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A theory is the more impressive the greater
the simplicity of its premises, the more
different kind of things it relates, and the
more extended its area of applicability.
Therefore the deep impression that classical
thermodynamics made upon me. It is the only
physical theory of universal content which I
am convinced will never be overthrown,
within the framework of applicability of its
basic concepts.

Albert Einstein



Preface

When the knowledge is weak and the situation is
complicated, thermodynamic relations are really the
most powerful

Richard Feynman

Thermodynamics has played a major role in improving our understanding of natural
processes, and would continue to do so for the foreseeable future. In fact, a course
in thermodynamics has now become a part of Geosciences curriculum in many In-
stitutions despite the fact that a formal thermodynamics course is taught in every
other department of physical sciences, and also in departments of Chemical Engi-
neering, Materials Sciences and Biological Sciences. The reason thermodynamics is
taught in a variety of departments, probably more so than any other subject, is that
its principles have wide ranging applications but the teaching of thermodynamics
also needs special focus depending on the problems in a particular field.

There are numerous books in thermodynamics that have usually been written
with particular focus to the problems in the traditional fields of Chemistry, Physics
and Engineering. In recent years several books have also been written that empha-
sized applications to Geological problems. Thus, one may wonder why there is yet
another book in thermodynamics. The primary focus of the books that have been
written with Geosciences audience in mind has been chemical thermodynamics or
Geohemical thermodynamics. Along with expositions of fundamental principles of
thermodynamics, I have tried to address a wide range of problems relating to geo-
chemistry, petrology, mineralogy, geophysics and planetary sciences. It is not a fully
comprehensive effort, but is a major attempt to develop a core material that should
be of interest to people with different specialties in the Earth and Planetary Sciences.

The conditions of the systems in the Earth and Planetary Sciences to which ther-
modynamics have been applied cover a very large range in pressure-temperature
space. For example, the P-T conditions for the processes at the Earth’s surface
are 1 bar, 25◦C, whereas those for the processes in the deep interior of the Earth
are at pressures of the order of 106 bars and temperatures of the order of 103◦C.
The pressures for processes in the solar nebula are 10−3–10−4 bars. The extreme
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x Preface

range of conditions encompassed by natural processes requires variety of manipu-
lations and approximations that are not readily available in the standard text books
on thermodynamics. Earth scientists have made significant contributions in these
areas that have been overlooked in the standard texts since the expected audience of
these texts rarely deal with the conditions that Earth scientists have to. I have tried
to highlight the contributions of Earth scientists that have made possible meaningful
applications of thermodynamics to natural problems.

In order to develop a proper appreciation of thermodynamic laws and thermody-
namic properties of matter, it is useful to look into their physical picture by relat-
ing them to the microscopic descriptions. Furthermore, in geological problems, it
is often necessary to extrapolate thermodynamic properties of matter way beyond
the conditions at which these have been measured, and also to be able to estimate
thermodynamic properties because of lack of adequate data to address a specific
problem at hand. These efforts require an understanding of the physical or micro-
scopic basis of thermodynamic properties. Thus, I have occasionally digressed to
the discussion of thermodynamics from microscopic view points, although the for-
mal aspects of the subject of thermodynamics can be completely developed without
appealing to the microscopic picture. On the other hand, I have not spent too much
effort to discuss how the thermodynamic laws were developed, as there are many
excellent books dealing with these topics, but rather focused on exploring the im-
plications of these laws after discussing their essential contents. In several cases,
however, I have chosen to provide the derivations of equations in considerable de-
tail in order to convey a feeling of how thermodynamic relations are manipulated to
derive practically useful relations.

This book has been an outgrowth of a course on thermodynamics that I have
been teaching to graduate students of Earth and Planetary Sciences at the University
of Arizona for over a decade. In this course, I have meshed the development of
the fundamental principles with applications, mostly to natural problems. This may
not be the most logical way of presenting the subject, but I have found it to be an
effective way to keep the interest of the students alive, and answer “why am I doing
this?” In addition, I have put problems within the text in appropriate places, and
in many cases posed the derivation of some standard equations as problems, with
hints wherever I felt necessary based on the questions that I have received from my
students when they were given these problems to solve.

I have tried to write this book in a self-contained way, as much as possible. Thus,
the introductory chapter contains concepts from mechanics and quantum chemistry
that were used later to develop concepts of thermodynamics and an understand-
ing of some of their microscopic basis. The Appendix II contains a summary of
some of the mathematical concepts and tools that are commonly used in classical
thermodynamics.

Selected sections of the book have been reviewed by a number of colleagues:
Sumit Chakraborty, Weiji Cheng, Jamie Connolly, Mike Drake, Charles Geiger,
Mats Hillert, Ralph Kretz, Luigi Marini, Denis Norton, Giulio Ottonello, Kevin
Righter, Surendra Saxena, Rishi Narayan Singh, Max Tirone and Krishna
Vemulapalli. I gratefully acknowledge their help, but take full responsibility for the
errors that might still be present. In addition, feedbacks from the graduate students,



Preface xi

who took my thermodynamics course, have played an important role in improving
the clarity of presentation, and catching errors, not all of which were typographical.
I will be grateful if the readers draw my attention to errors, typographical or other-
wise, that might have still persisted. All errors will be posted in my web page that
can be accessed using the link http://www.geo.arizona.edu/web/Ganguly/JG page.
html.

I started writing the book seriously while I was in the Bayerisches Geoinstitüt,
Bayreuth, and University of Bochum, both in Germany, during my sabbatical leave
in 2002–2003 that was generously supported by the Alexender von Humboldt Foun-
dation through a research prize (forschungspreis). I gratefully acknowledge the sup-
port of the AvH foundation, and the hospitality of the two institutions, especially
those of the hosts, Professors Dave Rubie and Sumit Chakraborty. Research grants
from the NASA Cosmochemistry program to investigate thermodynamic and ki-
netic problems in the planetary systems provided significant incentives to explore
planetary problems, and also made my continued involvement in thermodynamics
through the period of writing this book easier from a practical standpoint. I am also
very grateful for these supports.

I hope that this book would be at least partly successful in accomplishing its
goal of presenting the subject of thermodynamics in a way that shows its power in
the development of quantitative understanding of a wide variety of geological and
planetary processes.

And finally, as remarked by the noted thermodynamicist, Kenneth Denbigh
(1955)

Thermodynamics is a subject which needs to be studied not once but several
times over at advancing levels

October 25, 2007 Jibamitra Ganguly
Tucson, Arizona, USA
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Chapter 1
Introduction

It must be admitted, I think, that the laws of
thermodynamics have a different feel from most of
the other laws of the physicist

P. W. Bridgman

In this introductory chapter, I discuss the nature of thermodynamics and the type of
problems that may be treated by the subject. I also collect together several introduc-
tory concepts regarding the nature of processes that are addressed by thermodynam-
ics, concept of work from mechanics that lie at the foundation of thermodynamics,
and several atomistic concepts that are important for developing insights into the
thermal and energetic properties of matter, which are treated by thermodynamics at
a macroscopic level. Finally, I conclude this chapter with a brief discussion of units
and conversion factors.

1.1 Nature and Scope of Thermodynamics

Thermodynamics deals with the problem of conversion of one form of energy to
another. Classical thermodynamics emerged primarily during the nineteenth cen-
tury. Thus, the development of fundamental concepts of classical thermodynamics,
like those of Mechanics and Electricity and Magnetism, precedes the development
of modern concepts of the atomic or microscopic states of matter. There is also
a non-classical arm of thermodynamics, known as irreversible thermodynamics,
which is primarily a modern development. The laws of classical thermodynam-
ics were formulated by deduction from experimental observations on macroscopic
scales. Consequently, the thermodynamic laws are empirical in nature, and a ther-
modynamic system in which the laws are supposed to hold consists of a large num-
ber of atoms or molecules, of the order of Avogadro’s number (1023). We, of course,
know now that all macroscopic properties of a system (such as pressure, tempera-
ture, volume etc.) have their origin in the motions and interactions of the atoms or
molecules comprising the system. Thermodynamics, by itself, does not provide any
fundamental insight as to the origin of thermodynamic laws and thermodynamic
properties of matter.

J. Ganguly, Thermodynamics in Earth and Planetary Sciences, 1
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2 1 Introduction

The treatment of macroscopic properties in terms of statistical average of
the appropriate properties of a large number of microscopic entities (atoms or
molecules) constitutes the subject of classical Statistical Mechanics. While it
provides analytical relationships between macroscopic properties and microscopic
motions in a system, actual calculation of macroscopic properties from such rela-
tionships is a very difficult task. This is because of our lack of precise knowledge of
the energetic properties of the microscopic entities, and computational difficulties.
However, considerable progress has been made in both directions in recent years
leading to what has become known as the Molecular Dynamics or MD simula-
tions. These simulations represent a merger of statistical and classical mechanics,
and hold great potential in predicting the thermodynamic and other macroscopic
properties through considerations of microscopic interactions, and in refining our
knowledge of the energetic properties in the atomic scale through comparison of the
predicted and observed macroscopic properties. In addition, because of the enor-
mous improvements in computational abilities, significant progress has also been
made in the calculation of thermodynamic properties using purely quantum chem-
ical approaches.

The fundamental concepts of classical thermodynamics have followed primarily
from considerations of the problem of conversion of heat into mechanical work
and vice versa, which inspired the great “Industrial Revolution”. These have led
to formal relationships among the macroscopic variables, and to descriptions of the
equilibrium state of a macroscopic system under various sets of imposed condi-
tions. (When a system achieves equilibrium consistent with the imposed conditions,
all properties in the macroscopic scale not only remain unchanged, but also do not
have any tendency to change with time as long as these conditions are not disturbed).
Thermodynamics tells us that the macroscopic equilibrium state of a system depends
only on the externally imposed conditions, such as pressure, temperature, volume,
and is totally independent of the initial condition or the history of the system. Histor-
ically, this represented a major point of departure from the viewpoint of Newtonian
mechanics that seeks to predict the evolutionary course of a system on the basis of
its initial conditions.

Classical thermodynamics is a subject of great power and generality, and has
influenced the development of important concepts in physical, chemical, biolog-
ical and geological sciences, as well as in practical aspects of engineering. But
it demands a moderate mathematical knowledge that is within the easy reach of
a serious (or even not so serious) student of science or engineering. At the same
time, thermodynamics has a rigorously logical structure that is often quite subtle.
These aspects make the subject of thermodynamics apparently easy to learn, but yet
difficult to completely appreciate in terms of its implications.

There are three laws at the foundation of thermodynamics, which are known as
the first law, second law and third law, but most of the subject has been built on the
first two laws. The second law of thermodynamics represents a supreme example
of logical deduction of a revolutionary physical principle from systematic analysis
of simple experimental observations. Because the basic concepts of thermodynam-
ics are independent of any microscopic models, they have been unaffected by the
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developments in the microscopic description of matter – the validity of the laws
were not threatened by discovery of errors in the microscopic models, nor the devel-
opments in thermodynamics took a quantum jump with exciting new discoveries in
the microscopic domain.

1.2 Irreversible and Reversible Processes

Consider a gas inside a rigid cylinder fitted with a movable piston. Let Pint be the
internal pressure of the gas and Pext be the pressure exerted on the gas from outside
through the piston. If Pint > Pext then the gas will expand, and vice versa. Suppose
now that the gas is allowed to expand rapidly to a particular volume, Vf. During
this rapid expansion the gas will be in chaotic motion, which will be visible even by
macroscopic observation. Now let the gas be rapidly compressed back to its initial
volume, Vi. After a while, the state of the gas will be the same as what it was at
the beginning of the cyclic process, but the intermediate states during compression
will be different from those during expansion. This is an example of an Irreversible
Process.

Now imagine that the expansion of the gas from Vi to Vf is carried out in small
incremental steps, as illustrated in Fig. 1.1, and that at each step the gas is held for a
sufficiently long time to allow it to achieve equilibrium with the external pressure.
If the process is reversed following the same procedure, then the state of the gas
at a given position of the piston, say P3, will be the same during both expansion
and contraction, but not during the stage between two specific steps, say P3 and P4.
However, the size of the steps can be made arbitrarily small, at least conceptually, so
that the state of the gas during expansion are recovered during compression at any
arbitrary position of the piston. This is an example of a Reversible or Quasi-static
Process. Thus, reversible process is a process that is carried out at a sufficiently
slow rate such that the properties of the system at any state during the process differ
by infinitesimal from those of its equilibrium state. The process is called reversible
since a very very small (i.e. infinitesimal) change in the external condition causes
the system to reverse its direction of change.

All natural processes are irreversible, but a natural process may take place suf-
ficiently slowly to approximate a reversible process. By this we mean that the time

Fig. 1.1 Illustration of
stepwise compression and
expansion of gas

Gas

P4
P3
P2
P1

piston

Cylinder
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(�t) over which a significant change of state of the system takes place is large
compared to the time the system takes to achieve equilibrium, which is often referred
to as the relaxation time, �. The latter has a wide range of values, depending on the
nature of the system and the perturbation produced in the system by the changing
state conditions. As an example, for the problem of expansion of gas considered
above, it can be shown that � ∼ V1/3/C, where V is the volume of the cylinder
and C is the velocity of sound in the gas (Callen, 1985), whereas for mineralogi-
cal reactions in geological or planetary processes, � is often as high as millions of
years.

1.3 Thermodynamic Systems, Walls and Variables

Any arbitrary but well defined part of the universe, subject to thermodynamic anal-
ysis, constitutes a thermodynamic system. The rest of the universe is called the sur-
rounding. A system is separated from the surrounding by a wall. We can recognize
the following types of systems.

Open System: A system which can exchange both energy and matter with the
surrounding across its boundaries or walls.

Closed System: A system which can exchange energy with the surrounding, but
not matter.

Isolated Systems: A system which can exchange neither energy nor matter with
the surrounding.1 In order to make the existence of different systems possi-
ble, thermodynamics had also to device different types of wall, which are as
follows.

Diathermal or non-adiabatic Wall: A wall that is impermeable to mass transfer,
but permits transfer of heat through conduction. A closed system, in the sense
defined above, is surrounded by diathermal wall.

Adiabatic Wall: A wall that does not permit either mass or heat transfer across
it. Ignoring the effects due to force fields (e.g gravitational field), a system
surrounded by an adiabatic wall can be affected from outside only through
expansion or compression by moving the wall. The type of internally evac-
uated double wall used to make dewars for liquid nitrogen or helium is an
example of an almost adiabatic wall. If we ignore the effects due to the force
fields, a system surrounded by a rigid adiabatic wall constitutes an isolated
system.

Semi-permeable Wall: This type of wall permits selective transfer of matter,
and are also called semi-permeable membrane. For example, platinum and
palladium are well known to be permeable to hydrogen, but not to oxygen or
water (this property of the metals are made use of in some clever designs in
experimental petrology to control oxygen partial pressure, e.g. Eugester and
Wones, 1962).

1Some authors (e.g. Callen: Thermodynamics) use the term “closed system” in the same sense as
an “isolated system” as defined here.
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As we would see later, the thermodynamic walls play very important roles in the
derivation of conditions that determine the evolution of a system towards the equi-
librium state (see Lavenda, 1978 for an insightful discussion). The thermodynamic
potentials are defined only for the equilibrium states. Thus, one is faced with the
paradoxical situation of determining the behavior of the potentials as a system
evolves toward an equilibrium state, since the potentials are not defined for the non-
equilibrium states. To resolve this problem, Constantin Carathéodory (1873–1950),
a German mathematician of Greek origin, introduced the concept of composite sys-
tems, in which the subsystems are separated from one another by specific types
of walls. Each subsystem is at equilibrium consistent with the restriction imposed
by the internal and external walls, and thus has defined values of thermodynamic
potentials. The internal walls separating the susbsytems are then replaced by dif-
ferent types of walls and the system is now allowed to come to a new equilib-
rium state that is consistent with the new restrictions. This procedure reduces the
problem of evolution of a system to one of a succession of equilibrium states. We
would see several examples of the application of the concept of “composite system”
later.

The thermodynamic variables are broadly classified into two groups, extensive
and intensive. The values of the extensive variables depend on the extent or size
of the system. They are additive, i.e. the value of an extensive variable E for an
entire system is the sum of its values, Es, for each subsystem (E = �Es). Volume,
heat, mass are familiar examples of extensive variables. The value of an intensive
variable for a system, on the other hand, is independent of the size of the system.
Familiar examples are pressure, temperature, density etc. These properties are not
additive, and if the system is at equilibrium, then the value of an intensive variable
at any point of the system is the same as in any other point.

For every extensive variable, it is possible to find a conjugate intensive variable
such that the product of the two variables has the dimension of energy. For exam-
ple, for E = volume (V), conjugate I = pressure (P); for E = Area (A), conjugate
I = surface tension (�); for E = length (L), conjugate I = Force (F) etc.

1.4 Work

As defined in Mechanics, the mechanical work is the result of displacement of an
object by the application of a force. If the applied force, F, is in a direction that is
different from the direction of displacement, then one needs to consider the compo-
nent of the applied force in the direction of displacement to calculate the work. If
F is constant through a displacement �X along x, then the work (W) done by the
force is simply given by the product of Fx and �X, where Fx is the component of F
along x. In other words,

W = F · �X = F�X cos �, (1.4.1)
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where � is the angle between the directions of applied force and displacement
(Fig. 1.2). If the force is variable, then the work performed by a force on an object
in displacing it from x1 to x2 along x is given by

W =
x2∫

x1

Fxdx (1.4.2)

(If the displacement is along a curved path, then the work is given by the inte-
gral along the curved path; such integrals are known as line integrals.) In order to
integrate Fxdx, Fx must be known as a function of x. It should be noted that if an
applied force does not displace an object, it does not perform any work. Thus, a
person pushing against a strong rigid wall does not perform any work by pushing
against it for a long time; he or she simply gets tired. On the other hand, if there
is no external force resisting the displacement, then there is no applied force either,
and thus no work is performed.

If the angle between the direction of the applied force and displacement of an
object is greater than 90◦ and less than 270◦, then the force performs a negative work
on the object, since Fcos < 0 for values within this range. An example of negative
work by a force that we would encounter later in this book is that performed by the
gravitational force, mg, when an object is lifted upwards, where m is the mass of the
object and g is the acceleration of gravity (force is mass times acceleration). Since
the gravitational force is directed downwards, the angle between the directions of
force and displacement is 180

◦
(Fig. 1.1). Thus, the work performed by the force of

gravity is mgcos(180
◦
)�h = –mg�h (�h > 0).

In thermodynamics we speak of system and surrounding. A system can perform
work on the surrounding or the surrounding can perform work on a system. We
would use the symbols W+ and W– to indicate the works performed by and on a
chosen system, respectively. Obviously, in a given process, W+ = – W–. Of particular
interest in thermodynamics is the work related to the change in volume of a system.
For example, consider a gas contained in a cylinder that is fitted with a movable
piston (Fig. 1.1). Now, if P is the pressure exerted by the gas on the cylinder walls,
then the force exerted by the gas on the piston is P times the area of the piston, A
(i.e. F = PA). Now if this pressure exceeds the external pressure, Pex, on the piston,
then the gas would expand. If the expansion is very rapid, then the gas will be in

Fig. 1.2 Illustration of work
done by a force (F) on an
object when it is displaced
along a horizontal direction.
The gravitational force, mg,
is directed downwards, and
performs a negative work on
an objected when it is
displaced upwards

F

θ

FX

Displacement

mg
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turbulence, and thus its pressure would be non-uniform, in which case we can no
longer calculate the work done by the gas as a result of expansion. However, if the
gas expands sufficiently slowly so that it has a uniform pressure throughout, and
the piston is displaced against the external pressure from a position x1 to x2, then
the work performed by the gas is given by

W+ =
x2∫

x1

(PgA)dx (1.4.3)

But (Adx) is the infinitesimal change of gas volume, dV. Thus, for the displacement
of the piston through the slow expansion of gas,

W+ =
v2∫

v1

PgdV (1.4.4)

In a differential form, �w+ = PgdV, where the symbol � denotes an imperfect differ-
ential (see Appendix B), and thus the work done on the gas, �w– = – PgdV. The value
of the integral of an imperfect differential not only depends on the initial and final
states of integration, but also on the path connecting these states. Thus, in general,
the amount of work depends on the path followed to achieve a specific change of
state. This concept is schematically illustrated in Fig. 1.3. The work performed by
the gas on expansion from A to B along the solid line is given by the line integral of
PdV carried out along the solid line, that is by the area under the solid line bounded
by the two vertical lines, whereas the work performed on the gas when it returns
to A from B along the dotted line is given by the line integral of PdV carried out

B

V

P

A Net work

Fig. 1.3 Illustration of the P-V work done by a gas on expansion and contraction along specified
paths. In expanding from A to B along the solid line, the gas performs a work that is given by the
area under the solid line AB between the vertical dashed lines. When the gas returns from B to A
along the dotted line, the work done on the gas is given by the area under the dotted curve bounded
by the vertical dashed lines. Thus, the net work done by the gas in the cyclic process A → B → A
is given by the area bounded by the solid and dotted lines connecting A and B
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along the dotted line. Thus the net work performed by the gas in the cyclic process
is given by the area bounded by the solid and dotted lines.

Equation (1.4.4) is valid regardless of the shape of the container (the interested
reader is referred to Fermi, 1956 , for a proof). It is also valid, as emphasized by
Zemansky and Dittman (1981), whether or not there is (a) any friction between
the piston and the cylinder wall and (b) any non-mechanical irreversible process
in the system, as long as pressure within the gas is uniform. Friction constitutes
a part of the external force resisting the expansion of the gas. Now when the
gas is compressed, the force exerted on the piston from outside has to overcome
the resistance due to Pg and the friction of the piston. In this case, the infinitesi-
mal work done on the gas (which we have chosen to be the system) is given by
�w– = – PexdV. However, if we want to use only Pg to calculate the work done on
gas both during expansion and compression, then Pg and Pex must be effectively
equal, which requires an effectively frictionless condition.

Provided that there is negligible frictional resistance, the infinitesimal work done
on a system due to a change of its volume, whether it is expansion or compression,
can be expressed in terms of the (uniform) pressure P within the system, accord-
ing to

�w− = −PdV (1.4.5)

When the gas expands, dV > 0, and therefore �w– < 0, that is negative work is per-
formed on the system (or positive work is performed on the surrounding), whereas
when the gas is on compression, dV < 0, and thus, �w– > 0, that is positive work is
performed on the system.

In addition to work done by the expansion of a substance, which is commonly
referred to as the PV work, there are other kinds of work resulting from other types
of displacements against appropriate conjugate forces. For example, electrical work
is performed by a charge as it moves through a potential difference, which may be
utilized to drive a motor, and a gravitational work is performed on a body as it is
lifted against the force of gravity. Similarly, one can speak of work of magnetiza-
tion, work against surface tension etc. All forms of work are important in thermo-
dynamics, and the main problem is in the correct identification of the conjugate
displacements and forces. However, the PV work has played a far greater role in
the development of the fundamental concepts in thermodynamics. We would, thus,
collectively denote the non-PV work by the symbol �, using the plus and minus
symbols in the same sense as in the PV work.

Problem 1.1 Consider a mole of an ideal gas which has an equation of state PV =
RT, where R is the gas constant (8.314 J mol–1K–1 = 1.987 cal mol–1K–1 ) and T
is the absolute temperature. Now express in terms of P and T, the reversible work
done by the volume change associated with the change in the state of gas between
A(P1,T1) and D(P2,T2) along two different paths, ABD and ACD (Fig. 1.4). You



1.5 Stable and Metastable Equilibrium 9

P

B

DC

A

T 

Fig. 1.4 Schematic illustration of the change of the state of a gas from A to D along two different
paths in the P-T space, A → B → D and A→ C → D

would get different answers for the work computed along these two different paths,
even though the terminal states of integration are the same.

Problem 1.2 Consider that the object in Fig. 1.2 is displaced horizontally on a
rough surface. Is the work done by the force of friction, fs, positive or negative?
Write an expression for this work.

1.5 Stable and Metastable Equilibrium

Classical thermodynamics deals exclusively with equilibrium states of systems con-
sistent with the imposed conditions. But what is an equilibrium state? We would
discuss later formal thermodynamic criteria for describing the equilibrium states
for different types of imposed conditions, but here we give a general description of
stable and metastable equilibrium using familiar physical examples which are easy
to appreciate.

Consider an example of a ball rolling down a mountain slope (Fig. 1.5). A ball
rolls down the slope because it seeks progressively lower potential energy levels.
However, the ball may get caught behind a small undulation on the slope (position
a), or it may roll all the way down to the bottom (position b). When the ball is
caught in position (a), it is said to be in a state of metastable equilibrium. It is a
stable state of the ball not for all times, but for as long as the barrier remains or the
position of the ball is not subjected to sufficient perturbation that could move it past
the barrier. If the barrier is removed (say by erosion), the ball will eventually roll

Fig. 1.5 Illustration of (a)
metastable, (b) unstable and
(c) stable or steady state
positions of a ball

a

c

b



10 1 Introduction

down the slope until it reaches the bottom or gets caught in another barrier, but it
will never move back on its own to its original position at (a) from a lower height.

The position of the ball at (b) on the hill slope represents an unstable state.
The ball is said to be in stable equilibrium only when it has reached the lowest
potential energy state among all the states that are accessible to it, if it is provided
with enough energy to overcome barriers between different states. In our example,
the state of the ball on a flat surface at the bottom of the hill could be viewed as of
stable equilibrium. A steady state is a condition that does not represent the lowest
energy state, but which does not change with time either.

1.6 Lattice Vibrations

The thermodynamic properties of molecules and crystals are related to the vibra-
tional properties of the atoms around the equilibrium lattice sites. Here we discuss
some elementary concepts of molecular and lattice vibrations that would be found
useful in the discussion of thermodynamic properties of crystalline materials in the
later sections.

A molecule is, in general, subject to translational, rotational and vibrational
motions, each of which contributes to the total energy of a molecule. Almost all
atomic mass is concentrated in a tiny nucleus, the mass of the electrons being negli-
gible. In atomic mass units (amu) the mass of an electron is 0.000549, whereas those
of proton and neutron are 1.0073 and 1.0087, respectively. The radius of the nucleus
is of the order of 10–13 cm, whereas the overall dimension of a molecule is of the
order of 10–8 cm. Consequently, one may consider that the atomic masses of the
molecules are concentrated at individual points. Thus, we talk about mass point of
a molecule (or of mass points of a system consisting of many molecules). In order to
locate the instantaneous position of a mass point in space, we need three coordinates.
The number of coordinates required to locate all mass points of a system is known
as the number of degrees of freedom. Thus in a system consisting of N atoms,
there are 3N degrees of freedom.

The vibrational and rotational motions of a molecule constitute its inter-
nal motions. It is now well known from quantum mechanics that the ener-
gies associated with the translational and internal motions of a molecule do not
change continuously, but change in discontinuous steps. Thus, the energy spec-
trum of a molecule consists of a set of quantized energy levels. The sepa-
ration � of the neighboring quantized energy levels of a molecule follow the
order �(vibrational)>�(rotational) >�(translational). The separation of transla-
tional energy levels is, however, so close that for many purposes the translational
energy can be thought to be continuous. The rotational energy is kinetic in nature,
whereas the vibrational energy consists of both kinetic and potential components.
The potential part arises from the relative positions of the atoms in a molecule during
vibration, whereas the kinetic part arises from the velocity of atomic motion during
the same action.

The simplest model of a vibrating diatomic molecule is that of a harmonic oscil-
lator, in which the restoring force, F, is proportional to the displacement, x, from
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the equilibrium position according to F = – Kx, which is known as the Hooke’s law,
and where K is a force constant. Since force equals the negative gradient of potential
energy, 	, (i.e. F = – d	/dx) the harmonic oscillator model leads to the following
parabolic expression of potential energy as function of x,

	(x) = 1/2kx2, (1.6.1)

relative to that at the equilibrium position (x = 0) of the atoms. It follows from
quantum mechanics that the vibrational energy levels, Ev, of a diatomic molecule
behaving as a harmonic oscillator obeys the relation

Ev(n) = (n + 1/2)h
 (1.6.2)

where n denotes successive integers (quantum numbers), h is is the Planck’s constant
(h = 6.626 × 10–34 J-s) and 
 is the vibrational frequency. The quantity 1/2 h
 is
called the zero-point energy, because it represents the energy when n = 0, and is a
consequence of the “uncertainty principle” in quantum mechanics. The vibrational
frequency of a specific oscillator is determined by the force constant and the masses
of the vibrating atoms, and it typically has a value of 1012 – 1014 per second. Thus,
according to the above expression, the vibrational energy levels of a harmonic oscil-
lator are equally spaced above the zero point level. The harmonic oscillator model of
potential energy and vibrational energy levels of a hypothetical diatomic molecule
is illustrated in Fig. 1.6.

The harmonic oscillator model is, however, not a generally satisfactory model
for atomic vibrations in a molecule or a crystal. In reality, the vibration is anhar-
monic that leads to an asymmetry of the potential energy curve and decrease of the
spacing interval between vibrational energy levels with increasing quantum num-
ber. As an example, we show in Fig. 1.7 the potential energy curve for hydrogen
molecule along with the vibrational energy levels. Because of the anharmonicity
effect, the restoring force becomes very weak and eventually becomes zero at large
amplitude of vibration, leading to the dissociation of a molecule. If it were not for
anharmonicity, there would be no dissociation. The thermal expansion of matter, of
which dissociation is the extreme case, takes place by the displacements of the mean
positions of the vibrating atoms in a crystal. If the potential energy changes along a
parabolic curve according to the harmonic oscillator model, then the mean position
will remain the same, preventing any thermal expansion. Similarly, diffusion of an

Fig. 1.6 Potential energy
curve and vibrational energy
levels of a diatomic molecule
(a) behaving as a harmonic
oscillator
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Fig. 1.7 Experimental (solid
line) and calculated (dotted
and dashed lines) potential
energy curve of H2 molecule,
with the dashed line
representing harmonic
approximation. The
horizontal lines represent the
quantized energy levels. The
harmonic approximations of
vibrational energy levels are
compared with the ones for
the first five quantum
numbers. From McMillan
(1985). With permission from
Mineralogical Society of
America

r(   )

E (kJ/mol)

atom within a solid would be impossible, except by quantum mechanical tunneling,
if the potential energy well remains parabolic.

The effect of anharmonicity of vibration on the spacings of the energy levels is
accounted for by adding additional terms to the right hand side of (1.6.2). In spite
of its limitations, harmonic oscillator model has been frequently used, as we shall
see later, to develop atomitistic model of thermodynamic properties. The model
gives reasonably good results at low temperatures where the potential energy curve
approximately follows a parabolic form. This is known as quasi-harmonic approx-
imation, as illustrated in Fig. 1.6.

The quantum of vibrational energy, h
, is called a phonon. Thermodynamic
properties of a crystal can, in principle, be calculated from averages of vibrational
energies, and for this purpose one needs to know a distribution function, g(
), which
gives the number of oscillators at a specific frequency of vibration. (Fig. 1.8). The
function g(
) is known as the phonon density of states. The number of oscillators
within a frequency range of 
1 to 
2 is given by the integral of g(
)d
 between the
frequency limits, or the product g(
)�
 when the frequency interval is small.

The individual vibrations in a crystalline lattice are correlated. This correlation
leads to a collective motion that produces travelling waves through a crystal. These

Fig. 1.8 Schematic
illustration of phonon density
of states of crystal. The
quantity g(
) �

approximately equals the
number of oscillators within a
small frequency interval �
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travelling waves are called lattice modes, and have two branches that are known as
optic modes and acoustic modes (Fig. 1.8). The optic modes interact with light
waves whereas the acoustic modes interact with sound waves. The optic modes are
of high frequencies and are, thus, excited mostly at high temperatures, whereas the
acoustic modes are of relatively lower frequency and are, thus, excited mostly at low
temperatures.

The earliest theory of lattice vibration is due to Einstein (1907), who introduced
the fundamental idea of phonon or quantization of the energy of elastic waves in a
solid. He assumed that atoms in a crystal vibrate around their individual equilibrium
positions with the same frequency, and independently of one another. This frequency
or the so-called Einstein frequency, 
E, lies between the optic and acoustic frequen-
cies of a crystal. Debye (1912) advanced Einstein’s theory by considering that the
density of states, g(
), increases smoothly as a function of vibrational frequency, but
up to an upper cut-off limit, which is now called the Debye frequency, 
D. This is
roughly the behavior of the acoustic branch of the phonon density of states.

In the spirit of Einstein and Debye theories, one often speaks of Einstein and
Debye temperatures, �E and �D, respectively. These are dimensionless quantities,
and are defined as the product of (h/2�kB) and the respective frequencies, where h
and kB are the Plank constant and Boltzmann constant, respectively, that is,

�E = hνE

2�kB
(1.6.3)

and

�D = hνD

2�kB
(1.6.4)

1.7 Electronic Configurations and Effects of Crystal Fields

1.7.1 Electronic Shells, Subshells and Orbitals

According to the quantum theory, electrons in an atom revolve around a nucleus
(consisting of protons and neutrons) in quantized or discrete energy levels. The
energy levels are grouped together in shells and subshells according to quantum
mechanical principles, as briefly reviewed below.

(a) A shell for electron energy levels is characterized by its principal quantum num-
ber, n, as K shell for n = 1, L shell for n = 2, M shell for n = 3, and N shell for
n = 4.

(b) Within each shell, there are subshells that are characterized by the l or the
azimuthal quantum numbers, which have integral values. For a given value of n,
there are 0 to (n-1) sub-shells. Thus, in the K shell, there is only one l subshell
with value of 0, in the L shell, there are two l subshells with values of l = 0 and
l = 1, in the M shell (n = 3) there are three l subshells with values of 0, 1 and 2,
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and so on. (Note that the number of l subshells within a shell is the same as the
value of the principal quantum number n that characterizes the shell.).

(c) There is one electronic orbital in the s subshell (l = 0), and it is spherically sym-
metric, whereas the p subshell (l = 1) has three, d (l = 2) has five and f (l = 3)
has seven electronic orbitals. The p, d and f electronic orbitals have directional
properties. The directional properties of the d-orbitals are illustrated in Fig.
1.9. The electronic orbitals within a subshell are characterized by the magnetic
quantum number, ml. For a given value of l, the magnetic quantum number have
values of 0, ±1, ±2, ... ± l. For example, for the p subshell, which has a value of
1 for the l quantum number, the ml values are 0, +1 and – 1, thus giving rise to
three p orbitals. It can be easily seen that the total number of electronic orbitals
in a subshell equals 2l + 1.

(d) An electron has a spin quantum number, ms, of + 1/2 or – 1/2. (One may imagine
an electron to be spinning on its own axis and at the same time rotating about a
nucleus in a manner analogous to the rotation of the Earth or a planet on its own
axis and around the sun; the two types of spins are conventionally indicated
as upward and downward pointing arrows, ↑ and ↓). According to the Pauli
exclusion principle, no two electrons can have exactly the same quantum state,
i.e. the same values of the n, l, ml and ms quantum numbers. Consequently, an
electronic orbital can not be occupied by more than two electrons. When there
are two electrons in an orbital (and thus have the same values of n, l and ml

quantum numbers), they must have opposite spins, + 1/2 and – 1/2. Since a subshell
has 2l + 1 electronic orbitals, the total number of electrons in a subshell is
≤ 2(2l + 1)
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Fig. 1.9 The spatial orientations of the five d-orbitals that are energetically degenerate in a spher-
ically symmetric environment; the form of the dz

2 orbital can be generated by rotation about the
z axis. From Fyfe (1964). With Permission from McGraw-Hill
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(e) When the electronic orbitals are degenerate, as in a free atom or ion, then the
electrons are distributed among the orbitals such that there is a maximum num-
ber of unpaired spins. This is known as the Hund’s rule. For example, in an
Fe2+ ion, there are 6 electrons in the 3d subshell, all of which have exactly the
energy. According to Hund’s rule, there must two electrons with opposite spin
in one d orbital (resulting in a net spin of 0), whereas each of the four other
d orbitals will have only one electron, all with the same spin. The electronic
configuration of an atom or ion is reported as n(subshell)m for all n and sub-
shells, where m is the number of electrons in the subshell. Thus, for example,
the electronic configuration of Fe is 1 s22 s22p63 s23p63d8.

The quantum mechanical classification of shell, subshell and orbitals are summa-
rized below.

1.7.2 Crystal or Ligand Field Effects

The degeneracy of the electronic orbitals could be removed by interaction with the
surrounding negatively charged ions or dipoles within a crystal. For transition metal
ions with unfilled d orbitals, this removal of degeneracy of the d orbitals in a sub-
shell leads to phenomena that have interesting thermodynamic consequences. The
simplest analysis of the effect of the surrounding polyhedron on the d-orbitals of
a central cation, which is adequate for our purpose, is provided by what is known
as the crystal field theory,2 which was developed by Bethe (1929) and Van Vleck
(1935). In this theory, the cation has orbitals with directional properties (Fig. 1.9),

2More sophisticated theories are the ligand field theory in which the ligands are also considered
to have orbitals, and the molecular orbital theory, in which the effect is evaluated through con-
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Fig. 1.10 Crystal field splitting of the d-orbitals (with the same principal quantum number) of a
central atom in different types of regular coordinating polyhedra: (a) cubic (8); (b) dodecahedral
(12); (c): tetrahedral (4); (d): spherical; (e) octahedral (6), where the parenthetical numbers indicate
coordination numbers. From Burns (1985)

but the surrounding ions or ligands are considered to be orbital-less point charges or
point dipoles. The nature of splitting of d-orbitals of a cation is dictated by the sym-
metry of the surrounding polyhedron, as schematically illustrated in Fig. 1.10 for
regular octahedron, tetrahedron, dodecahedron and cube. The d-orbitals are divided
into two groups, t2g, which consists of the dxy, dyz and dzx orbitals, and eg, which
consists of the dx2-y2 and dz2 . When the polyhedra are distorted, there is further
removal of d-orbital degeneracies depending on the nature of distortion (Fig. 1.11).
However, in all cases the splittings are such that if all d-orbitals have the same
number of electrons, then there is no net change of energy. For example, in a regular
octahedron there are three d-orbitals in a lower energy state, which is 2/5� below
the initial energy level, and two d-orbitals in a higher energy state, which is 3/5�
above the initial energy level, where � represents the magnitude of splitting between
the eg and t2g orbitals. Thus, if each d-orbital has one electron, then the net change
of energy is 3(–2/5�) + 2(3/5�) = 0. The magnitude of crystal-field splitting of
d-orbitals can be determined by optical absorption spectroscopy.

When the crystal- or ligand-field becomes strong, the magnitude of the d-orbital
splitting increases. Thus, if a mineral is compressed, then the value of � is expected
to increase. In the pure crystal field analysis of the problem, � ∞ R–5, where R
is the distance between a transition metal ion and the surrounding anion. When

struction of molecular orbitals as linear combination of the atomic orbitals.Relatively simple but
authoritative discussion of these theories can be found in Orgel (1966). All theories make use of
the symmetry properties of the polyhedron surrounding a cation.
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Fig. 1.11 Removal of the degeneracies of the eg and t2 g orbitals by the ditortion of regular octahe-
dral and cubic sites. (a): regular octahedron; (b): trigonally distorted octahedron; (c): tetrahedrally
elongated octahedron; (d): distorted 6-coordinated site as in the M1 and M2 sites of pyroxene and
olivine; (e): regular cube; (f): distorted cube (e.g. dodecahedal site of garnet). From Burns (1985)

the magnitude of � exceeds a threshold value, the lowering of energy (stabilization
effect) achieved by having electrons with unpaired spins is overcompensated by
the increase of energy (destabilization effect) due to electron occupancies of the
higher energy orbitals, after each lower energy orbitals have acquired an unpaired
electron. Under this condition, there would be spin pairing in the lower energy
orbitals. This type of transition from the high spin to low spin state of transition
metal ion is expected to take place in the high pressures of the Earth’s interior. Linn
et al. (2007) found Fe2+ in ferropericlase, (Fe,MgO), to undergo a gradual transition
from the high-spin to low-spin state over a P-T range corresponding to conditions
in the Earth’s lower mantle (1000 km or 38.6 GPa, 1900 K to 2200 km or 97.3 GPa,
2300 K).

1.8 Some Useful Physical Quantities and Units

There are different types of units for a given physical or chemical quantity that have
been used in the thermodynamics, and other branches of physical science. The units
recommended by IUPAC (International Union of Pure and Applied Chemistry) are
those of the International System of Units (Système International d’unités) or SI
units, which originated in France. It is founded on seven mutually independent base
units of seven base quantities, such as length (meter: m), mass (kilogram: kg), time
(seconds: s) etc., and derived units of quantities related to the base quantities. We
briefly review here some of the quantities and their units in the SI system that are
useful in thermodynamics, along with the conversions to other units that have also
been used from time to time.
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Momentum (M): Since it is a product of mass and velocity, in the SI system the
momentum has the unit of (kg)(m/s) or kg m s–1.

Force (F): Force is defined as the rate of change of momentum, d(M)/dt. Thus,
the unit of force in the SI unit is (kg m s–1)(s–1) or kg m s–2, which is known
as a Newton (N). In the non-relativistic domain, mass (m) is constant so that F =
m(dv/dt) = ma, where v is the velocity and a is acceleration.

Pressure: Pressure is force per unit area (A). Thus, the unit of pressure in
the SI system is N/m2 or kg-m–1s–2, which is known as the Pascal (Pa), and is
related to another commonly used pressure unit, namely bar, as 1 Pa = 10–5 bar
(1 atmosphere = 1.01325 bars). The gigapascal (GPa) that is now commonly used as
a pressure unit in the Earth Science literature is related to kilobar (kb), which is the
most frequently used pressure unit in the earlier literature, as 1 GPa = 10 kb (Giga :
109; kilo: 103).

Energy: Energy is given by the product of force and displacement. Thus, the SI
unit of energy is Nm (kg m2 s–2), which is the energy required to displace a mass
of 1 kg through a distance of 1 m. A Nm is known as Joule (J), which is related to
other energy units used in thermodynamics as follows.

1 thermochemical cal (cal) = 4.184 J
1 J = 10 cm3bar
= 1.602× 10–19 eV. (eV: electron volt).

Note that the product of cm3bar represents energy. This can be easily understood by
rewriting cm3bar as cm3(Force/A), since bar is a measure of pressure. Thus, cm3bar
has the dimension of force times the displacement, which is the dimension of energy.



Chapter 2
First and Second Laws

Die Energie der Welt ist konstant (The energy of the
Universe is constant) Die Entropie der Welt strebt
einem maximum zu (The entropy of the Universe
increases to a maximum)

Clausius (ca.1867)

The above statements by Rudolf Clausius (1822–1888) are cosmological expres-
sions of the first and second laws of thermodynamics that resulted from the failure
of engineering efforts to develop machines that could (a) create energy and (b) also
convert energy to work without any limitation.

The first law of thermodynamics, which is based on the works of James
Prescott Joule (1818–1889), Julius Robert von Mayer (1814–1878) and Herman
von Helmholtz (1821–1894) during the period 1842–1848, addresses the question
of energy change in a system interacting with the surrounding, but not subjected to
mass flow. One can look upon the total energy of a system as the sum of its external
and internal energies. The former results from the position and motion of the system
as a whole (potential and kinetic energies, respectively), whereas the latter is an
intrinsic property of the internal state of matter comprising the system. (In some
treatments, only the kinetic energy of the system is considered to be the external
energy, but in this section we will consider both kinetic and potential energies of the
system as its external energies.)

It was known in Mechanics, which preceded the development of Thermodynam-
ics, that in a purely mechanical system (i.e. a system not subjected to heating or
friction), the external energy is conserved. Thus, when an object is thrown upwards
in a gravitational field the sum of its potential and kinetic energies is conserved
at every stage of its motion. This conservation principle was first recognized by
Leibnitz in 1963 (Leibnitz is also a co-founder of the subject of calculus, along
with Sir Isaac Newton). Thermodynamics brings into this picture of conservation of
external energy in mechanics, the principle of conservation of internal energy of an
isolated system.

The first law of thermodynamics introduced the concept of the conversion of
one from energy to the other, specifically of work to heat and vice versa, and
ruled out the possibility of constructing a device, often referred to as the perpet-
ual motion machine of the first kind, which could create energy (without involving

J. Ganguly, Thermodynamics in Earth and Planetary Sciences, 19
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nuclear reaction). However, it did not impose any restriction on the efficiency of
transformation of one form of energy into another. The second law of thermody-
namics imposes definite limitation on the conversion of heat into work. There
is, however, no restriction on the conversion of work into heat. The second law
was developed almost simultaneously with the first law on the basis of the works
of William Thompson (also known as Lord Kelvin, 1824–1907), Rudolf Clausius
(1822–1888) and Sadi Carnot (1796–1832). It led to the introduction of a new prop-
erty, namely the entropy, which always increases with time in an isolated system as
a consequence of processes taking place within the system. This idea was in appar-
ent conflict with the dominant scientific idea of the time, the Newtonian or classical
mechanics. In the latter, the equations of motion are symmetrical with respect to
time, which implies that if a system evolves from one configuration S1 to another
configuration S2 with time, then it should also be possible for the system to return
to S1. The second law of thermodynamics was indeed one of the greatest scientific
revolutions, and as noted by Feynman (1963), it was rather unique in the sense that
it came through an engineering effort instead of a fundamental inquiry about the
nature of physical laws.

2.1 The First Law

If two stationary systems, which are in mutual contact, can exchange energy, then
the gain in the internal energy of one system must be compensated by the loss in the
internal energy of the other. Thus, the net change of internal energies of the two sys-
tems, which together constitute an isolated system, is zero. If the boundary between
the two systems is impermeable to mass transfer, then energy can be transferred
between the two systems only by means of (a) work done by one on the other, and
(b) heat transfer from one to the other.

With the above background, the first law of thermodynamics can be stated as fol-
lows. (a) The internal energy, U, of a system depends only on the state of the system,
and (b) the change in the internal energy of a closed system is the sum of the energies
absorbed by the system from its surrounding in the from of heat and work, i.e.

�U = Q + W− (2.1.1)

where �U is the difference between internal energies of the system in its terminal
and initial states, Q is the heat absorbed by the system from the surrounding and W–

is the work done by the surrounding on the system, which is the same as the work
absorbed by the system.1 �U has a positive value when the system gains energy

1Since, according to Einstein’s theory of relativity, internal energy can be created at the expense of
mass through nuclear reaction (according to the famous relation E = mc2, where c is the velocity
of light and m is the rest mass), Eq. (2.1.1) must be restricted to systems that are not subjected
to nuclear reaction. Alternatively, we can think of �U as the change of internal energy due to
absorption of heat and work and the change of energy due to a change of the rest mass, �mc2.
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and a negative value when it loses energy. At the outset note that it is the change in
internal energy rather than internal energy itself that is addressed by the first law.

The principle of conservation of energy is so deeply rooted in science that if it
seemed to fail, a search is made to find a new form of energy. Indeed, Wolfgang Pauli
(1900–1958) was led to propose the existence of an electrically neutral particle pos-
sessing little or no mass but a definite energy, in order to preserve the energy balance
in the nuclear reaction that is known as  decay, which obeyed the mass balance,
but not the energy balance. In this nuclear process, a neutron is transformed into a
proton, or vice versa, by emission of a - particle according to neutron → proton +
– -particle (electron) or proton → neutron + +-particle (positron). Wolfgang Pauli
in 1938 suggested that the “missing energy” that was required to preserve energy
conservation between the initial nucleus and the transformation products was carried
by a new particle that interacted extremely weakly with the other particles and thus
escaped detection. This particle is called neutrino, a name given by the great Italian
physicist Enrico Fermi (1901–1954), and which in Italian means very little neutral
body. (Confirmation of Pauli’s prediction of the existence of neutrino 25 years later
led to the Nobel prize in Physics to Frederick Reines and Clyde Cowan. Both Fermi
and Pauli also received Nobel prize in Physics for other contributions.)

Since U depends only on the state of the system, Eq. (2.1.1) implies that even
though the individual values of Q and W depend on the path along which the state
of a system has changed, the sum of Q and W is independent of the path, and
depends only on the initial and final states of the system. Thus, in a compact form,
the contents of the first law can be stated as follows.

∮
dU =

∮
(�q + �w−) = 0 (2.1.2)

where the symbol
∮

denotes line integral around a closed loop, beginning and
ending in the same state. If a system is contained within an adiabatic enclosure,
then (�U) = W−, in which case the amount of work done on (or performed by) the
system is independent of the path. In other words, w becomes a state function, so
that �w(Q =0) becomes an exact differential (i.e. �w = dw). Thus the change in the
internal energy of a system between two states, which is a unique quantity, can be
measured by knowing the adiabatic work performed on the system to achieve the
same change of state. Without knowing or inquiring anything about the microscopic
nature of internal energy, we can give a thermodynamic and measurable definition
of the change of internal energy of a system when it moves from one state to another
as the work done on the system when the same change of state is brought about by
an adiabatic process.

Most often, we are concerned with P-V work (i.e. the work related to the change
of volume). As discussed earlier (Sect. 1.4), there are also various other forms of
work. Recalling that the differential form of all these “other” forms of reversible
work performed by the system have been denoted by ��, we have �w– (i.e the
differential of the total work done on a system) = –PdV + ��–, and consequently,
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dU = �q − PdV + ��− (2.1.3)

(When asked to state the first law, it is not very uncommon for a student to have
some confusion if the sign before PdV should be positive or negative. To avoid the
confusion, one should remember that when a system is compressed (that is dV is
negative), it gains energy. This is possible only if there is a negative sign before
PdV. Conversely, when a system expands (dV > 0), it performs work on the sur-
rounding and thus loses energy. Again this condition is satisfied with a negative
sign before PdV.)

The first law also establishes the mechanical equivalent of heat. It is evident
from Eq. (2.1.1) that the internal energy of a closed system can be changed, as
reflected by its change of temperature, without the intervention of work by simply
bringing it into contact with another system at a different temperature. Here the
mode of energy transfer is purely heat conduction. The amount of work that must be
performed on the same system adiabatically to achieve the same change of internal
energy or temperature constitutes the mechanical equivalent of heat. The amount of
heat necessary to raise the temperature of 1 gm of water by 1 K is arbitrarily defined
as a calorie. The same thermal effect on a gram of water can be achieved adiabat-
ically by performing on it 4.184 J of work. Thus 1 cal = 4.184 J. (Recall that joule
is the MKS unit of work resulting from the application of a force of one Newton
(kg-m/sec2) through a displacement of 1 m.)

2.2 Second Law: The Classic Statements

The second law can be stated in a variety of ways, all of which are, of course, equiv-
alent. The classic statements of the second law, which are due to William Thompson
(1824–1907), who is also known as Lord Kelvin, and Rudolf Clausius (1822–1888),
are as follows.

Kelvin Statement: A transformation whose only final result is to transform
into work heat extracted from a source which is at the same temperature
throughout is impossible.

Claussius Statement:A transformation whose only final result is to transfer
heat from a body at a given temperature to a body at a higher temperature is
impossible.
As such, these statements do not convey any impression of the revolutionary nature
of the second law. The latter emerges only through a careful analysis of either
statement that leads to the development of the concept of entropy and its property
of unidirectional change with respect to time for natural processes in an isolated
system.

Before going into entropy, let us first discuss the meaning of the Kelvin state-
ment. Consider an ideal gas in contact with a heat bath at a uniform temperature. The
resulting expansion of the gas would deliver work on the surrounding. Now an ideal
gas has the unique property that its internal energy depends only on its temperature.
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Consequently, for the isothermal expansion, �U = 0, so that Q = –W– =W+

(i.e. work done by the system), where Q =
∫
�q. Here heat absorbed from a source at

a uniform temperature is completely converted into work. However, this is not the
only final result. At the end of the process, the gas is left with a larger volume than
at the beginning. The Kelvin statement would have been violated if it were possible
to return the gas to its initial volume without the intervention of a heat sink. In order
to return the gas to its initial volume, some heat must be withdrawn from the gas
by bringing it into contact with a heat bath at a lower temperature. In this case, the
final result would consist of conversion of heat into work plus a definite amount of
dissipation or wastage of heat.

If it were not for the validity of the “Kelvin statement”, it would have been pos-
sible to construct a “perpetual motion machine”, often referred to as the perpetual
motion machine of the second kind, which will perform work endlessly by with-
drawing heat from its surrounding environment which is at uniform temperature and
has virtually inexhaustible amount of energy. Failure of all efforts to construct a per-
petual motion machine constitutes the experimental evidence in support of Kelvin’s
postulate.

The Classius statement says that heat by itself cannot flow from a lower to a
higher temperature. In a hot summer day, an air conditioner withdraws heat from
a house and dissipates it into the atmosphere. But there is no way we can make
the heat flow from a house to the surrounding atmosphere which is at a higher
temperature without paying money to the power company. The invalidity of the
Classius statement also implies invalidity of the Kelvin statement. Thus, if in the
above example of expansion of gas, the heat dissipated into the heat sink could have
returned by itself to the heat source, we would have had complete conversion of the
net heat withdrawn from the source into work. This would have been a violation of
the Kelvin statement. The problem of thermal pollution of environment (which is
treated as a heat sink) in the modern industrialized society is a direct consequence
of the second law of thermodynamics.

2.3 Carnot Cycle: Entropy and Absolute Temperature Scale

Once it was realized that there must be two heat baths at two different temperatures,
one acting as a heat source and the other as a heat sink, in order for a system to
perform work using a cyclic process, the French engineer Sadi Carnot (1796–1832)
set out to analyze the efficiency of conversion of heat to mechanical work in a cyclic
process that is commonly referred to as the Carnot cycle. We would first see how the
analysis of the properties of Carnot cycle led to the development of the concept of
entropy, discuss some ramifications and mineralogical applications of this concept,
and then discuss the limiting efficiency of conversion of heat to work that followed
from Carnot’s analysis.

The Carnot cycle consists of two isothermal and two adiabatic steps, as illus-
trated in Fig. 2.1, all four steps being sufficiently slow to be effectively reversible (it
can be shown that the magnitude of P-V slope of an adiabatic step must be greater
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Fig. 2.1 Schematic illustration of the Carnot cycle in the P-V space. The dotted and solid lines
indicate isothermal and adiabatic paths, respectively. The path A →B→C represents continuous
reversible expansion whereas the path C→D→A represents continuous reversible compression. In
the right panel, the shaded boxes represent heat baths. Heat is transferred into the material within
the cylinder only through the bottom

than that of an isothermal step involving the same body). The sequence of the steps
is as follows.

(a) An isothermal expansion of a gas from A to B by withdrawing an amount of
heat Q2 from a heat bath at an uniform temperature �2 defined by an empirical
temperature scale;

(b) further expansion from B to C under adiabatic condition as a result of which the
gas cools from �2 to a temperature �1 defined by the same empirical scale;

(c) isothermal compression from C to D by delivering an amount of heat Q1 to a
heat bath at temperature �1, with which the gas is now in contact; and finally

(d) further adiabatic compression until the gas reaches the initial temperature �2.

From a systematic treatment of the postulate of Kelvin, it can be shown (e.g.
Denbigh, 1981, pp. 27–29) that for a reversible cycle operating between two heat
baths, the ratio of the heat withdrawn to heat delivered by a body operating the
reversible cycle depends only on the temperature of the two heat baths, i.e. Q2/Q1 =
f(�2, �1). Furthermore, it is possible to define a temperature scale such that the func-
tional relation has the specific form Q2/Q1 = �2/�1 so that

Q2

�2
= Q1

�1
, (2.3.1)

This temperature scale is called the thermodynamic temperature scale. Stated in
words, the above equation says that it is possible to define a temperature scale such
that the ratio of heat withdrawn to the thermodynamic temperature of the heat bath
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equals the ratio of heat delivered to the thermodynamic temperature of the heat sink.
The ratio Q2/Q1 is independent of the property of the body that operates the Carnot
cycle.

The temperature scale that is used in thermodynamics is known as the Kelvin
temperature scale in which temperature is denoted by the symbol T. The name
is in recognition of the contribution of Lord Kelvin towards its development. The
temperature measured using the Kelvin scale not only satisfies Eq. (2.3.1) but has
the same step size for a degree as in the already established Celsius or centrigrade
scale. Specifically, the Kelvin and centigrade scales are related according to T =
t◦ C + 273.15, where t◦ C is the temperature measured in the centigrade scale. (A
numerical value of temperature, say 400◦, in the two scales is written as 400 K and
400◦ C.) The Kelvin scale was developed by assigning a temperature of 273.16 K
to the triple point of water at which liquid water, ice and vapor in the pure H2O
system are in thermodynamic equilibrium. This specific value for the triple point
was chosen to make the degree step size, which is the only arbitrary aspect of the
thermodynamic temperature scale, exactly the same as in the centigrade scale. (The
latter objective could have been achieved by assigning an appropriate temperature
to some other state of a substance, but the triple point of pure water was chosen
because of the relative ease with which it can be reproduced in the laboratory.)

Let us now evaluate the quantity
∮
�q/T for the Carnot cycle (cc), where

∮
�q is

the heat absorbed in the (reversible) cyclic process. We have

∮ (
�q

T

)
cc

=
B∫

A

�q

T2
+

D∫

c

�q

T1

= Q2

T2
− Q1

T1

(2.3.2)

(Note that Q1 is the heat given off by the system in the isothermal process C →D,
so that -Q1 is the heat absorbed by the system in the same process). But, according
to Eq. (2.3.1), the right hand quantity is zero, so that

∮ (
�q

T

)
cc

= 0 (2.3.3)

It can be shown that the above result holds for any reversible cyclic process and not
just for the special type of reversible cyclic process depicted by Carnot cycle, that
is consisting of two isothermal and two adiabatic steps (see, or example, Denbigh,
1981). Thus, in general

∮ (
�q

T

)
rev

= 0 (2.3.4)

This equation should be contrasted with the fact that, in general,
∮
�q 
= 0. Thus,

we find that in a reversible process, the inexact differential �q can be transformed
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into an exact differential by multiplication with an integrating factor 1/T. This
property of (�q/T)rev was first discovered by Claussius, who designated it by the
special symbol dS, where S was called the entropy of a system. Thus,

dS =
(
�q

T

)
rev

(2.3.5)

The above expression constitutes the thermodynamic definition of entropy.
Expressed in words, the entropy change associated with a change of state of a
system is given by the heat absorbed by the system divided by its temperature when
the same change of state is brought about reversibly. To appreciate this statement,
let us consider a schematic illustration, Fig. 2.2, which shows two states, A and B,
of the same system in the P-V space. The states can be connected by an isothermal
reversible path R, and multitude of irreversible paths, one of which is the path I.
Let us say that the heat absorbed by the system on moving from A to B along
the irreversible path I is QI, whereas that absorbed for the same change along the
reversible path R is QR. Now suppose that the system has changed from state A and
B along the path I. Equation (2.3.5) implies that the entropy change of the system
in this transformation is not equal to QI/T, but is given by QR/T. Regardless of how
the actual transformation is carried out from the state A to the state B, the entropy
change associated with that transformation is always QR/T.

An alternative approach to the development of the concept of entropy is that due
to the Greek mathematician Constantin Carathėodory (1873–1950), who demon-
strated mathematically, and without recourse to any hypothetical cyclic process, the
existence of an integrating factor that can convert the inexact differential �q to an
exact or perfect differential. (For an exposition of Carathėodory’s work in English
language, see Margenau and Murphy, 1955, and Chandrashekhar, 1957).

I

B

QI

QRR
A

P

V

Fig. 2.2 Schematic illustration of two paths, R and I, joining two states of a system, A and B,
in the P-V plane at isothermal condition. QR and QI are the heat absorbed by the system for the
change of state along the paths R and I, respectively. The path R is assumed to be reversible, and I
is assumed to be irreversible
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2.4 Entropy: Direction of Natural Processes and Equilibrium

We now explore the role played by the state function entropy in (a) establishing for-
mal criterion for the direction of spontaneous or natural processes, and (b) defining
the state of thermodynamic equilibrium. For this purpose, we accept a well known
result that for a general cyclic process in a closed system

∮
�q

T
≤ 0, (2.4.1)

The equality holding only when the process is reversible (see Denbigh, 1993 or
Fermi, 1956 for proof).

Referring to Fig. 2.2, let us now consider a cyclic process in which the state of
a system has changed isothermally from A → B along the irreversible path I, and
returned to the state A isothermally along the reversible path R. Now the overall
cyclic process is irreversible since a part of it is rreversible. Consequently, we have,
according to Eq. (2.4.1)

∮
�q

T
=

B∫

A

(
�q

T

)
I

+
A∫

B

(
�q

T

)
R

< 0 (2.4.2)

By definition, the last integral equals (SA–SB) Eq. (2.3.5). Thus,

B∫

A

(
�q

T

)
I

+ (SA − SB) < 0 (2.4.3)

or

B∫

A

(
�q

T

)
I

− (SB − SA) < 0, (2.4.4)

and, consequently,

SB − SA >

B∫

A

�q

T
(2.4.5)

Combining Eqs. (2.3.5) and (2.4.6), we can now write the following general expres-
sion for any arbitrary process in a closed macroscopic system:

dS ≥ �q

T
, (2.4.6)
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where the equality holds only when the process is reversible (i.e. when equilibrium
is achieved). This is the commonly used statement of the second law, and con-
stitutes one of the most revolutionary expressions in the history of science, as we
would appreciate by exploring its implications.

If the closed system under consideration is in an adiabatic enclosure, then �q = 0.
Thus, for a system that is closed with respect to both mass and heat transfer (that is
an adiabatically closed system), dS ≥ 0. Now, recall that an isolated system does not
exchange either energy (in the form of work and heat) or mass with the surrounding.
Thus, we can state that

(dS)isolated ≥ 0 (2.4.7)

or
(

dS

dt

)
isolated

≥ 0 (2.4.8)

that is, in an isolated macroscopic system, entropy can never decrease; it either
increases due to irreversible processes within the system, or stay the same when
equilibrium is achieved. (However, note that for the entropy of a system to increase,
it is only necessary for it to be adiabatically closed instead of being isolated, which
is more restrictive, since the transfer of energy in the form of reversible work does
not affect the entropy of a system.)

The entropy of a system can decrease if heat is withdrawn from it and deliv-
ered to another system. But the entropy of the two systems together, which con-
stitute an isolated system, must either increase or remain the same. Extending this
approach to its extreme, we can view the Universe as the ultimate isolated system.
Thus the entropy of the Universe must always increase due to the spontaneous
processes taking place inside it. The famous astrophysicist, Sir Arthur Eddington
(1882–1944), thus, called entropy as the arrow of time: the future is the direction of
increasing entropy of the Universe. Given two snapshots of a macroscopic system,
entropy provides us with the only non-subjective criterion by which one can tell
which of the two represents the later stage in the time evolution of the system.

Equation (2.4.6) may be recast as

dS = �q

T
+ (dS)int

= (dS)ext + (dS)int

= (dS)ext + �, (dS)int = � ≥ 0

(2.4.9)

where the first and second terms on the right indicate, respectively, the entropy
change of the system due to heat exchange with the surrounding (�q: heat absorbed
from the surrounding; (dS)ext: entropy absorbed from the external environment)
and the entropy created by irreversible processes within the system. Examples of
irreversible processes contributing to the internal entropy production, (dS)int, are
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chemical reactions, heat and chemical diffusions, viscous dissipation. The ramifi-
cations of entropy production in irreversible processes constitute the field of Irre-
versible Thermodynamics, some aspects of which are discussed in Appendix A.

Problem 2.1 Show that Eq. (2.4.7) is equivalent to the statement (dS)U,V ≥ 0 for
a closed system.

Problem 2.2 The internal energy, U, of an ideal gas depends only on its temper-
ature. Now consider the adiabatic expansion of 10 mol of an ideal gas without any
resistance against the expansion. The initial P-T condition is 15 bars, 500 K, and the
final pressure is 1 bar. Calculate �T, �V, �U, Q and W+ (i.e. work done by the gas
on the surrounding).

2.5 Microscopic Interpretation of Entropy: Boltzmann Relation

The second law of thermodynamics introduced a new description of natural pro-
cesses. That is, (a) successive states attained by spontaneous processes in an isolated
and macroscopic system are characterized by progressively increasing values of a
quantity known as entropy, and (b) regardless of its initial state, the final goal of
an isolated system is unique, being defined by its state of maximum entropy. This
independence of the final state of a macroscopic system on its initial condition,
and the idea of existence of a system property that cannot be reversed or repeated
during a natural process in an isolated system were completely foreign to the spirit
of the contemporary science. A microscopic or fundamental picture was, therefore,
needed for the property of entropy to understand what it is physically that must
always increase during a spontaneous process in an isolated system.

In the late nineteenth century, the Austrian Physicist, Ludwig Boltzmann (1844–
1906) took this giant step, and developed the relationship between the entropy of a
macroscopic system and its microscopic states (and, thus, in effect, anticipated the
existence of atoms). His work led to a proper appreciation of the physical nature
and the domain of validity of the second law of thermodynamics. Boltzman showed
that every macroscopic state, �, of a system is associated with a certain number of
microscopic states, �(�), and that the entropy of the given macroscopic state, S(�),
is proportional to ln�(�). Subsequently, Planck (1858–1947; Nobel Prize: 1918),
who was one of the founders of quantum mechanics, modified the Boltzmann rela-
tion to the following form

S(�) = kB ln�(�) (2.5.1)

where kB is known as the Boltzman constant (kB = 1.381 × 10–23 J K–1). Thus the
above equation is sometimes referred to as the Boltzmann-Planck relation, but more
commonly simply as the Boltzmann relation.
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Fig. 2.3 Illustration of microscopic states associated with a given macroscopic state. The two right
panels show two of the 36 possible configurations (microscopic states) that are possible for the
single macroscopic state of one ball in the “wrong” position

To understand the meaning of the above equation, let us consider two boxes,
one consisting of six black balls and the other of six white balls, each sitting in a
cavity within a box (Fig. 2.3). All balls and cavities are of equal size and balls of a
given color are indistinguishable among themselves. The boxes are now brought into
physical contact, placed on a vibrator, and the barrier between the boxes is removed.
Let us now imagine that the boxes are covered so that the balls are not visible to the
naked eye, but we have some way of knowing if a ball has moved into the “wrong”
box as a result of the vibration. That is we can say, if there is one black ball to
the right (hence, one white ball to the left), or two black balls to the right (hence,
two white balls to the left), and so on, but we have no way of knowing exactly
which of the available cavities in a given box are occupied by the white or black
balls. The state of a box with a certain number of “wrong balls” is its macroscopic
state, whereas a state with a specific arrangement of the balls within the cavities
constitutes a microscopic state. If all balls can move and occupy the cavities with
equal ease (which means that all microscopic states are equally accessible), then for
the state of one white ball to the right, and correspondingly, one black ball to the left,
there are 36 possible positions of the balls within the two boxes. In other words, for
the macroscopic state of one white ball and one black ball in the “wrong” positions,
there are 36 microscopic configurations. According to Eq. (2.5.1), the entropy of
this macroscopic state is S(one wrong pair) = kBln(36). If there are two white balls
to the left and two black balls to the right, then the number of microscopic states in
each box is 15, and hence the total number of microscopic states is 15 × 15 = 225,
so that S(two wrong pairs) = kBln(225).

A simple way to calculate the number of distinguishable configurations within a
given box, when all configurations corresponding to a given macroscopic state, �,
are equally probable is given by the combinatorial formula

�1(χ ) = N!

n!(N − n)!
, (2.5.2)
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where N is the total number of sites and n is the number of wrong balls within
the particular box (note that rearrangement of balls of the same type does not
lead to configurations that are distinguishable). The total number of distinguish-
able configurations, �(�), for the two boxes is given by �(�) = �1(�)�2(�).
The above relation yields the number of configurations for random distribution
over the microscopic states since all configurations are assumed to be equally
probable.

We can say that the larger the number of microscopic configurations accessible
to a macroscopic state of a system, the larger is the degree of microscopic disorder
of that particular state of the system. Thus, the Boltzman interpretation of entropy
has led to the popular statement that the entropy of a state of a system is a mea-
sure of the degree of disorder of that state. Higher the disorder, the larger is the
entropy. It should, however, be emphasized that this connection between entropy
and order is strictly valid for an isolated system. A system that is not isolated may
develop ordered structures without necessarily decreasing its entropy. For further
discussion of this interesting topic, the reader is referred to Nicolis and Prigogine
(1989).

Using Eq. (2.5.2), one finds that there are 924 total microscopic configurations
corresponding to all possible macroscopic states (1(W)-l: 36 states; 2(W)-l: 225
states, and so on, where 1(W)-l means 1 wrong ball in the left box, and so on). If all
microscopic states are equally accessible, then the probability of finding a random
distribution of the balls (three white and three black balls in each box,� = 400) after
the boxes have been vibrated for a sufficiently long time, is 400/924 = 0.43, that of
finding of 2 (or 4) balls in the wrong position within each box is 225/924 = 0.24, that
of finding 1 (or 5) ball(s) in the wrong position in each box is 36/924 = 0.04, and
that of finding 6 balls in the wrong (or right) positions in each box is 1/924 = 0.001.
Thus, we are much more likely to find the system of two boxes of balls to be in a
state of random distribution than in any other state after the balls have been allowed
to move around for a sufficiently long period of time. After the random distribution
is achieved, the system will time to time reverse back to the states of lower entropies
in proportion to the probabilities of the states. Thus, the statement of second of law
that the entropy of an isolated system is maximum when equilibrium is achieved is
valid in a statistical sense. Also the progression of entropy towards the maximum
value (corresponding to the random distribution) is not completely monotonic. The
entropy fluctuates with time, and it is the entropy of the system averaged over
a certain period of time that increases with time, as illustrated in Fig. 2.4. Larger
the size of the system, smaller is the time scale over which we need to consider the
average entropy value that must increase with time, and lower is the probability of
the system of returning to its initial state. Thus, for a macroscopic system under
macroscopic scale of observation, the entropy increases with time if it is isolated
from the surrounding.

Figure 2.5, which is modified from Reif (1967), shows a computer simulation
of entropy fluctuations as a function of time. There are 40 particles in a box, and
at the beginning of the simulations, there were 21 particles in the left-half and 19
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Fig 2.4 Change of entropy of an isolated system with time: (a) fluctuations of entropy at the
microscopic level; (b) progressive increase of the average value over a certain period, such as
shown by the box in (a), towards a maximum value

in the right-half, as illustrated in the left panel. Each particle was given an initial
position and velocity, and it is assumed that a collision between any pair of par-
ticles do not lead to any loss of kinetic energy and momentum (this is known as
elastic collision). The particle positions were tracked at periodic intervals so that
the elapsed time is given by t = �j, where j is a frame index of the sequential snap
shots (1, 2, 3...) and � is the time between two successive frames. The right panel
shows the number of particles in the left-half as function of j,which is a proxy for
time. The average number of particles in the left half of the box for 30 frames is
20, which is the expected value for maximum entropy corresponding to the most
disordered state, but there are obviously fluctuations around this value in several
frames.

Fig. 2.5 Computer simulation of particle distribution as a function of time. The initial distribution
is shown in the left, with 21 particles in the left side and 19 particles in the right side of a box.
All collisions were assumed to be elastic, and the initial positions and velocities of the particles
were specified. The time evolution of the number of particles in the left half of the box is shown
in the right panel. The elapsed time t = �j, where j is a frame index and � is the time between two
successive frames. Modified from Reif (1967)
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2.5.1 Summary of the Important Relations in the First
and Second Laws

The important relations according to, and related to, the first and second laws are
summarized in the box below, in which the expressions of dU and dS apply to sys-
tems with fixed masses of all chemical components:

dU = �q + �w− (�w− : work done on the system)

dS = �qrev

T
(�q : heat absorbed by the system)

dS = �q

T
+ σ ; σ (Internal entropy production) ≥ 0

S(χ ) = kB ln�(χ ); �(χ ) : number of microscopic states

related to the macroscopic state χ

Box (2.5.1)

2.6 Entropy and Disorder: Mineralogical Applications

There are various sources of microscopic disorder in a substance that contribute to
its entropy. In a crystalline substance, the two most important sources of micro-
scopic disorders are those due to the existence of multitude of configurational and
vibrational states that are consistent, respectively, with the composition and energy
of the crystal, as discussed below. We would first discuss the configurational disor-
der, which is easier to understand, and the associated entropy, which is commonly
referred to as configurational entropy.

2.6.1 Configurational Entropy

2.6.1.1 Random Atomic Distribution: Complete Disorder

Consider, for example, a solid of solution of olivine (MgX, Fe1-X)2SiO4, in which
Mg and Fe occupy the octahedral lattice sites. There are two types of geometrically
distinct types of octahedral sites or sublattices in olivine, known as M1 and M2
sites, which are present in equal number in a mole of a crystal. However, at tem-
peratures of common geological interests, these sites are not distinguished by Mg2+

and Fe2+ ions in that there is equal population of either type of atoms in both sites
(i.e. xFe(M1) = xFe(M2) and xMg(M1) = xMg(M2), where xi stands for the atomic
fraction of i in the specified site.). Thus, we can say, at least for the purpose of
calculation of configurational entropy of olivine, that effectively there is just one
type of site over which Fe2+ and Mg2+ ions are distributed in olivine as long as the
above condition is valid. Now, for a given composition of olivine, the Mg and Fe2+
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ions (we will henceforth drop the superscript 2+) can be distributed in a variety of
ways over these octahedral sites without changing their fractional amounts (just as
in the example of multiple arrangements of black and white balls within a box for
any specification of the content of a box).

In order to calculate the configurational entropy of a ferromagnesian olivine of
specified composition, X (e.g. atomic fraction of Mg, or XMg ≡ X = 0.2), we need to
evaluate the number of microscopic configurations associated with this composition,
and then apply the Boltzmann relation, Eq. (2.5.1). Assuming, for simplicity, that
the distribution of Fe and Mg are random over the available octahedral sites, we
can apply Eq. (2.5.2) to calculate �(X). However, since we are dealing with very
large number atoms (of the order of 1023 that are present in molar quantities), the
factorial terms in Eq. (2.5.2.) become very cumbersome in their standard forms, but
can be easily evaluated by using what is known as Sterling’s approximation for the
factorial of large numbers,

ln N! = N ln N − N (2.6.1)

Now let nMg stand for the number of Mg atoms and nFe for the number of Fe atoms
and N for the total number of atoms so that N = nMg + nFe. We can then write

ln�(X)conf(r) = ln N! − ln(nMg)! − ln(nFe)!

= [N ln N − N] − [nMg ln(nMg) − nMg] − [nFe ln(nFe) − nFe]
(2.6.2)

where �(X)conf(r) means the number of (distinguishable) geometric configurations
for random distribution of atoms corresponding to a specific bulk composition, X.
Substituting N for (nFe + nMg), we obtain

ln �(X)conf(r) = (nFe + nMg) ln N − nMg ln nMg − nFe ln nFe

= −nFe ln
(nFe

N

)
− nMg ln

(nMg

N

)

= −nFe ln XFe − nMg ln XMg

(2.6.3)

Expressing ni in the above equation as N(ni/N) = NXi, we now have

ln �(X)conf(r) = −N(XFe ln XFe + XMg ln XMg) (2.6.4)

Now for a mole of olivine crystal, (MgXFe1-X)2SiO4, the number (N) of Fe plus
Mg is 2L, where L is the Avogadro’s number. Thus, substituting Eq. (2.6.4) into the
Boltzmann relation, Eq. (2.5.1), we have

S(X)Conf(r) = −kB(2L)(XMg ln XMg + XFe ln XFe)

Noting that kBL = R, where R is the gas constant, we finally obtain

S(X)conf(r) = −2R(XMg ln XMg + XFe ln XFe) (2.6.5)
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per mole of olivine with formula unit written as (Mg,Fe)2SiO4. For the general case
of random mixing of several types of atoms or ions within a particular type of
crystallographic site or sublattice, the above relation can be generalized as

S(X)conf(r) = −
R
∑

i

Xi ln Xi (2.6.6)

where ν is the total number of moles of all mixing units that are distributed ran-
domly over the available crystallographic sites. Note that the total number of moles
of mixing units equals the number of moles of the available sites in a crystal since all
sites are effectively filled. The qualification “effectively” is due to the fact that there
are always some equilibrium vacancies within a crystallographic site. A specific
type of vacancy may be treated as a component and included in the above equation.
But since the mole fraction of vacancy is very small, of the order of 10–4 or less, the
vacancy terms make negligible contribution to the configurational entropy, and are
thus usually dropped.

2.6.1.2 Ordering with Random Atomic Distribution Within Each Sublattice

If the distribution of Fe and Mg are not uniform between the two sublattices in
olivine, i.e. xi

M1 
= xi
M2 where xi is the atomic fraction of i in the specified site, then

we need to distinguish the two types of sites for the purpose of the calculation of
configurational entropy. In this case, since �T = �M1�M2, we have

Sconf(r) = k ln�T = k(ln�M1 + ln�M2)

= Sconf(r)(M1) + Sconf(r)(M2)
(2.6.7)

where the last two terms stand for the configurational entropies in the specific sites.
Note here the additive property of entropy. The total configurational entropy of
the system is the sum of the configurational entropies of the subsystems. Combing
the last two equations

Sconf(r) = −R
(

M1

∑
xi

M1 ln xi
M1

)
− R

(

M2

∑
xi

M2 ln xi
M2

)
(2.6.8)

where νM1 and νM2 are the number of moles of M1 and M2 sites per mole of olivine
formula, as written. Note that in a mole of olivine crystal written as (Mg,Fe)2SiO4,
there are one mole of M1 and one mole of M2 sites, so that νM1 =νM2 =1 per
mole of (Mg,Fe)2SiO4, and also since M1 and M2 are present in equal proportion,
XFe(total) = 1/2[ xFe

M2 + xFe
M1].

In general, then, we have, for random of mixing of atoms in a multisite solid
solution

Scon(r) = −R
[
νs(1)

∑
xi

s(1) ln xi
s(1)+νs(2)

∑
xi

s(2) ln xi
s(2) + ........

]
(2.6.9)
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where νS(i) is the number of moles of s(i) sublattice per mole of a crystal over which
the mixing units are distributed, it being assumed that the distribution within (not
between) each type of site is random.

2.6.1.3 Solved Problem: Change of Configurational Entropy Due to Random
Mixing of Gases

Consider that a mole of an inert gas such as Ar (atomic No. 18) is separated within
a box from three moles of another inert gas such as Xe (atomic No. 54) by an
impermeable partition, with Ar in the left compartment (L) and Xe in the right com-
partment (R). Now the partition is replaced by one that permits the transport of both
gas atoms, which eventually leads to a random distribution of the two gases within
the box, without changing the total number of moles of gas in each compartment.
What is the change of entropy of the system?

According to Boltzmann relation Eq. (2.5.1), S(initial) = 0 since � = 1. The
entropy of the system after the replacement of the partition and attainment of random
distribution within the box may be calculated in two different but equivalent ways:
(a) we can calculate the configurational entropies of each compartment separately,
and then add these to obtain the total configurational entropy of the box, or (b) we
can treat the box as not having any compartment since both compartments become
equivalent after attainment of random distribution of the two gases within the box.

For the entire system, we have XAr = 0.25 and XXe = 0.75. Thus, after random
distribution is achieved, XAr(L) = XAr(R) = 0.25 and XXe(L) = XXe(R) = 0.75.

Now using the approach (a):

Sconf(r) = [Sconf(r)(L)] + [Sconf(r)(R)]

= −R[0.25 ln(0.25) + 0.75 ln(0.75)] − 3R[0.25 ln(0.25) + 0.75 ln(0.75)]

= −4R[0.25 ln(0.25) + 0.75 ln(0.75)]

= 9.351 Joules/K

Alternatively, using the approach (b), we obtain directly:

S(random) = −4R[0.25 ln(0.25) + 0.75 ln(0.75)]

since there are four moles of gas in the system. Thus, the change of entropy, �S =
Sconf(r) – S(initial), is given by �S = 9.351 – 0 = 9.351 J/K. The change of entropy
due to mixing, as in the above example, is known as the entropy of mixing, and is
commonly denoted as �S(mix) (note that the mixing need not be random).

Instead of Ar and Xe, if the two gases were two isotopes of a gas, for example,
16O and 18O, the entropy of mixing is still the same. The entropy of mixing does
not depend on the extent of difference in the properties of the mixing units,
as long as the mixing units are not identical. For mixing of identical particles or
chemical species, �S(mix) = 0 since rearrangements of different atoms of the same
type do not lead to different arrangements that are distinguishable.
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Problem 2.3 The mineral albite, NaAlSi3O8, has four non-equivalent tetrahedral
sites that are occupied by Al and Si. These sites are labelled as T1(O), T1(m), T2(O)
and T2(m). At low temperature (<650◦C), albite has an ordered distribution of Al
and Si in that Al substitutes preferentially in the T1(O) site, whereas Si substitutes
preferentially in the other tetrahedral sites (this structural form of albite is called
low-albite). On the other hand, at higher temperature, the distribution of Al and
Si tend to become random. Assuming that the Al & Si distribution in “low albite”
is completely ordered and that in “high albite” is completely random (i.e. equal
occupancy of Al and Si in all T sites), calculate the �Sconf(r) when “low albite”
transforms to “high albite”.

2.6.1.4 Constrained Random Atomic Distribution Within a Sublattice

If the distribution within a sublattice is not random, then �S(i) has to be calculated
taking into account the restriction on the distribution of atoms. A problem of the
latter type is encountered in connection with the distribution of Al and Si over the
tetrahedral sites of a crystal because the distribution should avoid an energetically
unfavorable configuration Al-O-Al (known as the “aluminum avoidance principle”)
that will be sometimes encountered if the distribution of Al and Si are completely
random (Loewenstein, 1954). As an example, let us consider the configurational
entropy of an orthopyroxene solid solution in the system MgSiO3-Al2O3. Here the
charge balanced substitution is (MgSi)6+ ⇔ (2Al)6+, with Mg occupying two non-
equivalent crystallographic sites, M1 and M2, and Si occupying two non-equivalent
tetrahedral sites, A and B. Al enters both M1 and M2 octahedral sites, but only the
B tetrahedral site.

The distribution of Al and Si in each M site may be assumed to be random,
in which case the configurational entropy arising from the mixing of Mg and Al
within the M1 and M2 sites is given by Eq. (2.6.6). However, the calculation of
Sconf due to the mixing of Al and Si in the tetrahedral B site needs to account for
the effect of exclusion of Al-O-Al linkage. That is, we need to calculate Sconf in
the tetrahedral B site for random mixing of Al and Si, but with the constraint that
Al-O-Al linkages are avoided in the pyroxene structure which consists of a single
tetrahedral chain. This problem was first addressed by Ganguly and Ghose (1979)
who deduced that the total number of sites that are available to the interchange of
Al and Si in the pyroxene structure, subject to the “aluminum avoidance principle”,
is (NB – AlB + 1), where NB is the total number of B sites and AlB is the total
number of Al within the B sites. Thus, according to Eq. (2.5.2)

�B
conf(Al − avoid) =

(
NB − AlB + 1

)
!

AlB!(NB − 2AlB + 1)!
(2.6.10)

Now let the total number of B sites be � times the number of the Al atoms in the site,
so that N = �AlB. Using Sterling’s approximation for the factorial of large numbers
(Eq. (2.6.1)), we then obtain
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SB
conf(Al − avoid) = kB ln�B

conf(Al − avoid)

= kBAlB{(�− 1) ln[AlB(�− 1) + 1] − ln[AlB(�− 2) + 1]}
+ kB{ln[AlB(�− 1) + 1] − ln[AlB(�− 2) + 1]}

(2.6.11)

Now the fraction of Al in the B site, xAl
B, is AlB/NB. Thus, kB(AlB) = kB(NBxAl

B)
so that, if NB equals the Avogadro’s number (i.e. if there is one mole of B site), then
kB(AlB) = RxAl

B. Also since AlB is very large, we can easily drop the term +1 within
the square brackets of the above equation. Thus,

SB
conf(Al − avoid) = RxB

Al[(�− 1) ln(�− 1) − (�− 2) ln(�− 2)] (2.6.12)

Note that by definition � = 1/xAl
B. The Sconf and molar entropy of orthopyroxene

solid solution, as calculated by Ganguly and Ghose (1979) from the site occupancy
data of Al, Mg and Si, are shown in Fig. 2.6, in which the results of calculations
for completely random mixing in the M1, M2 and B sites are compared with those
that consider conditional random mixing in the B site, as expressed by the above
equation..

2.6.2 Vibrational Entropy

As discussed in Sect. 1.6, a crystal may be viewed as a collection of atomic oscil-
lators with quantized vibrational energy levels. For a given energy of a crystal, the
oscillators can be distributed in a number of ways over the vibrational energy levels.
As an example, let us consider a collection of 7 oscillators (a, b, c, d, e, f and g),
each with a frequency of ν, and 3 vibrational energy levels (E1, E2 and E3) with the
following distribution of the oscillators: 2 in level E1, 3 in level E2 and 2 in level
E3. Three examples of such distribution are illustrated in Fig. 2.7. The number of
possible arrangements of the oscillators for a specific distribution is given by

�vib = N!

n1!n2!n3!
, (2.6.13)

where N is the total number of oscillators, and ni is the number of oscillators in the
energy level Ei. Thus, for the above distribution of oscillators, there are 210 possible
arrangements or configurations (7!/(2!3!2!)). However, the total number of possible
arrangements of the oscillators that we have calculated above is without any restric-
tion on the energy of the crystal. In practice, each arrangement of the oscillators
must be such that the total energy of the crystal is conserved. The most probable
distribution of oscillators over the quantized vibrational energy levels is the one that
maximizes the function �vib subject to the energy conservation constraint (recall
that the energy of each oscillator is given by (n + 1/2)hν – see Eq. (1.6.2)). Just as the
configurational entropy is the result of multitude of possible distribution of atoms
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X(Al2O3)

X(Py: Opx)

Random 

Al-avoidance

T = 1300 K 
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Fig. 2.6 Configurational entropy of aluminous orthopyroxene solid solution, in which Al substi-
tutes in both octahedral and tetrahedral B sites according to VI(Mg)IV(Si) ↔ VI(Al)IV(Al). The
distribution of Mg and Al in the octahedral sites is assumed to be completely random whereas that
of Si and Al in the tetrahedral B sites is assumed to be either completely random or random but
subject to the Al-avoidance principle. X(Py:Ppx) is the mole fraction of an aluminous end-member
component, Mg3Al2Si3O12, in orthopyroxene that is treated as a solid solution of this component
with Mg4Si4O12. From Ganguly and Ghose (1979)

a,b a,c 

f,g f,g 

b,d.e c,d,e

f,e

c,d,g 

a,cE3

E2

E1

Fig. 2.7 Some examples of the distribution of seven oscillators over three energy levels, E1, E2,
E3, such that there are two oscillators in E1, three in E2 and two in E3
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over the available lattice sites subject to the conservation of the bulk composition of
a crystal, as discussed above, the vibrational entropy is the result of the multitude
of arrangements of the atomic oscillators over the quantized vibrational energy lev-
els subject to the constraint of energy conservation. The method of calculation of
vibrational entropy is dealt with in statistical mechanics.

2.6.3 Configurational vs. Vibrational Entropy

The requirement that the entropy or the overall state of disorder of a solid must
increase with increasing temperature commonly leads to progressive disordering
or randomization of the distribution of atoms among the non-equivalent crystal-
lographic sites in a solid, such as noted in the Problem 2.1 for the temperature
dependence of the distribution of Al and Si among the tetrahedral sites of albite,
NaAlSi3O8. Another example is orthopyroxene, (Fe,Mg)SiO3, in which Fe and Mg
occupy two types of octahedral or six coordinated sites, M1 and M2, with a pref-
erence of Fe for the M2 site and that of Mg for the M1 site. The site preferences
decrease with increasing temperature, that is the distribution of Fe and Mg between
the two types of sites progressively approach the state of random distribution,
although complete random distribution is never achieved (the temperature needed
to achieve the state of random distribution lies beyond the melting temperature of
orthopyroxene).

An interesting exception to the common trend of progressive configurational dis-
ordering with increasing temperature is found in the temperature dependence of the
state of Fe-Mg ordering between the M1 and M2 sites of olivine. The experimental
data, as determined by Redfern et al. (2000), is illustrated in Fig. 2.8. Here KD is a
distribution coefficient that is defined as

KD = (Fe/Mg)M1

(Fe/Mg)M2
(2.6.14)

For completely random distribution of Fe and Mg, KD = 1. Below ∼ 600◦C, Fe has
a slight preference for the M1 site (with a complementary preference of Mg for the
M2 site since the sum of atomic fractions of the two cations in either type of site
is unity). With increasing temperature, the site preference of Fe for M1 progres-
sively decreases leading to random distribution at ∼ 600

◦
C. The state of random

distribution is, however, followed by a preference of Fe for the M2 site at higher
temperature. At ∼ 1200

◦
C, the M2 sublattice becomes saturated by Fe. In other

words, between 600 and 1200
◦
C, Fe-Mg distribution in olivine becomes progres-

sively ordered with Fe preferentially substituting in the M2 and Mg preferentially
substituting in the M1 sites.

Since the overall state of disorder of a crystal must increase with increasing
temperature, the obvious explanation of the increase of Fe-Mg ordering in olivine
above 600◦C probably lies, as discussed by Rinaldi et al. (2000) and Redfern
et al. (2000),in the compensating effect of the increase of vibrational disorder with
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Fig. 2.8 Temperature dependence of the Fe-Mg distribution coefficient, KD, between the M1 and
M2 sites of olivine, (Fe,Mg)M1(Fe,Mg)M2SiO4. KD is defined as the (Fe/Mg)M1/(Fe/Mg)M2 ratio.
Below ∼ 600◦C, Fe has a slight preference for the M1 site and Mg for the M2 site. With increasing
temperature, the site preference of Fe for M1 progressively decreases leading to random distribu-
tion (KD = 1) at ∼ 600◦C, and increasing preference of Fe for the M2 site at higher temperature
approaching an M2 saturation value at ∼ 1200◦C. From Redfern et al. (2000)

increasing temperature such that there is a net increase of the overall state of disor-
dering of the crystal with increasing temperature. Presumably, the configurational
and vibrational disorderings are interlinked such that an increase of configurational
ordering is necessary to achieve a net increase in the state of disordering of the
crystal above ∼ 600◦C. (An alternative explanation for the observed trend of Fe-Mg
order-disorder in olivine has, however, been recently offered by Kroll et al., 2006).

As another example of the role of vibrational entropy in increasing the overall
disorder even when there is a decrease of configurational disorder, consider the
phenomenon of spontaneous crystallization of supercooled water, as discussed by
Denbigh (1993). A supercooled water is metastable, and would eventually
crystallize to ice. Since ice has a more ordered arrangement of H2O molecules
than water, there is a decrease of configurational entropy. Thus, it may seem that
a spontaneous natural process in an isolated system has led to a decrease of entropy,
in contradiction to the second law (this is sometimes referred to as the Bridgman
paradox, after the Nobel prize winning physicist Percy Bridgman (1882–1961) who
first posed this problem, presumably to test the understanding of the second law).
However, it is not so. There is a more than compensating gain in the vibrational
entropy in the transformation from water to ice as the latter has much larger number
of vibrational energy levels over which the vibrational modes can be disordered
without changing the total energy of the ice.
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Boltzmann’s Struggle & (Posthumous) Triumph Box (2.6.1)
The description of the equilibrium state of an isolated system as a state of max-
imum disorder of its microscopic entities was due to what is known as Boltz-
mann’s H-theorem. According to this theorem, which Boltzmann proposed
in 1872, the elementary entities of a gas will fill a confined space after it is
released from one corner, and stay in that state indefinitely. The theorem faced
challenge from leading contemporary scientists mainly for two reasons: (a) it
appealed to atoms, the existence of which was not proved during Boltzmann’s
time (and which many thought to be merely the product of “overactive imag-
ination” rather than real physical entities), and (b) it was in apparent conflict
with Newtonian mechanics, which predicts time reversibility in the evolution
of a system, that is if a state A evolves to a state B, then with the progress
of time the reverse must also be possible. In deriving the H-theorem, Boltz-
mann also made a questionable assumption that the atoms comprising a gas
are at all times distributed independently of one another, which implies no
interaction among them, and his approach was statistical in nature describing
the behavior of the average property of the gas particles. Bolltzmann’s the-
orem faced strong challenge from another contemporary Austrian Physicist,
Josef Loschmidt, but the strongest challenge seems to have been posed by the
work of the famous French mathematician, Henri Poincaré (1854–1912). In a
work that is known as the recurrence theorem, Poincaré proved that a group
of three particles moving in a confined space and obeying Newton’s laws of
motion would repeatedly return very close to their initial configuration. This
initiated a bitter debate between Boltzmann and the German mathematician
Ernst Zermelo, who argued that Poincaré’s theorem is valid for any number of
particles, and therefore the H-theorem must be invalid. Boltzmann responded
by showing that the number of particles even in a moderate volume of gas
is so large that the time scale of recurrence would exceed the age of the
universe, and therefore recurrence would not be observed in a macroscopic
system. However, this bitter debate took a toll on Boltzmann’s psyche, and
depressed with the feeling that he had failed to discover a law that is valid
universally and that so little of his works seemed to have been accepted by the
leading scientists and mathematicians of his time, Boltzmann took his own
life in 1906 while on vacation with his family in Duino, near Trieste, Italy
(it is speculated that Boltzmann might have suffered from bipolar disease).
We now know that one of the two greatest developments of modern physics,
namely quantum mechanics, is indeed statistical in nature, and that atoms are
not products of “overactive imagination”, and also that physical laws, includ-
ing Newtonian mechanics, are often valid within certain domains, rather than
universally. There is now a revival of interest among mathematicians about the
H-theorem, to see if it is still valid for systems with large number of particles
without Boltzmann’s assumption of their completely non-interacting behavior
at all times. But since no one has yet found a violation of Boltzmann’s theorem
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for a macroscopic system, and his ideas are so much in tune with modern
developments in physics, mathematicians no longer see the problem, as the
mathematician Marvin Shinbrot (1987) puts it, as “how to prove Boltzmann
wrong but how to prove him right”. An excellent but quite non-technical
account of the modern developments can be found in the referred article by
Shinbrot.

2.7 First and Second Laws: Combined Statement

We can now combine the first and second laws as follows. According to the first
law, we have for a closed system

dU = �q + �w– (2.7.1)

If the process is reversible, then according to the second law,

dS =
(
�q

T

)
rev

(2.7.2)

Furthermore, for a reversible process,

�w− = −PdV + (��−)rev, (2.7.3)

where P is the pressure within the system itself, and (��−)rev is the reversible work
other than P-V work absorbed by the system, i.e. performed by the surrounding on
the system (recall that if the process is not reversible then P is the external pressure
on the system). Thus, for a reversible process, we can write the following combined
statement of the first and second laws for systems with fixed mass of all chemical
species

dU = TdS − PdV + (��–)rev (2.7.4)

This equation embodies the definitions of absolute temperature and pressure as
partial derivatives of internal energy of a closed system:

T =
(
�U

�S

)
V,�

; P = −
(
�U

�V

)
S,�

(2.7.5)
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From Eq. (2.7.4), we may write for a system with fixed masses of all chemical
species and restricted only to P-V work,

U = U(S, V) (2.7.6)

This equation constitutes a fundamental relation of thermodynamics. As we would
see later, a number of practically useful thermodynamic potentials can be derived
from this fundamental relation.

Problem 2.4 Show that the reversible work performed by a system on the sur-
rounding upon changing its state from condition A to condition B is greater than the
irreversible work performed by it for the same change of state, i.e.

(�w+)rev > (��+)irrev (2.7.7)

Hint: Use first law for both processes, and the fact that dU is an exact differential.
Then use the second law, i.e. TdS > (�q)irrev.

Problem 2.5 Seven moles of a perfect gas expand adiabatically against no exter-
nal restraint. The initial P-T condition is 5 bars, 300 K, and the final pressure is
0.5 bars. Calculate �T, �V, �U, Q, and W+ (i.e. the work done by the body), mak-
ing use of the knowledge that the internal energy of an ideal gas depends only on
temperature. (Hint: pay close attention to the language of the problem.)

2.8 Condition of Thermal Equilibrium: An Illustrative
Application of the Second Law

As an illustration of how the second law of thermodynamics leads to the determina-
tion of the direction of spontaneous change and condition of equilibrium, let us con-
sider a “composite system” (Fig. 2.9), which is isolated from the surrounding, and
consists of two subsystems, 1 and 2 that are initially separated by an adiabatic wall
so that no heat can flow from one subsystem to another. (The important role played
by “composite systems” in the derivation of thermodynamic condition of equilib-
rium has been discussed in Sect. 1.3.) Each subsystem has a uniform temperature,

Q ↔
Subsystem 1 Subsystem 2

Q, W, ni

Fig. 2.9 Cross-sectional view of heat transfer across a rigid, impervious and weakly diathermal
wall separating two subsystems (1 and 2). The composite system is isolated from the surrounding
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but the temperature in one is different from that in the other. Thus, each subsystem is
in internal equilibrium and therefore the overall system is in equilibrium consistent
with the restrictions imposed by the walls. Consequently, each subsystem and the
overall system have definable thermodynamic properties.

Now consider that the internal adiabatic wall is replaced by a thin but rigid
diathermal wall that permits heat transfer. It is well known from common experience
that heat will flow from higher to lower temperature until a uniform temperature is
established throughout the system. We want see if this “common knowledge” readily
follows from the second law.

For the convenience of derivation, we want to maintain uniform temperature
within each body, even if heat is flowing from one to the other. This can be accom-
plished by making the diathermal wall to be poorly conducting so that the heat
transfer across the partition is much slower than that needed for the attainment of
thermal equilibrium within each body or subsystem.

Let S be the total entropy of the system and S1 and S2 be the entropies of the
subsystems. We assume that the entropy of the wall is negligible compared to the
total entropy of the system. In that case, since the composite system is isolated from
the surrounding, and entropy is additive Eq. (2.6.7), we have S = S1 + S2. Also
since the composite system is isolated from the surrounding, the sum of the internal
energies of the two subsystems, i.e. U1 + U2, must remain constant, so that dU1 =
– dU2. Thus, for a constant value of U, the entropy change of the composite system
with respect to a change in the internal energy of one of the subsystems, say U1, is
given by

�S

�U1
= �S1 + �S2

�U1
= �S1

�U1
− �S2

�U2
= 1

T1
− 1

T2
(2.8.1)

(We write partial derivatives in the above equation since the volume of each susb-
system has been held constant.) Now, since each part of the system is considered to
be rigid, we have dU1 = �q1 – PdV1 = �q1. Thus,

�S = �q1

(
1

T1
− 1

T2

)
(2.8.2)

But since according to the second law, dS ≥ 0 for an isolated system, we have from
the above relation

�q1
(T2 − T1)

T1T2
≥ 0 (2.8.3)

Thus, if T2 > T1, then the heat absorbed by the system 1, �q1, must be positive
(i.e. heat must flow from 2 to 1), and vice versa. This process will continue as long
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as there is any finite temperature difference between the two bodies. At equlibrium
�S = 0, and consequently T2 = T1.

Problem 2.6 Show that in the above problem, dS1 = �q1/T even though the process
is irreversible.
Hint: From the first law, and the fact that U is a state function, show that (�q1)rev =
(�q1)irrev

2.9 Limiting Efficiency of a Heat Engine and Heat Pump

2.9.1 Heat Engine

A heat engine is an engineering device that withdraws heat from a heat source and
converts it into mechanical work. Thermodynamic restriction (second law) requires
that some heat must be wasted (i.e. delivered to a heat sink) in the process of con-
version of heat to work and continued operation of the heat engine (Fig. 2.10). The
conversion factor or efficiency, �, of such a device is defined by the ratio of the
mechanical work performed by it to the amount of heat that it absorbed, which has
a price tag. Thus,

� = W+

Q2
(2.9.1)

Thermodynamic considerations permit an evaluation of the maximum possible con-
version of heat to work by considering that attainable in a reversible cyclic process
(i.e. in a Carnot cycle), since the work performed by a system in a reversible process
is greater than what it can perform in an irreversible (i.e. real) process Eq. (2.7.7).

Application of the first law to a reversible cyclic process yields

�U = 0 = (Q2 − Q1) + W− = (Q2 − Q1) − W+, (2.9.2)

Hot
Environment
(Th)

Engineering
Unit

Cold
Environment
(Tc)

Q2

Q2Q1

Q1

Work (W–)

Work (W+)

Fig. 2.10 Schematic illustration of the operation of a heat engine (solid lines) and heat pump
(dashed lines) between two environments at two different temperatures. Q2 and Q1 stand for the
heat extracted and heat delivered, respectively. W+ and W− are, respectively, the work done and
work absorbed by the engineering unit
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where (Q2 – Q1) is the net heat absorbed by the system, Q2 being the heat absorbed
from a source and Q1 being the heat delivered to a sink. Both Q2 and Q1 are treated
as positive quantities. (Note that while the relation �U = 0 = Q + W− is true for any
type of cyclic process, the relation Q = Q2 – Q1 is valid only when the cyclic pro-
cess is extremely slow or reversible so that the isothermal expansion and isothermal
compression are the only reasons for the change of heat content in the system. For
example, if the process is not sufficiently slow to maintain a constant temperature
in the body then heat could be lost by thermal diffusion). Thus,

�max = (W+)rev

Q2
= Q2 − Q1

Q2
= 1 − Q1

Q2
(2.9.3)

However, for a reversible process Q1/Q2 = T1/T2 Eq. (2.3.1) so that

�max = 1 − T1

T2
≡ Th − Tc

Th
(2.9.4)

where the subscripts h and c stand for “hot” (high temperature), and “cold” (low
temperature), respectively. Thus, the limiting efficiency or conversion factor of a
heat engine operating between two heat baths, each maintained at a constant tem-
perature, depends only on the temperatures of the heat baths.

In the design of a real engine, the property of interest is not necessarily the effi-
ciency of conversion of energy to work, but the efficiency of power output that
generates profit after paying for the cost of fabrication and maintenance. Here one
considers an endoreversible engine in which the processes of heat transfer to and
from the engine are the only irreversible processes. It can be shown (Callen, 1985),
using the above result on maximum efficiency of a Carnot engine, that the maximum
efficiency of power output, εerp from an endoreversible engine is given by

�erp = 1 −
(

Tc

Th

)1/2

(2.9.5)

It is interesting to note that the above expression is independent of the conductivities
of the materials through which heat is transferred into and out of the heat engine.
The efficiencies of large power plants closely match the limiting efficiencies given
by the above expression.

2.9.2 Heat Pump

The operation of a heat pump is just the opposite to that of a heat engine in that it
withdraws heat from a cold source and delivers heat to a hot sink. Familiar examples
are the devices that keep the interior of a refrigerator cool by withdrawing heat from
inside it and delivering heat to the room (just feel the temperature at the back of
refrigerator), or an air-conditioning unit that keeps the inside of a room/house cool
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by withdrawing heat from inside and delivering heat to the atmosphere, or a heating
unit that keeps a house warm during winter by performing just the reverse operation.
In order for a heat pump to perform the desired action of transferring heat from a
cold to a hot environment, work needs to be performed on the heat pump (which is
to be purchased from a power company), as illustrated in Fig. 2.10. An appropriate
measure of the efficiency of the performance of a heat pump which is supposed to
cool an environment would be the ratio of heat extracted from that environment to
the work performed on the pump. We would call this refrigeration efficiency, �r. It
is easy to see from Eq. (2.7.7) that the work absorbed by a system (i.e. performed
on a system) in order for it to achieve a given change of state is less when the work
is performed along a reversible path than when it is performed in an irreversible
path (if we multiply both sides of Eq. (2.7.7) by – 1, then it becomes – (�w+)rev <
– (�w+)irrev or (�w−)rev < (�w−)irrev). Thus, since W−= Q1 – Q2, as shown above
Eq. (2.9.2), the maximum value of refrigeration efficiency is given by

(�r)max = Q2

(W−)rev
= Q2

Q1 − Q2
, (2.9.6)

Dividing both the numerator and denominator by Q1 and substituting the relation
Q1/Q2 = T1/T2, we obtain

(�r)max = Tc

Th − Tc
(2.9.7)

On the other hand, if the purpose of the heat pump is to extract heat from a cold envi-
ronment and deliver heat inside a hotter environment (e.g. keeping a house warm in
winter), as illustrated by the dashed lines in Fig. 2.10, the performance efficiency
of the heating unit, εh, should be measured by the amount of heat delivered to the
amount of work performed on it. In that case we have, following the above train of
arguments,

(�h)max = Th

Th − Tc
(2.9.8)

It is obvious that the performance efficiency of a heat pump (whether it is sup-
posed to cool or heat) decreases as the cold environment, from which heat is to be
extracted, gets cooler, if the temperature of the hot environment remains the same.

There are four common sources of irreversibility in heat engines (Kittel and
Kroemer,1980): (a) part of the heat withdrawn from the high temperature source
may get conducted directly to the heat sink, for example through the cylinder wall
containing the heat engine, (b) there may be thermal resistances to the flow of heat
to and from the heat engine, (c) part of the work produced by it may get converted
to heat by friction, and (d) gas may expand irreversibly within the pump.
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Problem 2.7 A house is kept cool at a temperature of 75
◦
F by an air-conditioner

on a hot summer day when the outside temperature is 110
◦
F. In order to do this,

the air-conditioner needs to withdraw heat at the rate of 740 kJ/min. Calculate the
minimum power that must be consumed by the air-conditioner. Note that unit of
power is watt or J/s
Hint: The minimum power in watt consumed by the air-conditioner is the same as
the minimum rate of work in J/s done on it.

2.9.3 Heat Engines in Nature

At this point, it should be interesting to discuss two Carnot type heat engines in
nature that drive convection in the Earth’s mantle (Appendix B), and hurricane.
Figure 2.11 schematically illustrates the nature of a convecting cycle. We note that
unlike the Carnot cycle depicted in Fig. 2.1, there are no isothermal paths in the
convecting cycle since lateral temperature gradients must be present in order to drive
the convection. However, we can reduce the convecting cycle into one that involves
two isothermal paths at the source and sink, which are represented by A′B′ and
C′D′, respectively (dashed lines), such that the P-V area defined by ABCD, which
represents the work done by the system, is the same as that defined by A′B′ C′D′.

The earth’s mantle below a thermal boundary layer or lithosphere is convecting
efficiently and is generally believed to have nearly adiabatic or isentropic temper-
ature gradient, as discussed in a later section (Sect. 7.4). The convection involves
deformation of mantle material. As discussed by Stacey (1992), the mechanical
power required for the deformation is derived from the convection itself. However,
the mechanical power is dissipated into the convecting medium and gets returned to
the heat source. Thus, using Eq. (2.9.1), the efficiency of the convecting heat engine
(che) in the mantle (work done divided by the effective heat input) is given by

B′

A′

V→

D

A
B

  CQ1

Variable T

Adiabat

Constant T

Q2

C′

D′
P

→

Fig. 2.11 Schematic illustration of the reduction of a cyclic process that involves two variable
temperature paths (A → B, C→ D) into a cyclic process involving two isothermal paths (dashed
lines, A′ → B′, C′ → D′). The area enclosed by ABCD, which represents the work done by the
variable temperature cyclic process, is the same as that enclosed by A′B′C′D′
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�che = W+

Q2 − W+ = W+/Q2

1 − W+/Q2
(2.9.9)

From Eqs. (2.9.3) and (2.9.4), the maximum value of W+/Q2 is given by (Th –
Tc)/Th. Substituting this relation in the last equation, we obtain the expression of
maximum efficiency as (Stacey, 1992)

�che(max) = Th − Tc

Tc
(2.9.10)

Note that the maximum efficiency expressed by the last equation differs from that
in Eq. (2.9.4). The latter gives the efficiency of a reversible Carnot engine and has
Th instead of Tc in the denominator. Thus, in principle, �che could be greater than
1. However, as pointed out by Stacey (1992), it should not be concluded that the
efficiency of a convecting “mantle engine” actually exceeds the reversible thermo-
dynamic engine, but that the dissipation of mechanical work into the source helps
increase the mechanical power.

Figure 2.12 shows hurricane as a Carnot engine, whose storm center lies along
the left edge (Emanuel, 2006). The stage A to B indicates nearly isothermal expan-
sion in contact with the surface of ocean which is effectively an infinite heat reser-
voir. At B, where the surface wind is strongest, the air turns abruptly upwards
as a nearly adiabatic flow until it reaches the point C. Between C and D, heat is

Fig. 2.12 Representation of hurricane as a Carnot type heat engine. AB and CD are nearly isother-
mal heat source (ocean) and heat sink (space), respectively. BC and CD are the adiabatic limbs,
representing expansion and compression, respectively. The storm center is at the left edge. From
Emanuel (2006). With permission from the American Institute of Physics



2.9 Limiting Efficiency of a Heat Engine and Heat Pump 51

isothermally radiated to space as infra red radiation. Finally, adiabatic compression
from D to A brings the cycle to completion. As shown by Emanuel (2003, 2006),
the wind speed of the hurricane is given by

�2 =
(

Th − Tc

Tc

)
E, (2.9.11)

where E is a measure of the thermodynamic disequilibrium between ocean and
atmosphere that allows convective heat transfer. Here again, note that Tc instead of
Th appears in the denominator. This is due to the added contribution from dissipative
heating. It is evident from the above expression that the increase of temperature of
ocean water (Th) due to global warming raises the wind speed of the hurricanes,
leading to greater devastations in the costal areas.



Chapter 3
Thermodynamic Potentials and Derivative
Properties

From an operational standpoint, it is convenient to have thermodynamic state
functions that can be minimized to obtain the equilibrium state of a system under
condition of fixed temperature and pressure or a combination of one these intensive
variables and an extensive variable. These state functions are Gibbs free energy
(G), Helmholtz free energy (H) and Enthalpy (H). As we would see later, the
equilibrium state of a system under a prescribed set of conditions that involve at
least one intensive variable is obtained by minimizing one of these state functions,
depending on which variables have been specified (such as constant P and T, or
constant V and T or constant S and T). These state functions are, thus, often referred
to as the thermodynamic potentials, by analogy with our common knowledge that
a stable state of a system is obtained by minimizing an appropriate potential. These
thermodynamic potentials are often introduced in an ad hoc fashion in terms of U
and/or S (see Box 3.1.1). However, these can be derived in a systematic way from the
fundamental relation U = U(S,V), by a mathematical technique known as Legendre
transformation, as shown below. In this section, we would always assume that the
system under consideration has fixed masses of all chemical species.

3.1 Thermodynamic Potentials

Following Callen (1985), let us consider a simple geometric example to illustrate
the principle of Legendre transformation. Figure 3.1 shows a curve in the Y-X plane,
which can be represented by an equation Y = Y(X) (e.g Y = X1 + X1

2 + X1
3 +..... ).

One can now draw a family of closely spaced tangents to the curve as shown in the
figure. This specific family of tangents can be represented in terms of the intercept
as a function of slope by an equation of the form I = I(P), where I is the intercept on
Y axis and P is the slope at a point (X,Y) on the curve. The original curve can be
recovered from the equation I = I(P); it is simply a curve that is tangent to the family
of straight lines represented by I = I(P). The equations Y = Y(X) and I = I(P) are,
thus, alternative descriptions of the same curve. It is simply a matter of convenience
dictated by a specific purpose as to how one wants to represent the curve.

J. Ganguly, Thermodynamics in Earth and Planetary Sciences, 53
DOI 10.1007/978-3-540-77306-1 3, C© Springer-Verlag Berlin Heidelberg 2008
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Fig. 3.1 Illustration of the
concept of expressing a
curved line, Y = Y(X), in a
two dimensional space in
terms of a family of closely
spaced tangents to the curve Y

X

Y = Y(X)

I = I(P)

The mathematical technique by which an equation of the form Y = Y(X) is trans-
formed to I = I(P) is known as Legendre transformation. The function I is called the
Legendre transform of the function Y. It is easy to see from the equation of a straight
line that

I = Y − dY

dX
X (3.1.1)

If we have a function Y = Y(X1, X2, ..... Xn), then the partial Legendre transform of
Y with respect to the variable Xi , keeping all other variables constant, is given by

IXi = Y −
(
�Y

�Xi

)
Xj 
=i

Xi (3.1.2)

where the subscript Xj 
= i implies that all variables except Xi are kept constant in
the partial differentiation. The variables can be chosen one at a time or in various
combinations. A Legendre transform of Y with respect to the variables X1 and X2

is simply

IX1,X2 = Y −
(
�Y

�X1

)
Xi 
=X1

X1 −
(
�Y

�X2

)
Xi 
=X2

X2 (3.1.3)

For brevity, we will henceforth denote the partial derivative of a function Y with
respect to a variable Z as at constant x as

(
Y′

z

)
x.

For the function U = U(V, S), there are 3 possible Legendre transforms, which
are as follows (the total number of Legendre transforms of the function Y equals
2n − 1, where n is the number of independent variables).

(Iv)s = U − (
U′

v

)
s V = U + PV (3.1.4)

(Is)v = U − (
U′

s

)
v S = U − TS (3.1.5)

and

Iv,s = U − U′
sS − U′

vV = U − TS + PV (3.1.6)
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where (Iv)s means the partial legendre transform with respect to the variable V at
constant S, and similarly for (Is)v. These new auxiliary functions (Iv)s, (Is)v and Iv,s

are called Enthalpy (H), Helmholtz’s free energy (F) and Gibbs free energy (G),
respectively. These are obviously state functions since they represent combinations
of state functions. Summarizing, we now have three important, and as we would see
later, practically useful state functions defined as

H = U + PV

F = U − TS

G = H − TS

= (U + PV) − TS

(Box 3.1.1)

It will be shown later that these relations also hold if the restriction of the system
as one of fixed masses of all chemical species is removed.

Differentiation of the expression of H yields

dH = dU + PdV + VdP. (3.1.7)

But since dU = TdS – PdV for a reversible process in a closed system that is
restricted only to P-V work, we have

dH = TdS + VdP. (3.1.8)

Thus, we have introduced the intensive variable P as an independent variable in
the representation of the new function H. Similarly, by differentiating F and G, and
substituting the expression of dU for a reversible process, we can derive

dF = −PdV − SdT, (3.1.9)

and

dG = VdP − SdT (3.1.10)

These important differentials of the auxiliary state functions for a closed system are
summarized within a box along with fundamental differential of U for a reversible
process.

dU = TdS − PdV

dH = TdS + VdP

dF = −PdV − SdT

dG = VdP − SdT

(Box 3.1.2)
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Note that the above differential expressions of H, F and G are valid for a
reversible process in a closed system that is restricted to only P-V work. If we are
to include other types of work, then dU = TdS − PdV + (��−)rev Eq. (2.7.4), and
consequently the term (d�−)rev must be added to the right hand side of the last three
equations.

3.2 Equilibrium Conditions for Closed Systems: Formulations
in Terms of the Potentials

In conjunction with the second law, the thermodynamic potentials developed above
can be used to define the directions of spontaneous change and conditions of equilib-
rium under various types of conditions. As an illustration, let us seek the condition
of equilibrium at constant P-T condition in a closed system that is restricted only to
P-V work. Under these conditions, the appropriate function to deal with is Gibbs free
energy, G, since it is a function only of P and T for the system under consideration.
Using the relation G = U + PV − TS (Box 3.1.1), we have, at constant P-T

dG = dU + PdV − TdS (3.2.1)

Now, when restricted only to P-V work

dU = �q + �w− = �q − PdV. (3.2.2)

(Recall from 1.4 that the relation �w− = −PdV does not necessarily imply a
reversible process, but requires uniformity of pressure throughout the system. If the
process is irreversible, then P may be either internal or external pressure, depending
on whether the system is under expansion or compression, but it is the same pressure
in the last two equations.) Combining these equations, we obtain (�G)P,T = (�q −
PdV) + PdV − TdS = �q − TdS. According to the second law, dS ≥ �q/T, the
equality holding only at equilibrium. Consequently,

(�G)P,T ≤ 0, (3.2.3)

In other words, in a system restricted only to P-V work and held at constant P and
T, the direction of any spontaneous change is such that it reduces the Gibbs free
energy. In general, dG = 0 is satisfied when G has reached either a maximum or a
minimum value, but since G must decrease by a spontaneous change at constant P-T
condition, G must be at minimum when equilibrium is achieved. If we now permit
non-PV work, then we must add the term ��− to the right hand side of Eq. (3.2.2).
Consequently, we have

(�G)P,T ≤ ��− (3.2.4)

or
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−(�G)P,T ≥ −��− ≥ ��+

Pursuing the above analysis and using the second law relation dS ≥ �q/T or (�q −
TdS) ≤ 0, we can derive a further set of relations for systems (a) restricted only to
P-V work and (b) exposed to other types of work. All these results are summarized
in the Box (3.2.1), emphasizing the fact that all are consequences of the second
law. The state functions U, H, F and G are also called thermodynamic potentials,
since for a system restricted only to P-V work, the direction of spontaneous change
of a system is dictated by the change of one of these functions, depending on the
imposed conditions, toward a minimum. We are commonly concerned, especially
in geological problems, with the equilibrium properties at constant P,T condition in
systems restricted commonly only to PV work, and therefore seek to minimize the
Gibbs free energy of the system. However, there are special situations in geologi-
cal and planetary problems in which we hold different types of variables constant,
other than the combination of variables discussed above. Determination of equilib-
rium conditions for those cases requires minimization of new types of potentials.
We return in Chap. 10.13 to the derivation of those potentials through Legendre
transformations.

Problem 3.1 Prove that at constant T and V, the direction spontaneous change is
dictated by the condition

(�F)T,V < 0 (3.2.5)

until F reaches a minimum, in which case (�F)T,V = 0.

Box 3.2.1: Change of the thermodynamic potentials of a closed system under vari-
ous sets of imposed conditions, as dictated by the second law. The arrows indicate
the fact that all the relations in terms of S, G, H, U and F on the two sides are
consequences of the second law.

Restricted only to PV work Also exposed to other forms of work (δω)

δω− : Non-PV work done on the system 

δω+ : Non-PV work done by the system

Second
Law: 

T
q

dS
δ

≥

(∂S)U,V≥ 0 

(∂G)P,T≤ 0 

(∂H)S,P≤ 0 

(∂U)S,V≤ 0 

(∂F)T,V≤ 0 

(∂G)P,T≤ δω−   or   -(∂G)P,T≥ δω+

(∂H)S,P≤ δω− or   -(∂H)S,P≥ δω+

(∂U)S,V ≤ δω− or   -(∂U)S,V≥ δω+

(∂F)T,V≤ δω− or   -(∂F)T,V ≥ δω+
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3.3 What is Free in Free Energy?

For a finite change of state of a closed system from A to B at constant T and V, we
have from the relations summarized in the preceding box

−
B∫

A

(�F)T,V = F(A) − F(B) ≥
B∫

A

��+ (3.3.1)

Now, the last integral, which denotes the non-PV work performed by the system,
must be positive in order to be useful. This requires that F(A) > F(B). Thus, the
useful non-PV work performed by the system by changing its state from A to B at
constant T,V condition must be either less or equal to the decrease of the thermo-
dynamic potential, F. Helmholtz (1821−1894), thus, coined the term free energy
for the function F in order to emphasize that the energy released by decreasing
F is the maximum amount of energy that is free or available to be transformed
into useful work by a closed system under constant T,V condition. Subsequently,
the terminology has been modified to call F as Helmholtz free energy in order
to distinguish it from G, which came to be known as Gibbs free energy since, as
should be obvious from the relation in the Box (3.2.1), that the decrease of G also
represents the maximum energy that can be transformed into useful work, other than
the P-V work, by a closed system at constant P-T condition. In some modern usage,
the adjective free is often dropped, and H and G are simply referred to as Helmholtz
energy and Gibbs energy, respectively.

3.4 Maxwell Relations

Since each of the differentialsdU, dH, dF and dG are exact, one can derive the fol-
lowing relations for a closed system restricted only to PV work (i.e. �� = 0) from
the equations summarized in the Box (3.1.2) through the application of Euler’s reci-
procity relation Eq. (B.3.3). The expressions are listed sequentially beginning with
the exact differential property of dU.

Box 3.4.1
(
�T

�V

)
S

= −
(
�P

�S

)
V

(3.4.1)

(
�T

�P

)
S

=
(
�V

�S

)
P

(3.4.2)

(
�P

�T

)
V

=
(
�S

�V

)
T

(3.4.3)
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(
�V

�T

)
P

= −
(
�S

�P

)
T

(3.4.4)

These relations are commonly known as Maxwell relations. There are also other
Maxwell relations that follow from the total or exact differentials of U, H, F and G
in open system, but the ones above are the most useful relations in classical ther-
modynamics. Note that the above Maxwell relations connect the derivatives of the
extensive variables S and V and those of their conjugate intensive variables T and
P in various combinations, but excluding the derivative of an extensive variable
with respect to its own conjugate intensive variable. The importance of the Maxwell
relations lies in the fact that a required derivative relation, which we want to calcu-
late and for which data are not available, may be replaced by another relation for
which data are available, or which may be combined with other parameters in an
equation to reduce it to a tractable form. Furthermore, these relations can be used to
cross-check the internal consistency of data. We would encounter many examples
of this type of operations later.

3.5 Thermodynamic Square: A Mnemonic Tool

At this point, the large numbers of thermodynamic relations that have been
presented so far are likely toseem exasperating to most students who are not
gifted with extraordinary memory. To help alleviate this problem, Max Born
(1882–1970; Nobel prize: 1954), developed a simple mnemonic diagram, which
is sometimes referred to as the thermodynamic square, for recalling the exact
differentials of U, F, G and H, the associated Maxwell relations, and condi-
tions of equilibrium under various sets of imposed conditions. (He presented this
mnemonic method in a lecture in 1929. This lecture was attended by Professor
Tizza of M. I. T, and the mnemonic method appeared in a well known book
called Thermodynamics (John Wiley) written by one of Tizza’s students, Herbert
B. Callen.)

The construction and use of the square, which is illustrated in Fig. 3.2, can be
summarized as follows. Write the thermodynamic potentials that are minimized to
achieve equilibrium (i.e. F, G, H and U) in descending alphabetical order on the
four sides of a square, beginning with the top side and proceeding in a clockwise
fashion. Then insert the variables that affect G (i.e. P and T) at the corners on
the right hand side of the square (that is the side containing G) and the variables
that affect U (i.e. S and V) at the corners of the left hand side of the square (i.e.
the side containing U), as shown, and write the +ve sign on the two top corners,
and −ve sign on the two bottom corners of the square. Note that the conjugate
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Fig. 3.2 Illustration of
Thermodynamic Square. The
symbols have usual meanings

F

G

H

U

V T

PS

++

--

intensive and extensive variables at the corners of the square are linked by the diag-
onals (S is linked with the conjugate intensive variable T, and V is linked with the
conjugate intensive variable P). This arrangement can be ensured by writing the
variables in the same alphabetical order, ascending from the bottom (S →V, P→T)
to the top side. The square is complete, and we can state the operating principles
to derive different thermodynamic equalities. However, it is best to discover the
operating principles by recalling the often used relations involving G, namely G =
H−TS, dG = −SdT + VdP and (�G)P,T = 0 at equilibrium (for a system restricted
to P-V work), and finding out the schemes which recover these relations from the
square.

Now consider how the relation G = H − TS can be recovered from the square
by picking the potential moving clockwise from G, i.e. H, then going to the end of
the side containing H and picking the symbol at the corner, i.e. −S, and multiplying
it by the one at the other end of the associated diagonal, i.e. T. This scheme of
operation can be applied to H to obtain H = U + VP; to U to obtain U = F + TS and
reorganized into the more familiar form F = U − TS; to F to obtain F = G − PV or
the more familiar equation G = F + PV.

Next, see how the relation dG = −SdT + VdP is recovered from the diagram by
moving to the other side of the square from G (i.e. the side with U), picking the
variables at the two ends of this side (−S and V), and multiplying each one by the
differential of the conjugate variable connected by the diagonal lines (−S → dT, V
→ dP). Following similar steps, one obtains dH = VdP + TdS; dU = TdS − PdV
and dF = −SdT − PdV.

Next, we want to obtain the directions of spontaneous change and conditions of
equilibrium of a closed system restricted only to PV work under various sets of
imposed conditions by noting that for such a system (�G)P,T ≤ 0, i.e. the potential
to minimize is the one labelled to the side containing the variables that are held
constant. Thus, we have (�H)S,P ≤ 0, (�U)S,V ≤ 0, (�F)V,T ≤ 0.

In order to determine the scheme for recovering the Maxwell relations, first
note that from the expression dG = VdP − SdT, we have (applying the reciprocity
relation) (�V/�T)P = − (�S/�P)T. The two sides of the equality sign represent two
similar operations on opposite sides, in which only the sign of the variable at the
numerator is important. Now apply the analogous operations to the other sides, and
you will have the Maxwell relations given by Eqs. (3.4.1)–(3.4.4). For example,
what is the equivalent of (�V/�S)P? Applying similar operation on the opposite side
of the square, we have (�T/�P)S.
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3.6 Vapor Pressure and Fugacity

At any temperature, every substance has a finite equilibrium vapor pressure, which
we would refer to simply as the vapor pressure of the substance. When a con-
densed substance is introduced into a sufficiently evacuated container, it generates
a quantity of vapor such that, when equilibrium is achieved, the pressure exerted
by the vapor equals the vapor pressure of the condensed substance at the specific
temperature. A volatile substance has a high vapor pressure whereas a non-volatile
substance has a very low vapor pressure. At room temperature, alcohol has a high
vapor pressure, a moth-ball has a moderate vapor pressure and a rock-forming min-
eral has extremely low vapor pressure. These are familiar concepts from elementary
chemistry.

Consider now the phase diagram of pure H2O (Fig. 3.3). The lines separating
the fields of ice and liquid from vapor indicate, respectively, the vapor pressure of
ice and liquid (water) as functions of temperature. At the triple point at 0.0061 bars,
0.01◦C, the vapor pressures of ice and water are the same. If we extrapolate the
vapor pressure curves of ice and liquid beyond the triple point, we find that in the
field of stability of liquid, the vapor pressure of liquid is lower than that of ice,
and vice versa. At the triple point, where ice and liquid are in equilibrium, the
vapor pressures of these two phases are exactly the same. Thus, instead of Gibbs
free energy, we can describe the stability conditions of ice and liquid in terms of
their vapor pressures. However, this alternative description of the relative stabilities
and equilibrium conditions of phases in terms of their vapor pressures is correct
only as long as the vapor behaves as a perfect gas. When it does not, one needs
to make a correction to the vapor pressure to describe relative stability of phases.
This “corrected” vapor pressure is known as fugacity. The concept of fugacity as an
alternative measure to Gibbs free energy to describe stability or escaping tendency
of phases was introduced by G.N. Lewis (1875–1946) in 1901.

Fugacity bears the same formal relation to G as the vapor pressure of a perfect
gas. For one mole of a perfect gas, which obeys the relation V = RT/P, we have,
at constant temperature, dG = VdP = RTdlnP. By analogy, fugacity, f, of a pure
substance has been related to G at constant temperature according to

Fig. 3.3 Schematic phase
diagram of H2O showing the
triple point (that is the point
of equilibrium coexistence of
ice, liquid and vapor) at 0.006
bars, 0.01◦C, and the critical
endpoint, C, on the
liquid-vapor coexistence line
at 221 bars, 374◦C (see Sect.
5.1 for the discussion about
critical phenomenon)

Vapor

Ice C (221 bars,
374 °C) 

LiquidP

T

(0.006 bars,
0.01 °C)
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dG = RTdlnf = RTdln(P�) (3.6.1)

where � is called the fugacity coefficient. Also, since at sufficiently low pressure
all gases approach the perfect gas behavior, the fugacity must obey the relation

lim f = P (3.6.2)

P → 0

or

lim� = 1 (3.6.3)

P → 0

The Eqs. (3.6.1) and (3.6.2) constitute the fundamental definition of the fugacity.
Consider now the line separating the fields of water and ice. At any point along

this line, GH2O(ice) = GH2O(liquid). But it is also correct to say that at any such point,
fH2O(ice) = fH2O(liquid), and if the gas behaved as a perfect gas, then PH2O(ice) =
PH2O(liquid).

An expression for the pressure dependence of fugacity can be easily derived as
follows. Using chain rule

(
� ln f

�P

)
T

=
(
� ln f

�G

)
T

(
�G

�P

)
T

(3.6.4)

From, Eq. (3.6.1), the term within the first right hand parentheses is 1/RT, whereas
(�G/�P)T = V. Thus,

(
� ln f

�P

)
T

= V

RT
(3.6.5)

The fugacity of a gas at a given pressure and temperature can be measured from a
knowledge of the difference between its volume, V, and that of an ideal gas, Videal,
at the specified condition, as follows. Since (�G/�P)T = V, we have from Eq. (3.6.1)

VdP = RTdlnf (3.6.6)

Now let V = Videal + 	. Then, using the ideal gas law, we have for a mole of a gas at
constant temperature

P′∫

P∗

(
RT

P
+ 	

)
dP = RT

f(P′)∫

f(P∗)

d ln f (3.6.7)



3.7 Derivative Properties 63

or

RT ln P′ − RT ln P∗ +
P′∫

P∗

	dP = RT ln f(P′) − RT ln f(P∗) (3.6.8)

From Eq. (3.6.2), as P* → 0, RTlnf(P*) = RTlnP*. Thus, for one mole of a gas

RT ln P′ − RT ln P∗ +
P′∫

0

	dP = RT ln f(P′) − RT ln P∗

or

RT ln f(P′) = RT ln P′ +
P′∫

0

	 dP

= RT ln P′ +
P′∫

0

(
Vm − RT

P

)
dP

(3.6.9)

where Vm is the molar volume of gas.
Tunell (1931) suggested that the last equation should be used as the definition

of fugacity, since the desired properties of fugacity (Eqs. (3.6.1) and (3.6.2)) that
were sought by Lewis follow from this definition. However, this approach is rarely
followed probably because it is a complex definition, although rigorous, and it does
not convey the physical insights of Lewis’ approach in developing the concept of
fugacity.

3.7 Derivative Properties

3.7.1 Thermal Expansion and Compressibility

We present here a set of useful functions, which are known as isobaric heat capacity,
CP, constant volume or isochoric (constant density) heat capacity, CV, the isobaric
expansivity (or the coefficient of thermal expansion), �, isothermal and isentropic
compressibilities, T and s, respectively. These functions represent partial deriva-
tives of the thermodynamic state functions, as discussed below, and are experimen-
tally measurable.

The coefficient of thermal expansion (�), and the isothermal (T) and isentropic
(S) compressibilities are defined by
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� = 1

V

(
�V

�T

)
P

(3.7.1)

T = − 1

V

(
�V

�P

)
T

(3.7.2)

S = − 1

V

(
�V

�P

)
S

(3.7.3)

The bulk modulus is the inverse of compressibility (in other words, bulk modulus
is the incompressibility), and is commonly designated by the symbols kT and kS

for the isothermal and isentropic conditions, respectively. The isentropic properties
are usually referred to as adiabatic properties, since according to the second law, a
reversible adiabatic process implies an isentropic process. Here the implicit assump-
tion is that pressure has changed sufficiently slowly for the system to effectively
maintain equilibrium.

The normalizing factors 1/V in the above equations represent the instantaneous
volume, as illustrated in Fig. 3.4. A commonly used alternative form of defining
� and  uses the normalizing factor 1/V(P, 298 K) and 1/V(1 bar, T), respectively,
instead of the instantaneous volume V. However, the normalizing volumes are not
V(1 bar, 298 K) in either case.

Note that since volume always decreases with increasing pressure, (�V/�P)T < 0,
there is a negative sign in front of this derivative in Eq. (3.7.3) so that the compress-
ibility and bulk modulus are positive quantities. On the other hand, the volume of
a substance does not always increase with increasing temperature. Anharmonicity
of vibration is responsible for the usual phenomenon of expansion of volume with
increasing temperature, as discussed in 1.6, but a substance can also exhibit zero and
even negative thermal expansion. Design of ceramic materials that can withstand
thermal shock requires extremely small values of �. A review of such materials,
which are of great interest in the ceramic industry, may be found in Hummel (1984).
Examples of materials that show negative thermal expansion are ZrW2O8 (Mary
et al., 1996), -quartz and several other minerals that have been discussed by Welche
et al. (1998). Heine et al. (1999) have shown that a negative thermal expansion in a

Fig. 3.4 Illustration of the
volumetric parameters used
to define compressibility at
an arbitrary pressure P1

according to Eq. (3.7.2). Both
V(P1,T) and V(1 bar, T) are
used as normalizing factors

V
T

at P = P1∂P

∂V

V(P1,T)

P1

V (1 bar, T)
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Fig. 3.5 Illustration of the origin of negative thermal expansion by the rotation of rigid polyhedral
units around the points of linkage. The unit cell is shown by dashed lines. Note the reduction of
the unit cell size as a result of rotation. From Welche et al. (1998)

framework structure is a consequence of the geometric effect of rotation of the rigid
octahedral and tetrahedral units such as SiO4 and AlO6 around the bridging oxygens
at high temperature, resulting in a reduction of the unit cell dimension. This concept
is illustrated in Fig. 3.5. In practical applications, a compound with negative � may
be mixed with an appropriate amount of a compound with positive � to yield a
composite material with effectively zero thermal expansion. Such materials can be
heated in an oven without mechanical failure, except that caused by poor fabrication.

3.7.2 Heat Capacities

The average heat capacity, Cav, is defined as the ratio of the heat energy absorbed by
a system, Q, to the associated temperature rise, �T. The instantaneous heat capacity
at temperature T is the limiting value of this ratio. Thus, (C)av = Q/�T or (C)@T =
�q/dT. However, since �q is an inexact differential, the heat absorbed by a system
for a specific change of temperature depends on the manner the temperature change
is brought about. It is, therefore, customary to define two types of limiting heat
capacities, Cp and Cv, the first relating to temperature change at constant pressure,
and the second to temperature change at constant volume.

CP =
(
�q

�T

)
P

(3.7.4a)

Cv =
(
�q

�T

)
v

(3.7.4b)
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From Eqs. (3.1.7) and (3.1.8), for a reversible process at constant pressure, dH =
dU + PdV = TdS. Also, from the first law, dU + PdV = �q. Thus, for a reversible
process at constant pressure, �q = dH = TdS, so that

CP =
(
�H

�T

)
P

= T

(
�S

�T

)
P

(3.7.5)

Problem 3.2 Prove that in a system restricted to P-V work, the following relations
hold for a reversible process

CV =
(
�U

�T

)
V

= T

(
�S

�T

)
V

(3.7.6)

(Prove both equalities)

Problem 3.3 Consider a mole of an ideal gas that has a Cp = 29.3 J/mol-K and is
confined within a metal cylinder, which is thermally insulated from the surrounding,
at a P-T condition of 25 bars, 27◦C. The gas is allowed to expand reversibly from an
initial pressure of 25 bars to a final pressure of 1 bar. The Cp of the metal cylinder
is 83.7 J/mol-K. Calculate (a) the final temperature of the gas, (b) the work done by
the gas, and (c) the entropy change of the system (gas + cylinder).

(Hint: First show that (dH)system = d(U + PV) = (VdP)gas for the stated conditions.
Then use the relation between enthalpy and heat capacity, and go from there.
Answers: (a) 237 K (b) 6.59 kJ/mol

One can derive an important relation between Cp and Cv by starting with the
relation S = S(T,V), which yields

dS =
(
�S

�T

)
V

dT +
(
�S

�V

)
T

dV (3.7.7)

Differentiation both sides of this expression with respect to T at constant P, we have
(
�S

�T

)
P

=
(
�S

�T

)
V

+
(
�S

�V

)
T

(
�V

�T

)
P

(3.7.8)

From Eqs. (3.7.5) and (3.7.6), the first two terms in the above equation equals Cp/T
and CV/T, respectively, whereas, using Maxwell relation (Box 3.4.1) and the prop-
erty of implicit function (Appendix, Eq.(B.4.3))

(
�S

�V

)
T

=
(
�P

�T

)
V

= −

(
�P

�V

)
T(

�T

�V

)
P

(3.7.9)

(here the first equality is a Maxwell relation and the second equality follows from
the property of implicit function). Using the definitions of � and T (Eqs. (3.7.1) and
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(3.7.2), respectively), the above relation yields (�S/�V)T = �/, so that Eq. (3.7.8)
reduces to

CP = CV + �2VT

T

= CV + �2VTkT

(3.7.10)

It follows that for one mole of an ideal gas (which obeys the relation PV = RT),

CP − CV = R (3.7.11)

The derivation of this relation is left to the reader as an exercise.
The heat capacity of a solid derived from atomistic lattice theories and mea-

surements of the vibrational properties is CV, as discussed in Sect. 4.2 whereas
phase equilibrium calculations require CP. Equation (3.7.10) permits conversion of
CV to CP. The latter is also the quantity determined by calorimetric measurements.
Saxena (1988) applied Eq. (3.7.10) to derive CV, � and kT from calorimetric CP

data of enstatite (Mg2SiO4) and forsterite (Mg2SiO4) as a function of temperature.
He expressed these quantities in terms of polynomial functions of T as

CV = Co + C1T−1 + C2T−2 + C3T−3

� = �o + �1T + �2T−1 + �3T−2

kT = k0 + k1T + k2T−1 + k3ln T

The constants of these functions were treated as floating variables that were adjusted
by a non-linear optimization program to yield Cp values in a wide range of temper-
ature that have the best match with the measured CP vs T data. The values of � and
kT calculated from the optimized values of the constants in the last two equations
are in good agreement with their measured values. This approach was also utilized
in the development of a thermodynamic data base (Saxena et al., 1993).

The isothermal and adiabatic compressibilities are related to the two types of heat
capacities, CP and CV, according to

S

T

(
= kT

kS

)
= CV

CP
(3.7.12)

This result can be derived as follows. From the definitions of T and S (Eqs. (3.7.2)
and (3.7.3), respectively),

S

T
=

(
�V

�P

)
S(

�V

�P

)
T

= −

(
�V

�P

)
S

VT
(3.7.13)
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Now, writing the total differential of V with respect to P and T, and differentiating
both sides with respect to P at constant S, we have

(
�V

�P

)
S

=
(
�V

�P

)
T

+
(
�V

�T

)
P

(
�T

�P

)
S

(3.7.14)

Using Eqs. (B.4.4) and (3.4.4) it can be shown that the quantity within the last
parenthetical term on the right equals (VT�)/CP. Thus, using the definitions of �
and  (Eqs. (3.7.1) (3.7.2) (3.7.3)), the above expression reduces to

(
�V

�P

)
S

= −VT + (�V)

(
VT�

CP

)
(3.7.15)

Consequently, from Eq. (3.7.13)

S

T
= 1 − �2VT

TCP
, (3.7.16)

which, on combination with Eq. (3.7.10), leads to Eq. (3.7.12). It is easy to show
from the above equation that

kT

kS
= 1 − �2kTT

�C′
P

(3.7.17)

where Cp
′
is the isobaric specific heat capacity.

3.8 Grüneisen Parameter

From Eq. (3.7.10), one obtains

CP

CV
= 1 + �T

(
V�kT

CV

)
(3.8.1)

The quantity within the parentheses is a dimensionless parameter, and is known as
the thermodynamic Grüneisen parameter or ratio, �th, named after Grüneisen (1926)
who first introduced it from consideration of vibrational properties, as discussed
below. Using Eq. (3.7.12), we also find that

�th = V�kT

CV
= V�kS

CP
(3.8.2)

Now, since CP/CV = kS/kT, we have, combining the last two equations,

kS

kT
= 1 + �th�T (3.8.3)
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Fig. 3.6 Variation of
Grüneisen parameter or ratio
of some silicates and oxides
that are of interest in the
Earth sciences as a function
of temperature normalized to
the Debye temperature, �D.
From O. Anderson (1995)

The thermodynamic Grüneisen parameter relates thermal and elastic properties in a
dimensionless form, and has a restricted range of values for solids, usually between
1 and 2, even though the individual terms in its expression may differ greatly.
Figure 3.6 shows the variation of Grüneisen parameter of some silicates and oxides
that are of interest in the Earth sciences as a function of temperature. Anderson
(1995) found that assumption of constancy of ��th for a solid to be better approxi-
mation than that of the constancy of �th itself. This property was utilized to deter-
mine the value of �th of materials in the Earth’s interior, as for example, by Jeanloz
(1979).

In the original development, Grüneissen assumed that the volume dependence of
the frequency of the i th vibrational mode can be expressed as

� ln 
i

� ln V
= −�i

where �i is a constant, and is commonly referred to as “mode gamma”. It can be
shown that if all vibrational modes have the same volume dependence, and this
relation is independent of temperature, then the above equation leads to the expres-
sion of thermodynamic Grüneissen parameter, Eq. (3.8.2) (see, for example, Poirier,
1991).

From Eq. (3.8.2) we can derive an expression that is of interest for the purpose
of direct determination of the Grüneisen parameter in the laboratory and also for the
calculation of adiabatic temperature gradient in the Earth’s interior. Substituting the
derivative expressions of the individual terms in this equation, we have
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�th = V�kT
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= −
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)
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V

(3.8.4)

Using now the property of implicit function (Eq. (B.4.3)),
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(3.8.5)

Thus,

�th = V

T
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(3.8.6)

Using Maxwell relation (Eq. (3.4.1)) for the last derivative term, we have

�th = −V

T

(
�T

�V

)
S

= −
(
� ln T

� ln V

)
S

(3.8.7)

Replacing (�lnV)S by −(�P/kS)S, which follows from the definition of ks in
Eq. (3.7.3), we obtain

�th = ks

(
� ln T

�P

)
S

(3.8.8)

Boehler and Ramakrishna (1980) utilized the above expression to determine �th by
noting the temperature change of a sample due to sudden change of pressure in a
piston-cylinder apparatus. It was assumed that there was no significant heat loss
from the sample within the time scale of measurement of temperature change, and
furthermore that there was no significant entropy production during the rapid change
of pressure. Note that the effects of heat loss (which is equivalent to entropy loss)
and internal entropy production would compensate one another, at least partly.

Using the hydrostatic relation dP = �gdZ, Eq. (3.8.8) can be recast as

(
� ln T

�Z

)
S

= �thg

(ks/�)
(3.8.9)

As we would see in the next section, the parenthetical quantity in the denominator
is related to seismic velocities. Thus, this equation is of fundamental importance in
relating seismic velocities, temperature gradient and Grüneisen parameter in the
Earth’s interior.
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Problem 3.4 The Grüneisen parameter can be considered as the change of pres-
sure of a crystal of constant volume with respect to a change of its internal energy
density (i.e. density per unit volume). In other words,

�th =
(

�P

� (U/V)

)
V

= V

(
�P

�U

)
V

(3.8.10)

Derive Eq. (3.8.2) from this relation. (Note, incidentally, that the restricted range of
values of �th implies that pressure and internal energy density of a crystal change
similarly.)

3.9 P-T Dependencies of Coefficient of Thermal Expansion
and Compressibility

In principle, the isobaric thermal expansion coefficient of a substance, �, depends
on pressure and its isothermal compressibility, T, depends on temperature. The
pressure dependence of � and the temperature dependence of T are, however,
interrelated through the fact that dV is an exact differential. From V = f(P, T), we
have

dV =
(
�V

�P

)
T

dP +
(
�V

�T

)
P

dT (3.9.1)

or, using Eqs. (3.7.1) and (3.7.2),

dV = −VTdP + �VdT (3.9.2)

Since dV is an exact, the right hand side of this expression satisfies the reciprocity
relation (Eq. B.3.3). Thus,

−�T

�T
= ��

�P
(3.9.3)

Consequently, one can obtain the temperature dependence of T if the pressure
dependence of � is known accurately, and vice versa. When both T = f(T) and
� = f(P) are known experimentally or retrieved from modeling relations that depend
on them, the internal consistency of the data should be checked by using Eq.
(3.9.3). Unfortunately, all thermodynamic data bases in the literature do not pass
this test.

3.10 Summary of Thermodynamic Derivatives

Lumsden (1952) provided a summary of expressions, in a tabular form, of par-
tial derivatives involving P, T, V, U, H, S, G, F in various combinations. These
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Table 3.1 Summary of expressions of partial derivatives of thermodynamic quantities

X Y Z

(
�Y

�X

)
Z

X Y Z

(
�Y

�X

)
Z

T V P �V T P V �/
T S P Cp/T T S V Cp/T − �2V/
T V P CP − �PV T U V CP − �2VT/
T H P CP T H V CP − �2VT/ + �V/
T F P −�PV − S T F V − S
T G P −S T G V �V/ − S
P V T − V T P S CP/�VT
P S T − �V T V S − CP/�T + �V
P U T PV − �VT T U S PCP/�T − �PV
P H T V − �VT T H S CP/�T
P F T PV T F S PCP/�T − �PV − S
P G T V P G S CP/�T − S

 ≡ T

expressions, which are given in Table 3.1, constitute a convenient and useful ref-
erence source. Note that in the left hand set of derivatives, either P or T is held
constant, whereas in the right hand, the conjugate extensive quantities, V or S, are
held constant.



Chapter 4
Third Law and Thermochemistry

The bulk of thermodynamics has been developed on the basis of the first two laws.
The third law plays a much lesser role in the development of the subject. Its principal
application lies in the development of the concept of absolute entropy of a sub-
stance, and its calculation through the heat capacity function. The latter, however,
constitutes a major step in the development of the field of thermochemistry. The
third law was developed primarily by Nernst (1864–1941; Nobel prize: 1920) and
proposed in 1905. In this section, we discuss the observational basis and modern
statement of the third law and its implication for the calculation of absolute entropy
of a substance. This is followed by a general discussion of thermochemistry, and
calculation of changes of thermochemical properties of reactions that are required
for phase equilibrium calculations discussed in Chapters 6 and 10.

4.1 The Third Law and Entropy

4.1.1 Observational Basis and Statement

From analysis of available data on changes of Gibbs energy, �rG, and enthalpy,
�rH, of reactions involving pure phases, Nernst concluded that at temperatures near
absolute zero, �rG and �rH of reactions among pure phases do not have any sig-
nificant temperature dependence. This observation has its root in the early works of
Thomsen, Berthelot and Richard around 1900. Thus, since at T = 0, �rG = �rH –
T�rS = �rH , the �rG vs. T and �rH vs. T curves not only must be essentially flat,
but also coincident near T = 0, as shown schematically in Fig. 4.1. (It is easy to
see that as T → 0, �(�rH)/�T → 0 since this derivative equals �rCp and Cp of all
substances tend to zero as T → 0.) Now since �(G/dT) = – S, Nernst proposed that
the vanishingly small slope of �rG vs. T near T = 0 implies that for all reactions
among pure phases �rS → 0 as T → 0. This is known as the Nernst postulate.
Planck (1858–1947) took Nernst statement a step further by suggesting that the

J. Ganguly, Thermodynamics in Earth and Planetary Sciences, 73
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Fig. 4.1 Schematic variation
of Gibbs free energy and
enthalpy change of a reaction,
�rG and �rH respectively, as
a function of temperature
near absolute zero

ΔrG

ΔrH

T →0

G
or
H

simplest way this postulate could be valid is to have the entropy of all substance go
to zero as T → 0.

If we now look at the Boltzmann expression of entropy, S = kBln� Eq. (2.5.1),
the statement that the entropy of every substance is 0 at T = 0 implies that � = 1
at T = 0; in other words, there is only one microscopic or dynamical state in which
the system can exist at T = 0. Now consider a solid solution of two components.
As we have discussed earlier, there are usually multitude of atomic configurations
in which the solid solution of a fixed composition can exist without significantly
changing its overall energy. Planck’s modification of Nernst statement that S = 0 at
T = 0 implies that there is only one configurational state at this temperature for a
solid solution. However, a solid solution may have different configurational states at
T = 0 that have effectively the same energy. Consequently, a solid solution may have
non-zero configurational entropy at T = 0. This analysis also applies to a solid of
an end-member component if it has defects. This is because defects may be consid-
ered as another component in the solid, which leads to a configurational entropy of
mixing between the end member component and the defects since a certain number
of defects may be distributed within a crystal in a large number of ways even at
T = 0, without affecting the overall energy of the solid. An example of a solid with
lot of defects is the mineral wüstite, which has an ideal defect-free stoichiometry
of FeO, but is always found as Fe1-xO, with x > 0, as a result of vacancies (point
defects) in the cation sites. These considerations led Lewis (1875–1946) to restrict
the Plank statement of zero entropy of a substance at absolute zero to pure and
perfect crystalline solids. In summary then, the third law of thermodynamics can be
stated as follows:

The entropy of a pure and perfect crystalline substance vanishes at absolute
zero.

There is still a lingering problem with elements that have more than one iso-
tope. It may be possible to have alternative configurational states or distributions of
isotopes within the crystal structure of an element that are energetically equivalent
even at T = 0. In general, it may be possible to have different configurational and
vibrational states that are energetically equivalent even at absolute zero. But as noted
by Fermi (1956), the number of such equivalent states has to be very large in order
to cause a significant deviation from the above statement of the third law, since
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S = kBln� and kB = 1.38 × 10–23 J/mol-K. Such a situation may be theoretically
possible, but extremely unlikely to exist in nature.

4.1.2 Third Law Entropy and Residual Entropy

The thermodynamic formalisms that developed from the first and second laws
always deal with the relative values or changes of the thermodynamic potentials
with respect to some reference state, instead of their absolute values at any given
condition. Thus, for example, we do not speak in terms of absolute value of U or H,
but instead speak of �U and �H. The third law of thermodynamics relieves entropy
from this restriction of being a “relative” quantity, so to speak. Because of the third
law one can now calculate the absolute entropy of a substance at a specific condition,
as follows.

From the relationship between S and CP Eq. (3.7.5), we have

S(T) − S(T = 0) =
T∫

0

CP

T
dT

Using now the third law S(T = 0) = 0, we get entropy as an absolute quantity as

S(T) =
T∫

0

CP

T
dT (4.1.1)

Such absolute entropy values, which are calculated from the heat capacity data by
invoking the third law, are usually referred to as the third law entropies.

One may wish to determine the entropy of a substance at absolute zero without
invoking the third law. However, since absolute zero is unattainable (see Sect. 4.4),
and measurements at temperatures very close to the absolute zero are very difficult,
entropy at absolute zero has to be determined by extrapolation from data at higher
temperature. Upon such extrapolation, one may get a positive entropy of a substance
at T = 0. This is known as the residual entropy, which is due to the persistence
of many alternative microscopic or dynamical states of the system up to the lowest
temperature of measurement. These states may converge essentially to a unique state
or to a limited number of states that are too small to have any significant effect on
entropy at absolute zero, but the extrapolation of the higher temperature trend of S
vs. T relation to T = 0 may not reflect the effect of reduction of the configurational
states a function of temperature.

As an example of the problem of residual entropy, let us consider the entropy of
CO that was calculated by Clayton and Giauque (1932) from heat capacity mea-
surements down to 14.36 K. They found that the extrapolated entropy of CO at
T = 0 is 1.0 cal/mol-deg. The source of this residual entropy lies in the orienta-
tional disorder of carbon monoxide. A carbon monoxide molecule can exist in two
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different orientations, namely, CO and OC, both of which have almost exactly the
same energy. Now since each molecule of carbon monoxide can exist in one of two
orientations with effectively equal probability, the molecules in a mole of carbon
monoxide can exist in a large number of orientations that is given by 2L (i.e. 2 ×
2 × 2 × 2 .... upto L terms), where L is the Avogadro’s number. Thus, the entropy
due to complete orientational disorder is S(orientation) = kBln�(orientation) =
kBln2L = (kBL)ln2, where �(orientation) stands for the number of orientational
configurations in one mole of carbon monoxide. Now since LkB = R, S(orientation)
= 1.38 cal/mol, which is very close to the residual entropy of carbon monoxide.

4.2 Behavior of the Heat Capacity Functions

Evaluation of the integral in Eq. (4.1.1) to calculate the third law entropy of a solid
requires a knowledge of CP as a function of temperature from T = 0 to T. Usually, CP

is expressed in terms of a polynomial function of T, such as the one given below, that
fits the CP values measured in a calorimeter at different temperatures or retrieved
from other sources.

CP = a + bT + c/T2, (4.2.1)

This polynomial function is known as the Maier-Kelley equation (Maier and Kelley,
1932) that has been used widely. Use of a CP function of this form to evaluate the
third law entropy according to Eq. (4.1.1) runs into obvious mathematical problem
because of the (a/T)dT term in the integral expression. Also, since a polynomial
function can have awkward behavior when extrapolated beyond the range of condi-
tions encompassed by the experimental data that are fitted to determine the param-
eters of the function, it is important to understand the constraints on the behavior of
CP function imposed by physical theory.

The starting point of any discussion on the heat capacity of solid is the work
of Einstein, who derived, just one year after his “miraculous year” of 1905, a rela-
tionship between CV and lattice vibrations, which are the principal mechanisms of
heat absorption in solids. He assumed that (a) a crystal is a collection of harmonic
oscillators (see Sect. 1.6), and (b) all oscillators vibrate with the same frequency.
Debye in 1912 modified Einstein’s theory to allow for the fact that atoms in a crys-
tal do not vibrate about their respective mean positions with a single frequency, but
instead vibrate with a range or dispersion of frequencies (Fig. 1.8), say from ν1 to
a maximum frequency of νD that is known as the Debye frequency. The distribution
of the frequencies, that is the number of lattice vibrations at each frequency within
the range ν1 to νD, depends on the temperature. As the temperature increases, the
distribution of frequencies moves to the upper end. According to the Debye model,
at some temperature called the Debye temperature, �D (Eq. (1.6.4)), virtually all
frequencies will be close to νD. The Einstein and Debye models have been dis-
cussed in numerous text books on Thermodynamics and Solid Sate Physics (see,
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for example Swalin, 1962; Denbigh, 1981; Kittel and Kroemer, 1980). Here we
summarize the main results and discuss some further developments. A comprehen-
sive discussion of these models can be found in Ghose et al. (1992).

Within the framework of the above assumptions, Debye showed that the heat
capacity of a monoatomic solid at constant volume, CV, can be expressed as a
function of the ratio T/�D, that is Cv = fD(T/�D). Writing T/�D as �, the Debye
function, fD(�) is given by

fD(�) = 9R�3

�∫

0

y4e4dy(
e4 − 1

)2 (4.2.2)

where y is a dummy integration variable. This expression leads to the following low
and high temperature behaviors of CV.

(a) As T → 0, CV ∝ T3, which is known as the “Debye T to the power third
law”, and

(b) As T becomes very high, CV →3R per mole of a monoatomic solid. If the
solid is polyatomic, then CV → 3nR, where n is total number of atoms in a molecule
of the solid. For example, for the mineral fayalite, Fe2SiO4, CV = 3(7)R = 174.6 J/K
per mole of the mineral in the high temperature limit if the lattice vibrations can be
considered to be harmonic oscillators. This value agrees almost exactly with that
calculated from vibrational data (Ghose et al., 1992). The high temperature limiting
behavior of CV is often referred to as the Dulong-Petit limit (the name comes from
the observation made by Dulong and Petit in 1819 about the heat capacity values of
solid elements).

Since CP = CV + �2VTkT (Eq. (3.7.10)),

as T → 0, CP = CV ∝ T3, (4.2.3)

while, as T becomes very large,

CP → 3(n)R + �2VTkT. (4.2.4)

Figure 4.2 shows the measured heat capacity of solid argon vs. T3 below 8 K,
which is in excellent agreement with the prediction from Debye model, Eq. (5.6.2).
Figure 4.3 shows a comparison of the measured CP and CV data for Cu with the
expected limiting behaviors. The noticeable departure of CV from 3R at high tem-
perature is primarily due to the departure of lattice vibrations from the harmonic
oscillator model, as discussed in Chap. 1. The difference between CP and CV values
at high temperature represents the term �2VTkT.

More often than not, a polynomial fit of experimentally determined CP vs. T data
do not satisfy, on extrapolation beyond the temperature range of measurements, the
high and low temperature limiting behaviors that follow from the Einstein-Debye
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T3 (K3)

mJ/K-mol

Fig. 4.2 Low temperature heat capacity of solid Argon vs. T3 showing conformation to the predic-
tion from Debye theory. From Kittel and Kroemer (1980)

theory of lattice vibrations. The extrapolated high temperature behaviors of some
of the polynomial functions used in the literature are shown in Fig. 4.4. Several
polynomial functions with different degrees of success have been proposed in the
geological literature to remedy this problem (see Ganguly and Saxena, 1987). One
such function, which is due to Fei and Saxena (1987) is as follows.

CP = 3nR(1 + K1T−1 + K2T−2 + K3T−3) + (A + BT) + �, (4.2.5)

where � represents collectively the contributions from anharmonicity, cation dis-
order and electronic effects (see below). It is retrieved by fitting the CP vs T data
beyond the 3nR limit. The behavior of the above expression for forsterite is also
shown in Fig. 4.4.

Born and von Kármán (1912) developed a theory of heat capacity that is much
more exact than the Debye theory. (Max Born (1882–1970) received Nobel Prize in
1954 for his pioneering research in quantum mechanics.) However, the application
of the Born-von Kármán theory, which is known as lattice dynamical theory of
heat capacity, was hindered by the fact that it requires knowledge of the phonon
density of states (see Chap. 1.6) that had to await major technical advancements
(i.e. inelastic neutron scattering) in solid state physics. A compromise between the
Debye theory and lattice dynamical theory was developed by Kieffer (1979) that
led to the successful prediction of heat capacities of a large number of structurally
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Fig. 4.3 Heat capacity of Cu as function of temperature, illustrating the difference between CP and
CV, anharmonicity, the Dulong Petit limit (3R), and the form of the heat capacity function. Note
the low temperature dependence of heat capacity according to the Debye T3 law. From Zemansky
and Dittman (1981). With permission from Mc-Graw Hill

complex rock-forming minerals from their elastic constants and spectroscopic
(infra-red and Raman) data. Direct calorimetric measurements of Cp vs. T rela-
tions are very demanding and time consuming. Furthermore, these measurements
can be carried out only in a very limited number of laboratories around the world.
The Kieffer model has, thus, gained wide popularity in the mineralogical literature
since it made possible calculation of heat capacities of minerals with much greater
success than that from Debye theory, but avoiding the high technical demand of
lattice dynamical calculations.

Briefly, Kieffer model is a “hybrid model” in that it combines the formal spirits
of Einstein and Debye models to treat the high and low frequency lattice modes,
respectively. The high-frequency lattice modes obtained from spectroscopic data
are assumed to be dispersionless, as in the Einstein model, whereas the acoustic
modes, obtained from the experimentally measured elastic constant data, and the
lowest frequency optic modes are assumed to follow specific models of dispersion,
which is a Debye-like approach (Fig. 1.8). For a comprehensive review of lattice
dynamical and Kieffer theories, and their mineralogical applications, the reader is
referred to Ghose et al. (1992).
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Fig. 4.4 Comparison of the temperature dependence of CP of forsterite (Mg2SiO4) as calcu-
lated from different CP functions that are fitted to calorimetric data within the temperature range
∼ 298–1000 K. (1): Maier Kelley equation, (2) Eq. (4.2.5), (3) Berman and Brown equation (1985),
(4) Haas and Fisher equation (Robie et al., 1978). The CP data have been normalized by the number
of atoms per formula unit. The dashed line represents 3R + �2VTkT. (From Ganguly and Saxena,
1987)

4.3 Non-Lattice Contributions to Heat Capacity and Entropy
of End-member Solids

4.3.1 Electronic Transitions

Besides lattice vibrations, heat may be absorbed by a solid by means of electronic
and magnetic transitions. Electronic transitions are important for metals, but are
usually negligible for non-metals. For metals the electronic transitions become
important at high and low temperatures. At high temperatures, sufficient number of
electrons may be excited to the conduction band to enable significant heat absorp-
tion. At sufficiently low temperatures, the energy absorption by electrons, although
small, becomes a significant component of the small amount of total heat absorption
by a metal.

Combining the form of temperature dependence of CV on T due to electronic
transition, which follows from quantum theory, with the lattice effect, the CV vs. T
for metals at T <<�D (where�D is the Debye temperature, Eq. (1.6.5)) is given by

CV = �T3 + �T (4.3.1)

where � and � are constants. Since at low temperature CP ≈ CV, both � and � can
be simultaneously retrieved by regressing the CP/T against T2 at low temperatures.
This procedure yields the values � and � as respectively the slope and intercept
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Cp/T

T2

Fig. 4.5 Cp/T vs. T2 (K2) of metallic silver near T = 0 K. The slope and intercept of the linear
relation yield the parameters � and � in Eq. (4.3.1). The electronic heat capacity is given by the
term �T. From Kittel (2005). With permission from John Wiley and Sons

of the linear relation between CP/T vs T2. An example of Cp/T vs. T2 relation for
metal is shown in Fig. 4.5. Anderson (2000) has shown that at the conditions of
the Earth’s core, the electronic contribution to the heat capacity of Fe, which is the
primary constituent of the core, is very significant. His calculated Cv vs. T relation
is shown in Fig. 4.6.

Transition metal ions in silicates may absorb a small, but not insignificant amount
of heat by electronic transitions between d-orbitals that split under the influence of

Fig. 4.6 Vibational and electronic heat capacities of ε-iron as function of temperature. The tem-
perature at the core-mantle boundary is shown as CMB. From Anderson (2000)
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a crystal field (Sect. 1.7). An electron from a lower d-orbital may be excited to
a higher orbital provided that it does not violate the Pauli exclusion principle and
does not change the number of unpaired electrons, in accordance with the Hund’s
rule (Sect. 1.7.1). This type of electronic effect on heat capacity has been studied by
Dachs et al. (2007) in fayalite, Fe2SiO4.

4.3.2 Magnetic Transitions

The magnetic contribution is a quantum mechanical effect arising from the orbital
motions and spins of the unpaired electrons. Usually, it is the spin of the unpaired
electrons that constitute the dominant magnetic contribution to the entropy of a
compound. The magnetic contribution can be significant for crystals with transition
metal ions, which have unpaired electrons in the outer d-orbitals. Figure 4.7 shows
the �-shaped magnetic contribution to the heat capacity of Fe-end member of the
olivine solid solution series, namely fayalite (Fe2SiO4) (Dachs et al., 2007). If CP

of a solid containing a transition metal ion is extrapolated to T = 0 K according to
Debye relation from measurements above the magnetic transition, then the third law
entropy calculated from this CP vs T relation would be erroneous. In the absence of
calorimetric data through the temperature range of magnetic transition, one may, to
a very good approximation, estimate the entropy effect due to this transition and add
that to the entropy calculated from the extrapolated Cp vs. T relation to get a better
estimate of the correct third law entropy. The estimation procedure is discussed
below.

Fig. 4.7 Molar isobaric heat capacities of end-member olivines, forsterite (Fo: Mg2SiO4) and fay-
alite (Fa: Fe2SiO4), as determined in a calorimeter. The lamda-shaped feature in the Cp of fayalite
is due to magnetic transition of Fe2+. PPMS stands for a commercially designed calorimeter by
Physical Properties Measurement System, whereas low-TAC stands for low temperature adiabatic
calorimetry. From Dachs et al. (2007). With Permission from Elsevier
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Electrons in an atom have rotary motion or spin that leads to spin quantum states.
Using arguments from quantum theory, it can be shown that the number of spin
quantum states (�spin) of an atom equals (2S + 1) where S is the total spin of all
electrons. Since the spin of an electron is ± 1/2, and the spin of a paired electron is
zero (+ 1/2 − 1/2 = 0), S = 1/2(Nu), where Nu is the number of unpaired electrons.
Consequently, �spin = 2(Nu/2) + 1 = Nu + 1.

When the energy differences among the spin quantum states become small com-
pared to the thermal energy, kT, all spin quantum states become equally probable
leading to a (spin quantum) disordering, and thus a contribution to the entropy of
the crystal. We may call this spin quantum configurational entropy. However, at
sufficiently low temperature, the energy difference among the spin quantum states
become significant compared to kT, which leads to selective population of the states
with lower energies.

The entropy change due to complete disordering of a crystal over the available
spin quantum states from a completely ordered state can be calculated from the
Boltzamnn relation. If there are n unpaired ions in a crystal, each with Nu unpaired
electrons, then from Eq. (2.5.1)

�Smag = kln�spin = kln(Nu + 1)n = nkln(Nu + 1) (4.3.2)

Thus, if n equals the Avogadro’s number L, so that nk = R, then

�Smag = Rln(Nu + 1) (4.3.3)

per mol of the ion with unpaired spin.
As an example, let us calculate the �Smag for fayalie. Since Fe2+ has the elec-

tronic configuration 1s22s22p63s23p63d6, it has unpaired electron spins only in the
3d orbitals. In the high spin configuration, which is the state of Fe2+ except under
very high pressure, the distribution of the electrons among the five 3d orbitals is (↑↓)
(↑) (↑) (↑)(↑), where an upward pointing arrow indicates a single electron (unpaired
spin) and an upward plus downward pointing arrows indicate two electrons with
opposite spins in the same orbital. Thus, in the high spin state there are 4 unpaired
electrons, and consequently �Smag = Rln(5) = 13.38 J/K per mol of Fe2+. However,
since a mole of fayalite has 2 moles of Fe2+, �Smag = 2(13 38) = 26.76 J/K per mole
of fayalie. This constitutes 17.7% of total entropy of fayalite at 298 K, and is only
slightly above �Smag(calorimetric) which constitutes 17.2% of the total entropy at
the same temperature (Dachs et al., 2007). (The electronic entropy that arises from
the heat capacity change due to the excitation of electrons from a lower to higher
d-orbital, as discussed in the previous section, is 3.3% of the total entropy.) With
increasing forsterite content in the olivine solid solution, the transition tempera-
ture for magnetic ordering, known as the Neel temperature, shifts progressively to
lower temperature and is accompanied by a reduction of �Smag contribution to the
total entropy.

In Lanthanides and actinides, the unpaired d electrons are shielded from inter-
action with neighboring ions in a crystal structure by completely filled outermost
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s-orbitals. For these ions, the number of magnetic quantum states is given by 2 J +1,
where J is a quantum number representing the total angular momentum vector of the
ion. The reader is referred to Ulbrich and Waldbaum (1976) for further discussion
of the subject.

4.4 Unattainability of Absolute Zero

Nernst discovered that more a substance cools, the more difficult it becomes to
cool it further. From the point of view of the relationship between temperature and
entropy or order, it means that more ordered the state of a substance gets, the more
difficult it becomes to remove the remaining disorder so that, as proposed by Nernst,
the attainment of a state of complete order that characterizes the condition at abso-
lute zero becomes an infinitely difficult task.

To understand the problem associated with the attainment of absolute zero,
consider a substance with an entropy S(T) at temperature T in the S-T space,
as illustrated in Fig. 4.8. One can think of cooling the substance by a combi-
nation of (a) isothermal removal of entropy and (b) isentropic (adiabatic) cool-
ing. These two steps can be achieved, respectively, by isothermal magnetization
and adiabatic demagnetization of the substance. (In isothermal magnetization, the
electrons are made to spin preferentially in one direction than in the other, thus
reducing the entropy of the substance. In adiabatic (isentropic) demagnetization, the
magnetic field is removed producing greater disorder of electron spins. The increase
of entropy due to spin disorder is compensated by cooling of the material so that
the entropy remains constant.) Now, since according to the third law S = 0 only
at T = 0, there is no way to carry out the steps (a) and (b) repeatedly so that the

Fig. 4.8 Schematic
illustration of the cooling of a
substance by successive steps
involving isothermal removal
of entropy and isentropic
cooling. The paths illustrated
by the dashed lines are
impossible, as these violate
the third law

S

T

a

b
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state of the substance intersects either the T-axis or the S-axis at a non-zero value,
and then bring the substance to the origin (S = T = 0). From the geometric con-
struction shown in Fig. 4.8, the state of S = T = 0 cannot be reached by a finite
number of steps of (a) and (b). Similar problem arises with any other cyclic process
that can be devised to lower the temperature of the substance. Thus, the third law
of thermodynamics has led to the notion that exactly absolute zero is physically
unattainable. However, the third law only precludes attainment of absolute zero by a
cyclic process, such as described above. The possibility remains that the thermody-
namic barrier to the attainment of absolute 0 may one day be broken by a non-cyclic
process.

(The quest for lower and lower temperature has led to the attainment of tempera-
ture below 170 nK, thus producing a new state of matter known as the Bose-Einstein
condensate. This state was predicted by Einstein on the basis of the ground break-
ing work of Satyendra Nath Bose (1894–1974) on quantum statistics. The experi-
mental achievement of Bose-Einstein condensation in 1995, nearly 70 years after
Einstein’s prediction, led to Nobel prizes to physicists Carl Weinman, Eric Cornell
and Wolfgang Ketterle in 2001.)

4.5 Thermochemistry: Formalisms and Conventions

4.5.1 Enthalpy of Formation

Since absolute enthalpy cannot be measured, the enthalpy data of an electrically
neutral compound are reported as its enthalpy of formation from the constituent
oxides or elements, which we will denote as �Hf,o and �Hf,e, respectively. Con-
sider, for example, the mineral calcite, CaCO3. The �Hf,o and �Hf,e for calcite
denote the enthalpy changes of the reactions (a) CaO + CO2 = CaCO3 and (b) Ca +
C(graphite) + 3/2O2-gas = CaCO3, respectively, i.e.

�Hf,o(CaCO3) = H(CaCO3) − [H(CaO) + H(CO2)]

and

�Hf,e(CaCO3) = H(CaCO3) − [H(Ca) + H(C:graphite) + 3/2H(CO2−gas)].

The enthalpy change of a reaction, �rH, equals the difference between the enthalpy
of formation of the product and reactant compounds from either oxides or elements,
i.e. �rH = �Hf,o(products) – �Hf,o(reactants) = �Hf,e(products) – �Hf,e(reactants),
as long as a uniform convention is adopted in choosing the forms of elements (for
example, graphite instead of diamond for the element C). This is because of the fact
that enthalpy is a state function, and therefore the change of enthalpy in going from
one state to another is independent of the means by which the change of state is
achieved. Consider, for example, the reaction
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CaO + CO2 → CaCO3(calcite :Cc) (4.5.a)

for which we can construct the following cyclic process involving decom-
position of the oxides to elements and formation of calcite from the latter.

Box (4.5.1)

Because H is a state function, we write �rHa = �H1 + �H2 + �H3 + �H4..
Since the step 3 does not constitute any reaction, �rH3 = 0. For the other steps, we
can write �rH1 = – �Hf,e(CaO), �rH2 = – �Hf,e(CO2) and �rH4 = �Hf,e(CaCO3).
Thus,

�rHa = �Hf,e(CaCO3) − �Hf,e(CaO) − �Hf,e(CO2)

Values for heats of formation can be found in books of thermochemical properties,
such as those referred to in the Sect. 4.5.4.

It should be noted in the above example that we have chosen graphite and not
diamond, and molecular oxygen and not atomic oxygen to refer the enthalpies of
formation of CaO and CO2 from the elements. The physical states of elements
that the enthalpies of formation of compounds are referred to are known as the
reference forms or reference states of the elements. The ΔHf of an element in
its reference state is taken to be zero. The choice of the reference states of ele-
ments is a matter of convention that is agreed upon by the thermochemists. Except
for phosphorous, the reference forms of the elements are those forms that are
stable at 1 bar and the specified temperature. Earlier choice of reference form of
P conformed to this standard practice, that is red triclinic variety from 298.15 to
704 K and ideal diatomic gas from 704 to 1800 K (e.g. Robie et al., 1978), but it is
now changed to the metastable white P up to 317.3 K (there is a transition from
� to  phase at 195.4 K), liquid P from 317.3 to 1180.01 K and ideal diatomic
gas at higher temperature. This change of reference state of crystalline P is due
to the fact that white P is the most reproducible form. It should be easy to see
that as long as a uniform convention is maintained, the choice of reference forms
of elements does not have any effect on the calculation of enthalpy change of a
reaction, which is ultimately the quantity of common interest in thermochemical
calculations.
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If an element is not in its reference form at 1 bar, T, then its enthalpy and Gibbs
energy of formation are calculated from the reference form. Thus, while the �Hf,e

of graphite at 1 bar, 298 K or 1 bar, 500 K is zero because graphite is the stable
(and hence the reference) form of the element C at these conditions, the �Hf,e

of diamond at 1 bar, T equals the enthalpy change of the reaction C(graphite) =
C(diamond). Thus, at 1 bar, 298 K, �Hf,e(diamond) = 1.895 kJ/mol. The �Hf,e of O2

and H2 gases at 1 bar, and, say, 300 K are zero because these are the stable forms of
oxygen and hydrogen at these conditions. In thermochemical tables, the reference
forms of an element within different temperature ranges are clearly stated, and the
enthalpy and Gibbs energy of formation from the elements of these forms are listed
as zero.

4.5.2 Hess’ Law

Even before the formulation of the first law of thermodynamics, Germain Henri
Hess (1802 – 1850) observed that the heat evolved in a chemical reaction is the
same, whether the reaction was carried out directly, or through a series of interme-
diate steps. We know that this statement must be true for the enthalpy change of the
reaction, as discussed above for the decomposition of CaCO3 to CaO and CO2. The
reason that Hess found the heat of a reaction to be independent of the intermediate
steps is simply because he conducted his experiments at a fixed pressure of 1 bar,
and at constant pressure �rQ = �rH, which depends only on the initial and final
states. It is easy to check the validity of this relation from the application of the first
law to chemical reaction, as follows.

For any reaction at a constant pressure, the change in the internal energy is given
by Up – Ur = (Qp – Qr) – P(Vp – Vr), where the Subscripts p and r stand, respec-
tively, for the products and reactants, regardless of the number of intermediate steps.
Thus, at constant pressure �rQ = (Up + PVp) – (Ur + PVr). But since H = U + PV,
we have at constant pressure, �rQ = �rH.

4.5.3 Gibbs Free Energy of Formation

The Gibbs free energy of formation of a compound from the component elements
(�Gf,e) or oxides (�Gf,o) is estimated according to thermodynamic relation among
G, H and S. Thus, �Gf,e = �Hf,e − T�Sf,e, and similarly for �Gf,o. However,
more commonly one utilizes a combination of the enthalpy of formation from the
elements or oxides and the third law entropy. For example, �Gf,e = Hf,e – T�S.
This has been called the apparent Gibbs free energy of formation (from element or
oxide) or sometimes simply just the Gibbs free energy of formation, although the
last nomenclature is not quite appropriate. In practice, however, it does not matter if
one uses the true or apparent Gibbs free energy of formation of a compound, as long
as all compounds in a given system are treated similarly, because the relative Gibbs
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free energies of different isochemical assemblages are not affected by the choice of
either method.

4.5.4 Thermochemical Data

Thermochemical properties of minerals and other substances are measured directly
in different types of calorimeters and solid state elctrochemical cells, and are also
retrieved from experimentally determined phase equilibrium relations that represent
consequences of the thermochemical properties of the phases. The modern approach
is to combine the directly measured data with the phase equilibrium constraints, and
derive by appropriate optimization techniques an internally consistent set of thermo-
chemical data for mineral phases and fluids. By “internally consistent” we mean that
the retrieved thermochemical properties are mutually compatible so that the phase
relations calculated from these properties are consistent with the available experi-
mental constraints that are considered to be reliable. (In the materials sciences, this
is often referred to as the CALPHAD approach, after the name of a consortium and a
journal CALPHAD that is an acronym for Calculations of Phase Diagrams.) Using
this global approach, several internally consistent data sets have been developed for
Earth and Planetary materials such as those by Berman (1988), Johnson et al. (1992),
Saxena et al. (1993), Gottschalk (1997), Holland and Powell (1998), Chatterjee et al.
(1998) and Fabrichnaya et al. (2004) (the pioneering study being that by Helgeson
et al. (1978) which is now superceded by Johnson et al. (1992)). Each data set is
internally consistent, but is not necessarily consistent with one another. This means
that combination of data from different sets may lead to wrong prediction of new
phase relations. The data sets of Saxena et al. (1993) and Fabrichnaya et al. (2004)
are especially suited for applications to high pressure phase equilibrium that are
appropriate for the Earth’s mantle.

In addition to the above, there are also empirical and microscopic methods of esti-
mating thermochemical properties, some of which are discussed in the Appendix C.
A discussion of the methods that relate microscopic properties at the atomic level
to macroscopic thermodynamic properties is beyond the scope of this book, but the
interested readers are referred to Kieffer and Navrotsky (1985), Tossell and Vaughn
(1992) and Gramaccioli (2002).

In solid electrochemical cells, one directly measures the free energies of for-
mation of oxides as function of temperature (e.g. O’Neill, 1988). Also, from the
temperature dependence of �fG one obtains the entropy and enthalpy values (�G/�T
= –S, H = G + TS). The basic principles of electrochemical cells have been briefly
discussed in Sect. 12.8.

In a calorimeter, one measures the change of heat (i.e. calor in Latin) associ-
ated with a change of state of a substance, such as dissolution and phase change or
chemical reaction, which is made to take place within a well insulated chamber. The
quantities measured are Cv, Cp, and heats of chemical reactions. The latter may be
measured directly, or through a thermochemical cycle when the reaction is too slow
to be amenable to direct measurement. The enthalpies of formation of most binary
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oxides from elements have been determined directly by combustion calorimetry that
involves burning metal wires or powders in an oxygen atmosphere. Comprehensive
reviews of calorimetric methods, especially in the context of Earth materials, can be
found in Navrotsky (1997, 2002) and Geiger (2001).

The idea of a thermochemical cycle that is employed to determine the enthalpy
change of a slow reaction can be illustrated by considering the reaction MgO (per-
iclase: Per) + SiO2 (quartz: Qtz) = MgSiO3 (enstatite: Enst). The enthalpy change
of this reaction is the �Hf,o of MgSiO3. This reaction is too slow to be amenable
to direct calorimetric measurements, but the reaction enthalpy can be determined
using the following thermochemical cycle.

(1) MgO (crystal) + Solvent → solution �Hs(1)

(2) SiO2 (crystal) + Solvent → solution �Hs(2)

(3) MgSiO3 (crystal) + Solvent → solution �Hs(3)

where �Hs(i) represents the heat change associated with a specific dissolution step
(i) in a calorimeter. (Because the pressure is maintained constant (at 1 bar), the heat
change equals �H, as shown in Sect. 4.5.2). The solution is kept very dilute in order
to prevent interactions among the dissolved species and the phases are dissolved
sequentially in the same solvent. The dissolution process may be either exothermic
(heat is evolved) or endothermic (heat is absorbed), the latter being the case for most
silicates.

Now �Hf,o(MgSiO3) is the enthalpy change of the reaction

MgO + SiO2 = MgSiO3. (4.5.b)

This enthalpy change can be represented by a thermochemical cycle

Box (4.5.2)

so that

�Hf,o(MgSiO3) = �Hs(1) + �Hs(s) − �Hs(3). (4.5.1)
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The �Hf,e of a ternary compound can be obtained from its �Hf,o and the enthalpy of
formation from elements of the component binary oxides according to

�Hf,e(ternary comp.) = �Hf,o(ternary comp.) + ��Hf,e(binary oxide) (4.5.2)

The enthalpy change of a polymorphic transition can be measured from the dif-
ference of heat of solution of the two phases in a solvent. For example, �rH of
the olivine-wadsleyite (�-Mg2SiO4 (Ol) = -Mg2SiO4 (Wad)) and of wadsleyite-
ringwoodite (-Mg2SiO4 (Wad) = �-Mg2SiO4 (Ring)), which represent major
phase transitions within the Earth’s mantle at 400 and 400 km depths, was deter-
mined by Akaogi et al. (2007) from the difference in the enthalpies of solution of
the two polymorphs in a lead borate (2 PbO.B2O3) solvent at 1 bar, 973 K. (Lead
borate is a very effective solvent for many rock forming and mantle minerals at a
temperature of 973 K (Kleppa, 1976), and has been used widely to determine the
heats of formation of these phases.) The enthalpy of solution values are: �Hs(�) =
169.35 ± 2.38 kJ/mol, �Hs() = 142.19 ± 2.65 kJ/mol and �Hs(�) = 129.31 ±
1.96 kJ/mol. These values yield �rH (� = ) = �Hs(�) – �Hs() = 27.2 ± 3.6
and similarly �rH ( = �) = 12.9 ± 3.3 kJ/mol. It is left to the reader to figure out
the relationship between the �rH and �Hs of the polymorphs by constructing the
appropriate thermochemical cycles.

Problem 4.1 The heats of solution of MgSiO3 (orthoenstatite) and component
oxides in a lead borate (2PbO.B2O3) solvent, as determined in a calorimeter at 1
bar, 970 K, are as follows (Charlu et al., 1975).
�Hsol’n(MgSiO3) = 36.73 ± 0.54 kJ/mol; �Hsol’n(MgO) = 4.94 ± 0.33 kJ/mol;
�Hsol’n(SiO2) = − 5.15 ± 0.29 kJ/mol, where the uncertainties represent 1 � (stan-
dard deviation) values.
From these data, calculate the heat of formation from both oxides and elements of
orthoenstatite at 1 bar, 970 K, along with their respective standard deviations. Look
up the additional data that you may need in a thermochemical Table (e.g. Saxena
et al., 1993).



Chapter 5
Critical Phenomenon and Equations of States

Consider the familiar phase diagram of H2O in the P-T space, showing the stabilities
of ice, liquid water and water vapor (Fig. 5.1). Formally, a phase is defined to be a
substance that is spatially uniform on a macroscopic scale and is physically distinct
and separable from the surrounding. Along any of the three lines, the two phases that
are on either side coexist in stable equilibrium. However, note that the line separating
the fields of liquid water and water vapor ends at a point, C, which has the coordinate
of 220.56 bars, 647.096 K (373.946◦C). This point is a critical end point. Thus, the
critical end point in the phase diagram of H2O is the terminus of the curve along
which liquid and vapor can coexist. As a mixture of liquid and vapor is moved along
the coexistence curve to higher temperature and pressure conditions, the properties
of the two phases progressively approach one another and the distinction between
their properties completely vanishes at the critical end point.

The thermodynamic and transport properties of a fluid changes very rapidly as
the P-T conditions approach the critical end point. These sharp changes of properties
have important geological and industrial consequences that we would explore in this
chapter. In addition, the pressure-temperature condition of the critical point of a fluid
has important implications in the formulation of its equation of state.

5.1 Critical End Point

If the P-T condition change between the fields of liquid and vapor along a path
that does not intersect the vapor-liquid coexistence curve, such as the curve (p-q-r)
in Fig. 5.1, the property of the phase will change continuously, and at no point
will there be a coexistence of liquid and vapor; there will be either a liquid or a
supercritical phase or a vapor. This is unlike the case when the P-T path intersects
the liquid-vapor coexistence curve, in which case there is a discontinuous change
of properties (e.g. volume). On further compression of a gas after it is compressed
to the pressure of the liquid-vapor coexistence curve, there is progressive conver-
sion of gas to liquid without any change of pressure (the effect of compression is
compensated by the decrease of volume), thus permitting the coexistence of both

J. Ganguly, Thermodynamics in Earth and Planetary Sciences, 91
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Fig. 5.1 Schematic phase
diagram of H2O showing the
critical end point of the
vapor-liquid coexistence
curve and the domains of
supercritical (SC) phases.
Note that the horizontal and
vertical dashed lines are not
phase boundaries, but depict
descriptive regimes
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liquid and vapor phases. Analogous situation prevails if the temperature is changed
at a constant pressure in that when the temperature reaches the coexistence curve,
there is progressive conversion of one phase to the other without any change of
temperature. The heat that is supplied or withdrawn becomes compensated by the
heat change associated with phase transformation.

The P-T space beyond the critical end point is conventionally divided, for
descriptive purposes, into domains of supercritical liquid (P > Pc, T < Tc), super-
critical vapor (T > Tc, P < Pc) and supercritical fluid (T > Tc, P > Pc), as illustrated
in Fig. 5.1, where Pc and Tc denote the pressure and temperature of the critical end
point. However, there is no discontinuous transition of properties between any two
adjacent domains.

The existence of a critical temperature was discovered by Thomas Andrews in
1869. In the course of determining the effect of temperature and pressure on the
properties of carbon dioxide, Andrews found that CO2 gas would transform to a
liquid if the pressure on the gas was increased but only as long as the temperature
was kept below 304 K (31◦C). However, beyond this temperature, it was impossible
to convert CO2 gas to liquid by further compression. The critical P-T conditions of
CO2 are now accepted to be 72.8 bar, 304.2 K.

Notice that no critical end point exists on the other coexistence curves in the
phase diagram of water. The distinction between the properties of liquid and vapor
phases is purely quantitative in nature. In both cases, the water molecules are dis-
tributed randomly but the interactions between the molecules in the gas is weaker
than those in the liquid. On the other hand, the distinction between liquid water and
ice and between ice and vapor is qualitative in nature since ice has a crystal structure
with symmetry properties. This observation brings out an important point about the
condition for the existence of a critical end point, that is, such a point can exist only
on the coexistence curve of two phases that have quantitative, but not qualitative
difference of properties. Thus, for example, there can be no critical end point on the
solid-liquid phase boundary.
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Fig. 5.2 Schematic P-V diagram of a substance with a critical point at Pc, Vc, Tc. Ti indicates an
isotherm with Tc as the isotherm at the critical temperature. L and V stand for liquid and vapor,
respectively, which are stable at the two sides of the thick solid curve a-b. At any point under the
curve a-b, the liquid and vapor phases coexist in stable equilibrium at a fixed temperature, and
their volumes are given by the points of intersection of the isotherm with the curve a-b. However,
the liquid and solid phases may persist metastably up to the points of intersection of an isotherm
with the dashed curve c-d. Between c and d, there must be two phases, liquid and vapor, at any
temperature

Let us now consider the P-V diagram showing the isothermal expansions of liq-
uid and gas states, such as those of H2O (Fig. 5.2). Above the point marked Pc,Vc,
which is the critical end point, there is only one phase, the volume of which changes
continuously with change of pressure. But below this point, there are two phases,
liquid and vapor, which are stable on the left and right sides, respectively, of the
heavy curve a-b that touches the critical point. The P-V curves for both liquid and
gas, which are shown by solid lines, satisfy the inequality (�P/�V)T < 0, but con-
tinue a short distance beyond their respective stability fields, and end at the dashed
curve c-d. These distances, which have terminal points at (�P/�V)T = 0, mark the
fields of (metastable) superheated liquid and supercooled gas. The line c-d is the
schematic locus of the points at which �P/�V = 0. Note that at any temperature
below Tc, the P-V curves of the stable liquid and stable gas intersect the heavy line
a-b at the same pressure. This is a pressure on the liquid-vapor coexistence curve
(Fig. 5.1) corresponding to the specified temperature. Within the area bounded by
the dashed line c-d, which also touches the critical point, a single homogeneous
phase is unstable. Instead there are two phases, liquid and gas, the relative proportion
of which change with compression. Between a-b and c-d, a homogeneous phase,
either gas or liquid is metastable. This means that the “wrong phase” can survive
due to kinetic barrier associated with the transformation to the thermodynamically
stable phase.

Since the critical point is a point on the curve c-d, it is obvious that at the critical
point
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(
�P

�V

)
T

= 0 (5.1.1)

Comparing the isotherms Tc and T4, we find that the critical point is the point of
merger of the minimum and maximum on an isotherm. The convergence of a min-
imum and a maximum on an isotherm denotes the transition from the condition
of �2P/�V2 > 0 (condition for a minimum) to �2P/�V2 < 0 (condition for a maxi-
mum). Thus, at the critical point, we must have �2P/�V2 = 0. It can also be shown
that at the critical point �3P/�V3 < 0 (Landau and Lifshitz, 1958).

V-P relations at the critical point:

(
�P

�V

)
T

=
(
�2P

�2V

)
T

= 0

(
�3P

�V3

)
T

< 0

Box (5.1.1)

One can imagine that a single expression could be found to fit the experimental
P-V data of both liquid and gas at a fixed temperature, as shown by connecting the
P-V curves of these phases at T4 by a dotted line inside the curve c-d. The Gibbs
energy of the two phases in equilibrium at a fixed P-T condition must be the same.
This condition imposes a geometric restriction on the nature of the wavy part of an
isotherm. Consider, for example, the isotherm T4, which intersects the horizontal
line connecting the stable liquid and gas phases at the point q. The requirement
that the Gibbs energies of the liquid and gas connected by the horizontal line must
be the same implies that the magnitudes of the areas between the wavy part of the
isotherm T4 and the horizontal line on two sides of the point q must be the same.
This requirement ensures that the change of Gibbs energy along the wavy line within
a-b (which is given by

∫
VdP between the end points of the horizontal line through

q) is zero.
If we now consider the isobaric T-V relation of liquid and gas, we will have

qualitatively the same picture as illustrated in Fig. 5.2, except that the volume would
increase with increasing temperature. Thus, at TC, we would also have

(
�T

�V

)
P

= 0 (5.1.2)

The second and third derivative properties are analogous to those in the P-V relation,
as summarized in Box (5.1.1).
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5.2 Near- and Super-Critical Properties

5.2.1 Divergence of Thermal and Thermo-Physical Properties

The fact that �P/�V = �T/�V = 0 at the critical point has important consequences
about the behavior of CP, T, and �T at and near the critical condition. From the
definitions of � and T (Eqs. (3.7.1) and (3.7.2), respectively), it is easy to see that
near the critical end point, both � and T tend to +∞. (We discussed in Sect. 3.7
that for some solids �T < 0, but there are no critical point bounding the stability
fields of such solids.) The qualitative behavior of CP near the critical end point
can be derived as follows. From Eq. (3.7.10), the difference between CP and CV is
given by the term �2VT/T, which, on substitution of the expressions of � and T

yields

�2VT

T
= −

T

(
�V

�T

)2

P(
�V

�P

)
T

(5.2.1)

Using now the property of an implicit function Eq. (B.4.4), we have (�V/�T)P =
–(�V/�P)T/(�T/�P)V, which on substitution in the above equation and rearrangement
of terms, yields

CP − CV = �2VT

T
=

T

(
�P

�T

)2

V(
�P

�V

)
T

(5.2.2)

As T → TC, the denominator after the second equality tends to zero Eq. (5.1.1),
and consequently, (CP – CV) → ∞. Also, since all the terms after the first equality
are positive quantities, (CP – CV) → + ∞ as the critical temperature is approached.
This implies that CP → + ∞ whereas CV remains finite, but diverges weakly, as
T → TC.

In summary, as T→ TC,

� → +∞
T → +∞
Cp → +∞
CV : finite

(weak divergence)

Box (5.2.1)
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The divergence of the fluid properties near a critical end point, however, is not lim-
ited to those discussed above. Obviously, other fluid properties that are related to
one or more of the above divergent properties must also exhibit divergence near a
critical point. Thus, for example, sound speed in a fluid must tend to zero as T →
Tc since it is related to T according to Csound = (1/�T)1/2, where � is the fluid
density. For comprehensive discussions of the behavior of various fluid properties
near the critical end point, the readers are referred to Sengers and Levelt Sengers
(1986) and Johnson and Norton (1991). The latter specifically considers the proper-
ties H2O that are of great importance in the study of hydrothermal systems. Sengers
and Levelt Sengers (1986) have discussed the criteria for strong and weak diver-
gence of properties near the critical point. According to these criteria, T and Cp

diverge strongly, in accordance with the above analysis, whereas s and Cv diverge
weakly.

The divergence of a property near the critical end point is typically expressed in
terms of an appropriate exponent of (T – Tc). For example, the divergence of the
bulk modulus is expressed as

T = (T − Tc)−�

The exponents of (T – Tc) used to describe the temperature dependence of properties
near a critical point are known as the critical exponents.

5.2.2 Critical Fluctuations

Classical thermodynamics correctly predicts that the properties like CP, �, T should
diverge near the critical end point, but it fails to correctly predict the analytical form
of the divergence. This problem, however, has no significant consequence except
at conditions very near the critical point. There are enormous fluctuations of prop-
erties near the critical end point, which can not be predicted by classical thermo-
dynamics (see Callen, 1985, for further discussion). For example, there are huge
density fluctuations of water at or very close to the critical end point, as illustrated in
Fig. 5.3, which renders water milky or opaque due to the scattering of light. This
phenomenon is known as critical opalescence and is due to the variation of refrac-
tive index of the liquid as a result of its density fluctuations at length scales compara-
ble to the wave length of light. However, a fraction of a degree change of temperature
restores the water to its normal transparent state.

The reason behind the fluctuations of properties near the critical end point
may be understood by considering the shape of Gibbs energy vs. volume curve
at points on the coexistence curve at and near this point within the framework
of a classical theory of phase transition that is due to the physicist Lev Landau
(1908–1968; Nobel prize, 1962), and is commonly referred to as the Landau theory
(see Sect. 6.3). According to this theory, the G vs. V curve has two equally depressed
minima at any point on the vapor-liquid coexistence curve which gradually merge
as the critical end point is approached, leading finally to a broad minimum
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Fig. 5.3 Density fluctuations of water near the critical point. From CEA (1998)

(Fig. 5.4). The two equally depressed minima of the Gibbs energy corresponds to
the two equally stable physical states of the system. At any point on either side
of the coexistence curve, there is one global and one local minimum (that is one
minimum of G is lower than the other), the former corresponding to the one stable
physical state of the system. The single minimum of G at the critical end point
implies that there is only one truly stable state for the system at the critical condi-
tion, but since the minimum is very broad, the system can exist in several states of
different densities without any significant effect on the overall Gibbs energy. Similar
picture is valid at near-critical condition. In other words, the density or the physical

Fig. 5.4 Schematic
illustration of the change of
form of G vs V curve (a)
along a coexistence line of
liquid and vapor, ending at a
critical point, c, (b) at
metastable extension of the
coexistence curve, and (c) in
the field of stability of gas
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state of the system at or very near the critical condition can fluctuate over a signif-
icantly large length scale because of the broadness of the Gibbs energy minimum.
Since the difference in the Gibbs energy between near-equilibrium and exact equi-
librium states at or very near-criticalcondition is very minute, there is not enough
driving force to push the near-equilibrium states to the exact minimum of Gibbs
energy.

The treatment of the problem of fluctuations near the critical condition is
beyond the scope of classical thermodynamics, but the problem was successfully
treated, including the long-range correlated behavior of the fluctuations, by Kenneth
Wilson, a high energy physicist (Nobel prize, 1982), through what is known as the
“renormalization group theory”. This theory also correctly predicts the experimen-
tal values of critical exponents that classical theory fails to do, and also shows the
inter-relationships among these exponents.

5.2.3 Super- and Near-Critical Fluids

Supercritical fluids (SCF) have some properties that make them attractive for use
as media to manipulate chemical reactions in industrial processes. A useful review
of the subject can be found in Savage et al. (1995). For example, the diffusivity
of a species in the supercritical fluid lies between that in a liquid and in a gas.
Consequently, reactions that are diffusion controlled in the liquid become faster in
the SCF. (The term diffusion controlled means that diffusion is the slowest step
in the overall reaction process; hence the reaction rate can not be faster than the
diffusion rate.) The solubility of a compound can also substantially increase or
decrease in passing from a subcritical to a supercritical condition. The enhanced
solubility of reactants could greatly accelerate the reaction rate in the SCF. The
partial molar volume of a solute at infinite dilution diverges as the critical point is
approached. The partial molar properties have been discussed formally in Sect. 8.2,
but from a physical standpoint we may view partial molar volume of a solute as
its effective molar volume in a solution. The divergence of partial molar volume
is usually towards negative infinity, especially when the size of the solute atom or
molecule is smaller than that of the solvent, but the divergence to positive infin-
ity is also possible (Savage et al., 1995). The properties of SCF vary with den-
sity, which is very sensitive to temperature and pressure changes near the critical
point.

The near-critical (NC) water also has much better solubility than water at
lower temperatures for both organic and ionic species. This makes NC-water a
good non-pollutant solvent and reaction medium that may be used effectively in
industrial processes, and also a great solvent for scavenging base metals from
rocks leading to the formation of ore deposits. The fluctuations of the properties
of water near the critical condition also cause sharp fluctuations in the solubility of
components, such as B(OH)3

=, which probably explains the oscillatory zoning in
minerals like tourmaline, as discussed by Norton and Dutrow (2001), that are found
in the carapace of Geysers.
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5.3 Near-Critical Properties of Water and Magma-Hydrothermal
Systems

In a series of papers, Norton and co-workers (e.g. Norton and Knight, 1977; Johnson
and Norton, 1991; Norton and Dutrow, 2001; Norton and Hulen, 2001) have dis-
cussed the properties of water at and near the critical point, and their implications for
the evolution of magma-hydrothermal systems. Norton and Knight (1977) showed
that convective heat flux dominates over the conductive heat transfer at permeability
values greater than 10–18 m2. The convective heat flux by a fluid, J(conv), is given
by the product of the mass flux (i.e. mass of fluid crossing a unit area per unit time)
and the heat content per unit mass of the fluid. These two quantities are given by
�f�f� and CpT, respectively, where �f is the fluid density, �f is the fluid velocity, Cp

is the specific heat capacity of the fluid and � is the rock porosity. The quantity �f�
is known as the Darcy velocity of the fluid. Thus,

J(conv) = (�f � f �)(CpT) (5.3.1)

As discussed by Norton (2002), the magnitude of convective fluid velocity is
related directly to the magnitude of lateral gradient of fluid density and inversely
to its viscosity, 
. Using chain rule, the lateral gradient of fluid density is
given by

��f

�x
=

(
��f

�T

) (
�T

�x

)
(5.3.2)

The first derivative on the right can be expressed in terms of the coefficient
of thermal expansion, �, as –(�f�f). This relation follows from the definition
of � Eq. (3.7.1) and making the substitutions V = m/� and dV = –(m/�2)d�.
Thus,

��f

�x
= −(�f�f)

(
�T

�x

)
(5.3.3)

Norton and Knight (1977) showed that while � and Cp of water diverge to +∞
near the critical point, the viscosity of water rapidly decreases as the critical point
is approached and reaches a minimum near the critical condition, as illustrated in
Fig. 5.5. More updated properties of water near the critical condition have been
presented by Johnson and Norton (1991), but the general picture remains valid.
Thus, because of the large increase in the magnitude of the lateral density gradient
as a result of the large increase of �f, and conspicuous drop of viscosity, the mag-
nitude of convective fluid velocity rapidly increases as the critical point of H2O is
approached. This effect, coupled with the property of divergence of CP to +∞ at
the critical point leads to tremendous enhancement of the convective heat flux by
fluid as its P-T condition evolves toward the critical point, as should be evident from
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Fig. 5.5 Properties of water near the critical point. The near coincidence of the maxima of the
coefficient of thermal expansion, �, and isobaric heat capacity, Cp, and the minimum of viscosity,
ν, causes rapid increase of convective heat flux by water as the critical point is approached. From
Norton and Knight (1977). With permission from American Journal of Science

Eq. (5.3.1). (In a dynamical natural system, however, there are moderation effects
to fluid flow and its thermal evolution towards the critical point.)

Numerical simulations of heat transfer show that near-critical conditions are
indeed realized near the margin of a shallow granitic intrusion in the earth’s crust
and in portions of the immediately overlying rock (Norton and Hulen, 2001). This
is illustrated (Fig. 5.6) in a numerical simulation of pressure versus enthalpy evo-
lution of H2O near the margin and in the lithocap of a granite pluton (Norton and
Hulen, 2001; Norton, personal comunication). In this simulation, the dots within a
trajectory of fluid evolution represent time steps, with the time gap between any
two successive dots being 50 ky. For the location 1 near the margin of the pluton,
the fluid achieves near-critical condition after ∼250 ky and persists at such condition
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Fig. 5.6 Pressure vs Enthalpy changes of water as a function of time at three locations within
and around a granite pluton. The location 1 is within the pluton, and the locations 2 and 3 are in
the lithocap, as shown in the inset. The separation between two successive dots within the fluid
evolution trajectory represents a 50 ky time step. The dashed lines represent density of H2O. Note
how the temperature of H2O at locations 1 and 2 evolve towards the critical point, CP. From Norton
and Hulen (2001); modified by Norton (personal communication). With permission from Elsevier

for ∼50 ky. During this period, energy is very rapidly advected away by the fluid
from the pluton to the overlying rock. Near critical condition also persists for
∼50 ky at the location 2 in the lithocap. In addition to the very rapid dispersal of
energy, the solubilities of various chemical species in fluid are likely to be markedly
different during the period over which the fluid remains at super-critical condition
than when its P-T condition is significantly removed from it. We also note inciden-
tally, as should be evident from Eq. (5.3.3) and emphasized by Norton (2002), that
convective flows would initiate along steep margins of a pluton where the magnitude
of lateral temperature gradient, and hence of density gradient, is very high (note that
buoyancy force depends on the change of fluid density in a horizontal direction).

Figure 5.7 shows the variation of �(H2O) as function of time at a point slightly
to the right of the point 3 in the inset of Fig. 5.6, as calculated by Norton and
Dutrow (2001). The strong oscillatory behavior of � between 70,000 and 130,000
years is due to the fluctuations of state conditions as the fluid evolves through
conditions near the critical point during the above time frame, and reflects the
extreme sensitivity of � to changes of state conditions near the critical point.
Monitoring the fluctuations of � in the numerical simulation serves to display
the fluctuations of state conditions that result from feedback relations among the
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Fig. 5.7 Oscillations in the coefficient of thermal expansion, �, of water near the critical point in
a magma hydrothermal system. The oscillations are due to opening and closing of fractures in the
rock and extreme sensitivity of � to small variations of pressure From Norton and Dutrow (2001).
With permission from Elsevier

thermal transport processes and the force field that drives the fluid velocity (see
Norton and Dutrow, 2001, for further discussion).

5.4 Equations of State

An equation of state (EoS) usually refers to the relation among V, P and T of a
substance. The ideal gas equation, PV = nRT is the simplest example of such an
equation. Equations of states have variety of applications in the evaluation of ther-
modynamic behavior of substances at different state conditions. For example, in
order to evaluate the Gibbs energy of a substance at high pressure from a lower
pressure datum, one needs to integrate the relation dG = VdP at a constant temper-
ature (recall that dG = – SdT + VdP) for which V needs to be known as a function
of pressure at the temperature of interest. This integration is especially important
in geological and planetary problems where we need to perform phase equilibrium
calculations at high pressure involving solid, melt and gas phases. A polynomial fit
of the measured P-V-T relation is good for interpolation of the data, but by its very
nature, a polynomial relation can produce physically unacceptable behavior (such
as increase of volume with increasing pressure) on extrapolation beyond the range
of experimental data. This is illustrated in Fig. 5.8 by fitting the V-P relation of
olivine as a function pressure by a polynomial function and extrapolating it beyond
the range of experimental data. Therefore, the experimental data need to be fitted by
equations that have justifiable theoretical basis. We discuss below the development
of some of the equations of state for gas, solid and silicate melt that have been found
useful in the treatment of geological and geophysical problems.



5.4 Equations of State 103

0.75

0.80

0.85

0.90

0.95

1.00

0 10 20 30 40 50 60

P(GPa)

V
/V

o

Polynomial Fit

2nd order B-M EoS

Fig. 5.8 Fits to the experimentally determined P-V data of forsterite (source San Carlos, Arizona)
by a polynomial function (solid line), and by 2nd order Birch-Murnaghan equation of state (dashed
line), and extrapolations to higher pressures. Note that although the polynomial function fits the
experimental data better than the 2nd order B-M equation of state (EoS), it has physically unac-
ceptable extrapolation to higher pressure. The slight mismatch between the experimental data and
the fit by 2nd order B-M EoS suggests that the 3rd order B-M equation is a better model for these
data. The polynomial function: V/Vo = 1.0002–0.0073P + 8 × 10–5P2 with P in GPa. Ko for B-M
EoS: 87.67 GPa. Experimental data are from Robert Downs (personal communication)

5.4.1 Gas

5.4.1.1 van der Waals and Reduced Equations of State

The ideal gas EoS, PV = nRT, which followed from the works of Robert Boyle
(1627–1691), Jacques Charles (1776–1856), Amedeo Avogadro (1776–1856) and
Joseph Louis Gay Lussac (1778–1850), worked well in representing the P-V-T
relation of many gases at low pressure, usually up to a few bars. However, it does
not hold even in a crude way at significantly higher pressures. This is because ideal
gas equation does not consider atomic or molecular interactions within a gas, nor
the finite size of these entities. Also, calculation of the P-V relation of an ideal
gas does not lead to the qualitative features shown in Fig. 5.2 in that it is devoid
of any isotherm like Tc which shows a critical point (where both first and second
derivatives of P with respect to volume are zero), and any isotherm like T4 which
shows a domain containing a maximum and a minimum. Lack of these properties
implies that an ideal gas would not liquify – it would compress indefinitely. The
inter-molecular attraction reduces the pressure that a gas can exert, and the finite
size of gaseous molecules or atoms reduce the space available to the gas within an
enclosure. However, at sufficiently low pressure, the density of a gas becomes too
low for the volume excluded by the gaseous molecules (or atoms) as well the inter-
molecular attraction to have any significant effect. Thus, all non-ideal gas equations
should reduce to the ideal gas form as P → 0.
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The earliest and the simplest form of non-ideal EoS for gas is due to J. D. van
der Waals (1837–1923), who derived it as part of his doctoral dissertation, and is
known as the van der Waals equation. It accounts, in a simple way, for the effects of
molecular interaction and size, and is expressed as

P = nRT

V − nb
− n2a

V2
, (5.4.1a)

where n is the number of moles, and a and b are constants. The constant b is the
volume excluded by the molecules in a mole of gas so that (V – nb) is the effective
free volume available to the gas within a container of volume V, whereas the con-
stant a is related to the intermolecular attraction. Notice that in the above equation,
the intermolecular attraction reduces the pressure that a gas could exert, as expected.
The above equation can also be written in terms of molar volume, Vm, as

P = RT

Vm − b
− a

V2
m

(5.4.1b)

The van der Waals equation produces the qualitative features of P-V relation shown
in Fig. 5.2. In addition, it is possible to express the constants a and b for a gas in
terms of its critical parameters. This is done by setting the first and second deriva-
tives of pressure with respect to volume equal to zero at the critical condition, which
yield two relations between the constants a and b in terms of Tc and Vc that can be
solved to yield

Tc = 8a

27bR
,

Vc = 3nb or Vm(c) = 3b

On substitution in Eq. (5.4.1b), these relations yield

Pc = a

27b2
(5.4.2a)

so that

PcVm(c)

RTc
= 3

8
(5.4.2b)

Substitution of these relations in the van der Waals EoS, and rearrangement of terms
yield an equation of state in terms of the ratios P/Pc, V/Vc and T/Tc. These dimen-
sionless variables are called reduced variables, Pr, Vr and Tr, respectively.

P

Pc
= Pr;

T

Tc
= Tr;

V

Vc
= Vr (5.4.3a)

In terms of these reduced variables, van der Waals equation can be written as
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(
Pr + 3

V2
r

)
(3Vr − 1) = 8Tr (5.4.3b)

This equation, which is known as the reduced van der Waals equation of state,
shows that for all gases that follow van der Waals equation, the relationship among
the reduced variables is unique since these variables are dimensionless. Thus, using
Eq. (5.4.3b), one can specify any two reduced variables for a van der Waals gas
to obtain the third one, and from that determine its P-V-T relation if the critical
properties are known.

5.4.1.2 Principle of Corresponding States and Compressibility Factor

The representation of the P-V-T relations of gases in terms of the reduced variables
is known as the law of corresponding states, the implicit idea being that the behav-
ior of all gases expressed in this form should be very similar, as suggested by the
reduced van der Waals equation of state, Eq. (5.4.3b). This law was first proposed
by van der Waals in 1881. To examine the deviation from ideal gas behavior, and
also to see the validity of the corresponding state approach, it is customary to define
a dimensionless ratio, Z, as

Z = PVm

RT
(5.4.4)

This ratio is known as the compressibility factor, which obviously has a value of
unity for an ideal gas. Figure 5.9, which is modified from Su (1946), shows the Z
vs Pr relation at several values of Tr for a number of gases. The solid lines are not
least squares fits to the data but the average behavior of seven hydrocarbons. The
overall average deviation of the data in Fig. 5.9 from the solid lines is 1%. Thus, it is
evident that P-V-T relations of the gases with Z between 1.0 and 0.2 closely follow
the law of corresponding states.

5.4.1.3 Redlich-Kwong and Related Equations of State

As more data on the high pressure behavior of gases became available, the reduced
van der Waals equation of state failed to adequately represent their behavior. The
problem is especially severe at high pressures that are of geological interest. This
failure of van der Waals equation is illustrated in Fig. 5.10 by considering the prop-
erties of water at 0.1, 1 and 10 kbar pressures. Burnham et al. (1969) determined
the P-V-T relation of water up to 10 kbar and 1000◦C. An isothermal combination
of P-V data from this study was used to calculate the temperature according to Eq.
(5.4.3b) and compared with the experimental temperature. The gross deviation of
the actual behavior from the van der Waals type behavior is evident.

Despite its failure to predict P-V-T relation of gases at high pressure, the van der
Waals equation forms the basis of a more successful two parameter EoS, which is
due to Redlich and Kwong (1949), and is as follows.
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Fig. 5.9 Plot of the dimensionless compressibility factor, Z (= PVm/RT) vs reduced pressure, Pr,
at different values of the reduced temperature, Tr for a number of gases which closely obey van
der Waals equation of state. The solid lines show the average behavior of seven hydrocarbons.
Modified from Su (1946) by Kondepudi and Prigogine (1998). With permission from American
Chemical Society

P = RT

Vm − b
− a

Vm[Vm + b]
√

T
, (5.4.5)

A modified form of the Redlich-Kwong (RK) EoS was first introduced by Holloway
(1977) in the geological lierature, and since then a number of modifications of this
EoS have been proposed by different workers to model P-V-T relations of gases to
high P-T conditions. Most of these modifications, which are commonly referred to
as modified Redlich-Kwong or MRK equation of states, treat the a and b terms as
specific functions of temperature and pressure, respectively, instead of constants.
For example, Halbach and Chatterjee (1982) expressed a and b as

a(T) = A1 + A2T + A3

T
(5.4.6a)
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Fig. 5.10 Comparison of
temperatures calculated from
reduced van der Waals
equation of state Eq. (5.4.3)
with the experimental
temperatures for H2O of
given volumes at 0.1, 1.0 and
10.0 kb pressures. The dashed
line represents the line of
perfect agreement between
the calculated and
experimental temperatures.
The P-V-T data for H2O are
from Burnham et al. (1969)

100

300

500

700

900

100 300 500 700 900

T(C), Expt

T
(C

),
 v

an
 d

er
 W

aa
ls

0.1 kb 1 kb 

10 kb 

b(P) = 1 + B1P + B2P2 + B3P3

B4 + B5P + B6P2
(5.4.6b)

where the A and B parameters are constants. They derived values of these con-
stants from the experimentally measured P-V-T data of H2O up to 10 kb, 1000◦C
(Burnham et al., 1969), and thereby predicted the PVT properties of H2O up to
200 kb, 1000◦C. As illustrated in Fig. 5.11, the predicted volumes of H2O are in
excellent agreement with those derived from shock wave measurements at very high
pressure.

Evaluation of the Gibbs free energy of a substance at a certain pressure, P2, from
that at P1 requires evaluation of the integral of VdP between the limits P2 and P1.
Since we typically have P as f(V) instead of the reverse, the integration is carried out

Fig. 5.11 Comparison of the
shock wave data of H2O
(encircled points) with the
prediction from the MRK
equation of state developed
by Halbach and Chatterjee
(1982). From Chatterjee
(1991)
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by the standard method of integration by parts so that
∫

VdP can be evaluated from∫
PdV (evaluation of Gibbs free energy at high pressures using equations of states,

P = f(V,T), is discussed in Sect. 6.8). Recognizing the difficulty of analytical inte-
gration of PdV when the parameter b in an MRK formulation becomes a complex
function of P, Holland and Powell (1991) proposed the following method of treat-
ment of a modified Redlich-Kwong equation of state. They found that if the term b
is held constant, then the measured volume diverges from that predicted by an MRK
equation above a threshold pressure Po, and that this divergence can be represented
by an equation of the form

Vm = Vmrk
m +

[
c
√

(P − Po) + d(P − Po)
]

(5.4.7)

where c and d are functions of temperature, and Vmrk is the volume calculated from
an MRK equation of state with constant b. Holland and Powell (1991) called this
compensated Redlich-Kwong or CORK, and showed that this form works well in
the P-T range of 1 bar to 50 kbar and 100–1600◦C.

Holland and Powell (1991) expressed the parameters a, b, c, d in terms of some
constants with specific values and the critical temperature, Tc, and critical pressure,
Pc, so that these parameters can be used for different types of gases, which conform
to the principle of corresponding states.

a = ao
T5/2

c

Pc
+ a1

T3/2
c

Pc
T

with ao = 5.45963× 10–5, a1 = –8.63920× 10–6 with the unit of a in kJ2kbar–1mol–2.
This relation can be used to explicitly express the parameter a as a function of
temperature for any gas by substituting its Tc and Pc values. Evaluation of Gibbs
free energy of gas at high pressure using the CORK formulation is discussed in
Sect. 6.8.3.

For gaseous mixtures, Redlich and Kwong (1949) proposed the following mix-
ing rules:

a =
∑

i

∑
j

XiXjaij (5.4.8a)

and

b =
∑

i

Xibi (5.4.8b)

where Xi is the mole fraction of the gaseous species i and aij is a cross coefficient, the
nature of which depends on the nature of the gas molecules, whether these are polar
(e.g. H2O) or non-polar (e.g. CO2). For unlike nonpolar molecules, aij represents the
geometric mean of the a parameters, i.e.
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aij = (aiaj)
1/2 (5.4.9)

For a mixture involving polar molecules, the cross coefficient should contain terms
that account for the formation of complexes. Thus, for example, for the geologically
most important fluids H2O and CO2, the cross coefficient can be expressed as
(Flowers, 1979)

aij = (ao
H2Oao

CO2
)1/2 + 0.5R2T5/2K (5.4.10)

where K is the equilibrium constant of the reaction

H2O + CO2 = H2CO3

5.4.1.4 Virial and Virial-Type EoS

Since all gases must behave ideally at sufficiently low pressures, one may express
the compressibility factor Z Eq. (5.4.4) as a function of P such that Z = 1 as P → 0.
As an example,

Z(P,T) = 1 + BP + CP2 + DP3 + . . . . . . . (5.4.11)

This type of equation is known as a Virial equation of state. The coefficients of P in
the above equation have theoretical significance in terms of statistical mechanics in
that the terms B, C, D etc. represent successive contributions to N-body interactions
(two, three, four etc.) to the deviation from ideal gas behavior. These interactions
can, in principle, be calculated from models of molecular interactions, and therein
lies one of the appeals of Virial EoS.

The virial equations of state fail for many gases of geological interest, especially
at high pressure. Saxena and Fei (1987) found that an EoS of the same form as the
virial EoS to be quite successful in fitting the PVT data of gases at high pressures, if
the unity in the above equation is replaced by a temperature dependent term A(T),
and the coefficients of P (i.e. B, C, D etc.) are treated as functions of pressure.

Z(P,T) = A(T) + BP + CP2 + DP3 + . . . . . . . (5.4.12)

With EoS of this form, which we would refer to as the Virial-type EoS, it is nec-
essary to break up the data for a given fluid species into different pressure regimes,
and then treat the data within each pressure regime separately. Saxena and Fei
(1987) were successful in treating the data for a number of molecular species by
considering three pressure regimes, <1 kbar, 1–10 kbar and >10 kbar, each with its
own values of the coefficients. This virial-type EoS will, of course, fail at very low
pressures since it does not reduce to the ideal gas law as P → 0.

Belonoshko and Saxena (1991, 1992) estimated the volumes of several geolog-
ically important fluid species, H2O, CO2, CH4, CO, O2, H2O, at P-T conditions
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up to 1 Mbar and 4000 K by molecular dynamic (MD) simulation. They treated
the results from the MD simulation as if these were experimental data (“computer
experiments”) and combined these with the available (conventional) experimental
data at lower P-T conditions to develop an EoS for dense fluids. They found that the
entire set of data above 5 kbar can be fitted quite well by a simple virial-type EoS of
the form

P = a

V
+ b

V2
+ c

Vm
(5.4.13)

where

a =
(

a1 + a2
T

1000

)
× 104

b =
(

b1 + b2
T

1000

)
× 106

c =
(

c1 + c2
T

1000

)
× 109

and a1, a2, b1, b2, c1, c2, and m are constants, with the units of a, b and c being
kb-cm3, kb-cm2 and kb-cmm, respectively. The above equation is an extension of
an EoS that was proposed by Tait (1889) and revived, nearly hundred years later, by
Spiridonov and Kvasov (1986). The values of the constants in the above equation for
fluid species of common geological interest, namely, H2O, CO2, CH4, CO, O2 and
H2, are given by Belonoshko and Saxena (1992), and are valid within specified range
of pressure (5 kbar-1 Mbar) and temperature (700–4000 K for H2O and 400–4000 K
for other species). Use of these values along with V in cm3/mol yields P in bars.
Upon comparing the volumes of dense fluids calculated from their EoS parameters
with the available experimental data, these authors concluded that their EoS with the
associated parameters reproduce experimental data with a maximum error of 5–6%.

Pitzer and Sterner (1994) developed equations of state for H2O and CO2 that
are continuously valid over extremely wide range of pressure, 0–10 GPa, and
temperature from below the critical temperature to 2000 K. A particular advantage
of their equation of state is that, because of the continuity of P-V-T relation over
extremely large range, these EoS can be differentiated and integrated to yield other
thermodynamic quantities without the need to avoid some specific P-T conditions
at which the functions become discontinuous. For example, calculation of fugacity
of a species at a pressure P′ requires evaluation of the integral

∫
VdP between a

very low pressure, at which fugacity becomes equal to pressure, to P′ Eq. (3.6.9). In
this case, it is advantageous to have P-V relation that is continuous over the desired
range of pressure. If there is a discontinuity, as in the case of Belonoshko-Saxena
EoS, because it is not valid below certain pressure, then the integral needs to be
broken up into different pressure ranges within each of which a P-V relation is valid
and continuous. Detail discussion of the Pitzer-Sterner EoS is beyond the scope of
this section, but the EoS is linked to an online fugacity calculator for water.
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5.4.2 Solid and Melt

The equations of state discussed in this section were initially derived for solids, but
have been found to be useful also for melts. Of the two types of equations that are
discussed below, the Vinet equation of state is likely to work better for melts and at
high compression (>25%) for solids.

5.4.2.1 Birch-Murnaghan Equations

For solids at high pressures that are appropriate to the study of the properties of
the Earth’s interior, the most widely used EoS are those due to Birch (1952), which
are based on the theory of finite strain developed by Murnaghan (1937). These are
commonly referred to as the Birch-Murnaghan equations of states. Birch (1952)
showed that the strain, ∈ and volume V or density � are related according to

Vo

V(P)
= �(P)

�o
= (1 − 2 ∈)3/2 = (1 + 2f)3/2 (5.4.14)

where the subrscript o refers to the zero pressure condition, and f(=−∈) was intro-
duced as a more convenient variable, being always positive for compression. For
compression, Vo/V(P) > 0 and this requires f > 0.

In order to relate pressure and volume at constant temperature, we need to
deal with Helmholtz free energy, F, which relates these two variables according to
P = − (�F/�V)T Eq. (3.1.9). Using chain rule, we then relate P to f as

P = −
(
�F

�V

)
T

= −
(
�F

�f

)
T

(
�f

�V

)
T

(5.4.15)

Rewriting Eq. (5.4.14) as V/Vo = (1 + 2f)–3/2 and differentiating both sides at con-
stant temperature, we get

(
�V

Vo

)
T

= − 3

(1 + 2f)5/2
�f

so that
(
�f

�V

)
T

= − 1

3Vo
(1 + 2f)5/2 (5.4.16)

We now need to find an expression for the first derivative term on the right hand side
of Eq. (5.4.15) to be able to express P in terms of volume or density. Birch (1952)
expressed F as a polynomial function of compression, f,

F = af2 + bf3 + cf 4 + . . . . . . . (5.4.17)

(Note the unusual nature of this power series expression in that it does not contain a
constant term and a first order term in f, say Fo and f respectively. We would show
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at the end of this section how these two terms vanish.) Assuming that the terms
higher than second order in f are insignificant, a condition that would prevail for
small values of f (i.e. small compression), we have

(
�F

�f

)
T

= 2af (5.4.18)

The next step is to expressx a and f in terms of the volume or density of the
substance. This is the most tricky step in the derivation of final expression for
the equation of state. With this objective in mind, we first rewrite Eq. (5.4.14) as
V(P)/Vo = (1 + 2f)–3/2 and expand the right hand side in a binomial series1 to yield,
for small values of f,

V

Vo
= (1 − 3f)

so that

�V

Vo
= −3f (5.4.19)

where �V = V – Vo.
Now, from the definition of isothermal bulk modulus, kT, (Eq. (3.7.2), with kT =

1/T), we have,

lim P→0 kT ≡ kT,o = −Vo

(
�P

�V

)
T

= −Vo
P

�V

(5.4.20)

where kT,o is the isothermal bulk modulus at zero pressure (in other words, it is the
inverse of the slope of the V vs P curve at a fixed temperature at P = 0: see Fig. 3.4).
Note that in the above equation, we have replaced �P by �P = P – 0 = P and �V
by �V. This is because within a small interval, the derivatives can be represented by
finite differences. On substitution of the expression of P, as given by Eq. (5.4.15),
into the above equation,

kT,o = Vo

�V

(
�F

�f

)
T

(
�f

�V

)
T

(5.4.21)

For small compression, the first derivative term on the right is given by Eq. (5.4.18)
whereas the second one can be obtained from Eq. (5.4.19) as (�f/�V) = –1/3(Vo).
(Here we are talking about “small compression” since we are dealing with kT,o.)
Substitution of these relations into Eq. (5.4.21), and replacing f by –�V/3 Vo accord-
ing to Eq. (5.4.19), we obtain the important relation

1When m is a real number, the term (1 + x)n can be expressed, according to binomial series, as

(1 + x)n = 1 + nx + n(n − 1)

2!
x2 + n(n − 1)(n − 2)

3!
x3 + · · ··
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a = 9

2

(
kT,oVo

)
, (5.4.22)

(Note that in deriving this equation, we used (�f/�V) = –1/3(Vo), which is valid only
for small compression. The expression of (�f/�V) in Eq. (5.4.16) is not restricted to
small compression, but it obviously reduces to –1/3(Vo) when this restriction is
imposed.)

Combination of Eqs. (5.4.18) and (5.4.22) yields
(
�F

�f

)
T

= 9kT,oVof (5.4.23)

Substitution of this equation and Eq. (5.4.16) into Eq. (5.4.15) yields

P = 3kT,o f(1 + 2f)5/2, (5.4.24)

Expressing now f and (1 + 2f) in terms of �/�o according to Eq. (5.4.14), we obtain
the desired relation between pressure and density at a fixed temperature:

P = 3kT,o

2

[(
�

�o

)7/3

−
(
�

�o

)5/3
]

(5.4.25)

This is known as the second-order Birch-Murnaghan (B-M) EoS, since it was
obtained by truncating the expression of Helmholtz free energy, F, after the sec-
ond power of compression, f Eq. (5.4.17). Figure 5.8 shows the fit to the P-V data
of olivine using the 2 nd order B-M equation of state, and extrapolation to higher
pressure.

If the polynomial of F is truncated after the cubic term, then one obtains, after
even more tedious manipulations, the so-called third-order B-M EoS, as

P = 3kT,o

2

[(
�

�o

)7/3

−
(
�

�o

)5/3
] {

1 + �

[(
�

�o

)2/3

− 1

]}
, (5.4.26)

where

� = 3

4
(k′

T,o − 4),

with k′
T,o being the pressure derivative of the bulk modulus at P = 0 (i.e. (�ko/�P)T).

Both second and third order EoS have been used extensively in the geophysical
literature.

It is easy to see, upon comparing the last two equations, that the third-order B-M
equations of state reduces to the second-order form when k′

T,o = 4. Thus, when a
set of compressibility data are fitted by the second-order EoS, one should check
the value of ko

′ obtained from the fitted relation. If it deviates significantly from 4,
then the second order form is an inadequate model to fit the data, even when it fits
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the experimental data adequately, and is likely to yield erroneous volume data on
extrapolation.

The justification of the polynomial expression of the Helmoltz energy
Eq. (5.4.17) used by Birch can be seen as follows. If F is expressed according to
a Taylor series expansion (Appendix B.6) around f = 0, then

F = Fo + f + af2 + bf3 + cf4 + . . . . . . (5.4.27)

or

�F

�f
= + 2af + 3bf2 + 4cf3 . . . . . . (5.4.28)

where Fo = F(f = 0) and the coefficients of f are constants (being related to the
successively higher order derivatives of F with respect to f). Now for f = 0, we have
dF/df = . However, since F must be at a minimum under equilibrium condition, we
must have  = 0 at equilibrium. Thus, F – Fo = af2 + bf3 + cf 4 + ...... The appearance
of an Fo term in the expression of F does not alter the result for (dF/df) that is needed
to develop the expression of P in terms of V or � Eq. (5.4.15), since Fo is a constant.
However, strictly speaking what Birch wrote as the Helmholtz free energy, F, is in
fact (F – Fo).

5.4.2.2 Vinet Equation of State

Vinet et al. (1987, 1986) discovered that although the nature of interatomic interac-
tions in different types of solids can be widely different, which would seem to pre-
clude a common description of their energetic properties, the isothermal equations
of states of various classes of solids can still be expected to follow a universal form.
They derived this universal form by considering interactions at the atomic level, and
showed that it works better than the popular Birch-Murnaghan EoS, especially when
the compression exceeds 25% of the initial volume. Thus, there now seems to be a
shift of preference from B-M to Vinet EoS in the geophysical community dealing
with very high pressure behavior of rocks and melt (e.g. Anderson and Isaak, 2000).
Like the Birch-Murnaghan EoS, there are also different orders of the EoS due to
Vinet et al. However, a third order form seems to be adequate to represent V-P
properties of materials of geological interest.2 With � = V/Vo, the third order Vinet
EoS can be expressed as follows.

P(�) = 3k o
(1 − �1/3)

�2/3
exp

[
3

2
(k′

o − 1)(1 − �1/3)

]
(5.4.29)

2Ghiorso (2004) has shown that there is a region in the P-T space that is sometimes accessed by
silicate melts owing to their high values of � at which the Vinet EoS suffers from the problem of
mathematical singularity. He has, thus, proposed a new EoS that does not suffer from the limitation
of singular behavior of the Vinet EoS, and applied that to treat the thermodynamic properties of
silicate melt.



Chapter 6
Phase Transitions, Melting and Reactions
of Stoichiometric Phases

In this chapter we discuss briefly the phenomenon of solid state phase transitions
in which one substance transforms to a different one of the same composition but
different symmetry property, with or without redistribution of atoms within the dif-
ferent crystallographic sites or change of ordering state. This is followed by the
development of thermodynamic formulations for calculations of equilibrium con-
ditions of heterogeneous reactions involving phases of fixed compositions or stoi-
chiometric phases. The analogous problems involving solutions are discussed later
(Chap. 10) after the development of the formalisms that are required to treat the
thermodynamic properties of solutions.

6.1 Gibbs Phase Rule: Preliminaries

Any discussion of phase transformation or phase equilibrium should be preceded
by a discussion of what is known as the Gibbs Phase Rule, or simply the Phase
Rule, which determines the number of intensive variables that can be varied inde-
pendently in a system, the latter being anything under observation. The derivation
of Phase Rule is presented in Sect. 10.3, but here we state what it is, and emphasize
the main points about its properties and applications so that these points are not lost
in the formalities of derivation. Besides, an appreciation of phase rule is needed for
the concepts developed in this chapter.

A phase is defined to be a substance that is spatially uniform at the macroscopic
scale and is physically distinct from its surroundings in a system. A homogeneous
liquid, or a gas or a mineral (but not different grains of the same mineral) constitute
different phases. In the sense of Phase Rule, the number of components has a special
meaning in that it is the smallest number of chemical species that is required to
express the compositions of all the phases in the system. The choice of the compo-
nents, however, is not unique, and is usually a matter of convenience, but by defini-
tion, the number of components in a system is unique. As an example, let us consider
an assemblage of three phases, albite (NaAlSi3O8), jadeite (NaAlSi2O6) and quartz
(SiO2). Here we need only two components to express the compositions of all three
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phases. There are, however, three different ways to choose the two components, viz.,
(a) NaAlSi2O6 and SiO2, (b) NaAlSi3O8 and NaAlSi2O6, and (c) NaAlSi3O8 and
SiO2. We can use any of these sets of two components to express the compositions of
all three phases by appropriate linear combinations, but two is the minimum number
of chemical species that are needed to express the compositions of all three phases.
One can, of course, express the compositions of three phases by linear combinations
of the oxides Na2O, Al2O3 and SiO2, but these are not components in the sense of
Phase Rule since it involves more species than the minimum needed to express the
compositions of all phases in the system.

With the above definition of components, and assuming that (a) the system is at
equilibrium (that requires uniformity of temperature and lack of any tendency of
chemical mass transfer) and (b) all phases are subjected to a uniform pressure, the
phase rule is stated as follows:

F = C − P + 2, (6.1.1)

where F stands for degrees of freedom in the system, which means the number of
intensive variables that can be varied independently, P stands for the number of
phases and C stands for the number of components. In the assemblage of albite,
jadeite and quartz, there are only two intensive variables, namely pressure (P) and
temperature (T) that can affect the stability of the phases. But from the phase rule,
F = 1 (since P = 3 and C = 2), which means that we can vary either pressure or
temperature, but not both, as long as all three phases are present in the system, and
are in equilibrium; the variation of one intensive variable depends on that of the
other. This is also stated by saying that the reaction albite = jadeite + quatz is uni-
variant, and this is why the equilibrium stability fields of albite and of jadeite plus
quartz must be separated by a line, and not by a domain, in the P-T space, as long
as none of the minerals have additional components in solid solution, such as anor-
thite (CaAl2Si2O8) that dissolves in albite to form plageoclase feldspar or diopside
(CaMgSi2O6) that dissolves in jadeite to form jadeitic clinopyroxene. Figure 6.1
shows the experimentally determined location of the univariant equilibrium. The sta-
bilities of albite and of jadeite plus quartz are confined within two different divariant
P-T fields within which both P and T may be varied independently within certain
limits. Note that when we are dealing with the stability of albite alone, F = 2 because
C = 1 (we need only one component, NaAlSi3O8, to express the composition of
stoichiometric albite).

6.2 Phase Transformations and Polymorphism

Transformations of a compound between structures of different crystallographic
symmetries or states of matter are known as phase transformations. The phe-
nomenon of the existence of different crystallographic structures for the same com-
pound (e.g. kyanite, sillimanite and andalusite) is known as polymorphism. In this
section we would first discuss classification of phase transformations, and then a
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Fig. 6.1 P-T location of the univariant equilibrium High Albite = Jadeite + Quartz, as determined
experimentally by Holland (1980). The filled symbols indicate growth of high albite at the expense
of jadeite plus quartz, whereas the open symbols indicate the reverse reaction. High albite is a high
temperature polymorph of albite in which Al and Si are disordered over four tetrahedral positions
(see Problem 2.3)

special class of phase transformation, namely that accompanied by a change of
ordering parameters in solid.

6.2.1 Thermodynamic Classification of Phase Transformations

There are different types of classification of phase transformation in solids. A com-

We discuss here the classification proposed by Ehrenfest (1933) on the basis of
changes of thermodynamic properties at the transition condition. According to this
scheme, a phase transformation is said to be first order, second order or higher
order depending on whether the discontinuities first appear in the first, second or
higher derivatives of the Gibbs energy, G, with respect to pressure and tempera-
ture at the transition condition. Thus, in a first order transformation, discontinu-
ities appear in entropy and volume, which are first derivatives of G with respect
to temperature and pressure, respectively (�G/�T = –S; �G/�P = V), whereas in
a second order transition, the first derivatives are continuous but discontinuities
appear in their derivatives (or in the second derivatives of G), that is in CP, � and
, at the transition condition (Fig. 6.2). Since at equilibrium �H = T�S, the dis-
continuity in entropy in the first-order transition also implies discontinuous change
of enthalpy. At the first order transition temperature Cp becomes infinite, since
Cp = �H/�T, and the absorption or liberation of heat does not cause any change
of temperature until the transition is complete. No transformation of higher than

prehensive review of these classifications can be found in Oganov et al. (2002).
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∞

Fig. 6.2 Schematic illustration of the nature of change of some thermodynamic properties as func-
tion of temperature in first- and second-order phase transitions. A Change of Gibbs free energies of
two phases related by first-order transition. B, C Change of first-derivatives of Gm (i.e. Sm and Vm)
and of a second derivative of Gm, namely CP, at the first-order and second-order phase transitions.
D Change of a long range order parameter, �, for the two types of transitions

second order has yet been established, but possible examples have been discussed by
Pippard (1957).

A second order transition may change to a first order transition with the change
of state conditions. The point in the P-T space where this transition from the second
to the first order behavior takes place is known as the tricritical point. An ordinary
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Fig. 6.3 Change of heat
capacity, CP, of quartz
through alpha/beta transition
showing a � type behavior.
From Richet (2001). With
permission from
Academic/plenum publishers

critical point (see Sect. 5.1) cannot exist in a second order phase transition since
it separates phases of two different symmetries, but a tricritical point is somewhat
analogous to an ordinary critical point in that the first derivative properties of G
(volume, enthalpy and entropy) change discontinuously on one side of the point
across the phase boundary, and change continuously beyond the termination of this
boundary at the tricritical point.

Most polymorphic transformations that we commonly encounter, such as
kyanite/sillimanite/andalusite (Al2SiO5), calcite/aragonite (CaCO3), quartz/coesite/
stishovite (SiO2), graphite/diamond (C), are first order in nature. Proven second
order transformations in the sense of Ehrenfest’s original description of a discon-
tinuity of the second derivative of Gibbs energy at the transition point, while the
first derivatives are continuous, are extremely rare. Superconducting transition of
tin at zero magnetic field, which shows a finite discontinuity of CP between normal
and superconducting tin (Keesom and van Laar, 1938) at the transition temperature,
represents an example of this very rare type of phase transition. Carpenter (1980)
suggested that the phase transformation of omphacite (sodic clino-pyroxene solid
solution) from P2/n to C2/c space group is likely to be second order.

Phase transformations sometimes show a �-shaped behavior of CP around the
transition temperature, as illustrated in Fig. 6.3 for the transition of SiO2 from
�-quartz (trigonal) to -quartz (hexagonal). This type of transition is neither
first-order nor second-order. Because of the shape of the CP function, these are
called lamda transitions. Some other examples of lamda transitions are the onset
of ferromagnetism in paramagnetic substances, onset of ferroelectricity and onset
of superfluidity in liquid helium.

6.3 Landau Theory of Phase Transition

6.3.1 General Outline

In a second order phase transformation, one or more properties of the phases change
smoothly between the low temperature and high temperature forms. For example,
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the state of atomic ordering or the orientation of an atomic group or the unit
cell parameters or the atomic positions may change continuously between the low
temperature and high temperature phases. Lev Landau (1908–1968, Nobel prize;
1962) in 1937 developed an important phenomenological theory, which is com-
monly referred to as the Landau theory, to deal with the Gibbs energy change of the
phases involved in these types of phase transitions. This theory has been applied to
many mineralogical problems, especially by the Cambridge school of mineralogy
(e.g. Carpenter, 1985, 1987; Salje, 1990; Putnis, 1992). A brief outline of the basic
structure of the theory is discussed below. For more expanded treatments, the inter-
ested readers should consult the above references and Landau and Lifshitz (1958).

In the Landau theory, one defines an order parameter, �, such that it has a value
of zero for the high temperature and a non-zero positive or negative value for the
low temperature phase. In a second order phase transition � increases or decreases
smoothly from zero as the temperature decreases below the transition temperature,
Ttr. For example, in an AB alloy, (e.g. CuZn or brass), which becomes completely
disordered at Ttr, one can define a configurational order parameter to describe the
distribution of the atoms among the lattice sites � and  as

� = X�
A − X�

B (6.3.1)

where X defines the atomic fraction of the specified species in the lattice site �.
Let us say that � is the site preferred by the atom A when the phase is ordered (in
which case  is the lattice site preferred by the atom B). If the phase is completely
disordered, XA

� = XB
�, in which case � = 0. If the phase is completely ordered,

then XA
� = 1 and XB

� = 0, so that � = 1. For an intermediate state of ordering �
has values between 0 and 1. Note that � depends on the average compositions of
the lattice sites in the crystal, which may be different from the composition within
a small domain within the crystal lattice. Thus, � is a long range order parameter.
Landau theory deals only with long range order parameters, and thus falls in the
class of mean field theory in that it deals with the average or mean behavior and
ignores local fluctuations. It fails very close to the transition condition where local
fluctuations are large. This domain of large fluctuations is known as the Ginzberg
interval. (Ginzberg received Nobel prize in Physics in 2003 for his theoretical con-
tribution, in collaboration with Landau, to the understanding of the superconducting
state. The Ginzberg-Landau theory has its origin in Landau’s approach to second
order phase transformation.)

Landau assumed that near a transition point where � = 0, the Gibbs energy may
be expressed as a power series of � as

G(�) = Go + ��+ A�2 + B�3 + C�4 + D�5 + . . . . . . (6.3.2a)

where Go = G(�= 0). This expression of Gibbs energy is often referred to as the
Landau potential. (One would notice that this expression is formally similar to
the power series expansion of Helmoholtz free energy, F, around the state of zero
strain (Eq. (5.4.27)) that was used to derive the Birch-Murnaghan equation of state
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in Sect. 5.4.2) It should be easy to see that the Landau potential represents a Taylor
series expansion of G around � = 0 (Appendix B.6), and thus the coefficients of
� represent successively higher order derivatives of G with respect to � (e.g. � =
�G/��, A = (�G/��)2, and so on). Consequently, since a second order transition
point represents a singularity, the above power series expansion of G can not be
carried out to arbitrarily high orders since the n th order coefficient of � requires
that G is differentiable up to that order. The power series form of G is also often
expressed as

G(�) = Go + ��+ 1

2
A′�2 + 1

3
B′�3 + 1

4
C′�4 + 1

5
D′�5 + . . . . . . (6.3.2b)

in order to get rid of the numerical coefficients when G is differentiated with respect
to �.

Landau derived constraints on the values of the coefficients of � on the basis of
the thermodynamic stability criteria of the high temperature (� = 0) and the low
temperature (� 
= 0) phases, and the stability of the transition point itself. For a
detailed discussion of these procedures, the reader is referred to Landau and Lifshitz
(1958). We present below some of the important results and later illustrate by simple
examples how the property of a coefficient of � could be constrained from the sta-
bility conditions, and also how a non-zero value of an odd order coefficient makes
second order phase transition impossible.

The main results about the properties of the expansion coefficients and their
relationship with the order of phase transitions are as follows.

(a) The linear term, i.e. �, must vanish. This conclusion follows from the fact that
at � = 0, (�G/��) = �, but the stability of the completely disordered phase (i.e.
minimum of G) requires this derivative to be zero.

(b) The second order coefficient A has the property that it must be positive and neg-
ative respectively above and below a specific temperature, Ti, and consequently
must vanish at Ti. In other words

A = a(T − Ti), with a > 0 (6.3.3)

(c) If the expression of G contains an odd order term, i.e. B, D etc., then the phase
transition must be first order (which is characterized by two values of the order
parameter at the transition condition, one being 0).

(d) A second order transition requires the power series expansion of G to have only
even order terms. However, assuming that an expansion of G up to 5 th order is
adequate, the fourth order coefficient, C, must be positive for the transition to
be of second order.

(e) A first order transition is possible even when the expression of G has only even
order terms if the second order coefficient A > 0, the fourth order coefficient
C < 0, and there is a sixth order term, E�6, with E > 0.

(f) For the last two cases, a G vs � curves for � < 0 is a mirror image of that with
� > 0 with the same values of the expansion coefficients.
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(g) If the odd coefficients are zero, and the fourth order coefficient C = 0, which
represents the intermediate case between the first order (C < 0) and second
order (C > 0) transitions, then we have the tricritical condition. In this case, a
positive sixth order term (i.e. E > 0) is required to obtain a minimum of G as a
function of �. Thus, for condition around a tricritical transition

G(P, T,�) = Go + A�2 + E�6, E > 0 (6.3.4)

(h) For second order and tricritical phase transition, Ti equals the transition tem-
perature, Ttr, itself, whereas for first order phase transition, Ti could be greater
than Ttr.

Although all coefficients in the power series expansion of G are, in principle, func-
tion of temperature at a given pressure, it is usually found to be adequate to treat
only the second order coefficient, A, as a function of temperature, according to the
form of Eq. (6.3.3). In the same spirit, only A is usually considered to be affected
by pressure change. There is, however, no theoretical requirement on the nature
of pressure dependence of A. The simplest alternative is to assume that A varies
linearly with pressure.

A crystal may have more than one type of order parameter. For example, the min-
eral albite, NaAlSi3O8, undergoes a displacive transition from a monoclinic (C2/m:
high temperature) to triclinic (C: low temperature) symmetry at low temperature.
In alkali feldspar of composition (Na0.69K0.31)AlSi3O8 this transition takes place at
∼415–450 K (Salje, 1988). But the distribution of Al and Si over the four types
of tetrahedral sites, namely (T1(O), T1(m), T2(O) and T2(m)), also changes with
decreasing temperature, with Al being progressively more ordered to the T1(O) site.
Thus, there are two order parameters involved in two types of processes. However,
these two processes are not independent because both affect the unit cell dimension
of the crystal. It is possible to incorporate different order parameters describing
different types of processes, and their couplings, in the Landau potential. Compre-
hensive discussions of this topic can be found in Salje (1988) and Putnis (1992).
As an example, the Gibbs energy of albite incorporating the displacive and (Al,Si)
ordering effects can be expressed as the sum of two power series in terms of two
ordering parameters, �d and �conf, and their couplings, as follows (Putnis, 1992)

G(�d, �conf) = Go + [A1(�conf)
2 + C2(�conf)

4 + E1(�conf)
6 + . . . ..]

+ [A2(�d)2 + C2(�d)4 + E2(�d)6 + . . . .]

+ λ(�conf)(�d)

(6.3.5)

It can be shown (Salje, 1988; Putnis, 1992) that as a consequence of the order
parameter coupling, there is only one phase transition in which both order parame-
ters participate, instead of two phase transitions, and the stability field of the lower
temperature triclinic form is expanded relative to what it would have been in the
absence of Al-Si disordering.
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Using mathematical arguments from group theory, Landau derived some
important results on the relationships between the symmetry properties of the low
and high temperature phases in a second order transition. The derivation of the
results is discussed in Landau and Lifshitz (1958). The main results are summarized
below.

(a) For a second order transition, the symmetries of the two phases must be inter-
related, with the high temperature phase having all the symmetry elements of
the lower temperature phase and some extra elements as well. In group theo-
retical language, the symmetry group of the low temperature phase must be a
sub-group of the symmetry group of the higher temperature phase. There is no
requirement of any relation between the symmetry groups of the two phases in
the first order transition.

(b) A second order phase transformation is possible when the number of symmetry
elements of the low temperature phase is half those of the high temperature
phase, and is impossible when the reduction factor is three.

Notice that the symmetry arguments do not tell if a second order phase transforma-
tion will take place, but provide the permissive criterion for such phase transforma-
tions, and tell us when a second order phase transformation is impossible.

6.3.2 Derivation of Constraints on the Second Order Coefficient

For the purpose of illustration of the point that the thermodynamic stability condi-
tions indeed impose restrictions on the properties of the coefficients in the expansion
of G in terms of � Eq. (6.3.2), let us derive the property of the coefficient A in a
solid that undergoes a second order transition. Now for a second order transition
there are only even order terms in the expression of G, and the terms higher than the
fourth order are negligible. Thus, since G must be at a minimum when equilibrium
is achieved at a P-T condition, we have from Eq. (6.3.2a)

(
�G

��

)
P,T

= 2A�+ 4C�3 = 0 (6.3.6)

and

(
�2G

��2

)
P,T

= 2A + 12C�2 > 0 (6.3.7)

For the coefficient A, it is easy to see that A > 0 for the high temperature phase
(� = 0) in order to satisfy Eq. (6.3.7). For the low temperature phase (� 
= 0), the
first stability condition leads to the relation 2C�2 = – A, which on substitution in
Eq. (6.2.7) leads to – 4A > 0. Consequently A < 0 at T < Ttr. Now since A > 0 at
T > Ttr, and A < 0 at T < Ttr, we must have A = 0 at T = Ttr, thus conforming to
Eq. (6.3.3).
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6.3.3 Effect of Odd Order Coefficient on Phase Transition

To see how the presence of odd order coefficient in the G vs � relation leads to a
first order transition (i.e. two � values at the minimum of G), let us assume, for
the sake of simplicity, that expansions up to 4 th order is adequate to represent G
as a function of � near the transition temperature. At equilibrium, we have at the
transition temperature Ttr,

dG

d�
= 0 = 2A�+ 3B�2 + 4C�3

or

4C�2 + 3B�+ 2A = 0

which yields

� = −3B ± (9B2 − 32AC)1/2

8C
(6.3.8)

Thus, there are two solutions for � at the transition temperature. Since one of the
solutions must be � = 0 (a property required for the high temperature phase), we
have AC = 0. Consequently, the other solution is � = –3B/(4C).

6.3.4 Order Parameter vs. Temperature: Second Order
and Tricritical Transformations

It is now instructive to derive the dependence of the order parameter on temperature
near the transition temperature in second order and tricritical transitions. Combining
Eqs. (6.3.3) and (6.3.6), we have for a second order transition (for which Ti = Ttr)

� =
[ a

2C
(Ttr − T)

]1/2
(6.3.9)

If the order parameter is so defined that it has a maximum value of unity, we can
write � = 1 at T = 0, so that

Ttr = 2C

a
(6.3.10)

in which case Eq. (6.3.9) reduces to

� =
(

1 − T

Ttr

)1/2

(6.3.11)

Now for a tricritical transition, we recall that the odd order coefficients and the
fourth order coefficient (C) are zero, and E > 0 (Eq. (6.3.4)). Thus, the minimization
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of G in Eq. (6.3.2a) with respect to � and substitution of Eq. (6.3.3) yields a(T – Ttr)
+ 3E�4 = 0. Consequently,

� =
[ a

3E
(Ttr − T)

]1/4
(6.3.12)

Again if the value of � is unity in the most ordered state (T = 0), then

Ttr = 3E

a
(6.3.13)

in which case

� =
(

1 − T

Ttr

)1/4

(6.3.14)

Within the framework of Landau theory, it is thus possible to determine the nature of
the phase transition by following the behavior of the order parameter, �, as function
of T. The exponents of (1 – T/Ttr) in the above expressions of � are known as
critical exponents. The variation of � as function of (T/Ttr) for the second order
and tricritical transitions are illustrated in Fig. 6.4. For the first order transition, the
illustrated variation is schematic.

0.6 0.7 0.8 0.9 1
T/Ttr

0

0.2

0.4

0.6

0.8

O
rd

er
 P

ar
am

et
er

2 nd Order

1 st Order

n1

Tricritical

Fig. 6.4 Variation of an order parameter as a function of T/Ttr for second order, tricritical and
first order phase transitions, where Ttr is the transition temperature in the respective cases. The
second order and tricritical properties have been calculated according to Eqs. (6.2.11) and (6.2.14),
respectively, whereas the variation of the order parameter in the first order transition is schematic,
showing two different ordering states, � = �1 and � = 0 at the transition temperature. It is assumed
that power series expansion of Gibbs energy as a function of � is valid to T/Ttr = 0.6
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6.3.5 Landau Potential vs. Order Parameter: Implications
for Kinetics

The variation of (G – Go) as a function � for a second order transition is schemat-
ically illustrated in Fig. 6.5a. The schematic variations of (G – Go) for first order
transitions are illustrated in Fig. 6.5b and 6.5c, the former referring to the case in
which there are only even order terms in the expansion of G, whereas the latter refer-
ring to that with odd order coefficients (case (e) and (c), respectively, in Sect. 6.3.1).
In Fig. 6.4a and 6.4b, the parameter � for a phase in a given state of ordering (i.e.
compositions of sublattices) can have either positive or negative values of the same
magnitude, depending on how it is defined, � = X�

A − X�
B or the reverse. The G vs.

� curves in Fig. 6.4a and 6.4b are, thus, symmetric (i.e. G for � < 0 is a mirror
image of that for � > 0) because of the presence of only even order terms in the
power series expansion of G as function of � Eq. (6.3.2). Figure 6.4c is, however,
asymmetric since it contains only odd order terms in the power series expression of

ΔG

η = 0

T = Ttr

T > Ttr

T < Ttr

(a)

ΔG

η = 0

T = Ttr

T = Ttr

T > Ttr

T > Ttr

T < Ttr

T < Ttr

(b)

(c)

Fig. 6.5 Schematic illustrations of the change of �G, defined as (G – Go), in the second order
(a) and first order (b, c) phase transitions. The symmetry of the curves in (a) and (b) is due to
the presence of only even order terms in the power series expansion of G as function of the order
parameter, �, whereas the asymmetry of the curves in (c) is due to the presence of odd order terms
in the expression of G. In (a) and (b), the parameter � can have zero and either positive or negative
values for a phase in a given state of ordering, depending on how it is defined. In (c), � > 0 for an
ordered phase. Note that at the transition temperature (Ttr) of a first order transition, (b) and (c),
G has two equally depressed minima, one at � = 0 and the other at � 
= 0, implying two equally
stable phases, whereas in a second order transition (a) G has only one minimum: at � = 0 for T ≥
Ttr, and at � 
= 0 for T ≤ Ttr, implying the presence of only one stable phase at all temperatures.
From Carpenter (1985). With permission from Mineralogical Society of America
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G vs. �. In this case � is so defined as to have positive value for an ordered state,
and � < 0 denotes an anti-ordered or physically inaccessible phase.

Note that at the transition temperature of a first order transition (Fig. 6.4b and
6.4c), there is a minimum of G at � = 0 and an equally depressed minimum at
� 
= 0. Thus, there are two stable phases with two different states of ordering at
the transition temperature. On the other hand, in the second order transition, there
is only one minimum at Ttr since there is only one stable phase at the transition
temperature. The form of the Gibbs energy curves lead to different kinetic pathways
for the two types of transition. To illustrate this point, let us consider that a solid
which undergoes first order transition is being cooled from a temperature above
Ttr, and that � > 0 at T < Ttr. If the cooling rate is sufficiently slow for the solid to
achieve the equilibrium ordering state as a function of temperature, then the ordering
state of the solid at any temperature will be determined by the minimum of G cor-
responding to that temperature. Now when the solid is cooled to slightly below the
transition temperature, between Ttr and Ti (Fig. 5.4b, c), it should transform to a new
ordered state with � (> 0) determined by the minimum of Gibbs energy. However,
small fluctuations in the ordering state of the solid will cause the Gibbs energy to
rise, which in turn would prevent the fluctuations to grow any further. Only when
the fluctuations exceed a critical value would the Gibbs energy decrease by further
growth of the fluctuations, and thereby lead to the formation of the equilibrium
ordered state. This process is known as homogeneous nucleation. Nucleation can
also be heterogeneous by having nuclei of the equilibrium phase derived from an
external source or stabilized at discontinuities (see Sect. 13.11 for exposition of
nucleation theory). But at any rate, first order phase transformation resulting from
sudden or discontinuous change of ordering state requires nucleation and growth.
On the other hand, no such Gibbs energy barrier exists in the second order phase
transformation by order-disorder process. Therefore, a second order phase transfor-
mation does not require nucleation (in a sense these properties of first order and
second order phase transformations resulting from changes of ordering state are
analogous to nucleation and spinodal decomposition related to phase separation or
unmixing, which is discussed in Sect. 8.15).

6.3.6 Illustrative Application to a Mineralogical Problem

The Landau coefficients can be determined from laboratory measurements of a
thermodynamic property such as enthalpy, H, as function of order parameter. For
example, if G is expressed according to Eq. (6.3.2a) with the coefficient A given
by A = a(T – Ttr) (Eq. (6.3.3)), and other parameters are insensitive to temperature,
then

S = −�G

�T
= So − a�2 (6.3.15)
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where So = S(� = 0). Now if we are dealing with a second order transition, then
assuming that expansion of G up to the fourth order term is adequate, as is usually
the case, we have, using Ho = H(� = 0) and A = a(T – Ttr)

H = G + TS = Ho + (
A�2 + C�4

) − T(a�2)

= Ho − aTtr�
2 + C�4

(6.3.16)

Now, since C = aTtr/2 Eq. (6.3.10), the above equation reduces to

H(�) = Ho − aTtr�
2 + a

2
Ttr�

4, (6.3.17)

which enables determination of the coefficient “a” from a knowledge of Ttr and
experimental data on the variation of H as a function of �, and hence of (S – So)
from Eq. (6.3.15). The function (G(�) – Go) is then determined from the relation
G(�) – Go = (H(�) – Ho) – T(S(�) – So).

As a specific example, let us consider the calorimetric data on the relationship
between the enthalpy of calcite and orientational disorder of CO3 groups (Redfern
et al., 1989), which is illustrated in Fig. 6.6. Analysis of the experimental data
on � vs. T shows that it conforms to Eq. (6.3.14) (Putnis, 1992), which means
that the order-disorder transition is tricritical. Consequently, as discussed above
(Sect.7 6.3.1), C = 0, and the sixth order coefficient E is needed in the power series
expansion of G vs. �. Thus, since in this case, E = aTtr/3 (Eq. (6.3.13)), we have
following the above procedure

H(�) − Ho = −aTtr�
2 + a

3
Ttr�

6 (6.3.18)

Using the data in Fig. 6.6, we then have

H(� = 1) − H(� = 0) = −10000 J/mol

= −aTtr + a

3
Ttr

Fig. 6.6 Effect of
orientational disorder of CO3

groups as function of
temperature and enthalpy of
calcite, as determined by drop
calorimetry. �H is the
enthalpy of calcite with an
ordering state � relative to
that in the completely
disordered state (� = 0).
From Redfern et al. (1989)

ΔH
kJ/mol

T (K)
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where Ttr = 1260 K. Thus, a = 11.9 J mol–1K–1, from which one can retrieve (S(�) –
So) and (G(�) – Go), following the above procedure.

6.4 Reactions in the P-T Space

6.4.1 Conditions of Stability and Equilibrium

Let us consider a univariant reaction among stoichiometric phases. The reaction
causes discontinuous changes of S and V. Let �rG, �rS and �rV denote the changes
of the specified thermodynamic properties caused by the reaction. As a simple
example, let us consider the reaction

NaAlSi3O8 (Albite : Ab) = NaAlSi2O6 (Jadeite: Jd) + SiO2(Quartz: Qtz),

which is illustrated in Fig. 6.1. At any point within the depicted field of stability of
albite, G(Ab) < G(Jd) + G (Qtz), whereas at any point within the field of stability
of Jd + Qtz, G(Ab) > G(Jd) + G (Qtz). In general, within the field of stability of the
reactants (i.e. the phases that are written in the left hand side of a reaction),

∑
i

riG(Ri) <
∑

j

pjG(Pj) (6.4.1)

where Ri is a reactant phase and ri is its stoiciometric coefficient, and Pj is a product
phase with a stoichiometric coefficient pj. The reverse relation holds in the field of
stability of the product phases (i.e. phases that are written on the right hand side
of a reaction). These inequality relations follow from the fact that at a given P-T
condition, a system restricted only to P-V work evolves in the direction of lower
Gibbs free energy Eq. (3.2.3).

A schematic G vs. P relation at constant temperature of the phases albite and
jadeite plus quartz is illustrated in Fig. 6.7. The slope of a G vs. P curve must always
be positive since �G/�P = V, which is a positive quantity. When albite is in equilib-
rium with jadeite plus quartz in the P-T space, G(Ab) = G(Jd) + G(Qtz). In general,
when equilibrium is achieved between the product and reactant assemblages in the
P-T space, the following condition must be satisfied.

∑
j

pjG(Pj) −
∑

i

riG(ri)

︸ ︷︷ ︸
�rG

= 0 (6.4.2)

The quantity on the left hand side is called the Gibbs free energy change of a reac-
tion, �rG. Conventionally, it is written as total G of the product minus that of the
reactant. If �rG < 0, the reaction proceeds to the right (i.e. in the direction of the
product assemblages) and vice versa.
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Fig. 6.7 Schematic
illustration of the G vs. P
relation at a constant
temperature for albite and
jadeite + quartz, conforming
to the stability relations
shown in Fig. 6.1. Peq is the
equilibrium relation at the
chosen temperature. The free
energy of a stable assemblage
is shown by a solid line

G

T = Constant

Ab

Jd + Qtz

PPeq

6.4.2 P-T Slope: Clayperon-Classius Relation

To deduce the P-T slope of an equilibrium boundary at which there is discontinuous
changes of entropy and volume, we write, using Eq. (3.1.10)

d�rG = −�rSdT + �rVdP (6.4.3)

Now, since at equilibrium �rG = 0, we have along the equilibrium boundary,
d�rG = 0, and consequently,

dP

dT
= �rS

�rV
(6.4.4)

This relation is known as Clapeyron-Clausius relation.

Problem 6.1 Equation (6.4.4) is not applicable to the second-order phase tran-
sitions since for these cases �rS = �rV = 0, which causes a 0/0 indeterminacy. A
different relation is needed to express the P-T slop of second order transitions. Show
that this relation is

dP

dT
= ��

�
(6.4.5)

(Hint: Begin by expressing V = f(P,T), and writing the total differential of V.) Simi-
larly, using S instead of V, show that

dP

dT
= �rCP

VP(�r�)
(6.4.6)
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These are known as Ehrenfest relations, after the physicist Paul Ehfrenfest
(1880–1933), who first derived these relations.

Problem 6.2 Draw a schematic G vs. T diagram at constant pressure, analogous
to Fig. 6.7, to depict the relative stabilities of albite and jadeite plus quartz. Pay
attention to the thermodynamic restriction on the sign of G-T slope.

Problem 6.3 Albite (Ab: NaAlSi3O8) undergoes a (second order) phase transition,
low-Ab ↔ high-Ab, which is smeared over a restricted temperature interval around
600◦C (Holm and Kleppa, 1968). The phase transition is accompanied by the pro-
gressive disordering of Al and Si over the four tetrahedral sites, T1(O), T1(m), T2(O)
and T2(m), with increasing temperature. Assuming that low-albite is completely
ordered, i.e. all Al is in the T1(O) site, and high-albite is completely disordered,
and that the disordering of Al and Si does not have any significant effect on the
molar volume of the mineral (a justifiable assumption), calculate the change in slope
of the univariant reaction Albite = Jadeite (NaAlSi2O6) + Quartz due to the phase
transition of albite. Sketch a qualitative phase diagram in the P-T space.

Problem 6.4 In Eq. (6.4.4), �rS and �rV are, in general, functions of P and T.
Thus, in order to calculate the slope of an equilibrium boundary at a given P-T
condition of equilibrium (say, P′, T′), one needs to calculate �rS and �rV at that
specific P-T condition. These properties can be calculated from the entropy and
volume data at 1 bar, 298 K, and the thermal expansion and compressibility data
from following relations:

�rS(P′, T′) = �rS
+ +

T′∫

298

(
�rCp

T

)
1 bar

dT −
P′∫

1

�r(�V)T′dP (6.4.7a)

�rV(P′, T′) = �rV
+ +

T′∫

298

�r(�V)1 bardT−
P′∫

1

�r(V)T′dP (6.4.7b)

where the superscript + denotes the properties at 1 bar, 298 K. Derive the above
relations.

6.5 Temperature Maximum on Dehydration and Melting Curves

Devolatilization, in particular dehydration, and melting reactions are of extraordi-
nary importance in the understanding of geological processes at pressures in the
lower crust and the Earth’s mantle. These played critical role in the release of
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volatiles which are structurally bound in minerals and the melting behavior of rocks
in the Earth’s interior. The release of volatiles have many important consequences
for the properties of rocks in the Earth’s interior such as their rheological and trans-
port properties, and the melting temperatures. In fact, there would be no volcanism
in the subduction zone environment (circum-Pacific “ring of fire”) if it were not for
the dramatic effect of water in lowering the melting temperatures of minerals and
rocks.

The entropy change of a dehydration reaction is always positive. However, while
the volume change of a dehydration reaction is positive at low pressures, it becomes
negative at high pressures. This is because of the fact that the compressibility of
H2O is much greater than the overall compressibility of the reactant solid phases.
As a consequence, the volume of the dehydration products becomes less than that of
the reactant solids after a threshold pressure is exceeded, as schematically illustrated
in Fig. 6.8. This leads to the change in sign of �rV from positive at low pressure to
negative at high pressure, and consequently a “bending backward” phenomenon of
the dehydration boundary in the P-T space. The dehydration boundaries of several
important minerals, as calculated and experimentally constrained by Bose and Gan-
guly (1995), are illustrated in Fig. 6.9. The progressive change in the P-T slope of
dehydration reactions with increasing pressure causes release of water from hydrous
minerals at much shallower depths than it would have been otherwise as these get
buried deep into the Earth’s interior during geological processes (e.g. subduction of
the oceanic lithosphere) with major consequences for such phenomenon as volcan-
ism (Bose and Ganguly, 1995) and probably also for seismicity in the subduction
zone environment (Hacker et al., 2003).

The melting temperatures of solids are expected to exhibit similar temperature
maximum as the dehydration temperatures, and for similar thermodynamic reasons.

ΔV > 0

V(reactant)

V(product)

P

ΔV < 0

V

Fig. 6.8 Schematic illustration of the volumetric behavior of the reactant and product phases in
a dehydration reaction as a function of pressure. Here V(product) and V(reactant) are the total
volumes of the product and reactant phases, respectively, as written in a reaction, i.e. V(product)
= �νpiPi, and V(reactant) = �νriRi, with the reaction being of the form νr1R1 + νr2R2 + ..... ↔
νp1P1 + νp2P2 + ...
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(Ta, En)

Coes

Qtz

Fig. 6.9 Dehydration boundaries of the minerals talc and antigorite (serpentine) as individual
phases and by reaction between them or with other phases. Ta: Talc (Mg3Si4O10(OH)2); Atg:
Antigorite (Mg3Si2O5(OH)2); En: Enstatite (MgSiO3); Fo: Forsterite (Mg2SiO4); A: Phase A
(Mg7Si2O8(OH)6); V: Vapor (H2O). Note the “back-bending” of the dehydration boundaries at
high pressure. The parenthetical phases shown in italics indicate those absent from an equilibrium
in the sub-system consisting of the phases Ta, Atg, En, Fo, A and V. Modified from Bose and
Ganguly (1995). With permission from Elsevier

The entropy change of melting of a solid or a group of solids is always positive,
but the volume change of melting is positive at low pressure and negative above a
threshold pressure because of the greater compressibility of the melt compared to
that of the solid. This property is very well illustrated by the melting behavior of Cs
(Fig. 6.10a). The melting behavior of the most predominant rock type in the Earth’s
upper mantle, namely that of peridotite, is shown in Fig. 6.10b. In the latter case, the
change in the slopes of solidus and liquidus1 is a consequence of the changing com-
position of the melt and residual matrix as well as their compressibilities. However,
it is noteworthy that there is a melting temperature maximum where we must have
�Vm = V(melt) – V(“melting” solid) = 0. (By “melting solid” we imply the portion
of solid that underwent melting, since in a multi-phase system the entire assemblage
of solid does not melt at a discrete temperature). As a consequence, melt that might

1In a multiphase system, melting is, in general, spread over a temperature interval. The temper-
ature at which the melting begins is known as the solidus whereas that at which melting goes to
completion is known as the liquidus. Between the solidus and liquidus, the composition of melt
and residual solid matrix, as well as the assemblage of phases in the latter, change as a function of
temperature.
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Fig. 6.10 Melting temperature as a function of pressure for (a) several alkali metals (modified
from Newton et al., 1962) and (b) a mantle peridotite, known as KLB-1 (from Iwamori et al.,
1995, with permission from Elsevier). In (a), note the melting temperature maxima of Cs. The rise
of temperature after a maximum is due to phase transformation of Cs to a denser polymorph. In (b),
the melting takes place over a temperature interval between solidus and liquidus. The experimental
data are indicated by symbols

form in the deep interior of the Earth could become heavier than the surrounding
mantle, and thus stay trapped in the interior.

It is of incidental interest here to discuss the possibility of presence and entrap-
ment of melt at the base of upper mantle that is defined by the 410 km discontinuity.
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Fig. 6.11 Density vs.
pressure relations of
peridotitic mantle, and of dry
and hydrous partial melts
with different quantities of
dissolved water. PREM
stands for the Preliminary
Reference Earth Model of
Dziewonski and Anderson
(1981). From Sakamaki et al.
(2006). With permission from
Nature

Presence of water is known to lower the melting temperature of minerals. It has been
suggested that enough free water may be present at the base of the lower mantle of
the Earth to induce partial melting of the mantle rock (Huang et al., 2005). However,
such a melt layer can be gravitationally stable only if the melt has a greater density
than the surrounding mantle rock as a consequence of the pressure effect on �Vm,
as discussed above. To address this problem, Sakamaki et al. (2006) determined the
density of anhydrous and hydrous melt derived from partial melting of mantle rock
(peridotite) as function of pressure at 1600◦C, which is the inferred (approximate)
temperature at 410 km discontinuity. Their results, which are illustrated in Fig. 6.11,
suggest that magma with dissolved water content of less than ∼ 6 wt%, should be
gravitationally stable just above 410 km discontinuity. The presence of a melt layer
is consistent with seismic anomaly observed above this discontinuity.

6.6 Extrapolation of Melting Temperature to High Pressures

Because of experimental difficulties associated with the determination of melting
temperatures at very high pressures, Earth scientists often have to estimate melting
temperature at the desired pressures on the basis of the available data on melting
temperatures at lower pressures. Since the melting curve is nonlinear, such extrap-
olations require theoretical understanding of how melting temperature of a solid is
related to its physical properties for which data are available. Several methods have
been proposed for extrapolation of melting temperature of stoichiometric solids to
high pressures. Two such methods, which are used widely in the Earth science com-
munity, are discussed below.
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6.6.1 Kraut-Kennedy Relation

Kraut and Kennedy (1966) discovered that for metals, Tm changes linearly if it is
plotted against the compression of the solid, �Vs/Vo, instead of pressure, where
�Vs = Vo – Vs(P), with Vo being the volume of the solid at the ambient condi-
tion (Fig. 6.12). This is often referred to as the Kraut-Kennedy melting law, and is
stated as

Tm(P) = To
m + C

�Vs

Vo
(6.6.1)

where Tm
o is the melting temperature at the atmospheric condition (P ∼ 0), and C is

a constant. Kennedy and co-workers (Kennedy and Vaidya, 1970; Leudemann and
Kennedy, 1968; Akella and Kennedy, 1971) subsequently discovered that this linear
relation holds for metals except for the soft metals like Pb, which have a relatively
large value (∼ 3) of the Grüneissen parameter at low pressure (Akella et al., 1973),
and that for the ionic solids Tm vs �V/Vo relation is concave downwards while
for the van der Waals solids it is concave upwards, usually when the compression
exceeds 6% and 10%, respectively, of the volume at 1 bar (Vo).

Libby (1966) and Mukherjee (1966) independently showed that the Kraut-
Kennedy melting law follows from the Clayperon-Claussius relation as a special

Fig. 6.12 Melting
temperature vs compression
of some metals showing
linear relations. Vo is the
solid volume at 1 bar
pressure. From O. Anderson
(1995), based on the data by
Kennedy and Vaidya (1970)
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case. To see this, let us re-write the Clayperon-Claussius relation (Eq. (6.4.4)) for
the pressure dependence of melting temperature as

dTm = �Vm

�Sm
dP

= �Vm

�Sm

(
dP

dVs

)
dVs

(6.6.2)

where �Vm and �Sm are the volume and entropy changes of melting, respectively,
VS is the volume of the solid, and dP and dVS refer to the property changes along
the melting curve. If we now assume that these property changes are approximately
the same as those under isothermal condition, then from Eq. (3.7.2)

dP

dVs
≈

(
�P

�Vs

)
T

= − kT

Vo
(6.6.3)

Combining the last two equations,

dTm ≈ −
(
�VmkT

�SmVo

)
(dVs)T (6.6.4)

Assuming the term within the parentheses to be constant, we can write

Tm(P)∫

Tm(P′)

dTm ≈ −
(
�VmkT

�SmVo

) Vs(P)∫

Vs(P′)

(dVS)T (6.6.5)

or

Tm(P) ≈ Tm(P′) +
(
�VmkT

�Sm

) [
V(P′) − V(P)

]
T

Vo
, (6.6.6)

which is formally the same as the Kraut-Kennedy melting law Eq. (6.6.1). Kraut
and Kennedy specifically set P′ = 1 bar. However, it is easy to see that the predic-
tive success of this melting law would be better if P′ is set to higher pressure, and
the term [V(P′) – V(P)] is evaluated at as close to the melting temperature as the
available compressibility data permit.

The Kraut-Kennedy relation has been used by Boehler (1993) to extrapolate the
melting temperature of the Fe-O-S system that is measured up to 2 Mbar in the
laboratory to the pressure of the inner-core outer boundary (3 Mbar) of the Earth.
The extrapolated melting temperature is used to fix the temperature at the boundary
between the solid inner and liquid outer core, as illustrated in Fig. 7.7.
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6.6.2 Lindemann-Gilvarry Relation

Lindemann (1910) tried to calculate the Einstein vibrational frequency of solids
(see Sect. 1.6) in which the atoms are assumed to behave as harmonic oscilla-
tors, and hypothesized that at the melting point the amplitude of vibration of the
atoms become so large that they collide with each other. Gilvarry (1956, 1957)
picked up on this hypothesis and assumed that instead of the amplitudes of vibra-
tion being large enough to lead to atomic collisions, melting takes place when the
root-mean-square amplitude (roughly the average amplitude) of vibration exceeds a
critical fraction of the distance separating the atoms. This led to the development of
the following melting relation that is referred to as Lindemann-Gilvarry or simply
Lindemann melting relation.

dTm

dP
= 2Tm

kT

(
�th − 1

3

)
(6.6.7)

where �th is the thermodynamic Grüneissen parameter (Eq. (3.8.2)). The above rela-
tion has been applied to treat melting relations of metals with considerable success.
Recently, Anderson and Isaak (2000) have applied it to describe the melting rela-
tions of iron in the Earth’s core. The interested reader is referred to Poirier (1991)
and Anderson (1995) for derivation of the above melting relation and other theoret-
ical melting models.

Problem 6.5 Show that the Lindemann-Gilvarry melting relation can be exp-
ressed as

d ln Tm

d ln �
= 2

(
�th − 1

3

)
(6.6.8)

6.7 Calculation of Equilibrium P-T Conditions of a Reaction

6.7.1 Equilibrium Pressure at a Fixed Temperature

If P and T are the variables that we wish to control, then at equilibrium any reaction
must satisfy the relation �Gr(Pe,Te) = 0, where Pe,Te are the equilibrium pressure-
temperature condition of the reaction. As above, we will use the symbol �r to denote
the change of a specified property between the reactant and product. Conventionally,
one writes �rY = �Y(product) − �Y(reactant). As an example, let us consider the
reaction

An Gr Ky Qtz

3CaAl2Si2O8 = Ca3Al2Si3O12 + 2Al2SiO5 + 2SiO2,
(6.7.a)
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which is a very important reaction for the determination of pressure of metamorphic
rocks (see, Sect. 10.10; An: anorthite, Gr: grossularite garnet; Ky: kyanite; Qtz:
quartz). As long as the minerals are confined to the stoichiometric end member
compositions, as written, the change of Gibbs free energy, �rG, of this reaction at
any P-T condition is written as �rG(P,T) = G(Gr) + 2 G(Ky) + 2 G(Qtz) – 3 G(An).

Now let us suppose that we know the thermochemical properties of the phases
involved in a reaction at a P,T condition at which the reaction is not at equilibrium.
In order to calculate the equilibrium pressure (Pe) at T′, we need to develop an
expression of �rG as a function of P at constant temperature, and solve for Pe at
T′ by imposing the equilibrium property, i.e. �Gr(Pe,T′) = 0. To this end, we write,
making use of the property (�G/�P)T = V

�rG(Pe, T′) = �rG(P, T′) +
Pe∫

P

(�rV)T′dP = 0 (6.7.1)

This equation can be solved for Pe if �rV is known as a function of P at T′. The
mathematical strategy for calculating the last integral from an equation of state
that expresses P as a function of V (instead of V as a function of P) is discussed
in the Sect. 6.8. It should be noted, however, that when we deal with a reaction
involving only solid phases, such as the reaction (6.7.a) above, �rV does not change
significantly for a change of pressure of several thousand bars. This is because of
the fact that minerals have similar compressibilities so that the change of volume
with pressure of the products and reactants substantially cancel out. In such cases,
we would introduce very little error by taking �rV out of the integration sign, and
solving for Pe at T′.

In thermochemical tables, one commonly finds the enthalpy of formation of
compounds from elements or oxides at 1 bar, 298 K, and third law entropies of
compounds at 1 bar, 298 K along with their CP-s as functions of temperature. In
order to use these data to solve Eq. (6.7.1), we express �rG(Pe,T′) as

�rG(Pe, T′) = �rG(1, T′) +
Pe∫

1

�rV(P, T′)dP

= �rH(1, T′) − T�rS(1, T′) +
Pe∫

1

�rV(P, T′)dP

(6.7.2)

�r H(1,T′) and �rS(1,T′) are related to their respective 1 bar, 298 K values, denoted
by �rH+ and �rS+, according to Eq. (3.7.5)

�rH(1, T′) = �rH
+ +

T′∫

298

�rCpdT (6.7.3)
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and

�rS(1, T′) = �rS
+ +

T′∫

298

�rCp

T
dT (6.7.4)

Substituting the last two equations into Eq. (6.6.2), rearranging the terms and impos-
ing the condition of equilibrium, �rG(Pe,T′) = 0 yields

�rH
+ − T′�rS

+ +
⎡
⎣

T′∫

298

�rCPdT − T

T′∫

298

�rCP

T
dT +

Pe∫

1

(�rV(P, T′) dP

⎤
⎦ = 0

(6.7.5)

where the superscript + denotes properties at 1 bar, 298 K. Note that the first two
terms do not constitute �rG+ since �rS+ is multiplied by T′ instead of 298.

As discussed in Sect. 4.5.1, the �rH+ is calculated from the enthalpy of forma-
tion (�Hf) values of the product and reactant phases from either elements or oxides
according to

�rH(P, T) = ��Hf,e(products) − �Hf,e(reactants)

= ��Hf,o(products) − �Hf,o(reactants)

Note that Eq. (6.7.5) can also be used to retrieve �rH+ and �rS+ from experimen-
tal data for a univariant equilibrium. This is done by calculating the term within
the square brackets at several P-T conditions along the equilibrium boundary, and
regressing it against T. The slope and intercept of the linear regression yields �rS+

and �rH+, respectively.

6.7.1.1 Solved Problem: Depth of Diamond Formation

“Diamonds are for ever”, but from what depths within the Earth were the diamonds
transported?

The diamonds are recovered from eclogite and peridotites xenoliths that repre-
sent fragments of the Earth’s mantle that were ripped off by the CO2-rich kimberlite
magmas during their explosive ascent towards the Earth’s surface in early geologic
periods (mostly Creteceous, but some also Pre-Cambrian). The lower limit for the
depth of origin of diamond may be estimated by comparing the P-T condition of
graphite-diamond transition boundary with the paleo-geotherms in diamond pro-
ducing areas. Instead of using experimental data for the graphite-diamond transition
boundary, here we calculate this boundary, as an illustration of the application of
Eq. (6.7.5) to relatively simple phase equilibrium calculation.

We first represent the graphite-diamond transition as a reaction

C(graphite) = C(diamond) (6.7.b)
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From the thermochemical data in Robie et al. (1978), we have

Hf,e(D : 1 bar, 298 K) = 1895 kJ/mol

Cp = a + bT + cT2 + dT−0.5 + eT−2 J/K-mol

with a = 98.445, b = –3.6554(10–2), c = 1.2166(106), d = –1.6590(103), e =
1.0977(10–5) for diamond, and a = 63.160, b = –1.1468(10–2), c = 6.4807(105),
d = –1.0323(103), e = 1.8079(10–5) for graphite.

Chatterjee (1991) summarized the volumetric data for the two phases as

V(D : 1 bar, T) = 0.3409 + 0.2015(10−5)T + 0.984(10−9)T2 J/bar-mol

V(G : 1 bar, T) = 0.5259 + 1.2284(10−5)T + 2.165(10−9)T2 J/bar-mol

(D : 298 K) = 0.18(10−6)bar−1,

(G : 298 K) = 3.0(10−6) bar−1 (both being independent of pressure)

Since graphite is the stable form of element at 1 bar, T, it is taken to be the reference
form of the element at 1 bar, T, and accordingly, �Hf,e(G: 1 bar, T) = 0. Thus, �rH of
the above the reaction (6.6.b) at 1 bar, 298 K (i.e. �rH+) is given by �Hf,e(D: 1 bar,
298 K) = 1895 kJ/mol. The �rCp term for this reaction can be written as

�rCp = �a + �bT + �cT2 + �dT−0.5 + �eT−2

where �a = a(D) – a(G) = 35.285, and so on.
It is easy to see that the sum of the first four terms in Eq. (6.7.5) yields �rG(1,T),

which we can now evaluate by substituting the values of �rH+, �rS+ and carrying
out the required integrations of the �rCp. As an example, this procedure yields

�rG(1 bar, 1373 K) = 7666.83 kJ.

Using the data for molar volume as function of temperature at 1 bar, we have

�rV(1 bar, 1373 K) = −0.201 J/bar-mol

Now, since (�V/�P)T = – V(1 bar, T)T, (Eq. (3.7.2) and follow-up discussion), we
have

V(P, T′) = I − V(1bar, T′)
∫
T′ (P)dP (6.7.6)

where I is an integration constant. We now assume that T′ (P) = 298(P), which is
a constant, according to the data summarized above. Thus,

V(P, T′) = I − V(1 bar, T′)298P
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The integration constant is evaluated by substituting V(1 bar, T′) for V(P,T′) and
P = 1 bar on the right hand side so that

V(P, T′) = V(1, T′) + V(1, T′)298 − V(1, T′)298P (6.7.7)

(Note that the second term on the right is multiplied by 1 bar so that it has the unit
of cm3/mol or J/bar-mol.). Using the last equation, we have

P′∫

1

V(P, T′) dP = [
V(1, T′) + 298V(1, T′)

]
P′ − 298V(1, T′)(P′)2

2

so that

Pe∫

1

�rV(P, T′) dP = [
�rV(1, T′) + �r

〈
298V(1, T′)

〉]
Pe − �r

〈
298V(1, T′)

〉
(Pe)2

2

(6.7.8)

Substitution of this equation into Eq. (6.7.5) and rearrangement of terms yields a
quadratic equation

−�r
〈
298V(1, T′)

〉
2

P2
e + [

�r
〈
298V(1, T′)

〉 + �rV(1, T′)
]

Pe + �rG(1, T′) = 0

(6.7.9)

where �rG(1,T′) stands for the first four terms in Eq. (6.7.5).
The solution of the last equation by the usual method of solving a quadratic

equation yields two values of Pe, one of which is physically unreasonable. For
example, at 1300 K, the two values of Pe are 46.6 kb and 208.5 kb, corresponding,
respectively, to the use of minus and plus sign before the square root term of the
solution. The larger value corresponds to a depth of ∼600 km which is too deep for
the generation of kimberlite magma and transport of material to the surface. Fur-
thermore, calculations of the P-T condition of xenoliths in kimberlite indicate that
these were transported from a depth of no greater than of ∼200 km (e.g. Ganguly
and Bhattacharya, 1987). Thus, we accept the lower value of Pe to define the equi-
librium graphite-diamond transition. (When the equation of equilibrium involves
higher power of Pe due to a more complex dependence of V on P, then the solution
of Pe needs to be obtained numerically.)

The results for calculation of Pe vs. T relation are illustrated in Fig. 6.13
along with the paleogetherm of a diamond bearing locality in the southern part of
India. The paleogeotherm was calculated by Ganguly et al. (1995) on the basis of
the inferred P-T conditions of xenoliths (crosses) in diamond bearing kimberlites
of Proterozoic age (∼1 Ga) and heat flow data. The geotherm and the graphite-
diamond transition boundary intersect at a pressure of 48 kb that corresponds to
a depth of ∼150 km. The geotherm is also quite similar to those in other diamond
producing kimberlite localities, especially South Africa (Ganguly and Bhattacharya,
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Fig. 6.13 Comparison of
graphite/diamond equilibrium
boundary with the geotherm
calculated by Ganguly et al.
(1995) for the southern
Indian shield area where
diamonds are found in mantle
xenoliths brought up by
kimberlite eruptions during
the proterozoic period. This
comparison shows that
diamonds form at depths of at
least 150 km within the
Earth’s interior. The crosses
represent calculated P-T
conditions of mantle
xenoliths on the basis of
mineral chemistry. The
geotherm was calculated to
satisfy the xenolith and heat
flow data

Proterozoic Geotherm
(1 Ga)

Diamond

Archean Geotherm

Graphite

1987). Thus, diamonds were transported from a depth of at least ∼ 150 km from
within the Earth’s interior.

6.7.2 Effect of Polymorphic Transition

The equilibrium (6.7.a) is subject to the effect of polymorphic transition (which is
a transition between different crystallographically distinct forms of the same com-
pound) as it is extended to temperature beyond the field of stability of kyanite. Many
reactions of geological interest involve phases that undergo polymorphic transitions.
Another example of such a reaction is

Talc Enst Qtz/Coes

MgSi4O10(OH)2 = 3MgSiO3 + SiO2 + H2O
(6.7.c)

The equilibrium boundary of this reaction across the quartz-coesite transition is
illustrated in Fig. 6.9. The general procedure for accounting for the effect of poly-
morphic transition is developed below using the equilibrium (6.7.c) as an example.

Let us suppose that we know the equilibrium boundary of the above reaction
in the quartz field, and want to calculate the equilibrium boundary in the coesite
field using the thermochemical data for quartz-coesite transition. The breakdown
reaction of talc in the coesite field can be expressed as a linear combination of that
in the quartz field and quartz-coesite polymorphism as follows.
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Talc = 3 Enst + Qtz + H 2 O (1) 

Qtz =  Coes (2) 

---------------------------------------------------------------- 

Talc = 3 Enst  +  Coes  + H 2 O (3) 

Thus, in general,

�rG3(P, T) = �rG1(P, T) + �rG2(P, T)

Now, let P1 and P3 be the equilibrium pressures of reactions (1) and (3), respec-
tively, at a temperature T′. The Gibbs energy change of reaction (3) at P1, T′ is then
given by

0

Δ r G 3 (P 1 ,T ′) =  Δ r G 1 (P 1 ,T′) +  Δ r G 2 (P 1 ,T′)

=  Δ r G 2 (P 1 ,T′) ( 6.7 . 10 )

The Gibbs energy change of reaction (3) at P3, T′ can be expressed as

�rG3(P3, T′) = �rG3(P1, T′) +
P3∫

P1

(�rV3)T′dP = 0 (6.7.11)

The last equality is due to the fact that P3 represents the equilibrium pressure of the
reaction (3) at T′. Combining the last two equations, we finally have

�rG2(P1, T′) +
P3∫

P1

(�rV3)T′dP = 0 (6.7.12)

This equation can be solved for different T′ values to obtain the equilibrium dehy-
dration boundary of talc in the coesite field (P3 vs. T) using the data for Gibbs
energy change of quartz to coesite transition, if the volume change for the reaction
(3) is known as a function of pressure and temperature. Of course, this procedure is
needed when thermochemical data of talc is not available. If it is, then the equilib-
rium dehydration boundary of talc in the coesite field can be calculated by solving
the general equation of equilibrium, Eq. (6.7.5).

Problem 6.6 The volume change of reaction (3) can be expressed as �rV3 =
�rVS

3 + VH2O, where �rVS
3 is the solid volume change of the reaction, i.e. �rVS

3 =
3 VEnst + VQtz − VTlc. Now, assuming that �rVS

3 is insensitive to pressure change
between the limits of integration of Eq. (6.7.13), calculate the equilibrium pressure
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for the talc dehydration reaction in the coesite field at 800◦C, using the necessary
data for the solid phases from Berman (1988), and the virial-type equation of state
of water by Belonoshko and Saxena (1992), as given by Eq. (5.4.13).

(Hint: Solve for
PC∫

PQ

(
VH2O

)
T dP using the method in Sect. 6.8, and successive approx-

imations. PQ and Pc are the equilibrium pressures in the quartz and coesite fields,
respectively, at T.)

Problem 6.7 Suppose that you have the Gibbs energy change of a reaction, �rG, at
1 bar, 298 K, but not �rH and �rS, and in addition you have the CP data of all phases
involved in the reaction. The CP function is expressed as CP = a + bT + c/T2. Derive
an analytical expression to calculate �rG at any arbitrary temperature at 1 bar, using
the available data, and the relation �G/�T = – S. Complete all integrations. (Note: By
adding the integral term from Eq. (6.7.1) to your derived expression for �rG(1 bar,
T), you obtain an expression for �rG(P, T), which you can use, instead of Eq. (6.7.2)
to calculate equilibrium P at T.)

6.8 Evaluation of Gibbs Energy and Fugacity at High Pressure
Using Equations of States

In many Equations of states, such as Redlich-Kwong, Birch-Murnaghan and Vinet,
as discussed above, P is expressed as a function of pressure, instead of the reverse,
and these equations cannot be re-arranged to yield V(P) that can be used directly
to calculate the integral

∫
VdP. This integral relates the Gibbs free energies between

two different pressures. Also, this integral is needed to calculate the change of logf,
where f is the fugacity, for a given change of pressure.

We can use a P(V) EoS to evaluate
∫

VdP from the relation d(PV) = PdV + VdP,
so that ∫

VdP =
∫

d(PV) −
∫

PdV (6.8.1)

If we evaluate the first integral between the limits P1 (lower limit) and P2 (upper
limit), then the corresponding limits of the second integral are [P1,V(P1)] and
[P2,V(P2)], and those of the last integral are V(P1) and V(P2) (for brevity, we write
V1 for V(P1) and V2 for V(P2)). Thus, we have

P2∫

P1

VdP = [P2V(P2) − P1V(P1)] −
v2∫

v1

PdV (6.8.2)

We derive below the expressions for the integral on the right for commonly used
EoS for solid and fluid.
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6.8.1 Birch-Murnaghan Equation of State

If the P-V relation is described by the third-order Birch-Munaghan EoS Eq. (5.4.23),
then we can write

P = �

[(
Vo

V

)7/3

−
(

Vo

V

)5/3
] {

1 + �

[(
Vo

V

)2/3

− 1

]}
(6.8.3)

where

� = 3ko

2
, and � = 3

4

(
k′

o − 4
)

(To recapitulate, ko is the bulk modulus at P = 0, T, and k
′
o is the pressure derivative

of Ko.) From this P-V relation, we obtain

V2∫

V1

PdV = 3
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For the second order B-M EoS, we have the special case of the above expression
with � = 0.

6.8.2 Vinet Equation of State

Writing c = 3/2(k′
o − 1), we can express the Vinet EoS Eq. (5.4.29) as

P = 3ko
1 − �1/3

�2/3
exp

[
c

(
1 − �1/3

)]
(6.8.5)

where � = V/Vo. Now since dV = Vod�,

∫
PdV = 3koVo

∫
1 − �1/3

�2/3
exp

[
c

(
1 − �1/3

)]
d� (6.8.6)

Using y = (1 – �1/3) so that d� = – 3�2/3dy
∫

PdV = −9koVo

∫
yecydy

Definite integral of this expression yields
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v2∫

v1

PdV = −9koVo

[
ecy

c2
(cy − 1)

]y2

y1

(6.8.7)

in which, summarizing, y = 1 – �1/3 = 1 – (V/Vo)1/3, and c = 3/2(k′
o − 1).

6.8.3 Redlich-Kwong and Related Equations of State for Fluids

Using the P-V relation of Redlich-Kwong equation of state, as given by Eq. (5.4.5),
we obtain

V2∫

V2

PdV =
[

RT ln(V − b) + a

b
√

T
ln

(
(b + V)

V

)]V2

V1

(6.8.8)

where, for brevity, we have used V for the molar volume, which is written as Vm

in Eq. (5.4.5). In the modified Redlich-Kwong (MRK) equation of states, a and
b are usually treated as functions of temperature and pressure, respectively (e.g.
Eqs. (5.4.6a) and (5.4.6b)). Obviously, the above integral cannot be used when b is
a function of pressure. The integration needs to be carried out numerically.

As discussed in Sect. (5.4.1.3), recognizing the problem with the analytical inte-
gration of MRK when b is a function of pressure, Holland and Powell (1991) pro-
posed a compensated Redlich-Kwong (CORK) equation of state in which b is
treated as a constant. They found that the error resulting from treating b as a con-
stant can be accounted for by introducing a correction or compensation term with a
general form given by Eq. (5.4.7). Denoting the terms within the square brackets of
this equation as a correction volume, Vcor, we have

P2∫

P1

VdP =
P2∫

P1

VmrkdP+
P2∫

P1

VcordP (6.8.9)

The first integral on the right can be evaluated by combining Eqs. (6.8.2) and (6.8.8).
The second integral on the right is given by
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3
(P − Po)3/2 + d

2
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]P2
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(6.8.10)

Thus, for the compensated Redlich-Kwong (CORK) equation of state proposed
by Holland and Powell (1991), we finally obtain
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where Vmrk is the molar volume calculated from a modified Redlich-Kwong equa-
tion of state with the term a calculated at the temperature of interest and b treated as
a constant.

Problem 6.8 Using the equation of state of fluids by Belonoshko and Saxena, as
given by Eq. (5.4.13), calculate

(a) the Gibbs free energy and fugacity of H2O at 10 kb, 720◦C, using the experimen-
tally derived values (Burnham et al., 1969) of G (5 kb, 720◦C) = – 27,903 J/mol,
f(5 kb, 720◦C) = 3964 bars, V(5 kb, 720◦C) = 1.3569 cm3/gm and V(10 kb,
720◦C) = 1.0903 cm3/gm
(Answers: G(10 kb, 720◦C) = – 17,267 J/mol; f(10 kb, 720◦C) = 14,376 bars)

(b) fugacity coefficient of water at 10 kb, 720◦C
(c) see Problem 8.5.

Hint: see Chap. 3.6.
Comment: The experimentally determined values of G and f at 10 kbar, 720◦C are
– 17,071 J/mol and 14,723 bars, respectively (Burnham et al., 1969), which are in
good agreement with the values derived from the EoS data of Belonoshko and
Saxena (1992). These authors have also presented an equation for calculating the
fugacity of different geologically important volatile species in the system C-O-H at
5 kb, T, which may be used to calculate the fugacity values at any other pressure
using their EoS, which is valid for P > 5 kb).

6.9 Schreinemakers’ Principles

The Schreinemakers’ principles constitute a set of rules that enable us to organize
the possible equilibria in a system in a self-consistent manner. The principles require
systematic application of the Phase Rule, keeping track of some simple facts about
self-consistency in the stability analysis of phases, such as an assemblage of the
phases A and B must lie within the fields of stability of both A and B.

Let us consider a system consisting of 6 phases, namely, talc (Ta), antigorite
(Atg), enstatite (En), forsterite (Fo), phase A (A) and vapor (V). (The phase A is one
of several dense hydrous magnesian silicate phases that have been discovered in the
laboratory experiments at high P-T conditions. These are given alphabetical names,
A, B, C etc., and are generally referred to as DHMS phases.) The univariant reaction
relations among these phases in the P-T space, as determined by a combination
of experimental data and theoretical considerations, including the Schreinemakers’
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principles, are illustrated in Fig. 6.9 (Bose and Ganguly, 1995). We will discuss
Schreinemakers’ principles by refereeing to this figure. It should, however, be noted
at the outset that phase relations may also be depicted using intensive variables
other than P and T. Schreinemakers’ principles are equally applicable to those cases.
An example can be found later in the Chap. 12.8.1 (Fig. 12.7). For simplicity, but
without losing any generality, we have not included quartz and coesite in the system,
although the phase diagram shows equilibria involving these phases (Ta = En + SiO2

(Qtz/Coes) + V and Qtz = Coes). Only three components, MgO, SiO2, H2O are
required to describe the compositions of all the phases, assuming that each phase is
restricted to their respective pure end-member states.

6.9.1 Enumerating Different Types of Equilibria

If the number of components in a reaction is C, then according to the Phase Rule,
the reaction is univariant if it has (C + 1) number of phases. However, sometimes a
specific reaction may involve a smaller number of components than there are in the
general system. In that case, the reaction becomes univariant with smaller number of
phases than those that involve all the components of the general system. An example
is the reaction Qtz = Coes. It is univariant since it involves only one component,
SiO2, even though the phases in the general system may require additional compo-
nents such as MgO and H2O. Such univariant equilibria that involve lesser number
of phases than those that contain all the components of the general system are called
degenerate equilibria. We will return to the properties of this type equilibrium later.

We now ask the following question. How many univariant equilibria may be
found in a system in which the number of phases is P and that of components is C.
The question can be easily answered by using combinatorial principle, as follows.

Number of (univariant) equilibria ≤ P!

(C + 1)!(P − C − 1)!

with the equality holding when all equilibria are non-degenerate. When P = 6 and
C = 3, as in the chosen illustrative system, we have No.(Univariant equilibria) ≤ 15.

Similarly, the number of invariant points ≤ P!

(C + 2)!(P − C − 2)!

so that there are a maximum of 6 invariant points in the system. All of these invariant
points are, of course, not of geological interest. Only two invariant points are shown
in Fig. 6.9.

For book keeping purposes in the Schreinemakers’ analysis, an equilibrium is
designated by writing the phases absent from the equilibrium within parentheses.
Thus, the two invariant points in Fig. 6.9 are labeled (Ta) and (A). Each univariant
equilibrium intersecting at (Ta) lacks talc plus an additional phase. Similarly, each
univariant equilibrium intersecting at (A) lacks the phase A and an additional phase.
There are five univariant equilibria radiating from each invariant point. If there are
X number of phases at an invariant point, then there are a maximum of X number
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of univariant equilibria radiating from that point. All univaraint reactions around
an invariant point can be written out in chemically balanced forms by using linear
algebraic method (e.g. Korzhinskii, 1959).

Let us now consider a system of five phases, namely, Ta, En, Qtz, Coes and
V. The phase relations are shown within a box in the lower right hand portion of
Fig. 6.9. Here again, the overall system consists of three components, MgO, SiO2,
H2O. Thus, each non-degenerate univariant equilibrium must consist of 4 phases.
Two of these are Ta = En + Qtz + V (Coes) and Ta = En + Coes + V (Qtz), which
intersect to generate an invariant point consisting of five phases. If all univariant
equilibria in the system are non-degenerate, then there must be three additional
equilibria radiating from the invariant point, each being characterized by the absence
of one phase from the set present at the point. However, the univariant reaction
Qtz = Coes is characterized by the absence of three phases, (Ta), (En) and (V),
from the set present at the invariant point. Thus, this equilibrium is considered to
be triply degenerate, which means that for the book keeping purpose, it is taken
to be equivalent to three non-degenerate univariant equilibria. Thus, all univariant
reactions radiating from the invariant point have been accounted for, and thus there
can be no other balanced univariant reaction in this part of the system.

6.9.2 Self-consistent Stability Criteria

If there is a reaction A + B = C + D, then any univariant reaction that involves the
phases A and B (in either the same side or in the two sides of the reaction) must lie in
the half-plane defined by the A + B side of the first reaction. We would refer to this
domain as the A-B half-plane. The concept of half-plane is illustrated in Fig. 6.14.
Consider, for example, the reaction (Ta, Atg) in the top right part of Fig. 6.9. The
stable parts of all reactions involving the phases A and En, namely the stable parts
of the reactions (Ta, Fo) and (Ta, V), lie in the half-plane defined by the A + En

Fig. 6.14 Illustration of
half-plane concept in
Schreinemakers’ analysis.
The stable (solid line) and
metastable (dashed line)
portions of a univariant
reaction A + B = C + D
divide the P-T space into A-B
and C-D half-planes. The dot
represents an invariant point.
All reactions involving A and
B lie in the A-B half-plane.
Similarly, all reactions
involving C and D lie in the
C-D half-plane

A + B

C + D

T

P

A – B half-plane:
Field of all reactions involving A and B 

C-D half-plane:
Field of all reactions involving C and D 
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side of the reaction (Ta, Atg). Similarly, the stable parts of all reactions involving Fo
and V lie in the half-plane defined by the Fo + V side of the reaction (Ta, Atg). The
arrangement of all reactions in Fig. 6.9 satisfies this “half-plane constraint”. The
reason behind this topological restriction is a simple stability argument. If the stable
part of the reaction (Ta, Fo) is on the Fo + V half-plane, then the phase A and En in
this reaction would react to form Fo + V. The half-plane concept can be stated in a
different and general way as follows.

The phases that are absent from any equilibrium must not appear as products of
the reactions bounding the sector which contains the stable part of that equilibrium.
Consider, for example, the equilibrium (Ta, Fo) in the top left part of Fig. 6.9. The
phases Ta and Fo do not appear as products of the reactions (Ta, V) and (Ta, Atg)
that bound the sector containing the stable part of the reaction (Ta, Fo).

The fact that an assemblage of phases cannot be stable beyond the field of sta-
bility of any of its subsets (self-consistent stability criteria) requires that the stable
part of a non-degenerate univariant reaction must be truncated at an invariant point.
However, the stable part of a degenerate reaction may sometimes extend through an
invariant point since such extension does not necessarily violate the self-consistent
stability criteria. In the example chosen above, the degenerate reaction Qtz = Coes
extends through the invariant point as it does not violate any stability criterion.

If a univariant reaction, say 1, can be expressed as a linear combination of two
other equilibria, say 2 and 3, then the metastable extension of the reaction 1 must
lie within the field defined by the stable parts of the reactions 2 and 3. Consider, for
example, the reaction (Ta, En) in Fig. 6.9. It can be expressed as a linear combination
of the reactions (Ta, Fo) and (Ta, Atg). Thus, the metastable extension of the reaction
(Ta, En) past the invariant point (Ta) lies within the field bounded by the stable parts
of the reactions (Ta, Fo) and (Ta, Atg).

6.9.3 Effect of an Excess Phase

In geological problems, we often encounter some phases that are present in excess
such that these are not completely consumed by any reaction. An example is
quartz in metapelite. Although quartz is involved in numerous reactions, it is never
completely consumed. If a phase, say A, is present in excess, then all univaraint
equilibria characterized by the absence of that phase, (A,..), become unstable. Con-
sequently, the invariant points to which these equilibria connect also become unsta-
ble. However, if an equilibrium characterized by the absence of an excess phase is
degenerate, then that equilibrium becomes stable. The proof of this theorem is given
by Ganguly (1968).

6.9.4 Concluding Remarks

The configuration of the phase relations derived only by the application of Schreine-
makers’ principle is self consistent, but not unique, and sometimes meaningless
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without additional constraints on the slopes and positions of at least some of the
equilibria. For example, the reaction topology shown in Fig. 6.9 may be rotated by
any arbitrary angle without violating the above principles. One needs to use addi-
tional information about the slopes and positions of at least some of the reactions
to derive a meaningful configuration. A detailed analysis of possible self-consistent
Schreinemakers’ topologies in a system of C + 3 phases, with applications to geo-
logically important systems, given by Cheng and Greenwood (1990).

The main utility of Schreinemakers’ principles lies in the fact that once some rea-
sonable constraints about some of the reactions are available, a meaningful topology
may be derived leading to new insights about geological and planetary processes.
In addition, it provides a “route map” for experimental investigations of a complex
system (e.g. Ganguly, 1968, 1972). It allows one to choose the critical equlibria
for experimental investigation that bring out the important properties of a phase
diagram, and to search for conditions where other equilibria, which are yet to be
determined experimentally, are to be found as the phase diagram topology gets
refined. For example, referring to Fig. 6.9, if the reaction (Ta, V) is determined
experimentally, then we know where to look for the reaction (Ta, Fo) in the experi-
mental studies.

As an example of the practical utility of interactive Schreinemakers’analysis, we
note that the arrangement of univariant reactions around the invariant point (Ta) was
derived by this approach along with constraints on the slopes of the reactions that
could be deduced from the available thermodynamic data and some experimental
information. The reaction (Ta, Atg) was determined experimentally by Luth (1995).
This reaction was found to intersect the antigorite breakdown reaction Atg = En +
Fo + V, as calculated by Bose and Ganguly (1995), at ∼70 kbar pressure, generat-
ing the invariant point (Ta). Since the invariant point (Ta) consisted of five phases,
it was evident that there must be three additional univariant reactions, if all are
non-degenerate, radiating from the invariant point. These univariant reactions were
deduced by algebraic method, and their spatial dispositions were inferred by the
application of Schreinemakers’ principles and thermodynamic constraints on the
P-T slopes.

It was found that the P-T profile of the leading age of an old slab ( ≥ 50 Myr)
subducting with a velocity of > 3 cm/yr intersects the reaction (Ta, V). Thus, instead
of dehydrating, the mineral antigorite, which is a major water bearing phase on the
leading edge of a slab, delivers all the water to the phase A, enabling transportation
of water into the deep mantle. This important discovery of the possible transport
pathway of water into the deep mantle by Bose and Ganguly (1995) is an example
of the important geological insight that may be gained through the application of
Schreinemakers’ principles, coupled with experimental and thermodynamic data.



Chapter 7
Thermal Pressure, Earth’s Interior
and Adiabatic Processes

Unwary readers should take warning that ordinary
language undergoes modification to a high-pressure
form when applied to the interior of the Earth; a few
examples of equivalents follow: certain (high
pressure form) – dubious (ordinary meaning),
undoubtedly (high pressure form) – perhaps
(ordinary meaning). . . . . . . . .

Francis Birch

In this Chapter I discuss several applications of the basic thermodynamic relations
developed so far to problems relating to the properties and processes in the Earth’s
interior, from shallow crustal level to the outer core, as well as adiabatic flow pro-
cesses that have applications to a variety of processes in different natural envi-
ronments. The most important source of our information about the deep interior
of the Earth, which is physically inaccessible, is the velocity of seismic waves as
these pass through the materials that constitute the interior. However, interpretation
of the seismic wave velocities in terms of the density structure and mineralogical
constitution of the Earth’s interior requires an understanding of the link between
seismic velocities and thermodynamic properties, which is also discussed in this
chapter. The processes in the deep interior of the Earth, such as decompression and
melting of rocks and rise of mantle plumes, take place under effectively adiabatic
condition. These topics are discussed in this chapter from two different view points,
namely the adiabatic processes take place under equilibrium condition so that these
are isentropic and that the adiabatic decompression is an irreversible process that
leads to entropy production.

7.1 Thermal Pressure

7.1.1 Thermodynamic Relations

The thermal pressure is defined as the pressure change associated with temperature
change at a constant volume. The expression for thermal pressure can be derived as

J. Ganguly, Thermodynamics in Earth and Planetary Sciences, 153
DOI 10.1007/978-3-540-77306-1 7, C© Springer-Verlag Berlin Heidelberg 2008
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follows. The P-V-T relation of a substance can be expressed in the functional form
f(P,V,T) = 0. This type of function, which is known as an implicit function, leads to
the relation (see Appendix B)

(
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(7.1.1)

Using Eqs. (3.7.1) and (3.7.2), the ratio of derivatives on the right equals −�/T.
Thus, we have, (

�P

�T

)
V

= �

T
= �kT (7.1.2)

or

�Pth =
T2∫

T1

(�kT)dT (7.1.3)

where �Pth stands for thermal pressure.
Both � and kT are affected by temperature changes, but the value of �kT of a solid

seems to be fairly insensitive to temperature change above its Debye temperature,
�D (Anderson, 1995). (The concept of Debye temperature is explained in Sect. 1.6.)
The behavior of �kT for a few compounds of geophysical interest is illustrated in
Fig. 7.1. Thus, the thermal pressure of a solid due to temperature change above the
Debye temperature can be approximated by assuming a constant value of �kT, as

Fig. 7.1 The behavior of �kT for a few compounds of geophysical interest as a function of tem-
perature normalized to the Debye temperature, �D. From Anderson (1995)
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�Pth = P(T) − P(�D) = �kT(T − �D) (7.1.4)

where P(�D) is the pressure at the Debye temperature. We discuss below two
examples of the application of the concept of thermal pressure in Geophysical and
Geological problems.

7.1.2 Core of the Earth

The Earth’s core represents 32% of its mass and is about half of its radius. It is
generally accepted from geophysical data and observations of meteorite samples
that the core of the Earth is made primarily of iron, with a molten outer and a solid
inner components. The radii of the outer limits of the inner and outer cores are at
1221 and 3480 km, respectively, corresponding to depths of 5155 and 2885 km. In
this section, we examine if we should expect some light alloying elements to be
dissolved in the core of the Earth.

Anderson (1995) calculated the � vs P relations of three polymorphs of iron at
300 K, �(bcc: body centered cubic), �(hcp: hexagonal close pack) and �(fcc: face
centered cubic) for which sufficient data are available, and compared the results
with the � vs P relation constrained for the core by the Preliminary Reference Earth
Model or PREM (Dziewonski and Anderson, 1981) that is deduced from the geo-
physical data. The results are shown in Fig. 7.2a.

Phase diagram for the P-T stabilities of the different iron polymorphs (Anderson,
2000; Saxena and Dubrovinsky, 2000), developed on the basis of the available
experimental data, suggests that of the three polymorphs for which � vs P relations
are shown in Fig. 7.2a, only �-iron could be stable at the core pressure. However,
its density at 300 K and the pressure of the solid inner core (dashed curves) is much
higher than the density of inner core in the PREM. At least a part of this discrepancy
is due to the fact that the temperature of the inner core is ∼5000 K (Fig. 7.7). The

(a) (b)

Fig. 7.2 Density vs. pressure relation of different polymorphs of iron at (a) 300 K and (b) after cor-
rection for thermal pressure, and comparison with the Preliminary Reference Earth Model (PREM)
of Dziewonski and Anderson (1981). The thermal pressure arises from the difference between the
temperature at the Earth’s core and 300 K. The density jump in the PREM is due to the transition
from liquid inner to solid outer core. From Anderson (1995)
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adjustment of density of the �-iron can be carried out if the coefficient of thermal
expansion of iron is known at core pressures. Alternatively, we can adjust the pres-
sure at a fixed density by adding the thermal pressure resulting from the difference
between the core temperature and 300 K, taking advantage of the fact the �kT is
rather insensitive to temperature above the Debye temperature.

Using Eq. (7.1.3), and assuming a temperature of 5500 ± 500 K for the
inner/outer core boundary, Anderson (1995) calculated �Pth ∼ 58 ± 5.2 GPa. The
Fig. 7.2b was generated by him from Fig. 7.2a, using �Pth = 60 GPa to illustrate
the density vs. pressure relation of iron polymorphs at the temperature of Earth’s
core. It is found that the density of �-iron is still significantly higher than the PREM
density of the inner core. Thus, it seems very likely that there are light alloying
elements in the inner core. For several reasons, a primary candidate seems to be S
(Anderson, 1989; Li and Fei, 2003). The phase diagram of iron at the core pressure
is still uncertain. If some other polymorph of iron other than the �(hcp) phase is
stable at the core pressure, then its density should be higher than that of the latter,
thereby making the case for light alloying elements even stronger.

Box 7.1 A brief overview of the Earth’s interior

Crust

Mantle

Core

Depth
 (km) 

Inner Core
(solid)

Fig. B.7.1 From Winter (2001)

The interior of the Earth is sub-
divided into four major components,
Crust, Mantle, Outer Core and Inner
core, on the basis of the observed discon-
tinuities in the velocities of seismic body
waves, which are known as the P (or lon-
gitudinal) and S (or shear) waves. The S
waves cannot pass through liquid.

The major subdivisions of the Earth’s
interior are illustrated in Fig. B.7.1. The
core consists primarily of iron, and the
outer core is known to be in a liquid
state as it does not transmit S-waves. The
mantle of the Earth, which is essentially
made up of minerals belonging to the
system MgO-FeO-CaO-Al2O3-SiO2, is
subdivided into upper and lower mantles,
which are separated by a transition zone.
Within the latter, the velocities of both P
and S waves change much more rapidly
relative to their changes in the upper and
lower mantle. In the upper mantle, there
is a narrow zone between 60 and 220 km,
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within which both P and S waves slow down slightly relative to the veloc-
ities above and below. This is known as the low velocity zone, which may
consist of a small amount melt. The most abundant minerals in the upper
and lower mantles are olivine, (Mg,Fe)2SiO4, and perovskite, (Mg,Fe)SiO3,
respectively.

There is a sharp temperature jump from the lower mantle to the outer core
(Fig. 7.7) and possibly also between the upper and lower mantle through the
transition zone. These narrow zones connecting two different thermal regimes
are known as thermal boundary layers. The acceleration due to gravity,
g, is nearly constant at ∼10 m/s2 from the surface down to the core/mantle
boundary (range 9.8–10.6 m/s2), after which it decreases almost linearly to 0 at
the center. Pressure at the core of the Earth is 3.64 Mbar. At the core/mantle
boundary, the density changes from 5.56 to 9.90 g/cm3

7.1.3 Magma-Hydrothermal System

We next consider the problem of thermal pressure associated with the cooling and
crystallization of a tonalite magma, and its consequences. Tonalite is a granitic rock
that is made primarily of quartz and feldspar, but the percentage of plagioclase
feldspars, NaAlSi3O8 – CaAl2Si2O8 solid solution, is much higher than that of alkali
feldspars, (Na,K)AlSi3O8. This problem was analyzed by Knapp and Norton (1981),
who calculated, using experimental data of Burnham and Davis (1971), the thermal
pressure that would be generated when a tonalite magma with 4 wt% dissolved
H2O intrudes a country rock and begins to crystallize. All magmas that are rich
in quartz and feldspar components have approximately this level of dissolved H2O
when these intrude into rocks in the Earth’s crust. (The dissolution of H2O involves
dissociation according to H2O + O2- = 2(OH)–1, where the O2- is a polymerized
oxygen in the magma (see Sect. 8.9). Thus, the specified amount of H2O represents
the amount that the magma had dissolved, and not the amount of molecular water
actually present in the magma after dissociation.)

The P-T phase diagram of the system is shown in Fig. 7.3. There are four fields:
(a) a field of only liquid above the liquidus curve, (b) a field of XLS (crystals) +
magma just below the liquidus curve, (c) a narrow field of XLS + magma + fluid,
which we would refer to as the three-phase field, and (d) a field of completely crys-
talline tonalite rock plus H2O fluid below the solidus curve. (A solidus is the tem-
perature at which melting begins in a multiphase assemblage whereas the liquidus
is the temperature at which the melting of the assemblage goes to completion.) As
the magma cools below the liquidus, it begins to crystallize, but without giving off
any water until the temperature of the magma falls within the three-phase field. At
this point, the residual melt becomes saturated with H2O because of its diminishing
mass while the mass of dissolved H2O remains constant. Thus, any further cooling



158 7 Thermal Pressure, Earth’s Interior and Adiabatic Processes

Fig. 7.3 Phase diagram of tonalite with 4 wt% H2O. The system is completely crystalline at tem-
peratures below the solidus and completely molten at those above the liquidus. Crystallization
begins after the magma cools below the liquidus, and is completed when the temperature at fixed
pressure decreases to that of the solidus. Below the solidus, the system consists of a tonalite rock
and exsolved H2O. The narrow band just above the solidus defines a domain within which crystals
and melt coexists with a H2O fluid (labeled as XLS + MAGMA + FLUID). Above this narrow
band, we have crystals + fluid until the liquidus condition. The solid contours indicate the net
thermal pressure, �P/�T)V, for the stable assemblage in a given field. The dashed contours are
thermal pressures of H2O. From Knapp and Norton (1981) with modifications by Norton (personal
communication)

leads to the exsolution or expulsion of H2O from the melt. Complete crystallization
of the system takes place when it cools below the solidus temperature.

Figure 7.3 also shows the contours of thermal pressure in each field, as calculated
by Knapp and Norton (1981) and Norton (personal communication). Except for the
dashed contours below the solidus, which are for H2O, all thermal pressure contours
are for the assemblage of the stable phases in a particular field. It is interesting to
note that within the three-phase field, the thermal pressures are negative, and are,
on the average around –100 bars per degree. This negative thermal pressure is a
consequence of the progressive expulsion of dissolved H2O from the magma with
decreasing temperature, which leads to an increase of volume for the system of XLS
+ magma + fluid, and thus a negative value of the coefficient of thermal expansion,
�, for the composite system.

The P-T paths of ascending magmas of constant volume, with 4 wt% dissolved
H2O (Knapp and Norton, 1981), are illustrated in Fig. 7.4. The initial paths within
the two phase field show large pressure drop reflecting moderately large positive
values of the thermal pressure. Once within the three phase field, there is increase of
pressure within the system as it cools because of negative thermal pressure, but the
increase is small until a pressure of 1 kb is reached. Beyond this point, there is rapid
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P (kb)

T °C

Fig. 7.4 P-T paths (lines with arrows) at constant volume of cooling tonalitic magma systems with
4 wt% water, as determined by the thermal pressure of the system within the fields of stabilities
of different phase assemblages (see Fig. 7.4). Within the two phase field (solid (s) + liquid (l)),
cooling leads to sharp pressure drop because of the large positive values of the thermal pressure.
As the magma cools into the three phase field, pressure goes up with further cooling because of
negative values of the thermal pressure, and especially sharply when the pressure exceeds 1 kb.
The parenthetical numbers beside the initial locations of the different magma systems indicate
their initial T(◦C), P(kb) coordinates. From Knapp and Norton (1981)

increase of pressure due to cooling of the three phase system because of fairly large
magnitude of negative thermal pressure (Fig. 7.3). As a consequence, the system is
driven away from the solidus curve which delays its complete freezing.

The continued build up of overpressure within the three phase system, combined
with the effect of thermal expansion of trapped water, which is already present in the
country rock, as a consequence of heating by the intrusive body leads to the develop-
ment of extensive fracture networks within the country rock. Magmatic fluids that
scavenge ore forming metals from the magma become focused in these fractures
(Norton, 1978), and thus lead to the formation of ore deposits. Furthermore, intru-
sion of the magma that is prevented from complete freezing due to the build up of
overpressure leads to the formation of dike and sill like bodies.

7.2 Adiabatic Temperature Gradient

This is a topic of considerable geological and geophysical interest, and provides
the framework for our understanding the thermal gradient in the Earth’s mantle and
core, and in magma chambers. From the second law Eq. (2.4.6), an adiabatic process
(�q = 0) under reversible condition is an isentropic process. Thus, for equilibrium
condition, the problem of deriving an expression for the adiabatic temperature gradi-
ent reduces to finding an expression for (�T/�P)S. This is easily achieved by writing
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the total differential of S in terms of T and P, and imposing the condition that dS = 0,
as follows.

dS =
(
�S

�T

)
P

dT +
(
�S

�P

)
T

dP (7.2.1)

The first parenthetical term equals CP/T Eq. (3.7.5), whereas, using Maxwell rela-
tion Eq. (3.4.4), the second parenthetical term equals –(�V/�T)P. Using the defini-
tion of the coefficient of thermal expansion, � Eq. (3.7.1), the last term equals - �V.
Thus, the above equation reduces to

dS =
(

CP

T

)
dT − (�V)dP (7.2.2)

so that, for isentropic condition (dS = 0),
(
�T

�P

)
S

= VT�

CP
(7.2.3)

Dividing both numerator and denominator by the molecular weight (or the weighted
mean molecular weight if the system consists of several phases), M, and noting that
V/M = 1/�, where � is the density, and using the symbol CP

′ for the specific heat
capacity Cp/M, we have

(
�T

�P

)
S

= T�

�C′
p

(7.2.4)

For a vertical column of material under hydrostatic condition, for which dP = �gdZ,
where g is the acceleration of gravity and Z is the depth (+ve downwards), we
then have

(
�T

�Z

)
S

= gT�

C′
p

(7.2.5a)

or
(
� ln T

�Z

)
S

= �g

C′
p

(7.2.5b)

An expression for (�lnT/�Z)S was derived earlier, Eq. (3.8.9), in terms of the ther-
modynamic Grüneissen parameter, �th. It is left to the reader to verify that the last
equation is equivalent to Eq. (3.8.9).

Equation (7.2.5) is usually used to calculate the temperature change with pressure
in an efficiently convecting system. By definition, an isentropic temperature gradi-
ent represents the equilibrium adiabatic temperature gradient in a vertical column
of material. Thus, when the actual temperature gradient in a medium exceeds the
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Adiabatic
gradient

Super-adiabatic
gradient

Z r

T

Fig. 7.5 Schematic illustration of adiabatic and super-adiabatic gradients. Z is depth increasing
downwards. r is the radius of the Earth increasing upwards. Convection tends to establish an isen-
tropic gradient which is equivalent to the adiabatic gradient since at equilibrium dS = 0 when �q = 0

isentropic gradient, it tends to convect in order to bring the temperature gradient to
the latter condition. If the material properties of the system are such that these offer
little resistance to convection, then the actual temperature gradient in the medium
should be only slightly superadiabatic (Fig. 7.5). This is because the medium would
convect to bring about the equilibrium temperature distribution when there is only
a small departure from equilibrium. Thus, the isentropic temperature gradient rep-
resents a good approximation of the actual temperature gradient in an efficiently
convecting medium.

7.3 Temperature Gradients in the Earth’s Mantle
and Outer Core

7.3.1 Upper Mantle

It is generally accepted that Earth’s mantle below ∼200 km depth and the outer core
are convecting very efficiently so that the temperature gradients in these regimes
are only slightly super-adiabatic. Furthermore, the conductive heat loss from these
domains is very slow so that these may be assumed to be under effectively adi-
abatic conditions. One could, thus, approximate the temperature gradients in the
sub-lithospheric mantle (i.e. below ∼200 km depth) and in the outer core by their
respective isentropic gradients. These temperature gradients are often referred to as
mantle- and core-adiabats, respectively.

Figure 7.6 shows two steady state geotherms in the crust and shallow upper
mantle in the oceanic and continental environments, as calculated by Turcotte and
Schubert (1982). The temperature profile below ∼200 km, which is the same in both
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Fig. 7.6 Steady state geotherms in the crust and shallow upper mantle in the oceanic and con-
tinental environments, as calculated by Turcotte and Schubert (1982). The temperature profile
below ∼200 km, which is the same in both environments, corresponds to the adiabatic (isentropic)
gradient (Eq. (7.3.5)). There are significant regional variations of the geotherms

environments, corresponds to the adiabatic gradient Eq. (7.2.5). There are, of course,
regional variations of the geotherms but the general feature is the same. Efficient
mantle convection below 200 km or so maintains the temperature gradient close to
the isentropic gradient. The top part, where there is rapid temperature change as a
function of depth, represents a thermal boundary layer. Here the dominant mode of
heat transfer is conduction. The surface temperature is assumed to have remained
fixed at 298 K.

We can calculate an approximate average value of the isentropic or adiabatic
gradient in the upper mantle using the following average values of the mantle rocks
that consist typically of 60 vol% olivine, 20 vol% orthopyroxene, 10 vol% garnet and
10 vol% clinopyroxene: � = 5.2×10–5 K–1, CP

′
= 1214 kJ-kg–1-K–1, g = 10 m-s–2.

To have dimensional compatibility, we first change the unit of CP
′ by noting that

1 J = 1 Nm = 1 (kg-m-s–2)(m), so that CP
′ = 1214 m2-s–2-K–1. Substitution of these

values in Eq. (7.2.5) yields

(�T/�Z)S = 0.64 K/km

at T = 1600 K. (The average thermochemical properties are calculated from the data
in Saxena et al., 1993).
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7.3.2 Lower Mantle and Core

A number of workers have tried to determine the adiabatic temperature profile in
the lower mantle. Here we discuss the work of Brown and Shankland (1981) who
calculated the isentropic thermal profile using geophysical data. They first calcu-
lated entropies of the mantle minerals from seismic velocities, inferred densities at
the mantle conditions, and assigned values of temperatures. The relationship among
entropy and the other variables are given by a modified version of the Debye theory
of lattice vibrations (the general idea of Debye theory is discussed Sect. 4.2). Brown
and Shankland (1981) assigned a temperature to the 660 km seismic discontinuity
that defines the top of the lower mantle, calculated the entropy, and then found the
temperature at a greater depth that yields the same entropy. They calculated several
isentropic temperature profiles, but preferred the one based on a 1600◦C temperature
at the 660 km discontinuity as this temperature seems most compatible with the P-T
condition of the phase transition (spinel to perovskite) that is generally accepted
to be the major reason for the observed seismic discontinuity. The upper mantle
adiabat calculated by Brown and Shankland (1981) using 1600◦C temperature at
670 km depth is shown in Fig. 7.7.
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Fig. 7.7 Adiabatic temperature profiles in the Earth’s outer core and lower mantle, and solidus
temperature of the upper mantle. The mantle adiabat is from Brown and Shankland (1981) using
T = 1873 K at the 670 km discontinuity. The upper mantle solidus is from Boehler (1993): upper
curve: extrapolation of experimental data in diamond cell up to 2 GPa; lower curve: extrapolation
of experimental data in multianvil apparatus up to 1.6 GPa. The outer core profiles are calculated by
fixing temperature of 4850 ± 200 K at the inner core/outer core boundary, as suggested by Boehler
(1993) on the basis of his experimental data on the melting temperature in the Fe-O-S system up to
2 GPa. Extrapolations of the adiabats to the core/mantle boundary yield temperature discontinuity
of ∼895 ± 140 K. The temperatures of the core-mantle boundary given by the mantle and core
adiabats are 2450 and 3345 ± 140 K, respectively. The smoothing of the discontinuity by a dotted
line is schematic
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We now calculate the adiabatic thermal profile of the outer core using Eq. (7.2.5).
For this purpose, we need to account for the variation of g as a function of depth
in the outer core, and also for the significant variation of material properties. The
g varies from 1068 cm/s2 at the core-mantle boundary to 440 cm/s2 at the inner
core-outer core boundary. The g vs. Z data for the outer core tabulated in the PREM
(Dziewonski and D. Anderson, 1981) can be fitted almost exactly by the polynomial
relation g = 15.458–0.001Z –2(10–07)Z2, with Z in km and g in m/s2. Thus, assuming
� and Cp

′ to be constants, integration of Eq. (7.2.5b) yields

ln T(Z2) = ln T(Z1) + �

C′
p

[
(15.458)Z − 5(10−4)Z2 − 2(10−7)Z3

3

]
(7.3.1)

Brown and Shankland (1981) showed that � of outer core varies between
13.2(10–6)/K at the core-mantle (C/M) boundary to 7.9(10–6)/K at the outer core-
inner core (Oc/Ic) boundary. The Cp

′ data can be calculated from their inferred
values of CV value of outer core of 27.66 J/mol-K and Gruneissen parameter (�)
of the outer core. They found the latter to vary from 1.66 at the top to 0.94 to the
bottom of the outer core. The relationship among Cp, Cv and � is given by Eq. (3.8.1)
as Cp = Cv(1 + �T�). A finite difference scheme needs to be used to calculate the
thermal profile of the outer core according to the above equation in order to allow
for the variation of � and Cp

′. For this purpose, the outer core is divided into a
series of small concentric shells, and the temperature profile within each shell is
calculated using the properties at the lower limit of the shell, beginning with the
inner core(Ic)-outer core(Oc) boundary.

The temperature at the Ic/Oc boundary is fixed by the melting temperature of
iron in the presence of postulated impurities in the core. In the absence of direct
experimental determination of melting temperature of iron at such high pressure
(∼3 Mbar), a number of attempts have been made over many years to estimate the
temperature by extrapolation from lower pressure data. Also, there are very signifi-
cant differences among the lower pressure data because of experimental difficulty of
detecting the onset of melting. All these estimates have resulted in a scatter of melt-
ing temperature of iron between 4000 and 8000 K at 3 Mbar pressure. Perhaps the
most reliable data are by Boehler (1993), who determined the melting temperature
in the system Fe-O-S at static pressure up to 2 Mbar in a diamond cell assemblage.
From extrapolation of his data, Boehler (1993) suggests a temperature of 4850 ±
200 K at the Oc/Ic boundary. (The extrapolation between 2 and 3 Mbar pressure is
based on the Kraut-Kennedy melting relation that is discussed in Sect. 6.6.1).

The adiabatic temperature profile of the outer core calculated by fixing the tem-
perature at the Ic/Oc boundary at Boehler’s suggested value is illustrated in Fig. 7.7.
The lower mantle and core adiabats intersect the C/M boundary at 2450 and 3345
(± 140) K, respectively, causing a temperature jump of 895 (± 140) K.1 A sharp

1

phase, which constitutes the bulk of the lower mantle, undergoes transformation to a denser phase,
known as the post-perovskite phase (orthorhombic, space group Cmcm), at ∼125 GPa (∼2700 km
depth) at temperature on the lower mantle adiabat. The transition boundary has a large positive

It has recently been reported (Murakami et al., 2004; Oganov and Ono, 2004) that the perovskite
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temperature jump at C/M boundary causes major heat flux (which is proportional
to the temperature gradient) out of the Earth’s core, thereby leading to crystalliza-
tion and growth of the inner core. The latent heat released by the crystallization,
however, helps restore the temperature of the outer core. Heat conduction across
the core-mantle boundary would, however, somewhat smoothen the temperature
discontinuity, as schematically illustrated in Fig. 7.7.

The zone over which temperature changes between two adjacent thermal
domains maintained at different temperatures is commonly referred to as a thermal
boundary layer (TBL). Sharp thermal boundary layers may develop instabilities,
if certain dynamical and physical conditions are satisfied. Seismic evidence and
numerical simulations (e.g. Olson, 1987; Kellogg, 1997) strongly suggest formation
of thermal plumes in the TBL at the core-mantle boundary (another TBL that seems
to be a major source of mantle plumes is at the boundary between the upper and
lower mantle). These thermal plumes ascend nearly adiabatically within the Earth
and play very important roles in the mantle dynamics. Extensive volcanisms and
“hot spots” (e.g. Iceland, Hawaii) on the surface of the Earth that can not be directly
related to plate-tectonics are most likely the result of intersection of the adiabatic
P-T path of the mantle plumes with the mantle solidus (see below) and piercing of
the ascending magma through the surface.

Figure 7.7 also shows the solidus of the upper mantle as estimated by Boehler
(1993) from extrapolation of experimental data up to 2 GPa. We find that the solidus
temperature at the C/M boundary is at least ∼550 K higher than the maximum pos-
sible temperature of the mantle. Thus, according to Boehler’s data, there should be
no melting of lower mantle at the C/M boundary or in the D′′ layer. This conclusion
is at variance with that of Zerr et al. (1998) who used Boehler’s data, but inferred a
temperature of the outer core at the C/M boundary of 4000 ± 200 K.

7.4 Isentropic Melting in the Earth’s Interior

One of the most important mechanisms of magma generation in the Earth’s interior
is the upwelling of the rocks in the upper mantle resulting from local perturbations,
such as stretching of the lithosphere, or local variation of density. Because of the
low thermal diffusivity of the rocks relative to the upward velocity of mantle mate-
rial, the upwelling process remains essentially adiabatic.2 To analyze the melting

slope which implies that the post-perovskite phase has a lower entropy than the perovskite phase
(see Sect. 6.4). Consequently, the temperature on the adiabat in the post-perovskite field must
increase to restore the isentropic condition. This will reduce the magnitude of temperature jump at
the core-mantle boundary.
2 Whether or not there will be any significant heat loss from an upwelling material depends on the
value of a dimensionless parameter, known as the Peclet number (Pe), which is given by Pe = vl/k,
where v is the upward velocity, l is the distance traveled and k is the thermal diffusivity of the
material. There is no significant heat loss when Pe is significantly greater than unity. For mantle
material Pe ∼30 (McKenzie and Bickle, 1998).
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process in the upwelling mantle material, one could begin by assuming that the
entropy production within the decompressing mantle material is negligible. This
can not be strictly true but it provides a useful starting point (some aspect of the
effect of entropy production is addressed later). In this case, the temperature of the
upwelling material would follow the isentropic gradient which is ∼0.5–1.0 C/kb.
Figure 7.8, which is reproduced from Iwamori et al. (1995), shows the isentropic P-T
trajectories of rocks within the Earth’s mantle with different initial temperatures, as
calculated from Eq. (7.2.5), and the variation of solidus (beginning of melting) and
liquidus (end of melting) temperatures of the mantle peridotite as functions of pres-
sure. Also shown by dotted lines between the solidus and liquidus are the contours
with constant mass fractions of the melt. The trajectories within the solidus and
liquidus are also constructed to conserve entropy without any loss or segregation
of the melt phase. The intersection of the solidus and isentropic P-T trajectory of
the mantle rocks roughly defines the depth of magma generation within the Earth’s
mantle.

A number on an isentropic trajectory in Fig. 7.8 is the temperature of projection
of the trajectory on to the Earth’s surface. Following McKenzie and Bickle (1988),
these are commonly referred to as the “potential temperature”, Tp, of the mantle
rocks. As long as there is no significant entropy production due to irreversible
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Fig. 7.8 Isentropic P-T trajectories of rocks within the Earth’s mantle with different initial tem-
peratures, as calculated from Eq. (7.2.5), and the variation of solidus and liquidus of the mantle
peridotite as functions of pressure. The dotted lines between the solidus and liquidus are the con-
tours with constant mass fractions of the melt. The trajectories within the solidus and liquidus are
constructed to conserve entropy without any loss or segregation of the melt phase. From Iwamori
et al. (1995). With permission from Elsevier
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processes, rocks at different depths along an adiabat within the mantle have the
same potential temperature. These rocks would undergo essentially the same extent
of partial melting even though their initial temperatures are different. Only rocks
with significantly different TP values are considered to undergo significantly dif-
ferent extent of partial melting. (We would return to this interesting topic in the
Sect. 7.8 to account for the effect of entropy production associated with irreversible
decompression.)

An important geological question concerns the melt productivity during the melt-
ing process, as the magma plus residual solid moves towards the surface. A geo-
metric analysis of the problem, as presented by Stolper (1996), is simple to follow
and is summarized below. For simplicity, consider the melting of a single phase, as
illustrated in Fig. 7.9a. The solid that has upwelled following an isentropic gradient
meets the melting curve at the point 2. If thermodynamic equilibrium is maintained
closely, then during further upwelling the mixture of solid plus melt would follow
the melting curve until all the solid transforms to melt at the point 3. (This is due to
the restriction imposed by the Phase Rule that is discussed in Sect. 6.1. According to
the Phase Rule, there is one degree of freedom in a system consisting of two phases
of the same composition – in this problem a solid and melt of the same composition -
so that either pressure or temperature can be varied independently. Here pressure is
an independent variable that is changing due to decompression process, and con-
sequently the temperature changes along the melting curve in accordance with the
pressure change).

We now define a term ‘melt productivity’ as the change in the amount of melt
fraction, xm, as a function of pressure during decompression, and ask the following
question: Does the melt productivity decrease or increase or remain the same as
the system moves along the univariant melting curve from 2 to 3 under isentropic
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Fig. 7.9 Melting of diopside during decompression to shallower depth. (a) Schematic P-T diagram
showing the fields of stability of the solid and liquid phases, and the path of decompression,
labelled (1)-(2)-(3). (b) Progressive melting under isentropic condition. Adapted from Stolper
(1996)
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condition? This question can be addressed by recasting the phase diagram in a
pressure-entropy space and following the isentropic decompression path. (This type
of representation of a phase diagram in the T-S space and their usefulness were
first discussed by Thompson, 1970). For this purpose, one needs to first calculate
the entropy change of both diopside and liquid along the melting curve. The cal-
culations carried out by Stolper (1996) using the available thermodynamic data are
shown in Fig. 7.9b. Now consider an isentropic melting beginning at a pressure
of 7 GPa. When the mixture of solid plus melt reaches the point 2′, the masses of
solid and melt are equal, as can be determined by application of “lever rule” (see
Sect. 10.8.1). At the point 3, the system is completely molten. Notice now that the
melt fraction (xm) has increased by the same amount from 2 to 2′ as between 2′ to
3, but the pressure change between 2 and 2′ is much greater than that between 2′

and 3. In other words, �xm/�P between 2′ and 3 is much greater than that between
2 and 2′. Thus, we arrive at the interesting conclusion that the melt productivity
rapidly increases during isentropic decompression-melting in a single component
system. With this insight from a single component system, an elaborate analysis
of the problem was carried out for realistic multicomponent and multiphase man-
tle material, namely peridotite, by Asimow et al. (1997), and the melt productivity
was found to increase rapidly with pressure drop as long as there is no subsolidus
reaction or phase transformation within the mineral assemblage.

Let us consider the isentropic decompression-melting behavior in which the solid
phases undergo phase transition during the decompression process. For the sake of
simplicity, we consider the decompression-melting behavior of the one component
system SiO2 that was analyzed by Asimow et al. (1995), and also discussed by
Ghiorso (1997). The phase diagram of the system in a pressure-entropy space is
shown in Fig. 7.10. As the high pressure SiO2 polymorph, coesite, decompresses
along the isentropic path A, melting begins at 2490 K, followed by progressive
increase of melt fraction that can be determined by lever rule. However, when
the system cools to 2400 K, the low pressure polymorph of SiO2, namely quartz,
appears in the system leading to an invariant condition since there are now three
phases in the system, viz. coesite, quartz and liquid (see Phase Rule, Sect. 6.1).
Further isentropic decompression can only take place after all liquid crystallizes to
quartz. Below 2375 K, all of coesite converts to quartz, if equilibrium is maintained.
Melting commences again below 2370 K with increase of melt productivity during
decompression. Thus, along the isentropic path A, there are two generations of melt
separated by a barren zone of ∼0.6 GPa or ∼18 km.

Along path B, the system partly freezes at 2400 K since the new phase quartz
appearing at this temperature by the transformation coesite → quartz has higher
entropy than coesite, and this increase of entropy must be compensated by decreas-
ing the amount of liquid. However, after complete conversion of coesite to quartz
at 2400 K, the melt productivity increases again as the system decompresses fur-
ther within the field of quartz plus liquid. From this simple example, we find that
phase transformations of solids during decompression impart an episodic character
or oscillation to melt productivity if the decompression follows an isentropic path.
One can see this qualitatively by noting that during decompression a solid phase or
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Fig. 7.10 Illustration of the effect of phase transformation in a one-component system, SiO2, on
isentropic decompression-melting behavior. C: coesite; Q: quartz; L: liquid. From Ghiorso (1997).
With permission from Annual Reviews

an assemblage of solid phases transforms to a lower entropy assemblage of solids if
the transformation boundary has a positive slope in the P-T space (the relationship
among entropy change, volume change and P-T slope is discussed in Sect. 6.4.2).
Consequently, there must be a decrease of melt fraction so that the entropy remains
constant.

7.5 The Earth’s Mantle and Core: Linking Thermodynamics
and Seismic Velocities

7.5.1 Relations among Elastic Properties and Sound Velocities

It is interesting to note that the dynamic properties of a substance like its sound
or seismic wave velocities are related to its elastic modulii, which represent static
properties. This has important implications in the measurement of elastic properties
using sound velocities, and in the interpretation of the seismic wave velocities in the
earth’s interior in terms of their mineralogical properties.

It can be shown that under isentropic condition, the sound velocity, �, of a solid
is related to its change of density with pressure according to (e.g. Zeldovich and
Razier, 1966; Kieffer and Delaney, 1979).
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Now, from Eq. (3.7.3), we have
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But, since from the relation between mass, m, and density, �, (i.e. V = m/�),
dV = - (m/�2)d�, the above equation reduces to
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so that from Eq. (7.5.1)

�2 = kS

�

Thus, the adiabatic bulk modulus of a substance can be determined from measure-
ment of its ultrasonic sound velocity. The entropy production during the adaibatic
passage of a sound wave through a substance is usually not significant (Kieffer,
1977).

In general, a wave velocity in a medium is related to its elastic properties accord-
ing to the form of the above equation, in which a different elastic modulus or a
combination of elastic modulii may take the place of kS. Specifically, for the veloc-
ities of the longitudinal (�P) and the shear (�S) components of a seismic wave, we
have

�2
P =

kS + 4

3
�

�
(7.5.3)

and

�2
S = �

�
(7.5.4)

where � is the shear modulus. Combining these two equations, we have

�2
P − 4

3
�2

S = kS

�
≡ � (7.5.5)

Because of its relation with the seismic wave velocities, the ratio kS/� is called the
seismic parameter, and is commonly represented by the symbol � in the geophys-
ical literature. As we would see later, the development of this connection between
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the ratio kS/� and the seismic wave velocities constitute an important step in the
understanding of the internal constitution of the Earth from the seismic velocities
and knowledge of the material properties. Substituting Eq. (7.5.5) into Eq. (3.8.9)
that relates temperature gradient to kS/� and the thermodynamic Grüneissen param-
eter, �th, we obtain an expression of adiabatic temperature gradient in terms of the
seismic velocities in the Earth’s mantle.

(
� ln T

�Z

)
S

= (�th)g

�
= (�th)g

�2
p − 4

3
�2

S

(7.5.6)

Upon analyzing the available data for rock forming minerals, Anderson (1989)
found a linear relation between ln �/M and ln�, where M stands for the mean
atomic weight of a mineral or a rock:

ln �

M
= −1.130 + 0.323 ln� (7.5.7)

Combining the last two equations, we obtain an expression of temperature gradient
within the Earth’s interior in terms of density and mean atomic weight as

(
� ln T

�Z

)
S

= (�th)g

33.06(�)Q
(7.5.8)

where Q = 1/(0.323 M).

7.5.2 Radial Density Variation

7.5.2.1 Williamson-Adams Equation

Williamson and Adams (1923) derived an expression for the density variation in a
self compressing sphere in terms of the seismic parameter that has been found to
be useful in the first order discussion of the density structure of the Earth’s interior,
and served as a basis for further theoretical developments in this area. If the density
variation within a spherical body is only due to self compression under adiabatic
condition, then from Eq. (3.7.3).

(
�V

�P

)
S

= −VS = − V

kS

Substituting of the relations V = m/�, and dV = –(m/�2)d� in the above equation
and rearranging the terms

(
��

�P

)
S

= �

kS
= 1

�
(7.5.9)
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Assuming that the pressure within the Earth’s interior to be in hydrostatic equilib-
rium, dP = –�gdr, where r is the radius. Thus, the above equation reduces to

(
��

�r

)
S

= −�g

�
(7.5.10)

This is known as the Williamson-Adams equation. Note that �, g and � are func-
tions of r, although g remains appreciably constant to depth near the core-mantle
boundary.

Since the Earth is not of uniform composition, the Williamson-Adams formula-
tion is used to determine the density change from seismic velocities within a shell
that is of fairly uniform composition, starting with the density at the top of the shell,
as shown below.

The last expression can be written as

� ln �(r) = − g(r)

�(r)
�r

so that

ln �(r2) = ln �(r1) −
r2∫

r1

g(r)

�(r)
dr (7.5.11)

This integral can be evaluated numerically to obtain adiabatic density variation due
to self-compression within a spherical shell of uniform composition. As an exam-
ple, the density profile in the outer core, as calculated from the above equation, is
illustrated in Fig. 7.11. The outer core is divided into a number of thin shells and
the density at the top of the outer core at 2891 km depth is set equal to 9.90 gm,
according to the data in the PREM (Dziewonski and Anderson, 1981; Anderson,
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Fig. 7.11 Density variation in the outer core of the Earth. Sold line: Calculated numerically from
the Williamson-Adams equation. Symbols: Data from PREM
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1989). Using g(r) and �(r) data that are also listed in this model, the average density
of each shell is calculated successively according to

ln �(Zi) = ln �(Zj−1) + ḡ

�̄
(�Zj)

where (�Zj) is the thickness of the j th shell, and ḡ and �̄ are, respectively, the aver-
age density and average seismic parameter within the shell. From Eq. (7.5.5),� = V2

p
since the VS = 0 for the liquid outer core.

7.5.2.2 Modification by Birch

Since the core and mantle of the Earth are convecting, the temperature distribution
within the core and mantle can not be strictly isentropic. The temperature gradi-
ent must be super-adiabatic to some extent, as discussed in the Sect. 7.2. If the
temperature gradient is not strictly adiabatic (or, more correctly, not isentropic),
then, as shown by Birch (1952) and derived at the end of this section, Eq. (7.5.10)
modifies to

d�

dr
= −�g

�
+ ��� (7.5.12)

where � denotes the departure of the true temperature gradient from the isentropic
gradient (Fig. 7.5) according to

dT

dr
=

(
�T

�r

)
S

− � (7.5.13)

Since (�T/�r)S < 0 (as T increases downward and r increases upward), �< 0, so that
the temperature gradient is super-adiabatic (i.e. dT/dr is less negative than (�T/�r)S).

A rough estimate of the effect of the term � on the calculated density profile
may be made by recasting Eq. (7.5.12) in terms of the thermodynamic Grüneisen
parameter, �th. From Eq. (3.8.2) we have � = �thCP/VkS, which on substitution in
Eq. (7.5.12) yields

d�

dr
= − �g

�(r)
+ �thCp�

V(ks/�)
= −�g

�
+ �thCp�

V�

Factoring out –�g/�

d�

dr
= −�g

�

(
1 − �thCp�

g(V�)

)

Noting that Cp/(V�) = Cp/M (M: molar weight) = Cp
′ (i.e. specific heat capacity),

we then have
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d�

dr
= −�g

�

(
1 − �thC′

p�

g

)
≡ −�g

�
(1 − �) (7.5.14a)

or

d�

dZ
= �g

�
(1 − �) (7.5.14b)

where � = �thCp
′�/g. As discussed in Sect. 3.8, the value of the Grüneisen parameter

has a restricted range of variation around a value of 2, whereas CP of the mantle
minerals is typically ∼1 kJ/kg-K, which equals 1000 Nm/kg-K, or since Newton
(force) has the unit of kg-m/s2, Cp

′ of the mantle minerals is ∼1000 m2/s2-K. The
adiabatic gradient in the Earth’s mantle is ∼0.6 K/km, as discussed in the Sect. 7.3.1.
Thus, if the true temperature gradient in the earth’s mantle is super-adiabatic, and
differs from the adiabatic gradient by ∼0.6 K/km (∼100% deviation), then using
g = 10 m/s2, �th = 2 ± 0.5, we get �∼0.09 – 0.15, or ∼9% to 15% of the main term.

Derivation of Eq. (7.5.12) This equation is derived by considering � = f(P,T),
which leads to

d�

dr
=

(
��

�P

)
T

dP

dr
+

(
��

�T

)
P

dT

dr
(7.5.15)

Expressing the first and second partial derivatives in terms of kT and �, respectively
(Eqs. (3.7.2) and (3.7.1)), and assuming hydrostatic relation (dP = –�gdr), we have

d�

dr
= −g�2

kT
− ��

dT

dr
, (7.5.16)

Substituting (dT/dr) from Eq. (7.5.13) in the above equation along with the expres-
sion for adiabatic (isentropic) temperature gradient according to Eq. (7.2.5a), that is
(�T/dr)S = –(�T/�Z)S = –gT�/Cp

′, and re-arrangement of terms, yields

d�

dr
= −g�2

kT
+ ��2Tg

C′
P

+ ���

= −g�2

kT

(
1 − �2TkT

�C′
P

)
+ ���

(7.5.17)

From Eq. (3.7.15), the parenthetical term in the above expression equals kT/kS. Sub-
stituting now the seismic parameter � for kS/�, the expression of d�/dr reduces to
Eq. (7.5.12).
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7.5.3 Transition Zone in the Earth’s Mantle

The question as to whether the Earth’s mantle is chemically and mineralogically
homogeneous or not was first addressed through a thermodynamic analysis by Birch
(1952), and his pioneering contribution in this regard has laid the foundation of our
current state of knowledge about the Earth’s mantle. Birch derived an expression for
the change of seismic parameter, �, as function of the radial distance in a homoge-
neous self-compressing sphere under adiabatic condition.The expression is

1 − d�

gdr
=

(
�ks

�P

)
S

+ �kS�

�g

[
1 + 1

�kS

(
�ks

�T

)
P

]
(7.5.18)

Using the relation ks = kT(1 + �th�T) Eq. (3.8.3), Birch (1952) cast this equation
in terms of kT, which is better known than kS, and the thermodynamic Grüneissen
parameter, �th. Since the latter varies within a narrow range around 2, this manip-
ulation allowed him to approximately predict the values of the left hand quantity,
which he called �, as a function of depth from the available experimental data of the
properties of minerals that are likely to constitute the Earth’s mantle.

Using Eq. (7.5.5), one can also calculate the parameter � from the available data
for the seismic velocities in the Earth’s mantle. Birch (1952) found that the values
of � between 200 and 900 km depth in the Earth’s mantle that were calculated from
the last equation are far too small compared to those that were calculated from the
seismic data (Fig. 7.12). No reasonable adjustment of thermo-physical parameters
of mantle phases could reconcile the rapid rise of the observed value of � between
200 and 900 km with a model of self-compressing homogeneous sphere. Birch, thus,
concluded that this zone of the earth’s mantle must be inhomogeneous as a result
of either mineralogical or chemical change or both. It is now well known from
laboratory experimental data on mineral stabilities that a number of mineralogical
transformations must take place within ∼400–700 km depth in the Earth’s mantle,
which is commonly referred to as the transition zone, and there may be chemical
changes as well. (The transition zone divides the Earth’s mantle into upper and lower
mantles, and exerts great influence on the dynamics of the Earth’s interior including
the subduction of oceaninc plates.) However, Birch’s thermodynamic analysis of the
problem laid the groundwork for future investigations, and it is highly instructive to
follow his thermodynamic analysis.

Derivation of Eq. (7.5.18) From the relation ks = ��, we have, dks = �d� + �d�,
so that

d�

dr
= dks

�dr
− �

�

d�

dr
(7.5.19)

Dividing both sides by g, using Eq. (7.5.12) for d�/dr, and using the hydrostatic
relation, dP = – �gdr, we then have
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Fig. 7.12 Comparison of the
calculated variation (solid
line) of the function
� = (1 − d�/(gdr)) vs depth
(Z) in the Earth’s mantle,
assuming it to be a
homogeneous
self-compressing sphere, with
the observed data. Note the
mismatch between 200 and
900 km depth. From Birch
(1952) ψ

Z in 103 km

d�

gdr
= dks

�gdr
− �

�g

(
−�g

�
+ ���

)

or

1 − d�

gdr
= dks

dP
+ ���

g
(7.5.20)

This expression was first derived by Bullen (1949), but Birch (1952) called atten-
tion to the temperature effect that is concealed in the dks/dP term, which is a total
derivative. Since ks = f(P,T), we have

dks

dP
=

(
�ks

�P

)
T

+
(
�ks

�T

)
P

dT

dP
(7.5.21)

Using dP = – �gdr, we obtain from Eq. (7.5.13)

dT

dP
=

(
�T

�P

)
S

+ �

�g

Thus, Eq. (7.5.21) transforms to

dks

dP
=

[(
�ks

�P

)
T

+
(
�ks

�T

)
P

(
�T

�P

)
S

]
+

(
�ks

�T

)
P

�

�g
(7.5.22)
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It is easy to see from Eq. (7.5.21) that the terms within the square brackets in the last
equation constitute the partial derivative (�ks/�P)s. Thus, Eq. (7.5.20) reduces to

1 − d�

gdr
=

(
�ks

�P

)
S

+ ���

g

[
1 + 1

���

(
�ks

�T

)
P

]
(7.5.23)

Replacing � by ks/� on the right hand side and rearrangement of terms finally yield
Eq. (7.5.18).

7.6 Joule-Thompson Experiment of Adiabatic Flow

The appropriate starting point in the thermodynamic discussion of adiabatic flow
processes is the classic experiments by Joule and Thompson (the latter also known
as Lord Kelvin) in 1853 on the irreversible horizontal flow of gas through a thin but
rigid porous plug within an adiabatic enclosure (Fig. 7.13). Here the gas in one side
(chamber or subsystem 1) of the plug was at a higher pressure than that in the other
side (chamber 2), but the pressure on each side was maintained to be uniform. Thus,
the entire pressure drop was made to take place within the porous plug. The gas
on both sides was at rest at the beginning and end of the experiment so there was
no change of kinetic energy of the system. Thermometers placed on two sides of
the plug, however, showed measurable temperature difference that depended on the
pressure difference between the two sides. Thermodynamic analysis of the above
experiment led to the important conclusion that irreversible adiabatic process of the
type described by the Joule-Thompson experiment is isenthalpic, as opposed to the
reversible adiabatic process that is isentropic. This can be shown as follows.

Let m be the mass of gas that has flowed through the porous plug. Then, the work
done on the gas in chamber 1 is given by

W−
1 = −P1(�V1),

where �V1 is the volume change of gas in the chamber 1. Using v′ as a symbol for
specific volume, �V1 = −m1v′

1, so that W−
1 = mP1v′

1. On the other hand, the work
done by the gas in the chamber 2 is given by W+

2 = P2(�V2) = P2mv′
2. Now, since

Chamber 2  Chamber 1  

P1 

V1 

V2 

P2 

n moles at 
P1, V1 

n moles at  

P2, V2

Fig. 7.13 Schematic illustration of the Joule-Thompson experiment. The dashed lines show the
initial positions before the transfer of n moles of gas from the left to the right chamber through a
porous partition
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W+
2 = −W−

2 , where W−
2 is the work done on the sub-system 2, the net work, W−,

done on the entire composite system is given by

W− = W−
1 + W−

2 = m(P1v′
1 − P2v′

2) (7.6.1)

If u′
i is the specific internal energy of the subsystem i, then the net change of

internal energy of the composite system is given by

�U = �U1 + �U2 = −mu′
1 + mu′

2

= m(u′
2 − u′

1)
(7.6.2)

There is also a small change of internal energy of the thin porous plug, but it is too
small compared to that of the rest of the system, and has, therefore, been neglected.
Now, since the composite system is under an adiabatic condition, we have (from the
first law), �U = W−, so that, using the last two equations, m(u′

2 – u′
1) = m(P1v′

1 –
P2v′

2) or,

U2 + P2V2 = U1 + P1V1

However, since the enthalpy H is given by H = U + PV, we arrive at the important
conclusion that

H2 = H1, (7.6.3)

In other words, there is no change of enthalpy of the gas (dH = 0) as it is decom-
pressed through a porous plug from a higher to a lower pressure environment,
maintaining uniform pressure in both sides. This result is true regardless of the
number subsystems in the composite system, whenever fluid or matter flows through
a restriction from a uniformly high to a uniformly low pressure, without any appre-
ciable change of kinetic energy. This type of flow process is often referred to as
throttling process, which is inherently irreversible, and is associated with entropy
production.

The expression of change of temperature with that of pressure can now be easily
derived by writing the total derivative of H in terms of changes of P and T, and then
imposing the condition of constant enthalpy.

dH =
(
�H

�T

)
P

dT +
(
�H

�P

)
T

dP = 0 (7.6.4)

By definition, the first derivative on the right equals CP, whereas the second deriva-
tive on the right can be shown to be equal to V(1 – T�) (which is left as an exercise:
Problem 7.1). Thus, we have

(
�T

�P

)
H

(≡ �JT) = V(T�− 1)

CP
(7.6.5)
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(Note that the V and CP stand for the molar quantities, but the ratio V/CP does
not change if we use values for the respective specific quantities.) Notice that this
expression differs from that in the isentropic case Eq. (7.2.4) by the presence of the
term–V in the numerator.

Problem 7.1 Show that

dH = CPdT − V(T�− 1)dP (7.6.6)

Hint: You know that dH = VdP + TdS (Box 3.1.2). Now express dS in terms of
dT and dP using the relation S = f(P,T), and use an appropriate Maxwell relation
(Box 3.4.1).

The quantity in the left of Eq. (7.6.5) is known as the Joule-Thompson coeffi-
cient, and is usually referred by the symbol �JT. For any substance, T� changes
from a value of greater than unity at low pressure to less than unity at higher
pressure. The transition point, at which �JT = 0, is known as the Joule-Thompson
inversion point. When T� > 1 (i.e. at pressure below that of the inversion point),
temperature changes in the same direction as the pressure whereas for T� < 1, tem-
perature changes in the opposite direction as pressure. This is shown schematically
in Fig. 7.14. In this figure, X represents the highest pressure and Y represents the

X

Y

μJT < 0μJT > 0

H∂P

∂T

T

P

⎟
⎠
⎞⎜

⎝
⎛

Fig. 7.14 Illustration of the change of Joule-Thompson coefficient as a function of pressure of
a hypothetical substance. The points X and Y represents the highest pressure and temperature,
respectively, at which the substance can be cooled by irreversible expansion (i.e. decrease of
pressure) under adiabatic condition. The dashed line represents the locus of the Joule-Thompson
inversion point
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CO2

H2O

Fig. 7.15 Variation of �T (�: coefficient of thermal expansion) of H2O (dashed lines) and CO2

(solid lines) vs. pressure. From Spera (1981)

highest temperature at which cooling may be obtained by adiabatic expansion of gas
through a throttling process. (For example, the values for X and Y for N2, which is
liquified by adiabatic expansion, are ∼375 bars (at 40◦C) and 350◦C, respectively.).
In practical applications of liquefaction of gas (e.g. production of liquid nitrogen
and helium), the pressure difference between the low and high pressure side is
maintained by a pump instead of a porous plug.

Waldbaum (1971) computed values of the Joule-Thompson coefficient, �JT, for a
number of important rock-forming minerals. These �JT values range from ∼ –13 to
–30 K/kbar. The variation of the term T� vs P for two most geologically important
fluid species, namely H2O and CO2, as calculated by Spera (1981), is illustrated
in Fig. 7.15. It is clear that �JT for these fluid species (and also probably other
fluid species of geological importance) is negative (T� < 1) for a wide range of
geologically important conditions.

Spera (1984b) evaluated the effects of salt concentration, temperature and pres-
sure on the �JT of aqueous solution. The effect of salt concentration is to reduce the
value of �JT, especially at relatively higher temperature. He noted that some fluid
inclusions in minerals from porphyry copper deposits have salt concentrations as
high as 7.0 m or even more. Spera (1984b) also predicted that addition of divalent
ions would cause a larger decrease of �JT of an aqueous solution than that of an
equivalent amount of univalent ion.

7.7 Adiabatic Flow with Change of Kinetic and Potential Energies

The conceptually most straightforward way to treat the problems of adiabatic flow
processes that involve changes of potential and/or kinetic energies is to consider the
overall energy balance of the system, that is the total energy change of a system,
which is given by the sum of the changes of internal energy, kinetic energy and



7.7 Adiabatic Flow with Change of Kinetic and Potential Energies 181

potential energy, must equal the net energy absorbed by the system from outside.
We shall treat some relatively simple cases of horizontal flow, in which there is
only a change of kinetic energy, and vertical flow in which there is change of both
potential and kinetic energies.

7.7.1 Horizontal Flow with Change of Kinetic Energy:
Bernoulli Equation

If there is a change of kinetic energy of a system due to a change of velocity, then
we can write the following energy balance equation for a horizontal inviscid flow

�U + 1

2
m�(�2) = Q + W− (7.7.1)

(Energy change of the system = Energy absorbed by the system)

where � is the linear velocity and m is the mass of the system. Note that W− is the
total work absorbed by the system. Now, if there is (a) no heat transfer between the
moving body and the surrounding (i.e. Q = 0), and (b) the only form of work is
the mechanical PV work, then using Eq. (7.6.1)

�U + 1

2
m�(�2) = P1V1 − P2V2 (7.7.2)

If the fluid is incompressible (i.e. V1 = V2 = V), then �U = 0 (since dU = �q + PdV),
in which case the above equation reduces to

1

2
m��2 = −V(P2 − P1) = −V�P (7.7.3)

or

�P = −m�(�2)

2V
= −��(�2)

2
(7.7.4)

where � is the density. Thus, there is a pressure decrease with increasing hori-
zontal velocity of an inviscid and incompressible fluid under adiabatic condition.
This expression is known as the Bernoulli equation in fluid dynamics, and was
originally derived from purely mechanical arguments. However, derivation of the
equation through thermodynamics shows the restrictive conditions under which it is
strictly valid.

Although the relation between pressure and velocity will need modification when
the effects of viscosity and energy dissipation due to friction are taken into account,
the Bernoulli equation provides qualitative understanding of a number of phenom-
ena that are encountered in the real life. For example, Roofs of buildings sometime
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blow off during a storm because of the high velocity of air passing over the roof
that causes a decrease of external pressure. The airplane wings are designed such
that the upper surface has an upward curvature while the lower surface is flat. This
causes an increase of velocity and consequent decrease of air pressure on the upper
surface relative to the pressure on the lower surface, thus giving an upward lift to
the airplane (Fig. 7.16). The velocity of a river increases when it flows through a
narrow channel. This causes a drop of pressure that the river exerts on its banks as
it flows through a narrow channel – an apparently counterintuitive conclusion. When
arteries become constricted by plaques, pressure within the arteries drops because of
increased speed of blood flow. This leads to the collapse of the constricted arteries
when the pressure falls below a critical limit.

7.7.2 Vertical Flow

7.7.2.1 Change of Temperature with Pressure

If there is a significant change of height over which the flow takes place, as is often
the case in geological problems, then there is a change of potential energy of the
system, which is given by mgdh, where h is the height (positive upwards). Consid-
ering the effects of change of both potential and kinetic energies, the energy balance
equation for adiabatic but frictionless vertical displacement of a parcel of material
is given by

dU + mgdh + 1

2
m(d�2) = W− (7.7.5a)

or

�U + mg(�h) + m�(��) = W−

= m(P1v′
1 − P2v′

2)
(7.7.5b)

where the velocity � is the taken to be positive upwards, v′ is the specific volume
of the system, as before, and � stands for the difference between the states 2 and 1
(e.g. �� = �2 − �1). (Note that 1/2m(d�2) = m�d�.) The collection of left hand terms
represents the total energy change of the system, internal plus external, whereas the
right hand term is the energy absorbed by the system under adiabatic condition.

Fig. 7.16 Schematic
illustration of streamlines of
air around an airplane wing
(cross-sectional view). The
air pressure at the upper
surface, Pu, is lower than that
at the lower surface, Pl,
resulting in a lifting of the
airplane

 

Pl

Pu < Pl
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Rearranging terms in the last equation, we can write

(U2 + mP2v′
2) − (U1 + mP1v′

1) + mg(�h) + m�(��) = 0

Now, since H = U + PV = U + mPv′, the last equation reduces to

�H + mg(�h) + m�(��) = 0

or in a differential form

dH + mgdh + m(�d�) = 0, (7.7.6)

(The first two terms on the left hand side may be collectively viewed as the total
derivative of H if we treat H as a function of P, T and h instead of just P and T. In
that case, the second term on the left is (�H/�h)P,Tdh, and the first term on the left
expresses the total change of H due to changes of the changes in P and T, which is
given by the Eq. (7.6.6).)

Combining the last expression with Eq. (7.6.6), we have for a unit mass of
material

C′
PdT − v′(T�− 1)dP + gdh + �d� = 0 (7.7.7)

Differentiating with respect to P and rearranging terms, we finally obtain

(
�T

�P

)
Q(ir)

= (T�− 1)

�C′
p

−
(

g

C′
p

)
dh

dP
− �

C′
p

(
d�

dP

)

= �JT −
(

g

C′
p

)
dh

dP
− �

C′
p

(
d�

dP

) (7.7.8)

The subscript Q(ir) indicates that it is an adiabatic condition but that the process is
irreversible (i.e. �q = 0, dS > 0). We would call this adiabatic irreversible decom-
pression or IAD. Without the velocity term, this expression was derived earlier
by Ramberg (1972). Applications of this equation to the upwelling and melting
processes in the Earth’s interior are discussed in the Sect. 7.8.

7.7.2.2 Geyser Eruption

What is the velocity with which a geyser, such as the Old Faithful in the Yellow-
stone National Park, Wyoming, keeps on erupting through the vent? An approxi-
mate answer to this question is provided by the energy balance relation given by
Eq. (7.7.6). Rewriting m�d� as 1/2(md�2), we have

dH + mgdh + 1

2
md�2 = 0 (7.7.9)
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or, replacing d by �, and dividing through by m

�H′ + g�h + 1

2
(��2) = 0 (7.7.10)

so that

�� = −
√

2�H′ + 2g�h (7.7.11)

The velocity, �2, at the maximum height of the geyser is zero so that �� = – �1.
Assuming now that the specific enthalpy of the geyser is approximately constant,
we have

�1 =
√

2g�h (7.7.12)

The last equation was derived earlier by Furbish (1997), who also treated the
eruption velocity of Old Faithful. The height of the steam-water eruption column of
Old Faithful is ∼30 m. Thus, we obtain the near vent velocity of the geyser, �1, to
be ∼24 m/s. On the other hand, from the conservative estimate of discharge volume
of Old Faithful during its initial phase of eruption (6.8 m3/s) and the cross-sectional
area of the vent (0.88 m2), a conservative estimate of the exit velocity is 7.7 m/s
(Furbish, 1997).

The Geyser eruption is associated with some heat loss. If �Q is the heat change
per unit mass between the final and initial state (�Q = Q2 – Q1), then it must be
added to the left hand side of the energy balance equation, Eq. (7.7.10). Conse-
quently, to account for the heat loss, the term 2�Q must be added to the term under
the square root in the last expression. Since for heat loss �Q < 0, the eruption
velocity becomes lower than 24 m/s (note that �Q has the SI unit of J/kg or Nm/kg;
since N = kg-m/s2, �Q can be expressed in the SI unit of m2/s2). Thus, the exit
velocity, �1, of Old Faithful is 7.7 < � < 24 m/s.

7.8 Ascent of Material within the Earth’s Interior

Equation (7.7.8) yields the temperature change of a substance due to irreversible
vertical flow under adiabatic condition, but ignoring the effect of friction. Since
dh/dP < 0, the gravitational effect contributes a positive term. Thus, while nega-
tive values of �JT of minerals and geologically important fluids at moderately high
pressure, as discussed above, leads to heating of materials ascending adiabatically
from within the Earth’s interior, the effect is moderated (that is dT/dP becomes less
negative) by the effect of the gravitational field, as was pointed out by Ramberg
(1972). In the following subsections, we address two types of problems related to
the ascent of materials from the Earth’s interior.
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7.8.1 Irreversible Decompression and Melting of Mantle Rocks

We now return to the problem of adiabatic decompression and melting within the
Earth’s mantle that we have discussed earlier in the Sect. 7.4 from the equilibrium
standpoint. Here we consider the adiabatic upwelling of material in a pressure gra-
dient as a series of Joule-Thompson experiments with small sequential decrease
of pressure. The formulations presented below, which is due to Ganguly (2005),
provide starting points for the treatment of adiabatic upwelling and melting process
in the Earth’s mantle as irreversible process (�q = 0, dS 
= 0), which represents a shift
from the traditional starting point founded on treating these as reversible processes.

Using dZ = –dh = dP/(�rg), where Z is the depth (+ve downwards) and �r is the
density of the mantle rock, Eq. (7.7.8) yields

(
�T

�Z

)
Q(ir)

= �r

�

(
gT�

C′
P

)
+ g

C′
P

(
1 − �r

�

)
− �

C′
P

(
d�

dZ

)
(7.8.1)

Note that the term within the first parentheses in the right equals the isentropic
temperature gradient Eq. (7.2.5a). Thus,

(
�T

�Z

)
Q(ir)

= �r

�

(
�T

�Z

)
S

+ g

C′
P

(
1 − �r

�

)
− �

C′
P

(
d�

dZ

)
(7.8.2)

The second right hand term can be viewed as the manifestation of entropy pro-
duction in the system due to the irreversible nature of the process of upward flow.
Since �r > � (otherwise the material will not move upward), the second term on the
right is negative and, thus, somewhat counteracts the effect of the first term. Physi-
cally it means that an ascending parcel of material from within the Earth’s interior
would be hotter than that predicted by the isentropic gradient. This is illustrated in
Fig. 7.17, which is modified from Ganguly (2005). Assuming constant velocity of
ascent, the dashed lines are calculated according to the above equation for different
values of �/�r and typical Cp

′ value of mantle mineral of 1.2 kJ/kg-K. The density
ratio controls the velocity of upward movement (and u → 0 as �→ �r). If it is very
close to unity, then the temperature gradient effectively equals isentropic gradient if
the adiabatic condition prevails. It is evident from Fig. 7.17 that the ascent of mantle
material with 94% density of the surrounding mantle will be essentially isothermal,
if it moves with a constant velocity. If the density of the ascending material is lower,
then there will be a net heating during ascent.

Plumes of ascending mantle material are generally believed to have gener-
ated within the Earth’s mantle at the thermal boundary layers between the upper-
and lower-mantle at ∼660 km depth and between the lower-mantle and core at
∼2900 km depth (Box 7.1). Intersection of the adiabatic T-Z trajectories of the
plumes with the solidus of the mantle material marks the onset of melting of the
plumes. Typically, the adiabatic path of a plume is assumed to be isentropic (e.g.
Nicolas, 1995). However, there are various types of irreversibility leading to entropy
production within the plume. The curve labeled 0.98 (670 km) in Fig. 7.17 shows the
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0.98 (670 km) 

Fig. 7.17 Temperature-depth (T-Z) paths for adiabatic ascents of materials from within the Earth’s
mantle. The solid lines depict the path of isentropic ascent which is an adiabatic condition that
prevails when entropy production within the ascending material can be neglected. The dashed
lines depict adiabatic paths of mantle materials of different densities relative to the surrounding
mantle, taking into account the entropy production due to irreversible expansion of the ascending
material. The curve labeled 0.98 (670 km) shows the irreversible adiabatic ascent path of a plume
with 98% density of the surrounding mantle, rising from the boundary between upper and lower
mantle, which is at the 670 km discontinuity. Modified from Ganguly (2005)

adiabatic T-Z trajectory of a plume with 98% density of the surrounding mantle and
rising from a depth of 670 km, taking into consideration of the effect of irreversible
expansion according to Eq. (7.8.2). The initial temperature of the plume is taken
to be defined by the projection of the adiabatic (isentropic) geotherm to 670 km
depth. It is found that a plume with 98% density of the mantle would intersect
the solidus at a temperature that is ∼150◦C above that defined by its isentropic
ascent. Consequently, there would be much larger extent of melt production in the
plume as it ascends to shallower depths than that in the case of isentropic ascent.
Phase transitions and friction would modify the T-Z trajectory of a plume, but still
isentropic T-Z path leads to substantial underestimation of melting in a plume.

The problem of melt productivity of mantle rocks during irreversible decompres-
sion has been analyzed by Ganguly (2005). Beginning with the fundamental energy
conservation relation, Eq. (7.7.6), he has derived the following expression for the
change of extent of melting with pressure.

[
dx

dP

]
Q(ir)

≈
[

dx

dP

]
S

−
[

x�v′
(f) + � (d�/dP)

�Hf + (x�C′
P(f) + C′

P,s) (�T/�x)p

]

≈
[

dx

dP

]
S

−  

(7.8.3)
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where x is the melt fraction and �Y′
(f) is the change of a specific quantity on fusion.

Ganguly (2005) evaluated the term , which represents the effect of entropy produc-
tion, and shown that the melt productivity, or the melt fraction that would develop
in an upwelling mantle material after it crosses the solidus (Fig. 7.17) could be
significantly higher, by as much as 50%, than that calculated using the isentropic
condition. A potentially important consequence of the increased melt productivity is
that melt segregation would take place more quickly than envisaged for the limiting
case of isentropic decompression.

7.8.2 Thermal Effect of Volatile Ascent: Coupling Fluid Dynamics
and Thermodynamics

To evaluate the temperature change associated with the ascent of material from the
Earth’s interior, one needs to consider the full set of equations expressing conserva-
tion of mass, momentum and energy. The problem was considered by Spera (1981,
1984a, b) and applied to problems of fluid flow in geological problems. The temper-
ature change associated with the steady, one-dimensional flow of single phase fluid
of fixed composition in a vertical conduit of diameter d is given by

dT

dZ
= �JT

(
dPf

dZ

)
− �

C′
p

(
d�

dZ

)
+ g

C′
p

+ 4!

C′
pṁd

(T − Tw) (7.8.4)

where ! is heat transfer coefficient (J cm-2 s-1 K-1), ṁis mass flux (gm cm-2 s-1), Tw

is the temperature along the crack or conduit wall. Noting that dP = �gdZ = - �gdh, it
is easy to see that for adiabatic condition (! = 0) and dPf = dP, the above expression
reduces to Eq. (7.7.8) that follows from simple thermodynamic considerations.

Using the conditions of mass and momentum conservation, but neglecting the
heat of reaction due to precipitation, hydrolysis and alteration, the above equation
transforms to (Spera, 1984b)
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(
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)2 d�

dZ
+ �JT

2Cfṁ2

�d
+ �Tg

C′
p

+ 4!

C′
pṁd

(T − Tw) (7.8.5)

where Cf is the effective friction coefficient. The first term on the right disappears if
the fluid is incompressible.

Spera (1984a) evaluated the temperature changes on decompression of binary
H2O-CO2 fluid, which is the dominant fluid composition in both metamorphic and
magmatic systems, using reasonable range of values of the different parameters in
Eq. (7.8.5). He concluded that the combined effects of conductive/convective heat
transfer and the temperature change accompanying decompression are often off-
setting for metamorphic fluids, making them effective carriers of mantle heat to
shallower levels that may produce localized melting within the lithosphere.

It has been concluded by a number of workers that the high temperature gran-
ulite facies metamorphic rocks had formed under highly H2O depleted condition.
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Newton and co-workers (e.g. Janardhan et al., 1982; Hansen et al., 1987) studied
the granulites in southern India and Sri Lanka and concluded that these rocks had
formed under highly H2O depleted condition with PH2O < 0.3Ptotal, and that the flow
of CO2 from either the mantle and/or the lowermost crust was responsible for the
depletion of H2O.

The thermal consequence of the CO2 flux from the mantle has been examined
in detail by Ganguly et al. (1995) in terms of both advective heat transfer and the
result of irreversible decompression. It is of interest of here to discuss the latter
aspect of their analysis. Using the thermodynamic properties (i.e. �, � and CP) of
CO2 from Bottinga and Richet (1981), and Eq. (7.7.8) with a typical value of dh/dP
∼ –3 km/kbar, Ganguly et al. (1995) showed that adiabatic irreversible decompres-
sion of CO2 would lead to a net increase in temperature of 15–20◦C per kbar of
decompression (which is equivalent to ∼3 km of ascent) at a constant velocity. The
increase in the volumetric heat content of CO2 due to its irreversible decompression
is given by �CP

′�T, where �T is its temperature change due to the decompression
process. Ganguly et al. (1995) thus concluded that the adiabatic rise of CO2 from
a depth of 90 to 20 km (approximate depth of formation of the granulites) in the
Earth’s interior leads to an increase of the heat content of CO2 by 594–790 J/cm3,
which is significant compared to the heat derived from the advective heat transfer
by the fluid.



Chapter 8
Thermodynamics of Solutions

Diffusion has the reputation of being a difficult
subject, much harder than . . . . . . solution
thermodynamics. In fact it is relatively simple. . . . . . .

I can easily explain a diffusion flux. . . . . . . . I suspect
that I have never clearly explained chemical
potentials to anyone.
E.L. Cussler (1984, Diffusion: mass transfer in fluid
systems)

We have, so far, considered thermodynamic potentials for phases that are at a fixed
composition. However, when the compositions of the phases become variable, we
obviously need to take into account the effect of the compositional changes of the
phases on their thermodynamic properties. We have seen earlier (Sect. 3.1) that the
extensive thermodynamic potentials H, F and G, which are most useful for practi-
cal applications of thermodynamics, are, nonetheless, auxiliary functions, and can
be derived by systematic Legendre transformations on the fundamental thermody-
namic potential U. For a homogeneous system with fixed masses of all species and
unaffected by a force field, U is completely determined by specifying the extensive
properties S and V. If the mole numbers of the different species in the system change,
then we should begin by making the appropriate modification to the expression of
U, and derive from that the expressions for the auxiliary thermodynamic potentials.
The required modification to the expression of U leads to the introduction of a new
intrinsic thermodynamic property known as the chemical potential of a component
in a solution.

8.1 Chemical Potential and Chemical Equilibrium

Gibbs laid the foundation of chemical thermodynamics in his monumental work
entitled “On the Equilibrium of Heterogeneous Substances” that was published in
1875 and 1878 in the Transactions of the Connecticut Academy of Sciences (see
Gibbs, 1993). Here Gibbs argued that if n1, n2 etc. are the number of moles of differ-
ent species in a homogeneous system that are subject to change by reversible mass

J. Ganguly, Thermodynamics in Earth and Planetary Sciences, 189
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exchange with the surrounding, then U must be a function of these mole numbers in
addition to S and V, so that the fundamental relation must now be written as

U = U(S, V, n1, n2....), (8.1.1)

instead of U = U(S,V), as written in Eq. (2.7.6). The total derivative of U is then

dU =
(
�U

�S

)
V,ni

dS+
(
�U

�V

)
S,ni

dV+
(
�U

�n1

)
V,S,nk 
=1

dn1+
(
�U

�n2

)
V,S,nk 
=2

dn2+. . . .,

(8.1.2)

where ni stands for the mole numbers of all components (i.e. n1, n2 ...) and nk stands
for the mole numbers of all components except the one appearing in a partial deriva-
tive of U with respect to ni.

We know from the earlier developments that �U/�S = T and �U/�V = –P. Thus,
the partial derivatives of U with respect to the number of moles or masses of spe-
cific components are the new partial derivatives in the representation of the total
derivative of U. The partial derivative of U with respect to ni have been called the
chemical potential of the component i by Gibbs, and is commonly represented by
the symbol �i. Thus,

�i =
(
�U

�ni

)
S,V,nj 
=ni

(8.1.3)

Equation (8.1.2) can now be written as

dU = TdS − PdV +
∑

i

�idni (8.1.4)

Note that this expression is valid only for a reversible process since the term �q is
replaced by TdS. It is easy to see, using the second law (Eq. (2.4.9)), that for an
irreversible process, dU is less than the right hand quantity.

The relation between U and any of the auxiliary state function or potential is
not affected by making U dependent on the mole numbers of the components in
the system. This is simply because of the fact that the expressions for the auxiliary
functions have been derived by partial Legendre transforms of U. For example, if
we perform the partial Legendre transform of U with respect to V, we obtain Iv ≡
H = U + PV (Eq. (3.1.4)), whether or not U depends on the mole numbers of the
components. Differentiating now the expressions of H, F and G (i.e. H = U + PV;
F = U – TS and G = U – TS + PV: see Box 3.1.1), and writing dU according to
Eq. (8.1.4), we obtain

Box (8.1.1)

dH = VdP + TdS +
∑

i

�Idni (8.1.5)
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dF = −PdV − SdT +
∑

i

�Idni (8.1.6)

dG = VdP − SdT +
∑

i

�Idni (8.1.7)

These expressions are the same as the corresponding expressions for a system of
fixed mole numbers of different species (Box 3.1.2) except for the additional term
��idni.

While Eq. (8.1.3) constitutes the fundamental definition of chemical potential, it
is evident from the last three expressions that chemical potential can also be defined
in terms of the rate of change of the thermodynamic potentials H, F and G by hold-
ing an appropriate combination of variables constant. The different expressions of
chemical potential are summarized below.
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=ni
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(
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=ni
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�ni
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=ni

Box (8.1.2)

Of these, the last definition of �i in terms of G is used most commonly, especially
in geological problems, since P and T are the variables of common interest.

Consider now a closed system that is subdivided into two homogeneous parts
(I and II) by a membrane, which is permeable to the transfer or diffusion of only
one component, i (Fig. 8.1). If the system is held at a constant P-T condition, then
the change in the total Gibbs energy of the system as a result of transfer of some
amount of i from one part to another equals the sum of the changes of Gibbs energies
of the two subsystems. Thus, at constant P and T,

Fig. 8.1 A closed system is
subdivided into two parts by a
semipermeable membrane
that is open to the transfer of
only one component, i

i, j, k,  ... i, j, k, ... 

i
(I) (II) 
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dG = dGI + dGII

= �I
idnI

i + �II
i dnII

i

= dnII
i (�II

i − �I
i )

(8.1.8)

The last equality follows from the fact that since the overall system is closed, dni
I +

dni
II = 0. For spontaneous change at constant P-T condition in a system restricted

only to P-V work, dG ≤ 0 (Eq. (3.2.4)), the equality holding only when equilibrium
is achieved. Thus, if �i

II > �i
I, then dni

II < 0, that is the component i must flow
from the subsystem II to I, that is from its state of higher chemical potential to that
of lower chemical potential (Fig. 8.2), so that the overall Gibbs energy of the system
is decreased. When �i

I = �i
II, there must be no diffusion of i across the membrane

since such a process would not reduce the Gibbs energy of the system. The equal-
ity of chemical potential of the component i between the subsystems I and II then
defines the condition of chemical equilibrium in the overall system. Following the
derivation of Eq. (8.1.8), it may be easily verified that equilibrium under different
sets of conditions, namely at constant T and V or constant S and V or constant S
and P, for which we minimize the potentials F, U and H, respectively, also lead to
the condition of equality of chemical potential of the component i between the two
subsystems.

Let us now assume that the overall closed system has an arbitrary number of
components and is subdivided into an arbitrary number of compartments or sub-
systems, which are separated from one another by semi-permeable membranes. In
order for the Gibbs energy of the overall system to be at a minimum, it is necessary
and sufficient that the chemical potential of each component be the same in all
compartments which are open to its diffusive exchange, since, otherwise, diffusion
of a component from the state of higher to that of lower chemical potential would
reduce the overall Gibbs energy of the system.

There are two important points to notice in the above development. First, the
condition of chemical equilibrium at a specified condition (constant P-T or T-V or
S-V or S-P) requires that the chemical potentials of only those components that
are permitted to flow be equal in the parts of the system through which the flow
can take place. Thus, for example, the equilibrium condition between two minerals
(Fe,Mg)SiO3 (orthopyroxene: Opx) and (Fe,Mg)2SiO4 (olivine: Ol) requires that
only �Fe

Opx = �Fe
Ol, if we ignore charged defects as a component. In the absence of

charged defects, the contents of Si and O are fixed in both minerals by the require-
ment of charge balance, and consequently, these components are not allowed to
diffuse between the two minerals.

Fig. 8.2 Flow of component i
from its state of higher
chemical potential to that of
lower chemical potential

i

(I) (II)

μi

μi
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The second point concerns the flow of matter in a multicomponent diffusion
process. For the case of simultaneous diffusion of more than two components, a
component may diffuse in the direction of increasing concentration or even chemi-
cal potential because of strong cross-coupling with other diffusing components. This
cross-coupling is often referred to as the hydrodynamic effect in the multicomponent
diffusion theory, and the process of diffusion in the direction of increasing concen-
tration or chemical potential is called up-hill diffusion. To be sure, equilibrium is
achieved only when the chemical potential of each diffusing species is the same in
each part of the system that is open to it, but in general, it is not necessary that
each component must always flow in the direction of its lower chemical potential
in a multicomponent diffusion process. In such process, the flux of each component
depends on the chemical potential gradients of all independent components, not just
on its own chemical potential gradient. This is a consequence of irreversible ther-
modynamics that is discussed in Appendix A. Usually, however, the cross-coupling
effects of the other components are not strong enough to change the direction of
flux of a component in response to its own chemical potential gradient.

In general, things flow or move from higher to lower values of an appropriate
potential. For example, electrical charge flows from higher to lower values of elec-
trical potential or voltage, or matter falls from higher to lower value of the gravi-
tational potential. Hence the name chemical potential since a chemical component
should usually flow in the direction of its lower chemical potential.

8.2 Partial Molar Properties

If Y is an extensive thermodynamic property of a system (G, F, H, S or V), then a
corresponding partial molar property, yi, gives the rate of change of Y with respect
to a change in the number of moles of the component i when pressure, temperature
and the mole numbers of all other components are kept constant. That is

yi =
(
�Y

�ni

)
P,T,nj 
=ni

(8.2.1)

Thus, we define partial molar Gibbs free energy as

gi =
(
�G

�ni

)
P,T,nj 
=ni

(8.2.2)

and similarly the other partial molar quantities corresponding to F, H, S and V.1.
Comparing Eq. (8.2.2) and the expressions of �i in the Box (8.1.2), we find that

the chemical potential of a component i, �i, at constant P,T nj condition is the same
as its partial molar Gibbs free energy. It should, however, be obvious that the identity
�i = yi is not valid when the chemical potential is defined in terms of any other state
function and yi represents its partial molar property.
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We now seek a relationship between the total or integral value of an extensive
quantity and the corresponding partial quantity. Since Y = f(P, T, n1, n2, ...), we have
at constant P-T condition,

dY =
(
�Y

�n1

)
nj 
=n1

dn1 +
(
�Y

�n1

)
nj 
=n2

dn1 + ....

= yidn1 + y2dn2 + ......

(8.2.3)

Since a partial molar quantity is an intensive property, its value does not change by
changing the size of the system at a constant P-T condition as long as the compo-
sition of the system is kept fixed. Since, ni = XiN, where Xi is the mole fraction of
the component i and N is the total number of moles of all components in a system,
we have for constant Xi, dni = XidN. Using Eq. (8.2.3), we then have dY = (y1X1 +
y2X2+ ....)dN. Integrating this equation, we get

Y = (y1X1 + y2X2 + ....)N + I,

where I is an integration constant. Noting that Y = 0 when N = 0 (that is the system
does not have an extensive property when it has no content of any component), we
get I = 0. Now substituting ni for NXi in the last equation, we obtain an important
relation between an extensive property and the corresponding partial properties of
the components at a constant P-T condition,

Y =
∑

i

niyi (8.2.4)

Specifically, we note that at constant P-T,

G =
∑

i

nigi =
∑

i

ni�i (8.2.5)

A molar property of a component is obviously different from its partial molar
property, but from Eq. (8.2.4), we may consider a partial molar property of a compo-
nent as its ‘effective’ molar property in solution such that it yields the correspond-
ing integral property of the solution in the same way that the molar properties of
pure substances yield the corresponding integral property of a mechanical mixture.
This statement may be illustrated by considering the volumetric properties. For a
mechanical mixture, V = n1vo

1 + n2vo
2 + ...., where V and vo

i are, respectively, the
total volume of the mixture and molar volume of the pure substance or component
i. When the components are in solution, we have an analogous relation between the
total volume, V, of the solution, and the partial molar volumes of the components at
the specific composition of the solution, viz., V = n1v1 +n2v2 + ....., which follows
from Eq. (8.2.4).

Combination of Eqs. (8.2.5) and (8.1.7) leads to an important relation among
the chemical potentials of components in a solution. Differentiating Eq. (8.2.5), we
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have dG = �nid�i + ��idni. However, from Eq. (8.1.7), we also have at constant
P,T condition, dG = �nid�i. Comparison of these two expressions for dG shows that
at constant P-T condition

∑
i

nid�i = 0 (8.2.6)

or, upon dividing both sides of this equation by the total mole numbers, N, of the
solution,

∑
i

Xid�i = 0 (8.2.7)

This is known as the Gibbs-Duhem relation that has many applications in the
field of solution thermodynamics. Physically it says that in an n-component system,
the chemical potentials of n-1 components are independent.

Problem 8.1 A relation analogous to Eq. (8.2.7) holds for any other type of partial
quantity. Show that, in general, at constant P-T condition,

∑
i

Xidyi = 0 (8.2.8)

Hint: make use of the relation Y = Y(P,T,n1,n2 ...)
We will refer to this equation as the generalized Gibbs-Duhem relation

Problem 8.2 Prove the following relations among the partial molar properties:

vi =
(
��i

�P

)
T

; −si =
(
��i

�T

)
P

; hi = �i − Tsi

8.3 Determination of Partial Molar Properties

8.3.1 Binary Solutions

If we know the integral property Y of a solution as a function of the mole numbers of
the components of the solution, then, of course, determination of the corresponding
partial molar quantity of a component of the solution is straightforward as it can be
obtained by partial differentiation of Y with respect to ni, according to the definition
of yi (Eq. (8.2.1)). Usually, however, we have the molar properties as functions of the
mole fractions or concentrations of the components. In this section we discuss the
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methods of derivation of a partial molar quantity from the data of the corresponding
molar property as a function of mole fractions of the components in a solution.
We denote the molar property of a solution as Ym = Y/N (e.g. molar volume of a
solution, Vm = V/N, molar Gibbs energy of a solution, Gm = G/N, etc., where N is
the total number of moles of all components).

Let us first consider a binary solution, for which, according to Eq. (8.2.4), dYm =
d(X1y1 + X2y2) = (X1dy1 + X2dy2) + (y1dX1 + y2dX2). Using the generalized
Gibbs-Duhem relation, Eq. (8.2.8), the first parenthetical term of this equation is
zero. Thus, we have, at constant P-T condition

dYm = y1dX1 + y2dX2 (8.3.1)

Multiplying both sides of this equation by X1/dX2, and noting that for a binary
solution dX1 = −dX2, we have

X1

(
�Ym

�X2

)
P,T

= −X1y1 + X1y2 (8.3.2)

But from Eq. (8.2.4) X1y1 = Ym - X2y2. Thus,

X1

(
�Ym

�X2

)
P,T

= −Ym + y2(X1 + X2) = −Ym + y2 (8.3.3)

or

y2 = Ym + X1

(
�Ym

�X2

)
P,T

(8.3.4)

This equation can be written in two different forms, viz.,

yi = Ym + (1 − Xi)

(
�Ym

�Xi

)
P,T

(8.3.5)

and

yi = Ym +
(
�Ym

�Xi

)
P,T

− Xi

(
�Ym

�Xi

)
P,T

(8.3.6)

The usefulness of these alternative forms will be evident when we discuss partial
molar property in a multicomponent solution.

Equation (8.3.5) has a simple geometric interpretation about the relationship
between the partial molar quantity of a component and the corresponding molar
property of the solution. This is discussed with reference to Fig. 8.3 that shows a
hypothetical variation of a molar property, Ym, of a binary solution as a function
of the mole fraction of the component 2, X2. According to Eq. (8.3.4), the partial



8.3 Determination of Partial Molar Properties 197

z

(1–X2′)

X2X2′

Ym(X2′)

y1

y2

Ym

10

φ

Fig. 8.3 Geometric interpretation of a partial molar quantity, yi, in a binary solution, as defined by
Eq. (8.3.5)

properties of the two components, y1 and y2, at a composition X2
′ of the solution is

given by the intercepts of the tangent line to the Y vs X curve at X2
′ on the vertical

lines at X2 = 0 and X2 = 1. In order to prove this geometric interpretation, let us
consider the value of y2 for the solution composition of X2

′. From Fig. 8.3, we have

y2 = Ym(X′
2) + Z ,

where Ym(X2
′) is the molar value of Y at the solution composition X2

′. However,

Z = (1 − X′
2) tan �,

where tan� = (�Ym/�X2). Thus,

y2 = Ym(X′
2) + (1 − X2)

�Ym

�X2

as in Eq. (8.3.5). It should also be evident from Fig. 8.3 that as Xi → 1, yi → yi
o,

where the last quantity is a molar property of a pure component.

8.3.2 Multicomponent Solutions

For the determination of partial quantities in a multi-component solution, one can
take two alternative approaches. The first is that due to Darken (1950), who pre-
sented a generalization of Eq. (8.3.5) to multi-component solution, and the second
is due to Hillert and co-workers (see Hillert, 1998), who presented a generalization
of Eq. (8.3.6). We present below the final results of their derivations, which we
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would refer to as Darken and Hillert equations, respectively, and leave the inter-
ested readers to consult the original works to understand how these equations were
derived.

8.3.2.1 Darken Equation

Darken (1950) showed that a partial molar property of a component, yi, correspond-
ing to the molar property, Ym, of a multi-component solution can be determined
according to

yi = Ym + (1 − Xi)

(
�Ym

�Xi

)
P,T,Xj/Xk...Xn/Xk

(8.3.7)

where j or n 
= k 
= i. Note that this equation, which is often referred to as the
Darken equation, is formally analogous to the expression of a partial molar property
of a component in a binary solution, Eq. (8.3.5). By taking the derivative of Ym at
constant relative amounts of all components other than the one for which the partial
property is sought, the multi-component solution has been reduced to a pseudo-
binary solution. This is easy to understand by considering the case of a ternary
solution. For example, if the composition of a ternary solution varies along a straight
line connecting the apex 1 to the binary join 2–3 (Fig. 8.4), then the composition of
the solution has a fixed value of the ratio X2/X3. In this case the ternary solution
behaves as a quasi-binary solution. The partial quantity yi in the ternary solution
at any composition along a straight line defining a fixed value of Xj/Xk can be
obtained from the Darken equation. The Darken equation has been applied by Sack
and Loucks (1985) and Ghiorso (1990) to the problems of multi-component mineral
solid solutions.

Fig. 8.4 Schematic
illustration of the reduction of
a ternary solution to a
pseudo-binary solution. A
line with constant X2/X3 ratio
defines a pseudo-binary line
with 1 as an end-member
component

1

3

Constant X2/X3
ratio

2

8.3.2.2 Hillert Equation

The Hillert expression for a partial molar property in a multicomponent system can
be written as
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yi = Ym +
(
�Ym

�Xi

)
P,T,Xj 
=i

−
n∑

l=i

Xl

(
�Ym

�Xl

)
P,T,Xi 
=l

(8.3.8)

This equation has the advantage that the terms for all components within the sum-
mation sign are treated in the same way, which makes it simple to handle in com-
puter calculations. There is no need to consider explicitly that in an n component
system, there is n-1 independent component because of the stoichiometric constraint
�Xi = 1. The reader is referred to Hillert (1998) for derivation of the above equation,
but we show below how the binary expression (8.3.6) can be transformed to the
above form.

Equation (8.3.6) can be written as

yi = Ym +
(
�Ym

�Xi

)
(i+j),P,T

− Xi

(
�Ym

�Xi

)
(i+j),P,T

(8.3.9)

where the subscript (i + j) indicates that the sum of the mole fractions of i and j is
held constant (in a binary solution, Xi + Xj = 1). For brevity, we will henceforth
omit the explicit stipulation in the partial derivatives that P and T are held constant.
Now, it can be easily shown that for any function Z = f(xi, x2, x3 ...)

(
�Z

�xi

)
(i+j), k

=
(
�Z

�xi

)
j,k

−
(
�Z

�xj

)
i,k

(8.3.10)

where the subscript k denotes that the mole fractions of all components other than
i and j are held constant. (The reader can check the validity of the above relation
by considering the function Y = aXi + bXj + cXk, and carrying out the operations
indicated on the left and right of above equation, both of which will yield a – b.)
Expanding the derivative terms in Eq. (8.3.9) in the form of the last equation, rear-
ranging terms, and imposing the relation Xj = 1 – Xi, we obtain

yi = Ym +
(
�Ym

�Xi

)
Xj

− Xi

(
�Ym

�Xi

)
Xj

− Xj

(
�Ym

�Xj

)
Xi

(8.3.11)

which is the binary form of Eq. (8.3.8).

Problem 8.3 The molar property of many solutions may be represented as Ym =
�Xiyi

o + �WijXiXj, where Wij is a constant for the binary join i-j, and y◦
i is the

molar property of the pure component i (this type of solutions are known as regular
solutions; see Sect. 9.2.1). Using Eq. (8.3.8), show that the partial molar property of
the component i is given by yi = yi

o + �WijXj −�WkjXkXj, where the first summa-
tion is taken over all binary joins involving i, and the last summation is taken over
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all binary joins. Also show that it reduces to the expression for a binary solution, as
derived from Eq. (8.3.4), when the mole fractions of all but two components are set
equal to zero.

8.4 Fugacity and Activity of a Component in Solution

The fugacity of a component in a solution, �, is defined in a formally similar way
as that for a pure component, Eq. (3.6.1) by using partial Gibbs energy or chemical
potential of the component instead of Gibbs energy of the pure component. Thus,

d��i = RTdlnf�i (8.4.1)

Integrating the above equation at a constant P-T condition between two states of the
system of different compositions, we have

��i (P, T, X) = ��i (P, T, X∗) + RT ln

[
f�i (P, T, X)

f�i (P, T, X∗)

]
(8.4.2)

Using Eq. (8.4.1), the first term on the right can also be expressed as

��i (P, T, X∗) = ��i (P′, T, X∗) + RT ln

[
f�i (P, T, X∗)

f�i (P′, T, X∗)

]
(8.4.3)

Combining the last two equations, we have

��i (P, T, X) = ��i (P′, T, X∗) + RT ln

[
f�i (P, T, X)

f�i (P′, T, X∗)

]
(8.4.4)

Equations (8.4.2) and (8.4.4) show that the change of chemical potential as a func-
tion of pressure and composition can be expressed by the sum of two terms, one
of which (a logarithmic term) accounts completely for the effect of compositional
variation. However, the decomposition of �i(P,T,X) into two terms is not unique. In
the first case, Eq. (8.4.2), the pressure dependence of chemical potential is accounted
by those of the two component terms, whereas in the second case, Eq. (8.4.4), it is
accounted by that of only the logarithmic term. The conditions assigned to the chem-
ical potential on the right of these equations, which are the same as those assigned to
the fugacity terms in the denominator, are known as the standard states, whereas
the ratio of the fugacity terms is known as the activity of the component i at a
P,T,X condition, ai(P,T,X). The concepts of both fugacity and activity were intro-
duced by Lewis (1970: see Lewis and Randall, 1961), leading to the development
of thermodynamic formalisms to treat phase equilibria involving non-ideal mixtures
of components in solutions and gases. The rationale for introducing the concept of
activity lies in the fact that for highly nonvolatile substance, such as a solid, it may
be impossible to determine the fugacity values precisely without recourse to highly
sophisticated instrumentations. In such cases, it is advantageous to deal with the
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ratio of fugacity values of a substance between two different states, instead of the
individual values at different states.

We can now express �i
�(P,T,X) as either

��i (P, T, X) = ��i (P, T, X∗) + RT ln a�i (P, T, X), (8.4.5)

corresponding to Eq. (8.4.2) or

��i (P, T, X) = ��i (P′, T, X∗) + RT ln a�i (P, T, X), (8.4.6)

corresponding to Eq. (8.4.4). However, note that ai(P,T,X) in these equations are
different quantities as these represent relative fugacities with respect to two different
standard states. If we set the chemical potentials on the left of the last two equations
equal to those of their respective standard states, then we have RTlnai

�(P,T,X) = 0
or ai

�(P,T,X) = 1 in both cases. Thus, the activity of a component in its chosen
standard state is unity, regardless of what that choice happens to be. There is no
formal thermodynamic restriction on the choice of this standard state except that it
must be at (a) the temperature of interest, since the integrations in Eqs. (8.4.2)–
(8.4.4) were carried out at a fixed temperature, and (b) a fixed composition.

While the final result must be independent of the choice of the standard state, a
clever choice of standard state could greatly simplify the derivation of the result.
This advantage of simplifying the thermodynamic treatment of problem by an
appropriate choice of standard state is the reason behind the retention of flexibility
in the choice of standard state and outweighs the advantage, as emphasized by
Lewis and Randall (1961), of avoiding “the confusion if once for all we should
choose for a given substance its standard state.” However, as we would see later,
certain choices of standard states have proved to be usually convenient in the
thermodynamic treatment of solutions. For brevity, we would henceforth indicate
the chemical potential and the fugacity at the standard state at T as �i

*,�(T) and
fi

*,�(T), respectively, without implying anything about the choice of pressure, if it
is the pressure of interest, P, or a fixed pressure, P′. Thus, we restate the last two
equations in a general form as

��i (P, T, X) = �∗,�
i (T) + RTlna�i (P, T, X) (8.4.7)

where

a�i = f�i (P, T, X)

f∗i (T)
(8.4.8)

(Quite often one would hear the statement that the activity of component in its pure
state is unity. This, of course, cannot be a generally valid statement unless the stan-
dard state has been chosen to be that of pure component at the P-T condition of
interest, i.e. �i

*(T) = �i
o(P, T). For reasons discussed in Sect. 8.8.2, such a choice of
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standard state, however, happens to be a common practice in problems dealing with
non-electrolyte solutions.)

When we deal with a solid or liquid solution, the equilibrium vapor phase above
the solution consists of different components. If the vapor phase above the solution
behaves as an ideal gas and the components in the condensed solution have very
similar energetic properties, then the partial vapor pressure, Pi, of a component
would be found to vary linearly with the content of i in the solution. If we use
mole fraction of i, Xi, as a measure of the content of i in the solution, then in this
simple case we would find a relation Pi = Pi

oXi, where Pi
o is the vapor pressure of

the pure component i at the same temperature. An example of such linear relation
of the measured vapor pressures of components in a binary solution is shown in
Fig. 8.5a. However, when the vapor phase above a solution deviates from the ideal
gas behavior (Fig. 8.5b), as is often the case, it is the fugacity (or the corrected
vapor pressure) of a component rather than its vapor pressure that is proportional to
the mole fraction of the component in the solution. Specifically, we have fi = fi

oXi,
where fi

o is the fugacity of the pure component at the P-T condition of interest, if
the components in the solution have very similar energetic properties. If the latter
restriction is not satisfied, then the fugacity of the component i would follow a rela-
tion of the form fi = fi

oXi�i, where �i is an adjustable parameter that accounts for
effects of the dissimilar energetic properties of the components in solution. To be
even more general, we can write

f�i (T) = f∗,�
i (T)(X•

i �
•
i )� (8.4.9)

where Xi
• is some convenient measure or function of the content of i in the solution,

and �i
• is the corresponding adjustment factor. The adjustable parameter �i is known

(a) (b)
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XBXB
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Fig. 8.5 (a) Linear and (b) nonlinear variation of species vapor pressures and of total pressure (PT)
as function of composition. (a) system benzene(B)-ethylene chloride(EC) solution at 49.99◦C, as
determined by von Zawidzki (1900: Z. Phys. Chem. 35, 129); (b) system benzene-2,2,4-trimethyl
pentane (TMP) at 55◦C. From Sandler (1977)
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as the activity coefficient of the component i in the phase �. In addition to the
nature of the compositional function, Xi

•, �i
• is a function of pressure, temperature

and composition. Using now the definition of activity according to Eq. (8.4.8), the
above equation can be re-written as

a�i = (X•
i �

•
i )� (8.4.10)

Consequently,

��i (P, T, X) = �∗,�
i (T) + RTlnX•,�

i + RTln�•,�
i (8.4.11)

To conclude this section, we recapitulate that at fixed P,T,X condition,

(a) the fugacity and chemical potential of a component are absolute quantities,
while

(b) activity of a component depends on the choice of standard state, and
(c) the value of �•

i depends on the choice of both standard state and the compo-
sitional function X•

i , as should be obvious from the last equation.

8.5 Determination of Activity of a Component using
Gibbs-Duhem Relation

Using Gibbs-Duhem relation, One can determine the activity of a component
in a binary system if the activity of the other component is known. Combining
Eqs. (8.2.7) and (8.4.5), we have

X1dlna1 = −X2dlna2 (8.5.1)

so that

X′′
1∫

X′
1

d ln a1 = −
X′′

1∫

X′
1

X2

X1
d ln a2

or

ln a1(X′′
1) = ln a1(X′

1) −
X′′

1∫

X′
1

X2

X1
d ln a2 (8.5.2)

where X1
′

and X1
′ ′

stand for two values of the mole fraction X1. Thus, if a2 is
known as a function of composition between X1

′
and X1

′ ′
, and a1 is known at the

composition X1
′
, then a1 can be determined at X1

′ ′
by carrying out the integration
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in the last equation. Graphical integration by plotting X2/X1 vs. −lna2 or numerical
integration poses problem of accuracy near the terminal compositions since X2/X1

→∞ as X2 → 1, and –lna2 → ∞ as X2 → 0. As discussed by Darken and Gurry
(1953), the second problem can be avoided if we evaluate ln�1 instead of lna1,
and then determine a1 according to a1 = X1�1. For this purpose, we first re-write
Eq. (8.5.1) as

X1dlnX1 + X1dln�1 + X2dlnX2 + X2dln�2 = 0

Noting now that XidlnXi = dXi and dX1 + dX2 = 0, we get from the above relation

ln�1(X′′
1) = ln�1(X′

1) −
X′′

1∫

X′
1

X2

X1
d ln�2 (8.5.3)

Since �2 is always finite, tending to a constant value as X2 → 0 (Henry’s law:
Sect. 8.8), the graphical evaluation of the above integral near X2 = 0 does not pose
any problem. Figure 8.6 illustrates the evaluation of �Pb in the binary Cd-Pb sys-
tem by graphical integration according to the last expression. With the aid of a
desktop computer, it is, however, more appropriate now to carry out the integration
numerically.

Fig. 8.6 Determination of
log �Pb from experimental
data of log �Cd in the Cd-Pb
binary system at 500◦C by
graphical integration,
according to Eq. (8.5.3).
Change of log �Pb between
two compositions is given by
the area under curve between
the compositions. From
Darken and Gurry (1953).
With permission from
Mc-Graw Hill
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8.6 Molar Properties of a Solution

8.6.1 Formulations

Using Eq. (8.2.5), the molar Gibbs energy of a solution, Gm, is given by

Gm = G

N
= 1

N

(∑
i

ni�i

)
=

∑
i

Xi�i, (8.6.1)

which, upon substitution of Eq. (8.4.7), yields

Gm =
∑

i

Xi�
∗
i + RT

∑
i

Xi ln ai (8.6.2)

or, decomposing the activity term according to Eq. (8.4.10)

Gm =
∑

i

Xi�
∗
i

︸ ︷︷ ︸
mechanical mixture

+

⎛
⎜⎜⎜⎜⎜⎜⎝

RT
∑

i

Xi ln X•
i

︸ ︷︷ ︸
�Gideal

m

+ RT
∑

i

Xi ln�•
i

︸ ︷︷ ︸
�Gxs

m

⎞
⎟⎟⎟⎟⎟⎟⎠

(8.6.3)

The first right hand term denotes the Gibbs energy per mole of a mechanical mix-
ture of the standard state components, whereas the parenthetical term on the right
denotes the chemical effect of mixing, and will be denoted by �Gm

mix (the decom-
position of �Gm

mix into ideal and an excess components is explained later). These
definitions are illustrated in Fig. 8.7, by choosing, as standard states, the pure end
member components at the P-T condition of interest.

Equation (8.6.3) is the fundamental equation from which expressions of other
molar properties of a solution are derived. Thus, the expressions for the molar
entropy (Sm) and volume (Vm) of a solution are obtained from using the identities
S = –(�G/�T)P and V = (�G/�P)T, which yield

Sm =
∑

i

XiS
∗
i +

(
−R

∑
i

Xi ln X•
i − R

∑
i

Xi ln�i − RT
∑

i

Xi
� ln �i

�T

)

︸ ︷︷ ︸
�Smix

m

(8.6.4)

and

Vm =
∑

i

XiV
∗
i +

(
RT

∑
i

Xi
� ln �i

�P

)

︸ ︷︷ ︸
�Vmix

m

(8.6.5)
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Fig. 8.7 Illustration of Gibbs
free energy of mixing in a
(stable) binary solution
(convex downward solid
line). The dashed line
represents the Gibbs energy
of a mechanical mixture.
�Gm(mix) represents the
mixing energy at a
composition X2

′. �1 and �2

are the partial molar Gibbs
energies or chemical
potentials of the components
1 and 2, respectively, at the
composition X2

′ of the
solution

1

ΔGm (mix)

μ1

μ2

Gm

G1°

G2°(X1G1° + X2G2°)

0 X2 X2′

Also, since H = G + TS, we have

Hm =
∑

i

XiH
∗
i +

(
−RT2

∑
i

� ln �i

�T

)

︸ ︷︷ ︸
�Hmix

m

(8.6.6)

Let us now illustrate the above concepts by considering the olivine solid solution,
(Fe,Mg)2SiO4. As we would see later (Sect. 9.1), the activity of an end member
component, I2SiO4 (I: Mg or Fe) should be expressed according to

aI2SiO4=(XI�I)2 (8.6.7)

where the exponent 2 accounts for the fact that there are two moles of cations per
formula unit of the solid solution. Comparing this expression with Eq. (8.4.10), in
which we have expressed activity of a component in a general form as ai

�= (Xi
•�i

•),
we note that XFo

• = (XMg)2 and �Fo
• = (�Mg)2, where Fo stands for forsterite

(Mg2SiO4). Similar expression holds for the activity of the fayalite component
(Fe2SiO4). Combining Eqs. (8.6.7) and (8.6.2), the Gibbs energy of mixing per mole
of the solid solution, (Fe,Mg)2SiO4, is given by

Gm =
∑

i

Xi�
∗
i + RT

∑
i

Xi ln(Xi�i)
2

=
(

XMg�
∗
Mg2SiO4

+ XFe�
∗
Fe2SiO4

)
(8.6.8)

+ [
2RT(XMg ln XMg + XFe ln XFe) + 2RT(XMg ln�Mg + XFe ln�Fe)

]
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If we choose pure forsterite, Mg2SiO4, and pure fayalite, Fe2SiO4, at the P-T condi-
tion of interest as the standard states, the first parenthetical term equals (XMgGo

Fo +
XFeGo

Fa).

8.6.2 Entropy of Mixing and Choice of Activity Expression

At this point it is useful to recall the expression of entropy of mixing that was derived
in Chap. 2 from the Boltzmann equation. It was shown earlier (Eq. (2.6.6)) that for
random distribution of the mixing units in a solution, Sconf = –νR�XilnXi, where
ν stands for the number of moles of the mixing units per mole of the solution.
This equation yields the first term within the square bracket of Eq. (8.6.8), which
is the contribution from the ideal part of entropy of mixing of the end member
components, T�Smix(ideal), noting that random distribution is a necessary condi-
tion for ideality. This simple analysis provides the rationale for the above choice of
activity expression for the end member components in (Fe,Mg)2SiO4 solid solution.
In general, the activity expression should be such that it yields the entropy of mix-
ing obtained from the Boltzmann equation when the activity coefficient terms are
neglected.

8.7 Ideal Solution and Excess Thermodynamic Properties

8.7.1 Thermodynamic Relations

A solution is defined to be thermodynamically ideal, if the activity coefficient of
each component, which has been chosen to describe the properties of the solution,
is unity. Thus, from Eq. (8.4.11) we have for an ideal solution

��i (P, T, X) = �∗�
i (T) + RTlnX•,�

i (8.7.1)

for each component, i.
The molar properties of an ideal solution follow easily from Eqs. (8.6.3) to (8.6.6)

by equating �i = 1. It is obvious that for a thermodynamically ideal solution, molar
enthalpy (Hm) and molar volume (Vm) are given simply by the linear combination
of the corresponding standard state properties. Such linear combinations are often
referred to as mechanical mixtures. Thus, for example, if the standard states are
chosen to be the states of pure components at the P-T condition of interest, then
Hm and Vm of a solution would be given by linear combination of the respective
end member properties, if the solution behaves ideally with respect to mixing of the
end-member components. However, note from Eqs. (8.6.3) and (8.6.4) that there is
a non-zero Gibbs free energy of mixing and entropy of mixing even for a thermo-
dynamically ideal solution. The ideal and non-ideal parts of the Gibbs energy of
mixing are shown in Eq. (8.6.3).
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The molar properties of ideal solution are summarized below.

Gm =
∑

i

Xi�
∗
i + RT

∑
i

Xi ln X•
i

Sm =
∑

i

XiS
∗
i − R

∑
i

Xi ln X•
i

Vm =
∑

i

XiV
∗
i

Hm =
∑

i

XiH
∗
i

Box (8.7.1)

Note that since Xi < 1, the ideal Gibbs free energy of mixing is always less than
zero whereas ideal entropy of mixing is always greater than zero. The ideal volume
and enthalpy of mixing are obviously zero.

The difference between a thermodynamic property of a solution and the cor-
responding ideal solution property is defined to be an excess (xs) thermodynamic
property. For example, from Eq. (8.6.8), we have for one mole of olivine solid solu-
tion, (Fe,Mg)2SiO4

�Gxs
m = 2RT

(
XMg ln�Mg + XFe ln�Fe

)
, (8.7.2)

Again, the term 2 in these equations is due to the fact that there are two moles
of (Fe + Mg) per mole of olivine of the chosen formula representation. The ideal
and excess Gibbs free energies of mixing for a solution with one mole of mole of
mixing units, such as (Fe,Mg)Si0.5O2, is illustrated in Fig. 8.8. The excess part of the
molar Gibbs energy is indicated in Eq. (8.6.3). In all expressions of molar properties
of a solution, Eqs. (8.6.3)–(8.6.6), the terms containing the activity coefficient, �i,
constitute the excess thermodynamic quantities.

By definition, the term RTln�i represents the excess chemical potential of the
component i. But since chemical potential represents the partial molar Gibbs free
energy, RTln�i represents the excess partial molar Gibbs free energy of the compo-
nent i in a solution. Consequently, from the definition of a partial molar property
(Eq. (8.2.1))

RT ln�i ≡ �xs
i =

(
��Gxs

�ni

)
P,T,nj 
=ni

(8.7.3)

Using Eq. (8.3.5), we can express RTln�i in terms of the excess Gibbs free energy
per mole, �Gm

xs, of a binary solution as
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Fig. 8.8 Illustration of molar Gibbs free energy of mixing, �Gm(mix), and excess molar Gibbs free
energy of mixing, �Gm

xs, of a binary solution. The diagram is calculated with the following values
of the different parameters: G1

o = 5000, G2
o = 7000, W21 = 7400 and W12 = 5200 J/mol. The

last two are subregular parameters for nonideal mixing, as explained in 9.2.2. In this illustration,
�Gxs > 0

RT ln�i = �Gxs
m + (1 − Xi)

(
��Gxs

m

�Xi

)
(8.7.4)

Extensions of this relationship to multicomponent solution are easily obtained from
Eqs. (8.3.7) and (8.3.8). The latter expression is more convenient for computer cal-
culation of activity coefficients in a multicomponent system.

8.7.2 Ideality of Mixing: Remark on the Choice of Components
and Properties

From the standpoint of calorimetric measurements, a solution is said to have zero
enthalpy of mixing if the heat of formation varies linearly between those of the
end-member components. However, even if the heat of formation and other prop-
erties of a solution have non-ideal behavior with reference to the properties of the
end-members, one can make a solution behave ideally or less non-ideally over a
certain range of composition by ascribing hypothetical properties to the end member
components, as illustrated in Fig. 8.9. In this illustration, the mixing of A and B is
associated with a positive enthalpy of mixing. However, the mixing behavior within
the compositional range of XB ∼ 0–0.6 may be treated as ideal by assigning a hypo-
thetical heat of formation, �H′

f(B), to the component B. It is completely legitimate,
and sometimes advantageous to choose hypothetical properties of components or
hypothetical components as standard states, and generate their thermodynamic prop-
erties by extrapolation of the behavior of the properties from actual measurements
or in some other way such that the nonideal behavior within the compositional range
of practical interest is minimized.
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Fig. 8.9 Reduction of a
nonideal enthalpy of mixing
between two components A
and B of a binary solution to
an ideal mixing behavior
within a limited
compositional range, 0≤ XB

≤ 0.6, by assigning a
hypothetical enthalpy of
formation �H′

f to the
component B. The real
variation of �Hf as function
of composition is illustrated
by the solid line A

ΔHf(A)

ΔH′f(B)

ΔHf(B)
ΔHf

XB B

8.8 Solute and Solvent Behaviors in Dilute Solution

The thermodynamic behavior of solute and solvent in dilute solutions plays impor-
tant role in our understanding of the appropriate choice of standard state that sim-
plifies the activity-composition relations, speciation of a solute such as that of H2O
in a melt that affects the melt properties, and trace element geochemistry of melt.
The limiting behaviors of solute and solvent in a dilute solution are embodied in the
statements of Henry’s law and Raoult’s law, respectively. Although these laws were
formulated independently from experimental observations, one is a consequence of
the other. We would state Henry’s law first, which was proposed before Raoult’s
law, and develop Raoult’s law as a consequence of the Henry’s law.

As discussed later (Sect. 11.2), Henry’s law plays a central role in the under-
standing of the equilibrium behavior of trace elements in melts as a function of
the degree of melting and the nature of the source region. An useful compilation
of the concentration limits over which different elements of geochemical interest
obey Henry’s law in hydrothermal and magmatic systems can be found in Ottonello
(1997).

8.8.1 Henry’s Law

It was discovered by William Henry (1774–1836) that when the mole fraction of a
solute becomes very dilute, its partial vapor pressure becomes proportional to mole
fraction. This is known as the Henry’s law. In modern statements, the partial vapor
pressure is replaced by fugacity to account for the nonideal behavior of the vapor
phase. Thus, we state Henry’s law as

Limit Xi → 0, fi = KHXi (8.8.1)

where Xi is the mole fraction of i, and KH is known as the Henry’s law constant. If
the molality, mi, instead of mole fraction is chosen as the measure of the content of
i in the solution, as is the practice in the field of electrolyte solution, then
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Limit mi → 0, fi = K∗
Hmi, (8.8.1′)

where K∗
H is the Henry’s law constant in the molalilty representation (molality is

defined as the number of moles per kg of solvent). Now since fugacity is propor-
tional to activity (ai = fi/fi*, where fi* is the standard state fugacity, Eq. (8.4.8)), we
also have

Limit Xi → 0, ai ∝ Xi (8.8.2)

and similarly in the molality representation, where the proportionality constant is
the Henry’s law constant divided by fi*.

Comparing Eqs. (8.8.2) and (8.4.10), it should be obvious that the proportionality
constant in the former equals the activity coefficient, �i. Thus, within the domain of
validity of the Henry’s law, �i is independent of Xi (or mi), but it depends on P, T
and solvent composition.

The solute i in the last three expressions is an actual solute in the solution, and
not a solute which dissociates or associates in the solution. The Henry’s law behav-
ior of an actual solute in a solution is illustrated in Fig. 8.10. However, the law,
as stated above, does not hold between the fugacity (or activity) and undissociated
mole fraction of a solute such as HCl, which actually dissociates in a dilute aqueous
solution, but holds individually for the products of dissociation, namely, H+ and
Cl−. Instead of obeying the relations (8.8.2) or (8.8.1), the fugacity of HCl will be
proportional to (XHCl• )2, as XHCl• → 0, where XHCl• is the nominal mole fraction
of HCl in the aqueous solution had there been no dissociation, i.e.

XHCl• = nHCl•

nHCl• + nH2O
, (8.8.3)

with nHCl• indicating the number of moles of HCl in the solution had there been
no dissociation. We would refer Xi• as the nominal mole fraction of the solute i•.

KH

fi

Xi

fi
o

fi = fi
oXi (Raoult’s law) 

fi = KHXi (Henry’s’s law)

0
0

1

Fig. 8.10 Illustrations of the fugacity vs. composition relation of a component in a solution, show-
ing the Henry’s law behavior at the dilute end and Raoultian behavior at the concentrated end
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In general, the fugacity of an almost completely dissociated solute will obey the
relation

Limit Xi → 0, fi• = KH(Xi• )
n, (8.8.4)

where n is the number of moles of species into which a mole of the solute i• disso-
ciates in the solution, and Xi

• is the apparent or nomial mole fraction of the solute.
Dividing both sides by the standard state fugacity, fi*, of the solute, we have

Limit X•
i → 0, ai• = K′

H(Xi• )
n, (8.8.5)

where K′
H = KH/ fi*.

To verify the above statement about the nature of the exponent n, let us consider
in detail the behavior of HCl in an aqueous solution. In a dilute solution, it will
dissociate almost completely according to

HCl(aq) = H+(aq) + Cl−(aq) (8.8.a)

Using a result derived later (Sect. 10.4), we have, at equilibrium

K =
(
aaq

H+
) (

aaq
Cl−

)
aHCl

(8.8.6)

where K is a constant at a fixed P-T condition (and is known as the equilibrium con-
stant), and a stands for the activity of the specified species in the aqueous solution.
Since activity of a component is proportional to its fugacity (Eq. (8.4.8)), we can
write from the above relation

fHCl ∝ (fH+)(fCl−) (8.8.7)

where, for brevity, we have omitted the superscript aq. Now if both H+ and Cl- obey
Henry’s law, then using Eq. (8.8.1) for each species, we have, as XHCl → 0, fH+ ∝
XH+ and fCl− ∝ XCl− , so that from the last equation

fHCl ∝ (XH+)(XCl−) (8.8.8)

where

XH+ = nH+

nH+ + nCl− + nH2O
(8.8.9)

and

XCl− = nCl−

nH+ + nCl− + nH2O
(8.8.10)
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If HCl is almost completely dissociated in the solution, then from the stoichiometry
of the reaction (8.8.a) we have nH+ = nCl- ≈ nHCl•. Thus,

XH+ = XCl− ≈ nHCl•

2nHCl• + nH2O
(8.8.11)

For a dilute aqueous solution of HCl, the denominator in the last expression essen-
tially equals (nHCl

• + nH2O), and consequently XH+ = XCl- ≈ XHCl•. Thus, as XHCl•
→ 0, we have from Eq. (8.8.8),

fHCl ∝ (XHCl•)
2 (8.8.12)

8.8.2 Raoult’s Law

It was discovered by Francois-Marie Raoult (1830–1901) from experimental studies
that as the mole fraction of the solvent (s) approaches unity, its vapor pressure is
given by Po

sXs, where Po
s is the vapor pressure of the pure solvent (Fig. 8.5b). The

value of Xs at which such behavior becomes valid depends on the system. Like the
modern version of Henry’s law, that of Raoult’s law is also expressed in terms of
fugacity instead of vapor pressure to account for the nonideal behavior of the vapor
phase. We show below that this property of the solvent is a consequence of the
Henry’s law behavior of the solutes in a dilute solution.

Let us consider a solution with an arbitrary number of solutes, each of which obey
Henry’s law within a certain dilute compositional range. According to the Gibbs-
Duhem relation (Eq. (8.2.7)), we have at constant P-T condition,

∑
i

Xid�i + Xjd�j = 0

where i stands for a solute and j stands for the solvent. Now, using d�i = RTdlnfi

(Eq. (8.4.1))

∑
i

Xid ln fi + Xjd ln fj = 0, (8.8.13)

If each solute obeys the Henry’s law, then

X1dlnX1 + X2dlnX2 + X3dlnX3 + ..... Xjdlnfj = 0 (8.8.14)

Differentiating both sides with respect to X1,

X1
d ln X1

dX1
+

∑
i
=1

Xi
d ln Xi

dX1
+ Xj

d ln fj

dX1
= 0 (8.8.15)

or, using the relation dX/X = dlnX
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1 +
∑
i
=1

dXi

dX1
+ Xj

d ln fj

dX1
= 0 (8.8.16)

Now, differentiating the stoichiometric relation X1 + X2 + X3 +.... Xj (solvent)
= 1 with respect X1,

1 +
∑
i
=1

dXi

dX1
+ dXj

dX1
= 0 (8.8.17)

Combining the last two equations

Xj
d ln fj

dX1
= dXj

dX1
(8.8.18)

so that

d ln fj = d ln Xj (8.8.19)

Note that since we have imposed Henry’s law behavior on the solutes, this expres-
sion is valid for the compositional range of the solvent (j) within which the solutes
obey the Henry’s law. Now, integrating the last expression between Xj = 1 and X′

j,
where the latter is a solvent composition within the domain of Henry’s law behavior
of the solutes, we have

ln
fj(X′

j)

f o
j

= ln X′
j

where fj(X′
j) and f o

j are, respectively, the fugacities of the solvent at the composition
X′

j and at the pure state at the P-T condition of interest. Thus, since Xj → 1 as Xi

→ 0, we can write

lim Xj → 1, fj(Xj) = fo
j Xj (8.8.20)

If we now choose the pure state of a component at the P,T condition of interest
as its standard state, then fj(Xj)/fj

o = aj(Xj), in which case the Raoult’s law can be
stated as

limXj→1 aj = Xj (8.8.21)

A schematic activity vs. composition relation of a component in a solution,
referred to a standard state of pure component at the P-T condition of interest, is
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Xi
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KH′

ai = Xi (Raoult’s law) 

0
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1

ai = KH′ Xi (Henry′s′s law)

Fig. 8.11 Hypothetical activity vs. composition relation of a component (i) in a binary solution
showing the limiting behaviors at the dilute and concentrated ends when the standard state of the
component is chosen to be its pure state (real or hypothetical) at the P-T condition of interest.
KH

′ = KH/fi
o, where KH is the Henry’s law constant in the fugacity representation (Eq. (8.8.1)),

and fi
o is the fugacity of pure i at the P-T condition of interest

illustrated in Fig. 8.11. Here the component is chosen to show a negative deviation
from ideality.

Problem 8.4 Construct an activity vs. composition relation of a component in a
solution for which the standard state is chosen to be the hypothetical state obtained
by extrapolating the Henry’s law behavior of fugacity to Xi = 1 (Fig. 8.10)

8.9 Speciation of Water in Silicate Melt

Burnham and Davis (1974) determined the fugacity of H2O (w) dissolved in a melt
of albite (NaAlSi3O8) composition, and made the interesting discovery that fw is
proportional to (Xw•)2, where Xw• stands for the apparent or nominal mole frac-
tion of H2O in the melt (that is the mole fraction if H2O did not dissociate), up to
quite high nominal water content of the melt. The observed fm

w vs. (Xw•)2 relation
at 800◦C is illustrated in Fig. 8.12. From this observation, they concluded that H2O
completely dissociates in an albite melt to two hydroxyl ions. This led to further
development of ideas of the solubility mechanism water in silicate melt that have
important petrological implications.

The fundamental topological variation of the structure of silicate minerals is
based on different schemes of sharing (or polymerization) of oxygen among neigh-
boring SiO4 tetrahedra. Each tetrahedron consists of a central Si atom and four
oxygen atoms at the apices. A silicate melt also consists of SiO4 tetrahedral groups
but in a random array and with a degree of sharing of oxygens between neighboring
tetrahedra that depends on the extent of sharing in the structure of the mineral from
which the melt had formed. For example, there is no shared or polymerized oxygen
among the SiO4 tetrahedra in a melt formed from frosterite, Mg2SiO4, which is
an orthosilicate and is devoid of any polymerized oxygen in the crystalline state,
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Fig. 8.12 Fugacity of H2O in NaAlSi3O8 – H2O melt vs. mole fraction, Xm
w, and square of the mole

fraction of nominal H2O in the melt at 800oC and total pressure of 2 – 10 kb. The curve fm
w = fo

w
is the saturation boundary at 800◦C, where fo

w stands for the fugacity of pure water in the vapor
phase. From Burnham and Davis (1974). With permission from American Journal of Science
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whereas there are large number of shared oxygens in the melt formed from an albite,
which forms a three dimensional network of SiO4 tetrahedra as result of sharing of
four oxygens in each tetrahedron with four neighboring tetrahedra.

It was hypothesized that water dissolves in a silicate melt by reacting with the
polymerized or bridging oxygens (Ob) according to

H2O(m) + Ob(m) → 2(OH)−(m) (8.9.a)

This process reaps apart two polymerized tetrahedra, and each (OH)– sticks
at the two tetrahedral apices that were initially connected by a bridging oxygen
(Fig. 8.13).1 This solubility mechanism has a number of interesting implications
with respect to the effect of water on the physico-chemical properties of silicate
melts, and on differential depression of melting temperatures of minerals in the
presence of water that influences the compositions of silicate melts formed by the
partial melting of rocks (e.g. Philpotts, 1990).

It is shown above (Sect. 8.8.1) that if a mole of solute dissociates completely, then
within the domain of validity of Henry’s law for the actual solutes, the fugacity of
the nominal solute becomes proportional to some power, n, of its mole fraction (Eqs.
(8.8.5) and (8.8.12)), where n equals the number of moles of the dissociated solutes
that formed from one mole of the nominal solute, only when the mole fraction of
the latter tends to zero. As shown below, the fact that fw• is proportional to (Xw•)2

in the dilute range clearly implies that H2O dissociates almost completely to two

+

+

H2O

+

+
(OH)–

Fig. 8.13 Dissolution mechanism of H2O in silicate melt by reacting with a bridging oxygen and
forming two (OH)− groups, thereby breaking the linkage between the tetrahedra. The central Si4+

ion (small filled circle) contributes one + ve charge to the ligands (oxygen and (OH)− ) that are
located at the apices of a tetrahedron. Thus, the bridging oxygen (left panel) and (OH)− groups
(shaded) are completely charge satisfied

1 This solubility mechanism may be rationalized according to Paulings electrostatic valence rule
(Pauling, 1960). According to this rule, a Si4+ ion coordinated to four oxygens contributes a single
positive charge to each oxygen. Thus, a polymerized O2- ion is charge satisfied as it receives two
positive charges from the two Si4+ ions in the two shared tetrahedron. Replacing this bridging
oxygen by two (OH)- ions and depolymerizing the tetrahedra keep the charge balance in tact since
each hydroxyl group receives one positive charge from a central Si4+ ion.
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(OH)– ions as Xw• → 0. But, it should be evident from the derivation of Eq. (8.8.12)
that the relation w• ∝ (Xw•)2 cannot hold at high values of Xw•, if H2O continues to
dissociate almost completely to two (OH)–. On the contrary, as pointed out earlier
by Stolper (1982a), the linear relationship between fw• and (Xw•)2 up to high Xw•
is a strong indication that water does not completely dissociate to two (OH)– ions
in a silicate melt except when Xw• is sufficiently dilute so that the activity of the
bridging oxygens, a(Ob), in the melt remains effectively constant.

The relationship between fw• and (Xw•) can be derived as follows. For the reac-
tion (8.9.a), we have at equilibrium

K(P, T) =
(

am
(OH)−

)2

(
am

H2O

) (
am

Ob

) (8.9.1)

where K(P,T), known as the equilibrium constant, is a constant at a fixed P-T condi-
tion (the concept of equilibrium constant is developed in (Sect. 10.4). Since fugacity
is proportional to activity at a fixed P-T condition, we can write from the above
relation

fm
H2O ∝ 1

am
Ob

(
fm
(OH)−

)2
(8.9.2)

As Xw• → 0, X(OH)- → 0 so that, according to Henry’s law

fm
(OH)− ∝ Xm

(OH)− (8.9.3)

If X(OH)- is so small (Xw•→0), that the formation of the hydroxyl ions according
to the reaction (8.9.a) does not significantly affect the content of Ob(m), then am

Ob is
effectively a constant at a fixed P-T condition. Thus, as Xw• → 0, combination of
the last two equations yields

fm
H2O ∝ (

Xm
(OH)−

)2
(8.9.4)

But, since according to the reaction (8.9.a), X(OH)-(m) = 2 Xw•, and at equilib-
rium, fm

H2O = fv
H2O, we finally obtain that as Xw• → 0,

fv
H2O = fm

H2O ∝ (
Xm

w•
)2

(8.9.5)

Stolper (1982a; 1982b) demonstrated by infrared spectroscopy of quenched sil-
icate glasses and from thermodynamic calculations that speciation of H2O in the
melt changes as a function of the nominal H2O content of the melt. As illustrated in
Fig. 8.14, the spectroscopic data show water dissociates to hydroxyl ions almost
completely in the dilute range, as expected from Eq. (8.9.5), but the content of
molecular H2O in the melt increases with increasing nominal water (H2O•) content,
and exceeds the hydroxyl content of the melt when H2O• > 4.5 wt%.
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Fig. 8.14 Measured concentrations (wt%) of molecular H2O and (OH)− groups present in silicate
melts vs. nominal (total) water content, as determined by infra-red spectroscopy. Circles: rhyolitic
glasses; triangles: basaltic glasses; square: albite glass. From Stolper (1982)

8.10 Standard States: Recapitulations and Comments

Even at the expense of redundancy, I have chosen to summarize here some of the
above discussions on standard states.

(a) The temperature of the standard state must always be the temperature of interest,
but there is freedom to choose the composition and pressure of the standard
state. This freedom should be exercised carefully.

(b) Let us consider a species i in a solution. It is convenient to have the species
satisfy the relation ai = Xi, as Xi → 1 at all P-T conditions. As we have seen
above (Eq. (8.8.21)), this behavior can be realized only if the state of the pure
species i at the P-T condition of interest is chosen as the standard state. With
this choice of standard state, ai → kHXi as Xi → 0, where kH is a constant
(Fig. 8.11).

(c) When one deals only with dilute components in solution, it is sometimes conve-
nient to choose a standard state such that ai = Xi, as Xi → 0 or mi → 0, where
mi is the molality of i in the solution, depending on the adopted measure of the
content of i in the solution. This property is satisfied by choosing the standard
state to be the hypothetical state obtained by extrapolation along the “Henry’s
law line” to Xi → 1 or m → 1 (Problem 8.4). We would return to this choice of
standard state in Sect. 12.4 that deals with electrolyte solutions.

(d) Quite often one chooses the standard state of a condensed component to be
the state of pure component at 1 bar, T. For this choice of standard state, ai →
Xi only at 1 bar, T. In this case, the activity of the pure component at higher
pressure is calculated according to
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RT ln ao
i (P′, T) = Go

i (P′, T) − Go
i (1 bar, T) =

P′∫

1

Vo
i dP (8.10.1)

The first equality follows from Eq. (8.4.7)
(e) For gaseous species, it is sometimes convenient to have its activity equal its

fugacity. In that case, the standard state of a gaseous species must be chosen
to be at that pressure at which the fugacity of the pure gaseous species is unity
(Fig. 8.15). Often it is assumed that at P = 1 bar, fi = P = 1, because at sufficiently
low pressure, all gaseous species must behave ideally. However, 1 bar need not
be sufficiently low to ensure ideal gas behavior of all gases, but the error intro-
duced by this assumption is usually not significant, especially in the treatment of
natural processes in which there are always much larger sources of uncertainties.

f

P

1

f = P 

Real gas 

Fig. 8.15 Choice of standard state of a gas at unit fugacity. The pressure of the gas at the chosen
standard state need not be unity

Problem 8.5 (continuation of Problem 6.8) Using the results from Problem 6.8,
calculate activity of pure water at 10 kb, 720◦C using two different choices of stan-
dard state: (i) state of pure water at 10 kb, 720◦C, and (ii) state of pure water at 1 bar,
720◦C, assuming that f = P at P ≤ 1 bar.
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8.11 Stability of a Solution

A solution may become unstable with respect to phase separation because of intrin-
sic instability of the solution to compositional fluctuations and growth of isostruc-
tural stable nuclei of new phases within the solution, or with respect to decomposi-
tion to phases of different structures even though the solution is stable with respect to
fluctuations. Following Mueller (1964), we would call the two types of instabilities
of a solid solution as intrinsic and extrinsic instabilities, respectively. An example
of intrinsic instability is the familiar separation of an alkali feldspar, (Na,K)AlSi3O8,
upon cooling into two isostructural alkali feldspar phases, one Na-rich and the other
K-rich, whereas an example of extrinsic instability is the breakdown of clinopyrox-
ene, Ca(Fe,Mg)Si2O6, which has a monoclinic structure, into a relatively Mg-rich
clinopyroxene and a Mg-poor orthopyroxene, which has an orthorhombic structure.
These breakdown processes may be represented as


1(NaxK1−x)AlSi3O8 → 
2(NayK1−y)AlSi3O8 + 
3(NazK1−z)AlSi3O8 (8.11.a)

monoclinic monoclinic monoclinic

with y > x, z < x, and


′
1Ca(Mgx′Fe1−x′ )Si2O6 → 
′

2Ca(Mgy′Fe1−y′ )Si2O6 + 
′
3(Mgz′Fe1−z′ )SiO3

(8.11.b)

monoclinic monoclinic orthorhombic

With y′ > x′and z′ < x′. We discuss below the thermodynamic aspects of the two
types of instabilities.

8.11.1 Intrinsic Stability and Instability of a Solution

At the terminal regions, the free energy of a solution must decrease with the increas-
ing dissolution of a component. To prove this statement, let us consider a binary
solution for which

�Gmix
m = RT(X1 ln a1 + X2 ln a2)

For the sake of simplicity, let us assume that the activity is expressed in terms of
mole fraction according to the form ai = Xi�i. Now, according to the laws of dilute
solution, as discussed above, as X2 → 0, a2 = K′

HX2 and a1 = X1, where K′
H is the

Henry’s law constant (Fig. 8.11). Thus, as X2 → 0,



222 8 Thermodynamics of Solutions

�Gmix
m = RT(X1 ln X1 + X2 ln X2 + X2 ln K′

H)

Upon differentiating both sides with respect to X2 at a fixed temperature, and
noting that dX1 = – dX2 (since X1 + X2 = 1) and dlnXi = dXi/Xi, we have

��Gmix
m

�X2
= RT

(
ln

X2

X1
+ ln K′

H

)
(8.11.1)

Thus, as X2 → 0, ��Gm
mix/�X2 → – ∞. One can easily see by substituting

– dX1 for dX2 in the last equation that also as X1 → 0, ��Gm(mix)/�X1 → – ∞.
Consequently, since Gm = XiGi

o + (1–Xi)Gj
o + �Gm

mix, we have, as Xi → 0

�Gm

�Xi
= (Go

i − Go
j ) + ��Gm(mix)

�Xi
= −∞ (8.11.2)

It can be easily verified that the above result is not restricted to the chosen form
of activity-composition relation, but is a generally valid result (the reader could try
the relation ai = (Xi�i)ν).

Because of the above relation, the Gibbs energy of a solution must decrease with
the addition of a very small amount of an additional component. This is why pure
minerals are virtually absent in natural environments since dissolution of a small
amount of an additional component makes it more stable. When the Gm vs X relation
of the solution is convex downwards (i.e. toward the X axis), the molar Gibbs energy,
Gm, of the solution is lower than that of the system in an unmixed state. For example,
referring to Fig. 8.16a, consider a bulk composition X* and the G vs. X relation
given by the curve (1). The Gm of the homogeneous solution is given by the point
f. However, the overall Gm of a combination of unmixed phases of the same bulk
composition must always lie above the point f, since it is given by the intersection
of the line connecting the molar Gibbs free energies of the unmixed (metastable)
phases with the vertical line defining the bulk composition, such as the point e in
Fig. 8.16a. Now, since Gm(e) > Gm(f), the unmixed phases are unstable with respect
to the homogeneous solution of the same bulk composition. Thus, we conclude that
if the Gm vs X relation is convex downwards, or in other words

(
�2Gm

�X2

)
P,T

> 0 (8.11.3)

(which means that the slope of the Gm vs. X curve increases with X), the solution is
stable with respect to unmixing to isostructural phases.

Now consider that an intermediate segment of the G vs. X curve is convex
upwards, such as shown by the curve curve 2 in Fig. 8.16a. Within this “hump”,
Gm of a homogeneous solution is greater than the overall Gm of the unmixed phases
As an example, the Gm of the homogeneous solution for the bulk composition X* is
given by the point a on curve 2, which is higher than the overall Gm of any arbitrary
combination of unmixed phases, such as given by the points b, c and d. However,
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Fig. 8.16 (a) Schematic Gibbs free energy vs composition relation in a binary system. At the condi-
tion P1- T1, at which the free energy curve is always convex downward, any arbitrary homogeneous
composition, such as f, has lower free energy than that of any combination of unmixed phases of
the same bulk composition. At P2-T2, any arbitrary composition within the free energy hump
attains a lower free energy by unmixing. For composition X*, the lowest free energy state is that of
a two-phase combination with compositions X(1) and X(2). (b) Qualitative activity-composition
relation corresponding to the condition P2-T2; the stable compositions follow the solid lines. From
Ganguly and Saxena (1987)
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the lowest Gibbs energy state for the system is given by the combination of unmixed
phases for which the overall Gm is at the point d.

This point d has the special property that it lies on the common tangent to the
convex downward segments of the Gm vs X curve. By virtue of this property, the
chemical potential of a component in one unmixed phase, �, equals that in the other
unmixed phase, , i.e. �i

� = �i
, which is the condition that must be satisfied at

equilibrium. This statement may be understood by considering the common tangent
as a line of coincidence of two tangents to the Gm vs X curve, one at the � and the
other at the  side of the hump, as illustrated in Fig. 8.17. Following the procedure
of derivation of chemical potential of a component in a phase, say �1

�, from the
Gm vs X curve by the method of intercept (Fig. 8.7), it should be easy to see from
Fig. 8.17 that at the compositions of the unmixed phases � and  defined by the
common tangent to the Gm vs X curve, �1

� (i.e. the intercept at X1 = 1 by the
tangent on the � side) = �1

 (i.e. the intercept at X1 = 1 by the tangent on the 
side) and, similarly, �2

� = �2
. The qualitative nature of the activity vs composition

relation of the solution corresponding to the curve (2) in Fig. 8.16a is illustrated in
Fig. 8.16b. Since the unmixed phases are isostructural, each component is referred
to the same standard state in both phases, and therefore has the same activity in the
unmixed phases at equilibrium.

The two points that are defined by a common tangent to a Gm vs. X curve with
a ‘hump’ in a binary system are sometimes referred to as the binodes. There is
also another special pair of points within the hump on the Gm –X curve, as shown
in Fig. 8.17. These two points mark the transition of the Gm vs. X curve from a
concave upward to concave downward form. These are known as spinodes, and by
definition, are inflection points. The spinodes play a special role in the kinetics of
unmixing of a solution. We would return to this point in the Sect. 8.13.

•• μ2
β

 = μ2
α

μ1
α

 = μ1
β

μ2
α

μ1
α βα

1

μ2
β

μ1
β

X20

Spinodes
Gm

1

Fig. 8.17 Schematic illustration of the equilibrium property defined by common tangency to the
stable portions of Gm vs X curve showing a miscibility gap, and of spinodes. The common tangent
line (1) can be viewed as the line of coincidence of two tangents (dashed lines) on the two sides of
the Gm vs X curve
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8.11.2 Extrinsic Instability: Decomposition of a Solid Solution

As a result of intersection of its Gm vs. X curve with that of the other phases, a
solid solution may become unstable with respect to a combination of two phases,
one of which belongs to a different Gm vs. X curve. This is illustrated in Fig. 8.18,
which shows the Gm vs. X curves for two hypothetical solid solutions A and B of
different structures. Each solid solution is intrinsically stable with respect to phase
separation. However, the molar Gibbs free energy of either solid solution within
the domain defined by the vertical lines is higher than that of a combination of
phases of compositions corresponding to the vertical lines. These compositions are
defined by a common tangent to the Gm(A) and Gm(B) curves so that these satisfy
the equilibrium condition, �1(A) = �1(B) and �2(A) = �2(B).

The geologically important system MgMgSi2O6 – CaMgSi2O6 (enstatite (En) –
diopside (Di)) and its iron counterpart (ferrosilite – hedenbergite) show interesting
combination of intrinsic and extrinsic instabilities of solid solutions. The phase dia-
gram for the En-Di system at 1 bar pressure is illustrated in Fig. 8.19. The schematic
Gm vs. XCa relations above and below 1320◦C, which is the temperature of coex-
istence of En, Pig and Di solid solutions, are illustrated in Fig. 8.20. Pyroxene
solid solution of monoclinic structure (clinopyroxene: CPx) within this binary join
develops a hump in the Gm vs. X relation below ∼ 1460◦C, and thus decomposes
into two monoclinic phases, pigionite (Pig) and diopside (Diss; ss: solid solution).
At Mg-rich composition, the Gm vs. X relation of CPxss is intersected by that of
orthopyroxene solid solution within the same binary join leading to the coexistence
of enstatite (Enss) and pigeonite solid solutions (Fig. 8.20a). However, as illustrated
in Fig. 8.20b, below 1320◦C the common tangent between the Gm vs. XCa curves
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Gm(B)Gm(A)
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A + B

μ2(A) =
μ2(B) 

Fig. 8.18 Molar Gibbs free energy vs composition of two binary solid solution phases A and B
which have the same range of bulk compositions. Both solid solutions are intrinsically stable with
respect the unmixing or phase separation as their Gm vs. X curves are always convex downwards
(�2Gm/�X2 > 0). However, any solution with composition falling within the range indicated by
the vertical dotted lines is unstable. Instead a combination of solid solutions A and B with the
compositions indicated by the dotted lines would form with relative amounts of the two phases
being determined by the bulk composition
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Fig. 8.19 Phase relations in
the system Mg2Si2O6 (En) -
CaMgSi2O6 (Di) at one
atmosphere pressure (ss: solid
solution). At high
temperature some of the
relations may be metastable
with respect to other phases.
From Lindsley (1983). With
permission from
Mineralogical Society of
America

Gm Gm

CPxOPx
OPx CPx

DiPig + Di

En + PigEn

Pig

XCa XCa

(a)

(b)

DiEn + DiEn

T < 1320 °CT > 1320 °C

(a)

(b)

(a) (b)

Fig. 8.20 Schematic Gibbs free energy vs. composition relations of clinopyroxene (CPx: bold line)
and orthopyroxene (OPx: light line) (a) above and (b) below the 1320◦C. Pig: Pigionite (CPx), Di:
Diopside (CPx), En: Enstatite (OPx)

for OPx and CPx solid solutions (curve b) falls below that (curve a) to the two sides
of the hump of CPx solid solution. This leads to the transformation of Pig to En
solid solution and an expansion of the compositional gap between the two stable
pyroxene compositions. Fig. 8.19 shows the metastable solvus (dashed line) below
the temperature of Pig to Opx transformation.

8.12 Spinodal, Critical and Binodal (Solvus) Conditions

8.12.1 Thermodynamic Formulations

As illustrated in Fig. 8.21, the size of a hump on a Gm vs. X curve of a binary solu-
tion changes smoothly as a function of temperature (usually increases with decreas-
ing temperature). The locus of the coexisting equilibrium compositions in the T-X
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X0 1

T

X0 1

Gm

Fig. 8.21 (a) Gm vs. X and (b) corresponding T vs. X relations in a non-ideal binary system
with positive deviation from ideality leading to unmixing or phase separation. From Ganguly and
Saxena (1987)

space defines a domain within which the solution is unstable with respect to phase
separation. This locus is known as the solvus or binodal, and the included composi-
tional domain is known as a miscibility gap. (Thus, the compositional gap between
Enss and Diss in Fig. 8.19 is not a solvus.) The locus of the two spinodes is known as
the spinodal. The temperature at which the compositions of the two unmixed phases
become identical is known as the critical or consolute temperature of solution. We
would denote it by the symbol Tc(sol) to distinguish it from the critical end point
in a phase diagram that we have designated by the symbol Tc (Fig. 5.2). However,
both critical points have similar significance in that the difference in the properties
of the two phases vanishes at these points.

Since a spinode represents a transition between a concave upwards,
�2Gm/�X2 > 0, to concave downwards, �2Gm/�X2 < 0, configurations of the Gm

vs. X curve, we must have �2Gm/�X2 (or GXX for brevity) = 0 at a spinode. Now,
note from Fig. 8.21a that the critical point of a solution represents the point of
convergence of the two spinodes on the Gm vs X curve. Thus, a Tc(sol) must also
satisfy the condition GXX = 0. In addition, the critical temperature must satisfy
another condition that is given by the behavior of the third derivative of Gm with
respect to X, as discussed below.

The qualitative behaviors of the second and third derivatives of Gm with respect
to X at and around the spinodes are illustrated in Fig. 8.22. At the left spinode of
a binary system, �3Gm/�X3 < 0 whereas at the right spinode it is �3Gm/�X3 > 0.
Therefore, at the critical condition, where the two spinodes meet, we must have
�3G/�X3 = 0. In summary, the following thermodynamic conditions must be satis-
fied at the spinode and critical condition.

�2Gm

�X2
= 0 : both spinode and Tc(sol) (8.12.1)
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X
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Fig. 8.22 Schematic illustration of the change of the (a) first, second and (b) third derivatives
of Gm with respect to X through the spinodal compositions in a binary system. The spinodes are
shown by black dots. The first derivative property follows from the Gm vs. X curve illustrated in
Fig. 8.17

�3Gm

�X3
= 0 : Only Tc(sol) (8.12.2)

The above conditions can be used to develop expressions of �Gxs
m in terms of

compositions that are useful for the calculation of critical and spinodal conditions
in a binary system. This procedure is illustrated below using a binary solution that
involves one mole of an exchangeable species per mole of an end member compo-
nent, e.g. FeSiO3 – MgSiO3 system (exchangeable ions are in bold).

The molar Gibbs energy of the solution is given by

Gm = [XGo
1 + (1 − X)Go

2] + �Gideal
m + �Gxs

m = [XGo
1 + (1 − X)Go

2]

+ RT[X ln X + (1 − X) ln(1 − X)] + �Gxs
m

(8.12.3)

where, for brevity, we have used X for X1. Imposing the second derivative condition
that must be satisfied at both spinode and Tc(sol) (Eq. (8.12.1)), we then obtain

�2�Gxs
m

�X2
= − RT

X(1 − X)
, (8.12.4a)

Equation (8.12.1) yields an additional relation for Tc(sol), viz.

�3�Gxs
m

�X3
= −RT(2X − 1)

X2(1 − X)2
(8.12.4b)

The last two relations can be reduced to various special forms by substituting
expressions of �Gm

xs according to different solution models, which are discussed
later in Chap. 9. As an illustration, let us consider a simple class of non-ideal solu-
tion that is known as “simple mixture” or “regular solution” (see Sect. 9.2 for
exposition of the regular solution and sub-regular solution models). For this type
of solutions, �Gxs

m follows a parabolic form, �Gxs
m = WGX(1–X), where WG is
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an energetic parameter that, in principle, depends on both temperature and pressure
according to the form WG = WH – TWS + PWV (WH, WS and WV are known as
enthalpic, entropic and volumetric interaction parameters, respectively, whereas WG

is known as the free energy interaction parameter). The WH, WS and WV terms are
constants. Substitutions of this special expression of �Gxs

m in the last two equations
and carrying out the required differentiations, we obtain the following relations for
the spinodal and critical conditions of a “simple mixture”.

and

Spinodal : 2 WG = RT

X(1 − X)

0 = RT(2X − 1)

X2(1 − X)2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Critical condition

(8.12.5a)

(8.12.5b)

Equation (8.12.5a) is satisfied by a spinodal, whereas both equations above are
satisfied at the critical temperature. The last equation yields X = 0.5 for the critical
composition, which on substitution in Eq. (8.12.5a) yields the following expression
for the critical temperature of a “simple mixture”

2RTc(sol) = WG = WH–Tc(sol)W
S + PWV

or

Tc(sol) = WH + PWV

2R + WS
(8.12.6)

Unlike the spinodal, the binodal or solvus describes the equilibrium compositions
of two coexisting phases. Thus, the binodal curve is calculated by satisfying the
thermodynamic condition of equilibrium between the phases. For a binary system,
we thus have at the binodal condition

��1 = �

1

��2 = �

2

(8.12.7)

Again various relations between the equilibrium compositions of the coexisting
phases on the binodal can be developed from the above equation by substituting
expressions for chemical potentials according to different solution models. For the
“simple mixture” that we have treated above, the chemical potential of a component
is given by

��i = �o
i + RT ln X�

i + WG(1 − X�
i )2

and similarly for the phase . Substitution of the expressions for chemical potentials
into Eq. (8.12.7) and rearrangement of terms yield the following expression for the
T-X relation along a binodal in a binary system that behaves as a “simple mixture”
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RT

WG
= 1 − 2X�

i

ln

(
1 − X�

i

X�
i

) (8.12.8)

The equations governing T-X relations of spinodal and solvus in a binary simple
mixture (Eqs. (8.12.5a) and (8.12.8), respectively) show that the pressure effect on
these two relations is manifested through its effect on WG, which depends on the
excess volume of mixing, �Vm

xs (From the relationship between �Gxs
m and WG for

simple mixture, as given above, �WG/�P = ��Gxs
m /�P = �Vxs

m ). This conclusion,
however, is not restricted to simple mixture, but is generally valid. For mineral solid
solutions, �Vm

xs is usually positive, but small. Thus, usually pressure leads to a
small expansion of solvus and spinodal. An example of the calculated pressure
effect on the solvus in the pyrope-grossular ((Mg,Ca)3Al2Si3O12) join of garnet
solid solution (Ganguly et al., 1996) is shown in Fig. 8.23. The mixing properties are
asymmetric to composition (sub-regular), and there is no excess volume of mixing
at the pyrope rich composition.

For multicomponent system, one would need to write equations analogous to
Eq. (8.12.7) for the other components and then solve for the equilibrium composi-
tions of the two coexisting phases. This exercise, however, has to be carried out in a
computer using numerical procedure. For a ternary system, the calculation of spin-
odal is much simpler than the solvus or the binodal, and is amenable to analytical
solution for simple mixture type of solutions. Thus, calculation of spinodal affords
an estimate of the miscibility gap in a relatively straightforward way (the miscibility
gap must enclose the spinodal but the two must touch one another at the critical

Fig. 8.23 Calculated Solvus
and spinodal in the
pyrope-grossular and
pyrope-spessartine joins of
garnet and calculated
pressure effect on the solvus
in the pyrope-grossular join.
Form Ganguly et al. (1996)
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temperature). The procedure for the calculation of ternary spinodal is discussed in
Ganguly and Saxena (1987). Analysis of the expression of a spinodal in a ternary
system in which the bounding binaries behave as simple mixtures shows that for
certain combination of the values of the binary WG parameters, a spinodal may
exist as an isolated loop within the ternary compositional space. In other words,
a ternary system may have an isolated miscibility gap even when all the binary
compositions are stable. Such isolated ternary miscibility gap was first discovered
in the system Au-Ni-Cu by Raub and Engel (1947, quoted in Meijering, 1950;
also see Ganguly and Saxena, 1987). Isolated ternary miscibility gap in the field
of melt is also displayed by the geologically important system KAlSiO4(leucite) –
Fe2SiO4(fayalite) – SiO2 (Fig. 8.24).

Problem 8.6 Show that the following conditions are satisfied at the critical con-
dition of a sub-regular solution for which �Gxs

m is given by �Gxs
m = (WG

12X2 +
WG

21X1)X1X2:

WG
12(6X1 − 4) − WG

21(6X1 − 2) = − RTc(sol)

X1(1 − X1)

6(WG
12 − WG

21) = −RTc(sol)(2X1 − 1)

X2
1(1 − X1)2

(8.12.9)

Fayalite

Leucite Orthoclase SiO2

Two
liquids

C rLc

Fig. 8.24 System leucite (KAlSiO4) – fayalite (Fe2SiO4) –silica showing an isolated miscibility
gap. The lines within the binary and ternary miscibility gaps join the compositions of the two
liquids coexisting in equilibrium. Lc: leucite, Cr: cristobalite From Philpotts (1995) constructed
with data from Roedder (1951)
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8.12.2 Upper and Lower Critical Temperatures

The miscibility gap most commonly increases with decreasing temperature, such
as illustrated in Figs. 8.19 and 8.23. However, there are solutions in various
organic systems (e.g. diethylamine-water, benzene-nicotine) for which the misci-
bility gap decreases with decreasing temperature leading to a lower critical tem-
perature (Fig. 8.25a). It is also possible to have a solution with both upper and
lower critical temperatures resulting in a closed miscibility loop in the T-X space,
such as shown by the binary solutions of dimythilepyridine-water and m-toluidine-
glycerol (Fig. 8.25b). We discuss below the thermodynamic properties that lead to
the development of upper and lower critical points, and the possibility of existence
of lower Tc in magmatic systems.

A solution becomes stable for all compositions either above the upper critical
temperature (UCT) or below the lower critical temperature (LCT). Since �2Gm/�X2

(GXX for brevity) = 0 at a critical temperature, and is positive for a stable solution
(Eq. (8.11.3)), it must increase when the temperature is raised above an UCT and
lowered below a LCT. Thus, ���GXX/���T > 0 at UCT and < 0 below LCT. Now
since the order of differentiation is immaterial,

�

�T

(
�2G

�X2

)
︸ ︷︷ ︸
�GXX/�T

= �2

�X2

(
�G

�T

)
= − �

2S

�X2︸ ︷︷ ︸
−SXX

(8.12.10)

Consequently, −SXX > 0 or SXX < 0 at an UCT, and – SXX < 0 or SXX > 0 at
the LCT. Also since GXX = 0 at the critical temperatures, and consequently HXX =
TSXX (because G = H – TS), we have the following thermodynamic conditions at
upper and lower critical temperatures (Hess, 1996).

T °C

XglycerolXwater

(a) (b)

Fig. 8.25 (a) Lower critical temperature in the system diethylamine – water and (b) upper and
lower critical temperatures in m-toluidine and glycerol (From Kondepuddi and Prigogine, 1998)
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HXX = TSXX < 0 at UCT (8.12.11a)

HXX = TSXX > 0 at LCT (8.12.11b)

Now since H = XH1
o + (1–X)H2

o + �Hmix, where X is the mole fraction of the
component 1, we have HXX = (�Hmix)XX = (�Hxs)XX, the last equality following
from the fact (�Hmix)ideal = 0 (recall that a mixing property of a solution is the
sum of the corresponding ideal and excess properties). Thus, we have the following
properties of enthalpy of mixing at the two critical temperatures.

(�Hmix)XX = (�Hxs)XX < 0 at UCT (8.12.12a)

(�Hmix)XX = (�Hxs)XX > 0 at LCT (8.12.12b)

Following Hess (1996), the geometric interpretations of these properties are
shown in Fig. 8.26. This figure shows that if there is no inflection point (which
implies that �Hmix vs. X curves do not have the wavy features shown in the lower
and upper panels of Fig. 8.26a and b, respectively), then (a) �Hmix must be pos-
itive in systems showing upper critical temperature so that (�Hmix)XX < 0, and
(b) negative in systems showing lower critical temperature so that (�Hmix)XX >
0. Furthermore, since for unmixing we must have �Gxs = �Hmix − T�Sxs > 0,
it follows that �Sxs < 0 for the existence of LCT in a system characterized by
monotonic change of H vs. X slope.

Solvus with LCT has not yet been reported from any geologically relevant sys-
tem. However, Navrotsky (1992) argued that such solvus may be present in oxide
melts in that negative �Hmix was reported in (Na,K) aluminosilicate glasses. Hess
(1996) presented a detailed analysis of the problem for silicate melts and suggested
that �Sxs in olivine-rich melt is likely to be negative, and thus a two-liquid field with
a LCT may exist in peridotite melts.

(Δ

Δ

Hmix)X 

(b) 

10 X

(ΔHmix)XX > 0 

( Hmix)
0 

(ΔHmix)XX < 0 

0

(a) 

ΔHmix 

X

Fig. 8.26 Schematic illustration of �Hmix vs. X relations in a binary solution that lead to (a)
(�Hmix)XX < 0 and (b) (�Hmix)XX > 0. The subscripts X and XX denote, respectively, the first and
second derivatives of �H with respect to X
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8.13 Effect of Coherency Strain on Exsolution

In solid state exsolution process, the lattice planes of the two phases sometimes
remain partly or fully continuous or coherent across the interface between the phases
when the exsolved lamellae are very fine (Fig. 8.27). Since the lattice spacings in
the two phases are different, the continuity of lattice planes across the interface
introduces elastic strain energy. Consequently, the exsolution process in the presence
of coherency strain can not be treated simply in terms of�Gmix, which only accounts
for the strain-free chemical interactions, but must also take into account the effect of
coherency strain. This problem was treated by Cahn (1962) and Robin (1974). Their
analyses show that a coherent solvus (i.e. the solvus in the presence of coherency
strain) must lie within the strain free or chemical solvus (Fig. 8.28).

The elastic strain energy is given by the mechanical work needed to bring, at
constant temperature, a chosen mass of a phase to its non-hydrostatically stressed
state from its state at the hydrostatic condition. Cahn (1962) defined a new energy
function of a solid solution subject to coherency strain as

�m = Gm + k(Xi − Xi)
2 (8.13.1)

where the last term represents the strain energy, and Xi is the average value of the
mole fraction of the component i in the bulk crystal. This new energy function is
referred to as the Cahn function. The compositions of the coexisting phases in
coherent exsolution process is given the common tangent to the �m vs X plot just
as the compositions of the phases in strain free exsolution are given by the common
tangent to the Gm vs X plot (Fig. 8.17).

From the known values of elastic constants of alkali feldspar, Robin (1974) cal-
culated k = 603.6–704.6 cal/mol, and used these to calculate the coherent solvus in
the alkali feldspar solid solution. Figure 8.28, which is from Robin (1974), shows a
comparison between the chemical and coherent solvii in the alkali feldspar system.
The coherent spinodal is calculated in the same manner as chemical spinodal, but
using the Cahn function instead of the Gibbs function.

Lamellar exsolutions are known in many natural minerals. If the exsolved lamella
retain coherency of the lattice planes, which can be revealed by transmission

Fig. 8.27 Semi-coherent
lattice planes between two
crystals A and B

A
B
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Fig. 8.28 Solvus and
spinodal in the system
NaAlSi3O8 (Ab) –
KALSi3O8 (Or). Coherent
solvus and spinodal are due
to the combined effects of
chemical mismatch and
coherency strain that
develops when the lattice
planes of the two phases
remain continuous through
the interfaces From Robin
(1974). With permission from
Mineralogical Society of
America

XOr
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Solvus

Coherent
Solvus

Coherent
Spinodal

electron microscopic studies, then the temperature of exsolution should be cal-
culated from the coherent solvus instead of chemical solvus. (There is, however,
no coherency of the lattice planes when the exsolution proceeds to the stage of
grain separation.) An example of very fine scale lamellar exsolution is cryptop-
erthites, which are mixtures of very fine scale lamella of K-rich and Na-rich alkali
feldspars. Laboratory experiments on the homogenization temperatures of cryptop-
erthites yield much lower temperature than that predicted from the chemical solvus,
as one would expect from the effect of coherency strain in shrinking the size of the
solvus.

If one or both exsolved phases with coherent lattice planes undergo phase trans-
formations involving a change of geometry upon cooling, then there is additional
strain that affects the free energy and morphological or textural development of the
intergrowth. A detailed discussion of the effect of coherency strain on the devel-
opment of exsolution microstructures of alkali feldspars during cooling of natural
rocks in different types of environments (from volcanic ejecta to granulites) can be
found in Parsons and Brown (1991).

Problem 8.7 The molar Gibbs energy of mixing of alkali feldspar solid solution,
(Na,K)AlSi3O8 can be expressed according to

�Gmix
m = RT(X1lnX1 + X2lnX2) + (W12X2 + W21X1)X1X2
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where the last term represents �Gm
xs according to a subregular solution model. Let

1 ≡ Ab (NaAlSi3O8) and 2 ≡ Or (KAlSi3O8). Using the following values of the
subregular W parameters, and k = 603 cal/mol, calculate �Gm

mix and �m
mix vs. X2

at 590◦C, and determine the compositions of coexisting phases in the presence and
absence of coherency strain.

W12 = 6420 − 4.632 T cal/mol

W21 = 7784 − 3.857 T cal/mol

8.14 Spinodal Decomposition

The spinodal plays a special role in the kinetics of exsolution process. As illustrated
in Fig. 8.29, a homogeneous phase with composition within the spinodes (e.g. com-
position d) is unstable with respect to spontaneous fluctuations as these lead to the
development of two phases with an overall free energy that is lower than that of the
homogeneous phase. In contrast, a homogeneous phase with composition between
a spinode and binode (e.g. composition a) is stable with respect to small fluctua-
tions of compositions since it has a lower free energy than the bulk free energy of
the phases developed by these fluctuations. Thus, for composition a, the exsolution
process requires formation of stable nuclei of the new phases.

X2

G

Fig. 8.29 Schematic Gibbs free energy vs. composition plot in a binary system illustrating change
of free energy of systems with bulk compositions of X(1) and X(2) due to fluctuations. S: spinodes,
B: binodes. From Ganguly and Saxena (1987)
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Fig. 8.30 Modulated
exsolution microstructure in a
subcalcic diopside formed by
spinoidal decomposition
(McCallister and Nord,
quoted in Buseck et al.,
1980). With permission from
Mineralogical Society of
America

The exsolution that takes place by small fluctuations around an average com-
position within the spinodal is known as spinodal deccomposition. It leads to very
fine scale modulated structures without sharply defined boundaries (Fig. 8.30). This
type of decomposition is characteristic of rapidly cooled environment. The kinetic
theory of spinodal decomposition was developed by Cahn (1968). A comprehensive
discussion of the subject and its applications to the interpretation of thermal history
of rocks can be found in Ganguly and Saxena (1987). As discussed earlier, a spin-
odal does not define the equilibrium compositions of two unmixed phases. It is a
kinetic boundary, and not a phase boundary. This is why spinodal textures such as
the one illustrated in Fig. 8.30 can not survive in a slowly cooled environment that
allows enough time for the attainment of equilibrium.

The spinodal decomposition in solids is controlled by the coherent spinodal
(Fig. 8.28) and not by chemical spinodal, since the modulated fine scale lamella
without sharply defined boundaries are structurally coherent with each other. The
stable equilibrium state of the system is achieved when the exsolved compositions
shift from the coherent to the chemical solvus by removing the coherency strain that
requires “snapping” of the lattice planes at the interface or formation of new grains.

8.15 Solvus Thermometry

Compositions of coexisting minerals that are related to a solvus or a compositonal
gap provide useful constraints on the temperature of formation of the host rocks
if data on the solvus (compositional gap) compositions as function of tempera-
ture and pressure are available. The mineral pairs orthopyroxene-clinopyroxene,
calcic-olivine – ferromagnesian olivine, calcite-dolomite, alkali feldspar-plagioclase
feldspar constitute geological examples of “solvus thermometers”. For a compre-
hensive review of the subject, the reader is referred to Essene (1989). The com-
positional gap between orthopyroxene and clinopyroxene in the binary system
Mg2Si2O6 – CaMgSi2O6 at 1 bar pressure is illustrated in Fig. 8.19. Note that in this
diagram, the compositional gap between pigeonite and diopside, which is metastable
below 1320◦C constitutes a true solvus (see Sect. 8.12.1). However, that between



238 8 Thermodynamics of Solutions

enstatite and diopside is not a true solvus, but is often referred to, albeit loosely,
also as a solvus. For brevity, we would refer to both compositional gaps as “solvus”
in this section.

In order to determine the temperature of formation of rocks on the basis of the
compositions of coexisting minerals on the two limbs of a “solvus”, one needs to
account for the effects of additional components in natural assemblages on the posi-
tion of “solvus” at a fixed pressure. For example, both ortho- and clino-pyroxene
incorporate significant amount of ferrous components, Fe2Si2O6 (ferrosilite: Fs)
and CaFeSi2O6 (hedenbergite: Hd) in solid solutions. Thus, the compositional gap
between ortho- and clino-pyroxenes must be treated in terms of at least the quadrilat-
eral components, En-Fs-Di-Hd. The compositional gap is described by a surface in
the quadrilateral system with the phase relations shown in Fig. 8.19 representing the
terminal section at the magnesian end. The projections of the temperature contours
on the compositional gap at 5 kb, which dips towards the Fe-end, are illustrated in
Fig. 8.31. In this figure, which is taken from Lindsley (1983), the triangles connect
the equilibrium compositions of orthopyroxene, augite and pigeonite at different
temperatures. If there are only two coexisting pyroxenes, augite and orthopyroxene,
the compositions should ideally fall on the same isotherm on the two sides. How-
ever, this is not always the case because of the close spacing of the orthopyroxene
isotherms and analytical problems. Many examples of the application of the two
pyroxene thermometer may be found in the literature (e.g. Lindsley, 1983, Sengupta
et al., 1999; Schwartz and McCallum, 2005) may be found in the literature.

Davidson and Mukhopadhyay (1984) have presented the solvus relation between
calcic and ferromagnesian olivines. The calcic components are CaMgSi2O4

(monticellite) and CaFeSi2O4 (kirschsteinite), whereas the ferromagnesian compo-
nents are Mg2SiO4 (forsterite) and Fe2SiO4 (fayalite). Thus, the solvus relation in

Wo

En Fs

HdDi

Fig. 8.31 Projection of temperature contours on the 5 kb solvus in the pyroxene quadrilateral, Di
(CaMgSi2O6) – Hd (CaFeSi2O6) – En (Mg2Si2O6) – Fs (Fe2Si2O6). Wo (wollastonite): Ca2Si2O6.
The triangles connect the equilibrium compositions of augite, orthopyroxene and pigeonite. From
Lindsley (1983). With permission from Mineralogical Society of America
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an olivine quadrilateral in the ternary system Mg2SiO4 – Fe2SiO4 – Ca2SiO4 analo-
gous to the pyroxene quadrilateral in the ternary system Mg2Si2O6 – Fe2Si2O6 –
Ca2Si2O6 that is illustrated in Fig. 8.31. The olivine solvus relation is formally
similar to that in the pyroxene quadrilateral except for the absence of a third phase
(pigeonite in the pyroxene) at specific T-X conditions.

Computer programs are available to define the solvus isotherm that provides the
best match to the compositions of coexisting minerals in some of the above systems
(e.g. Sack and Ghiorso, 1994). If compositions are measured for host mineral and
exsolved lamella within the host, it may be necessary to account for the coherency
strain on the solvus, as discussed in Sect. 8.13. Robin and Ball (1988) evaluated
the effect of coherency strain on the solvus in the pyroxene quadrilateral. They con-
cluded that the effect of coherency strain is significant in the Mg-Ca binary, leading
to a depression of the critical mixing temperature by 47◦C. However, this effect
progressively decreases as the composition moves into the quadrilateral, becoming
virtually negligible for Fe/(Fe + Mg) ≈ 0.6.

8.16 Chemical Potential in a Field

8.16.1 Formulations

In the presence of a field, such as electrical, magnetic and gravitational fields, the
chemical potential of a species is affected by its position in the field. As long as the
field is uniform, we need not bother about this effect since it does not lead to any
change of chemical potential with the change of position of a system in the field.
However, if there is a significant change of the field potential, the effect of the field
must be taken into account.

Let us start with the effect of gravitational field. If a species i is present in two
phases, � and , which are located at two heights separated by �h that causes a
sufficient change in the gravitational potential energy, then the energy conservation
equation is

�U + mig�h = Q + W− (8.16.1)

where mi is the mass of the species and g is the acceleration due to gravity. The left
hand side represents the total (internal plus external) energy change of the system
whereas the right hand side represents the total energy absorbed by the system (we
have already used this equation in connection with the problem of adiabatic flow
in Sect. 7.7.2, setting Q = 0.). As a consequence, the condition of chemical equi-
librium at constant temperature and volume is no longer given by the constancy of
the chemical potentials of the components that are free to move, but by that of the
sum of chemical and gravitational potentials of those components (Gibbs, 1875, see
Gibbs 1961), i.e.
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�i + migh = constant (8.16.2a)

so that

�i(1) + migh1 = �i(2) + migh2

or

�i(1) − �i(2) = mig(h2 − h1) (8.16.2b)

where the subscripts 1 and 2 indicate locations in a vertical column.
If there is an electrical field, then as shown by Guggenheim (1929): see

Guggenheim, (1967a, b), the condition of equilibrium is given by

�I
i (o) + (Fzi)	

I = �II
i (o) + (F′zi)	

II (8.16.3)

where 	I and	II are the electrical potentials acting on the species i at the locations
I and II, respectively, F′ is the Faraday constant, zi is the valence of the species
i and �i(o) is the chemical potential in the absence of the electrical field at the
specified locations. (F = eL = 9.6485 x 104 Coulombs/mol = 5511.5 J/V-mol, where
e is the electronic charge and L is the Avogadro’s number.) At this stage, the formal
resemblance between the last two equations should be obvious. The quantity 	 is
the equivalent of gh, both being potentials associated with the field, and Fzi is the
equivalent of mi, both representing molar properties.

Sometimes the chemical potential in the absence of a field is called the internal
chemical potential, �(int), and the added term due to the effect of the field, that is
terms like Fz	 and mgh, are called the external chemical potentials, �(ext). The sum
of �(int) and �(ext) then represents the total chemical potential of the system, �(tot)

(Guggenheim (1929) called �(int) + �(ext) in an electrical field as the electrochemical
potential). In general, it is the gradient of �(tot) that must vanish at equilibrium.

8.16.2 Applications

8.16.2.1 Variation of Pressure and Composition in the Earth’s Atmosphere

One of the simple applications of Eq. (8.16.2) is in the derivation of expression
relating the variation of pressure with height in the atmosphere. If we set the height
at the Earth’s surface to zero, and h as the height above it, then from Eq. (8.16.2b),

�i(h) + migh = �i(0) (8.16.4)

Assuming now that the Earth’s atmosphere behaves as an ideal gas, and the atmo-
spheric temperature is uniform, we have from Eq. (8.4.1)
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�∗
i (T) + RT ln Pi(h) + migh = �∗

i (T) + RT ln Pi(0)

or

Pi(h) = Pi(0)e−migh/RT (8.16.6)

The above expression is known as the barometric formula.
The temperature in the Earth’s atmosphere varies between 220 K and 300 K. The

composition of dry air at sea level is 78 mol% N2 and 21 mol% O2. These two
species accounts for 99% of the composition of air. For an ideal gas, Pi = PTXi,
where PT is the total pressure and Xi is the mole fraction of i. Thus, at the surface
of the Earth (PT = 1 bar), P(N2) = 0.78 and P(O2) = 0.21.

Figure 8.32 shows the variation of partial pressure of N2 and O2 as function
of height in the Earth’s atmosphere, as calculated according to Eq. (8.16.6) at an
approximate average temperature of 260 K. The vertical dotted line represents a typ-
ical flight altitude of a plane. The height of Mount Everest is 8,948 km (29,028 ft).
The inset of the figure shows the mol% of these two species vs. height, as calculated
from the relation P(N2) + P(O2) ≈ P(total) = Pi/Xi, where Pi and Xi are respectively
the partial pressure and mole fraction of the species i. The data collected by rocket
flights between 10 and 40 km (Kittel and Kroemer, 1980) are in good agreement
with the results in Fig. 8.32.
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Fig. 8.32 Variation of partial pressure of N2 and O2 and total pressure as function of height in the
Earth’s atmosphere at an approximate average temperature of 260 K. The inset shows the variation
of mol% of N2 and O2 as a function of height. The vertical dotted line indicates a typical flight
altitude of airplane. The height of Mount Everest above the sea level is 8,848 m (29,028 ft)
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8.16.2.2 Solution in a Gravitational Field

The problem of equilibrium distribution of species in the Earth’s gravitational field
was treated by Brewer (1951) but has received very little attention from the Earth
scientists. The treatment presented below closely follows the formal aspects of Bre-
war’s analysis. The total derivative of the chemical potential of a component at a
constant temperature is given by

d�1 =
(
��1

�P

)
dP +

n−1∑
1

(
��1

�Xi

)
dXi = v1dP + RT

n−1∑
1

(
� ln a1

�Xi

)
dXi (8.16.7)

where vi is the partial molar volume of the component i and n is the number of com-
ponents. The summation is carried over n–1 components since the mole fractions of
only n–1 components are independent. Also, the mole fractions of n–2 components
are held constant in the partial derivatives ��1/�Xi since one of the n–1 independent
components is used in the partial derivative.

At hydrostatic equilibrium, dP = –�gdh, where � is the density of the solution.
Thus,

d�1 = −(v1�gdh) + RT
n−1∑

1

(
� ln a1

�Xi

)
dXi (8.16.8)

Using a1 = X1�1, we obtain

d ln a1

dX1
= d ln X1

dX1
+ d ln �1

dX1
= 1

X1
+ d ln �1

dX1

so that

RT
n−1∑

1

� ln a1

�Xi
= RT

� ln a1

�X1
+ RT

n−2∑
i
=1

� ln a1

�Xi
= RT

X1
+ RT� ln �1

�X1
+ RT

n−2∑
i
=1

� ln a1

�Xi

(8.16.9)

Substitution of this expression into Eq. (8.16.8) yields

d�1 = −v1�gdh + RTd ln X1 +
(

RT� ln �1

�X1

)
dX1 + RT

n−2∑
i
=1

(
� ln a1

�Xi

)
dXi

(8.16.10)

From the condition of equilibrium in a vertical column of material that is sub-
jected to a significant change of height in a gravitational field (Eq. (8.16.2a)), we
have at constant temperature and g

d�1

dh
+ m1g = 0 (8.16.11)
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where m1 is the molar mass of the component 1. Substitution of the expression
of d�1 given by Eq. (8.17.10) into the above equation and rearrangement of terms
yields

d ln X1

dh
= (v1�− m1)

g

RT
−

(
� ln �1

�X1

)
dX1

dh
−

n−2∑
i
=1

(
� ln a1

�Xi

)
dXi

dh
(8.16.12)

This is the general condition of equilibrium distribution of a species in a vertical
column in a gravitational field at constant temperature and constant acceleration of
gravity.

An instructive special case is that of a binary solution, for which the last summa-
tion term in the above equation is zero. If the component 1 is sufficiently dilute to
follow the Henry’s law, or the solution behaves ideally, then the second term on the
right also vanishes. Thus, the sign of dX1/dh is given by that of the first term on the
right, which is the same as that of the term (� – m1/v1). For brevity, we denote this
parenthetical term as ��′.

If the binary solution behaves ideally, then v1 = V1
o, where V1

o is the molar
volume of the pure component 1. In that case, ��′ = �–�1

o, so that if �1
o > �, dX1/dh

< 0, which implies that the component 1 must sink, and vice versa. This result con-
forms to our common experience. However, Eq. (8.16.12) shows that this is not
a general behavior. The non-ideality of a solution may compensate for the effect
of density difference. For example, as discussed by Brewar (1951), even though
uranium is a heavy element and would thus be expected to increase in concentration
with depth, its strong non-ideal interaction with oxygen in a silicate melt makes
�lnaU/�O << 0. Thus, since dO/dh > 0, the term

(
� ln aU

�O

)
dO

dh
<< 0

Consequently, the effect of non-ideal interaction with oxygen counteracts the
tendency of U to sink. Brewar (1951) showed that other analogous terms within the
summation sign of Eq. (8.16.12) are relatively important and that the magnitude of
the “oxygen effect” term indicated above should be expected to be large enough to
make U concentrate towards the top despite its higher density.

8.16.2.3 Variation of Isotopic Ratios with Height

The second and third terms in Eq. (8.16.12) for one isotope must be the same for all
practical purposes to the respective terms for another isotope of the same element.
Thus, we have in a field of constant value of g

h2∫

h1

d ln

(
I

I′

)
=

(
m′

1 − mI
)

g

RT

h2∫

h1

dh (8.16.13)
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where (I/I′) stands for the ratio of the two isotopes. Thus,

(
I

I′

)
h2

=
(

I

I′

)
h1

exp

[
(m′

I − mI)g�h

RT

]
(8.16.14)

where �h = h2 – h1. Using this relation, we can now calculate the variation of
the isotopic ratio of an element with height in a single phase (e.g. melt), and from
that the correlation between the isotopic ratios of two elements under equilibrium
condition in a gravitational field. However, the efficiency of gravitational effect
depends critically on the time scale of equilibration relative to that of the transport
process mediated by diffusion and convective circulation. The problem remains to
be explored.

8.17 Osmotic Equilibrium

8.17.1 Osmotic Pressure and Reverse Osmosis

Consider a U-shaped tube that is fitted with a semi-permeable membrane at the
bottom (Fig. 8.33). The membrane is impermeable to the solutes that are dissolved
in a solvent, and thus separates the pure solvent from the solution with dissolved
solutes. An example would be pure water separated from an aqueous solution of
NaCl by a membrane that is permeable only to H2O. Let us say that the pure solvent
is at the left side (side I) and the solution is at the right side (side II) of the U-tube.
It will be found that the solvent would flow through the membrane to the right
(side II). This is because of the fact that dissolution of solutes lowers the chemical
potential of the solvent component in the side II below that in side I that contains
only the pure solvent. This flow process would continue until the pressure difference
resulting from the unequal column heights reaches a critical value. This equilibrium
pressure difference between the two sides separated by a semi-permeable membrane
is known as the osmotic pressure, which can be calculated from thermodynamics
as follows.

Fig. 8.33 Flow of a solvent
(j) through a semi-permeable
membrane from a pure side
(I) to an impure side (II). The
dashed and solid horizontal
lines indicate, respectively,
the initial and final heights on
the two sides

Impure
solvent

Pure
solvent

j

I II
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The chemical potential of the solvent (j) in the right side of the U-tube is given by

�II
j (PII, T, Xj) = �o

j (PII, T) + RT ln aII
j (PII, T, Xj) (8.17.1)

whereas that in the left side is given by �o
j (PI, T), where �j

o stands for the chemical
potential of the pure solvent, and PI and PII are the pressures in the sides I and II,
respectively. At equilibrium, the chemical potential of the solvent in two sides of the
tube must be the same, in which case, �o

j (PI, T) = �II
j (PII, T, Xj). Thus,

�o
j (PI, T) = �o

j (PII, T) + RT ln aII
j (PII, T, Xj)

so that

−RT ln aII
j = �o,II

j (PII, T) − �o,I
j (PI, T) =

PII∫

PI

Vo
j dP (8.17.2)

where Vj
o is the volume of the pure solvent (the last equality follows from the rela-

tion �G/�P = V). If the activity of the solvent in the side II and the molar volume of
the pure solvent are known, the above equation can be solved to obtain the osmotic
pressure, Posm = PII–PI. If the solvent volume does not change significantly between
PII and PI, which is the typical case, then we may assume Vj

o to be constant, and
thus obtain

Posm = −RT ln aII
j

Vo
j

(8.17.3)

It is now interesting to note that by exerting a pressure in excess of Posm on the
impure side (side II), and thereby making �II

j > �I
J, the solvent could be made to

flow from the impure to the pure side. This is called reverse osmosis – a process
that is often employed to purify water.

8.17.2 Osmotic Coefficient

For an ideal solution, Eq. (8.17.3) becomes

Posm(ideal) = −RT ln XII
j

Vo
j

(8.17.4)

The ratio Posm to its ideal value is known as the osmotic coefficient, and is com-
monly denoted by the symbol �. From the last two equations, � is given by
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� = 1 + ln�i

ln Xi
(8.17.5)

The expression for chemical potential of a component in terms of osmotic coef-
ficient can be derived as follows.

�i = �∗
i + RT ln Xi + RT ln�i

Substituting the expression of ln�i from Eq. (8.17.5),

�i = �∗
i + RT ln Xi + RT [(�− 1) ln Xi] ,

which yields

�i = �∗
i + �RT ln Xi (8.17.6)

It is easy to see that if one uses molality instead of mole fraction as a measure of
concentration, �i is given by the same expression as above with Xi replaced by mi.

But why bother about osmotic coefficient since we already have activity coeffi-
cient to represent the departure from ideality of mixing of a solution? The answer
lies in the fact that in a dilute aqueous solution, a solute may show substantial
departure from ideality of mixing, but the activity coefficient of water may still
be so close to 1 that it may convey a wrong impression of essentially ideal mixing
between the solvent and solute. A classic example from Robinson and Stokes (1970)
will clarify the point. The activity coefficient of KCl in a 2 molal aqueous solution
(X(H2O) = 0.9328) at 298 K is found to be 0.614, indicating substantial departure
from ideal mixing behavior. However, �(H2O) = 1.004 that conveys a false impres-
sion of near-ideal behavior. This problem is circumvented by the use of osmotic
coefficient to represent the non-ideal behavior, as can be appreciated by calculating
�(H2O) from �(H2O) using Eq. (8.17.5) that yields �(H2O) = 0.943.

8.17.3 Determination of Molecular Weight of a Solute

For a binary solution, Xj = 1 – Xi, where Xi is the mole fraction of the solute. Using
series expansion of ln(1 + x), we now write

ln Xj = ln(1 − Xi) = −Xi − X2
i

2
− X3

i

3
− . . . . . .

For a dilute solution of i (Xi << 1), the quadratic and higher order terms of
Xi in the above equation can be neglected, in which case we have lnXj = − Xi =
− ni/nj. Also, by the properties of dilute solution, aj = Xj. Thus, for a dilute solution,
Eq. (8.17.4) yields
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Posm = RTXII
i

Vo
j

(8.17.7)

Now since XII
i = nII

i /nII
j (since the solution is very dilute the total number of

moles of the solution is effectively the same as those of the solvent j), we finally
obtain

Posm = RTnII
i

VII
j

(8.17.8)

where Vj
II is the total volume of the solvent in the impure side, which is effectively

equal to the total volume of the impure dilute solution. Thus, by measuring the
osmotic pressure of a dilute solution with a known weight of the solute, one can
determine the number of moles of the solute, and hence its molecular weight (MW)
since (MW)i = (total weight)i/ni.



Chapter 9
Thermodynamic Solution and Mixing Models:
Non-electrolytes

Solution properties of minerals and melts form the link between laboratory
experimental data in simplified model systems and complex natural and other sys-
tems which motivate the experimental investigations. The solution properties need
to be expressed as a function of composition, temperature and pressure using forms
that are able to represent the data over a sufficiently large range of conditions, and
can also be extrapolated well beyond the range of experimental data. The purpose of
thermodynamic solution and mixing models is the analytical development of these
forms. The solution models provide useful rational expressions of the activity of a
component in different types of solutions, whereas the mixing models deal with the
excess thermodynamic functions. In this chapter we would deal with a variety of
thermodynamic solution and mixing models that have been developed over many
years, using both theoretical and empirical approaches, and have been applied to
model geologically important solutions with different degrees of success1.

9.1 Ionic Solutions

An ionic solution is the one in which individual ions or specific ionic complexes
constitute the mixing units. As an example, consider a binary olivine solid solution
(Fe,Mg)2SiO4. In this the mixing units are Fe2+ and Mg, while the complex (SiO4)4-

constitutes an inert framework. This is an example of a single-site ionic solid solu-
tion. A solid solution such as garnet, VIII(Fe,Mg,Ca,Mn)3

VI(Al,Cr,Fe3+)2Si3O12, is
an example of two-site ionic solution (the left-hand superscripts indicate the oxy-
gen coordination numbers of the cations). Similarly, there can be multi-site ionic
solutions involving substitutions in several sites which are internally charged bal-
anced. When there are substitutions in more than one site, the solution also has a
reciprocal property arising from interactions between individual sites. Thus, solid

1Much of the material in this section was previously published in EMU notes in Mineralogy, v. 3
(Ganguly, 2001)

J. Ganguly, Thermodynamics in Earth and Planetary Sciences, 249
DOI 10.1007/978-3-540-77306-1 9, C© Springer-Verlag Berlin Heidelberg 2008
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solutions involving internally charge-balanced substitutions within more than one
site are commonly referred to as reciprocal solutions.

It should be noted at the outset that all expressions for the activity of a
component are equivalent as long as these are based on the same standard state
of the component. But explicit expression of the activity coefficient of a component
depends on the form of the activity expression. The ionic solution model provides a
rational approach towards the development of such expressions.

9.1.1 Single Site, Sublattice and Reciprocal Solution Models

From a microscopic point of view, ideality of mixing implies random distribution
of the mixing units. Thus, in general the activity of an end-member component in
a solution should be expressed as a function of composition such that the ideal part
of the molar entropy of mixing, as derived from the thermodynamic expression of
�Gm(mix), corresponds to the expression of �Sm(mix) derived from the Boltzmann
relation, assuming random distribution Eq. (2.6.6). As shown in Sect. 8.6.2, for a
single site solution of the type (A,B, ...)mF, the desired property is satisfied if the
activity of an end-member component, AmF, is expressed as

aAmF = (xA�A)m (9.1.1)

where xA is the atomic fraction of A within its specific site, and �A is the activity
coefficient of the ion A reflecting non-ideal interactions with other ions within the
same site. The term �A may be viewed as the activity coefficient of the component
AF1/m (e.g. MgSi0.5O2 in the olivine solid solution). Note that XA equals the mole
fraction of the molecular component AmF (e.g. XMg = XFo in olivine where Fo stands
for the forsterite component Mg2SiO4). It can be shown that with a choice of pure
component standard state, aAmF = (XA)m, as XA → 1 at the chosen pressure of that
state (to recapitulate, the temperature of the standard state must be the temperature
of interest).

Let us now consider a two site (I and II) reciprocal solid solution such as
I(A,B)m

II(C,D)nP in which there is no stoichiometric relation between the substitu-
tions in the two sites, that is the ratio A/B is independent of the ratio C/D. The molar
Gibbs energy of such a two site binary reciprocal solution may be expressed using
the reference surface illustrated in Fig. 9.1 according to

Gm = [
xAxCGo

AmCnP + xBxCGo
BmCnP + xAxDGo

AmDnP + xBxDGo
BmDnP

]

+
⎡
⎣mRT

I(∑
i

xi ln xi

)
+ nRT

II(∑
i

xi ln xi

)⎤
⎦ + �Gxs

m

(9.1.2)

in which xi is the atomic fraction of i in its specific site indicated by the
left hand superscript. The collection of terms within the second square brackets
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AmDnP BmDnP

BmCnPAmCnP

Go

(A,B)m (D)n P

(A,B)mCnP

Fig. 9.1 Illustration of the Gibbs free energy surface defined by mechanical mixtures of end-
member components in a two-site binary reciprocal solid solution. The bounding binaries define
the free energies of mechanical mixtures of end-members in one-site solution. The ruled surface is
non-planar

represents –T�Smix(ideal). The last term, �Gm
xs, represents the excess molar Gibbs

energy of mixing due to non-ideal interactions within the individual sites.
The above approach of representing Gm of a reciprocal solution with reference

to the Gibbs energies of the end-member compounds, whether these compounds are
real or hypothetical, has been called the compound energy model by Hillert and
co-workers (e.g. Hillert, 1998). In general, the method of representing the mixing
property of a solution and the activity-composition relations of the macroscopic end-
member components in terms of the compositions and properties of the individual
lattice sites is often referred to as the sublattice model.

Assuming that the interactions within each site are ideal, in which case �Gm
xs in

the last equation is zero, the chemical potential of an end-member component in a
binary reciprocal solution is given by

�AmCnP = �o
AmCnP + �Go

rec

[
I(1 − xA)II(1 − xC)

] + RT
[
m ln I (xA) + n ln II (xC)

]
(9.1.3a)

or

�AmCnP = �o
AmCnP +�Go

rec

[
I(1 − xA) II(1 − xC)

]+RT ln
[

I (xA)m II (xC)n
]

(9.1.3b)

where �o
AmCnP is the Gibbs energy of the pure component AmCnP at the P–T

condition of interest and �Go
rec is the Gibbs energy change of the homogeneous

reciprocal reaction

AmCn + BmDn = AmDn + BmCn (9.1.a)
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This equation was first derived by Flood et al. (1954). The term within the last
square brackets of Eq. (9.1.3b) represents the activity of the macroscopic component
AmCnP when the mixing within individual sites is ideal, and the effect of reciprocal
interaction is negligible. In other words,

aAmCnP(ideal) = [I(xA)m II (xC)n], (9.1.4a)

The second term on the right of Eq. (9.1.3) yields

RT ln(�AmCnP)rec = I(1 − xA) II(1 − xC)�Go
rec (9.1.4b)

For a solution with mixing in more than two sites, the ideal site part of the a-X
relation can be written in the same form as Eq. (9.1.4a). The last equation may be
written in a general form as

RT ln(�imjnP)rec = ± I(1 − xi)
II(1 − xj)�Go

rec, (9.1.5)

in which the positive sign holds when imjnP is a reactant component, and the nega-
tive sign holds when it is a product component of the reciprocal reaction of the type
represented by Eq. (9.1.4a).

Equation (9.1.3), and its extension to multisite-multicomponent solution, can be
derived in a systematic way by using Eq. (8.3.8), carrying out the indicated dif-
ferentiations for each sublattice (Wood and Nicholls, 1978; Sundman and Ågren,
1981; Hillert, 1998). For the specific case of two-site solution considered above,
Eq. (8.3.8) yields

�AmCnP = Gm + �Gm

�xA
+ �Gm

�xC
−

I(∑
i

xi
�Gm

�xi

)
−

II
⎛
⎝∑

j

xj
�Gm

�xj

⎞
⎠ , (9.1.6)

which, for a binary solution, leads to Eq. (9.1.3).
Equation (9.1.3) highlights an important property of a reciprocal solution.

Because of the presence of the term �Go
rec, a reciprocal solution behaves non-

ideally (in the sense that the chemical potential of a component cannot be deter-
mined completely from a knowledge of the composition of the solution), even when
the interactions within the individual sites are ideal.

Comparing the statistical-mechanical and thermodynamic derivations of the
activity of a component in a reciprocal solution, Førland (1964) suggested that
the entropy change of a reciprocal reaction should be very small, which implies
that the �Go

rec should be quite insensitive to temperature change. This fact was
utilized by Liermann and Ganguly (2003) to model the (reciprocal) effect of the
variation of Al/Cr ratio in spinel on the (Fe,Mg) fractionation between orthopyrox-
ene, (Fe,Mg)SiO3, and spinel (Fe,Mg)(Al,Cr)2O4. We will return to the topic of
reciprocal solution effect on element fraction in Chap. 11.1.

When the sites behave non-ideally, the overall activity coefficient of a compo-
nent has to be expressed by a combination of Eq. (9.1.5) and additional terms
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reflecting the non-ideal interactions within the individual sites and their mutual
interdependence. For the case of a solid solution, the reason for the cross interactions
between the sites may be appreciated by noting that the bond distance within one site
may be affected by a change of composition of a different site. When the interactions
within one site are independent of the composition of the other site, we could write

�imjnP = [I (�i)
m II (

�j
)n] (

�imjnP
)

rec

or, substituting Eq. (9.1.5)

�imjnP = [
I (�i)

m II
(
�j

)n]
exp

[± I (1 − xi)
II

(
1 − xj

) (
�Go

rec/RT
)]

(9.1.7a)

and

aimjnP = [
I (xi)

m II
(
xj

)n]
�imjnP (9.1.7b)

where the �i and �j reflect the non-ideal interactions if i and j within the speci-
fied sites, and x stands for the site-atomic fractions. The sign convention for the
exponential term, which represents

(
�imjnP

)
rec, is the same as in Eq. (9.1.5). The

interdependence of the mixing properties in the two sites would require additional
terms, or may be absorbed in some cases within the site-activity coefficient terms.

As in the case of the ideal single-site expression, Eq. (9.1.1), the above ideal part
of the a-X relation in a multi-site solution also follows from a comparison of the
expression of entropy of mixing according to the general thermodynamic formula-
tion and that for the statistical formulation for the special case of random distribution
within individual sites that is required for ideal mixing. To show this, let us consider
a two component solution with two sublattice sites, I(A,B)m

II(C,D)nP, in which the
end-member components are AmCnP and BmDnP .

According to the general thermodynamic formulation, we can write

�Smix
m = −R

∑
i

Xi ln ai

= −R
(
XAmCnP ln aAmCnP + XBmDnP ln aBmDnP

) (9.1.8)

where Xi stands for the mole fraction of the specified macroscopic end-member
component.

If we assume random distribution of atoms within the individual sublattices, then
from Eq. (2.6.9)

�Smix
m = −R

[
I
(
xA ln xm

A + xB ln xm
B

) + II
(
xC ln xn

C + xD ln xn
D

)]
(9.1.9)

Now from the stoichiometry, IxA = IIxC = XAmCnP, and IxB = IIxD = XBmDnP. Thus,
the above equation reduces to

�Smix
m = −R

[(
XAmCnP ln(Ixm

A
IIxn

C) + XBmDnP ln(Ixm
B

IIxn
D)

)]
(9.1.10)
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Comparing Eqs. (9.1.8) and (9.1.10), we have for ideal mixing or random
distribution of atoms within the two sublattices,

aAmCnP = [I(xA)m II (xC)n],

and an analogous expression for the other end member component.

9.1.2 Disordered Solutions

Consider now a solid solution of the type I(A,B)m
II(A,B)nP in which the species

A and B disorder or fractionate between the structural sites I and II. An exam-
ple of this type of solid solution is orthopyroxene, M1(Fe,Mg)M2(Fe,Mg) Si2O6,
in which Fe and Mg disorder between the two non-equivalent octahedral sites,
M1 and M2 (Ghose, 1982). (We note incidentally that the state of the Fe–Mg
disordering in orthopyroxene is an important indicator of the cooling rates of the
host rocks, e.g. Ganguly et al., 1994.) The disordered solid solutions can also be
viewed as reciprocal solutions. Thus, the activity of a component in a two-site dis-
ordered solid solution should be expressed according to Eq. (9.1.7). For example,
the activity of the component Mg2Si2O6 in the orthopyroxene solid solution should
be expressed as

aMg2Si2O6 = M1
(
xMg�Mg

)
M2

(
xMg�Mg

)
× exp

[
M1

(
1 − xMg

)
M2

(
1 − xMg

)
�Go

rec/RT
] (9.1.11)

where �Go
rec is the standard state Gibbs energy change of the reciprocal reaction

(M1MgM2Mg)Si2O6 + (M1FeM2Fe)Si2O6 = (M1FeM2Mg)Si2O6 + (M1MgM2Fe)Si2O6

In the absence of adequate data on the thermodynamic mixing properties, it has been
a common practice, however, to express the activity of an end-member component
in such a disordered two site solid solution in terms of what has been known as
two-site ideal model, i.e.

aAmAnP = [
I (xA)m II (xA)n

]
(9.1.12)

where IxA and IIxA represent the atomic fraction of A in within the sites I and II,
respectively. By comparing this expression with Eq. (9.1.7), it should be obvious
that the two-site ideal model not only implies that I�A = II�B = 1, but also that
�Go

rec/RT = 0. Furthermore, the model also implies, as shown below, negative
deviation from ideality for the macroscopic behavior of the solid solution, i.e.
aAmAnP < XA, where XA is the macroscopic atomic fraction of A, except in the lim-
iting case of complete disorder.

If p and q are the fractions of the sites I and II, respectively, among the total
number of sites participating in the order-disorder process, i.e. p = m/(m + n) and
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q = (1 – p), then XA = p(IxA) + q(IIxA). Thus, XA ≥ (IxA)m(IIxA)n, the equality
holding only in the limiting case of complete disorder when IxA = IIxA (the reader
may easily verify this numerically by taking specific values to the site atomic frac-
tions and site fractions). Consequently, for the two-site ideal model, we have accord-
ing Eq. (9.1.12), aAmAnP ≤ XA. Evidently, this model must not be used if there are
indications that aAmAnP ≥ XA. As an example, for the orthopyroxene solid solution,
M1(Fe,Mg) M2(Fe,Mg)Si2O6, one should not write, a(Mg2Si2O6) = (M1xMg)(M2xMg)
since the available thermodynamic data seem to indicate a near-ideality or slightly
positive deviation from ideality for the mixing of the macroscopic components,
FeSiO3 and MgSiO3 (Stimpfl et al., 1999).

9.1.3 Coupled Substitutions

There are many solid solutions that require coupled substitutions of ions in order
that the macroscopic electrical neutrality can be preserved. An example is pla-
gioclase feldspar, which has the end-member components NaAlSi3O8 (albite: Ab)
and CaAl2Si2O8 (anorthite: An), involving the coupled substitution (Na+Si4+) ↔
(Ca2+Al3+). When local electroneutrality or charge balance is maintained in the
solution, a replacement of Na+ by Ca2+ is accompanied by a replacement of the
nearest neighbor Si4+ by Al3+ in the tetrahedral site. In this case, the expression for
the activity of an end-member component (e.g. NaAlSi3O8) in terms of the ionic
solution model should consider X in Eq. (9.1.1) as the mole fraction of the coupled
species (e.g. XNaSi), and equate the exponent m to the number of moles such species
per mole of the solid solution. Thus, recasting the formula for plagioclase solid
solution as (NaSi,CaAl)(AlSi2O8),we have

a(Ab) = XNaSi�NaSi ≡ XAb�Ab. (9.1.13)

The local charge balance will be destroyed, at least partly, when the thermal agi-
tation overcomes the coulombic forces within the solution. In that case, a different
formulation of the activity-composition relation could yield a closer approach to the
“ideal” solution behavior. It is, however, interesting to note that in the plageoclase
and aluminous clinopyroxene (CaMgSi2O6 – CaAl2SiO6) solid solutions, both of
which involve coupled heterovalent substitutions, the activities of the end-member
components closely approach their respective molecular fractions even when the
calorimetric and structural data indicate significant charge imbalance within the
solid solution (Wood et al., 1980; Newton et al., 1980). This implies that the destruc-
tion of local charge balance causes similar increases in the �Hmix and T�Smix terms
so that �Gmix remains nearly the same as in the ideal behavior in a local charge
balance (LCB) model. The LCB model, therefore, provides a simple approach for
deriving convenient activity expressions in solid solutions involving heterovalent
substitutions.
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Fig. 9.2 Illustration of Temkin model in which a fused salt or ionic melt is viewed in terms of two
interpenetrating sublattices, one for cation and the other for anion

9.1.4 Ionic Melt: Temkin and Other Models

Temkin (1945) proposed that fused salts are completely dissociated into cations and
anions and that these two types of ions form two distinct, even though inseparable,
sublattices so that there is no intermixing between cations and anions. As a result
of strong Coulombic forces, the cations are surrounded by anions and vice versa.
Thus, the structure of a molten salt may be viewed as composed of two interpene-
trating cation and anion sublattices, as illustrated in Fig. 9.2. Consequently, if there
is charge balanced substitution of ions within individual sublattices, then the ideal
part of the activity-composition relation of a solution of fused salts can be expressed
according to the form Eq. (9.1.4a). In this case, m and n are the dissociation products
of the two types of ions. For example, in a solution of MgCl2 and CaF2, the sublattice
representation of the solution is [I(Mg2+,Ca2+) ] [II(Cl−,F−)2] if the two salts com-
pletely dissociate in solution according to X2+Y−

2 → X2+ + 2Y−. This approach of
treating ionic melt in terms of cation and anion sublattices is known as the Temkin
model. Indeed, from a historical perspective, the sublattice or compound energy
models that we have discussed above represent extension of the Temkin model.

Hillert and co-workers (e.g. Hillert, 2001 and references therein) extended the
Temkin model to treat ionic melts involving heterovalent substitutions in the cation
and anion sublattices, including substitutions of neutral species. For example, they
modelled the molten solution in the system Ca-CaO-SiO2 in terms of I(Ca2+)p

II(O2-,
SiO4

4-, Va2-, SiO2
o)2 that permits coverage of the whole range of the composi-

tional triangle. In this sublattice formalism, Va2- and SiO2
o stand for divalent anion

vacancy and neutral SiO2 molecule, respectively. The CaO-Al2O3 liquid was mod-
elled as (Ca2+, Al3+)p(O2-, AlO1.5

o)q. In these schemes, the coefficients p and q have
variable magnitudes that are dictated by the requirement of preserving electrical
neutrality of the solution with changing composition. The approach of Hillert and
co-workers may be expanded and adapted to treat multicomponent silicate melts that
are of great importance to understand magma generation by partial melting of rocks.

9.2 Mixing Models in Binary Systems

The mixing models deal with the different types of representation of the excess ther-
modynamic quantities as functions of composition. The mixing models described
in this section apply to solid solutions in which the substitutions are restricted to
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one site or in which the substitutions in different sites are coupled, such as in the
case of the plagioclase solid solution discussed above. When the solid solution
involves internally charge balanced multiple site substitutions, such as in garnet
((Fe,Mg,Mn,Ca)3(Al,Fe3+,Cr)2Si3O12, the mixing properties within each site may
also be treated in terms of the models described in this section. The fundamental
expression is that of �Gxs as a function of composition, from which all other excess
thermodynamic properties can be derived through standard thermodynamic opera-
tions (see Sect. 8.6). We would first deal with binary solutions and then ternary and
higher order solutions.

9.2.1 Guggenheim or Redlich-Kister, Simple Mixture
and Regular Solution Models

Guggenheim (1937) suggested that the molar excess Gibbs energy of mixing of a
binary solution may be represented by the polynomial expression,

�Gxs
m = X1X2[A0 + A1(X1 − X2) + A2(X1 − X2)2 + . . . .], (9.2.1)

where the A’s are constants at a fixed P–T condition. This polynomial satisfies the
requirement that �Gxs must vanish at the terminal compositions (i.e. X1 = 0 or
X2 = 0).

Now recall that RTln�i = �i
xs, and the latter is related to �Gm

xs according to
Eq. (8.7.4) as

�xs
i = �Gxs

m + (1 − Xi)

(
��Gxs

m

�Xi

)
(9.2.2)

Using this operation, Eq. (9.2.1) yields

RTln�1 = X 2
2 [A0 + A1(3X1 − X2) + A2(X1 − X2)(5X1 − X2) + ...] (9.2.3a)

and

RTln�2 = X 2
1 [A0 − A1(3X2 − X1) + A2(X2 − X1)(5X2 − X1) + ...]. (9.2.3b)

These expressions for the activity coefficients were first derived by Redlich and
Kister (1948) and are usually referred to as Redlich–Kister relations. Somehow,
even the Guggenheim polynomial is often referred to as the Redlich–Kister expres-
sion of excess free energy, which does not seem justified (this is possibly due to the
fact that these authors recommended an extension of the Guggenheim polynomial
to the ternary system, which is discussed below).

When the A constants with odd subscripts, A1, A3 etc. are zero, the �Gm
xs

becomes symmetric with respect to composition. There are, however, various types
of symmetries, depending on the number of A terms with even subscripts that are
retained in the expression of �Gm

xs. Following Guggenheim (1967), these types
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of solutions have been collectively called as symmetric solutions. The simplest
functional form of a nonideal solution is the one in which all but the first constant
in Eq. (9.2.1) is zero. In this case, �Gm

xs has a parabolic symmetry with respect
to composition. Guggenheim (1967) called this type of solution a Simple Mixture,
as it represents the simplest form of deviation from ideality. Conventionally, A0 is
replaced by the symbol W or WG when the solution behaves as a Simple Mixture
so that

�Gxs = WGX1X2, (9.2.4)

and, according to Eq. (9.2.3)

RTln�i = WG(1 − Xi)
2, (9.2.5)

The dependence of WG on P and T is given by

(
�WG

�P

)
T

= 1

X1X2

(
��Gxs

�P

)
T

= �Vxs

X1X2
, (9.2.6)

(
�WG

�T

)
P

= 1

X1X2

(
��Gxs

�T

)
P

= − �Sxs

X1X2
. (9.2.7)

Hildebrand (1929) introduced the term Regular Solution for the type of solutions
which obey Eq. (9.2.4), but in which the interaction parameter WG is independent
of P and T. Thus, a regular solution is a special class of a simple mixture with ideal
volume and entropy of mixing. However, this distinction is not strictly followed in
modern usage in that any solution for which �Gxs conforms to the functional form
of Eq. (9.2.4) is often referred to as regular solution. We would also use the term
regular solution in the sense of simple mixture. (Historically, the idea of Regular
Solution preceded that of Simple Mixture so that it was not introduced to describe
a special case of the latter.) Regular solution model holds a special place in the
historical development of ideas of solution thermodynamics since the formal nature
of the model follows from statistical mechanical consideration of the mixing of
non-polar molecules of simple shapes.

Following Thompson (1967), WG is commonly decomposed into enthalpic (WH),
entropic (WS) and volumetric (WV) terms according to

WG(P, T) = WH(1bar, T) − TWS(1bar, T) +
P∫

1

WVdP (9.2.8)

It is easy to see that the form of this decomposition of WG follows that of G in
terms of H, S and V. Assuming WV to be independent of P, the last term in the
above equation is often written as a PWV term in geological literature, since usually
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P >> 1 bar under geological conditions. The temperature dependence of WH and
WS is related to the excess heat capacity of mixing, which is due to non-linear
change of vibrational properties as a function of composition. Due to an extreme
paucity of heat capacity data for solid solutions, the WH and WS terms are almost
invariably assumed to be constants. However, as shown by Vinograd (2001) from
analysis of spectroscopic data in Pyr–Grs and Diop–CaTs solid solutions, there
could be significant temperature dependence of these parameters (Pyrope (Pyr):
Mg3Al2Si3O12; Grossularite (Gros): Ca3Al2Si3O12. Diopside (Diop): CaMgSi2O6;
Calcium Tschermak (CaTs): CaAl2SiO6).

When the thermodynamic mixing properties of solid solutions show symmet-
ric behavior, the data are usually fitted by regular solution models. However, the
data are rarely good and sufficient enough to permit determination if the sym-
metry is truly parabolic in nature. Recently, Stimpfl et al. (1999) carried out a
detailed study, by single crystal X-ray diffraction, of the distribution of Fe2+ and
Mg between the non-equivalent octahedral sublattices, M1 and M2, in essentially
binary orthopyroxene solid solution, (Fe,Mg)SiO3, as a function of temperature.
From these data, they calculated the �Smix of Fe and Mg, assuming that the dis-
tribution is random within each sublattice. Their results show that the �Smix is
essentially symmetric with respect to composition, but the relation is not parabolic.
Instead, the best fit to the data requires two even parameters, A0

s and A2
s
, in

Guggenheim’s polynomial expression, where the superscript s denotes terms that
are related to the expression of �Sm

xs, when cast in the form of Eq. (9.2.1)
(i.e. �Sxs

m = X1X2[As
o + As

2(X1 − X2)2].).

9.2.2 Subregular Model

This is the simplest model for asymmetric solutions, and has been used most
extensively in the petrological and mineralogical literature. It represents a simple
extension of the regular solution model by making the parameter WG in Eq. (9.2.4)
a simple function of composition as

WG(SR) = WG
21X1 + WG

12X2

so that

�Gxs
m (SR) = (

WG
21X1 + WG

12X2
)

X1X2 (9.2.9)

and

RT ln�i(SR) = [
Wij + 2Xi

(
Wji − Wij

)]
X2

j (9.2.10)

where SR implies subregular, and WG
ij is a function only of P and T. (The Wij

parameters in the subregular formulation are also referred to as Margules parame-
ters.) The expression for RTln�i in the subregular model is obtained by substituting
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the expression for �Gxs
m (SR) in Eq. (8.7.4) and carrying out the required operations.

It reduces to that in the regular solution model, Eq. (9.2.5), when Wij = Wji.
It is obvious that as X1 → 1, WG(SR) → WG

21, and as X2 → 1, WG(SR) →
WG

12. Thus, the subregular model is simply a weighted average of two regular solu-
tion models fitted to the data near the two terminal segments of a binary solution
(Fig. 9.3). Each subregular WG

ij may also be decomposed into enthalpic, entropic
and volumetric terms according to Eq. (9.2.8).

The subregular formulation follows from Guggenheim’s polynomial expression
for �Gm

xs, Eq. (9.2.1), by truncating it after the second term and using the identity
A0 = A0(X1 + X2) (since X1 + X2 = 1), which yields

�Gxs(SR) = [(A0 + A1)X1 + (A0 − A1)X2]X1X2 (9.2.11)

On substitution of WG
21 and WG

12 for the collection of constants within the first and
second set of parentheses, respectively, the above equation reduces to the standard
subregular form, Eq. (9.2.9).

Figure 9.4 shows the calorimetric data of the excess heat of mixing in the binary
pyrope-grossular (Mg3Al2Si3O12 – Ca3Al2Si3O12) solid solution, as determined by
Newton et al. (1977). These data can be adequately modeled by a sub-regular form,
Eq. (9.2.10) (with �Hxs replacing �Gxs), as illustrated in the figure. However, the
fitted lines in the figure are associated with subregular parameters that represent
optimization of both calorimetric and phase equilibrium data. (The phase equilib-
rium data pertain to the displacement of equilibrium pressure of the reaction Grossu-
lar + 2 Kyanite + Quartz = Anorthite as a function of garnet composition at a fixed
temperature. The relationship between thermodynamic mixing properties and dis-
placement of equilibria involving solid solution phases are discussed in Sect. 10.12)
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Fig. 9.3 Illustration of the subregular mixing behavior (heavy curve) as a weighted average of
the regular solution mixing behaviors (light curves) fitted to the terminal regions. The parameters
used for this calculation are those for the pyrope-grossular binary at 600

◦
C, as given by Ganguly

et al. (1996): WG
CaMg = 18423 J/cation-mol and WG

MgCa = 6630 J/cation-mol. The sub-regular curve

represents �Gxs
m = WG(SR)XMgXCa where WG(SR) = XMgWG

CaMg+XCaWG
MgCa. The curves I and

II are calculated according to �Gxs
m = WG

CaMgXMgXCa and �Gxs
m = WG

MgCaXMgXCa, respectively
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Fig. 9.4 Excess enthalpy of mixing, �Hxs, in the binary pyrope-grossular join. The squares
indicate calorimetric data with (± 1�) of Newton et al. (1977). “This work” refers to the fit
to the data according to Sub-Regular model by Ganguly et al. (1996). The model parameters
represent an optimization that fit both calorimetric and experimental phase equilibrium data.
The upper limit represents the “preferred model” that has the following sub-regular parameters:
WH

CaMg = 21627, WH
MgCa = 9834 kJ/cation-mol. “Berman model” illustrated by short-dashed line

indicates a sub-regular model fit using similar optimization, but less extensive phase equilibrium
data, by Berman (1990). The dashed line indicates theoretical calculation of �Hxs by Ganguly et al.
(1993) using molar volume and elastic property data (see Appendix: C.3.2). With permission from
Mineralogical Society of America

9.2.3 Darken’s Quadratic Formulation

Darken (1967) pointed out that when the activity coefficient of a solvent component
(say component 1) obeys the regular solution relation, as given by Eq. (9.2.5), then
the Gibbs–Duhem relation Eq. (8.2.7) only requires that the activity coefficient of
the solute component must obey the relation

RTln�2 = WG(1 − X2)2 + I, (9.2.12)

where I is an integration constant. In order that the component 2 conforms to Raoul-
tian behaviour, i.e. a2 = X2 as X2 → 1 Eq. (8.8.21), the integration constant must be
zero when �1 obeys the regular behaviour over the entire range of composition. If �1

conforms to the regular solution property over a restricted compositional range only
near the terminal region 1, then �2 will conform to the above expression over the
same compositional range with I 
= 0. In this case, �Gm

xs near the terminal region
1 is given by,

�Gxs
m = WGX1X2 + IX2 (9.2.13)

This is known as Darken’s Quadratic Formulation (DQF).
Using the above expression, the molar Gibbs free energy of a solution in the

terminal region 1 is given by
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Gm = X1Go
1 + X2Go

2 + �Gmix
m (ideal) + (WGX1X2 + IX2)

= X1Go
1 + X2(Go

2 + I) + �Gmix
m (R)

(9.2.14)

where �Gmix
m (R) is given by

�Gmix
m (R) = �Gmix

m (ideal) + WGX1X2

which is the molar Gibbs energy of mixing in a regular solution (see Eq. (9.2.4)).
Using G2

′ for (Go
2 + I), Eq. (9.2.14) can be written as

�Gm = X1Go
1 + X2G′

2 + �Gmix
m (R) (9.2.15)

Thus, as noted by Powell (1987), a solution obeying DQF in the terminal region 1
may be viewed as a regular solution between the real end member 1 and a hypo-
thetical end member, 2′, whose Gibbs free energy, G2

′, is given by that of the end
member 2 plus the value of the integration constant, I.

By analyzing the experimentally determined activity coefficient data on a num-
ber of liquid binary alloys, especially those in which Fe was the solvent, Darken
(1967) showed that while the solvent (1) followed regular solution behaviour up
to a certain level of addition of the solute component (2), the latter followed the
relation described by Eq. (9.2.12), with I 
= 0, over the same range of concentration.
From these observations, Darken (1967) suggested that it may be possible to treat
many solutions in terms of the Quadratic Formulation in the two terminal regions,
each with characteristic values of W and I. The behavior of the intermediate com-
positional region would be more complex since it has to make the transition from
the quadratic properties of one terminal region to those of the other. Powell (1987)
analyzed the available molar volume data of several binary mineral solid solutions,
and showed that the data in the two terminal segments are better described by DQF
than by regular solution model.

For those solutions which conform to DQF in the two terminal regions, the inter-
mediate region could follow a relation that is a weighted average of those of the
terminal regions in much the same way as the expression of �Gm

xs of a subregular
solution represents a weighted average of the regular solution expressions in the
terminal regions (Eq. (9.2.10) and Fig. 9.3). In that case, �Gm

xs of the intermediate
segment of a solution conforming to DQF in the terminal regions is given by

�Gxs
m (1 − 2) = X1

(
WG

21X1X2 + I21X2
) + X2

(
WG

12X1X2 + I12X1
)

= X1X2
(
WG

21X1 + WG
12X2 + I21 + I12

) (9.2.16)

where the subscript ij represents the property of the terminal region j. Note that
when Xi → 1, the �Gxs is given by only the Xi(. . .) term after the first equality.

In applying DQF to treat the mixing property data, one needs to be careful about
the quality of the data. Since the data are divided into three segments, two termi-
nal regions and one central region, there is greater flexibility in fitting the data,
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which permits better conformity of relatively poor quality data to DQF than to the
subregular model, as illustrated by Ganguly (2001).

9.2.4 Quasi-Chemical and Related Models

In the classic Regular Solution model, the distribution of species in a solution has
been considered to be random, even though the pair-potential energies are different.
However, this cannot be strictly correct since a species would tend to be preferen-
tially surrounded by the ones with which it has a relatively stronger potential energy
of interaction. The atomic distribution would be effectively random at high tempera-
ture when the thermal energy per mole, RT, is sufficiently high to prevent clustering
of such species. Guggenheim (1952) sought to remedy this logical problem with
the Simple Mixture model by considering that in a binary solution, the distribution
of the 1–1, 2–2 and 1–2 pairs is related to the energy change of the homogeneous
chemical reaction

1−1 + 2−2 = 2(1−2). (9.2.16a)

The resultant thermodynamic mixing model is known as the Quasi-chemical (QC)
Model because of its appeal to a chemical reaction among the different pairs in the
solution, and representation of the equilibrium concentration of these pairs in much
the same way as the equilibrium concentration of components is expressed by an
equilibrium constant of a chemical reaction (Chap. 10.4).

From consideration of the total potential energy of a lattice consisting of 1–1, 2–2
and 1–2 pairs, and neglecting the effect of long range forces, Guggenheim (1952)
introduced an interchange energy, WQC, according to

WQC = LZ
[
�12 − 1/2(�11 + �22)

]
, (9.2.17)

where L is Avogadro’s number, Z is the nearest neighbor coordination number of
the atom or ion 1 or 2, and �ij is the potential energy of interaction between these
species. Here the term Z represents the coordination number of an atom within its
specific sublattice instead of the usual polyhedral coordination number around a
central atom. For example, in the solid solution between NaCl and KCl, each alkali
atom has six nearest neighbour Cl atoms (and vice versa). However, in the above
equation, Z must be taken as 12, which represents the number of nearest neighbor
alkali atoms surrounding a central alkali atom in the crystal structure. WH in the
Simple Mixture model is exactly the same as the interchange energy defined above.
It should be noted that although Guggenheim neglected the effects of long range
forces in the derivation Eq. (9.2.17), inclusion of these forces leads to a similar
expression except that the Z[...] term is replaced by �Z(k)[�12

(k) – 1/2(�11
(k) + �22

(k))],
where the summation is carried out over k-nearest pairs (i.e. 1st nearest, 2 nd nearest,
3rd nearest, and so on) (Vinograd, 2001). The contribution of the distant pairs may
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be important even though the energy of interaction decreases rapidly with distance
since Z(k) could increase rapidly with distance.

In order to account for the mixing of molecules or atoms of different sizes,
Guggenheim (1952) also introduced parameters known as contact factors, q, which
represent the geometrical relation of an atom to another atom of different type in a
nearest neighbor site. The contact factors have the property that q1/q2 → 1 as either
contact factor tends to unity. (One can think of a number of relations between q1

and q2 that would satisfy this limiting property. For example, Green (1970) assumed
q1q2 = 1, which satisfies the required relation as either contact factor tends to unity.)
Guggenheim (1952) showed that the deviation from a random distribution of the
species is given by a parameter , which is defined as

 =
〈
1 − 4�1�2

[
1 − exp

(
2WQC

ZRT

)]〉 1
2

, (9.2.18)

where � is related to the contact factors according to

�1 = 1 − �2 = X1q1

X1q1 + X2q2
(9.2.19)

As the solution approaches a random distribution, i.e. W/RT → 0 so that  → 1,
whereas for positive (W > 0) and negative (W < 0) deviations from ideality,  > 1
and < 1, respectively.

With the above framework, Guggenheim (1952) derived the following QC
expression for the molar excess Gibbs energy of mixing in a binary solution.

�Gxs
m

RT
= Z

2

{[
X1q1 ln (+ �1 − �2)

�1(+ 1)

]
+

[
X2q2 ln (+ �2 − �1)

�2(+ 1)

]}
. (9.2.20)

Using H = �(G/T)/�(1/T), one then has

�Hxs
m =

[
4X1X2WQC

(+ 1)

]
exp

(
2WQC

ZRT

)
.

[
X1q1�2

+ �1 − �2
+ X2q2�1

+ �2 − �1

]
. (9.2.21)

The �Sm
xs can be derived from the relation G = H – TS.

The unknown parameters, q and WQC , for a binary system can be retrieved from
phase equilibrium or enthalpy of mixing data, if the quasi-chemical model provides
an adequate analytical representation of the data. From an analysis of NaCl–KCl
solvus data, Green (1970) showed that qNa+/qK+ nearly equals the ratio of the
cationic radii or molar volumes of the two end members. However, Fei et al. (1986)
failed to find any such relation between the ratio of the retrieved contact factors
and molar volumes of the end members in the pyrope–grossular (Mg3Al2Si3O12-
Ca3Al2Si3O12), diopside–CaTs (CaMgSi2O6 – CaAl2SiO6) and diopside–enstatite
(CaMgSi2O6 – Mg2Si2O6) solid solutions

In the classic QC theory, the extrema in both enthalpy and entropy of mixing
appearing for the negative deviation from ideality (which favors the formation of
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1–2 pairs) are at X1 = X2 = 0.5. In a binary system,�Hmix exhibits negative deviation
from ideality with a “V” shaped form, whereas�Smix shows an inverted “W” form in
which the sagging of the central portion depends on the degree of ordering (Fig. 9.5).
However, in real systems such extrema often occur at compositions other than
X = 0.5. Several modifications and extensions of the quasi-chemical theory have
been suggested by a number of workers in order to better describe the behavior of
real solutions and remedy the problem with the location of extrema. The interested
reader is referred to Ganguly (2001) and Ottonello (2001) for a discussion of these
models.

The Simple Mixture or the Regular Solution model follows in a straightforward
way as a special case of the QC formulation when WQC /RT is small and the species
1 and 2 are sufficiently alike in shape and size that their contact factors become sim-
ilar. However, the magnitude of WQC/RT and the dissimilarity of the contact factors
must be intrinsically related in that WQC/RT cannot be a small quantity unless the
mixing units are sufficiently alike.

The simple mixture (or regular solution) and QC models follow as zeroth and
first approximations, respectively, of a powerful approach developed by Kikuchi
(1951), which is known as the Cluster Variation method. This method was applied
by Burton and Kikuchi (1984a, 1984b) to treat order-disorder in CaCO3–MgCO3

and Fe2O3–FeTiO3 solid solutions. Vinograd (2001) discussed in detail the cluster
variation method and applied it to garnet and pyroxene solid solutions.

Fig. 9.5 Enthalpy and
entropy of mixing of a
binary system showing
quasi-chemical mixing
behavior with degrees of
ordering. From Pelton and
Blander (1986)

mixΔH m

mixΔS m

kcal/mol

cal/mol-K

Ideal

Ideal
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9.2.5 Athermal, Flory-Huggins and NRTL (Non-random Two Site)
Models

The statistical thermodynamic study of Fowler and Rushbrooke (1937) and calori-
metric measurements of Meyer and co-workers (e.g. Meyer and van der Wyk, 1944)
showed that molecules of different size and shape mix with significant non-random
distribution or non-ideal entropy effect even when �Hmix = 0. This type of solution
is known as Athermal Solution. Athermal behaviour is closely approximated by
several polymer solutions in which the components differ in size but have very
similar energetic properties. Analcime, which is one of the most common rock
forming zeolites and forms under wide tange of P-T conditions in the Earth’s crust,
shows athermal mixing behaviour (Neuhoff et al., 2004; see Problem 9.1). However,
athermal behaviour is uncommon among mineral solid solutions since substitutions
of atoms of different sizes usually leads to nonideal enthalpic effects owing to the
distortion of the lattice and nonlinear change in the bonding energies. Nonetheless,
athermal solution model offers a starting point for the development of some other
related models that have been successfully used to treat mineral solid solutions.

It was shown independently by Flory (1941, 1944) and Huggins (1941) that the
entropy of mixing resulting from the non-energetic solution of a polymer component
(2) in a monomer solvent (1) is given by

�Sm
mix = −R(X1 ln�1 + X2 ln�2), (9.2.22)

where �1 and �2 are the fraction of sites occupied by the solvent and the poly-
mer, respectively. If there are N1 molecules of the solvent and N2 molecules of the
polymer, and there are p segments in a polymer molecule, then

�1 = N1

N1 + pN2
,�2 = pN2

N1 + pN2
, (9.2.23)

where N1 + pN2 are the total number of sites in the solution. It is assumed that each
lattice (or quasi-lattice) site is occupied by either a solvent molecule or a polymer
segment. When a lattice site is occupied by a polymer segment, the adjacent sites
are occupied by the rest of the segments so that each polymer molecule occupies p
lattice sites.

Wilson (1964) extended the Flory–Huggins formulation to include the mixing of
molecules which differ not only in size but also in their energetic properties. This
extension involved calculation of the relative probabilities of finding molecules of
the two components around a central molecule or atom, say of the type i, taking into
account the energies of interaction of the i–j and i–i pairs, and from that deriving
expressions for the local volume fractions of the components around the central
component. Wilson assumed that the ratio of the “local mole fractions” of the com-
ponents i and j around a central component of i (i.e. �ii and �ji, respectively) is
given by
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χji

χii
= Xj exp(−Eji/RT)

Xi exp(−Eii/RT)
, (9.2.24)

where Eij is the molar interaction energy between i and j. The local volume fraction
of a component around a central component of the same type is then given by

ξi = Viχii

Viχii+Vjχji

, (9.2.25)

where Vi and Vj are the molar volumes of the components i and j, respectively.
Wilson used these local volume fractions in place of the overall site fractions in the
Flory–Huggins expression Eq. (9.2.22). This procedure leads to

�Gxs
m = −RT[X1 ln(X1 +  12X2) + X2 ln(X2 +  12X2)] (9.2.26)

with

 12 = V2

V1
exp

[
−E12 − E11

RT

]
(9.2.27a)

and

 21 = V1

V2
exp

[
−E12 − E22

RT

]
(9.2.27b)

It should be noted that the local volume fractions in Wilson’s formulation do not
always add up to unity (Prausnitz et al., 1986). Also the Wilson expression has no
rigorous theoretical justification, but is rather an intuitive extension of the Flory–
Huggins formulation to account for the energetic effects on mixing. However, it
has been successfully applied to many binary systems (Orye and Prausnitz, 1965),
and seems to have some appeal in the treatment of multicomponent solutions as
discussed later. On the other hand, there are two important formal limitations of the
Wilson expression (Wilson, 1964; Prausnitz et al., 1986). First, it cannot produce a
maximum in the ln� vs. X relation. Second, no values for the parameters 12 and 21

can be found that produce phase separation or unmixing, that is produce a “hump”
(or a convex upwards segment) in the Gm vs. X curve (which is always convex
downwards near the terminal regions). In other words, there are no values of these
parameters that could lead to the condition �2Gm/�Xi

2 < 0. Thus, if the solution has
a miscibility gap, the application of the Wilson equation must be restricted to the
P–T–X domain where the solution is continuous.

Renon and Prausnitz (1968) modified Wilson’s formulation so that it can pro-
duce phase separation by introducing a correction factor, �12, as a multiplier of the
energy terms. This model, which is known as the Non Random Two Liquid Model
(NRTL), leads to the following expression for �Gm

xs
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�Gxs
m = X1X2

[
(E12 − E22)G21

X1 + X2G21
+ (E21 − E11)G12

X2 + X1G12

]
, (9.2.28)

where

Gij = exp

[
−�12(Eij − Ejj)

RT

]
. (9.2.29)

Expressions for the other thermodynamic excess functions can be derived from
Eq. (9.2.29), and are given in Prausnitz et al. (1986).

When �12 = 0 (i.e. completely random mixing), Gij = 1, and also the ratio of the
local mole fraction reduces to that of the bulk mole fractions (Eq. (9.2.24)). Under
this condition, the �Gm

xs in the NRTL model reduces to

�Gm
xs = �E(X1X2) , (9.2.30)

where, using E12 = E21,

�E = 2E12 − (E11 + E22) (9.2.31)

The above equation is formally similar to the regular solution expression,
Eq. (9.2.4). However, �E reduces to the expression for W in terms of pair potential
energies, as given by Eq. (9.2.17), only if Eij = Z/2(L�ij), where Z is the number
of nearest neighbours of the components i and j around a central component of i or
j. Thus, Eij should be treated as a quantity proportional to the pair potential energy
between i and j. By comparing the NRTL and QC models, Renon and Prausnitz
(1968) suggested that �12 should be similar to 1/Z. Consequently, �12 should be
< 1. However, the value of � retrieved from experimental mixing property data on
mineral solid solutions sometimes depart very significantly from the expected value
of 1/Z.

9.2.6 Van Laar Model

The oldest and one of the most successful of the two constant expressions for binary
systems is the one derived by van Laar (1910) on the basis of van der Waal’s equa-
tion of state and ideal entropy of mixing. The van Laar model can be expressed in
the following form.

�G xs = �(a1a2X1X2)

a1X1 + a2X2
(9.2.32)

where � is a term that is related to the interaction energy between the species 1
and 2, and a1 and a2 are constants. Using Eq. (8.7.4), the above expression for �Gxs

yields
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RT ln γi = �X2
j ai(bj)2

(ai + aj)(Xiai + Xjaj)2
(9.2.33)

Ganguly and Saxena (1987) showed that the van Laar model follows as a special
case of the Quasi-chemical Model when the interaction energy is small compared to
RT. The derivation of van Laar model and its relationship with the QC model sug-
gest that it should be applied to solutions with small or moderate non-ideality, which
implies that mixing units in the solution should be quite similar and non-polar. How-
ever, despite the severe limitations of its microscopic view, the form of the van Laar
model has been surprisingly successful, and perhaps more successful than Margules
or other two constant formulations (see, for example, Prausnitz et al., 1986). As an
example, the van Laar model fits the activity coefficient vs composition data of a
mixture of benzene and isooctane, which differ appreciably in size, as illustrated in
Fig. 9.6. It has been also been successfully used to treat binary fluid mixtures in the
system C-H-O-S that involve both polar (H2O) and non-polar molecules, and is the
most important fluid system in geological processes.

The physical significance of the van Laar constants is unclear, especially when it
is applied to treat relatively complex mixtures. However, Saxena and co-workers
(Saxena and Fei, 1988; Shi and Saxena, 1992) have been fairly successful in
their treatment of C-H-O-S system by equating the a1 and a2 constants with the
molar volumes of the end members 1 and 2, respectively. Their lead was pur-
sued by Aranovich and Newton (1999) to treat the activity composition relation
of H2O and CO2 in the binary system at high pressure and temperature condi-
tions, 6–14 kb, 600–1000

◦
C. They experimentally determined the effect of change

of fluid composition on the equilibrium conditions of decarbonation and dehy-
dration reactions, viz. CaCO3 (calcite) + SiO2 (quartz) = CaSiO3 (wollastonite) +
CO2, MgCO3 (magnesite) + MgSiO3 (enstatite) = Mg2SiO4 (forsterite) + CO2, and
Mg3Si4O10(OH)2 (talc) = 3 MgSiO3 + SiO2 + H2O. From the known compositions
of the fluid phase and their effect on the equilibrium conditions of these reactions
(Fig. 9.7), they retrieved the activity coefficients of H2O and CO2 in the binary
system, assuming that the parameter � is a function of P and T according to the
form � = (A + BT)[1-exp(-20P)] + CPT, where P is pressure in kb, and A and
B are constants. The term within the square bracket assures ideal gas behavior as
P → 0. (The method of relating the thermodynamic mixing properties of phases
to equilibrium conditions of reactions is developed in Sect. 10.12). The values of
the constants, as retrieved from experimental data on equilibrium P-T condition vs.
fluid composition, are A = 12893 J, B = –6.501 J/K, and C = 1.0112 J/(K.kb). The
equilibrium temperature vs. mole fraction of CO2 in the vapor phase at 14 kb, as
calculated using these parameters, is shown by solid line in Fig. 9.7.

Note that Eq. (9.2.33) does not permit an extremum of activity coefficient as a
function of composition. Thus, the van Laar formulation would be obviously inap-
plicable where such extremum is known to exist. Recently, Holland and Powell
(2003) have developed an extension of van Laar formulation and applied it success-
fully to treat several asymmetric mineral solid solutions and H2O-CO2 mixtures.
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Fig. 9.6 Modeling of the
species activity coefficients in
a mixture of benzene and
isooctane, which differ
appreciably in size, by the
van Laar model. From
Prausnitz et al. (1986)

lnγ1 lnγ2

X1

9.2.7 Associated Solutions

Associated solutions are those in which there is intermediate compound formation
due to negative deviation from the ideality of mixing among the end-member com-
ponents. The model postulates formation of molecule type associates among the
species in the solution. The interaction among these associates and the free ions, if
any left after the formation of the associates, are described using different types of
solution models, such as the regular solution model, as required to model the experi-
mental data. A geologically important system that shows this behavior is the sulfide
liquid system O-S-Fe. Fig. 9.8, which is reproduced from Kress (2000), shows the
variation of the logarithm of sulfur fugacity, log(fS2), as a function of the apparent
mole fraction of S in the S-Fe binary. By apparent mole fraction, we mean the mole
fraction that one would calculate in ignorance of the formation of any intermediate
compound. Thus, the apparent mole fraction of S equals S/(S + Fe) where S and

Fig. 9.7 Experimental data
on the dehydration
equilibrium of talc as a
function of fluid composition
in the CO2-H2O system at 6,
10 and 14 kb pressures, and
the model fit of the data using
the van Laar mixing model
for the fluid phase. Open
symbols indicate breakdown
of talc to enstatite + quartz,
whereas the filled symbol
indicate the reverse reaction.
From Aranovich and Newton
(1999). With permission from
Mineralogical Society of
America
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Fig. 9.8 Variation of sulfur fugacity with the mole fraction of sulfur in S-Fe melt, as determined by
Nagamori et al. (1970) at 1 bar, 1200

◦
C. The lines are model predictions by different workers. The

most successful prediction is by the associated solution model treatment of Kress (2000), which is
labeled as “This study”, and shown as a solid line. It considers the melt to be made of Fe, S and
FeS (associated compound) with regular solution type interactions. From Kress (2000)

F stand for the number of moles of sulfur and iron that were mixed to prepare a
solution. Fig. 9.8 shows a rapid change of f(S2) at an intermediate compositional
range in the S-Fe binary liquid. This rapid change of log(fS2), which implies a rapid
change of the chemical potential of S2 (since d�i = RTdlnfi), can not be treated by
a model of nonideal interaction between just S and Fe atoms. The different broken
curves in Fig. 9.8 illustrate the failure of model predictions based on the non-ideal
interactions between these two species. The rapid change of �(S2) implies sharp
valley in the G-X diagram at the intermediate composition, and therefore possible
presence of intermediate compound(s).

Historically, associated solution model began with the work of Dolezalek (1908)
who suggested that the actual species in a solution obey Raoult’s law or ideal mix-
ing behavior, the only problem being the correct identification of the actual species.
An ideal associated solution necessarily leads to negative deviation from ideality
of the activity-composition relation of an end-member component if one uses the
apparent mole fraction of the component as its true mole fraction. To illustrate this
point, I use an example from Hildebrand and Scott (1964), and consider a solution
made from a mixture of nA moles of A and nB moles of B, with nB < nA, and suppose
that all the moles of B have combined with A to form an intermediate compound
AB. In that case, the solution consists of nB moles of AB, nA – nB moles of A and
zero moles of B, and consequently the total number of moles, N, in the solution is
given by (nA – nB) + nB = nA. Thus, the mole fraction of the actual number of A,
yA, present in the solution is given by

yA = nA − nB

nA
= 1 − nB

nA
= 1 − XB

XA
(9.3.34)

where X represents the apparent mole fraction of A or B. For an ideal associated
solution aA = yA, but from the above relation yA < XA. Thus, the activity of A in an
ideal associated solution will be less than its apparent mole fraction. The variation
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of the activity of A as a function of its apparent mole fraction in an ideal associated
solution, as defined by the above equation, is illustrated in Fig. 9.9. The diagonal
line represents the other limit in which there is no intermediate compound AB, and
A and B mix ideally.

When there is partial combination of A and B, the aA vs XA relation will lie
between the two limits shown in Fig. 9.9. The calculation of the intermediate case
requires a knowledge of the equilibrium constant of the homogeneous compound
forming reaction (the concept of equilibrium constant is discussed in Sect. 10.4, but
a reader with an elementary background of chemistry is expected to be familiar with
the concept). As an illustration, let us assume that only a part of the species B has
combined to form nAB moles of AB. Then, we have in the solution, (nA – nAB) moles
of A, and (nB – nAB) moles of B. Thus, the total number of moles in the solution is
nAB + (nA – nAB) + (nB – nAB) = nA + nB – nAB. Assuming that the actual species in
the solution mix ideally, we have

aA = yA = nA − nAB

nA + nB − nAB
(9.2.35)

Analogous relations hold for the activities of the two other species, which should
be obvious. Assuming ideal mixing of A, B and AB, the equilibrium constant of the
reaction A + B = AB is given by

0.0
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0.8
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0 0.2 0.4 0.6
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0.8 1

Fig. 9.9 Illustration of the variation of the activity of a dominant component, A, as a function of
its apparent mole fraction in an ideal associated solution. The curved line represents the case in
which all of the subordinate component, B, combines with A to form an intermediate compound
AB. The diagonal straight line represents the case of an ideal solution of A and B without the
formation of any intermediate compound. The relationship for a partial combination of B with A
will lie between the two limits
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K = yAB

yAyB
= nAB(nA + nB − nAB)

(nA − nAB)(nB − nAB)
(9.2.36)

Since nA and nB are known, we can determine nAB from a knowledge of K and
substitute that in Eq. (9.2.35) to calculate aA. Similar calculations can, obviously, be
carried out for the other species.

A number of workers (e.g., Blander and Pelton, 1987; Zeng and Nekvasil, 1996)
have successfully modeled the mixing properties of liquids by using the ideal asso-
ciated models. However, one may also need to assign non-zero interaction ener-
gies among the species in the solution to successfully model the property of the
solution. For example, Kress (2000) modeled the behavior of the O-S-Fe liquid by
considering “regular solution” type interactions among the species in the solution.
He considered the existence of the species FeO in the Fe-O binary, FeS in the Fe-S
binary and in addition FeO-S in the O-S-Fe ternary system. His model prediction for
the S-Fe binary is shown by solid line in Fig. 9.8. It fits the experimental data very
well, and much better than predictions from other models which did not consider
formation of intermediate compounds in the solution.

As discussed by Hillert and Sundman (2001), the associated solution model fails
to predict miscibility gaps in reciprocal solutions. The sublattice model, on the other
hand, over predicts the tendency for unmixing. They have discussed possible modi-
fication of the two-sublattice model so it correctly predicts the unmixing properties
of a reciprocal solution.

Problem 9.1 Analcime solid solution, which shows athermal mixing behaviour,
may be treated as a binary solution of the aluminous (Na0.755Al0.755

Si2.25O6·1.125 H2O) and siliceous (Na1.05Al1.05Si1.95O6·0.975 H2O) end members.
Calorimetric heat of solution data do not show any significant enthalpy of mixing in
this binary join, whereas there is a an excess entropy of mixing that is given by

�Sxs = (�+ 3R)

(∑
k

Xk ln Xk

)

where k stands for an end member and � = - 2.20 (± 75) J/mol-K (Neuhoff et al.,
2004). Using these data, derive an expression for the activity coefficient, �k, of an
end member component.

9.3 Multicomponent Solutions

An important practical problem in solution thermodynamics lies in the formulation
of method of successful prediction of the properties of multicomponent solutions
from those of the bounding binaries. There have been two common approaches in
the development of multicomponent excess Gibbs energy models. Following Cheng
and Ganguly (1994), we would call these “power series multicomponent models”
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and “projected multicomponent models”. In the first approach, one begins with
an appropriate power series expression of �Gm

xs of the multicomponent solution in
terms of mole fractions of the components, and then truncate it after a certain num-
ber of terms. After some algebraic manipulations, the �Gm

xs of the multicomponent
solution could be expressed to show the nature of the bounding binaries (regular,
sub-regular etc.) and the way these are combined to yield the truncated power series
of �Gm

xs. This scheme may then be used as a rational scheme of combining specific
types of binaries. The second approach is to combine the binary excess free energies
according to certain empirical schemes.

We would refer to a multicomponent solution by the nature of its most asymmet-
ric binary. For example, a subregular multicomponent solution is the one for which
the most asymmetric binary has subregular behavior. We would first discuss solution
models that deal with mixing within a single structural site, and then a method of
combination of mixing within the individual sites to express the multisite mixing
properties

9.3.1 Power Series Multicomponent Models

One of the earliest and most successful multicomponent model that was derived
from an expansion of �Gm

xs in terms of a power series of mole fractions of
components is that due to Wohl (1946, 1953). Upon truncating the power series
after the third degree terms (that is terms that contain three-body interactions), and
algebraic manipulations, Wohl showed that the �Gm

xs of a ternary solution can be
expressed as

�Gxs
m =

∑
i
=j

XiXj(W
G
ij Xj +WG

ji Xi)+XiXjXk

⎡
⎣1

2

∑
i
=j

(Wij + Wji) + Cijk

⎤
⎦ . (9.3.1)

where W-s refer to the binary subregular parameters and Cijk represents a ternary
interaction term. Subsequently, power series ternary and quaternary expressions
were developed by several workers in the geochemical literature. However, Cheng
and Ganguly (1994) showed that all these expressions are either equivalent to
Wohl’s ternary expression or represent its extension to quaternary solution. These
authors also developed a power series quaternary expression following Wohl’s
ternary formulation, and showed that upon truncating it after third degree terms, the
excess Gibbs energy of mixing can be expressed as

�Gxs
m =

∑
i
=j

XiXj(W
G
ij Xji + WG

ji Xij) +
∑

i
=j,
=k

XiXjXkCijk, (9.3.2)

where Xji and Xij are the projected mole fractions of the components j and i,
respectively, in the binary join i–j. These binary mole fractions are obtained by the
normal projection of the multicomponent composition onto that join. Analytically,
Xij is given by 1/2(1 + Xi – Xj). It is interesting to note that the first right hand term in



9.3 Multicomponent Solutions 275

the above expression represents a summation of �Gm
xs of the subregular bounding

binaries at compositions that are at the shortest distance from the multicomponent
composition. Furthermore, a quaternary or higher order solution does not involve
a quaternary or higher order term when the binaries have sub-regular behavior
(this conclusion was also independently reached by Jordan et al., 1950; Helffrich
and Wood, 1989; and Mukhopadhyay et al., 1993). Using the above equation, and
the relation RTln�i = (��Gxs/ �ni) Eq. (8.7.3), one can obtain the expression for
the activity coefficient of a component in a multicomponent subregular solution.
Note that in this equation Gxs refers to the total excess Gibbs energy, not the molar
quantity that is expressed by Eq. (9.3.2). The two quantities are related according
to �Gxs = N�Gm

xs, where N is the total number of moles in the solution. The
expression of RTln�i obtained from Eq. (9.3.2) by the above thermodynamic
operation is given by Cheng and Ganguly (1994; 1996).

A special case of Eq. (9.3.2) is a multicomponent solution with regular binaries,
Wij = Wji = Wi-j. The activity coefficient of a component in a ternary regular a
solution is given by

RT ln γi =
∑
j
=i

Wi−jX
2 + XjXk

[
Wi−j + Wi−k − Wj−k − Cijk(1 − 2Xi)

]
(9.3.3)

Effects of additional components that have regular solution type interactions with
other components can be accounted for by adding terms like XjXk[...] on the right
hand side of the equation.

Redlich and Kister (1948) utilized Guggenheim’s polynomial for binary solution
Eq. (9.2.1) to express �Gm

xs of multicomponent solution. Their expression, which
is commonly referred to as the Redlich–Kister model, involves summation of the
binary �Gxs plus multicomponent correction terms, i.e.

�Gxs
m =

∑
XiXj�(Gxs

m )ij + multicomponent correction terms, (9.3.4)

where �(Gm
xs)ij is calculated at Xi and Xj from Eq. (9.2.1) (note that these are

atomic or mole fractions of the components in the multicomponent system, not the
projected binary mole fractions discussed above). The Redlich–Kister model has
enjoyed popularity in the metallurgical literature. However, it should be noted that
it is equivalent to the Wohl model as long as the bounding binaries follow reg-
ular or subregular behaviour (Cheng and Ganguly, 1996), i.e. when the constant
terms higher than A1 are zero in the polynomial expression of the binary excess free
energies.

9.3.2 Projected Multicomponent Models

Several schemes have been proposed for combining the binaries to predict the multi-
component behaviour with or without involving multicomponent interaction terms.
The popular methods, which are due to Kohler (1960), Colinet (1967), Muggianu
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et al. (1975) and Bonnier and Caboz (1965, quoted in Hillert, 1998), are illustrated
in Fig. 9.10. Their expressions for the �Gm

xs in a ternary solution have been sum-
marized by Hillert (1998). The method of shortest distance was suggested inde-
pendently by Muggianu et al. (1975) and Jacob and Fitzner (1977). We will, thus,
refer to this model as the Muggianu–Jacob-Fitzner model. The expression for�Gm

xs

given by Bonnier and Caboz (1965) was modified later by Toop (1965) in order
that the ternary �Gm

xs appears as a summation of the �Gm
xs in the binaries when

the latter have regular solution behavior, i.e. �Gm
xs(ternary) =

∑
XijXji�(Gm

xs) ij

where Xij and Xji are the shortest distance binary compositions from the ternary
compositional point. The modified Bonnier–Caboz formulation is often referred to
as Toop’s method in the literature. The primary motivations behind the different
projected multicomponent formulations is the prediction of the multicomponent
behavior from only the binary properties, that is to somehow “absorb” the effects
of multicomponent interactions within the scheme of combination of the binaries.

Toop’s method is an asymmetric formulation in that it treats one component
(component 1 in Fig. 9.10d) differently from the other two. Thus, this method ought
to be applied only to ternary systems where one component has a distinctly dif-
ferent property from the other two. For example, Pelton and Blander (1986) used
a modified QC formulation for the silicate slag system SiO2–CaO–FeO in which
the method of combination of binaries is analogous to that of Toop’s method. They
chose SiO2 as the special component 1, since it is an acidic component while the

1

(a) Kohler (b) Muggianu-Jacob 

(c) Colinet (d) Toop

1

11

232

32 32

3

Fig. 9.10 Schematic illustration of the “Projected Multicomponent Models” for a ternary system.
The �Gxs

m of a ternary solution is calculated by combining the �Gxs
m of the terminal binaries at the

projected compositions. From Ganguly (2001)
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other two are basic components. The predicted ternary properties from combination
of the binary data were found to be in good agreement with the experimental
data. For solid solutions, one may also be able to identify a component which
behaves quite differently from the others. For example, in aluminosilicate garnet,
(Fe,Mg,Ca)3Al2Si3O12, Ca is the most nonideally mixing component, while Fe and
Mg mix nearly ideally (e.g. Ganguly et al., 1996). Thus, Ca may be treated as the
unique component in the asymmetric formulation.

9.3.3 Comparison Between Power Series and Projected Methods

The expression of �Gm
xs obtained for a multicomponent subregular solution using

the power series approach of Wohl (1946) involves a combination of binary excess
Gibbs energies at compositions that are at the shortest distance from the multi-
component composition Eq. (9.3.2). This is exactly the method of combination
of the binaries suggested in the Muggianu–Jacob projected multicomponent model
(Fig. 9.10b). Thus, there seems to be an independent theoretical justification in the
scheme of the combination of binaries in the Muggianu–Jacob model. It was found
(Jacob and Fitzner, 1977; Jacob, personal communication) that for metallic systems
the shortest distance method predicts the ternary �Gm

xs somewhat better than the
other methods, when the ternary interactions are neglected. However, the quality of
agreement between the predicted and measured ternary values becomes worse with
increasing non-ideality of the binaries, especially when a binary �Gm

xs exceeds
15 kJ/mole, implying increasing importance of the higher order terms.

9.3.4 Estimation of Higher Order Interaction Terms

In principle, it is impossible to determine the multicomponent interaction terms from
only the binary data. The higher order interactions specific to a given model can only
be determined from comparison of the multicomponent behavior predicted from the
binary data with the multicomponent properties determined experimentally. It is,
however, doubtful if experimental data are going to be sufficient for such purpose
in the foreseeable future, at least for systems of geological interests. A viable alter-
native would be to determine the binary and multicomponent enthalpic properties
from the crystallographic data and pair potential energies of the ions participat-
ing in the solid solutions (e.g. Ottonello, 1992). Since there are a large body of
crystallographic data for a variety of rock-forming mineral solid solutions in both
binary and multicomponent systems, it may be possible to use this approach to at
least approximately evaluate the relative magnitudes of the higher order terms in the
different multicomponent formulations. One may, thus, determine the effectiveness
of the different approaches in predicting the multicomponent behavior from only
binary data.

From theoretical analysis, Cheng and Ganguly (1994) developed a method
of approximation of the Cijk term Eq. (9.3.2) in the special case that one of
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the binaries, j–k, behaves nearly ideally. Ilmenite, (Fe,Mn,Mg)TiO3, and garnet,
(Fe,Mg,Ca)3Al2Si3O12, are examples of this type of solid solution. In both cases,
the first two components mix nearly ideally (Shibue, 1999; Ganguly et al., 1996).
Indeed, Fe2+ and Mg mix with small deviation from ideality in all ferromagne-
sian silicates for which the thermodynamic mixing properties are known. Thus,
this approximation scheme should be applicable to ternary joins of rock-forming
minerals involving Fe2+–Mg as one of the subsidiary binaries. The method is as
follows.

Cijk ≈
∑

�ij�ik

[
(Wij − Wji)

Xj

Xj + Xk
+ (Wik − Wki)

Xk

Xj + Xk

]
, (9.3.5)

where �ij = 0 when i ≡ j, and �ij = 1 when i 
= j.

9.3.5 Solid Solutions with Multi-Site Mixing

Hillert (1998) suggested the following expression to represent the �Gxs of a two site
binary reciprocal solution, I(A,B)b

II(C,D)c, for which �Gm is given by Eq. (9.1.2).

�Gxs
m = xAxBxC(IAB:C)+xAxBxD(IAB:D)+xCxDxA(ICD:A)+xCxDxB(ICD:B), (9.3.6)

where xA is the atomic fraction of the species A in the site I, IAB:C is the interaction
parameter between A and B in the site I when site II is completely filled by C,
ICD:A is the interaction parameter between C and D in the site II when site I is
completely is filled by A, and so on. The above expression allows different behavior
of �Gm

xs within a specific sublattice depending on the nature of the species occu-
pying the other sublattice, or in other words, different �Gm

xs on opposite sides of
the compositional square illustrated in Fig. 9.1. For example, when xC =1, �Gxs =
xAxB(IAB:C), but when xD = 1, �Gxs = xAxB(IAB:D). Each site parameter, IAB:C and so
on, may be expressed according to the Guggenheim or the so-called Redlich–Kister
form, that is, by the expression within the square bracket in Eq. (9.2.1), truncating it
after the appropriate number of terms, as demanded by the data. Extensions of this
approach to multiple sublattices and multiple components have been discussed by
Hillert (1998).

9.3.6 Concluding Remarks

I have summarized above the physical ideas and the basic theoretical structure for a
variety of solution models that have been used to treat the thermodynamic properties
of mineral solid solutions. These models are also applicable to melts. It may be pos-
sible to fit a limited body of data by more than one-solution model equally well, but
�Hmix and �Smix predicted by the different models could differ quite significantly.
It is, therefore, important to examine the theoretical basis of the solution models in
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such cases and to ensure, as much as possible, compatibility of the adopted solution
model with the known microscopic properties of the solid solution.

From the results of the comparative studies, as discussed above, Guggenheim’s
polynomial Eq. (9.2.1) or the so-called Redlich–Kister formulation seems to offer
a simple and flexible model for binary solid solutions, although in some specific
cases another model, especially QC model when there is short range order, may
work better. Use of the Guggenheim polynomial for the binaries affords an addi-
tional advantage in the treatment of reciprocal solid solutions in terms of the form
suggested by Hillert (1998), Eq. (9.3.8), because the �Gm

xs in this expression
reduces to the form xixj(Iij) for the terminal binaries. Binary solutions obeying DQF
(Sect. 9.2.3) can also be incorporated in this scheme by defining a solution between
a real component and a hypothetical component Eq. (9.2.15). Finally, if one is to use
only the binary terms to predict the multicomponent properties, then the “shortest
distance method” of combining the binaries (Fig. 9.10c) is probably the overall best
method because of the theoretical justification, as discussed above. The asymmetric
Toop method could be advantageous where there is a component with a distinctly
different property.



Chapter 10
Equilibria Involving Solutions
and Gaseous Mixtures

Make it as simple as possible, but not simpler
Albert Einstein

We have discussed in Chap. 6 the thermodynamic treatment of equilibrium relations
among phases of fixed compositions. In this chapter, we expand the scope of equi-
librium calculations to include phases of variable of compositions. It should be
emphasized at the outset, and should also be obvious, that the equations derived for
the calculation of equilibrium P-T-X relation among phases do not depend on the
nature of the phases that have been chosen as convenient examples for the derivation
of the equations. The formal P-T-X relations are generally valid.

Equilibrium relations are often illustrated by means P-T-X phase diagrams that
show the fields of stability of various phases. A section is included in this chapter to
present some of the basic concepts of these types of phase diagrams using petrolog-
ically important but simple systems. The concepts that are needed to interpret phase
diagrams have been extensively discussed in the context of geological problems in
a number of books (e.g. Philpotts, 1990; Winter, 2001; Ernst, 1976; Ehlers, 1987).
Overall, there are a large number of books devoted to phase equilibrium and phase
diagrams because of the importance of this subject in geology, materials science and
ceramics. Thus, the section on phase diagrams has been kept short with the objec-
tive of exposing some of the essential thermodynamic, mass balance and geometric
concepts.

10.1 Extent and Equilibrium Condition of a Reaction

Let ν i stand for the stoichiometric coefficient of a chemical species in a reaction,
with a positive value for a product and a negative value for a reactant species, and
�ni denote the change in the number of moles of a species at a given stage during the
progress of the reaction. The ratio �ni/ν i has the interesting property that its value is
independent of the choice of the species. To appreciate this point, consider a simple
reaction H2 + Cl2 = 2 HCl. If at a given stage of the reaction, 5 mol of H2 was
consumed, in which case �nH2 = – 5, then from the stoichiometric relation of the
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reaction, �nCl2 = – 5 and �nHCl = 10. However, since following the sign convention
for stoichiometric coefficient (negative for a reactant and positive for a product)
νH2 = νCl2 = –1 and νHCl = 2, we have

�nH2

νH2

= �nCl2

νCl2
= �nHCl

νHCl
= 5

For infinitesimal progress of a reaction, �ni. is replaced by dni.
The founder of the famous Belgian school of thermodynamics, De Donder

(1872–1957), defined the extent of a reaction, �, in terms of the species independent
ratio as

dni


i
= d� (10.1.1)

where d� is the infinitesimal change of the extent of reaction �. The latter is also
referred to as the reaction progress variable or simply as progress variable. Noting
the sign convention for the stoichiometric coefficient (νI > 0 for product and < 0
for reactant), it should be easy to see that d� > 0 implies that the reaction proceeds
to the right, and vice versa.

Let us now consider an arbitrary reaction, which may be represented symboli-
cally as

∑
i


iAi = 0 (10.1.2)

with the usual sign convention for ν i (see above). When Gibbs introduced the con-
cept of chemical potential, he had in mind only the changes of moles of chemical
species within a system due to exchange with the surrounding. However, the change
in the number of moles of a species has the same effect on G whether it is due to
mass exchange with the surrounding or chemical reaction within the system. Thus,
using Eq. (8.1.7), the change in the Gibbs energy of a system due to internal chem-
ical reaction at a constant P-T condition is given by

(�G)P,T =
∑

i

�idni,

which, on substitution of ν i d� for dni Eq (10.1.1) yields
(
�G

��

)
P,T

=
∑

i


i�i, (10.1.3)

Now, since for any spontaneous change at constant P-T condition, G of a system
must decrease until equilibrium is achieved (Fig. 10.1), it follows that for a reaction

(
�G

��

)
P,T

=
∑

i


i�i ≤ 0 (10.1.4)
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Fig. 10.1 Schematic
illustration of the change of
Gibbs free energy, G, of a
system as a function of the
extent of reaction, �, at
constant P-T condition. The
equilibrium condition is
given by the minimum of G

ξ

G

Problem 10.1 Show that when a univariant reaction involves solution phases, the
Clayperon-Claussius relation (Eq. (6.4.4)) is given by

dP

dT
= �s

�v
, (10.1.5)

where the �s and �v represent changes in the partial molar entropy and partial molar
volume, respectively.
(Hint: First show that d�i = −sidT + vidP)

10.2 Gibbs Free Energy Change and Affinity of a Reaction

Following the classic and highly influential text by Lewis and Randall on thermody-
namics (Lewis and Randall, 1923), the quantity �ν i�i is commonly denoted by the
symbol�rG and is called the Gibbs free energy change or simply the Gibbs energy
change of a reaction. Thus, according to Eq. (10.1.4), at constant P-T condition, a
reaction proceeds in the direction of lower Gibbs energy.

In an alternative development of the direction of reaction progress in terms of
entropy production, De Donder (1927) developed the concept of Affinity, A, which
led to the result that a reaction progresses in the direction of increasing Affinity.
From Eq. (10.1.4), one would therefore anticipate that

A = −�
i�i = − �rG,


i > 0 for products

< 0 for reactants

(10.2.1)

It is instructive here to see how De Donder developed the criterion for the direction
of a chemical reaction from the principle of entropy production. From Eq. (8.1.4),
we have

dS = dU + PdV

T
−

∑
i
�idni

T
(10.2.2)

From the perspective of Gibbs’ development, the first and second right hand terms
in this equation represent entropy change of the system due to reversible exchange
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of heat (since dU + PdV = TdS = �q(rev)) and matter with the surrounding, respec-
tively. De Donder recognized that in a closed system undergoing irreversible chem-
ical reactions, the internal entropy production can be expressed according to the
form of the second right hand term as (Kondepudi and Prigogine, 2002),

dSint = −
∑

i
�idini

T
(10.2.3)

where dini stands for the change of mole numbers of i due to irreversible chemical
reaction. Using the relation Eq. (10.1.1) for dini, we then have

dSint = −
∑
k
�i(
id�)

T
(10.2.4)

or

dSint =
(

A

T

)
d� (10.2.5)

where A = – �ν i�i.
If we write a reaction as

r1A1 + r2A2 + . . . . = p1B1 + p2B2 + . . . , (10.2.a)

then

A =
∑

i

ri�Ai −
∑

j

pj�Bj (10.2.6)

Now since, according to the second law Eq. (2.4.9), dSint ≥ 0, it follows from
Eq. (10.2.5) that Ad� ≥ 0. Consequently, A and d� must have the same sign. In
other words, if A > 0, then d� > 0 (that is the reaction proceeds from left to right),
and vice versa.

The two terms, Affinity and Gibbs free energy change of a reaction came into
use in two independent developments of chemical thermodynamics, and their use
in the literature often reflects a matter of personal preference. However, since the
development of the concept of Affinity is linked to entropy production, it is more
commonly used in irreversible thermodynamics that deals with entropy production.
We return to the problem of entropy production in Appendix A.

10.3 Gibbs Phase Rule and Duhem’s Theorem

The general idea of Gibbs Phase Rule was introduced in Sect. 6.1, where we also
formally defined the terms phase, component and degree of freedom. Here we
present the derivation of the Phase Rule, and along with that state and prove another
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important theorem known as the Duhem’s theorem. Phase Rule addresses the prob-
lem of total number of independent intensive variables in a system at equilibrium,
regardless of whether it is open or close, as long as it is not subjected to any variation
of an external force field such as gravity. The phase rule is not concerned with the
quantities of the different phases. On the other hand, the Duhem’s theorem allows
one to determine the number of variables that need to be fixed (whether these vari-
ables are intensive or extensive or a combination of both) so that the equilibrium
properties of a closed become completely characterized.

If the number of variables that we happen to be dealing with is V, and there are
R independent relations among these variables, then the degree of freedom, that is
the number of variables that can be varied independently, is given by (V − R). For
example, if we have two variables y and x, and these are related by an equation such
as y = mx + c, then there is one degree of freedom. That is, if we choose the value
of one of the variables, the value of the other one is defined. However, if there is
an additional relation between the two variables, such as of the form y = m′x + c′,
then there is zero degree of freedom. That is the values of both variables are fixed by
the requirement that these must simultaneously satisfy the two independent relations
between them. In this example, the x and y values are the co-ordinates of the point
of intersection of the two straight lines defined by the two relations.

10.3.1 Phase Rule

10.3.1.1 General Derivation

In order to derive the Phase Rule, let us consider a system in which the number of
phases is P and that of the components is C. If all C components are present in each
phase, then the number of intensive compositional variables (atomic fractions) is
PC. In addition, pressure and temperature are two other intensive variables, assum-
ing that the pressure on certain phase is not buffered from outside the system. (The
latter situation could arise in certain geological problems, such as a solid-gas system
in which the gas pressure could be buffered by communication of the gas with an
external reservoir while the solid pressure is defined by the overburden or lithostatic
pressure on the rock.). Thus, the total number of intensive variables in the system
subjected to uniform P-T condition is PC + 2.

Now we need to find out the number of independent relations among these inten-
sive variables. It is easy to see that there is a set of such relations defined by the
stoichiometric constraints. That is

∑
i

(Xi)� = 1 for each phase where (Xi)� is the

atomic fraction of the component i in the phase �. The total number of such relations
is P.

Additional relations among the intensive variables are obtained from the ther-
modynamic requirement of chemical equilibrium, that is, the chemical potential of
each component must be the same in each phase in which it can be present. Thus,
assuming that each component is present in all the phases, we have
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(μ1)
1 = (μ1)

2 = (μ1)
3 = ................ = (μ1)

P

(μ2)
1 = (μ2)

2 = (μ2)
3 = ................ = (μ2)

P

C relations ...............................................................

(μc)
1 = (μc)

2 = (μc)
3 = ................ = (μc)

P

(P-1) relations (10.3.1)

where the subscript refers to a component and the superscript refers to a phase. Each
row in the above set of equations defines (P–1) relations (since there are P–1 equali-
ties). Hence, the system of equations in (10.3.1) yield C(P–1) independent relations.
Now assuming that there is no additional restriction on the chemical potential of
any component through communication with an external reservoir, the degree of
freedom of intensive variables, F, is given by

F = [PC + 2] − [P + C(P − 1)] = C − P + 2.

Here the terms within the first pair of square brackets indicate the total number of
intensive variables, whereas those within the second pair indicate the number of
independent relations among these variables.

In summary, the Phase Rule states that in a system consisting of P phases and C
components, which (a) is in chemical equilibrium, (b) has a homogeneous pressure
throughout, (c) is not subject to buffering of chemical potential of any component
by mass exchange with an external reservoir, and (d) is not subject to variation of
an external force such as gravity, the number of degree of freedom of the intensive
variables is given by

F = C − P + 2 (10.3.2)

10.3.1.2 Special Case: Externally Buffered Systems

It is now easy to modify the phase rule by removing the simplifying assumptions that
have been used to derive it. Let us assume, as illustrated in Fig. 10.2, that the chemi-
cal potentials of a certain number of components, !, are controlled from an external
reservoir by exchange through a semi-permeable membrane, which are open only to
those components. The chemical potential of any of these components in any phase
is the same as that in the reservoir, but the chemical potentials of the components in
the reservoir remain fixed since any exchange of a component between the reservoir
and the system does not have any significant effect on its content in the reservoir.
Thus, there are now (C–!) rows in the system of equations of the type Eq. (10.3.1)
for the equality of the chemical potentials of the components among the phases,
and consequently (P–1)(C–!) independent equations. However, since the chemical
potentials of K number of components in each phase are controlled from outside,
there are !P additional equations. Also, as before, we have P equations for the stoi-
chiometric restrictions. Thus,
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1, 2, 3,
4, 5, 6 2

4
Reservoir of 2 & 4

System

Fig. 10.2 Schematic illustration of the buffering of the chemical potentials of two components,
2 and 4, in a system by an external reservoir. The system and reservoir are separated by a membrane
that is permeable only to the components 2 and 4

F = [PC + 2] − [(P − 1)(C − !) + !P + P]

or

F = (C − !) − P + 2 (10.3.3)

The maximum number of phases that can coexist in equilibrium in a system,
Pmax, is obtained by setting F = 0. If P and T are held constant (which means that
we have exercised two degrees of freedom), then we subtract 2 from the right hand
side of the above equation. Thus, at constant P-T condition

Pmax = C − !

The above equation explains the development of rocks with a small number of
minerals and the apparently strange situation of monomineralic rocks even though
there are many components in a natural environment (note that the number P
increases with the number C). Equation (10.3.3) was first derived by Korzhinski
(1959) in a different way. (Korzhinski’s derivation of the modified form of Phase
Rule was hotly debated but the final result is unquestionably correct, and he should
be credited for the recognition that the standard form of phase rule needed modifica-
tion to account for the development of rocks with monomineralic bands.) Rumble
(1982) discussed the petrographic, chemical (including stable isotopic composi-
tions) and geological considerations that may be used to decide if some components
within a rock under investigation had been buffered from outside.

It should now be obvious that if the pressure on the gas phase in a system, Pg,
is buffered from outside and is different from that on the solid phase, Ps, then the
Phase Rule should be further modified as (Ganguly and Saxena, 1987).

F = (C − !) + P + 2 + I (10.3.4)

where I = 0 for Pg = Ps, and I = 1 for Pg 
= Ps

10.3.2 Duhem’s Theorem

Consider now a closed system with fixed masses of all components. The question
is: how many variables must be specified so that all equilibrium properties of
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the system, intensive and extensive, are defined? The answer to this question is
provided by the Duhem’s theorem, which states that in a closed system, there are
only two independent variables under equilibrium condition. Once the values of
two variables, whether intensive or extensive or one of each type, are specified,
all equilibrium properties of the system, intensive plus extensive, are defined. The
number of intensive variables that can be specified is, of course, restricted by the
Phase Rule. As an example, if we have a divariant closed system, and the pressure
and temperature conditions are specified, then the composition and mass of each
phase are defined. All other properties of the system derive from these three prop-
erties. Duhem’s theorem, of course, does not tell us how to derive the equilibrium
properties of the system, but knowing that all properties of a closed system have
unique values when two variables are specified is an important step. Now let us see
how Duhem’s theorem is derived.

Consider a system consisting of C chemical species and P phases, and assume
for simplicity that each phase contains all chemical species. In that case, there are
C mole numbers in each phase, so that there are a total of PC mole numbers in
the system. With pressure and temperature as the two other additional variables,
we have a total of PC + 2 variables in the system. The requirement of chemical
equilibrium among the phases, that is the system of Eq. (10.3.1), yields C(P – 1)
independent relations, as discussed above. In addition, since the system is closed,
the total number of moles of each component is fixed. Thus, for each component, j,
there is a mass conservation relation of the type

(n1
j + n2

j + . . . .nP
j ) = Nj, (10.3.5)

where n stands for the mole numbers of j in the superscripted phase (p being the
p th phase), and Nj is the total mole numbers of the chemical species j in the sys-
tem. Obviously, there are a total of C relations of this type. Thus, the number of
independent variables, �, is given by

� = [PC + 2] − [C(P − 1) + C] = 2 (10.3.6)

The restricted total variance of a closed system, as expressed by the Duhem’s the-
orem, forms the basis of a variety of calculations in geological and planetary prob-
lems. For example, Spear (1988) used it to develop quantitative relationships among
the changes of phase chemistry and modes as function of changes of P-T conditions
in igneous and metamorphic systems. (This work is an extension of an earlier study
by Spear et al. (1982) that dealt only with the relationship among changes of the
intensive variables that has become known as the “Gibbs method”.) Duhem’s the-
orem also forms the basis of calculations of modal abundance and compositions of
phases in a closed system at equilibrium (Sect. 10.13). Since the total variance of the
closed system is 2, one can find out if in a given situation all independent relations
among the variables, which are needed to perform the desired calculations, have
been accounted for.
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Problem 10.2 Show that the Phase Rule, as expressed by Eq. (10.3.2) holds even
when all C components are not present in all phases.
(Hint: Proceed by choosing a specific case in which the c th component is present
only in 	 phases where 	 < P, and setting up a set of equations as in Eq. (10.3.1)
for the equality of chemical potential of components in different phases.)

10.4 Equilibrium Constant of a Chemical Reaction

10.4.1 Definition and Relation with Activity Product

Consider a balanced chemical reaction written in the form

∑
i


iCi = 0, (10.4.a)

(ν i > 0 for products and < 0 for reactants) where Ci is a component in a specific
phase. As a specific example, let us consider the reaction

Plag Grt Ky Qtz

3CaAl2Si2O8 = Ca3Al2Si3O12 + 2Al2SiO5 + SiO2
(10.4.b)

where CaAl2Si2O8 is a component in the mineral plagioclase, and so on (Plag: pla-
gioclase, Grt: garnet, Ky: kyanite, Qtz: quartz). Using the form of Eq. (10.4.a), this
reaction is written as

(Grs)Grt + 2(Al2SiO5)Ky + (SiO2)Qtz − 3(An)Plag = 0

where Grs and An stand for Ca3Al2Si3O12 (grossular component) and CaAl2Si2O8

(anorthite compnent), respectively.
At any specified P,T,X condition, the Gibbs energy change of the reaction

(10.4.a), can be expressed as Eq. (10.2.1)

�rG(P, T, X) =
∑

i


i�i(P, T, X) (10.4.1)

where �i is the chemical potential of component i in the phase �j. Upon substitution
of the expressions of chemical potentials in terms of activities (i.e.�i =�i* + RTlnai:
Eq. (8.4.6)) and rearrangement of terms, we then have

�rG(P, T, X) =
[∑

i

νi(�i)
∗
]

+ RT ln
∏

i

(ai)
νi (10.4.2)

where the symbol "
i

stands for the product of all activity terms raised to the appro-

priate powers that are positive for the products and negative for the reactants. The
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quantity within the square brackets denotes the change of standard state chemical
potentials in the reaction, and is denoted by �rG*(T).

Application of the last equation to the reaction (10.4.b) yields

�rG(P, T, X) =�rG
∗(P, T)

+ RT
[
ln

(
aGrt

Grs

) + 2 ln
(

aKy
Al2SiO5

)
+ ln

(
aQtz

SiO2

)
− 3 ln

(
aPlag

An

)]
(10.4.3)

which can also be written as

�rG(P, T, X) = �rG
∗(P, T) + RT ln

(
aGrt

Grs

) (
aKy

Al2SiO5

)2 (
aQtz

SiO2

)
(

aPlag
An

)3 (10.4.4)

From this analysis, it should be easy to see that for any reaction we can write

�rG(P, T, X) = �rG
∗(T) + RT ln

(
aP1

C′
1

)ν ′′
1

(
aP1

C′
2

)ν ′′
2
. . .

(
aR1

C1

)ν ′
1
(

aR1
C2

)ν ′
2
. . .

(10.4.5)

where, for the sake of clarity and distinctiveness, we have used in the logarithmic
term Pi for the product phase and ν ′′

i for the magnitude of the stoichiometric coeffi-
cient of the product component C′′

i with analogous labeling applying to the reactants.
We call the ratio of activities in the above expression as a reaction quotient, and for
the sake of brevity represent it by the symbol Q. Thus, in general, the Gibbs energy
change of a reaction at any condition can be written as

�rG(P, T, X) = �rG
∗(T) + RT ln Q (10.4.6)

When equilibrium is achieved, �rG(P,T,X) = 0, so that

RT ln Qeq = −�rG
∗(T) (10.4.7)

The above equation shows that at equilibrium, the reaction quotient assumes a spe-
cific value, Qeq, which depends only on the choice of standard states at a given
temperature. This specific value of Q is known as the equilibrium constant, K.
Thus, we write,

RT ln Qeq ≡ RT ln K = −�rG
∗(T) (10.4.8)

Note that it is not required to have the standard states of all phases referred to the
same pressure. We discuss in a later section (Sect. 10.5.1) the use of mixed stan-
dard states. Although it should be obvious, it is re-emphasized that because of the
last relation, the equilibrium constant, K, is not a function of composition of the
phases. It has a defined value at a fixed P-T condition, regardless of the composition
of the phases.
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10.4.2 Pressure and Temperature Dependencies
of Equilibrium Constant

The formal expressions for the pressure dependence of a equilibrium constant follow
from Eq. (10.4.8), depending on the choice of standard state. We may choose the
standard state of a component in a phase to be the state of the pure end member
phase at 1 bar and the temperature of interest. In that case, �rG*(T) = �rGo(1 bar,
T), and consequently the equilibrium constant is independent of pressure. On the
other hand, if the standard state is chosen to be the state of pure end member phase
at the P-T condition of interest, so that �rG*(T) = �rGo(P, T), then obviously the
equilibrium constant depends on pressure according to RT(�lnK/�P) = – �(�rGo/
�P) = – �rVo.

Summarizing,

(a) for standard state tied to a fixed pressure,
(
� ln K

�P

)
T

= 0; and (10.4.9a)

(b) for standard state tied to the pressure of interest, �rG* = f(P, T):
(
� ln K

�P

)
T

= −�rV∗

RT
(10.4.9b)

From Eq. (10.4.8), the temperature dependence of equilibrium constant is given by
(
� ln K

�T

)
P

= −
(
�(�rG∗/RT)

�T

)

Using the rule for differentiating a ratio, we obtain

(
� ln K

�T

)
P

= − 1

R

⎛
⎜⎝

T
��rG∗

�T
− �rG∗

T2

⎞
⎟⎠ = − 1

R

(
−−T�rS∗ − �rG∗

T2

)
,

which, on substitution of the relation H = G + TS yields
(
� ln K

�T

)
P

= �rH∗

RT2 (10.4.10a)

or, since dT = – T2d(1/T)
(
� ln K

�(1/T

)
P

= −�rH∗

R
(10.4.10b)
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These equations provide general relations for calculating change of equilibrium
temperature at a fixed pressure as function of changing compositions of the phases.

The second relation, Eq. (10.4.10b), is a more convenient form for many practical
applications. It may be remembered by rewriting Eq. (10.4.8) as

ln K = −�rH∗

RT
+ �rS∗

R
, (10.4.11)

and differentiating it with respect to (1/T) at constant values of �H* and �S*. It
should be obvious, however, that Eq. (10.4.10b) is valid regardless of the nature of
temperature dependence of �H* and �S* since no assumption was introduced in its
derivation.

Problem 10.3 Beginning with Eq. (10.4.11), derive Eq. (10.4.10b) by differen-
tiating both sides with respect to 1/T, but treating �H* and �S* as functions of
temperature.

Problem 10.4 Using the phase diagram presented in Fig. 10.20, but without using
any data from the literature for G, H and S, calculate the equilibrium constant of
the GASP reaction at 800◦C, 23 kb, using pure component (P, T) standard state for
each phase. Get any data that you need from the literature. (Hint: First determine
the value of lnK at 800◦C on the equilibrium boundary.)

10.5 Solid-Gas Reactions

Solid-gas reactions play important roles in a variety of geological and planetary
problems. In this section we illustrate some of the strategies for calculating solid-gas
reactions, using examples from both types of problems.

10.5.1 Condensation of Solar Nebula

Figure 10.3 shows the equilibrium condensation temperatures of different minerals
as function of pressure from a gas of the composition of the solar nebula (Lewis and
Prinn, 1984). The pressure within the solar nebula was very low, less than 10–2 bar,
and Lewis (1974) argued that the temperature gradient within the solar nebula must
have been essentially adiabatic (isentropic), as originally suggested and calculated
by Cameron and Pine (1973). The different symbols beside the adiabat in Fig. 10.3
indicate different planets at their inferred formation conditions. These conditions are
constrained by the fact that a planet had to form at a specific place in the condensa-
tion sequence in order to satisfy its density, bulk composition and other properties
(Lewis, 1974). For example, Mars has too low a density (3.9 gm/cm3 compared to
5.4 gm/cm3 of Earth) to have formed with large amount of metallic Fe; major frac-
tion of all Fe must have been oxidized to FeO and incorporated into ferromagnesian
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Fig. 10.3 Equilibrium condensation temperatures of minerals in solar gas, as calculated by Lewis
and Prinn (1984). The first magnesian silicate to condense is forsterite (Mg2SiO4) condenses, but
is replaced by enstatite (MgSiO3) at slightly lower temperature. Adiabat represents the isentropic
temperature profile as function of pressure in the solar nebula with the temperature decreasing
away from the heliocenter. The locations of the different planets (Mercury to Neptune) on the
adiabat are shown by conventional symbols. From Lewis and Prinn (1984). With permission from
Academic Press-Elsevier

minerals before it formed. On the other hand, the density of Mars is too large for
it to contain any appreciable amount of the hydrous mineral serpentine. Thus, the
formation condition of Mars is placed between the condensation conditions of FeO
and serpentine from the solar nebula. For further discussion of this fascinating topic,
the reader is referred to the original work of Lewis (1974). A comprehensive set of
calculations for the equilibrium condensation of different minerals as a function of
temperature in the solar nebula is presented in two pioneering papers by Grossman
(1972) and Grossman and Larimer (1974). The process of equilibrium condensation
of minerals was subsequently explored by Saxena and Eriksson (1986) by mini-
mization of Gibbs energy (see Sect. 10.13) and in a series of papers by Grossman
and co-workers. The purpose of this section is to show how the equilibrium con-
densation temperature is calculated as a function of the total gas pressure, PT, using
equilibrium constants of reactions, and discuss some important insights about the
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nebular process that may be gained by comparing the results of such calculations
with the observations in meteorites.

Consider the formation of forsterite, Mg2SiO4. Taking into account the gas
species in the solar nebula, the appropriate reaction is

SiO + 2Mg + 3H2O = Mg2SiO4 + 3H2 (10.5.a)

(After its condensation, forsterite is replaced by enstatite, MgSiO3, at slightly
lower temperature according to SiO + Mg2SiO4 + H2O = 2 MgSiO3 + H2. Thus,
forsterite condensation condition is not shown in Fig. 10.3.) At equilibrium, we
have for the forsterite forming reaction Eq. (10.4.8)

K(9.5.a)(P, T) ≡ e−�G∗/RT =
(

aol
Mg2SiO4

) (
ag

H2

)3

(
ag

SiO

) (
ag

Mg

)2 (
ag

H2O

)3
(10.5.l)

We now specify the following standard states:

Solid: pure state at the P, T of interest so that G*(s) (T) = Go(s)(P, T)
Gas: pure gas at unit fugacity, T so that Gi*(g)(T) = Gi

o(g)[P(f = 1), T],

where P (f = 1) implies the pressure at T at which the fugacity is 1 bar (Fig. 8.15).
With this choice of standard state for gas, the activity of a gaseous species equals its
fugacity, ag

i = fg
i (recall that by definition ai(P,T,X) = fi(P,T,X)/fi

*(T)). It is further
assumed that f ≈ 1 when P = 1 (since all gases behave ideally as P → 0). Thus, we
have

�G∗(P′, T) ≈ Go
fors(P

′, T) + �Go(g)
i (1; T)

(Note that the two Gibbs energy terms on the right are associated with two differ-
ent pressures.) The Gibbs energy of pure forsterite is related to its value at 1 bar
according to

Go
fors(P

′, T) = Go
fors(1 bar, T) +

P′∫

1

Vo
forsdP

Since the nebular pressure is much less than 1 bar, the integral in the above equation
can be written as Vo

fors(P′ – 1) = – Vo
fors. (Note that the last term is multiplied by

1 bar so that it has the unit of cm3-bar.) Thus, to a very good approximation,

�G∗(P′, T) ≈ Go
fors(1 bar, T) − Vo

forsx1(bar) + �Go(g)
i (1; T) (10.5.2)

with the unit of volume being in J/bar, if the G values are in Joules.
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The gas phase may be assumed to be behave ideally because of very low pressure
in the solar nebula (Fig. 10.3) so that fg

i = Pg
i = PTXg

i . Thus, we have

ag
i (P, T, X) ≈ PTXg

i , (10.5.3)

which, on substitution in Eq. (10.5.1), yields

e−�G∗/RT ≈
(

aOl
Mg2SiO

) (
Xg

H2

)3

P3
T

(
Xg

SiO

) (
Xg

Mg

)2 (
Xg

H2O

)3
(10.5.4)

Here �G* is to be calculated from Eq. (10.5.2) using the available thermochemical
data.

Given the composition of the solar gas, and specific values of PT and aOl
Mg2SiO4

,
the last equation can be solved for T (the only unknown in the equation) to yield
the equilibrium condensation temperature of olivine of specific Mg content. How-
ever, the gas composition also changes as a function temperature by homogeneous
reaction. Thus, the condensation temperature needs to be calculated by an iterative
procedure, until the temperature at which the gas composition is computed becomes
the same as that obtained from the solution of the above equation. After the con-
densation of a phase, the solar gas composition is recalculated by removing the
components that condensed into the phase, and used as an initial gas composition
for calculation of condensation of a lower temperature phase.

In chondritic meteorites, olivine and pyroxene grains within the chodrules show
FeO/(FeO + MgO) ratios greater than 0.15. On the other hand, equilibrium conden-
sation calculation carried out by Grossman (1972) using a solar gas composition
shows only trace amounts of FeO in these silicate minerals because iron is more
stable in co-condensing Fe-Ni alloy (Fig. 10.3). At equilibrium, oxidation of iron
metal by reaction with gaseous H2O is delayed until the temperature falls below
550 K. However, at this temperature, solid-gas reaction and diffusion of FeO into
silicate are too slow to be able to cause any significant FeO enrichment of the
silicates. Thus, to explain the observed FeO content of the silicate minerals, one
needs to find a mechanism of increasing the f(O2) of the environment in which
the chondrules formed so that Fe can be oxidized at sufficiently high temperatures.
In the nebular setting, this may be achieved by increasing dust/gas ratio in local
domains. Because the dust component is relatively enriched in oxygen, vaporization
of the dust produces a gas enriched in oxygen compared to solar composition. This
example shows how important insights about nebular process may be gained by
comparing the results of equilibrium condensation with observations in meteorites.
The question of equilibrium condensation in the dust-enrichment environment was
addressed by Yoneda and Grossman (1995) and Ebel and Grossman (2000).
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10.5.2 Surface-Atmosphere Interaction in Venus

On the basis of data gathered from several missions to Venus, the surface tem-
perature of Venus has been inferred to be ∼ 750 K. In addition, it was concluded
that Venus has an atmosphere that is very rich (∼ 95%) in CO2. The P-T profile
of the Venusian atmosphere roughly follows the adiabatic (isentropic) temperature
gradient Eq. (7.3.3) of CO2 (Lewis and Prinn, 1984).

The high surface temperature of Venus prompted Mueller (1963) to suggest that
unlike Earth, the surface rocks and atmosphere of Venus should be at least in partial
equilibrium since at such temperatures equilibrium is known to have been attained
in many terrestrial metamorphic processes. Thus, he deduced the mineralogical
character of crustal rocks from the atmospheric compositions. This idea of crust-
atmosphere equilibrium in Venus has served as the basis of subsequent work on the
nature of Venusian crust and atmosphere. A modern and detailed discussion of the
subject may be found in Lewis and Prinn (1984). Here we show that the inferred
CO2 partial pressure in the atmosphere of Venus is very similar to that expected by
equilibration with a crust that contains calcite, orthopyroxene and clinopyroxene.

In terrestrial metamorphic process, two of the important CO2 producing reac-
tions are

Cal Qtz Wo

CaCO3 + SiO2 = CaSiO3 + CO2
(10.5.b)

Opx Cal Qtz Di

MgSiO3 + CaCO3 + SiO2 = CaMgSi2O6 + CO2
(10.5.c)

Since the mass and density of Venus are similar to those of the Earth, Mueller (1963)
suggested that Venus has similar bulk composition as that of the Earth and, conse-
quently, the planetary evolution should have led to surface rocks in Venus that have
terrestrial counterparts. Thus, the above reactions should also prevail in the Venusian
crustal rocks.

Assuming that all minerals are in their respective pure states, and setting the
standard states of minerals and CO2 to be their respective pure states at 1 bar, T, so
that the activities of all condensed components are unity at 1 bar, T, and a(CO2) ≈
f(CO2), the equilibrium constants of the above reactions are

K(10.5.b) ≡ exp(−�rG
o
(10.5.b)/RT) ≈ fCO2 (10.5.5)

K(10.5.c) ≡ exp(−�rG
o
(10.5.c)/RT) ≈ fCO2 (10.5.6)

where �rGorepresents Gibbs energy change at 1 bar, T, when all phases are in
their respective pure states. Owing to the very low atmospheric pressure, f(CO2) =
P(CO2).

Figure 10.4, which is taken from Mueller and Saxena (1977), shows the rela-
tionship between T and P(CO2), as calculated from the thermochemical data for the
reactions at 1 bar, T. The range of inferred P(CO2) and T for Venus, shown as a
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Fig. 10.4 Comparison of the observed P(CO2)-T data in the atmosphere of Venus with the equi-
librium curves of important CO2 producing reactions. The bandwidths indicate uncertainties of the
calculations arising from those in the thermochemical data. The P(CO2) – T combination of the
Earth’s atmosphere is shown for comparison. From Mueller and Saxena (1976)

large cross, agree with the calculated relations. The data for Earth’s atmosphere are
shown for comparison.

Mueller’s “interaction model” was further explored by Lewis (1970) to derive
useful information about the crustal mineralogy of Venus from the knowledge
of atmospheric composition, as inferred from spectroscopic data. The minerals
deduced to be stable in the crust, but not all of them together, include pyrox-
ene, quartz, magnetite, calcite, halite, fluorite, tremolite, akermanite and andalusite.
From the inferred mineralogy of the crust, Lewis (1970) suggested that the surface
of Venus is a silica-rich differentiate rather than representing the average cosmic
Mg/Si ratio of ∼ 10.

10.5.3 Metal-Silicate Reaction in Meteorite Mediated
by Dry Gas Phase

An apparently puzzling observation in the Allende meteorite1 is the iron enrich-
ment of olivine crystals within narrow zones around metallic inclusions. If the iron
enrichment is due to a simple exchange process, Mg2SiO4(Ol) + 2Fe(metal) =

1The Allende meteorite fell in Pueblito de Allende, Chihuahua state, Mexico, on February 8, 1969.
It is a carbonaceous chondrite and consists of the earliest formed minerals in the solar system.
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Fe2SiO4(Ol)+2Mg(metal), then the metallic inclusions must show Mg enrichment,
which is neither possible (because of extremely small solubility Mg in Fe) nor
observed. This problem of iron enrichment of olivine was investigated by Dohmen
et al. (1998) by controlled experiments in a Knudsen cell mass spectrometer and
thermodynamic analysis of the experimental data. (In a Knudsen cell, a sample is
uniformly heated within a container and the vapor phase that is generated by the
sublimation of a solid is allowed to escape through a small hole at the top of the
container, and analyzed by a quadrupole mass spectrometer.) By putting physically
separated blocks of forsterite and Fe metal in a Knudsen cell mass spectrometer at
high temperature and controlled f(O2) condition, and monitoring the composition of
the effusing gas and the residual solid, Dohmen et al. (1998) found that Mg2SiO4

evaporates stoichiometrically according to

Mg2SiO4 (solid) → 2Mg (g) + SiO (g) and 3/2 O2 (g) (10.5.d)

In addition, Fe(metal) evaporates to Fe(g)

Fe (metal) → Fe (g) (10.5.e)

Homogeneous reaction within the gas phase then leads to the precipitation of fay-
alite, Fe2SiO4 according to

2 Fe(g) + SiO (g) + 3/2 O2 (g) → Fe2SiO4 (s) (10.5.f)

The net reaction leading to the formation of fayalite by a vapor mediated reaction
between forsterite and Fe(m) is obtained by adding the last three reactions.

Mg2SiO4 (s) + 2 Fe (m) = Fe2SiO4 (s) + 2 Mg (g) (10.5.g)

for which the equilibrium constant is

K10.5.g(P, T) =
[(

XFe

XMg

)2
]Ol

⎡
⎢⎣

(
Pg

Mg

)2

(
am

Fe

)2

⎤
⎥⎦ (10.5.7)

so that

[
XFe

XMg

]Ol

∝
[

am
Fe

Pg
Mg

]gas

(10.5.8)

In the experiments of Dohmen et al (1998) am
Fe = 1, since Fe is in the pure (standard)

state, so that the Fe content of olivine varies inversely as PMg. This work is an
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excellent demonstration of how physically separated condensed phases can react
with each other through a dry vapor phase formed by the sublimation of the phases.

Dohmen et al. (1988) also found that in an experiment with a polycrystalline
aggregate of olivine that was kept physically separated from metallic iron, the
olivine grains near the surface showed a scatter in their Fe content between 2 and
4 mol%, but the individual grains were homogeneous (the temperature was high
enough to homogenize the composition within the duration of the experiment). This
variation of composition was most likely due to fluctuations of PMg. Similar effects
may be expected in meteorites. In the latter case, it is the (am

Fe/ Pg
Mg) ratio that affects

the silicate mineral composition.

10.5.4 Effect of Vapor Composition on Equilibrium Temperature:
T vs. Xv Sections

Let us consider a reaction that involves one or two volatile species that may be
written as

A ↔ B + 
1V1 + 
2V2, (10.5.h)

were A and B are solid phases, V1 and V2 are two volatile species and ν1 and ν2

are their respective stoichiometric coefficients. One of these coefficients may be
zero, greater than zero or less than zero. Geologically significant examples of such
reactions involving CO2 and H2O as vapor species are

Mg(OH)2 (Brucite) = MgO (Pericalse) + H2O [
(CO2) = 0] (10.5.i′)

CaCO3 + SiO2 = CaSiO3 (Wollastonite) + CO2 [
(H2O) = 0] (10.5.i′′)

Tremolite + 3 CaCO3 + 2 SiO2 = 5 CaMgSi2O6 (Diopside) + 3 CO2 + H2O

[
(CO2) > 0, 
(H2O) > 0]
(10.5.j)

3 CaMg(CO3)2 + 4 SiO2 + H2O = Talc + 3 CaCO3 + 3 CO2

[
(CO2) > 0, 
(H2O) < 0]
(10.5.k)

(tremolite: Ca2Mg5Si8O22(OH)2; Talc : Mg3Si4O10(OH)2).
Any change in the composition of the gas phase causes a change in the equi-

librium temperature of a univariant solid-gas reaction at a constant pressure, or of
equilibrium pressure at a constant temperature. However, because of the differences
in the manner of appearance of the vapor species in the reactions, the isobaric
equilibrium temperatures of the reactions vary as a function of the composition of
the vapor phase, Xv, in qualitatively different ways for the three types of reactions
((10.5.i′) and (10.5.i′′) are of the same type in that both these reactions directly
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involve only one volatile species). The T-Xv topologies of these types of reaction
were first derived and discussed by Greenwood (1967).

Using pure component (P, T) standard states and rearranging terms, Eq.
(10.4.10a) can be written as

(�T)P = (� ln K)P
RT2

�rHo
(10.5.9)

Differentiating both sides with respect to X1
V (i.e. the mole fractions of the species

1 in the vapor phase)

(
�T

�Xv
1

)
P

= RT2

�rHo

(
� ln K

�Xv
1

)
P

(10.5.10)

Assuming that the solid phases are in their respective pure states, we have at equi-
librium for the reaction (10.5.h),

K = ⌊
(X1�1)v1 (X2�2)v2

⌋g
eq (10.5.11)

where X and � stand the mole fraction and activity coefficient, respectively, of the
indicated volatile or gaseous species(1 ≡ V1, 2 ≡ V2), and the superscript g stands
for the gas phase.

Combining the last two equations, and omitting the superscript V for the sake of
brevity, we obtain

(
�T

�X1

)
P

= RT2

�rHo

(

1� ln (X1�1)

�X1
+ ν2� ln (X1�2)

�X1

)
P

or

(
�T

�X1

)
P

= RT2

�rHo

(

1

X1
+ 
2

X2

(
�X2

�X1

)
+ 
1� ln�1

�X1
+ 
2� ln�2

�X2

)
P

(10.5.12)

This equation is generally valid for the change of equilibrium temperature as a func-
tion of gas composition for reactions in which stoichiometric solids react with one
or two volatile species, as in the examples above. There is, however, no restriction
on the number of volatile species that could be present in the system.

10.5.4.1 Binary Vapor Phase

Let us now consider the special case of an ideal binary vapor phase. In that case,
�1 = �2 = 1, and dX1=−dX2 so that the last equation reduces to

(
�T

�X1

)ideal

P

= RT2

�rHo

(

1

X1
− 
2

X2

)
P

(10.5.13)
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Using this equation, let us explore the topological properties of the three types of
solid-gas reactions discussed above in the T-XV space, if the mixing in the gas phase
is ideal. We first want to find out if there is an extremum (maximum or minimum)
on the univariant reaction line. Imposing the condition of extremum, �T/�X1 = 0,
in Eq. (10.5.13), we get

[
2X1 = 
1X2 = 
1(1 − X1)]Tmax
(10.5.14)

so that X1(ν1 + ν2) = ν1, or
[

X1 = ν1

ν1 + ν2

]
Tmax

(10.5.15)

where Tmax stands for temperature maximum. If the stoichiometric coefficients are
of opposite signs, then X1 is either greater than 1 or is a negative quantity. However,
since 0 ≤ X1 ≤ 1, the above equation yields an acceptable result only when the
stoichiometric coefficients are of the same sign, or in other words, both volatile
species are in the same side of the reaction, as in reaction (10.5.j). Thus, reactions
of this type will have an extremum of equilibrium temperature in the T-Xv space. Is
this a maximum or minium?

To answer this question, we take the second derivative of Eq. (10.5.13) with
respect to X1, which yields

(
�2T

�X2
1

)ideal

P

= RT2

�rH
o

{
−

[
ν1

X2
1

+ ν2

X2
2

]
+ 2RT

�rH
o

(
ν1

X1
− ν2

X2

)2
}

(10.5.16)

We know from elementary calculus that if �2T/�X2
1 > 0, the extremum is a mini-

mum, whereas if it is less than 0, the extremum is a maximum. Since, Eq. (10.5.14)
must be satisfied at the extremum, the last parenthetical term in the above equation
vanishes at the extremum condition. Thus, we have

(
�2T

�X2
1

)ideal

P

= − RT2

�rH
o

[
ν1

X2
1

+ ν2

X2
2

]
(10.5.17)

at the extremum of T vs. X1 relation.
Both ν1 and ν2 are positive quantities for reactions that have two gaseous

species in the product side. Also �rHo > 0. Thus, for this type of reactions (e.g.
10.5.j) �2T/�X2

1 < 0, at the extremum condition, which proves the existence of a
thermal maximum. Also, from Eq. (10.5.15), this thermal maximum appears at the
vapor composition that is the same as that evolved by the reaction, if the gas phase
behaves as an ideal mixture. As an example, for the reaction (10.5.j), the thermal
maximum appears at X(H2O) = 1/(1 + 3) = 0.25, which is the composition of the
evolved fluid phase.

When the two volatile species appear on two opposite sides of a solid-gas reac-
tion, as in reaction (10.5.k), the stoichiometric coefficients have opposite signs.
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It should be easy to see that in such cases, Eq. (10.5.15) yields either X1 < 0
or X1 > 1. Both these solutions violate the physical restriction that 0 ≤ X1 ≤ 1. Thus,
reactions that involve two volatile species on two sides do not have an extremum.
Instead, this type of reaction has an inflection point in the T-X space.

The T-X topologies of the three classes of reactions between stoichiometric solids
and binary volatile phase, namely (a) ν i > 0, ν j = 0 (10.5.i′) and (10.5.i′′), (b) ν i >
0, ν2 > 0 (10.5.j) and ν i > 0, ν j < 0 (10.5.k), are illustrated in Fig. 10.5. Appreci-
ation of these topological properties has led to the understanding of the reason for
intersection of mapped traces of solid-gas reactions in the field (Carmichael, 1969),
and to the retrieval of T-Xv conditions during metamorphic processes (e.g. Ghent
et al., 1979).

Fig. 10.5 Schematic illustration of the effect of fluid composition on the equlibrium temperature
of different types of solid-gas reactions (see text, reactions (10.5.i)–(10.5.k)) involving change in
the mole fraction of two volatile species. Arrows indicate qualitative effect of an additional fluid
species, with opposing arrow indicating no effect, in an ideal fluid mixture. From Ganguly and
Saxena (1987)
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10.5.4.2 Ternary Vapor Phase

When there is significant content of a third volatile species, the topological relation
shown in Fig. 10.5 may be viewed as those pertaining to a section with constant
mole fraction of the third component. The effect of the third component (compo-
nent 3) can be calculated by considering the displacement of equilibrium along a
fixed X1/X2 ratio. Ganguly (1977) showed that if the ratio X1/X2 is kept fixed, and
the gas phase behaves as an ideal solution, then

(
�T

�X3

)ideal

P,X1/X2

= − RT2

�rHo

(
ν1 + ν2

X1 + X2

)
(10.5.18)

Problem 10.5 Assuming �rHo to be independent of temperature, show that for a
solid-gas reaction directly involving a single volatile species that is mixed in a mul-
ticomponent gas phase, and pure solid phases, the equilibrium temperature changes
as a function of vapor composition at a constant pressure according to

1

T(X1)
= 1

To
− ν1R

�rHo

(
ln av

1

)
eq (10.5.19)

where To and T(X1) are, respectively, the equilibrium temperature when the vapor
phase consists only of the species 1 and has a mole fraction X1 of the species 1.
(Hint: See Eq. (10.4.10))

10.5.5 Volatile Compositions: Metamorphic and Magmatic Systems

In both metamorphic and magmatic systems, volatile compositions are often estab-
lished by equilibration with graphite. These volatile compositions play important
roles in the mineralogical evolution of metamorphic rocks and in many volcanic and
plutonic phenomena. The important volatile species in the magmatic and metamor-
phic systems can be represented within the four component system C-O-H-S. In the
presence of graphite, we have two phases (graphite and volatile). From Phase Rule
Eq. (10.3.2), the degrees of freedom for this system is given by F = C − P + 2 = 4.
Thus, in order to determine the volatile composition, four variables need to be fixed.
Two of these are P and T. The other two variables may be the fugacities of any two
volatile species (or two ratios of fugacities, or a combination of both). The choice of
which volatile fugacities are to be kept fixed is a matter of convenience and dictated
by practical considerations. It is obviously useful to choose those species for which
we can obtain an independent estimate of fugacity values in natural assemblages.
From this point of view, the calculations are often carried out at fixed values of
f(O2) and f(S2).

After fixing P-T condition and two fugacity values, the composition of the vapor
phase may be calculated from the equilibrium constants of independent homoge-
neous reactions within this phase and of reactions between graphite and volatile
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species, plus the constraint that the sum of the partial pressures of all volatile species
must equal the imposed total pressure of the system.

The important volatile species in the metamorphic and magmatic systems are
CO, CO2, H2O, H2, O2 and S2. Thus, we write the following reactions and their
corresponding equilibrium constants.

C2 + 1
2 O2 = CO (10.5.l)

C + O2 = CO2 (10.5.m)

C + 2H2 = CH4 (10.5.n)

H2 + 1
2 O2 = H2O (10.5.o)

H2 + 1
2 S2 = H2S (10.5.p)

1
2 S2 + O2 = SO2 (10.5.q)

In addition, we write

P(total) =
∑

i

Pi

or

P(total) =
∑

i

fi

�i
(10.5.20)

where� (i) is the fugacity coefficient of the species i. Since f(O2) and f(S2) are very
small, of the order of 10–15–10–20 bars, these fugacity terms may be dropped in the
above summation.

At fixed P, T condition, there are 10 intensive variables in the system consisting of
nine different fugacities and the activity of carbon, aC. One, thus, needs 10 equations
to uniquely solve for all the unknowns. In addition to the seven equations defined by
the equlibrium constants of the reactions (10.5.l) through (10.5.q), we have decided
to fix the values of f(O2), f(S2). In addition, the presence of graphite (or diamond)
uniquely fixes aC to unity. Thus, we again reach the same conclusion as derived by
the application of Phase Rule, that the fugacities (and hence the mole fractions) of
all volatile species are uniquely determined at constant P-T condition if two fugacity
values are fixed in the presence of graphite or diamond. However, the advantage of
using the Phase Rule lies in the fact that it tells us in a straightforward way how
many intensive variables need to be fixed in order to obtain a unique solution for the
problem. If there is no free graphite phase, then F = 5, and, thus, one more intensive
variable needs to be fixed. This may be a fixed value of aC or fixed value of the ratio
of two fugacities.
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XX
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Fig. 10.6 Fluid composition in the C-O-H-S system in equilibrium with graphite as function of
pressure, temperature and f(O2). X stands for mole fraction. (a) T = 750◦C, solid lines: f(O2) =
QFM-1, dashed lines: f(O2) = QFM-2. (b) T = 1100◦C, f(O2) = QFM-2. QFM: Quartz-Fayalite-
Magnetite buffer: 3Fe2SiO4 (Fay) + O2 = 2Fe3O4 (Mag) + 3SiO2 (Qtz). From Holloway (1981)

Following the pioneering work of French (1966), Holloway (1981) solved the
system of equations defined by the equilibrium constants of the reactions (10.5.l)
through (10.5.q) plus Eq. (10.5.20) to simultaneously obtain the fugacity value of
each volatile species at fixed P, T f(O2) and f(S2) conditions. These results provide
a framework for understanding the evolution of magmatic volatile composition, in
equilibrium with graphite, during the ascent of magma from the interior of the Earth.
Holloway’s results are illustrated in Fig. 10.6 .The lower temperature approximates
the solidus of granite melting in the presence of CO2-H2O fluids, while the higher
temperature approximates the solidus for peridotite. It is evident that the mole frac-
tions of the fluid species, especially those of H2S and CO2, are very sensitive to
f(O2) (Fig. 10.6a). The f(O2) conditions of magma lie in the range from slightly
above that defined by the f(O2) buffering reaction Fe2SiO4 + O2 = Fe3O4 + SiO2

(commonly referred to as QFM buffer) to two to three orders of magnitude below
QFM buffer (Haggerty, 1976). In the presence of graphite, the magma compositions
vary from H2O rich at high pressure to CO2 rich at low pressure. Other significant
volatile species in equilibrium with graphite are H2S and CH4.

10.6 Equilibrium Temperature Between Solid and Melt

10.6.1 Eutectic and Peritectic Systems

The melting of a solid may be described by a reaction of the general form

A(solid) ↔ A(liquid) (10.6.a)

If the composition of the melt changes, but that of the solid remains fixed, and the
heat of melting is effectively independent of temperature, then the equilibrium tem-
perature will change as a function of melt composition at a fixed pressure according
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to Eq. (10.4.10). Since we are dealing with a melting process, we write �rHo as
�Ho

m, which stands for the heat of melting. In the above reaction, K = (al
A)eq, and

consequently we obtain from Eq. (10.4.10b), assuming �Hm
o to be independent

of T,

1

Tm
= 1

To
− R

�Ho
m

(
ln al

A

)
eq (10.6.1)

where Tm stands for the melting temperature at a specified melt composition, To is
the melting temperature of pure A(solid) in the absence of any other component,
and al

A is the activity of the component A in the liquid. The standard state is taken
to be the pure state for both solid and liquid at the P-T condition of interest.

A mineralogical example of the reaction of the type (10.6.a) is the melting rela-
tion in the system CaMgSi2O6 – CaAl2Si2O8. The end member compositions rep-
resent the minerals diopside and anorthite, respectively. The melting reactions are

CaMgSi2O6(Di) ↔ CaMgSi2O6 (liquid)

CaAl2Si2O8(An) ↔ CaAl2Si2O8 (liquid)

in which the melt composition varies between the two limiting compositions of
the system. The end-member melting properties in the system at 1 bar are as fol-
lows: To(Di) = 1665 K, To(An) = 1826 K; � Ho

m (Di) = 77,404 J/mol, �Ho
m (An) =

81,000 J/mol. To and � Ho
m values are from Bowen (1915) and Robie et al. (1978),

respectively. These values are substituted in Eq. (10.6.1) to calculate the melting
behavior of diopside and anorthite at 1 bar, assuming ideal mixing of components
in the liquid phase. The results are illustrated in Fig. 10.7. The calculated diagram
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Fig. 10.7 Melting temperature vs. composition in the binary system Diopside-Anorthite as calcu-
lated from thermochemical data at 1 bar, assuming ideal solution behavior of the melt. The eutectic
point, which is given by the intersection of the two liquidus curves, is located at 1270◦C (Te) and
wt % An = 42. The fields of liquid and different phase are assemblages labeled. Below the solidus
temperature (Te), the stable assemblage is An + Di. For a melt of initial composition x (80 wt%
An), crystallization begins with the precipitation of anorthite at temperature T1. The mass ratio of
liquid (l) to anorthite crystal (x’l) at 1400◦C is given by the ratio of the length segments ax to l2x
(l/x’l = ax/l2x)
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is in good agreement with the phase diagram determined experimentally by Bowen
(1915).

The melting temperatures of both diopside and anorthite decrease as the melt
compositions change from the respective limiting compositions. The intersection of
the two melting or liquidus curves generates an invariant point, according to the
Phase Rule Eq. (10.3.2). This invariant point is known as the eutectic point (e),
and the corresponding temperature is often referred to as solidus temperature. (In
general, liquidus curve refers to a curve in a phase diagram that defines the lowest
temperature limit of the field of complete liquid, whereas the solidus curve to that
defining the highest temperature limit for the field of complete solid.) Note that the
restriction to constant pressure leads to a reduction of the degree of freedom by one
so that the Phase Rule becomes F = C – P + (2 – 1) = C – P + 1. Consequently, since
there are two components and three phases at equilibrium (diopside, anorthite and
melt) at the eutectic point, F = 0.

Figure 10.8 shows the melting behavior in a portion of the system MgO-SiO2.
At low pressures enstatite (En: MgSiO3), which undergoes a polymorphic transfor-
mation to protoenstatite (PEn) at high temperature, does not melt to a liquid of its
own composition, but yields at 1557◦C a slightly silica rich liquid according to the
reaction PEn = Fo + l(SiO2-rich). At 1 bar pressure, the composition of the liquid is
given by the point P, which is known as a peritectic point. The low pressure melting

Mg2SiO4 MgSiO3

MgO SiO2

wt % SiO2

Fo + L Cr + L

Fo + PEn PEn + Cr

Liquid 

2 liquids

T °C

PEn + l

Fig. 10.8 Phase relations in a portion of the system MgO-SiO2 (Bowen and Anderson, 1914).
P: Peritectic point; E: Eutectic point; Fo: Forsterite (Mg2SiO4); PEn: Proto enstatite (MgSiO3);
L: Liquid; Cr: Cristoballite (SiO2); l: Liquid
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behavior exhibited by PEn is known as incongruent melting. (At P > 3 kb, PEn
melts to a liquid of its own composition so that the vertical line at MgSiO3 up to the
congruent melting temperature of PEn acts as a thermal divide in the phase diagram
with an eutectic point on each side).

10.6.2 Systems Involving Solid Solution

If the solid phase in the reaction (10.6.b) represents a solid solution, then K =(
al

A/as
A

)
eq, and consequently we have from Eq. (10.4.10b), assuming again that�Ho

m

is insensitive to temperature,

1

Tm
= 1

To(A)
− R

�Ho
m(A)

(
ln

al
A

as
A

)
eq

(10.6.2)

where the subscript (A) indicates the properties of melting of pure A to a liquid of
the same composition A. An analogous relation, namely

1

Tm
= 1

To(B)
− R

�Ho
m(B)

(
ln

al
B

as
B

)
eq

(10.6.3)

holds for the second component, B, in a binary system. After substituting appro-
priate expressions for the activities in terms of compositions, and considering the
fact that in a binary solution there is only one independent compositional variable
in each phase, the last two equations can be solved simultaneously to determine the
compositions of the solid and melt phases at a specified value of Tm, if the To and
� Ho

m values are known.
As an example, let us consider the melting of a binary solid solution

(A,B)νF. Substituting the activity expressions according to the ionic solution model
Eq. (9.1.1) in the last two equations along with the stoichiometric relation XA =
1 – XB in a given phase, and re-arranging the terms, we obtain

ln

(
Xl

A

Xs
A

)
+ ln

(
�l

A

�s
A

)
= −�Ho

m(A)

νR

(
1

Tm
− 1

To(A)

)
(10.6.4)

and

ln

(
1 − Xl

A

1 − Xs
A

)
+ ln

(
�l

B

�s
B

)
= −�Ho

m(B)

νR

(
1

Tm
− 1

To(B)

)
(10.6.5)

In each phase, both �A and �B can be expressed in terms of one set of binary
interaction parameters and one compositional variable. For example, if the solid
phase behaves as a regular solution, then ln �s

A = (Ws/RT)(1 − Xs
A)2 and ln�s

B =
(Ws/RT)(Xs

A)2 Eq. (9.2.5), where Ws is the interaction parameter between A and B.
Thus, if the binary interaction parameters in the solid and liquid, and the melting
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properties of the pure end-members are known, then there are three unknowns in
the last two equations, viz. Xl

A, Xs
A and Tm. If any of these variables are specified,

the other two can be determined by the simultaneous solution of these equations.
An example of melting relation in a binary solid solution, that of plageoclase,
NaAlSi3O8 (albite: Ab) – CaAl2Si2O8 (anorthite: An), as determined experimentally
by Bowen (1913), is shown in Fig. 10.9.

For the special case of ideal mixing behavior of both melt and solid, we obtain
from Eq. (10.6.4)

Xl
A = Xs

Ae	1 (10.6.6)

and from Eq. (10.6.5)

(1 − Xl
A) = e	2 − Xs

Ae	2, (10.6.7)

where 	1 and 	2 are the quantities on the right hand side of Eqs. (10.6.4) and
(10.6.5), respectively. Combining the last two equations, we then have

Xs
A = e	2 − 1

e	2 − e	1
(10.6.8)

Substitution of the value of Hs
A obtained from this equation into Eq. (10.6.7) yields

the equilibrium composition of the coexisting liquid.

wt % An

T °C

Plagioclase 

Liquid

j

Fig. 10.9 Liquidus and solidus relations in the system Albite(Ab)-Anorthite(An) at 1 bar, after
Bowen (1913). From Winter (2001)
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10.7 Azeotropic Systems

In some systems, the coexistence curves (the solidus and liquidus or boiling and con-
densation curves) show coincident extrema. Such systems are known as azeotropic
systems. Two of the geologically important solid solutions that show coinci-
dent minima of solidus and liquidus (negative azeotropy) are the alkali feldspar
(NaAlSi3O8 – KAlSi3O8) and melilte (Ca2Al2SiO7 – Ca2MgSi2O7). The phase dia-
gram for the alkali feldspar binary is illustrated in Fig. 10.10. Azeotropic systems
may also have coincident maximum (positive azeotropy) of the coexistence curves.
Several liquid solutions (e.g. H2O-HNO3) show positive azeotropy. This type of
behavior is also known to exist between garnet and staurolite solid solutions that
fractionate Fe and Mg (Ganguly and Saxena, 1987).

Since the two phases have the same composition at the azeotrope, Eqs. (10.6.4)
and (10.6.5) yield two explicit relations between the activity coefficients of the com-
ponents in solid and liquid when Tm = Taz, if the heat of melting and end-member
melting temperatures are known. Thus, if the mixing properties of both solid and
liquid phases can be represented by regular solution models (Eq. (9.2.5)), then the
use of azeotropic condition leads to the explicit solution of the mixing properties of
both phases.

60

80

1000

T °C
Liquid

KAlSi3O8 NaAlSi3O8 wt %

Leucite

One Feldspar

Two

Feldspars

20 40 60 80

a

c b

d
 e

 g h

Fig. 10.10 Azeotropic behavior of the alkali feldspar system, KAlSi3O8 (orthoclase: Or) –
NaAlSi3O8 (albite: Ab) according to Bowen and Tutle (1950). (Note that the slight difference
between the minima of the solidus and liquidus is due to drafting error of the solidus curve, since
these two minima must coincide). The horizontal tie lines represent the equilibrium compositions
of the coexisting phases. With permission from American Journal of Science
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The negative azeotropic behavior in the alkali feldspar and melilite binary
systems is due to the existence of large solvus in both systems. The latter implies
strong positive deviation from ideality of mixing in the solid solution that tends
to make the solid solution less stable relative to the liquid in intermediate com-
positional range. However, existence of a solvus does not always lead to negative
azeotropy.

Problem 10.6 Assuming the heat of melting to be insensitive to temperature, and
ideal mixing in the melt, derive an expression (similar to Eq. (10.6.1)) for the cal-
culation of liquidus temperature between P and E as function of Xl

SiO2
, in Fig. 10.8.

The melt composition at P and the enthalpy of melting of the end member phases
are known. No other data are required for this formulation.
(Hint: Begin with Eq. (10.4.10b))

Problem 10.7 Assuming ideal mixing properties of liquid and solid, calculate
the T vs. composition curves defining the equilibrium compositions of coexisting
solid and melt in the system Mg2SiO4(forsterite) – Fe2SiO4(fayalite) at 1 bar pres-
sure, with the composition given in wt%, using the following data. To(Fo) = 2163 K,
To(Fa) =1490 K, �Ho

m(Fo) = 114 kJ/mol and �Ho
m(Fo) = 92.173 kJ/mol (Robie et al.,

1978; Navrotsky et al., 1989). Label the solidus and liquidus curves. Compare the
symmetry of the melting loop bounded by the liquidus and solidus in your calculated
diagram with that in Fig. 10.9, and explain the difference.

Solid

LiquidG

X

S1 l1 S2 l2

Fig. 10.11 Qualitative G vs. X relation at a constant P-T condition somewhat above the minimum
temperature of an azeotropic system, such as that of the line d-e in Fig. 10.10. The stable solid-
liquid compositional pairs are defined by the points of common tangency
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Problem 10.8 At a constant P-T condition, the qualitative property of the Gibbs
energy vs. composition relation of phases that show negative azeotropic relation
(Fig. 10.10) is illustrated in Fig. 10.11. Following the logic for the construction of
this diagram (see also Chap. 8.11.2) draw (a) schematic Gibbs energy vs. composi-
tion at the azeotropic (minimum) temperature, and (b) the counterpart of Fig. 10.11
for a system showing positive azeotropic behavior.

10.8 Reading Solid-Liquid Phase Diagrams

Phase diagrams involving melting of solids play critical role in the development
of concepts of magmatic processes in nature. The purpose of this section is not an
in-depth and extensive discussion of how to understand this type of phase diagrams,
but to provide an exposure to some of the elementary but fundamental concepts
that govern the interpretation of phase diagrams. As would be appreciated from the
following discussions, interpretation of phase diagrams is governed by two funda-
mental requirements, namely, (a) adherence to the Phase Rule and (b) preservation
of bulk composition in a closed system,

10.8.1 Eutectic and Peritectic Systems

The crystallization of a liquid in a binary eutectic system can be followed by con-
sidering a composition and temperature defined by the point A in Fig. 10.7. As the
liquid cools to slightly below the liquidus temperature (point l1), anorthite begins
to precipitate, and the liquid composition evolves along the liquidus line towards
e. Note that, in principle, there can be no equilibrium crystallization from a liquid
that has cooled exactly to the liquidus temperature at constant composition. How-
ever, since a point like l1 represents the theoretical limit of the existence of only
liquid that has cooled at constant composition, we would say, following common
practice, that crystallization begins at l1. At any temperature, the mass (m) ratio
of liquid (l) to anorthite crystals (x’l) is given by the requirement of conservation
of total mass that leads to the so called lever rule. As an example, at 1400◦C,
the lever rule yields m(l)/m(x’l) = ax/l2x, where ax and l2x are the lengths of the
horizontal segments on two sides of x that defines the bulk composition. When the
liquid composition and temperature descends to the eutectic point, diopside begins
to crystallize from the liquid, and as a consequence the temperature remains fixed
(because F = 0 at constant pressure), if equilibrium is maintained, even when heat
is withdrawn from the system. After the liquid completely crystallizes to an assem-
blage of Di + An, the system gains a degree of freedom (F = 1 since at this stage C
= P = 2), enabling further cooling with the withdrawal of heat. The crystallization
behavior of a liquid on the other side of the eutectic point follows the same general
principle, beginning with the crystallization of diopside.

Upon heating, a two phase mixture of Di and An of any proportion begins to
melt at the eutectic temperature, Te, which is indicated by a solid horizontal line in



10.8 Reading Solid-Liquid Phase Diagrams 313

Fig. 10.7. The composition of this initial melt is always given by that of the eutectic
point. At the eutectic temperature, one of the solid phases disappears, depending
on the proportion of Di to An relative to that defined by the eutectic point, e. The
melt composition then evolves along an appropriate liquidus curve upon further
heating, as a result of progressive melting of the residual solid phase, until the point
where the liquid composition becomes the same as that of the initial solid bulk
composition. For example, if the solid bulk composition is given by that of x, then
diopside disappears at the eutectic point and the liquid composition progressively
evolves from e to l1 upon progressive heating.

The general principle governing the crystallization behavior of a liquid with
composition to the right of the peritectic point P in Fig. 10.8 is the same as that
discussed above with reference to Fig. 10.7. For liquid composition to the left of the
point P, crystallization begins at the liquidus temperature with the precipitation of
Fo, followed by progressive crystallization of Fo and change of liquid composition
along the liquidus curve until it reaches the peritectic point. At this condition, the
liquid reacts with Fo to form PEn, leading to an isobaric invariant condition. Except
for the special case that the initial liquid composition corresponds exactly to that
of En, either liquid or Fo must be completely consumed (so that the system gains a
degree of freedom) before the liquid can be cooled any further. Which of these two
phases would be consumed depends on the initial liquid composition. If it is to the
left of MgSiO3 composition, such as given by X in Fig. 10.8, then liquid must be
completely consumed leading to a final equilibrium assemblage of Fo plus PEn, the
latter transforming to En upon subsolidus cooling. This assemblage with appropriate
proportion of phases, as dictated by Lever Rule, conserves the bulk composition of
the system. On the other hand, if the initial liquid composition lies between En and
P, such as corresponding to the point Y in Fig. 10.8, Fo is completely consumed by
the peritectic reaction, and the liquid finally descends to the eutectic point, E, yield-
ing a final equilibrium product of PEn + Cr (cristoballite) (with these two phases
transforming to En and quartz, respectively, at low temperature, if equilibrium pre-
vails). It is left to the reader to figure out the crystallization behavior of a liquid of
composition MgSiO3.

Upon heating, an assemblage of Fo plus En or PEn always melts at the peritectic
temperature (1557◦C at 1 bar), whereas that of En or PEn plus SiO2 at the eutectic
temperature (1542◦C at 1 bar), with the initial liquid composition given by the points
P and E, respectively. For the Fo + PEn assemblage, PEn must melt completely
before the temperature can be raised beyond the peritectic temperature. After com-
plete melting of PEn, the T-X (temperature-composition) condition of liquid evolves
along the liquidus line to the left with progressive melting of Fo until it reaches the
bulk composition defined by the initial mixture of the solid phases. For example,
if the initial bulk composition of the Fo plus PEn or En mixture is defined by the
vertical dashed line connecting to the point X, then complete melting of the mixture
takes place when the liquid composition reaches the point a on the liquidus line,
since otherwise the bulk composition is not conserved.

If the intial mixture of PEn plus Cr has a bulk composition given by the ver-
tical line connecting to the point Y, then Cr must be completely consumed at E,
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followed by the evolution of T-X condition of the liquid towards P. At P, En melts
incongruently to Fo + l until it is consumed. The T-X condition of the liquid then
evolves along the liquidus line towards left with progressive melting of Fo, until the
latter melts completely at the point b.

Problem 10.9 Prove “Lever Rule”.
Hint: Begin with the mass conservation relation: mi

l+mi
s= mi

bulk where m stands
for mass. Then show that

Xl
mXl

i + Xs
mXs

i = Xbulk
i , (10.8.1)

where Xl
m and Xs

m represent the mass fractions of liquid and solid, respectively,
thereby leading to the Lever rule. Note that the last equation can be generalized to
mass conservation relation in an n-phase system as

n∑
j=1

Xj
mXj

i = Xbulk
i (10.8.2)

10.8.2 Crystallization and Melting of a Binary Solid Solution

As an illustration of the crystallization and melting behavior in a binary system
involving a solid solution, let us consider the melting of plageoclase in the system
NaAlS3O8 (An: Albite) – CaAl2Si2O8 (An: Anortite). The experimentally deter-
mined melting diagram at 1 bar pressure is illustrated in Fig. 10.9. The crystalliza-
tion behavior of a liquid may be illustrated by considering the cooling of a liquid
with temperature and composition given by the point a. Crystallization begins when
the liquid cools to the point b (strictly slightly below this point; see above), and
precipitates a solid of composition c. Upon further cooling the liquid and solid
compositions evolve along the liquidus and solidus curves, respectively. At any
temperature, the equilibrium compositions of the coexisting liquid and solid are
given by the horizontal tie lines such as d-f. Under equilibrium, complete crystal-
lization takes place when the system cools to the temperature corresponding to the
point g. At this temperature the solid has the same composition as the initial liquid
and, thus, there can be no liquid present in the system since the bulk composition
must always lie between the solid and liquid compositions. As the system cools at a
fixed bulk composition, both the liquid and solid compositions become albite rich,
but the relative abundance of the two phases keeps on changing such that the bulk
composition of the system is preserved Eq. (10.8.1). At any temperature, the mass
ratio of the solid to liquid is given by the lever rule. For example, when the liquid
cools to the point d, m(l)/m(plag) = ef/ed.

For equilibrium crystallization, a plageoclase solid solution that crystallizes at
any point on the solidus, such as the point f, must react completely with the liquid
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to yield the equilibrium composition at a lower temperature. However, initially this
adjustment takes place at the solid-liquid interface, and the equilibrium composition
of the crystal is established in an outer segment. If the diffusive exchange of com-
ponents between the crystal and liquid is too slow for the attainment of complete
equilibrium during cooling, as in the case of plageoclase in a geological environ-
ment, then the interior composition of a crystal fails to adjust to the equilibrium
composition at a given temperature, leading to the development of compositional
zoning.

Consider now the removal of the crystals that formed at the point f from the
system. In geological processes such removal of early formed crystals is a common
phenomenon and is caused by the settling or flotation of crystals during growth or
squeezing of liquid out of the crystal-liquid mush. Crystallization of a liquid accom-
panied by removal of early formed crystals is known as fractional crystallization.
(The process of development of compositional zoning discussed above also repre-
sents fractional crystallization since the interior of a crystal is effectively removed
from the interacting system.) As the crystals are removed, the effective bulk compo-
sition of the crystallizing system now shifts to that of the point d. Consequently, if
equilibrium is maintained, the final crystallization takes place at a temperature and
composition corresponding to the point j. Thus, fractional crystallization extends
the “descent” of liquid along the liquidus.

Unlike a eutectic system, the equilibrium melting behavior of a solid solution is
exactly the reverse of its crystallization behavior. Thus, a plageoclase of composition
60 wt% An, corresponding to the bold vertical line in Fig. 10.9, begins to melt as its
temperature increases to the point h (strictly slightly above this point). Progressive
melting of the solid takes place upon further heating, with the solid and liquid com-
positions changing along the solidus and liquidus curves, respectively. Complete
melting takes place when the system is heated to the temperature corresponding to c.

For the alkali feldspar system showing azeotropic behavior and a solvus
(Fig. 10.10), complete crystallization of a liquid follows the same principle as the
crystallization of plageoclase solid solution discussed above. For example, com-
plete crystallization of the liquid of composition a takes place as the temperature
decreases to c, with the compositions of solid and liquid evolving along the solidus
and liquidus, respectively, during crystallization. Upon complete crystallization and
further cooling, the solid solution of composition d begins to exsolve when the
temperature decreases to the solvus. The limiting composition of the first albite
rich exsolved phase is given by the point h. Continued cooling under equilibrium
condition leads to the evolution of the compositions of the two alkali feldspars, one
orthoclse-rich, and the other albite-rich, along the two limbs of the solvus curve.

10.8.3 Intersection of Melting Loop and a Solvus

In many systems, the melting loop and solvus interpenetrate to produce complex
binary phase relations. Two such cases are illustrated in Fig. 10.12. The phase
diagram for the system MnO-FeO at 1 bar is similar to the right panel of Fig. 10.12a,
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Fig 10.12 Isobaric phase diagrams generated by the intersection of melting loop and solvus in a
binary system. A right hand panels show the qualitative features of phase diagram that is produced
by the collapse of the melting loop on to the solvus relation shown on the left. The non-collapsed
state may not always exist. SS: solid solution; P: peritectic point; e: eutectic point

whereas the binary alkali feldspar system, NaAlSi3O8 – KAlSi3O8, shows a phase
relation similar to the right panel of Fig. 10.12b, at P(H2O) ≥ 3 kb. The crystal-
lization behavior of liquid in these two types systems are discussed in this section,
from which the reader should be able to construct the melting behavior following
the principles discussed above. In the alkali feldspar system, the interpenetration of
the solvus and melting loop is due to the lowering of melting temperature as a result
of progressive dissolution of O-H with increasing P(H2O) beyond 3 kb (Winkler,
1976). and increase of solvus temperature with increasing pressure (the lowering of
melting temperature being the dominant effect in the convergence of melting loop
and solvus).

In the right panel of Fig. 10.12a, crystallization of a liquid follows the same
principles discussed for crystallization of a binary solid solution in the last section
(Fig. 10.9) until the liquid composition reaches the point P on the liquidus line.
At this point the liquid and the solid solution-1 of composition S′ react to produce
another immiscible solid solution of composition S′′, thus leading to an isobaric
invariant condition. As in Fig. 10.8, the point P represents a peritectic point. Further
equilibrium cooling of the system is only possible after the complete consumption
of either S′ or l, depending on the initial composition (lo) of the liquid, whether
it is to the right or left of the point S′′. If the liquid gets completely consumed
(lo to the left of S′′), then further cooling leads to compositional evolution of the
two unmixed solid solutions along the two solvus limbs as long as kinetics of solid
state readjustment of composition is favorable. On the other hand, if the solid S′ gets
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consumed (lo between S′′ and P), the solid and liquid compositions evolve, upon fur-
ther equilibrium cooling, along the solidus and liquidus curves, respectively, below
the peritectic temperarure, limited by the bulk compositional constraint.

In Fig. 10.12b, interpenetration of the melting loop and the solvus leads to the
development of a eutectic point, e. Liquid of any composition descends to e upon
equilibrium cooling, with the composition of coexisting solid evolving along one
of the two solidus curves, depending on the initial liquid composition (lo), up to the
eutectic temperature, Te. At this temperature, two immiscible solids of compositions
defined by the terminals of the horizontal line at Te crystallize simultaneously from
the liquid until the liquid is completely consumed. Further cooling of the system
leads to the evolution of the compositions of two solids along the two limbs of the
solvus as long as kinetics remains favorable.

Problem 10.10 In Fig. 10.7, describe the melting behavior of a mixture of Fo +
En showing the temperatures for the beginning and end of melting (or solidus and
liquidus temperature, respectively), initial melt composition, invariant situation, and
the solid phase/phases that melt as the temperature of the system is progressively
raised.

Problem 10.11 Schematically illustrate the isobaric phase diagram when the
solvus intersects the melting loop of an azeotropic system on the left side of the
temperature minimum.

10.8.4 Ternary Systems

In an isobaric ternary system, an invariant point (eutectic or peritectic) in a bound-
ing binary join transforms to a univariant line because of the gain of a degree of
freedom resulting from the addition of a component. This univariant line is called a
cotectic or a reaction line depending on whether it is connected to a eutectic point
or a peritectic point, respectively, in a terminal binary. A ternary phase diagram
involving both eutectic and peritectic relations in the bounding binaries, but not
involving any solid solution, is illustrated in Fig. 10.13. The cotectic and reaction
lines represent projections on to a basal ternary plane of lines marked by the inter-
sections of adjacent liquidus surfaces, and slope toward the invariant points within
the ternary system. The point E denotes a ternary eutectic point that is defined by
the intersection of three cotectic lines. As the liquid cools along a cotectic line,
two phases whose fields are separated by this line crystallize simultaneously from
the liquid. The line P-P′ is a reaction line (i.e. a translation of binary peritectic or
reaction point into the ternary system) along which the phase B reacts with the liquid
to form the incongruently melting phase B′. The point p′ is a ternary peritectic point
and is at a higher temperature than the ternary eutectic point E.

The principles governing crystallization of melt in the ternary system may be
discussed with reference to the crystallization of a liquid of composition X in
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Fig. 10.13 A schematic isobaric ternary melting diagram with eutectic (e) and peritectic (p) rela-
tions in the A-B binary and only eutectic relations in the B-C and A-C binaries. The phase relations
in the A-B-C triangle represent projections from the liquidus relations in the ternary space. The
binary phase relations in only the A-B join are shown schematically, with the arrows indicating
projections of the eutectic and peritectic points on to the base. E denotes the projection of a ternary
eutectic point that is formed by the intersection of three cotectic lines. p-p′ represents the projection
of a univariant reaction line: B + l → B′. The stability fields of the phases in the ternary space are
labeled. Crystallization of a liquid of initial composition (x) is discussed in the text

Fig. 10.13. The liquid begins to crystallize the phase B as it cools to the liquidus
surface. With progressive cooling and continued crystallization of B from the liquid,
the composition of the liquid changes away from the initial composition X along
the straight line joining the points B and X. After the liquid cools to the temperature
of the reaction line P-P′, it reacts with B that has crystallized earlier to form the
phase B′. The composition of the liquid now evolves along the reaction line until it
reaches the point P′. At this point, the phase C begins to crystallize, thus leading to
an isobaric invariant condition. Consequently, either B or liquid must be completely
consumed by reaction between one another before the system can be cooled any
further under equilibrium condition. Now, in order to preserve the bulk composition
in a closed system, the initial composition must always be contained within the
polygon formed by joining the compositions of the phases in the system. Conse-
quently, for the bulk composition marked by the point X, liquid must be completely
consumed at P′, leaving a final equilibrium assemblage of B + B′ + C. If the initial
liquid composition falls between P-P′ and the dotted line B′ - C, then at P′, the
phase B is completely consumed. In that case, the liquid composition evolves from
P′ to E along the cotectic line P′-E with simultaneous crystallization of B′ and C.
Finally, at the ternary eutectic point the phase A joins the crystallization process
that continues to take place at a fixed temperature until the remaining liquid has
completely crystallized. Obviously, the assemblage A + B + C preserves the initial
composition of the system if it is located between P-P′ and B′-C.

Upon heating, beginning of melting of an assemblage of solids depends on its
bulk composition. If it is given by a point below the dotted line B′-C, then melting
begins at the ternary peritectic temperature, with the initial melt composition given
by the point p′, whereas if the bulk composition lies above B′-C, then the melting
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begins at the ternary eutectic temperature, with the initial melt composition given by
the point E. Let us now consider the melting behavior of an assemblage B + B′ + C,
with the bulk composition being given by the point X. In this case, all C is consumed
at the ternary peritectic temperature. The T-X condition of the liquid then evolves
along the reaction line toward p with progressive incongruent melting of B′ to B +
l, until it reaches the tip of the arrow. At this point all B′ is completely consumed,
and the T-X condition of the liquid evolves along the liquidus surface towards the
point X, with the compositional variation being restricted to the dotted line through
this point. Complete melting of the phase B takes place at X.

From the above discussion of melting behavior in a ternary system, we note a
geologically important point that regardless of the relative proportion of the initial
solid phases (e.g. proportion of minerals in the Earth’s upper mantle that is the site of
primary magmas), there are only a restricted number of initial magma compositions
that are defined by the invariant points within the system. Since magma escapes
from the source region after only a small amount of partial melting, with the melt
forming no more than a few percent of the system, the primary magmas derived
from the Earth’s mantle are of very limited compositional types.

Problem 10.12 Describe the melting behavior (initial melting, evolution of melt
composition, change of the solid assemblage, and final melt composition) of two
assemblages of A + B′ + C, with the bulk compositions in the field of (a) B′ and
(b) C in Fig. 10.13.

10.9 Natural Systems: Granites and Lunar Basalts

10.9.1 Granites

As illustrated in Fig. 10.14, the azeotropic behavior of the alkali feldspar system
is responsible for the development of a minimum on the melting temperature sur-
face in the system NaAlSi3O8-KAlSi3O8-SiO2 system (Bowen and Tuttle, 1964).
The minimum shifts somewhat with changing P(H2O) and addition of anorthite
(CaAl2Si2O8) component to the system, and transforms to a ternary eutectic when
P(H2O) ≥ 3 kb, corresponding to the appearance of an eutectic point in the alkali
feldspar binary, similar to Fig. 10.12b. With increasing P(H2O), the alkali feldspar
melting loop drops to lower temperature because of the dissolution of H2O in
the liquid and consequent decrease in the Gibbs energy of the liquid phase, ulti-
mately leading to the intersection of the solvus and the melting loop (the solvus
also rises in temperature slightly with increasing P(H2O)). The locus of the min-
imum, including the eutectic, as function of pressure is commonly referred to as
the granite melting minimum. Thus, fractional crystallization of a “granite sys-
tem”, or partial melting of a pelitic rock, which has “granitic components”, in the
presence of water, is expected to produce liquids of composition clustering within
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Fig. 10.14 (a) Schematic illustration of the melting relation in the ternary model “granite system”
Ab-Or-Qz at P(H2O) < 3 kb. (b) Projection of the liquidus relation at P(H2O) = 2 kb on to the
basal plane. From Winkler (1976), drawn on the basis of data from Bowen and Tuttle (1964). (c)
Compositions of natural granites normalized to the system Ab-Or-Qz along with the location of
minimum temperatures in the ternary system at different P(H2O). Crosses: azeotropic minima at
P(H2O) of 0.5, 2, 3 and 4 kb; circle: ternary eutectic point at P(H2O) = 5 kb. From Anderson (2005).
With permission from Cambridge University Press

a limited domain corresponding to the collection of minima in the natural sys-
tems. Indeed, it is found that the compositions of large number of granites and
rhyolites (more than two thousand), normalized to the system Ab-Or-Qtz, clus-
ter around the composition of thermal minima in the system Ab-Or-Q. A com-
pilation of granite composition, normalized to the Ab-Or-Qz system, is shown in
Fig. 10.14c along with the location of the azeotropic and eutectic minima as a
function of pressure (Anderson, 1996). Such coincidence of compositions could
not be fortuitous, and can not be explained by any non-magmatic hypothesis of
the origin of granite. These observations completely resolved the long standing
controversy among petrologists about the origin of granite in favor of magmatic
origin.
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10.9.2 Lunar Basalts

Samples returned by several lunar missions reveal plageoclase-rich basalts to be
important components of lunar highlands. These basalts are commonly referred to as
Fra Mauro basalt after the landing site, known as the Fra Mauro Hills, of the Apollo
14 mission that returned the most abundant samples. The natural question that arises
in the study of these samples is whether or not the compositionally different basalt
samples are genetically related and represent samples at different stages of crystal-
lization in a low pressure environment. The compositions of the Fra Mauro basalts
can be described fairly well in terms of the pseudo-ternary system (Mg,Fe)2SiO4

(Ol) – CaAl2Si2O8 (An) – SiO2 (Si), as illustrated in Fig. 10.15. The line separating
the olivine and pyroxene fields is a reaction line along which olivine and liquid react
to form pyroxene. Also shown in this figure are the projections of the experimen-
tally determined cotectic and reaction lines in the system at 1 bar pressure, dry and
low f(O2) condition. There is no qualitative change of the phase diagram for (dry)
pressures up to a 5 kb. Below this pressure the only changes involve small shifts of
the liquidus surface and the univariant lines.

The phase diagram is qualitatively the same as Fig. 10.12, except for the presence
of two binary eutectics in the Ol-An join and the resultant cotectic lines that intersect
at an invariant point in the ternary space. It is noteworthy that the projections of the
Fra Mauro basalt compositions cluster near the trough or the univariant lines in the
ternary system that has the minimum temperature at the eutectic point labeled as C.
The observed distribution of the compositions of the Fra Mauro basalt in relation to
the low-pressure liquidus relations in the Ol-An-Si ternary system is only possible
if the basalt samples represent crystallization products from liquid that had repeat-
edly erupted from a magma chamber undergoing crystallization in a low pressure
environment below ∼ 5 kb that corresponds to the outer 100 km of Moon.

Fig. 10.15 Low-pressure
liquidus relations in the
system olivine-anorthite-
silica along with the lunar
(Fra Mauro) basaltic
compositions normalized to
the system composition.
From Walker et al. (1981) Ol

Opx

Ol

Spinel

Opx

c

Si

An
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10.10 Pressure Dependence of Eutectic Temperature
and Composition

The pressure dependence of eutectic temperature is governed by the general
Clayperon-Claussius relation, as given by Eq. (10.1.5), and repeated below in the
appropriate form for the eutectic

(
�T

�P

)
e

= �V̄m

�S̄m
(10.10.1)

where�V̄m and�S̄m denote volume and entropy change, respectively, upon melting.

�S̄m = X1�mSo
1 + X2�mSo

2 + �Smix

and

�V̄m = X1�mVo
1 + X2�mVo

2 + �Vmix

For the special case of an ideally mixing binary liquid, �Vmix = 0, and �Smix =
-R(X1lnX1 + X2lnX2) > 0. Thus, while �V̄m is the weighted average of the volume
changes of melting of the two end members, �S̄m is greater than the corresponding
weighted average property for an ideally mixing eutectic liquid. The �Smix may
cause smaller pressure dependence of the eutectic temperature compared to those
of the end members. This is illustrated by the melting temperature behavior of the
binary system CsCl-NaCl as a function of pressure up to ∼ 55 kbar in Fig. 10.16.

A particularly interesting case arises when the eutectic solution exhibits a strong
negative deviation from ideality (�Vmix < 0), thereby leading to �V̄m ∼ 0, and
consequently very little pressure effect on the eutectic temperature. This behavior is
exhibited by the Fe-FeS eutectic temperature up to ∼ 60 kb, as determined by Brett
and Bell (1969), Ryzhenko and Kennedy (1973) and Usselman (1975). The data
from the first two sources are illustrated in Fig. 10.17. This behavior of the Fe-FeS
eutectic system is very likely responsible for the core formation in the early history
of the Earth, enabling formation of heavy iron rich melt up to quite high pressure
without completely melting the silicates as the Earth heated up after accretion, and
segregation of the melt into a core. (The release of the gravitational potential energy
caused further heating of the Earth, thereby contributing to the melting of the sili-
cates to from an early magma ocean.)

The expression for the pressure dependence of the eutectic composition was
derived by van Laar, and given in Prigogine and Defay (1954) and Kondepudi and
Prigogine (1998). Prigogine and Defay showed that the sign of (�X2/�P)e is given
by that of the term
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Fig. 10.16 Pressure dependence of melting temperature in the system CsCl-NaCl. From Kim et al.
(1972). See the latter for references of Vaidya and Kennedy (1971) and Akella et al. (1969)

�Vo
m(1)

�So
m(2)

− �Vo
m(2)

�So
m(2)

(10.10.2)

in which the two ratios represent pressure dependence of melting temperatures of
pure phases 1 and 2, respectively. It is easy to see from this relation that the eutectic
composition becomes progressively enriched in the component 2 (�X2/�P > 0) if its
melting temperature has lower pressure dependence than that of component 1, and
vice versa.

In Fig. 10.16, we find that the eutectic temperature in the system CsCl-NaCl has
an initial dT/dP closer to that of the melting curve of pure CsCl, but with increasing
pressure, the slope becomes similar to that of the melting curve of pure NaCl. This
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T (°C)

P (kb)wt % Fe(a) (b)

Fig. 10.17 (a) Melting relation in the Fe-FeS system (a) at 1 bar (dashed lines) and 30 kb
(solid lines); symbols: experimental data at 30 kb; open rectangles: liquid; hatched rectangles:
solid + liquid; filled rectangles: solid. From Brett and Bell, (1969). With permission from Elsevier.
(b) Pressure dependence of the eutectic melting temperature of the Fe-FeS system; symbols: exper-
imental data. From Ryzhenko and Kennedy (1973)

is because of the fact that at low pressures, Tm of CsCl is lower than that of NaCl,
making the eutectic melt relatively enriched in CsCl component. However, because
of lower pressure dependence of Tm of NaCl, the eutectic melt becomes progres-
sively enriched in NaCl, according to Eq. (10.10.2), and thus the pressure depen-
dence of the eutectic temperature becomes similar to that of the melting temperature
of NaCl.

10.11 Reactions in Impure Systems

10.11.1 Reactions Involving Solid Solutions

A problem of common interest in geological studies is the effect of changing solid
solution compositions on the equilibrium P-T condition of a reaction. As an exam-
ple, consider the reaction

3 CaAl2Si2O8(An) = Ca3AlSi3O12(Grs) + Al2SiO5 + SiO2 (10.11.a)

This is a univariant reaction in a system that involves only pure end-members (P = 4,
C = 3, thus, F = 1), and has been calibrated experimentally by several workers
because of its importance in determining P-T condition of a rock; the most recent
and thorough experimental calibration is by Koziol and Newton (1988), which is
illustrated in Fig. 10.18. At the P-T conditions of experimental studies, the stable
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Fig. 10.18 Experimentally determined equilibrium boundary of the reaction 3 Anorthite (An)
= Grossular (Gr) + 2 Kyanite (Ky) + Quartz (Qtz). The starting mixture consisted of all four
crystalline phases. Filled symbols: Growth of Gross + Ky + Qtz; Open symbols: The reverse; Half-
filled symbols: No detectable reaction. The equilibrium condition at 650◦C was calculated from
two other reactions, as indicated in the figure. From Koziol and Newton (1988). With permission
from Mineralogical Society of America

aluminosilicate polymorph is kyanite. However, in natural assemblages, it is often
sillimanite because of the displacement of the equilibrium condition into the silli-
manite field due to compositional effects on the equilibrium conditions.

In geological assemblages, An (anorthite) and Grs (grossular) are dissolved com-
ponents in plagioclase and garnet solid solutions, respectively. The consequent
changes in the chemical potentials of the An and Grs components, as dictated by
Eq. (8.4.7), result in a change of the equilibrium P-T conditions of the above reac-
tion. In general, a major geological interest in the calculation of the displacement of
P-T condition of a reaction as function of the solid solution compositions lies in the
fact that it enables one to reconstruct the condition at which an observed assemblage
of phases related by a reaction had formed.

We now develop a general formulation to calculate the displacement of a uni-
variant reaction in the P-T space due to compositional changes of the phases. One
may calculate either the change of temperature at a fixed pressure or the reverse.
It should be easy to see that Eq. (10.6.1) serves the purpose of calculation of iso-
baric temperature change. Here the activity ratio represents Qeq or K so that this
expression transforms to

1

T
= 1

To
− R

�rHo
(ln K) (10.11.1)
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where To is the equilibrium temperature of the pure end-member reaction at a
fixed pressure, P, and �rHo is the enthalpy change of that reaction at P, To. It is
again assumed that �rHo does not change significantly between To and T. (If this
assumption is not valid, then we need to integrate the “root equation”, Eq. (10.4.10b)
expressing �rHo as function of temperature.)

It is, however, often more convenient to calculate the change of pressure at a fixed
temperature since it is related to �rV for which more complete data are available,
at least for natural systems. To derive the appropriate expression, we begin by re-
stating the expression for the Gibbs energy change of a reaction Eq. (10.4.5), viz.

�rG(P, T, X) = �rG
∗(T) + RT ln Q(P, T, X) (10.11.2)

Here, as usual, �rG*(T) is the standard state free energy change of the reaction at T,
and

RT ln Q(P, T, X) = RT ln

[∏
i

(Xi)
νi

]

︸ ︷︷ ︸
Qx

+RT ln

[∏
i

(�i)
νi

]

︸ ︷︷ ︸
Q�

(10.11.3)

where Xi and �i are, respectively, the mole fraction and activity coefficient of a
component i in a specific phase (see Sect. 10.4). Denoting the terms within the two
square brackets by Qx and Q�(P,T,X), respectively, we write

RT ln Q(P, T, X) = RT ln Qx + RT ln Q�(P, T, X) (10.11.3′)

The equilibrium pressure, Pe, for the impure phase reaction at T is obtained by trans-
forming the right hand term of Eq. (10.11.2) to a pressure dependent expression, and
imposing the condition of equilibrium, �rG(Pe,T,X) = 0. The logical set-up of the
problem is illustrated in Fig. 10.19.

Let us now choose pure component (P, T) standard states, as we have done earlier,
so that �rG*(T) = �rGo(P, T). Instead of calculating the value of �rGo(P, T) from
thermochemical tables, it is sometimes better to calculate it from well constrained
experimental data on the equilibrium condition of the reaction involving only pure
phases (e.g. Fig. 10.18). For the second approach, we write

∫ Δ+Δ=Δ≡Δ
P

P
'T

o
ro

o
r

o
rr

o

dP)V()'T,P(G)'T,P(G)'T(*G (10.11.4)

0

where Po is the equilibrium pressure of the pure end member reaction at T′, and
(�rVo)T

′ is the volume change of the reaction at T′ as a function of pressure. The
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Fig. 10.19 Schematic set of
the derivation of equation to
calculate the displacement of
equilibrium boundary of a
reaction due to compositional
effect. (a): Location of the
equilibrium boundary when
the reaction involves only
pure phases; (b)
Displacement of the
equilibrium boundary due to
compositional effect. �Go:
Gibbs energy change of the
reaction when all phases are
in their pure states
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first term on the right of the second equality is zero since it represents the Gibbs
energy change of the pure end-member reaction at an equilibrium P-T condition.
Thus, Eq. (10.11.2) reduces to

�rG(P, T′, X) =
P∫

Po

(�rV
o)T′dP + RT′ ln Q(P, T′, X) (10.11.5)

Now setting P = Pe, where Pe is the equilibrium pressure of the impure phase reac-
tion at T′(Fig. 10.19), we can write

�rG(Pe, T′, X) = 0 =
Pe∫

Po

(�rV
o)T′dP + RT′ ln K(Pe, T′) (10.11.6)

where we have now used K for Qe, following usual convention. We now decompose
K into collections of compositional (Kx) and activity coefficient (K�) terms in the
same form as in Eq. (10.11.3) so that K = KxK�. To reiterate, K is not a function
of composition at fixed P-T condition, but that does not imply that Kx and K� are
independent of compositions.

For an ideal solution with respect to the chosen standard state, � = 1 for all
components, and consequently the solution for Pe at T′ can be easily obtained from
the last equation with the value of Qe calculated simply from the equilibrium compo-
sitions of the phases according to Eq. (10.11.3). For reactions involving only solid
phases, �rVo varies quite weakly as a function of pressure since the volumes of
individual phases tend to have similar pressure dependence. Thus, for this type of
reactions, little error is usually introduced in the calculation of Pe if �rVo is assumed
to be constant.



328 10 Equilibria Involving Solutions and Gaseous Mixtures

For the general case of a reaction involving non-ideal solutions, we need to fur-
ther develop Eq. (10.11.6) by expressing RTlnQ as a function of pressure. Since by
our choice of standard state, �∗

i (T) = �o
i (P, T), we have from Eq. (8.4.11)

RT

(
� ln �i

�P

)
T,X

=
(
��i

�P

)
T,X

−
(
��o

i

�P

)
T,X

= Vi − Vo
i

(10.11.7)

so that

RT ln�i(P, T, X) = RT ln�i(1, T, X) +
P∫

1

Vi dP −
P∫

1

Vo
i dP (10.11.8)

where Vi and Vi
o are, respectively, the partial molar volume and molar volume

of the component i in a phase. (Throughout this and the following sections of the
chapter, the symbol Vi, has been used for partial molar volume of a component,
instead of the symbol vi used elsewhere in the book, so that it is not confused with
the stoichiometric symbol ν).

Using the last expression, the ratio of activity coefficients, K� can be expressed
as

RT ln K�(P, T, X) = RT ln K�(1, T, X) +
P∫

1

(�rV)T dP −
P∫

1

(�rV
o)T dP (10.11.9)

Substituting this relation in Eq. (10.11.6), we obtain the general equation for cal-
culating the equilibrium pressure, Pe, for impure phase reaction as

RT ln
[
KxK�(1, T, X)

] +
Pe∫

1

(�rV)T dP −
Po∫

1

(�rV
o)T dP = 0 (10.11.10)

where Po and Pe are, respectively, the equilibrium pressures at T for the pure phase
and impure phase reactions with a specified value of Kx. To follow the derivation of
the last equation, note that

Pe∫

Po

(�rV
o)dP −

Pe∫

1

(�rV
o)dP = −

Po∫

1

(�rV
o)dP

Again, to a very good approximation, we may assume both �V and �Vo to be
insensitive to pressure for solid-solid reactions, at least within the range of crustal
pressures. Furthermore, the deviations of �rV and �rVo from constant values with
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increasing pressure should be similar and, thus, substantially self-compensating
since the two terms have opposite signs. In addition, for geological problems we
typically have Po >> 1 and Pe >> 1 so that the last two integrals in Eq. (10.11.10)
may be simplified as Pe(�rV) and Pe�Vo, respectively. The P-T effects on �rV of
solid-solid reaction, however, need to be taken into account when the calculations
are extended to the conditions in the Earth’s mantle.

Problem 10.13 Derive Eq. (10.11.10) choosing pure component (1 bar, T) stan-
dard state.

10.11.2 Solved Problem

As an example for the calculation of the displacement of the equilibrium P-T con-
dition of reaction (10.11.a) due to compositional changes of the phases, let us
calculate the equilibrium P-T curve using the mineral compositions given for an
assemblage (sample No. 64/86) of garnet, plagioclase, sillimanite and quartz from
the Sikkim, Himalayas, by Ganguly et al. (2000). The garnet in the above sample
is compositionally zoned in that the grains have uniform core compositions, but
there is compositional zoning within ∼100�m of the grain boundary that is due to
the readjustment of garnet composition to the changing P-T conditions during the
exhumation of the rocks. (This is typical of garnet compositions from metamorphic
rocks that were exhumed from granulite facies conditions where the temperature
is high enough, > 650◦C, to lead to homogeneity of garnet compositions during
metamorphism.) It was argued by Ganguly et al. (2000) that at the peak metamor-
phic condition that we want to reconstruct, the observed plageoclase composition
was in equilibrium with the observed composition of the garnet core. (Dasgupta
et al., 2004, have presented a detailed discussion of how to choose equilibrium
compositions of compositionally zoned garnets and other minerals to retrieve peak
metamorphic conditions.) The average plageoclase and garnet-core compositions of
the sample, as obtained from several spot analyses by an electron microprobe, are as
follows.

Garnet : XFe = 0.64, XMg = 0.27 XMn = 0.02, XCa = 0.07

Plageoclase : XCa = 0.35, XNa = 0.63, XK = 0.02

We calculate the equilibrium P-T condition of reaction (10.11.a), which often
referred to by the acronym GASP (Garnet, Aluminosilcate, Plageoclase), using
the above mineral compositions across the kyanite-sillimanite transition boundary.
First, we treat the aluminosilcate to be kyanite, and then calculate the effect of
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Fig. 10.20 Calculation of displacement of the equilibrium boundary of the reaction 3 Anorthite
(An) = Grossular (Gr) + 2 Kyanite (Ky) + Quartz (Qtz) (acronym: GASP) due to compositional
effects. GASP(pure): Reaction involving only pure phases, as determined by Koziol and Newton
(1988), Fig. 10.18. GASP(Him): Displacement of the equilibrium according to the composition
of natural sample from the Himalayas, as discussed in the text. Short dashed line: ideal solution
approximation; bold solid line: non-ideal treatment. Light solid line: Kyanite/sillimanite boundary
(Holdaway, 1971)

kyanite-sillimanite transition when the P-T condition falls in the sillimanite field
(Fig. 10.20).

Since quartz and aluminosilcate (AS) are essentially pure, we have
a(Al2SiO5)AS = a(SiO2)Qz = 1, according to our choice of standard states (i.e. pure
components at P, T). Using ionic solution (Sect. 9.1.1) model for both garnet and
plagioclase, a(Grs)Grt = [(XCa�Ca)3]Grt and a(An)Plag = (XCa�Ca)Plag. Thus,

K = aGrt
Grs

(aPlag
An )3

= [(XCaγCa)3]Grt

[(XCaγCa)3]plag
(10.11.11)

If we assume ideal solution behavior for both garnet and plagioclase, then Q� =
1 and �rV = �rVo. Thus, assuming that �rV to be insensitive to pressure,
Eq. (10.11.10) reduces

Pe(T) = Po(T) − RT ln Qx

(�rVo)T

At 1 bar, 298 K, �rVo = – 66.2 cm3. From the given compositional data, Qx =
(0.07/0.35)3 = 0.01. Assuming �rVo to be insensitive to temperature, we now
solve for (Pe – Po) as a function of T, and then for Pe, using the expression for
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Po as function of T given in Fig. 10.18. In the field of sillimanite, the calcu-
lated equilibrium boundary involving kyanite as the aluminum silicate phase is
metastable. The stable boundary involving sillimanite instead of kyanite has been
calculated following the procedure for accounting for polymorphic transition dis-
cussed in Sect. 6.2. However, the difference between these two boundaries is only
∼400 bars at 1000◦C due to small free energy change associated with the transfor-
mation of 2 ky = 2 Sill that relates the GASP equilibria in the kyanite and sillimanite
fields. The calculated equilibrium boundary is illustrated by a dashed curve in Fig.
10.20.

Both garnet and plagioclase are, however, known to exhibit non-ideal mix-
ing behaviors. The activity coefficient terms needed to calculate RTlnKy(1,T,X)
Eq. (10.11.10) can be obtained from the available data on the mixing properties of
the garnet and plagioclase at 1 bar (Ganguly et al., 1996 and Fuhrman and Lindsley,
1988, respectively). Both garnet and plagioclase show effectively linear variation of
molar volume vs. composition, in which case one can use �V ≈ �Vo. The solid
line for GASP (Him) in Fig. 10.20 illustrates the results for the solution of Pe vs. T
relation, according to Eq. (10.11.10), incorporating the effects of non-ideal mixing
in garnet and plagioclase and treating �V as function of pressure and temperature.
(These calculations were carried out using a computer program that is available
from the author on request or from his website.) The results are very similar to
those obtained using the assumption of ideal mixing for both garnet and plageo-
clase solid solutions. This indicates substantial self-cancellation between the effects
of deviation from ideal mixing in garnet and plagioclase such that (�Grt

Ca /�
Plag
Ca ) ∼ 1

for the compositions of the Himalayan sample, and also justifies the assumption of
insensitivity of �rV to changes of pressure and temperature.

Note that the reaction defining the coexistence of the four phases. Grt, Plag,
aluminosilcate and quartz remains univariant even though we have increased the
number of components. This is because we have fixed the value of each compo-
nent in each phase, thereby eliminating the additional degrees of freedom that are
introduced by adding the new components.

10.11.3 Reactions Involving Solid Solutions and Gaseous Mixture

10.11.3.1 Thermodynamic Formulation

It is sometimes convenient to treat reactions of this type in terms of fugacities of the
gaseous species and activities for the condensed components. With that objective,
we decompose the first term on the left of Eq. (10.11.10), which provides the general
solution for equilibrium pressure at a fixed temperature, into solid (s) and gas (g)
terms as follows.

RT ln
[
KxK�(1, T, X)

] = RT ln
⌊

Ks
xKs

� (1, T, Xs

⌋
︸ ︷︷ ︸

K′(s)

+RT ln
⌊

Kg
xKg

�

(
1, T, Xg

⌋
︸ ︷︷ ︸

K′(g)

,

(10.11.12)
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where Xs and Xg stand for the compositions of the solid and gaseous phases, respec-
tively. For brevity, we would henceforth write K′(s) and K′(g) for the terms within
the first and second square brackets, respectively, as indicated above.

Let us now consider a simple solid-gas reaction involving only one gaseous
species i, such as A + B = C + D + νH2O. In that case,

RT ln K′(g) = νi RT ln ag
i = νi RT ln

fi(1, T, Xg)

f∗i (T)
(10.11.13)

In deriving Eq. (10.11.10), we have chosen pure component at P, T of interest as the
standard states for each component. In the above equation, the P, T of interest is 1
bat, T. Thus, f∗i (T) = fo

i (1, T),, and hence

RT ln K′(g) = νi RT ln
fi(1, T, Xg)

f o
i (1, T)

(10.11.14)

The two
∫
�VdP integral terms in Eq. (10.11.10) can be decomposed into solid and

gaseous components as
∫

(�V)sdP+∫
(�V)gdP. Now, from the relationship between

fugacity and chemical potential, i.e. d�i = RTdlnfi, we have

Pe∫

1

VidP = RT ln fi(Pe, T, Xg) − RT ln fi(1, T, Xg) (10.11.15a)

and

Po∫

1

Vo
i dP = RT ln fo

i (Po, T) − RT ln fi
o(1, T) (10.11.15b)

where Vi and Vo
i are, respectively, the partial molar volume and molar volume of

the component i. Po and Pe are the equilibrium pressures at T in the pure and impure
systems, respectively.

Using the last three equations and rearranging terms, Eq. (10.11.10) can be writ-
ten as

RT ln K′(s)(1, T, X) + RTνi ln
fi(P, T, Xg)

f o
i (Po, T)

+
Pe∫

1

(�rVs)dP −
Po∫

1

(�rV
o
s )dP = 0

(10.11.16)
If the reaction involves more than one gas species, then the second term on the left
is replaced byRT

∑
νi ln

(
fi(P, T, Xg)/fo

i (Po, T)
)
.

10.11.3.2 Solved Problem

As an application of Eq. (10.11.6), let us consider an assemblage of staurolite,
garnet, kyanite and quartz, as reported by Ghent et al. (1979) from Mica Creek,
British Columbia. The equilibrium P-T condition of this assemblage, as deduced
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by Ghent, is 8.2 kb, 640
◦
C. The compositions of the mineral phases are as follows.

XFe(staur) = 0.77, XFe(Grt) = 0.68, while kyanite and quartz are effectively pure
so that a(Al2SiO5)ky = a(SiO2)Qz = 1. The garnet is compositionally zoned, and the
above composition represents the rim composition of garnet that was in equilib-
rium with staurolite, which is homogeneous. There is no significant substitution in
any site except the divalent cation site in either mineral. We want to estimate the
composition of the vapor phase at the P-T condition of formation (equilibration) of
the assemblage.

The following reaction relation applies to the observed assemblage of Mica
Creek.

Staur Garnet

6 Fe2Al9Si3.75O22(OH)2 + 12.5 SiO2 = 4 Fe3Al2Si3O12 + 23 Al2SiO5 + 6 H2O
(10.11.a)

The equilibrium reaction boundary is illustrated in Fig. 10.21.
Using ionic solution model, we now write

a(Fe-end member)Staur = [(XFe�Fe)2]
staur

a(Fe-end member)Grt = [(XFe�Fe)3]Grt

Fig. 10.21 Equilibrium
dehydration boundary of
Fe-staurolite plus quartz, as
calculated by Pigage and
Greenwood (1982) using the
experimental data of Ganguly
(1972) and Rao and Johannes
(1979). With permission from
American Journal of Science
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Thus,

K′(s) =
(

XGrt
Fe

XStaur
Fe

)12 (
�Grt

Fe

�Staur
Fe

)12

Assuming the ratio of activity coefficients to be approximately unity, which is a very
reasonable assumption given the available mixing property data, we have lnK′

s ≈
12 ln(0.68/0.77) = –1.492. Also, from the available data, �rV = �rVo −148.26cm3.
The first equality implies that that the molar volumes of the minerals change linearly
with composition. The inferred equilibrium temperature of the Mica Creek assem-
blage is ∼ 640◦C, at which Po = 13,200 bars (Fig. 10.21). Burnham et al. (1969) have
experimentally determined the fugacity of pure water as function of pressure and
temperature to 10.0 kbar and 1000◦C. Extrapolation of these data yields fo(H2O:Po,
T) = 27.98 kbar at the above Po-T condition. Substitution of the values of K′

s, �V
and fo(H2O) in Eq. (10.11.16) then yields

Pe(bars) ≈ −18, 620 + 3032 ln fH2O(Pe, T, Xv) (10.11.17)

As noted above, the inferred pressure (Pe) of this assemblage is 8.2 kbar. Using this
result, the fugacity of water and composition of the fluid phase that was in equilib-
rium with the Mica Creek assemblage can be calculated as follows. The fugacity of
water in the vapor phase can be expressed as (Eq. (8.4.8))

fH2O(Pe, T, Xg) = fo
H2O(Pe, T)aH2O (10.11.18)

Combining the last two equations and rearranging terms, we then have

ln(aH2O) = Pe + 18, 620 − 3032 ln fo
H2O(Pe, T)

3032
(10.11.19)

From the data of Burnham et al. (1969), the fugacity of pure water at the inferred
Pe-T condition (8.2 kbar, 640◦C) is 8163 bars. Thus, we obtain a(H2O) = 0.85. If the
vapor phase behaves as an ideal mixture, then a(H2O) = X(H2O) = 0.85.

Occasionally, we are also interested in knowing the displacement of the equi-
librium condition of solid-gas reaction due only to the effect of a change of solid
compositions, holding the gas to be in the pure state. As an illustration, let us cal-
culate Pe at 640◦C when the solid phases have the above compositions while the gas
phase is pure water. Eq. (10.11.17) then transforms to

Pe(bars) ≈ −18, 620 + 3032 ln fo
H2O(Pe, T) (10.11.20)

The equation is solved by successive approximations, changing the value of Pe until
the difference between the right and left hand terms become negligible. This proce-
dure yields Pe(640◦C) = 10.2 kbar.
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10.12 Retrieval of Activity Coefficient from Phase Equilibria

As discussed above, calculation of displacement of an equilibrium boundary among
a set of phases due to compositional effects requires data on the activity coeffi-
cients of the components in solution. It should, therefore, be evident that if the
displacement of equilibrium boundary due compositional effects is known, one can
retrieve the activity coefficient of a component in a solution if data for the activity
coefficients for other components are available. If there are several components
with unknown activity coefficients, then one would need data on compositional
effects of additional equilibria so that there as many relations as the number of
unknowns.

As an example of this procedure, the experimentally determined effect of vari-
ation of garnet composition on the equilibrium pressure of the GASP reaction
(10.11.a) at 1000◦C, as determined by Ganguly et al. (1996), is illustrated in
Fig. 10.22. The garnet composition lies in the ternary system Mg-Mn-Ca, but the
Mg/(Mg + Mn) value was kept fixed at 0.68. The experiments were carried out at dif-
ferent pressures at 1000◦C, using starting mixtures of garnet of known composition
along with anorthite, kyanite and quartz of effectively pure end-member composi-
tions. Each starting mixture was held for a certain length of time at a fixed pressure,
quenched and then analyzed to determine the change of the garnet composition in
an electron microprobe. Since at each P-T condition, the initial garnet composition
in the starting mixture is different from what it should have been to be in equilib-
rium with anorthite, kyanite and quartz, the garnet composition evolved towards the

Fig. 10.22 Experimentally determined displacement of the equilibrium pressure of the reaction
Grossular (Grs) + Kyanite (Ky) + 3 Quartz (Qtz) = 3 Anorthite (Ann) (GASP) at 1000◦C as a
function of Ca content of garnet (Gt) in the ternary system Mg-Mn-Ca with the Mg/(Mg + Mn)
value kept fixed at 0.68. The ideal solution line does not adequately fit the experimental constraints
on the equilibrium garnet compositions that are contained between the opposing arrow heads at
fixed pressure. A model non-ideal fit matching the experimental constraints is shown by a solid
line. From Ganguly et al. (1996)
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equilibrium value through reaction with or breakdown to the other phases in the
starting mixture. The initial and final garnet compositions in each experiment are
connected by a horizontal line with arrow, with the latter showing the direction of
evolution of composition. The equilibrium compositions of garnet at each pressure
at 1000◦C were bracketed by approaching these compositions from two opposing
sides.

The displacement of equilibrium pressure of a reaction due to the effect of com-
positional variation under isothermal condition is given by Eq. (10.11.10). Since all
phases except garnet are in their respective pure states, KxK� = [(XCa�Ca)Grt]3. As
Kx, Po and Pe (i.e. the equilibrium pressure at specified values of Kx and T) are
known, one can solve Eq. (10.11.10) to obtain �Ca

Grt at 1000◦C as a function of
garnet composition and pressure (Pe). These data can then be cast into an analytical
expression of � according to an appropriate solution model. The “ideal solution” line
in Fig. 10.22 shows the solution of Eq. (10.11.10) using K� = 1. The disagreement
between this line and the experimentally constrained equilibrium compositions of
garnet implies that the garnet is a non-ideal solution in the Mg-Mn-Ca ternary sys-
tem. It is left to the reader to calculate the “ideal solution” line making the reason-
able assumption, for the sake of simplicity, that �V = �Vo ∼ constant, and also
to retrieve the values of �Ca

Grt at the experimentally constrained P-X conditions at
1000◦C.

In the study of Ganguly et al. (1996), the garnet solution model was retrieved
from optimization of a large set of experimental data on the displacement of GASP
equilibrium as function of garnet composition within the Fe-Mg-Mn-Ca quaternary
system, calorimetric data on the enthalpy of mixing in the Ca-Mg join (Fig. 9.4),
effect of garnet composition on KD(Fe-Mg) (Eq. (11.1.2)) in the garnet-olivine
and garnet-biotite (Fig. 11.3). The activity coefficient of Ca in garnet, �Ca

Grt,
was expressed by a subregular quaternary model (Sect. 9.3.1), and the interaction
parameters were solved numerically using the governing equations for equilibrium
(e.g. Eq. (10.11.10)) and an optimization program to obtain the statistical best
fit to all data. The “model fit” in Fig. 10.22 describes the calculated equilibrium
pressure as function of garnet composition using the retrived subregular mixing
parameters.

As an additional example of the retrieval of activity coefficient from phase equi-
librium data, note that Eq. (10.6.3) or its complement, Eq. (10.6.4) enables one to
constrain the thermodynamic mixing behavior of the system at the liquidus tem-
peratures from the experimentally determined phase equilibrium data. If both solid
and liquid phases behave as ideal solutions, log(Xl

i/Xs
i ) is proportional to (1/Tm

– 1/To). Deviation from this proportional relation implies non-ideality of either
or both solid and liquid solutions. If the mixing behavior of one of the phases is
known, then the other can be uniquely retrieved as function of temperature within
the bounded interval of the experimental data. Figure 10.23 shows the relation-
ship between log(Xm

Di/Xs
Di) vs. (1/Tm – 1/To) derived from the melting relation

of diopside-jadeite solid solution at 1400◦C–1650◦C (Ganguly, 1973). One finds
a proportionality relation between the two sets of variables, implying ideal mixing
behavior of the clinopyroxene solid solution at the near solidus conditions.
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Fig. 10.23 Relationship between log(Xm
Di/Xs

Di) vs. (1/Tm – 1/To) derived from the equilibrium
compositions of coexisting melt and diopside-jadeite solid solution at 1400–1650◦C (Ganguly,
1973). One finds a proportionality relation between the two sets of variables, implying ideal mixing
behavior of both the melt and the clinopyroxene solid solution at the near solidus conditions. With
permission from Elsevier

10.13 Equilibrium Abundance and Compositions of Phases

10.13.1 Closed System at Constant P-T

According to Duhem’s theorem (Sect.10.3), all properties of a closed system are,
in principle, completely determined if any two variables are fixed. Thus, if P-T
condition of a closed system is defined, then the compositions, abundance of the
phases, as well as other intensive properties, such as f(O2), become fixed. Once the
nature, composition and abundance of the phases are known, one can derive other
properties of the system from combining the properties of the phases.

Several methods of calculating the abundance of phases in a closed system at
fixed P-T condition are discussed by Smith and Misen (1991). The most widely used
method involves minimization of Gibbs free energy, G, subject to the bulk compo-
sitional constraint. This is a problem of constrained optimization, and commonly
this type of problems is solved by using the method of Lagrangian multipliers.
A brief exposition of the theoretical foundation of the method of constrained G
minimization using Langrangian multipliers is given below.

Consider a closed system consisting of the components CaO, FeO, MgO, Al2O3

and SiO2 (CMAS), in which the molar abundance of each of these components
is specified. We would refer to these oxide components as basic components. For
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example, let us say that there are 95 mol of MgO in the system. Thus, whatever
be the nature, composition and abundance of different phases that form at a fixed
P-T condition, and regardless of the number of phases (or end-member components
of phases) that contain MgO (e.g. garnet: (Mg,Fe,Ca)3Al2Si3O12; ortho-pyroxene:
(Mg,Fe,Ca)SiO3 etc.), the total number of moles of MgO (nMgO(T)) must always be
95. Thus, we write

nMgO(Pyr)nPyr + nMgO(Enst)nEnst + . . . . . . = 95

where nMgO(Pyr) is the number of moles of MgO in a mole of pyrope component
(Mg3Al2Si3O12) in the mineral garnet, nMgO(Enst) is the number of moles of MgO in
a mole of enstatite component (MgSiO3) in the mineral orthopyroxene, and so on.
Now, if N� stands for the number of moles of a phase � (Grt, Opx etc.), then we can
re-write the above mass conservation relation as

nMgO(Pyr)

(
XGrt

PyrN
Grt

)
+ nMgO(Enst)

(
XOpx

EnstN
Opx

)
+ . . . . . . = 95 (10.13.1)

A similar relation holds for every other basic component in the system. The choice
of a set of basic components in a system is arbitrary, but must be such that any
end-member component of a phase can be expressed as a linear combination of the
basic components.

From the general principle of constrained optimization using Lagrangian multi-
pliers, it can be shown that at the minimum of G, subject to the mass conservation
constraints, the following relation must be satisfied (e.g. Ganguly and Saxena, 1987)

��i −
∑

k

λknk(i) = 0 (10.13.2)

where nk(i) is the number of moles of the basic component k in the end-member
formula unit i (e.g nMgO(Pyr) or nMgO(Enst) in Eq. (10.13.1)), and �k is a constant
that is known as the Lagrangian multiplier of the basic component k. The constant
multipliers are, however, of no practical interest in our problem, but constitute an
essential part of the mathematical method.

To illustrate the procedure of constrained minimum using Lagrangian multipli-
ers, let us consider the end-member components in garnet, namely, grossular (Gros:
Ca3Al2Si3O12), almandine (Alm: Fe3Al2Si3O12) and pyrope (Pyr: Mg3Al2Si3O12).
According to the last expression, we have

Gros (Grt):�Grt
Gros − λCaO(3) − λAl2O3 (1) − λSiO2 (3) = 0

Alm (Grt):�Grt
Alm − λFeO(3) − λAl2O3 (1) − λSiO2 (3) = 0

Pyr (Grt):�Grt
Pyr − λMgO(3) − λAl2O3 (1) − λSiO2 (3) = 0

⎫⎪⎬
⎪⎭ (10.13.3)

where, using the “ionic solution” model (Sect. 9.1)
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�Grt
Gros = �o

Gros(P, T) + 3RT ln XGrt
Ca + 3RT ln�Grt

Ca , (10.13.4)

and so on. Similar relations can be written for every end member component of
other phases. For every phase �, there is also a stoichiometric relation of the type

∑
i

X�
i = 1 (10.13.5)

The system of Eqs. (10.13.2), (10.3.3) and (10.13.5) can be solved numerically to
obtain the compositions of the various phases (X�

i terms) and the values of the
Lagrangian multipliers. There are exactly as many independent equations as the
number of unknowns in these relations. However, the non-linearity of the system
of Eq. (10.13.4) poses major technical problems when there are many phases and
many components in the system. In addition, the free energy surface of systems
consisting of phases with highly non-ideal mixing properties has local minima. One
needs to introduce suitable algorithimic strategies to find the global minimum (e.g.
Ghiorso, 1994). In general, the problem of G minimization is solved by successive
approximations in a system consisting of many phases and many components. From
the possible set of phases, one first chooses a suitable subset and finds the combi-
nation of phases and their compositions within the subset that yields a minimum
of G. The subset is then varied and by successive approximations until one finds
the combination of phases and their compositions that yields the minimum G for
the entire system. For further details about the method of G minimization using
Lagrangian multipliers, the reader is referred to Eriksson (1974) and Eriksson and
Rosen (1973).

White et al. (1958) proposed a method that avoids the problem of nonlinearity
in the Langrangian method by approximating the continuous G-X surface of each
(solution) phase by stepwise variation of G among a set of arbitrarily defined points
or “pseudocompounds” (Fig. 10.24). Because there are no compositional degrees of
freedom associated with the pseudocompounds, the approximated problem is linear,
as discussed below, and can be solved by identifying the pseudocompounds that
minimize the Gibbs free energy of the system. The method was essentially ignored
as the number of pseudocompounds that are needed to deal with a multicomponent
and multiphase system is extremely large, exceeding the capacity of commonly
available computers at the time it was proposed. It was later successfully adopted by
Connolly (1990, 2005) to develop a program known as Perple X (available on-line)
for constrained G minimization problems along with linked data bases for a large
set of rock-forming minerals. The general idea of this “pseudocompound method”
is as follows.

In thermodynamics, the molar Gibbs free energy-composition space of a solution
is described by the properties of the pure end member phases and logarithmic terms
that express the mixing properties among the end member phases (Eq. (8.6.3)). As
discussed above, one can approximate the G-X relation of a solution by defining
pseudocompounds, ps(i), at discrete steps (Fig. 10.24). The molar free energy of
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Fig. 10.24 Approximation of the molar Gibbs free energy, Gm, of a solution by the free energies
of pseudocomponents spaced at X = 0.2, where X is the mole fraction of a component

each pseudo component, Gm,ps(i), is calculated from the true end member free ener-
gies and their mixing properties according to Eq. (8.6.3).

The total Gibbs free energy of a system consisting of k components of fixed
composition is given by the relation

G =
k∑

i=1

niGm(i) (10.13.6)

where ni is the number of moles of the component i that has a molar Gibbs free
energy of Gm(i). Both stoichiometric phases and pseudocompounds are included in
this expression. This equation is linear and can be solved to find the minimum
of G subject to the bulk compositional constraints by linear programming tech-
nique, such as Simplex (Press et al. 1990). The solution yields the proportion of
the stoichiometric phases and the pseudocompounds in the system. The data for the
pseudocompounds can be combined to find the composition and abundance of the
solution phases. The quality of solution using this approach depends on the choice
of pseudocompounds. Using an initially crude spacing of compositions defining the
pseudocompounds, one may find an approximate solution, and refine it by choos-
ing more narrow compositional spacing of the pseudocompounds around the initial
solution.

Constrained G minimization programs with linked data bases for the rock form-
ing systems (e.g. Holland and Powell, 1998) are available on-line. Some of these
are Perple X by Connolly (1990), Theriak-Domino by de Capitani (de Capitani and
Brown, 1987; de Capitani, 1994) and MELT/pMELT by Ghiorso and co-workers
(Asimow and Ghiorso, 1998; Ghiorso and Sack, 1995; Ghiorso et al., 2002), the
latter being specifically geared to problems of partial melting in the Earth’s mantle
and planetary systems.
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Fig. 10.25 Calculated density vs. depth along the adiabatic temperature profile in a pyrolite
bulk composition and comparison with the data in PREM. The vertical lines indicate depths
of major mineralogical transformations. Note that with decreasing temperature, the depth of
the density jump decreases near 400 km (top of the transition zone) and increases near 670 km
(bottom of transition zone). Some of the critical minerals with major influence on the density
jumps are indicated within the different fields. Ol: olivine, Grt: Garnet, Cpx: clino-pyroxene,
Opx: orthopyroxene, HP-Cpx: high pressure clinopyroxene, Wads: wadsleyite (-Mg2SiO4), Rng:
Ringwoodite (�-Mg2SiO4), Ilm: Ilmenite, Mg-Pv: Mg-perovskite, Ca-Pv: Ca-perovskite, MgWu:
magnesiowüstite; Mj-Grt: majoritic garnet

Figure 10.25 shows an application of the constrained G-minimization approach
to calculate the adiabatic density profile in the Earth’s mantle between ∼200 and
800 km depths, corresponding to pressures of 6.42 and 29.38 GPa, respectively
(Ganguly et al., 2008). The bulk composition of the mantle is assumed to be given
by the pyrolite model of Ringwood (1982) and restricted to the system CaO-FeO-
MgO-Al2O3-SiO2 that constitutes ∼ 98 wt% of the pyrolite composition. The abun-
dance and compositions of the phases were calculated by the method of Lagrangian
multipliers (using the program FACTSAGE of Eriksson and Pelton), and these are
converted to densities using appropriate P-V-T relations.

The calculated pyrolite density profile is compared with the density profile given
by the Preliminary Reference Earth Model (PREM) of Dziewonski and Anderson
(1981) that is inverted from the geophysical properties. There is good match
between the PREM and the thermodynamically calculated density of the mantle.
It is also worth noticing that the calculated density profile shows density jumps at
400 km and 660 km depths which also show rapid changes (or discontinuities) of
seismic velocities. However, unlike the PREM, the calculated profile shows a small
density jump at 500 km depth. There is a seismic discontinuity at this depth, but it is
not reported to be a global discontinuity. The density discontinuity must, however,
global. The non-global nature of the 500 km seismic discontinuity may be due to
failure to resolve a small discontinuity everywhere.

Figure 10.26 shows the results of calculation using the MELTS software for
equilibrium and fractional crystallization of primitive mid-ocean ridge basalt or
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Fig. 10.26 Equilibrium (left) and fractional (right) crystallizations of mid-ocean ridge basalt
(MORB), as calculated by minimizing Gibbs free energy of the system using the MELT soft-
ware (Ghiorso and Sack, 1995). The upper panels show the modal abundances of the phases as
function of temperature at 1 kb, while the lower panels show the corresponding evolution of the
melt compositions. From Ghiorso (1997)

MORB (Ghiorso, 1997). The upper panels show the mineral abundances as func-
tion of temperature at 1 kb for equilibrium and fractional crystallization of MORB.
The abundances for fractional crystallization are calculated by extracting the crys-
tals at 2–5◦C steps, recalculating the residual melt composition at each step, and
allowing these to crystallize as closed systems. The lower panel shows the evolu-
tion of melt composition during equilibrium (left panel) and fractional (right panel)
crystallizations.

10.13.2 Conditions Other than Constant P-T

For closed systems for which the variables that are kept constant are (P, T), or (T,V)
or (S,P), the equilibrium assemblages and phase compositions can be obtained by
minimizing the conventional thermodynamic potentials, namely, G or F (Helmholtz
free energy) or H, respectively, as discussed above and in Sect. 3.2. However, in
geological problems, we sometimes face situations that require computation of equi-
librium assemblages and phase compositions at conditions in which different types
of variable sets are held constant. In those cases, we need to find new potentials
that are to be minimized to yield the equilibrium phase assemblages and composi-
tions. Two such cases that or of interest in geological problems are (a) system in
which chemical potential of a component is held constant through communication
with an external reservoir, and (b) magmatic assimilation process at condition of
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constant enthalpy, pressure and mole numbers of all components. These problems
were addressed by Ghiorso and Kelemen (1987). As argued by these authors, isen-
thalpic calculations provide a close approximation to the magmatic process in which
the assimilates are less refractory than the minerals with which the magma is satu-
rated. The appropriate potentials to minimize in these processes are to be found by
Legendre transformation of suitable functions.

The general principle of Lagendre transformation has been discussed in Sect. 3.1,
and applied to derive the thermodynamic potentials H, F and G. To recapitulate, the
partial Legendre transform of a function Y = Y(x1, x2, x3, ...) is given by

(
Ixi

)
xj 
=xi

= Y −
(
�Y

�xi

)
xj 
=xi

xi (10.13.7)

where
(
Ixi

)
xj 
=xi

is the partial Legendre transform of Y with respect to xi when all
other variables (xj 
= xi) are held constant.

It was shown in Sect. 3.2 that if Y = U (internal energy) and m = ± (�Y/�xi), then
the equilibrium condition at constant m and xj 
= xi is given by the minimization of
the partial Legendre transform Ixi Following this lead, we can now construct the
appropriate potentials to minimize for the cases (a) and (b).

For the case (a), the chemical potential of a component k along with P and T are
to be held constant. Thus, the derivative term in Eq. (11.13.7) must equal ± �k at
constant P, T and nj 
= nk (that is at constant mole numbers of all components other
than nk). Now, since �k = (�G/�nk)P, T,nj 
= nk, the function Y corresponds to G, and
the Legendre transform of the function is given by

(
Ink

)
P,T,nj 
=ni

= G −
(
�G

�nk

)
P,T,nj 
=ni

nk

= G − �knk

(10.13.8)

It can be easily shown that the transformed function (G − �knk) < 0 for any
spontaneous process and reaches a minimum when equilibrium is achieved, that
is (G-�knk) ≤ 0. It is left to the reader as an exercise to show this property. These
types of potentials that are to be minimized to compute equilibrium assemblages in
an open system with fixed chemical potentials of the mobile components are often
referred to as Korzhinskii potentials in the geochemical and petrological literature,
in recognition of the fact that these potentials were first introduced by the Russian
petrologist, D. S. Korzhinkii (1959) (Korzhinskii’s ideas were later refined and more
clearly formalized by Thompson (1970)). The components whose chemical poten-
tials are fixed by an external reservoir were called “perfectly mobile components”
by Korzhinskii and K-components by Thompson (1970). If there are several such
components, then the last term in the above equation is given by -

∑
�knk.

For the case (b), we need to find a function that can be differentiated with
respect to an appropriate variable at constant P and n (number of moles of all
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components) to yield H. The function is G/T. It is left to the reader to show that
H = ((�G/T)/�(1/T))p, n. Thus,

(
I1/T

)
p,n = G

T
−

(
�(G/T)

�(1/T)

)
p,n

1

T

= G

T
− H

T
= −S

(10.13.9)

The magma and assimilates are taken to constitute an isolated system. Now since
for such a system, dS ≥ 0 (second law: Eq. (2.4.8)), S is maximized and conse-
quently the transformed function (I1/T)p, n is minimized. Thus, the equilibrium phase
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Fig. 10.27 Cumulative mass of solid crystallized for isenthalpic assimilation of pelites with initial
temperature at 500◦C in a magnesian mid-ocean ridge basalt (MORB: FAMOUS 527-1-1) at 3 kbar.
Both A and B have the same bulk composition except that B includes 1.35 wt% H2O). Ma/Mc refers
to the ratio of mass assimilated to mass crystallized. See text for further details. From Ghiorso and
Keleman (1987)



10.13 Equilibrium Abundance and Compositions of Phases 345

assemblage and composition for isenthalpic assimilation is obtained by maximizing
the entropy of the system at constant P and n.

Figure 10.27 shows an example of the consequence of isenthalpic assimilation
on the modal abundance of phases crystallized from a MORB (Mid-Ocean Ridge
Basalt). Here the assimilates are taken to be pelites at an initial temperature of
500◦C. The bulk compositions of the assimilates A and B are identical except
that B includes 1.35 wt% of H2O, whereas A is anhydrous. Mineralogically A is
composed of quartz-ilmenite-K-feldspar-orthopyroxene-spinel-plageoclase, wheras
B is composed of quartz-ilmenite-muscovite-biotite-garnet-plagioclase. The calcu-
lations presented in Fig. 10.27 show that assimilation of a hydrous assemblage
results in lower final temperature (lower T-axis in the figure) and a larger mass
of crystals compared to those for an equivalent anydrous assemblage of the same
mass. As discussed by Ghiorso and Kelemen (1987) assimilation of wall-rock in
magma may fundamentally alter the modal abundance and nature of the crystallizing
minerals and the consequent evolution of magma composition.

Problem 10.14 Show that at constant P, T condition, the Korzhinskii potential
(G − nk�k) ≤ 0 if the chemical potential of the mobile component k is fixed through
communication with an external reservoir while the mole numbers of all other com-
ponents are held constant.
(Hint: see Sect. 3.2, and consider U to depend on the mole numbers of components)



Chapter 11
Element Fractionation in Geological Systems

Element fractionation between coexisting phases, such as those between two
minerals, mineral and melt, mineral and a vapor phase, and molten metal and silicate
liquid plays a variety of important roles in geological and planetary problems. In this
chapter, we discuss the general thermodynamic formalisms of element fractionation,
with illustrative applications to (a) geothermometry, (b) interpretation of rare earth
element pattern of basaltic magma, and (c) that of siderophile element abundance
in the Earth’s mantle that bear on the general problem of magma ocean in the early
history of the Earth (siderophile elements are those that preferentially fractionate
into a metal phase relative to a silicate).

11.1 Fractionation of Major Elements

11.1.1 Exchange Equilibrium and Distribution Coefficient

A detailed thermodynamic treatment of element fractionation and its extension to
fractionation of isotopes of an element, such as 18O and 16O, between coexist-
ing minerals is given by Ganguly and Saxena (1987) that may be consulted for
additional details. In general, equilibrium fractionation of two species of the same
valence state, i and j (e.g. Fe2+ and Mg), between two phases � and  can be treated
by an exchange reaction of the form

i − �+ j −  = i − + j − � (11.1.a)

As an example, we write the following exchange equilibrium to treat the fractiona-
tion of Fe2+ and Mg between coexisting garnet and biotite.

1/3 (Fe3)Al2Si3O12(Grt) + K(Mg)Al3Si3O10(OH)2(Bt) =
1/3(Mg3)Al2Si3O12(Grt) + K(Fe)Al3Si3O10(OH)2(Bt)

(11.1.b)

J. Ganguly, Thermodynamics in Earth and Planetary Sciences, 347
DOI 10.1007/978-3-540-77306-1 11, C© Springer-Verlag Berlin Heidelberg 2008
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Note that the reaction is balanced in such a way that there is one mole of an
exchangeable species (Fe2+ or Mg) in each side of the reaction, conforming to the
form of the reaction (11.1.a). This type of reaction balancing is not a thermodynamic
requirement, but is a matter of practical convenience as it reduces the exponents of
all terms in the expression of equilibrium constant to unity. To appreciate it, consider
the activity expressions of end-member components in garnet in which the substitu-
tions are restricted to the eight (VIII) – and six (VI) – coordinated sites. According
to the ionic solution model (Sect. 9.1 and Eq. (9.1.7b))

aGrt
Alm = [

VIII (xFe�Fe)3
] [

VI (xAl�Al)
2
]
�Alm(rec) (11.1.1a)

aGrt
Pyr =

[
VIII

(
xMg�Mg

)3
] [

VI (xAl�Al)
2
]
�Pyr(rec) (11.1.1b)

where Alm and Pyr represent the iron and magnesian end-member components
of garnet, as written in the reaction (11.1.b), the terms within the square brackets
indicate site-mole fraction (x) and site-activity coefficients (�) and the �rec terms
indicate parts of the activity coefficient terms that are due to reciprocal interactions.
The expression of equilibrium constant, K, for reaction (11.1.b) contains the ratio
(aGrt

Pyr/aGrt
Alm)1/3 that reduces, upon substitution of the above activity expressions, to

[VIII(XMg/XFe)VIII(�Mg/�Fe)]Grt (�′
rec), where �′

rec stands for the ratio of the two
reciprocal activity coefficient terms, [�Pyr(rec)/�Alm(rec)].

Following the above procedure, the equilibrium constant for an exchange reac-
tion of the type (11.1.a) can be written as

K =
[(

Xi/Xj
)

(
Xi/Xj

)�
]

︸ ︷︷ ︸
KD

[(
�i/�j

)
(
�i/�j

)�
]

︸ ︷︷ ︸
K�(site)

K�(rec) (11.1.2)

where K�(rec) stands for the collection of all reciprocal activity coefficient terms.
From Eq. (9.1.7a), it is easy to see that K�(rec) = 1 if the sites that do not participate
directly in the exchange reaction are filled by only one type of ions. Convention-
ally, the collection of mole fraction terms within the first set of square brackets in
Eq. (11.1.2) is indicated by the symbol KD(i-j) or simply KD and referred to as a
distribution coefficient.

Using the last relation, we can write

lnKD = lnK(P, T) − lnK�(site)(P, T, X) − lnK�(rec)(P, T, X) (11.1.3)

Consequently, in general, KD is a function of P, T and X. Note, however, K�(site) in
the above equation not only reflects the nonideal interactions of i and j, but also of
those of i and j with other ions that substitute in the same site. In the special case in
which both phases are ideal solutions (K� = 1), KD is a function only of P and T.
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11.1.2 Temperature and Pressure Dependence of KD

The temperature dependence of lnKD can be adequately expressed according to the
form of the temperature dependence of lnK. Thus, using Eq. (10.4.11), we write

ln KD = A + B

T
(11.1.4)

It is easy to see that the terms A and B be are proportional to the entropy and
enthalpy change of the reaction, respectively. For exchange equilibria involving two
mineral solid solutions, the temperature dependence of �H and �S terms are weak
so that lnKD varies as a linear function of reciprocal temperature within a tempera-
ture interval of at least a few hundred degrees. The reason for the weak temperature
dependence lies in the fact that the temperature dependence of �H and �S is given
by �Cp Eq. (3.7.5), which is very small for an exchange equilibrium since both sides
of the reaction involve the same phases.

The distribution coefficients are usually calibrated experimentally, and fitted
according to the form of the last equation, as illustrated in Fig. 11.1. In this figure,
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Fig. 11.1 Experimentally determined calibration of Fe2+-Mg distribution coefficient, KD, between
orthopyroxene and spinel as function of temperature. In the main figure, the polybaric experimental
data have been reduced to a constant pressure of 1.0 GPa according to Eq. (11.1.6), and fitted
using the linear form of Eq. (11.1.4). Vertical bars represent ±1�. Different symbols represent
different method of estimation of Fe3+ in spinel, resulting in different KD values. The inset shows
the dependence of lnKD on the mole fraction of Cr, YCr, in the octahedral site of spinel. From
Liermann and Ganguly (2003)
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KD refers to the distribution coefficient of Fe2+ and Mg between orthopyroxene
and spinel, and is defined as KD = (XFe/XMg)spnl/(XFe/XMg)Opx (Liermann and
Ganguly, 2003), corresponding to the Fe2+-Mg exchange reaction

MgAl2O4(Spnl) + FeSiO3(Opx) ↔ FeAl2O4(Spnl) + MgSiO3(Opx) (11.1.c)

The pressure dependence of lnKD is obtained by differentiating both sides of
Eq. (11.1.3) with respect to pressure. This procedure yields

(
� ln KD

�P

)
T

= −�V̄

RT
(11.1.5)

where �V̄ is the partial molar volume change of the exchange reaction. Derivation
of this relation is left to the reader as a problem (see below). However, mineral
solid solutions that are of common interest in geothermometry show nearly linear
volume vs. composition relation. Thus, to a very good approximation, �V̄ ≈ �Vo.
Also, since the same minerals are involved in both sides of a reaction, the pressure
dependence of �Vo is quite small even though the volume of an individual standard
state component depends significantly on pressure. Thus, we write, for the purpose
of geothermometry based on solid state exchange reaction

ln KD(P) ≈ ln KD(P∗) − �Vo(P − P∗)

RT
(11.1.6)

This equation is used to normalize the polybaric experimental data for KD to a con-
stant pressure of 10 kb that are illustrated in Fig. 11.1.

11.1.3 Compositional Dependence of KD

For non-ideally behaving systems, one adds compositionally dependent terms to
the expression of lnKD in Eq. (11.1.3) by expanding the K� terms, using appropri-
ate solution models (Chap. 9), and thus express lnKD as function of P, T, and X.
Compositional dependence of KD(i-j) within a binary or quasibinary system (that
is a system that has more than two components, but the contents of all but two
components are kept fixed) is usually illustrated by Roozeboom plots in which X̄�

i

is plotted against X̄
i where X̄i represents the binary mole fraction of i, i.e. i/(i + j).

In experimental studies, the system is typically restricted to the i-j binary, so that the
binary mole fraction is the same as total mole fraction. Two examples of such plots
are shown in Fig. 11.2. These represent data for experimentally determined Fe/Mg
fractionation between (a) spinel, (Fe, Mg)Al2O4, and orthopyroxene, (Fe, Mg)SiO3,
(Liermann and Ganguly, 2003) and (b) olivine, (Fe, Mg)2SiO4, and orthopyroxene,
(Fe, Mg)SiO3 (von Seckendorff and O’Neill, 1993). Each data set is at a constant
P-T condition, as shown in the figures. In these experiments, a starting material
consisting of two phases of known compositions are held at fixed P-T condition
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(b) (a)

XFe(Opx) XFe(Opx)

XFe:
Spinel

Olivine

KD = 1.92 ± 0.08

Fig. 11.2 Equilibrium fractionation of Fe2+ and Mg between (a) spinel and orthopyroxene and (T =
1000

◦
C, P = 9 kbar) (b) olivine and orthopyroxene (T= 1000

◦
C, P = 16 Kbar) as determined exper-

imentally by Liermann and Ganguly (2003) and von Seckendorff and O’Neill (1993), respectively.
In (a), the initial compositions are shown by filled diamond symbols and the evolved composi-
tions by triangles. The most evolved compositions can be fitted well by a constant distribution
coefficient, KD, which describes a symmetric curve. In (b), initial compositions are numbered and
connected to the evolved compositions by lines. The equilibrium distribution curve is asymmetric
which implies that KD depends on Fe2+/Mg ratio. In both sets of experiments, the equilibrium
distribution is constrained by reversal experiments, that is by approaching KD from two sides of
the equilibrium distribution curves. (a) From Liermann and Ganguly (2003) and (b) from von
Seckendorff and O’Neill (1993)

so that the minerals exchange Fe and Mg and evolve towards compositions that
represent an equilibrium pair.

For constant value of KD, or in other words when KD(i-j) is independent of the i/j
ratio, the equilibrium distribution curve is symmetrical with respect to the diagonal
line connecting Xi

� vs. Xi
, as in Fig. 11.2a. The independence of KD(i-j) on i/j

ratio implies that either both solid solutions behave ideally (or nearly so) in the
binary system (K�(site) = 1), or that there is essentially the same departure from
ideality of mixing of i and j in both phases so that the effects of nonideal behavior
on KD cancels out. Figure 11.2b, on the other hand, shows asymmetric distribution
curve, implying that KD is a function of Fe/Mg ratio of the phases, and thus, the
Fe-Mg mixing property of at least one phase is nonideal. The simplest explanation
of the distribution data illustrated in Fig. 11.2 is that the mixing of Fe2+ and Mg in
both spinel and orthopyroxene is essentially ideal, whereas in olvine these cations
mix nonideally. One can retrieve the values of the non-ideal mixing parameters by
modeling the compositional dependence of the distribution data.

As an example of the effect of non-ideal mixing of components that substitute in
the same site as that occupied by the exchangeable species, we illustrate the effect
of Mn on KD(Fe-Mg) between garnet and biotite. The Fe-Mg exchange reaction is
given by (11.1.b), and the effect of Mn of KD(Fe-Mg) is illustrated in Fig. 11.3.
The data illustrated in this figure are for natural samples from Pecos Baldy, New
Mexico (Williams and Grambling, 1990) that formed at essentially constant P-T
condition. Substitution of Mn in biotite relative to that in garnet is negligible so that
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Statistical Best Fit 

Thermodynamic
Fit  

Fig. 11.3 Effect of Mn substitution in garnet on the Fe-Mg distribution coefficient between garnet
and biotite in a suite of rocks from Pecos Baldy, New Mexico. The circles represent the measured
data by Williams and Grambling (1990), whereas the thermodynamic fit represents the fit accord-
ing to Eq. (11.1.7) with the interaction parameters from Ganguly et al. (1996). The effect of WFeMg

term is negligible

the observed compositional dependence is due to the non-ideal mixing of Mn in
garnet solid solution. According to Ganguly et al. (1996), the mixing of Mn with Fe
and Mg can be adequately described by a “regular solution” model (Eq. 9.2.5). The
mixing of Fe and Mg in biotite is known to be almost ideal. Thus, expanding the
RTlnK� term in Eq. (11.1.3) in terms of a ternary regular solution model Eq. (8.3.3)
for garnet, and rearranging terms, we obtain

RT ln KD = RT ln K(P, T) + WG
FeMg(XMg − XFe) + (WG

Mg−Mn − WG
Fe−Mn)XGrt

Mn

(11.1.7)

where WG
i−k denotes the regular solution free-energy interaction parameter between

i and k. Substitution of the W parameters from Ganguly et al. (1996) into the above
expression leads to the relationship between lnKD vs. XMn(Gt) that is illustrated in
Fig. 11.3 by a solid line (Ganguly et al., 1996).

To illustrate the effect of cation substitution in a site other than that participat-
ing in the exchange reaction, let us consider the experimental data of Liermann
and Ganguly (2003) on the effect of Cr on Fe-Mg exchange between spinel and
orthopyroxene, as illustrated within the inset of Fig. 11.1. The spinels used in this
study can be represented as IV(Fe2+, Mg) VI(Cr,Al)2O4 where a left-hand roman
superscript indicates the co-ordination number of the site. The important point to
note that even though Fe2+ and Mg mix almost ideally within the tetrahedral site
(Fig. 11.2a), variation of Cr/Al ratio affects KD(Fe-Mg). This is the effect of recip-
rocal activity coefficient term in Eq. (11.1.3). Writing the reciprocal parts of the
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activity coefficients of FeAl2O4 and MgAl2O4 according to Eq. (9.1.7), it can be
shown from Eq. (11.1.3) that

ln KD(Fe − Mg) ≈ ln K − ln K�(site) + �Go
rec

RT
YSp

Cr (11.1.8)

where Yspnl
Cr is the atomic fraction of Cr in the octahedral site of spinel (we use

the symbol Y to emphasize that the substitution is in a site that is not occupied by
the exchangeable ions), and �Go

rec is the standard state Gibbs energy change of the
homogeneous (reciprocal) exchange reaction in spinel

FeCbO4 + MgAl2O4 ↔ MgCr2O4 + FeAl2O4 (11.1.d)

Thus, if K�(site) ≈ 1, lnKD is expected to vary linearly as function of the atomic
fraction of Cr given by Cr/(Cr + Al), conforming to the experimental data.

It can be argued that, in general, �Go
rec depends weakly on temperature (Ganguly

and Saxena, 1987) so that the value of �Go
rec extracted from one temperature may

be used to calculate compositional dependence of lnKD(Fe2+-Mg) on XCr at other
temperatures. Indeed calculations of lnKD(Fe2+-Mg) between spinel and orthopy-
roxene vs. XCr(sp) at different temperatures using the �Go

rec value extracted from
the data in the inset of Fig. 11.1 show good agreement with those calculated from
more elaborate theory (Liermann and Ganguly, 2003).

11.1.4 Thermometric Formulation

If the activity coefficient terms are relatively simple, such as given by a regular
solution model, then it is possible to derive a simple thermometric expression that
can be solved with the aid of a calculator or a computer spreadsheet. For relatively
complex solution model, a computer program may be needed. As an illustration of
the development of a relatively simple thermometric formulation, let us consider
the one formulated by Liermann and Ganguly (2003) using the experimental data
on Fe2+-Mg fractionation between spinel and orthopyroxene. They first normalized
the polybaric experimental data to a constant pressure of 1 bar, using Eq. (11.1.6),
and volumetric data for the end members (�Vo = – 0.628 cm3), and fitted the data
using the linear form of Eq. (11.1.4). This procedure yields A = – 0.351(± 0.102)
and B = 1,217(± 120) for 1 bar pressure. (This is one of four sets of coupled A and
B parameters derived by Liermann and Ganguly (2003) using different methods of
estimation of Fe3+ iron in their experiments that yield different values of KD(Fe2+-
Mg). However, this set seems to yield somewhat better temperature estimates than
others.) Using Eq. (11.1.6), we then have

ln KD = −0.351 + 1217

T
+ 7.626(10−3)(P − 1)

T
(11.1.9)
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where P is in bars. For P >> 1, which represents typical geological situation, P-1
≈ P. Incorporation of the effects of mixing of Al with Fe and Mg in orthopyroxene
according to Eq. (11.1.7), with Mn replaced by Al, and of Cr substitution in the
octahedral site of spinel, according to Eq. (11.1.8), yields

ln KD ≈ − 0.351 + 1217

T
+ 76.26P(GPa)

T

− �WAl(xAl)Opx

RT
+ �Go

rec(yCr)spnl

RT

(11.1.10)

where the pressure is in GPa, �WAl stands for the term (WMgAl – WFeAl) in orthopy-
roxene, and x and y stand, respectively, for the atomic fraction in the site occupied
and not occupied by the exchange-cations. This equation is rearranged to yield a
thermometric expression

T ≈ 1217 + 76.26P(GPa) − C(XAl)Opx + D(YCr)spnl

ln KD − A
(11.1.11)

where C = �WAl/R = 1863 K and D = �Go
rec/R = 2345 K

Problem 11.1 Derive Eq.(11.1.5).
Hint: Start with Eq. (11.1.3). Then derive an expression for �ln�i/�P and from that
an expression for �lnK�/�P.

Problem 11.2 Expand Eq. (11.1.7) to include the effects of non-ideal interaction
of Ca with other cations (Fe, Mg and Mn) in garnet, using regular solution model
Eq. (9.3.3).

11.2 Trace Element Fractionation Between Mineral and Melt

11.2.1 Thermodynamic Formulations

Trace element patterns of basaltic magma offer significant information on their
genetic relations, as first shown in a pioneering paper by Gast (1968). Since then
experimental determination and theoretical estimation of trace element fractionation
between mineral and melt and modeling of the observed trace element patterns of
melts have been a very active field. The thermodynamic treatment of trace element
fractionation between mineral and melt relies on the expected Henry’s law behavior
of solute at high dilution (trace element), and the principle of conservation of mass.
To treat the equilibrium fractionation of an element or an ion between liquid and
solid, we write a fusion reaction of the form
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i (liquid) ↔ i (solid) (11.2.a)

If i is a trace element, then it is convenient to express its content in a phase in terms
of ppm, that is gm/106 gm instead of its mole fraction which is an extremely small
quantity. As discussed earlier (Sect. 8.4), the activity expression can be cast in terms
of any conveniently chosen measure of the content of a species. Thus, we write for
the above reaction

Ka(P, T) = as
i

al
i

=
[

Cs
i

Cl
i

]

︸ ︷︷ ︸
Ds/l

i

[
�s

i

�l
i

]
(11.2.1)

where Cl
i stands for the content of i in terms of ppm. Conventionally, the ratio of

terms within the first square brackets on the right is denoted by the symbol Di
s/l,

and referred to as a mineral-melt partition coefficient of the species i. For the sake
of brevity, we will henceforth drop the subscript i from the symbolic representation
of partition coefficient and concentration.

Now, since i is a very dilute component, it is expected to satisfy the Henry’s
law Eq. (8.8.1), in which case the ratio of the two activity coefficients becomes
a constant at fixed P-T-Xsolv condition (note that adherence to Henry’s law means
that the ai ∝ [i] write in a solvent (solv) of fixed composition.) Consequently, Di =
f(P,T,Xsolv), but independent of [i] within the domain of validity of Henry’s law.
Thus, we write

Ds/l = Cs

Cl
= f(P, T, Xsolv) (11.2.2)

This is known as the Nernst distribution law.
The principle of conservation of mass requires that

ClXl
m + Cs(1)Xs(1)

m + Cs(2)Xs(2)
m + . . . . . . + .Cs(n)Xs(n)

m = Cb (11.2.3)

where s(j) is a solid phase j, Xl
m and Xs(j)

m stand, respectively, for the mass fractions
of liquid and solid j in the total system, and Cb is the bulk content of i (in ppm, or
in whatever unit Cl and Cs have been expressed), that is the content of i in the total
system. In the last equation, Cs(j) can be expressed in terms of Cl according to

Cs(j) = Ds(j)/l(Cl), (11.2.4)

where Ds(j)/l stands for the distribution coefficient of i between solid j and liquid at
fixed P-T-Xsol condition. Equation (11.2.3) then reduces to

Cl

⎛
⎝Xl

m +
n∑

j=1

Xs(j)
m Ds(j)/l

⎞
⎠ = Cb (11.2.5)
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Denoting the terms within the summation sign collectively as 〈D〉s/l, and writing,
following common practice, Xl

m as F, the above expression can be re-written as

Cl

Cb
= 1

F + 〈D〉s/l (11.2.6)

The term 〈D〉s/l is a function of F and mass fractions of solid phases in the total
system. A limiting case, commonly known as modal melting, is that in which the
relative proportions of the solids do not change during melting. In other words,
the mass of each solid undergoes the same fractional change during melting, i.e.
X

sj
m(F) = �X

sj
m(F = 0), where � is a constant fractional quantity. Even in this

case, 〈D〉s/l changes because the mass fraction of each solid within the total system
changes during melting.

It is convenient to recast the last expression in terms of a weighted average dis-
tribution coefficient, D̄s/l, in which a weighting factor for a distribution coefficient
is not the mass fraction of the associated solid in the total system, as for 〈D〉s/l, but
its mass fraction in the solid part of the system, X̄j

m, that is

D̄s/l =
∑

j

X̄j
mDs(j)/l (11.2.7)

If the individual distribution coefficients remain effectively constant during the
melting, then the modal melting process can be treated in terms of a constant
weighted average distribution coefficient. Since X̄j

m = ws(j)/Ws
T, where ws(j) and

Ws
T are, respectively, the weight of solid j and total weight of all solid phases, we

have, from the definitions of
〈
Ds/l

〉
and D̄s/l in Eqs. (11.2.5) and (11.2.7)

〈D〉s/l − D̄s/l =
∑

j

Ds(j)/l
(
Xs(j)

m − X̄j
m

)
(11.2.8)

Also,

Xs(j)
m − X̄j

m = ws(j)

Ws
T + wl

− ws(j)

Ws
T

= − wlws(j)

(Ws
T + wl)Ws

T

where wl is the weight fraction of liquid. Thus,

Xs(j)
m − X̄j

m = −FX̄j
m (11.2.9)

Substituting the last expression into Eq. (11.2.8), we obtain

〈D〉s/l = D̄s/l − F
∑

j

Ds(j)/l
(
X̄j

m

) = D̄s/l − FD̄s/l (11.2.10)

Equation (11.2.5) then reduces to
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Cl

Cb
= 1

D̄s/l + F(1 − D̄s/l)
(11.2.11)

This expression, which was first derived by Shaw (1970) in a different way, can
be used to model the change in the normalized trace element content of melt as
function of melt fraction during both melting and crystallization process, using a
bulk partition coefficient that remains constant in the case of modal melting if the
individual Dsj/l remains constant.

When the total melt fraction F is maintained in equilibrium with the solid until
it is extracted and isolated, as above, the melting process is called batch melting.
If, however, the melt is extracted continuously, and collected in one place to form a
cumulative melt fraction F, the process is called fractional melting. The aggregate
liquid composition, C̄l is given by (Shaw, 1970)

C̄l

Co
= 1

F

[
1 − (1 − F)1/D̄s/l

]
(11.2.12)

For non-modal batch melting, it can be shown by combining Eq. (11.2.11) and
mass balance restrictions (Shaw, 1970) that

Cl

Co
= 1

D̄s/l
o + F(1 − P)

(11.2.13)

where D̄s/l
o is the initial average partition coefficient and P = ∑

j
pjDs(j)/l with pj

being the mass fraction of the mineral j the melt.
Significant dependence of Ds(j)/l on solvent composition in both melt and solid

phases has been demonstrated in some cases that are of importance to the melt-
ing process beneath mid-ocean ridges (e.g. Salters and Longhi, 1999). The above
equations may still be used in these cases by changing D̄s/l in a stepwise fashion
during the melting or crystallization process. In addition, as discussed by Ottonello
(1997), the Henry’s law proportionality constant may change at extreme dilution,
thereby affecting D, as a consequence of changes of solubility mechanism of the
trace elements in solids.

Since the ratio of activity coefficients in Eq. (11.2.1) is constant in the Henry’s
law limit of solute content, the dependences of Ds/l on changes of pressure and
temperature conditions are given by those of the equilibrium constant, K. Thus,

� ln Ds/l

�(1/T)
= −�Ho

R
(11.2.14)

and

� ln Ds/l

�P
= −�Vo

RT
(11.2.15)
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where �Ho and �Vo are, respectively, the enthalpy and volume change of the fusion
reaction (11.2.a) involving pure (or standard state) phases. Since �Ho is negative,
Ds/l decreases with increasing temperature at constant pressure. At low pressure, the
fusion reaction (11.2.a) is associated with negative volume change. Consequently,
Ds/l has positive pressure dependence at low pressure. However, because of greater
compressibility of liquid relative to the solid, �Vo would be progressively less
negative with increasing pressure, and ultimately change sign at sufficiently high
pressure. As a consequence, with increasing pressure, Ds/l would initially increase,
reach a maximum at a critical pressure (�Vo = 0) and then decrease. (Asahara et al.
(2007) found that KD for the reaction FeO (s) = Fe (metallic liquid) + O (metallic
liquid), which is defined as KD = (XFe−l

O )(XFe−l
Fe )/Xmw

FeO, has minima at ∼10 GPa at
temperatures between 2373 K and 3073 K. These results conform to the above anal-
yses of the pressure dependence of Ds/l. Note that Ashara et al. (2007) have written
the liquid component in the right side of the reaction, which is opposite to what we
have done above; hence KD goes through a minimum, instead of a maximum, at a
constant temperature.)

The behavior of Ds/l as function of P and T below the critical pressure where
Ds/l vs. P attains a maximum value is illustrated in Fig. 11.4, using the Na and
REE (3+) partition coefficient between clinopyroxene and melt, as compiled by

Fig. 11.4 Effect of pressure and temperature on the partition coefficients of Na (dashed lines) and
of a trivalent REE (solid line) between clinopyroxene and melt. The thick grey line denotes the
mantle solidud. From McDade et al. (2003). With permission from Elsevier
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McDade et al. (2003). The broken grey line denotes the mantle solidus. As noted
by these authors, the partition coefficient for Na increases whereas that for REE
decreases with increasing pressure along mantle solidus. Adiabatic upwelling and
melting would be associated with decreasing partition coefficient since the process
is nearly isothermal.

11.2.2 Illustrative Applications

11.2.2.1 Trace Element Pattern of Basalt Derived from Garnet-Peridotite

In addition to the problems of dependence of Ds/l on solvent composition, pressure
and temperature, there may also be significant disequilibrium effects due to slow
diffusivity of some elements, e.g. REE in garnet, relative to the time scale of melt
extraction. This would prevent complete equilibration between the mineral and melt,
and thus affect the relationship between normalized trace element content of melt
and the melt fraction or the extent of partial melting of the source rock (Tirone
et al., 2005). Despite these limitations, Eqs. (11.2.11), (11.2.12) and (11.2.13) have
been proved to be useful in understanding the mineralogy of the source region and
the extent of partial melting that gave rise to a certain type of basaltic rock. As
an illustration, we calculate the normalized REE content of melt as function of
the extent of partial melting of a garnet-peridotite consisting of the phases olivine
(60%), orthopyroxene (20%), clinopyroxene (10%), and garnet (10%). As melting
proceeds, D̄s/l changes because of the change in the relative abundances of the min-
erals, in addition to the effects of changing P-T conditions that lead to the increase
of melt fraction. We assume, however, that for small amount of partial melting,
D̄s/l remains approximately constant. The results of calculation for 2%, 4% and 8%
partial melting of garnet peridotite are illustrated in Fig. 11.5. In these calculations,
Ds/l values for individual elements are taken from the compilation By Shaw (2006).
We find that for small amount of partial melting the liquid is enriched, relative to the
source rock, in light REE (or LREE). The normalized REE pattern of the liquid fans
out from the heavy REE (HREE), with a counter-clockwise rotation with increasing
partial melting.

The LREE enrichment pattern of liquid shown in Fig. 11.5 represents a signature
of the presence of garnet in the source region, and thus constrains a minimum depth
within the Earth’s mantle for the generation of the melt, since at pressures below
20 kb (∼60 km), garnet-peridotite transforms to spinel-peridotite. The effect of gar-
net on the trace element pattern of the melt is illustrated by showing the pattern
(dash-dot line connecting diamond symbols) that would be generated for 2% partial
melting if garnet were effectively the only mineral in the rock so that D̄s/l = DGrt/l

for each REE.
The bulk distribution coefficient may change during partial melting due to change

in the modal abundances of the minerals and changing P-T conditions as the body of
rock undergoing partial melting ascends upwards in the Earth’s interior. The effect
of lowering of Dsj/l by a factor of 2 for 8% partial melting is shown in Fig. 11.5 by
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Fig. 11.5 Rare Earth Element patterns of melt, normalized to that of the source region, derived
by 2%, 4% and 8% partial melting of a garnet peridotite (40% olivine, 20% orthopyroxene, 10%
garnet, 10% clinopyroxene). The short-dashed line labeled “Grt Pattern” shows the pattern that
would develop if garnet were the only mineral in the source region. The dashed-line connecting
filled triangles shows the effect of lowering the individual element distribution coefficient by a
factor of two for 8% partial melting

a dashed line connecting solid triangles. The effect of adiabatic decompression is
expected to cause a decrease of Dsj/l, as discussed above.

11.2.2.2 Highly Incompatible Trace Element as Indicator of Source
Region of Melt

Trace element with values of Ds/l << 1 are referred to as highly incompatible trace
elements since these strongly partition to liquid, and are hence highly incompatible
in the crystalline sites (Ds/l > 1 are referred to as compatible trace element). It is easy
to see from Eqs. (11.2.11), and (11.2.13) that the ratio of two highly incompatible
trace elements, i and k, in a melt is essentially the same as that in the source rock
prior to melting, i.e.

(
Ci

Ck

)l

=
(

Ci

Ck

)o

(11.2.16)

Thus, the ratio of highly incompatible trace element provides important constraint
about the source region.

11.2.3 Estimation of Partition Coefficient

Because of lack of sufficient data on the dependence of Ds/l on pressure, temper-
ature and solvent composition, geochemists often use a constant average value of
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Ds/l to model trace element evolution as function of melt fraction F, even though
Ds/l may change substantially as the P, T and solvent (melt and solid) compositions
change during the course of melting. Blundy and Wood (1994) developed a method
of estimation of trace element partition coefficient by expressing �Go of the fusion
reaction (11.2.a) in terms of the lattice strain energy associated with the substitution
of a trace element i in the crystal lattice for a host element j. With some modification,
but without affecting the final result, the Blundy-Wood model can be developed as
follows. Limitations of the model and further improvements using computer simu-
lations have been discussed by Allan et al. (2001).

The standard state Gibbs energy, Go
i , of either solid or liquid may be represented

as a sum of two terms as

Go
i = Go

j + �Go
j→i

where the first right hand term is the standard Gibbs energy of the phase with a host
cation j, and the second right hand term is the free energy change associated with
replacing j by i. Thus, we can write for the (11.2.a)

�Go
a = Go

i (s) − Go
i (l)

=
(

Go
j (s) + �Go

j→i(s)
)

−
(

Go
j (l) + �Go

j→i(l)
)

= −
(

Go
j (l) − Go

j (s)
)

︸ ︷︷ ︸
�Go

j (f)

+
(
�Go

j→i(s) − �Go
j→i(l)

) (11.2.17)

The first parenthetical term after the last equality is simply the free energy of fusion
of the solid with the host cation j, �Go

j (f).
In the absence of significant chemical effects such as those due to crystal field

effect (Sect. 1.7.2) and change of bonding energy, the term �Ho
j→i should be essen-

tially the same as the strain energy, �Estrain (j → i), associated with the complete
replacement of the host cation j by the cation i. Also, since the liquid structure is
open and flexible, the substitutional strain energy for the liquid should be negligible
compared to that for the solid. Using these ideas, and decomposing each free energy
term in the last equation into an enthalpic and an entropic term (according to the
relation G = H − TS), the equlibrium constant for the fusion reaction (11.2.a) can
be expressed as

Ka = e−�Go
a/RT = Ko

ae
(
−�Es

Strain (j→i)

)
/RT

(11.2.18)

where Ko
a is a function of only P and T, and is given by

Ko
a =

[
e

(
�So,f

j +�So
j→i(l)−�So

j→i(s)
)
/R

][
e−�Ho,f

j /RT
]

(11.2.19)

Combining Eqs. (11.2.18) and (11.2.1), and rearranging terms, we obtain



362 11 Element Fractionation in Geological Systems

Ds/l
i =

[
Ko

ae
(
−�Es

strain (j→i)

)
/RT

][
�s

i

�l
i

]
(11.2.20)

In the Henry’s law limit, the activity coefficients become constant at constant P-T
and solvent composition. Thus, if the solute i obeys Henry’s law, then the �i terms
can be combined with Ko

a to define a new parameter Ds/l
o that is a constant at constant

P-T condition and constant solvent composition. Thus, we finally have

Ds/l
i = Ds/l

o e−(�Estrain(s))/RT (11.2.21)

Blundy and Wood (1994) expressed the strain energy term according to a relation
derived by Brice (1975) for the mechanical strain energy around a homovalent cation
defect in an elastically isotropic medium. This leads to an expression of Di

s/l in
terms of the radius of the host cation site, ro, that of the substituting trace element,
ri, and an effective Young’s modulus, E, for the crystallographic site in which the
substitution takes place. The expression is

Ds/l
i ≈ Ds/l

o exp

[
−4πLE

(
ro

2
(ri − ro)2 + 1

3
(ri − ro)3

)
/RT

]
(11.2.22)

where L is the Avogadro’s number and R is the gas constant. According to this
relation, Di

s/l vs ri has a parabola like relation, attaining a maximum value Do at
ri = ro, that is when the strain energy associated with a substitution vanishes. Hence,
Do

s/l is referred to as strain-free partition coefficient.
Figure 11.6 shows good agreement between the experimental data and the form

of the relation between Di
s/l and ri that is predicted by the above expression. Thus, if

sufficient data are available for mineral-melt partition coefficients of cations of the
same charge in a given mineral, Do

s/l, E and ro can be retrieved by statistical fitting
of the data, and then used to predict the partition coefficient of other cations of the
same charge and chemical properties for which no experimental data are available.
One can also a priori fix ro from the size of the best-fit cation in the particular site in
which substitutions of the trace elements take place, such as the eight-coordinated
radius of Ca if the substitutions take place in the eight coordinated M2 site of
clinopyroxene. The magnitude of E relates to the stiffness of the crystallographic
site, and determines the tightness of the parabola-like Di

s/l vs. ri curve, with tighter
or more compressed form being related to larger value of E.

Using the last expression, one can easily derive a relationship between the par-
tition coefficients of two trace elements, eliminating the strain free partition coef-
ficient, Do

s/l. This permits evaluation of the unknown partition coefficient of an
element from knowledge of the known partition coefficient of another element in
the same mineral/melt system. For heterovalent substitution, im+ substituting for jn+

(m 
= n), Wood and Blundy (1994) suggested scaling of the pre-exponential term
from the available data on partition coefficients for cations with charges m+ and n+.
For example, they find that Do

3+/Do
2+ is 0.14 ± 0.06 for clinopyroxene. They used
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Fig. 11.6 Effect of ionic radius on trace element partitioning between garnet, Prp73Alm9Grs19,
and melt. The symbols denote experimental data at 1540

◦
C, 29 kbar and while the fitted curves

are according to the Blundy-Wood model, Eq. (11.2.22). From Van Westrenen et al. (2000). With
permission from Elsevier

this value to successfully predict the partition coefficient of trivalent REE between
clinopyroxene and melt with Ca2+ being the host cation in clinopyroxene.

11.3 Metal-Silicate Fractionation: Magma Ocean
and Core Formation

It is commonly accepted that in the early period of the Earth’s history, a significant
portion of the mantle underwent melting to form what is referred to as the “terrestrial
magma ocean” as a result of heat produced by giant impacts. The segregation of
iron rich metal to form the Earth’s core has taken place by settling of metal droplets
through the magma ocean that led to the scavenging of the siderophile elements into
the core. This is also true for Moon, Mars and the asteroid Vesta. The metal droplets
were likely to have ponded at the base of the terrestrial magma ocean and finally
descended as diapirs to form the Earth’s core (Fig. 11.7).

The abundance of siderophile elements, such as Ni, Co, Mo, W etc. in the Earth’s
mantle is found to be considerably larger than what one would predict from the
equilibrium fractionation of these elements between molten iron metal and silicate
melt at 1 bar pressure and moderate temperatures (1200–1600

◦
C). This is known

as the “excess siderophile” problem of the Earth’s mantle, and has been a topic
of considerable interest and research in recent years (see reviews by Righter and
Drake, 2003; Wood et al., 2006 and Rubie et al., 2007). The general consensus that
seems to have emerged is that the abundances of the siderophile elements appear to
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Fig. 11.7 Schematic illustration of the process of metal-silicate separation through the formation
of a silicate magma ocean in the early history of Earth. The central panel shows a deep magma
ocean overlying the lower mantle (white) and ponding of falling metal droplets at the base of the
magma ocean. The metal in the ponded layer periodically descends as large diapirs to form the
Earth’s core. From Rubie et al. (2003). With permission from Elsevier

be in excess in the Earth’s mantle because the expected abundances are calculated
on the basis of low pressure partitioning data while the equilibration of these ele-
ments between liquid metal and silicate melt had likely taken place at high pressure
condition in a deep magma ocean. (The “excess siderophile” problem is also true
for the mantles of Mars, Moon and Vesta.)

Although the Earth’s mantle has apparent “excess” problems for the moderately
siderophile elements Ni and Co, these elements have the same relative abundance
as in the chondritic meteorites (Ni/Co: Earth’s mantle = 18.2; Chondrites = 21.2),
which are thought to constitute the precursor materials that accreted to form the
Earth. Thibault and Walter (1995) and Li and Agee (1996) have experimentally
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determined the pressure dependence of the partition coefficients of Ni and Co
between liquid metal and silicate melt as function of P at 2123–2750 K, and found
the logD vs. P trend for the two metals to intersect at ∼ 28 GPa. In addition, the
D values at this pressure are found to be reduced to a level that is compatible
with the inferred concentrations of Co and Ni in the Earth’s mantle (Fig. 11.8a).
Thus, these experimental results seem to simultaneously resolve two problems (i.e.
apparent overabundance and chondritic relative abundance of Co and Ni in the
mantle), and also suggest a deep magma ocean with a pressure of ∼ 28 GPa near
the bottom. However, subsequent experimental study by Kegler et al., (2005) show
that the distribution coefficients, KD, of both Co and Ni between liquid metal and
silicate melt have similar pressure dependencies (Fig. 11.8b). The break in the slope
of lnKD vs. P at ∼ 3 GPa has been ascribed to a change of coordination number
of Co2+ and Ni2+ in the silicate melts (Keppler and Rubie, 1993). In addition to

(a) 

(b)

f(O2) = 1.9 log units 
below Fe-FeO buffer 

DFe-l/sm 

KD
Fe-l/sm 

5 15 25 

P (GPa) 

P (GPa) 

Ni 
Co 

core/mantle 

Fig. 11.8 Pressure dependencies of the (a) partition and (b) distribution coefficients of Ni and Co
between Fe-liquid and silicate melt. The data in (a) are from Thibault and Walter (1995) and Li and
Agee (1996) and in (b) are from Kegler et al. (2005). The horizontal patterned box in (a) shows
the range of D values that explain the inferred abundances of Ni and Co in the terrestrial mantle
and core, assuming equilibrium partitioning. From (a) Wood et al. (2006) (with permission from
Nature) and (b) Keggler et al. (2005)
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Fig. 11.9 Effect of oxygen
fugacity (fO2) on the
metal/silicate partition
coefficient Ni, Ge and P.
IW-1: one log unit below the
f(O2) of iron-wüstite-iron
buffer. From Righter (2003)

pressure, oxygen fugacity has also been found to have significant influence on
the metal/silicate partition coefficients (Fig. 11.9). Thus, the effect of changing
f(O2) also needs to be accounted for in evaluating metal-silicate partitioning in a
magma ocean. In this section, we consider the thermodynamics of metal/silicate
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equilibrium, and address the problem of pressure dependencies of the partition (D)
and distribution (KD) coefficients of Co and Ni between metallic liquid and silicate
melt. (We return again to the problem of core formation in the Earth and Mars in
Sect. 13.7.)

11.3.1 Pressure Dependence of Metal-Silicate Partition Coefficients

As pointed out by Capobianco et al. (1993), the partitioning of an element, such as
Ni, between liquid metallic Fe and silicate melt involves a change of the oxidation
state of the element, and therefore can not be treated in terms of a transfer equi-
librium analogous to reaction (11.2.a); instead the problem must be treated on the
basis of a redox reaction that conserves both mass and charge. Thus, the appropriate
reaction governing the partitioning of Co between Fe-liquid (Fe-l) and silicate melt
(sm) is given by

Co (Fe − liquid) + 1/2 O2(g) = CoO (silicate melt) (11.3.a)

An analogous reaction describes the partitioning of Ni. Choosing the pure state of
the condensed phases at P and T to be their respective standard states, as we have
often done before, and that of O2 gas at 1 bar (which effectively equals unit fugacity)
and T to be the standard state of oxygen, we have at equilibrium

�rG(P, T, X) = 0 = �rG
o
con(P, T) − Go

O2
(1bar, T)︸ ︷︷ ︸

�rG
∗(T)

+RT ln
asm

CoO(
aFe−l

Co

) (
fg
O2

)1/2

(11.3.1)

where the superscript o indicates pure phase, and �rGo
con = Go

CoO(sm) − Go
Co(Fe−l).

The first two terms on the right of the above equation constitute the standard state
free energy change of the reaction (11.3.a) at T, while the appearance of fugacity
instead of activity of oxygen in the denominator of the equation is a consequence
of the specific choice of standard state for O2(g) (a(O2) = f(O2)/f*(O2), while at P =
1 bar, f*(O2) ∼ 1). By convention, Go

O2
(1 bar, T) = 0. Now, defining the partition

coefficient of Co as

DFe−l/sm
Co = XFe−l

Co

Xsm
CoO

. (11.3.2)

Equation (11.3.1) can be written as

RT ln DFe−l/sm
Co = �rG

o
con + RT ln�sm

CoO − RT ln�Fe−l
Co − 1

2
RT ln fg

O2
(11.3.3)
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The pressure dependencies of the first and last terms on the right are evaluated
according to the relations (�G/�P)T = V and RT(�lnfi/�P)T = vi Eq. (10.11.15a),
respectively, where vi is the partial molar volume of i. In order to evaluate the pres-
sure dependence of the activity coefficient terms at constant temperature, we first
write ln� = f(P,T,X). Thus, using the total derivative of ln� at constant temperature,
we have (Eq. B.1.4)

(
� ln �i

�P

)
T

=
(
� ln �i

�P

)
T,X

(
�P

�P

)
T

+
(
� ln�i

�Xi

)
P,T

(
�Xi

�P

)
T

Assuming that a dilute siderophile element obeys Henry’s law, the last term in the
above expression drops out since �i is independent of Xi within the Henry’s law
limit at constant P-T condition and solvent composition (Sect. 8.8.1), in which case,
using Eq. (10.11.7)

(
� ln �i

�P

)
T

≈
(
� ln�i

�P

)
T,X

= vi − Vo
i (11.3.4)

where Vo
i and vi are, respectively, the molar volume and partial molar volume of i.

Thus, we obtain
(
� ln DFe−l/sm

Co

�P

)

T

= 1

RT

(
�rvCo − 1

2
vO2

)
(11.3.5)

where �rvCo = vCoO(sm) – vCo(Fe-l).
For the general case of an arbitrary oxidation state of the partitioning metallic

ion in silicate melt, one writes (Capobianco et al., 1993)

M(Fe − l) + n/4 O2 = Mn+On/2 (silicate melt) (11.3.b)

where n is the charge on the metal ion. Following the derivations of the Eqs. (11.3.3)
and (11.3.5), we then have the general expressions

RT ln DFe−l/sm
M = �rG

o
con + RT ln�sm

MOn/2
− RT ln�Fe−l

M − n

4
RT ln fg

O2
(11.3.6)

and

RT

(
� ln DFe−l/sm

M

�P

)

T

=
(
�rvM − n

4
vO2

)
(11.3.7)

where the partition coefficient of M is defined as

DFe−l/sm
M =

XFe−l
MOn/2

Xsm
M

(11.3.8)
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and

�rvM = vMn+On/2(sm) − vM(Fe−l) (11.3.9)

The second term on the right of Eq. (11.3.7) (i.e. vO2) contributes to negative pres-
sure dependence of DFe−l/sm

M , but the pressure dependence of D may be either posi-
tive or negative depending on the values of �rvM and vO2.

11.3.2 Pressure Dependence of Metal-Silicate
Distribution Coefficients

The distribution of a species between Fe-liquid and silicate melt can also be treated
in terms of an exchange reaction as discussed in the Sect. 11.1.1. Thus, we write

Fe(Fe − l) + CoO (silicate melt) = Co(Fe − l) + FeO (silicate melt) (11.3.c)

for which the distribution coefficient, KD, is (see Eq. (11.1.2))

KD(Co − Fe)Fe−l/sm = (XCo/XFe)Fe−l

(XCoO/XFeO)sm (11.3.10)

According to Eq. (11.1.3)

ln KD(Co − Fe)Fe−l/sm = ln K3.c − ln K�(3.c) (11.3.11)

where K�(3.c) is the ratio of the activity coefficients defined as

K�(3.c) = (�Co/�Fe)Fe−l

(�CoO/�FeO)sm (11.3.12)

Differentiating both sides of Eq. (11.3.11) with respect to pressure, and rearranging
terms, we obtain

(
� ln KD(Co − Fe)Fe−l/sm

�P

)
T

= −�rvCo

RT

= − 1

RT

[(
vCo(Fe−l) − vFe(Fe−l)

) − (
vCoO(sm) − vFeO(sm)

)]
(11.3.13)

Derivation of this expression, which follows similar manipulations as those used to
derive Eq. (11.3.5) including assumption of Henry’s law behavior of Co and Fe, is
left to the reader as an exercise.

For a metal that oxidizes to a valence state n, we can write the exchange reaction
in the general form

n/2 Fe(Fe − l) + Mn+On/2(silicate melt) = M(Fe − l) + n/2 FeO(silicate melt)
(11.3.d)
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for which

(
� ln KD(M − Fe)Fe−l/sm

�P

)
T

= − �rvM

RT

= − 1

RT

[(
vM(Fe−l) − n

2
vFe(Fe−l)

)
−

(
vMOn/2(sm) − n

2
vFeO(sm)

)]
(11.3.14)

11.3.3 Pressure Dependencies of Ni vs. Co Partition- and
Distribution-Coefficients

From Eq. (11.3.5) and analogous relation for DFe−l/sm
Ni , we have at constant temper-

ature

�

�P

(
� ln DFe−l/sm

Ni−Co

)
= 1

RT
(�rvNi − �rvCo)

= 1

RT

[(
vCo(Fe−l) − vNi(Fe−l)

) − (
vCoO(sm) − vNiO(sm)

)]
(11.3.15)

where � ln DFe−l/sm
Ni−Co = ln DFe−l/sm

Ni − ln DFe−l/sm
Co . Similarly, from Eq. (11.3.13) and

analogous expression for the distribution coefficient of Ni, we have

�

�P

(
� ln KD(Ni − Co)Fe−l/sm

)

= 1

RT

[(
vCo(Fe−l) − vNi(Fe−l)

) − (
vCoO(sm) − vNiO(sm)

)]
(11.3.16)

where �lnKD(Ni-Co)Fe–l/sm = lnKD(Ni-Fe)Fe–l/sm – lnKD(Co-Fe)Fe–l/sm. The right
hand terms of the last two equations are exactly the same. Consequently, the data on
the pressure dependence of lnD and lnKD, as illustrated in Fig. 11.8, are mutually
incompatible. Thus, the issue of the relative pressure dependence of the partition or
distribution coefficient of Ni and Co between Fe-liquid and silicate melt remains
unresolved. However, we seek reasonable resolution of the problem as follows.

Since Fe (3d64s2), Co (3d74s2) and Ni (3d84s2) occupy three successive positions
in a row in the periodic table, it is reasonable to assume that vNi/NiO – vCo/CoO ≈
vCo/CoO – vFe/FeO, where vNi/NiO means the partial molar volume of Ni or NiO, and
so on, with the partial molar volumes of metals taken in Fe-liquid, and those of
metal-oxides taken in silicate melt. Thus, we write, using Eq. (11.3.16)

�

�P

(
� ln KD(Ni − Co)Fe−l/sm

) = − 1

RT

[(
vNi(Fe−l) − vCo(Fe−l)

) − (
vNiO(sm) − vCoO(sm)

)]

≈ − 1

RT

[(
vCo(Fe−l) − vFe(Fe−l)

) − (
vCoO(sm) − vFeO(sm)

)]
(11.3.17)
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The quantity after the approximation sign is the same as that describing the pressure
dependence of ln KD(Co-Fe)Fe–l/sm (Eq. 11.13.13). Thus, using the experimental data
illustrated in Fig. 11.8b, the quantity within the square brackets after the approxima-
tion sign is evaluated to be ∼ 8 cm3/mol. For brevity, we now denote the volumetric
quantities within the first and second square brackets in the last equation as

�rVNi−Co = (
VNi(Fe−l)VCo(Fe−l)

) − (
VNiO(sm) − VCoO(sm)

)
(11.3.18)

�rVCo−Fe = (
VCo(Fe−l) − VFe(Fe−l)

) − (
VCoO(sm) − VFeO(sm)

)
(11.3.19)

Assuming �rvCo-Fe to be insensitive to pressure, as suggested by the linear trend of
lnKD vs. P data at P > 3 GPa in Fig. 11.8b, we now integrate Eq. (11.3.17) between
two pressures P* and Pref to obtain

[
� log KD(Ni − Co)

]
P∗ − [

� log KD(Ni − Co)
]

pref ≈ −8(P∗ − Pref)

2.303RT
(11.3.20)

where

� log KD(Ni − Co) = log KD(Ni − Fe)Fe−l/sm − log KD(Co − Fe)Fe−l/sm

at the specified pressure shown as a subscript. This equation shows that
� log KD(Ni − Co)P∗<� log KD(Ni − Co)P

ref at P* > Pref, that is, the logKD vs.
P trends of Ni and Co converge with increasing pressure. Now, if the logKD vs. P
trends for Ni and Co intersect at the pressure P*, then the first term on the left of
Eq. (11.3.20) is zero, so that

P∗ ≈ Pref + 2.303RT(� log KD(Ni − Co)P
ref

8
(11.3.21)

Choosing Pref as 5 GPa, and retrieving �logKD(Ni-Co) at 5 GPa from Fig. 11.8b, we
finally obtain P* ≈ 32.3 GPa.

Thus, given the reasonable premise used in deriving the last expression, that is
�rvNi-Co ≈ �rvCo-Fe, we conclude that the dual problem of “excess abundance” of Ni
and Co in the mantle and the chondritic relative abundance of these elements may
be resolved if equilibrium was achieved between Fe-liquid and magma ocean at a
depth corresponding to ∼ 32 GPa, which is similar to the depth of intersection of
the logD vs. P trends of Ni and Co in Fig. 11.8a. A 20% error in the inferred value
of �rvNi-Co yields a pressure range of 27–41 GPa for the intersection of the logD vs
P trends of Ni and Co.
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11.4 Effect of Temperature and f(O2) on Metal-Silicate Partition
Coefficient

Various estimates about the temperature of core formation in the Earth vary between
2000 and 3750 K at 25–50 GPa (Rubie et al., 2007). Despite major advancements in
the high pressure-temperature experimental studies, it is still necessary to extrapo-
late the laboratory experimental partitioning data to the high P-T conditions relevant
to core formation. These extrapolations, however, need to be guided by thermody-
namic principles.

The expression for the temperature dependence of the distribution coefficient at
a constant pressure is readily obtained from Eq. (11.3.6) as
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To evaluate the first two terms on the right, we note that
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and
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where hi is the partial molar enthalpy of the component i. (The first equality in
the last equation follows from the relation �i = �i

o + RTlnXi + RTln�i.) Assum-
ing Henry’s law behavior of the siderophile elements, we obtain (�ln�i/�T)P =
(�ln�i/�T)P,X. The derivation of the last relation is analogous to that of the first
equality of Eq. (11.3.4). Thus, substitution of the last two relations in Eq. (11.4.1),
and rearrangement of terms yield

� ln DFe−l/sm
M

�T
= − �rh

RT2 − n

4

� ln fO2

�T
(11.4.4)

where �rh = h(MOn/2)sm – h(M)Fe-l, from which we obtain
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4
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)
(11.4.5)

It is sometimes convenient to replace −dT/T2 by d(1/T) so that, if �rh is constant
over a chosen temperature interval, then
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There are no data for the partial molar enthalpies in the systems of interest, which
makes the extrapolation of lnD vs. T very difficult. Capobianco et al. (1993) made
the extrapolations assuming �rh = �rHo.

According to Eq. (11.4.6), logD vs. logf(O2) relation is expected to be linear
with a slope of –n/4, if the effect of the variation of the activity coefficient terms are
negligible. The data summarized in Fig. 11.9 show that slopes of logD vs. logf(O2)
relations of the different cations are almost exactly –n/4 if n is the number of charges
in the conventional valence state of the ions (2 for Ni, 4 for Ge and 5 for P). Thus,
it seems quite reasonable to predict –n/4 for the slopes of the logD vs. logf(O2)
relations of other trace elements, with n representing the number of charges in their
conventional valences.



Chapter 12
Electrolyte Solutions and Electrochemistry

An electrolyte is a compound which dissociates into charged species, either partially
or completely, after dissolving in a solution. In general, we can write the following
dissociation reaction for an electrolyte:

M
+ A
− = 
+(Mz+) + 
−(Mz−) (12.a)

where ν+ and ν− are the numbers of positive and negative ions (or ionic complexes),
respectively, and z+ and z− are their respective formal charges. For example, H2SO4

dissociates in an aqueous solution according to H2SO4 = 2 H+ + (SO4)2− . In this
case, ν+ = 2, z+ = 1+, ν− = 1, z− = 2−. Thermodynamics of electrolyte solutions
play very important roles in the understanding of chemical equilibrium and redis-
tribution of components in a variety of geochemical processes, such as those relat-
ing to ocean-atmosphere and fluid-rock interactions, solute transport in an aqueous
solution, formation of sedimentary rocks, magma-hydrothermal systems etc.

Electrolytes are classified as strong or weak electrolytes according to whether
these dissociate strongly or weakly in an aqueous solution. In dealing with
electrolyte solutions, it is customary to use molality as a measure of concentration
of the solute species. Molality is defined as the number of moles per kg of pure
solvent, usually water1. The content of dilute electrolytes in a solution is commonly
reported as ppm values, which indicate the mass of a solute per 106 g of solution. It
should be easy to see that the values reported as ppm can be converted to molality
according to the relation

molality = (ppm/g–formula weight of the solute) × 10−3

A solution may be neutral or charged electrically. The properties of an ion in an
electrically neutral solution are much different from those in a charged solution. In

1A similar sounding measure of concentration is molarity, M, which is defined as the moles of
solute per thousand mililiters of solution. The molarity measure is avoided since the solvent density
changes as a function of P-T condition making M a function of P-T.

J. Ganguly, Thermodynamics in Earth and Planetary Sciences, 375
DOI 10.1007/978-3-540-77306-1 12, C© Springer-Verlag Berlin Heidelberg 2008
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dealing with the thermodynamics of electrolyte solution, the solution, as a whole is
treated as electrically neutral.

12.1 Chemical Potential

The chemical potential of a species in an electrolyte solution is defined in the
usual way (Box 8.1.2). For example, the chemical potential of a positive ion, �+

is defined as

�+ =
(
�G

�n+

)
P,T,n−,nu,no

(12.1.1)

where G is the total Gibbs free energy of the neutral solution, n+ and n− are the num-
ber of moles of positive and negative ions, respectively, nu is the number of moles
of the undissociated solute, and no is the number of moles of the solvent. Because
of the electroneutrality condition, the chemical potential of a charged species can-
not be measured directly by conventional methods as these require a macroscopic
change in the number of moles of a charged species, while holding the number of
moles of the species of opposite charge constant (along with the other variables).
However, it is formally correct to use chemical potentials of charged species in the
treatment of electrolyte solution, and a specific linear combination of �+ and �− can
be measured, as discussed below, following the exposition of Denbigh (1981).

If �u is the chemical potential of the undissociated part of the electrolyte, then
from reaction (12.a), we have at equilibrium

�u = 
+�+ + 
−�−, (12.1.2)

Let us now consider the rate of change of Gibbs free energy of the solution with
respect to the addition of an electrolyte. If dme stands for an infinitesimal addition
of the moles of the electrolyte (e), then we define a chemical potential � of the
electrolyte as a whole as the rate of change of G with respect to me. Thus,

� =
(
�G

�me

)
P,T,no

(12.1.3)

Note that we are not concerned here what happens to the electrolyte after it is dis-
solved. Combining the expression of the total derivative of G of the solution with
Eq. (12.1.2) and the relationship among m and the various dissolved species, it can
be shown that at equilibrium (e.g. Denbigh, 1993)

� = 
+�+ + 
−�− (12.1.4)

Thus, since � is measurable, the linear combination of the chemical potentials of the
ionic species represented on the right side of the above equation is also measurable.
Comparing Eqs. (12.1.2) and (12.1.4).
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� = �u = 
+�+ + 
−�− (12.1.5)

12.2 Activity and Activity Coefficients: Mean Ion Formulations

The activity expressions for the dissociated and undissociated (u) solute species are
based on their molalities as

ai = mi�i (12.2.1)

where ai and mi stand respectively for the activity and molality of the species i.
Because of the problem associated with the measurement of individual ion activities,
it is customary in the treatment of electrolyte solution to introduce linear combina-
tion of the ion activities that can be measured, and this has led to the development
of the concept of what is known as the mean ion activity and mean ion activity
coefficient2.

Expressing the chemical potentials of the charged species in terms of their respec-
tive standard state properties and activities in the usual way (Eq. (8.4.5)), we have
from the last two expressions

� = �u = 
+
⌊
�∗

+ + RT ln (m+�+)
⌋ + 
−

⌊
�∗

− + RT ln (m−�−)
⌋

= 
+�∗
+ + 
−�∗

− + RT ln
[
(m+)
+ (m−)
−

] + RT ln
[
(�+)
+ (�−)
−

] (12.2.2)

where m+ and m− stand for the molalities of the positive and negative ions, respec-
tively, and the superscript * stands, as usual, for the standard state at the temperature
of interest. The activity coefficient product within the last square brackets is used to
define a mean ion activity coefficient, �±, of the electrolyte as

(�±)
 = (�+)
+(�−)
− (12.2.3a)

or

�± = [(�+)
+(�−)
−]1/
 (12.2.3b)

where ν = ν+ + ν− . Similarly, one can define a mean ion activity of the electrolyte
as

a± = m±�± (12.2.4)

where m±, known as the mean ion molality, is defined in a similar manner as �±,
using the individual ion molalities. Equation (12.2.3b) can be generalized as

2As we would see later, one often uses a quantity know as pH that is defined as pH = -log aH
+. The

activity of H+ ion may be determined by a combination of experimental and theoretical procedure,
but as discussed by Pitzer (1995) , “the basic uncertainty of single ion activity remains.”
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�± ,k =
(∏

i

�
i
i

)1/


, (12.2.5)

where k stands for an electrolyte, i stands for a dissociated species, ν i for its stoi-
chiometric coefficient, and ν = �ν i.

12.3 Mass Balance Relation

An ion in a solution may exist both as a free ion and by complexing with another ion,
or simply by complexing with other ions. For example, in an aqueous solution of.
NaCl and Na2SO4, sodium may be present as free Na+ ion, NaCl, NaSO4− , Na(OH)
and Na2SO4. In that case one can define a total molality of sodium as

mNa(tot) = mNa+ + mNaCl + mNaSO4− + mNa(OH) + 2(mNa2SO4 )

(the multiplier 2 in the last term is due to the fact that there are 2 moles of Na in a
mole of Na2SO4). In general, we can then write

mi(tot) =
∑

k

νi(k)mk (12.3.1)

where ν i(k) is the number of moles of the i th ion in the solute k and mk is the number
of moles of that solute.

12.4 Standard State Convention and Properties

12.4.1 Solute Standard State

When dealing with a major component (j) in a solution, it is usually desirable to
choose a standard state such that aj = Xj as Xj → 1. As discussed in Sect. 8.8.2,
this objective is realized by choosing a standard state of pure component at the P-T
condition of interest. In dealing with a dilute solution, it is advantageous (to simplify
life) to choose a standard state for the solute such that ai = mi as mi → 0, since it
is the property of the solute in dilute concentration that is of interest. Note that the
manipulation of the theoretical framework so that the activity coefficient assumes
a unit value (or any other value) does not affect the final outcome if the analysis is
carried out in a self-consistent manner.

According to Henry’s law for dilute solute (Eq. (8.8.1′)), fi = K∗
Hmi as mi → 0,

where i is an actual solute and K∗
H is a constant that is commonly referred to as the

Henry’s law constant (it is simply an activity coefficient that is independent of the
concentration of the solute within a specified range). Let us now extrapolate fi along
the line fi = K∗

Hmi, which we would refer to as ‘Henry’s law line’, to mi = 1 and
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1
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fi

fi
*

mi10
0 0

mi

ai = mi

(a) (b) 

Standard
state

Henry’s
law line

Fig. 12.1 Illustration of the choice of solute standard state by extrapolating the Henry’s law line
(dotted line) to unit molality in the (a) fugacity vs. molality space and (b) activity vs. molality
space. The solid lines show schematic behaviors of a real solution with negative deviation from
ideality. In (a), the Henry’s law line follows relation f = KH(mi) where KH is a constant, whereas
f* is the fugacity of the hypothetical standard state at unit molality

choose the resultant hypothetical state of the solute as its standard state (Fig. 12.1a).
This is often referred to as the solute standard state based on the properties at the
infinite dilution. The slope of the Henry’s law line, K∗

H, then becomes fi*/1 = fi*.
Thus, the Henry’s law transforms to

limit fi = f∗i mi

mi → 0

Since by definition, ai = fi/fi* (Eq. 8.4.8), we then have

limit ai = mi,

mi → 0
(12.4.1)

as illustrated in Fig. 12.1b.
For any ionic species, the solute standard state defined according to the above

procedure is a hypothetical state since an ionic species in a real solution does not
follow Henry’s law up to unit molality. However, for a neutral solute, the Henry’s
law behavior may be followed in the real solution up to unit molality, in which case,
the standard state chosen according to the above procedure constitutes a real state.
The solute standard state conforming to the property of unit activity at the unit
molality, whether it is real or hypothetical, will henceforth be designated by the
superscript symbol x.

Instead of the activity of an actual solute, we may want to deal with the activity of
a strong electrolyte (e.g. NaCl), ae, even though it has almost completely dissociated
in solution. In that case, as discussed in Sect. 8.8.1 (Eq. (8.8.12)), we would find that

ae ∝ (m•)ν, as m• → 0,
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where ∝ indicates proportionality and m• is the molality of the electrolyte that one
would calculate had there been no dissociation (simply by knowing the amount of
the electrolyte added to the solution), and ν = ν+ + ν− . It is easy to see that the
above choice of “solute standard state” defined by the extrapolation of the Henry’s
law behavior to unit molality leads to the relation

ae = (m•)
 as m• → 0 (12.4.2)

Although it should be obvious, it is reiterated that both Eqs. (12.4.1) and (12.4.2)
are statements of the Henry’s law in which the proportionality constants have
been made to assume the value of unity through a clever choice of standard
state.

12.4.2 Standard State Properties of Ions

Because of the problem with the experimental determination of single ion properties
in a solution that is effectively electrically neutral, one obtains Gibbs free energy
of formation of combination of ions, such as of H+(aq) and (OH)

−
(aq), NH4

+(aq)
and (OH)

−
(aq), and so on. However, it is cumbersome to have listing of �Gf of

combination of ions. The convenient alternative to this practice is to have �Gf of
each ion in combination with a common ion, and assume the �Gf of the latter to be
zero. This is done by assuming that �rG (1 bar, T) = 0 for the reaction

1/2H2(g) ↔ H+(1 molal ideal aqueous solution) + e−, (12.4.a)

This is equivalent to saying that the standard state free energy of formation of
H+ ion in an one molal ideal aqueous solution from a gaseous state is zero at any
temperature at 1 bar pressure. It follows that since �(�rG)/�T = − �rS, and �rG =
�rH − T�rS, both entropy and enthalpy of changes of the above reaction must also
be zero.

To see how �Gx
f of other ions are calculated in a systematic way by assigning a

zero value to �Gx
f (H+), let us consider the following example, which is discussed

by Denbigh (1981). For the ion pair H+(aq) and (OH)−(aq),

�Gx
f (1 bar, 298K) = −157,297.48 J/mol,

whereas for the ion pair NH4
+(aq) and (OH)−(aq),

�Gx
f (1 bar, 298 K) = −236,751.64 J/mol.

Now, since �Gx
f (H+) (1 bar, 298 K) has been assigned a zero value, we have

�Gx
f (OH)− (1 bar, 298 K) = –157,297.48 J/mol, and consequently, �Gx

f [NH4
+ (aq)]

(1 bar, 298 K) = –236,751.64 + 157,297.48 = − 7954.16 J/mol.



12.5 Equilibrium Constant, Solubility Product & Ion Activity Product 381

12.5 Equilibrium Constant, Solubility Product
& Ion Activity Product

When the reaction (12.a) is at equilibrium, we can write, in the usual way

K ≡ exp(−�rG
∗/RT) = (m+ 
+m− 
−)�± 


aM
+A
−
(12.5.1)

where �ν
± is used to replace the term (�ν+

+ )(�ν−
− ) (Eq. (12.2.3a)). Now if Mν+Aν− is

a solid electrolyte, and we have chosen pure state of that electrolyte at the P-T of
interest as its standard state, then

RT ln K(P, T) = �o
Mν+A
− − 
+(�×

+) + ν−(�×
−)

= Go
Mν+Aν− − ν+(�×

+) + ν−(�×
−)

(12.5.2)

The equilibrium constant, K, defined by last relation, is called the solubility prod-
uct, and is usually designated as Ksp. On the other hand, the product of the activities
of the dissociated solute in the form ∏

a

i
i (i.e. numerator of the right hand term in

Eq. (12.5.1)) is called the ion activity product (IAP).
It follows from Eq. (12.5.1) that a solution is in equilibrium with a pure solid

electrolyte when IAP = Ksp, since for solid the standard state is pure solid (P,T)
so that the activity of a pure solid is unity. It is easy to see that if IAP > Ksp, and
the undissociated solute does not enter into solid solution, then the solution must
precipitate additional solute in order to reduce the IAP to its equilibrium value, and
vice versa. But what happens if electrolyte Mz+Az− enters into a solid solution? In
that case, of course, one needs to compare the reaction quotient Q (i.e. the entire
right hand term of Eq. (12.5.1)), not just the IAP, with Ksp. The solution would
precipitate the solid electrolyte when Q > Ksp, and vice versa.

As a simple illustration of the application of the concept of solubility product
and ion activity product, let us consider the question of survival of marine organ-
isms with carbonate shells in the sea water, as discussed by Anderson (1996). The
appropriate reaction to consider in this case is

CaCO3 ↔ Ca2+ + (CO3)2− (12.5.a)

From the calculated values of the molalities Ca and (CO3)2− in the near surface
sea water, IAP for the above reaction equals 10–7.87. The Ksp value of the reaction
depends on the polymorphic from of CaCO3, calcite (Calc) or aragonite (Arag),
and is given by the relation Ksp = exp(−�rG*/RT) where �rG* = Gx

f(CO3
−2) +

Gx
f(Ca2+) – Go

f(Calc/Arag). Using the standard state data, we have

Ksp(Calc) = 10−8.304

and
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Ksp(Arag) = 10−8.122

both of which are less than the IAP. Thus, the carbonate shells of marine organ-
isms will not dissolve in the near surface sea water. However, at depths greater than
∼ 5 km, the IAP falls below Ksp, and as a consequence the marine organisms with
carbonate shells do not survive below this depth. This is known as the carbonate
compensation depth of oceans.

Problem 12.1 Consider the dissociation of a solid electrolyte in an aqueous solu-
tion, and assume that it is present in a solid solution, e.g. the dissociation reaction
(11.5.a) with CaCO3 dissolved in a solid solution (Ca,Mg)CO3. Will the solid nec-
essarily dissolve when IAP < Ksp.

12.6 Ion Activity Coefficients and Ionic Strength

12.6.1 Debye-Hückel and Related Methods

A convenient starting point in the discussion about the ion activity coefficients in a
dilute electrolyte solution is a theoretical expression known as the Debye-Hückel
limiting law. In deriving this law, which yields the activity coefficient of an ion
at very high dilution, it is assumed that (a) the deviation from ideality in a dilute
ionic solution is entirely due to the electrical interactions between the ions, (b) the
ions are point charges, (c) the solute is completely dissociated and (d) the repul-
sive forces between the ions are unimportant. Since the repulsive force drops off
very rapidly with the distance of separation, the last assumption is justified in a
very dilute ionic solution where the ions are far apart. Within the above framework,
Debye and Hückel derived an expression for the individual ion activity coefficients
as follows.

log�i = −AZ2
i

√
I (12.6.1)

where Zi is the charge of the ionic species i, A is a constant, in unit of (kg/mol)
1/2,

and depends on the dielectric constant and density of the solvent, and I is the ionic
strength of the solution that is given by

I = 1/2�miz
2
i mol/kg (12.6.2)

As an example, the ionic strength of one molal solution of La2(SO4)3,which disso-
ciates in the solution according to La2(SO4)3 → 2 La3+ + 3(SO4)2−, is 1/2[2(3)2 +
3(2)2] = 15 mol/kg.

Debye and Hückel (1923) modified their earlier theory to account for the effects
of finite sizes of the ions and short range interactions between them, assuming
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that the ions are nondeformable spheres of equal radii. A widely used extension
(Robinson and Stokes, 1959, Helgeson, 1969) of the modified Debye- Hückel
expression of activity coefficient is

log�i = − Az2
i

√
I

1 + Bai

√
I

+ B•I, (12.6.3)

where the last term (B•I) represents the extension to the original Debye and Hückel
(1923) form. This expression will be referred to as the extended Debye-Hückel
formulation. Here B is another constant that is characteristic of the solvent, ai is
the “distance of closest approach” between ions of opposite charge, and B• (often
called B-dot, and also referred to as “deviation function”) is an adjustable parameter
to fit the experimental data. In fact the ai term can also be treated as an adjustable
parameter. The unit of Bai is (kg/mol)1/2.

The above equation seems to work well up to around 1 molal solute concentra-
tion. Helgeson and Kirkham (1974) have given values of A and B for water from 0
to 300◦C. At 0◦C, A = 0.4911 and B = 0.3244 whereas at 300◦C, these values are

1.2555 and 0.3965, respectively, with the unit of B in kg
1/2/(mol

1/2–Å). It is easy to
see that when the solution becomes very dilute, Eq. (12.6.3) yields the Deby-Hückel
limiting law (Eq. (12.6.1)) since the denominator of the first equation approaches
unity as I → 0.

Because of the problem in measuring individual ion activity coefficients, �+ and
�− are combined according to Eq. (12.2.3) to yield an expression for �±, which can
be compared with experimentally determined values. Substituting the expression
for the individual ion activities (Eq. (12.6.3)), into Eq. (12.2.3), and using a single
adjustable ȧ parameter, we obtain

ν (log�±) = − A
√

I

I + Bȧ
√

I

(
ν+z2

+ + ν−z2
−

) + νB•I (12.6.4)

However, since the electroneutrality condition requires that |ν+z+| = |ν−z−|, the
term within the parentheses can be written as (ν−z−z+ + ν+z+z−) = z−z+(ν+ + ν−)
= ν(z−z+). Thus, we finally obtain

log �± = −A |z+z−| √I

1 + Bȧ
√

I
+ B•I (12.6.5)

In a solution consisting of the dissociation products of a single electrolyte, the
expressions for single ion and mean ion activity coefficients satisfy the relation
�i → 1 as mi → 0, which is imposed by the choice of solute standard state discussed
in Sect. 12.4.1 (Fig. 12.1). This is because I → 0 as mi → 0 (for the dissociation
of a single electrolyte, the molalities of the dissociated species are proportional to
each other). The numerator on the right hand side of Eq. (12.6.5) reflects the effect
of long-range Coloumb forces. The modification of these forces by short-range
interactions between the ions in the crudest approximation of hard-sphere model
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is given by the term in the denominator. The B-dot term partially takes care of the
short-range interaction between ions and the solvent molecules and other types of
short range interactions between ions that cannot be adequately accounted for by
the hard sphere model.

Helgeson (1969) summarized the values of the different parameters in Eq.
(12.6.3) for concentrated NaCl aqueous solutions that may be used to calculate the
individual activity coefficients of dissolved ions up to ∼ 300◦C at 1 bar pressure.
Values of A, B and ȧ parameters for aqueous solutions up to 60◦C can also be found
in Garrels and Christ (1965). The latter workers have calculated individual ion activ-
ity coefficients in aqueous solutions using the classic Debye-Hückel formulation
(i.e. Eq. (12.6.3), but without the B-dot term) for several ions in aqueous solution,
and compared the results with those calculated from the experimental data on mean
ion activity coefficients, �±, according to the “mean-salt method” that is discussed
below. The results, which are illustrated in Fig. 12.2, show good agreement between
the two methods up to ionic strength of 0.1. The departure of Debye-Hückel predic-
tion from the experimentally constrained result of the mean-salt method at higher
ionic strength may be accounted for by the B-dot term.

12.6.2 Mean-Salt Method

The “mean-salt method” was introduced by Garrels and Christ (1965) in the geo-
chemical literature for the calculation of individual ion activity coefficients, �i, in
aqueous solutions at ionic strengths where the classic Debye-Hückel formulation
for �i fails. The method relates �i to the mean ion activity coefficients that can

Symbols:
Debye-Hückel
formulation 

Fig. 12.2 Individual ion activity coefficients vs. ionic strength. The symbols represent calculations
using the modified Debye-Hückel (Eq. (11.5.5) but without the B-dot term), whereas the lines
represent calculations of individual ion activity coefficients from the measured values of mean
ion activity coefficient according to the “mean salt method”. From Garrels and Christ (1965). The
Debye-Hückel model fails at I > 0.1. With permission from Harper and Row – Pearson Education
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be measured experimentally. In developing this method, it is assumed that in an
aqueous solution, �K+ = �Cl− , as seems to be indicated by various lines of evidence
(this relationship was first proposed by MacInnes (1919), and is sometimes referred
to as the MacInnes’ convention). Thus, using Eq. (12.2.3b),

�±KCl = �(�K+ )(�Cl− )� 1/2 = �K+ = �Cl− (12.6.6)

Using the �(K+) and �(Cl
−
) values calculated according to this relation from the

measured values of �± (KCl), one can systematically calculate the individual activ-
ity coefficients of many other ions from appropriate experimental data on the mean
ion activity coefficients. For example, for a solution of a MCl2 electrolyte, where M
is a divalent cation, one can write, using Eqs. (12.2.3b) and (12.6.6)

�±MCl2 = �(�M+ )(�Cl−)2� 1/3 = �(�M+)(�±KCl)
2� 1/3

so that

�M+ = (�±MCl2 )3

(�±KCl)2
(12.6.7)

A similar method may be developed to calculate the individual activity of an anion
that combines with K to form an electrolyte, e.g. KF.

In case the electrolyte does not contain either K or Cl, one needs to employ a
connection with these ions by introducing an intermediate step, which is called the
“double bridge method” by Garrels and Christ (1965). For example, to calculate
�(Cu2+) from the measured values of �±(Cu2SO4), one needs to use �(SO4)2− that
is determined from the experimental data for �±(K2SO4).

12.7 Multicomponent High Ionic Strength and High P-T Systems

In modeling natural processes, we usually need to deal with solutions that have mul-
tiple electrolytes, high ionic strength, and are subjected to P-T conditions that are
often far removed from the typical 1 bar, 298 K condition of the conventional domain
of electrolyte thermodynamics. As an example, progressive evaporation of sea water
to form brines would lead to multicomponent solution of high ionic strength that
cannot be handled with simple extension of Debye-Hückel formulation of ion activ-
ity coefficients. In addition, modeling of such geological processes as fluid-rock
interactions in the mid-ocean ridges or in the Earth’s crust requires an understand-
ing of the behavior of electrolyte solutions at relatively high P-T conditions. There
are two groups of major contributions to address these types of problems, one by
Pitzer (1973, 1975, 1987) and the other by Helgeson and coworkers (Helgeson and
Kirkham, 1974a, b, 1976; Helgeson et al., 1981; Tanger and Helgeson, 1981, 1988;
Shock et al., 1992). These are often referred to as Pitzer equations/model and HKF
model.
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The Pitzer equations were originally developed to treat multicompnent elec-
trolytes of relatively high ionic strengths at 1 bar, 25◦C. Some attempts were later
made to extend it to higher P-T conditions (e.g. Pitzer, 1987), but here we limit our
discussion to see how the properties of multicomponent electrolytes are treated in
the Pitzer equations since this is what the Pitzer equations are famous for. Very good
exposition of the Pitzer formulation can be found in Harvie and Weare (1980) and
Wolrey (1992).

Pitzer introduced an expression of �Gxs of a multicomponent elctrolyte solu-
tion as

�Gxs

RT
= nw

⎡
⎣f(I) +

∑
ij

λijmimj +
∑
ijk

�ijkmimjmk

⎤
⎦ (12.7.1)

where nw is number of kilograms of solvent, f(I) is a “Debye-Hückel function”
accounting for the long-range electrical interactions to first order, and λij and �ijk

are binary and ternary interaction parameters that are, in general, functions of the
ionic strength. The first and second summations are to be carried out over every
binary and ternary sub-systems, respectively, of the multicomponent solution.

Except for the f(I) term, the above expression is formally similar to that of �Gxs

of non-electrolyte solution (Eq. (9.3.2)). It can be extended to include quaternary
interactions, but it was found that such higher order terms are almost never required
to treat the properties of multicomponent electrolyte solutions. (We recall that qua-
ternary interactions are not needed for multicomponent non-electrolyte solutions if
the bounding binaries conform to the regular or sub-regular models, as are often the
case.) The “Debye-Hückel function” used in the above expression is not the usual
Debye-Hückel expression of activity coefficient, but a similar expression derived
by Pitzer (1973). As in the case of non-electrolyte solution, the binary and ternary
interaction parameters are to be determined by fitting experimental data in the
binary and ternary sub-systems of the multicomponent solution. Once there is an
expression for �Gxs, all other excess thermodynamic properties, including the ion
activity coefficients, can be obtained by systematic thermodynamic operations on
the expression of �Gxs, as discussed in Sect. 8.6. Figure 12.3 illustrates the success
of Pitzer formulation to represent ion activity coefficients in aqueous solution to
high ionic strength. A computer program, EQ3NR, was developed in the Lawrence
Livermore National Laboratory (Wolrey, 1992) to carry out calculations using the
Pitzer model. The program has self-consistent values of the different parameters that
are needed for this purpose.

The Pitzer model has been used successfully to calculate development of mineral
sequences in a number of geological environments at 1 bar, 25◦C. Figure 12.4 shows
agreement between the phase diagram determined experimentally and calculated by
Harvie and Weare (1980) using Pitzer model for the system Na-Mg-Cl-SO4-H2O
at 1 bar, 25◦C. Harvie and Weare (1980) calculated the development of mineralog-
ical sequence due to progressive evaporation of sea water. The calculated sequence
essentially matches the observed sequence of mineral zones in the classic Zechstein
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γ 
±

γHCl 
± (w)

γHCl 
± (KCl)

γKCl 
±

I

Fig. 12.3 The mean activity coefficient of HCl and KCl in different systems as function of ionic
strength, I. �HCl

±(w) and �HCl
±(KCl): mean ion activity coefficient of HCl in HCl-H2O and KCl-

H2O systems, respectively; �KCl
±: mean ion activity coefficient of KCl in KCl-H2O. The solid

curve represents calculation using Pitzer equation whereas the dashed curve is a simplified version
of the Pitzer equation discussed in Harvie et al. (1984). Filled circles: experimental data. From
Harvie et al. (1984). With permission from Elsevier

evaporite deposit in Germany. Simplified calculations carried out earlier did not
have similar level of agreement with the observed sequence, thus leading to com-
plex hypotheses about the formation of this deposit. The calculations of Harvie and
Weare (1980) almost conclusively prove that the Zechstein deposit formed by the
progressive evaporation of sea water.

The HKF group of papers developed internally consistent data set for the stan-
dard state properties of species in aqueous solutions that can be used to calcu-
late the equilibrium constants of a wide variety of geochemical reactions from 1
to 5 kbar and 0 to 1000oC. These calculations may be carried through a software
package, SUPCRT92 (Johnson et al., 1992) that has been used widely in geochem-
ical and materials science literature. The standard state properties have been calcu-
lated through a combination of fundamental theory and available experimental data
that help constrain the theoretical parameters. A comprehensive discussion of HKF
papers is beyond the scope of this chapter, but it is noted that the HKF formula-
tions account for the effects of both long- and short-range ionic interactions, local
collapse of solvent structure around solvated ions, the concentration dependence
of dielectric constant of electrolyte solutions, and the effect of ion association on
ionic strength. An impression of the level of success of the HKF models may be
conveyed by showing examples of the agreement between predicted and measured
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Fig. 12.4 Comparison of the calculated and experimental (symbols) phase diagram for the Na-
Mg-Cl-SO4-H2O reciprocal system. Solid lines: calculations by Harvie and Weare (1980) using
the Pitzer model. The dashed lines represent results of another model discussed by Harvie and
Weare (1980). From Harvie and Weare (1980). With permission from Elsevier

Fig. 12.5 Comparison of
experimental mean ion
activity coefficients
(symbols) of NaCl with those
calculated from HKF model
as function of ionic strength
at various temperatures
(indicated in oC). The curve
for 25oC is at 1 bar pressure
whereas the other curves are
at pressures defined by the
liquid-vapor equilibrium at
the specified temperatures.
From Helgeson et al. (1980)
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Fig. 12.6 Comparison of
standard partial molal volume
of NaCl as a function of
pressure and temperature, as
calculated by Tanger and
Helgeson (1988: curves) with
the experimental data
(symbols). PSAT refers to
pressure along liquid-vapor
saturation pressures for H2O.
From Tanger and Helgeson
(1988). With permission from
American Journal of Science

NaCl

properties. In this spirit, Fig. 12.5 is reproduced from Helgeson et al. (1981)
and Fig. 12.6 from Tanger and Helgeson (1988) showing, respectively, the variation
of mean activity coeffcient of NaCl and standard partial molal volume of NaCl as
function of pressure and temperature.

12.8 Activity Diagrams of Mineral Stabilities

At constant P-T condition, variation of fluid compositions affects the mineral sta-
bilities. It is, thus, useful to construct mineral stability diagrams as function of the
activities of fluid species at constant P-T conditions. These types of diagrams are
known as activity diagrams, since both axes in the plot represent activities (or
combination of activities) of selected aqueous species. Bowers et al. (1984) have
presented an entire book of such diagrams for rock-forming minerals for pressures
and temperatures up to 5 kb and 600◦C using the standard state thermodynamic
properties from Helgeson et al. (1981). We first present below the thermodynamic
methodology for the construction of activity-activity diagrams, and then discuss
illustrative applications. The standard states of the mineral components and H2O
have been chosen to be pure components at P-T, while the dilute aqueous species
are referred to the solute standard states at unit molality defined by the Henry’s law
line (Fig. 12.1).

12.8.1 Method of Calculation

To illustrate the calculation of activity diagrams, let us consider the problem of
the stability of K-feldspar (KAlSi3O8), kaolinite (Al2Si2O5(OH)4)and muscovite
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(KAl3Si3O10(OH)2) in the presence of water at 1 bar, 298 K, which has been dis-
cussed earlier by Anderson (2005). The reaction relations among the three minerals
and aqueous ions can be written as

KAlSi3O8 + 1/2H2O + H+(aq) = 1/2Al2Si2O5(OH)4 + 2 SiO2(aq) + K+(aq)
(12.8.a)

3/2 KAlSi3O8 + H+(aq) = 1/2KAl3Si3O10(OH)2 + 3 SiO(aq) + K+(aq) (12.8.b)

and

KAl3Si3O10(OH)2 + 3/2H2O + H+(aq) = 3/2Al2Si2O5(OH)4 + K+(aq) (12.8.c)

To illustrate the general procedure of calculation of equilibrium boundary in the
activity space, let us now consider the reaction (12.8.a) and assume, for simplicity,
that the minerals and H2O are present essentially in their respective pure states so
that a(H2O) = ai(mineral) = 1. Thus, at equilibrium at 1 bar, T, we have

Ka(1, T) = e−�rG∗
a/RT =

(
aaq

SiO2

)2 (
aaq

K+
)

(
aaq

H+
) (12.8.1)

with

�rG
∗
a = �1/2(�Go

f(kaolinite)) + 2�G×
f(SiO2: aq) + �G×

f(k+: aq)�
−

[
�Go

f(k−spar) + 1/2(�Go
f(H2O)) + �G×

f(H+: aq)

] (12.8.2)

Using the data from Wagman et al. (1982), and noting that �Gx
f(H+:aq) = 0, according

to convention,

�rG
∗
a (1 bar, 298 K) = [1/2(−3799.7) + 2(−833.411) + (−283.27)]

− [−3742.9 + 1/2(−237.129)] = 11.523 kJ
(12.8.3)

Since there are three activity terms in Eq. (12.8.1), two of these terms need to be
combined for a two dimensional activity diagram. The manner in which the different
activity terms should be combined is dictated by the requirement that all equilibria
in the system are to be represented in a single diagram. Thus, we decide to plot the
ratio a(K+)/a(H+) on the y-axis, and a(SiO2) on the x-axis. In fact, for reasons that
should be obvious from the derivation below, we plot the logarithms of the activity
terms instead of the activity terms themselves.

The next step is to calculate the slopes of the equilibrium reaction boundaries
in the activity diagram. This is easily done from the expression of K. Thus, for
the equilibrium (12.8.a), we obtain by taking the logarithm of Eq. (12.8.1), and
rearranging terms
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log
aK+

aH+
= log Ka − 2 log (aSiO2 ) (12.8.4)

Similarly,

log
aK+

aH+
= log Kb − 3 log (aSiO2 ) (12.8.5)

and

log
aK+

aH+
= log Kc, (12.8.6)

The last expression implies a zero slope of the equilibrium boundary of the reaction
(12.8.c) in the log (aK+/aH+) vs. log (aSiO2) plot.

Equations (12.8.4)–(12.8.5) are linear equations in which the coefficients of
log[a(SiO2)] define the slopes and the logK terms define the intercepts of the equi-
librium boundaries in the activity plot. The logK terms can be calculated from
the available data on the standard state free energies, using the relation lnK =
− �rG*/RT. Thus, using �rG*(1 bar, 298 K) for equilibrium (a) calculated above,
logKa(1 bar, 298 K) = –2.019. Similarly, logKb(1 bar, 298 K) = –4.668 and logKc =
3.281.

The reaction boundaries defining the equilibrium stability limits of muscovite,
kaolinite and K-feldspar at 1 bar, 298 K, as calculated from the above values of equi-
librium constants and the last three equations, are illustrated in Fig. 12.7. According
to reactions (12.8.a) and (12.8.b), increasing a(SiO2(aq)) stabilizes K-feldspar with
respect to either muscovite or kaolinite. Thus, K-feldspar stability field is located on
the higher a(SiO2) side. Also, the change of breakdown product of K-feldspar must
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Fig. 12.7 Stability relations of muscovite, kaolinite and K-feldspar at 1 bar, 298 K, as function of
activities of ions dissolved in an aqueous solution
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cause a reduction of its field of stability relative to that defined by the extension of
a single reaction past the transition between kaolinite and muscovite. This require-
ment leads to the topology shown in Fig. 12.7.

12.8.2 Illustrative Applications

12.8.2.1 Spring Waters

As examples of applications of activity diagrams of aqueous species to geological
problems, we consider here the studies of Norton and Panichi (1978) and Marini
et al. (2000) of spring waters in Italy.

Norton and Panichi (1978) studied the chemistry of the spring waters in the
Abano region in northern Italy and determined the source region and subsurface
circulation path by comparing the water chemistry with those expected from equili-
bration with different minerals in the bed rock. Figure 12.8 shows the stabilities of
the minerals kaolinite, Ca-montmorillonite and Mg-montmorillonite at 1 bar, 75◦C
(348 K) in a log(aCa++/(aH+)2) vs. log(aMg++/(aH+)2) plot. (It is left to the reader as
an exercise to figure out the reactions that relate the equilibrium boundaries to these
activity ratios.) It is assumed that the mineral phases and H2O have unit activities.

The dashed lines in Fig. 12.8 represent the saturation conditions of the aqueous
solution for calcite (CaCO3) and dolomite (CaMg(CO3)2) at P(CO2) = 10–2 bars.
The saturation condition is calculated as follows. For the dissolution of calcite in an
aqueous solution, one can write

CaCO3 + 2H+(aq) = Ca2+(aq) + CO2(g) + H2O (12.8.d)

Fig. 12.8 Measured compositions (squares) of water samples from Abano region, Italy, plotted on
calculated activity diagram depicting the stability of minerals in equilibrium with an aqueous phase
at 1 bar, 75oC and unit activity of H2O. Dashed lines represent saturation surfaces of calcite and
dolomite at PCO2 = 10−2 bars. From Norton and Panichi (1978). With permission from Elsevier
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for which

Kd ≡ e−�rG∗
d =

(
aaq

Ca2+

) (
aCO2

) (
aH2O

)
(
aCaCO3

) (
aaq

H+
)2 (12.8.7)

With the standard state of CO2 as pure CO2 at unit fugacity at T, so that a(CO2) =
f(CO2) ≈ P(CO2) and G*(CO2) ≈ Go(CO2) at 1 bar, T, and assuming that CaCO3 is
in the pure state so that a(CaCO3) = 1, the last equation reduces to

Kd ≡ e−�rG∗
d ≈

(
aaq

Ca2+

) (
PCO2

)
(
aaq

H+
)2 (12.8.8)

with
�rG

∗
d ≈ ⌊

�G×
f(Ca2+: aq)

+ �Go
f(CO2) + �Go

f(H2O)

⌋

−
[
�Go

f(CaCO3) + 2�G×
f(H+: aq)

]

with all G values at 1 bar, 348 K. Thus, for calcite saturation, we have

log

(
aaq

Ca2+(
aaq

H+
)2

)
≈ log Kd(1 bar, 348 K) − log PCO2 (12.8.9)

Consequently, in a plot of log
(
aCa2+/a2

H+
)

vs. log
(
aMg2+/a2

H+
)
, the calcite saturation

curve is a horizontal line (i.e. the coefficient for the x-axis term is zero) with an
intercept given by the value of log (Kd/PCO2 ). It is now left to reader to develop the
equation for dolomite saturation curve.

The square symbols in Fig. 12.8 represent the measured water compositions in
the Abano hot spring region. The compositions plot on the equilibrium boundary
between Ca-montmorillonite and Mg-montmorillonite, and thus imply that the
fluid had passed through bed rocks containing these minerals and essentially
achieved equilibrium with them. In addition, several fluid compositions (not shown
in Fig. 12.9) fall above or close to the calcite and dolomite saturation curves. This
implies that the fluid had also passed through bed rocks containing these carbonate
minerals. The oxygen isotopic composition indicates that the hot spring fluid is
derived from meteoric water infiltration into Permian and Mesozoic aquifers in the
pre-Alps, which lie north of the Abano region. Thus, the combination of isotope
geochemistry and thermodynamic calculations leads to an understanding of the
source region and circulation path of fluid that finally found surface expression as
hot springs.

Marini et al. (2000) studied the spring water chemistry in the Bisagno valley,
Genoa, Italy, and developed model for the evolution of the water chemistry in terms
of reaction kinetics between the bed rock minerals and aqueous fluid. The kinetic
aspect of this work is beyond the scope of the present chapter, but the readers
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(a) (b)

Fig. 12.9 Measured (open symbols) and calculated (crosses) compositions of the Bisagno val-
ley spring waters, Genoa, Italy, plotted on activity diagrams depicting the stability of minerals.
Reproduced from Marini et al. (2000). With permission from Elsevier

are encouraged to read this analysis for a good introduction to kinetic modeling.
Figure 12.9 shows the measured fluid compositions (circles) in two activity
diagrams, and also the computed kinetic evolution paths of the fluid compositions
(crosses).

There is good agreement between the measured and computed fluid composi-
tions. The measured fluid compositions fall mostly in the field of kaolinite and
had clearly evolved within the stability field of this mineral (Fig. 12.10a). The
fluid compositions also evolved along the equilibrium boundary between calcite
and dolomite (Fig. 12.10.b), which implies that the fluid achieved equilibrium with
these minerals as it moved through the bed rocks. The measured compositions do
not show any buffering by the kaolinite-muscovite boundary. This is in good agree-
ment with computed fluid compositions that account for the reaction kinetics taking
into consideration the reacting surface areas. As noted by Marini et al. (2000), the
observed equilibration of the fluid with the carbonates (Fig. 12.10.b) and lack of
buffering by the muscovite-kaolinite boundary (Fig. 12.10.a) are consistent with the
relatively higher dissolution rates of the carbonates in aqueous solution.

One interesting aspect of the compositional trend of fluid of the Bisagno valley
is that the fluid compositions seem to have evolved towards the albite, K-feldspar,
muscovite invariant point, representing the situation of final stable equilibrium
between the aqueous solution and the constituent minerals of local aquifer rocks.
However, probably due to kinetic reasons, the evolutionary path does not follow the
muscovite, kaolinite phase boundary, as expected based on a purely thermodynamic
ground. These calculations serve to illustrate the point that while activity plots of
stability of minerals in equilibrium with aqueous solutions provide useful frame-
work for the understanding of fluid-rock reactions, the fluid compositions do not
necessarily evolve in thermodynamic equilibrium with the minerals.
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Fig. 12.10 Solubility limits of pure magnesium silicates in water at 1 bar, 25◦C. With increase in
the activity ratio of [Mg2+/H+] and/or activity of [H4SiO4], natural water will precipitate one of the
phases, magnesite, serpentine, sepiolite, or amorphous silica, depending on the manner in which
these activities change. This diagram shows that at the surface of the earth, the only phases that
are thermodynamically stable in contact with natural water are magnesite, serpentine, sepiolite and
amorphous silica. From Faure (1991)

Problem 12.2 Develop the equation for dolomite saturation of aqueous solution
and determine the slope of the line in the log

(
aCa2+/a2

H+
)

vs. log
(
aMg2+/a2

H+
)

activity
diagram (Fig. 12.8)

12.8.2.2 Stability of Magnesium Silicates

As a final example of the use of activity diagram, we illustrate the stability
of magnesium silicates (Fig. 12.10) that was calculated by Faure (1991), using
log

(
aMg2+/a2

H+
)

and log
(
aH2SO4

)
as the two axes. To illustrate the calculation of

mineral stabilities in the activity plot, let us consider the dissolution reaction of
forsterite in water, viz.,

1/2Mg2SiO4 + 2 H+(aq) ↔ Mg2+ + 1/2H4SiO4(aq) (12.8.e)

for which the expression of equilibrium constant and standard state thermodynamic
properties yield
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log
aMg2+

(aH+ )2 = −0.5 log
(
aH2SiO4

) + 14.2 (12.8.10)

This equation is represented by the dashed curve labeled “Forsterite” in Fig. 12.10.
Forsterite is stable in equilibrium with an aqueous solution with composition above
the dashed curve, but dissolves in aqueous solutions with composition below this
curve.

If equilibrium is achieved, all magnesium silicate minerals would dissolve in an
aqueous solution with composition below the heavy line in the lower left side of the
activity diagram. The arrow indicates the equilibrium evolution of the composition
of an aqueous solution with initial composition at the point P as a result of disso-
lution of enstatite. The trajectory of fluid composition intersects the stability limit
of serpentine. Thus under equilibrium condition, an aqueous solution with initial
composition marked by the point P would precipitate serpentine after sufficient dis-
solution of enstatite. Figure 12.10 shows that only magnesite, serpentine, sepiolite
and amorphous silica are thermodynamically stable in contact with natural water on
the surface of the Earth.

12.9 Electrochemical Cells and Nernst Equation

12.9.1 Electrochemical Cell and Half-cells

In an electrochemical cell, electrons released in one part the cell by oxidation of
an electrode flow through a conducting wire to another electrode and are used
for reduction reaction, as illustrated in Fig. 12.11. Following IUPAC (International
Union of Pure and Applied Chemistry) convention, the part of the cell undergoing

Zn

Cu

Zn + (SO4)2–

ZnSO4 + 2(e–)

CuSO4 + 2(e–)

Cu + (SO4)2–

– ve + ve

ZnSO4 CuSO4

(SO4)2–

Fig. 12.11 Schematic illustration of an electrochemical cell consisting of two half cells. Electrons
are released in the left half-cell by the oxidation of a Zn electrode, and are transferred to the right
half cell, where these react with a CuSO4 solution to cause deposition of Cu on to the Cu-electrode.
The sulfate ions released due to the reduction of Cu2+ are transferred to the left half-cell through a
semi-permeable membrane
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reduction reaction is drawn on the right. In this figure, an electrode of Zn metal on
the left undergoes oxidation by reaction with a solution according to

Zn (metal) → Zn2+(solution) + 2(e−) (12.9.a)

The released electrons travel via a conducting wire to the right electrode of Cu that is
immersed in a solution consisting of Cu2+ ions. The electrons react with the solution
according to

Cu2+(solution) + 2(e−) → Cu (metal) (12.9.b)

resulting in the deposition of metallic Cu on the electrode. The two parts of the cell
are called half-cells, and the above reactions constitute half-cell reactions. The net
reaction in the full cell is

Zn (metal) + Cu2+ (solution) → Zn2+ (solution) + Cu (metal) (12.9.c)

The net reaction can be observed by immersing a Zn metal rod in a CuSO4 solution.
One would observe dissolution of Zn metal in the solution to form ZnSO4 (Zn +
CuSO4 → ZnSO4 + Cu) and complementary precipitation of Cu metal.

Let us suppose that the solution in the left half-cell is ZnSO4 and that in the right
half-cell is CuSO4. Oxidation of a small amount of Zn starts the process of electron
transfer to the Cu electrode where it reacts with CuSO4 to form metallic copper
(CuSO4 + 2(e−) → Cu (metal) + (SO4)2−). If the cells are completely isolated
except with respect to electron transfer, then the process will stop because of charge
build up in the half-cells. In order for the process to continue, the half-cells need to
be connected by a semi-permeable membrane that permits transfer of (SO4)2− ions
from right to the left half-cell, and thus enables continued release of electrons as a
result of the reaction Zn (metal) + (SO4)2 − → ZnSO4 + 2(e−).

12.9.2 Emf of a Cell and Nernst Equation

The electrical potential difference between the two half-cells can be measured at
any time during the process of electron transfer by connecting the electrodes to a
voltmeter or a potentiometer using similar metal wire leads. Following the IUPAC
(International Union of Pure and Applied Chemistry) convention, the electromotive
force (emf), E, of the full cell is given by

E = E(reducing electrode: right) − E(oxidizing electrode: left)

If the potential on a charge � is changed by E, then the electrical work done on the
charge is �E. Thus, the electrical work done on a system when n moles of electrons
(negative charge) are subjected to a potential change E is given by – nF′E, where
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F′ is the Faraday constant (96484.56 J/V-mol). As discussed in Sect. 3.2, at equilib-
rium under constant P-T condition, the Gibbs free energy change of a reaction in a
system subjected to non-PV work is given by the reversible non-PV work done on
the system (see Box 3.2.1). Thus, when the electrical work is the only non-PV work
done on a system, in which the electron transfer takes place from left to right in a
reversible manner, we have, at equilibrium at constant P-T condition

�rG = −nF′E, (12.9.1)

which is known as the Nernst relation. Now for a reaction mA + nB = pC + qD, we
have from Eq. (10.4.5)

�rG = �rG
∗ + RT ln

(aC)p(aD)q

(aA)m(aB)n

If the reaction involves electron transfer from left to the right in a reversible manner,
then using Eq. (12.9.1), we obtain

E = E∗ − RT

nF′ ln
(aC)p(aD)q

(aA)m(aB)n
(12.9.2)

where E* is the emf of the cell when the all ions are present in their respective stan-
dard states. This equation is often referred to as the Nernst equation. The quantity
R/F

′
equals 8.617(10−5) V/K.

12.9.3 Standard Emf of Half-Cell and Full-Cell Reactions

If E* values of many half-cell reactions are available, then these can be paired in
different combinations to yield the E* values of a variety of full cell reactions. How-
ever, E of a half-cell reaction can not be measured directly. Thus, in order that the E*
of half-cells can be combined to yield that of full cells in a self-consistent manner,
a half-cell is combined with a standard hydrogen electrode (SHE) to determine the
full-cell emf. The SHE is a gas electrode in which H2 gas is bubbled over a specially
treated piece of platinum. The dissociation of the gas (catalyzed by Pt) releases two
moles of electrons according to

2H+(solution) + 2(e−) = H2(g)

←− dissociation

(Following IUPAC convention, the reduced part is written on the right.) The E*
value of a full cell, that is of SHE plus the half-cell of interest, is taken to be the E*
of the half cell, assuming that E*(SHE) equals zero. (This procedure is analogous to
assigning a zero value to �Gx

f (H+) in one molal ideal aqueous solution, as discussed
in 12.4.2). A compilation of E* values of half-cells relative to SHE is provided by
Ottonello (1997: Table 8.14).
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12.10 Hydrogen Ion Activity in Aqueous Solution:
pH and Acidity

The activity of H+ ion in aqueous solution is commonly expressed in terms of a
quantity known as pH, and is defined as

pH = − log (aH+ ) (12.10.1)

Consider now the dissociation of H2O to H+ and (OH)− ions:

H2O(l) = H+(aq) + (OH)−(aq) (12.10.a)

for which the equilibrium constant at 1 bar, 298 K is 1.008(10–14). Thus,

Ka =
(
aaq

H+
) (

aaq
(OH)−

)

aH2O
= 1.008(10−14) (12.10.2)

When the water is essentially pure, a(H2O) = 1 at 1 bar, 298 K, in which case

log
(
aaq

H+
) + log

(
aaq

(OH)−

)
= −14 (12.10.3)

In an acidic solution, aH+ > a(OH)− , whereas in a basic or alkaline solution, the
reverse is true. For a neutral solution, aH+ = a(OH)− . Thus, we have

log
(
aaq

H+
)

> − 7, or pH<7 : Acid solution

log
(
aaq

H+
)
< − 7, or pH > 7 : Basic solution

12.11 Eh-pH Stability Diagrams

The electrical potential of a cell, measured against a standard hydrogen electrode
(SHE) is referred in the geochemical literature as Eh. Both Eh and pH are measur-
able quantities in natural environments by the use of appropriate electrodes. (A good
discussion of the topic from a practical standpoint can be found in Garrels and Christ
(1965). Anderson (2005) has discussed the problems attending the measurement of
Eh in natural environments.) It is, thus, useful to represent stabilities of minerals
and metals at constant P-T condition by diagrams that use Eh and pH as two axes.
These are known as Eh-pH diagrams. An additional appeal of such diagrams stems
from the fact that H+ is involved, or can be made to be involved with some manipu-
lation, in the description of the stability relations of a large number of minerals. The
Eh-pH diagrams owe their popularity to the seminal studies of the Belgian scientist
(metallurgist) Pourbaix (1949), and 54 other papers between 1952 and 1957 that are
cited in Garrels and Christ, (1965). The subsequent development and popularity of
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these diagrams in geochemical literature have been primarily due to R. M. Garrels
and co-workers. A compilation of Eh-pH diagrams that are useful for geochemical
problems can be found in Brookins (1988).

The construction of Eh-pH diagrams is based on the Nernst equation, Eq.
(12.9.2), and is illustrated below by considering specific examples. First, let us for-
mulate the stability of water at 1 bar, 298 K in terms of Eh and pH. For this purpose,
we write a reaction between liquid water and gaseous oxygen as

O2(g) + 4H+(aq) + 4(e−) = 2H2O(l) (12.11.a)

The Nernst equation for this reaction is

Eh = E∗
a − RT

4F′ ln

(
aH2O

)2

ag
O2

(
aaq

H+
)4 (12.11.1)

With water in essentially pure state, a(H2O) = 1. Also, with the standard state of
gas as pure state at unit fugacity (∼1 bar) and T, a(O2) effectively equals its partial
pressure. Thus, after inserting the numerical value RT/F

′
with T = 298 K, the above

expression reduces to

Eh = E∗
a + (0.0148) log PO2 − (0.0591)pH (12.11.2)

The E* value is obtained from the Nernst relation (Eq. (12.9.1)) and the tabulated
data on standard Gibbs free energy of formations. Since Gf,e (Gibbs free energy of
formation from elements) for O2 (g) and H+ (aq) are zero by convention,

�rG
∗
a = 2�Go

f,e(H2O) = −474.26 kJ/mol,

according to the data in Wagman et al. (1982), so that E*
a = (–�rGa

*/4F
′
) = 1.23 V.

Since the total pressure is fixed at one bar, the upper limit of stability (i.e. the
stability under the most oxidizing condition) is obtained by setting P(O2) = 1 bar.
The lower limit of stability of water in an Eh-pH diagram corresponds to the condi-
tion of P(H2) = 1. The P(O2) corresponding to P(H2) = 1 bar can be calculated from
the equilibrium constant of the reaction

2H2O(l) = 2H2(g) + O2(g), (12.11.b)

for which logK(1 bar, 298 K) = −83.1. Thus, at P(H2) = 1 bar, P(O2) = 10−83.1 bars.
The absolute upper (P(O2) = 1 bar) and lower (P(O2) = 10−83.1 bar) stability limits
of water in an Eh-pH diagram, as calculated from Eq. (12.11.2), are illustrated in
Fig. 12.12.

As an illustration of the representation of mineral stabilities in an Eh-pH diagram,
let us consider, following Garrels and Christ (1965), a simple example showing the
stability of iron oxides in the presence of H2O. For the reaction between metallic Fe
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Fig. 12.12 Eh-pH diagram at 1 bar, 298 K showing the stability fields of water and iron oxides.
The upper and lower stability limits of water, shown by thin lines, are defined by the conditions of
P(O2) = 1 bar and P(H2) = 1 bar, respectively. The boundary between Fe3O4 and Fe in the presence
of H2O is shown by a dashed line, since it is a metastable boundary (below the equilibrium stability
limit of H2O)

and magnetite (Fe3O4), we write the half-cell reaction involving water (again with
the reduced assemblage on the right, according to IUPAC convention).

Fe3O4(s) + 8H+(aq) + 8(e−) = 3Fe(s) + 4H2O (12.11.c)

The half-cell reaction for the stability of magnetite with respect to hematite
(Fe2O3) in the presence of water is given by

3Fe2O3(s) + 2H+ + 2(e−) = 2Fe3O4(s) + H2O(l) (12.11.d)

Assuming that the solid phases (s) are pure end members, so that the activity of
each solid component, along with that of nearly pure water, is unity, we have

Ehc = E∗
c − RT

8F′ ln
1

(aH+ )8 (12.11.3)

and

Ehd = E∗
d − RT

2F′ ln
1

(aH+ )2 (12.11.4)
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Calculating E* values from the standard state free energy data of the phases from
Wagman et al. (1982) according to the Nernst relation (Eq. 12.9.1), we then have

Ehc = −0.087 − 0.591 pH; �rG
∗
c = 66,884 J (12.11.5)

and

Ehd = 0.214 − 0.591 pH; �rG
∗
d = −41,329 J (12.11.6)

The upper and lower stability limits of magnetite in Eh-pH space, as calculated
according to the last two relations, are illustrated in Fig. 12.12 along with the stabil-
ity limits of water. The Fe3O4/Fe boundary, as defined by the equilibrium (12.11.c),
is metastable since it falls below the lower stability limit of water.

Next we consider the solubility of iron oxides in water. To treat the equilibrium
of the iron oxides with respect to Fe2+(aq), we write the reactions

Fe3O4(s) + 8H+(aq) + 2(e−) = 3Fe2+(aq) + 4H2O (12.11.e)

Fe2O3(s) + 6H+(aq) + 2(e−) = 2Fe2+(aq) + 3H2O (12.11.f)

for which, at unit activities of H2O, Fe3O4 and Fe2O3

Ehe = E∗
e − RT

2F′ ln

(
aaq

Fe2+

)3

(
aaq

H+
)8 (12.11.7)

and

Ehf = E∗
f − RT

2F′ ln

(
aaq

Fe2+

)2

(
aaq

H+
)6 (12.11.8)

Thus, for the solubility equilibrium of Fe3O4

Ehe = E∗
e − 0.089 log

(
aaq

Fe2+

)
− 0.236 pH (12.11.9)

and that for Fe2O3

Ehf = E∗
f − 0.059 log

(
aaq

Fe2+

)
− 0.177 pH (12.11.10)

with E*e = 0.88 and E*f = 0.66 V (as before, the E* values are calculated from the
standard free energy data tabulated in Wagman et al. (1982) and Eq. (12.9.1)).

Garrels and Christ (1965) suggested that when the activity of dissolved species
in equilibrium with a solid is less than 10–6, the solid may be treated as effectively
not dissolved at all. Thus, a field in the Eh-pH diagram should be considered to be
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Fig. 12.13 Composite Eh-pH diagram at 1 bar, 298 K showing the stability fields of hematite and
magnetite in the presence of water, and contours of constant activities of Fe2+ in water. When
a(Fe2+) < 10−6, the solids may be considered to be essentially insoluble in water

a domain where the solid is immobile in contact with water if dissolved species in
equilibrium with a solid have a sum total activity of less than 10–6. Figure 12.13
shows the fields of iron oxides with no significant dissolution in water at 1 bar,
298 K, along with the stability field of water at the same condition and contours of
constant activity of Fe2+(aq).

12.12 Chemical Model of Sea Water

The ionic strength of typical stream water is ∼0.01 mol/kg, whereas that of sea water
is ∼0.7 mol/kg (Garrels and Christ, 1965). These ionic strengths suggest negligi-
ble interaction among the dissolved ionic species in a stream water but significant
interaction among them in sea water. The problem of complex formation due to
these interactions in sea water was first addressed in a classic study by Garrels
and Thompson (1962). These calculations can now be carried out using a public
domain computer program EQ3NR from the Lawrence Livermore Laboratory that
was written by Wolrey (1992) for geochemical aqueous speciation-solubility calcu-
lations. It is, however, worth discussing the work of Garrels and Thompson (1962)
in order to develop an understanding of how this type of calculations may be carried
out with simplifications from insightful approximations. Thus, I first discuss the
work of Garrels and Thompson (1962) and then compare the results with the results
in EQ3NR test file.
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Table 12.1 Composition of average surface sea water with 19%o (parts per thousand) chlorinity
at 25◦C (pH = 8.15)

Ion molality Ion molality

Na+ 0.48 (SO4)2− 0.028
Mg2+ 0.054 (HCO3)− 0.0024
Ca2+ 0.010 (CO3)2− 0.00027
K+ 0.010
Cl− 0.56

Source: Garrels and Christ, 1965.

The composition of average surface sea water with 19%o (%o implies parts per
thousand) chlorinity at 25◦C that was used by Garrels and Thompson (1962) is
shown below (Table 12.1). Because of the potential for complex formation, the
species reported in this table are not necessarily the actual species present in the
sea water. These simply represent the total content of different ions in the sea water.

When an ion is distributed over different ionic complexes and neutral species, one
writes a mass balance constraint that must conserve the content of a given species in
the analysis of sea water in Table 12.1. For example, the abundance of the various
sulfate bearing species must satisfy the relation

mSO2−
4

(total) = 0.028 = mNaSO−
4

+ mKSO−
4

+ mCaSOo
4

+ mMgSOo
4
+ mSO2−

4
(free)

(12.12.1)

assuming that there is no other sulfate species in significant amount. There is also a
dissociation reaction for each of the metal-sulfate species such as

NaSO2−
4 = Na+ + SO2−

4 , (12.12.a)

yielding a relation of the type

K =
(mNa+)(mSO2−

4
)

mNaSO−
4

K� (12.12.2)

where K� represents the usual ratio of the activity coefficients of the different
species.

There are four equations of similar form for the four metal-sulfate species. Now,
Na+ may be complexed to ions besides SO4

2−, such as NaCl, Na2CO3 etc. Thus, one
can write mass balance relation for Na+ similar to Eq. (12.12.1) and equilibrium con-
stant relations similar to Eq. (12.12.2) for the dissociation of each Na-complex. This
process is repeated for every ion, thus yielding as many independent mass balance
plus equilibrium constant relations as the number of unknown species. Therefore,
one can, in principle, solve for the abundance of each species (since the number of
independent relations equal the number of unknowns in the system). The system of
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Table 12.2 Activity coefficients (�) of various species in sea water at 25◦C (ionic strength: 0.7;
chlorinity: 19%o), as calculated by Garrels and Thompson, 1962

Dissolved � Dissolved � Dissolved �
species species species

(NaHCO3)o 1.13 (HCO3)− 0.68 Na+ 0.76
(MgCO3)o 1.13 (NaCO3)− 0.68 K+ 0.64
(CaCO3)o 1.13 (NaSO4)− 0.68 Mg2+ 0.36
(MgSO4)o 1.13 (KSO4)− 0.68 Ca2+ 0.28
(CaSO4)o 1.13 (MgHCO3)+ 0.68 Cl− 0.64

(CaHCO3)+ 0.68
(CO3)2− 0.20
(SO4)2− 0.12

equations can be solved using a computer to obtain the molality of each species, if
the activity coefficients are known. The activity coefficients of the various species at
the ionic strength (0.7 mol/kg) of sea water, as estimated by Garrels and Thompson
(1962), are shown in Table 12.2.

The ionic strength of 0.7 mol/kg was calculated from the data in Table 12.1 that
do not include complexing with the metal cations. However, strictly speaking, the
ionic strength cannot be calculated until the complexing is known. Thus, the ionic
strength should be recalculated after the molalities of the different species have
been determined using the initial value of the ionic strength of 0.7 mol/.kg, and
the process should be repeated until there is no more significant change of ionic
strength. This is a simple task in computer calculation. However, it was found that
the recalculated value of the ionic strength of the sea water after the first set of
calculation is not sufficiently different from the initial value to warrant repetition of
the calculation.

Garrels and Thompson (1962) made the initial simplifying assumption that the
cations Na+, K+, Ca2+ and Mg2+ are present essentially as free ions in sea water
so that mNa+(total) = 0.48 ≈ mNa+(free), mK+(total) = 0.01 ≈ mK+(free), and so
on. This is a reasonable simplification since the molalities of the metal cations
far exceed those of the complexing anions SO4

2−, CO3
− and HCO3

−, and Cl− is
present almost completely as free ion. Iterative solutions of the equations show that
the initial assumption is justified and only small portions of Ca2+ and Mg2+ are
complexed with other cations.

The abundance of the major dissolved species in sea water, as derived by Garrels
and Thompson (1962), are summarized in the Table 12.3. The results in the EQ3NR
test file for sea water are shown as parenthetical numbers in the same table; the
italicized numbers were calculated on the basis of B-dot (Eq. (12.6.3)) and related
activity coefficient expressions, whereas upright numbers were calculated using
Pitzer equations, the general idea of which has been discussed in the Sect. 12.7. (For
some of the ions, there are slight differences between the total molalities used in the
calculations of Garrels and Thompson (1962) and in the EQ3NR program file.) For
ions with total molalities greater than 0.002, there is good agreement among the
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different results except for the abundance of Mg2+ and Ca2+ species. The calcula-
tions carried out with the Pitzer equations show the free ions to constitute nearly
the total molalities of these species, whereas the other approaches show signifi-
cantly less abundance of the free ions. It may be recalled, however, that Garrels and
Thompson (1962) started their calculations assuming free ions to constitute 100%
of the total molalities of Mg2+ and Ca2+.



Chapter 13
Surface Effects

The atoms located at or within a few atomic layers of the surface of a phase are in
a different energetic environment than those within the interior of the phase. Thus,
the surface properties are different from the properties of the interior of a phase. An
example of the difference between the surface and interior configurations of atoms is
shown in Fig. 13.1, which represents a molecular dynamic simulation of the interior
and near-surface structural configurations of ice at 1 bar, 270 K.

The surface properties play important roles in such problems as the propaga-
tion of cracks and brittle failure of rocks, development of crystal morphology and
microstructure of rocks as observed in thin sections, coarsening of grains and exso-
lution lamella, solubility, nucleation, interconnectivity of fluid in a solid matrix and
capillary rise of liquid. Usually the special properties of the surface have no sig-
nificant influence on the stability of a phase, but when the surface to volume ratio
of a solid exceeds a critical limit, that is the grain size becomes sufficiently small,
the stability of the solid would be different from what one would calculate from its
bulk thermodynamic properties. In this section we discuss the fundamental aspects
of the surface properties along with illustrative applications to natural processes.
The foundation of the thermodynamics of surfaces, as of many other aspects of
thermodynamics, was laid by J.W. Gibbs (see Gibbs, 1993, scientific papers).

13.1 Surface Tension and Energetic Consequences

In dealing with surface effects, it is customary to introduce a property known as the
surface tension, �, which is the force per unit length, and thus has the unit of J/m2

(force/length ≡ N/m; N : J/m). The surface tension opposes expansion of a surface.
Thus, in order for a surface to expand, work must be done against this opposing
force. This work is known as the surface work. To develop the expression of surface
work, let us consider a simple example of reversible expansion of a rectangular
surface of an isotropic material by a length dx, and let l be the length of the side
that is being displaced (Fig. 13.2). The work (force times displacement) done on
the system is then given by (�l)dx = �As, where (�l) is the force due to the surface

J. Ganguly, Thermodynamics in Earth and Planetary Sciences, 409
DOI 10.1007/978-3-540-77306-1 13, C© Springer-Verlag Berlin Heidelberg 2008
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1 nm
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[1100] [1120]

[0001]

Fig. 13.1 Molecular-dynamics simulation of the near-surface and interior arrangements of water
molecules in ice at 1 bar, 270 K. The large gray circles represent oxygen atoms and the small
black ones, hydrogen atoms. The thin lines represent the covalent bonds connecting hydrogen and
oxygen atoms. From Ikeda–Fukazawa and Kawamura (2004). With permission from American
Institute of Physics

tension, and As is the enlargement of the surface area. In the case of solids �As is
the work needed for the creation of a new surface of area As.

With the incorporation of surface work, the change in the internal energy of the
system is given by Eq. (2.1.3),

dU = �q − PdV + �dAs (13.1.1)

Consequently, since G = U + PV − TS and F = U − TS, we obtain

dG = −SdT + VdP +
∑

i

�idni + �dAs (13.1.2)

Fig. 13.2 Expansion of the
rectangular surface of a
material against the force due
to surface tension (force per
unit length), �

dx 
l
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and

dF = −SdT − PdV +
∑

i

�idni + �dAs (13.1.3)

These equations are completely general for isotropic material of any shape. For
anisotropic solids, the surface tension has directional properties.

From the last two expressions, we have

� =
(
�G

�As

)
P,T,ni

(13.1.14)

and

� =
(
�F

�As

)
V,T,ni

(13.1.15)

13.2 Surface Thermodynamic Functions and Adsorption

In order to deal with the problem of surface properties, one first needs to have
an unambiguous definition of the surface or interface between two phases. If we
consider two homogeneous phases, A and B, in mutual contact, then the different
properties do not change discontinuously from one phase to another across a plane,
but there is a small region of a few molecular layers through which the properties
show a continuous change. For example, if we consider the change of the concentra-
tion of a component from one phase to another. Then, the concentration vs. distance
profile of the component would look something like the curve shown in Fig. 13.3.

Following Gibbs (see Gibbs, 1993, scientific papers), one now defines an inter-
face between the two phases as any geometrical surface within the zone of contin-
uous variation of concentration that passed through “all points which are similarly
situated with respect to the condition of adjacent matter.” Thus, for the chosen exam-
ple, a plane situated at x′ as indicated by a vertical dashed line, and any plane parallel
to it within the zone of concentration variation can be defined as an interface. The
volume of the entire system is divided between the two phases. Thus, the volumes
of the phases A and B are the entire volumes to the left and right, respectively, of
the chosen interface, say the plane at x′.

If VA and VB are respectively the volumes of the phases A and B with respect to
a chosen interface, Ci

A and Ci
B are the concentrations (mass/volume) of the com-

ponent i within the interiors of the two phases, As is the surface area of the interface
and �i is the concentration of the component i per unit surface area of the interface,
then
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B

Fig. 13.3 Concentration (C1) vs. distance (x) curve of a major component (1) across the interface of
two phases, A and B, each with homogeneous concentrations of the chosen component. The areas
indicated by horizontal lines on two sides of the vertical dashed line at x′ ′ are equal. By convention,
the plane at x′ ′, which satisfies the “equal area constraint” for the C1-x curve of the solvent, is
chosen as an interface between the phases A and B. At this interface, the surface concentration of
the solvent is zero. An interface chosen at any other location between the zones of homogeneous
compositions of the two phases, such as at x′, has a non-zero concentration of the component 1

�iAs = ni − nA
i − nB

i

= ni − CA
i VA − CB

i VB

, (13.2.1)

where ni is the total number of moles of the component i in the entire system, and
ni

A and ni
B are its mole numbers in the interior of the phases A and B, respectively. It

should be easy to see that because of the non-uniqueness in the position of interface,
there is also a non-uniqueness in the value of the surface concentration. When there
are two or more components, it is conventional to choose an interface such that
it has zero concentration of the solvent or a major component, which we call the
component 1, i.e. n1 = C1

AVA + C1
BVB. Geometrically it means that the interface

should be chosen at a value of x-axis such that the areas under the concentration
curve on two sides of the interface are equal, as illustrated in Fig. 13.3. In general,
with this definition of the interface, there would be non-zero interface concentration
of other components at the interface.

Once an interface is defined, the thermodynamic functions of the interface are
defined in a formally similar way as the surface concentration. Thus, the Gibbs free
energy per unit surface area, Gs, is related to the bulk phase properties according to
GsAs = G – GA – GB, where G is the Gibbs free energy of the entire system and GA

and GB are the Gibbs free energies of the phases A and B, respectively. Now since
G = � ni�i, we have

GsAs = G −
∑

i

nA
i �

A
i −

∑
i

nB
i �

B
i (13.2.2)

In general, we write

YsAs = Y −
∑

i

nA
i yA

i −
∑

i

nB
i yB

i (13.2.3)
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where Y is any thermodynamic property with Ys as its counterpart per unit surface
area, and yi is the related partial molar property of the component i in the indicated
phases.

The chemical potentials of the component in either phase are unaffected by the
change of surface area. Thus, combining Eqs. (13.1.2) and (13.2.2), we obtain for
a change of surface area of a closed system (i.e. constant value of ni) at constant T
and P

GsdAs = �dAs −
∑

i

�A
i dnA

i −
∑

i

�B
i dnB

i (13.2.4)

Now since at equilibrium the chemical potential of a component must be the same
throughout the system, the above equation reduces to

GsdAs = �dAs −
∑

i

�i(dnA
i + dnB

i )

where �i = �i
A = �i

B. From the definition of surface concentration Eq. (13.2.1), the
quantity within the last parentheses equals – �idAs for a closed system (for which
dni = 0). Thus, dividing both sides by dAs, we obtain

Gs = �+
∑

i

�i�i (13.2.5)

For a one-component system, �i = 0 by the convention of the choice of the position
of an interface, as discussed above. Thus, for a one component system, and only for
a one component system, the surface tension is the same as the surface free energy
per unit area.

Differentiating the last expression and substituting the relation dGs = –SsdT +
VsdP + ��id�i = – SsdT + ��id�i (since Vs = 0), we obtain

d� = −SsdT −
∑

i

�id�i (13.2.6)

This relation, which was derived by Gibbs, is known as the Gibbs adsorption equa-
tion. It plays very fundamental role in the further development of the field of surface
thermodynamics.

Instead of dealing with a surface within a small interfacial volume, one may deal
with the interfacial volume itself. In that case one obtains (Cahn, 1979)

d� = −[S]dT + [V]dP −
∑

i

[�i]d�i (13.2.7)

where [..] indicates properties of the interfacial volume.
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13.3 Temperature, Pressure and Compositional Effects
on Surface Tension

The temperature and pressure dependencies of surface and interfacial tensions fol-
low easily from Eq. (13.2.6). Upon differentiating it with respect to temperature, we
have (

��

�T

)
= −Ss −

∑
i

�i

(
��i

�T

)
P,nj 
=i

= −Ss +
∑

i

�isi

(13.3.1)

Similarly, differentiation with respect to pressure at constant temperature yields
(
��

�P

)
= −

∑
i

�ivi (13.3.2)

In these equations, vi and si are, respectively, the partial molar volume and partial
molar entropy of the component i in the bulk phase. The P-T dependence of inter-
facial tension when d� is expressed according to Eq. (13.2.7) should be obvious.

Let us now consider the surface of a phase consisting of two components, 1 and
2, in solution. At constant temperature, Eq. (13.2.6) reduces to

d� = −�1d�1 − �2d�2 (13.3.3)

If the boundary is chosen to conform to the condition that �1 = 0 (Fig. 13.3), then

�2 = −
(
��

��2

)
T

= − 1

RT

(
��

� ln f2

)
(13.3.4)

where f stands for the fugacity (Eq. (8.4.1)). For an ideal solution or for a dilute
solute obeying Henry’s law, d�2 = RTdlnX2 so that

�2 = − 1

RT

(
��

� ln X2

)
T

(13.3.5a)

Thus, if there is a surface adsorption, i.e. �2 > 0, then the surface tension is reduced
by the addition of a solute component to the bulk phase or increasing the fugacity
of a solute component. Because of the effect of adsorption, the surface tensions of
pure materials are very difficult to obtain experimentally. Using the last expression,
the surface concentration of a solute can be determined from the change of surface
tension as a function of the mole fraction or fugacity of a solute.

The effects of adsorption of oxygen, sulfur and carbon on the surface tension of
molten iron in contact with air, as determined by Halden and Kingery (1955), are
shown in Fig. 13.4. As we would see later, the effect of adsorption of sulfur and
oxygen on lowering the surface tension of molten iron has interesting consequences
on the problem of core formation in Earth and Mars.
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Fig. 13.4 Effect of addition
of carbon, sulfur and oxygen
on the surface tension
(�, dyn/cm) of liquid iron in
contact with air. From Halden
and Kingery (1955). With
permission from American
Chemical Society

σ

Wt % addition

13.4 Crack Propagation

Qualitatively one could see that the stress required to propagate a crack would
depend on the energy needed to create a new surface. Thus, the effect of adsorbed
solutes on lowering the surface tension or surface free energy has interesting
implications on crack propagation in solids. The critical stress, �c, required for
crack propagation in a solid is related to surface tension according to (Lawn and
Wilshaw, 1975)

�c =
(

2E�

(1 − 
2)�c

)1/2

(13.4.1)

where E is the Young’s modulus, ν is Poisson’s ratio and c is the sound velocity.
Thus, lowering of the surface free energy by chemical adsorption reduces the
critical stress needed for crack propagation. This is illustrated in Fig. 13.5, in which
the surface free energy values of quartz, as measured under different chemical
environments, are plotted against the critical crack propagation stress in the same
environment. Thus, the effect of chemical adsorption on lowering of surface

Fig. 13.5 The surface tension
of quartz (×10-–5 J/cm2) vs.
the crack propagation stress
(MPa) in different chemical
environments. From Dunning
et al. (1984) ξc

σ
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free energy has potential implications on the weakening of geological materials.
For example, as discussed by Dunning et al. (1984), a body of rock saturated
with highly surface active brine may be substantially weaker and more prone to
microfracturing than a dry rock or one saturated with only pure water. Furthermore,
a locked up fault may yield to the stress as a result of lowering of surface tension or
surface free energy due to chemical infiltration.

13.5 Equilibrium Shape of Crystals

As proposed independently by Gibbs (see Gibbs, 1993, scientific papers) and Curie
(1885), the equilibrium shape of a particle is the one that minimizes the contri-
bution of the surface area to its free energy. Thus, the process of development of
equilibrium shape seeks the minimum of the quantity �Gs(J)As(J) where Gs(J) and
As(J) are, respectively, the specific interfacial free energy and area of the J th sur-
face. To simplify discussion, we focus one an one component system so that Gs is
equivalent to the surface tension Eq. (13.2.5). If � is independent of orientation, then
the equilibrium shape is a sphere since it is the geometric shape that represents the
minimum area for a given volume. For the case that � depends on orientation of the
surface, the solution to the Gibbs-Curie problem is given by what is known as the
Wulff theorem. The procedure of determining the equilibrium shape of a crystal
using this theorem is follows (see Herring, 1953, for a discussion).

Construct lines radiating from the center of a crystal such that the length of a line
is proportional to the surface tension of the face normal to that line, the same scaling
factor or proportionality constant being maintained for all such lines. The result is
a closed volume with the surface describing the variation of surface tension with
orientation. Figure 13.6 represents a section through such a closed volume. This
is often referred to as �-plot, but will be a �-plot to conform to our notation (the
symbol � has been used for activity coefficient). Now draw a plane normal to each

Polar plot of surface 
free energy 

Examples of planes
normal to the radius
vectors of the plot

Equilibrium  
polyhedron

Fig. 13.6 Schematic Wulff construction to determine equilibrium shape of a crystal. Reproduced
from Herring (1953). With permission from University of Chicago Press
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radius vector at the point of its intersection with the enclosing surface. The planes
that can be reached by the radius vectors without crossing any other plane delineate
the equilibrium shape of the crystal, as illustrated for a two dimensional case in
Fig. 13.5. For a normal liquid within an isotropic environment, the above procedure
yields a spherical �-plot, thus resulting in a sphere as the equilibrium shape.

Since the surface tension depends on adsorption, the equilibrium crystal shape
of a solid is not unique, but depends on its environment. An interesting example
is the shapes of pyrite (FeS2) crystals that had formed under different geological
environments, as shown in Fig. 13.7. Even though it can not be clearly established
that these represent the equilibrium shapes under the different environments, these
crystal shapes of pyrite illustrate the effect of adsorption in determining crystal mor-
phology. Li et al. (1990) showed that the crystal habits of KCl vary with the degree
of supersaturation of Pb2+ impurity.

Herring (1953) emphasized that in reality only small solid particles “have any
hope of equilibration of shape.” This is because of the fact that the energy needed to
achieve any appreciable change of shape through atomic transport in a large particle
is too large compared to the driving force that is given by the difference between the
existing and equilibrium values of the surface energy. However, equilibrium shapes
may be attained during geologic processes because of the very long annealing time.
Heating of crystals initially ground to the shape of a sphere to sufficiently high tem-
perature sometimes lead to the development of non-spherical equilibrium shapes.

On the basis of the requirement that the equilibrium shape of a crystal would be
such that the total surface energy of the crystal is minimized, one would expect that
the prominent faces of a crystal are those with relatively small surface energies. On
the other hand, it is commonly found that the most prominent crystal faces are those
with the highest areal density of atoms. Thus, in a given crystal the faces with the
highest areal density of atoms would be expected to have the lowest surface energy.
These faces would also have the largest interplanar spacing in order to preserve the
bulk density of the crystal.

Pierre Curie (1985: 1859–1906) showed that for a crystal that has achieved the
equilibrium shape, the ratio of the distance of the face (di) from the crystal center to
its surface tension (�i) is constant. In other words,

d1

�1
= d2

�2
= d3

�3
= ...... (13.5.1)

where 1, 2, 3 etc. are equilibrium crystal faces. Thus, larger the surface tension of
a face, the further it is from the crystal center. Because of geometrical restrictions,
the area of a crystal face depends on its distance from the crystal center; further it is
from the center, smaller is its area. This is illustrated in Fig. 13.8 which represents

Fig. 13.7 Shapes of
pyrite-type crystals in
different environments. From
Sunagawa (1957)
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Fig. 13.8 Cross section of a common form of staurolite crystal normal to the c-axis showing the
relative dimensions of the crystal faces. From the latter and the relative distances from the crystal
center, we conclude that �(110) < �(010) < �(001). From Philpotts (1990)

a cross section of a staurolite crystal normal to the c-axis. Staurolite is a prismatic
mineral with orthorhombic symmetry so that the (001) face is furthest from the
crystal center. From the relative distances and areas of the crystal faces, we conclude
that in staurolite �(110) < �(010) < �(001).

It was first recognized by Becke (1913) and later by others that some metamor-
phic minerals tend to have better developed crystal faces than others in natural rocks.
Thus the minerals in metamorphic rocks have been arranged into what is known as
a crystalloblastic series according to their tendency to form euhedral grains (see, for
example, Mueller and Saxena, 1977; Philpotts, 1990). This is essentially an expres-
sion of the surface energies of minerals. When minerals grow in a rock, some min-
erals develop prominent crystal faces while others develop as space filling crystals
with anhedral shape. As discussed by Philpotts (1990), to minimize the contribution
of the surface free energy to the overall free energy of the rock, a compromise is
struck among the crystal habits of different minerals that lead to smaller surface
areas for minerals with higher surface energies and higher surface areas for those
with relatively lower surface energies.

13.6 Contact and Dihedral Angles

When the surfaces of three different crystals meet along a line, the equilibrium
angles between the surfaces are governed by the interfacial tensions of the faces
under hydrostatic condition (the instability of contact among a larger number of
grains was demonstrated by Gibbs (1993, scientific papers). Referring to Fig. 13.9,
the equilibrium relation between surface tensions and contact angles can be derived
as follows. Let us consider a cross section of three grains, 1, 2 and 3, meeting at a
line, and let �,  and � be the contact angles and �12, �23 and �13 be the vector
representations of the interfacial tensions. Each interfacial tension exerts a force
away from the point P. At equilibrium, the magnitude of the force exerted by �12

is balanced by the net force exerted along the same straight line away from P on
the right. This net force is given by the sum of normal projections of the tensions
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Fig. 13.9 Illustration of interfacial tension vectors acting at the triple junction of three grains, 1, 2
and 3. At equilibrium, the sum of the projected magnitudes of �13 and �23 on to the dashed line
(line of action of �12), that is �23cos�2 + �13cos�1, balances the magnitude of �12. The angle �
is called the dihedral angle when �12 represents the interfacial tension between two grains of the
same phase

along the 1–3 and 2–3 interfaces on to the line of action of the �12 force. Thus, if
the interfacial tensions are independent of orientations, we have at equilibrium

�12 = �13 cos	1 + �23 cos	2, (13.6.1)

where �ij indicates the magnitude of the vector �ij.
For the special case that all interfacial tensions are of equal magnitude, �12 =

�13 = �23, the above expression reduces to

cos	1 = 1 − cos	2 (13.6.2)

This equation has the only solution for 	1 = 	2 = 60◦ (cos(60) = 1/2) so that � = 	1+
	2 = 120◦, and � +  = 360◦ – 120◦ = 240◦. Now since �23 = �13, the angles � and
must be equal. Consequently, we have � =  = � = 120◦. Three grains of the same
mineral sometimes satisfy the condition of equality of interfacial tensions.

Kretz (1994) has compiled the measured contact angles at the triple junctions
of several minerals in granulites that show close approach to 120◦ in several cases
of monomineralic contacts. An example is shown in Fig. 13.10. In several other
cases, where one mineral is in contact with two grains of a different mineral, such
as clinnopyroxene vs. two grains of scapolite (Cpx vs. Scp-Scp), the angle bounded
by the grains of the same mineral, which is known as the dihedral angle, shows
departure from 120◦. This is expected since the surface tensions between the like
and unlike mineral pairs are different.

Using Eq. (13.6.1) and assuming that the surface tensions are independent of
orientation, one can easily express the dihedral angle in terms of the surface tensions
between the like and unlike minerals. Let 1 and 2 be two grains of the same phase,
A, and 3 of a different phase, B (Fig. 13.9). In that case, � =  and 	1 = 	2 = �/2.
Thus, denoting denoting �12 as �AA and �13 = �23 as �AB, Eq. (13.6.1) reduces to

�AA

�AB
= 2 cos (�/2) = 2 cos � (13.6.3)
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Fig. 13.10 Contact angles at the triple junctions of grains of the same mineral in a granulite.
Patterned grains: Ca-pyroxene; unpatterned grains:scapolite. From Kretz (1966). With permission
from Oxford University Press

where � = �/2. This relation is illustrated in Fig. 13.11, which shows the variation
dihedral angle, � as a function of the ratio of surface tensions between the like and
unlike pairs, �AA/�AB.

It is evident that if the interfacial tensions are independent of orientations, then a
dihedral angle of 180◦ cannot be achieved since that would imply �AA = 0, which is
physically impossible. However, 180◦ dihedral angles are often observed in natural
rocks. An example is shown in Fig. 13.12 in which dihedral angle between horn-
blende and two grains of biotite, and between biotite and two grains of hornblende
is 180◦. The explanation of such dihedral angle lies in the orientation dependence of
the interfacial tensions. Allowing for the orientation dependence of �13 and �23, i.e.
�13 = f(	1) and �23 = F(	2), Herring (1953) derived the following expression that
must be satisfied when interfacial equilibrium is achieved.

Fig. 13.11 Variation of
dihedral angle, �, as function
of the ratio of surface
tensions between the like and
unlike pair of phases. The
surface tension ratio (1.73)
between solid-solid and
solid-fluid interfaces that is
required to develop the
critical dihedral angle of 60◦

for fluid connectivity is
shown by an arrow. There is
an interconnected network of
fluid channels along grain
edge channels, regardless of
fluid fraction, when the
� ≤ 60◦
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Fig. 13.12 180◦ contact
angles between hornblende
(H) and biotite (B) crystals.
Interface a is parallel to (110)
of horblende and interface b
is paralle to (001) of biotite.
From Kretz (1966). With
permission from Oxford
University Press

�12 − �13 cos	1 − �23 cos	2 + ��13

�	1
sin	1 + ��23

�	2
sin	2 = 0 (13.6.4a)

For the special case of constant interfacial tensions, this equation reduces to
Eq. (13.6.1).

Analytical expressions for the temperature and pressure dependence of the dihe-
dral angle are readily derived by differentiating Eq. (13.6.3). Thus, one obtains
(Passeron and Sangiorgi, 1985)

�′
AA = 2�′

AB cos �− 2�AB sin �(�′) (13.6.4b)

or

�′ = 2�′
AB cos �− �′

AA

2�AB sin �
(13.6.5)

where the superscript / denotes the first derivative with respect to either pressure or
temperature. It is evident that the dihedral angle (� = 2�) would be independent of
the temperature (or pressure) change when 2�/

ABcos� = �/
AA, and would increase or

decrease with temperature (or pressure) depending on whether 2�/
ABcos� is greater

or less than �/
AA.

Dihedral angle can vary both linearly and non-linearly. Figure 13.13 shows the
variation of dihedral angle between melt and solid in the Zn-Sn and Ni-Pb sys-
tems as function of temperature. In the Zn-Sn system, the dihedral angle decreases
non-linearly with very rapid change above 325◦C, dropping to zero at ∼340◦C,
whereas in the Ni-Pb system, it decreases almost linearly as a function of temper-
ature. Figure 13.14 shows the variation of dihedral angle of H2O-CO2 fluid in a
matrix of quartzite as a function of temperature at 4 kbar pressure, as compiled by
Holness (1993) from the available data. In view of the � vs. T behavior illustrated in
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Fig. 13.13 Variation of dihedral angle in (a) Ni-Pb and (b) Zn-Sn systems as function of temper-
ature. The two curves in (a) represent two different ways (linear and nonlinear) of fitting the data.
From Passeron and Sangiorgi (1985). With permission from Pergamon-Elsevier

these figures, one should be careful in extrapolating dihedral angle to temperature
(or pressure) much beyond the range of experimental condition.

Passeron and Sangiorgi (1985) derived expressions for the temperature depen-
dence of the surface tensions in terms of the change of dihedral angle, assuming
that within a limited domain the dihedral angle changes linearly with respect to
temperature. This assumption implies that the second derivative of the dihedral
angle with respect to temperature, �′′, is zero. The procedure involves differenti-
ation of Eq. (13.6.4) with respect to temperature and imposing the condition �′′ = 0,
followed by rearrangement of terms. The final expressions are

�′
AB = −�AB

(
�′′

2�′ + �′

2 tan �

)
(13.6.6a)

�′
AA = −�AB

(
�′′

�′ cos �+ 1 + sin2 �

sin �
�′

)
(13.6.6b)

Fig. 13.14 Variation of
dihedral angle of H2O-CO2

fluid in a matrix of quartzite
as a function of temperature
as determined by Holness
(1993) at 4 kb (filled
symbols) and complied from
other sources (open symbols).
From Holness (1993). With
permission from Elsevier

γ

T (°C)
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13.7 Dihedral Angle and Interconnected Melt or Fluid Channels

The dihedral angle at the triple junction of two crystals and a fluid phase plays a crit-
ical role in determining if a given volume fraction of a fluid would form an intercon-
nected network or remain as isolated pockets. This, in turn, determines the extent of
melt fraction that can be retained in the source region of partial melting of rocks and
consequently the melt composition, the amount of melting required for the segrega-
tion of planetary cores, and the permeability of metamorphic rocks to fluid flow. The
upward percolation of basaltic magma through the upper mantle requires that the
lower density magma form an interconnected network. The melt fraction at which
such an interconnected network would be established depends on the dihedral angle
of the magma with the mantle minerals at the mantle conditions. Furthermore, the
bulk physical properties of partially molten rocks depend on the melt distribution.

The dihedral angle is also referred to as the wetting angle when the included
phase is a melt. Smith (1964) reviewed the distribution of liquid phases in metals.
He found that when the ratio of the �AA to �A-Melt was greater than

√
3 (or 1.73), the

liquid phase always formed a three dimensional network through the grains. On the
other hand, when this ratio was less than

√
3, the liquid phase formed isolated pock-

ets at the grain corners. This critical ratio of surface tensions correspond to a dihedral
angle of 60◦ (Fig. 13.11). Later, Balau et al. (1979) and von Bergen and Waff (1986)
showed that under condition of (a) hydrostatic stress, (b) constant curvature of inter-
face between solid and melt and (c) independence of dihedral angle of orientation, a
melt phase would form an interconnected channel along the grain edges, regardless
of the volume fraction of the melt, when 0 < � < 60◦, and would wet grain faces
only when � = 0. Figure 13.15, which is reproduced from von Bargen and Waff
(1986), shows the melt channel shapes at a constant volumetric melt fraction of 0.01
and wetting angles between 50◦ and 65◦. If the wetting angle is greater than 60◦,
then a critical melt fraction would be needed to establish interconnectivity. When
the melt fraction for a given wetting angle falls below a critical limit, the melt gets
pinched off. Figure 13.16 shows the relationship between the wetting or dihedral
angle and volumetric melt fraction for the connection and Pinch-off boundaries, as
calculated by von Bergen and Waff (1986). Either pinch-off geometry or connection
boundary can form within the area bound by the two curves depending on the sense
of curvature of the solid-melt interface. The works of Balau et al. (1979) and von
Bergen and Waff (1986) have played fundamental roles in the subsequent studies
of dihedral angle relations in geological and planetary systems. A few examples
are discussed below. The problem of determination of true dihedral angles from
the distribution of apparent dihedral angles measured on planar sections of partial
melting experiments was addressed by Jurewicz and Jurewicz (1986).

13.7.1 Connectivity of Melt Phase and Thin Melt Film in Rocks

There have been many studies on the wetting angles of melts in geological systems
that permit us to develop general idea about connectivity of melt in a rock matrix.
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Fig. 13.15 Melt channel
shapes at constant volumetric
melt fraction of 0.01 (1 %)
and wetting angle between
50◦ and 65◦. The change in
shape between 20◦ and 50◦ is
minor comapred to that
between 50◦ and 65◦. From
von Bergen and Waff (1986)

γ = 50°

γ = 60°

γ = 65°

For olivine in contact with basaltic liquids ranging from tholeitic to nepheline-
basaltic composition, the median wetting angle falls in the range of 20◦–37◦ at
10–30 kb, 1230–1260◦C (Waff and Balau, 1982). For a melt derived from peri-
dotite, the median wetting angle is ∼45◦ for olivine-melt contact and 60–80◦ for
pyroxene-melt contact (Toramuru and Fuji, 1986). Kohlstedt (1992) reported the

Fig. 13.16 Melt channel
pinch off and connection
boundaries in relation to
volume percent of melt, V%,
and dihedral or wetting angle,
�. Open hexagons: connected
channels; filled hexagons:
isolated pockets; half
hexagons: one of the two
possible geometries. From
von Bergen and Waff (1986).
With permission from
Elsevier

V %

θ

Connection
boundary

Pinch-off
boundary 
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average wetting angle of upper mantle rocks to be 20–50◦. For granitic liquids in
contact with quartz or feldspar, the median wetting angles were reported to be 60◦

and 50◦, respectively (Jurewicz and Watson, 1985). Rose and Brenan (2001) studied
the wetting properties of Fe-Ni-Co-Cu-O-S melts against olivine and discussed their
implications for sulfide melt mobility.

Hess (1994) presented an analysis of the thermodynamic properties of thin films.
He showed that thin melt film could exist between crystal faces even when the wet-
ting angle between the solid and bulk melt phase is greater than zero. This is because
of the fact that the melt thin film has thermodynamic properties that are different
from those of the bulk melt phase that forms the dihedral angle. This distinction
between the thermodynamic properties of the thin film and bulk melt phases have
not been made in the analysis by von Bargen and Waff (1986) on the relationship
between the wetting angle and presence of a melt phase between crystal surfaces.
The interested reader is referred to Hess (1994) for the details of his thermodynamic
analysis and implications of the potential existence of thin film of a basaltic melt in
mantle rocks.

13.7.2 Core Formation in Earth and Mars

On the basis of geophysical evidence, and phase equilibrium and density data, the
cores of the Earth and Mars are generally accepted to be made of iron with some
amount of dissolved sulfur and oxygen. The separation of liquid metal from a solid
silicate matrix would require melt connectivity that depends on the amount of melt
fraction and the dihedral or wetting angle if the stress distribution were hydrostatic.

Gaetani and Grove (1999) determined the dihedral angle between Fe-O-S melt
and olivine at 1 bar total pressure with logf(O2) = –7.9 to –10.3 bars and log f(S2) =
–1.5 to –2.5 bars. They found that trace amounts of oxygen dissolve in sulfide melts
at f(O2) near the Fe-FeO oxygen buffer (Fe + 1/2 O2 = FeO) and the wetting angle
is ∼90◦ that does not permit melt connectivity. However, at the f(O2) condition
near the quartz-fayalite-magnetite buffer (3 Fe2SiO4 + O2 = 2 Fe3O4 + 3 SiO2), the
solubility of oxygen in the melt increases to 9 wt% and the wetting angle drops to
52◦, thereby permitting melt percolation. It should be evident from Fig. 13.11 that
the decrease of the wetting angle between olivine and iron melt implies an increase
of the surface tension ratio �Ol-Ol/�Ol-Fe(melt), and hence a decrease of �Ol-Fe(melt) with
increasing dissolution of oxygen in the liquid metal. Thus, the effect of dissolution
of oxygen in Fe(melt) on the surface tension between melt and olivine is similar to
that between melt and air that is illustrated in Fig. 13.4.

Since the surface tension is affected by pressure Eq. (13.3.2), the dihedral or
wetting angle between mantle silicate and Fe-O-S melt may be significantly affected
by pressure. Because of the adsorption of oxygen and sulfur in the olivine-melt
interface, the interfacial tension �Ol-Fe(metal) would decrease with increasing pressure
Eq. (13.3.2), thereby leading to an increase of the dihedral angle (Fig. 13.11).
Terasaki et al. (2005) determined the dihedral angle between olivine and Fe-O-S
melt at pressures to 20 GPa that represent more appropriate conditions for core
formation in Earth and Mars. Their results (Fig. 13.17) show a significant increase
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Fig. 13.17 Dihedral or wetting angle as a function of oxygen content of Fe-O-S melt in an olivine
matrix at high P-T condition. Filled symbols (“This study”): Experiments conducted by Terasaki et
al. (2005); Open symbols: Experimental data from others, as referenced in Terasaki et al. (2005).
Reproduced from the latter. With permission from Elsevier

of dihedral angle from that measured by Gaetani and Grove (1999). However, the
data of Terasaki et al. (2005) do not show any discernible change of dihedral angle
within their P-T range of investigation of 3.5 GPa, 1377◦C to 20 GPa, 1927◦C. This
observation, however, should not be taken to indicate that the dihedral angle is
independent of pressure and temperature within the stated range, since the increase
of pressure was accompanied by an increase of temperature and these two variables
may have compensating effects. Figure 13.18 shows a bright-field transmission
electron microscopic (TEM) image of Fe-S-O melt pocket in an olivine matrix.
The volume percent of iron-sulfide in the starting mixture was 2%. High-resolution
TEM image of an adjacent olivine grain boundary, shown by arrow, did not reveal
any melt film. The dihedral angle at this grain boundary is ∼70◦. Thus, the absence
of melt film corroborates the theoretical prediction (Fig. 13.16) of von Bargen and
Waff (1986).

Following von Bergen and Waff (1986), Terasaki et al. (2005) calculated the
connection and pinch-off boundaries as a function of the Fe/(Fe + Mg) molar ratio,
denoted as Fe#, of olivine for S = 10 and 14 wt% that are appropriate for the core
compositions of Earth and Mars, respectively (Fig. 13.19). Using the Fe# values
of olivines in terrestrial and Martian mantles, which are illustrated by arrows in
Fig. 13.19, we find that the connection boundary is located at 6 vol% for Martian
mantle and 9.5 vol% for the terrestrial mantle. These results suggest that if the
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Fig. 13.18 Bright-field TEM
image of a Fe-S melt pocket
contained within olivine
grains. High-resolution TEM
image of the olivine grain
boundary indicated by arrow
did not reveal presence of a
thin film of melt. The P-T
condition of the experiment
was 4.6 GPa to 1960 K. From
Terasaki et al. (2005). With
permission from Elsevier

terrestrial and Martian cores formed by percolation of metallic melts and the stress
regime was essentially hydrostatic, then the metallic melt fraction should have been
greater than the above critical values. But once the melt was drained out and fell
below the critical limits, there would have been stranded melt pockets within the
silicate matrix. Geochemical evidences indicate that efficient segregation of Fe-O-S
melt from planetary silicate mantles occurred during the core formation. Thus, some
mechanism needs to be invoked to release the stranded metallic melt to the core.
One possibility is to have extensive melting of the silicates leading to the formation
of what has become known as the “magma ocean” (see also Sect. 11.3). A second
possibility is to have non-hydrostatic stress condition in the mantle during the core

Fig. 13.19 Connection and
pinch-off boundaries of
iron-sulfide melt as a function
of Fe/(Fe+Mg) ratio (Fe#) of
olivine for sulfur contents of
10 wt% (dashed lines) and
14 wt% (solid lines) that are
appropriate for the
compositions of terrestrial
and Martian cores,
respectively. The Fe# of
olivine in terrestrial and
Martian mantles are indicated
by arrows. From Terasaki
et al. (2005). With permission
from Elsevier
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formation. Bruhn et al. (2000) showed that shear deformation to large strain rates
can lead to significant connectivity among metallic melt pockets that were initially
stranded. Furthermore, the dihedral angle between mantle minerals and Fe-O-S melt
could decrease below the critical limit of 60◦ in the presence of additional impurities
(e.g. Si) and at geologically reasonable conditions that are not encompassed by the
experiments of Terasaki et al. (2005).

13.8 Surface Tension and Grain Coarsening

When there is a curved interface, whether it is for a mineral grain, liquid droplet or
gas bubble, there is a pressure gradient across the grain boundary and the chemical
potential of a component in the surface increases with the curvature of the surface.
As a result, grains with large curvature (i.e. small grains) tend to be eliminated in
favor of grains with small curvature (i.e. large grains). This process of coarsening
of grains through a decrease of the average surface to volume ratio is often referred
to as Ostwald ripening.

To understand the thermodynamic basis of the above phenomenon, let us con-
sider the growth of a spherical gas bubble in a liquid (Fig. 13.20). The system of
gas bubble plus liquid has a fixed volume and temperature. The pressure inside the
bubble, Pi, must be higher than the external pressure, Pex, otherwise the bubble will
collapse. We now want to derive an expression for this pressure difference, Pi – Pex.
Since the overall system is at a fixed T,V condition, the appropriate thermodynamic
potential to consider is the Helmholtz free energy, F, which must be at minimum at
equilibrium.

Let Vb and Vex be the volumes of the bubble and the external medium, respec-
tively, and As be the surface area of the bubble. From Eq. (13.1.3) the change in
Helmholtz free energy of the bubble due to an infinitesimal increase of its volume
at constant temperature and composition is given by dFb = –PidVb + �dAs, whereas
that of the surrounding liquid is given by dFex = –PexdVex. The change of free
energy of the external medium due to a change of surface area resulting from the
expansion of the bubble is negligible. Since the overall volume of the system is kept
constant, dVex = –dVb and hence dFex = PexdVb. At equilibrium, we have dFT = dFb

+ dFex = 0, where FT denotes the total Helmholtz free energy of the entire system.
Thus, at equilibrium

 

Pex

, As

T, V

Pi

Fig. 13.20 Schematic illustration of the formation of a gas bubble with an internal pressure of Pi

in a liquid medium with pressure Pex. The system is maintained at a constant T,V condition. � is
the surface tension at the bubble-liquid interface and As is the surface area of the bubble
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dFT = 0 = −dVb(Pi − Pex) + �dAs (13.8.1)

or

Pi − Pex = �
dAs

dVb
(13.8.2)

For a sphere, A = 4�r2 and V = 4/3(�r3) so that dAs = 8�rdr and dVb= 4�r2dr.
Consequently, the pressure difference between the interior and exterior of a spherical
bubble is given by

Pi − Pex = 2�

r
(13.8.3)

This equation is also valid for spherical liquid droplets, and spherical grain of solids.
The last equation, which is known as the Laplace equation, allows us to express

the chemical potential of a component within a bubble as a function of the radius of
curvature, r. The chemical potential of a component within two spherical bubbles of
radii r1 and r2, subject to a constant external pressure, are related according to

�i(r2) = �i(r1) +
P2∫

P1

(
��i

�P

)
dP = �i(r1) +

P2∫

P1

vidP (13.8.4)

where P1 and P2 are, respectively, the pressures within the bubbles of radius r1 and
r2, and vi is the partial molar volume of the component i that can be safely assumed
to be unaffected by the very small pressure change from P1 to P2, in which case
the last integral in the above equation is given by vi(P2 – P1). Using Eq. (13.8.3),
P2 – P1 = 2�(1/r2 – 1/r1), which, upon substitution into the last equation, yields

�i(r2) = �i(r1) + 2�vi

(
1

r2
− 1

r1

)
(13.8.5)

This equation is a general form of the Gibbs-Thomson equation. It is often pre-
sented, assuming a single component system, in terms of Gibbs free energy differ-
ence, �G, between a crystal of radius r and that of sufficiently large size at which
its surface energy contribution is insignificant (1/r ∼ 0) (recall that for a single
component system, the chemical potential is the same as G). It is evident from the
above equation that if r2 > r1, the parenthetical term is negative, and consequently
�i(r2) < �i(r1). In other words, the chemical potential of a component decreases
with the increase of grain size. Hence, if the kinetics of chemical transfer is favor-
able, components would be transferred from smaller to larger grains, leading to
disappearance of small grains and further growth of large grains (the rich gets richer,
the poor gets poorer).

Kretz (1994) has discussed the observational data on grain coarsening in meta-
morphic rocks, and concluded that it is a complex process in natural environments,
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especially if it takes place during deformation and while the temperature of the
rock increases. The natural and experimental results on grain coarsening have been
reviewed by Joesten (1991). Kretz (1994) concluded that coarsening driven by inter-
facial energy is quite conspicuous in many monomineralic rocks, such as marble and
quartzite, and may also take place in rocks with two or more minerals under favor-
able conditions. Cashman and Ferry (1988) and Miyazaki (1991) advocated coarsen-
ing of garnet crystals in a quartz-feldspar matrix driven by interfacial energy. Kretz
(1994, 2006) argued against this idea on the basis of both observational and theoret-
ical grounds (also see Atherton, 1976; Carlson, 1999). He drew attention to the fact
that the interfacial energy associated with non-coherent interfaces is a very small
quantity. For example, in metals it is ∼1 ×10–4 J/cm2 (Raghavan and Cohen, 1975.
Kretz (2006) suggested that similar values should be expected at garnet-feldspar
and garnet-quartz boundaries. In that case, using the molar volume of almandine of
115.1 cm3 (effectively the same as its partial molar volume, Ganguly et al., 1996),
we find from Eq. (13.8.5) that the chemical potential of almandine in a large crystal
(1/r ∼ 0) will be lower by only 2.3 × 10–2 J/mol from that in a crystal of radius
0.1 mm. Energy difference of this order seems to be too small to drive diffusion of
almandine component from a small to a large crystal.

13.9 Effect of Particle Size on Solubility

Consider now the effect of size on solubility of particles in a solution. The solution
process of a crystal of radius r can be represented by a reaction

i (solid, r) = i (liquid) (13.9.a)

We now choose the standard state solid to be pure solid at P-T of interest, but with
sufficiently large radius, r*, such that 2�vi/r* term is negligible. We designate this
standard state as �i

o,s(r*). Thus, from Eq. (13.8.5)

�s
i (r) = �s

i (r
∗) + 2�vi

r

or

�s
i (r) = �o,s

i (r∗) + RT ln as
i (r

∗) + 2�vi

r
(13.9.1)

For the reaction (13.9.a), we have at equilibrium, �i
s(r) = �i

l so that

�o,s
i (r∗) + RT ln as

i (r
∗) + 2�vi

r
= �o,l

i + RT ln al
i(r) (13.9.2)

where �i
o,l represents the stated standard state of i in liquid which we choose to be

pure liquid i at the P-T condition of interest, and ai
l(r) is the activity of i in liquid in

equilibrium with a solid of radius r.
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Writing, �rGo(P, T) = �i
o,l – �i

o,s, and rearranging terms, we have from the last
expression

RT ln
al

i(r)

as
i (r

∗)
= −�rG

o(P, T) + 2�vi

r
(13.9.3)

Denoting K = exp[– �rGo(P, T)/RT], that is writing K for the usual equilibrium
constant without the particle size effect,

al
i(r)

as
i (r

∗)
= K exp

(
2�vi

rRT

)
(13.9.4)

This equation was derived earlier by Lasaga (1998). If we deal with the solubility
of a pure solid, then ai

s(r*) = 1. It is, thus, evident that the solubility of a solid phase
would increase as its particle size gets smaller. However, there is a threshold value
of r before the effect of particle size becomes significant.

From the last equation, the increase in the activity of a species in a solution
due to reduction of the grain size of the pure solid from r* to r is given by �ai

l =
ai

l (r) – ai
l (r*) = K(e	 – 1), where 	 represents the terms within the parentheses

of the equation. Thus, the fractional increase of ai
l of a grain of radius r, which is

effectively the same as its increase of solubility, is given by

�ai

al
i(r

∗)
= K

al
i(r

∗)
(e	 − 1) = (e	 − 1) (13.9.5)

The last equality is due to the fact that at r = r*, ai
l = K when the solid is in the

pure state. As an illustrative application of this equation, let us consider the effect
of grain size on the solubility of quartz, assuming that the particles are spherical
in nature. Parks (1984) reported the interfacial tension of quartz in different types
of environments. In contact with liquid water, the interfacial tension is 360 (± 50)
mJ/m2. Figure 13.21 illustrates the results of calculation of the increase of solubility

Fig. 13.21 Increase of
solubility of quartz as a
function of grain size at 25◦C
relative to the solubility of
large grains for which the
effect of surface energy is
negligible
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of quartz with reduction of grain size, using � = 360 mJ/m2 and v = 22.7 cm3/mol.
We see a sharp increase in the solubility of quartz as the particle radius falls below
0.25�m.

13.10 Coarsening of Exsolution Lamellae

It has been observed in laboratory experimental studies that exsolution lamella in
minerals coarsen when these are annealed at kinetically favorable temperatures.
This phenomenon constitutes another example of “Ostwald ripening” discussed
above.

Brady (1987) drew attention to the fact that continuous coarsening of perfect
exsolution lamella with flat surfaces, as illustrated in Fig. 13.22, is impossible since
this process does not lead to a reduction of the interfacial area to volume ratio of the
lamellae. Furthermore, the chemical potential of a component on the flat surfaces
of the lamella of the same composition are the same so that there is no driving
force for the transfer of components from one lamellae to another. Brady (1987)
proposed that lamellar coarsening takes place by the growth of those with large
flat surfaces at the expense of those with wedge shaped edges (WSE), as illustrated
in Fig. 13.23a. Wedge shaped edges have been observed in transmission electron
microscopic images of both experimental and natural samples. An example from
a meteoritic pyroxene is shown in Fig. 13.23b. The host rock is a cumulate basalt
(known as cumulate eucrite) that seems to have been excavated from the asteroid
Vesta (the asteroid belt lies between the orbits of Mars and Jupiter).

Appealing to the symmetry of the elimination process of WSE, and using a fun-
damental result obtained by Gibbs, Brady (1987) showed that the difference between
the molar Gibbs energy of the phase � at the WSE, G�

m(WSE), and that at a large
flat side, G�

m(∞), is given by

G�
m(WSE) − G�

m(∞) = 2V��LFS

λ�
(13.10.1)

where V� is the molar volume of the exsolved phase �, �LFS is the interfacial free
energy of the large flat side of � and λ� is the average width of the WSE lamellae.

Fig. 13.22 Coarsening of perfect exsolution lamella with flat surfaces at the expense of other
perfect lamella. The process is impossible since it does not lead to a reduction of the overall surface
to volume ratio of the lamella
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(b)(a)

Fig. 13.23 (a) Illustration of the process of coarsening of exsolution lamella of a phase �with large
flat surface by diffusion of material from the wedge shaped edge of a lamellae through the matrix
or host phase,  (From Brady, 1987). (b) [010] Dark-field image of (001) exsolution lamella in
pyroxene from the meteorite Pasamonte that is inferred to have been excavated from the cumulate
basaltic rock (or cumulate eucrite) in the Asteroid Vesta. The darker phase is augite whereas the
lighter phase is pigeonite. Note the wedge shaped edge of pigeonite near the center of the figure.
From Schwartz and McCallum (2005). With permission from Mineralogical Society of America

Thus the growth of a large face of the exsolution lamellae at the expense of a WSE,
as illustrated in Fig. 13.23a, leads to a decrease of Gibbs energy of the system.

Brady (1987) assumed that both exsolution lamallae and the matrix or host phase
are binary solutions, which is a good approximation of natural exsolution process,
and that the matrix phase is in local equilibrium with the exsolution lamella on the
two sides. Manipulating Eq. (13.10.1) and using Fick’s law for the flux of a com-
ponent along with geometric arguments, Brady (1987) then derived the following
relation for the coarsening of exsolution lamella as a function of time.

λ2 = λ2
o + kt (13.10.2)

where k is a rate constant, λ is the average wave length of the exsolution lamella
(Fig. 13.23a), and λo is the initial value of λ, i.e. λo = λ(t = 0).

Experimental data on lamellar coarsening kinetics show good agreement with
the above relation in that the data for λ2 vs. t can be fitted well by a linear relation
(Fig. 13.24). The rate constant k is a function of temperature and must be determined
from the experimental λ2 vs. t relation at different temperatures. For an interesting
application of the above relation to natural process, the reader is referred to Schwartz
and McCallum (2005), who constrained the cooling rate of a meteorite (cumulate
eucrite) excavated from the asteroid Vesta on the basis of the observed coarsening of
exsolution lamella of pyroxenes (Fig. 13.23b), and the available experimental data
on the lamellar coarsening kinetics.
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Fig. 13.24 Experimental
coarsening data (symbols) of
exsolved lamella in alkali
feldspars (NaAlSi3O8 –
KAlSi3O8) as function of
temperature and time, and fit
of the isothermal data
according to Eq. (13.9.2).
The experimental data are
from Yund and Davidson
(1978). From Brady (1987).
With permission from
Mineralogical Society of
America

13.11 Nucleation

13.11.1 Theory

Transformation of one phase into another requires nucleation and growth of the new
phase. However, because of the surface energy associated with the formation of tiny
entities or embryos of the new phase, only those embryos that exceed a critical size
can grow further, leading to the formation of the new phase, while those that are
below this critical size must disappear. To understand this phenomenon, consider
the phase transformation � → . The change in the Gibbs energy associated with
the formation of an embryo of  from �, �Ge, consists of two terms,

�Ge = Ve (�Gv) + As�,

where Ve and As are the volume and surface area of the embryo, �Gv is the Gibbs
free energy change associated with the formation of unit volume of the embryo and
� is the interfacial tension between the embryo and the phase �. Assuming that the
embryos are spheres of radius r, we then have

�Ge = 4

3
�r3(�Gv) + 4�r2� (13.11.1)

The first term on the right is negative, since �Gv < 0 (otherwise the transformation
of � to  would be impossible), whereas the second right hand term is positive. The
net result of combination of these two terms is the development of a maximum at a
certain value of r as schematically illustrated in Fig. 13.25. The radius corresponding
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Fig. 13.25 Change of the total surface free energy (4�r2�), total bulk free energy (4/3�r3(�Gv))
and the net free energy (�Ge) of embryo as function of radius, r. The critical radius of nucleation
is shown as rc

to the maximum of �Ge() is known as the critical radius of nucleation, rc. Embryos
with r < rc disappear since further growth of these embryos raises the Gibbs free
energy, whereas those with r ≥ rc continue to grow and since this process lowers the
free energy. Thus, the embryos with r ≥ rc become the stable nuclei.

An expression for the critical radius, rc, can be easily derived by imposing the
condition of extremum of �Ge with respect to the variation of r, which yields

(
��Ge

�r

)
= 0 = 4�r2

c(�Gv) + 8�rc� = 4�rc(rc�Gv + 2�)

so that

rc = − 2�

�Gv
(13.11.2)

(recall that �Gv < 0 and hence rc > 0.)
The equilibrium number of nucleii of critical radius, Nc, is readily obtained from

the Boltzmann distribution law that says that the fraction of particles at a certain
energy level equals exp(–E/kBT), where E is the energy level of the particles above
the ground state and kB is the Boltzmann constant. Thus,

Nc = Ne
−

(
�Gc
kT

)
(13.11.3)

where N is the number of possible nucleation sites.
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It is evident from Eq. (13.11.2) that any process that leads to the reduction of the
interfacial energy makes it easier for the formation of stable nucleus. Thus, adsorp-
tion of impurities, which causes reduction of �, as discussed above (Sect. 13.3),
facilitates formation of a stable nucleus. Nucleation is also favored in crystal bound-
aries. This process can be understood in terms of the fact that the destruction of
crystal boundaries (as a result of nucleation) releases some energy that provides part
of the energy that is needed to overcome the nucleation energy barrier. The topic of
nucleation in relation to geological processes has been treated in considerable detail
by Kretz (1994) and Lasaga (1998), to which the readers are referred for further
discussion of this subject.

13.11.2 Microstructures of Metals in Meteorites

Iron and stony-iron meteorites contain Fe-Ni metal alloy that shows different types
of microstructures. A proper appreciation of the energetics and process of devel-
opment of these microstructues is critical to the understanding of the thermal his-
tory of meteorites and the chemical interactions between the metals and silicates.
Figure 13.26 shows the equilibrium phase diagram for the Fe-Ni system (stability
fields of the phases taenite and kamacite) along with some kinetic boundaries.
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Fig. 13.26 Fe-Ni binary phase diagram showing the fields of different phases, and the equilibrium
cooling path of (ABDE) of a metal grain with initial T-X value designated by the point A. H, L
and LL shows the average Ni content of three types of chondritic meteorites, and numbers 3 – 6 on
the right show the peak temperatures of different metamorphic types of meteorites. From Reisener
and Goldstein (2003). With permission from Meteoritical Society
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Figure 13.27a shows an optical micrograph of a meteorite, Guarena, in which one
can see two different types of metallic domains in a silicate matrix. On the left is
zoned taenite plus kamacite, whereas on the right is a zoneless micron scale mixture
of taenite and kamacite that is known as plessite. Both metallic domains developed
as a result of cooling of metals of the same initial composition, ∼10 wt% Ni. The
initial T-X condition of the metals is shown by the point A in Fig. 13.26.

The development of the two types of metal microstructures can be understood
in terms of the effect of crystal interface on nucleation, as discussed above (this
effect is also implied by the discussions of Reisener and Goldstein, 2003) and
Reisener et al., 2006). In a polycrystalline aggregate of taenite, kamacite nucleates at
the interfaces between taenite particles when these cool into the two phase boundary

ZONED
TAENITE

KAMACITE
ZONELESS
PLESSITE

SILICATE

50 μm

(a)

(b)

Fig. 13.27 (a) Optical photomicrograph of a meteorite, Guarena, showing zoned taneite + kamacite
particle on the left and zoneless plessite on the right in a silicate matrix. (b) Compositional profile
of taneite and kamacite along the traverse shown by dashed line, as determined by an electron
microprobe. From Reisener and Goldstein (2003). With Permission from Meteoritical Society
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of taenite (T) + kamacite (K). For the taenite composition shown in Fig. 13.26, the
upper limit of temperature at which kamacite nucleation can take place is repre-
sented by the point B. Under equilibrium condition, the Ni content of taenite evolves
along the path B-C with progressive exsolution of kamacite, but the Ni content of the
latter increases only slightly during cooling. However, under typical cooling rates of
meteorites (degree per million years), the taenite particles do not achieve complete
grain scale equilibration of composition. This leads to Ni zoning profiles of the taen-
ite grains (Fig. 13.27b) that can be used to retrieve the cooling rates of meteorites.
(The method was pioneered by Wood, 1964, and has been used extensively by plane-
tary scientists. A recent account can be found in Hopfe and Goldstein, 2001). On the
other hand, isolated single crystals of taenite undercool as homogeneous grains into
the taneite plus kamacite (T + K) field. Upon cooling below the dashed line labeled
Ms, which stands for “martensite start”, the taenite grains undergo diffusionless
taenite → martensite transformation, which finally decompose by the martensite →
taenite + kamacite reaction with further cooling, thus leading to the formation of
plessites.

13.12 Effect of Particle Size on Mineral Stability

The surface energies of phases are too small to have any perceptible effect on the
stabilities of minerals unless the grain size is in the submicron domain so that the
overall surface to volume ratio is sufficiently large. This may be appreciated from
the effect of grain size on quartz solubility discussed above (Fig. 13.21). With the
recent emergence of the field of nano-science that is primarily motivated by the
special properties and novel industrial applications of nanometer size particles, there
seems to have been a revival of interest in understanding the effect of grain size on
the thermodynamic properties of minerals. In this section, I will review some of
the recent developments and earlier studies that are of interest from geological and
planetary science perspectives.

There has been considerable debate about the relative stabilities of hematite,
Fe2O3, and goethite, FeO(OH), in soils and sedimentary rocks. Red beds, which
are sedimentary rocks stained red by hematite, have been studied in detail for use
as paleoclimatic, geomagnetic and geochemical indicators. As discussed by Berner
(1969), an important factor in these geological interpretations of red beds is whether
or not hematite can form by the dehydration of goethite at the surface condition
according to

Goethite Hematite liq

2 FeO(OH) = Fe2O3 + H2O (13.12.a)

Since most fresh goethite crystals in sedimentary rocks are smaller than 0.1�m, it
is important to account for the surface energy of goethite in calculating its stability
with respect to hematite which is typically coarse grained. As we have seen above
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(Fig. 13.21), surface energy effects may become significant at submicron grain size.
Langmuir (1971) calculated the effect of particle size on the equilibrium condition
of the above reaction.

Figure 13.28 shows the effect of particle size on the Gibbs free energy change
of the above reaction as a function of the particle size for three different cases: I.
hematite < 1�m, goethite > 1�m, II. hematite and goethite equal in size and <
1�m, and III. hematite > 1�m and goethite < 1�m. From these calculations, it
is clear that particle size variation has no significant effect on the relative stabilities
of goethite and hematite when both are ≥ 1�m. However, when the particles are a
fraction of a micron, the surface energy effect would strongly influence the relative
stabilities.

Figure 13.29 shows the equilibrium boundary, as calculated by Langmuir (1971)
between goethite and hematite for two different particle sizes: (a) both grains are
greater than 1�m, and (b) geothite 0.1�m, hematite > 1�m. Most goethites in soils
and sediments are fine grained, smaller than 0.1�m. Thus, while coarse grained
goethite is stable relative to coarse grained hematite plus water in the Earth’s sur-
face up to 80◦C, its stability shrinks substantially when the grains are of submicron
size, and virtually disappears at 0.1�m diameter grain size. These results reinforce
the conclusion of Berner (1969) that paleoclimatic interpretation of the occurrence
of hematite in soils should be made with caution, since the temperature at which
hematite could form from goethite is sensitive to the grain size of the latter. In

I.   hematite < 1 μm 
     goethite > 1 μm 
II.  hematite & goethite 
      equal size & < 1 μm 

III. hematite > 1 μm 
      goethite < 1μm 

ΔG°
(cal/mol)

Particle size of cubes, μm

Fig. 13.28 Particle size effect on Gibbs free energy change of Goethite dehydration reaction
(2 Goethite = hematite + H2O) at 1 bar, 298 K. From Langmuir (1971). With permission from
American Journal of Science
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> 1 μm

Goethite
0.1 μm

Goethite
> 1 μm Hematite

> 1 μm

 10 bars/°C

2 bars/°C

T (°C)

P (bars)

Fig. 13.29 P-T stability diagram of goethite and hematite with different grains sizes. The dimen-
sions represent the sides of cubes. P = PH2O. From Langmuir (1971). With permission from
American Journal of Science

addition to particle size effect, kinetic effects are also important in controlling the
natural occurrence of hematite and goethite.

Navrotsky (2002) has reviewed the available surface enthalpy values of miner-
als and found that the typical values are around 0.1–3 J/m2. Thus, as suggested by
her, with surface area of ∼20,000 m2/mol, the enthalpy of nano-crystalline mate-
rials would be raised by 2–60 kJ/mol over that of the bulk material. The effect
of grain size on the enthalpies of �-Al2O3 (corundum), �-Al2O3 and �-AlO(OH)
(boehemite) is shown in Fig. 13.30a, and that on the enthalpies of three different
polymorphs of TiO2 (rutile, brookite and anatase) is shown in Fig. 13.30b. The dif-
ferent polymorphs show enthalpy cross-overs that could change the relative stabili-
ties if the surface entropy contributions are negligible. Syntheses of nano-crystalline
alumina usually results in the formation of �-alumina even though corundum (�-
alumina) is the stable polymorph at the experimental P-T conditions. The enthalpy
cross-over between the two polymorph, as shown in Fig. 13.27a, explains the phe-
nomenon. Thus, surface energy studies could be of great help in guiding the syn-
theses of industrially important nano-crystalline materials that may not be stable as
coarsely crystalline phases.

The stability of boehemite with respect to �- or �-alumia is determined by the
reaction

2�-AlO(OH) = Al2O3(�/�) + H2O (13.12.b)

Decreasing particle size raises the overall enthalpy of the Al2O3 phases faster than
that of boehemite. Thus, if the particle sizes of both the hydrous and anhydrous
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As (m2/g)  (a) (b)

As (m2/g)  

     H or 
G 

(kJ/mol) 

As (m2/mol)  

Fig. 13.30 (a) Enthalpy (H) of Al2O3 polymorphs relative to coarse grained corundum (�-Al2O3)
as a function surface area. The dotted line represents free energy (G) of �-Al2O3 relative to
corundum at 800 K. (b) Enthalpy of TiO2 polymorphs with respect to bulk rutile as function of
surface area. From McHale et al., (1997) and Navrotsky (2002), respectively. With permission
from Science

phases decrease at the same rate, then the decrease of particle size would favor the
stability of the hydrous phase. However, as we have seen in the case of goethite
stability, the particle sizes of the hydrous and anhydrous phases are not, in general,
the same.

In carbonaceous chondrites the hydrous phyllosilicates (e.g. serpentine) are
often very fine grained, of the order of 100 Å (0.01�m). One would expect that
at this small particle size, the surface energy would have a significant influence on
the condensation temperature of these minerals, if these represent primary conden-
sates from the solar nebula, or on the temperature of their formation by secondary
alteration process in the parent bodies. Specifically, the condensation or alteration
temperature would decrease relative to that of coarse grained particles if the precur-
sor anhydrous minerals which reacted with water to from the phyllosilicates were
coarse grained. The effect may be opposite if the precursor minerals were also fine
grained.



Appendix A
Rate of Entropy Production
and Kinetic Implications

According to the second law of thermodynamics, the entropy of an isolated system
can never decrease on a macroscopic scale; it must remain constant when equilib-
rium is achieved or increase due to spontaneous processes within the system. The
ramifications of entropy production constitute the subject of irreversible thermody-
namics. A number of interesting kinetic relations, which are beyond the domain of
classical thermodynamics, can be derived by considering the rate of entropy pro-
duction in an isolated system. The rate and mechanism of evolution of a system
is often of major or of even greater interest in many problems than its equilibrium
state, especially in the study of natural processes. The purpose of this Appendix is
to develop some of the kinetic relations relating to chemical reaction, diffusion and
heat conduction from consideration of the entropy production due to spontaneous
processes in an isolated system.

A.1 Rate of Entropy Production: Conjugate Flux and Force
in Irreversible Processes

In order to formally treat an irreversible process within the framework of thermo-
dynamics, it is important to identify the force that is conjugate to the observed flux.
To this end, let us start with the question: what is the force that drives heat flux by
conduction (or heat diffusion) along a temperature gradient? The intuitive answer
is: temperature gradient. But the answer is not entirely correct. To find out the exact
force that drives diffusive heat flux, let us consider an isolated composite system that
is divided into two subsystems, I and II, by a rigid diathermal wall, the subsystems
being maintained at different but uniform temperatures of TI and TII, respectively.
It was shown in Sect. 2.8 that the entropy change of the composite system is given
by Eq. (2.8.2)

dS = �qI

(
1

TI
− 1

TII

)
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where �qI is the heat absorbed by the subsystem I. (It was also shown in Sect. 2.8
that because of the second law, �qI > 0 if TII > TI, and vice versa). Thus, the rate
of entropy production is given by

dS

dt
= �qI

dt

(
1

TI
− 1

TII

)
(A.1.1)

If �x is the length of the composite system and A is the cross sectional area of the
wall separating the two subsystems (Fig. 2.9), then A(�x) is the total volume of the
system. Thus the rate of entropy production per unit volume, commonly denoted by
�, is given by

� = 1

A(�x)

(
dS

dt

)
(A.1.2)

so that

� =
(
�qI

Adt

) (
1/TI − 1/TII

�x

)
(AI.1.3)

Considering infinitesimal change, the quantity within the second parentheses can be
written as d(1/T)/dX. The term within the first parentheses represents the heat flux,
JQ, (i.e. rate of heat flow per unit area) across the wall separating the subsystems
I and II. Thus,

� = JQ

(
d(1/T)

dx

)
(A.1.4)

The parenthetical derivative term in the above equation represents the force driving
the heat flux, JQ. Note that the force is the spatial gradient of the inverse temper-
ature instead of that of temperature itself. Noting that d(1/T) = – dT/T2, the last
equation can be written as

� = − JQ

T2

dT

dx
(A.1.5)

Equation (A.1.4) shows a general property of the rate of entropy production in a
system due to an irreversible process or several irreversible processes. For each pro-
cess, k, the rate of entropy production per unit volume, �k, is given by the product of
a flux term, Jk, associated with the process k (or a rate per unit volume for chemical
reaction, as shown below), and the force, �k, driving the flux. That is

� = (Either flux or rate per unit volume)(conjugate force)

= Jkχk
(A.1.6)
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Thus, consideration of the entropy production during a process leads to the proper
identification of the conjugate force and flux terms for the process. The rate of total
entropy production per unit volume in a closed system due to several irreversible
processes is given by

� =
∑

k

�k =
∑

k

Jkχk (A.1.7)

Let us now try to identify the appropriate forces that drive diffusion and chemical
reaction by considering the rate of entropy production in a system due to these
processes. For the first problem, let us again consider an isolated composite system.
as above, but make the wall separating the two subsystems porous to the diffusion
of the component i, and denote dni

I and dni
II as the change in the number of moles

of i in the subsystems I and II, respectively. Since the total number of moles of a
component (ni) in the overall composite system is conserved, we obviously have
dni

I = –dni
II. For simplicity, we assume that the two subsystems are at the same

temperature.
The change of total entropy, S, of the composite isolated system due to a change

in the number of moles of the component i in the subsystem I is given by

(
dS

dnI
i

)
ni

= dSI + dSII

dnI
i

= dSI

dnI
i

− dSII

dnII
i

(A.1.8)

where SI and SII are the entropies of the subsystems I and II, respectively. Now,
since the volumes of the subsystems are constant, we have, from Eq. (8.1.4) (i.e.
dU = TdS – PdV +

∑
�idni)

dSI

dnI
i

= dUI

TdnI
i

− �I
i

T
(A.1.9a)

and

dSII

dnII
i

= dUII

TdnII
i

− �II
i

T

= − dUII

TdnI
i

− �II
i

T

(A.1.9b)

Substituting the last two relations in Eq. (A.1.8), and noting that d(UI + UII) = 0, we
obtain

dS

dnI
i

=
(
�II

i − �I
I

T

)
(A.1.10)

Using chain rule, Eq. (A.1.2) can be written as
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� = 1

A�x

(
dS

dnI
i

) (
dnI

i

dt

)
(A.1.11)

Substituting Eq. (A.1.10) into the last expression and rearranging terms, we obtain

� = �II
i − �I

i

T�x

(
dnI

i

Adt

)
(A.1.12)

Thus, we can write the following expression for the rate of entropy production
due to chemical diffusion:

� = −�(�i/T)

�x
Jd,i (A.1.13)

where Jd,i, which stands for the parenthetical term in Eq. (A.1.12), is the diffusive
flux of the component i (rate of diffusive transfer of the component i per unit surface
area). From the above equation, we see that, in the absence of an external force, the
driving force for diffusion of i is the negative gradient of �i/T.1 As we shall see
later, recognition of the appropriate driving force leads to the formal understanding
of how diffusion within a solution is affected by its thermodynamic mixing property.

Let us now consider a system undergoing irreversible chemical reaction under
constant P-T condition within an isolated system. From Eq. (10.2.5)

dSint

d�
= A

T

where Sint is the internal entropy production due to chemical reaction, and A is the
affinity of the reaction, as defined Eq. (10.2.6), and equals – �rG. Thus,

dS

dt
=

(
dS

d�

) (
d�

dt

)
= A

T

(
d�

dt

)
(A.1.14)

Consequently, the rate of entropy production per unit volume due to chemical
reaction is given by

� = 1

V

dS

dt
= A

T

(
d�

Vdt

)
(A.1.15)

where V is the volume of the system. The parenthetical quantity is the reaction rate
per unit volume, which we would denote by Ri for the i th reaction. Thus, the term
A/T (or – �rG/T) represents the driving force for a chemical reaction.

1If there is an external force acting on the diffusing species i, then the driving force becomes – grad
(�i/T) + Fi, where Fi is the force per unit mass acting on i. For example, if there is an electrical
field Ed, then there is a driving force zEd, where z is the charge of the diffusing species.
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Table A.1 Summary of fluxes and conjugate forces for some irreversible processes

Process Flux Conjugate force

Heat Conduction JQ grad (1/T)
(or heat diffusion) (Joules/s-cm2)

Chemical Diffusion Jd,i – [grad (�i/T) – Fi]∗
(mol/s-cm2)

Chemical reaction Rate of reaction A/T or – �rG/T
per unit volume

∗Fi: External force per unit mass acting on i

The fluxes and conjugate forces for heat conduction (or heat diffusion), chemical
diffusion and chemical reaction are summarized in Table A.1.

Using Eq. (A.1.7) and the conjugate flux and force terms tabulated above, the
total rate of entropy production in a system within which both heat and chemical
diffusion and irreversible reactions are taking place, is given by

�T = − JQ

T2

dT

dx
−

∑
i

Jd,i

(
d(�i/T)

dx
− Fi

)
+

∑
i

Ri
Ai

T
(A.1.16)

A.2 Relationship Between Flux and Force

A flux Jk depends on the conjugate force, χk. If there are other forces in the system,
then Jk depends also on those other forces. In general, Jk could become a compli-
cated function of the forces. In the simplest approximation, one can write that

J1 = L11χ1 + L12χ2 + L13 + χ3 + .........

or

J1 =
n∑

j=1

L1jχj (A.2.1)

where it is assumed that there are n independent forces in the system. The L terms
represent phenomenological coefficients. Because of the linear nature of the above
equation, it is called an expression of flux in the domain of linear irreversible
thermodynamics. As remarked by Lasaga (1998), the linear approximation works
quite well for heat and chemical diffusion processes, but may not work well for
all problems of fluid flow of geological interest and fails for chemical reactions far
from equilibrium for which one needs to introduce higher order terms.

In a system subjected to both heat conduction and chemical diffusion of a
species i, we have according to the last expression

JQ ≡ J1 = L11χQ + L12χd,i

Jd,i ≡ J2 = L21χQ + L22χd,i

(A.2.2)
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Physically, these equations mean that chemical diffusion affects heat conduction and
vice versa. These processes are known, respectively, as Dufour effect and Soret
effect. Lesher and Walker (1991) have explored the importance of Soret effect (also
known as thermal diffusion) in petrological problems.

A.3 Heat and Chemical Diffusion Processes:
Comparison with the Empirical Laws

Let us again consider a planar section that has a fixed position in an isotropic
medium with respect to a coordinate system measured normal to the section. Assum-
ing that T decreases as x increases, the heat flux resulting from conductive heat
transfer across the plane is conventionally expressed by the Fourier’s law as

Jq = −K
dT

dx
(A.3.1)

where K is the thermal conductivity that has a dimension of energy/(t-L-K). (The
thermal conductivity of common upper mantle and crustal rocks is ∼ 3–4 W/(m-K);
note that J/s ≡ W).

The relationship between heat flux and temperature gradient is easily derived
from Eq. (A.2.1) by assuming that the only driving force in the system is that which
drives heat conduction, namely d(1/T)/dx (Table A.1). Thus,

JQ = LQ
d(1/T)

dx

so that

JQ = −LQ

T2

(
dT

dx

)
(A.3.2)

which has the same form as the Fourier law, Eq. (A.3.1).
The flux of a diffusing species is generally described by Fick’s law, which was

formulated by analogy with the Fourier’s law of heat conduction. Diffusion pro-
cesses are affected by thermodynamic mixing properties of the system. However,
this effect is not apparent in the empirical formulation of diffusion flux given by the
Fick’s law, but becomes transparent when one develops the expression of diffusion
flux from Eq. (A.2.1), as shown below.

Let us again consider a planar section that has a fixed position in an isotropic
medium with respect to a coordinate system measured normal to the section, and
assume, for simplicity, that there is no external force (such as electrical and gravita-
tional forces) acting on the diffusing species i. According to Fick’s law, the diffusive
flux of a component i, Jd,i, through this planar section is proportional to its local
concentration gradient, and is given by an equation of the same form as the Fourier
law of heat conduction, Eq. (A.3.1), viz.
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Jd,i = −Di
dCi

dx
(A.3.3)

where Ci is the concentration of i, in atoms per unit volume, decreasing in the direc-
tion of increasing x and Di is the diffusion coefficient of i (with dimension of L2/t).
Since Di > 0, the negative sign in the above expression is introduced to make the
flux positive in the direction of decreasing Ci. The flux of a component may also be
affected by the concentration gradient of other diffusing components, but we ignore
this cross-coupling effect at this stage.

Let us now derive the expression of flux from Eq. (A.2.1) that follows from
consideration of entropy production in the system due to irreversible process. With
the driving force given by – grad (�i/T) (Table A1.1, Eq. A.1.13), we have

Jd,i = −Li
d�i/T

dx

or

Jd,i = −Li

T

(
d�i

dx

)
= −Li

T

(
d�i

dCi

) (
dCi

dx

)
(A.3.4)

Since at constant P-T condition, d�i = RTdlnai = RTdln(Ci·i), the above expression
transforms to

Jd,i = − RLi

Ci

(
1 + d ln�i

d ln Ci

)
︸ ︷︷ ︸

Di

(
dCi

dx

)
(A.3.5)

The second parenthetical term in this expression shows the effect of thermodynamic
mixing property on diffusion flux, and is often referred to as the thermodynamic
factor. Comparing the last expression with the Fickian expression of diffusion flux,
Eq. (A.3.3) we find that

Di = D+
i

(
1 + d ln�i

d ln Ci

)
(A.3.6)

where

D+
i = RLi

Ci
(A.3.7)

The quantities D+
i and Di are known, respectively, as the self- and chemical-

diffusion coefficient of the component i. The extension of the above developments
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to binary and multicomponent systems may be found in a number of publications,
such as Chakraborty and Ganguly (1991) and Ganguly (2002).

A.4 Onsager Reciprocity Relation and Thermodynamic
Applications

Within the domain of validity of linear irreversible thermodynamics, expressions for
different types of fluxes in a system subject to several irreversible processes can be
written, in a generalized form, as

J1 = L11χ1 + L12χ2 + L13χ3 + ....

J2 = L21χ1 + L22χ2 + L23χ3 + .....

J3 = L31χ1 + L32χ2 + L33χ3 + ....

(A.4.1)

and so on. In a matrix notation, we can then write

J = [L][χ ] (A.4.2)

where J and � represent column vectors of fluxes and forces, respectively, and [L]
is a matrix of the L coefficients. It was shown by Onsager (1945) (1903–1976) that
if the above equations are written in terms of independent fluxes and forces, then
the [L] matrix becomes symmetric, i.e. Lij = Lji. This is known as the Onsager
reciprocity relation (ORR) (for which Onsager was awarded the Nobel Prize in
Chemistry in 1968). Physically, the reciprocity relation means that the effect of a
force �1 in driving the flux J2 is the same as the effect of the force �2 in driving the
flux J1. The reciprocity relation greatly simplifies the treatment of cross-coupling
of different forces in a system, and also provides upper bounds on the sizes of the
L coefficients. Lasaga (1998), Chakraborty and Ganguly (1994) and Chakraborty
(1995) have discussed applications of the ORR to geological problems.

Onsager’s reciprocity relation provides a means to test the mutual compatibility
of the diffusion and thermodynamic mixing properties of species in a system in
which several components are diffusing simultaneously. We provide here a brief
exposition of this compatibility criterion. In a system with n diffusing components,
there are n-1 independent components, since the flux of the n th component, which
may be chosen arbitrarily, is determined by mass balance. In multicomponent dif-
fusion, the flux of each component is affected not only by its own concentration or
chemical potential gradient, but also by those of others. Within the domain of valid-
ity of linear irreversible thermodynamics, the fluxes of the independent components
in one-dimensional flow are given, taking into consideration the cross-coupling of
the diffusing species, by the Ficks-Onsager relation (Onsager, 1945) as follows

J1 = −D11
�C1

�X
− D12

�C2

�X
− · · · · · · · · · · · · · · · · · · −D1(n−1)

�Cn−1

�X

J2 = −D21
�C1

�X
− D22

�C2

�X
− · · · · · · · · · · · · · · · · · · −D2(n−1)

�Cn−1

�X
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· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Jn−1 = −D(n−1)1

�C1

�X
− D(n−1)2

�C2

�X
− · · · · · · · · −D(n−1)(n−1)

�Cn−1

�X
(A.4.3)

Using the principle of matrix multiplication, this can be written as
⎡
⎢⎢⎣

J1

J2

. . . .

Jn−1

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎣

D11 D11 · · · · · · · · · D1(n−1)

D11 D22 · · · · · · · · · D1(n−1)

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
D(n−1)1 · · · · · · · · · · · ·D(n−1)(n−1)

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣
�C1/�X
�C2/�X
· · · · · · ·
�Cn−1/�X

⎤
⎥⎥⎦ (A.4.4)

or

J = −D(�C/�X) (A.4.5a)

where J and C are (n-1) column vectors and D is an (n–1)×(n−1) matrix of diffusion
coefficients that is commonly referred to as the D-matrix. Similarly, using L instead
of D coefficients, one may write

J = −L(��/T)/�X (A.4.5b)

where � is an (n–1) column vector of chemical potentials and L is an (n–1)× (n–1)
matrix of the Lij coefficients.

Comparing the last two expressions, one obtains a relationship between the D
and L matrices as follows (Onsager, 1945)

D = LG (A.4.6′)

or

DG−1 = L (A.4.6′)

where an element of the G-matrix, commonly referred to as a thermodynamic
matrix, is given by

Gij = �

�Xj
(�i − �n) ,

�n being the chemical potential of the chosen dependent component, and G−1 the
inverse of the G matrix. Evaluation of the Gij elements requires data on the thermo-
dynamic mixing properties of the components in the system.

According to Eq. (A.4.6′), the product of the D and G−1 matrices must be sym-
metric since, according to the ORR, L matrix is symmetric (it is also positive def-
inite). Thus, Eq. (A.4.6′) provides a test of the mutual compatibility of the data
on diffusion coefficients and thermodynamic mixing properties of components in a
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system. This criterion was used by and Spera (1993) and Chakraborty (1994) to test
the mutual compatibility of the data on the diffusion kinetic and thermodynamic
mixing properties of components in the CaO-Al2O3-SiO2 and K2O-Al2O3-SiO2

melts, respectively. Using Eq. (A.4.6′), one can also extract an unknown thermo-
dynamic mixing parameter or a diffusion coefficient if the other parameters are
known (Chakraborty and Ganguly, 1994). In this approach, one varies the value of
the unknown parameter until the product of D and G−1 matrices become symmetric
and positive definite.



Appendix B
Review of Some Mathematical Relations

One reason why the study of thermodynamics is so
valuable to students of chemistry and chemical
engineering is that it is a theory which can be
developed in its entirety, without gaps in the
argument, on the basis of only a moderate knowledge
of mathematics

Kenneth Denbigh

The purpose of this Appendix is not to present a comprehensive review of the
mathematical methods used in thermodynamics, but to primarily review some of
the concepts of calculus that are used frequently in the development of classical
thermodynamics. In addition, I have tried to collect together some mathematical
techniques that are often forgotten by the not-so-mathematically oriented reader so
that they can read the book without having to take the trouble of consulting mathe-
matics books.

B.1 Total and Partial Differentials

Consider a function Z that can be expressed as a function of the real variables x and
y, Z = f(x,y). The total change of Z, dZ, corresponding to the changes dx and dy of
x and y, respectively, is given by

dZ =
(
�Z

�x

)
y

dx +
(
�Z

�y

)
x

dy

= Zxdx + Zydy

(B.1.1)

Here the parenthetical quantities on the right hand side are called partial derivatives
or partial differentials. Commonly the symbol � is used to indicate a partial deriva-
tive. The first partial derivative on the right, which also denoted by the short-hand
notation Zx, indicates the rate of change of Z with respect to the variable x, when y
is held constant. Analogous statement also applies to the second partial derivative.
The differential dZ is called the total derivative or total differential of Z.

453
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In general, if Z = f(x1, x2, x3 ...xn), then one can express the total derivative of
Z as

dZ =
n∑
i

(
�Z

�xi

)
j
=i

dxi (B.1.2)

in which the subscript j 
= i indicates that all variables, except i, are held constant.
The above equations are valid regardless of whether x and y are independent

variables or not. It follows that if x and y depend on a single independent variable,
say m, then from Eq. (B.1.1), we have

dZ

dm
=

(
�Z

�x

)
y

dx

dm
+

(
�Z

�y

)
x

dy

dm
(B.1.3)

For the special case m = y, the above relation reduces to

dZ

dy
=

(
�Z

�x

)
y

dx

dy
+

(
�Z

�y

)
x

(B.1.4)

Although it should be obvious, it is reiterated that the two differentials dZ/dy and
(�Z/�y)x must not be confused. The first one indicates the total rate of change of
Z with respect to y, taking into account the rate of change of x with respect to the
latter, whereas the partial derivative indicates the rate of change of Z with respect to
y when x is held constant. The extension of the last two relations for a function that
involves more than two variables should be obvious.

B.2 State Function, Exact and Inexact Differentials,
and Line Integrals

When Z can be expressed as function of the variables x1, x2, x3 ...xn, as in the above
examples, then integration of dZ between two states a and b is given by

b∫

a

dZ = Z(b) − Z(a) (B.2.1)

In other words, the result of integration depends only on the values of Z in the
final and initial states, and not on the path by which the change of state is brought
about. A function Z = f(x1, x2, x3 ...xn) is, thus, often referred to as a state function.
As an example, consider the change in the volume of a gas between two arbitrary
states marked as A and D in Fig. B.1. We know from experience that the change
in the volume of the gas depends only on the P, T conditions of the initial and final
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Fig. B.1 Schematic
illustration of the change of
the state of a gas from A to D
along two different paths in
the P-T space, A → B → D
and A → C → D. The figure
is also repeated as Fig. 1.4 in
Chap. 1

T

B

DC

A

P

states, and not on the path in the P-T space along which the change of state is
achieved. Thus, V is a state function.

Let us test the validity of the above statement for an ideal gas, for which the equa-
tion state is given by Vm = RT/P, where Vm is the molar volume. Using Eq. (B.1.1),

dVm = R

P
dT − RT

P2
dP (B.2.2)

Now for the change of state of the gas from A to D along the path ABD, we have

D∫

A

dVm =
B∫

A

dVm +
D∫

B

dVm = R

P1
(T2 − T1) + RT2

(
1

P2
− 1

P1

)
(B.2.3)

Substitution of the relation Vm = RT/P then yields

D∫

A

dVm = Vm(P2, T2) − Vm(P1, T1) (B.2.4)

Following the above procedure, exactly the same expression is obtained for the inte-
gral of dV along the path ACD.

The differential of dZ where Z = f(x1, x2, x3 ...xn) is also called an exact or
perfect differential, especially in thermodynamic discussions. Obviously, total dif-
ferential and exact differential are synonymous. Now, let us consider a differential
quantity

d� = M1dx1 + M2dx2 + M3dx3 (B.2.5)

This expression does not necessarily imply that � is a function of the variables x1,
x2 and x3. For example, if d� = 8(y)dx + (4x)dy, it is not possible to express �
as a function of x and y. The differential d� is then not a differential of a function
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�, but simply a differential quantity that stands for
∑

Midxi. In that case, d� is
called an inexact or imperfect differential. To distinguish it from an exact or total
differential, which is commonly denoted by the symbol d, an inexact differential is
indicated by a symbol that looks like d, but is not d, e.g. −d or �. In this book, we
have chosen to use the latter symbol for an inexact differential.

Integration along a specific path, as we have done above for the integration of dV,
is known as line integration. If the differential that is being integrated is exact, then
line integration is redundant. All that we need to know are the limits of integration.
However, the result of integration of an inexact differential not only depends on the
terminal states but also on the path connecting those states. Consider, for example,
the work done by an ideal gas as its volume changes from the state A to state D
along the paths ABD and ACD in Fig. B.1. Integration of �w+ = PdV along the two
paths, which is posed as a problem in Chap. 1 (Problem 1.1), yields different results.
Line integral along a closed loop, that is a path for which the initial and final states
are the same, is indicated by the symbol

∮
. Evidently, if dZ is exact, then

∮
dZ = 0,

whereas, if it is inexact, then
∮
�Z 
= 0.

B.3 Reciprocity Relation

From Eq. (B.1.1), we derive an important property of an exact differential. Differ-
entiating Zx with respect to y and Zy with respect to x, we get, respectively,

�Zx

�y
≡ �

�y

(
�Z

�x

)
= �2Z

�y�x
(B.3.1)

and

�Zy

�x
≡ �

�x

(
�Z

�y

)
= �2Z

�x�y
(B.3.2)

However, since the order of differentiation is immaterial,

�Zx

�y
= �Zy

�x
(B.3.3)

This is known as the reciprocity relation. If a differential satisfies this relation,
then it must be an exact differential. An inexact differential will not satisfy the
reciprocity relation. Consider, for example, the relation dZ = y2dx + (2xy)dy. Here
dZ is exact since the terms on the right satisfy the reciprocity relation: (�(y2)/�y)=
2y = �(2xy)/�x. However, �� = y2dx − (2xy)dy is inexact since it does not satisfy
the reciprocity relation. In thermodynamics, we do not test if a differential is exact or
not by using the reciprocity relation. We already know when a differential is exact,
and thus use the reciprocity relation to obtain useful relations among the variables.
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A set of important relations derived in this manner, which are known as the Maxwell
relations, are summarized in Sect. 3.4, Box (3.4.1).

If Z = f(x1, x2, x3 ...xn) so that

dZ = N1dx1 + N2dx2 + N3dx3 + . . . Nndxn =
∑

i

Nidxi , (B.3.4)

where Ni = �Z/�xi, then the reciprocity condition of exact differential is given by
the generalization of Eq. (B.3.3) as follows.

(
�Mi

�xj

)
xi 
=xj

=
(
�Mj

�xi

)
xj 
=xi

, (B.3.5)

where the subscripts indicate that all variables, other than the one with respect to
which the differentiation is carried out are held constant.

B.4 Implicit Function

Let us consider a simple thermodynamic system consisting of a chemically homo-
geneous fluid or solid, which is subjected to a temperature, T, and a hydrostatic
pressure, P. For a given amount of substance in the system, P, T and V are not
independent quantities, but are related by an equation of state (EoS), which can be
expressed by a relation of the type

f(P, V, T) = 0 (B.4.1)

For example, consider an ideal gas, which obeys the equation of state

PV = nRT (B.4.2)

where n is the number of moles and R is the gas constant. This can be written as
f(P,V,T) = 0 where f(P,V,T) = PV – nRT.

A function that can be written in the form of Eq. (B.4.1) is known as an implicit
function. By taking the total derivative of an implicit function f(x,y,z), and some
manipulations, as shown below, we obtain two useful relations

(
�x

�y

)
z

(
�y

�z

)
x

(
�z

�x

)
y

= −1 (B.4.3)

or
(
�x

�y

)
z

= − (�x/�z)y

(�y/�z)x
(B.4.4)
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In the first equation, note the order of appearance of the variables in the set (x,y,z)
as (x,y)z, (y,z)x, (z,x)y that is easy to remember, with the variable outside the paren-
theses being held constant. For an example of thermodynamic application of these
relations, see Sect. 3.7.10.

To derive the above relations, we first take the total derivative of the relation
f(x,y,z) = 0, which yields

df = fxdx + fydy + fzdz = 0 (B.4.5)

where, as before, fx is the partial derivative of f with respect to x, and so on. Now,
differentiating with respect to y at constant z, we get

(
�f

�y

)
z

=
(
�f

�x

)
y,z

(
�x

�y

)
z

+
(
�f

�y

)
x,z

= 0

or
(
�x

�y

)
z

= −
(
�f

�y

)
x,z

(
�x

�f

)
y,z

(B.4.6)

Similarly, by successively differentiating Eq. (B.4.5) with respect to z at constant x,
and x at constant y, we get

(
�y

�z

)
x

= −
(
�f

�z

)
x,y

(
�y

�f

)
x,z

(B.4.7)

and
(
�z

�x

)
y

= −
(
�f

�x

)
y,z

(
�z

�f

)
x,y

(B.4.8)

Multiplication of the left hand terms in the last three equations then yields
(
�x

�y

)
z

(
�y

�z

)
x

(
�z

�x

)
y

= −1

B.5 Integrating Factor

In some cases, an inexact differential may be multiplied by what is known as an
integrating factor to make it exact. Consider, for example, the inexact differential

�Z = (8y)dx + (4x)dy (B.5.1)

that does not satisfy the reciprocity relation. However, multiplying both sides by x,
we get
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xδZ = (8xy)dx + (4x2)dy, (B.5.2)

It can be easily verified that the expression of x�Z satisfies the reciprocity relation.
Thus, the inexact relation has been transformed to an exact differential by multi-
plication by x. A term that, upon multiplication, transforms an inexact differential
to an exact differential is known as an integrating factor. Note, however, that an
integrating factor does not exist for any arbitrary inexact differential. As discussed
in Chap. 2 (Sect. 2.3.5), the conversion of an inexact differential, �qrev, that is the
heat absorbed by a system in a reversible process, to an exact differential, dS, by
an integrating factor (1/T) constitutes the fundamental basis of the second law of
thermodynamics. Although the second law was derived from logical analysis of
experimental observations, specifically the failure to completely convert energy to
work without any wastage or dissipation, as discussed in Sect. 2.3, Carathéodery
in 1910 demonstrated the existence of an integrating factor that converts �qrev to
an exact differential, and thus derived the second law without any recourse to any
experimental data.

B.6 Taylor Series

Consider a function f(x) that is graphically illustrated in the Fig. B.2. Suppose that
we do not know the explicit relation between the function and the variable x that is
required to calculate f(x) at any value of x, but we know f(x) at some point x = a, and
its first and higher order derivatives at this point. Now, if we want to calculate f(x)
at another value of x that is very close to x = a, we can make the following linear
approximation, as illustrated in Fig. B.1.

f(x) ≈ �(x) = f(a) + f′(a)(x − a) (B.6.1)

where f′(a) is the first derivative of f(x) at x = a, and �(x ) is the approximation
function. However, if the point of interest is sufficiently removed from x = a for
the linear approximation to be valid, then the value of the function can be approx-
imated by including higher derivatives of f(x) at the point x = a. This method of
approximation is given by Taylor series, as follows

f(x) ≈ �(x) = f(a) + f′(a)(x − a) + f′′(a)

2
(x − a)2

+ f′′′(a)

3!
(x − a)3 + · · + f(n)(a)

n!
(x − a)n

(B.6.2)

where the superscript of f indicates the order of the derivative of f(x) at x = a (′ : first
derivative; ′′: second derivative etc. (n) n th derivative). The nature of Taylor series
approximation of the function f(x) is schematically illustrated in Fig. B.2, in which
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x
a•

f(x)

a

Ψ1(a)
Ψp(a)

f(x)

Fig. B.2 Schematic illustration of the approximation of the value of a function f(x) by Taylor series
using the first and higher order derivatives of the function at x = a. When the value of x is close
to a, the function may be approximated by �1(a), which is given by the linear equation (B.6.1)
in the text containing only the first derivative of f(x) at x = a. However, when x is sufficiently
removed from the point a for the linear approximation to be valid, such as when x = a′, higher
order derivatives of f(x) at x = a are needed to approximate the function., as given by Eq. (B.6.2).
�p(a) is the approximation function containing up to p th derivatives of f(x) at x = a

�1(a) denotes the approximation function containing the first derivative of f(x) at
x = a, and �p(a) denotes that containing up to the p th derivatives of f(x) at x = a.

In a compact form, the Taylor series can be expressed as

f(x) ≈ �(x) = f(a) +
n∑

m=1

f(m)(a)

m!
(x − a)m (B.6.3)

where f(m)(a) is the m th derivative of the function at f(x) at x = a.
As an example of the application of Taylor series, consider the function ex. We

can calculate the value of this function at an arbitrary value of x by knowing that
e0 = 1 and finding the successively higher derivatives of ex at x = 0. This procedure
yields

ex = 1 + x + x2

2
+ x3

3!
+ x4

4!
+ · · · .

Problem B.1 Evaluate whether dZ = (y – x2)dx + (x + y2)dy is an exact or an
inexact differential. If it is an exact differential, then find the function Z = f(x, y).



Appendix C
Estimation of Thermodynamic Properties
of Solids

There is more joy in heaven in a good approximation
than in an exact solution

Julian Schwinger

Despite remarkable progress in the Earth science community in the measurement of
thermodynamic properties of end-member minerals and mixing properties of solid
solutions, and development of self-consistent data bases, important gaps still persist
that sometimes force the practitioners to estimate the missing properties through
some empirical scheme or fundamental theoretical method. Several methods have
been developed for the estimation of thermochemical properties of end-member
minerals and solid solutions that may be used judiciously when the required data
are not available in the thermodynamic data bases. In this section, we summarize
some of these estimation methods that have been found to be relatively successful.

C.1 Estimation of Cp and S of End-Members
from Constituent Oxides

C.1.1 Linear Combination of Components

At the outset we note that properties such as entropy and heat capacity of end
member phases that depend primarily on vibrational properties could be usually
approximated much better than enthlapy that depends on the bonding and potential
energies. To develop the estimation schemes, let us consider the estimation of Cp

and S of forsterite, Mg2SiO4. We may begin by using a linear combination of the
corresponding properties of MgO and SiO2 so that

Cp(For) ≈ 2Cp(MgO) + Cp(SiO2), (C.1.1)

and similarly for S(For). However, if data for an isostructural compound are avail-
able, then it is usually better to utilize those data in the estimation scheme since
this procedure provides a better approximation of the vibrational properties of the

461
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compound for which one wishes to estimate Cp and S. Thus, for example, if the
data on Mg2SiO4 (Fo) are available, and we are to estimate the Cp and S values
for Fayalite (Fa), Fe2SiO4, then it is better to use the following scheme instead
of a linear combination of the corresponding values for FeO and SiO2. Writing a
balanced reaction between Fa and For as Fe2SiO4 + MgO = Mg2SiO4 + FeO, or

Fe2SiO4 = Mg2SiO4 + 2 FeO − 2 MgO, (C.1.a)

we approximate the Cp(Fay) as

Cp(Fa) ≈ Cp(For) + 2 Cp(FeO) − 2 Cp(MgO) (C.1.2)

and similarly for S(Fa).

S(Fa) ≈ S(For) + 2 S(FeO) − 2 S(MgO) (C.1.3)

The entropy estimates can be improved by making corrections for the volume and
electronic effects, as discussed below.

C.1.2 Volume Effect on Entropy

The effect of volume change of a compound on its entropy is given by the Maxwell
relation Eq. (3.4.3) (�S/�V)T = (�P/�T)V. The last derivative equals the ratio �/T

Eq. (3.7.9). Thus, to estimate entropy for a compound that does not require any
other type of correction, we proceed in two steps: first by creating a compound (j)
that has the same volume as the sum of its components used in the linear combi-
nation scheme e.g. Eq. (C.1.a), and then relaxing the volume of the compound to
its equilibrium value at the given P-T condition according to �S = (�/)�V. Here
�V = Vj – �niVi, where Vj is the equilibrium volume of the compound, Vi is the
volume of a component in the linear combination scheme and ni is its number of
moles. Thus, incorporating the volume correction term

Sj ≈
∑

i

niSi + �



(
Vj −

∑
i

niVi

)
(C.1.4)

This method of correction for the volume effect was introduced by Fyfe et al. (1958),
and has since been used widely.

C.1.3 Electronic Ordering Effect on Entropy

Wood (1981) drew attention to the fact that the removal of internal degeneracies
of t2g and eg orbitals of a transition metal ion by the distortion of the coordinating
polyhedron may have significant effect on the entropy of the compound hosting
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the cation. In the entropy estimation scheme involving FeO, such as given by
Eq. (C.1.3), there may be a change in the electronic configuration of Fe2+ if there
is a change in its coordination environment, as its is transferred from the lattice
site in FeO to that in another solid. In FeO, Fe2+ occupies a regular octahedral
site in which the d-orbitals are split into two energy levels eg and t2g, consisting
respectively of two and three degenerate d-orbitals (Sect. 1.7.2 and Fig. 1.10). Since
there are six d-electrons in Fe2+, one d-electron must reside in one of the three t2g

orbitals in a spin-paired state. But since these three orbitals are degenerate, there
is equal probability of the existence of the sixth d-electron in any of these orbitals
(that is it is disordered among three different configurational states), leading to an
electronic configurational entropy given by the Boltzmann relation Eq. (2.5.1)

S = Rln�conf = Rln(3) = 9.134 J/mol-K (C.1.5)

where R(gas constant) = LKB. Now suppose that Fe2+ is transferred into a distorted
octahedral site in a crystalline lattice. The distortion of the site may completely or
partially remove the degeneracy of the t2g orbitals (Fig. 1.11). When there is only
one orbital in the lowest energy level, the sixth d-electron exists in a spin-paired
state in that orbital in the ground state, in which case �conf = 1. Consequently, there
is a reduction of configurational entropy of 9.134 J/mol-K in transferring Fe2+ from
FeO into a distorted octahedral crystalline lattice that has only one orbital in the
lowest energy state. For stoichiometric FeO, Wood (1981) recommends entropy
value of 56.30 J/mol-K at 1 bar, 298 K. This value, along with the change of elec-
tronic entropy due to crystal field effect, should be used in the entropy estimation of
a ferrous compound at 298 K using linear combination scheme. For example,

S(Fa) = S(Fo) + 2(56.30) − 2 S(MgO) − 2(9.134) J/mol-K

C.2 Polyhedral Approximation: Enthalpy, Entropy and Volume

Mueller (1962) introduced the idea that a particular polyhedron, such as [6]MgO
in which an Mg ion is coordinated to 6 oxygen ions located at the apices of an
octahedron, should have distinctive thermodynamic properties that are not very
significantly affected by the rest of the structural environments in silicate miner-
als. Several workers pursued this idea to estimate the bulk modulus Hazen (1985),
enthalpy, entropy and Gibbs free energy (Chermak and Rimstidt, 1989, 1990; Van
Hinsberg et al., 2005) of silicate minerals. Cherniak and Rimstidt (op. cit) expressed
silicate minerals as linear combinations of constituent polyhedra, and utilized the
known properties of the silcates to retrieve the polyhedral properties using statisti-
cal regression. To clarify the basic concept, let us consider two minerals, forsterite
(For: Mg2SiO4) and enstatite (En: MgSiO3). The properties of these two minerals
can be expressed as linear combination of those of [6]MgO and [4]SiO2 according to
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Mg2SiO4 = 2([6]MgO) + [4]SiO2, and MgSiO3 = [6]MgO + [4]SiO2. Consequently, if
the polyhedra have properties that do not depend significantly on their structural
arrangements, then a particular type of polyhedral property, such as S, may be
retrieved from simultaneous solution of the two linear equations if the properties
of For and En are known.

Van Hinsberg et al. (2005) determined the properties of 30 polyhedral units by
statistical regression of the thermodynamic properties of 60 minerals each of which
can be expressed as linear combination of the chosen polyhedral units. The retrieved
polyhedral properties are reproduced in Table C.1. The agreement between the input
and estimated values for enthalpy and entropy are shown in Fig. C.1. The entropy
estimates represent simple linear combination of the polyhedral entropies without
correction for the volume effect. This is because linear combination of the volumes
of the polyhedral units yields the volume of the compound for which the entropy
needs to be estimated. If this criterion is not satisfied, then one needs to correct for
the volume effect according to Eq. (C.1.4).

When there is a change of oxygen coordination of Si from four to six due to
increase of pressure, the estimated entropy of a mineral using the entropy of [4]SiO2

needs to be corrected for the effect of coordination change. This may be accom-
plished by using the entropy difference between stishovite, in which Si is present
in octahedral site, and [4]SiO2 or quartz. This procedure suggests a reduction of the
estimated entropy of the compound by 10.3 J/mol of 6-coordinated Si.

Table C.1 Thermochemical properties of polyhedral units derived from statistical regression of
the thermochemical properties of minerals that are expressed as linear combinations of polyhe-
dral units. �hi, si and vi are, respectively, the enthalpy of formation from elements, the third law
entropy and volume of the polyhedral unit i. SD is the standard deviation. From Van Hinsberg et al.
(2005)

�hi (J mol−1) SD si (J mol−1 K−1) SD vi (J bar−1) SD (s−v)i SD

Si-tet −921 484 5256 39.8 1.07 2.45 0.05 15.9 1.03
Al-tet −816 087 5581 40.3 1.16 2.17 0.06 19.8 1.12
Al-oct −852 961 6012 22.2 1.38 0.75 0.07 13.5 1.32
Al-OHO −1 049 365 9787 38.9 2.03 1.45 0.10 22.7 2.07
Al-OH −1 170 579 17 017 57.3 6.90 2.83 0.23 27.4 6.19
Mg-tet −633 580 29 576 53.6 5.49 2.44 0.29 32.6 5.04
Mg-oct −625 422 5274 28.3 1.37 0.91 0.06 19.2 1.30
Mg-OHO −764 482 7810 35.8 1.90 1.43 0.08 21.1 1.80
Mg-OH −898 776 11 242 48.0 2.01 2.19 0.11 27.2 1.96
Fe-oct −269 316 11 259 43.0 1.93 1.03 0.11 32.6 1.79
Fe-OHO −385 309 12 794 50.7 3.49 1.48 0.12 35.0 3.00
Mn-oct −403 304 17 588 46.1 2.38 1.13 0.10 33.8 2.00
Ti-oct −955 507 35 677 55.4 6.03 1.99 0.19 31.4 5.15
Fe3-oct −404 103 18 177 30.7 4.32 0.99 0.17 19.7 3.66
K-multi −354 612 19 274 56.0 4.80 1.31 0.18 43.6 4.15
Na-multi −331 980 18 944 38.3 3.17 0.85 0.15 27.9 2.97
Ca-oct −703 920 12 247 42.0 1.73 1.33 0.09 27.9 1.68
Ca-multi −705 941 9516 38.8 1.63 1.36 0.09 26.1 1.55
H2O free −306 991 12 836 44.1 1.97 1.46 0.09 28.3 1.93
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Fig. C.1 Comparison between the estimated and input values for enthalpy and entropy of minerals.
The estimated values are obtained from linear combination of polyhedral properties in Table C.1
whereas the input values are those used to retrieve the polyhedral properties. From Van Hinsberg
et al. (2005)

The effective thermochemical properties of polyhedral units depend on how these
are connected with one another. In order to minimize the destabilizing effect of
cation-cation repulsions, the polyhedral units share corners as much as possible.
However, the requirement of volume reduction at high pressure often leads to con-
siderable face- and edge-sharing of polyhedra. The polyhedral properties in the
Table C.1 have been derived from thermochemical properties of minerals that are
stable at the P-T conditions of the Earth’s crust. Therefore, linear combination of
these properties may not lead to useful estimate of thermochemical properties of
high pressure minerals for which the polyhedra are linked in significantly different
way than in the minerals from which the effective polyhedral properties have been
derived.

Problem C.1 Calculate the correction that is to be made due to the change in
the crystal field environment of Fe2+ if the entropy of spinel, FeAl2O4, in which
Fe2+ occupies tetrahedral site, is to be estimated from summation of the entropies
of component oxides. (see Sect. 1.7.2 for crystal field effect).

Problem C.2 Using the data of polyhedral entropies in Table C.1, calculate the
entropies of the high pressure Mg2SiO4 polymorphs wadsleyite and ringwoodite at
1 bar, 298 K, as well as you can. These will be the entropies for the metastable
persistence of the high pressure forms that can be used to estimate the entropies at
other conditions. (The data in Table C.1 yield good estimate of entropy of olivine
(Mg2SiO4) at 1 bar, 298 K). For comparison, the calorimetric third law entropy
values are as follows. Wadsleyite: 86.4(± 0.4) J/mol-K; Ringwoodite: 82.7(± 0.5)
J/mol-K. Your entropy estimates should be in good agreement with the calorimetric
values.

Problem C.3 Van Hinsberg et al. (2005) found that S(Al-oct) < S(Al-tet). Similar
behavior is also exhibited by S(Si-tet) and S(Si-oct), as discussed above. Provide a
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qualitative explanation for the observed reduction of entropy with increasing oxygen
coordination of Al and Si. Hint: Think about the physical consequence of increasing
the coordination number of an ion.

C.3 Estimation of Enthalpy of Mixing

The thermodynamic mixing properties of a solid solution are determined on the
basis of calorimetric data (Fig. 9.4) and/or experimental phase equilibrium data. The
latter topic is discussed in Sect. 10.13. In the absence of these data, and considering
the urgency of the problem at hand, one is forced to explore methods of estima-
tion of the mixing properties, of which the enthalpy of mixing is the most difficult
problem to handle. Several empirical methods have been devised to estimate �Hxs

from size mismatch data that were reviewed by Ganguly and Saxena (1987). More
recently, quantum-chemical methods have been employed to estimate enthalpy of
mixing of silicate minerals (Panero et al., 2006). However, powerful as the latter
method is, it is highly specialized and is not within the reach of those who usually
use thermodynamic properties to calculate phase relations of minerals. We discuss
below some relatively simple but effective methods for the estimation of enthalpy
of mixing of solid solutions.

C.3.1 Elastic Effect

The process of formation of a solid solution [XA� + (1 − X)B� → (AxB1−x)�]
can be formally thought to consist of the following steps: (a) change of the molar
volumes of the end-member components to the molar volume V of the solid solution
and (b) mixing of these components to form a chemically homogeneous mixture.
These two steps may be referred to as the elastic and chemical components of the
total enthalpy of mixing, as schematically shown below.

Step (a) Step (b)

φφ

φφ

−⇒−

⇒

B
o
B

A
o
A

V)X1(V)X1(

XVXV
( )φ−x1xBAV

ΔHm (elastic) ΔHm (chemical)

Expanding on the formulation of Ferreira et al. (1988), the discussion of which
is beyond the scope of this section, Ganguly et al. (1993) showed that the elastic
enthalpy of mixing is given by

�Hm(elastic) = 1

p

⎡
⎣(1 − X′)

X′∫

o

XZ(x)dX + X′
1∫

X′

(1 − X)Z(x)dX

⎤
⎦ (C.3.1)
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where X′ is the mole fraction of A�,

Z = T

V

(
dVm

dX

)
(T : bulk modulus)

and p is the number of substituting atoms in the nearest neighbor cell. This formula-
tion accounts for the effect of multi-atom interactions that lead to a relaxation of the
elastic energy. (The expression within the square brackets yields the elastic energy
of mixing, ignoring the effects of multi-atom interactions, and is due to Ferreira
et al., 1988)

The concept of nearest-neighbor cell is illustrated in Fig. C.2 using the unit cell
of pyrope, Mg3Al2Si3O12 (Ganguly et al., 1993). The Mg atoms form triangular
nearest neighbor cells, some of which are shown in the figure. The nearest neighbor
Mg atoms are 3.509 Å apart. Divalent cations like Fe2+, Ca2+, Mn2+ substitute for
the Mg2+ in garnet solid solution. Thus, the substituting ions in an aluminosilicate
garnet solid solution form a three-atom (or three-ion) nearest neighbor cluster, so
that p = 3.

Let us now calculate �Hm(elastic) for the pyrope-grossular solid solution.
Ganguly et al. (1993) experimentally determined the Vm – X relation of pyrope-
grossular solid solution, and found that the data can be fitted well by a subregular
model,

�Vxs
m = Wv

CaMgXMg + Wv
MgCaXCa,

with Wv
CaMg = 0.36 ± 0.23 and Wv

MgCa = 1.73 ± 0.3 cm3/mol (12 oxygen per
formula unit). Writing Vm = XVo

1 + (1−X)Vo
2 +�Vxs, and expressing the last term

according to a subregular model, we have

Fig. C.2 Unit cell of pyrope
showing only Mg atoms. The
nearest neighbor Mg-atoms
form triangular clusters, and
are 3.509 Å apart from each
other. From Ganguly et al.
(1993)

3.509 Å
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dV

dX
= (

Vo
1 − Vo

2

) + W12 + A1 + A2 (C.3.2)

where A1 = 2(W21 – 2 W12)X and A2 = 3(W12 – W21)X2 .
For simplicity, it was assumed that ratio T/V changes linearly with composition

in the pyrope-grossular join. The assumption implies that the slope of the V-P curve
at any P-T condition changes linearly with composition. Substituting Eq. (C.3.2)
in the right hand side of Eq. (C.3.1) and using the available data for bulk modulii
for pyrope and grossular (taken from the literature), �Hm(elastic) was evaluated by
carrying out the required integration. The results, which are illustrated in Fig. 9.4 as
“Elastic effect”, are in good agreement with the calorimetric and optimized data.

C.3.2 Crystal-Field Effect

In the absence of crystal-field effect (see Sect. 1.7.2 for discussion of crystal filed
effect), the chemical effect usually does not usually seem to be significant compared
to the elastic effect, as the data presented in Fig. 9.4 suggest (the calorimetric and
optimized data show the net enthalpy of mixing due to both elastic and chemical
effects). When there is a crystal effect, as in the pyrope-almandine or uvarovite-
grossular solid solutions, the net enthalpy of mixing should incorporate the change
of crystal field stabilization energy, �CFSE, of a transition metal cation. Thus, we
write

�Hxs
m ≈ �Hm(elastic) + �CFSE(X) (C.3.3)

The last term is given by

�CFSE(X) = X[CFSE(X) − CFSE(X = 1) − CFSE(X = 0)] (C.3.4)

where CFSE(X) is the crystal field stabilization energy of the transition metal ion
at the composition X of the solid solution. As the composition of the solid solution
changes, the bond distances of the transition metal centered polyhedra also change
leading to a change in the magnitude of crystal-field splitting, and hence of CFSE.
An example is of the compositional effect on CFSE is shown in Fig. C.3.

Let us now illustrate the calculation of CFSE(X) using the almandine-pyrope
solid solution as an example. The divalent cations in garnet occupy dodecahedal
sites. In a regular dodecahedral site, the d-orbitals split into two groups, with the
upper (t2g) and lower (eg) groups containing three and two degenerate orbitals,
respectively (Fig. 1.10). Since it has 6 d-electrons, in the high spin state Fe2+ has
three electrons in the lower eg and three in the upper t2g orbitals. Thus, in a regular
dodecahedral site, the CFSE of Fe2+ is given by

CFSE(X) = 3

(
−3

5
�CF(X)

)
+ 3

(
2

5
�CF(X)

)
= −3

5
�CF(X) (C.3.5)
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Fig. C.3 Change in the
crystal field stabilization
energy (CFSE) in the
pyrope-almandine (Mg-Fe2+)
and speassartine-almandine
(Mn2+- Fe2+) binary joins of
garnet as a function of
composition. From Geiger
and Rossman (1994)

where �CF(X) is the crystal-field splitting at the composition X of the solid solution.
(�CF are usually given in the unit of cm-1 (wave number), which is converted to
J/mol upon multiplication by 11.9626.) If the degeneracies of the t2g and eg orbitals
are partly or completely removed due distortion of the polyhedra (Fig. 1.11), then
the CFSE(X) can be easily estimated with appropriate modification of the above
scheme that should be obvious.

In the absence of detailed experimental measurement of CFSE as a function of
composition in a solid solution series, the change of � as a function of composi-
tion may be approximated according to the form �(x) ∝ R-n, where R is the mean
metal-ligand bond distance at the composition x. From the CFSE data in garnet and
corundum, Ganguly and Saxena (1987) found n to vary between 1.12 and 1.74).

Geiger and Rossman (1994) found that the �CFSE(X) data in the almandine-
pyrope and almandine-spessartine solid solution series can be expressed according
to the form of a Regular Solution, �CFSE(X) = WCFX(1-X), where X is the mole
fraction of a divalent cation, with WCF(Fe-Mg) = −2.8 kJ/mol and WCF(Fe-Mn) =
−0.8 kJ/cation-mol. On the other hand, both Fe-Mg and Fe-Mn joins in garnet show
small positive deviations from ideality or almost near ideal behavior (Ganguly et al.,
1996). Thus, the �Hxs due to CFSE effects in both joins, which show small negative
deviations from ideality, are almost compensated by that due to the elastic effects,
which is always positive.

Qualitatively, one can predict if the crystal-field effect has a positive or negative
contribution to the enthalpy of mixing by noting if the average metal-ligand bond
distance increases or decreases as a function of composition. For example, in the
almandine-pyrope series, substitution of Mg for Fe2+ decreases the metal-oxygen
bond distance, thereby increasing the magnitude of crystal-field splitting. Thus,
according to Eq. (C.3.5), CFSE(X) becomes more negative than CFSE for pure
almandine, and consequently �CFSE(X) < 0 Eq. (C.3.4), thus contributing towards
a negative deviation from ideality.
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Grüneisen E (1926) ‘‘The state of a solid body’’, Handbuch der Physik, vol 1, Springer_Verlag,

Berlin, pp 1–52. Engl. Transl. NASA RE 2–18–59 W, 1959
Guggenheim EA (1937) Theoretical basis of Raoult’s law. Trans Faraday Soc 33:151–159
Guggenheim EA (1952) Mixtures, Clarendon Press, Oxford
Guggenheim EA (1967a) Theoretical basis of Raoult’s law. Trans Faraday Soc 33:151–159
Guggenheim EA (1967b) Thermodynamics. North Holland Publishing Co., Amsterdam
Hacker BR, Peacock SM, Abers G, Holloway SD (2003) Subduction factory 2. Are inter-

mediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reac-
tions? J Geophys Res 108:11–15

Halbach H, Chatterjee ND (1982) An empirical Redlich-Kwong-type equations of state of
water to 10008C and 200 kbar. Contrib Mineral Petrol 79:337–345

Halden FH, Kingery WD (1955) Surface tension at elevated temperatures. II. Effect of
carbon, nitrogen, oxygen, and sulfur on liquid-iron surface tension and interfacial energy
with alumina. J Phys Chem 59:557–559

Hansen EC, Janardhan AS, Newton RC, PrameWKB, Ravindra Kumar GR (1987) Arrested
charnockite formation in southern India and Sri Lanka. Contrib. Mineral Petrol
96:225–244

Haggerty SE (1976) Opaque mineral oxides in terrestrial igneous rocks. In: Rumble D III
(ed) Oxide Minerals, Mineralogical Society of America Short Course Notes, vol 3,
Chapter 8

Harvie CE, Weare JH (1980) The prediction of mineral solubilities in natural waters: the
Na-K-Mg-Ca-Cl-SO4-H2O system from zero to high concentration at 25C. Geochim
Cosmochim Acta 44:981–999

Harvie CE,Møller N,Weare JH (1984) The prediction of mineral stabilities in natural waters:
the Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strength at
258C. Geochim Cosmochim Acta 48: 723–751

Hazen RM (1985) Comparative crystal chemistry and the polyhedral approach. In: Kieffer
SW and Navrotsky A (eds) Microscopic to Macroscopic, Reviews in Mineralogy 14,
Mineral Soc America, pp 317–345

478 References



Heine V, Welche PRL, Dove MT(1999) Geometrical origin and theory of negative thermal
expansion in framework structures, Amer Ceram Soc 82:1759–1767

Helffrich G, Wood BJ (1989) Subregular models for multicomponent solutions. Amer
Mineral 74:1016–1022

Helgeson, HC (1969) Thermodynamics of hydrothermal of hydrothermal systems at elevated
temperatures and pressures. Amer J Sci 267:729–804

Helgeson HC, Kirkham DH (1974a) Theoretical prediction of thermodynamic behavior of
aqueous electrolytes at high pressures and temperatures: II. Debye-Hückel parameters for
activity. Amer J Sci 274:1199–1261

Helgeson HC, Kirkham DH (1974b) Theoretical prediction of thermodynamic properties of
aqueous electrolytes at high pressures and temperatures: III. Equations of states for
species at infinite dilution. Amer J Sci 276: 97–240

Helgeson HC, Kirkham DH (1976) Theoretical predictions of the thermodynamic properties
of aqueous electrolytes at high pressures and temperatures. III. Equation of state of
aqueous species at infinite dilution. Amer J Sci 276:97–240

Helgeson HC, Delany JM, Nesbitt HW, Bird DK (1978) Summary and critque of the
thermodynamic properties of rock-forming minerals. Amer J Sci 278-A:1–229

Helgeson HC, Kirkham DH, Flowers GC (1981) Theoretical prediction of the thermody-
namic behavior of aqueous electrolytes at high pressure and temperatures: IV, Calculation
of activity coefficients, osmotic coefficients, and apparent molal and standard and relative
partial molal properties to 6008C and 5 kb. Amer J Sci 281:1249–1516

Helffrich G, Wood BJ (1989) Subregular models for multicomponent solutions. Amer
Mineral 74:1016–1022

Hervig RL, Navrotsky A (1984) Thermochemical study of glasses in the system NaAlSi3O8-
KAlSi3O8 and the join Na1.6Al1.6Si2.4O8- Na1.6Al1.6Si2.4O8. Geochim Cosmochim Acts
48:513–522

Herring C (1951) Some theorems on the free energies of crystal surfaces. Phys Res 82: 87–93
Herring C (1953) The use of classical macroscopic concepts in surface-energy problems. In:

Gomer G and Smith CS (ed) Structure and properties of solid surfaces, The University of
Chicago Press, pp 5–72

Hess P (1994) Thermodynamics of thin films. J Geophys Res 99:7219–7229
Hess P (1996) Upper and lower critical points: thermodynamic constraints on the solution

properties of silicate melts. Geochim Cosmochim Acta 60:2365–2377
Hildebrand JH (1929) Solubility XII. Regular solutions. J Amer Chem Soc 51:66–80
Hildebrand JH, Scott RL (1964) The solubility of nonelectrolytes. Dove, New York, 488p
Hillert M, Staffansson L-I (1970) Regular solution model for stoichiometric phases and ionic

melts. Acta Chem Scandenevia, 24:3618–3626
Hillert M (1998) Phase equilibria, phase diagrams and phase transformations: their thermo-

dynamic basis. Cambridge Univ Press, Cambridge, UK
Hillert M (2001) The compound energy formalism. J Alloys Comp 320:161–176
Hillert M, Sundman B (2001) Predicting miscibility gaps in reciprocal liquids. Calphad

25:599–605
Holdaway MJ (1971) Stability of andalusite and aluminosilicate phase diagram. Amer J Sci

271:97–131
Holland TJB (1980) Reaction Albite = Jadeite + Quartz determined experimentally in the

range 600 to 1200 C, Amer Min 65:129–134
Holland TJB, Powell R (1991) A compensated-Redlich-Kwong (CORK) equation for

volumes and fugacities of CO2 and H2O in the range 1 bar to 50 kbar and 100–16008C.
Contrib Mineral Petrol 109:265–271

Holland TJB, Powell R (1998) An internally consistent data set for phases of petrological
interest. J Metamorphic Geol 16:309–143

Holland TJB, Powell R (2003) Activity-composition relations for phases in petrological calcu-
lations: an asymmetric multicomponent formulation. Contrib Mineral Petrol 145:492–501

References 479



Holloway JR (1977) Fugacity and activity of molecular species in supercritical fluids. In:
Fraser DG (ed) Thermodynamics in Geology, Reidel, Dordrecht, Holland, pp 161–181

Holloway JR (1981) Volatile interactions inmagmas. In: NewtonRC,NavrotskyA,Wood BJ
(eds) Thermodynamics of minerals and melts, Advances Physical Geochem 1, Springer-
Verlag, pp 273–293

Holm JL, Kleppa OJ (1968) Thermodynamics of disordering process in albite. Amer Mineral
53:123–233

Holness MB (1993) Temperature and pressure dependence of quartz-aqueous fluid dihedral
angles: the control of adsorbed H2O on the permeability of quartzites. Earth Planet Sci
Lett 117:363–377

Hopfe WD, Goldstein JI (2001) The metallographic cooling rate method revised: application
to iron meteorites and mesosiderites. Meteoritics Planet Sci 36:135–154

Huang X, Xu Y, Karato, S-I (2005) Water content in the transition zone from electrical
conductivity of wadselyite and ringwoodite. Nature 434: 746–749

Huggins ML (1941) Solutions of long chain compounds. J Phys Chem 9:440
Hummel FA (1984) A review of thermal expansion data of ceramic materials, especially ultra-

low expansion compositions. Interceram 33:27–30
Ikeda-Fukazawa T, Kawamura K (2004) Molecular dynamics studies of surface of ice 1 h.

J Chem Phys 120:1395–1401
Iwamori H, McKenzie D, Takahashi E (1995) Melt generation by isentropic mantle upwel-

ling. Earth Planet Sci Letters 134:253–266
JacobKT, Fitzner K (1977) The estimation of the thermodynamic properties of ternary alloys

from binary data using the shortest distance composition path. Thermochim Acta
18:197–206

Janardhan AS, Newton RC, Hansen EC (1982) The transformation of amphibolite facies
gneiss to charnockite in southern Karnataka and northern Tamil Nadu, India. Contrib
Mineral Petrol 79:130–149

Johnson J, Norton D (1990) Critical phenonmenon in the hydrothermal systems: state,
thermodynamic, elctrostatic, and transport properties of H2O in the critical region.
Amer J Sci 291:541–648

Jeanloz R (1979) Properties of iron at high-pressures and the state of the core. J Geophys Res
84:6059–6069

Joesten RL (1991) Kinetics of coarsening and diffusion-controlled mineral growth. Rev
Mineral 26:507–582

Johnson JW, Norton DL (1991) Critical phenomena in hydrothermal systems: state, thermo-
dynamic, electrostatic, and transport properties of H2O in the critical region. Amer J Sci
291:541–648

Johnson JW, Oelkers EH, Helgeson HC (1992) SUPCRIT92: a software package for calculat-
ing the standard molal thermodynamic properties of minerals, gases, aqueous species, and
reactions from1 to 50000 bar and 0 to 10008C. Computers and Geoscience 18:889–947

Jordan D, Gerster JA, Colburn AP, Wohl K (1950) Vapor-liquid equilibrium of C4 hydro-
carbon-furfural-water mixtures. Chem. Eng. Prog 46:601–613

Jurewicz SR, Watson EB (1985) Distribution of partial melt in a granitic system. Geochim
Cosmochim Acta 49:1109–11121

Jurewicz SR, Jurewicz JG (1986) Distribution of apparent angles on random sections with
emphasis on dihedral angle measurements. J Geophys Res 91:9277–9282

Kegler P, Holzheid A, Rubie DC, Frost DJ, Palme H (2005) New results on metal/silicate
partitioning of Ni and Co at elevated pressures and temperatures. Lunar and Planetary
Science Conference XXXVI, Abstr # 2030

Kellogg LH (1997) Growing the Earth’s D0 0 layer: effect of density variations at the core-
mantle boundary. Geophys Res Lett 24:2749–2752

Kennedy GC, Vaidya SN (1970) The effect of pressure on the melting temperature of solids.
J Geophys Res 75:1019–1022

480 References



Keppler H, Rubie DC (1993) Pressure-induced coordination changes of transition-metal ions
in silicate melts. Nature 364:54–55

Kesson WH, van Laar PH (1938) Measurements of the atomic heats of tin in the super-
conductive and non-superconductive states. Physica 5:193–201

Kieffer SW (1977) Sound speed in liquid-gasmixtures – water-air and water-steam. JGeophys
Res 82:2895–2904

Kieffer SW (1979) Thermodynamics and lattice vibrations of minerals: 1. Mineral heat
capacities and their relationships to simple lattice vibrational models. Rev Geophys
Spcae Phys 17:1–19

Kieffer SW, Delaney JM (1979) Isoentropic decompression of fluids from crustal and mantle
pressures. J Geophys Res 84:1611–1620

Kieffer SW,NavrotskyA (1985) Editors: microscopic tomacroscopic, Reviews inMineralogy
14, Mineralogical Society of America, 428p

Kikuchi R (1951) A theory of cooperative phenomena. Phys Rev 81:988–1003
Kim K, Vaidya SN, Kennedy GC (1972) The effect of pressure on the melting temperature of

the eutectic minimums in two binary systems: NaF-NaCl and CsCl-NaCl. J Geophys
Research 77:6984–6989

Kim K-T, Vaidya SN, Kennedy GC (1972) The effect of pressure on the temperature of the
eutectic minimum in two binary systems: NaF-NaCl and CsCl-NaCl. J Geophys Research
77:6984–6989

Kittel C, Kroemer H (1980) Thermal Physics, Freeman, San Francisco, 473p
Kittel C (2005) Introduction to solid state physics, Wiley, New Jersey, 704p
Knapp R, Norton DL (1981) Preliminary numerical analysis of processes related to magma

crystallization and stress evolution in cooling pluton environments. Amer J Sci 281:35–68
Kohler F (1960) Zur Berechnung der Thermodynamischen Daten eines ternären Systems aus
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