia-
tion

√
ν/t. Actually, the central limit theorem only applies to values of Λ

that do not deviate too much from the mean. The theorem underestimates
the probability of rare events: a more general form of the PDF of Λ comes
from large-deviation theory [16, 17]:

P (Λ, t) �
√
t S′′(0)

2π
e−tS(Λ−Λ̄). (52)

(A derivation of (52) is given in Appendix 2.) The function S(x) is known as
the rate function, the entropy function, or the Cramér function, depending on
the context. It is a time-independent convex function with a minimum value
of 0 at 0: S(0) = S′(0) = 0. If Λ is near the mean, we have

S(Λ − Λ̄) � 1
2 S′′(0)(Λ − Λ̄)2, (53)

which recovers the Gaussian result (51) with ν = 1/S′′(0). Both (51) and (52)
are only valid for large t (which in our case means t	 τ or equivalently
n	 1).

We can now evaluate the integral (50) with the PDF (52):

θα ∼
∫ ∞

0

e−tH(Λ) dΛ ∼ e−γαt , (54)

where we have omitted the nonexponential prefactors and defined

H(Λ) := αΛ + S(Λ − Λ̄).

Since t is large, the integral is dominated by the minimum value of H(Λ):
this is the perfect setting for the well-known saddle-point approximation. The
minimum occurs at Λsp where H ′(Λsp) = α + S′(Λsp − Λ̄) = 0 and is unique
because S is convex and has a unique minimum. The decay rate is then given
by

γα = H(Λsp), with H ′(Λsp) = 0. (55)

There’s a caveat to this: for α large enough the saddle point Λsp is nega-
tive. This is not possible: the stretching rates are defined to be nonnegative
(the integral (54) involves only nonnegative Λ). Hence, the best we can do
is to choose Λsp = 0—the integral (54) is dominated by realisations with no
stretching. Thus, in that case γα = H(0) or

γα = S(−Λ̄). (56)

We re-emphasise: for small enough α, the saddle point is positive and the
decay rate is given by (55). Beyond that, we must choose zero as the saddle
point and the decay rate is given by (56). To find the critical value αcrit where
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we pass from (55) to (56), observe that this happens as the saddle point nears
zero. Thus, we may solve our saddle-point equation H ′(Λsp) = 0 by Taylor
expansion:

H ′(Λsp) � αcrit + S′(−Λ̄) + Λsp S′′(−Λ̄) = 0. (57)

But the saddle point will not be small unless the first terms cancel in (57),
that is αcrit = −S′(−Λ̄). We may thus recapitulate the result for the decay
rate:

γα =

⎧⎨
⎩
αΛsp + S(Λsp − Λ̄), α < −S′(−Λ̄);

S(−Λ̄), α ≥ −S′(−Λ̄).
(58)

Clearly γα is continuous, and it can be easily shown that dγα/dα is also
continuous.

As an illustration, we use the Gaussian approximation (53) for the Cramér
function, with ν = 1/S′′(0). The critical α is αcrit = −S′(−Λ̄) = Λ̄/ν. The
saddle point is positive for α < Λ̄/ν, so from (58) we get

γα =

⎧⎨
⎩
α
(
Λ̄ − 1

2 αν
)
, α < Λ̄/ν;

Λ̄2/2ν, α ≥ Λ̄/ν.
(59)

This is plotted in Fig. 4. Notice that the solid curve (for a random flow) lies
below the dashed line (for a nonrandom flow). This is a general result: if f(x)
is a convex function and x a random variable, Jensen’s inequality says that

f(x) ≥ f(x). (60)

Now, e−αtΛ is a convex function of Λ, so we have

e−αtΛ ≥ e−αtΛ,

which means that the rate of decay satisfies

γα ≤ α Λ̄,

−2 −1 0 1 2 3 4 5 6
−2

−1

0

1

2

3

αcrit

γα

α

Fig. 4. Decay rate (59) for the concentration of a blob in a Gaussian random
stretching flow (solid curve). The dashed line is for a fixed, nonrandom flow as in
Sect. 2.2. Here Λ̄ = 1, ν = 1/4, so αcrit = Λ̄/ν = 4
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which is exactly what is seen in Fig. 4. Thus, fluctuations in Λ inevitably lead
to a slower decay rate γα.

Stronger fluctuations also mean that the decay rate γα saturates more
quickly with α. Clearly, in the absence of fluctuations we recover the nonran-
dom result: Λ̄/ν is infinite and only the α < Λ̄/ν case is needed in (59). If
there are lots of fluctuations, Λ̄/ν is small, and there is a greater probabil-
ity of obtaining a realisation with no stretching. For large enough fluctuations
this exponentially decreasing probability dominates, and we obtain the second
case in (58).

3.2 Many Blobs

In Sect. 3.1 we considered the evolution of the concentration of a single blob
of concentration in a random straining field. Now we turn our attention to
a large number of blobs, homogeneously and isotropically distributed, with
random concentrations. We assume that the mean concentration over all the
blobs is zero. A simplified view of this initial situation is depicted in Fig. 5a,
with shades of grey indicating different concentrations. If we now apply a uni-
form straining flow of the type (2a) (see Sect. 2.2), the blobs are all stretched
horizontally (the x1 direction) and contracted in the vertical (x2) direction,
as shown in Fig. 5b. They are pressed together in the x2 direction until dif-
fusion becomes important (Fig. 5c). The effect of diffusion is to homogenise
the concentration field until it reaches a value which is the average of the

(a) (b)

(c) (d)

Fig. 5. (a) An initial distribution of blobs with random concentrations (b) is
stretched by a constant strain (c) until the blobs reach the diffusive limit in the
contracting direction and begin to overlap. (d) Finally, they combine into one very
long blob with the average concentration of all the blobs
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concentration of the individual blobs. This is depicted by the long grey blob
in Fig. 5d, which will itself keep contracting until it reaches the diffusive
length 
.

Of course, unlike the situation depicted in Fig. 5, here the initial concentra-
tion field θ0 represents the concentration of all the homogeneously distributed
blobs, so it does not decay at infinity: we must thus use (28) rather than (30).
The summing (and hence averaging) over blobs is manifest in (28), which con-
tains an integral over the initial distribution θ0 in the x2 direction, windowed
by a Gaussian.

In practice, this implies that the expected value of the concentration at a
point x on the grey filament is given by

〈θ(x, t)〉blobs ∼ e−Λt
N∑
i

θ
(i)
0 −→ 0 , (61)

where θ
(i)
0 is the initial concentration of the ith blob, and 〈·〉blobs denotes

the expected value of the sum over the overlapping blobs at point x (not the
same as spatial integration 〈·〉). We assume thatN 	 1 blobs have overlapped.
Equation (61) gives the concentration at a point, summed over N overlapping
blobs. Of course, (61) converges to zero for large N , because the blobs average
out. Not so for the fluctuations at that point: by the central limit theorem,
we have

〈
θ2(x, t)

〉
blobs

∼ e−2Λt
N∑
i

θ
(i)
0

2
= Ne−2Λt θ20 , (62)

since the initial blobs have identical distributions. The blob-summed fluctua-
tion amplitude

〈
θ2
〉
blobs

is thus proportional to the number N of overlapping
blobs. But the number of overlapping blobs is proportional to eΛt: as time
increases more and more blobs converge to a given x in the contracting di-
rection and overlap diffusively (this can be seen in (28): the width of the
windowing region grows as eλt). Assuming the variance of θ(i)0 is finite, we
conclude from (62) that

〈
θ2(x, t)

〉1/2

blobs
∼ e−Λt/2 . (63)

Compare this to (49) for the single-blob case: the overlap between blobs has
led to an extra square root. Thus, the ensemble averages 〈θ2(x, t)〉αblobs, for
the overlapping blobs are computed exactly as in Sect. 3.1, resulting in (58).
Because of the assumption of homogeneity, the point-average is the same as
the average over the whole domain (see Sect. 4 for more on this), and we have3

〈
θ2
〉α

= 〈θ2(x, t)〉αblobs ∼ e−γαt , (64)

3 In going from (63) to (64), we’ve implicitly assumed that the initial concentration
field has Gaussian statistics, because we’ve used the fact that the higher even
moments are proportional to powers of the second moment.
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with γα given by (58). (In (64) the angular brackets denote spatial averaging,
not spatial integration, because the total variance is infinite in this case.)

3.3 Three Dimensions

In three dimensions, we will only treat case (3a) (a purely straining flow) of
Sect. 2.4. For λ2 < 0, where the asymptotic concentration is given by (47)
(ropes), the situation is basically identical to the 2D case of Sects. 3.1 and
3.2: the statistics of the stretching direction λ1 determine γα from (58). The
contracting directions x2 and x3 are stabilised by diffusion.

For λ2 ≥ 0, the asymptotic concentration is given by (46) (pancakes).
We have two fluctuating quantities to worry about (λ1 and λ2). But since the
decay rate in (46) only depends on λ3, we can instead focus on its fluctuations
only. For a single blob, the average (50) is then replaced by

θα ∼
∫ ∞

0

e−α|Λ3|t P3(|Λ3|, t) d|Λ3| ∼ e−γαt , (65)

where of course Λ3 is the average of λ3. This PDF achieves a distribution of
the large-deviation form (52). The analysis thus follows exactly as in Sects. 3.1
and 3.2, except the Cramér function for |Λ3| must be used.4

4 Practical Considerations

One may rightly wonder if blobs in, a random uniform straining flow, as
depicted in Sect. 3, bear any resemblance to reality. The single-blob scenario
doesn’t, but the many-blobs scenario has a fighting chance, as we will try to
justify here. There are two important considerations: where does the ensemble-
averaging come from, and what are the stretching rates given by?

The decay rate (58) depends crucially on ensemble-averaging: with that
averaging the decay rate fluctuates wildly for a given realisation. At the end
of Sect. 3.2 we assumed that homogeneity allowed us to generalise from the
average at a point to the average over the whole domain. But the average over
the whole domain can actually do a lot more for us: it can provide the ensemble
of blobs that we need for averaging! Thus, we can forget about speaking of
realisations as if we were running many parallel experiments and instead speak
of the moments of the concentration field as given by an average over randomly
distributed blobs. The decay rate will then be naturally smoothed out over
blobs experiencing different stretching histories. The saturation of the decay
rate with α in (58) is due to θ2α being dominated by the fraction of blobs
that have experienced no stretching.

What about the stretching rates λ? Luckily, it is not them but their time-
average Λ that matters. If we imagine following a blob as it moves through
4 There are a few exceptional cases to consider [15].
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the flow, we can see that this time-averaged stretching rate is nothing but the
finite-time Lyapunov exponent associated with this blob and its particular
initial condition. A given blob will be constantly reoriented as it moves along
in the flow, so its finite-time Lyapunov exponent is not just the average of the
stretching rates (in fact, it must be strictly less than this average). But in a
chaotic system we are guaranteed that, on average, these reorientations do not
lead to a vanishing (infinite-time) Lyapunov exponent. This is guaranteed by
the celebrated Oseledec multiplicative theorem for random matrices [18].5 We
may thus use for P (Λ, t) the distribution of finite-time Lyapunov exponents,
which is well known to have the large-deviation form (52) [19].

The result of these considerations is the local theory of passive scalar decay.
It is called local because of the reliance of such a local concept as the finite-
time Lyapunov exponents, which come from a linearisation near fluid element
trajectories. In Sect. 4.1 we discuss a specific example. We postpone a discus-
sion of the validity of the local theory until Sect. 4.2, but for now we point
out that it is known to be exact at least in some simple model flows [15, 20].

The derivation presented in this section was based on the work of Balkov-
sky and Fouxon [15], who used a slightly more rigorous approach. Son [21] also
obtained the decay rate (58) using path-integral methods. Earlier, Antonsen
et al. [8] derived the decay rate for the second moment

〈
θ2
〉

in terms of the
Cramér function, using a different (and not quite equivalent) approach, though
they did not allow for the second case in (58).

4.1 An Example: Flow in a Microchannel

We illustrate how to compute the decay rates γα with a practical problem.
Specifically, we will use a 3D model of a microchannel. The system is shown
in Fig. 6. It consists of a narrow channel, roughly 100μm wide and slightly
shallower. These types of channel are widely used in microfluidics applications
(“lab-on-a-chip”), and often one wants to achieve good mixing in the lateral
cross-section of the channel. This is difficult, since the Reynolds number of
the flow varies between 0.1 and 100—far from turbulent. Clever techniques
have to be used to induce chaotic motion of the fluid particle trajectories in
order to enhance mixing. Stroock et al. [22] used patterned grooves at the
bottom of the channel to induce vortical motions and found that the mixing
efficiency was dramatically increased. Here we use a variation on this where
the bottom is patterned with an electro-osmotic coating, which induces fluid
motion near the wall [23]. The effect of the electro-osmotic coating is well
approximated by a moving wall boundary condition. The pattern is chosen
in a so-called herringbone pattern to maximise the mixing efficiency (though
not in a staggered herringbone, which is even better but is more difficult to
model). Rather than solving the full equations numerically, we adopt here an
analytical model based on Stokes flow in a shallow layer [24]. The longitudinal

5 The reorientations also tend to decrease the correlation time τ [15].
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2

2
–

L

Fig. 6. Microchannel with a periodic patterned electro-osmotic potential at the
bottom. The arrows indicate the direction of fluid motion at the bottom. The width
of the channel is about 100 μm and its height 10–50 μm, and the period of the pattern
is L. A typical mean fluid velocity is 102–103 μm/s

(x) direction is taken to be periodic. The flow is steady, but because it is three
dimensional it can still exhibit chaos.

Figure 7 shows two Poincaré sections for the flow. These are taken at two
constant x planes, one at x = 0 and the other at the midpoint of the x-
periodic pattern. The two shades represent two trajectories that have peri-
odically punctured those planes many times over. It is clear from the figures
that the flow contains large chaotic regions, as well as smaller regular regions
(known as islands). We focus here on the chaotic regions.

−0.5 0 0.5
0

0.1

0.2

−0.5 0 0.5
0

0.1

0.2

Section at x = 0

Section at midpoint x = L / 2

Fig. 7. Poincare sections for the microchannel. The dark dots represent the same
trajectory periodically puncturing two vertical planes many times over (with and
against the prevailing flow direction). The grey dots show two trajectories in regular,
nonmixing regions
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Now that we have established (or at least strongly suspect) the existence
of chaotic regions, we can compute the distribution of finite-time Lyapunov
exponents. There are many ways of doing this: because we are not interested
in extremely long times, the most direct route may be used. We have an
analytical form for the velocity field, so the velocity gradient matrix is eas-
ily computed. This allows us to linearise about trajectories in the standard
manner [19, 25]. Each trajectory will thus have a finite-time Lyapunov ex-
ponent associated with it, which shows the tendency of infinitesimally close
trajectories to diverge exponentially. This is then repeated over many different
trajectories within the same chaotic region, and a histogram is made of the
finite-time Lyapunov exponents. This histogram changes with time, as shown
in Fig. 8. For these relatively early times, it changes dramatically and does
not exhibita self-similar form.

The evolution of the mean and standard deviation of the distribution is
shown in Fig. 9. The mean is converging to a constant Λ̄ � 0.116, and the stan-
dard deviation is decreasing as

√
ν/t, with ν � 0.168. These facts taken to-

gether are strongly indicative that the distribution is converging to a Gaussian
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Fig. 8. Evolution of the distribution of finite-time Lyapunov exponents for the
microchannel. The average crossing time for particles in the channel is L/U
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Fig. 9. (a) Evolution of the mean Λ̄ of the distribution of Lyapunov exponents.
The mean converges to Λ̄ � 0.116 s−1. (b) Standard deviation of the distribution
of Lyapunov exponents versus 1/

√
t. The straight line represents

√
ν/t, with ν �

0.168 s−1

of the form (51). This is easily confirmed by plotting the PDFs at different
times and rescaling the horizontal axis by

√
t, as shown in Fig. 10. Note that

this case exhibits a particularly nice Gaussian form, which is not necessarily
the norm for all chaotic flows.

Using the values for Λ̄ and ν we just obtained, we can calculate the decay
rates γα with the Gaussian approximation. The ratio Λ̄/ν is 0.69, so the change
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Fig. 10. Rescaled distribution of finite-time Lyapunov exponents at different times.
The dashed line is the Gaussian form (51), with parameters as in the caption for
Fig. 9
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in character in (59) occurs at α ≥ 0.69. Since from (64) the decay of
〈
θ2
〉α is

given by γα, this means that moments of order 2α ≥ 1.38 will decay at the
same rate. This includes the variance

〈
θ2
〉
, so we have from (64)〈

θ2
〉 ∼ e−γ1t, with γ1 = Λ̄2/2ν � 0.040 s−1.

The mixing time is thus γ−1
1 � 25 s. This is about a factor of four improvement

over the purely diffusive time for, say, DNA molecules (κ � 10−10 m2 s−1).
This is not spectacular, but can be greatly increased by staggering the her-
ringbone pattern. The mixing time assuming the decay proceeds at the rate
of the mean Lyapunov exponent Λ̄ is roughly 9 m2 s, so that the fluctuations
multiply this by a factor of three!

Of course, we do not know if this is actually a good estimate for the
mixing time, since we haven’t directly solved the advection–diffusion equation
numerically: this is prohibitive in a 3D domain for such a small diffusivity.
This is one of the advantages of the local theory: it is usually less expensive to
compute the distribution of finite-time Lyapunov exponents than it is to solve
the advection–diffusion equation directly. We will say more on the validity of
the local theory in Sect. 4.2.

4.2 Limitations of the Local Theory

So is this local theory of mixing correct? Well, certainly not always, even in the
Batchelor regime. There are many assumptions underlying the model, some of
them difficult to verify. (Do blobs really undergo a series of stretching events
as described here? Do correlations between these events matter?) My feeling
is that sometimes it will, but most of the time it won’t. More experiments
and numerical simulations are needed to get to the bottom of this. For a
detailed discussion of possible problems with the local theory, see Fereday
and Haynes [26]. They make a good case that the theory must break down for
long times: the blobs discussed here meet the boundaries of the fluid domain
and must begin to fold. The folding forces them to interact with themselves in
a correlated fashion. We enter the regime of the strange eigenmode [27], which
has received a lot of attention lately [14, 26, 28, 29, 30, 31, 32, 33, 34, 35].
Maybe we’ll hear more about that in 10 years!
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Appendix 1 The Advection–Diffusion Equation
in a Comoving Frame

We start from the advection–diffusion equation (1) and derive its form (8)
for a linearised velocity field. We want to transform from the fixed spatial
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coordinates x to coordinates r measured from a reference fluid trajectory x0(t).
The coordinates r are not quite material (Lagrangian) coordinates, since we
follow the trajectory of only one fluid element.

We thus let

x = x0(t) + r,
dx0(t)

dt
= v(x0(t), t), (66)

and write the concentration field as

θ(x, t) = θ̃(r, t).

The time derivative of θ can be written as

∂

∂t

∣∣∣∣
x

θ(x, t) =
∂

∂t

∣∣∣∣
r

θ̃(r, t) + ∇r θ̃ · ∂r

∂t

∣∣∣∣
x

, (67)

where ∂/∂t|x denotes a derivative with x held constant. Now from (66)

∂r

∂t

∣∣∣∣
x

= −dx0

dt
= −v(x0(t), t).

Spatial derivatives are unchanged by (66): ∇xθ = ∇r θ̃. Hence, inserting (67)
into (1), we find

∂

∂t

∣∣∣∣
r

θ̃ + {v(x0(t) + r, t) − v(x0(t), t)} · ∇rθ̃ = κ∇2
r θ̃ . (68)

We Taylor expand the velocity field in (68) to get

∂

∂t

∣∣∣∣
r

θ̃ + r · σ(t) · ∇r θ̃ = κ∇2
rθ̃ , σ(t) := ∇v(x0(t), t), (69)

where we neglected terms of order |r|2. This is only valid if the velocity field
changes little over the region we consider (i.e. if it is smooth enough), which
is true for large Schmidt number. Equation (69) is the same as (8) and tells
us how to find σ(t).

Appendix 2 Large-Deviation Theory

In this appendix we will justify the large-deviation form of the PDF, (52),
assuming little prior knowledge of probability theory.

First, we define the generating function e−s(k) of a random variable x by

e−s(k) =
∫
p(x) e−i kx dx ,
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that is, the generating function is simply the Fourier transform of the PDF
of x. We have s(0) = 0, x̄ = −i s′(0), and x2 − x̄2 = s′′(0). Now define the
random variable X to be the mean of n variables:

Xn =
1
n

n∑
i=1

xi

where the xi are independent and identically distributed with PDF p(xi) =
p(x). How do we find the PDF P (Xn) of Xn, in the limit where n is large?
First observe that (from here on we drop the subscript on Xn)

P (X) =
∫
p(x1) · · · p(xn) δ

(
x1 + · · · + xn

n
−X

)
dx1 · · · dxn

since the joint PDF p(x1, . . . , xn) = p(x1) · · · p(xn) by independence of the xi.
The generating function e−S(k) for P (X) is then

e−S(k) =
∫
P (X) e−ikX dX

=
∫
p(x1) · · · p(xn) δ

(
x1 + · · · + xn

n
−X

)
e−ikX dx1 · · · dxn dX.

We do the X integral, and then observe that we get a product of n identical
xi integrals, each of which is equal to e−s(k/n):

e−S(k) =
∫
p(x1) · · · p(xn) e−i(k/n)(x1+···+xn) dx1 · · · dxn = e−ns(k/n) .

Thus the generating function forX is the nth power of the generating function
for x. We can invert the Fourier transform to find the PDF P (X):

P (X) =
1
2π

∫
e−S(k) ei kX dk =

n

2π

∫
e−n(s(K)−i KX) dK, (70)

where K = k/n. We let

H(K,X) = s(K) − iKX .

For large values of n the integral in (70) is dominated by the stationary
points Ksp(X) of H(K,X) (saddle-point approximation):

Ksp(X) such that
∂H

∂K
(Ksp, X) = s′(Ksp) − iX = 0. (71)

(I will often leave out theX dependence ofKsp(X) to shorten the expressions.)
In that case we can approximate the integrand in (70) using

H(K,X) = H(Ksp, X) + 1
2 s

′′(Ksp)(K −Ksp)2 + O
(
(K −Ksp)3

)
,
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which allows us to do the integral explicitly:

P (X) =
√

n

2π s′′(Ksp(X))
e−nH(Ksp(X),X), (72)

where Ksp(X) is given by (71). As a final step, let us calculate the mean of
X using this PDF:

X =
∫
XP (X) dX =

∫
X

√
n

2π s′′(Ksp(X))
e−nH(Ksp(X),X) dX . (73)

Again, for large n we can use the saddle-point method to evaluate this inte-
gral. The important observation is that the saddle point X0 of Hsp(K(X), X)
satisfies

dH
dX

(Ksp(X0), X0) =
∂H

∂K
(Ksp(X0), X0)

dKsp

dX
(X0) − iKsp(X0) = 0.

The ∂H/∂K term vanishes because it is evaluated atKsp; hence,Ksp(X0) = 0,
which implies H(Ksp(X0), X0) = 0. Inserting this into the integral (73), we
find X = X0: the mean of X and the minimum of H coincide. This means
that it makes sense to define

S(X −X) := H(Ksp(X), X), with S(0) = 0 and S′(0) = 0, (74)

which is the sought-after Cramér function. Note also that S′′(X − X) =
1/s′′(Ksp(X)), and that for large n the nonexponential coefficient in (72)
can thus be approximated by evaluating it at the saddle point Ksp(X) = 0,
with s′′(0) = 1/S′′(0). The final form of our large-deviation result is thus

P (X) =

√
n S′′(0)

2π
e−nS(X−X), (75)

which is the same as (52).
As a simple example (treated in every textbook, see for example [17]),

consider a random variable x with PDF

p(x) = (1 − ε) δ(x− x+) + ε δ(x− x−), (76)

where x+ > x− are constants—this is a binomial distribution (or Bernoulli
distribution in this case). If we take the mean X of n such variables, what is
the PDF of X for large n? First, we compute the generating function for x:

e−s(k) =
∫

{(1 − ε) δ(x− x+) + ε δ(x− x−)} e−i kx dx

= (1 − ε) e−i kx+ + ε e−ikx− . (77)

We take the logarithm to obtain s(k) and find Ksp(X) by solving the saddle-
point equation (71):
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∂H

∂K
= s′(Ksp) − iX = 0 ⇐⇒ Ksp(X) =

1
iΔ

log
(

1 − ε

ε

x+ −X

X − x−

)
,

where Δ := x+ − x− and we restrict x− ≤ X ≤ x+. Inserting this into
H(Ksp(X), X), we find from (74)

S(X −X) = −X − x−
Δ

log
(

1 − ε

ε

x+ −X

X − x−

)
+ log

(
x+ −X

εΔ

)
.

It is easy to verify that, since X = (1 − ε)x+ + ε x−, we have S(0) = S′(0) = 0
and X2 −X

2
= 1/S′′(0) = ε(1 − ε)Δ2.

The binomial distribution (76) is a useful model of stretching of an in-
finitesimal line segment by a uniform incompressible straining flow in two di-
mensions, assuming the straining axes of the flow change direction randomly
at regular intervals τ . If we set x± = ±λτ = ±ν, where λ is the strain rate,
then X is the averaged logarithm of the length 
 of the segment, i.e. 
 = enX .
Thus, the mth power of the length of the segment will on average grow as


m = emnX = e−S(i mn) = e−ns(i m) =
{
(1 − ε) eνm + ε e−νm

}n
. (78)

We know that 
−2 must be constant in a 2D incompressible flow, so that the
term in braces in (78) must be unity. We use this to solve for ε,

ε = (1 + e2ν)−1,

which then allows us to use (78) to write the growth rate χm of line segments
as

χm =
1
τ n

log 
m =
1
τ

log
(

cosh(m+ 1)ν
cosh ν

)
.

The Lyapunov exponent, which is given by dχm/dm at m = 0, has a value
of λ tanh ν for this flow: it is less than for a uniform straining flow because of
the time taken for the segment to realign with the new straining axis when
its direction changes.
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16146, Genova, Italy
mazzino@fisica.unige.it

3 Dipartimento di Fisica, Università di Roma “la Sapienza” and Center for
Statistical Mechanics and Complexity INFM UdR Roma1 Piazzale Aldo Moro 5,
I-00185 Roma, Italy
Angelo.Vulpiani@roma1.infn.it

Abstract. In this contribution we review different aspects of passive transport in
fluids. Two classes of problems are considered: inert substances and substances that
are chemically (or biologically) reactive. Concerning the first issue we discuss in
particular the problem of standard and anomalous asymptotic diffusion for single
particle statistics and the problem of relative dispersion of particle pairs in chaotic
and turbulent flows. For what concerns the issue of reacting transport we study the
dependence of the front speed on the flow characteristics, considering the case of
reaction that is slow or fast with respect to the typical time scales of the advection.

1 Introduction

Fluid transport of concentration fields is of major importance in various do-
mains ranging from astrophysics to geophysics and to chemical engineering
[1, 2]. In several applications, the feedback of the advected fields on the ve-
locity field can be neglected. This is the case of passive transport which will
be considered in the following. Under this simplifying assumption, in a given
velocity field the most general equation describing the evolution of the con-
centrations of N species, θi(x, t), can be written as

∂tθi + u · ∇θi = DiΔθi +
1
τi
fi(θ1, . . . , θN) , (1)

where on the lhs the second term accounts for the transport by an incompress-
ible velocity field; on the rhs the first term represents molecular diffusion (Di is
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the diffusion constant for the ith specie) and the second one takes into ac-
count possible chemical or biological processes (with characteristic time scale
τi) taking place among the different substances.

In this contribution we shall consider separately the problem of inert trans-
port (i.e., fi = 0) and that of reacting transport.

In the case of inert transport, the equation for θi(x, t) decouples and we
can consider the advection–diffusion for a single field θ:

∂tθ + u · ∇θ = DΔθ , (2)

where D is the molecular diffusivity; possibly a source term, which represents
the injection of scalar fluctuations, may be added in the rhs. Given the field
u the main goal is to understand the dynamical and statistical properties
of the field θ. Remarkably, in the last few years, much progress has been
reached in this direction and we have now a satisfactory understanding of the
statistics of passive fields in terms of the motion of advected passive particles.
The interested reader may consult the recent review [3] where an exhaustive
discussion on passive fields in turbulent flows can be found.

The problem of transport can be recast in terms of particles motion: in-
deed (2) is nothing but the Fokker–Planck equation of the stochastic process
describing the motion of test particles:

ẋ(t) = u(x(t), t) +
√

2Dη(t) (3)

where u(x(t), t) is the Eulerian velocity field at the particle position x(t), and
η is a Gaussian white noise with zero mean and 〈ηi(t)ηj(t′)〉 = δijδ(t− t′).

After the seminal works of Arnold and Aref it is now well recognized that
particle motion can be highly non-trivial even in simple laminar velocity fields
due to the so-called Lagrangian chaos [4]. Therefore already the single particle
motion presents very interesting features. For instance, the dispersion proper-
ties are greatly enhanced by the combined effects of the molecular diffusivity
and the advection by the velocity field [1, 4]. Indeed at very large times and
scales (with respect to the typical time and length scales of u), the test par-
ticle undergoes a Brownian process with an enhanced diffusion coefficient [5],
i.e., 〈(xi(t) − xi(0))2〉 � 2 DE

ii t where the eddy diffusion coefficient DE
ii > D

contains the effect of the velocity field. In terms of the field θ this means that
the coarse-grained concentration 〈θ〉 (where the average is over a volume of
linear dimension larger than the typical velocity length scale) obeys the Fick
equation:

∂t〈θ〉 = DE
ij∂

2
xixj

〈θ〉 i, j = 1, . . . , d , (4)

where d is the space dimension. To compute DE given the velocity field there
are now well-established techniques (see [5, 6]).

Moreover, it is also well known that under certain conditions anomalous
diffusion may take place, i.e., 〈(x(t) − x(0))2〉 ∼ t2ν with ν �= 1/2 [2]. In the
following we discuss in detail the necessary conditions to observe anomalous
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diffusion. In particular, we consider the case of incompressible velocity fields
where either standard diffusion (ν = 1/2) or superdiffusion (ν > 1/2) may
appear [5].

Though interesting and relevant to many problems, the single particle
motion is essentially determined by the large-scale properties of the velocity
field, which often hide much more interesting phenomena taking place at small
scales. Moreover, the standard or anomalous diffusive properties are asymp-
totic features that in realistic situations may not be attained. In this sense
it is more interesting to study the relative motion of two particles. This is
indeed characterized by a variety of behaviors in dependence on the statis-
tics of the velocity field at different length scales. For instance, at very small
scales (where the velocity field is smooth) particles separate exponentially, i.e.,
〈ln |x2(t) − x1(t)|〉 � λt + const, where λ is the Lyapunov exponent. On the
other hand, in the inertial range of fully developed turbulent flows particles
separate as 〈|x2(t)−x1(t)|2〉 ∼ t3, i.e., the Richardson dispersion law holds, in
spite of the diffusive single particle behavior at large scales. Since, as shown
in the above example, the relative dispersion properties depend on the be-
havior of the velocity field at different scales, we introduce a scale-dependent
description of particle pairs separation in term of the finite size Lyapunov
exponent [7]. This kind of description is also very useful to account for the
non-asymptotic properties of dispersion and, e.g., to describe transport in
finite systems where finite size effects are present.

The problem of reacting transport is much more difficult, because the
presence of the production term fi(θ1, . . . , θN ) in the transport equation (1)
makes it to be non-linear, and new phenomena appear. Here we consider
the simplest non-trivial case of (1), i.e., a unique scalar field θ(x, t) evolving
according to the advection–diffusion–reaction equation

∂tθ + u · ∇θ = DΔθ +
1
τ
f(θ) , (5)

where θ represents the fractional concentration of the reacting substance with
the following glossary: θ = 0 indicates fresh material which has still to react,
0 < θ < 1 means coexistence of fresh material and products and θ = 1
means that the reaction is over [8]; equivalently one may think of θ as the
concentration of a biological organism which is transported by the flow and
grows according to the dynamics f(θ) [9]. Although very generic forms can
be considered for f(θ) [8, 9] here we mainly discuss the case of f(θ) which
are convex functions (f ′′(θ) < 0) with f(0) = f(1) = 0 and f ′(0) = 1. A
typical example is f(θ) = θ(1 − θ). This class of production terms belongs to
the so-called Fisher-Kolmogorov-Petrovsky-Piscounoff (FKPP) type [10, 11].
With this choice θ = 0, 1 are the unstable and stable steady states of the
dynamics, respectively. Once at the initial time a small portion of the system
is such that θ �= 0 the reaction starts and a front connecting the unstable and
stable states propagates.

In the absence of stirring, u = 0, it is known that (5), for FKPP non-
linearity, generates a front propagating, e.g., from left to right with asymptotic
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speed v0 = 2
√
D/τ , and the thickness of the reaction region is ξ = 8

√
Dτ

[10, 11]. It is worth recalling that the problem of front propagation has been
extensively studied in many different fields [12, 13] such as chemical reaction
fronts [8], flames propagation in gases [9] and population dynamics of biolog-
ical communities [12, 13]. In many of these systems the reaction takes place
in moving media, i.e., fluids, so that it is important to understand how the
presence of a flow modifies the propagation properties.

As a generic feature, in the presence of a non-zero velocity field the front
propagates with an average speed vf greater than v0 [14, 15, 16]. However, if
f(θ) is not convex, under certain circumstances, the flow may stop (“quench”)
the reaction [17].

The front velocity vf is the result of the interplay among the flow char-
acteristics (i.e., intensity U and length scale L), the diffusivity D and the
production time scale τ . Here our major concern will be to discuss the de-
pendence of vf on such quantities. For instance, introducing the Damköhler
number Da = L/(Uτ) (the ratio of advective to reactive time scales) and the
Péclet number Pe = UL/D (the ratio of diffusive to advective time scales),
one can seek for an expression of the front speed as a dimensionless function
vf/v0 = φ(Da,Pe) ≥ 1. In particular, we study the case of cellular flows. We
will see that a crucial role in determining φ(Da,Pe) is played by the renor-
malization of the diffusion coefficient and chemical time scale induced by the
advection [14]. Moreover, we consider an important limit case, i.e., the so-
called geometrical optics limit, which is realized for (D, τ) → 0 maintaining
D/τ constant [18]. In this limit one has a non-zero bare front speed, v0, while
the front thickness ξ goes to zero, i.e., the front is sharp. Physically speak-
ing, this limit corresponds to situations in which ξ is very small compared
with the other length scales of the problem. Also in this case we provide a
simple prediction for the front speed, which turns out to be expressible as a
dimensionless function vf/v0 = ψ(U/v0).

Other interesting questions concern the modification of the front geometry
as a consequence of advection. In particular, one may ask if the presence of
Lagrangian chaos has a role in front dynamics. We shall briefly discuss this
problem in the framework of the geometrical optics limit.

The chapter is organized as follows. In Sect. 2 we discuss statistics of
single particle and two particles transported by laminar and turbulent flows.
Emphasis is put on the conditions for anomalous diffusion and on the non-
asymptotic properties of particles pairs separation. Section 3 is devoted to
the study of front propagation in fluid flows. After a brief discussion on some
general results which do not depend on the specific properties of the velocity
field we shall analyze in detail the case of cellular flows in different regimes.

2 Transport of Inert Substances

As stated in the introduction the dynamical and statistical properties of ad-
vected passive fields are tightly related to those of test particles. Therefore,
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from the study of particle motion one can predict many aspects of the dy-
namics of advected scalar fields.

In particular, the small-scale features of the scalar field can be understood
studying the relative motion of test particles, as the following discussion will
clarify. Consider for instance the transport equation for θ:

∂tθ + u · ∇θ = DΔθ + Φ , (6)

where we added an external source of tracer fluctuations, Φ, which acts at a
given length scale LΦ. The link with particle trajectories is evident by solving
(6) with the method of characteristics:

θ(x, t) =
∫ t

−∞ dsΦ(x(s; t), s),
ẋ(s; t) = u(x(s; t), s) +

√
2D η(s) , x(t; t) = x ;

(7)

the second equation is nothing but (3) where we explicitly fixed the final
position to be x. By using (7) one can then connect the statistics of particle
trajectories to the correlation functions of the scalar field. For instance, let us
consider the simultaneous two-point correlations:

〈θ(x1, t)θ(x2, t)〉 =
∫ t

−∞
ds1

∫ t

−∞
ds2 〈Φ(x1(s1; t), s1)Φ(x2(s2; t), s2)〉 , (8)

with x1(t; t) = x1 and x2(t; t) = x2. With a convenient choice of the correla-
tion function of the forcing, e.g., 〈Φ(x1, t1)Φ(x2, t2)〉 = χ(|x1−x2|)δ(t1− t2),
and exploiting space homogeneity, (8) can be further simplified to the form

C2(R) = 〈θ(x, t)θ(x + R, t)〉 =
∫ t

−∞
ds
∫

dr χ(r) p(r, s|R, t) , (9)

where p(r, s|R, t) is the probability density function for a pair to be at a
separation r at time s, under the condition to have a separation R at time t.
It is now clear that the knowledge of p(r, s|R, t) allows to predict the behavior
of C2 and so of the scalar spectrum.

Moreover, assuming that χ(r) drops to zero for r > Lf and χ(0) = χ0,
(9) may be approximated as C2(R) ≈ χ0T (R;Lf), where T (R;Lf) is the
average time the particles took to reach a separation O(Lf ) starting from
a separation R (while going backward in time). This also calls for studying
relative dispersion in terms of the time T (R1;R2) needed to reach a separation
R2 being started from R1. As we shall see, this is at the core of our approach
to relative dispersion.

Similar reasonings can be extended to correlations functions involving
more than two points. This leads to consider the relative motion of more
than two particles, which may be highly non-trivial [19]. A detailed discus-
sion of these aspects is beyond our aims, therefore we limit our discussion to
single and two-particles properties. The interested reader may consult [3] for
a discussion on the aspects of more than two particles and their consequences
on the scalar field properties.
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2.1 Standard and Anomalous Diffusion

Investigating the diffusive properties of single particle motion allows to predict
the characteristics of the macroscopic motion of concentration fields (cf. (4)).

In this framework it is important to identify the conditions which may
lead to anomalous diffusion that brings as a consequence the failure of the
Fickian description of transport. Under these circumstances (4) does not hold
anymore. From (3) it is easy to obtain the following relation [20]:

〈(xi(t) − xi(0))2〉 =
∫ t

0

dt1
∫ t

0

dt2〈vi(x(t1)) vi(x(t2))〉 � 2 t
∫ t

0

dτ Cii(τ) ,

(10)
where

Cij(τ) = 〈 vi(x(τ)) vj(x(0)) 〉 (11)

is the correlation function of the Lagrangian velocity, v = ẋ.
From (10) it is not difficult to understand that anomalous diffusion can

occur only when one or both of the following conditions are violated:

1. Finite variance of the velocity: 〈v2〉 <∞.
2. Fast enough decay of the auto-correlation function of Lagrangian veloci-

ties:
∫ t

0
dτ Cii(τ) <∞.

If both 〈v2〉 < ∞ and
∫ t

0 dτ Cii(τ) < ∞ then one has standard diffusion and
the effective diffusion coefficients are

DE
ii = lim

t→∞
1
2 t

〈(xi(t) − xi(0))2〉 =
∫ ∞

0

dτ Cii(τ) . (12)

Let us now examine two examples in which the above conditions are vio-
lated and anomalous diffusion takes place. It is worth remarking that here we
use the term anomalous diffusion to indicate a non-standard diffusion in the
asymptotic regime. Sometimes in the literature the term anomalous is used
also for long (but non-asymptotic) transient behaviors.

Violation of point 1 can be obtained in the so-called Lévy flight model [21].
The simplest instance is the discrete (in time) one-dimensional case, where
the particle position x(t+1) at the time t+1 is obtained from x(t) as follows:

x(t+ 1) = x(t) + U(t) , (13)

and U(t)s are independent variables identically distributed according to a
α-Lévy-stable distribution, Pα(U), i.e.,
∫

dUeikUPα(U) ∝ e−c|k|α and Pα(U) ∼ U−(1+α) for | U |� 1 (14)

with 0 < α ≤ 2. An easy computation gives 〈x(t)q〉 = Cq t
q/α if q < α, and

〈x(t)q〉 = ∞ if q ≥ α. Though 〈x2〉 = ∞ for any α < 2, one can consider the
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Lévy flight as a sort of anomalous diffusion in the sense that xtypical ∼ t1/α �
t1/2.

Physically more interesting is the Lévy walk model [22] that is still de-
scribed by (13) but now U(t) is a random variable with finite variance but
non-trivial time correlations, so that point 2 is violated. Let us assume that
U(t) can assume the values ±u0 and maintains its value for a duration T which
is a random variable with probability density ψ(T ). The origin of the possible
anomaly is transferred to the correlation function of the Lagrangian velocity:
the idea is that one has to generate a correlation such that Cii(τ) ∼ τ−β with
β < 1. By taking ψ(T ) ∼ T−(α+1) standard diffusion is realized for α > 2,
while anomalous (super) diffusion takes place for α < 2:

〈x(t)2〉 ∼ t2ν ν =

⎧⎨
⎩

1/2 α > 2
(3 − α)/2 1 < α < 2 .

1 α < 1
(15)

Besides the above simplified models, more interesting is the understanding
of the anomalous diffusion in incompressible velocity fields or deterministic
maps. In this direction Avellaneda, Majda and Vergassola [23, 24] obtained
a very important and general result about the asymptotic diffusion in an
incompressible velocity field u(x). If the molecular diffusivity D is non-zero
and the infrared contribution to the velocity field is weak enough, namely

∫
dk

〈| û(k) |2〉
k2

<∞ , (16)

then one has standard diffusion, i.e., the effective diffusion coefficients DE
iis

in (12) are finite. The average 〈·〉 indicates the time average and û is the
Fourier transform of the velocity. Then there are two possible causes for the
superdiffusion:

1. D > 0 and, in order to violate (16), u with strong spatial correlation.
2. D = 0 and strong correlation between v(x(t)) and v(x(t+ τ)) at large τ .

One of the few non-trivial systems for which the presence of anomalous dif-
fusion can be proved rigorously is the 2d random shear flow u = (u(y) , 0)
where u(y) is a random function [6] such that

u(y) =
∫ ∞

−∞
dk eiky û(k) 〈û(k) û(k′)〉 = S(k) δ(k − k′), (17)

S(k) is the power spectrum and the average 〈·〉 is taken over the field realiza-
tions. Matheron and De Marsily [25] showed that the anomalous diffusion in
the x-direction occurs if

∫
dk S(k)k−2 = ∞. On the contrary, if this integral

is finite one has standard diffusion and with an effective diffusivity DE
11 � D.

Consider now a spectrum such as S(k) ∼ kζ for k �→ 0 ; it is easy to realize
that if ζ > 1 standard diffusion takes place, while if −1 ≤ ζ ≤ 1 one has a
superdiffusion [5]
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〈 | x(t) − x(0) |2 〉 ∼ t2ν ν =
3 − ζ

4
≥ 1

2
. (18)

The condition for the anomalous diffusion
∫

dk S(k) k−2 = ∞ has the fol-
lowing physical interpretation. Dimensionally

∫
dk S(k) k−2 ∼ 〈u2〉 L2 where

L is the typical length of the function u(y), i.e., the typical distance between
two sequent zeros of u(y). If 〈u2〉 < ∞ and

∫
dk S(k) k−2 < ∞ the diffusion

process is basically similar to that one characterized by a velocity field given
by a sequence of strips of size L and velocity ±√〈u2〉, i.e., the transversal
Taylor diffusion in channels [26]. The origin of the anomalous diffusion is then
due to the fact that a test particle travels in a given direction for a very long
time before changing direction and so on.

2.2 Asymptotic Methods to Compute Eddy-Diffusivities

In the previous section we have already seen both the conditions under which
standard diffusion is expected to occur and, if any, how to compute eddy
diffusivities in terms of Lagrangian trajectories (see (12)). The aim of this
section is to show how to arrive at the eddy diffusivities exploiting the Eule-
rian description. The main ingredients to achieve such a goal is the so-called
multiscale expansion [27, 28]. The derivations we are reporting below follow
from [5]. Generalizations can be found in [29, 30].

Following [5], let u(x, t) in (2) be an incompressible velocity field, periodic
(of zero averages) both in space and time.
Our interest here is in the dynamics of the field θ on large scales assumed
to be O(1/ε), where ε � 1 is the parameter controlling the scale separation.
Because we expect the scalar field to have a diffusive dynamics, the associated
time scale is O(1/ε2). The presence of the small parameter ε naturally suggests
to look for a perturbative approach. The perturbation is, however, singular
[28] since a constant field is a trivial solution of (2). This is why one needs to
use asymptotic methods, like multiscale techniques, to handle secular terms.
Following the latter strategy, in addition to the fast variables x and t, let us
then introduce slow variables as X = εx and T = ε2t. The prescription of the
technique is to treat the two sets of variables as independent. It follows that

∂i �→ ∂i + ε∇i ; ∂t �→ ∂t + ε2∂T , (19)

where ∂ and ∇ denote the derivatives with respect to fast and slow space
variables, respectively. The solution is sought as a perturbative series

θ(x, t; X, T ) = θ(0) + εθ(1) + ε2θ(2) + · · · , (20)

where the functions θ(n) depend a priori on both fast and slow variables.
By inserting (20) and (19) into (2) and equating terms having equal powers
in ε, we obtain a hierarchy of equations. The solutions of interest to us are
those having the same periodicities as the velocity field. The first equation,
corresponding to O(ε0), is
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∂tθ
(0) + (u · ∂) θ(0) = D0 ∂

2θ(0) . (21)

By using Poincaré inequality, one can easily show that for periodic solutions

−∂t

∫ (
θ(0)
)2

dV = D0

∫ (
∂θ(0)

)2

dV ≥ D0

(
2π
L

)2 ∫ (
θ(0)
)2

dV ,

(22)
where L is the spatial periodicity length of u (supposed for simplicity to be
the same in all directions) and the integral is over the periodicity box. The
inequality (22) implies that the solution will relax to a constant with respect
to fast variables, i.e.,

θ(0)(x, t; X, T ) = θ(0)(X, T ) . (23)
It can also be easily checked that the transient has no effect on the large-scale
dynamics. The equations at order ε and ε2 are

∂tθ
(1) + (u · ∂) θ(1) −D0 ∂

2θ(1) = −u · ∇θ(0) , (24)

∂tθ
(2)+(u · ∂) θ(2)−D0 ∂

2θ(2) =−∂T θ
(0)−(u·∇)θ(1)+D0 ∇2θ(0)+2D0∂·∇θ(1) .

(25)
Since (24) is linear, its solution can be written as

θ(1)(x, t; X, T ) = θ(1)(X, T ) + w(x, t) · ∇θ(0)(X, T ) , (26)

where the first term on the rhs is a solution of the homogeneous equation and
the vector field w has a vanishing average over the periodicities and satisfies

∂tw + (u · ∂)w −D0 ∂
2w = −u . (27)

Due to the incompressibility of the velocity field, the average over the period-
icities of the lhs in (24) and (25) is zero. For the equations to have a solution,
the average of the rhs should also vanish (Fredholm alternative). The resulting
solvability conditions provide the equations governing the large-scale dynam-
ics, i.e., the dynamics in the slow variables. From (25) we obtain

∂T 〈θ(0)〉 = D0 ∇2〈θ(0)〉 − 〈u · ∇θ(1)〉 , (28)

where the symbol 〈·〉 denotes the average over the periodicities. Note that the
solvability condition for (24) is trivially satisfied. By plugging (26) into (28)
we obtain the diffusion equation

∂T θ
(0)(X, T ) = DE

ij ∇2θ(0)(X, T ) , (29)

where the eddy diffusivity tensor is

DE
ij = D0δij − 1

2
[ 〈uiwj〉 + 〈ujwi〉 ] . (30)

Remark that the structure of the eddy diffusivity tensor will reflect the rota-
tional symmetries of u and is in general non-isotropic.

It is not difficult to show that the eddy diffusivity is a positive definite
tensor (see again [5]) thus signaling the fact that small-scale dynamics always
enhances the large-scale transport.
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2.3 A Remark About the Meaning of Anomalous

Let us now discuss in more general terms the anomalous diffusion problem
considering moments of arbitrary order of the particle’s displacement. Two
cases are possible [31]: weak anomalous diffusion when a unique exponent is
involved,

〈| x(t) − x(0) |q〉 ∼ tqν ∀q > 0 and ν >
1
2

; (31)

strong anomalous diffusion when

〈| x(t) − x(0) |q〉 ∼ tq ν(q) ν(q) �= const ν(2) >
1
2

(32)

and ν(q) is a non-decreasing function of q.
In terms of the probability P (Δx, t) of observing a displacement Δx =

x(t) − x(0) at time t, weak anomalous diffusion amounts to the scaling prop-
erty:

P (Δx, t) = t−νF (Δx t−ν) , (33)

where the function F is not necessarily a Gaussian. On the contrary strong
anomalous diffusion is not compatible with the scaling (33).

In the case of weak anomalous diffusion, it is natural to conjecture

F (z) ∝ e−c|z|α , (34)

where in general α is not determined by ν. However, an argument á la Flory
due to Fisher [32] suggests that

P (Δx, t) ∼ t−ν exp

[
−c
( |Δx|

tν

)1/1−ν
]
, (35)

i.e., α = 1
1−ν . Remarkably the random shear flow examined in the previous sec-

tion is in agreement with the Fisher’s prediction, as shown by Bouchaud et al.
[33] indeed for ζ = 0, i.e., when ν = 3/4 one has F (a) ∼ e−c|a|4 for | a |� 1.
While for the properties of dispersion the detailed functional dependence of
P (Δx, t) is not particularly important, it has a non-trivial role in determining
the propagation properties in reactive systems [34].

2.4 Strong Anomalous Diffusion in Chaotic Flows

If (16) holds then anomalous diffusion may appear only for D = 0 and very
strong Lagrangian velocity correlations. The latter condition can be realized,
e.g., in time periodic velocity fields in which the Lagrangian phase space has
a complicated self-similar structure of island and cantori [35]. In such a case
superdiffusion is essentially due to the almost trapping of the ballistic tra-
jectories, for arbitrarily long time, close to the cantori that are organized in
complicated self-similar structures.
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In this framework an interesting example is the Lagrangian motion in
velocity field given by a simple model that mimics the Rayleigh–Bénard con-
vection [36] and is described by the stream function:

ψ(x, y, t) = ψ0 sin
[
2π
L

(x+B sinωt)
]

sin
[
2π
L
y

]
, (36)

where the velocity is given by u = (∂yψ,−∂xψ), ψ0 = UL/2π (L being the
periodicity of the cell, here we use L = 2π) and U the velocity intensity. The
even oscillatory instability is accounted for by the term B sinωt, represent-
ing the lateral oscillation of the rolls [36]. At fixed B, the control parameter
for particle diffusion is ε ≡ ωL2/ψ0, i.e., the ratio between the lateral roll
oscillation frequency (ω) and the characteristic circulation frequency (ψ0/L

2)
inside the cell. Different regimes take place for different values of ε. For in-
stance, at ε ∼ 1 the synchronization between the circulation in the cells and
their global oscillation is a very efficient way of jumping from cell to cell. This
mechanism, similar to stochastic resonance, makes the effective diffusivity a
structured function of the frequency ω [31] (see Fig. 1). Moreover, in the limit
of vanishing molecular diffusivity, anomalous superdiffusion takes place in a
narrow window of ω values around the peaks, i.e.,

〈(x(t) − x(0))2〉 ∝ t2ν(2) with ν(2) > 1/2 , (37)

as reported in Fig. 2 (left).

/
E

ψ
0

D
11

2ω L / ψ0

Fig. 1. The turbulent diffusivity DE
11/ψ0 vs the frequency ωL2/ψ0 for different

values of the molecular diffusivity D/ψ0. D/ψ0 = 3 × 10−3 (dotted curve); D/ψ0 =
1 × 10−3(broken curve); D/ψ0 = 5 × 10−4 (full curve)
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Fig. 2. Left Mean-squared displacement vs the time for the flow (36) with D = 0
and ω = 1.1. Lengths and times are shown in units of L and L2/ψ0, respectively. The
best-fit (dashed) line corresponds to 2ν(2) = 1.3. Right The diffusion coefficient DE

11

as a function of D for the frequency of the roll oscillation ω = 1.1. The diffusivities
are reported in units of ψ0. The best-fit (dashed) line has the slope −β = −0.18

The presence of genuine anomalous diffusion is confirmed by the fact that
effective diffusivity diverges as DE

11 ∼ D−β with β > 0 (see Fig. 2 (right)), as
suggested in [5].

The remarkable property of the flow (36) is that moments of the particle
displacement display a strong anomalous behavior (32), indeed Fig. 3 (left)
shows that q ν(q)s are a non-trivial function of q. In particular, the curve
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Fig. 3. Left The measured scaling exponents q ν(q)s (joined by dot-dashed straight
lines) of the moments of the displacement Δx, as a function of the order q. The
dashed line corresponds to 0.65q while the dotted line corresponds to q− 1.04. Right
The normalized probability distribution function P (Δx(t)/σ̃) vs Δx̃ ≡ Δx/σ̃ (where
σ̃ = exp〈ln | Δx(t) |〉) for the three times t1 = 500 (circles), t2 = 2t1 (diamonds)
and t3 = 2t2 (squares). The dashed line represents the Gaussian function
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q ν(q) vs q displays a non-linear behavior. A closer inspection shows that two
linear regions are present: the first one up to q ∼ 2, the second elsewhere.

The two linear regions are associated to two different mechanisms in the
diffusion process. For small qs, i.e., for the core of the probability distribution
function P (Δx, t), only one exponent (ν1 ≡ ν(q) � 0.65 for q < 2) fully
characterizes the diffusion process. This means that the typical, i.e., non-rare,
events obey a (weak) anomalous diffusion process. Roughly speaking, one can
say that at scale l the characteristic time τ(l) behaves as τ(l) ∼ l1/ν1 . On the
other hand, for q > 2 the behavior q ν(q) � q − const suggests that the large
deviations are essentially associated to ballistic transport, τ(l) ∼ l, basically
due to the mechanism of synchronization between the circulation in the cells
and their global oscillation.

Strong anomalous diffusion is also highlighted by the normalized proba-
bility densities P (Δx, t) at different times that do not collapse onto a unique
curve (see Fig. 3 (right)) suggesting that the scaling property (33) does not
hold.

The above results for the anomalous diffusion in 2d time periodic incom-
pressible flow may be encountered also in other systems. For instance, they
had been observed in the standard map [37]:

{
Jt+1 = Jt +K sin(θt)
θt+1 = θt + Jt+1 mod 2π , (38)

where for specific values of K one has the coexistence of many accelerator
modes, i.e., ballistic trajectories, and one observes

〈[Jt − J0]2〉 ∼ t2ν(2) t� 1 with ν(2) �= 1/2 , (39)

i.e., anomalous diffusion in the action variable. The sticking of the chaotic
orbits to stable islands leads to the appearance of blocks of long-range correla-
tion in the sequences of the Jt variable which are responsible for its anomalous
behavior [38].

The results discussed in this section, as well as those in [39], suggest that
the phenomenon of anomalous diffusion in smooth chaotic dynamics with very
long time correlation is possible but rare. For specific values of the parameters,
i.e., K or ω, one can have ν(2) > 1/2 but a small change typically restores
the standard scenario ν(2) = 1/2.

2.5 Relative Dispersion

So far we limited our discussion to single particle properties, i.e., absolute
dispersion. Let us now consider the separation between two particles, R(t) =
x2(t)−x1(t). The evolution of this separation is ruled by the velocity difference
at the scale R:

dR

dt
= v(x1(t) + R(t), t) − v(x1(t), t) = δRv . (40)
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Since in incompressible flows the separation R typically grows in time [40],
from the evolution of the relative separation we can, in principle, extract the
contributions of the velocity components at different scales. In this sense the
study of relative dispersion provides much information than absolute disper-
sion which is dominated by the sweeping induced by large-scale flow.

Here we consider both laminar and turbulent flows. A situation of both
conceptual and applicative interest, e.g., in geophysical flows, is when the
Eulerian velocity field is characterized by two length scales: a small scale lη
below which the velocity is smooth (i.e., δRv ∼ R if R � lη) and a large
scale L0 representing the size of the largest structures present in the flow,
i.e., the correlation length of the flow. In a non-turbulent flow, lη ∼ L0, while
when the flow is turbulent (i.e., the Reynolds number is very high) the two
scales are well separated. The interval of scales lη � r � L0 defines then
the so-called inertial range where velocity differences display a non-smooth
behavior: δrv ∼ rh with h < 1, e.g., h = 1/3 in Kolmogorov 1941 turbulence
[41]. Moreover, one can also consider the presence of boundaries in the system,
e.g., a finite domain of size LB.

The presence of these scales manifests in different behaviors of the particles
separation R. At very small separations R � lη the velocity difference in (40)
can be reasonably approximated by a linear expansion in R which leads to an
exponential growth of the separation of initially close particles, i.e.,

〈lnR(t)〉 � lnR(0) + λt , (41)

where the average is taken over many couples with initial separation R(0)
and λ is the Lagrangian Lyapunov exponent. The rigorous definition of the
Lyapunov exponent requires to take two limits R(0) → 0 and then t → ∞.
In physical terms these limits amount to the requirement that the separation,
even at very large times, should not exceed lη. This is a very strict condition,
rarely accomplished in real flows, rendering often difficult the experimental
observation of the exponential regime (41).

On the opposite limit, for very long times and for separations R � L0,
the two trajectories x1(t) and x2(t) feel two uncorrelated realizations of the
velocity and we expect normal diffusion, i.e.,

〈R2(t)〉 � 4DE t , (42)

the factor 4 is due to the fact that the two particles are asymptotically inde-
pendent.

Between the two asymptotic regimes (41) and (42) the behavior of R(t)
depends on the particular flow. For instance, as we shall see, if the flow is tur-
bulent with Kolmogorov scaling δRv ∼ R1/3 an anomalous relative dispersion
process takes place with

〈R2(t)〉 ∼ t3 , (43)

which is the celebrated Richardson dispersion.
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In realistic settings, however, the characteristic length scales are not
sharply separated, and the description of dispersion in terms of asymptotic
quantities is infeasible, and different approaches are needed.

2.6 Scale-by-Scale Description of Dispersion

To treat the difficulties due to the lack of asymptotic let us now introduce a
scale-dependent description of dispersion. Consider a particle pairs advected
by a smooth velocity field with characteristic length lη. Assuming that the
Lagrangian motion is chaotic, we expect the following regimes:

〈R2(t)〉 �
{
R2

0 exp(Λ(2)t) if 〈R2(t)〉1/2 � lη
4DEt if 〈R2(t)〉1/2 � lη

, (44)

where Λ(2) ≥ 2λ is the second-order generalized Lyapunov exponent [42],
DE is the effective diffusion coefficient for the single particles dispersion. The
regimes (44) hold only in the asymptotic limits t � 1/λ and t � 1/λ, re-
spectively. The presence of fluctuations in the rate of particles separation,
which is characterized in terms of the finite time Lyapunov exponents [7],
will determine situations such that at the same time different couples are in
the two different regimes. Therefore, as consequence of this “contamination”,
crossovers with spurious regime are generically present (see Fig. 1 in [43]).
This comes essentially because we considered the “wrong” variable, i.e., the
time instead of the physical one, i.e., the scale.

A possibility for characterizing the dispersion properties in terms of the
scale is by introducing the “doubling time” τ(δ) at scale δ as follows [42, 43]:
given a series of thresholds δ(n) = rnδ(0), one can measure the time Ti(δ(0)) it
takes for the separation R(t) to grow from δ(0) to δ(1) = rδ(0), and so on for
Ti(δ(1)) , Ti(δ(2)) , . . . up to the largest considered scale. The r factor may be
any value larger than 1, properly chosen in order to have a good separation
between the scales of motion, i.e., r should be not too large. Strictly speaking,
τ(δ) is exactly the doubling time if r = 2. Then performing the doubling
time experiments over N particle pairs separation experiments, the average
doubling time τ(δ) at scale δ is defined as

τ(δ) =< T (δ) >e=
1
N

N∑
i=1

Ti(δ) , (45)

notice that this average is different from the usual time average.
Now we can define the finite size Lyapunov exponent (FSLE) [42, 43] in

terms of the average doubling time

λ(δ) =
ln r
τ(δ)

, (46)

which quantifies the average rate of separation between two particles at a dis-
tance δ. For very small separations (i.e., δ � lη) one recovers the Lagrangian
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Lyapunov exponent λ = limδ→0 ln r/τ(δ) . At large separation the diffusive be-
havior is signaled by the fact that τ(δ) ∼ δ2. Thus the finite size Lagrangian
Lyapunov exponent λ(δ) behaves as follows:

λ(δ) ∼
{
λ if δ � lη
2DE/δ2 if δ � lη

. (47)

One could naively conclude, matching the behaviors at δ ∼ lη, that DE ∼ λl2η.
This is not always true, since one can have a rather large range for the
crossover due to non-trivial correlations which can be present in the La-
grangian dynamics [7, 43]. One can now define the scale-dependent diffusion
coefficient as D(δ) = δ2λ(δ).

One might wonder that the introduction of τ(δ) is just another way to
look at 〈R2(t)〉. This is true only in limiting cases, when the different char-
acteristic lengths are well separated and intermittency is weak. Examples of
the usefulness of this indicator may be found in [43, 44, 45].

2.7 Pair Dispersion in Laminar Flows in the Presence
of Boundaries

In the case of flows confined in finite domains having size LB in addition to the
two asymptotic regimes (47), another regime appears. For separations close
to the average maximal allowed separation δmax � LB, the following behavior
holds for a broad class of systems [7]:

λ(δ) =
D(δ)
δ2

∝ 1
τR

(δmax − δ)
δ

, (48)

where τR is related to the exponential relaxation of the particles’ distribution
inside the domain to the uniform distribution that is always attained at long
times (see [7] for more details).

To exemplify the scale dependence of λ(δ), let us consider again the flow
(36) where now, to study the effects of finite boundaries, we confine the tracers’
motion in a finite domain. To this aim we slightly modified the oscillating term
in (36) as B → B sin(πx/LB) with LB = 2 πn/k (n is the number of convective
cells). In this way the motion is confined in x ∈ [−LB, LB]. In Fig. 4 we show
λ(δ) for two values of LB. If LB is large enough one can distinguish the three
regimes: exponential (if δ is much smaller than the cell), diffusive (at scales
larger than the unit cell) and saturation (48) (for separation close to the
system size). Decreasing LB, the range of the diffusive regime decreases, and
for small values of LB, it disappears.

Let us now discuss the use of the FSLE for the analysis of experimental
Lagrangian data in a convective flow [46]. The experimental apparatus is a
rectangular convective tank L = 15.0 cm wide, 10.4 cm deep and H = 6.0 cm
height filled with water. The upper and lower surfaces are kept at constant
temperature and the side walls can be considered as adiabatic. Convection



Transport of Inert and Reactive Particles 53

1e-05

0.0001

0.001

0.01

0.1 1 10

λ(
δ)

δ

(a)

(b)
(c)

(d)

Fig. 4. λ(δ) vs δ for the flow (36) with: ψ0 = 0.2, B = 0.4, ω = 0.4. Particle
motion has been confined in closed domain with 6 (crosses) and 12 (diamonds)
convective cells, respectively. λ(δ) has been computed with N = 2000 realization.
As for the thresholds we used δn = δ0r

n with δ0 = 10−4 and r = 1.05. The lines
are respectively: (a) Lyapunov regime with λ = 0.017; (b) diffusive regime with
DE = 0.021; (c) saturation regime with δmax = 19.7; (d) saturation regime with
δmax = 5.7

is by an electrical circular heater, 0.8 cm in diameter, located in the mid-line
of the tank, just above the lower surface (Fig. 5). The heater produces a
constant heat flux controlled by a feedback on the power supply. The control
parameter of the experiment is the Rayleigh number, Ra, which is varied over
a wide range of values. The geometrical configuration constrains the convective
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Fig. 5. An example of trajectories reconstructed by the PVT technique (unit in
pixels). The circle on the bottom represents the heater
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Fig. 6. Left Rescaled relative dispersion 〈R(t)p〉(1/p) for p = 1, 2, 4 (from bottom to
top) in lin-log plot, for the run at Ra = 2.39×108. The dependence of the slope on the
order p is an indication of the strong intermittency in the Lagrangian separation.
Time is rescaled in terms of the diffusion time. Right λ(δ) vs δ in the same run.
Different initial threshold δ0 = 0.4 cm (circles), δ0 = 0.6 cm (triangles) and δ0 = 0.8
cm (inverted triangles) have been considered to test the statistical robustness of the
measure. The straight line is the Lyapunov exponent λ = (0.12 ± 0.01)s−1 and the
curve represents the saturation regime (48)

pattern to two counter-rotating rolls divided by an oscillating thermal plume
(see Fig. 5 for a view of the typical Lagrangian motion). The Eulerian velocity
field is thus, basically, two dimensional and time periodic.

Lagrangian data are obtained by particle tracking velocimetry (PTV) tech-
nique [47]. In Fig. 6 (left) we show normalized moments of the relative separa-
tion between particles, 〈Rq(t)〉1/q vs t for the run at Ra = 2.39×108 computed
over about 900 trajectories. As one can see it is very difficult to extract any
reliable behavior from this observable. On the other had from the FSLE re-
ported in Fig. 6 (right) it is rather clear what is happening. For small δ, we
observe the collapse of λ(δ) to the value of the Lyapunov exponent, indepen-
dent on δ0. For larger separation λ(δ) decreases to smaller values, indicating a
slowing down in the separation growth due to the presence of boundaries. The
behavior of λ(δ) is indeed well described by the prediction (48). The absence
of a diffusive regime is due to the fact that the size of Eulerian structure is of
the order of the tank size.

2.8 Pair Dispersion in Turbulent Flows

We now consider the case of particle dispersion when u(x, s) in (7) is a tur-
bulent flow. In this case the fluctuations of the velocity in the inertial range
of scales η < � < L are characterized by a scaling exponent h:

δ�u ∼ �h. (49)

According to Kolmogorov 1941 theory [41] the turbulent cascade can sustain
a constant energy flux only for h = 1/3. Actually, many years of experimental
investigations have shown that real turbulent flows are intermittent and it is
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necessary to introduce a continuous set of scaling exponents [41]. For sim-
plicity, in the following we will first consider the case of non-intermittent
turbulence (i.e., h = 1/3) and we will discuss the effect of intermittency at
the end of the section. Furthermore let us assume that lη → 0, i.e., that the
velocity field is turbulent up to the smallest available scale. Of course, this is a
very idealized situation which is only approximately true in realistic turbulent
flows.

The first important observation is that at variance with smooth velocities
(i.e., δRv ∼ R) where in the limit of zero diffusivity particle trajectories are
unique, if v is rough (i.e., h < 1) Lagrangian paths are not unique and also
initially coincident particles separate. This is exemplified as follows. Let R be
the separation between two particles, its temporal evolution (modeled in one
dimension for simplicity) is given by dR/dt = δRv ∝ R1/3 and R(0) = R0.
Then for R0 > 0, the solution is given by

R(t) =
[
R

2/3
0 +

2
3
t

]3/2

. (50)

If R0 = 0 two solutions are allowed, i.e., R(t) = [23 t]
3/2 and the trivial one

R(t) = 0: trajectories are not unique. Physically this means that for R0 �= 0
the solution becomes independent of the initial separation R0, provided t is
large enough. More interestingly one has that trajectories separate anoma-
lously

〈R2(t)〉 ∼ t3 , (51)

as one easily obtains from (50). This is the well-known Richardson law for
particles dispersion in turbulent flows [6, 48]. Of course, in realistic flows one
should expect that this regime ends at time such that 〈R(t)〉 ∼ L0, and, in the
absence of boundaries, the standard diffusive behavior will establish at larger
times. It is worth mentioning that the mechanism underlying this “anoma-
lous” diffusive behavior is the same as the one discussed in the context of
single particle diffusion: the Lagrangian velocity differences correlation func-
tion does not decay when particle separation is within the inertial range so
that conditions for the validity of the standard diffusion discussed in Sect. 2.1
are violated [3].

Similar to absolute dispersion, relative dispersion in turbulence can be phe-
nomenologically described in terms of a diffusion equation for the probability
density function of pair separation p(R, t) with a space- and time-dependent
diffusion coefficient D(R, t). The original Richardson proposal, obtained from
experimental data in the atmosphere, is D(R, t) = D(R) = k0ε

1/3r4/3 [48],
where ε has the dimension of energy dissipation (see below) and k0 is a dimen-
sionless constant. In the d-dimensional isotropic case, this diffusion equation
takes the form

∂tp(R, t) =
1

Rd−1

(
∂

∂R
Rd−1D(R)

∂

∂R
p(R, t)

)
. (52)
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Richardson model can be justified by the following argument: the dimensions
of D are (time)−1 (scale)2. Using R/δRv and R as the proper time and scale,
respectively, one obtains D(R) ∼ R4/3. Although the above argument is only
dimensional, one can prove that if the velocity field is rapidly decorrelating in
time (52) is indeed exact [3]. Equation (52) is solved by

p(R, t) ∼ Rd−1

t3d/2
e−c(R2/3/t) (53)

which gives the Richardson law 〈R2〉 =
∫

dR R2p(R, t) ∝ t3. Moreover, note
that p(R, t) = t−3/2F (t−3/2R) consistently with (33), indeed the assumption
of a perfect scale-invariance for the velocity field leads to a “weak” anomalous
behavior, i.e., 〈Rq〉 ∼ t3/2q. This can be considered a good approximation for
two-dimensional turbulent flows in the inverse energy cascade regime [49].

In Fig. 7 we report the results of Boffetta and Sokolov [50] for Richardson
diffusion in two-dimensional turbulence. Figure 7 (left) shows the behavior of
〈R2(t)〉 vs time. Note that the presence of large crossovers makes the t3 law
not easily detectable. In fact, as follows also from (50) the memory of the
initial separation is only asymptotically recovered. On the other hand Fig. 7
(right) reports the computation of the FSLE in the same simulation, as one
can see the Richardson law is much more evident as signaled by the scaling
λ(δ) ∼ δ−2/3. Actually the same qualitative picture persists also in synthetic
turbulent flows where the resolution can be enhanced a lot [49]. In realistic
turbulent flows, assuming that all the scales can be resolved the following
regime for the FSLE should be expected: λ(δ) = λ for δ � lη; λ(δ) ∼ δ−2/3

for lη � δ � L0; λ(δ) ∼ δ−2 for δ � L0. As an example of realistic
turbulent flow, the δ−2/3 has recently been observed in [51] exploiting the
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Fig. 7. Left Relative dispersion R2(t) with R(0) = R0 (pluses) and R(0) = 2R0

(crosses) for separation in the inverse cascade of two-dimensional turbulence. The
line represents the Richardson law R2(t) = gεt3 with g = 3.8. In the inset the
compensated plot R2(t)/(εt3) is displayed. Right Mean doubling time 〈T (R)〉 as
function of the separation R. The ratio is ρ = 1.2 and the average is obtained over
about 5 × 105 events. The line represents the dimensional scaling R2/3. Figures
from [50]
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Fig. 8. (a) FSLE at two different resolutions. Triangles: 1283 grid points; circles:
963 grid points. The dashed line corresponds to αδ−2/3 with α = 0.1 m2 s−3.
(b) The same as in (a) but for the relative velocity. The dashed line has slope −2/3

large-eddy simulations of boundary layer flows. In Fig. 8 we can see how the
FSLE is able to isolate a nice δ−2/3 behavior despite the small extension of
the inertial range of scales (see again [51] and discussions therein).

Finally in Fig. 9 the prediction (53) is compared with the numerical results,
showing that at least for the case of two-dimensional Navier–Stokes turbulence
the Richardson description is a good approximation even if the velocity field
has non-trivial correlations and does not rapidly decorrelate.

For three-dimensional turbulent flows the situation is complicated by the
presence of fluctuations in the scaling exponent h in (49) [41]. These fluc-
tuations modify the statistics of relative dispersion and one thus expects an
anomalous behavior in the strong sense. Indeed, it is possible to repeat the
dimensional argument leading to Richardson scaling taking into account in-
termittency, for example within the framework of multifractal model [52]. The
result is that different moments of separations 〈R(t)p〉 grow with exponents
different from dimensional predictions t3/2p but the p = 2 exponent is not
corrected by intermittency.

These results are more simply obtained for the doubling time statistics.
The dimensional estimate T (R) ∼ R/δRv gives, for an intermittent velocity
statistics δRv, the prediction [52]

〈
1

T p(R)

〉
∼ Rζp−p, (54)

where ζp are the Eulerian intermittent scaling exponents, i.e., 〈(δRv)p〉 ∼
Rζp . Because ζ3 = 1 [41], the exponent not affected by intermittency is here
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Fig. 9. Probability density function of relative separation at times t = 0.031 and
t = 0.77 rescaled with d(t) = 〈R2(t)〉1/2. The continuous line is the Richardson
prediction (53), the dashed line is a Gaussian distribution. At large time the Gaussian
behavior is recovered. Figure taken from [50]

〈1/T 3〉 ∼ R−2 which is the analogous of Richardson law (51) for doubling
times.

Figure 10 is obtained from high-resolution direct numerical simulations
of three-dimensional turbulence [53]. Different moments of doubling times
(54) are compensated with scaling exponents ζp − p predicted by Eulerian
intermittency model. The existence of a scaling range is a direct demonstration
of intermittency corrections to Richardson scaling.
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Fig. 10. First moments of the inverse doubling time 〈(1/T (R))p〉 compensated
with (54) with Eulerian scaling exponents ζp obtained from the velocity structure
functions (see inset). Figure from [53]
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3 Transport of Reacting Substances

We consider the case of a unique scalar reactive field θ(x, t). This model is
appropriate in aqueous autocatalytic premixed reactions, and gaseous com-
bustion with a large flow intensity but low value of gas expansion across the
flame [8]. The field θ evolves according to the advection–reaction–diffusion
(ARD) equation:

∂tθ + (u · ∇)θ = DΔθ +
1
τ
f(θ) , (55)

where f(θ) accounts for the reaction and τ is the reaction characteristic
time [8, 14, 15, 16]. For the sake of simplicity, we take f(θ) = θ(1 − θ).
However, the results we are going to describe do not depend on the specific
form of f(θ) provided that f(θ) is convex (f ′′(θ) < 0) and positive in the
interval (0, 1), vanishing at its extremes, and f ′(0) = 1. This corresponds to
the FKPP type of reaction [10, 11].

In Sect. 2 we saw the link between the solution of (2) and Lagrangian
trajectories. There exists a similar relation also for (55) [54]:

θ(x, t) =
〈
θ(x(0), 0) exp

(
1
τ

∫ t

0

f(θ(x(s; t), s))
θ(x(s; t), s)

ds
)〉

, (56)

where the average is performed over all the trajectories x(s; t) that started in
x(0) and ended in x(t; t) = x (as in (7)).

Using the maximum principle [54] and noting that f(θ)/θ ≤ f ′(0), because
of the convexity of f(θ), one can write an upper bound for θ(x, t) in terms of
the solution, θL(x, t), of the linearized ARD:

∂tθL + (u · ∇)θL = DΔθL +
f ′(0)
τ

θL . (57)

In fact, if θ(x, 0) ≤ θL(x, 0) one has [54]

θ(x, t) ≤ θL(x, t) . (58)

From (56–58) one obtains

θ(x, t) ≤ 〈θ(x(0), 0)〉 exp
(
f ′(0)
τ

t

)
. (59)

The rhs of the previous equation is the solution of (57) and, in particular,
〈θ(x(0), 0)〉 is nothing but the solution P (x, t) at time t of the passive scalar
PDE (2) with initial condition θ(x, 0) (that we suppose localized around
x = 0).
In Sect. 2.1 we saw that under general conditions (i.e., spatial and tempo-
ral short-range correlations) (2) has the same asymptotic behavior of a Fick
equation. As a consequence, we have
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< θ(x(0), 0) >≡ P (x, t) ∼ 1√
2πDE

11t
exp

(
− x2

4DE
11t

)
. (60)

Equations (59) and (60) imply that, along the x-direction, the field θ is ex-
ponentially small until a time t of the order of x/

√
4DE

11f
′(0)/τ , therefore an

upper bound for vf comes out:

vf ≤ 2
√
DE

11f
′(0)/τ . (61)

The above discussion shows that, if standard diffusion holds, then there is
a front propagating with a constant speed, i.e., the solvable case u = 0 is
recovered with a renormalized diffusion constant. Nevertheless, the analytical
determination of vf , for a given velocity field, u, is a rather difficult problem
even for simple laminar fields [14, 15, 16, 18].

3.1 Fronts in Cellular Flows

The bound (61) is very general and holds for generic incompressible flows
and production terms. Here we numerically investigate the properties of front
propagation in the particular case of the cellular flow (36). This kind of flow
is interesting because, at variance with shear flows, all the streamlines are
closed and, therefore, the front propagation is determined by the mechanisms
of contamination of one cell to the other [14, 16]. First we consider the time-
independent case, i.e., B = 0 in (36). Since we are interested in the propaga-
tion in the x-direction we take periodic boundary conditions in y-axis and an
infinite extent along the x-axis with boundary conditions θ(−∞, y; t) = 1 and
θ(+∞, y; t) = 0.

The bulk burning rate [15],

vf(t) =
1
L

∫ L

0

dy
∫ ∞

−∞
dx∂tθ(x, y; t) , (62)

coincides with the front speed when the latter exists, but it is also a well-
defined quantity even when the front itself is not well defined. The asymptotic
(average) front speed, vf, is determined by

vf = lim
T→∞

1
T

∫ T

0

dt vf(t) .

In our discussion, we always suppose that the diffusion time scale is the
slowest one and thus Pe� 1 and Da · Pe� 1.

At large scales and long times the effects of the velocity field can be mod-
eled in terms of a reaction–diffusion process with renormalized coefficients
[14]:

∂tθ = DEΔθ +
1
τeff

F (θ) . (63)
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The renormalized diffusivity DE accounts for the process of diffusion from
cell to cell as a result of the non-trivial interaction of advection and molecular
diffusion [6]. The renormalized reaction time τeff is the time it takes for a single
cell to be filled by inert material and depends on the interaction of advection
and production. F indicates the functional form of the renormalized chemistry.
Therefore, the limiting speed of the front in the moving medium is given by
veff ∼√DE/τeff [14, 15]. The problem is now reduced to derive the expressions
for the renormalized parameters by means of physical considerations.

In the following sections, using as an interpretative framework the macro-
scopic model described above, we will present the results of detailed numerical
simulations for slow (Da� 1) and fast (Da � 1) reactions.

3.2 Slow and Fast Reaction Regimes

The renormalized characteristic time can be estimated as follows. At small
Da, the reaction is significantly slower than the advection, and consequently
the region where the reaction takes place extends over several cells, i.e., the
front is distributed. The dependence of DE on Pe and D is a well-studied
problem, the solution of which is [6]

DE

D
∼ Pe1/2 Pe� 1 . (64)

Therefore, in the slow reaction regime, Da � 1, a single cell is first invaded
by a mixture of reactants and products (on the fast advective time scale), and
subsequently complete reaction is achieved on the slower time scale τeff � τ
(Fig. 11). In the case of fast reaction, Da � 1, two sharply separated phases
emerge inside the cell and the filling process is characterized by an inward
spiral motion of the outer, stable phase (Fig. 11), at a speed proportional to
U . Therefore we have

Fig. 11. Left Six snapshots of the field θ within the same cell, at six successive
times with a delay τ/6 (from left to right, top to bottom), as a result of the numerical
integration of (55). Here Da � 0.4, P e � 315. Black stands for θ = 1, white for θ = 0.
Right The same but for Da = 4, P e = 315, τ is now replaced by τeff ∼ L/U . Note
that a spiral wave invades the interior of the cell, with a speed comparable to U
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τeff
τ

∼
{

1 Da� 1
Da Da� 1 . (65)

From (64) and (65) we can derive the front speed for a cellular flow. Indeed,
recalling that vf ∼

√
DE/τeff, we have [14, 15]

vf
v0

∼
{
Pe1/4 Da� 1 , P e� 1
Pe1/4Da−1/2 Da� 1, P e� 1

. (66)

The case of Pe� 1 is less interesting because the dynamics is dominated by
diffusion.

In terms of the typical velocity of the cellular flow, we have vf ∝ U1/4 for
slow reaction (U � L/τ , or equivalently Da � 1) whereas vf ∝ U3/4 for fast
reaction (U � L/τ , or Da� 1). The scaling vf ∝ U1/4 for slow reaction (i.e.,
fast advection) is a consequence of DE ∝ DPe1/2 [6] in the homogenization
limit [14, 15] and has been obtained in [14, 16]. Numerical simulations of (55),
with a FKPP production term, confirm these predictions (Fig. 12).

As a remark we mention that, for the class of boundary conditions investi-
gated here, where the region of initially burnt material extends to infinity, no
quenching [15] takes place independently of production term used. Numerical
simulations show that Arrhenius-type non-linearity gives the same qualitative
results as those of FKPP-type reaction presented above, i.e., one has the two
scaling laws vf ∝ U1/4 and vf ∝ U3/4 at fast and slow advections, respectively
[14].

Fig. 12. The front speed vf as a function of U , the typical flow velocity. The lower
curve shows data at τ = 20.0 (fast advection). The upper curve shows data at τ = 0.2
(slow advection). For comparison, the scalings U1/4 and U3/4 are shown as dotted
and dashed lines, respectively. The horizontal line indicates v0, the front velocity
without advection, for τ = 0.2
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3.3 Geometrical Optics Limit

When the front thickness and the reaction time are much smaller than the
length and time scales of the velocity field fluctuations one has the geometrical
optics regime. Mathematically speaking this regime is realized for (D, τ) → 0
maintaining D/τ constant [18, 55]. In this limit one has a non-zero bare front
speed, v0, while the front thickness ξ goes to zero, i.e., the front is sharp.

The sharp interface separating the reactants from the products is modeled
by the G-equation (67) [9, 55]:

∂G

∂t
+ u · ∇G = v0|∇G| . (67)

The front is defined by a constant level surface of the scalar function G(r, t).
As far as the cellular flow is concerned, the front border is wrinkled by

the velocity field during propagation and its length increases until pockets
of fresh material develop [56, 57] (Fig. 13). After this, the front propagates
periodically in space and time with an average speed vf, which is enhanced
with respect to the propagation speed v0 of the fluid at rest.

Let us now consider the flow (36) with B = 0, i.e., the stationary case.
The problem addressed here is the dependence of the effective speed vf on the
flow intensity, U , and the bare velocity, v0, that is expected of the form [58]:

vf
v0

= ψ

(
U

v0

)
, (68)

where ψ(U) is a function which depends on the flow details.
As far as we know, apart from very simple shear flows (for which ψ(U) =

1+U [59]), there are no methods to compute ψ(U) from first principles. Mainly
one has to resort to numerical simulations and phenomenological arguments.

For turbulent flows, by means of dynamical renormalization group tech-
niques, Yakhot [60] proposed

vf
v0

= e(U/vf)
α

; (69)

Fig. 13. Snapshot of the front shape with time step T/8 (from (a) to (d)), where
T is the period of the front dynamics, for v0 = 0.5, U = 4.0 and L = 2π. Unburnt
(burnt) material is indicated in white (black)
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with α = 2, now U indicates the root mean squared average velocity (see also
[61, 62]). Therefore, from (69) one has that vf → U/

√
ln(U) for U → ∞.

For the cellular flow under investigation, albeit the exact form of the func-
tion ψ(U) is not known, a simple argument can be given for an upper and a
lower bound by mapping the front dynamics onto a one-dimensional problem.
The starting point is the following observation. In the optical regime, since
the interface is sharp, i.e., θ(x, y) is a two-valued function (θ = 1 and θ = 0),
we can track the farther edge of the interface between product and material
(xM(t), yM(t)), which is defined as the rightmost point (in the x-direction) for
which θ(xM, yM; t) = 1. Then we can define a velocity

ṽf = lim
t→∞

xM(t)
t

, (70)

which gives an equivalent value of the standard definition (62). After a
transient, in the unit cell [0, 2π] (we describe the case L = 2π) the point
(xM(t), yM(t)) moves to the right along the separatrices of the streamfunction
(36), so that yM(t) is essentially close to the value 0 or π. Along this path one
can reduce the edge dynamics to the 1d-problem:

dxM

dt
= v0 + Uβ| sin(xM (t))| , (71)

where the second term of the rhs is the horizontal component of the velocity
field. We have neglected the y-dependence, replacing it with a constant β
which takes into account the average effect of the vertical component of the
velocity field along the path followed by (xM, yM). By solving (71) in the
interval xM ∈ (0, 2π) one obtains the time, T , needed for xM to reach the end
of the cell. The front speed, as the speed of the edge particle, is then given by
vf = 2π/T . The final result is

vf
v0

= ψβ(U) =
π
√

(Uβ)2 − 1

2 ln
(
Uβ +

√
(Uβ)2 − 1

) . (72)

Note that (72) is valid only for Uβ ≥ 1.
We have taken β = 1 for the upper bound and β = 1/2 (which is the aver-

age of | cos(y)| between 0 and π) for the lower bound. We have also computed
the average of | cos(yM(t))| in a period of its evolution obtaining β ≈ 0.89
which indeed gives a very good approximation of the measured curve (Fig. 14).
We stress that the theoretical curve is not a fit, but it just involves the mea-
sured parameter β.

This agreement is an indication that the average of | cos(yM(t))| depends
on U and v0 very weakly (as we checked numerically). Previous studies [61,
62] reported an essentially linear dependence of the front speed on the flow
intensity, i.e., vf ∝ U for large U which is not too far but different from our
result. A rigorous bound has been obtained in [63] by using the G-equation:



Transport of Inert and Reactive Particles 65

0

2

4

6

8

10

12

14

16

18

20

22

0 10 20 30 40 50 60 70

ψ

U/v0

Fig. 14. The measured ψ(U/v0) as a function of U/v0 (squares), the Yakhot formula
(69) with α = 2 (circles), the function ψβ for β = 1, 1/2 (dashed and dotted lines)
and for β = 0.89 (solid line). The dashed-dotted line is the bound (73)

vf ≥ U/(log(1 + U/v0)) . (73)

As one can see from Fig. 14, the lower bound (73) seems to be closer to
the numerical data than the one obtained with β = 1/2 in (72). From (72),
asymptotically (i.e., for U � v0) one has vf ∼ U/ ln(U) which corresponds to
(69) for α = 1. Expressions as (69) have been proposed for flows with many
scales as, e.g., turbulent flows, and in the literature different values of α have
been reported [60, 61, 62]. The fact that the simple one-scale vortical flow
investigated here displays such a behavior may be incidental. However, we
believe that it can be due to physical reasons. Indeed, the large-scale features
of the flow, e.g., the absence of open channels (like for the shear flow) can be
more important than the detailed multiscale properties of the flow [56].

3.4 Is Chaos Important?

An interesting problem is the thin front dynamics in the presence of La-
grangian chaos generated by the time periodic streamfunction (36). We are
mainly interested in addressing the following two issues. First, since trajec-
tories starting near the roll separatrices typically have a positive Lyapunov
exponent, it is natural to wonder about the role of Lagrangian chaos on front
propagation. Second, as we have shown in Sect. 2.3, we know that for the
time-dependent streamfunction (36) the transport properties are strongly en-
hanced, therefore it is worth to see if similar effects are also reflected in the
front speed.

In order to define the instantaneous front length, L(t), we introduce the
variable σε(x, y; t) which assumes the value 0 if θ is constant inside a circle of
radius ε centered in (x, y) at time t, otherwise σε(x, y; t) = 1 (i.e., σε(x, y; t) =
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1 only if the ε-ball centered in (x, y) contains a portion of the front). The front
length is then defined by

L(t) = lim
ε→0

1
ε

∫ ∞

−∞
dx
∫ L

0

dy σε(x, y; t) . (74)

A direct consequence of Lagrangian chaos is the exponential growth of
passive scalar gradients and material lines [1, 4]: a (passive) material line of
initial length �0 for large times grows as

�(t) ∼ �0eΛ(1)t , (75)

where Λ(1) is the generalized Lyapunov exponent, Λ(1) ≥ λ [42]. In the pres-
ence of molecular diffusivity, the exponential growth of �(t) stops due to dif-
fusion, and chaos has just a transient effect [64]. For reacting scalars some-
thing very similar happens. Let us compare the evolution of a material line
in the passive and reactive cases (Fig. 15). While in the passive case (without
molecular diffusivity) structures on smaller and smaller scales develop (due
to stretching and folding), in the reactive systems after a number of fold-
ing events structures on smaller scales are inhibited as a consequence of the
Huygens dynamics: the interface between the two phases merges. This phe-
nomenon is responsible for the formation of pockets. Of course, “merging” is
more and more efficient as v0 increases (compare the middle and lower pictures
of Fig. 15).

In Fig. 16 we show the time evolution of the line length, L(t), as a function
of t for the passive and reactive material at different values of v0. While
at small times both the passive and reactive scalar lines grow exponentially
with a rate close to Λ(1), at large time t > t∗ (where t∗ is a transient time
depending on v0) the reacting ones stop due to merging. Asymptotically, the
front length varies periodically with an average value depending on v0. A rough

Fig. 15. Snapshots at two successive times, t = 3.6 and 7.5, of the evolution of
passive (top) and reactive line of material for two values of v0 (middle v0 = 0.7 and
bottom v0 = 2.1) for U = 1.9, B = 1.1 and ω = 1.1U . The initial condition is a
straight vertical line
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Fig. 16. L(t)/L(0) as a function of time for U = 1.9, B = 1.1
and ω = 1.1U for the passive (pluses) and reactive case: from top v0 =
0.3 (crosses), 0.5 (stars), 0.7 (squares). The straight line indicates the curve
exp(Λ(1)t) with Λ(1) ≈ 0.5, which has been directly measured

argument to estimate t∗ is the following: two initially separated parts of the
line (e.g., originally at distance �0) become closer and closer, roughly as ∼
�0 exp(−Λ(1)t). When such a distance becomes of the order of v0t, merging
takes place and, hence,

t∗ ∝ 1
Λ(1)

ln
(

Λ(1)�o
v0

)
. (76)

In the asymptotic state (t > t∗) both the spatial and temporal structures of
the flow become periodic.

Let us now switch to the effects of Lagrangian chaos on the asymptotic
dynamics of front propagation. An immediate consequence of (76) is that the
asymptotic front length (74) behaves as Lf ∼ v−1

0 for values of small enough
v0. Indeed,

Lf ∼ LeΛ(1)t∗ ∼ L2Λ(1)
v0

, (77)

which is in fairly good agreement with the simulations [56].
It is worth remarking that even if the scaling (77) holds when chaos is

present, in general it is not peculiar of chaotic flows. For instance, for the
shear flow (ux = U sin(y) , uy = 0) one has vf = U + v0. On the other hand,
since vf ∼ Lfv0 [9], even if the shear flow is not chaotic Lf ∼ 1/v0 for U/v0 � 1.
From the previous discussion, it seems that the front length dependence on
v0 is not an unambiguous effect of chaos on the asymptotic dynamics. But,
looking at Fig. 15 the spatial “complexity” of the front in the presence of
Lagrangian chaos is apparent.
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Let us now introduce an indicator to quantitatively evaluate this quali-
tative observation. Let us call Wf the size of the region in which burnt and
unburnt materials coexist. Introducing a measure, μ(x), in that region we can
define Wf as the standard deviation of μ(x) [56]:

μ(x) =
|∂xθ̃(x)|∫
dx|∂xθ̃(x)|

, (78)

where θ̃(x) = 1/L
∫ L

0 θ(x, y)dy, i.e.,

Wf =

(∫
x2μ(x)dx −

(∫
xμ(x)dx

)2
)1/2

. (79)

For a simple shear flow Wf and Lf display the same kind of dependence
on v0 (actually they are proportional). In generic chaotic flows there is an
increasing of the front length, while chaotic mixing induces a decrease of
Wf. This is indeed what one observes in Fig. 17, where we show the ratio
Lf/Wf both for the non-chaotic and the chaotic flow. For the latter this ratio
diverges for very small v0 values as a signature of chaos. From a physical point
of view the ratio Lf/Wf is an indicator of the spatial complexity of the front.
Indeed it indicates the degree of wrinkling of the front with respect to the
size of the region in which the front is present. Loosely speaking, we can say
that the temporal complexity of Lagrangian trajectories converts in the spatial
complexity of the front.

1

10

0.1 1

L f
 / 

W
f

v0

Fig. 17. Lf/Wf as a function of v0 for the time-dependent (circles) and indepen-
dent (crosses) cases with parameters U = 1.9, B = 1.1, ω = 1.1U and the time-
independent case (crosses) with U = 1.9
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Abstract. In many, if not most, geophysical flows molecular diffusion is formally
negligible because its relative importance is measured by the inverse of a large Péclet
number. This has motivated a number of studies, based in some way or another on
various theoretical approaches to turbulence, where the assumed randomness of the
turbulent flow plays the center role. If one adds to this complicated situation of the
passive scalar the possibility of chemical reactions changing the chemical layout of
the fluid, the number of unresolved issues increases dramatically. The chemistry is
often such that, without flow, the reaction progresses by a front (the flame front
in gaseous combustion) sweeping the system, across which the reaction takes place,
from an unburnt (fresh) side to a burnt side. I look at these problems in the case of
steady flows made of rolls, as generated by Rayleigh–Bénard instability for instance,
certainly an idealization of real turbulence, although it is not clear by how much. The
propagation of the chemical reaction in this system depends first on the diffusion of
a passive scalar, an interesting question in the limit of a large Péclet number in a
flow without open flow lines. The main result there is that the effective diffusion is
somewhere in between the molecular diffusion and the “turbulent” diffusion. Once
chemical reactions are taken into account, that is when one considers the reaction–
diffusion case, one finds that the front speed is the laminar propagation velocity
(without flow) times the Péclet number to the power 1/4. I refine this last result
and give the behavior of the prefactor in the Zel’dovich limit of a narrow reaction
zone.

1 Introduction

If one does not want to be overwhelmed by the problem of statistics of tur-
bulent flows, a way of approaching them is to assume that such a flow has
actually a simple structure in space and time and try to do the best of it.
For example, this is what is besides the idea of boundary layer per se: the
steady fluid equations are solved in the external domain by assuming that the
Reynolds number is large and that the flow is almost everywhere potential,
but in a narrow layer near the solid where the outside flow has to manage in
one way or another the merging with the viscous layer near the solid surface.
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Another extreme example of simplification of turbulent flows is to assume
that it has the same spatial structure as near the instability threshold. A
wide class of such structures are the cellular flows generated for instance by
fluid instabilities like Rayleigh–Bénard thermal convection or Taylor–Couette
flow between cylinders.

Below I assume the flow to be “fast” (in a precise sense) but stationary, an
assumption that brings an enormous simplification to all the problems con-
sidered. Moreover, I shall consider phenomena happening within this steady
flow, without changing it. This is the classical “passive” tracer. However, this
tracer will not be simply carried by the flow, but it will be submitted to some
kind of chemical reaction (the case of a suspension settling by gravity in a
fast flow has some interest too, see [1]). That the flow is assumed to be fast is
equivalent to say that it carries with it the passive scalar, so that any other
effect like molecular diffusion, chemical reaction or gravitational settling is a
small perturbation (small but not necessarily irrelevant, as we shall see). Sup-
pose that the flow lines draw a pattern of rolls: in 2D, because of the assumed
incompressibility of the fluid, the flow lines are almost all closed, except for
a connected network of separatrices. Because of the large flow speed the pas-
sive scalar attains very fast an uniform concentration along each flow line,
although the transfer across flow lines requires molecular diffusion. As a side
remark, the same problem in 3D is far more complicated, and I am unaware
of any systematic study of the general structure of incompressible steady 3D
flows. Numerically it seems [2] that part of the flow lines remain closed. By
analogy with the classical KAM situation in dynamical systems, one expects
some flow lines to be chaotic, but they seem to be quite rare. Although the
case of reaction–diffusion equations in a shear flow has some interest [3], I
shall focus on cellular flows, without mean flow: in such 2D flows all flow lines
are closed, but for the separatrices. The network of separatrices being open
in some sense, the passive scalar diffuses very fast across the whole system
and the effective diffusion coefficient on a large scale is the molecular diffusion
coefficient times the (large) square root of the Péclet number, a result recov-
ered in Sect. 2 by the statistical argument in [4] (see also [5]). In Sect. 3, I
look at the case studied with Basile Audoly and Henri Berestycki [3], the one
where, besides molecular diffusion, some irreversible chemical reaction takes
place. A somewhat new result is the reduction of the equations of [3] to a free
boundary problem whenever the chemical reaction occurs in a thin zone, as
in Zel’dovich theory of combustion.

2 Effective Diffusion in a Fast Cellular Flow

This section is devoted to a short derivation of the effective diffusion coefficient
in a cellular flow at large Péclet number. The starting point is the convection–
diffusion equation:

∂u

∂t
+A ∇ · (q(r)u) = Δu . (1)
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In equation (1), u(r, t) is the scalar field, depending a priori on the position r
and time t, Δ is the usual space Laplacian, and q(r) the space dependent but
steady flow velocity (both q(r) and r are vectors of the usual Euclidan space
but no special notation will show it). This equation is written in such a way
that the unit length is the width of the cell of the cellular flow, although the
time unit is the ratio of this square length to the molecular diffusion constant.
This makes formally equal to one the coefficient of the diffusion term on the
right hand side of (1). Furthermore the unit velocity is the ratio of the diffusion
constant to the unit length. The basic assumption is that the (dimensionless)
coefficient A in front of the advection term (1) is large. It is often called
the Péclet number, A = qλ

Dm
, λ wavelength of the flow pattern, q typical

flow speed and Dm molecular diffusion coefficient. We are going to look at
2D velocity fields, depending on coordinates x and y. For an incompressible
flow, one can introduce a stream function Ψ(x, y) such that the Cartesian
components of q(x, y) are qx = ∂Ψ

∂y and qy = −∂Ψ
∂x . The flow lines draw a set

of cells wherever they are closed, the boundaries of the cells draw a net of
separatrices connecting a network of hyperbolic fixed points. I shall assume
that this system is periodic in the two directions of space. In real life, it is
usually one dimensional and squeezed between rigid plates. The difference
between the two situations may be significant, but I shall not consider it here
(see [5, 6]).

The system (1) can be solved by splitting the space into boundary layers
near the separatrices and the interior of the cells. However, I shall present
below a probabilistic approach to this problem. The first obvious remark is
that the molecular diffusion is relevant only to describe the diffusion across
the flow lines in the large Péclet number limit. The diffusion across the closed
flow lines of a given cell takes a time of order λ2

Dm
, that is one in our dimen-

sionless units. A diffusing particle will explore the whole cell over this time
scale. Imagine now that a particle crosses a separatrix between two cells at
some initial time t = 0. Its exploration across the flow lines may be seen as
similar to the random addition/subtraction of a variable, that denotes the
distance across the closed flow lines (in 1D the diffusion equation is the large-
scale representation of the addition and subtraction of a random variable). A
standard result in the theory of stochastic process states that, starting from
zero, and adding or subtracting a random variable, the number of times the
sum is equal to zero grows asymptotically like the square root of the number
of steps. For the diffusion equation in the cellular flow, that the random sum
is zero is equivalent to say that the diffusing particle crosses a separatrix. It
does not make sense with a continuous time to state that a dimensionless
number of crossing grows like the square root of time, since this square root
has a physical dimension and cannot be a number. The relevant dimensionless
number is recovered by dividing the square root by another square root time.
This time is the travel time between the two end points of the separatrix:
then the particle chooses at random to go on one side or the other of the
separatrix. It is of order A−1 with the scaling of (1). Therefore, during the
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exploration time of a cell1 a particle that started on a separatrix shall cross
a separatrix (usually again not the one it started on) N ∼ √

A times. Every
time it does so, it goes at random to one side or the other of a separatrix.
After N such crossings it will have made N random steps of unit length (the
size of an elementary cell). The mean square distance run during this time
is therefore N . Since, in our units, this square length is run during an unit
time, N = A1/2 is also the effective diffusion coefficient, the result of [4]. In
ordinary units, the order of magnitude of this effective diffusion coefficient is
the geometric average between the turbulent diffusion coefficient (Aqλ) and
the molecular diffusion coefficient Dm.

The same result follows from a more classical analysis of solutions of (1). It
shows that the effective diffusion coefficient is intermediate between the tur-
bulent coefficient (independent of the molecular diffusion) and the molecular
coefficient. It is worth pointing out that the turbulent regime (seen here as
the limit A tending to infinity) cannot be analyzed simply by looking at the
solution of equations without molecular diffusion coefficients (like the heat
conductivity, shear viscosity, etc.) simply set to zero: formally the diffusion
term is negligible in this limit and could be believed to have no significant
effect.

3 Reaction–Diffusion in Fast Cellular Flows

Zel’dovich [7] explained theoretically how a flame propagates in a premixed
gas (the situation we are going to look at), as a consequence of the substitu-
tion of a metastable state by a stable one, an idea already present in Euler’s
winning contribution (in Latin!) to the 1738 prize of the Académie des sciences
[8] on the nature and the propagation of fire. But, although in many practical
applications the effects of hydrodynamic turbulence are very important, they
are absent in the classical formulation of the reaction–diffusion equations used
by Zel’dovich. Very often the turbulent fluctuations of the hydrodynamic ve-
locity are far bigger than the intrinsic speed of propagation of the flame itself.
This section, following a previous Note on the same topic [3], exposes what
happens in the same limit (large “fluctuating” fluid velocity), but by assum-
ing, as in the previous section, a frozen velocity field drawing a periodic set of
cells bounded by a network of separatrices. The reaction–diffusion equation
includes now a non-linear term that represents the change in temperature due
to the chemical reaction. This is the fr(u) term in

∂u

∂t
+A∇ · (q(r)u) = Δu+ fr(u). (2)

1 This exploration time may be seen also as the typical time after which a particle
starting near the separatrix will reach the center of a cell, usually not one of the
two cells split by the separatrix it started from.
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The function fr(u) has positive values and describes the heat release by the
chemical reaction (in technical term, one assumes the Lewis number to be
one, so that chemistry and heat transfer are one and the same thing). Two
different kind of “chemistry” can be considered, depending on the shape of
the function fr(u):

(i) The soft chemistry, where fr(u) is (for instance) like ku(u−u0), k positive
constant and u0 temperature of the burned gas, u = 0 being that of the
fresh reactants.

(ii) A stiff Arrhenius chemistry such that fr is non-zero only near the maxi-
mum of temperature, something like fr(u) = ε−1FA[(u0(1−ε)−u)(u0−u)]
with 0 < ε � 1, FA(.) bell shaped, positive and of order 1 vanishes for
negative arguments, and u1 = u0(1 − ε) is the temperature above which
the reaction begins, and that is slightly below the temperature of the
burned gas. In the limit ε→ 0+, the thickness of the reaction zone (= the
domain where fr takes non-negligible values) tends to zero proportional
to ε and flame dynamics reduces itself to the one of a geometrical surface.
Solution of the reaction–diffusion (2) are known without streaming term
(A = 0). In case (i) (soft chemistry), there is a continuum of planar front
solutions in the form u(x, t) = Uc(x − ct) with the boundary conditions
Uc → 0(/u0) for (x− ct) → +(/−)∞, the fresh (/burnt) gas being always
taken at +(/−)∞.

In case (i) for many initial conditions the relevant solution is the Kolmogoroff
solution corresponding to the smallest value of c. On the contrary, in case (ii)

there is only one solution of the form U(x−ct) with c = 1
u0

(
2

∫ u1

u0
fr(u) du

)1/2

in the limit ε → 0. This stiff reaction case was what was considered by
Zel’dovich, and it is relevant for flame propagation in premixed gases. I shall
denote as cL the intrinsic speed (unique for the stiff reaction rate, as given
above with an exact vanishing of the reaction when u becomes smaller than u1

or whenever the Kolmogoroff solution applies in the soft chemistry case). In
[3], we examined the case of a fast shear flow (the “Bunsen burner” problem
according to the experts in the field): there the efficient speed is the fastest
flow velocity toward the fresh gas in the frame of this fresh gas, with some
interesting structure near cusps on the flame surface. Below, I shall examine
instead the propagation of a front in a periodic cellular flow as described by
(2). On long time scales, the state in contiguous cells changes from metastable
(u = 0) to stable (u = u0) and the cell-to-cell propagation occurs at a con-
stant rate, so that on a large scale there is a well defined effective speed of
propagation, although there is strictly speaking no solution in the simple form
u(x, y, t) = u(x − ct, y). In the limit A → ∞ a rational method of approxi-
mation yields a solution of Eq. (2) that represents this propagating front. It
relies a lot on the analysis of [6], in particular in its dealing of the vicinity of
the separatrices. The main source of difficulty is in the multiconnectedness of
the network of separatrices.
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Let us assume first that the periphery of a given cell is “lighted,” that is
that the reaction rate fr(u) differs significantly from zero there. The invasion
of the cell is simple to understand then: a flame propagates inward radially
at the laminar velocity cL: because of the fast mixing along the flow lines, u
is almost exactly uniform along a closed flow line, although the propagation
across the flow lines depends completely on the reaction and diffusion term,
independent of the advection. Therefore the time needed for a cell to burn is
just the time for a flame to propagate inward from the periphery to the cell
center, a time of order λ

cL
.

The limit of large A requires one to look at two different cases for the stiff
chemistry limit. This can be seen by looking at the time scales for the dynamics
near the separatrix. There are two fast time scale there: first the transit time
by flow motion from one end of the separatrix to the other, of order A−1

(recall that A is large) although the time scale for the chemical reaction is of
order ε2, with ε small. This time is the time needed for u to change of order ε
under the effect of the reaction term fr(u) of order ε−1 on the right hand side
of (2). The two short time scales are independent and each one can be much
shorter, of the same order or much larger than the other one (this represents
the mathematical possibilities, not necessarily what can be experimentally
achieved. In this respect it seems hard to get physically a time scale for the
chemistry much longer than the time of transit along the separatrix). The
reference [3] deals with the case where the shortest time scale is the flow time,
A−1 (again perhaps not the most realistic assumption). The opposite case, A
large, ε2 small but 1 � Aε2 is also briefly looked at in the Sect. 3.2 below.
If Aε2 � 1 one can neglect the chemical reaction in the boundary layer near
the separatrix, where everything reduces to linear diffusion (fr(u) on the right
hand side of (2) can be neglected there). The chemical reaction would become
dominant in the boundary layer in the opposite limit 1 � Aε2. Following the
ideas of [6], this boundary layer is where a cell-to-cell heat flux takes place.
This flux is perpendicular to the separatrix, and as shown in [6] ((7) there),
its net effect is to transfer to cell number i a total flux (actually the rate of
change of the integral of u over the area of the cell number (i):

Fi = s(fi+1 + fi−1 − 2fi). (3)

In (3) Fi is the sum of the flux from the cells (i + 1) and (i− 1) toward cell
i across the separatrices (the notation fi+1, fi−1, etc. is defined below and it
follows the one of [6]. No confusion should arise from the similar notation for
the rate of chemical reaction). The flux from one cell to the next occurs across
the separatrix and is defined in terms of the average value of u in each cell on
a closed flow line far from the boundary layer at the scale of thickness of this
boundary layer, but very close to the separatrix on the scale of the cell size.
This average is denoted as fi for cell number i. The intermediate thickness
where this average is computed is well defined because the boundary layer has
a thickness of order A−1/2 although the cell size is the unit length. This yields
for the solution of the heat transfer across the boundary layer an asymptotic
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value fi, that is defined as the value of u in this matching domain. The order
of magnitude of the resulting flux is the length of the separatrix (one in our
units) times the gradient of u across the separatrix, namely fi−1−fi

A−1/2 times the
molecular diffusion coefficient, that has the value one here. The formula (3)
results from the addition of the fluxes from cell (i − 1) to i and (i + 1) to i.
The coefficient s is a kind of effective cell-to-cell diffusion coefficient. It is of
order A−1/2, from the arguments just given. Its precise expression is derived
in [5]:

s =

√
1
π

∫ y1

y0

v(y)dy ≈ A1/2. (4)

The integral in (4) is carried over the length of the separatrix, that is along a
vertical axis and runs from y = y0 to y = y1 (separatrices are assumed to be
straight, this is not necessary but makes notations easier). The velocity there
is parallel to the y direction too, and locally the stream function takes the
form Ψ(x, y) ≈ −x v(y), v(y) = A qy(x = 0, y) is the vertical speed on the
separatrix.

It remains to show how the flux condition (3) enters into the solution of
the reaction–diffusion equation inside cells. For that purpose one writes this
reaction-diffusion equation in such a way that the fast uniformization along
the flow lines is made more obvious. For that purpose, one uses as a new set of
variables of position based on the value of the stream function Ψ or a related
variable: following [9] it is convenient to use the area a(Ψ) enclosed inside a
closed flow line. This area is a function of Ψ solution of da

dΨ =
∫

dl
q , dl element

of length along the flow line and q(l) absolute value of the flow speed q at
the point of coordinate l along this line. The reaction–diffusion equation is
averaged along the closed flow lines, that is on the fast time scale, with the
result, relevant for the slow dynamics:

∂ui

∂t
=

∂

∂a

(
D(a)

∂ui

∂a

)
+ f(ui). (5)

As before the subscript i refers to the cell number. The unknown function ui

depends on the discrete index i and on the stream line index a. Moreover

D(a) =
∫

dlq(l)
∫

dl
q(l)

.

The function D(a) becomes singular whenever the true no sliding condition
applies to the fluid equation (and makes very small the fluid velocity on the
solid that bounds the fluid). I shall not consider this and assume free boundary
conditions. It remains to impose the boundary condition (3) to solutions of
(5). This boundary condition is expressed in two different ways: first, as seen
from the point of view of (5), it is a Neuman-like condition for the derivative
of ui(aM) at a = aM. Here aM is for the value of a on the streamline bounding
the cell. Rigorously this boundary condition should concern a streamline in
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the matching region between the interior of the cell and the boundary layer
near the separatrix, but, as the boundary layer has a thickness of order 1/A,
it does not make any difference to impose the boundary condition right at
a = aM. From (5) this flux has the value −D(aM)∂u

∂a , D(aM) being the value
of D(a) on the border of the cell, namely when a reaches its maximum aM,
the area of the cell. From the solution of the equation in the boundary layer,
we have another expression for the total flux. Equating the two, we obtain

−D(aM)
∂ui(a)
∂a

|a=aM = s (ui+1 + ui−1 − 2ui)|a=aM . (6)

Every relevant quantity has been defined now, and we are ready to pose the
problem of flame propagation throughout the structure. This amounts to look
for a solution of (5) in the form u(i− Ct = ζ, a):

−C ∂u
∂ζ

=
∂

∂a
D(a)

∂u

∂a
+ fr(u). (7)

This has been derived from (5), by assuming that u changes very little from
cell to cell, which allows to consider the variable i as continuous, something
that is shown to be legitimate a posteriori in the limit A → ∞. In (7) a
changes from zero (the center of the cell) to aM, the latter corresponding to
the cell boundary. Now almost all the remaining difficulty lies in the boundary
conditions. One boundary condition is to impose that for ζ → −∞, u tends to
0 (fresh gas, or metastable state) although it tends to u0 for ζ → +∞ (burnt
gas or stable state). The other condition express the exchange flux between
the cells (it is derived from (3) by assuming i to be continuous, and that u
changes very little from cell to cell):

−D(aM)
∂u(ζ, a)
∂a

|a=aM = s
∂2u

∂ζ2
|a=aM . (8)

Even in the simple linear diffusion case (without the reaction term fr(u)) it
is not straightforward [5] to impose this last condition. In the present case,
we proceed in two steps: first one gets rid of the large parameter A in the
equation by rescaling. This yields already a non-trivial result, namely that
the propagation speed C is like A1/4 at large A. Another byproduct of this
reduction is a dimensionless numerical problem (that is without the large
parameter A: it has disappeared thanks to the rescaling). This numerical
problem (that would yield ultimately the numerical constant in front of the
A1/4 dependence of C at large A) is rather intricate. However, I shall explain
how it reduces to a free boundary problem in the Zel’dovich limit of a very
thin flame.

3.1 Rescaling at Large A

In our formulation of the reaction–diffusion problem, the large quantity A
appears in the boundary condition (8) only, through the quantity s that scales
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like A1/2. Since it multiplies the second derivative ∂2u
∂ζ2 |a=aM , one can get rid

of A by rescaling ζ as ζ = ζA−1/4 and s = sA−1/2. The substitution of ζ
in place of ζ in (7) yields on its left hand side −CA−1/4 ∂u

∂ζ
. There the extra

A−1/4 is canceled by defining a rescaled C as C = CA−1/4. This completes the
proof (proof in a weak sense for sure) that the effective speed of propagation
is of order A1/4 at large A. Indeed, this assumes implicitly that the rescaled
problem (to be written down shortly) has a solution, that gives a finite value
of C. Notice too at this step that one approximation made on the way is
coherent: the effective scale of dependence in ζ is of order A1/4, supposing
again that the scale of variation with respect to ζ is of order 1. This length
scale is much bigger than the cell length, which supports the assumption of
a continuous variation with respect to the index i. The physical consequence
is that the thickness of the flame is of order A1/4 as well. To summarize, the
“numerical” problem left to solve is

−C ∂u
∂ζ

=
∂

∂a
D(a)

∂u

∂a
+ fr(u) (9)

with the boundary conditions:

− D(aM)
∂u(ζ, a)
∂a

|a=aM = s
∂2u

∂ζ
2 |a=aM (10)

and ζ → −∞, u tends to 0 (fresh gas, or metastable state) although it tends
to u0 for ζ → +∞ (burnt gas or stable state).

3.2 Free Boundary Problem in the Stiff Reaction Case

This subsection requires first to explain in general how the reaction–diffusion
problem, as the one posed in (9) can be reduced to a free boundary problem
for the stiff reaction case. We derive first the equation of motion of a flat
interface from the reaction-diffusion equation (9), then we relate it to the
solution of the set (9, 10) in the limit ε→ 0.

In this limit, one looks for a solution of (9) in the form u = ũ(a−C̃ζ). Since
we are concerned with the cell-to-cell propagation, all the action is near the
separatrices, so that one can replace in (9) D(a) by its value on the separatrix,
namely D(aM). The velocity C̃ that is so introduced is a transform of the cell-
to-cell velocity of propagation. Putting b = a− ã(ζ), the time derivative dã

dζ
is

found by solving the equation

−CC̃ dũ
db

= D(aM)
d2ũ

db2
+ fr(ũ) (11)

with appropriate boundary conditions to be discussed later, and with C̃ = dã
dζ

.
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In the stiff reaction case,

fr(ũ) = ε−1FA[(u0(1 − ε) − ũ)(u0 − ũ)]

with 0 < ε << 1. In this limit, according to Zel’dovich, one splits the solution
of (11) into the thin reaction zone where the left hand side of (11) is negligible,
and into the diffusive layer where the reaction term is negligible. In the reac-
tion zone, one multiplies the right hand side of (11) by dũ

db and integrate from
ũ = u0(1 − ε) (the fresh side) to ũ = u0 (the burnt side), where ũ becomes
uniform. This yields:

DM

2
(
dũ
db

)2|u=u0(1−ε) =
∫ u0

u=u0(1−ε)

fr(ũ)dũ . (12)

Although the temperature becomes constant on the burnt side, its knowl-
edge requires the solution of the heat transfer problem on the fresh side. From
(12) one gets the value of the normal gradient of ũ on the interface, on the
fresh side:

∂ũ

∂b
|(u=u0,f ) =

√
2
DM

∫ u0

u=u0(1−ε)

fr(ũ)dũ . (13)

In (13), the subscript (u = u0,f ) is to mean that the quantity ∂ũ
∂b is taken prac-

tically for u = u0, but on the fresh side. Furthermore, the ordinary derivative
dũ
db in the 1D case (11) has been replaced in (13) by the partial derivative ∂ũ

∂b
to mean that it is the normal gradient of u(a) taken on the fresh side of the
flame surface. Therefore, on this fresh side one has to solve (in principle) two
conditions, the first condition is given in (13) and represents physically the
fact that some heat release takes place on the flame surface (the right hand
side) and is balanced by a heat flux (the left hand side). The other condi-
tion is that the temperature u is equal to u0 on the flame surface. Strictly
speaking, this u0 should be u0(1 − ε) but ε is neglected as being small. On
the fresh side one has to take into account the heat equation only (since the
reaction term is negligible there). This is one more condition than what can
be accommodated. The only free parameter left is the flame velocity (here the
product CC̃, denoted Ĉ = CC̃ later on). For an infinitely extended fresh gas
(as shown in Sect. (3.3) below this is not exactly our situation, but this does
not change the foregoing analysis in any fundamental way) there is a solution
at constant speed, such that u tends to zero at b tending to infinity (minus
infinity here, which is possible with a negative Ĉ): U = ufexp[−(bĈ/DM)].
The multiplicative constant uf (f for fresh) is found by imposing that u = u0

for b = 0 (the location of the flame front), and the speed is found by imposing
the gradient condition (13):

Ĉ =
1
u0

√
2D(aM)

∫ u0

u=u0(1−ε)

fr(ũ)dũ . (14)
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This is a relation between two quantities, C and C̃ (remember that Ĉ = CC̃).
One more relation is needed. If one assumes (and again this is to be checked a
posteriori) that the fresh gas is infinitely extended, at least near the separatrix,
the solution in the lighted region is almost exactly a flame propagating at the
constant speed Ĉ. This is equivalent to a line drawn in the (a, ζ) coordinate
system and separating the fresh side (away from the separatrix at a = aM)
from the burnt side (in between the flame trajectory and the separatrix).
Leaving aside the question of the intersection of this line with the separatrix,
since the temperature is constant (in time) and uniform on the burnt side,
the boundary condition (10) is automatically satisfied there.

It remains to examine the way the trajectory of the flame merges with the
separatrix. The crossing area in the (a, ζ) plane is such that the temperature
on the separatrix goes from u0(1 − ε) (on the fresh side) to u0. Therefore a
natural scaling there is to take the variation of u of order ε. Putting this into
the full reaction–diffusion equation (9), one gets all terms of the same order
of magnitude (with respect to ε) if a (actually a − aM) scales like ε (recall
that fr(u) is of order 1

ε ). The left hand side of (9) scales as the right hand
side (that is as 1

ε ) if ζ scales as Cε2. Another relation between the scaling of
ζ and of a in the transition layer comes from the boundary condition (10).
The two sides are of the same order in ε if ζ ∼ ε1/2, C ∼ ε−1/2, the thickness
of the boundary layer in the variable a being a − aM ∼ ε. This defines the
size of the domain in the coordinate plane (a, ζ) where the flame trajectory
crosses (smoothly) the separatrix at a = aM. Of course, this puts a bound on
the domain of validity of the present theory, since the “physical size” of the
crossing area has to be much larger than the size of a single cell: otherwise
one could not replace the discrete cell index i by a continuous variable. Since
ζ scales like ε1/2, and ζ like A1/4ζ, ζ scales in the region under consideration
like A1/4ε1/2, the product of a large number A1/4 times a small one ε1/2.
The result must be large with respect to 1, the cell size in our dimensionless
units. This requires ε2 � 1/A. The physical interpretation of this condition
is as follows: 1/A is the order of magnitude of the convection time along
the separatrix between two cells. It must be much smaller than ε, the time
scale for the reaction. Otherwise one should resolve the reaction along each
separatrix. This would require to replace the inner equation (11) by a more
complex inner problem, including an explicit time dependence. In particular,
one can think to the opposite limit A large, ε small, but 1/A � ε. In this
limit, the fastest process is the chemical reaction. Therefore one expects that
the effective velocity of propagation becomes independent on ε. To get the A
dependence of this velocity (again in the limit A large, ε small and 1/A� ε),
I suggest to do as follows: in this parameter domain the law for the effective
flame velocity should merge continuously with the one valid in the opposite
limit, that is in the range A large, ε small, but 1/A ∼ ε. In this intermediate
range, C = A1/4C, C ∼ ε−1/2 ∼ A1/4 and C ∼ A1/2, which yields the scaling
of the effective speed of propagation in the range A large, ε small and 1/A� ε.
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The solution is completed by solving the temperature field on the fresh
gas side. There, near the separatrix, the non-linear production term becomes
negligible, so that one can use the same type of method as in [6]. This fresh
region merges smoothly with the fresh region in front of the advancing flame.
Therefore one has to solve the linear diffusion equation in a wedge-like domain:
at scales much larger than the scales of the crossing region just considered,
one can see the flame as a line of discontinuity, where the temperature is
u0, although the normal gradient is fixed. Moreover, on the separatrix, the
boundary condition is the condition (10), that makes a well-defined problem.
Notice too that the effective velocity of propagation in the cellular flow is C =
A1/4C, that scales as C ∼ A1/4ε−3/2 as A becomes large and ε tends to zero.
Therefore, to derive the effective speed, one cannot use blindly the general

formula C =
√

Deff
τ where Deff is the effective diffusivity of a passive scalar

in the roll structure and τ a typical time scale for the chemistry. This formula
would give correctly the A1/4 dependence because Deff is like D(aM)A1/2,
but not the ε dependence of C: in the stiff reaction case, the flame velocity is
ε-independent, so that τ must be also ε-independent, which does not account
for the ε−1/2 dependence of C.

3.3 Propagation Inside a Single Cell

This subsection does not concern a central issue of this work. It is only to
investigate how a flame propagates inside a cell, once its periphery has begun
to burn. The relevant equation of propagation is the 1D equation (5). There
the variable of position is the quantity denoted as a and that is a way of
indexing the closed streamlines inside a cell. Our formulation scales out any
parameter from (5). This has a rather unfortunate consequence, namely the
fact that a dimensionless parameter remains hidden: from the derivation of
Sect. (3.2) (we look at the stiff reaction case now) the flame has a thermal
thickness of order D(aM)

|Ĉ| , that was assumed implicitly to be of the same order
of magnitude as the cell size. Indeed this has no special reason to be true,
except for the convenience of the analysis. It makes sense to consider three
possible situations: either the cell is much bigger than this length scale, both
length scales are of the same order of magnitude or the cell is far smaller
than the thermal thickness of the flame. Reference [3] assumed the first case
(thermal thickness far smaller than the cell). In this limit, a local approxima-
tion is valid: it associates to a flow line of index a a local inward velocity of
propagation:

C(a) =
1
u0

√
2D(a)

∫ u0

u=u0(1−ε)

fr(ũ)dũ. (15)

This formula is of course very close to (14), except that D(a) replaces D(aM).
In this framework in particular there is a well posed free boundary problem
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in the propagation of the flame through the cell system, since the velocity of
propagation near the border of the cell is the limit value of C(a) when a tends
to aM.

The intermediate range does not change the scalings, but now the diffu-
sion problem inside every cell cannot be reduced to a simple exponential like
solution of the heat equation. One has to take into account that the flame
propagates inside a closed cell, where the full time defendant equation has to
be solved. At the scale of the cell thickness the chemical reaction still takes
place in a narrow layer of thickness of order ε near a closed flow line, but, to be
computed, the local speed of this requires, the full solution of the heat transfer
problem, including the boundary condition at the center of the cell. However,
the scalings with respect to A and ε of the physically relevant quantities are
the same as in the first case, except of course for the time necessary for a cell
to burn completely. In the first case it is “large” and becomes of order 1 in
the second case. It is always of order λ

C(aM) . The case of a cell much smaller
than the thermal thickness of a flame is a priori different. In this case, the
heat brought by the chemical reaction shall heat the cell almost uniformly.
The rate of heat release is λ

√
2Dm

∫ u0

u0(1−ε) dufr(u), where λ is the order of
magnitude of the perimeter. This heats up the cell from u = 0 to u = u0

in a time λu0√
2Dm

∫ u0
u0(1−ε) dufr(u)

. This is also the velocity of propagation of the

flame inside the cell times the cell diameter, whence the effective speed of
propagation inside the cell:

C ∼
√

2Dm

∫ u0

u0(1−ε) dufr(u)

u0
,

the same formula applicable to the stiff reaction case in an infinite system.

4 Summary and Conclusion

This intended to present some recent results concerning solutions of diffusion
and reaction–diffusion problems in highly idealized situations, but always in
the limit of a large Péclet number, the one relevant for geophysical applica-
tions. In this limit, the advection is dominant over the molecular diffusion,
but this one cannot be neglected to obtain physically significant results. The
speed of propagation of a flame for instance depends on a rather complex
interplay of convection effects (the A1/4 dependence of the effective flame
speed) and of the reaction dynamics (the ε−1/2 dependence). Straightforward
extensions of the present work can be imagined. For instance, one can use the
same line of reasoning for the propagation of a stable thermodynamic phase
into a metastable one. No big change in the analysis seems to be expected, at
least if the latent heat is neglected, in such a way that there is a finite speed
of propagation for the 1D problem without flow. A more complex case is the
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one of a phase transformation (for instance liquid to vapor or liquid to liquid)
with latent heat included. This makes a rather nice exercise in applied math,
with not much concrete application perhaps.
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4. Y. Pomeau. Dispersion dans un écoulement en présence de zones de recircula-
tion. C.R. Ac. Sci. 301, Série II, 1323 (1985) 72, 74

5. C. Baudet, E. Guyon and Y. Pomeau: J. Phys. Lett. 46, 991 (1985); Y. Pomeau:
Dispersion at large Péclet number. In: Chaté H. et al. (eds.) Mixing Chaos and
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Abstract. To treat the interaction of radiation with matter we describe the radi-
ation as a gas of photons (particles of light) in a manner almost completely free
of relativistic and quantum effects. The central aim is to write a kinetic equation
describing radiative transfer through matter and to mention some of the simplifying
approximations appropriate for a first discussion of the implications of that equa-
tion. We discuss the structure of a hydrostatic atmosphere in radiative equilibrium
and see how an upper isothermal layer emerges from the simplest treatment of this
problem. We conclude by describing the heat equation of a radiating medium and
explaining how the diffusion approximation and Newton’s law of cooling emerge in
suitable limits.

1 Introduction

Seventy years ago, if you looked at what was being written about transport
in geophysics and astrophysics, you might have gathered that most of the
transport in meteorology and oceanography was by turbulent fluid motions
while the astrophysicists’ preoccupation was with radiative transport. Since
then, astrophysicists have become increasingly concerned with turbulent con-
vection (as they had been in the nineteenth century) while geophysicists have
seriously begun to take notice of radiative processes. I offer this oversimplified
view of things to rationalize why an astrophysicist has been asked to lecture
in this geophysics school: astrophysicists of my generation were all brought up
on the theory of radiative transfer. That is why many of the older elementary
texts on radiative transfer are by astrophysicists. I shall start by mentioning
just a few of these by title and author only, since that should be enough to
allow you to find them.

In the astrophysical literature we have the old standard, Chandrasekhar’s
“Radiative Transfer” now over 50 years old. Chandrasekhar once told me
that this was his favorite of the many books he wrote and, in it, you get a
nice view of his crisp style. A book written not long after this was “Basic
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Methods in Transfer Problems” by V. Kourganoff, whose aim was pedagogi-
cal as is that of the subsequent astrophysical text, “Stellar Atmospheres”, by
D. Mihalas. (Any book on stellar atmospheres will contain a discussion of ra-
diative transfer in plane-parallel steady atmospheres.) A relevant mathemati-
cal reference for the subject is Davisson’s book on the related topic of neutron
transport theory. There are books on the subject by atmospheric scientists
such as Goody’s “Atmospheric Radiation” which has been revised into “At-
mospheric Radiation: Theoretical Basis” with an added author, Y. L. Yung.
Among more recent books with that emphasis, we have “Radiative Transfer
in the Atmosphere and Ocean” by G. E. Thomas and K. Stamnes and “An
Introduction to Atmospheric Radiation” by K. N. Liou. A useful reference for
methods of solution is the two-volume work “Multiple Light Scattering” by
H. C. van de Hulst. Finally, I would suggest that if you ever wonder about
optical phenomena in our surroundings do not miss Minnaert’s “Light and
Colour in the Open Air” and, if you like that one, you will enjoy “Color and
Light in Nature” by D. K. Lynch and W. Livingston. Where the following
account differs from much of the aforementioned work is that time derivatives
in the radiative transfer theory are retained even though they are generally
not very important for geophysical problems. That is, in geophysics, radiative
modes are much faster than the fluid modes, so that the former are enslaved
by the latter. This means that we may usually omit the time derivatives in
the radiative equations. However, this renders them diagnostic rather than
prognostic and I leave it to you to make that transition when you need to. I
have not the heart to do that in this general discussion even though all we
would be giving up in that case is the retardation time as radiation emitted
in one place goes to another place. However, we shall do that explicitly in the
section on the radiative heat equation.

My assignment, as I understand it, is to describe how the radiation dif-
fuses through a medium while giving some attention to how it may influence
the dynamical processes taking place. To do this, I must decide whether to
describe radiation as a rapidly varying electromagnetic field or as a gas of
photons. I will adopt the particle picture since it is simpler to take account
of the interaction of the radiation with matter from this standpoint. In either
case, the radiation is relativistic and quantum mechanical, but I shall cut some
corners and concoct a classical version of the theory. Moreover, in all cases
of interest here, the photons are so numerous that we need not worry about
quantum fluctuations. We shall also reduce the treatment of the photon gas
to that of a continuum. In geophysical applications, the material velocities are
so small that they are not important for the transfer of radiation so we shall
not be worried about the effects of aberration of light and of Doppler shifts
caused by motion of the ambient fluid and certainly not about the force that
radiation exerts on matter.

In the interests of brevity, I shall not go into the quantum physics of the
processes of emission and absorption of radiation except to introduce here the
qualitative distinction that is often made between the processes of scattering
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and of absorption with re-emission. In scattering, the direction of motion of a
photon is changed with little or no alteration of its energy. This can happen
when a photon bounces off an aerosol or when it excites an atom from a ground
state to a state from which it immediately returns to its original configuration.
In absorption, the photon is swallowed up and the energy absorbed is later re-
emitted in one or more photons, leaving no memory of the original photon. We
shall typically treat these as separate processes, though there may sometimes
be overlap. If you want to delve into these things, you might look at some
old-fashioned approaches first, especially for the molecular transitions. For
example, you could begin such a study with E. J. Bowen’s “Chemical Aspects
of Light” if you do not want to go deeply into modern quantum mechanics.

2 Some Definitions

I have often complained to my mathematical friends that modern math books
frequently begin with some 30 pages of unmotivated definitions that I often
cannot get through. This practice of mathematicians is what I blame for
my limited mathematical knowledge. So if I begin this discussion with some
definitions, I must defend myself by saying that their motivation may be clear
at least to those who have some smattering of kinetic theory. The idea is that
we have a fluid composed of atoms, molecules, droplets and other particles, all
of which we shall consider to be microscopic. Interspersed in this complicated
fluid is a gas of photons or particles of light. A photon has an associated
frequency, ν, and we shall consider only those applications to materials with
unit index of refraction so that all our photons move at the constant speed
c ∼= 3 × 1010 cm/s. The direction of a photon’s motion is given by the unit
vector μμμ. The photon’s momentum is

p =
hν

c
μμμ , (1)

and its energy is hν, where h is the Planck’s constant. If you are troubled
by the idea of associating a frequency to a light particle, you should read
Newton’s “Opticks”. For him, light consisted of corpuscles subject to fits, to
which no doubt a mean frequency can be associated.

At any time, t, we position a photon in a six-dimensional phase space
whose coordinates are the three spatial position coordinates and the three
components of p. We denote the density of photons in phase space by f so
that the probable number of photons in an infinitesimal volume of phase space
is given by

dN = f(p,x, t)dp dx . (2)

If we use spherical coordinates in momentum space with radial coordinate
hν/c, we may write the volume element dp as h3ν2

c3 dΩ dν with dΩ as the
element of solid angle. We can then hide phase-space factors by working with
the specific intensity
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Iν =
h4ν3

c2
f (3)

instead of the phase-space density. This quantity describes the properties of
what is called a pencil of radiation giving the rate at which energy in a unit
frequency interval passes through unit area (normal the pencil’s axis) per
unit time and per unit solid angle. For a discussion of the formulation in
terms of specific intensity, which some people find intuitively more appealing
than the phase-space density, see the book by Chandrasekhar, for example.
We have included (what may seem to be) an extra factor of hν in Iν so that
its dimensions are energy per unit area per unit time per unit frequency per
unit solid angle.

As in fluid mechanics, we shall focus on the three lowest moments of the
phase-space density. In terms of radiative quantities these are the radiative
energy density

E =
1
c

∫
dΩ

∫
Iν(μμμ, x, t)d ν , (4)

the radiative energy flux

FFF =
∫

dΩ
∫

Iν(μμμ, x, t)μμμ dν (5)

and the radiative pressure tensor

P =
1
c

∫
dΩ

∫
Iν(μμμ, x, t)μμμμμμ dν . (6)

And, as in fluid mechanics, we may obtain equations for these macroscopic
quantities from an equation for f (or Iν), to which we turn next.

3 The Transfer Equation

The density in phase space satisfies what is essentially a continuity equation
as a density should. We write this as

∂tf + div(fV) = sources− sinks , (7)

where V is the velocity in the six-dimensional phase space and the divergence
is with respect to the six phase-space coordinates. We consider the dynamics to
be Hamiltonian so that the flow in phase space is incompressible (divV = 0).
The transfer equation then becomes

∂tf + ẋi ∂

∂xi
f + ṗj ∂

∂pj
f = sources − sinks, (8)

where repeated indices are summed over.
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We have no problem understanding what is meant by ẋi but when do we
encounter ṗj , the acceleration of a photon? There are two cases when the
speed of light may vary: when the photons pass through a region where the
index refraction varies or when they pass through a strong gravitational field.
Neither of these situations arises often in geophysical contexts, so we shall not
pay any further attention to them here. (However, we may note in passing
that photons move along geodesics and, if we know the metric produced by
the gravitational field and the index of refraction, we can then re-express ṗ by
using the geodesic equation.) When we assume that the velocity of a photon
is a constant between encounters with material particles we may write

ẋi = cμi , (9)

where the μi are the components of the unit vector in the direction of the
photon’s motion.

At this point in the development, we switch to the specific intensity as the
descriptor of the radiation field because it is more conventionally used than
the phase-space density. For many people, the specific intensity is the more
intuitive of the two, though I find that phase space makes the introduction to
the basic quantities relatively simple. So we multiply (8) by h4ν3

c2 , recall (3)
and get

∂tIν + cμi ∂

∂xi
Iν = gains− losses , (10)

where we have discarded the term in ṗ and renamed the terms on the right
to signal the change in outlook. We are working in a fixed inertial frame and
that is why we may treat ν and μμμ as constants.

From the point of view of the photon gas at a given location in phase
space, emission and absorption are evidently to be considered gains and losses,
respectively, for the radiation field. And the same is true for scattering into
and out of the relevant region of momentum space, respectively. Absorption
and scattering are characterized by cross-sections. That is, as a photon moves
along, the chance that it interacts with a material particle is expressed in
terms of the area that is, in effect, blocked by the particle. That is called the
cross-section, α (say). If the number of absorbing and scattering particles per
unit volume is n(x, t), then the number of such particles per unit area in a
slab of thickness ds is nds. The fraction of the slab that they present to the
photon beam is αnds. The quantity (αn)−1 is then a length and is called
the mean free path (mfp) of a photon. The mfp depends on the physics of
the material particle, the frequency of the photon and the physical state of
the matter. (We shall not consider a dependence on scattering angle in this
introduction but this is important for some applications such as scattering by
non-spherical aerosols.)

We include both absorption and scattering in α but we shall assume that
we can separate them out in the formulation (in principle). To do so explicitly
would mean going into the quantum mechanics of these processes, and we
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shall not take that up here. In fact, we cannot make the distinction without
having some knowledge of the physical conditions. For example, in a scattering
process, a material particle may be caused to change its internal state by a
photon. If the particle returns to its original state almost immediately and
re-emits an almost identical photon, we may consider that it is the same
photon and it will merely have suffered a change in direction and perhaps
a slight energy shift. For this to happen, we must assume that the particle
has completed the scattering process before its state is modified by collision
with another particle. Otherwise it will be sent into another state. In that
case, if and when it emits a photon, the new photon will be unrelated to the
original one. We see then that one aspect of the separation of the processes of
scattering and absorption will depend on the ratio of re-emission lifetime to
mean free time between interparticle collisions. There is a ratio of times here
that will depend on many things such as the nature of the material particles.
Since, as mentioned, there are typically several kinds of material particles,
it is often expedient to lump them all together and calculate an averaged
cross-section, ᾱ.

For complicated mixtures of particles it is sometimes convenient to speak of
a cross-section per unit mass of the ambient medium, rather than per particle.
If m̄ is the average mass of the material particles, we can write κν = m̄ᾱ and,
with ρ = m̄n, the inverse mean free path becomes ρκν where ρ is the mass
density. The averaging behind all this is complicated, especially because there
are particles that add mass but not much cross-section to the mix at any given
frequency.

To keep the distinction between absorption and scattering explicit, let us
write the effective cross-sectional area per unit mass as κν = kν +σν where kν

is the absorption coefficient per unit mass and σν is the scattering coefficient
per unit mass. The expression of frequency dependences of these quantities
through subscripts is customary and it also serves to emphasize the problems
those dependences present and that we shall avoid.

Those new to the study of radiative transfer often expect to see the specific
intensity attenuate as the beam propagates because of the inverse square
spreading of radiation. But, as can be seen from the transfer equation, if
there are no sources or sinks, the intensity is constant as the photon beam
moves through a stationary medium. That is one reason why the intensity
is considered a useful quantity to work with. On the other hand, if there
is material in the path of the beam, the beam is attenuated by absorption
and scattering. A beam of light that traverses a material slab of thickness ds
along the s-direction is attenuated through absorption and scattering by an
amount dIν = −Iνρκν ds. That is, the loss from the beam is proportional
to the intensity of the beam, the density of material in its path, the effective
cross-sectional area of this material and the distance traveled. When the beam
travels across a finite distance, absorption and scattering cause the intensity to
decrease like Iν ∝ exp

(− ∫
ρκνds

)
, where the limits on the integration are at

the endpoints of the path. The integral in the exponent is the optical distance
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between the two limits of integration. Optical distance is measured in units of
the local mean free path of photons. This is how to express distance when the
unit of length varies along the path. Astronomers refer to the optical distance
from the surface of an object vertically down to a given depth as optical depth.

Next, we need to include the contributions to the beam as it progresses
through the medium. We introduce the emission coefficient, jν , such that the
rate of emission per unit mass of the medium in all directions and per unit
frequency is 4πjν . The local rate of contribution to the beam of radiation is
ρjν per unit volume per unit frequency and per unit solid angle. The medium
also scatters light from all directions at a rate

∫
ρσνIν dΩ per unit volume and

per unit frequency. The amount per unit solid angle available to any particular
beam is 1/(4π) of this. Normally, σν depends on the scattering angle but we
shall consider only the case of isotropic scattering here with σν independent
of scattering angle and angle of incidence. Hence we may write that the net
rate of gain per unit volume from scattering is ρσνJν where

Jν =
1
4π

∫
Iν dΩ (11)

is called the mean intensity. The total rate of gain per unit volume in the
beam is then ρ (jν + σνJν).

We wrote the losses and the gains as the amounts subtracted from or added
to the beam as it traverses a distance ds along its path. Since the photons
move at speed c, a slab of thickness ds is traversed in a time dt = ds/c. We are
assuming that the index of refraction is unity and that the space is Euclidean,
so the beam moves in a straight line. Hence, the net rate of gain of energy in
a beam as it moves along is given by (1/c)dIν/dt, where this is an Eulerian
derivative with ẋ = cμμμ. We may then write

1
c
∂tIν + μμμ · ∇∇∇Iν = ρ (jν + σνJν) − ρ(kν + σν)Iν . (12)

This is known as the equation of transfer.
The calculations of the absorption and scattering coefficients are got from

a mixture of quantum mechanical calculations and experiments. We assume
that the medium may be described in terms of local thermodynamic quantities
such as temperature and pressure. This notion of local thermodynamics is
also used to get an approximation for the emission coefficient. Attempts to do
better than this have not been overly successful, and one may wonder whether
this ought to cause concern for studies of the very high atmosphere.

In equilibrium, the medium is homogenous and steady and the radiation
field is isotropic (Iν = Jν). In that case, the radiative intensity is given by
Planck’s equilibrium expression for the intensity, denoted as Bν , which is a
known function of the temperature. In that ideal case, the equation of transfer
boils down to

jν = kνBν . (13)
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This relation is called the Kirchhoff–Planck law and we shall use it to provide
an expression for the emission coefficient in general. The transfer equation
now becomes

1
c
∂tIν + μμμ · ∇∇∇Iν = ρκν (Jν − Iν) , (14)

where κν = kν + σν and

Jν =
σν

κν
Jν +

kν

κν
Bν (15)

is called the source function.

4 Equations of the Radiative Fluid

As one does in going from classical kinetic theory to fluid dynamics, we may
here integrate out the momentum variables, frequency and direction, to obtain
continuum equations for the radiative flow. Setting

I =
∫ ∞

0

Iν dν (16)

we integrate the transfer equation over frequency and obtain

1
c
∂tI + μμμ · ∇∇∇I = ρ

∫ ∞

0

κν (Jν − Iν) dν . (17)

Though this is a difficult integro-differential equation, it is far simpler
than the full monochromatic transfer equation since we are no longer paying
attention to the strong variations in absorption and emission that occur in real
conditions. Yet, even if we blur such effects, the transfer equation is not easy
to solve and the various techniques for solving even the simplest problems rely
on making any simplification that seems qualitatively reasonable. A common
simplification that we shall adopt limits attention to scattering processes, as
we have defined them, for which the change in frequency induced is not large.
Hence we shall here replace σν by a scattering cross-section, σ, that does not
depend on frequency. One calls such scattering coherent.

A simplification that is then used in studying (17), at least in first approx-
imation, is to replace kν in the frequency integral by a mean (over frequency)
absorption coefficient, k. The weight function to be chosen to evaluate such
a mean will depend on what else is under the integral sign. This could lead
to the appearance of more than one mean absorption coefficient in a given
problem, but the usual practice is to adopt a single one of them. The choice
then depends on what quantities to be calculated seem most important. A dif-
ficulty in this approach is that the weight function typically depends on the
state of the medium, which is not known in advance. So once you solve the
transfer equation, you then have to solve the equations governing the proper-
ties of the material medium. That, at least, is the usual order of business and
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it will clearly call for iteration in most cases. However, if you are simultane-
ously solving the fluid equations you do not want to have to iterate the whole
procedure unless you are ready for some serious computing. That is the bad
news. Is there any good news?

Fortunately, in geophysical situations, the motion is usually very subsonic,
that is, fluid velocities are less than those of most individual particles. The
direct effects of velocities on the radiative problem are then not very great,
though fluctuations in the material medium can be a problem. The main
effects of motion are typically included in kν through its dependence on tem-
perature and the fluid motions do not modify those much except to add a
bit of blurring of the spectral lines that favors the use of mean absorption
coefficients. (If the fluid velocities did become significant, the mean absorp-
tion coefficients would be tensorial, but let us not even think about such
things.) So the transfer theory is normally carried out as if the medium were
stationary.

Once we have made all the implied simplifications, we write the (frequency)
integrated transfer equation as

1
c
∂tI + μμμ · ∇∇∇I = ρκ (J − I) , (18)

where κ is the mean opacity coefficient and

J =
σ

κ
J +

k

κ
B . (19)

The (frequency) integrated mean intensity is related to the radiative energy
density through J =

∫ ∞
0
Jν dν = c/(4π)E. I have used both of these notations

because J is the usual astrophysical notation and it is well to know of it. On
the other hand, E is more physically meaningful, so I prefer to use it.

The equilibrium expression for the integrated Planckian intensity is
B =

∫ ∞
0 Bν = σT 4/π where σ is the Stefan–Boltzmann constant and a = 4σ/c

is known as the radiation constant. Here, T is a temperature assigned to the
radiation field. In the simplest cases, the radiation temperature is almost the
same as that of the ambient matter, but life is not always so simple.

To go now to the macroscopic description, we first compute the lowest
angular moments of the transfer equation. On integrating over all solid angle,
we obtain

∂E

∂t
+∇∇∇···FFF = 4πρk(B − J) = ρk c (P − E) , (20)

where P = 4πB/c = aT 4 is the radiative energy density in (local) equilib-
rium. Here, T is the temperature of the matter. We could use subscripts to
distinguish the two temperature fields, matter and radiation, but I did not
want to burden you with notation at this stage. Equation (20) corresponds
to the continuity equation of fluid dynamics with sources and sinks. If the
actual radiative energy density exceeds the Planckian equilibrium value, more
radiative energy is absorbed than is emitted by the medium. (Note that k is
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the mean absorption coefficient; coherent scattering plays no explicit role in
the energy balance.) When P = E we have the condition of radiative equilib-
rium in which emission and absorption are in balance and the two implied
temperatures are equal.

Next, we multiply the transfer equation by μμμ and integrate over angle to
obtain

∂FFF

∂t
+ c2∇∇∇···P = −ρκc FFF . (21)

This is the momentum/energy balance equation and it is κ that appears on
the right since both absorption and scattering contribute to the exchange of
momentum between matter and radiation. The flow of the radiation through
the matter that is driven by the radiative pressure gradient macroscopically
resembles fluid flow through a porous medium. For this case, we also have the
possibility that the porous medium can move (as in a fluidized bed) but, in
geophysical situations, such effects are too small to concern us.

In (20) and (21), we have the equations of motion for the photon fluid.
These equations do not offer a complete description and we need to provide
an equation for the pressure tensor, P. One way to get such an equation might
be to go to a higher moment of the transfer equation, but that way lies infinite
regress. Rather, we reach for a simplifying assumption whose validity may be
checked against examples where accurate solutions are known. Here we shall
use a simple closure relation for the radiative pressure tensor.

If the mean free path of the photons is less than the scale of variation
of properties of the medium, radiation coming in from various directions is
not so different and, in such cases, we may assume that the radiation field is
nearly isotropic. If the intensity does not depend on direction, we readily find
that

P =
1
3
E I , (22)

where I is the unit tensor. Some call this closure formula the Eddington ap-
proximation, though it does follow from a less stringent condition on the
intensity field than strict isotropy than Eddington used. Proceeding from
such weaker conditions on the intensity is advantageous because the phys-
ical boundary conditions are usually posed for the intensity itself rather than
on its moments. And, from those conditions, we determine the boundary con-
ditions for the moments as Eddington did. In the simplest cases, we still find
(22) in the first approximation. This is sometimes a useful way to proceed.
If you deal with cases where the geometry and the boundary conditions are
simple you can try to do a better job in treating the frequency dependence of
κν .

On the other hand, when the mean free path of photons is long, we need to
improve on (22). One approach is to replace the 1/3 in (22) by something called
the Eddington factor. That is too technical for us to pursue here. However,
you should be aware that I is not invariant under changes of reference frame.
When you want to call I isotropic, say, you ought to stipulate the frame in



An Introduction to Radiative Transfer for Geophysicists 95

which that is to be true. If we are to regard the radiation as a fluid, we have
to admit that it has a reference frame of its own and that ought to be the
frame in which to make simplifications of the radiation field. Such a choice
has an influence on the Eddington factor since, even though the medium does
not move very fast, the radiative fluid does.

5 The Stationary State

5.1 Radiative Equilibrium

Many branches of geophysics are concerned with thin layers, with such excep-
tions as studies of the earth’s core. For thin layers, we can generally ignore
or parameterize the influence of sphericity and confine ourselves to a plane-
parallel medium. The classical problem of this kind occurs in a layer in radia-
tive equilibrium whose properties depend only on the vertical coordinate, z.
In that case, with F as the z-component of flux and P the zz-component of
P, the moment equations become

d F

dz
= 0 (23)

and
dP
dz

= −ρκ F . (24)

We see that F is a constant and that

P = P0 + τF (25)

where P0 is a constant of integration and

τ =
∫ ztop

z

ρκ dz′ (26)

is the optical depth into the medium. Here, ztop is the vertical coordinate of
the top of the layer, which for an isothermal atmosphere, for example, could be
at positive infinity. (Astrophysicists often choose coordinates with z measured
downward into a star, starting from 0 at the surface, if there is one, but we
have not done this.)

For this exposition we adopt the approximation that P = 1
3E for the case

of the plane-parallel layer. Since E is the radiant energy density, it makes
sense to introduce a radiation temperature such that E = aT 4. In the case we
are studying here, this temperature is the same as that of the medium and
(25) tells us that T 4 is linear in optical depth. However, in the case of many
planetary atmospheres, the medium is often modeled as a finite slab with
radiation coming in from above and below. There is a considerable literature
on this problem, such as you will find in the book on multiple light scattering
(1981), by H. C. van de Hulst, by radiative transfer. He uses a method devised
by Case in the wake of van Kampen’s approach to the Vlasov equation.
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5.2 The Hydrostatic State

Even in the simplest case, when we find that T 4 is linear in τ , we would still not
know what the medium is really like since we need to find z(τ) to complete
the solution for the structure of the medium. To do this, we introduce the
hydrostatic condition

dp
dz

= −gρ (27)

where p is the pressure of the material medium and g is the (often constant)
gravitational acceleration. We also need an equation of state and that can be
any of a number of things depending on whether we are concerned about (say)
sunlight getting in amongst plankton patches or ground radiation coming up
through the atmosphere. To have something specific to work with, let us take
the equation of state for a perfect gas:

p = �ρT . (28)

In general, � will depend on the chemical composition, the form of water
(vapor or droplets), ionization, dissociation and other such local details but
here we shall assume that it is constant. Then we have a problem simplified to
the extent that the matter and radiation conditions may be solved together.

When we divide (27) by (24) and use the Eddington approximation, we
get

dp
dE

=
gc

κF
. (29)

This is not a hard equation to solve but it does require that we specify how
κ depends on ρ and T , for instance. For definiteness, and ease of solution, let
us then consider the pure isotopic scattering case with k = 0 so that κ = σ =
constant. Then we find that

p =
gc

σF
(E − E0) , (30)

where E0 is a constant of integration. It is chosen to be the energy density
of radiation at the top of the medium where, we assume, the gas pressure
vanishes. With E0 = aT 4

0 , this defines the surface temperature of the medium.
On returning to (27) and using the equation of state, we have

dp
dz

= − gp

�T . (31)

This can be now rewritten as

dΘ
dz

= − g

4�T0

Θ4 − 1
Θ4

, (32)

where Θ = T/T0. Deep into the atmosphere, Θ gets large so we find that Θ is
approximately −g z/(4�)+constant. High in the atmosphere, when Θ is close
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to unity, we have that Θ ≈ 1+const. exp[−g z/(4�)]. So the upper atmosphere
is essentially isothermal and the lower one (with nearly linear temperature
profile nz) is polytropic, that is, the static pressure is proportional to a power
of the static density. The “isothermal region” (as it was once called) of our
atmosphere was first observed by Teisserenc de Bort who discovered it in 1899.
It is now called the stratosphere and is known to display much dynamical
activity.

In fact the equation for Θ integrates exactly [1] and it gives

− gz

4�T0
= Θ − 1

2
tan−1 Θ − 1

2
coth−1 Θ . (33)

If we wanted to include other effects such as non-constant absorption coef-
ficient or conductivity (molecular or turbulent) in this study, we would find
using matched expansions that the qualitative structure is robust. In the spe-
cial case T0 = 0, the surface would be at z = 0. Then we would have to deal
only with the semi-infinite medium with a linear temperature profile. In that
case, the static medium has p ∝ ρ4/3, which is a case of a pure polytropic
atmosphere. When weak disturbances of this polytropic layer are introduced
with weak motion of the medium by way of the fluid equations, we can study
the normal modes of the medium. When the perturbations behave adiabat-
ically and inviscidly, we may refer to Lamb’s study of the normal modes of
such atmospheres. Radiative effects have also been included in such studies
for cases when the perturbations are optically very thin [2] or very thick [3].
For discussion of the linear problem in the Boussinesq approximation, see the
book of Goody. For these various treatments, we need to understand how to
include the thermal effects of radiation in the fluid equations. In the next
section we introduce that topic.

6 The Radiative Heat Equation

To this point, we have followed the formalism where it led us but sooner or
later one needs to see how the transfer theory fits in with the physics of what is
going on. In this section we examine how the radiative heat transfer affects the
temperature of the material medium. After all, in most geophysical contexts
we are not as interested in the solution of the transfer equation as in the role
of radiation in heating or cooling the ambient medium. To see into this topic,
we may examine the influence of radiative sources and sinks on the thermal
budget of the material medium itself. I have already prepared the way a bit
by introducing some of the standard formulae from the theory of equilibrium
radiation.

For a gas, the radiative heat equation is

de
dt

− p

ρ2

dρ
dt

= Q, (34)
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where e is the internal energy density and Q is the net radiative heating
(or cooling) rate per unit volume. We could also include other effects such
as viscous dissipation and conduction. However, in this section, we shall be
concerned only with the radiative effects and will even omit the work term,
which brings the adiabatic gradient into play.

To find the rate at which radiation arrives at a point x, we integrate the
contributions from all over the medium. At the general point x′ radiation
is emitted at a rate ρj(x′, t) per unit volume and per unit solid angle. This
radiation is attenuated on its way to the location of interest by the intervening
material and by inverse square spreading. In the direction of x′ −x, radiation
from x′ is coming in at a rate

ρj(x′, t)
exp(−τ)
|x′ − x|2 (35)

per unit volume per unit solid angle where τ is the optical distance between x′

and x. (Here we are neglecting the retardation time that the radiation takes
to get from x′ to x.) We integrate this expression along the line from x′ to x
to find the intensity along that line. Then, at each distance from the point of
interest, we integrate over the spherical surface surrounding the point at that
distance and divide by 4π to obtain

J(x, t) =
∫

d3x′ ρ j(x′, t)
e−τ

4π|x′ − x|2 . (36)

Here we see why the inverse square effect does not show up in the intensity:
it is compensated by the volume integral.

The right-hand side of (34) is the negative of the right-hand side of (20)
and, with (13), it may be written as

Q = −ρkcP + ρkc

∫
d3x′ ρkP(x′, t)

e−τ

4π|x′ − x|2 . (37)

To gain some insight, we simplify things by putting P = aT 4 and treating
ρk as a constant over the medium so that τ = kρ|x′ − x|. Then with de =
ρcv dT and guidance from (20) we write

cv
∂T

∂t
= −ckaT 4 + ck

∫
d3x′ kρaT 4(x′, t)

ekρ|x′−x|

4π|x′ − x|2 . (38)

We may express this equation for the temperature as

∂T

∂t
=
ka

cv

∫
d3x′ T 4(x′, t)K(|x′ − x|), (39)

where

K(|x′ − x|) = ρk
ekρ|x′−x|

4π|x′ − x|2 − δ(x′ − x) . (40)
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For a relatively opaque medium with large kρ, the kernel is sharply peaked.
Hence we may expand T 4(x′, t) around the point x in a Taylor series as

T 4(x′) = T 4(x)+ (x′−x) ·∇T 4(x)+
1
2
(x′−x)(x′−x) : ∇∇T 4(x)+ · · · (41)

where dyadic notation is used, the colon means a double dot product and
we have not explicitly exhibited the time dependence. When we put this into
the integral of (39) we find that the antisymmetric terms in the expansion
do not contribute because the kernel is symmetric. Thus the heat equation is
expanded into

∂T 4

∂t
=

q

3(kρ)2
∇2T 4 +

q

5(kρ)4
∇4T 4 + · · · (42)

since the volume integral of K is zero and where

q =
4ackT 3

cv
(43)

is an inverse time.
If we keep just the leading term on the right, we have a diffusion equation

for the radiant energy and the diffusion coefficient,

D =
q

3(kρ)2
, (44)

has the desired dimensions of length squared over time. The two terms on the
right of (42) together may be represented by a rational approximation for the
operators so that

∂T 4

∂t
=

D

1 − 3
5(kρ)2 ∇2

∇2T 4 (45)

if we treat the Laplacian operator as if it were an algebraic quantity. When
the spatial scale of temperature variation is large, ∇2 is a small operator and
this equation reduces to a diffusion equation for T 4. In the limit of small scales
of variation, ∇2 is a large operator and we have

∂T 4

∂t
= −5

9
qT 4 (46)

which, when suitably linearized, is essentially Newton’s law of cooling.
We may multiply out the denominator in (45) to turn that equation into a

partial differential equation but this extra step makes for complications when
additional terms (such as advection and work terms) are included in the heat
equation. In its present form, (45) is well set up for spectral methods. We may
get some idea of the dependence of the radiative lifetime on scales variation
if we replace ∇2 by (π/
)2 to obtain
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trad =
[5(kρ 
)2 + 3π2]

5π2D(kρ 
)2
, (47)

where kρ 
 measures the optical thickness of a perturbation to the uniform
state. This formula is useful for gauging the effects of radiation on convective
processes and are discussed in [4, 5].

In the case of thermal convection, radiative transfer works in parallel with
thermal diffusivity and in series with viscosity, in the terminology of electri-
cians. If the conductive lifetime of a thermal perturbation is tcond, the thermal
lifetime of a perturbation under the two effects is

ttherm =
1

1
tcond

+ 1
trad

. (48)

Since the viscous effects work in series with the thermal effects, the dissipative
lifetime is

tdiss =
√

[tvisc ttherm]. (49)

The degree of convective instability is then measured by the ratio of the
dissipative lifetime to the dynamical time, which is the free fall time under
the reduced gravity. That ratio squared is a (radiative) Rayleigh number. Of
course, it is not enough to identify the key instability parameter; you need to
also know the other ratios of characteristic times just as you need to know
the Prandtl number for ordinary thermal convection. Moreover, the boundary
conditions play a very significant role in the problem and these depend on
various things such as cloud cover which themselves depend on the convection.
At that point, the fun begins and my discourse ends.
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Summary

Geophysical flows are characterized by the presence of coherent vortices, lo-
calized concentrations of energy and vorticity that have a lifetime much longer
than the local turbulence time (sometimes called the eddy turnover time).

In the ocean, coherent vortices, or eddies, are ubiquitous features whose
size varies between several to a few hundred kilometers, and that account for
a large portion of the ocean turbulent kinetic energy [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17]. The presence of vortices can be revealed in various
ways. Vortices at the ocean surface imprint their signature on the sea surface
height and can be tracked by satellite, while floats with looping trajectories
can help revealing the presence of vortices at depth.

Coherent vortices significantly affect the dynamics and the statistical prop-
erties of ocean flows, with important consequences on transport processes. In
this contribution, we shall briefly review some of these issues, focusing on the
simplified conceptual model provided by two-dimensional turbulence.

1 Coherent Vortices and Background Turbulence

The dynamics of vortex-dominated geophysical flows can be simulated by
adopting the overly simplified configuration of two-dimensional, barotropic
turbulence, where the motion is purely horizontal and vertical derivatives van-
ish. The dynamics of two-dimensional turbulence is described by the vorticity
equation

∂ω

∂t
+ u · ∇ω = F +D
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where ω(x, t) = ∂v/∂x − ∂u/∂y is vorticity, u = (u, v) is the fluid velocity,
x = (x, y) is space and t is time. The terms F and D represent forcing and
dissipation respectively.

The dynamics of two-dimensional turbulence is characterized by the spon-
taneous emergence, and subsequent dominance, of a population of strong co-
herent vortices that concentrate most of the energy and vorticity of the flow
[6, 19, 18]. In past years we have advocated the view that two-dimensional
turbulence can be pictured as a two-component fluid: a sea of coherent vor-
tices immersed into a background turbulence that is quite Kolmogorovian.
This two-component view forms the basis of how we interpret Lagrangian
(and Eulerian) measurements and how we infer flow properties from them
[20, 21, 22].

An important issue is how we identify the two components. Until now,
the best way to identify vortices is found to be the direct identification by
some vortex census algorithm based on the analysis of local vorticity patches
in physical space. A variety of such methods exists [23, 24, 25, 26, 27, 28]; all
of them require the knowledge of the full vorticity field. A simplified version
of a vortex census, which requires the knowledge of just a few Eulerian time
series and provides the gross features of the vortex statistics such as the vortex
density and the average vortex size, has also been proposed [22].

Although coherent vortices are local vorticity concentrations, their effects
are non-local: The velocity field generated by a coherent vortex is non-local
as it extends to large distances from the vortex center, well beyond the region
where vorticity is significant. The range where the effect of the vortex on the
velocity field is significant depends on the vortex shape and on the degree
of baroclinicity: Barotropic vortices extend their influence to far distances,
while baroclinic lenses (such as Meddies) have a shorter range of influence.
Indeed, the Green’s function associated with a barotropic (point) vortex is
proportional to log(r), where r is the distance from the core of the vortex.
For a baroclinic (point) vortex, the Green’s function goes as 1/r. Therefore
baroclinic vortices have a shorter range of influence than barotropic ones [29].
In terms of the velocity field (and particle dispersion), the two-component
view of mesoscale turbulence should not be seen as a purely spatial decom-
position of space into separate vortex and non-vortex areas, but rather as the
superposition of two dynamical components which can simultaneously act at
the same spatial position.

The far-field influence of coherent vortices can be seen in the probability
distribution function (PDF) of the velocity. At high Reynolds numbers, when
vortices are intense and have sharp profiles, velocity PDFs in barotropic tur-
bulence have non-Gaussian tails indicating that high velocities are more prob-
able than would be the case for a Gaussian field [21, 30]. This non-Gaussianity
has been previously discussed in the context of point vortices, which can be
thought of as a simplified model of vortex dominated flows at very large
Reynolds number [31, 32, 33]. In this context, it has been shown that small
velocities have a Gaussian distribution but the PDF has a non-Gaussian tail
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related to the slow decay with distance of the velocity induced by a single
vortex. Convergence to a Gaussian PDF is obtained only in systems with an
extremely large number of vortices, orders of magnitude more than exist in
the ocean [33].

Float trajectories in the North Atlantic [30] and in the Adriatic Sea [34, 35],
indicate that velocity PDFs are non-Gaussian. Typically, they have larger
kurtosis than a normal distribution: they have a Gaussian-like core and non-
Gaussian tails for high velocities. Similar results have been found from mid-
latitude fluid particle trajectories along isobaric surfaces in a simulation of
the Atlantic Ocean dynamics at high resolution [36]. Note that we are here
referring to either Eulerian or Lagrangian velocity PDFs under the assump-
tion that Lagrangian particles sample the whole domain. In this case, in fact,
Lagrangian velocity PDFs in the ocean must converge to the Eulerian ones.
This similarity in velocity PDFs between float data, ocean GCMs, simplified
turbulence models, and point vortex systems suggests that the non-Gaussian
nature of the velocity PDFs is due to the vortex component of ocean mesoscale
turbulence.

2 Dynamics of Lagrangian Tracers

The Lagrangian equation of motion for an individual fluid particle moving in
a two-dimensional flow is

dXi

dt
= Ui(t) = u(Xi(t), t) (1)

where Xi(t) and Ui(t) are the Lagrangian position and velocity of the ith
particle, and u(Xi, t) is the Eulerian velocity at the particle position. In this
equation, we do not equate force to mass times particle acceleration, but rather
particle velocity to the push of the flow. This happens because the particle is
assumed to have negligible size and vanishing inertia with respect to the ad-
vecting fluid, i.e., to be a fluid element. When particles have finite size and/or
non-vanishing inertia, the equations of motion become more complicated, see
e.g. [37, 38] for a discussion of the dynamics of inertial and finite-size particles
in vortex-dominated flows.

Numerical simulation of barotropic and of baroclinic (stratified) quasi-
geostrophic turbulence and of point-vortex systems indicate that the cores
of coherent vortices are associated with islands of regular (non-chaotic)
Lagrangian motion that trap particles for times comparable with the vortex
lifetime [39], and that vortices are characterized by a strong impermeability to
inward and outward particle fluxes, see e.g. Elhmaidi et al. [40] or Provenzale
[38] for a review. Particles can have more complex behavior and can eventually
migrate from inside to outside of a vortex or vice versa only when highly (and
relatively rare) dissipative events take place, as the deformation of a vortex
due to the interaction with a nearby vortex, or the formation of a filament.
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For this reason, an initially inhomogeneous particle distribution becomes ho-
mogeneous only on a very long time scale, which is determined by the typical
lifetime of the vortices rather than by their typical eddy turnover time.

The trapping behavior of coherent vortices can be rationalized in terms
of potential vorticity (PV) conservation [41]. For an ideal fluid with irrota-
tional external forcing PV is conserved. When some little dissipation and/or
rotational forcing is acting on the fluid, as it usually happens, PV is not
conserved. If the PV-changing effects are small, PV is quasi-conserved. This
means that in regions where PV changes slightly, the particles will be able
to shift from one PV surface to another. However, strong PV gradients are
much more difficult to overcome, as the change in PV that the particle should
achieve to climb (or descend) the gradient may be too large compared to the
effect of the forcing and dissipation present in the system. As a result, strong
PV gradients can act as transport barriers. This is the main physical reason
why intense jets, associated with strong PV gradients, can act as efficient bar-
riers to transport. The same happens for isolated vortices: Vortex edges act
as barriers to transport because vortices are regions of anomalous potential
vorticity, usually embedded in a background where PV oscillates around a ref-
erence value with low variance. The vortex edges are therefore characterized
by a large potential vorticity gradient, which fluid particles can rarely cross.
This behavior is clearly illustrated by the dynamics of the stratospheric polar
vortex over Antarctica [42].

Another important effect of coherent vortices concerns the convergence of
Lagrangian time-averages. Lagrangian particles can have a very long mem-
ory when coherent structures, whose lifetime is long compared to other time
scales in the problem, are present. For instance, if a Lagrangian particle is
initially released in the background turbulence outside vortex cores, it will
move around without entering any of the vortex cores present in the turbu-
lent flow, until, in a quite rare event such as the formation of a new vortex,
the particle will get trapped inside a newly forming vortical structure. From
that moment on, the particle will stay inside the vortex for times comparable
with the vortex lifetime.

The above example indicates that the temporal convergence of the statisti-
cal properties of a set of Lagrangian trajectories can take place on rather long
timescales, related to the lifetime of the coherent structures. Of course, en-
semble averages over a large number of homogeneously distributed Lagrangian
particles do not suffer from this problem and they usually give a more complete
picture of the flow. This illustrates the fact that ergodicity (i.e., equivalence
of time and ensemble averages) is reached only on very long times, if ever,
for Lagrangian statistics of particles moving in vortex-dominated flows, as
discussed by Weiss et al. [33] for point vortices and by Pasquero et al. [22]
for the vortices of two-dimensional turbulence. An interesting question, then,
concerns the trade-off between the number of particles required to provide a
meaningful picture of the flow (i.e., a correct estimate of the statistical proper-
ties of the flow) and the length of the trajectories. This issue has been discussed
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in some detail in [22], together with the comparison between Lagrangian and
Eulerian second-order statistics (i.e., spectra and decorrelation times).

3 Lagrangian Dispersion in Vortex-Dominated Flows

Lagrangian particles in a Gaussian, homogeneous, stationary and uncorre-
lated velocity field undergo a Brownian random walk. Under such conditions,
the second-order moment of the distribution of particle displacements grows
linearly with time:

A2(τ ; t0) ≡< (Xi(t0 + τ) − Xi(t0))2 >= 2Kτ (5)

where K is the dispersion (or diffusion) coefficient. Here, Xi(t) is the posi-
tion of the ith particle at time t, and the angular brackets denote an ensem-
ble average over all particles. The function A2(τ, t0) measures the absolute
(or single-particle) dispersion. For a statistically stationary flow, the absolute
dispersion A2 does not depend on the starting time t0. Relaxing any of the
above assumptions (Gaussianity, homogeneity, stationarity, lack of temporal
and spatial correlations) can significantly alter the dispersion law described
above.

On short timescales, in particular, the Brownian dispersion law is modi-
fied by spatial and temporal correlations in the advecting flow, which induce
Lagrangian velocity correlations over a substantial time range. The velocity
autocorrelation function for an individual particle (labeled by the index i) is
defined as

Ri(τ) =
(Ui(t) − Ui) · (Ui(t+ τ) − Ui)

σ2
i

, (3)

where Ui(t) is the velocity of the ith particle at time t, Ui and σ2
i are the mean

and variance of the velocity of the ith trajectory, and the overbar indicates an
average over time t. Hence, Ri(0) = 1 and Ri(τ) goes to zero for large τ , when
the particle velocity loses memory of its initial value. The flow field as a whole
is characterized by the ensemble-averaged velocity autocorrelation function,
R(τ), defined by averaging over all trajectories. One simple measure of the
memory of Lagrangian particles is the Lagrangian integral time, defined as

T =
∫ ∞

0

R(τ)dτ. (4)

Over times much shorter than the Lagrangian integral time, the velocity
is almost constant and one observes a ballistic dispersion phase,

A2(τ) = 2Eτ2 (6)

where E is the mean kinetic energy of the advecting flow. A standard way
of representing absolute dispersion is to define a time-dependent dispersion
coefficient, K(τ), as
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K(τ) =
A2(τ)

2τ
. (7)

In the ballistic phase, K(τ) → Eτ as τ → 0, while in the Brownian disper-
sion phase K(τ) → K for τ → ∞. The ballistic regime is sometimes visible
in the dispersion curves computed from surface drifter data [43]. Subsurface
float trajectories are often characterized by a well-defined ballistic regime,
associated with very steep Lagrangian spectra at small times [44].

Lagrangian stochastic models (LSM) are employed to reproduce the main
statistical properties of particle trajectories in turbulent flows, without re-
solving the full Eulerian dynamics. Individual trajectories computed by an
LSM usually do not have the same characteristics of the particles advected by
a realistic flow. The similarity is recovered—if ever!—only statistically, after
averaging over particle ensembles and over different realizations of the turbu-
lent flow. Thus, one should not expect an individual stochastic trajectory to
resemble an individual float trajectory.

One simple class of stochastic models describes the process of single-
particle dispersion. In this case, the spatial correlations of the advecting flow
are discarded insofar as they do not translate into temporal correlations of
the Lagrangian velocities (see also Rupolo et al. [44] for a discussion of how
Eulerian spatial correlations are related to Lagrangian time correlations). A
more complex approach deals with particle separation processes, i.e., relative
dispersion. In this case, the stochastic model describes the time evolution of
the separation of a particle pair, and spatial correlations of the turbulent flow
become an essential ingredient of the picture. In the following, we shall con-
sider only single-particle dispersion and the related stochastic descriptions. An
exhaustive discussion of the atmospheric applications of Lagrangian stochas-
tic models can be found in the monograph by Rodean [45]; for oceanographic
applications see Griffa [46] and Brickman and Smith [47].

The simplest stochastic model for single-particle dispersion is the random
walk (or Markoff-0 model). In this approach, the particle displacements are
randomly extracted from a Gaussian distribution, and there is no temporal
correlation between subsequent displacements. If we assume that there is no
mean flow advecting the particles and that the turbulent flow is statistically
isotropic, we can write a Lagrangian stochastic differential equation for the
random walk as

dXi =
√
KdWi(t). (8)

where X is the position of the ith particle and the diffusivity, K, is not allowed
to vary in space and time. The incremental Wiener random vector, dWi, has
zero mean and it is δ-correlated in space and time, 〈dWi(t) · dWj(t′)〉 =
δij δ(t− t′)dt.

The single-particle stochastic description illustrated above can be framed
in terms of a deterministic partial differential equation for the time evolution of
the probability density function of particle positions, P (X|X(0), t). Defining
the particle concentration at x as ρ(x, t) =

∫
P (X = x|X(0), t) dX(0), the
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Fokker–Planck equation for the evolution of P gives the well-known diffusion
equation:

∂ρ(x, t)
∂t

=
1
2
K∇2[ρ(x, t)]. (9)

The assumption of uncorrelated displacements is equivalent to the assump-
tion that the Eulerian fluid velocities decorrelate instantaneously, i.e., that the
turbulent structure of the flow has no correlations. In general, this assumption
is not appropriate for ocean mesoscale flows, where the temporal correlations
of the advecting velocity field cannot be discarded. The simplest way of ac-
counting for a memory in Lagrangian velocities is to consider a Markoff-1
model. In this approach, the time evolution of the Lagrangian velocity of the
ith particle, Ui, is described by an Ornstein–Uhlenbeck (OU) process:

dUi = −Ui

T
dt+

√
2σ2

T
dWi. (10)

where T is the Lagrangian correlation time and σ2 is the variance of the
Lagrangian velocities. The first term on the r.h.s. is the (deterministic) fading-
memory term, and the second term is the “stochastic kick,” or random com-
ponent, of the velocity fluctuation. For this process, the velocity distribution
is a Gaussian with zero mean and variance σ2, and the velocity autocorre-
lation is an exponential, R(τ) = exp(−τ/T ). The (time-dependent) diffusion
coefficient can be computed analytically,

K(τ) = σ2T

[
1 − T (1 − e−τ/T )

t

]
, (11)

see Griffa [46] for a discussion of this type of stochastic model in the context
of oceanographic applications.

In a study of particle dispersion in two-dimensional turbulence, Pasquero
et al. [21] showed that the linear Ornstein–Uhlenbeck model provides a good
representation of absolute dispersion at short and large times (respectively in
the ballistic and Brownian regimes), while at intermediate times it provides
estimates of the dispersion coefficient which differ by at most 25% from the
values obtained by direct integration of particle dynamics in the turbulent
flow. If this discrepancy is acceptable, due for example to uncertain or poorly
resolved data, then the use of the Ornstein–Uhlenbeck model is sufficient. To
obtain a more precise estimate of the dispersion coefficient, however, a stochas-
tic model that more closely represents the processes of particle dispersion in
vortex-dominated mesoscale turbulence is warranted.

Major differences between the Ornstein–Uhlenbeck process and particle
dispersion in mesoscale turbulence are related to the facts that the velocity dis-
tribution is non-Gaussian [20], the velocity autocorrelation is non-exponential
[21], and particles get trapped in vortices for long times [39, 40]. Given these
differences, it is indeed surprising that just a 25% discrepancy between the
turbulent and the modeled dispersion coefficient is detected.
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In an attempt to improve stochastic parameterizations of particle dis-
persion in mesoscale ocean turbulence, various extensions of the Ornstein–
Uhlenbeck model have been proposed. The indications that Lagrangian
accelerations in the ocean are correlated in time [44] have stimulated the
development of Markoff-2 models where an Ornstein–Uhlenbeck formulation
is written for the acceleration a, with dU = a dt [46]. Higher order models
have also been proposed, with the aim of better reproducing other statistical
properties of Lagrangian motions such as the sub- or super-diffusive behavior
at intermediate times [48]. Superdiffusion has also been obtained by Reynolds
[49], using a variation of a Markoff-2 model that includes spin.

Models that include spin have been designed to explicitly describe particle
motion in and around coherent structures. In the presence of coherent vortices,
particle motion has a rotational component, as evident in the looping trajec-
tories of floats deployed inside mesoscale eddies. The rotational component of
the velocity vector along a Lagrangian trajectory is characterized by an accel-
eration orthogonal to the trajectory. Simple geometrical arguments show that
the introduction of the spin in Markoff-1 models corresponds to adding a new
term in the stochastic equation for the velocity increment, proportional to the
orthogonal velocity component [49, 50]. The individual trajectories produced
by these models display spiraling motion, although the ensemble averaged ve-
locity autocorrelation function is not necessarily oscillatory [49]. This model
has recently been used to reproduce some statistical properties of Northwest
Atlantic float trajectories [51].

On the other hand, it is not clear whether particle spinning inside vortices
has any effect on space and timescales larger than those of the vortices them-
selves. In general, rotational motion inside vortices does not contribute to the
large-scale spreading of particles; it is only the motion of the vortex itself that
is responsible for particle displacements at large scales. In turn, vortices move
because they are advected by other vortices and there is no self-induction of
the vortices themselves [33]. As a result, the large-time dispersion properties of
Lagrangian particles inside or outside the vortices of two-dimensional turbu-
lence are the same. Thus, for the purpose of understanding particle dispersion
at scales larger than the size of the individual vortices, the parameterization of
particle motion inside a vortex can probably be neglected. Note, however, that
the situation can be very different if the scale of motion of interest are large
enough that variations with latitude of the Coriolis parameter, equal to twice
the component of the Earth’s angular velocity, cannot be neglected [52]. Vor-
tices, indeed, move differently with respect to fluid particles in the background
turbulence in presence of differential rotation. Here, significant differences be-
tween long-time dispersion properties of particles inside and outside vortices
can be detected [52].

In a study of single-particle dispersion in two-dimensional turbulence, Pas-
quero et al. [21] proposed a parameterization of dispersion in two-dimensional
turbulence at scales larger than those of the individual vortices. In doing so,
no a priori difference between particles inside and outside vortices is drawn.
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The main point of the approach followed in [21] is the observation that the
Eulerian velocity at any point is determined by the combined effect of the far
field of the vortices and the contribution of the local vorticity field in the
background [20]. Thus, even outside vortices, the velocity field induced by
the coherent vortices cannot be discarded: on average, 80% of the kinetic en-
ergy in the background turbulence outside vortices is due to the velocity field
induced by the vortex population. In addition, the non-Gaussian velocities
measured in the background turbulence outside vortices are entirely due to
the action of the surrounding vortices, which extend their influence far away
from their inner cores. This is a signature of the non-locality of the velocity
field: a particle moving in a vortex-dominated flow is heavily affected by the
vortex dynamics even if it is not located inside them.

In this approach, the stochastic Lagrangian velocity of a particle at the
position X(t) is produced by the sum of two components,

U(X) = UB(X) + UV(X) , (12)

where UB(X) is the velocity induced by the background turbulence and
UV(X) is that induced by the vortices. The background-induced velocity is
characterized by small energy and slow dynamics (i.e., long temporal correla-
tions), while the vortex-induced component has large energy and it undergoes
fast dynamics (whose temporal scale is of the order of the eddy turnover time).
In addition, the vortex-induced component is characterized by a non-Gaussian
velocity PDF.

A different stochastic equation has then to be used for each of the two
components. Since the background-induced velocity component, UB(X), has
a Gaussian distribution, a standard stochastic OU process can be used to
describe it. As for the non-Gaussian, vortex-induced component UV(X), a
proper description is easily obtained by considering a non-linear Markoff-1
model [21]. In this case, one needs to consider a generalized Langevin equation

dUV = a(UV)dt+ b(UV)dW (13)

where the functions a and b are functions of the velocity UV. The choice of the
function a(UV) is (not uniquely) determined by the corresponding Fokker–
Planck equation, with the use of the well-mixed condition [53]. In the end,
the model proposed by Pasquero et al. becomes (we omit the particle index i
for simplicity of notation):

dX = (UB + UV) dt

dUB = −UB

TB
dt+

√
2σ2

B

TB
dWB (14)

dUV = − 2 + |UV|/σV

(1 + |UV|/σV)2
UV

TV
dt+

√
2σ2

V

TV
dWV
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where TB > TV, σ2
V 	 σ2

B, and WB and WV are two independent Wiener
processes.

Interestingly, the parameters of the stochastic model depicted above can
be obtained from fits to an ensemble of Lagrangian trajectories (i.e., assum-
ing no knowledge of the advecting velocity field). Comparison with parti-
cle advection in two-dimensional turbulence shows that this model captures
single-particle dispersion with an error of less than 5%, and it does also
capture statistical quantities measuring higher-order moments of the disper-
sion statistics (e.g., the distribution of first-exit times). Note that both the
non-linear nature of the vortex-induced velocity and the presence of a low-
energy background-induced velocity are essential ingredients of the model. At
shorter times, the vortex-induced velocity dominates and it entirely deter-
mines statistical properties such as the non-Gaussian velocity distribution. At
longer times, the vortex-induced velocity becomes rapidly uncorrelated and
the lower-energy background-induced velocity gives a significant contribution
to particle dispersion.

One advantage of the model illustrated above is that it has been built
from a detailed knowledge of the dynamics of vortex-dominated flows. That
is, it is not obtained by ignoring the structure of the flow, but from an at-
tempt to reproduce, in a stochastic framework, some of the essential ingre-
dients of mesoscale turbulence. In particular, this model fully exploits the
two-component nature of mesoscale turbulence.

4 Dynamics of Passive and Active Tracers

Transport processes can be approached from an Eulerian perspective, focusing
on the advection–diffusion equation for an advected tracer field concentration:

∂ρ

∂t
+ u · ∇ρ = Fρ +Dρ

where ρ is the concentration of the advected tracer, and Fρ and Dρ are
respectively source and sink terms for the tracer.

There is a deep difference between the dynamics of active and passive
tracers. A passive tracer does not feed back on the velocity field, as in the case
of the concentration of a (dispersed) pollutant or of plankton in the ocean. An
active tracer, on the other hand, does feed back on the fluid dynamics, think
of temperature in a convecting fluid or vorticity in two-dimensional turbulence
(which indeed defines the velocity field by the Biot-Savart law ω = ∇2ψ and
u = −∂ψ/∂y, v = ∂ψ/∂x). Clearly, to some extent all tracers are “active,”
either dynamically or thermodynamically. However, it is often assumed that
when the feedback is small, or indirect, it can be discarded.

In the absence of sources and sinks, both the spatial average, 〈ρ〉, and
the variance, 〈(ρ− 〈ρ〉)2〉, of the tracer concentration are conserved. Without
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loss of generality, we can put 〈ρ〉 = 0. In a statistically stationary flow, the
dynamics of a passive tracer in two-dimensional turbulence is characterized by
a direct cascade of tracer variance from large to small scales. In the inertial
range, far from the characteristic scales of sources and sinks, dimensional
arguments indicate that the tracer variance spectrum, Pρ(k) where k is the
wavenumber, is characterized by a form Pρ(k) ∝ k−1 [54].

The situation for vorticity is complicated by the presence of two quadratic
invariants when F = D = 0: enstrophy, Z = 〈ω2〉 (again we have made
the safe assumption that 〈ω〉 = 0), analogous to tracer variance, and en-
ergy, E = 〈(u2 + v2

)〉/2. The simultaneous conservation of these two quan-
tities induces a direct cascade of enstrophy, analogous to the direct cascade
of tracer variance, and an inverse cascade of energy, a specific property of
two-dimensional turbulence [55, 56]. In the case that the scales of small-scale
dissipation, lD, of forcing, lF, and of large-scale boundary effects, L, are suf-
ficiently far from each other, dimensional arguments can be used to deter-
mine the form of the spectrum. The inverse energy cascade takes place at
scales l that are larger than the forcing scale, lF < l < L, and it is asso-
ciated with an energy spectrum E(k) ∝ k−5/3. At scales smaller than the
forcing scales, lD < l < lF, a direct cascade of enstrophy appears, asso-
ciated with an energy spectrum E(k) ∝ k−3 and an enstrophy spectrum
Z(k) ∝ k−1.

Direct numerical simulation of forced-dissipated two-dimensional turbu-
lence indicates that the spectrum of passive tracer variance follows with a
good approximation the predicted scaling form Pρ ∝ k−1. On the other hand,
the enstrophy spectrum in the range of the direct enstrophy cascade is usually
steeper than the prediction from dimensional arguments.

This difference has recently been explored by Babiano and Provenzale
[57], who investigated why the direct cascade is weaker for vorticity than
for a passive tracer. The analysis of the vorticity field by means of the
local value of the Okubo–Weiss parameter [58, 59], Q = s2 − ω2, where
s2 = (∂u/∂x− ∂v/∂y)2 + (∂u/∂y+ ∂v/∂x)2, has shown that the enstrophy
cascade is reversed in elliptic regions characterized by dominance of rotation
over strain (Q < 0). In the cores of the vortices and in small elliptic patches in
the background, at finite scales in the enstrophy inertial range one observes an
inverse enstrophy cascade. In turn, this is associated with gradient-smoothing
processes and an inverse energy cascade.

This behavior is consistent with the weaker spectral enstrophy flux, com-
pared to the passive tracer variance flux, and with the steeper logarithmic
slope of the enstrophy spectrum. The inversion of the enstrophy cascade in
elliptic regions is the main difference between the dynamics of passive tracer
and vorticity. In particular, Babiano and Provenzale speculated that the in-
version of the enstrophy cascade can be one important mechanism associated
with the formation of coherent vortices.
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5 Conclusions

Geophysical turbulence is populated with long-lived, energetic structures: vor-
tices, fronts, jets, and waves. Among these, coherent vortices play an especially
important role, and affect transport processes in many ways.

As a consequence, transport processes cannot be understood in detail by
resorting to simple stochastic parameterizations, but require the development
and use of new approaches. In this chapter we have discussed some possible
options, that include non-linear stochastic processes and an explicit consider-
ation of the turbulent cascades.

Of course, many issues are still open. One conceptual question is how and
why do coherent vortices form. The consideration of the cascades can help
address this problem, but much more needs to be done.

Another active topic of research, which has not been discussed here, is
the interplay of coherent vortices and the marine ecosystem (see the contri-
bution of Marina Levy in this volume, or Pasquero et al. [60, 61] to discover
the view of some of the authors of the present chapter). Mesoscale vortices
affect the population dynamics of phyto- and zooplankton, and are associated
with secondary currents responsible for localized vertical fluxes of nutrients
[62, 63, 64, 65, 66, 67, 68, 69, 70]. The fact that the nutrient fluxes have a fine
spatial and temporal detail, generated by the eddy field, has important con-
sequences on primary productivity [60, 65, 71]. Furthermore, vortices can act
as shelters for temporarily less-favored planktonic species owing to their trap-
ping properties [72] and can disguise the possible presence of self-sustained
oscillations in the plankton system [73]. The horizontal velocity field induced
by vortices also plays an important role in determining plankton patchiness
[74, 75, 76]. The parameterization of transport in mesoscale turbulence and
of its ecological effects [77], needed for properly representing biogeochemical
cycles in coarse-resolution climate models, is a key open problem.
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Abstract. A new rotating-tank experiment has been set up to investigate several
aspects of dispersion in forced quasi-two-dimensional turbulence. By superimpos-
ing a harmonically varying perturbation on the mean rotation rate the mean flow
continually interacts with the no-slip boundaries and forms boundary layers with
high-amplitude vorticity twice during the forcing period. By choosing the proper
amplitude and frequency of the perturbation it is possible to continuously inject
small-scale vorticity in the interior of the flow, either in the form of filamentary
structures (detached boundary layers) or as small vortices (after the roll-up of de-
tached boundary layers). We present measurements of the passive scalar spectrum
which show good agreement with the k−1 spectrum predicted by Batchelor (J. Fluid
Mech. 5:113, 1959). Using particle image velocimetry we are able to reconstruct the
Lagrangian trajectories of particles. The relative dispersion rates of particle pairs
show an initial exponential separation followed by the classical Richardson disper-
sion, R2 ∝ t3.0±0.1. The variance of the absolute particle displacement grows as
σ ∝ t1.4, similar to the observations in the previous experiments by Solomon et al.
(Phys. Rev. Lett. 71:3975, 1993) and Hansen et al. (Phys. Rev. E 58:7261, 1998).
Finally, and indicating future directions of research, we present results of a simple
chemical reaction in forced quasi-2D turbulence and show how the bulk reaction
rate is controlled by the mixing and filamentation processes.

1 Introduction

Strictly two-dimensional (2D) turbulence is an idealisation, since natural flows
have a 3D aspect to them. Nevertheless, understanding the simplest 2D case
gives a good grasp of more complicated systems that occur in the atmosphere
and oceans. Examples of quasi-2D flow where the mixing and dispersion of
passive tracers are important are easily found in the atmosphere and in oceanic
flows where a combination of geometry, stratification and rotation acts to sup-
press motion in the vertical direction. In a similar way the magnetic field lines
can constrain charged particles in plasma confinement devices and astrophys-
ical flows to quasi-2D behaviour [1]. In the stratosphere the rate that reactive
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chlorine can mix and destroy ozone in the polar vortices is to a large degree
controlled by quasi-2D horizontal stirring and mixing. Pierce and Fairliem [2]
used output from an atmospheric circulation model to quantify the advection
and mixing by subtropical anticyclones within the northern hemisphere winter
stratospheric vortex. The deformation of the material lines near the edge of the
polar vortex, which then rapidly evolve into elongated filaments as material
is drawn around the smaller vortices at the edge of the polar vortex, strongly
enhances mixing. The rate of stretching of the material lines was shown to
be exponential and the chaotic advection leads to rapid mixing of vortex air
with tropical and mid-latitude air, which has important implications for ozone
depletion. Chaotic mixing has also been shown to be important in the ocean,
as the uptake of carbon dioxide is in part due to the growth of phytoplankton
whose growth rate depends on light and nutrient availability, the depth of
the mixing layer and lateral stirring of nutrients by fields of quasi-2D eddies.
The dynamics of the resulting filamental and patchy fields of phytoplankton
has been reviewed by Martin [3]. Such patchiness can lead to enhancement
of phytoplankton growth due to the increased horizontal chemical gradients.
This is consistent with the increased carbon dioxide uptake in numerical ocean
circulation models as found by Martin et al. [4]. Similar enhancement of the
bulk reactivity rates was also demonstrated by Paireau and Tabeling [5] in
laboratory experiments of mixing of reactants by a quasi-2D chaotic flow in
shallow fluid layers.

The dispersion characteristics of passive Lagrangian tracers in models of
the ocean have been shown by Bracco et al. [6] to be very similar to what is
found in idealised 2D models. They numerically studied the dynamics of pas-
sive Lagrangian tracers in 3D quasi-geostrophic turbulence and compared the
behaviour with that of 2D barotropic turbulence. Despite the different Euler-
ian properties of the two flows, they found that the Lagrangian dynamics of
passively advected tracers in 3D quasi-geostrophic turbulence is very similar to
that of barotropic turbulence, with an initial exponential separation followed
by the relative dispersion growing as Richardson’s law of R2 ∝ t3 (with R the
particle separation and t the time). Similar results were found for the initial
relative dispersion of floating surface drifters in the Gulf of Mexico [7] where
the mean square pair separation grew exponentially in time from the smallest
resolved scale, which was 1 km in this particular study, to approximately 50
km, with an e-folding time of 2–3 days. Thereafter, the dispersion exhibits a
power-law dependence on time with an exponent between 2 and 3 up to scales
of several hundred kilometres. These oceanographic and atmospheric examples
serve to motivate the study of mixing and dispersion in 2D turbulence.

This chapter is structured as follows; in Sect. 2 we review the important
theoretical predictions of the dispersion and mixing in 2D flows. Only a lim-
ited number of different laboratory experiments have been used to study the
properties of these 2D flows and in Sect. 3 we discuss briefly the use of thin
electrolytic layers, soap films, density stratified fluids and rotating fluids to
make flows quasi-2D. In Sect. 3.1 we describe a rotating laboratory experiment
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that is able to continuously inject vortices from the boundary into the inte-
rior of the flow. The observed turbulent flow field appears to behave similar
to globally forced 2D turbulence. Experimental observations of the vortices
and their interactions are presented in Sect. 4 along with the observed scalar
spectrum (Sect. 4.2) and dispersion rates (Sect. 4.3). Finally, and as an illus-
tration, it is shown in Sect. 4.4 how this experiment can be used to investigate
chemical reactions in 2D turbulence.

2 Passive Scalar Dispersion in 2D Turbulence

Stirring and mixing of two distinct bodies of water with certain amounts of
passive tracer is accomplished in three stages. Initially there are distinct inter-
faces separating the two water masses, with possibly a different passive tracer
concentration in each water parcel. During the stirring process, the second
stage, the water masses are mechanically swirled and folded, and molecular
diffusion is unimportant as long as tracer concentration gradients are not too
large. The final stage is when mixing occurs: the gradients suddenly disappear
and the fluid becomes homogeneous; molecular diffusion is responsible for the
sudden mixing. This final stage of mixing is reached when filaments of the
fluid have been strained to small enough scales that diffusion can quickly act.
In a chemical reaction, molecules of different species must come into contact
for the reaction to occur. Thus, when the species are initially separated, the
reaction will not begin until the final mixing stage is reached. Thus in many
chemically reacting systems the bulk reaction rates are set not only by the
chemical kinetics but also by the rates at which different patches of fluid are
stretched and folded so that spatial scales are reduced to those where diffusion
takes over.

Amongst the few firm results in the theory of turbulence is Batchelor’s
prediction about the form of the passive scalar spectrum Es(k) in the
convective–dissipative range of wave numbers. The spatial scales of the
convective–dissipative regime occur in the second stage of mixing that we
have just described. In this wave number range, no eddies are present and
velocity fluctuations are strongly damped, but the straining is still strong
enough to produce stretching and folding of the passive tracer field (and dif-
fusion of the passive tracer is not important yet). The theory proposed by
Batchelor [8] predicted that the stretching and folding leads to an intensity
spectrum of the dye or temperature fluctuations that scale as Es(k) ∝ k−1.

The Lagrangian dynamics of mixing in a turbulent fluid was first investi-
gated by Richardson [9] who predicted the “four-thirds law” which expresses
that the turbulent eddy diffusivity increases as the scale of the flow increases
as K(r) = k0ε

1/3r4/3, where ε is the rate of dissipation of turbulent kinetic
energy and k0 a constant. His first experiments consisted of releasing pairs of
balloons and recording the approximate time and place they were later recov-
ered on the ground. The resulting data showed that the relative separation
increased non-linearly with time. In a later experiment with Henry Stommel
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they threw floating white disks cut from parsnips from a small pier into Loch
Long, and by measuring their position with time they confirmed that the rate
of spreading increased as the distance between the pairs of parsnips increased,
consistent with R2 ∝ t3 [10]. This idea was later analyzed more generally by
Batchelor [11]. At very small scales in 2D turbulence, the flow is dominated
by straining and an exponential separation of particles has been observed [12].

Two-dimensional turbulent fields are characterised by the presence of co-
herent vortices. The trapping of particles in the cores of coherent structures
changes the dispersion statistics of particles [13]. With such long-lived coher-
ent vortex structures there are two distinct regions of the flow: those regions
that mix rapidly, with a particle separation rate that initially grows exponen-
tially and subsequently grows like R2 ∝ t3, and those regions within the vortex
cores where particles are trapped. These two different mixing regions can be
distinguished by the relative importance of the vorticity field with respect to
the strain field (stretching plus shearing deformation). This is done using the
so-called Okubo–Weiss parameter, defined as Q = S2 − ω2, where ω2 is the
square of the vorticity and S2 is the total squared strain [14, 15]. When Q < 0,
the vorticity field is stronger than the strain field and eddy-like structures are
present (elliptic regions), while for Q > 0 the strain field dominates (hyper-
bolic regions) where dispersion is stronger. In chemically reacting systems the
strain-dominated regions act to increase the heterogeneity of chemical species
within the flow.

The energy spectrum E(k) of forced 2D turbulence consists of two distinct
power-law regimes, one for wave numbers larger and another for wave numbers
smaller than an injection wave number ki [16, 17]. For k < ki the spectrum
is characterised by an inverse cascade of energy from small scales to large
scales with E(k) ∝ k−5/3, while for large wave numbers k > ki the energy
spectrum decreases more rapidly, E(k) ∝ k−3, characteristic of the direct
enstrophy cascade. The transfer of energy from small spatial scales to large
spatial scales is the opposite of 3D turbulence where spectral energy of both
active and passive tracers are transferred from larger to smaller scales. In
2D turbulence only passive tracers are advected to small scales, so we could
expect the passive scalar spectrum to have a slope of Es(k) ∝ k−1 for the same
wave number range that corresponds to the k−3 direct enstrophy cascade.
The theoretical predictions assume that turbulence is isotropic, unbounded
and continuously forced with a well-defined wave number ki at which energy
is injected into the system. However, by necessity laboratory experiments are
bounded, and turbulence is anisotropic due to the spatial variability in forcing
or interactions with no-slip boundaries that act as vorticity sources.

3 Laboratory Experiments of Quasi-2D Turbulence

In recent reviews the various experimental techniques to study 2D flows have
been summarised [18, 19]. Quasi-2D turbulent flows are usually generated in
shallow fluid layers, soap films, rotating fluids and density stratified fluids. In



Dispersion and Mixing in Quasi-2D Rotating Flows 123

the first case the turbulence is generated in a relatively thin layer of conducting
fluid (or electrolyte), with a spatially varying magnetic field applied perpen-
dicular to the fluid layer. With two electrodes at opposite sidewalls of the
container a temporally varying electric field is applied. The resulting Lorentz
force acts on the charge carriers and drives the fluid motion. The first such
experiment was performed by Sommeria [20] with turbulence generation by
steady forcing. If the electromagnetic forcing is turned on and off, rapidly
decaying 2D turbulence is produced and vortices are seen to merge together
over time to form larger structures [21]. With the second technique, quasi-
2D turbulence is generated in a rapidly flowing soap film that is penetrated
by a comb [22]. By measuring the short-time fluctuations in film thickness,
here considered as a passive tracer, Amarouchene and Kellay [23] found a
k−1 spectrum over a decade of wave numbers in a fast-flowing soap film. A
special arrangement of two combs set in a V-shape allowed Rutgers [24] to
continuously inject vortices into the flow field and make simultaneous mea-
surements of both an inverse energy cascade with characteristic k−5/3 spec-
trum and a forward enstrophy cascade with a k−3 spectrum. Rotation has
also long been known to lead to a 2D flow field [25], with Welander [26]
making some of the earliest observations of the mixing and filamentation
of a passive tracer in decaying 2D turbulence. Finally, strongly stratified
flows that limit vertical motion have been used by a number of investiga-
tors to study confined quasi-2D flows. By towing a vertical comb through
a two-layer stratification Maassen, Clercx and van Heijst [27, 28, 29] were
able to examine the long-time evolution of decaying 2D turbulence and its
interaction with the no-slip boundaries in circular, square and rectangular
containers.

3.1 Quasi-2D Turbulence by Oscillating Spin-Up

We will now present results of mixing and dispersion in a new experiment to
generate forced quasi-2D turbulence. Laboratory experiments in rotating flu-
ids of oscillating spin-up have been conducted where the production of small-
scale vorticity near the no-slip sidewalls of the container leads to the formation
of quasi-2D vortices. The decay of the vortices is due to either the interac-
tion with other vortices (vortex stripping) or the effects of Ekman pumping
at the bottom of the tank. The effects of Ekman damping are minimised by
increasing the depth of the fluid.

In the laboratory experiments, the flow is made quasi-2D by a steady back-
ground rotation. A small sinusoidal perturbation to the background rotation
leads to the periodic formation of eddies in the corners of the tank by the roll-
up of vorticity generated along the sidewalls. When the oscillation period is
greater than the time scale needed to advect a full-grown corner vortex along
a sidewall to a neighbouring corner, dipole structures are observed to form.
These dipoles migrate away from the walls, and the interior of the tank is con-
tinually filled with new vortices. After several forcing periods a sea of vortices
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emerges in the interior of the tank. This system is clearly not isotropic, so it
is of interest to see how some of the properties of forced 2D turbulence still
emerge in this quasi-2D turbulent flow and how the coherent vortex structures
evolve.

The most important effect of no-slip boundaries on the evolution of a
(turbulent) flow field is that if there is a continued input of energy into the
system, then dissipation at the boundaries naturally occurs and the energy of
the flow does not grow without limit. The injection of filaments of vorticity and
small vortices (after the roll-up of viscous boundary layers) represents a source
of vorticity whose scale is independent of the forcing scale itself, but depends
on the Reynolds number of the flow (i.e. the boundary-layer thickness). In
simulations of a decaying initial distribution of vortices, this source can clearly
be seen in spectra where there is a change in the slope of the energy at
the wave number corresponding to the thickness of the viscous boundary
layer, kδ. For k < kδ the spectrum is characterised by a k−5/3 spectrum,
characteristic of the inverse energy cascade, and for k > kδ there is a k−3

spectrum, characteristic of the direct enstrophy cascade [30]. Similarly, Clercx,
Maassen and van Heijst [31] found important influences of the boundary upon
the energetics of decaying turbulence.

3.2 Experimental Design

The laboratory experiments were performed in a tank of square cross-section,
with dimensions 100 × 100 × 30 cm3 (length × width × depth). This tank is
mounted on a rotating table (see Fig. 1) and the flow is made quasi-2D by a
steady background rotation of 1 rad/s to which a small sinusoidal perturbation
is applied:

Ω(t) = Ω0(1 +A sin(ft)), (1)

where Ω0 is the mean rotation rate, A is the (dimensionless) amplitude of the
perturbation and f is the frequency. In a typical experiment the tank is spun
up from rest, and through the action of Ekman pumping the flow becomes
quasi-2D after approximately 20 min. The perturbation amplitude is A = 0.06
and the forcing frequency f is in the range 0.0157–0.126 rad/s.

In the rotating frame of reference the fluid oscillates back and forth around
the axis of the tank. A similar forcing of the fluid was made in experiments
performed by van Heijst [32] and van de Konijnenberg et al. [33] where the
rotation rate Ω0 of a fluid spinning in solid-body rotation was suddenly in-
creased by a factor ΔΩ0. In the rotating frame of reference (with angular
velocity Ω0 +ΔΩ0) this is equivalent to suddenly changing the relative vortic-
ity of the flow by an amount −2ΔΩ0. In this case an anticyclonic flow arises
in the tank with maximum velocities along the sidewalls. Similar phenomena
are observed in the present experiment, in which the background rotation rate
is changed continuously. In this case the maximum flow velocity, its absolute
value denoted by U , occurs near the sidewalls of the tank and scales with
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300 mm

Ω = Ωo( 1 + A sin(ft) )

Video camera

L = 1000 mm L = 1000 mm

Oscillating rotation

H = 200 mm

Fig. 1. A sketch of the experimental set-up: a camera is mounted above the table
and rotates in the same reference frame to record the movement of particles or dye.
The tank has a width L = 100 cm and height of 30 cm. The fluid layer has a depth
H = 20 cm

(Ω(t)−Ω0)×L so that U = AΩ0L, where L is the half-width of the tank. The
oscillation acts to provide a forcing to the vorticity field: the overall relative
vorticity changes as ω = −2AΩ0 sin(ft) in the rotating frame of reference.

The induced oscillating flow in the tank is strongly affected by the vertical
sidewalls, which imply the presence of viscous boundary layers that contain
strong vorticity. Near the corners of the tank the flow can separate and the
vorticity produced in the boundary layer will accumulate in the eddies in the
corners of the tank, as observed for spin-up flows [32, 34]. These eddies increase
in radius with time as the vorticity produced in the viscous boundary layers
is continuously advected towards the corners. The size and strength of the
eddies is affected by both the strength of the vorticity in the boundary layer
(or, stated differently, by the boundary-layer thickness) and the time that
the vortex is able to form. Thus as the amplitude of the sinusoidal forcing
AΩ0 is decreased or the frequency f is increased smaller and weaker vortices
will form in the corners of the tank. In experiments with an oscillating flow
on every forcing cycle vortices will be formed in the corners of the tank.
When the forcing changes direction, newly formed vortices detach from the
corners and travel with the mean flow. If these vortices reach the next corner
they may couple with opposite-signed vortices and vortex dipoles are formed.
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Dipoles are able to move by self-propagation, so they will move away from
the corners and thereby fill the interior with a field of vortices. This process
is sketched in Fig. 2. Note that while there is a fourfold rotation symmetry
inherently related with the forcing protocol, small perturbations always result
in a symmetry breaking of the flow field.

Dipoles can be formed in experiments when the time needed for a newly
formed vortex to be advected along one side of the tank is less than half a
forcing period. The time scale for advection along one side of the tank of
length 2L, with a mean velocity Ū = f

π

∫ π/f

0
AΩ0L sin(ft)dt = 2U/π, will be

τ = 2L/Ū = π/(AΩ0). If this timescale is less than half the oscillation period
T = 2π/f , then a detached vortex will be carried to the next corner. Thus
dipoles form if

f

AΩ0
= F < 1 , (2)

where F represents a dimensionless forcing frequency. This condition should
be considered as an estimate because it is obtained with an estimated value for
τ . The actual threshold for dipole formation occurs at a slightly larger value of
F (for the experiments with Re = 15, 000 the threshold is found for F ≈ 1.7).
Moreover, a gradual transition is expected to exist between the regimes where
dipoles are formed (F � 1) and where they are not formed (F � 1).
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Fig. 2. A schematic cartoon of the formation of dipolar structures in the oscillating
flow. (a) Initially the interior flow can be well described as having uniform negative
vorticity (–). (b) The no-slip boundaries lead to the accumulation of positive (+)
vorticity in each of the corners, resulting in four vortices. These vortices are then
advected by the flow as the forcing changes sign (c) and can form dipolar structures
by pairing with the negative vortices. These dipoles can then self-propagate into the
interior (d)
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The Reynolds number of the forcing is defined as

Re =
UL

ν
=
AΩ0L

2

ν
, (3)

where U = AΩ0L and ν is the kinematic viscosity of the fluid. For typical
laboratory experiments Re ≈ 15, 000. This Reynolds number should not be
confused with a micro-scale Reynolds number based on the ratio of the cir-
culation Γv of the vortices to the molecular viscosity ν as Rem = Γv/ν. As
the total circulation in a bounded flow must be zero, the changes in uniform
interior vorticity due to the variable rotation rate must be balanced by thin
layers with strong vorticity of the opposite sign. Thus the circulation Γv in
each of these four vortices will be a quarter of the magnitude of the circula-
tion corresponding to the uniform vorticity over the tank, averaged over half
the forcing cycle, or Γv = f

π

∫ π/f

0
2AΩ0L

2 sin(ft)dt = 4
πAΩ0L

2. This implies
that initially Rem ≈ 1.3Re. However, the dissipation during the advection
of vorticity from the thin boundary layer, containing steep vorticity gradi-
ents, to the corner will result in weaker vortices than expected. Subsequent
interactions between vortices and damping processes (lateral diffusion, Ek-
man damping) will often yield values much smaller than Re for the individual
vortices. In our experiments (with Re ≈ 15, 000) initial values of Rem were
measured as high as 4000, with the older vortices having lower values, Rem ∼
O(102 − 103).

4 Laboratory Results

The formation of dipoles in experiments with F < 1 is most easily visualised by
the rapid stirring of dye, as shown in Fig. 3. In this experiment f = 0.031 rad/s
(T = 200 s), AΩ0 = 0.06 rad/s, so that F = 0.52, corresponding to a regime
in which strong dipole formation is expected. A small amount of fluorescein
dye was initially injected near the bottom left corner. After t/T = 0.025 the
flow has sheared and stretched this dye along one wall of the tank, and several
vortices have started to stir at smaller scales. A subsequent image at t/T =
0.125 (Fig. 3b) shows that the dye has been sheared around the complete
perimeter of the tank, and two dipolar structures are beginning to transport
dye into the interior. Once the dye is in the interior of the tank, it is rapidly
mixed by the field of vortices. In Fig. 3c, about 15 circular structures in the
dye streaks can be observed, which indicate the presence of localised vorticity.
These vortices result in almost complete mixing of the dye by t/T = 0.325
after its injection (Fig. 3d).

To understand the importance of the dipole formation process in deter-
mining the amount of mixing in the tank, it is useful to look at an experiment
where strong dipoles did not form. The experiment illustrated by the image
shown in Fig. 4 had a forcing frequency of f = 0.126 rad/s, AΩ0 = 0.06 rad/s,
so that F = 2.09. Dye has been injected into the flow in a similar manner as
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Fig. 3. A sequence of laboratory photographs of a dye tracer showing the turbulent
field of vortex structures. The following snapshots are shown: (a) t/T = 0.025 after
dye has been injected in the corner of the tank, (b) t/T = 0.125, (c) t/T = 0.175,
and by t/T = 0.325 the dye has been well mixed in the tank, and the vortex
structures are clearly visible (d). In this experiment F = 0.52, f = 0.031 rad/s (so
that T = 2π/f = 200 s) and Re = 15, 000

in Fig. 3. After t/T = 3.6, the dye has been well mixed around the perimeter
of the tank, but the central portion of the container remains free of dye. Flow
separation has still occurred in the corners, and the resulting vortices can
be seen in the dye filaments, but due to the high oscillation frequency these
vortices were unable to form dipoles which would have rapidly left the wall
region.

4.1 Particle Tracking

During an experiment, the motion of tracer particles was monitored by a dig-
ital camera in order to determine the velocity field. The images were recorded
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Fig. 4. A photograph taken approximately four oscillation periods after dye has
been released for an experiment with F = 2.09 (Re = 15, 000). In contrast to the
previous figure the dye is not well mixed and has only been transported around the
perimeter of the tank. This is due to the forcing parameters having F > 1 so that
dipoles could not efficiently form

onto a computer and after the experiment, the Lagrangian trajectories of the
particles were determined using the particle tracking algorithm developed by
Bastiaans, van der Plas and Kieft [35]. An SMD-1M15 CCD camera with
1024 × 1024 pixels and 12 bit grey-scale resolution allowed high-quality im-
ages to be obtained at a rate of 5 frames per second. After using the particle
tracking algorithm typically 9000 particles could be tracked to allow inter-
polation of the velocity field to a 80 × 80 grid with about 1 cm2 resolution.
Figure 5a and b shows velocity vectors (indicating the stream lines) and vor-
ticity contour plots from an experiment with AΩ0 = 0.06 rad/s and f = 0.031
rad/s. This implies a forcing scale Reynolds number of Re = 15, 000 using (3).
In the vorticity contour plot, Fig. 5b, one observes individual vortices which
are advected by the mean background flow. In these vortices the peak value
ωmax of the vorticity is around 0.3–0.5 s−1 and their radius is ρ/L � 0.15. For
these strongest vortices the micro-scale Reynolds number can be estimated
as Rem = Γv/ν ≈ 1

2ωmaxπρ
2/ν ∼ 4000; the other weaker vortices visible in

Fig. 5b would have Rem ∼ 102 − 103.

4.2 Passive Scalar Spectra

In Fig. 6a a 1D scalar intensity spectrum F (k) =
∫ k+1

k F (κx, κy)dκ is shown,
using a 2D Fourier transform of the pixel intensity of images of fluorescein
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Fig. 5. Graphs showing the flow field in the form of velocity vectors (a) and vorticity
distribution (b) obtained by particle tracking velocimetry in an experiment with
Re = 15, 000 and F = 0.52

dye in a turbulent field. To reduce the influence of the non-periodic boundary
conditions of the tracer concentration in these images, the mean is subtracted
from the data and a Hanning window is applied before the Fourier transforms
were performed. An example of the images used for this spectrum is shown in
Fig. 6b at t/T = 1 after introduction of the dye. To illuminate the tank we
used four slide projectors placed around the square tank, thus illuminating a
1 cm surface layer. In the following analysis we focus on the central 512 ×
512 pixels of the images, which represent a quarter of the total area of the
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Fig. 6. A sequence of measured intensity spectra of fluorescein dye in the turbulent
flow field is plotted in (a) from images similar to that shown in (b). The spectra in
(a) and the image in (b) are obtained from measurements in the central 50 cm ×
50 cm of the tank in an experiment with Re = 15, 000 and F = 1.05. The spectra
have a slope similar to k−1 at high wave numbers
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tank. Pragmatic reasons force us to focus on this region in order to minimise
any parallax errors in viewing the vertically aligned dye-sheets in the rotating
flow. The data shown in Fig. 6 were taken from a sequence of images t/T = 0.1
apart in an experiment with F = 1.05 (AΩ0 = 0.06 rad/s and f = 0.063 rad/s,
a forcing period of T = 100 s). After the experiment had run for 10 min, 5 ml
of fluorescein dye was injected into the surface layer of water in one corner of
the tank. The striking feature of Fig. 6a is the k−1 power-law behaviour of the
spectra, consistent with the predictions of Batchelor [8]. The overall intensity
can be seen to be decreasing, due to the Ekman pumping slowly transporting
dye, that was initially in the visible surface layer, downward. Theoretically, a
k−1 power law of the scalar spectrum should occur in the same spectral range
as the enstrophy cascade of the energy spectrum. It was impossible to resolve
a high wave number enstrophy cascade from the velocity measurements, but
we note that the k−1 power law occurs at wave numbers k > 80 m−1, which
is in the region where such an enstrophy cascade is indeed expected.

4.3 Relative Dispersion

Using the velocity vectors from experiments similar to those shown in Fig. 5a
a fourth order Runge–Kutta technique has been used to integrate trajectories
of 400 particles forward in time. These Lagrangian trajectories are shown in
Fig. 7. The relative dispersion shown in Fig. 8a shows exponential growth
at early times, when the initial particle separation is small, as predicted by
Lin [12]. For larger times and larger particle separation the growth follows the
classical Richardson scaling of 〈R2〉 ∝ t3.0±0.1 (with 〈·〉 denoting an ensemble
average). These results are almost identical to those obtained from numerical
simulations of dispersion in quasi-geostrophic turbulence by Bracco et al. [6].
Computation of the growth with time of the particle displacement variance
σ2 ∼ 〈(Δr)2〉 ∝ t2γ yields σ ∝ t1.4±0.1. As the exponent γ is between 1 and 2,
this indicates the so-called “anomalous” diffusion. This growth rate of variance
is similar to previous observations by Solomon, Weeks and Swinney [36] in a
rotating annulus experiment forced by an unstable zonal jet. They found that
the variance of the displacement grows with time as σ ∝ t1.65±0.15. Similar
results for dispersion were found for freely decaying 2D turbulence in shallow
fluid layers by Hansen, Marteau and Tabeling [37] where they noted the pres-
ence of Lévy flights and a particle displacement variance that grows in time
as σ ∝ t1.4±0.1.

4.4 Chemical Reactions in Forced 2D Turbulence

In addition to the study of dispersion of passive tracers briefly discussed in
the previous sections, preliminary experiments with reactive tracers have been
conducted to illustrate the role of stirring and straining of reactive trac-
ers. The experimental parameters are: Re = 15, 000, AΩ0 = 0.06 rad/s
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Fig. 7. Using measured velocity fields from a laboratory experiment shown in Fig. 5
a fourth order Runge–Kutta method was used to numerically integrate the position
of the particles forward in time. From the initial ordered cross, the particles are
rapidly seen to disperse until they fill the full area of the tank

and f = 0.0157 rad/s (thus F = 0.26). The difference with the mixing
experiments shown in Fig. 3 is the forcing frequency, which is two times
smaller in the present experiment with reactive tracers resulting in a larger
eddy size. An example of an experiment with a simple acid–base chemical
reaction is shown in Fig. 9, where dilute solutions of hydrochloric acid and
sodium hydroxide are added to our oscillating flow experiment. The neu-
tralisation in aqueous solution of a strong acid by a strong base, that is
the reaction H+ + OH− → H2O, proceeds very rapidly when well mixed,
with a half-life of 10−6 s for the typical concentrations we use. In our quasi-
2D turbulent flow, the rate-limiting step for this reaction is in bringing the
filaments containing the acid and base into contact. The experimental im-
ages of passive tracers in Figs. 3 and 6 show that distinct filamental struc-
tures remain for several minutes before the tracers have been strained to
small enough scales that diffusion smears out the filaments; hence the mixing
time scale is several minutes. In Fig. 9 bromothymol blue and methyl red
indicators have been added to the aqueous solution, so that a blue-green
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see graph (b)

colour represents pH > 7, yellow represents a pH between 6 and 7 and
red represents a pH < 5. In the first image a 10 ml acidic solution of
pH=5 is added to one side of the tank, and 10 ml of a basic solution of
pH=8 is added to the other side. Due to the stirring and straining these
initial blobs are rapidly stretched out in the tank. The reaction between
the acidic and basic solution proceeds very rapidly once fluid parcels con-
taining acid and base, respectively, come into contact, and on a time scale
of several minutes (note that in this experiment T = 2π/f = 400 s) the
initial solutions have been mixed throughout the tank and have reacted
completely.

The role of lateral stirring on setting the filamentation and patchiness has
been shown to lead to enhancement of phytoplankton growth and increased
carbon dioxide uptake in numerical models of ocean circulation by Martin
et al. [4]. This enhancement is expected when a chemical reaction with non-
linear kinetics takes place in a chaotically mixed system. The reaction will
proceed more rapidly in high-concentration regions and more slowly in low-
concentration regions, so that the non-linear kinetics give a global enhance-
ment of the reaction rate, in comparison with pure homogeneous mixing. This
enhancement of the bulk chemical reactivity rates was demonstrated in quasi-
2D electromagnetically forced flows in the experiments performed by Paireau
and Tabeling [5]. They noted that the chaotic mixing had a much stronger
effect upon the bulk reaction rates of a second-order reaction compared to a
first-order chemical reaction.
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Fig. 9. An experimental visualisation of a chemical reaction in forced 2D turbulence
(Re = 15, 000 and F = 0.26). The snapshots are taken at (a) t/T = 0.075, (b) t/T =
0.225, (c) t/T = 0.375 and (d) t/T = 0.675, respectively, after the introduction of
10 ml of acid and base to the tank. In these images black blobs and filaments
correspond to acidic solution, grey to basic solution and light-grey to the neutral
background

5 Conclusion

We have conducted experiments of a quasi-2D forced flow with the boundary
layers near the lateral no-slip walls acting as the sole source of vorticity. The
average vortex size in the present experiments is controlled by the boundary-
layer thickness and the “roll-up” process of these layers. In laboratory exper-
iments we found that the degree of turbulence within the tank is determined
by the frequency and amplitude of the forcing. When AΩ0 > f (or F < 1)
the interior becomes well mixed by a field of dipoles resulting from flow sep-
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aration in the corners. When AΩ0 < f (or F > 1) the flow is not turbulent
because the tank oscillates too fast to allow the formation of dipolar struc-
tures to occur, so that any vortices formed remain near the walls. For these
weakly turbulent cases there is a strong difference in mixing rates between the
centre of the tank (where dispersion is very slow) and near the walls, where
dispersion occurs rapidly along the periphery of the tank.

The intensity spectrum of the dye, after it had been mixed by the turbulent
field, reveals a k−1 power-law behaviour at high wave numbers, consistent with
the prediction of Batchelor [8]. The laboratory observations of a k−1 scalar
spectrum are consistent with the presence of the k−3 enstrophy cascade.

The relative dispersion shows exponential growth at early times, as pre-
dicted by Lin [12], and follows the classical Richardson scaling for larger times.
Additionally, anomalous diffusion is conjectured from data of the particle dis-
placement variance with a similar exponent as found by previous studies in
different experimental set-ups. An experimental study has been started on
the mixing of reactive tracers in rotating quasi-2D turbulent flows. The role
of stretching and folding on the chemical reaction has been illustrated, clearly
showing the importance of the formation of filamentary structures after which
diffusion can facilitate the chemical reaction. This has direct relevance to geo-
physical applications in the atmosphere (mixing of chemical constituents) and
the oceans where similar phenomena are important for dispersion and growth
of phytoplankton patches. These mixing phenomena will be investigated in
more detail in future laboratory experiments.
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Abstract. Long-lived chemicals in the atmosphere and ocean often reveal surpris-
ingly inhomogeneous distributions, contrary to the intuition that mixing homoge-
nizes them. This is because mixing itself is inhomogeneous: coherent structures in
the flow separate regions of fast mixing with semipermeable barriers to transport,
and concentrated gradients tend to be found in the latter. The fluxes of materials
across the barrier region are of particular interest, since that region is an interface
between two fluid masses with distinct chemical characteristics. Yet these fluxes are
difficult to measure because the barrier shape is often unsteady and irregular. With
spatially fixed (Eulerian) coordinates, it is easy to confuse reversible undulation of
the barrier with true, irreversible exchange of matter across it. Particle tracking
methods, on the other hand, do not give useful flux–gradient relationships. Given
these and other problems with the traditional formalisms, we will advocate a differ-
ent diagnostic approach to mixing, utilizing a passive tracer field under advection
and diffusion. We demarcate a mass of fluid by the isosurfaces of the tracer and
ask how much mass is being exchanged through these surfaces. This essentially re-
duces the problem to 1D mass transport in the tracer coordinate. The purpose of
this chapter is to demonstrate how this formalism helps understand the synergy
between deformation and diffusion that enhances mixing, quantify inhomogeneous
structure of mixing (such as barriers), and extract the instantaneous, irreversible
part of transport. We will also touch on the techniques for partitioning fluxes into
two opposing directions (and hence quantifying asymmetry in transport) and dis-
cuss the present diagnostic in relation to the Eulerian eddy diffusivity and to the
probability density function (PDF).

1 Introduction

One of the recurring themes at Aosta School 2004 was the advection–diffusion
problem of a passive tracer. For an incompressible fluid, this is governed by

∂

∂t
q∗ + ∇ · (v q∗) = D∇2q∗, (1)
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where q∗ is the tracer under advection–diffusion, v is the advecting flow ve-
locity, and D is the molecular diffusion coefficient. Advection and diffusion lie
at the heart of mixing in the atmosphere and ocean.

1.1 Mixing Homogenizes

As pointed out elsewhere in this volume, the essence of mixing may be summa-
rized by the mean tracer variance equation. Multiplying (1) by q∗ and taking
the domain average, denoted by the angular bracket, and assuming that the
boundary fluxes vanish, one obtains

d
dt

〈
q∗2
〉

2
= −〈D |∇q∗|2〉. (2)

For a nonzero D the rhs of (2) is negative, so the domain-average tracer
variance decays with time; in other words, the process homogenizes the tracer
irreversibly (in the thermodynamic sense). Although the flow velocity does not
enter (2) explicitly, it acts as a stirring agent by enhancing the mean tracer
gradients on the rhs, thereby accelerating homogenization. This is achieved
through deformation, namely stretching and shearing of tracer surfaces. Defor-
mation is most efficient when the flow is unsteady, as it continuously reorients
principal axes of stain and keeps the tracer geometry from equilibrating. Ulti-
mately, diffusion is what destroys the tracer variance, but its efficiency hinges
on how fast stirring produces small scales in the tracer.

1.2 Mixing Is Inhomogeneous

Although (2) encapsulates the role of deformation and diffusion in homoge-
nizing a tracer globally, the rate of mixing is not uniform in the atmosphere
and ocean. This is evident in the familiar experience that turbulence is en-
countered only occasionally during an otherwise smooth air ride.

In large-scale flows, coherent structures separate regions of fast mixing
with semipermeable barriers in between, and the tracer field tends to develop
concentrated gradients in the barrier regions. One such example is found in
Fig. 1, which shows the mixing ratio of nitrous oxide (N2O) on the 830-K
isentropic surface (∼30 km above sea level and in the stratosphere) in the
Northern Hemisphere. It was observed by the CLAES instrument onboard
NASA’s Upper Atmospheric Research Satellite [1] on 31 December 1992. Ni-
trous oxide is a chemically inert trace gas in the lower stratosphere, and its
mixing ratio is controlled by two processes: a slow, diabatically driven vertical
motion, and relatively fast, quasi-horizontal mixing on the isentropic surface
[2, 3, 4]. The decrease in N2O mixing ratio with increasing latitude is caused
by the former: an upwelling in the tropics and downwelling in the extratropics
convert vertical gradients into meridional gradients. (Since the source of N2O
is at the ground, its mixing ratio decays with altitude in the stratosphere. See
also Fig. 4 in Sect. 2.)
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UARS CLAES N2O 830 K 31 December 1992

Fig. 1. Azimuthal equidistance plot of N2O mixing ratio on the 830-K isentropic
surface, observed by the CLAES instrument onboard NASA’s Upper Atmosphere
Research Satellite on 31 December 1992. The center of the plot is the North Pole
and the edge is the Equator. Notice there is a small region that lacks data near the
pole. The contour interval is 10 ppbv. See text for details

While the diabatic circulation maintains the meridional gradients of N2O
against horizontal mixing, the gradients are not uniform at all. Three regions
of weak gradients are separated by bands of concentrated gradients. These
regions are (a) the high-latitude air with very low values of N2O mixing ratio,
(b) a pool of midlatitude air with intermediate values, and (3) the tropics
with high values of N2O. These regions are often referred to as the“polar
vortex,”“surf zone,” and “tropical reservoir,” respectively [5, 6]. It turns out
that latitudinal variation in the diabatic circulation alone cannot explain this
kind of inhomogeneity. Rather, the highly nonuniform N2O gradients stem
from inhomogeneity in isentropic mixing: dynamical barriers created by the
circulation of the winter stratosphere hamper mixing between these three
regions, resulting in the concentrated N2O gradients there [7, 8, 9]. Although
the advection–diffusion equation (1) describes the isentropic mixing of N2O
reasonably well, the rich structure in mixing is all but lost in the globally
averaged variance equation (2).
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Transport barriers are also hinted in the concentrated tracer gradients at
the extratropical tropopause [10], the top of the atmospheric boundary layer
[11, 12], and the Gulf Stream front [13, 14].

1.3 Quantifying Cross-Barrier Transport is Difficult

Each of the aforementioned barriers is an interface between two fluid masses
with distinct chemical characteristics, but they are not perfect separators.
Some materials are exchanged across them through meteorological events. For
example, the edge of the Arctic vortex in the winter stratosphere occasion-
ally undergoes irreversible deformation, known as the Rossby-wave breaking
[5, 15, 16, 17], resulting in substantial transport and exchange of materials be-
tween the vortex and surf zone. The extratropical tropopause is constantly de-
formed by underlying baroclinic eddies, and the resultant “tropopause folds”
are the major mechanism to achieve stratosphere-to-troposphere transport in
the extratropics [18, 19]. Meandering of the Gulf Stream and ring formation
achieve a limited amount of cross-frontal exchange [14, 20]. Therefore, the per-
meability of, or the flux of substances across, the barrier region is of particular
interest. Yet this is where certain conceptual and practical challenges arise.

First, the tracer flux across the barrier region is often difficult to evalu-
ate because the barrier itself becomes highly active and deformed during the
exchange. The barrier is a dynamic entity, constantly changing its shape and
location. For example, the edge of the polar vortex is easily displaced from
the pole, and its shape becomes elongated during the Rossby-wave breaking
event. Spatially fixed (Eulerian) coordinates cannot trace the deformation of
a barrier, and it is easy to confuse “reversible” transport associated with tem-
porary displacement of the barrier with irreversible exchange of mass through
it. It is the latter, not the former, that influences chemical characteristics of
the fluid masses. To extract irreversible transport in the Eulerian coordinates,
it is necessary to remove reversible transport by time averaging, but doing so
obscures the definition of the barrier itself because its location is unsteady.

Second and perhaps more fundamental, the maximal tracer gradients ob-
served in the barrier region appear to contradict the very notion of a barrier:
a transport barrier implies a minimum in the flux, but if the flux is diffusive
in nature, shouldn’t it be maximal where the gradients are maximal?

Extant diagnostic methods have various shortcomings in addressing the
above and other difficulties. The popular eddy diffusivity parameterization
often performs poorly when the required scale separation is violated [21]: the
width of the barrier region (where the tracer gradients are most concentrated)
is comparable to, or even smaller than, the size of the driving eddy. This means
that advective transport through the barrier region cannot be prescribed by
local statistics of random eddy motion, clearly at odds with the eddy diffu-
sivity idea [22, 23]. Another way to put it is that eddy diffusivity works only
in nearly homogeneous environments. It is no surprise if it fails to identify a
localized transport barrier.
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The modern dynamical systems approach [24] focuses on the rate of
divergence of neighboring particle trajectories as a mixing diagnostic. The
method has been used widely, partly because the underlying theory is well
developed for at least 2D, time-periodic problems (see [25] and references
therein). Even for aperiodic problems, asymptotic diagnostics such as the Lya-
punov exponents have been redefined for a finite-time interval and used, with
some success, to identify regions of transport barriers [26, 27, 28]. Still, the
trajectory-based approach requires, by definition, an analysis over a period of
time and this can cause problems. One must make judicious choices of initial
conditions and length of integration, which depend on the nature of the prob-
lem. When the flow is highly variable in time, it is possible that trajectories
quickly move out of the barrier region and start to diverge, thereby failing to
identify the barrier [29]. Even when the Lyapunov exponents robustly identify
a barrier, their relationship to mass flux remains unclear. Given these, a new
diagnostic that quantifies instantaneous and irreversible mass fluxes across
the barrier region is desired.

1.4 Goals

This chapter advocates an alternative diagnostic formalism that uses a field
of passive tracer as a coordinate of transport. A similar approach had been
practiced among the atmospheric scientists working on stratospheric dynam-
ics [30, 31], but it was developed only recently into a more viable mixing
diagnostic [32, 33, 34, 35, 36, 37, 38, 39, 40].

In this approach, we demarcate a mass of fluid by the isosurfaces of a
tracer field that obeys the advection–diffusion equation and ask how much
mass is being exchanged through these surfaces. This essentially reduces the
problem to one of 1D mass transport in the tracer coordinate, an interme-
diate model between (1) and (2). Using tracer as a coordinate has at least
two advantages: (i) the geometrical complexity and the location of the bar-
rier are absorbed in the coordinate so they do not hinder analysis, and (ii)
instantaneous, irreversible transport can be extracted. The tracer isosurface
is a material surface in the absence of diffusion, so the mass transport in the
tracer coordinate arises solely from diffusion (therefore it is irreversible by
definition). Yet its magnitude depends on the geometry of tracer and hence
affected by the flow: where stirring is strong, the tracer geometry becomes
complex and mass exchange is enhanced.

We will outline the formalism and demonstrate the utility of the diagnostic
in the next section. We will also make connections with the probability density
function (PDF) of tracer concentration that appears commonly in the statis-
tical mechanics literature [8, 41, 42]. The key concept of effective diffusivity
is introduced, which will then be used to quantify inhomogeneity in mixing.
Section 3 deals with a strategy for partitioning mass fluxes into two opposing
directions. This helps quantify asymmetry in wave breaking. In Sect. 4, we
will revisit the Eulerian eddy diffusivity and point out its relationship to the
current diagnostic.
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2 Effective Diffusivity

2.1 Area-Mean Formalism

We start our analysis by associating the elements of fluid with values of tracer
q∗ governed by (1). For the sake of simplicity, we shall follow Nakamura [32]
and consider advection–diffusion in 2D. We ask how much area (mass) the
fluid occupies in regions where q∗ ≤ q at a given time t, where q is a chosen
value of q∗. (The following argument would be analogous for q∗ ≥ q. For 3D
problems, the area should be replaced by volume; [39].) This area is

A(q, t) ≡
∫

q∗≤q

dS. (3)

Defined this way, A is a monotonically increasing function of q, from A = 0 for
q∗ = qmin to A = A0 for q∗ = qmax, where qmin and qmax are the minimum and
maximum values of q∗, respectively, and A0 is the area of the entire domain
(Fig. 2). The area A varies as a function of q and t as [32]

∂

∂t
A(q, t) = − ∂

∂q

∫
q∗≤q

D∇2q∗dS, (4)

where the partial derivatives are defined with respect to the (q,t) space (see
Appendix 1 for the derivation of (4)). The rhs is the mass flux converging into
the region where q∗ ≤ q. This mass flux arises solely from diffusion because
advection by nondivergent flow conserves area. In other words, in the absence
of diffusion (D = 0), the tracer isosurface becomes a material surface. Notice
that the location and geometry of the contours of q∗ are arbitrary in (3) and
(4). The contours can be broken, in which case contributions from all islands
are summed up.

The rhs of (4) can be further transformed, using the divergence theorem
and the identity

A

q*q
min

q
max

q

A0

0

Fig. 2. Schematic of area–tracer relationship. In this example, the value of tracer
contour increases with the enclosed area. Notice that an increase in the area for a
fixed tracer value leads to a decrease in the tracer value for a fixed area. See text
for details
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∮
q∗=q

( · )
|∇q∗|dl =

∂

∂q

∫
q∗≤q

( · ) dS, (5)

into
∂

∂t
A(q, t) = − ∂

∂q

(〈
D|∇q∗|2〉

q

∂A

∂q

)
, (6)

where the subscripted angular bracket denotes the average of a field variable
on the tracer contour q∗ = q, defined as

〈 · 〉q ≡ ∂

∂A

∫
q∗≤q

( · ) dS

≈
(∫

q∗≤q+δq

( · ) dS −
∫

q∗≤q

( · ) dS
)/

(A(q + δq, t) −A(q, t)) . (7)

The last expression is a finite-difference approximation and useful for numeri-
cally evaluating this average. Since, the average is taken over the area between
adjacent contours, instead of using line integral along the contour, it can be
evaluated readily by box-counting methods.

2.2 Relationship to Tracer PDF

At this point, it is useful to introduce the probability density function (PDF)
of tracer concentration. The quantity

p(q, t) ≡ 1
A0

∂A

∂q
(8)

may be thought of as the PDF of q∗: it represents a fractional area between
neighboring contours of q∗. If the domain were sampled randomly, probability
of sampling a value between q and q+ δq would be p δq. Note that the prob-
ability enters solely through sampling; the flow does not have to be ergodic.
Note also that A(q, t)/A0 is the cumulative density function (CDF) of q∗, and
that integration of (8) from qmin to qmax gives unity. By taking the derivative
of (6) with respect to q, one can derive an equation for p:

∂

∂t
p(q, t) = − ∂2

∂q2

(〈
D|∇q∗|2〉

q
p
)
. (9)

Equation (9) is closely related to the PDF expressions reported in the statis-
tical mechanics literature. For example, both Sinai–Yakhot [41] and Ching–
Kraichnan [42] report a form of stationary PDF of the rms-normalized con-
centration. Their results can be derived from (6) and (9) (see Appendix 2).

Similar to the rhs of (2),
〈
D|∇q∗|2〉

q
is the dissipation rate of tracer vari-

ance, but it is evaluated for each tracer value. For this reason, it is called
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conditional dissipation rate (CDR). If CDR is uniform, (9) is a diffusion equa-
tion with a negative diffusion coefficient. Thus, an initially gaussian p would
quickly become a delta-function, corresponding to the homogenization of q∗

toward its mean value. However, our interest lies in the cases in which CDR
is not uniform.

2.3 Equivalent Length and Effective Diffusivity

For geophysical flows, it is more convenient to work with the inverted A–q
relationship q(A, t) than A(q, t): the range of q diminishes as mixing proceeds,
whereas the range of A is fixed and so it is better suited as a geophysical
coordinate. This inversion is possible because the A–q relationship is one-to-
one at a given time. The equation for q is derived using (6)

∂

∂t
q(A, t) = − ∂q

∂A

∂A

∂t
=

∂

∂A

(〈
D|∇q∗|2〉

q

∂A

∂q

)
. (10)

The minus sign in the second expression is because an increase in A at a fixed
q causes a decrease in q at a fixed A when A is an increasing function of q
(Fig. 2). Equation (10) is further rewritten as [32]

∂

∂t
q(A, t) =

∂

∂A

(
DL2

e

∂q

∂A

)
, (11)

L2
e(A, t) ≡

〈|∇q∗|2〉
q

/
(∂q/∂A)2. (12)

Equation (11) is a diffusion equation for q with respect to A, with DL2
e being

the “diffusion coefficient.” The quantity −DL2
e∂q/∂A is the diffusive flux of

q∗ across its contour that encloses a fixed area A. Since the tracer contour is
used as a coordinate, advective transport does not show up in (11) at all: it
is absorbed in the motion of coordinate. Inhomogeneity in mixing is then un-
derstood in terms of inhomogeneity in the diffusion coefficient. Furthermore,
the diffusion coefficient has a direct bearing on the geometry of the tracer: the
variable Le is closely related to the length of the tracer contour and termed
equivalent length [32]. It can be shown [36], via the Cauchy inequality, that the
geometrical length of the contour, L, is actually the lower bound of equivalent
length, Le:

L2
e =

(∮
q∗=q

dl
|∇q∗|

)(∮
q∗=q

|∇q∗|dl
)

≥
(∮

q∗=q

dl
)2

= L2, (13)

where (3), (5), and (7) were used to transform (12). This means that, where
Le is large, tracer contour is stretched and contorted, and this effectively
enhances the cross-contour diffusivity. Where Le is small, mixing is suppressed,
suggesting the presence of a transport barrier. Since Le is defined as a function
of t and A, it is an instantaneous diagnostic of the structure of mixing.
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The reason why the diffusive flux is proportional to the square of Le (other
than the dimensional consistency) is that the contour length has two effects.
First, when a ring of fluid bounded by two adjacent contours is stretched
without changing its area, the mean distance between the contours decreases
and thus the tracer gradient increases in proportion to the contour length.
This enhances diffusive flux per unit contour length. Second, the enhanced
contour length provides more surface for diffusion to act upon.

The spatial coordinate in (11) is area, but it is more intuitive to work with
a coordinate that has the dimension of length. Let

dr ≡ dA/L0, (14)

where L0 (> 0) is the minimum possible value for Le. The actual value of
L0 depends on the geometry of the domain. For example, for a closed tracer
contour on an unbounded plane L0 = 2

√
πA, since Le is minimized when the

contour forms a circle. Then, using r, (11) becomes

∂

∂t
q(r, t) =

∂

∂r

(
Ke

∂q

∂r

)
, (15)

where

Ke(r, t) ≡ D (Le(r, t)/L0)
2 (16)

is effective diffusivity [36, 37]. Effective diffusivity represents molecular diffu-
sion magnified by the stretching of Le relative to its minimum value. It reduces
to molecular diffusivity when the tracer contour is unstretched. In this sense,
the factor (Le(r, t)/L0)2 is the local Nusselt number. Note that the diffusive
flux −Ke∂q/∂r is governed by both the tracer gradient and effective diffusiv-
ity: even when the tracer gradient is large, the flux can be minimal if effective
diffusivity is locally very small. This solves the apparent paradox raised in the
previous section: the tracer gradients can indeed be maximal at the barrier.

To compute effective diffusivity from the q∗ field, first establish the A–q
relationship by counting the grid boxes over the domain, using equally spaced
bins between qmin and qmax. Then compute |∇q∗|2 at every grid and evaluate
(12) in the (q,t) space with the finite difference formula

L2
e(q, t) ≈

(∫
q∗≤q+δq

|∇q∗|2 dS −
∫

q∗≤q

|∇q∗|2 dS
)

×(A(q + δq, t) −A(q, t))
/
(δq)2. (17)

Finally, map L2
e from (q, t) to (r, t) space.

Figure 3 shows potential temperature and associated effective diffusivity
during a numerically simulated life cycle of Kelvin–Helmholtz instability. In
this simulation, a small-amplitude, unstable normal-mode perturbation is al-
lowed to grow on a stratified shear flow. Domain is periodic in x and bounded
by rigid surfaces in z. Potential temperature is governed by a numerically
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(d) NORMALIZED EFFECTIVE DIFFUSIVITY

A B C

(a) t = 150 (b) t = 330 (c) t = 550
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K

Fig. 3. (a)–(c) Life cycle of simulated 2D Kelvin–Helmholtz instability. Potential
temperature (in K) in x–z plane is shown for three different stages. Potential tem-
perature increases with height in general, but its contours roll up as the cat’s eye
grows. (d) Normalized effective diffusivity during the KH life cycle as a function
of time and equivalent height. Letters correspond to the highlighted contours in
the respective plates (a)–(c). See text for details. (e) Equivalent height (z∗) is the
area underneath a potential temperature contour (A) divided by the channel length
(L0 = 200 m). For the details of simulation, see [32]

discretized version of (1) in the (x,z)-plane. As time goes on, a “cat’s eye”
forms in the center of the domain and potential temperature contours turn
over (Figs. 3a–c). The corresponding effective diffusivity normalized by D
(≡ L2

e

/
L2

0) is plotted in Fig. 3d as a function of time and equivalent height.
Here equivalent height is defined by (14), with A being the area between the
chosen potential temperature contour and the lower boundary, and L0 being
the channel length in x (Fig. 3e). It is a measure of height because potential
temperature generally increases with height.

Effective diffusivity is enhanced significantly inside the cat’s eye but vir-
tually unchanged outside. The letters in Fig. 3d correspond to the respective
black contours in Figs. 3a–c. After saturated at t ≈ 330 s, effective diffusivity
inside the cat’s eye fluctuates as contours of potential temperature are be-
ing dissipated and reoriented. Notice that the maximum effective diffusivity,
more than two orders of magnitude greater than D, appears in the cat’s eye
at t ≈ 550 s, after most potential temperature gradients are gone.
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Figure 4 shows the vertical structures of N2O mixing ratio (contours) and
isentropic effective diffusivities (shades, in terms of In(L2

e

/
L2

0 )) observed by
the Upper Atmosphere Research Satellite as a function of equivalent latitude
and potential temperature [34]. Equivalent latitude is the limiting latitude
of a polar cap that encloses the same area A as enclosed by the contour of
N2O mixing ratio [31, 35]. It bears the sense of latitude because N2O mix-
ing ratio generally decreases with latitude (Fig. 1). The left frame shows the
time average over the 7-day period ending 20 December 1992, for the North-
ern Hemisphere. It reveals minima in effective diffusivity at the edge of the
stratospheric polar vortex and at the subtropical end of the “surf zone,” where
the horizontal gradients of N2O mixing ratio are concentrated, consistent with
Fig. 1. These barriers are robust in the middle to lower stratosphere, where
they separate the more stirred polar vortex and surf zone. The right frame
shows a late-winter cross-section for the Southern Hemisphere. The southern
vortex is less perturbed and is characterized by a broader region of small
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Fig. 4. (a)–(b) Equivalent latitude versus potential temperature plot of N2O mixing
ratio (solid contours, every 10 ppbv) and In(L2

e/L2
0) (shades). To create these plots,

analysis was done for each isentropic surface and then repeated for multiple levels.
The vertical axis approximately spans the entire stratosphere. Dark shade indicates
small effective diffusivity and therefore barriers to horizontal (isentropic) mixing.
(a) 7-day average for 14–10 December 1992 for the Northern Hemisphere. (b) 7-day
average for 11–17 September 1992 for the Southern Hemisphere. In both frames,
the polar vortex is on the left. Notice the enhanced mixing in the surf zone and the
polar vortex. Data at lowest levels may be contaminated by the Pinatubo aerosols
that had been loaded in the previous year. Adapted from [34]
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effective diffusivities. This insulates the vortex air chemically like a contain-
ment vessel, which sets the stage for ozone hole to develop in spring with little
dilution. The barriers in the Southern Hemisphere reach higher altitudes, pre-
sumably due to a vertically more coherent westerly jet. Similar results have
been obtained with offline advection-diffusion calculations driven by meteo-
rological winds [36, 37, 38].

Tracer “edges,” or concentrated gradients, can be created by a spatially
varying effective diffusivity. Figure 5 shows three numerical solutions to (15)
driven by prescribed Ke, starting from identical initial conditions. In all cases,
Ke grows exponentially with time. The exponential growth is meant to mimic
rapid stretching of tracer contours by fluid stirring. In Fig. 5a, the growth
rate is maximal at the center of the domain, whereas in Fig. 5b, it is minimal
at the center of the domain. In both cases, the spatial variation of growth
rate is broad: it is a gaussian function of the normalized area A/A0, with a
characteristic width of 0.33. The locally maximal effective diffusivity creates
two separating edges (Fig. 5a), whereas the locally minimal effective diffusivity
creates an edge converging at the center (Fig. 5b). The former is analogous
to the KH cat’s eye (Fig. 3), whereas the latter is similar to the edge of the
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Fig. 5. Solutions for initial value problems using (15) with a prescribed Ke. (a) Ke

grows exponentially and has a maximum near the center. (b) Ke grows exponentially
and has a minimum near the center. (c) Ke grows exponentially and uniformly
everywhere. The gray curves indicate the initial condition. Adapted from [32]
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polar vortex (Fig. 4). Note that in both cases, the width of the edges is quite
narrow, despite the broad spatial variation in Ke. In Fig. 5c, the growth rate
(and Ke) is spatially uniform. No edge formation is visible in this case.

These are just a few examples of the utility of effective diffusivity. Unlike
the Eulerian eddy diffusivity, it extracts true diffusive transport and is al-
lowed to vary fully in space and time. Further relationships between effective
diffusivity and the traditional Eulerian eddy diffusivity will be discussed in
Sect. 4. Unlike the particle advection methods, effective diffusivity preserves
a flux–gradient relationship. One need not solve (in principle) an initial-value
problem to evaluate effective diffusivity. It depends solely on the instantaneous
geometry of the tracer, which reflects the history of stirring in the recent past.
Practical issues concerning the dependence of effective diffusivity on D will
be touched upon in the concluding section.

3 Direction of Transport

Although effective diffusivity successfully quantifies spatio-temporal structure
of mixing, it does not distinguish the direction of transport. Materials often
cross the tracer contour in one preferred direction due to asymmetry in ad-
vection. For example, a patch of fluid demarcated by a tracer contour may be
“pinched off” in the outward direction (Fig. 6a). In this case, as the filament
of tracer is diffused, fluid inside the filament is exported to the outside. An op-
posite transport ensues when the pinching off occurs in the inward direction
(Fig. 6b). More generally, transport proceeds in both directions simultane-
ously, though one is likely more pronounced than the other. However, the
foregoing diagnostic measures only the net transport, unable to quantify the
opposing fluxes separately.

The direction of transport is important because of the way it influences
the embedded chemistry. Suppose a patch of air, chemically distinct from the
surrounding air, expels its element (Fig. 6a). In this case, the patch loses mass

(a)

(b)

Fig. 6. Schematics of outward breaking (a) and inward breaking (b). See text for
details
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but its chemical composition remains intact. On the other hand, if the outside
air is mixed into the patch, the patch’s chemical composition will be affected
(Fig. 6b). One of the reasons why the remnant of Antarctic ozone hole lingers
through much of November (and sometimes into December) despite the (by-
then) dynamically active vortex is that transport through the vortex boundary
is primarily outward: the ozone-depleted air is detrained from the vortex, but
the outside air does not get entrained easily [43].

It is relatively easy to detect asymmetry in mass transport. For example,
when the transport is predominantly outward, the mass (volume) inside the
tracer contour diminishes with time. However, to quantify mass fluxes in each
direction separately proves more difficult. Traditionally, particles are advected
numerically and the number of crossings is counted at a specified boundary
over time [44, 45, 46]. Yet the flux so computed depends sensitively on the
time that the particles spend between two crossings. Since many particles
stay close to the boundary and spend very short time on either side of the
boundary, fluxes calculated using particles with short residence time tend to
be large [47]. In fact, it has been shown that the fluxes fail to converge at a
vanishing residence time when the particle motion is random [48].

3.1 Partitioning of Fluxes

Here we address the flux Partitioning by extending the formalism of the pre-
vious section. Instead of transforming the rhs of (4) using the divergence
theorem, we rewrite [40]

∂

∂t
A(q, t) = − ∂

∂q

∫
q∗≤q

D∇2q∗dS = Ȧin − Ȧout,

Ȧin =
∂

∂q

∫
q∗≤q
∇2q∗≤0

D
∣∣∇2q∗

∣∣ dS, Ȧout =
∂

∂q

∫
q∗≤q
∇2q∗>0

D
∣∣∇2q∗

∣∣ dS. (18)

The rhs of (4) is now partitioned into two contributions: one from the regions
in which ∇2q∗ > 0, and the other from where ∇2q∗ ≤ 0. Where ∇2q∗ > 0, the
rhs of (1) is positive. This means that the value of tracer increases following
the motion of fluid. In other words, fluid elements cross the tracer contour in
the upgradient (outward) direction. Whereas in regions in which ∇2q∗ ≤ 0, the
reverse is true and fluid elements cross the tracer contour in the downgradient
(inward) direction. Therefore, the sign of ∇2q∗ (local curvature of tracer) can
be used to discriminate the direction of transport (see Fig. 7). The two terms,
Ȧin and Ȧout, denote the inward and outward fluxes of mass across the tracer
contour. Notice that they are both nonnegative. To evaluate this flux partition,
no additional information is needed beyond what is necessary for computing
effective diffusivity an instantaneous distribution of tracer is all it takes.
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Fig. 7. Partitioning strategy for outward and inward mass fluxes. See text for details.
Adapted from [40]

3.2 Examples

Let us apply this flux partition to the potential temperature field associated
with the KH instability discussed earlier in Fig. 3. The result is shown in Fig. 8
as a function of time and equivalent height. Figure 8a shows the downward
mass flux Ȧin (recall A is defined as the area between the lower boundary and
the chosen contour of potential temperature). Due to the symmetry of the
problem, the upward flux (Ȧout) is a mirror image of Fig. 8a about the midlevel
(not shown). In the early stage of life cycle, the downward mass flux emerges
just above the midlevel. This corresponds to the growth of cat’s eye through
the entrainment of mass from above. After this stage, most of the downward
mass flux occurs within the cat’s eye. Figure 8b shows the geometry of the
potential temperature contour at which the mass flux is maximal (denoted by
letter A in Fig. 8a). The contour is characterized by an elongated filament.
Since the filament coincides with the exrema in the Laplacian of potential
temperature, it is susceptible to diffusion. As the filament is diffused, fluid
elements are irreversibly transported down through the contour of potential
temperature.

Figure 8c shows the percentage of the downward mass flux in the total
mass exchange, 100Ȧin/(Ȧin+Ȧout). It is clear that the mass flux in the upper
(lower) domain remains predominantly downward (upward). The anomalous
values outside the cat’s eye in the early stage may be due to minor breaking
of gravity waves, but the fluxes themselves are so small that they have little
dynamical significance. After about t ≈ 380 s, the opposing fluxes in the cat’s
eye rapidly become comparable in size.

The same technique can be applied to other flows as well. A numerically
synthesized tracer [40] the stratospheric winds quantifies isentropic mass fluxes
associated with breaking Rossby waves [40]. By examining the equatorward
and poleward fluxes, one can identify “episodes” of wave breaking that favor
either equatorward or poleward transport. Figure 9 shows the tracer contours
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A

(a) DOWNWARD MASS FLUX

(b) 440s 0.15k

(c) PERCENTAGE OF DOWNWARD FLUX

X

Fig. 8. (a) Downward mass flux through the contours of potential temperature
during the life cycle of simulated KH instability (coordinates are the same as Fig. 3d).
(b) Geometry of potential temperature contour corresponding to the letter A in (a).
The area above the contour is shaded for the purpose of visualization. (c) Percentage
of downward mass flux in the total mass exchange in the same coordinates as (a).
See text for details. Adapted from [40]

(a) (b)

Fig. 9. (a) Geometry of a tracer contour on 850-K surface at which the equatorward
mass flux was maximal during a Rossby-wave breaking event (7 December 1998).
(b) Geometry of a tracer contour on 850-K surface at which the poleward mass flux
was maximal during a poleward Rossby-wave breaking event (15 December 1998).
The tracer was numerically synthesized by solving advection–diffusion problem on
the isentropic surface using assimilated winds [38]. Contours in these plots were
identified by first analyzing the poleward and equatorward mass fluxes and their
asymmetry in the time-equivalent latitude space using (18). Adapted from [40]
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on the 850-K (∼ 32 km) surface during Rossby-wave breaking events, at which
the directional asymmetry of mass fluxes was most pronounced. The geometry
of the contours shown in Fig. 9 is very much akin to the schematics in Fig. 6.
The detection of transport asymmetry has hitherto been largely subjective,
relying on visual inspection of the geometry of material contours like Figs. 6
and 9 [16, 17, 49]. The present formalism provides a more objective measure of
transport asymmetry. Furthermore, once a catalog of mass fluxes is computed,
it allows one to identify mixing events with particular transport asymmetry
far more economically and accurately than the traditional method.

4 Relationship to Eulerian Eddy Diffusivity

In Sect. 1 we touched on the difficulties with representing eddy advective
transport using an Eulerian eddy diffusivity. The main concern was that the
required scale separation between eddy and the mean field is not warranted
in the atmosphere and ocean. As a result, the property of transport cannot
be described in terms of random local statistics of eddy. Effective diffusivity
introduced in Sect. 2 is free from this difficulty because it excludes advective
transport altogether: it is absorbed in the motion of coordinate. The tracer
contours are not restricted a priori to particular geographical locations, al-
though they may have preferred locations due to specific geometry of the flow.
Only differential advection (deformation) affects effective diffusivity through
enhancement of equivalent length.

Therefore, Eulerian eddy diffusivity and effective diffusivity are fundamen-
tally different, both qualitatively and quantitatively. However, as we will show
below, a part of the traditional Eulerian eddy diffusivity can be attributed to
instantaneous, irreversible mixing in a way similar to effective diffusivity. This
new Eulerian diagnostic addresses one of the shortcomings of effective diffu-
sivity: it cannot be evaluated for a geographical location fixed on the surface
of the Earth because it is assigned to a moving contour of a tracer. We will
demonstrate the utility of the new diagnostic by identifying the geographical
locations of time-mean transport barriers.

4.1 Eulerian Mean Formalism

Let ( · ) denote a low-pass filter, namely an Eulerian average (“mean”) over
a finite time or space (or both), and ( · )′ the departure from the mean
(“eddy”). The definition of the mean is arbitrary as long as it commutes with
both Eulerian time derivative and the gradient operator. By applying the
average to (1),

∂

∂t
q̄ + ∇ · ( v̄ q̄ ) = −∇ · (v′ q′) +D∇2q̄. (19)
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Notice that the asterisks have been dropped. The eddy flux on the rhs is
commonly cast into a flux–gradient relationship

v′ q′ = −K∇q̄, (20)

where K is a second-order tensor. Upon substitution, one obtains

∂

∂t
q̄ + ∇ · ( v̄ q̄ ) = ∇ · (K∇q̄) +D∇2q̄. (21)

If K is expressed in terms of the mean quantities, then (21) represents a flux
closure. Instead, here we are interested in diagnosing K to quantify transport.
Unfortunately, (20) does not determine K uniquely even if v′ q′ and ∇q̄ are
known: the number of elements of K (unknowns) is greater than the number of
equations. However, there is a unique K that satisfies (20) and K = KS +KA

such that [50] (see also [51, 52])

KS = KI, K = − v′ q′ · ∇q̄
|∇q̄ |2 , (22)

KA =

⎛
⎝ 0 s3 −s2

−s3 0 s1
s2 −s1 0

⎞
⎠ ,

⎛
⎝ s1
s2
s3

⎞
⎠ = − v′ q′ ×∇q̄

|∇q̄ |2 = s, (23)

where I is the identity matrix. (KS and KA are the symmetric and antisym-
metric parts of K. They are well conditioned everywhere except ∇q̄ = 0.) The
above corresponds to partitioning v′ q′ into components normal and parallel
to ∇q̄ locally. In other words, we sort the eddy transport according to the
local orientation of the isosurfaces of q̄. The significance of this partition is
that KS is isotropic, rendering the flux–gradient coefficient a scalar instead
of a tensor. This becomes apparent after substituting (22) and (23) in (21):

∂

∂t
q̄ + ∇ · ( v̄e q̄ ) = −∇ · ((K +D)∇q̄) , (24)

v̄e = v̄ + ∇× s. (25)

Notice that the antisymmetric part of K generates an additional transport
velocity, which is now included in v̄e on the rhs of (25). Furthermore, using
the eddy variance equation with (22), it is possible to show [50]

K +D ≡ Kk +Km,

Kk =

(
∂q′2

∂ t
+ ∇ ·

(
v̄ q′2 + v′q′2 −D∇q′2

))/
2 |∇q̄|2, (26)

Km = DME, ME = |∇q|2
/
|∇q̄|2 = 1 + |∇q′|2

/
|∇q̄|2. (27)



Quantifying Irreversible Transport Using Passive Tracer Field 155

The term Kk is related to the dispersion of tracer surfaces due to eddy ad-
vection, and in that sense analogous to the traditional eddy diffusivity [53].
Indeed, if one defines η′ as the normal displacement of the q-surfaces from its
mean position, that is,

q′ = −η′ · ∇q̄; η′ ‖ ∇q̄, (28)

then in a small amplitude limit, (26) is approximately

Kk ≈
(
∂

∂ t
+ v̄ · ∇

)
η′2

2
. (29)

Thus, if η′2 increases following the mean velocity, Kk is positive. However, if
the tracer surface is undergoing reversible undulation, positive values of Kk

will be followed by negative values, so the time average of Kk will vanish.
If the overbar already includes time mean and if the eddy statistics is sta-
tionary, the time derivative also vanishes. When eddy amplitude is large, the
triple correlation term in the numerator of (26), ∇·v′q′2, becomes important.
To the extent that eddy statistics is homogeneous over the length scale of the
mean field, this divergence is negligible. This is true when there is a separation
of scales between eddy and mean [21]. However, in the presence of coherent
structures in the flow, such scale separation easily breaks down. In that case,
the divergence term can take either sign, so can Kk. The net advective trans-
port can therefore be up or down the mean gradient. (Kk vanishes if the eddy
statistics is stationary and homogeneous.)

In contrast, Km is positive by definition. It arises from molecular diffusion,
yet its magnitude is amplified by the factor ME, which takes the minimum
value of 1 when q = q̄. In other words, ME measures the enhancement of irre-
versible transport (molecular diffusion) by eddy stirring. This factor depends
only on the geometry of the tracer. It measures the amount of small-scale
details that is lost through averaging. (See Fig. 10 for the illustration of this
point.) Therefore it is a measure of tracer “roughness” and hence analogous
to the normalized squared equivalent length (Nusselt number) in (16). The
difference is that ME is defined locally in the Eulerian coordinate. We propose
to use ME (and Km) to measure the structure of local eddy mixing.

4.2 Example

Figure 11 shows ME calculated from potential vorticity (PV, left) and N2O
(right) simulated by GFDL’s SKYHI general circulation model on the 320-K
surface for the month of March (see [50] for details). This surface intersects
with the tropopause and jet streams in the midlatitudes. (The jet streams
correspond to the regions of packed streamfunction in the solid contours.) Al-
though neither PV nor N2O strictly obeys the advection–diffusion equation,
both are mainly controlled by large-scale adiabatic flows at this altitude and
hence have similar isentropic structures, at least in the extratropics. The two
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Fig. 10. Illustration of coarse-graining and diffusivity. Both “mosaic” (top) and
“Gaussian blur” (bottom) filters remove the details of Mona Lisa. The loss of infor-
mation is greatest where the fine-scale features abound (e.g., face) and less severe in
the bland area (e.g., background). The “effective diffusivity” of the filters is therefore
greater in the former region

rows in Fig. 11 correspond to different lengths of time averaging: 10 and 20
days. As the length of averaging doubles, more transient eddies are accounted
for; this increases the overall magnitude of ME. However, both PV and N2O
reveal very robust ME minima along the axes of midlatitude jets and a weak
barrier in the tropics. This illustrates very clearly that strong jets hinder mix-
ing and act as transport barriers, and that mixing is stronger at the flanks
of jets, where wave breaking associated with mobile baroclinic eddies takes
place. Notice that the midlatitude barrier in the Northern Hemisphere shows
more meandering and zonal localization than its counterpart in the South-
ern Hemisphere, reflecting the influence of stationary Rossby waves on the
structure of the jet stream.

5 Summary and Discussion

We have outlined the theoretical underpinning and application of a diagnostic
formalism for quantifying irreversible transport. Central to the idea is to char-
acterize transport and mixing in terms of mass flux through isosurfaces of a
passive tracer field, governed by advection and diffusion. Since the isosurface
of the tracer is a material surface in the absence of diffusion, the mass flux
arises solely from diffusion. However, the magnitude of the flux is enhanced
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Fig. 11. Left column: In ME computed from potential vorticity simulated by GFDL’s
SKYHI GCM on the 320-K surface. Solid contours are the time-mean streamfunc-
tion. Right column: same as the left column except it is computed from N2O mixing
ratio. Top row: 10-day average for 1–10 March. Bottom row: 20-day average for 1–20
March. Notice extremely small values along the axes of jet streams

by stirring (differential advection): the flux is large where the geometry of the
tracer is complex and small where it is smooth.

By directly transforming the advection–diffusion equation, we have ob-
tained a 1D transport equation that governs the mass distribution (PDF)
of the tracer. Inverting the relationship for the tracer as a function of mass
(CDF), this equation becomes a 1D diffusion equation with a diffusion co-
efficient that varies with space and time. The coefficient, termed effective
diffusivity, arises from molecular diffusion but also reflects fluid dynamical
stirring in the recent past [32]. Effective diffusivity is small where the tracer
field is smooth (less stirred) and large where it is rough (highly stirred). A
minimum in effective diffusivity is an indication of transport barrier. Since
effective diffusivity is fully a function of time, it is an instantaneous mea-
sure of irreversible transport. Effective diffusivity addresses many of the
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difficulties with the extant mixing diagnostics described in Sect. 1. A compre-
hensive review of effective diffusivity, including comparison with other mea-
sures of mixing, is found in Shuckburgh and Haynes [39].

Since the structure of effective diffusivity depends only on the instanta-
neous geometry of the tracer field, it is readily calculable. The diagnostic has
been successfully applied to a class of 2D flows (KH instability, the strato-
sphere, and ocean) using numerically synthesized tracers and actual trace
constituents [32, 34, 35, 36, 37, 38, 54, 55, 56] to elucidate the inhomogeneous
nature of mixing.

We have also shown that the mass flux through the tracer surfaces can be
partitioned, with little extra effort, in the two opposing directions using the
local curvature of the tracer surface. The diagnostic is capable, for example, of
quantifying asymmetry in wave-breaking events [40]. The result is generally
consistent with the visual impression of tracer geometry (e.g., shedding of
filaments in one preferred direction) yet provides a more objective measure.

Finally, we have touched on the relationship between effective diffusivity
and the traditional Eulerian eddy diffusivity. The two are different in that
the former is diffusivity with respect to the tracer surfaces that move with
the flow, whereas the latter is diffusivity about fixed locations. This means
that advective transport is excluded from effective diffusivity, whereas it is
the leading contributor to the Eulerian eddy diffusivity. Effective diffusivity
extracts true irreversible (downgradient) transport, so its sign is always posi-
tive. In contrast, the Eulerian eddy diffusivity is not always positive since the
advective excursion of tracer surfaces does not necessarily lead to a locally
downgradient transport. We have shown that it is possible to remove the ad-
vective contribution from eddy diffusivity, and that the remainder represents
local irreversible mixing. This last quantity is very much akin to effective
diffusivity in that it captures molecular diffusion amplified by differential ad-
vection, except it is defined locally. This diagnostic is successfully used to
identify the geographical locations of mixing barriers [50].

We shall conclude this chapter by addressing some of the frequently asked
questions about the diagnostic method.

1. When the tracer contour is multiply connected, why are all “islands”
summed up together with the main body? When a blob is cut off from the
main body of fluid mass, doesn’t it constitute mass transport? It is possible
that a significant fraction of fluid mass is split from the main body with lit-
tle diffusion. However, such cutoff blob stands a chance of being remerged
with the main body. (Merger of vortices is common in geostrophic turbulence
[57].) To exclude such “reversible” transport, we keep all identifiable islands
lumped together. Only when the cutoff blobs and filaments lose their La-
grangian identity through diffusion, we count it as transport. This way the
transport is guaranteed to be irreversible. It is also algorithmically challenging
to take inventory of individual blobs.

2. Effective diffusivity is calculated from the geometry of a tracer. Doesn’t
it mean it is a property of the tracer, and not of the flow? In general, effective
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diffusivity is indeed specific to the tracer. However, to the extent that trac-
ers are passive and dictated by large-scale flows, they tend to form similar
geometry and give rise to similar effective diffusivity. For example, Haynes
and Shuckburgh [36] solve advection–diffusion problems for different initial
conditions but with the same stratospheric winds and find that the effective
diffusivities from all runs converge after a few months. This is related to the
emergence of a “strange eigenmode,” a complex pattern of tracer characterized
by a stationary normalized PDF in the longtime limit [58, 59, 60, 61].

3. It is claimed that effective diffusivity excludes advective transport. But
in practice, due to coarse resolution of the tracer data, etc., one must param-
eterize processes at unresolved scales, including small-scale advection. Then
molecular diffusion (D) must be replaced by a suitable subgrid eddy diffusion.
How do you know if your choice of subgrid diffusion is “right?” How sensitive
is effective diffusivity to the choice of subgrid diffusion? If D is to be replaced
by Km in Sect. 3, advective transport is still kept out of effective diffusivity.
See [50] for how Km might be evaluated. If the primary role of diffusion is
to remove the small-scale structure generated by large-scale stirring, then ef-
fective diffusivity is dictated by the large-scale process. It should be robust
as long as subgrid diffusion is chosen so as to balance deformation (i.e., the
Péclet number ∼ 1) at the minimum resolved scale of the tracer. However,
when stirring is weak (e.g., in the barrier region), effective diffusivity tends
to increase with increasing numerical diffusion. The implication is that, when
the resolution of the data/model is coarse and the subgrid diffusion is corre-
spondingly large, it tends to overestimate effective diffusivity at the barriers,
making them leakier than they actually are. See, for example, [34, 36, 50, 56].

4. Most observed trace constituents in the atmosphere and ocean are also
affected by processes other than advection and diffusion. What are the ef-
fects of the neglected processes on effective diffusivity? This depends on the
timescale of the processes involved. If stirring by large-scale motion is much
faster than the other processes, effective diffusivity is primarily determined by
transport and the neglected processes will have little effect. If the timescales of
source/sink are much shorter than the transport timescale, then the proper-
ties of the flow will have less control on the effective diffusivity. The divergent
component of the flow, neglected in (1), could also affect mixing [62]. In the
case of the lower stratosphere, however, the difference is negligible at least in
the extratropics [37].

5. The concept of equivalent latitude works well when the tracer gradients
are monotonic. But many stratospheric constituents have extrema in the trop-
ics. How do you compute effective diffusivity there? The effective diffusivity
calculated from the real stratospheric constituents is indeed unreliable in the
tropics where latitudinal gradients vanish. See [63] for details. One way to
avoid this difficulty is to use potential vorticity (PV), which has monotonic
pole-to-pole gradients. However, PV diagnosed from meteorological data may
be susceptible to significant errors. A better approach is to numerically synthe-
size a PV-like tracer by solving advection–diffusion equation [35, 36, 37, 38].
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6. Can you use the diagnosed effective diffusivity to drive a 2D chemical-
transport model? Yes, as long as the model’s coordinate is consistent with the
effective diffusivity’s (such as equivalent latitude). As we have seen, effective
diffusivity can be significantly different from the Eulerian eddy diffusivity, so it
should not be used to drive the Eulerian 2D model. The meridional circulation
must also be specified in the same coordinate (this can be challenging).

7. Is it possible to formulate a flux closure to predict effective diffusivity? To
predict effective diffusivity one must predict equivalent length, and to predict
equivalent length one must predict the square of tracer gradient averaged
on the tracer contour (CDR, see Sect. 2.2). Closure for the CDR is an active
research topic in the turbulence community [64, 65, 66, 67, 68], but the theory
is largely limited to homogeneous turbulence and very little has been done for
flows with large eddy correlation length.
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Appendix 1 Derivation of (4)

Consider the area of the region in which q∗ ≤ q. The change in this area from
time t to t+ δt is

δ
∫

q∗≤ q

dS =
∫

q∗(t+δt) ≤ q

dS −
∫

q∗(t) ≤ q

dS

≈ −
∮

q∗ = q

δt
∂q∗/∂t
| ∇q∗| dl = − δt

∂

∂q

∫
q∗ ≤ q

∂q∗

∂t
dS. (30)

The last identity uses (5). By dividing both sides by δt, taking the limit δt→ 0
and substituting (1),

∂

∂t
A(q, t) = − ∂

∂q

∫
q∗≤q

(
D∇2q∗ −∇ · (vq∗)) dS

= − ∂

∂q

∫
q∗≤q

D∇2q∗dS +
∂

∂q

∫
q∗≤q

∇ · (vq∗) dS. (31)

However, using the divergence theorem,
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∫
q∗≤q

∇ · (vq∗) dS = q

∮
q∗=q

v · ∇q∗
| ∇q∗| dl = q

∫
q∗≤q

∇ · v dS = 0. (32)

Hence

∂

∂t
A(q, t) = − ∂

∂q

∫
q∗≤ q

D∇2q∗dS. (33)

Appendix 2 Relationship to Sinai–Yakhot [41]
and Ching–Kraichnan [42]

Consider a tracer field normalized by its standard deviation:

θ∗ = (q∗ − 〈q∗〉)
/√〈

(q∗ − 〈q∗〉)2
〉
, (34)

where the angular bracket denotes the global average. Substituting in (1) and
using (2),

∂

∂t
θ∗ + ∇ · (v θ∗) = D∇2θ∗ + 〈D |∇θ∗|2〉 θ∗. (35)

Applying the same procedure used to derive (4),

∂

∂t
A(θ, t) = − ∂

∂θ

∫
θ∗≤θ

D∇2θ∗dS − 〈D |∇θ∗|2〉 ∂
∂θ

∫
θ∗≤θ

θ∗ dS

= −∂A
∂θ

(〈
D∇2θ∗

〉
θ

+ 〈D |∇θ∗|2〉 θ
)
, (36)

where (7) is used to derive the last expression. In a steady state, vanishing of
the lhs leads to

〈∇2θ∗
〉

θ
= −〈 |∇θ∗|2〉 θ, (37)

Hence, diffusion of θ∗ conditioned on θ is proportional to θ. Taking the θ
derivative of (36) and using (6) and (8),

∂

∂t
p(θ, t) = − ∂

∂θ

(
∂

∂θ

(〈
D |∇θ∗|2

〉
θ
p
)

+ 〈D |∇θ∗|2〉 p θ
)
. (38)

This is analogous to (9). Assuming a steady state,

∂

∂θ

(〈
|∇θ∗|2

〉
θ
p
)

+ 〈|∇θ∗|2〉p θ = 0. (39)

The solution to the above Partial differential equation (PDE) is
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p(θ) =
C〈

|∇θ∗|2
〉

θ

exp

⎛
⎝−

∫ θ

0

〈|∇θ∗|2〉〈
|∇θ∗|2

〉
θ′

θ′ dθ′

⎞
⎠ , (40)

where C is a constant. This expression corresponds to the result of Sinai and
Yakhot [41]. Substituting (37) in (40),

p(θ) =
C〈

|∇θ∗|2
〉

θ

exp

⎛
⎝
∫ θ

0

〈∇2θ∗
〉

θ′〈
|∇θ∗|2

〉
θ′

dθ′

⎞
⎠ . (41)

This last expression is the one derived by Ching and Kraichnan [42].
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Lagrangian Statistics from Oceanic
and Atmospheric Observations

J. H. LaCasce

Department for Geosciences, Norwegian Meteorological Institute, University
of Oslo, Oslo, Norway
j.h.lacasce@geo.uio.no

Abstract. We review statistical analyses made with Lagrangian data from the
atmosphere and ocean. The focus is on the types of measures used and on how
the results reflect the underlying dynamics. First we discuss how the most com-
mon measures come about and how they are related to one another. The measures
can be subdivided into those concerning single particles and those pertaining to
groups of particles. Single particle analysis is more typical with oceanic data. The
most widely-used such analysis involves binning velocities geographically to estimate
characteristics of the Eulerian flow, such as the mean velocities and the diffusivities.
Single particle statistics have also been used to study Rossby wave propagation, the
sensitivity to bottom topography and eddy heat fluxes. The dispersion of particle
pairs has been studied more in the atmosphere, although examples in the oceanic
literature have also appeared recently. Pair dispersion at sub-deformation scales is
similar in the two systems, with particle separations growing exponentially in time.
The larger scale behavior varies, possibly reflecting details of the large scale shear
flow. Analyses involving three or more particles are fairly rare but have been used
to measure divergence and vorticity, as well as turbulent dispersion.

1 Introduction

In a seminal paper in physical oceanography, Stommel and Arons [1] predicted
the structure of the abyssal (deep) circulation in the ocean. Their model ex-
hibited a sluggish poleward interior flow linked to dense water formation sites
by boundary currents on the western side of the basin. If correct, the model
implied that a “Deep Western Boundary Current” (DWBC) should lie under
the Gulf Stream in the North Atlantic. This had never been observed, and
there was much interest subsequently in finding it. The difficulty was that
measuring currents at 3000 m at that time was a very difficult task.

Stommel believed that the current could be observed remotely if seeded
with neutrally buoyant, passive drifters, as one might do in a laboratory exper-
iment. The English scientist, John Swallow, designed and built such a drifter.
The idea was that the drifter would sink to the desired depth and then follow
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the current there. He made the device by hollowing out aluminum scaffolding
tubes in baths of caustic soda, to obtain the correct compressibility.1 He (with
Stommel and Val Worthington from Woods Hole) deployed these “floats” off
the east coast of North America and monitored their progress from shipboard
with an acoustic receiver. The success of such an effort perhaps seems remote,
but they located the current and confirmed, spectacularly, the theory [2].

Swallow made another important discovery in a subsequent experiment,
the Aries expedition. The idea was to test for the sluggish interior flow pre-
dicted by Stommel and Arons. Again multiple floats were deployed from the
ship and tracked acoustically. The expectation was that the floats would drift
slowly, allowing them to be tracked for months (the oceanographers believed
they could make calls to port and return to resume tracking). But instead, the
floats shot away from the ship at speeds of order 10 cm/s and were soon lost
[3]. The observers also found that pairs of floats deployed only 10 km apart
quickly went in different directions. They deduced an active deep eddy field
with relatively small spatial scales, something which was completely unantic-
ipated. Word of this spread quickly, initiating what became a major effort in
the following decades to understand the oceanic eddy field.

Lagrangian observations have been used profitably to study remote regions
of both the atmosphere and ocean. In the following, we examine various analy-
ses made using that data. The intent is not to present an exhaustive survey of
Lagrangian experiments; such surveys can be found elsewhere [4]. The point
rather is to consider in more detail statistical analyses based on data from the
atmosphere and ocean, to illustrate the range of techniques used, as well as
the results obtained.

1.1 Instruments

Before discussing those analyses, it will be useful to consider the instruments
used. Most Lagrangian observations in the atmosphere have been made using
constant level balloons. These rise to a preset pressure level and drift along,
tracked by satellite. The heyday of large balloon experiments was the 1970s.
Position errors at that time were on the order of 5 km [5].

In the ocean, two classes of instruments are used: one for tracking currents
at the surface and the other at depth. The former, referred to as “drifters”,
are comprised of a transmitter and (but not always) a subsurface “drogue”.
The drogue usually resembles a large kite or sock and causes the transmitter
to drift with the currents at the depth of the drogue, generally 5–50 m below
the surface. The surface transmitter is monitored by satellite. Drifters tracked
with the ARGO satellite system have positional errors on the order of 1 km.
More recent models can be tracked by GPS and cellular phones, and these
can offer 100 m accuracy and 10 min tracking [6].

1 An entertaining history of the development of oceanic floats was written by John
Gould of the Southampton Oceanographic Center.
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The subsurface instruments are called “floats”.2 Floats sink to a depth
determined by the float’s compressibility and then follow currents there, like
the balloons which rise to a designated pressure level. More recent designs
track constant density surfaces instead, because fluid parcels tend to follow
such “isopycnal” surfaces.

Because they are below the surface, floats cannot be tracked by satellite.
Early floats (like those used by Swallow and the later Sound Fixing and Rang-
ing or “SOFAR” floats [7]) were like large organ pipes, emitting low frequency
sound pulses which were monitored by a network of microphones; the floats’
positions were then determined by triangulation. Later, the inverse system
(RAFOS, or “SOFAR” spelled backward [8]) was developed, with subsurface
sound sources and much smaller floats carrying a microphone. These floats
yield positions with an accuracy of roughly 1 km, from once to several times
a day.

A recent addition is the ALACE float. Some 3000 of these floats have
been deployed in the ARGO program and are currently drifting around the
world. These drift at a constant depth and rise to the surface periodically to
be located by satellite. They are not tracked at depth and so do not require
subsurface sound sources (which are expensive and limit the sampling region).
But because these floats drift for days or even weeks below surface without
being tracked, the temporal resolution of the positions is much lower. So these
floats will not be of use in the subsequent discussions.

An additional method of (Lagrangian) observation is to release a passive
tracer and monitor its spread.3 A typical example is of smoke spreading in
the atmospheric boundary layer. While lacking the temporal resolution of a
continuously tracked float, tracer evolution can provide information about the
stirring, i.e. the change in the distribution of a cloud about its center of mass.
We will touch only briefly on tracer release experiments, but focus instead on
continuously tracked particles.

1.2 Analysis

Following Swallow’s experiments, Lagrangian measurements have been used
fruitfully for descriptive studies. This has been particularly true in the ocean,
where direct sampling is labor intensive and costly. Floats have been deployed
in eddies, such as Gulf Stream rings [9] and Meddies (the eddies formed by
the outflow from the Mediterranean); [10], as well as in Rossby waves [11].
The trajectories yield information about both the paths and structures of
these features. Floats and drifters have also been used to infer the structure

2 As B. Warren remarked to me once, “drifters” float and “floats” sink.
3 A colorful, unintentional example is when a container ship sank in the North

Pacific in 1990, releasing some 61,000 Nike sneakers. These were swept eastward
and many landed along the west coast of Canada and the USA. The information
was used by C. Ebbesmeyer and colleagues to deduce surface drift patterns.
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Fig. 1. Trajectories of surface drifters in the North Atlantic. From Richardson [12],
with permission

of the Gulf Stream [12] (Fig. 1), the Norwegian-Atlantic Current [13], and the
(infamously inhospitable) Antarctic Circumpolar Current [14].

While mean currents (the Jet Stream and Gulf Stream are examples) play
a major role in the circulation of the atmosphere and ocean, both systems
exhibit significant time variability. So two particles deployed at the same lo-
cation at different times, or two particles deployed simultaneously at slightly
different locations, generally follow very different paths. As recognized early
on by turbulence researchers [15], such uncertainty necessitates a statistical
description; the motion of a single particle is not as important as the proba-
bility of a given path, as inferred from multiple realizations.

Lagrangian statistics concerns the averages of positions, velocities, and
related quantities over many realizations. It is useful to subdivide the statis-
tics into those concerning single particles and those requiring two or more
particles. Both single and multiple particle statistics are required for a full
description of tracer evolution.

To see why, consider a group of particles, for instance, the four shown in
Fig. 2. These constitute a simple “cloud” of tracer. Of interest is how the
cloud moves, and how it spreads out. The movement can be quantified by the
motion of the center of mass, the first moment of the particle displacements.
In the x-direction, this is

Mx(t) =
1
N

N∑
i=1

(xi(t) − xi(0)) . (1)

The mean displacement is thus a single-particle measure because it derives
from the average of individual displacements.
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Fig. 2. Four hypothetical particles drifting and separating from one another

The spread of the cloud about its center of mass can be measured by the
variance of the particle displacements, the second-order moment.4 This is

Dx(t) =
1

N − 1

N∑
i=1

(xi(t) − xi(0) −Mx(t))2 . (2)

The variance is usually referred to as the “dispersion”. We can rewrite the
dispersion by expanding the RHS in (2). For instance, for three particles (and
substituting xi for the displacement from the initial position), we have

(
x1 − x1 + x2 + x3

3

)2

+
(
x2 − x1 + x2 + x3

3

)2

+
(
x3 − x1 + x2 + x3

3

)2

=

(
x1 − x2

3
+
x1 − x3

3

)2

+
(
x2 − x1

3
+
x2 − x3

3

)2

+
(
x3 − x1

3
+
x3 − x2

3

)2

=

1
9

[2(x1 − x2)2 + 2(x1 − x3)2 + 2(x2 − x3)2 + 2x2
1 + 2x2

2 + 2x2
3 − 2x1x2

−2x1x3 − 2x2x3] =
1
3
[(x1 − x2)2 + (x1 − x3)2 + (x2 − x3)2].

4 We divide by N − 1 to be consistent with the standard definition of the variance
(one degree of freedom is lost determining the mean). Frequently, N is used
instead.
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The analogous result for N particles is

Dx(t) =
1

(N − 1)N

∑
i�=j

[xi(t) − xj(t)]2 , (3)

where the sum is over all particle pairs.5 So cloud dispersion is a two-particle
phenomenon, being proportional to the mean square pair separation (called
“relative dispersion”). This equivalence reflects a general connection between
two particle statistics and the concentration statistics of a scalar cloud, first
noted by Batchelor [16]. It is a useful relation for geophysical experiments
because cloud dispersion can be inferred from releasing pairs of floats rather
than large clusters.

While the dispersion reflects the cloud’s size, it is fairly insensitive to the
cloud’s distribution in space. Consider the two examples shown in Fig. 3. The
upper left panel shows a group of particles undergoing essentially a random
walk (generated by a stochastic advection scheme; Sect. 2.2), while the upper
right panel shows particles advected by a 2D turbulent flow (Sect. 3.2). The
cloud on the left is spreading out uniformly, but the one on the right is actually
being drawn out into filaments. The dispersion in these two cases is similar,
but the distributions are obviously different.
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Fig. 3. Two examples of particle advection. The 484 particles in the upper left
panel have been advected by a first-order stochastic routine (Sect. 2.2), while the
121 particles in the upper right panel move in a 2D turbulent flow (Sect. 3.2). The
lower panels show histograms of the corresponding x-displacements

5 Note we do not count duplicate pairs twice in this definition.
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A way to distinguish them is with the probability density function (PDF)
of the displacements. The PDF, a normalized histogram, is of fundamental
importance statistically because all the moments (mean, dispersion, etc.) can
be derived from it (Sects. 2, 3.1). Moreover its shape reflects how the cloud is
dispersing. Binning the x-displacements from the center of mass for the cloud
at left in Fig. 3 yields a nearly Gaussian histogram (lower left panel). The
histogram for the turbulent flow on the other hand (lower right panel) has a
peak near the origin and extended “tails”, reflecting that most of the particles
are near the origin but that a few have been advected far away.

The dispersion reflects the width of the PDF and, as noted, this is similar
for the two cases shown in Fig. 3. Where they differ is in the higher order
moments. A commonly used one is the kurtosis, the fourth-order moment:

ku(x) ≡
∑

i(xi −Mx)4

(
∑

i(xi −Mx)2)2
. (4)

It is traditional to normalize the kurtosis by the squared second-order moment.
The kurtosis has a value of 3 for a Gaussian distribution. In the random walk
example in Fig. 3, the kurtosis is 2.97, whereas in the turbulence case, it is
6.62. The larger value reflects the extended tails.

Many of the measures discussed hereafter are variants on these basic quan-
tities: the PDF and the moments (mean, dispersion, and kurtosis), either for
displacements or velocities. One can, in addition, define corresponding quan-
tities for either single particles or pairs of particles. We begin with single
particles and continue with multiple particles thereafter.

2 Single-Particle Statistics

Single-particle statistics are the most frequently examined in geophysical La-
grangian studies. The following originates with Taylor’s seminal work on dif-
fusion by continuous movements [17]. A lucid summary, in the turbulence
context, is given by [18]; a more recent treatise, which discusses the applica-
tion to oceanic data and treats the problem of inhomogeneity, is given by [19].
We also note a seminal work in which many of these measures were applied
to oceanic floats for the first time [20].

Consider a single fluid parcel. If this parcel is initially at x = x0 at t = t0,
the probability that it arrives at x at time t can be expressed by a single-
particle displacement PDF, Q(x, t|x0, t0). If we have a group of parcels at
various locations, the PDF permits us to predict where those parcels are likely
to be subsequently:

P (x, t) =
∫
P (x0, t0) Q(x, t|x0, t0) dx0. (5)
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Thus Q effectively maps the original positions to positions at the later time.
If the flow is statistically homogeneous (invariant to changes in location), then
Q is only a function of the displacement:

Q(x, t|x0, t0) = Q(x− x0, t) ≡ Q(X, t). (6)
If the flow is also stationary (invariant to changes in time), we simply have

Q(X, t) ≡ Q(X) . (7)
All the statistical moments (mean, variance, etc.) can be derived from the

PDF. The first moment is the mean displacement. For homogeneous flows,
this is

X(t) =
∫
XQ(X, t) dX . (8)

The second moment is the single-particle (or “absolute”) dispersion:

X2(t) =
∫
X2Q(X, t) dX . (9)

The absolute dispersion is not the same as the variance of a group of particles
about their center of mass. Rather, it is the variance of the displacements
relative to their starting positions, generally a very different quantity. With
the group of particles shown in Fig. 2, the absolute dispersion would reflect
both the spread about the center of mass and the drift from the cluster’s
starting location. So the absolute dispersion is affected by a mean flow (it is
not Galilean invariant).

The time derivative of the single-particle dispersion is the “absolute diffu-
sivity”:

κ ≡ 1
2

d
dt
X2 = Xu =

∫ t

t0

u(t′)u(t)dt′ . (10)

The diffusivity is thus the integral of the velocity autocorrelation. If the flow
is stationary, the velocity variance is constant, so that

κ =
∫ t

t0

u(t′)u(t)dt′ = ν2

∫ t

t0

R(t′)dt′ , (11)

where ν is the RMS particle velocity, and R is the normalized velocity corre-
lation. The dispersion can also be written in terms of R:

X2(t) = 2ν2

∫ t

t0

(t− t′)R(t′)dt′. (12)

With (12), one can make deductions about the dispersion under fairly gen-
eral conditions. At early times, R(t′) ≈ 1 (as follows from a Taylor expansion
in time). Then the dispersion grows quadratically in time:
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lim t→0 X2(t) ∝ ν2t2 . (13)

At long times, we have

lim t→∞ X2(t) ≈ 2ν2t

∫ ∞

t0

R(t′)dt′ − 2ν2

∫ ∞

t0

t′R(t′)dt′ . (14)

If the integrals in (14) converge, the dispersion grows linearly in time and the
diffusivity is constant. As recognized by [21], the system is then statistically
equivalent to a diffusive one. The eddy stirring can then be represented as
a diffusive process with the diffusivity determined as above. We emphasize
though that this is only true in a statistical sense; individual events could
vary greatly.

The linear dependence can fail under certain conditions, for instance if
there is a long-time correlation in the velocity field, or if the spread of particles
is restricted, as in an enclosed basin [22]. However, one can often adjust for this
(Sect. 2.1). Between the initial and final asymptotic limits, one may observe
anomalous dispersion, or dispersion with a power law dependence different
than t1 or t2 (an excellent discussion is given by [23]). Anomalous dispersion
has been observed in experiments [24] but has been difficult to resolve in
geophysical flows.

Other quantities can also be derived from the velocity correlation. The inte-
gral of the normalized autocorrelation, the“integral time”, TL ≡ ∫ ∞

0
R(t′)dt′,

is an estimate of the time scale over which the Lagrangian velocities are cor-
related. This is a basic indicator of Lagrangian predictability. The Fourier
transform of the autocorrelation is the Lagrangian frequency spectrum:

L(ω) = 2
∫ ∞

0

R(t) cos(2πωt) dt , (15)

an equivalence first noted by Taylor [25]. The Lagrangian time scale can be
shown to be one-half the value of the spectrum at the zero frequency, i.e.
TL = L(0)/2. This implies the diffusivity is determined by the lowest frequency
motion [26].

2.1 Advection–Diffusion

Applying these measures to data requires some modifications. The averaging
in the previous expressions assumes an ensemble of nearly identical realiza-
tions, for example of particles deployed repeatedly at the same location. But
particles in geophysical experiments are often deployed at different locations. If
the flow is homogeneous, ergodicity permits using such particles as an ensem-
ble. But most geophysical flows are not homogeneous, and one must modify
the averaging to account for this.

Such issues have been considered in depth by R. Davis in a series of articles
[19, 27, 28]. His methodology is widely used in the analysis of oceanic data.
It derives from an assumption, a separation of scales, i.e. there is a slowly
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varying “mean” flow and a faster varying “eddy” or “residual” field, both of
which are assumed to vary in space:

U(x, y, z) ≡< u(x, y, z) >; u′(x, y, z, t) ≡ u(x, y, z, t) − U(x, y, z) .

Here, the brackets represent regional averages, as discussed below. With these
quantities, one can write a transport equation for a passive tracer, C:

∂

∂t
C + U · ∇C = −∇· < u′C′ >≡ ∇ · (κ∇C) , (16)

if C represents an average (in some defined sense) concentration and C′ the
departures from that average. The Reynolds transport of the perturbations is
often parameterizing as a diffusive process, as shown above. This assumes of
course that diffusivity exists. But if so, such a transport equation is potentially
very useful, for instance in diagnosing the spread of pollutants in a sampled
region.6 All the terms in (16) can be calculated from single-particle statistics.
We consider the mean first.

2.1.1 Mean Flow

The advective–diffusive formalism requires a separation in time scales, as
noted. This is equivalent to saying that there is a gap in the velocity fre-
quency spectrum. All indications are that such a gap does not exist, either
in the atmosphere or ocean [29, 30]. We make the assumption nevertheless.
But the question then is, what time scale should be used for determining the
mean (the slow time field)? A practical choice is simply the length of the float
experiment [19], which might be a year or two. The residual velocities then
pertain to the shorter time scales.

To account for the inhomogeneity of the field, the mean is calculated by
averaging velocities of particles passing through selected geographical bins.
The implicit assumption is that the statistics are stationary (so while we
anticipate variations in space, we neglect them in time). The geographical
means apply to the flow at the vertical position, z0, of the particles in the
experiment.

In the atmosphere, Morel and Desbois [31] used the trajectories of balloons
released during the EOLE experiment (Sect. 3.3) to map the mean atmo-
spheric circulation in the southern hemisphere. The results indicated a zonal
mean flow, with typical velocities of 10–30 cm/s. The mean had a standing
wave pattern, with dominant wavenumbers 1 and 4. The latter perhaps re-
flects low frequency motion, like that due to quasi-stationary planetary waves,
which has been subsumed into the mean.
6 An alternate version, preferred by Davis, includes a second-order time derivative

for the tracer field. This allows for wave propagation, and thus avoids the issue
of tracer signals propagating infinitely fast, as in the diffusion equation (Davis,
personal communication).
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Fig. 4. Mean velocities obtained from averaging the velocities of surface drifters
shown in Fig. 1. From Richardson [12]

In the ocean, regional averaging has been used widely. Averaging the sur-
face drifter displacements shown in Fig. 1, Richardson [12] derived the mean
velocities shown in Fig. 4. This clearly shows the Gulf Stream separating from
the North American coast near the state of North Carolina and then flowing
eastward and splitting. One branch then proceeds north off Newfoundland
and another turns south.7

Another example, from drifter data in the Nordic Seas, is shown in Fig. 5.
This captures the northern branch of the Gulf Stream (the “North Atlantic
Current”) as it crosses the basin, enters the Nordic Seas and proceeds toward
the Arctic Ocean [34]. It also shows the Greenland Current rounding the
southern tip of Greenland and proceeding south, along the Canadian coast.
The large density of drifter data available here permits such a startlingly
detailed picture.

While results like those in Fig. 5 would appear to justify the means (no pun
intended), there are pitfalls with the binning method. First, the significance
of the mean in a given bin varies with the number of particles which have
been through. In most published analyses, the means are only plotted for bins
with more than some minimum number of velocity realizations (e.g. 10 float
days), but this is a subjective criterion.8 Second, one must choose the size of
the bins. Just as there is no spectral gap in the velocity frequency spectrum,
neither is there one in the wavenumber spectrum. But by choosing a bin size,

7 A more recent mapping, using an extensive set of drifter data from the North
Atlantic during the 1990s, is given by [32].

8 An alternate approach would be to show only those means which are significantly
different than zero at a given level of confidence.
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Fig. 5. Mean velocities derived from surface drifters in the North Atlantic and
Nordic Seas. From Jakobsen et al. [33], with permission

one essentially picks the horizontal scale of the mean flow. Choosing too large
bins yields an overly smooth mean while using too small bins subsumes eddy-
like features. The Gulf Stream spans a large region, but it also has a relatively
narrow core and worse, it meanders. Such aspects are difficult to capture with
bin-averaging.

Third, uneven data coverage can result in non-smooth means. Several
remedies for this have been explored, such as deriving the mean via a vari-
ational calculation with the binned velocities as input [14, 35]. Another ap-
proach is to fit the binned velocities with splines [36]. Both techniques yield
smoother means. This in turn affects the residual velocities, and thus the
diffusivity estimates (an example is given below).

But problems aside, the averaging of drifter and float data has been an
invaluable tool, particularly in oceanography.

2.1.2 Diffusivity

As with the means, there are practical difficulties associated with calculating
diffusivities. For instance, particles often visit regions with different character-
istics during their lifetime. As such, it is not sensible to integrate the autocor-
relation in (10) to t = ∞. And because the mean is not truly stationary, some
fraction of the low frequency variance will remain in the residual velocity; this
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can produce long-term velocity correlations, hindering the convergence of the
integral. As before, practical choices are required.

Often the autocorrelation integral is evaluated only up to a certain time,
for instance a typical time that particles stay in a region or bin. This might
be several times the integral time scale, TL.9

An alternate approach is to calculate the diffusivity directly from the resid-
ual velocity and the residual displacement (the displacement minus that due
to the mean velocity; [19]):

κ(x, t) = − < u′j(t0|x, t0)d′k(−t|x, t0) > , (17)

where

u′(t0) = u(t0) − U(x), d′(t) = d(t) −D(x, t) .

The notation indicates that the quantities are calculated for a particle which
lies at position x at t = t0. One uses the time series for the velocity after t0
but for the displacement backward in time from t0.10

Zhurbas and Oh [38] used this method to map the diffusivity for the sur-
face Atlantic (Fig. 6). Again, one is struck by the broad extent of the data
coverage. The Gulf Stream is a region of heightened dispersion. So too are
the Caribbean, the Equatorial region (where there are strong zonal currents
and countercurrents), the region where the Antarctic Circumpolar Current
flows northward along the South American coast and the region south of
Africa (where the Agulhas current retroflects). Large diffusivities usually re-
flect large variances, and these regions are indeed the most energetic in the
Atlantic.

There are several additional points with regards to Davis’ method. First,
the residual velocities should have a distribution which is not too different
from a Gaussian. This has been tested in several locations and found to be
approximately true (Sect. 2.3). Second, the diffusivity estimate can be biased
by non-uniform float coverage; floats on average drift from regions with high
float densities to those with low densities, and this can yield a false impression
of a diffusivity gradient. Davis discusses correcting for this [19]. In addition,
the determination of the mean affects the diffusivities, as suggested above.
Using more advanced methods, like spline interpolation, can improve the con-
vergence of the integral of the velocity autocorrelation. An example of this is
shown in Fig. 7.

9 Taken in reverse, one could define the bin size as the RMS distance particles
spread from a central point over several integral times. Such an approach would
help avoid subsuming eddies into the mean.

10 This is conceptually similar to using reverse diffusion for deducing concentration
moments, [37].
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Fig. 6. Contours of diffusivity derived from surface drifters in the North Atlantic,
from [38]. Superimposed are the mean velocity vectors, also deduced from the
drifters. With permission

2.1.3 Diffusivity Scaling

The advective–diffusive formalism is a way of representing oceanic transport
and dispersion of a passive tracer, such a spilled oil. However, to use it, one
must have already sampled the affected region, and this is not always feasible.
It would be advantageous if one could infer the means and/or diffusivities
independently, for example from satellite measurements. To this end, some
have sought simple parameterizations for the diffusivity.

For example, some studies have indicated the diffusivity scales with eddy
kinetic energy. But the exact dependence is not always consistent. Some find
that diffusivity is proportional to the RMS velocity, ν [39, 40], while others
find a dependence on the kinetic energy, ν2 [41, 42].

Recently, Lumpkin et al. [43] examined the dependence on ν systemati-
cally using drifter-derived velocities from the North Atlantic. They found that
the dependence varied strongly with region, with a quadratic dependence in
some places and a linear in others. They concluded that no single relation
exists.
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Fig. 7. The diffusivity deduced from drifters in the Pacific using three different
mean fields: a constant one, one obtained from averaging in 10◦ × 1◦ rectangles and
one derived from spline-fitting. The latter method produces the best convergence.
From [36], with permission

2.2 Stochastic Models

The Lagrangian equivalent of a diffusive system is one in which particles
execute a random walk [17]. “Stochastic” routines for particle advection have
been used in both the atmosphere and ocean to simulate the spread of tracer.
In such models, it is a group of particles rather than a continuous tracer
which is advected forward in time. Discussions of stochastic models are given
by [37, 44, 45].

The most basic such model is the random or “drunkard’s” walk. In this, it is
the particle’s position which is the “noised variable”, i.e. the variable to which
the stochastic perturbation is added. In higher order stochastic models, it is
the velocity or the acceleration which is perturbed. In the random walk, the
velocity autocorrelation is a delta function because each step is uncorrelated
with the previous one. With the first-order model (in which the velocity is
noised), the autocorrelation is a well-defined decaying function, and it is the
autocorrelation of the acceleration which is a delta function.11

Consider the first-order model, which is given by a Langevin equation:

dx = (u+ U) dt, dy = (v + V ) dt ,

11 This is an appropriate choice for simulating turbulence with very large Reynolds
number [46].
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du = − 1
Tx
u dt + nx dW, dv = − 1

Ty
v dt + ny dW, (18)

where U and V are the mean velocities in the x- and y-directions, and dW
is the incremental Wiener process (a Gaussian noise). This model yields an
exponentially decaying velocity autocorrelation with two different time scales
Tx and Ty. The diffusivities are simply

κx =
n2

x

2
, κy =

n2
y

2
. (19)

In regions where the asymptotic dispersion is diffusive, one can tune the
stochastic model to fit the data. Stochastic models have been used to model
surface drifter data [47], particle drift in numerical models, [45] and pollutant
dispersion in the atmospheric boundary layer [48].

Among the recent developments is the inclusion of rotational effects to
account for particles trapped in vortices [49, 50]. A typical set of float data
includes floats which loop (due for instance to vortices) and those which don’t.
One can simulate the looping by including a rotational component in the
stochastic equations:

du = − 1
Tx

u dt + Ω v dt + nx dW, dv = − 1
Ty

v dt − Ωu dt + ny dW . (20)

The result is that the autocorrelations oscillate:

Rx = e−t/Tx cos(Ω t), Ry = e−t/Ty cos(Ω t) . (21)

The rotational frequency, Ω, depends on the rate of swirling of the particles
and can be determined from the data. Using such a model, Veneziani et al.
[51] duplicated autocorrelations derived from floats at 700 m in the western
North Atlantic. The model is very promising for simulating oceanic tracer
dispersal.

Stochastic models must be applied cautiously however. A tracer which
is well mixed initially should not develop mean gradients under these rou-
tines, the “well-mixed” criterion of Thomson [52], and this must be accounted
for. Stochastic models are in addition usually non-unique except in the case
of simple flows. The proper application of stochastic models for geophysical
flows is thus an ongoing area of research. A comprehensive review is given by
Sawford [37].

2.3 PDFs

As noted, the displacement moments derive from the PDF of the displace-
ments, Q(X, t). Closely related is the PDF of the residual velocities, P (u′, t).
The advective–diffusive formalism of Davis [19] and the stochastic models as-
sume that Q(X, t) and P (u′, t) are approximately Gaussian. The first to check



Lagrangian Statistics from Observations 181

this assumption were evidently Swenson and Niiler [53], using drifter data from
the California Current. Bracco et al. [54] did the same, using subsurface float
data from the North Atlantic.

Let’s consider how they did this. The problem again is that the eddy field
is inhomogeneous and one must correct for this in averaging. The authors thus
demeaned the velocities in geographical bins, to generate residual velocities,
and then normalized the residuals by dividing by the local standard deviation.
Then the normalized residuals were recombined to generate a PDF for a chosen
region.

An example, from the shallow Northwest Atlantic, is shown in Fig. 8.
The PDFs for both the zonal and meridional velocities deviate significantly12

from a Gaussian. This deviation is most noticeable in the “wings” of the
distribution, which are actually nearer to an exponential distribution (which
would have straight wings in these plots) than a Gaussian.

The extended wings reflect an excess of extreme events, or velocities which
are several times the standard deviation. These occur over the whole region
(lower panel) and are often associated with coherent advection, e.g. a rapid
translation or swirling motion which lasts a few days. This is where the Gulf
Stream lies, and the energetic events are probably linked to the Stream and/or
its eddies. Indeed, very similar velocity PDFs are found with fields of vortices
and in numerical simulations of 2D turbulence [54, 56, 57, 58]. However Bracco
et al. found similar PDFs in the deep western Atlantic (below the core of the
stream) and also in the eastern Atlantic, a region of much weaker variability.
Similar weakly non-Gaussian PDFs have been found from drifters data from
the Adriatic Sea [59]. Only near the equator are the PDFs not significantly
different from Gaussian [54].

In principle, the velocity PDF derived from Lagrangian data should be
the same as that derived from Eulerian data [60]. The equivalence in the
western North Atlantic was demonstrated by LaCasce [61], who examined
a large number of velocity records from subsurface current meter moorings.
These produced PDFs statistically identical (as determined by the K–S test)
to those obtained with the floats (Fig. 9).

Because extreme events are rare, one requires long time series (or a large
set of shorter series) to capture the wing deviations. The deviations from
Gaussianity however are relatively minor; the kurtoses (Sect. 3.1) are typically
not larger than 4.0. This implies that the distributions are probably near
enough to normal to satisfy the requirements of Davis [19].

2.4 Alternate Coordinates

Up until now we have considered velocities and displacements in Cartesian
coordinates, i.e. in the zonal and meridional directions. In isotropic flows,

12 One can test the significance of deviations from a given PDF using a “goodness-
of-fit test”, such as the Kolmogorov–Smirnov (K–S) test [55].
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Fig. 8. Velocity PDFs from subsurface float data. The upper panels show the zonal
and meridional velocity distributions, and the lower panel shows the locations of
energetic events. The latter are spread over the region covered by the floats and
often indicate multiday occurrences. From [54], with permission

the choice of coordinates is irrelevant, but it is important otherwise. The
atmosphere is anisotropic, primarily due to the beta-effect (the latitudinal
variation of the Coriolis parameter) and the Jet Stream; both favor zonal
dispersion over meridional. Bottom topography in the ocean can also influence
dispersion, but the direction favored generally varies with location.

Why would topography affect particle motion? Consider a barotropic fluid,
under the shallow water equations. Taking the curl of the linearized momen-
tum equations and invoking the continuity relation, one obtains the shallow
water vorticity equation, which can be written as
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Fig. 9. The velocity PDFs derived from float data, normalized using 1◦ bins, and
from current meter data, both from the western North Atlantic. Both distributions
deviate from normal distributions in the wings, indicating excess energetic events.
The numbers at upper left are the probabilities that the distributions are the same,
from the Kolmogorov–Smirnov test, and indicate the null hypothesis (that they are
different) cannot be rejected. From [61]

∂

∂t
∇× ū + J

(
ψ,

f

H

)
= ∇×

(
τw
ρH

)
−∇×

(
τB
ρH

)
, (22)

where ū is the depth-averaged velocity, ψ is the transport streamfunction,
H(x, y) is the water depth, and τw and τB are the surface wind and bottom
stresses. Without forcing and dissipation, the vorticity changes only when
there is motion across contours of constant f/H . As such, f/H yields a
“restoring force” and hence can support waves. With a flat bottom, these
are Rossby waves; over a sloping bottom, they are topographic waves; and
with both effects present, the waves are a hybrid between the two [62].

If the ocean were barotropic and unforced, we would expect to see greater
dispersion along f/H than across [63]. But how does one test for such
anisotropy, given that topography varies spatially? One way is to project
particle displacements onto and across the f/H contours and calculate the
dispersion from the projected displacements [64]. An example, using floats
from the North Atlantic Current (NAC) experiment in the shallow north-
west Atlantic [65] is shown in Fig. 10.13 The trajectories are shown in the

13 These are subsurface floats designed to follow isopycnals. As such, the float depths
vary, but are generally less than 800 m.
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Fig. 10. The trajectories of floats from the western North Atlantic, superimposed
on contours of f/H. The lower panels show the mean displacements and dispersion
relative to latitude (solid) and longitude (dashed), and along (diamonds) and across
(dots) f/H. The latter indicates a preferential tendency for translation and spreading
along f/H. From [64]

upper panel, superimposed on f/H . Shown in the lower panels are the mean
displacements and the dispersions as functions of time. In zonal/meridional
coordinates, the dispersion is isotropic within the errors, and the mean dis-
placements indicate a drift to the northwest. But the dispersion is significantly
anisotropic with respect to f/H , with greater spreading occurring along the
contours. The mean drift is also aligned with f/H .

We infer that the floats are steered by f/H , a fact not apparent from the
statistics in x− y coordinates. That topography affects floats at such shallow
depths (order 100–200 m) is remarkable; indeed, the floats are constrained in
their lateral spreading by the mid-Atlantic ridge, despite that the latter lies
over 1000 m beneath the floats!

One way to test for topographic steering is to generate a set of synthetic
trajectories which aren’t steered, and make the same calculations. We do this
by using the stochastic model given by (18) with the mean velocities, U and
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Fig. 11. Particle trajectories generated using a first-order stochastic model, with
identical mean and variances as the floats, shown in Fig. 10. While the particles ap-
pear to cover roughly the same area, the displacement statistics reveal no sensitivity
to the underlying f/H field. From [64]

V , and the integral time scales, Tx and Ty, calculated from the float data. We
then project the displacements onto f/H and obtain the statistics shown in
Fig. 11.

The stochastic trajectories themselves resemble those of the actual floats,
spreading laterally to roughly the same extent. But the statistics are very
different; now the dispersion is isotropic both with respect to latitude lines
and to f/H . We conclude the stochastic particles do not “know” about the
topography.

A similar approach can be used with other fixed fields. O’Dwyer et al. [66]
compared float displacements to maps of in situ potential vorticity (derived
from the density measurements) and found evidence for steering (suggesting
that the PV is correlated with barotropic f/H).
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2.5 Cross-Correlations with Scalars

One can also examine how dispersion relates to non-fixed fields. Consider for
example the equation for the evolution of temperature:

∂

∂t
T + ∇ · (UT ) + ∇ · (u′T ′) = S +M , (23)

where the terms on the RHS represent sources (e.g. surface heating) and
mixing, and where the velocities and temperature have been decomposed into
mean and eddy components. The third term on the LHS is the transport of
temperature by eddies, and this can in principle be evaluated using float data,
if the float simultaneously measures temperature.

Swenson and Niiler [53] made such a calculation using temperature-
recording surface drifters in the California current. They calculated residual
velocities and temperatures by subtracting off the time-mean velocity and
temperature for each drifter, and averaged the estimates obtained from differ-
ent drifters. The results suggested an eddy flux divergence which was roughly
an order of magnitude smaller than the mean advection of heat (they inferred
the latter from binned drifter velocities and from a mean temperature field
derived from satellite measurements). So eddies did not seem to be important
in maintaining the local heat balance.

Swenson and Niiler also compared their direct eddy flux estimate with
that from a diffusive parameterization, i.e.:

∇ · (u′T ′) ≈ ∇(κ∇T ) .

For this, they used a diffusivity, calculated from the drifter data and the
satellite-derived mean temperature field. The two estimates agreed within
the errors, a remarkable result which supported both the eddy divergence
calculation and the diffusive parameterization.

Gille [35] made a similar calculation, using ALACE float data from the
Southern Ocean. As noted previously, the ALACE float is not tracked contin-
uously, but Gille was able to obtain flux estimates nevertheless. The results,
which apply to the level of the floats (900 m depth), were consistent with the
previous calculations using current meter data and also hydrography (density
measurements). However, Gille found a poor correlation between the directly
calculated flux and the mean temperature gradient, at odds with a simple
diffusive parameterization. So more work is probably required to determine
the applicability of such parameterizations.

2.6 Spectra

As noted in Sect. 2, the Fourier transform of the velocity autocorrelation is
the Lagrangian frequency spectrum. What type of spectra should one typically
expect from data? An exponentially decaying autocorrelation (a typical result
from drifter data in many regions), yields
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T (ω) = 2
∫ ∞

0

exp(−t/TL) cos(2πωt) dt =
2T−1

L

T−2
L + 4π2ω2

. (24)

This exhibits an ω−2 decay at high frequencies and a white spectrum at
low frequencies. The transition frequency is determined by the integral time,
ω = (2πTL)−1. The white spectrum at low frequencies occurs because the
integral of the autocorrelation converges (a red spectrum would imply that
no diffusivity exists [67]).

Examples of spectra calculated from oceanic data include [20, 68], from
float data in the western North Atlantic, and [37, 67, 69], from surface drifter
data in the Atlantic and Pacific. These calculations generally suggest a red
spectrum at low frequencies, implying persistent low-frequency variability.
This possibly reflects that the records aren’t long enough or that the mean
flow has not be captured properly (Sect. 2.1.1). The higher frequency behavior
differs with the depth of observation. Near the surface, an ω−2 dependence is
often observed, but the spectra at depth are steeper.

A possible explanation for the steeper spectra at depth can be inferred
from the stochastic models (Sect. 2.2). The generic first-order model (with
velocity as the noised variable) exhibits an ω−2 spectrum at high frequencies.
The second-order model (with the acceleration as the noised variable) exhibits
an ω−4 dependence at high frequencies. So the first-order model may apply
better at the surface and the second-order model below the surface. If so, we
would infer that surface drifters experience more rapid changes in acceleration,
due to perturbations like the wind, than do subsurface floats.

2.7 Euler-Lagrange

Lastly, we consider the connection between single-particle statistics and the
corresponding Eulerian quantities. If the Lagrangian integral time is 5 days,
what can we say about the Eulerian integral time? Quantifying this connection
is important for using Lagrangian measurements in (Eulerian) model parame-
terizations, but the subject has received only sporadic attention. Some recent
results are nevertheless encouraging.

Corrsin [70] suggested a way to connect Eulerian and Lagrangian statistics.
His idea, commonly referred to as “Corrsin’s conjecture” is as follows. In the
Eulerian frame, velocity correlations decay in both space and time, as illus-
trated graphically in Fig. 12. So the velocities at a single location will become
decorrelated after a period of time (the Eulerian integral time). At the same
time, two observers separated by more than a certain distance (the integral
scale) will see uncorrelated velocities. A Lagrangian observer, by drifting, ex-
periences both the temporal and spatial decorrelation simultaneously. So the
integral time measured by the Lagrangian observer will generally be shorter
than that measured by a fixed observer.
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Fig. 12. A hypothetical Eulerian velocity autocorrelation in space and time. A
Lagrangian observer drifting from its starting location experiences both the spatial
and temporal decay in the field

Corrsin’s conjecture states that the Lagrangian autocorrelation can be
derived from the Eulerian spatial–temporal autocorrelation, if one knows the
PDF of particle displacements:

RL(t) =
∫ ∫

RE11(r, t)Q(r, t)dr , (25)

where Q(r, t) is the displacement PDF and RE11 is the longitudinal Eule-
rian correlation (that related to the velocities parallel to the line connecting
the two observation points). This makes sense because the integral over the
displacement PDF reflects how far the particles wander from their starting
positions and thus how much the spatial decorrelation affects the Lagrangian
result.

Davis examined Corrsin’s conjecture in the oceanic context in [26, 27]
in developing his framework tracer transport. Middleton [71] modified the
conjecture for application to geophysical data by assuming certain forms for
the Eulerian energy spectrum. Both authors obtained analytical results by
assuming that the displacement PDF was stationary and Gaussian14:

Q = exp(−k2r2/2) . (26)

14 As we have seen, the velocity PDF is weakly non-Gaussian, implying that the
displacement PDF is similarly non-Gaussian. But the deviations from Gaussianity
are not large.
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Then it is possible to connect the Eulerian and Lagrangian integral times.
The result depends on the ratio, denoted α, of the Eulerian integral time to
the advective time, Ta ≡ L/ν (where L is a typical length scale and ν the
RMS velocity). Middleton showed that

TL/TE ≈ q

(q2 + α2)1/2
, q = (π/8)1/2 . (27)

If α << 1, the time scales are approximately the same. This would occur if the
Eulerian field decorrelated much faster in time than in space. If α >> 1, the
particle moves rapidly from its starting position and the spatial decorrelation
dominates. Interestingly, Middleton found that relation (27) was relatively
insensitive to the shape of the Eulerian spectrum.

An assessment of the applicability of (27) to in situ data has not yet been
made (and would be difficult, given the need for extensive and concurrent
Lagrangian and Eulerian data). But Lumpkin et al. [43] tested the relation
using data from a numerical ocean model. They found (27) applies remarkably
well, over a range of locations and of values of α (Fig. 13). Further confirmation
with in situ data is desirable, but Lumpkin et al.’s results are very promising.
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a numerical model of the North Atlantic. The solid curves are the prediction from
Middleton [71]. From [43], with permission
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3 Multiple Particles

As discussed in Sect. 2, the absolute dispersion, under fairly general condi-
tions, exhibits a quadratic time dependence initially and a linear time depen-
dence at late times.15 One may also observe anomalous dispersion, between
these two limits.

Relative dispersion, the mean square distance between pairs of particles,
has the same early and late asymptotic behavior as absolute dispersion. It can
also exhibit a range of different non-diffusive behavior at intermediate times.
Which type of growth occurs depends on the character of the Eulerian flow,
so relative dispersion is a more sensitive indicator of the Eulerian flow than
absolute dispersion. In certain cases, relative dispersion can even be used to
deduce the shape of the Eulerian energy spectrum. So relative dispersion has
long been of interest to the turbulence community.

The seminal early work on relative dispersion was that of Richardson [72]
who studied smoke plumes spreading from factory stacks. Richardson realized
the rate of cloud dispersion increased with the size of the cloud, implying an
effective diffusivity which was scale dependent. From observations, he deduced
this “relative diffusivity” should increase as the plume scale to the one-third
power, a relation now known as “Richardson Law”.

Later, Obhukov [73] and Batchelor [74] showed that a consequence of
Kolmogorov’s universal theory was that relative dispersion in the turbulent
inertial range should obey Richardson Law. In other words, the dispersion
Richardson observed was consistent with stirring in 3D turbulence. Numer-
ous theoretical and experimental studies followed, in particular with regards
to pollutant dispersion in the atmosphere [75, 76]. Excellent reviews are given
by [37, 77].

In the spirit of the present review, we will focus on the statistics of con-
tinuously tracked particles in the atmosphere and ocean. First though, we fix
terminology.

3.1 Theory

The following derivations stem from those given by [16, 74, 77, 78, 79]. The
probability that two particles with a mean initial position of x0 and a sepa-
ration y0 will at time t have a position x and separation y depends on a joint
displacement PDF:

P (x, y, t) =
∫ ∫

P (x0, y0, t0)Q(x, y, t|x0, y0, t0) dx0 dy0. (28)

If the flow is homogeneous, Q is independent of the initial position, x0. If
we integrate Q over all pair separations, y0, we obtain the single-particle

15 The latter fails when there is a long-time correlation in the velocity field, or if
the spread of particles is restricted, as in an enclosed basin, [22].
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displacement probability (Sect. 2). If we integrate instead over all initial po-
sitions, we obtain a PDF of pair separations:

q(y, t|y0, t0) =
∫
Q(x, y, t|x0, y0, t0) dx0 , (29)

which Richardson [72] called the “distance-neighbor function”. Note if Q is
independent of the initial position, then q and Q are equivalent. With the sep-
aration PDF, we can evaluate the probability of observing a given separation:

p(y, t) =
∫
p(y0, t0) q(y, t|y0, t0) dy0 . (30)

We can use this to define moments, as we did for single particles. For example,
the relative dispersion is

y2(t) =
∫
y2 p(y, t) dy . (31)

Just as we defined the absolute diffusivity for single particles, we can define
a relative diffusivity for pairs:

K ≡ 1
2

d
dt
y2 = yv = y0v +

∫ t

t0

v(t) v(t′) dt′ , (32)

where v is the pair separation velocity and the overbar again indicates an
ensemble average. The relative diffusivity thus derives from the two particle
velocity cross-correlation. However, there is an additional term which repre-
sents the correlation between the pairs’ initial positions and their separation
velocities. If the floats are deployed randomly, this term in principle should
be zero. In practice, it tends to be small, but it is only vanishingly so when
one has a large number of pairs [79]. The integral of the cross-correlation
dominates only after this correlation, the “memory” of the initial state, has
been lost.

We can rewrite the integral of the relative velocity correlation thus:

∫ t

0

v(t) v(t′) dt′=
∫ t

0

(ui(t) − uj(t)) (ui(t′) − uj(t′)) dt′=2
∫ t

0

ui(t)ui(t′) dt′−

2
∫ t

0

ui(t)uj(t′) dt′ = 2κ(t) − 2
∫ t

0

ui(t)uj(t′) dt′, (33)

where κ is the absolute diffusivity, defined in (10). So the relative diffusivity
is less than twice the absolute diffusivity, so long as the particle velocities
are correlated. As the particles drift further and further apart, the relative
diffusivity asymptotes to twice the absolute diffusivity.

It is possible to make deductions about the relative dispersion under cer-
tain conditions. For this it is useful to use the square of the separation veloc-
ities (the “second-order Lagrangian structure function”):
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v2(t) = 2ν2 − 2uiuj , (34)

where ν is the RMS single-particle velocity. If the two particles are initially
very close, the velocity difference is approximately constant (as in a Taylor
expansion), and the separation distance (as well as the relative diffusivity)
grows linearly in time. When the particle separations are large enough, usually
at scales greater than the size of the dominant eddies, the individual velocities
are uncorrelated and the structure function is just twice the RMS single-
particle velocity. So relative dispersion is like absolute dispersion at small and
large scales.

At intermediate scales, the pair velocities are correlated, and in a way
which depends on the flow. Consider a stationary, homogeneous, 2D flow.
One can write [78]:

v2 = (u(x+ y, t) − u(x, t))2

= 2
∫ ∞

0

E(k)[1 − J0(ky)] dk . (35)

The Lagrangian and Eulerian velocity differences are only equivalent if the
flow is homogeneous [27].16 At the larger (intermediate) scales, we have

1 − J0(ky) ≈ 1
4
k2y2, ky � 1 , (36)

and at the smaller (intermediate) scales,

1 − J0(ky) ≈ 1 +O(ky)−1/2, ky � 1 . (37)

If we assume the Eulerian spectrum has a power law dependence, E(k) ∝ k−α,
as we did in Sect. 2.7, then we could write

v2 ≈ 2
∫ 1/y

0

k−α

(
1
4
k2y2

)
dk + 2

∫ ∞

1/y

k−α dk, (38)

or

v2 =
1
2
y2 1

3 − α
k3−α|1/y

0 +
2

1 − α
k1−α|∞1/y . (39)

The first term diverges if α ≥ 3 (steep spectra), while the second diverges if
α ≤ 1. Consider the intermediate case, where 1 < α < 3; then

v2 ∝ yα−1 . (40)

The corresponding diffusivity can be shown to be

16 If the flow isn’t homogeneous, the energy spectrum isn’t a useful concept anyway.
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K =
1
2

d
dt
y2 ∝ y(α+1)/2 . (41)

This is termed “local dispersion” because the motion of pairs with a separation
L is dominated by eddies of the same scale. Richardson’s Law occurs here, as
the spectrum has the inertial range scaling of α = 5

3 . So we have

K ∝ y4/3 . (42)

For steep spectra (α ≥ 3), the relative dispersion is “non-local” because
the stirring is dominated by the largest eddies. Then

v2 ≈ 1
2
y2

∫
k2E(k) dk = c1 Ωy 2 , (43)

where c1 is a constant and Ω is the total enstrophy (the integrated square
vorticity). The corresponding diffusivity is

K =
1
2

d
dt
y2 = c2T

−1y2 . (44)

The time scale, T , is proportional to the mean rate of strain. Relation (44)
implies an exponential growth of pair separations. This was evidently first
deduced by Batchelor [80], who considered pair dispersion in the 3D turbu-
lent dissipation range.17 Note that exponential growth occurs with all spectra
steeper than α = 3. So observing exponential growth does not imply a single
spectrum [78, 79].

As with single-particle statistics, the displacement PDF plays a central
role with multiple particle measures. Richardson [72] considered the PDF
of pair separations, as noted, and proposed it should obey a Fokker–Planck
equation. Thus if one knows the PDF initially, one can predict its subsequent
evolution [84]. Bennett [78] showed the kurtosis of pair separations is constant
for local dispersion, with a value which depends on the spectral slope, α.
He also showed that ku(y) grows exponentially under non-local dynamics. So
exponential stretching is accompanied by increasingly non-Gaussian PDFs.
The PDF in the lower right panel of Fig. 3 is an example of a strongly non-
Gaussian distribution occurring due to turbulent stirring.

3.2 2D Turbulence

As a specific example, consider the case of isotropic, homogeneous turbulence
in two dimensions. Two-dimensional turbulence is complimentary to 3D tur-
bulence and has been a useful test bed for Eulerian and Lagrangian theory
[85, 86, 87]. Unlike with 3D turbulence, where energy is transported via non-
linear interactions from the large scales to the small, dissipative scales, energy
in 2D turbulence moves from small to large scales. This “inverse cascade”
17 Exponential growth of pair separations is also obtained in strongly shearing re-

gions near hyperbolic points [81, 82, 83].
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thereby shifts energy away from the dissipative scales, requiring a large scale
dissipation mechanism (such as bottom drag). At the same time, enstrophy,
the squared vorticity, is transferred downscale. So if energy is injected at a
single scale (for example at the internal deformation radius due to baroclinic
instability [88]), there will be two different inertial ranges (Fig. 14).

In the energy cascade range, the spectrum has the same slope as in the
3D inertial range, α = 5/3, so the Richardson-type scalings apply:

y2 ∝ εt3, K ∝ ε1/3y4/3, ku(y) = const., (45)

where ε (with units of L2/T 3) is the energy dissipation rate, assumed constant.
The enstrophy cascade range is steeper, with α = 3 [89], so the dispersion is
weakly non-local and pair separations grow exponentially [90]:

y2 ∝ exp(c3η1/2t), K ∝ y2, ku(y) ∝ exp(c4η1/2t) , (46)

where η (with units of 1/T 2) is the enstrophy dissipation rate, also assumed
constant. Thus, a pair of particles with an initial separation smaller than
the injection scale would experience exponential growth until the separation
reached the injection scale, after which the square separation would grow
cubically in time, up to the scale of the largest eddies.

3.2.1 FSLEs

When computing relative dispersion, one averages squared separations be-
tween available pairs at fixed times. Thus one averages pairs with different

κ

κ

κ

)κE(

−5/3

−3

Energy

Enstrophy

Energy injected

Fig. 14. The energy spectrum for 2D turbulence driven by a source at an inter-
mediate scale. The enstrophy (squared vorticity) cascades to small scales where it is
dissipated and the energy to large scales. The enstrophy range has a κ−3 dependence,
and the energy range a κ−5/3 dependence
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separations. Under local dispersion (as in the Richardson regime), such aver-
aging could possibly blur the temporal dependence.18 An alternate approach
is to change the dependent variable and average times at fixed distances. This
is the idea behind the “Finite Scale Lyapunov Exponent”. In this, one selects
a set of distances, increasing multiplicatively, i.e., [22, 92]

dn = rdn−1 = rnd0 .

Then one records the time required for individual pairs to grow from one
distance to the next. These “exit times” are then averaged. Of particular in-
terest is the mean inverse time scale, which converges to the largest Lyapunov
exponent (minimum e-folding time):

λS(n) = log(α) <
1
Tn

> . (47)

With exponential growth, the FSLE is constant, reflecting a constant Lya-
punov exponent (or a constant e-folding time). With local dispersion, in which
the diffusivity K ∝ y(α+1)/2, the mean inverse exit time scales as D2/(3−α),
from dimensional considerations.

Results from numerical simulations [93] suggest using distance as the inde-
pendent variable is superior to using time in a Richardson regime. The FSLE
also uses all available pairs, not just those pairs deployed together, and this
can greatly increase the degrees of freedom. However, the danger with the
FSLE is that it ignores the dependence on the initial separation, a crucial
point with in situ data. Generally, exponential growth will not be observed
before the “memory” of the pair’s initial velocities is lost [79], so if the pairs
are too far apart initially, the FSLE can be degraded [91]. We illustrate this
below.

3.2.2 Chaotic Advection

All of the measures discussed thus far ignore flow inhomogeneity. Pairs in
regions of intense dispersion are averaged together with those in weakly dis-
persive regions. “Dynamical systems theory” is concerned with treating such
inhomogeneity. One differentiates between “elliptic” and “hyperbolic” regions,
with pair separations growing algebraically in the former and exponentially
in the latter [94]. The theory is also concerned with the stable and unsta-
ble manifolds, the time dependent material curves which evolve from saddle
points in the flow [81, 82, 83]. Identifying manifolds requires detailed esti-
mates of the flow and/or high densities of in situ particles. So the dynamical
systems ideas have been applied mostly to model data [95]. Two exceptions
are Lozier et al. [96] and Kuznetsov et al. [94], who applied the methodology
in relation to floats in the Gulf Stream and surface drifters in the Gulf of
18 With non-local dispersion, this is not a problem because all the pairs respond to

large-scale stirring [91].
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Mexico, respectively. In future, such analyses will become more common (a
promising application, for example, uses surface radar to diagnose the Eule-
rian field [98]). We will not treat this type of analysis, but a lucid account is
given by [99].

3.3 Atmosphere

Now we turn to the observations. During the 1970s, two large experiments
were undertaken to study dispersion in the southern hemisphere stratosphere.
These were the EOLE experiment, with 483 constant level balloons at 200 mb,
and the TWERLE experiment, with 393 constant level balloons at 150 mb.
In both cases, the balloons were launched in pairs or clusters, specifically to
measure the relative dispersion. The relative dispersion in these experiments
was described in two seminal papers, by Morel and Larcheveque [100] and by
Er-El and Peskin [101].

Pair statistics in general demand larger numbers of realizations for satisfac-
tory convergence than do single-particle statistics. So Morel and Larcheveque
increased their numbers of pairs by using balloons which happened to drift
near one another at some time after deployment. This procedure is potentially
problematic because the separations of these chance pairs are more likely to
be correlated with their separation velocities, and this can potentially affect
statistical convergence (Sect. 3.1). But Morel and Larcheveque found that the
statistics from chance pairs were nevertheless identical to those from deployed
pairs.

The relative dispersion for the EOLE pairs is plotted in Fig. 15. The growth
is exponential over roughly the first 6 days, with an e-folding time scale of 1.35
days, up to scales of about 1000 km. The growth at larger scales is consistent
with a linear increase. If the atmosphere were a 2D turbulent fluid, we would
infer an enstrophy cascade below an energy-containing eddy scale of 1000
km and diffusive spreading at larger scales. However, as stated, exponential
growth does not necessarily imply an enstrophy cascade; any spectrum steeper
than κ−3 will also cause exponential growth.

Er-El and Peskin [101] obtained similar statistics with the TWERLE bal-
loons. The relative dispersion (Fig. 16) exhibited exponential growth below
1000 km, during the first week after deployment (or initialization for the
chance pairs, which they also used). Er-El and Peskin suggested that the
growth at large scales was possibly consistent with a D3 dependence (Fig. 17).
If so, this could reflect a Richardson regime at large scales and perhaps an
inverse energy cascade (the scales are too large for 3D turbulence). However,
the results were fairly noisy and other dependences could not be ruled out.

There were other points of interest. Morel and Larcheveque gauged isotropy
by plotting the ratio of the RMS zonal pair separations to the RMS merid-
ional separations (Fig. 18). Below 1000 km, in the exponential growth range,
the pairs spread out equally in both directions. But the spreading was pref-
erentially zonal at larger scales, perhaps due to the mean circulation (which
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Fig. 15. Dispersion vs. time for the EOLE balloon pairs. From [100]

Fig. 16. Relative dispersion vs. time for the TWERLE balloons. From [101]
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Fig. 17. The TWERLE relative dispersion vs. time on a log–log plot. From [101]

is primarily zonal). If so, we would modify our turbulence analogy to include,
in addition to 1000 km eddies, a large scale zonal flow.

Morel and Larcheveque also examined the dependence of the mean square
relative velocity (Sect. 3.1) on pair separation. From scaling arguments, they
suggested the relative velocity should increase as D2, if the separations were
growing exponentially. Interestingly, the data (Fig. 19) indicated a slower
growth. Although not indicated on the figure, the curve is closer to a D4/3

dependence, which would be consistent with a Richardson regime. We return
to this point below.

Then there are the separation PDFs. Er-el and Peskin calculated the sep-
aration kurtosis for all pairs 5 days after the launch (during the exponential
growth phase). The value, in the zonal direction, was about 7.5 (Fig. 20),
indicating a strongly non-Gaussian PDF. Under exponential growth, we would
expect the kurtosis to be increasing (Sect. 3.1). However, because Er-El and
Peskin calculated the PDF at only one time, we don’t know whether it was
changing or not.

In summary, both the EOLE and TWERLE studies indicated exponential
growth in pair separations below the 1000 km scale. The large-scale behavior
was unclear, with diffusive growth among the EOLE pairs and faster growth
with the TWERLE data. The results also suggest isotropic dispersion in the
exponential growth phase and zonally enhanced spreading at larger scales, as
well as non-Gaussian separation distributions at the small scales.

Interestingly, the balloon results are not quite consistent with independent
Eulerian analyses. Gage and Nastrom [29] calculated velocity spectra from a
large set of aircraft measurements. They found a κ−3 inertial range at scales
of 500–2000 km and a κ−5/3 range, at smaller scales (see also [102]). So this
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Fig. 18. The ratio of zonal to meridional relative velocity variance as a function of
distance for the EOLE data. The small scales are approximately isotropic and the
large scales zonally anisotropic. From [100]

is opposite to the situation sketched in Fig. 14. Later work suggested that the
large-scale range behaves as an enstrophy cascade range, but that the smaller
range has a flux of energy toward smaller rather than larger scales [103].

Recently, Lacorata et al. [104] reexamined the EOLE data set, using the
FSLE measure described earlier. As noted, the FSLE is complimentary to rel-
ative dispersion and potentially superior under local dispersion. Their results
(Fig. 21) indicate a power law rather than an exponential growth at small
scales. The slope here is D−2/3, consistent with a Richardson scaling. Second,
there is a transition just below 1000 km to a different regime where the depen-
dence is D−2, consistent with diffusion. Third, the FSLE based on the total
dispersion falls off more slowly than that based on meridional displacement,
indicating zonal anisotropy (Fig. 22).

The FSLE is thus consistent with Morel and Larcheveque’s relative dis-
persion at large scales but is inconsistent with exponential growth at small
scales. Lacorata et al. suggested that there was a brief period of exponential
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Fig. 19. Relative velocity variance vs. distance for the EOLE data. Note, the data
do not support a D2 dependence. From [100]

Fig. 20. The PDF of relative zonal displacements 5 days after deployment from
the TWERLE balloons. From [101]
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Fig. 21. The FSLE from the EOLE data. The two curves represent the full dis-
placements and the meridional ones (the latter decay faster). From [104]

growth prior to the Richardson regime, with a very rapid e-folding time (0.4
days). But this applied only to scales less than 100 km.

3.4 Ocean

The origins of relative dispersion experiments in the ocean are colorful. In-
trigued by Richardson’s work, Henry Stommel visited the scientist in England,
and the two subsequently conducted a pair dispersion experiment at the sur-
face of Loch Long in Scotland. For this they used pairs of parsnip pieces19 and

Fig. 22. Relative velocities as function of distance for the EOLE balloons. From
[104]

19 As noted by the authors, parsnips are easily visible and float just below the
surface, reducing wind drag. In a further note, they lamented the necessity of ob-
serving from a pier because of interference from the support posts. “A suspension
bridge would have been an ideal platform”, they suggested.
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monitored the growth of separations visually. The results supported Richard-
son’s law over the range of sampled scales [105]. As quaint as it sounds, it
nevertheless was a particle-based study, in contrast to Richardson’s earlier
work which concerned the change in a continuous tracer (smoke). Stommel
[106] describes further experiments (using other objects, like paper cards) and
also discusses the connection to Kolmogorov’s [107] theory.

Okubo [108] and Sullivan [109] conducted similar experiments, at the sur-
face of the North Sea and Lake Huron respectively, but using dye. Okubo’s
surveys in particular spanned a broad range of horizontal scales (from 10 m
to 100 km). The results in both cases supported the Richardson scaling.20

Sullivan [109] examined the relative displacement PDFs, evidently the first to
do so, and suggested they were Gaussian. A later dye-based experiment, by
Anikiev et al. [110], also lent support to the Richardson scaling at the ocean
surface.

The first to analyze pairs of continuously tracked surface drifters was Kir-
wan et al. [111], in the North Pacific. The primary result of their analysis
was an apparent transition from relative to absolute dispersion at the 50–100
km scale. However, they did not examine the dependence of the diffusivity
on distance at smaller scales. Davis [112] did so, using drifter data from the
California Current region. However, he found no consistent distance depen-
dence and concluded that the dispersion had different characteristics in dif-
ferent regions. Davis also calculated separation PDFs. He found these were
non-Gaussian soon after deployment and then became Gaussian (at larger
separations). This suggests a shift from correlated to uncorrelated pair veloc-
ities.

The first to calculate relative dispersion with subsurface floats was Price
[41] using SOFAR float data from the Gulf Stream region. He calculated rel-
ative diffusivity vs. distance and found a power law dependence on scales of
less than a few hundred kilometers. The slope was such that K ∝ yn with
4/3 ≤ n ≤ 2, and thus was consistent with either a Richardson or an expo-
nential growth regime.21

LaCasce and Bower [113] examined subsurface relative dispersion by using
a historical data set of SOFAR and RAFOS floats from the North Atlantic
(of which Price’s floats were a subset). In most cases, the floats had not been
deployed in pairs, so the authors had to rely on chance pairs, like Morel and
Larcheveque [100]. There were few pairs at small separations (with y0 < 10
km), but several features were nevertheless apparent.

For one, the dispersion in the eastern Atlantic was different than that
in the west. In the east, there was no consistent evidence for correlated pair
velocities at any of the sampled scales. Evidently, the energy-containing eddies

20 Because Okubo’s results pertain to such large scales, it is unlikely that 3D tur-
bulence was responsible for the observed dependence, as noted by Bennett [77].

21 The number of float pairs was fairly small and Price was uncomfortable with
asserting a particular dependence (Price, personal communication).
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Fig. 23. The relative diffusivity vs. distance for a float experiment in the eastern
North Atlantic. TheD1 dependence is consistent with the relative dispersion growing
quadratically in time. The diffusivity asymptotes to twice the absolute diffusivity at
scales larger than about 50 km. From [113]

were comparable to the smallest resolved scales, so that the relative dispersion
was like absolute dispersion, with a quadratic growth initially and diffusive
growth later on (Fig. 23). The transition to diffusion occurred at about 50 km
(as with Kirwan et al.’s Pacific drifters).

In contrast, the pair velocities in the western Atlantic were clearly corre-
lated at scales smaller than about 200 km. Furthermore, the relative disper-
sion indicated a Richardson-type dependence (Fig. 24). The behavior at scales
larger than 200 km was consistent with diffusion.

Fig. 24. The relative diffusivity vs. distance for a float experiment in the western
North Atlantic. The D4/3 dependence is consistent with the Richardson law and
proceeds up to about 200 km. From [113]
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There are at least two explanations for the Richardson-type growth here.
One is that this really reflects an inverse energy cascade. The Gulf Stream
is an unstable jet and pinches off 100–200 km rings. Baroclinic instability
typically causes an injection of energy to the barotropic mode at the scale of
the internal deformation radius (here about 20 km). So it is possible there is
a barotropic cascade between the deformation scale and the ring scale.

A second possibility is that the statistics instead reflect shear disper-
sion, that is, random mixing in the presence of a background shear. Particles
undergoing a random walk in the meridional direction across a linear zonal
shear exhibit a zonal dispersion which grows as time cubed [77, 114, 115],
exactly as in an inverse cascade. So a random mixing in the presence of a
background shear can produce the appearance of a Richardson regime. Of
course the Gulf Stream is not a linear shear, nor is it unidirectional. But it is
sheared nevertheless and might thus be responsible for the perceived growth.

LaCasce and Bower also examined the displacement PDFs and tracked how
they changed in time. Shown in Fig. 25 is the displacement kurtosis plotted
against time for the five different data sets examined. The two sets from the
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Fig. 25. Relative displacement kurtoses vs. time for the five float experiments
examined by [113]. The AMUSE and ACCE experiments were in the eastern and
central North Atlantic, while the NAC, LDE, and SiteL experiments were in the
west. The latter three exhibit non-Gaussian kurtoses during the first 20 days. From
[113]
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eastern Atlantic have kurtoses near three for the entire period, consistent
with Gaussian distributions; the three western sets in contrast exhibit a rapid
growth in kurtosis followed by a period (from 10 to 20 days) in which the
kurtosis is elevated and hovering around a fixed value. At late times, the
kurtoses decrease back toward three. The elevated kurtoses are consistent
with correlated pair velocities; that they are approximately constant during
this time is consistent with local dispersion, as noted earlier [78].

More recently, Ollitrault et al. [116] examined pair dispersion using dif-
ferent floats, deployed in the middle North Atlantic. Their results suggest a
Richardson regime up to 300 km, in both the western and eastern Atlantic. This
is consistent with LaCasce and Bower’s results in the west, but not in the east;
the reason for the difference is unknown. They also found some support for
exponential growth below the deformation radius in the eastern basin. Their
separation PDFs closely resembled those of Davis, indicating non-Gaussian
distributions at 10 km but Gaussian ones at 30 km. The latter would seem to
imply uncorrelated pair velocities and so, perhaps, shear dispersion. But the
authors argue this is unlikely, because the dispersion is isotropic.

In the aforementioned studies, the dispersion below the deformation ra-
dius was unresolved or marginally resolved. But these scales were resolved by
LaCasce and Ohlmann [91] using drifters in the Gulf of Mexico. The SCULP
program [117] involved over 700 drifters, many of which were deployed near
one another; the result was 140 pairs with r0 ≤ 1 km. Because the deforma-
tion radius is somewhat larger in the Gulf of Mexico (roughly 45 km), this
afforded a glimpse into the sub-deformation scale dispersion.

The SCULP relative dispersion is shown in Fig. 26. There is exponential
growth up to roughly 50 km, or over the first 10 days of the pair lifetimes, with
an e-folding time of roughly 2 days. The dispersion during this time moreover
was isotropic and comparable in the sampled regions (i.e. it was approximately
homogeneous). The dispersion at late times was consistent with a power law
growth, i.e. D2 ∝ tn. The exponent, n ≈ 2.2, was less than for a Richardson
regime, but suggests local dispersion.

If the latter is true, then the temporal averaging involved with relative
dispersion may be problematic during the late phase. To check this, the au-
thors calculated the FSLE (Fig. 27). This also clearly indicates two regimes,
one where the FSLE is constant with distance, at scales less than 10 km, and
a power law regime at larger scales. The flat FSLE is consistent with expo-
nential growth, and the e-folding time of about 3 days is comparable to the
2 day estimate based on relative dispersion. However, the estimates do not
agree at the larger scales where the FSLE, with a D2/3 dependence, indicates
a Richardson regime.

In addition, the FSLE differs from relative dispersion in that it predicts
a smaller transition (10 km) scale between the early and late phase. This
evidently stems from the FSLE using pairs whose initial separation is nearer 10
km and who therefore have not yet lost the memory of their initial separation



206 J. H. LaCasce

Fig. 26. The relative dispersion vs. time for surface drifters in the SCULP experi-
ment in the Gulf of Mexico. An exponential growth period at early times is clearly
seen. From [91]

velocity. By calculating the FSLE using only the pairs used for the relative
dispersion calculation, they obtained the same transition scale (50 km).

As with the western Atlantic floats, the power law at late times here could
be caused by either an energy cascade or by a mean shear. The mean square
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Fig. 27. The FSLE from the SCULP surface drifters. The flat part of the curve is
consistent with exponential growth in pair separations, and the power law depen-
dence consistent with a cubic temporal dependence. From [91]
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velocities suggested the pair velocities were correlated only for the first 20–25
days whereas the power law growth persisted twice as long. As noted before,
uncorrelated pair velocities would favor the shear interpretation. The relative
dispersion never settled into a diffusive stage and this too would favor the shear
interpretation. On the other hand, the displacement kurtoses were elevated
out to 40 days. So the interpretation remains unclear.

An important point is that the ocean surface is actually divergent be-
cause fluid can upwell from or sink into the interior. Because surface drifters
remain at the surface, they cannot track this vertical motion and therefore di-
verge from parcel motion. We examine divergence effects more in the following
section.

3.5 Three or More Particles

Using larger groups of particles can shed more light on the character of the
mixing. For instance, the folding of material lines can be detected with three
particles [118]. Geophysical studies with three or more particles are relatively
uncommon, but are of interest nevertheless.

As with two particles, we will focus on the intermediate scales, after the
particles have lost the memory of their initial states but before they are un-
correlated. We subdivide this range into smaller and larger scales; these might
apply to scales from 100 m up to the deformation radius, and from the defor-
mation radius to several hundred kilometers, respectively.

3.5.1 Small Scales

Imagine we have three particles, confined to a 2D surface (e.g. the ocean
surface). The area of the triangle formed by the three changes in response to
flow divergence:

1
A

dA
dt

=
∂u

∂x
+
∂v

∂y
(48)

So one can diagnose the divergence by monitoring the change in the area of a
triplet of drifters.

This idea was explored by Molinari and Kirwan [119], with drifters from
the western Caribbean. The authors also used triangles to calculate vorticity,
stretching, and shearing deformations, by using a clever construction due to
Saucier [120]. Saucier’s method involves rotating the instantaneous velocity
vectors of the constituent drifters. For instance, by replacing,

u→ v′, v → u′ ,

one obtains for the vorticity:

∂v

∂x
− ∂u

∂y
=
∂u′

∂x
+
∂v′

∂y
,
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which equals
1
A′

dA′

dt
.

Here A′ is the area enclosed by the cluster with the vertices formed by the
rotated velocity vectors. Similar transformations can be used to obtain the
shearing and stretching terms.

Fig. 28. An example of diagnostics calculated from a triangle of drifters by Molinari
and Kirwan. The quantities are area, divergence, vorticity, stretching, and shearing
deformations. The solid lines represent quantities derived using the least squares
method and those derived by the area method by xs. With permission
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One can also calculate the vorticity and other terms simply by differencing
the particle velocities [119, 121]. The differences between individual velocities
and that of the center of mass can be used to deduce ∂u/∂x, ∂v/∂y and
so on. The various estimates can then be combined in a least squares sense.
The larger the number of particles, the better the results are; Okubo and
Ebbesmeyer [121] suggested 6 as a reasonable lower bound, although Molinari
and Kirwan found similar results using groups of only 3 and 4.

Molinari and Kirwan applied both methods to triplets of the Caribbean
drifters. The two methods produced very similar results (Fig. 28), supporting
the assumptions underlying both. The drifters must be fairly close together
for this to work (think in terms of a Taylor expansion of the velocity about
the center of mass), and indeed the RMS separation in Molinari and Kirwan’s
triangle was a few kilometers. The estimated quantities were also of reason-
able magnitude (of order 10−5s−1). However the quantities tended to oscillate
between positive and negative values on periods of days (Fig. 28). One might
wonder if the estimates were adversely affected by noise (since drifter ve-
locities are obtained by differencing positions, and the shear involves taking
two differences). But Molinari and Kirwan used the vorticity and divergence
estimates to check a Lagrangian vorticity balance:

d
dt

(ζ + f) + (ζ + f)D = resid. . (49)

Although the residuals were comparable to the two terms on the LHS, there
was a clear indication that those two terms were balancing one another
(Fig. 29).

Now if the surface flow were actually non-divergent, triangle areas would
be conserved, from (48). So exponential growth in one direction would be
accompanied by exponential contraction in the perpendicular direction. This
was noted by Batchelor [80] in the context of dispersion in the presence of
a constant strain, and by Garrett [122] in relation to 2D turbulence. Thus a
triangle might see its base grow while its height collapsed (i.e. the triangle
would be drawn out into a filament).

The SCULP drifters in the Gulf of Mexico were of sufficient density to
yield a small number of “chance” triplets. One such is shown in Fig. 30. The
evolution is somewhat difficult to see, but the triangle is drawn out early on.
Later it grows, shifting back to a more equilateral shape.

LaCasce and Ohlmann tracked the evolution of about 30 triangles. The
mean triangle base (defined as the longest leg) grew approximately exponen-
tially in time, at a rate consistent with the mean pair dispersion (Fig. 31).
However, rather than collapsing, the triangle height also grew. This implies
the triangle areas were also growing, as with Molinari and Kirwan’s triplets
(Fig. 28).

The interpretation of this however is not straightforward. Even if the sur-
face were non-divergent, one could not observe the mean height shrink below
1 km, the spatial resolution of the drifter positions. But the triangle height in
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Fig. 29. The terms in (49) evaluated for a triangle of drifters. Note there is tendency
for the tendency and divergence terms to balance, despite that the residuals are of
comparable size. From [119], with permission

Fig. 31 is clearly growing. Divergence could be responsible for this, however
the areas seem to be increasing monotonically, suggesting only positive diver-
gences. Convergences would cause the areas to decrease.

There is however another possible explanation, that the surface flow is
effectively non-divergent but that the drifters are suffering random displace-
ments, due to wind forcing. Such perturbations could induce a random walk,
in addition to the drifters normal motion. This would mean that in addition
to the exponential stretching, the triangle legs would also grow diffusively. La-
Casce and Ohlmann’s results were not sufficiently well constrained to test this
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Fig. 30. A triplet of drifters in the SCULP experiment. The group is initially
stretched out, then expands and takes on a more equilateral shape. From [91]

Fig. 31. Mean base (defined as the longest leg) and height of 32 triangles from
the SCULP experiment. The base is growing exponentially, but the height is also
increasing. From [91]
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idea, but viewed from a frame of reference moving with the triangle center,
the three drifters exhibited strong and random-appearing perturbations.

The motion of clusters of subsurface floats has not yet been analyzed in
this way. This would be of great interest, since the subsurface flow is more
nearly non-divergent, and because floats do not suffer wind perturbations.
We do however have some indications of the behavior from tracer release
experiments. The North Atlantic Tracer Release Experiment (NATRE) [123],
in the northeast Atlantic, was one of several such experiments in which a
patch of tracer (sulfur hexafluoride) was released on an isopycnal surface and
subsequently monitored from ship surveys. A major result of NATRE was the
quantification of the vertical mixing in the open ocean. But the experiment
also indicated the horizontal dispersion. The tracer was drawn rapidly out
into filaments which became thinner and thinner until, apparently, small scale
mixing limited their further collapse [122, 124]. Such behavior is consistent
with non-local stirring and the exponential growth of pair separations, as well
as with the evolution envisioned by Batchelor [80].

3.5.2 Larger Scales

The SCULP pair results suggest a transition from non-local stirring below the
deformation radius to local stirring at larger scales. What would happen to
particle clusters in such a case? Cluster behavior under local dispersion has
been studied recently, in the context of the Richardson regime [125, 126]. In
this case, the triangle area is not conserved because fluid is mixed in and out
of the triangle. The mean square triangle leg should grow cubically in time,
like the mean square pair separation. But in addition, triangles should evolve

Fig. 32. The mean aspect ratio (defined as the base, the longest leg, divided by
the height) for the 32 triplets of drifters in the SCULP experiment. From [91]
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toward a more equilateral shape. The SCULP triangles are initially stretched
out, due to the non-local dispersion. But if there is a Richardson cascade at
larger scales, they should then shift back toward an equilateral shape.

The growth of the RMS leg among the SCULP triangles exhibited a sim-
ilar power law growth to the pairs, with an exponent of n ≈ 2.2. But more
interestingly, the mean triangle aspect ratio (defined as the base divided by
the height) systematically decreased during this period (Fig. 32). So the tri-
angles were indeed shifting toward a more equilateral shape. The aspect ratio
also exhibited an approximate power law dependence, with an exponent of
roughly −1.

As noted earlier, some aspects of the late time relative dispersion resembled
those in a Richardson regime while others pointed to shear dispersion. The
change in aspect ratio is probably more consistent with a turbulent cascade.
While diffusive mixing could also increase the aspect ratio of a strained-out
triangle, it would likely do so less rapidly than observed. This too demands
further study.

4 Summary and Conclusions

We have examined the statistics of single and multiple particles in the ocean.
Single-particle studies dominate the literature, and among these, the favored
analysis technique is that of Davis [19]. In this, Lagrangian velocities are
binned geographically and averaged to produce regional estimates of the Eu-
lerian mean velocity and the Eulerian lateral diffusivities. The method has
been subsequently refined and used to map currents over large regions of the
world ocean. Single-particle studies have also been used to detect Rossby wave
propagation, to test the sensitivity of eddies to bottom topography and to de-
termine the importance of eddy heat fluxes in maintaining lateral temperature
gradients. Recent work suggests there is hope in relating Lagrangian statistics
to Eulerian statistics, which would improve the use of Lagrangian information
in numerical models.

Two-particle dispersion is fundamental to understanding actual Lagrangian
dispersion (the spreading of a cloud of tracer). Pair dispersion calculations in
both the atmosphere and ocean suggest that separations increase exponen-
tially in time at scales less than the internal deformation radius, and that
growth is approximately isotropic. Calculations with more than two drifters
or floats are fairly rare, but clusters have been used to diagnose vorticity and
divergence, and to compare with recent theoretical work on cluster dynamics
in turbulent flows.

Numerous fundamental questions do however remain with regards to geo-
physical dispersion. Several different observations suggest that exponential
stretching occurs at sub-deformation scales and if this is so, it would be inter-
esting to discover why. One possibility is that energy injection at or near the
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deformation radius, due for instance to baroclinic instability, is creating an en-
strophy cascade to smaller scales. If exponential growth is indeed common at
these scales, it could open the way for sub-gridscale mixing parameterizations
in numerical models.

Relative dispersion at scales larger than the deformation radius evidently
varies with location. We have some indications of a Richardson regime in both
the ocean and atmosphere. However, the dynamical reason for this growth is
not settled, and could well be the product of shear dispersion due to the large
scale flow. Studies with synthetic floats in ocean models could help elucidate
this, in particular to distinguish the role of the lateral shear.

Then there is the question of divergence at the ocean surface. Surface
drifter results are suggestive on one hand of non-divergent 2D turbulence
and, on the other, of divergence having an order one role in the vorticity
balance. It would be useful to sort this out, perhaps again with drifters in a
numerical model (as these need not suffer random perturbations due to wind
forcing). Cluster calculations using subsurface floats would also be useful, as
divergence is much less important at depth.

In addition, there is the effect of low-frequency fluctuations in the Eulerian
flow. Floats and drifters exhibit red frequency spectra, due most likely to
variability in the general circulation. We usually think of particle dispersion
in terms of a stationary mean and eddies, but the actual situation is one with
a continuum of scales. What is the best way to represent oceanic advection
and diffusion in such cases?

Of course, it would also be valuable to have more relative dispersion ex-
periments. In most existing data sets, drifters and floats were deployed alone,
necessitating using “chance pairs” to study relative dispersion. Systematic de-
ployments of pairs and clusters of floats and/or drifters would improve greatly
the statistical reliability of the results. Float deployments could also be made
in conjunction with tracer releases, so that each data set could compliment the
other. Experiments like this would greatly improve our perception of the time
and scale dependencies of Lagrangian dispersion, and the utility of Lagrangian
data.
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Abstract. This chapter reviews the current state of knowledge on bio-physical in-
teractions at mesoscale and at sub-mesoscale. It is focused on the mid-latitudes open
ocean. From examples taken from my own studies or selected in the literature, I show
how high-resolution process-oriented model studies have helped to improve our un-
derstanding. I follow a process oriented approach; I first discuss the role of mesoscale
eddies in moderating the nutrient flux into the well-lit euphotic zone. Then I address
the impact on biogeochemistry of transport occurring on a horizontal scale smaller
than the scale of an eddy. I show that submesoscale processes modulate biogeochem-
ical budgets in a number of ways, through intense upwelling of nutrients, subduction
of phytoplankton, and horizontal stirring. Finally, I emphasize that mesoscale and
submesoscale dynamics have a strong impact on productivity through their influence
on the stratification of the surface of the ocean. These processes have in common
that they concern the short-term, local effect of oceanic turbulence on biogeochem-
istry. Efforts are still needed before we can get a complete picture, which would also
include the far-field long-term effect of the eddies.

1 Introduction

The photosynthesis of phytoplankton represents roughly half of the biological
production on the planet. This Primary Production (PP) supports almost all
marine life. It plays a key role in the global carbon cycle because phytoplank-
ton growth, and subsequent death and sinking, transports vast quantities of
carbon out of the surface layer where it can be sequestrated for long times
[1, 2, 3]. Phytoplankton require nutrients for growth and reproduction. PP
occurs in the sunlit surface layer of the ocean where photosynthesis can take
place. In this well-lit euphotic layer1 available nutrients are rapidly assimi-
lated. Then, it is generally the supply of new nutrients from deeper water
that limits productivity in the ocean. The dynamical mechanisms that con-
trol this supply occur over a large range of temporal and spatial scales. On the

1 The euphotic layer is generally defined by the 1% light level.
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planetary scale, and for timescales beyond the year, the transport of nutri-
ents is controlled by the thermohaline and the wind-driven circulations. These
circulations regulate the subsurface nutrient distribution [4]. On the seasonal
timescale, the convective supply of nutrients is strongly modulated at mid and
high latitudes [5]. At shorter timescales, vertical advection is controlled by the
three-dimensional circulation associated with baroclinic eddies [6, 7, 8] and
by the processes of frontogenesis and frontolysis [9, 10, 11, 12, 13], an effect
that can be crucial in subtropical gyres, i.e. over large areas of the ocean [14].
The relative importance of these different processes for the PP is still under
debate [15, 16, 17, 18]. There is however growing evidence that PP occurring
both at the scale of eddies (the mesoscale) and at the scale of frontogenesis
(the submesoscale) contributes significantly to the global budgets.

From the point of view of observations, direct PP measurements are sparse
because they involve long incubations and heavy isotope techniques [19, 20].
However, satellite retrieved ocean color2 [21] and continuous measurements
of other related parameters such as fluorescence or carbon dioxide partial
pressure (pCO2) make clear that ocean productivity is highly variable at the
(sub)-mesoscale3 [22, 23, 24, 25, 26]. Jenkins [27] has also suggested that the
discrepancy between the large rates of export of organic matter estimated from
biogeochemical budgets in the oligotrophic North Atlantic subtropical gyre
compared with the lower rates of measured productivity could be explained
by the undersampling of eddy induced PP.

PP is a process where dynamics, biogeochemistry, and radiation play equal
roles and interact strongly. It is only since the early 1990s that models have
been developed where all these processes are coupled together [28, 29]. To de-
velop such models, the first natural step is to introduce in dynamical Ocean
General Circulation Models (OGCM) conservative schemes for the transport
of minor species, the second is to introduce into those models realistic biogeo-
chemical schemes for the life cycle of phytoplankton. Mostly because of com-
putational limitations, most of the OGCMs today use rather coarse horizontal
grids (1/2◦ to 2◦). Some preliminary modeling studies suggest that such a res-
olution can result in errors near 30% in the estimation of PP [15, 30, 31, 32].
Some simulations at even higher resolution show that incorrect representa-
tion of submesoscale frontogenesis can result in even larger errors (up to
50%, [33]).

2 Due to the absorption properties of chlorophyll-a (the primary photosynthetic
pigment), measures of solar light retrodiffusion by the ocean in the green and
blue wavebands by optical sensors onboard earth viewing platforms provide an
accurate estimate of the concentration of chlorophyll-a at the surface, the “color”
of the sea.

3 The terminology (sub)-mesoscale is used in this chapter to define the scale range
including both the submesoscale and the mesoscale. Approximately, the mesoscale
covers the range 20–100 km, the submesoscale covers the range 2–20 km, and thus
the (sub)-mesoscale the range 2–100 km.
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The growing evidence that the (sub)-mesoscale variability of PP is large
is a challenge for the measurement networks and for the OGCMs used to
study the climate: none of them resolve those scales. Therefore, there is an
imperative need to understand the mechanisms by which the (sub)-mesoscale
physical dynamics are reflected by the biological processes. Providing we can
predict the (sub)-mesoscale dynamics from the larger scale dynamics, this
should enable the development of parametrizations of the (sub)-mesoscale
biophysical interactions for application to large-scale models. The ultimate
goal is to better predict the evolution of the oceanic carbon cycle at climatic
scales.

The purpose of this chapter is to give an overview of the current state
of knowledge on the (sub)-mesoscale biophysical interactions. It complements
previous review papers: Lewis [34] presented the discussions about the ob-
served discrepancy between the rate of PP of organic matter and its export;
Flierl and McGillicuddy [35] reviewed the impact of mesoscale and subme-
soscale physics on biological dynamics; Williams and Follows [4] focused on
the transport processes regulating nutrient distribution in the global ocean;
Martin [36] discussed the patchy distribution of phytoplankton at mesoscale
and submesoscale from an observational and theoretical point of view.

The present review is focused on the mid-latitudes open ocean. Section 2
(“Generalities”) introduces some basic ingredients of the oceanic biogeochem-
ical cycles, of the turbulent motion in the ocean, and of the influence of the
latter on the former. Section 3 (“Modelization of biophysical interactions”)
describes the models that are used to analyze these interactions. It includes
a discussion of the transport equations for plankton and how the physical
dynamics enter the equations. Then, we adopt a process-oriented approach,
and review our current knowledge of the biogeochemical interactions with
the mid-latitudes turbulent oceanic eddy field, jets, and the isolated vortices
in the open ocean. Using few examples, we will show how high-resolution
process-oriented model studies improve our understanding. Given that the
primary source of variability of PP is due to variations in nutrient input,
Sect. 4 (“Transport by mesoscale eddies”) will discuss the role of mesoscale
eddies in moderating the nutrient flux into the well-lit euphotic zone. In Sect. 5
(“Transport by submesoscale dynamics”), we discuss the impact on biogeo-
chemistry of transport occurring on a horizontal scale smaller than the scale of
an eddy. We will show that submesoscale processes modulate biogeochemical
budgets in a number of ways, through intense upwelling of nutrients, sub-
duction of phytoplankton, and horizontal stirring. In Sect. 6 (“Biophysical
interactions through changes in stratification”), we show that mesoscale and
submesoscale dynamics have a strong impact on productivity through their
influence on the stratification of the surface of the ocean. We will conclude
with some insight on the remaining way to go before a complete understanding
of the impact of oceanic mesoscale turbulence on phytoplankton productivity
and, more generally, on ocean biogeochemical cycles, is established.
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2 Generalities

2.1 Interplay of Transport and Biology

2.1.1 Role of Phytoplankton in the Carbon Cycle

Phytoplankton play a major role in the oceanic carbon cycle and these
floating, microscopic single-cell plants are the foundation of the marine
food web. Like land plants, phytoplankton fix carbon through photosyn-
thesis, making it available for higher trophic levels. Phytoplankton gener-
ally have limited or no swimming ability and are advected through the
water by currents (“plankton” is actually derived from “πλανκτειν”, “to
wander”). Also as in terrestrial plants, the chlorophyll pigment in the phy-
toplankton absorbs light, which is used as an energy source to fuse water
molecules and carbon dioxide into carbohydrates. The major environmental
factors that influence phytoplankton growth are light [37] and inorganic
nutrients [38]. When favorable conditions are encountered, phytoplankton
can undergo rapid population growth usually referred to as “blooms” [39].
However, most of the time phytoplankton growth is either light limited
(e.g. in winter at high latitudes) or nutrient limited (e.g. in the subtrop-
ical gyres). Because light attenuates dramatically with depth, phytoplank-
ton growth is restricted to the euphotic layer. Limiting inorganic nutri-
ents such as nitrogen and phosphorus are constantly removed from the
surface waters by the growing phytoplankton. Dissolved inorganic carbon
is also consumed by phytoplankton. It is exchanged at the sea surface
and always plentiful in the surface layer, contrary to limiting nutrients
(Fig. 1).

Most of the phytoplankton are consumed locally by zooplankton, so that
the nutrients comprising their biomass are regenerated at the surface and
made available for another round of production. The Regenerated Production
(RP) is that portion of PP fueled by the limiting inorganic nutrients rem-
ineralized within the euphotic zone [40]. The Export Production (EP) is the
fraction of PP that finds its way to the deep sea through the settling of dead
cells and detritus, through zooplankton diel migrations, and sometimes by
downwelling or mixing. Most of the EP is ultimately assimilated by bacte-
ria, which regenerate it into inorganic forms (end product of respiration and
excretion). At steady state and at large scale, the biotically mediated down-
ward flux of organic matter is balanced by an upward return flux of inorganic
nutrients that fuels the New Production (NP).

The collective action of this so-called biological pump [41] is to create
a sharp vertical gradient of nutrients. Minimum nutrient concentrations are
found at the surface due to photosynthetic consumption and maximum con-
centrations between 500 and 1000 m due to remineralization. This pump plays
a central role in the global carbon cycle. It sequesters carbon away from the
atmosphere in the deep sea.
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Fig. 1. Schematic representation of the biological pump in the ocean

2.1.2 Transport Modulation of Biotic Rates

Transport modulates NP, RP, and EP in various ways. Primarily, the flow
transports the biological actors, i.e. phytoplankton, zooplankton, bacteria, dis-
solved and particulate organic matter. When this transport is directed out of
the euphotic zone, it directly contributes to EP. Secondly, the flow transports
inorganic nutrients, providing them to the euphotic layer through vertical dif-
fusion or upwelling. Thirdly, the ocean physics can also modulate the rates of
the biological processes. The most common manifestation is due to the ver-
tical movements which displace phytoplankton within the light gradient and
thereby affect phytoplankton growth rate [37]. Also, zooplankton growth rate
depends on the encounter rate between zooplankton and its prey, which is par-
tially controlled by the transport [42]. Note also that phytoplankton retroacts
on transport: large concentrations of phytoplankton significantly alters the
penetration of solar radiation, which in turn modulates density, and trans-
port through the thermal-wind balance [43, 44]. This effect is often neglected
in models.
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2.2 The Oceanic Turbulence

The (sub)-mesoscale oceanic turbulence has similarities with two-dimensional
turbulence. It is characterized by the presence of interacting vortices, usually
referred to as mesoscale eddies (analogous to atmospheric weather systems).
Eddy scales are strongly correlated with the first-mode Rossby radius of defor-
mation4 [46], suggesting that baroclinic instability is the primary eddy source
term [47]. This is also consistent with the high levels of mesoscale energy
that are found along boundary currents at mid-latitudes, and along frontal
structures and current systems [48] while minima are found in the interior of
gyres. However, a variety of eddy formation processes have been reported (i.e.
[49, 50, 51, 52]) that can result in eddies of different scales.

Oceanic turbulence is also characterized by the presence of elongated sub-
mesoscale filaments [54, 198]. The large scale action of these submesoscale
filaments is complex. Some of the submesoscale movements generate tur-
bulent diffusion [55]. Others act as dynamical barriers; they locally inhibit
diffusion and reinforce the coherence of mesoscale eddies [57, 62]. Recipro-
cally, submesoscale structures are guided by the rotation and strain fields
of the eddies. Submesoscale activity has strong spatial variability, related
to the variabillity of the strain and rotation fields, and the recent works
by Hua et al. [58] and Lapeyre et al. [59, 60] provide ways of partitioning
flows into poorly dispersive rotation and highly dispersive strain dominated
regions.

Besides these 2D-characteristics, oceanic turbulence is also characterized
by its vertical structure. Baroclinic mid-ocean eddies often have vertical struc-
ture of the first baroclinic mode (cyclones characterized by doming isopyc-
nals in their core and anticyclones by shoaling isopycnals). Actually, oceanic
mesoscale eddies are better described by quasi-geotrophic dynamics than by
2D-turbulence. They are associated with vertical velocities (w) of the order of
1–10 m/d. The typical w distribution in the quasi-geostrophic (QG) approxi-
mation is a multipolar structure with alternate upwellings and downwellings
along meandering fronts (with upwelling occurring downstream of the trough
and downwelling occurring downstream of the ridge, [61] and around the ed-
dies [7, 8, 9, 62]). These patterns, which extend down to the zero-crossing
of the first baroclinic mode (i.e. approximately 1000m), are induced by the
curvature and by eddy–eddy interactions.

Submesoscale structures are particularly intense, close to the surface
(above 200 m approximately). They are strongly ageostrophic; their rela-
tive vorticity can be of the order of the planetary vorticity. They can be

4 The first mode Rossby radius of deformation Rd is the length scale at which
rotation effects become as important as buoyancy effects. Rd decreases from 300
km at the equator to a few kilometers at high latitudes, and ranges between
30 and 50 km at mid-latitudes [45]. Within the approximation of homogeneous
buoyancy, Rd = NH/f , with N the buoyancy frequency, f the Coriolis parameter,
and H the depth.
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described by the dynamics contained in the Primitive Equations (PE). Asso-
ciated with the strong submesoscale vorticity gradients, the vertical velocities
are one order of magnitude stronger than the vertical velocities of QG dynam-
ics [11, 12, 13, 63, 64]. These vertical velocities are characterized by dipolar
structures astride the vorticity gradients [12, 33, 65]; see also Fig. 7. When
the flow in the filament of vorticity accelerates, a secondary circulation de-
velops across the filament leading to upwelling on the anticyclonic side and
downwelling on the cyclonic side. When the flow decelerates, a secondary cir-
culation of opposite sign is formed.

Numerical simulations [33] suggest that submesoscale vertical velocities
are maximum at around 100 m depth where they take over mesoscale QG
vertical velocities, which are maximum at around 1000 m depth.

2.3 Observed Variability of Phytoplankton

2.3.1 Basin Scale Variability of Phytoplankton

The production patterns at basin scale are strongly constrained by the wind-
driven vertical circulation (Ekman pumping). The general features of this
Ekman transport are upwelling in subpolar gyres, at the equator, and at east-
ern boundaries and downwelling in subtropical gyres. Sea-color satellite images
reveal the signature of the Ekman transport on the distribution of phytoplank-
ton [66]. Figure 2a shows a climatology of the surface chlorophyll distribution
in the North Atlantic. Strong spatial inhomogeneities of the phytoplankton
distribution are revealed, with maxima located in regions of ascendance (at
the equator, in the subpolar gyre and at the coasts) and minima in regions
of subsidence (in the center of the subtropical gyre). The maintenance of dif-
ferent levels of phytoplankton production by these dominant oceanographic
features enables the division of the world’s oceans in so-called biogeochemical
provinces [68].

2.3.2 Seasonal Cycles of Phytoplankton Production

Seasonal variations of winds and solar radiation drive seasonal cycles of phyto-
plankton production. These variations are mediated through the mixed-layer
(ML) seasonal cycle. For instance, from 30◦ N to 50◦ N in the northeast At-
lantic, three different seasonal regimes can be distinguished, depending on the
strength of winter mixing [67]. These regimes and their boundaries exhibit an
intense variability from 1 year to the next, which are driven both by the syn-
optic and by the lower frequency variability in the atmosphere [67, 69, 70].
Nevertheless, general patterns can be drawn:

When the winter ML is deeper than twice the euphotic layer depth (Ze)
(Fig. 2b), Sverdrup’s [71] conditions are encountered: production is inhibited,
cells being continuously mixed below the euphotic layer for periods greater
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Fig. 2. (a) Climatology of sea-surface chlorophyll from space (Classic CZCS scene,
from NASA Web site). (b)–(d) Typical seasonal cyclings of sea-surface chlorophyll
versus mixed-layer depth in the northeast Atlantic [67]. The grey line shows the
seasonal cycle of the mixed-layer depth, and the black line the seasonal cycle of the
surface chlorophyll concentration. (e) and (f) High-resolution snapshot of sea-surface
chlorophyll from space (e: classic CZCS scene, NASA Web site; f: Lehahn, personal
communication). Locations of the cyclings and of the high-resolution images are
indicated on the climatological map

than their doubling time. At the same time, this deep mixing efficiently sup-
plies the surface with nutrient, thus enabling an intense spring bloom to occur
as soon as the mixed-layer stratifies in spring. The rapid exhaustion of nutri-
ents leads to an oligotrophic situation in summer. The deepening of the ML in
fall leads to an entrainment bloom. This cycle is encountered in the subpolar
gyre of the North Atlantic.

When the winter ML never exceeds Ze (Fig. 2d), nutrient limitation pre-
vails. The seasonal cycling is characterized by a single weak entrainment
bloom, that starts with the deepening of the ML, peaks when the ML is
at its deepest, and ends with the exhaustion of nutrients [72].

When the winter ML is comprised between Ze and 2Ze (Fig. 2c), the
seasonal cycling is characterized by a single bloom that lasts longer than any
other bloom and corresponds to the merging of the subpolar spring bloom
with the subpolar fall bloom. This bloom is initiated in fall by the deepening
of the ML (as the entrainment bloom), and peaks after restratification (as the
spring bloom) [67].
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A general feature of these different cyclings is the alternation between peri-
ods of light limitation and periods of nutrient limitation. When light limitation
prevails, PP is controlled by the ML depth. Phytoplankton concentration is
maximum in the ML and decreases below. When nutrient limitation prevails,
PP is controlled by the supply of nutrients. The distribution of phytoplank-
ton is characterized by a subsurface maximum, located at the base of the
nutricline [41]. As we will see, the impact of mesoscale turbulence on biologi-
cal production depends on which situation prevails, and therefore varies both
regionally and seasonally.

2.3.3 Observations of Mesoscale and Submesoscale Variability
of Phytoplankton

The development of towed vehicles and the advent of sea-color remote sens-
ing now permits us to observe the distribution of phytoplankton at high
resolution. These observations have revealed considerable variability in the
(sub)-mesoscale range [23, 26, 73, 74, 75, 76], as shown for example in the
sea-color snapshots of Fig. 2e and f. In situ observations complement the
sea-color view and enable the association of plankton variability with specific
hydrologic structures such as fronts, meanders, eddies, and filaments.

In the 1980s, most of such observations were concerned with Gulf Stream
“warm core rings” [77, 78, 79, 80]. In 1991, Falkowski et al. [81] reported
an enhancement of production by a cyclonic eddy in the subtropical Pacific.
Since then, the number of in situ observations at the mesoscale has kept
increasing. Allen et al. [82] measured PP within and outside a cyclonic eddy,
and found that photosynthetic rates near the edge and at the center of the
eddy were approximately 50% higher, than outside the eddy. Mooring data
in the Sargasso Sea [83, 84] provide evidence of waters rich in nutrients and
chlorophyll within a cyclonic eddy (Fig. 3). Other striking correlations between
the presence of eddies and the chlorophyll distribution have also been reported
by Robinson et al. [85] during NABE (North Atlantic Bloom Experiment), by
Aristegui et al. [86] around the Canaria Islands, by Letelier et al. [87] in the
North Pacific subtropical gyre, by Moran et al. [88] in the Algerian Basin, by
Barth et al. [89] in the Antartic polar front, and by Garcia et al. [90] in the
Brazil–Malvinas Confluence region, among others.

Correlations between chlorophyll and dynamical features have also been
observed at the submesoscale. For instance, Hitchcock et al. [91], during a
series of transects across the Gulf Stream, identified a maximum of chlorophyll
at the periphery of a warm core ring. Strass [92], using a towed, undulating
vehicle in the open North Atlantic during summer revealed patches of high
chlorophyll concentration of scales 10–20 km. These patches were located on
the warm side of a temperature front. Perez et al. [93], during a summer
oceanographic cruise in the Azores front region, located with good accuracy
maximum chlorophyll concentrations on the South side of the front and at the
border of an anticyclonic eddy. Other examples of submesoscale variability
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have been observed in the Gulf Stream [94], in the Almeria-Oran front [95]
and in the Antarctic Circumpolar Current [96].

There is also some evidence of (sub)-mesoscale variability in zooplank-
ton and in bacteria [97, 98, 99, 100, 101, 102], and in particle fluxes [103].
Watson et al. [25] provided the first evidence of the impact of (sub)-mesoscale
dynamics on oceanic pCO2, which has been confirmed by drifting buoys ob-
servations [24]. Section 4 will present theories that attempt to explain the
impact of oceanic (sub)-mesoscale turbulence on the biological pump.

3 Modelization of Bio-physical Interactions

In this section, we present the basis for the modelization of the interaction
between biogeochemical cycles and ocean dynamics.
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3.1 Transport

The description is restricted to transport occurring on space scales much larger
than the cell distribution scale. In this case, plankton are described as the con-
tinuous concentration (in space and time) of a constitutive element. Nitrogen
provides a natural currency for biological quantities. A planktonic population,
like, any tracer T expressed for instance in mmoleN/m3 is then assumed to
obey the transport equation, which reads, in its Eulerian form:

∂

∂t
T = −∇ · (Tv) +B(T ) , (1)

where v is the velocity field and B(T ) is the budget between the biological
sources minus the biological sinks for tracer T. Advection is written here in a
flux form assuming that the ocean is incompressible. Diffusion is negligible at
the scale at which plankton population can be described as a concentration
and has therefore been disregarded. Because biological tracers are positive
quantities, often close to zero, the numerical resolution of the transport equa-
tion requires the use of positive advection schemes [104, 105].

3.2 Biological Source/Sink Terms

The biogeochemical schemes describe the interactions between the various
forms of plankton, organic and inorganic material. They vary in complexity
from very simple models with one or two tracers (nitrate, or nitrate and phy-
toplankton), to much more complicated models with more than 20 tracers
[106]. In these complex models, different species of phytoplankton are consid-
ered, as well as different limiting nutrients. A common trade-off in complexity
is the use of models with 4–6 tracers (so-called NPZD models, i.e. [107]). Bio-
geochemical fluxes are exchanged by the tracers. These fluxes are empirical
functions (parametrizations) of the biological variables, often non-linear, and
sometimes of other environmental conditions such as light or temperature, de-
rived from laboratory experiments [108]. The determination of the parameters
used in these parameterizations is a difficult task and a large source of model
error and uncertainties. Nowadays, inverse modeling is the most objective way
of tuning parameters in biogeochemical models [109, 110, 111].

3.3 Reynolds Equation

The Reynolds equation is derived by applying to the transport equation (1)
an operator • defined as:

• =
1
V

∫
V

•dv , (2)

where V is an element of volume of scale S. In numerical models, the scale S

is set by the size of the grid and the averaging is done over a grid cell.
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Any variable (such as T or v) can then be decomposed into the mean
T , comprising the variability above the cut-off scale S, and T ′ = T − T , the
variability below the cut-off scale, which verifies T ′ = 0.

Thus averaging (1) with the linear operator (2), and then using, for sim-
plicity, the notation T instead of T and v instead of v, gives the Reynolds
equation:

∂

∂t
T = −∇ · (Tv) +B(T ) − ∇ · (T ′v′) +B′(T ) (3)

Compared to (1), the Reynold equation (3) has additional terms on the
RHS (third and forth terms). These terms represent the impact that the scales
below the cut-off (or sub-grid scales) have on the larger scales. The third term
is the transport Reynolds term and represent the effects of motions on scales
smaller than S. The fourth term is the biological Reynolds term and represents
the effects of the inhomogeneous distribution of the biological tracers within
the grid.

To close equation (3), the effects of the sub-grid scales must be represented
entirely in terms of large scale quantities. In the transport term, these effects
appear as the divergence of turbulent fluxes (i.e. fluxes associated with the
mean correlation of small-scale perturbations). To assume a turbulent closure
is equivalent to chose a formulation (or parametrization) for these fluxes,
usually called the sub-grid scale physics.

Although much progress has been made in the parameterization of turbu-
lent fluxes for ocean models [112, 113, 114, 115, 116, 117, 118], there is still
a long way to go before (sub)-mesoscale transport is correctly represented in
coarse resolution or eddy-permitting models.

On the contrary, I am not aware of any reference regarding sub-grid scale
biology. Practically, it is always omitted in models. Interestingly, an analogous
problem concerns the chemical reactions in the stratosphere. For instance,
Edouard et al. [119] show that ozone depletion in the Artic is sensitive to
filament-scale inhomogeneities in the distribution of reactant species because
of the non-linearities in the chemical rate laws. Their modeling study sug-
gests that the effect is of the order of 40%. Another study by Vinuesa and
Vila-Guerau de Arellano [120] shows that heterogeneous mixing in the atmo-
spheric boundary layer can slow down the reaction rates of ozone formation
and depletion. Similar behaviors may be expected for biological species in the
ocean, since the interactions are often non-linear.

4 Transport by Mesoscale Eddies

4.1 Vertical Transport Associated with Coherent Mesoscale Eddies

The “eddy-pumping mechanism” [81, 83, 121, 122] rests on the fact that within
a cyclonic eddy, isopycnals are deflected upward, pushing subsurface nitrate
rich waters into the euphotic zone (Fig. 4). The same upward deflection applies
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remineralization

of organic fallout

isopycnic transfer
of nutrients

diapycnic transfer
of nutrients

depression of nutricline
no ecosystem response

uplift of nutricline
ecosystem response

euphotic zone
depleted in nutrients

nutrient-rich thermocline

Fig. 4. Schematic figure depicting the ecosystem response to an uplift and depres-
sion of the nutricline. When nutrient-rich isopycnals are raised into the euphotic
zone, there is biological production. Conversely, when the nutrient-rich isopycnals
are pushed into the dark interior, there is no biological response. In order for the
transient upwelling to persist, there needs to be a process maintaining the nutrient
concentrations in the thermocline, which might be achieved by remineralization of
organic fallout, diapycnal transfer or a lateral influx of nutrients from the time-mean
or time-varying circulations. After Williams and Follows [4]

to anticyclonic mode water eddies [123]. Conversely, within an anticyclonic
eddy the nutricline is depressed and so there should be no biological response
[83]. These vertical displacement are though to occur during events of eddy
intensification, for example through eddy–eddy interaction.

This 1D-vertical view on the scale of the eddy is based on observed distri-
butions of nitrate or chlorophyll across cyclones which highlight the surfacing
of nutrient-rich waters within cyclones and which suggest that the surfacing
nutrients come from upwelling [74, 83, 84, 123], see also Fig. 3.

This idea led to various estimations to the contribution of eddies to the
nitrate supply to the euphotic layer from satellite altimetry [124]. These es-
timates should be handled with care, since they strongly depend on the effi-
ciency of pumping [125] and of its recurrence time.

4.2 Eddy Propagation

The propagation of eddies with doming isopycnals on the beta-plane (north-
westward for cyclones and south-westward for anticyclones) can cause up-
welling that uplift nutrients to the euphotic layer [35, 125, 126]. In the
limit of linear propagation, this transport mechanism can be interpreted as
a propagation flux; the passing of an eddy can be thought as a wavelike up-
ward displacement of the isopycnals, resulting in an injection of nutrients
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in the euphotic layer [127]. Moreover, recent satellite observations of Rossby
waves and sea-color anomalies propagating in subtropical gyres have suggested
that wave-induced upwelling could stimulate photosynthesis [128, 129]. Thus,
Rossby waves would act as a “rototiller” by lifting nutrients to the euphotic
layer as they propagate [130]. A different interpretation involves the conver-
gence near the surface of organic floating particles generated by the ecosystem
which could be mistaken for phytoplankton by sea-color algorithms [131]. In
this case, the Rossby waves would act as “marine hay rakes”. The interpre-
tation of Dandonneau et al. [131] is supported by the fact that the sea-color
anomalies are co-located with convergence and positive sea-surface tempera-
ture anomalies. Killworth [132] pertinently points out that this organic detritic
material cannot be durably trapped in the convergences if the phase speed of
the Rossby waves is larger than the current anomalies generated by the waves.
The debate underscores the need for in situ observations of floating material
[133]. Finally, the study by Killworth et al. [134] also suggests that upwelling
might not be the main mechanism responsible for the observed wave-like sig-
nal in sea color. Instead, their analysis shows that horizontal advection of
surface chlorophyll against its background gradient accounts for most of the
observed propagation in ocean color.

4.3 Horizontal Transport by Coherent Mesoscale Eddies

If the eddy exhibits a strongly non-linear behavior, trapping waters within
it for long periods, it is a coherent feature. Its passing can be visualized as
the translation of a solid obstacle which moves surrounding waters around
it. Observations of eddies traveling for several months and over hundreds of
kilometers, while maintaining the chemical characteristics of their source wa-
ters, have been reported [135, 136]. Provenzale [137] shows that this horizontal
transport by coherent barotropic vortices is possible because they are highly
impermeable to inward and outward particle fluxes.

Lévy’s [138] numerical experiments illustrate such a case: a cyclone C
and an anticyclone AC are formed by baroclinic instability of a density front
(Fig. 5a and b), as schematized on Fig. 5g. The raised isopycnals of C are
not the signature of upwelling as in the eddy-pumping mechanism. They re-
sult from the horizontal displacement of a water column into a warmer envi-
ronment (Fig. 5g). This is all the more contrasting with the eddy-pumping
mechanism than the formation of C is associated with a downward stretching
of the water column. Indeed, as put forward by Williams and Follows [4], the
conservation of potential vorticity (defined as (ζ + f)/h, with ζ the relative
vorticity, f the Coriolis parameter, and h the thickness of an isopycnic layer),
implies that the increase of ζ must be balanced by an increase of h (which
corresponds to the stretching).

Lévy [138] carried two experiments where they varied the initial nitrate dis-
tribution. Experiment 1 (Fig. 5c and d) describes an oligotrophic front; nitrate
is distributed along isopycnal surfaces below the euphotic layer, and drops to
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Fig. 5. (a) Initial temperature front in the experiments of Lévy et al. [138]. (b)
Temperature front at the final state (after 1 month of simulation). The dashed lines
delimit a cyclone C and an anticyclone AC that have been formed in the course of
the simulation. (c) Initial nitrate concentration in experiment 1. (d) Nitrate concen-
tration at the end of experiment 1. (e) Initial nitrate concentration in experiment 2.
(f) Nitrate concentration at the end of experiment 2. (g) Schematic representation
of the formation of cyclone C and of anticylone AC during the experiments
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zero within the euphotic layer. Experiment 2 (Fig. 5e and f) describes a more
productive front. As in Exp. 1, nitrate is distributed along isopycnal surfaces
below the euphotic layer. Within the euphotic layer, nitrate concentrations
are low but not null. Due to biological consumption, they have departed from
a purely linear regression with density. Fig. 5d and f shows that the nitrate
distribution in AC and C depend very much on the initial situation.

In the case of Exp. 1, nitrate is depleted in C with respect to the sur-
rounding waters down to 200 m depth. In Exp. 2, nitrate is on the contrary
increased in C at the same depth. In the two experiments, there is actually
a competition between the effect of downward stretching and the effect of
horizontal transport. In Exp. 1, there is no horizontal transport in the eu-
photic layer because there is no horizontal nutrient gradient. The downward
stretching prevails. In Exp. 2, there is an important nutrient gradient within
the euphotic layer, and horizontal transport prevails. As for temperature, in
Exp. 2, the raised nitrate concentrations within C result from the horizontal
displacement of C. Similar arguments can be drawn for AC.

Interestingly, the (mostly horizontal) mechanism illustrated by Exp. 2 is
in agreement with the same type of observations (i.e. Fig. 3) as the (vertical)
eddy-pumping mechanism. Clearly, this reveals that distinguishing between
horizontal and vertical transport requires knowledge on the eddy formation
process and history.

The importance of the horizontal mechanism is supported by large-scale
modeling studies. Oschlies [18] regional budgets computed from an eddy-
permitting North Atlantic basin biogeochemical model experiment show that
horizontal nitrate supply to the oligotrophic gyre is larger than vertical
transport. These budgets show that vertical eddy advection is the strongest
near western boundary currents, where turbulent eddy energy is the highest,
whereas eddies supply nutrients predominantly via horizontal advection near
the quieter southern and eastern margins of the subtropical gyre. The above
works led Williams and Follows [4] to propose a generalized version of the
scheme of McGillicuddy and Robinson [121], including horizontal as well as
vertical transfer (Fig. 4). The recent observations of the impact of eddies on
chlorophyll distribution by Aristegui et al. [86] around Gran Canaria and by
Crawford et al. [139] in the Gulf of Alaska support this idea of a combination
of vertical and horizontal transport processes.

5 Transport by Submesoscale Dynamics

5.1 Vertical Advection at the Submesoscale

5.1.1 Upwelling of Nutrients in Filaments

In order to explore vertical advection of nutrients at scales smaller than the
eddies, Mahadevan and Archer [31] report the change of primary production
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Fig. 6. The density and nitrate distribution plotted at the base of the euphotic zone
alongside the depth of a particular isopycnal. In each column, fields from (a) 0.4,
(b) 0.2, and (c) 0.1 model resolution are shown. The pattern of new production is
very similar to the nitrate distribution pattern. From Mahadevan and Archer [31]

induced by the change of horizontal resolution in a model (Fig. 6). They ex-
plore the range of resolution from 10 to 40 km in a model representing a
limited area of the ocean where PP is limited by the availability of nutrients.
They show a tremendous increase in PP (up to a factor three) in response to
increasing model resolution. The increase is related to a better representation
of the mesoscale range; increasing the model resolution results in more undu-
lation of the isopycnal surfaces and in an increased length of the frontal zone
(or isopycnal outcropping).

Lévy et al. [33] follow a similar approach and increase their model reso-
lution up to 2 km in order to resolve the submesoscale features. They report
a factor 2 change in PP when changing the resolution from 10 to 2 km. This
increase is due to the resolution of intense vertical velocities, captured within
filaments of strong vorticity gradients which surround the eddies or which
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Fig. 7. (a) Relative vorticity at the surface, (b) vertical velocity at 100 m (zoom,
in color, superposed on vorticity lines), (c) phytoplankton within the euphotic layer
(0–120 m) and (d) export of phytoplankton below the euphotic layer (120–240 m),
simulated with a primitive equation model with a horizontal resolution of 2 km. The
initial state is an unstable baroclinic front and the fields shown are after 22 days of
simulation. From Lévy et al. [33]

are ejected by the eddies (Fig. 7a and b). This strongly ageostrophic surface
dynamics cannot be captured in the frame of the QG approximation, since it
involves strong surface density gradients. This explains why it is not seen in
modeling studies using QG models [121, 126, 140, 141, 142], nor in modeling
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studies based on primitive equation models but where the horizontal reso-
lution is not sufficient enough to accurately resolve these gradients, and the
associated submesoscale vertical transport [15, 18, 31, 32, 143].

As the submesoscale vertical velocities are in phase with the vorticity
gradients, regions of nutrient input coincide with regions of elevated strain.
This results in phytoplankton distribution being concentrated and elongated
in filaments, either isolated filaments or filaments around eddies (Fig. 7c).
First obtained in a simulation of decaying turbulence [33], this result has then
been generalized to the situation of forced turbulence [144], Fig. 8.

A more careful examination of the fields in Figs. 7 and 8 reveals that
phytoplankton mainly develop in filaments of negative vorticity within the
euphotic layer. Moreover, the spectral slope of phytoplankton, zooplankton,
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Fig. 8. Surface relative vorticity, density anomaly, phytoplankton and zooplank-
ton simulated with a primitive equation model on the beta-plane with a horizontal
resolution of 6 km. Fields shown are after 1600 days of simulation. The domain is
periodic in longitude and turbulence is forced by restoring to a background density
gradient. From Lévy and Klein [144]
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and vorticity are close to −1.5 while the density spectrum is steeper with a
slope close to −3 (Fig. 9).

These results [33, 144] can be explained with the rationalization of Klein
et al. [145] regarding the density field: to prevent a thermal-wind imbalance,
the physical system locally organizes the vertical and horizontal velocity fields
such that submesoscale vertical and horizontal advection of density tend to
compensate each other. This phase relationship between vertical and horizon-
tal advection of density explains why very few small-scale features are present
in the density field (slope close to −3). It is also consistent with motions being
almost parallel to the isopycnals. This local compensation between horizon-
tal and vertical advection holds for any tracer forced by the same large-scale
vertical and horizontal gradients than density. However, it does not hold for a
tracer forced by either the horizontal or the vertical gradient. In the last two
cases, small scales will develop. Moreover, due to this compensation, a tracer
forced by a large-scale horizontal gradient will have its small scales strongly
anticorrelated to those of a tracer forced by a large-scale vertical gradient.

Vorticity and nitrate have their isopleths almost orthogonal (and therefore
both inclined to the isopycnals), since potential vorticity (close to relative
vorticity in the surface layers) is forced by a large-scale horizontal gradient
and nitrate by a large-scale vertical gradient. This favors the development of
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Slope of variance spectra
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Fig. 9. Time evolution of the spectral slope of surface relative vorticity, density,
phytoplankton, and zooplankton, in a primitive equation model of forced turbulence
(same simulation as that shown on Fig. 8). Adapted from Lévy and Klein [144]



Modulation of Biological Production by Mesoscale Turbulence 239

small scales for vorticity and for nitrate (slope close to −1.5). Moreover, small
scales of vorticity should be strongly anticorrelated to those of nitrate, and
ultimately to those of phytoplankton.

5.1.2 Subduction of Phytoplankton in Filaments

The simulations of Lévy et al. [33] and Lévy and Klein [144] also evidence
that downwelling velocities associated with vorticity filaments are responsible
for an export flux out of the euphotic zone. This export is located in filaments
of positive vorticity (Fig. 7a and d), for the same reasons as developed above
regarding nutrients and vorticity (the vertical phytoplankton gradient has a
sign opposite to that of the vertical nutrient gradient). In situ observations
with high-resolution towed vehicles confirm such patterns of localized subme-
soscale subduction [95, 96, 146]. Nevertheless, they are too sparse to provide
a number for the magnitude of this export compared with more traditional
form of export like the sedimentation of detritus [147] or the convective export
of organic matter [148].

5.1.3 Net Impact of Submesoscale Structures on PP

In oligotrophic situations, phytoplankton undergoes two antagonistic effects
of (sub)-mesoscale transport: production is favored through the inputs of
nutrients within the euphotic layer, and is inhibited through the removal of
phytoplankton cells from the euphotic layer. Phytoplankton production is fa-
vored in filaments of negative vorticity and is inhibited in filaments of positive
vorticity. Its development in a turbulent field therefore requires that its growth
is fast enough to balance the losses.

In order to get some further insight on this balance, we compare the ex-
periment of Lévy et al. [33] (LKT experiment) with the experiment in Lévy
and Klein [144] (LK experiment). Both experiments are run with the same
biological model, the same model parameters and the same initial condition
for nitrate (a nutricline located at 100 m depth). The experiments differ in
their horizontal resolution (6 km in LK versus 2 km in LKT) and in their forc-
ing (decaying turbulence in LKT, forced turbulence in LK). They also differ
in the size of the domain, the duration of the experiment, and the width of
the unstable front that forces turbulence. These differences all together result
in vertical velocities one order of magnitude lower in LK (maxima around
10 m/d) compared with LKT (maxima around 100 m/d). One interesting
contrasting result is that mesoscale turbulence increases PP by a factor 3 in
LKT, but does not significantly change PP in LK. This indicates that the
supply of nutrients prevails over the subduction of phytoplankton in the LKT
experiment, while the two effects compensate in the LK experiment.

One possible explanation lays in the different order of magnitude of the
vertical velocity field in the two experiments. A linear increase in upwelling
velocities results in an exponential increase of the phytoplankton growth rate.
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Indeed, upwelling displaces the phytoplankton subsurface maximum and the
nitracline closer to the surface [33], and the phytoplankton growth rate in-
creases exponentially with decreasing depths in response to the exponentially
increasing light. On the other hand, phytoplankton decrease through subduc-
tion responds in a linear manner to a linear change in downwelling velocities
because the expression of advection is linear in w. Hence, with increasing
vertical velocities, and assuming a comparable range of change for upwelling
and downwelling velocities, phytoplankton production should increase more
rapidly than phytoplankton subduction. This view suggests that vertical ve-
locities must be large enough to have a positive influence on the increase in
phytoplankton, and the experiments suggest that they should be larger than
10 m/d. This view is in agreement with Smith et al. [141], who found that the
net effect of eddies on the rates of primary production is small in their QG
simulation (QG vertical velocities are below 10 m/d).

Let’s now consider a water parcel below the euphotic layer, which is ad-
vected up to the euphotic layer and back below it. The parcel is initially loaded
with nutrients. The parcel will induce a net flux of nutrients into the euphotic
layer which will have an effect on phytoplankton only if the time it spends in
the euphotic layer is long enough to enable nutrient uptake by phytoplank-
ton. Otherwise, the parcel will pass through the euphotic layer with no net
effect. Typically, phytoplankton growth rate is of the order of 1–2 days and
the euphotic layer is 100 m depth. If the vertical velocity of the water parcel
is less than 100 m/d, then its journey in and out of the euphotic layer will
last more than 2 days: nutrients will be consumed during that period. Vertical
velocities must therefore be less than 100 m/d to induce a net nutrient flux
to the euphotic layer. Faster vertical velocities, for instance those associated
with convective plumes (of the order of 1000 m/d) are likely not to induce a
net transport : nutrients do not remain long enough in the euphotic layer to
be consumed.

Vertical velocities associated with submesoscale activity, typically 10–100
m/d, fall in the range imposed by the two above constrains. Those associated
with mesoscale activity (1–10 m/d) have a more marginal impact because the
growth of phytoplankton that they induce is not strong enough to balance the
loss of phytoplankton through subduction that they also induce.

In bloom situations, nutrients are plentiful in the euphotic layer. subme-
soscale transport mainly acts as a sink for phytoplankton and tends to decrease
primary production.

5.2 Horizontal Transport at Submesoscale

5.2.1 Stirring

Another aspect concerns the ability of phytoplankton distribution to be stirred
by mesoscale turbulence. This ability depends on the ratio between the tracer
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Fig. 10. Snapshots at the end of a high-resolution model run. (a) Carrying capacity
(the equivalent for nutrients). (b) Phytoplankton. (c) Zooplankton. The strip at
the left shows the zonally varying distributions the populations would have in the
absence of advection while the bar on the right gives the values associated with the
different colors. From Abraham [152]

decay rate and the advection timescale of the flow [149]. Phytoplankton de-
cay rate is approximately 1 month (the mean time-lag between mid-latitude
phytoplankton and zooplankton blooms). This is long compared to the trans-
port time within a filament, typically 2–10 days. It is therefore reasonable to
expect phytoplankton to be stirred by the flow.

Production of small-scale filaments of phytoplankton in the ocean by hor-
izontal stirring has been evidenced by in situ experiments, such as NATRE
(North Atlantic Tracer Release Experiment) [150] and SOIREE (Southern
Ocean Iron RElease Experiment) [151]. To rationalize this stirring, Abraham
[152] proposes a mechanism based on the production of smaller and smaller
tracer scales by mesoscale eddies, which is the classical direct tracer cascade.
This mechanism is evidenced in a 2D numerical experiment where nutrients
are injected at large scales within the euphotic layer and are subsequently
affected by the direct cascade process (Fig. 10). In this experiment, the spa-
tial variability of phytoplankton involves more energetic small scales than for
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nutrients (in other words, the phytoplankton spectrum slope is less steep than
that of nutrients), and the variability of zooplankton involves even smaller
scales than phytoplankton. This behavior is due to the fact that the e-folding
time of the phytoplankton growth rate (1–2 days) is usually smaller than the
cascade timescale (approximately 10 days in the ocean, [153]). Since nutri-
ents are injected at large scales, smaller and smaller scales develop during
the transformation of nutrients into phytoplankton, and ultimately into zoo-
plankton. Thus the spatial variability of the successive biological populations
reflect the different phases of the cascade process.

Abraham [152] also shows that the spectral slopes for zooplankton and
phytoplankton vary as a function of model parameters (from −0.7 to −2.5 for
zooplankton and from −1.5 to −2.5 for phytoplankton). Basically, when the
parameter range favors faster zooplankton growth, lesser small scales appear
in phytoplankton because the residence time of phytoplankton is reduced.
Moreover, there is only a small range of parameter values where zooplankton
exhibit a steeper spectral slope than phytoplankton. This atypic situation
corresponds to that of rapid zooplankton growth (preventing the generation
of small phytoplankton scales) combined with rapid zooplankton mortality
(preventing the generation of small zooplankton scales).

Regarding the spectral slopes of phytoplankton and zooplankton, Lévy and
Klein [144] illustrate a different situation, where they vary with time (between
−1 and −2), over periods of a couple months (Fig. 9). These changes of slope
are obtained for a unique set of parameters, and are such that the steepest
slope is either that for zooplankton or for phytoplankton depending on the
time in the simulation. Lévy and Klein [144] relate these changes of slope to the
low-frequency variability of the eddy field (the equivalent of the atmospheric
weather regimes).

One important difference between the experiment of Abraham [152] and
that of Lévy and Klein [144] is that in the latter nutrients are injected at
small scale by the vertical velocity field. These two contrasting experiments
suggest that it is difficult to derive general conclusions on the processes that
lead to the formation of small scales by comparing the relative spectra of
phytoplankton and of zooplankton.

5.2.2 Impact of Stirring on the Rate of Vertical Advection

An underlying question is how much the horizontal stirring affects the verti-
cal transport. This has been addressed by Martin et al. [154] and Pasquero
et al. [155] in a model of two-dimensional turbulence in which vertical nutri-
ent advection is externally imposed as a restoring flux. Pasquero et al. [155]
show that PP is increased if upwelling is fragmented into many episodes of
short duration and/or small size. The mechanism relies on the removal of
nutrients from the active (i.e. upwelling) regions by horizontal advection on
timescales shorter than the phytoplankton doubling time. This removal causes
an increase of PP because it enables to maintain the strength of the restoring
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nitrate flux. The magnitude of the increase is shown to be diminished by the
sheltering action of the eddies, which prevents horizontal dispersion in their
core.

These two studies impose small-scale vertical advection in a somehow ar-
bitrary manner, whereas submesoscale vertical advection is actually in phase
with horizontal stirring [33, 145]. This arbitrary dimension highlights a dou-
ble effect: increasing the model resolution increases the amplitude of w, but
also causes w to be more fragmented. Both effects contribute to increase the
vertical nutrient flux, and ultimately to increase PP.

6 Biophysical Interactions Through
Stratification Changes

The impact of mesoscale eddies on primary production has also been reported
when nutrients are plentiful in the euphotic layer : during the spring bloom
[156] and in the HNLC (High Nutrient Low Chlorophyll) Antarctic Circum-
polar Current [96]. In such a situation, light is the main limiting factor: PP is
highly sensitive to the ML depth. ML shoaling can locally increase the mean
exposure time of photosynthetic organisms and promote production. In this
situation, the restratifying action of mesoscale eddies leads to beginning of
bloom prior to seasonal stratification (as it has been reported in the North
Atlantic by Townsend et al. [157]). Two illustrations of this mechanism, one
at mesoscale, the other at submesoscale, are now presented.

6.1 Mesoscale Stratification

As demonstrated by Klein and Hua [158], mesoscale eddies generate hetero-
geneity of the mixed layer. It is now recognized that eddies have an important
role in the restratification of the surface [159, 160]. When these eddies re-
sult from the baroclinic instability associated with the process of winter deep
convection [161, 162, 163], they act against convection and tend to restrat-
ify the convective area, gradually cutting down its edges [146, 164]. This has
been numerically evidenced in a regional model study of the spring bloom
in a region of deep convection (northwestern Mediterranean, [30, 165, 166]).
Figure 11b shows the surface density signature of eddies that are formed
through baroclinic instability around a deep-mixing area in an idealized model
of a convective patch. The formation of the eddies enable to release the avail-
able potential energy contained within the dense water patch. Basically, the
eddies serve as vehicles for the transfer of water masses, by sinking the denser
waters out of the convective zone and at the same time upwelling lighter pe-
ripheral waters toward the center. Consequently, these mesoscale instabilities
are responsible for the collapse of the dense water patch. The axial symmetry
of the problem allows to schematize the action of the eddies as a function of
depth and distance from the center of the convective patch (Fig. 11a). The
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Fig. 11. (a) Schematic of eddy-induced stratification and eddy-induced subduction
at the rim of a convective zone. Production is enhanced in the zone of eddy restratifi-
cation. Model results [30] showing (b) the density, (c) the mixed-layer depth, and (d)
the Chl concentration (in mgChl/m3) in an area of deep mixing (sea-surface view).
(e) Satellite sea-color observations from Santoleri et al. [75] in the Adriatic, showing
phytoplankton developing preferentially at the rim of the Adriatic convective area
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transport of warmer waters from the stratified area toward the convective
site across the frontal zone is responsible for the sloping of the isopycnals and
hence for the shoaling of the mixed layer at the rim of the convective area (Fig.
11c). In winter, nutrients are plentiful within the euphotic layer and there is
no obvious relationship between PP and nutrients, whereas PP increases when
the mixed-layer depth decreases. Indeed, the mean exposure time of the phy-
toplankton cells to sunlight is inversely correlated with the mixed-layer depth.
Consequently, the majority of phytoplankton production is obtained at the
rim of the convective area, where the mixed layer is the shallowest (Fig. 11d).
This “dynamical” stratification leads to a bloom which starts earlier that is
induced by the more classical “seasonal” stratification. Satellite observations
from Santoleri et al. [75] above the convective area of the Adriatic sea provide
observational evidence of this eddy-fertilization process (Fig. 11e). Another
process evidenced with the experiment of Lévy et al. [166] is the decorre-
lation in space between new and exported production. This decorrelation is
induced by the eddies, which subduct phytoplankton rich waters (Fig. 11a).
Hence, while NP is maximum at around 30 km from the center of the con-
vective region (in the Mediterranean case), EP (through the subduction of
phytoplankton) is maximum at 80 km from the center.

6.2 Submesoscale Stratification

In order to better assess the impact of submesoscale dynamics during the
spring bloom in the north-east Atlantic, high-resolution numerical experi-
ments were conducted in the frame of POMME (Programme d’Oceanographie
Multidisciplinaire Meso Echelle) [167, 168, 169]. The domain of the experiment
(16–22W, 38–45N) is covered by several eddies (Fig. 12a). Data collected dur-
ing the first POMME survey were used for model initialization, and data from
three other cruises for model validation. The model revealed much stronger
space and time variability than could be seen with the resolution of the data
(CTD stations were 50 km apart). Space variability during the onset of the
bloom is illustrated by Fig. 12 which shows a snapshot of model outputs in
March.

A very striking feature is the strong variability of the MLD on filamentary
scales (Fig. 12b). The maximum MLD gradients are reached at the border
of eddies (Fig. 12c); MLD changes from 200 to 50 m over 10 km. These fine
scale structures in the MLD seem to result from the interplay between the
mesoscale atmospheric forcing and the stirring induced by the eddies. The
medium-scale picture is that MLD is shallower over the regions previously
subjected to warming (in the southeast and northeast, Fig. 12b) and that it is
deeper over the regions subjected to cooling (in the northwest, in the center,
and in the southwest). This medium-scale picture is perturbed by the small-
scale advection, which induces a direct cascade of the MLD toward smaller
scales. Incidentally, the stratification of the upper ocean is also very sensitive
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Fig. 12. Simulation of the spring bloom onset in the northeast Atlantic (adapted
from [167]). (a) Sea-surface height (cm), with cyclones identified with dashed lines,
and anticyclones with plain lines, (b) buoyancy (w/m2), (c) mixed-layer depth (m),
(d) Phytoplankton integrated over the euphotic layer (mmoleN/m2)

to the ageostrophic submesoscale dynamics induced by baroclinic eddies in the
absence of atmospheric forcing [170]. At medium scale, phytoplankton vari-
ability during the bloom is driven by the variability of the buoyancy flux and
of the solar radiation. At small scale, phytoplankton patterns follow the MLD
distribution (Fig. 12d). NP is maximum over the filamentary structures of
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MLD minima, and conversely NP is minimum over the filaments of maximum
MLD. The mesoscale dynamics therefore contribute to structuring the initial
conditions for the onset of the spring bloom in specific submesoscale features.
There is no nutrient limitation yet. The structuring is mainly the consequence
of photosynthesis limitation by (lack of) light, which is greater when the MLD
is deeper. It is worth noting that the phytoplankton distribution is not directly
correlated with the eddies, rather, the deformation field associated with the
presence of eddy induced submesoscale stirring (around and in between ed-
dies) which structures the ML and the growth of phytoplankton.

7 Conclusions

This chapter attempts to review our current knowledge on the role of physical
phenomena on primary production and export, on the horizontal scales of
oceanic turbulence, i.e. from a few kilometers to a few hundred kilometers. It
is focused on the modeling aspect of this problem and on the processes that
control PP in the open ocean.

In Sect. 2, we gave an overview of the problem. More precisely, we have
shown how biotic rates are modulated by transport and we have presented
some features of the vertical and horizontal transport associated with oceanic
turbulence. Some of the increasing observations that have led the research
community to pay a particular attention at the (sub)-mesoscales were also
presented. Section 3 presented how biogeochemistry is introduced in OGCMs.
More precisely, we argue that the impact of (sub)-mesoscale dynamics on
biogeochemistry appears in the form of advective Reynolds terms when the
transport equation is solved on a grid coarser than the (sub)-mesoscale. In
Sect. 4–6, the processes have been described in terms of how they perturb
the system on the short term. Section 4 summarized the mesoscale transport
process that provide nutrients to the euphotic layer. In it we distinguish the
vertical transport from the horizontal transport because the ocean is strongly
anisotropic in the scale range in consideration. In particular, we suggest that
it is difficult to recognize eddy pumping from horizontal displacement on the
basis of synoptic observations, and that knowledge on the time evolution of
the eddy is required. Section 5 reviewed the impact of submesoscale transport.
The submesoscale dynamics is associated with intense vertical velocities, in
phase with the vorticity gradients. The consequence is the development of phy-
toplankton localized in filaments of negative vorticity, balanced by an export
of phytoplankton in filaments of positive vorticity. Our results suggest that the
net balance is toward a significant increase of PP when submesoscale vertical
velocities are energetic, and a much more moderate increase associated with
the QG mesoscale vertical velocities. Section 6 presented how (sub)-mesoscale
features can result in a shoaling of the ML depth, and therefore provoke the
bloom to begin prior to seasonal stratification.
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This review is restricted to mid-latitude open ocean turbulence, where the
mean productivity is driven by the cycling of the mixed layer. In particular, the
equatorial and coastal regions, where productivity is driven by large-scale up-
welling, have their own small-scale dynamics, and possibly different impacts
on productivity [171, 172]. Also, the processes were described qualitatively.
Dedicated studies combining observations and models can help to estimate
more quantitatively the relative contribution of the small-scale physical pro-
cesses and are more and more numerous [126, 164, 167, 173, 174, 175]. Finally,
the modulation of air–sea CO2 fluxes by oceanic submesoscale turbulence is
not straightforward. As discussed by Mahadevan et al. [176], it results from a
balance between the impact of mesoscale turbulence on biology, temperature
and dissolved organic carbon.

Two major issues still need further investigations. The first issue is the role
of the oceanic turbulence in the competition between different species. This
aspect is crucial to the biogeochemical cycles since the efficiency of the bio-
logical pump is very closely related with the phytoplankton species [147, 177]:
large cells are more likely grazed by large grazers who produce fast sinking fe-
cal pellets and an efficient carbon export, while small cells are involved in the
regeneration network. A number of observation now provide evidence that
the phytoplankton community is structured by (sub)-mesoscale turbulence
[178, 179, 180, 181]. Modeling studies by Bracco and Provenzale [182], Mar-
tin et al. [183], Lima et al. [184] and Pasquero et al. [185] also suggest that
(sub)-mesoscale turbulence plays a role in the structuration of the ecosystem.
The responses of those models depend very much on the choice of the parame-
ters. A complete understanding of how (sub)-mesoscale turbulence structures
the ecosystem now requires more systematic studies covering a large range
of the parameter space. These studies should bring some new insight on the
importance and variability of the biological Reynolds term.

The second issue is the role of the oceanic turbulence in the long-term
and large-scale equilibrium of the nutrient distribution, i.e. in the subsurface
nutrient reservoir. This far field effect of eddies has been shown to be impor-
tant in idealized studies [186, 187]. The 1D view, appealing in simplicity, is
that the upward flux of nutrients in the euphotic layer is balanced locally by
a downward flux of organic material. This view relies on the premise that the
remineralization of organic matter at depth occurs faster than the physical
processes that advect the nutrients upward. This view neglects the lateral
processes that deliver nutrient to the subsurface. These lateral processes can
be due to the large scale Ekman transport [188] or associated with the for-
mation and advection of mode waters [189, 190]. They can also be attributed
to the eddy transport [4, 118], and possibly to the transport by submesoscale
structures. Model studies suggest that eddies could modify the subduction
rates [191, 192]; this also could have an impact on the subsurface nutrient
pool.

Although our understanding of the impact of mesoscale turbulence on bio-
logical production has been progressing very rapidly in the last decade, efforts
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are still needed before we can get a complete picture, i.e. a precise quantifi-
cation of this impact on the short-term, local impact and on the large-scale
maintenance of production. Today, the most powerful supercomputers (Los
Alamos, Earth Simulator, Oakridge) allow the first global simulations of the
ocean circulation at 1/10◦ [193]. The resolution at submesoscale, with a com-
plete description of the biogeochemical cycles requires an increase in computer
power of approximately two orders of magnitude. Idealized basin scale studies
are affordable at very high resolution and are an alternative to reconcile and
quantify the various pathways through which mesoscale turbulence impacts
biogeochemical cycles and ultimately to derive and to test parametrizations
of these impacts for climate models.

In view of the different pathways through which mesoscale turbulence mod-
ifies marine productivity, it is very unlikely that a unique parametrization of
these impacts for climate models will be able to encompass all the processes.
Rather the identification and characterization of the different processes, as has
been attempted here, should be seen as a first step toward parametrization.
The second step is the parametrization of the physical transport alone. For
instance, regarding lateral transport at the mesoscale, Gent and McWilliams
[114] have proposed a parametrization of eddy-induced water mass exchanges
in the form of an additional eddy-induced advection flux which depends on
the large-scale slope of the isopycnals. This parametrization improved the
distribution of water masses simulated with an OGCM [194]. Treguier et al.
[195] warn however that this representation does not account for the trans-
port within individual eddies traveling over long distances. Regarding lat-
eral transport occurring at the submesoscale, Dubos [196] proposed a spa-
tially selective parametrization which led promising results in 2D turbulence.
This parametrization remains to be tested in OGCMs. Regarding vertical
transport, I am not aware of parametrization of the strongly ageostrophic
vertical transport associated with mesoscale turbulence. The third step is
the imbrication of the physical parametrization for biogeochemical purposes.
For instance, Lévy et al. [197] have shown that the use of the Gent and
McWilliams [114] scheme could very nicely represent the eddy-induced re-
stratification around a convective area and greatly improve the prediction
of the pre-bloom phytoplankton growth in the NW Mediterranean Sea. Pas-
quero [198] experiments suggest that when eddy diffusion is used to mimic
lateral turbulent transport, a smaller diffusion coefficient has to be used for
non-conservative tracers such as phytoplankton or nutrient. She convincingly
argues that turbulent transport can be significantly overestimated if the re-
action timescale of the transported tracers is not accounted for. Finally, the
importance of the biological Reynolds terms has to be assessed and eventually
parametrized. Parametrization of small-scale transport and biology is a big
challenge for climate studies, and to take up this challenge will require the
strengthening of interdisciplinary approaches.
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duction regimes in the northeast Atlantic: a study based on sea-viewing wide
field-of-view sensor chlorophyll and ocean general circulation model mixed layer
depth. J. Geophys. Res. 110, (2005) 225, 226

68. A. R. Longhurst: Ecological geography of the sea. pp. 398 Academic Press,
New York (1998) 225

69. S. Dutkiewicz, M. Follows, J. Marshall and W. W. Gregg: Interannual variabil-
ity of phytoplankton abundances in the North Atlantic. Deep Sea Res. Part II
48, 2323 (2001) 225

70. M. Follows and S. Dutkiewicz: Meteorological modulation of the North Atlantic
spring bloom. Deep Sea Res. Part II 49, 321 (2002) 225

71. H. U. Sverdrup: On conditions for the vernal blooming of phytoplankton. J.
Cons. Int. Expor. Mer. 18, 287–295 (1953) 225

72. D. W. Menzel and J. H. Ryther: Annual variations in primary production in
the Sargasso Sea off Bermuda. Deap Sea Res. 7, 282–288 (1961) 226

73. A. R. Longhurst: A major seasonal phytoplankton bloom in the Madagascar
Basin. Deep Sea Res. Part I: Oceanogr. Res. Papers 48, 2413 (2001) 227

74. D. J. McGillicuddy, V. K. Kosnyrev, J. P. Ryan and J. A. Yoder: Covariation
of mesoscale ocean color and sea-surface temperature patterns in the Sargasso
Sea. Deep Sea Res. Part II 48, 1823 (2001) 227, 231

75. R. Santoleri, V. Banzon, S. Marullo, E. Napolitano, F. D’Ortenzio, and R.
Evans: Year-to-year variability of the phytoplankton bloom in the southern
Adriatic Sea (1998P2000): Sea-viewing wide field-of-view sensor observations
and modeling study. J. Geophys. Res. 108(C9), 8122 (2003) 227, 244, 245



254 M. Lévy
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