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Preface

A great deal of research work has been performed in the field of alpha clustering
since the pioneering discovery, by D. A. Bromley and co-workers half a century
ago, of molecular resonances in the excitation functions for 12C + 12C scattering.
The aim of this new series of Lecture Notes in Physics entitled Clusters in Nuclei
is to deepen our knowledge of this field of nuclear molecular physics whose
history was so well recounted in 1995 by W. Greiner, J. Y. Park and W. Scheid in
their famous book on Nuclear Molecules (World Scientific Publishing Co.).
Nuclear clustering remains, however, one of the most fruitful domains of nuclear
physics, and faces some of the greatest challenges and opportunities in the years
ahead.

The conference Cluster ’94 as well as the Theoretical Winter School on
Clusters in Nuclei were held in Strasbourg in 1994 and 2005, respectively. In
recent years, alongside the traditional Cluster Conference series (Cluster ’03, held
in Nara, Japan, and Cluster ’07 held in Stratford-upon-Avon, UK), other more
informal workshops have been organised with relatively limited numbers of par-
ticipants in Rostock (2003, 2004 and 2005), and in Munich and Osaka in 2006.
The subjects treated in these recent meetings concentrated mainly on alpha-par-
ticle condensates in nuclear systems. But a couple of years ago the Workshop on
the State Of The Art in Nuclear Cluster Physics (SOTANCP2008) held in
Strabourg, France, was open to more diverse aspects of clustering in nuclei.

The purpose of this volume of Lecture Notes in Physics, the first in this new
series of lectures, is to promote the exchange of ideas and to discuss new devel-
opments in Clustering Phenomena in Nuclear Physics and Nuclear Astrophysics
both from a theoretical and from an experimental point of view. It is aimed at
retaining the pedagogical nature of our earlier Theoretical Winter School, and
should provide a useful resource for young researchers entering the field and
wishing to get a feel for contemporary research in a number of areas.

The main topics in this first volume of Clusters in Nuclei are divided amongst
seven chapters, each highlighting an area where new ideas have emerged over
recent years:
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• Cluster Radioactivity
• Cluster States and Mean Field Theories
• Alpha Clustering and Alpha Condensates
• Clustering in Neutron-rich Nuclei
• Di-neutron Clustering
• Collective Clusterization in Nuclei
• Giant Nuclear Molecules

The first Chapter entitled Cluster Radioactivity by Poenaru and Greiner shows
how clustering aspects in nature are so important, as for instance in a new type of
natural radioactivity predicted in 1980 by Sandulescu, Poenaru and Greiner.
Considerable experimental and theoretical progress has been achieved since the
discovery in 1984 of the 14C decay of 223Ra by Rose and Jones in Oxford, and
further confirmed in Orsay and Argonne. Now, very neutron-rich Ne, Mg and Si
isotopes are also known to be emitted through a cluster-radioactivity process that
might be considered as super-asymmetric fission.

The second chapter, by Horiuchi, on Coexistence of Cluster States and Mean-
Field-type States connects the phenomenological aspect of the two-center shell
model with cluster-type microscopic dynamics. For the first time, the coexistence
of cluster structures and superdeformation found in light alpha-particle nuclei,
using large c-ray multidetector arrays such as Euroball and/or Gammasphere, can
be explained within the framework of a single theoretical approach: the Anty-
symmetrized Molecular Dynamics model (AMD).

Alpha-cluster Condensations in Nuclei and Experimental Approaches for
their Studies are discussed in Chapter 3 by von Oertzen, who argues that alpha
clustering can result in the formation of Bose–Einstein condensates in nuclear
physics. While its theoretical background will be reviewed in the second volume,
the experimental observation of the decay of such condensed alpha-particle states
is proposed here to lead to the coherent emission of several correlated alpha-
particles in certain reactions.

Chapter 4 entitled Cluster Structure of Neutron-rich nuclei studied with
Antisymmetrized Molecular Dynamics Model, and prepared by Kanada-En’yo
and Kimura, shows how light, neutron-rich nuclei can be successfully described by
the microscopic AMD approach. As the domain of cluster physics has been
extended rapidly toward unstable nuclei, the authors propose new perspectives of
clustering phenomena and discuss the role of valence neutrons in very light
neutron-rich nuclei.

Ikeda and his collaborators attempt in Chapter 5 (Di-neutron Clustering and
Deuteron-like Tensor Correlation in Nuclear Structure focusing on 11Li) to
reconcile the standard shell model with an effective-interaction approach, using a
realistic nucleon–nucleon force. Di-neutron clustering is a new concept found to
be a general phenomenon in the neutron-skin and neutron-halo nuclei, that are now
experimentally studied more and more, worldwile, exploiting newly-available
Radioactive Ion Beams (RIB) facilities.
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Chapter 6 is dedicated to Collective Clusterization in Nuclei and Excited
Compound Systems: The Dynamical Cluster-decay Model. Gupta analyses
heavier nuclei with Relativistic Mean Field (RMF) theories. The concept of pre-
formed clusters in nuclei is discussed in terms of the dynamical cluster-decay
model and is shown to be supported by RMF calculations relying on rigorous basic
assumptions.

Finally, the last Chapter Giant Nuclear Systems of Molecular Type, presented
by Zagrebaev and Greiner, attempts to extend Bromley’s nuclear molecule concept
for 12C + 12C to the superheavy elements (SHE) that might be produced through
the decay of giant nuclear molecules created in heavy-ion collisions. Clustering
phenomena arising from shell effects play an important role in the low-energy
dynamics of heavy nuclear systems, and new experimental perspectives are pro-
posed for the next generation of RIB facilities.

Forthcoming volumes in this series will contain lectures covering a wider range
of topics—not only from nuclear cluster theory but also from experiment and
applications—that have gained a renewed interest with the availability of RIB
facilities and modern detection techniques. We stress that the contributions in this
volume and the following ones are not standrad review articles. They are not
intended to contain all of the latest results or to provide an exhaustive coverage of
the field but are written instead in the spirit of graduate lectures having a longer-
term usefulness to research groups in this field.

The editing of this book would not have been possible without stimulating
discussions with Profs. Greiner, Horiuchi, Schuck, Dufour and Rowley. Our
appreciation goes to all of our lecturers for their valuable contributions. We thank
also all of the referees for their informative comments on the chapters included in
this volume. I would like here to thank, more particularly, Prof. Poenaru for his
constant, helpful suggestions throughout. Special thanks go to Dr. Christian Caron
and to all the members of his Springer-Verlag team for their help, fruitful col-
laboration and continued support for this ongoing project.

Strasbourg, France, May 2010 Christian Beck
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Chapter 1
Cluster Radioactivity

Dorin N. Poenaru and Walter Greiner

1.1 Introduction

The first informations about the atomic nucleus were obtained at the beginning of
the twentieth century by studying radioactivity, which lead in fact to the fields of
Nuclear Physics, Particle Physics, Radiochemistry as well as to many applications
in Medicine, Biology, and Industry. The radioactivity (term coined by Marie
Curie) was not known until Antoine Henri Becquerel, trying to see a connection
between Wilhelm Conrad Roentgen’s X-rays with fluorescence phenomena,
discovered in 8 November 1895 a ‘‘mysterious’’ radiation of an uranium salt.
Marie and Pierrre Curie found that Th also emits this radiation, and the new
elements Ra and Po they discovered were the strong emitters. Ernest Rutherford
deflected the charged particles (he named alpha and beta rays) in magnetic and
electric field and from scattering experiments he deduced that atomic particles
consisted primarily of empty space surrounding a well-defined central core called
nucleus. He was the first to artificially transmute one element into another and to
elucidate the concepts of the half-life and decay constant. By bombarding nitrogen
with a particles, Rutherford demonstrated the production of a different element,
oxygen. The atomic nucleus was discovered around 1911.

In 1911 Geiger and Nuttal gave a semi-empirical relationship of the a-decay
half-life versus the range of a-particles in the air. It was explained by Gamow [25]
by tunnelling the a-particle through the barrier—the first application of quantum
theory to nuclei. The liquid drop model (LDM) was introduced earlier by John
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William Strutt, Lord Rayleigh, in a series of papers treating e.g. liquid droplets
charged with electricity and the capillarity instability of an infinite jet of
fluid [115].

By using the LDM, Gamow attempted to calculate in 1930 the nuclear binding
energy. This prestigious work was accomplished by von Weizsäcker in 1935.
The LDM published by Niels Bohr in 1936 was used by Lise Meitner and Otto
Frisch to explain the induced fission, discovered by Otto Hahn and Fritz Strassman
in 1939. Otto Frisch borrowed the name fission from biology of cell division.
The classical paper by Bohr and Wheeler [6] explained many properties of the
fission process, stating that fission was more likely to occur with 235U than 238U.
Presently, we use as a macroscopic model either the variant of the LDM [76] or the
Yukawa-plus-exponential model (Y+EM) [63].

For a long period of time only three kinds of nuclear decay modes (a, b and c)
have been known. They illustrate three of the fundamental interactions in nature:
strong; weak, and electromagnetic. Spontaneous fission became popular soon after
its discovery in 1940 by Petrzhak and Flerov owing to both military and peaceful
applications of the neutron-induced fission, employing the large amount of energy
released during the process.

Other decay modes like various kinds of proton radioactivity were predicted in
1960 by Goldansky. Karnaukhov et al. [61] discovered the b-delayed proton
radioactivity, and Hofmann et al. observed the proton radioactivity from the ground
state (gs for the following) [45, 46]. In 1998 the a and 10Be accompanied (ternary)
cold fission decays have been discovered [114]. The shape isomers and the mass
asymmetry of fission fragments could be explained by using the macroscopic–
microscopic approach [129] in which the shell and pairing corrections are calculated
by using a single-particle shell model like the two center shell model [67, 74].

In 1984 Rose and Jones from Oxford University reported their experiment on
14C radioactivity of 223Ra [118] which we had predicted together with Sandulescu
[120]. Several chapters in books and multi-authored books have been published,
e.g. [38, 83, 84, 97, 104]. A key role in experiments on cluster decay modes
performed in Berkeley, Orsay, Dubna and Milano played Buford Price [112],
Eid Hourany and Michel Hussonnois [49, 50], Svetlana Tretyakova [132], and
Bonetti [8] and their coworkers. Rose and Jones, as well as Ogloblin’s team [1] did
their experiments with a rather modest equipment; they had to wait for 6 months to
get 11 events! Nevertheless, the experiments were well done; the following
measurements confirmed the data. With modern magnetic spectrometers
(SOLENO and Enge-split pole), at Orsay [24, 49, 51] and Argonne National
Laboratory [43, 64], a very strong source could be used, so that results were
obtained in a run of few hours.

The 233Ra source used in the first experiment is a member of the 235U natural
radioactive family. One can see in Fig. 1.1 how a lighter nucleus, like 209Pb, can
be reached in a single cluster decay (e.g. 14C decay of 233Ra), compared to several
successive a- or b--decays. When the daughter (209Pb or 231Tl) is not stable,
it decays via b- into 209Bi or 207Pb, respectively. We shall mention in Sect. 1.6 the
possibility to obtain direct spectroscopic information about 209Pb by using this
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property. Some related topics are discussed in Chap. 7 [142] and Chap. 6 [143] of
the present book.

1.2 Macroscopic–Microscopic Method

Many nuclear properties can be explained by assuming that the nucleus is a system
of independent particles, moving in an average potential created by all nucleons
[23, 39]. This idea of a single-particle motion is the opposite of the collectivity
hypothesis governing the LDM. In the framework of LDM, or of a similar mac-
roscopic model, all nuclei have spherical shapes in the gs, and the fission fragment
mass distributions of the actinides are perfectly symmetric, in contrast to the
reality. Permanent nuclear deformations and fission fragment mass asymmetry can
be explained by combining the collective (liquid drop-like) and single particle
properties in the framework of macroscopic–microscopic method [129].

The small correction added to the LDM energy is calculated on the basis of
single-neutron and single-proton energy levels of some deformed shell models.
One single-particle model may be different by another one due to the average
potential felt by the single nucleons. This can be either of finite depth (generalized
Woods-Saxon or folded Yukawa) or of infinite depth (modified harmonic potential
or the two-center shell model (TCSM)). By using the TCSM for describing the
single-particle states, one can follow the shell structure all the way from the

235U

231Th

231Pa

--

223Ra

209Pb207Pb

209Bi

207Tl

14C

24Ne

227Ac

227Th

Fig. 1.1 The 235U natural radioactive family with two cluster decay modes: 14C from 233Ra and
24Ne from 231Pa
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original nucleus, over the potential barriers, up to the final stage of individual well
separated fragments. Within fragmentation theory [39] all kinds of fission
fragment mass distributions experimentally observed (symmetric, asymmetric,
superasymmetric) have been explained.

According to the macroscopic–microscopic method the deformation energy of a
nucleus, Edef, is calculated as a sum of two terms coming from a phenomeno-
logical (e.g. Yukawa-plus exponential (Y+E)) model, Emacro = EY+E, and a small
shell-plus-pairing correction, Emicro = dE:

Edef ¼ EYþE þ dE ð1:1Þ

We calculate the microscopic corrections with the Strutinsky prescription based
on the level schemes of protons (subscript p) and neutrons (subscript n) within a
single-particle TCSM. This part of the calculations need to performed at
every mesh point, therefore these calculations are very time-consuming; one has
to diagonalize very large matrices of the Hamiltonian, including the spin–orbit
term allowing to reproduce the experimentally determined magic numbers of
nucleons.

1.2.1 Surface Parametrization

The permanent distortion from a sphere of a given nucleus in its gs or the change
of the deformation during a nuclear process (fission, fusion, heavy ion reactions,
etc.) may be described in terms of collective coordinates by using a function with
a number of parameters as low as possible, which at the same time allows to
determine all the possible shapes of the nuclear surface. It is also desirable to
choose deformation coordinates which have simple physical significance. For the
fission process one can select the separation distance of the fragments, the radius
of the neck between fragments, the mass asymmetry, the charge asymmetry, the
deformation of each fragment, etc.

The simplest shapes are spherical fragments. Two spheres of radii R1, R2 are
smoothly joined by a neck surface generated when a circle with a radius R3 and the
center coordinates (z3, q3) rotates around the axis of symmetry connecting the two
centers (z1, 0) and (z2, 0). One deformation coordinate remains the separation
distance R = z1 - z2. In addition we can define the charge and mass asymmetries
of the final products

gA ¼
A1 � A2

A1 þ A2
; gZ ¼

Z1 � Z2

Z1 þ Z2
ð1:2Þ

where A1 and A2 denote the mass, and Z1 and Z2 the atomic numbers of the fission
fragments or of the fusing nuclei. Alternatively, we used to denote the heavy
fragment by daughter nucleus (subscript d instead of 1), and the light one by the
emitted cluster (subscript e instead of 2).
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The nuclear surface is described by the following equation:

qðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
1 � ðz� z1Þ2

q

z1 � R1� z� zc1

q3 � s3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
3 � ðz� z3Þ2

q

zc1� z� zc2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
2 � ðz� z2Þ2

q

zc2� z2 þ R2

8

>

>

>

<

>

>

>

:

ð1:3Þ

where zc1, zc2 are the positions of intersection planes of two spheres with the neck
surface. By imposing the volume conservation condition, the surface can be per-
fectly determined by three shape degrees of freedom: elongation (R), mass
asymmetry (gA or R2) and the neck parameter (R3). Initially R = Ri = R0 - R2,
where R0 is the radius of the parent nucleus. The touching point configuration is
obtained at R = Rt = R1f + R2f when R3 = 0. The subscript f labels final values.
In Fig. 1.3 there is a plot of a similar surface with spheroidally deformed
fragments and a smoothed neck.

1.2.2 Mass Defect and the Q-Values

The nuclear masses [136, 141] in atomic units (1u = 931493.86 ± 0.06 keV) are
very close to the mass number A = Z + N. This is the reason why usually the mass
excess (or the mass defect) D is used

DðA; ZÞ ¼ ½MðA; ZÞ � A�c2 ð1:4Þ

where c is the speed of light. The mass of an atom is smaller than the combined
masses of its constituent nucleons and electrons. The binding energy, B, accounts
for the stability of a nucleus:

BðA; ZÞ ¼ ZMp þ NMn �MðA; ZÞ ¼ ZDð1; 1Þ þ NDð1; 0Þ � DðA; ZÞ ð1:5Þ

It is a positive quantity for any bound state, but the mass excess could be either
positive (for light and heavy nuclei) or negative (for intermediate mass nuclei).
D(1, 1) = 7.288969 MeV and D(1, 0) = 8.071323 MeV. The proton and the
neutron have no binding energy, B(1, 1) = B(1, 0) = 0. The fact that B/A is
maximal at A’ 60 and decreases both toward smaller and higher mass numbers is
crucial for energy production by fusion of two light nuclei or by fission of a heavy
nucleus.

The energy needed to remove a nucleon is called separation energy

SnðA; ZÞ ¼MðA� 1; ZÞ þMn �MðA; ZÞ
SpðA; ZÞ ¼MðA� 1; Z � 1Þ þMp �MðA; ZÞ

ð1:6Þ

The neutron drip line is defined by Sn = 0. A negative value, Sp \ 0, characterizes
a proton radioactive nucleus.
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In a nuclear reaction with two bodies in the initial and final states Aþ a! Bþ b,
the released energy Q is given by

Q ¼ ðMA þMaÞ � ðMB þMbÞ ð1:7Þ

The main trends in binding energy can be understood in terms of a simple,
semiempirical mass formula [137] containing volume, surface, Coulomb, sym-
metry, pairing, and Wigner contributions. Within Myers–Swiatecki’s LDM [76],
the mass equation of a spherical nucleus is given by

M ¼ MpZ þMnN � aVð1� jV I2ÞAþ asð1� jI2ÞA2=3

þ acZ2A�1=3 � adZ2=Aþ Ep þ EW

ð1:8Þ

where I ¼ ðN � ZÞ=A; ac ¼ 3e2=ð5r0Þ; ad ¼ p2e2d2=ð2r3
0Þ, d = 0.5461 fm. The

pairing term is

Ep ¼
�11=

ffiffiffi

A
p

MeV for even�even

0 for odd�A
þ11=

ffiffiffi

A
p

MeV for odd�odd

8

<

:

ð1:9Þ

and the Wigner term is given by

EW ¼ �7 expð�6jIjÞMeV: ð1:10Þ

From a fit with experimental data on nuclear masses, quadrupole moments, and
fission barriers, the following values of the parameters have been obtained:
aV = 15.4941 MeV; as = 17.9439 MeV; jV ¼ j ¼ 1:7826; ac = 0.7053 MeV;
ad = 1.1530 MeV, where the last two constants correspond to r0 = 1.2249 fm,
and d/r0 = 0.444.

1.2.3 Liquid Drop Model

The shape-dependent terms in the LDM are the surface energy due to the strong
interactions, tending to hold the nucleons together, and the electrostatic (Coulomb)
energy, acting in the opposite direction. By requesting zero deformation energy for
a spherical shape, the deformation energy is defined as

Edef ¼ ðEs � E0
s Þ þ ðEc � E0

cÞ ¼ E0
s ½Bs � 1þ 2XðBc � 1Þ� ð1:11Þ

where E0
s ¼ asð1� jI2ÞA2=3 and E0

c ¼ acZ2A�1=3 are the respective energies
corresponding to spherical shape. The relative surface and Coulomb energies
Bs ¼ Es=E0

s , Bc ¼ Ec=E0
c are only functions of the nuclear shape. The dependence

on the neutron and proton numbers is contained in Es
0 and in the fissility parameter

X ¼ E0
c=ð2E0

s Þ.
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The relative surface energy is proportional to the surface area. By expressing
the equation for the nuclear surface in cylindrical coordinates q ¼ qðz;uÞ, one
has

Bs ¼
1

4pR2
0

Z

z00

z0

dz

Z

2p

0

q 1þ oq
oz

� �2

þ 1
q
oq
ou

� �2
" #1=2

du ð1:12Þ

where z0; z00 are the intersection points of the nuclear surface with Oz axis.
The electrostatic energy of a charge distribution with a density qe in the nuclear

volume Vn is given by

Ec ¼
1

8p

Z

V1

E2ðrÞd3r ¼ 1
2

Z

Vn

qeðrÞVðrÞd3r ð1:13Þ

Here E is the electric field produced in the whole space by this distribution of the
charges. The electrostatic potential V is a solution of the Poisson differential
equation DV (r) = - 4pqe (r), where D is the Laplacian differential operator. By
substituting the expression of V as a solution of Poisson equation, one has

Ec ¼
1
2

Z

Vn

Z

qeðrÞqeðr1Þd3rd3r1

jr� r1j
ð1:14Þ

The Coulomb energy [21], (1.14), and the nuclear energy defined in (1.15),
are both expressed as double-volume integrals. These sixfold integrals lead to
analytical relationships when the nuclear shape is particularly simple; usually
one needs to perform numerical quadratures. Fortunately the double-volume
integrals can be transformed into double-surface integrals. By reducing the
number of integrations from six to four, the computer running time necessary to
achieve the required accuracy (more than five significant digits) becomes sub-
stantially shorter.

At the Businaro–Gallone fissility (XBG = 0.396 within LDM), a transition to
unstable shapes with respect to mass asymmetry occurs. Calculated fission barriers
corresponding to the conditional saddle points with constrained mass asymmetry
plotted versus g at a given fissility X�XBG, show a minimum at g = 0 and a
maximum at a value of gBG which increases with X, but for X \ XBG the fission
barrier always decreases with increasing asymmetry.

According to Moretto [71] the distinction between evaporation and fission for
X [ XBG is given by the Businaro–Gallone peaks gBG: at a given fissility the
fission process ranges from g = 0 to gBG, and the evaporation from gBG to g = 1.
Below the Businaro–Gallone fissility (X \ XBG = 0.396 for zero angular
momentum l, and smaller for larger l values) there is no distinction between
(disappearing) fission and the evaporation extending from g = 0 to g = 1.
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1.2.4 Phenomenological Yukawa-Plus-Exponential Model

The leptodermous expansion assumed in the LDM is only valid if all dimensions
of the drop are large compared to the surface thickness, condition not satisfied for
strongly necked-in configurations. Other deficiencies of the LDM surface energy
are: the absence of attraction between separated nuclei at a small distance within
the range of nuclear forces and the neglect of the surface diffusivity. To overcome
these difficulties, the surface energy [63, 121] has been first replaced by a folded
Yukawa and later on by a folded Yukawa-plus-exponential potential (Y+E):

EY ¼ �
a2

8p2r2
0a4

Z

Vn

Z

r12

a
� 2

� �expð�r12=aÞ
r12=a

d3r1d3r2 ð1:15Þ

where r12 ¼ jr1 � r2j, a is the diffusivity parameter, and a2 ¼ asð1� jI2Þ.
For a spherical shape one has

E0
Y ¼ a2A2=3f1� 3x2 þ ð1þ 1=xÞ½2þ 3xð1þ xÞ� expð�2=xÞg ð1:16Þ

in which x = a/R0.
The Coulomb interaction energy of a system of two spherical nuclei, separated

by a distance R between centers, is Ec12 = e2 Z1Z2 /R. Within LDM there is no
contribution of the surface energy to the interaction of the separated fragments; the
barrier has a maximum at the touching point configuration. The proximity forces
acting at small separation distances (within the range of strong interactions) give
rise in the Y+EM to an interaction term expressed as follows

EY12 ¼ �4
a

r0

� �2
ffiffiffiffiffiffiffiffiffiffiffiffi

a21a22
p

g1g2 4þ R

a

� �

� g2f1 � g1f2

� �

expð�R=aÞ
R=a

ð1:17Þ

gk ¼
Rk

a
cosh

Rk

a

� �

� sinh
Rk

a

� �

; fk ¼
Rk

a

� �2

sinh
Rk

a

� �

ð1:18Þ

The interaction energy is maximum at a certain distance Rm [ Rt.
Generally speaking the ratio of neutron to proton number of the emitted

nucleus, Ne/Ze, is different from that of the parent N/Z, when we consider beta-
stable nuclei. The Green approximation [35] for the line of b-stability

Ng � Z ¼ 0:4A2=ð200þ AÞ ð1:19Þ

allows us to find approximately which mass number, A, or neutron number, Ng,
corresponds to a given proton number, Z, for a b-stable nucleus. It was shown that
deformation energy could be underestimated if the condition gZ 6¼ gA is ignored.

The Y+EM has been extended [105] to binary systems with different charge
densities. One can take into consideration the difference in charge densities by
assuming uniformity in each of the two fragments. In this way the nuclear volume
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V = V1 + V2 is divided into two parts, each of them being homogeneously charged
with a density q1e and q2e, respectively. The expression of the Coulomb energy is
the same, both in LDM and Y+EM. Only the numerical value of the radius
constant varies from one model to the other. The double-volume integral in (1.14)
can be split into four parts, two of them being equal to each other, hence

Ec ¼
q2

1e

2

Z

V1

d3r1

Z

V1

d3r2

r12
þ q1eq2e

Z

V1

d3r1

Z

V2

d3r2

r12
þ q2

2e

2

Z

V2

d3r1

Z

V2

d3r2

r12
ð1:20Þ

The first and last term represent the self-energies of the two fragments, and the
intermediate one is their interaction energy. By dividing with the Coulomb energy
of a spherical nucleus with the same volume, one obtains the relative energy

Bc ¼
Ec

E0
c

¼ q1e

q0e

� �2

Bc1 þ
q1eq2e

q2
0e

Bc12 þ
q2e

q0e

� �2

Bc2 ð1:21Þ

where the explicit expressions for the relative energies Bci and Bc12 will be given
below. The Coulomb energy of a spherical nucleus is E0

c ¼ 3e2Z2=ð5r0A1=3Þ with
r0 = 1.16 fm for Y+EM.

We assume that nuclear matter is homogeneously distributed in the two
fragments (q1 = q2 = q0). From the general expression of the double-folded
Y+EM nuclear energy, (1.15), we get three terms, in a way similar with the
Coulomb energy:

BY ¼
EY

E0
Y

¼ a21

a20
BY1 þ

ffiffiffiffiffiffiffiffiffiffiffiffi

a21a22
p

a20
BY12 þ

a22

a20
BY2 ð1:22Þ

The volume conservation condition is a consequence of the low compressibility
of nuclear matter. By assuming gZ = (Z1 - Z2)/Z = gA = (A1 - A2)/A in the usual
LDM, the volume energy has no variation with the deformation. For gZ 6¼ gA, there
is a nonzero contribution EV ¼ EV1 þ EV2 � EV0 ; EVi ¼ �aVð1� jV I2

i Þ which is
due to the symmetry energy.

For binary systems with different charge densities [105] and axially-symmetric
shapes, one obtains

Bc1 ¼ bc

Z

xc

�1

dx

Z

xc

�1

dx0Fðx; x0Þ; Bc2 ¼ bc

Z

1

xc

dx

Z

1

xc

dx0Fðx; x0Þ ð1:23Þ

Bc12 ¼ bc

Z

xc

�1

dx

Z

1

xc

dx0Fðx; x0Þ ð1:24Þ

where bc ¼ 5d5=8p; d ¼ ðz00 � z0Þ=2R0, and xc is the position of separation plane
between fragments with - 1, +1 intercepts on the symmetry axis (surface equation
y = y(x) or y1 = y(x0)). The integrand reads
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Fðx; x0Þ ¼ yy1
K � 2D

3
2ðy2 þ y2

1Þ � ðx� x0Þ2 þ 3
2
ðx� x0Þ dy2

1

dx0
� dy2

dx

� �� �	

þK
y2y2

1

3
þ y2 � x� x0

2
dy2

dx

� �

y2
1 �

x� x0

2
dy2

1

dx0

� �	 



a�1
q

ð1:25Þ

K and K0 are the complete elliptic integrals of the first and second kind,
respectively:

KðkÞ ¼
Z

p=2

0

ð1� k2sin2tÞ�1=2 dt; K 0ðkÞ ¼
Z p=2

0
ð1� k2sin2tÞ1=2 dt ð1:26Þ

and aq
2 = (y + y1)2 + (x - x0)2, k2 = 4yy1/aq

2, D = (K - K0)/k2. In our computer
program the elliptic integrals are calculated by using the Chebyshev polynomial
approximation. For x = x0 the function F is not determined. In this case, after
removing the indetermination, we get F(x, x0) = 4y3/3.

The relative nuclear Y+EM energies are expressed by triple integrals

BY1 ¼ bY

Z

xc

�1

dx

Z

xc

�1

dx0
Z

1

0

dwF1F2QY ; BY2 ¼ bY

Z

1

xc

dx

Z

1

xc

dx0
Z

1

0

dwF1F2QY

ð1:27Þ

BY12 ¼ bY

Z

xc

�1

dx

Z

1

xc

dx0
Z

1

0

dwF1F2QY ð1:28Þ

in which bY ¼ �d4ðr0=2a2Þa2R0A=E0
Y and

F1 ¼ y2 þ yy1 cos u� x� x0

2
dy2

dx
; ð1:29Þ

QY ¼ f½
ffiffiffi

P
p
ð
ffiffiffi

P
p
þ 2a=R0dÞ þ b� expð�R0

ffiffiffi

P
p

d=aÞ � bg=P2: ð1:30Þ

where b ¼ 2a2=ðR0dÞ2. F2 is obtained from F1 by replacing dy2/dx with dy1
2/dx0.

In the above equations P ¼ y2 þ y2
1 � 2yy1 cos uþ ðx� x0Þ2 and w ¼ u=2p.

The integrals are computed numerically by Gauss–Legendre quadratures.
The following values of the parameters [70] were determined: a = 0.68,
as = 21.18466 MeV, aV = 16.00126 MeV, js = 2.345, jV = 1.9224, r0 =

1.16 fm.
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1.2.5 Single Particle Shell Model

The complex many-body problem is very much simplified by considering one
single-particle in the mean field produced by all other particles.

1.2.5.1 Three-Dimensional Spheroidal Harmonic Oscillator

For spheroidal equipotential surfaces, generated by a potential with cylindrical
symmetry, the states of the nucleons (or of the valence electrons for atomic
clusters) can be found by using an effective single-particle Hamiltonian with a
potential

V ¼ Mx2
0R2

0

2
q2 2þ d

2� d

� �2=3

þz2 2� d
2þ d

� �4=3
" #

ð1:31Þ

The deformation d is defined [17] by expressing the dimensionless two semi-
axes, in units of the radius R0 of a sphere with the same volume, as

a ¼ 2� d
2þ d

� �1=3

; c ¼ 2þ d
2� d

� �2=3

ð1:32Þ

We use dimensionless cylindrical coordinates q and z. Volume conservation leads
to a2c = 1. One can separate the variables in the Schrödinger equation,
HW = EW. As a result the wave function may be written [134] as

Wðg; n;uÞ ¼ wm
nr
ðgÞUmðuÞZnzðnÞ ð1:33Þ

where each component is orthonormalized, g ¼ R2
0q

2=a2
?, jmj ¼ ðn? � 2iÞ with

i = 0, 1, ... up to ðn? � 1Þ=2 for an odd n? or to ðn? � 2Þ=2 for an even n?,

nr ¼ ðn? � jmjÞ=2, a? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�h=Mx?
p

. We are interested in the z-component

ZnzðnÞ ¼ Nnz e
�n2=2HnzðnÞ; Nnz ¼

1

az
ffiffiffi

p
p

2nz nz!ð Þ1=2
ð1:34Þ

where n = R0z/az, az ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�h=Mxz

p

, and the main quantum number n ¼ n?þ
nz ¼ 0; 1; 2; . . .. The parity of the Hermite polynomials Hn_z (n) is given by ð�1Þnz .
The eigenvalues are En ¼ �hx?ðn? þ 1Þ þ �hxzðnz þ 1=2Þ, or in units of �hx0,
en ¼ En=ð�hx0Þ,

en ¼
2

ð2� dÞ1=3ð2þ dÞ2=3
nþ 3

2
þ d n? �

n

2
þ 1

4

� �� �

ð1:35Þ

For a prolate spheroid, d[ 0, at n? ¼ 0 the energy level decreases with
deformation except for n = 0, but when n? ¼ n it increases. The low lying energy
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levels can be seen in the Fig. 1.2 Each level, labelled by n?; n, may accommodate
2n? þ 2 particles. One has 2

Pn
n?¼0ðn? þ 1Þ ¼ ðnþ 1Þðnþ 2Þ nucleons in a

completely filled shell characterized by n, and the total number of states of the
low-lying n + 1 shells is

Pn
n¼0ðnþ 1Þðnþ 2Þ ¼ ðnþ 1Þðnþ 2Þðnþ 3Þ=3 leading

to the magic numbers 2, 8, 20, 40, 70, 112, 168, ... for a spherical shape. Besides
the important degeneracy at a spherical shape (d = 0), one also has degeneracies
at some superdeformed shapes, e.g. for prolate shapes at the ratio c/a = (2 + d)/
(2 - d) = 2 i.e. d = 2/3.

1.2.5.2 Two Center Shell Model

The importance of an adequate description of cold fission, cluster radioactivities
and alpha decay in terms of an asymmetric and deformed single particle shell
model (DTCM) with more realistic shapes during fission and fusion processes was
repeatedly stressed [37, 67, 96]. The TCSM has been developed by the Frankfurt
school [48, 39]. We shall use a new variant [27, 28, 29], for which the nuclear
surface is an equipotential, and which is able to give solutions even for extremely
large mass asymmetry. The main part of the potential consists of two spheroidally
deformed oscillators. Any change in the axially symmetric nuclear surface shape is
reflected in a corresponding modification of the four oscillator frequencies along
the symmetry axis and perpendicular to it. A microscopic potential is associated to
a spherically matching neck region of the nuclear shape. The spin–orbit and
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Fig. 1.2 Energy levels in
units of �hx0 versus the
deformation parameter d of a
spheroidal harmonic oscilla-
tor. Each level is labelled by
n; n? quantum numbers
shown at the right-hand side,
and is ð2n? þ 2Þ-fold
degenerate
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squared angular momentum operators are calculated by using potential-dependent

formulae ls ¼ ðrV � pÞs, and l2 ¼ ðrV � pÞ2 and the potential follows exactly
the nuclear shape.

Figure 1.3 shows the main geometrical parameters defining the axially
symmetric shape family. Two spheroids (the deformed fragments) with semiaxes a1,
b1 and a2, b2 are separated at a distance R between the two centers O1

and O2. A sphere centered in O3 with radius R3 is rolling around the symmetry axis,
being tangent all the time to the two spheroids. The necking region is generated
in this way. Thus we have five independent parameters defining the deformation
space: two fragment deformations v1 = b1/a1, v2 = b2/a2; mass asymmetry
g = (A1 - A2)/A; the neck radius R3 and the distance between the centers R. This set
is available for every parent nucleus A, Z with its own semiaxes ratio v = b/a.

The equations for shape surfaces described above can be written in cylindrical
coordinates (due to axial symmetry) as:

qðzÞ ¼
q1ðzÞ ¼ ½b2

1 � v2
1z2�1=2 �a1� z� zc1

qgðzÞ ¼ q3 � ½R2
3 � ðz� z3Þ2�1=2; zc1� z� zc2

q2ðzÞ ¼ ½b2
2 � v2

2ðz� RÞ2�1=2; zc2� z�Rþ a2

8

>

<

>

:

ð1:36Þ

where the origin is placed in the center of the heavy fragment O1. Neck sphere
center coordinates are (z3, q3), and zc1 and zc2 are the two tangent points of the
neck sphere with the two ellipsoids.

The oscillator potential corresponding to the two-center shapes must have the
same value on the nuclear surface, e.g. for spheres V0 ¼ m0x2

i R2
i =2, where Ri is the

radius of a nucleus with atomic mass Ai. Since �hxi ¼ 41A�1=3 and Ri = r0A1/3,
r0 = 1.16 fm, then V0 ’ 27:25 MeV. For the surface of spheroidal shapes
m0x2

zi
a2

i =2 ¼ m0x2
qi

b2
i ¼ V0, the frequencies xzi , xqi are defined along the sym-

metry axis and respectively perpendicular to it, as functions of the two spheroid
semiaxes.

For an arbitrary origin, placed on the symmetry axis, the spheroids surface
equations read:

q2

2V0
m0x2

q1

þ ðzþ z1Þ2
2V0

m0x2
z1

¼ 1;
q2

2V0
m0x2

q2

þ ðz� z2Þ2
2V0

m0x2
z2

¼ 1 ð1:37Þ

Fig. 1.3 Nuclear shape and
deformation parameters for
necked-in intersected spher-
oids. The four geometrical
parameters which vary are the
two ratios of the spheroid
semiaxes, b1/a1 and b2/a2, the
neck sphere radius R3 and the
distance between the frag-
ment centers R
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where z1 and z2 are the absolute values of each of the two centers coordinates.
Consequently for deformed fragments one has:

V ðrÞðq; zÞ ¼
V1ðq; zÞ ¼ 1

2m0x2
q1

q2 þ 1
2m0x2

z1
ðzþ z1Þ2 ; v1

V2ðq; zÞ ¼ 1
2m0x2

q2
q2 þ 1

2m0x2
z2
ðz� z2Þ2 ; v2

(

ð1:38Þ

where v1 and v2 are the space regions where the two potentials are acting. The
frequencies are shape dependent: from the volume conservation condition we
have: ai bi

2 = Ri
3, where Ri is the radius of the spherical nucleus with the same

volume. The shape dependence of the frequencies is given by

m0x
2
qi
¼ðai=biÞ2=3 � m0x

2
0i ¼ ðai=biÞ2=3 � 54:5=R2

i

m0x
2
zi ¼ðbi=aiÞ4=3 � m0x

2
0i ¼ ðbi=aiÞ4=3 � 54:5=R2

i

ð1:39Þ

In this way the two center oscillator potential for fusion like shapes follows the
changes of the two spheroidal partner deformations. The ratio vi = bi/ai, i = 1,2,
changes as:

v1;2 ¼ v0 þ ðv10;20 � v0Þ
R� Rf

kDR
ð1:40Þ

where DR is the step width in R (e.g. 0.1 fm) and k is the number of steps. For
k = 1 we have R = Rf and v1,2 = v 0. The value of v10 and v20 are those taken by
the partners at the first step (k = kmax), immediately after the overlap begins.

By adding the neck-dependent potential the deformed oscillator potential part
becomes:

VDTCSMðq; zÞ ¼
V1ðq; zÞ; v1

Vgðq; zÞ ¼
Vg1ðq; zÞ; vg1

Vg2ðq; zÞ ¼ V0; vg2

	

V2ðq; zÞ; v2

8

>

>

<

>

>

:

ð1:41Þ

Here v1, vg1, vg2 and v2 are the spatial regions where the corresponding potentials
are acting. The deformation-dependent part of the neck contribution is given by

Vg1ðq; zÞ ¼ 2V0 �
1
2

m0x
2
gðq� q3Þ2 þ

1
2

m0x
2
gðz� z3Þ2

� �

ð1:42Þ

The angular momentum operator is shape-dependent; we shall avoid confusions
by using a different notation for the spin–orbit and the square of the angular
momentum terms, namely VXs and VX2 . The total two-center Hamiltonian

HDTCSM ¼ �
�h2

2m0
Dþ VDTCSMðq; zÞ þ VXs þ VX2 ð1:43Þ

is not separable. A separable Hamiltonian is obtained if one takes xq1
¼ xq2

¼ x1,
and ignores spin–orbit and the other term
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V ðdÞðq; zÞ ¼ V ðdÞ1 ðq; zÞ ¼ 1
2m0x2

1q
2 þ 1

2m0x2
1ðzþ z1Þ2; z� 0

V ðdÞ2 ðq; zÞ ¼ 1
2m0x2

1q
2 þ 1

2m0x2
2ðz� z2Þ2; z� 0

(

ð1:44Þ

This is a two-center potential for a sphere (z� 0) intersected with a vertical
spheroid. The origin (z = 0) is the intersection plane. As a result of variable
separation, three known differential equations are obtained for harmonic functions,
Laguerre polynomial and Hermite function dependent solutions. With the standard
notation for the quantum numbers nq,m, m the diagonalization basis is given by

Umð/Þ ¼
1
ffiffiffiffiffiffi

2p
p exp ðim/Þ

Rjmjnq
ðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Cðnq þ 1Þa2
1

Cðnq þ jmj þ 1Þ

s

exp �a2
1q

2

2

� �

ða2
1q

2Þ
jmj
2 Ljmjnq
ða2

1q
2Þ

ZmðzÞ ¼
Cm1 exp �a2

1ðzþz1Þ2
2

h i

Hm1 ½�a1ðzþ z1Þ�; z\0

Cm2 exp �a2
2ðz�z2Þ2

2

h i

Hm2 ½a2ðz� z2Þ�; z� 0

8

>

>

<

>

>

:

ð1:45Þ

where C is the gamma function, Ln
mis the m-order Laguerre polynomial, C1 and C2

the normalization constants, m1, m2 the quantum numbers along the symmetry axis,
and Hm is the Hermite function. The eigenvalues for the diagonalized Hamiltonian
with the potential V(d) are the oscillator energy levels for the sphere ? spheroid
system:

EðdÞosc ¼ �hx1ð2nqþ j m j þ1Þ þ �hxz1ðm1 þ 0:5Þ ð1:46Þ

By using this basis one has to calculate the nondiagonal matrix elements of the
total Hamiltonian.

The general expression of the matrix elements of the Hamiltonian may be
written as:

hijHDTCSMjji ¼ EðdÞosc þ hijDV1jji þ hijDV2jji þ hijVgjji þ hijVXsjji þ hijVX2 jji
ð1:47Þ

where the first term was given above, DV1 is the difference V1ðq; zÞ � VðdÞðq; zÞ
within the volume v1, DV2 is the similar quantity for v2 and Vg corresponds to the
neck region.

In order to assure Hermiticity for the spin–orbit kind of operator terms (l s and l2)
one uses anticomutators of the types

�h

m0x01
j1ðq; zÞ; ðrV � pÞs

	 


;
�h

m2
0x

3
01

j1l1ðq; zÞ; ðrV � pÞ2
	 


ð1:48Þ

where one should not forget that

1 Cluster Radioactivity 15



ls! 1
2

Xþs� þ X�sþð Þ þ Xzsz; l2 ! X2 ¼ 1
2

XþX� þ X�Xþð Þ þ X2
z ð1:49Þ

As an example one can write

Xþðv1Þ ¼ � eiu oV1ðq; zÞ
oq

o

oz
� oV1ðq; zÞ

oz

o

oq
� i

q
oV1ðq; zÞ

oz

o

ou

� �

¼� eiu m0x
2
q1

q
o

oz
� m0x

2
z1
ðzþ z1Þ

o

oq
� i

q
m0x

2
z1
ðzþ z1Þ

o

ou

� �
ð1:50Þ

X�ðv1Þ ¼e�iu oV1ðq; zÞ
oq

o

oz
� oV1ðq; zÞ

oz

o

oq
þ i

q
oV1ðq; zÞ

oz

o

ou

� �

¼e�iu m0x
2
q1

q
o

oz
� m0x

2
z1
ðzþ z1Þ

o

oq
þ i

q
m0x

2
z1
ðzþ z1Þ

o

ou

� �
ð1:51Þ

Xzðv1Þ ¼ �
i

q
oV1

oq
o

ou
¼ �im0x

2
q1

o

ou
ð1:52Þ

The strength parameters j and l, allowing to reproduce the experimentally
determined magic numbers, are continuously changed from the parent to the
fragments by requesting

j ¼ ji þ
R� Ri

Rf � Ri
ðjf � jiÞ ð1:53Þ

Detailed relationships are given in the Appendix of the Ref. [27]. The diagonal-
ization of the Hamiltonian for proton and neutrons leads to the level scheme of two
partially overlapping spheroids for a given distance R between centers and inter-
mediary (independent) ratios of the semiaxes of the target and projectile nuclei
vT = bT/aT and vP = bP/aP. Here (bT, aT) and (bP, aP) are the spheroid semiaxes.

The energy level diagram shows the final states of the heavy fragment and of
the light one. The light fragment has a separation energy between two shells higher

than the heavy one, because �hxH ¼ 41A�1=3
H and �hxL ¼ 41A�1=3

L . At the scission
separation distance, the low-lying levels are degenerate, reflecting the develop-
ment of a barrier between fragments, but around Fermi energy the levels are still
splitted, suggesting quasimolecular kind of states where the valence nucleon
properties are important for the final stages of the fission process.

1.2.6 Shell and Pairing Corrections

We would like to outline the calculations of the shell, dU, and pairing, dP, cor-
rections leading to the total deformation energy in the framework of the macro-
scopic–microscopic method
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Edef ¼ EYþE þ dEshþp ð1:54Þ

in which EY+E is the macroscopic Yukawa-plus-exponential term and
dEshþp ¼ dU þ dP. More details are given elsewhere [96].

The TCSM [27] gives at every pair of coordinates (R, g) the sequence of doubly
degenerate discrete energy levels ei ¼ Ei=�hx0

0 in units of �hx0
0 ¼ 41A�1=3, arranged

in order of increasing energy. The smoothed-level distribution density is obtained
by averaging the actual distribution over a finite energy interval C ¼ c�hx0

0, with
c ’ 1,

~gðeÞ ¼
X

nm

i¼1

½2:1875þ yiðyið1:75� yi=6Þ � 4:375Þ�e�yi

( )

ð1:77245385cÞ�1

ð1:55Þ

where y ¼ x2 ¼ ðe� eiÞ=c½ �2. The summation is performed up to the level nm

fulfilling the condition jxij � 3. The Fermi energy, ~k, of this distribution is given by

Np ¼ 2
Z

~k

�1

~gðeÞ de ð1:56Þ

with Np = Z for proton levels and Np = A - Z for neutron levels, leading to a

non-linear equation in ~k, solved numerically. The total energy of the uniform level
distribution is given by

~u ¼ ~U=�hx0
0 ¼ 2

Z ~k

�1
~gðeÞe de ð1:57Þ

In units of �hx0
0 the shell corrections are calculated for each pair (R, g):

duðn;R; gÞ ¼
X

n

i¼1

2eiðR; gÞ � ~uðn;R; gÞ ð1:58Þ

n = Np/2 particles. Then du = dup + dun.
Similarly, for pairing corrections we take the doubly degenerate levels {ei} in

units of �hx0
0. Z/2 levels are occupied with n levels below and n0 above Fermi energy

contributing to pairing, n ¼ n0 ¼ X ~gs=2. The cutoff energy, X ’ 1� ~D ¼ 12=
ffiffiffi

A
p

�hx0
0. The gap D and the Fermi energy k are solutions of the BCS system of two

equations [10]:

0 ¼
X

kf

ki

ek � k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðek � kÞ2 þ D2
q ;

2
G
¼
X

kf

ki

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðek � kÞ2 þ D2
q ð1:59Þ

where ki ¼ Z=2� nþ 1; kf ¼ Z=2þ n0, and
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2
G
’ 2~gð~kÞ ln 2X

~D

� �

ð1:60Þ

As a consequence of the pairing correlation, the levels below the Fermi energy
are only partially filled, while those above the Fermi energy are partially empty.
The occupation probability by a quasiparticle (vk

2) or hole (uk
2) is given by v2

k ¼
1� ðek � kÞ=Ek½ �=2; u2

k ¼ 1� v2
k . The quasiparticle energy is expressed as Em ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðem � kÞ2 þ D2
q

:

The pairing correction dp ¼ p� ~p, represents the difference between the
pairing correlation energies for the discrete level distribution and for the contin-
uous level distribution

p ¼
X

kf

k¼ki

2v2
kek � 2

X

Z=2

k¼ki

ek �
D2

G
; ~p ¼ �ð~g ~D2Þ=2 ¼ �ð~gs

~D2Þ=4 ð1:61Þ

Compared to shell correction, the pairing correction is out of phase and smaller
leading for R = constant to a smoother total curve de (g) = du (g) + dp (g) where
dp = dpp + dpn.

1.2.7 Potential Energy Surfaces

We study a binary fission process AZ !Ad Zd þAe Ze by taking into account the
difference between charge and mass asymmetry. Calculations have been recently
outlined [94, 108, 109]. An alternative notation for the emitted cluster or light
fragment is A2 Z2 and for the daughter or the heavy fragment is A1 Z1.

The macroscopic part of the deformation energy has a rather smooth variation
with n and g. The valleys are produced by the proton and neutron shell and pairing
corrections, which have a negative value when the nucleon number is magic.
Consequently in principle, at least one of the four nucleon numbers Zd, Nd, Ze, and
Ne should be magic in order to contribute with negative energy corrections,
digging a valley into the energy surface. In practice one has to have two magic
numbers simultaneously, because the valley becomes much deeper in this way.
This rule is clearly fulfilled by the example given in Fig.1.4. The more pronounced
two valleys result from the presence of doubly magic nuclei 132

50Sn82 and
208

82Pb126 as heavy fragments (daughter nuclei) in the output channel.
In Fig. 1.4 we plotted two energy surfaces versus n = (R - Ri)/(Rt - Ri) and

g = (A1 - A2)/(A1 + A2) for a heavy cluster emitter with Z = 88 (Ra) and
A = 222. The valleys due to the doubly magic fragments 208Pb and 132Sn are
shown. Such cold valleys were used in the 1960s by Greiner to motivate the search
for superheavies, and the development of Heavy Ion Physics in Germany (where
GSI was built) and worldwide. A shell-stabilizing property characteristic for the
superheavy nuclei is present in the heaviest elements known to date. The strong
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shell effects of the doubly magic daughter 208Pb are responsible for bringing the
half-lives of the majority of cluster decay modes into the measurable range, as we
shall illustrate below. In particular the 222Ra, with the PES shown in Fig. 1.4, has
the shortest half-life for 14C emission.

The potential barrier shape similar to that we considered within the ASAF
model was recently calculated by using the macroscopic–microscopic method
[94], as a cut through the PES at a given mass asymmetry, usually the 208Pb valley
or not far from it.

For one of the lightest a-emitter, 106Te, we give in Fig. 1.5 the shell and pairing
corrections, showing the deep minimum at g ’ 0:92 due to the almost doubly
magic daughter 102Sn. One can see the three valleys: cold-fission (almost sym-
metrical); 16O radioactivity, and a-decay. The nucleus 106Te has been experi-
mentally produced and studied long ago [117].
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Fig. 1.5 Shell and pairing
corrections surface of 106Te.
The a-valley around g ’ 0:92
is very deep due to the almost
doubly magic daughter 102Sn.
Another valley appears at g ’
0:69 with fragments
90Ru + 16O
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Fig. 1.4 Shell and pairing
corrections dEsh+p = dU +
dP (top) and total deforma-
tion energy Edef = EY+EM +
dE (bottom) versus the sepa-
ration distance n = (R - Ri)/
(Rt - Ri) and the mass
asymmetry g = (A1 - A2)/A
for 222Ra. There is a shallow
valley not far from symmetry
due to a cold fission process
with 132Sn as heavy fragment
and 90Sr as light fragment.
Much deeper are two other
valleys at g = 0.87 for 14C
radioactivity and 208Pb as the
daughter nucleus and near
g = 0.36 for asymmetric fis-
sion with 28

70Ni42 as the light
fragment and 152Nd as the
daughter nucleus
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258Fm is known for its symmetrical distribution of the fission fragment mass
yield [44]. 264Fm is the neutron-rich parent predicted [31, 104 ] to be the best cold
fissioning nucleus (with cold fission more probable than a decay), owing to its
doubly magic identical fragments 132Sn. The deepest a valley is that of 106Te, and
the deepest cold fission valley is that of 264Fm [89], because in these examples
both fragments are doubly magic or almost doubly magic nuclei.

1.2.8 Saddle-Point Shapes

In order to determine the saddle point shapes of heavy nuclei e.g. for fissility
parameter X = 0.60, 0.70, 0.82 (170Yb, 204Pb, 252Cf nuclei) we developed a
method [88] obtained by solving an integro-differential equation (Euler–Lagrange
equation minimizing the deformation energy). It was also used to show qualita-
tively that the mass asymmetry of fission fragments is the result of shell effects.

Let us consider a nuclear system with a shape specified by a set of n generalized
coordinates {qi}. For an equilibrium (ground-state or saddle-point) shape [21, 131]
the deformation energy E = E(q1, q2, ..., n) has an extremum, defined by
oE=oqi ¼ 0; ði ¼ 1; 2; . . .; nÞ.

In a LDM the gs, characterized by the lowest minimum of the potential energy,
always corresponds to a spherical shape. One may define a fission valley on the
potential energy surface in a multidimensional space of deformation parameters, as
a conditional minimum oE=oqk ¼ 0, (i = 1, 2, ..., k - 1, k + 1, ..., n) with the
constraint qk = qk

0 for different values qk
0. The maximum value on this minimum

energy determines the saddle-point position, at which all eigenvalues of the
symmetric curvature matrix

Kij ¼
o2EðqÞ
oqioqj

ð1:62Þ

have a positive sign, except one.
The potential energy versus one deformation parameter along the fission path is

a smooth curve with a minimum at the gs and a maximum at the saddle point. Then
it decreases continuously going through the scission point, down to the self energy
of the fragments at infinite separation distance. By representing this quantity for a
heavy nucleus vs. the mass asymmetry coordinate in a transverse direction at the
saddle point we also get a smooth curve with a minimum between two maxima,
called Businaro–Gallone mountains [15]. The saddle point is lying at the bottom of
the valley separating these mountains.

A conditional saddle point is defined by adding to the above equations one or
several constraints. Of particular interest in fission is the constraint of a given mass
asymmetry, g = g0. If g is one of the generalized coordinates the problem is sim-
plified because one takes g = constant. In general g depends on q, and the gener-
alization of the variational equation to the equilibrium with constraints leads to
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oE

oqi
þ k

og
oqi
¼ 0; i ¼ 1; 2; . . .; n ð1:63Þ

where k being a Lagrange multiplier.
There is no need to consider any reflection asymmetry or nonaxiality in the

calculation of saddle point shapes within the LDM, because the energy increases in
the presence of both kinds of deviations from symmetry. Cohen and Swiatecki [18]
have used the parametrization of Legendre polynomial expansion with even order
deformation parameters a2n up to the order 18. For low fissility, X, the saddle point
shapes are very similar to two tangent spheres, which it is more difficult to be
described with a small number of deformation coordinates. By increasing fissility a
neck develops between the two symmetrical fragments. The length increases up to
X = 0.67 and at the same time the neck radius becomes larger. For even larger
values of X the length decreases and there is no neck if X [ 0.67. The best
accuracy was obtained at larger fissilities, close to X = 1, for which the saddle
point shapes are not very different from a single sphere. The cylinder-like shapes
of heavy nuclei with 0.67 \ X \ 1 have been called Bohr–Wheeler family of
shapes, and the necked-in dumbell-like shapes for lighter nuclei (0 \ X \ 0.67)
are called Frankel-Metropolis family. Slightly different saddle point shapes (with
larger neck radius and shorter length) are found within Y+EM.

Both LDM and Y+EM predict about the same fission barrier height (saddle
point energy relative to the ground-state minimum) of heavy nuclei (A [ 200). For
lighter nuclides (A ’ 100) the LDM fission barrier is about 10 MeV higher than
that obtained by Y+EM, which reproduces well the experimental data. At the
Businaro–Gallone fissility (XBG = 0.396 within LDM), a transition to unstable
shapes with respect to mass asymmetry occurs. Calculated fission barriers corre-
sponding to the conditional saddle points with constrained mass asymmetry plotted
versus g at a given fissility X�XBG, show a minimum at g = 0 and a maximum at
a value of gBG which increases with X, but for X \ XBG the fission barrier always
decreases with increasing asymmetry.

Fission of highly excited nuclei in the intermediate mass region is dominated by
the liquid drop properties of nuclear matter. A unified approach of light particle
evaporation and fission decay modes of highly excited compound nuclei well
above the barrier height, was developed by Moretto [71, 72] who applied the
transition state formalism used in fission for the light particle evaporation.
According to this theory the distinction between evaporation and fission for
X [ XBG is given by the Businaro–Gallone peaks gBG: at a given fissility, the
fission process ranges from g = 0 to gBG, and evaporation from gBG to g = 1.
Bellow the Businaro–Gallone fissility (X \ XBG = 0.396 for zero angular
momentum l, and smaller for larger l values) there is no distinction between
(disappearing) fission and the evaporation extending from g = 0 to g = 1. It was
shown experimentally [127] that the topological transition expected at X = XBG,
takes place around A = 100 (between 85 and 145).

The statical approach was widely used [18, 128] for finding the saddle point
shapes within a LDM. Usually the equilibrium nuclear shapes are obtained by
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minimizing the energy functional on a certain class of trial functions representing
the surface equation. Such an approach shows the importance of taking into
account a large number of deformation coordinates (it seems that 5 coordinates are
frequently needed) [69]. The parametrization according to Legendre polynomial
expansion with even order deformation parameters a2n up to n = 18 was employed
[18] to describe various saddle point shapes including those very similar to two
tangent spheres.

The integro-differential equation [88] allows to find a general reflection sym-
metrical or asymmetrical saddle point shape without a shape parametrization
a priori introduced. This equation is derived as a Euler–Lagrange relationship
associated to the variational problem of minimizing the potential energy with
constraints (constant volume and given deformation parameter). The axially-
symmetrical surface shape minimizing the liquid drop energy, ELDM = Es + EC, is
straightforwardly obtained. Minima of the saddle point deformation energy appear
at finite values of the mass-asymmetry parameter as soon as the shell corrections,
dE, are taken into account [99, 102].

We are looking for a function q = q(z) expressing in cylindrical coordinates the
nuclear surface equation with axial symmetry around the z axis and the tips z1 and z2.
The dependence on the neutron, N, and proton, Z, numbers is contained in the
surface energy of a spherical nucleus, Es

0, in the fissility parameter X, as well as in
the shell correction of the spherical nucleus dE0. EC

0 is the Coulomb energy of the
spherical shape for which the radius is R0 = r0A1/3. The radius constant is
r0 = 1.2249 fm, and e2 = 1.44 MeV�fm is the square of electron charge.
The lengths are given in units of the radius, R0, and the Coulomb potential at the
nuclear surface, Vs = (R0/Ze)/s, in units of Ze/R0. The surface tension and the
charge density are denoted by r and qe respectively. The nuclear surface equation we
are looking for should minimize the functional of potential energy of deformation

Es þ EC ¼ 2prR2
0

Z

z2

z1

qðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ q02
p

dzþ 2pR2
0Zeqe

5

Z

z2

z1

q2 � z

2
oq2

oz

� �

Vs dz ð1:64Þ

with two constraints: volume conservation and a given deformation parameter

V ¼ pR3
0

Z

z2

z1

q2ðzÞ dz ¼ 4pR3
0

3
; a ¼ pR3

0

V

Z

z2

z1

Fðz; qÞq2 dz ð1:65Þ

where a is assumed to be an adiabatic variable.
We denote with F1, F2, F3, F4, the integrands one needs to write the Euler–

Lagrange equation:

rF1 ¼ rq 1þ q02
� �1=2

;
R0qe/s

5
F2 ¼

R0qe/s

5
q2 � zqq0
� �

; F3 ¼ q2; F4 ¼ q2F

ð1:66Þ
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The derivatives are easily obtained

oF1

oq
¼ 1þ q02
� �1=2 ð1:67Þ

d

dz

oF1

oq0
¼ d

dz

qq0

ð1þ q02Þ1=2

" #

¼ q02 þ qq00

ð1þ q02Þ1=2
� qq02q00

ð1þ q02Þ3=2
ð1:68Þ

oF2

oq
¼ 2q� zq0;

d

dz

oF2

oq0
¼ d

dz
ð�zqÞ ¼ �q� zq0; ð1:69Þ

oF3

oq
¼ 2q;

oF4

oq
¼ 2q F þ q

2
oF

oq

� �

¼ 2qf ð1:70Þ

where we denoted f ðz; qÞ ¼ Fðz; qÞ þ ðq=2ÞðoF=oqÞ. Consequently the Euler–
Lagrange equation can be written as

r
oF1

oq
� d

dz

oF1

oq0

� �

þ ZeqeVs

5
oF2

oq
� d

dz

oF2

oq0

� �

þ q 2k001 þ 2k002f
� �

¼ 0 ð1:71Þ

leading to

qq00 � q02 � k1 þ k2jzj þ 6XVsð Þqð1þ q02Þ3=2 � 1 ¼ 0 ð1:72Þ

if we choose F = |z| (hence f = |z|) and express 3Zeqe/(5r) as 6X because the
Coulomb and surface energy of a spherical nucleus within LDM are given by
E0

C ¼ ð3Z2e2Þ=ð5R0Þ and E0
s ¼ 4pR2

0r, respectively. Alternatively one has

2rK þ 3qe/s=5þ k01 þ k02jzj ¼ 0 ð1:73Þ

where k1
0

and k2
0

are Lagrange multipliers and K is the mean curvature [13] with
R1 and R2 the principal radii of curvature

K ¼ ðR�1
1 þR�1

2 Þ=2; R1 ¼ R0sq R2 ¼ �R0s
3=q00 s2 ¼ 1þ q02 ð1:74Þ

where q0 ¼ dq=dz and q00 ¼ d2q=dz2. In the absence of an electric charge, the
condition of stable equilibrium at the surface of a fluid [65] is given by the Laplace
formula equating the difference of pressures with the product 2rK.

By choosing the deformation coordinate as the distance between the centers of
mass of the left and right fragments, a ¼ jzc

Lj þ jzc
Rj, one can reach all intermediate

stages of deformation from one parent nucleus to two fragments by a continuous
variation of its value. Also a possible dynamical study, for which the center of
mass treatment is very important [106], may conveniently use this definition of the
deformation parameter. The position of the separation plane between fragments,
z = 0, is given by the condition dq=dzð Þz¼0¼ 0, which defines the median plane
for a usually spherical, ellipsoidal, or ‘‘diamond’’ shape in the gs, or the middle of
the neck for an elongated reflection symmetrical shape on the fission path. For this
choice of the function F(z, q) one has f ¼ jzj.
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The equation to be solved numerically is obtained from (1.72) after changing
the variable and function.

uðvÞ ¼ K2q2½zðvÞ�; zðvÞ ¼ zp � v=K ð1:75Þ

By calculating the derivatives and substituting into (72) one gets

u00 � 2� 1
u

u02 þ 3XVs

2K
þ k1 þ k2zp

4K
� k2v

4K2

� �

ð4uþ u02Þ3=2
� �

¼ 0 ð1:76Þ

A linear function of v is introduced by adding and subtracting a + bv to 3XVs/2K.
The quantity Vsd is defined as the deviation of Coulomb potential at the nuclear
surface from a linear function of v

Vsd ¼
3X

2K
Vs � a� vb; a ¼ 3X

2K
Vsðv ¼ 0Þ; b ¼ 3X

2K
Vsðv ¼ vpÞ � a

� �


vp ð1:77Þ

where vp = Kzp. The constant a is chosen to give Vsd(v = 0) = 0. Consequently
one has

u00 � 2� 1
u

u02 þ k1 þ k2zp

4K
þ a

� �

þ v b� k2

4K2

� �

þ Vsd

� �

ð4uþ u02Þ3=2
	 


¼ 0

ð1:78Þ

By equating with 1 the coefficient of v, one can establish the following link
between K and the Lagrange multiplier k2K

2 = k2/4(b - 1). In this way u(v) is to
be determined by the equation

u00 � 2� 1
u

u02 þ ðv� d þ VsdÞð4uþ u02Þ3=2
h i

¼ 0 ð1:79Þ

where the role of a Lagrange multiplier is played by the quantity d which is taken
to be constant instead of a. The value of the deformation coordinate a is calculated
after obtaining a convergent solution. To the tip z = zp, at which q(zp) = 0,
corresponds v = 0, hence uð0Þ ¼ K2q2ðzpÞ ¼ 0, as can be seen from (1.75). By
multiplying with u (1.79), introducing v = 0, and using the relationship
Vsd(v = 0) = 0, it follows that u0(0) = 1/d. Consequently the boundary conditions
for u(v) are:

uð0Þ ¼ 0; u0ð0Þ ¼ 1=d ð1:80Þ

To z = 0, at which q0(0) = 0 (the middle of the neck for elongated shapes),
corresponds vp = Kzp and u0ðvpÞ ¼ �2Kqð0Þq0ð0Þ ¼ 0. The point v = vp in which
u0(vpn) = 0 is determined by interpolation from two consecutive values of vp

leading to opposite signs of u0(v). The number n of changes of signs is equal to the
number of necks plus one given in advance, e.g. for a single neck (binary fission)
one has n = 2 and for two necks (ternary fission) one has n = 3, etc.
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In order to find the shape function u(v) we solve (1.79) with given boundary
conditions. One starts with given values of the constants d and n. For reflection
symmetric shapes dL = dR and nL = nR. In the first iteration one obtains the solution
for a Coulomb potential at the nuclear surface assumed to be a linear function of v,
i.e. for Vs = 0. Then one calculates the parameters K, a, and b, which depend on the
Coulomb potential and its deviation Vsd from a linear function, and the deformation
energy corresponding to the nuclear shape [105]. The quantity Vsd determined in
such a way is introduced in (1.79) and the whole procedure is repeated until the
deformation energy is obtained with the desired accuracy. In every iteration step the
equation is solved numerically with the Runge–Kutta method.

One can calculate for different values of deformation a (in fact for a given dL

and dR) the deformation energy Edef(a). The particular value as for which dEdef(as)/
da = 0 corresponds to the extremum, i.e. the shape function describes the saddle
point, and the unconditional extremum of the energy is the fission barrier. The
other surfaces (for a 6¼ as) are extrema only with the condition a = constant. In
this way one can compute the deformation energy versus dL = dR. The saddle
point corresponds to the maximum of deformation energy.

For nuclei 170Yb, 204Pb and 252Cf with X = 0.60, 0.70, and 0.82 we obtained [88]
the saddle-point shapes in good agreement with [18]. By including shell effects we
could explain [99] the asymmetry in the fission fragment mass distribution.

A new superasymmetric peak was observed in the fission yield of 252No cal-
culated by using the fragmentation theory and the two center shell model devel-
oped by the Frankfurt school [119, 120)].

A ‘‘shoulder’’ was experimentally measured in the superasymmetric region of
the fission fragment mass distributions of lighter nuclei, e.g. 220Ra, 205,207,209Bi,
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Fig. 1.6 Mass yields in thermal neutron induced fission of the compound nuclei 239Np* [133],
236U*, 240Pu*, 243Am*, 246Cm*, and 250Cf* (courtesy Prof. F. Gönnenwein)
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208,210,212Po, 204Pb, 213At, 201Tl [57–59, 111]. There are also other very interesting
experiments for heavier nuclei U, Np, Pu, Am, Cm and Cf [133] which clearly
show superasymmetric fission. In Fig. 1.1 of that paper the experimental evidence
for superasymmetric fission as a general phenomenon in low energy fission of
actinides came into view. A modified plot is shown in Fig. 1.6 were the super-
asymmetric shoulder is clearly seen.

1.3 Nuclear Dynamics

By studying fission dynamics [96] one can estimate the value of the disintegration
constant k of the exponential decay law expressing the variation in time of the
number of decaying nuclei. The probability of decay may be expressed in terms of
its half-life, T, the time in which only half of the initial quantity remains. By
assuming a disintegration rate independent on the past history of the individual
decaying nuclei the variation of the number NðtÞ of radioactive nuclei at a time t,
during the time dt must be proportional to NðtÞ and to dt: dN ¼ �kNdt. After
integration we get the exponential decay law:

NðtÞ ¼Nð0Þ expð�t=sÞ ð1:81Þ

where the time constant s = 1/k defines the life-time of the parent nucleus, and k
is the disintegration constant. The partial decay half-life, T, is defined by
NðtÞ ¼Nð0Þ=2, hence T ¼ sln2 ¼ 0:693147=k.

Our extensive study of one-, two-, and three-dimensional fission dynamics for a
wide range of mass asymmetry allowed us to find the nuclear shapes during the
deformation process. Some confusions and errors have been made in this field, e.g.
when the center of mass motion was not taken into account in the calculation of
nuclear inertia within Werner–Wheeler approximation.

The potential energy surface in a multidimensional hyperspace of deformation
parameters b1b2, ..., bn gives the generalized forces acting on the nucleus.
The information concerning how the system reacts to these forces is contained in a
tensor of inertial coefficients, or the effective mass parameters {Bij}. In contrast to
the potential energy E = E(b), which only depends on the nuclear shape, the
kinetic energy

Ek ¼
1
2

X

n

i;j¼1

BijðbÞ
dbi

dt

dbj

dt
ð1:82Þ

also includes the change in time of this shape. Bij is the tensor of nuclear inertia.
In a phenomenological approach based on incompressible irrotational flow,
the value of an effective mass Bir is usually close to the reduced
mass l = (A1A2/A)m in the exit channel of the binary system. Here m is the
nucleon mass. By choosing the distance between fragments as deformation
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coordinate, this value of the effective mass is indeed exactly obtained at the
touching point of the two fragments.

1.3.1 Werner–Wheeler Approximation

By assuming an irrotational hydrodynamic flow, the effective masses Bir are
always greater or equal to the reduced mass l defined above. As an approximation
to incompressible irrotational flow, one can use the Werner–Wheeler method [22].
For pure spheroidal deformation, the flow produced by using Werner–Wheeler
approximation is exactly irrotational. It allows analytical results to be obtained for
two parametrizations of intersected spheres: the ASAF model ‘‘cluster-like’’
(R2 = constant) and the more compact (fragment volumes = constant) shapes.

The kinetic energy of a non-viscous fluid due to a shape change is written as

Ek ¼
r
2

Z

V

v2d3r �
Z

V

_zd3r

0

@

1

A

2
,

Z

V

d3r

2

4

3

5 ð1:83Þ

if the system possesses a cylindrical symmetry relative to the z-axis. V is the
volume assumed to be conserved, r ¼ 3m=ð4pr3

oÞ is the mass density, v is the
velocity; the nuclear radius constant ro = 1.16 fm within Y+EM.

By assuming irrotational motion (r�v ¼ rot v ¼ 0), the velocity field may be
derived from a scalar velocity potential u, i.e. v ¼ ru. From the continuity equation
of an incompressible fluid (Dr /Dt = 0) it follows that the Laplace equation,
r2u ¼ Du ¼ 0, should be satisfied with kinematical boundary conditions

DF

ot
¼ vrF þ oF

ot
¼ 0 ð1:84Þ

where the surface equation for axially symmetric shapes in cylindrical coordinates
(q;u; z) is written as F(r, t, b) = q - qs(z, t, b) = 0 in which qs is the value of
q on the surface. The velocity components, _z ¼ ou=oz and _q ¼ ou=oq, are both
functions of z and q.

In the Werner–Wheeler approximation the flow is considered to be a motion of
circular layers of fluid, _z is independent of q, and _q is linear in q:

_z ¼
X

i

Xiðz; bÞ _bi; _q ¼ ðq=qsÞ
X

i

Yiðz; bÞ _bi ð1:85Þ

A vanishing total (convective) time derivative of the fluid volume to the right (or
left) side of an arbitrary plane normal to the z-axis leads to

Xil ¼ �q�2
s

o

obi

Z

z

zmin

q2
s dz; Xir ¼ q�2

s

o

obi

Z

zmax

z

q2
s dz ð1:86Þ
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By requiring a vanishing normal component of the velocity at the surface, one
has

YirðlÞ ¼ �
qs

2
o

oz
XirðlÞ ð1:87Þ

from which the functions Xi and Yi are found as a sum of two terms for the left (l)
and right (r) side of the shape.

After substitution in the relationship for the kinetic energy and comparison with
the initial equation for Ek we find the following relationships for the components
of the inertia tensor:

Bij ¼ pr
Z

zmax

zmin

q2
s XiXj þ

1
2

YiYj

� �

dzþ Bc
ij ð1:88Þ

Bc
ij ¼ �ðp2r=VÞ

Z

zmax

zmin

q2
s Xidz

Z

zmax

zmin

q2
s Xjdz ð1:89Þ

where qs = qs(z) is the nuclear surface equation in cylindrical coordinates, with
zmin, zmax intercepts on the z-axis. The correction term for the center of mass
motion Bij

c is different from zero if the origin of z is not placed in the center of
mass.

For another set of deformation parameters {p} describing the same shape,

BklðpÞ ¼
X

BijðqÞ
oqi

opk

oqj

opl
ð1:90Þ

We studied the dynamics of two intersected spheres [30, 31, 106] for the
general case of two independent variables R and R2. By expressing all lengths in
units of the radius of the parent nucleus, R0 = r0A1/3, we have obtained the three
components of the inertia tensor:

1
m

BRR ¼ A
H2

1

4
F1 þ

3
4p

V2 �
9

16
H1

2
ðR1 þ D1Þ2 þ

V2

p

� �2
( )

ð1:91Þ

1
m

BRR2 ¼AR2ðR2 þ D2Þ
H1

2ðR1 þ D1Þ
F1 þ

3
4
ðR2 þ D2Þ

	

� 9
16

H1

2
ðR1 þ D1Þ2 þ

V2

p

� �

ðRþ R1 þ R2Þ

 ð1:92Þ

1
m

BR2R2 ¼ AR2
2

R2 þ D2

R1 þ D1

� �2

F1 þ F2 �
9

16
ðR2 þ D2Þ2L2

" #

ð1:93Þ

where L = R + R1 + R2 and
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F1 ¼ �2:625D1 � 3:375R1 þ 1:5
R2

1

H1
þ 4:5R1 ln

2R1

H1
ð1:94Þ

F2 ¼ �2:625D2 � 3:375R2 þ 1:5
R2

2

H2
þ 4:5R2 ln

2R2

H2
ð1:95Þ

V2 is the volume of the emitted fragment and the involved geometrical quantities
are defined below.

The above mentioned one-dimensional parametrizations (compact and cluster-
like) are obtained as particular cases. For compact shapes:

BðRÞ
m

�

�

�

�

V2¼const:

¼A
H1

2
R2 þ D2

Rþ R1 þ R2

� �2

K1 þ
H2

2
R1 þ D1

Rþ R1 þ R2

� �2

K2�
"

�3
4

H2ðR1 þ D1ÞðR2 þ D2Þ2

Rþ R1 þ R2

#

þ lA

ð1:96Þ

where lA = AeAd/A is the reduced mass number.
For cluster-like shapes

BðRÞ
m
¼ BRR

m

�

�

�

�

R2¼ct:

¼ A

4
H2

1K1 þ
3V2

p
� 9A

4
H1

2
ðR1 þ D1Þ2 þ

V2

p

� �2
( )

ð1:97Þ

In this case R is varied from Ri to Rt and R1 is determined numerically by solving a
fourth degree algebraic equation which is derived from the volume conservation
and matching conditions in the separation plane. Then we can find D1 = R/
2 + (R1

2 - R2
2)/(2R), H1 = R1 - D1, D2 = R - D1, and H2 = R2 - D2.

When studying more compact shapes it is convenient to use H1 as independent
variable. It decreases from Hi (equal to hi) at R = Ri to zero at R = Rt. The heavy
fragment volume conservation condition allows to obtain an equation of third
degree in R1. Then D1 = R1 - H1 and the square of the neck radius
q2

n ¼ H1ðR1 þ D1Þ. H2 is found as a solution of another equation obtained from the
volume conservation of the small fragment and the matching condition. It follows
that R2 ¼ ðH2 þ q2

n=H2Þ=2, D2 = R2 - H2, and R = D1 + D2. Here D1 =

zs - z1, D2 = z2 - zs, Hi = Ri - Di, zs is the position of the intersection plane of
the spheres, zi are the geometrical centers of the spheres.

By changing the shape coordinate from R to zm (the distance between mass
centers of the fragments), the inertia becomes :

BðzmÞ ¼ BðRÞ dR

dzm

� �2

ð1:98Þ

For cluster-like shapes, both B(R) and B(zm) are increasing functions of the
respective variable. On the contrary, B(zm) decreases but B(R) increases for the
more compact shapes. When the motion of the center of mass is not taken into
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account, the inertia are much higher; the ratio of wrong to correct value of inertia
may be as high as 30/4. A good accuracy test of the computations is obtained at the
touching point configurations, where B = l—the reduced mass.

1.3.2 Cranking Inertia

The microscopic (cranking) model introduced by Inglis [23, 39, 54–56] leads to
much larger values of the inertia compared to the phenomenological ones.
By assuming the adiabatic approximation the shape variations are slower than the
single-particle motion. According to the cranking model, after including the BCS
pairing correlations [3], the inertia tensor [10] is given by

Bij ¼ 2�h2
X

ml

hmjoH=obijlihljoH=objjmi
ðEm þ ElÞ3

ðumvl þ ulvmÞ2 þ Pij ð1:99Þ

where H is the single-particle Hamiltonian allowing to determine the energy levels
and the wave functions jmi, um, vm are the BCS occupation probabilities, Em is the
quasiparticle energy, and Pij gives the contribution of the occupation number
variation when the deformation is changed (terms including variation of the gap
parameter, D, and Fermi energy, k, oD=obi and ok=obi):

Pij ¼
�h2

4

X

m

1
E5

m
D2 ok

obi
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obj

"

þ ðem � kÞ2oD
obi

oD
obj
þ Dðem � kÞ ok

obi

oD
obj
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obj

oD
obi

 !

� D2 ok
obi
hmjoH=objjmi þ
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obj
hmjoH=obijmi

 !

�Dðem � kÞ oD
obi
hmjoH=objjmi þ

oD
obj
hmjoH=obijmi

 !#

ð1:100Þ

Like the shell corrections, the total inertia is a sum of proton and neutron
contributions. The denominator is minimal for levels near the Fermi surface. When
the level density at the Fermi surface is large, the inertia is large too, and viceversa.

The cranking approach allows to obtain analytical relationships of the nuclear
inertia [87] if we consider a single-particle model of a spheroidal harmonic
oscillator without spin–orbit interaction. The shape of a spheroid with semiaxes
a, c (c is the semiaxis along the symmetry) expressed in units of the spherical
radius R0 = r0A1/3 may be determined by a single deformation coordinate which
can be the quadrupolar deformation [77] e ¼ 3ðc� aÞ=ð2cþ aÞ. The two oscillator
frequencies are expressed as:
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x?ðeÞ ¼ x0 1þ e
3

� �

; xzðeÞ ¼ x0 1� 2e
3

� �

ð1:101Þ

and by taking into account the condition of the volume conservation

x2
?xz ¼ ðx0

0Þ
3, where �hx0

0 ¼ 41A�1=3 MeV, the eigenvalues [96] in units of �hx0
0

are given by

ei ¼ ½N þ 3=2þ eðn? � 2N=3Þ�½1� e2ð1=3þ 2e=27Þ��1=3 ð1:102Þ

in which the quantum numbers n? and nz are nonnegative integers. Their
summation gives the main quantum number N ¼ n? þ nz.

In a system of cylindrical coordinates ðq;u; zÞ the wave function [20, 23, 134]
can be written as a product of the eigenfunctions

wm
nr
ðqÞ ¼

ffiffiffi

2
p

a?
Nm

nr
g
jmj
2 e�

g
2Ljmjnr
ðgÞ ¼

ffiffiffi

2
p

a?
wm

nr
ðgÞ ð1:103Þ

wnz
ðzÞ ¼ 1

ffiffiffiffi

az
p Nnz e

�n2

2 HnzðnÞ ¼
1
ffiffiffiffi

az
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where Ljmjnr
are the associated (or generalized) Laguerre polynomials and Hnz are the

Hermite polynomials. The variables g and n are defined by g ¼ q2=a2
?, n = z/az,

where a? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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are obtained from the orthonormalization conditions.
By ignoring the spin–orbit coupling the Hamiltonian of the harmonic spheroidal

oscillator contains the kinetic energy and the potential energy term, V:

V ¼ 1
2
�hx?gþ

1
2
�hxzn

2 ¼
�hx0

0 ð3þ eÞgþ ð3� 2eÞn2� �

2½27� e2ð9þ 2eÞ�1=3
ð1:106Þ

Now we are making some changes in (1.99). First of all we are replacing
the deformation b by e. One may assume [10, 20] that only the leading term of the
Hamiltonian, namely the potential denoted above, contributes essentially to the
derivative,

dH

de
’ dV

de
ð1:107Þ

The contribution of Pij, denoted by Pe for a system with one deformation
coordinate, sometimes assumed to be negligible small, will be discussed later on.
The derivative is written as
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1

�hx0
0

dV

de
¼ 3

2
f1ðeÞgþ f2ðeÞn2� �

ð1:108Þ

in which

f1 ¼
eðeþ 6Þ þ 9

½27� e2ð9þ 2eÞ�4=3
; f2 ¼ 2

eð2eþ 3Þ � 9

½27� e2ð9þ 2eÞ�4=3
ð1:109Þ

For a single deformation parameter the inertia tensor becomes a scalar Be with a
summation in (1.99) performed for all states m, l taken into consideration in the
pairing interaction. In order to solve the problem of the pairing interaction we
follow the procedure outlined in Sect. 1.2.6.

The following relationship allows to calculate the effective mass, in units of
�h2=ð�hx0

0Þ
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0
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9
2
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The matrix elements are calculated by performing some integrals
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Next we can use the relationships from [13] leading eventually to an important
diagonal contribution
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and two nondiagonal terms
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In order to perform the summations of the nondiagonal terms for a state with a
certain m (specifying the quantum numbers nz nr m) one has to consider only the
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states with l=m and n0r ¼ nr; m0 ¼ m for which n0z ¼ nz þ 2 or n0z ¼ nz � 2

respectively. Finally one arrives at the nuclear inertia in units of �h2=MeV by
adding the three terms and dividing by �hx0

0.
There are several hydrodynamical formulae [126] for the mass parameters.

For a spherical liquid drop with a radius R0 = 1.2249A1/3 fm one has

Birrð0Þ ¼
2

15
MAR2

0 ¼ 0:0048205A5=3 �h2

MeV
ð1:115Þ

When the spheroidal deformation is switched on it becomes

Bir
e ðeÞ ¼ Birrð0Þ

81

½27� e2ð9þ 2eÞ�4=3

9þ 2e2

ð3� 2eÞ2
ð1:116Þ

The main result of this subsection is represented by (1.112–1.114), which could
be used to test complex computer codes developed for realistic single-particle
levels, for which it is not possible to obtain analytical relationships.

The nuclear inertia for 240Pu, calculated with the (1.115) for a spherical liquid
drop and with (1.116) for spheroidal shapes is illustrated in Fig. 1.7. The irrota-
tional value Bir

e ðeÞ monotonously increases with the spheroidal deformation
parameter e. Due to the fact that in this single center model the nucleus only
became longer without developing a neck and never arriving at a scission con-
figuration when the deformation is increased, the reduced mass is not reached as it
should be in a two center model [30].

The cranking inertia of the spheroidal harmonic oscillator calculated by using
the analytical relationships (1.112–1.114) and the correction given below shows
very pronounced fluctuations which are correlated to the shell corrections.
The correction term is given by
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Fig. 1.7 Comparison of the
effective mass (in units of
�h2=MeV) calculated by using
the cranking model for the
proton plus neutron level
schemes, only for neutrons,
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shapes of 240Pu
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The results from [87] are showing the important contribution of the neutron level
scheme, Pen, reflecting the larger density of states at the Fermi energy, compared to
the proton term Pep. Their sum is a positive quantity, contributing to an increase of
the nuclear inertia. In a dynamical investigation using the quasiclassical WKB
approximation, the quantum tunnelling penetrability depends exponentially on the
action integral, in which the integral contains a square root of the product of the
mass parameter and the deformation energy. This exponential dependence
amplifies significantly any variation of the inertia. Consequently, the term Pij must
be considered in calculations. A similar conclusion was drawn [123] from a study
based on the two-center shell model.

1.4 Analytical Superasymmetric Fission Model

Any theory of cluster radioactivities with predictive power should give an answer
to the following questions. Are these phenomena physically allowed? Can they be
measured? In which region of parent nuclei can they be found? Which are the most
probable emitted clusters? What is the order of magnitude of the emission rate?
Four theoretical models answering at least some of these questions, have been
reviewed in 1980 [120], namely: fragmentation theory; penetrability calculations
like in traditional theory of a-decay; numerical (NuSAF)- and analytical (ASAF)
superasymmetric fission models.

A new superasymmetric peak, experimentally confirmed as a ‘‘shoulder’’, has
been obtained in the 252No fission fragment mass distribution calculation, based on
the fragmentation theory and the two center shell model developed by the
Frankfurt school. See also other details on superasymmetric fission fragment mass
distribution at the end of the Sect. 1.2.8.

One of the eight decay modes by cluster emission, predicted in 1980 by
calculating the penetrability, from 16 even–even parents, has been 14C decay of
222,224Ra. Three variants of the numerical superasymmetric fission (NuSAF)
models were developed since 1979 by adding to the macroscopic deformation
energy of binary systems with different charge densities a phenomenological
shell correction term, and by performing numerical calculations within Wentzel–
Kramers–Brillouin (WKB) approximation. In this way we obtained good
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agreement with experimental half-lives for 58 even–even a-emitters over a range
of 24 orders of magnitude.

A very large number of combinations parent-emitted cluster has to be considered
in a systematic search for new decay modes. In order to check the metastability of
more than 2,000 nuclides with measured masses against about 200 isotopes of the
elements with Ze = 2–28, this number is of the order of 105. The numerical
calculation of three-fold integrals involved in the models mentioned above are too
time-consuming. The large amount of computations can be performed in a
reasonable time by using an analytical relationship for the halflife. Since 1980, we
developed our ASAF model to fulfil this requirement. We started with Myers–
Swiatecki LDM [76] adjusted with a phenomenological correction accounting for
the known overestimation of the barrier height and for the shell and pairing effects in
the spirit of Strutinsky method [129].

1.4.1 The Model

The half-life of a parent nucleus AZ against the split into a cluster Ae Ze and a
daughter Ad Zd

T ¼ ½ðh ln 2Þ=ð2EvÞ�expðKov þ KsÞ ð1:118Þ

is calculated by using the WKB quasiclassical approximation, according to which
the action integral is expressed as

K ¼ 2
�h

Z

Rb

Ra

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2BðRÞEðRÞ
p

dR ð1:119Þ

with B = l, K = Kov + Ks, and E(R) replaced by [E(R) - Ecorr] - Q. Ecorr is a
correction energy similar to the Strutinsky [129] shell correction, also taking into
account the fact that Myers–Swiatecki’s LDM [76] overestimates fission barrier
heights, and the effective inertia in the overlapping region is different from the
reduced mass. The turning points of the WKB integral are:

Ra ¼ Ri þ ðRt � RiÞ½ðEv þ E
Þ=E0
b�

1=2 ð1:120Þ

Rb ¼ RtEcf1=2þ ½1=4þ ðQþ Ev þ E
ÞEl=E2
c �

1=2g=ðQþ Ev þ E
Þ ð1:121Þ

where E* is the excitation energy concentrated in the separation degree of freedom,
Ri = R0 - Re is the initial separation distance, Rt = Re + Rd is the touching point

separation distance, Rj ¼ r0A1=3
j ðj ¼ 0; e; d; r0 ¼ 1:2249 fm) are the radii of

parent, emitted and daughter nuclei, and E0
b ¼ Ei � Q is the barrier height before

correction. The interaction energy at the top of the barrier, in the presence of a
nonnegligible angular momentum, l�h, is given by:
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Ei ¼ Ec þ El ¼ e2ZeZd=Rt þ �h2lðlþ 1Þ=ð2lR2
t Þ ð1:122Þ

The two terms of the action integral K, corresponding to the overlapping (Kov) and
separated (Ks) fragments, are calculated by analytical formulas (approximated for
Kov and exact for Ks in case of separated spherical shapes within the LDM):

Kov ¼ 0:2196ðE0
bAeAd=AÞ1=2ðRt � RiÞ
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where r = Rt/Rb and c ¼ rEc=ðQþ Ev þ E
Þ. In the absence of the centrifugal
contribution (l = 0), one has c = 1.

We took Ev = Ecorr in order to get a smaller number of parameters. It is evident
that, owing to the exponential dependence, any small variation of Ecorr induces a
large change of T, and thus plays a more important role compared to the
preexponential factor variation due to Ev. Shell and pairing effects are included in
Ecorr = ai(Ae)Q (i = 1, 2, 3, 4 for even–even, odd–even, even–odd, and odd–odd
parent nuclei). For a given cluster radioactivity we have four values of the
coefficients ai, the largest for even-even parent and the smallest for the odd-odd
one (see Fig. 1 of [110]). The shell effects for every cluster radioactivity is
implicitly contained in the correction energy due to its proportionality with the Q
value, which is maximum when the daughter nucleus has a magic number of
neutrons and protons.

With only few exceptions, in the region of nuclei far from stability, measured
a-decay partial half-lives are not available. In principle we can use the ASAF
model to estimate these quantities. Nevertheless, slightly better results can be
obtained by using our semiempirical formula [103].

The potential barrier shape similar to that we considered within the ASAF
model was recently calculated by using the macroscopic–microscopic method
[94], as a cut through the PES at a given mass asymmetry, usually the 208Pb valley
or not far from it.

Before any other model was published, we had estimated the half-lives for more
than 150 decay modes, including all cases experimentally confirmed until now.
A comprehensive table was produced by performing calculations within that
model. Subsequently, the numerical predictions of the ASAF model have been
improved by taking better account of the pairing effect in the correction energy,
deduced from systematics in four groups of parent nuclei (even–even, odd–even,
even–odd and odd–odd). In a new table, published in 1986, cold fission as cluster
emission has been included. The systematics was extended in the region of heavier
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emitted clusters (mass numbers Ae [ 24), and of parent nuclei far from stability
and superheavies. Since 1984, the ASAF model results have been used to guide
the experiments and to stimulate other theoretical works.

1.4.2 Systematic Search for Cluster Decay Modes

Our calculations ‘‘indicating the possibility of a new type of decay of heavy
nuclei’’ have been mentioned in the New Encyclopaedia Britannica [130]. In [120]
we employed several models to predict cluster radioactivities: theory of
fragmentation and the asymmetric two center shell model; an a-decay like theory;
the numerical superasymmetric fission (NuSAF) model, and the ASAF model
[38, 85, 84, 104].

We use the experimental masses. The latest compilation for 2,931 masses of
nuclei measured or determined from systematics was published in 2003 [2].

In a systematic search for new nuclear decay modes we calculated with the
ASAF model the half-lives of all combinations (about 105) of pair of fragments
Ae Ze;

Ad Zd with 2 \ Zd B 28 for every parent nucleus AZ. An example of the time
spectra obtained for different clusters emitted from the parent nuclei 222,223Ra and
232U are given in Fig. 1.8 versus the neutron and proton numbers of the light
fragment. The shortest half-lives correspond to a-decay and 14C, or 24Ne radio-
activity. Comprehensive tables have been published (see [110] and the references
therein). The chart of cluster emitters from Fig. 1.9 is obtained by associating to
each emitter only the most probable emitted cluster. By selecting the measurable
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Fig. 1.8 Decimal logarithm of the half-lives for cluster radioactivities of two Ra isotopes and of
232U versus the number of neutrons and protons of the emitted cluster. The minus sign allows to
view the strong decay modes as higher bars in this lego plot. The shortest half-lives correspond to
a-decay and to 14C for Ra isotopes, and to a-decay and to 24Ne radioactivity for 232U
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half-lives shorter than 1032 s and branching ratios with respect to a-decay
b� 10�17 we obtain three islands for cluster radioactivity: above 100Sn, above
N = 82, and the main island with daughter nuclei in the vicinity of 208Pb. The last
one is given in Fig. 1.10. In 1990, when we submitted the comprehensive
tables [110] to be published, there were very few measured masses in the super-
heavy region of nuclei. Consequently we used different calculated masses to
determine the Q-values and the corresponding half-lives. As can be seen from the
tables, usually the most probable cluster emitted in this region could be a light one
as 8Be and 12C or a heavy Ni isotope. Even with a reasonable low half-life of
1010 - 1014 s there is no real chance to measure cluster radioactivity of supe-
rheavies since the main decay mode is a-decay and the total number of synthesized
nuclei is of the order of few units.

1.4.3 Experimental Confirmations

The main quantities experimentally determined are the partial halflife, T, and the
kinetic energy of the emitted cluster Ek = QAd/A. This equation is a direct con-
sequence of the ‘‘cold’’ character of this decay mode—the total kinetic energy of
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Fig. 1.9 Chart of cluster emitters with half-lives up to 10100 s
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Fig. 1.10 Chart of cluster
emitters heavier than 208Pb
with measurable half-lives up
to 1032 s and branching ratios
relative to a-decay larger than
10-17
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the two fragments practically exhausts the released energy Q, which is shared
between the two fragments. The experimental techniques are presented elsewhere
[81]. Several experiments have been performed with radioactive sources which are
members of one of the three natural radioactive families (see Fig. 1.11).

Our earlier predictions, and those given in 1986, after taking properly into
account the even–odd effects, are compared in Fig. 1.12 with the experimental
data available until now in an island of trans-francium parent nuclei, where the
daughter nucleus is the doubly magic 208Pb or some of its neighbours.

Besides the usual experiment with one cluster emitted by a given parent
nucleus, there are results showing two different clusters, e.g. both Ne + Mg from
234U, Mg + Si from 238Pu, and F + Ne from 231Pa. The measured half-lives are
represented by points, and our predictions by lines. Only upper limits have been
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Fig. 1.11 The natural radioactive families. There are several sequences of a and b- disinte-
grations ending up with a stable nucleus. Heavy cluster radioactivities with 28Mg, 24Ne, 14C, 20O,
25Ne, as emitted cluster allow to reach a stable nucleus, like 206-208Pb or 209Bi in one decay. When
the daughter is a short-lived nucleus (209,210Pb, 207Tl or 206Hg) the cluster decay is followed by
one or two b--decays
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determined for some of the points (e.g. for 28Mg emission from 235U, 30Mg decay
of 237Np, and 34Si decays of 240Pu and 241Am).

The measured half-lives are in good agreement with the ASAF model predic-
tions. The strong shell effect of the doubly magic daughter 208Pb, shortening the
half-lives, is evident. Except for the 28Mg radioactivity of 236U, were none of the
proton and neutron numbers of the fragments are magic, in all other 27 successful
experiments there are one, two, or three magic numbers involved.

We observed [107] that still this property was not fully exploited so that we
suggested a whole list of experiments that could be successfully performed
in the future: 220,222,223Fr, 224Ac, and 225Th as 14C emitters; 229Th for 20O radio-
activity; 229Pa for 22Ne decay mode; 230,232Pa, 231U, and 233Np for 24Ne
radioactivity; 234Pu for 26Mg decay mode; 234,235Np and 235,237Pu as 28Mg emit-
ters; 238,239Am and 239-241Cm for 32Si radioactivity, and 33Si decay of 241Cm. One
of the candidates was 223Ac emitting 14C, and in 2007 it was indeed reported [41].

The attempts to detect 12C radioactivity of 114Ba, which is proton-rich and far
from stability, have not been successful [40]. Nevertheless, the a-decay could be
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Fig. 1.12 Systematics of experimentally determined half-lives (points) and lower limits of
cluster radioactivities compared to the ASAF predictions (lines). Heavy lines correspond to a
daughter with magic number of protons, Zd = 82. Two decay modes are not presented: 23F of
231Pa with log10 TexpðsÞ ¼ 26:02 and 26Ne of 234U with log10 TexpðsÞ ¼ 25:92

40 D. N. Poenaru and W. Greiner



observed [60, 68]: Qa = 3, 540 ± 40 keV and log1 0TaðsÞ ¼ 1:68 can be
obtained from the total half-life of 0.43-0.15

+0.30 s due to b-decay and a branching ratio
ba = 0.9 ± 0.3%.

In conclusion the ASAF model predictions have been confirmed. The magicity
of the daughter 208Pb was not fully exploited so that new experimental searches
can, hopefully, be successfully performed.

1.4.4 Unified Approach of Cold Fission, Cluster Decay
and a-Decay

In the usual fission process a fraction of the released energy (20–40 MeV from
about 250 MeV) is spent to deform and excite the fragments. They reach the final
gs by neutron evaporation and c-ray emission. Only the remaining part of the
Q-value gives the total kinetic energy (TKE) of the fragments. Another process,
called cold fission [125], in which the TKE practically exhausts the Q value (no
excitation energy and compact shapes at the scission point), has been experi-
mentally observed in two regions of nuclei: U, Np, Pu isotopes, as well as for Fm,
Md, No and other trans-fermium nuclei. While the new mechanism is very rare in
the first group of nuclei, it is rather strong into the second one, giving rise to the
bimodal character [53] of the fission phenomena for some trans-fermium nuclei.

The unified approach of the three groups of decay modes (cold fission, cluster
radioactivities and a-decay) within the ASAF model is best illustrated by the
example of 234U nucleus [96] for which all these processes have been measured.
Also in the region of superheavy nuclei the a-decay half-lives can be successfully
calculated using the ASAF-model, the universal curve (see below), and a semi-
empirical formula, taking into account the shell effects [108, 109].

The theory was extended to cold ternary [85] and to multicluster fission
including quaternary (two-particle accompanied) fission [101]. In that paper we
stressed the expected enhanced yield of two alpha accompanied fission compared
to other combinations of two light particles; it was indeed experimentally con-
firmed [33, 34].

Also we have studied many other cold- and bimodal fission processes viewed as
cluster decays. For instance, since 1986 we payed particular attention to the cold
fission of 264Fm. According to our calculations, performed within the ASAF
model, the cold fission mechanism could be the main decay mode of this neutron-
rich nucleus, which has not been produced until now. It also should give the most
pronounced symmetrical distribution of fission fragments [89], owing to the
doubly magic character of 132Sn fragments. The half-life of 5.7 ls for a ‘‘new
fission path’’ with compact shapes calculated by Möller and Nix in 1994 is not
very far from our log10 TðsÞ ¼ �5:6. It would be very interesting to synthesize the
neutron-rich 264Fm in the near future. For alpha-decay, we estimate the following
half-lives: log10 TðsÞ ¼ 10:77, 11.00, 12.49, 12.67, 12.86, 13.75, and 14.32, which
correspond to Qa =5.905, 5.865, 5.615, 5.585, 5.555, 5.415, and 5.330 MeV,
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obtained by taking the masses of the parent 264Fm and of the daughter 260Cf, from
the mass tables calculated by various authors. The cold fission process should be
several orders of magnitude stronger than the a-decay.

1.5 Universal Curves

We developed a new method to estimate the preformation probability, S, as a
penetrability through the internal part of the barrier within a fission theory and
derived a universal curve [95] which can be used to estimate the half-lives against
any kind of heavy particle radioactivity or a-decay including superheavy [108,
109] emitters.

1.5.1 Preformation Probability in a Fission Model

The (measurable) decay constant k ¼ ln2=T , characterising the well known
exponential law e-kt (variation in time of the number of parent nuclei) can be
expressed in both alpha-like [4, 5] or fission-like theories, as a product of three
(model dependent) quantities

k ¼ mSPs ð1:126Þ

where m is the frequency of assaults on the barrier per second, S is the preformation
probability of the cluster at the nuclear surface, strongly dependent on the nuclear
structure, and Ps is the quantum penetrability of the external potential barrier
(Fig. 1.13).

Not every quantity appearing in the above equation plays an important role;
usually the penetrability dominates the half-life variation with A. The frequency m
remains practically constant. The preformation differs from one decay mode to
another one but it is not changed very much for a given radioactivity, while the
general trend of penetrability follows closely that of the half-life. This means that

Ri Rt Rb R

EFig. 1.13 A schematic
example of potential barrier
showing the internal part
(overlapping fragments) form
the initial, Ri, to the touching
point separation distance, Rt,
and the external part (sepa-
rated fragments) from Rt to
the turning point Rb
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for cluster radioactivity and a-decay as well, the external part of the barrier,
essentially of Coulomb nature, is much wider than the internal part. Consequently,
both fission-like and a-like models, which take into consideration the external part
of the barrier in the same manner, can provide a successful explanation for the
measured half-lives.

In a model derived from a many-body approach of a-decay, S is expressed as an
overlap integral of the wave functions of the three partners (parent and two
fragments). According to our new method, developed in 1990, the preformation
probability can be calculated within a fission model as a penetrability of the
internal part of the barrier,

S ¼ expð�KovÞ; Kov ¼
2
�h

Z

Rt

Ra

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2BðRÞEðRÞ
p

dR ð1:127Þ

where Ra is the internal turning point (E(Ra) = 0), Rt = R1 + R2 is the separation
distance of two fragments at the touching point configuration, B(R) is the nuclear
inertia, and E(R) is the deformation energy from which the Q-value was
subtracted.

1.5.2 Universal Law

In a first approximation, one may assume the following linear dependence for the
preformation probability in the range of emitted clusters already measured :

log S ¼ ðAe � 1Þ
3

log Sa ð1:128Þ

where the preformation probability of the a particle Sa may be determined by
fitting with experimental data.

On this basis we have found a single universal curve log T ¼ f ðlog PsÞ, for each
kind of cluster radioactivity of even–even parent nuclei. This has been done by
making the further assumption that the frequency m is independent of the emitted
cluster and the daughter nucleus mðAe; Ze;Ad; ZdÞ ¼ constant. From a fit of
experimental data we got [95] Sa = 0.0160694 and m = 1022.01 s-1, leading to

log T ¼ � log Ps � 22:169þ 0:598ðAe � 1Þ ð1:129Þ

This equation represents a straight line for a given Ae, with a slope equal to unity.
The vertical distance between two universal curves corresponding to Ae1 and Ae2 is
0.598(Ae2 - Ae1). For any combination of fragments AeZe, AdZd one can calculate
easily

� log Ps ¼ 0:22873ðlAZdZeRbÞ1=2
arccos

ffiffi

r
p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rð1� rÞ
p

h i

ð1:130Þ
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where r = Rt/Rb, Rt = 1.2249(Ad
1/3 + Ae

1/3), Rb = 1.43998ZdZe/Q, and lA =

AdAe/A is the reduced mass number. The up to now even-even half-life measure-
ments are well reproduced (within a ratio 3.86, or rms = 0.587 orders of magnitude).

As far back as in 1911, Geiger and Nuttal [26] have found a simple dependence
of the a-decay partial half-life on the a-particle range in air. Nowadays, very often
a diagram of log T versus Q-1/2 (see the bottom of Fig. 1.14) for a emission or
cluster radioactivity is called Geiger–Nuttal plot. In this kind of systematics the
experimental or calculated points are considerably scattered.

1.6 Fine Structure

The superconducting spectrometer SOLENO, at I. P. N. Orsay has been
employed since 1984 to detect and identify the 14C clusters spontaneously
emitted from 222, 223, 224, 226Ra parent nuclei. Moreover, its good energy
resolution has been exploited in 1989 to discover [12] a ‘‘fine structure’’ in the
kinetic energy spectrum of 14C emitted by 223Ra. Cluster emission leading to
excited states of the final fragments have been considered for the first time in
1986 by Martin Greiner and Werner Scheid [36]. These important predictions
should still be experimentally verified in detail.

When the fine structure of 14C radioactivity of 223Ra has been discovered it was
shown that the transition toward the first excited state of the daughter nucleus is
stronger than that to the gs. In other words, like in spontaneous fission of odd-mass
nuclei, or in fine structure of a-decay, one has a hindered and a favoured transition,
respectively.
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The physical explanation relies on the single-particle spectra of neutrons or/and
protons. If the uncoupled nucleon is left in the same state both in parent and heavy
fragment, the transition is favoured. Otherwise the difference in structure leads to a
large hindrance H = Texp/Te-e, where Texp is the measured partial half-life for a
given transition, and Te-e is the corresponding quantity for a hypothetical even–
even equivalent, estimated either from a systematics (log T versus Q-1/2 for
example) or from a model. A transition is favoured if H ’ 1, and it is hindered if
H [ 5.

Unlike in a-decay, where the initial and final states of the parent and daughter
are not so far one from the other, in cluster radioactivities of odd-mass nuclides,
one has a unique possibility to study a transition (see Fig. 1.11) from a well
deformed parent nucleus with complex configuration mixing, to a spherical
nucleus with a rather pure shell model wave function. One can get direct spec-
troscopic information on spherical components of deformed states. The most
accurate experiment has been performed by Hourany et al. [52] with SOLENO
using high quality 223Ra sources implanted at ISOLDE CERN. The interpretation
given by Sheline and Ragnarsson, according to which the main spherical com-
ponent of the deformed parent wave function has a i11/2 character, has been
confirmed. A transition with an excited state of 14C predicted [36] in 1986 was not
yet observed. This is, indeed, a really novel process and should be experimentally
addressed!

1.7 Ternary and Multicluster Fission

From time to time (at best once per about 1,000 fision events) a spontaneous (or
induced) fission of a nucleus (A,Z) leads to three fragments, usually one light
particle (A1,Z1) (which is frequently 4He or some Be, C, or O isotope) and two
fragments (A2,Z2), (A3,Z3) of sizes not very different from those resulting from
binary fission. Even less probable is a process in which the three fragments are
almost identical. Since 1946, when ‘‘long-range’’ a particles accompanying fission
were observed for the first time, progress made in the field of ternary fission has
been reviewed many times (for example Refs [75, 135]).

A renewed interest in such phenomena is motivated on the one hand by the
successful synthesis of the heaviest nuclei [47, 73, 78–80] and study of their decay
properties, and on the other hand by the new measurements of spontaneous cold
fission of 252Cf [42] and of 242Pu using large c-ray detector arrays.

We also consider the Q3 value for fragmentation into three identical or nearly
identical fragments. In spite of having quite large Q values, however, this ‘‘true
ternary fission’’ is a rather weak process; the strongest phenomenon remains
a-particle-accompanied fission [75].

In 1958 it was theoretically shown on the basis of the liquid drop model [76]
that for increasingly heavier nuclei, fission into three, then four and even five
fragments becomes energetically more favourable than binary fission. We can
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take, as an approximation of the Q value, the energy difference between the sum of
Coulomb and surface energies for the parent (superscript 0) and n identical fission
fragments (superscript i)

Qn ’ ðE0
C þ E0

s Þ �
X

n

i¼1

ðEi
C þ Ei

sÞ ð1:131Þ

where n = 2 for binary fission, n = 3 for ternary fission, etc. A linear dependence
of Qn on the (binary) fissility parameter, X = E0

C/(2E0
s), of the form

Qn=E0
s ’ 1� n1=3 þ 2Xð1� n�2=3Þ ð1:132Þ

has been obtained by Swiatecki. As the fissility parameter increases, fission into
more than two equal fragments becomes energetically favored.

Calculated Q values for the cold splitting of even–even nuclei into three par-
ticles of equal size, as well as for various fission processes accompanied by light-
particle emission are listed for nuclides with Z = 90–116 [100]. The released
energy gives a good indication about the competition between different emitted
particles.

We predicted the multicluster fission [98, 101]. In particular we have stressed
that two-a accompanied fission (a type of quaternary fission) has a good chance to
be experimentally observed, as the Q-value and potential barrier is similar to 8Be-
accompanied fission. It was indeed discovered by Goennenwein et al. [33, 34].

Pyatkov et al. in JINR Dubna [113] are pursuing experiments on true ternary
fission [86] of 252Cf which they interprets as a collinear cluster tripartition.

1.8 Stability of Metallic Atomic Clusters

The similarity between atomic nuclei and metallic atomic clusters is based on the
fact that both systems consists of fermions moving freely in a confined space.
The electronic shell structure in monovalent free-electron metal clusters [62]
has shown a strong analogy with the single-particle states of atomic nuclei, despite
gross differences in the physical forces binding the two systems. Moreover,
the delocalized electrons of a metallic cluster may be considered to form a Fermi
liquid like the atomic nucleus. Consequently several theories and computation
techniques from nuclear physics can be adapted to atomic clusters [122].

We used the LDM and the macroscopic–microscopic method to investigate
neutral spheroidal [32] and hemispheroidal atomic clusters deposited on a surface
[90, 91, 93]. Such shapes were observed in experiments using atomic force
microscope [7, 14, 82, 124]. Analytical relationships for the deformation-depen-
dent LDM energies of oblate and prolate hemispheroidal atomic clusters have been
obtained. A superdeformed prolate hemispheroid was found to be the most stable
shape within the LDM. It is also the shape with maximum degeneracy of quantum
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states of the hemispheroidal harmonic oscillator used to compute the shell and
pairing corrections.

We developed [92] a new shell model (quantum harmonic semi-spheroidal
oscillator) with striking properties of symmetry, which exhibits the maximum
degeneracy at a super-deformed prolate deformation (ratio of semiaxes 1/2). Also
we found the maximum LDM stability at the same deformation [90, 91]. By using
scanning probe microscopy (SPM) or atomic force microscopy (AFM) it is pos-
sible to observe how the shapes of such clusters are distorted after remaining on
the surface. The final shape of some of them [7, 14, 124] may be approximated in
first order by a hemispheroid. Consequently we developed a shell model accepting
a hemispheroidal shape as an equipotential surface of the chosen Hamiltonian.
Another argument relies on the 2D measurement [16] of the strong magicity at the
number equal to 6, which can be approximated as a limiting case of an extremely
large oblate deformation in our model. Also one has to consider the possibility to
solve the problem analytically within such an idealization. The advantage of an
analytical relationship is not only a very short computational time but also an
easier interpretation of the results.

When we compare the LDM PES with the shell and pairing corrections for
nuclei we always have the minimum energy of ELDM at a zero mass asymmetry
g = 0 but the minima of dE are usually obtained at different mass asymmetry
determined by the occurrence of magic numbers of nucleons. It was experimen-
tally proven that the most important yield in fission of charged metallic atomic
clusters is usually obtained when the light fragment is a singly charged trimer (the
analog of an a-particle with magic number of delocalized electrons ne = 2). Our
calculations for charged alkali clusters [89] are showing that both the ELDM and dE
energies are possessing local minima at the same mass asymmetry corresponding
to this ‘‘a-cluster’’.

1.8.1 Liquid Drop Model of a Neutral Metallic
Hemispheroidal Atomic Cluster

The surface equation of the hemispheroid from Fig. 1.15 with the symmetry z-axis
perpendicular on the surface plane, is given by

a

z

c

Fig. 1.15 Prolate hemisphe-
roidal shape (with semiaxes
a \ c)
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q2 ¼ ða=cÞ2ðc2 � z2Þ z� 0
0 z\0

	

ð1:133Þ

If c [ a one has a prolate shape; otherwise (c \ a) it is oblate. The volume of the
spherical cluster with the same number of atoms is V0

ol ¼ 4pa2cR3
0=3. When the

cluster is a hemisphere Vs
ol ¼ 2pa2cR3

s=3, hence Rs ¼ 21=3R0. The deformation
energy

E � Es0 ¼ Es0
s Bs

surf � 1
� �

þ Es0
c Bs

curv � 1
� �

ð1:134Þ

is for a hemisphere

Es0
s ¼ ð3=42=3ÞE0

s ; Es0
c ¼ E0

curv=41=3 ð1:135Þ
Surface and curvature deformation energies of an oblate (a [ c) hemispheroid

with eccentricity e2 = a2/c2 - 1 are given by

Bs
surf ¼

a

3
2aþ c

e
ln eþ a

c

� �h i

; Bs
curv ¼

c

2
þ a2

2ce
arctan e ð1:136Þ

When the hemispheroid is prolate, e2 = 1 - a2/c2 and

Bs
surf ¼

a

3
2aþ c

e
arcsin e

� �

; Bs
curv ¼

c

2
þ a2

4ce
ln

1þ e

1� e

�

�

�

�

�

�

�

�

ð1:137Þ

For the example of the Na56 cluster, shown in Fig. 1.16, one can see that the
minimum of the deformation energy is around the superdeformed prolate shape
with d = 0.65(c/a = 1.96), unlike for a spheroid (d = 0).

1.8.2 New Single-Particle Shell Model

The spheroidal harmonic oscillator has been used in various branches of Physics.
The famous single-particle Nilsson model [77] is very successful in Nuclear
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Physics. Its variants [17, 62, 116] are of particular interest for atomic clusters [19].
Major spherical-shells N = 2, 8, 20, 40, 58, 92 have been found [62] in the mass
spectra of sodium clusters of N atoms per cluster, and the Clemenger’s shell model
[17] was able to explain this sequence of spherical magic numbers.

We derived the analytical expressions for the energy levels of a hemispheroidal
harmonic oscillator and used it to study atomic clusters deposited on planar sur-
faces. It may be used as a reliable approximation of a realistic single-particle shell
model for small magic numbers, giving the input data for shell correction calcu-
lations [11, 17, 62, 66, 129, 138–140].

In all studies using an harmonic oscillator published since 1955, the maximum
degeneracy of the quantum states was reached for a spherical shape, explaining the
high stability of the doubly magic nuclei or of the metal clusters with spherical
closed shells. To our surprise the maximum stability of the hemispheroidal
quantum harmonic oscillator occurs at a superdeformed prolate shape (semiaxes
ratio a/c = 1/2), a shape which is also the most stable one within the LDM [91].

We begin with the Hamiltonian containing the potential of (31) and neglect for
the moment an additional term proportional to ðl2 � hl2inÞ. In a second step further
on we investigate its influence. We use dimensionless two semiaxes in units of the
radius of a hemisphere with the same volume, Rs ¼ 21=3R0 ¼ 21=3rsN1=3, where rs

is the Wigner-Seitz radius, 2.117 Å for Na [9, 139].
The surface equation was written in the previous subsection. We give q, z, a, c

in units of Rs instead of R0, so that again a2c = 1. The definition of ds is the same
as that of d in (32), but now a and c are expressed in terms of Rs instead of R0.

The potential along the symmetry axis, Vz(z), has a wall of an infinitely large
height at z = 0, and ranges only over positive values of z, implying opacity of the
surface:

Vz ¼
1 z� 0
MR2

s x
2
z z2=2 z [ 0

	

ð1:138Þ

In this case the wave functions should vanish at the origin, where the potential wall
is infinitely high, so that only negative parity Hermite polynomials (nz odd) should
be taken into consideration.

Equation (1.35) of the harmonic oscillator, in units of �hx0 is still valid, but one
should only allow the values of n and n? for which nz ¼ n� n? � 1 are odd
numbers.

The shell gap for an atomic cluster [17] is given by

�hx0ðNÞ ¼
13:72 eV Å

2

rsRs
1þ t

rsN1=3

� ��2

ð1:139Þ

Since we consider solely monovalent elements, N in this equation is the number of
atoms, and t denotes the electronic spillout for the neutral cluster. The striking
result is that the maximum degeneracy is obtained at a superdeformed prolate
shape (ds = 2/3). The magic numbers are those of the spherical shape (d = 0) of
the spheroidal harmonic oscillator: 2, 8, 20, 40, 70, 112, 168, ...
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By including a term proportional to ðl2 � hl2inÞ in the Hamiltonian

Ĥ ¼ ��h2D
2M
þMx2

0R2
0

2
q2

a2
þ z2

c2

� �

� �hx0Uðl2 � hl2inÞ ð1:140Þ

with the dimensionless quantity U = 0.04 and hl2in ¼ nðnþ 3Þ=2 like in Ref. [17]
for the spheroidal oscillator, we obtain again an analytical relationship for the
energy levels:

en ¼
En

�hx0
¼ n? þ 1

a
þ nz þ 1=2

c
� Um2

4a4
þ Unðnþ 3Þ

2
ð1:141Þ

The terms proportional to U are both diagonal; the first one - Um2/(4a4) repre-

senting the contribution of the l̂2
z part of the angular momentum operator. The

possible nondiagonal terms coming from ð̂lþ l̂� þ l̂� l̂þÞ=2 are not present since their
contribution vanishes due to the selection rules excluding even values of the
quantum number nz. As mentioned above, the quantum number m ¼ ðn? � 2iÞwith
i = 0, 1, ..., so that for n? ¼ 0 one has m = 0—the energy level is not changed.
When n? ¼ 1, m ¼ �1 the energy is changed but the degeneracy of 4 remains. For
n? ¼ 2, m = ± 2, 0 one has a split leading to one level with m = 0 and the
degeneracy 2, and another level with m = ± 2 and the degeneracy 4, etc.

The level scheme which was obtained in this way is different from the scheme
plotted in Fig. 1.17. Nevertheless, for the lower levels (say up to 10 closed shells),
the sequence of the magic numbers with maximum degeneracy, taking place at the
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superdeformed prolate shape d = 2/3, remain the same: N = 2, 8, 20, 40, 70, 112,
168. Another remarkable fact is that for very large oblate deformations, leading to
‘‘pan-cake’’ shapes approximating a 2D situation, one of the magic numbers is 6,
in agreement with the experiments [16].

1.8.3 Macroscopic–microscopic deformation energy

The gs and isomeric state deformation of clusters of various sizes depends on the
interplay between the minima of LDM and shell correction energies. The defor-
mation energy in the framework of the macroscopic–microscopic method is given
by

Edef ¼ ELDM þ dE ¼ ELDM þ dU þ dP ð1:142Þ

Compared to the shell correction, the pairing correction is out of phase and
smaller, as may be seen at the bottom of Fig. 1.18 for the example of the hemi-
spheroidal Na148 cluster. As a result of taking into account the pairing corrections,
dP, the total shell and pairing corrections, dE = dU + dP, are smoother as com-
pared to dU. The gs deformation of the Na148 cluster, dGS = 0.47, is given by the
minimum value of total deformation energy; the shell and pairing correction
contribution shifted this deformation from that of the liquid drop model, d = 0.64,
to the smaller value because not far from d = 0.64, at d = 0.67 the shell cor-
rection reaches its maximum. The first isomeric state of this cluster has a
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hyperdeformed prolate shape, dis1 = 0.93, while the second one is prolate with a
low deformation parameter, dis2 = 0.20.

We expect that the present results will get further support from the experiments
in which the ultrasensitive microscopy (e.g. SPM (scanning probe microscopy) or
AFM (atomic force microscopy)) is used. In particular for a large range of atomic
numbers the increased stability of the prolate superdeformed hemispheroidal
shapes may be seen for deposited clusters on planar surfaces with high opacity.
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Chapter 2
Coexistence of Cluster States
and Mean-Field-Type States

Hisashi Horiuchi

2.1 Introduction

The saturation property of binding energy and density of the nucleus means that
nucleons are easy to assemble and disassemble. If we regard nuclear clustering as
being the physics of dynamical assembling and disassembling of nucleons,
clustering is a basic nuclear dynamics and appears abundantly in many problems
of nuclear structure and reactions [1, 2]. We can say that the formation of clusters
is a fundamental aspect of nuclear many body dynamics together with the for-
mation of mean field.

The omnipresence of cluster dynamics in nuclei has long been reported in
various phenomena as has been discussed in many conferences and many review
papers [3–8]. One of the most impressive manifestations of the omnipresence of
clustering has recently been obtained through the studies of neutron-rich unstable
nuclei. We now know that neutron-rich nuclei present us with novel types of
cluster structure which are composed of clusters and many valence neutrons.
Participation of excess neutrons as basic constituents of cluster structure gives rise
to quite different features from the cluster structure in stable nuclei.

The coexistence of two structures, the cluster structure and the mean-field-type
structure, which are very different to each other, is a unique feature of nuclear
system. The coexistence implies that the nuclear many-body physics contains the
physics of the structure change between two very distinct structures. We need to
clarify what is the relation between two different structures and how one type of
structure changes into the other type of structure.
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The purpose of this lecture is to discuss two fundamental problems of nuclear
cluster physics: (1) how are the coexistence features of cluster states and
mean-field-type states in nuclei?, (2) how does nuclear structure change from
shell-model-like ground state to cluster states? Our discussion in this lecture is,
however, restricted only to stable nuclei. Namely, we do not discuss the
dynamics due to the excess neutrons in this lecture.

In this lecture I first review some of the present understandings of the first
problem, which is the main purpose of this lecture. This review is made in two
parts. In the first part I discuss the relation of cluster structure and deformed mean-
field-type structure in p-shell and light sd-shell nuclei. In the second part I discuss
the coexistence of cluster structure and superdeformation in sd-shell and light
pf-shell nuclei. Specifically, in the first part I discuss the coexistence features of
mean-field-type structure and typical cluster structures in 8Be, 12C, 16O, and 20Ne.
In the second part, I discuss the coexistence features in 44Ti and 32S. The inves-
tigation in 32S suggests strong interrelation of 16O + 16O molecular states and
superdeformed states. For the discussions of 20Ne, 44Ti and 32S systems, I utilize
the results of the detailed studies with antisymmetrized molecular dynamics
(AMD).

I then discuss the second problem, the mechanism of the structure-change
between cluster structure and mean-field-type structure. The discussion is made on
the basis of the studies of the above two subjects about the coexistence features.
I argue that the structure change and the resulting coexistence come from the dual
nature of nuclear wave functions which have both characters of cluster wave
function and mean-field-type wave function. This argument is shown to be sup-
ported by the analyses of the electric monopole (E0) transitions between cluster
states and the ground state which are reported recently in the cases of 16O and 12C.

2.2 AMD Theory

Since in this lecture we often use the results of AMD calculations, we give here a
brief explanation of the AMD model.

2.2.1 AMD Wave Function

The basic building block of the AMD wave function is a Slater determinant

Uint ¼
1
ffiffiffiffiffi

A!
p det u1;u2; � � �;uAf g; ð2:1Þ

uiðrÞ ¼ /iðrÞvini; /iðrÞ / exp �
X

r¼x;y;z

mr rr � Zirð Þ2
( )

; ð2:2Þ
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vi ¼ aiv" þ biv#; jaij2 þ jbij2 ¼ 1; ni ¼ proton or neutron: ð2:3Þ

The parameter {Zir} is a complex vector whose real part Re(Zir) gives the spatial
position of the Gaussian wave packet /i(r) while imaginary part Im(Zir)gives the
momentum of the packet. The imaginary part of Zir is important to take into account
of the effect of the two-nucleon spin-orbit interaction. The size parameter mr can take
different values for different spatial directions r = x, y, z but takes common value
for all the nucleons usually. The Slater determinant Uint remains unchanged for any
linear transformation of single nucleon wave functions, fu1;u2; � � � ;uAg !
fu01;u02; � � � ;u0Ag with u0i ¼

PA
j¼1 Tijuj; namely UintðfuigÞ ¼ detfTgUintðfu0igÞ.

Therefore, for example, we can replace u1 and u2 by ðu1 þ u2Þ and ðu1 � u2Þ by
keeping Uint unchanged. If two wave packets u1 and u2 are located at almost the
same spatial positions ReðZ1rÞ � ReðZ2rÞ with zero momenta Im(Z1r) =

Im(Z2r) = 0, ðu1 þ u2Þ and ðu1 � u2Þ are almost equal to the 0s and 0p wave
functions, respectively, around the spatial position ReðZ1rÞ � ReðZ2rÞ. From this
argument, we know that the AMD Slater determinant can be almost equal to various
kinds of shell model wave functions.

The wave function Uint is always projected to a good-parity wave function U�;

U� ¼ ð1� PÞUint: ð2:4Þ

The parameters of U�; mr; Zir; ai; and bi, are determined by energy variation under
the constraint of the given value of the quadrupole deformation parameter b0, and
such wave function U� is denoted as U�ðb0Þ. From U�ðb0Þ, we project out good-
spin wave functions which are denoted as UJ�

MK ;

UJ�
MKðb0Þ ¼ PJ

MKU�ðb0Þ

¼
Z

2p

0

da
Z

p

0

db sin b
Z

2p

0

dcðDJ
MKða; b; cÞÞ

�

� expð�iaJzÞ expð�ibJyÞ expð�icJzÞU�ðb0Þ;

ð2:5Þ

where DJ
MKða; b; cÞ is Wigner’s D function given as

DJ
MKða; b; cÞ ¼ hJMj expð�iaJzÞ expð�ibJyÞ expð�icJzÞjJKi: ð2:6Þ

The AMD wave function UJ�
n is obtained by superposing UJ�

MKðb0Þ with various
values of b0,

UJ�
n ¼ cnU

J�
MKðb0Þ þ c0nU

J�
MKðb

0
0Þ þ � � � : ð2:7Þ

The superposition coefficients, cn; c0n; and so on, are determined by energy
variation.
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2.2.2 Hartree–Fock-Type Orbits

From the intrinsic wave function of AMD Uint; we can extract the single nucleon
orbits of Hartree–Fock type by which we can study mean-field character of the
AMD wave function [9, 10]. First we orthonormalize the single nucleon wave
packets ui;

ûa ¼
1
ffiffiffiffiffi

la
p

X

A

j¼1

djauj;
X

A

j¼1

huijujidja ¼ ladia: ð2:8Þ

Next we construct the Hartree–Fock single nucleon Hamiltonian h by this ort-
honormalized basis, which takes the following form when the inter-nucleon
interaction consists of only two-body force v̂

hab ¼ hûa ĵtjûbi þ
X

c

hûaûcjv̂jûbûc � ûcûbi: ð2:9Þ

The single nucleon orbit wp and its single nucleon energy ep of Hartree–Fock type
are obtained by diagonalizing hab as

wp ¼
X

a

gapûa;
X

b

habgbp ¼ epgap: ð2:10Þ

Since the Hartree–Fock type orbits fw1;w2; � � � ;wAg are obtained by linear
transformation of fu1;u2; � � � ;uAg; we have

1
ffiffiffiffiffi

A!
p det w1;w2; � � � ;wAf g / 1

ffiffiffiffiffi

A!
p det u1;u2; � � � ;uAf g ¼ Uint: ð2:11Þ

2.3 Coexistence of Cluster Structure and Deformed
Mean-Field-Type Structure in p-Shell
and Light sd-Shell Nuclei

Coexistence features of cluster states and mean-field-type states have been studied
in many nuclei. In this lecture I review representative examples of such studies in
two parts. In this section I discuss the first part which is for the relation of cluster
structure and deformed mean-field-type structure in p-shell and light sd-shell
nuclei specifically in 8Be, 12C, 16O, and 20Ne. In the next section I will discuss the
second part which is for the coexistence of cluster structure and superdeformation
in sd-shell and light pf-shell nuclei, specifically in 44Ti and 32S. In the cases of
discussions of 20Ne, 44Ti, and 32S, I utilize the results of the detailed AMD cal-
culations of the coexistence features.
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2.3.1 8Be Case

2.3.1.1 Brink Wave Function and its Telation to Shell-Model Wave Function

The a + a structure of 8Be has long been investigated by many authors as the most
fundamental two-cluster structure. The intrinsic wave function of the Brimk model
[11] for 8Be with a + a structure is given as

WðdÞ ¼ n0ðdÞA w a1;
d

2
ez

� �

w a2;�
d

2
ez

� �� �

¼ n0ðdÞ
ffiffiffiffiffiffiffiffi

4!4!
p det g r1 �

d

2
ez; m

� �

v"np � � � � � g r4 �
d

2
ez; m

� �

v#nn

�

�g r5 þ
d

2
ez; m

� �

v"np � � � � � g r8 þ
d

2
ez; m

� �

v#nn

�

;

ð2:12Þ

wðak; aÞ ¼
1
ffiffiffiffi

4!
p det g r � a; mð Þð Þ4

n o

r ¼ rk0þ1� rk0þ4ð Þ

¼ 1
ffiffiffiffi

4!
p det gðrk0þ1 � a; mÞv"np � � � � � g rk0þ4 � a; mð Þv#nn

� �

;

k0 ¼ 4ðk � 1Þf g

ð2:13Þ

gðr; cÞ ¼ 2c
p

� �3=4

expð�cr2Þ; ð2:14Þ

where A is the antisymmetrizing operator of nucleons belonging to different a

clusters, n0(d) is the normalization constant and ez is a unit vector along the
z-direction. n0(d) is calculated by the relation

1 ¼ hWðdÞjWðdÞi

¼ n0ðdÞ
ffiffiffiffiffiffiffiffi

4!4!
p
� �2

8! 1� hgðr � d

2
ez; mÞjgðr þ

d

2
ez; mÞi2

� �4

;
ð2:15Þ

which gives us

n0ðdÞ ¼
ffiffiffiffiffiffiffiffi

4!4!

8!

r

1
m2d4 þ Oðd6Þ : ð2:16Þ

In the limit of zero inter-a distance d;WðdÞ becomes equivalent to the intrinsic
wave function of the SU(3) shell model with (k, l) = (4, 0);

lim
d!0

WðdÞ ¼ 1
ffiffiffiffi

8!
p detfð0; 0; 0Þ4ð0; 0; 1Þ4g; ð2:17Þ
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where (nx, ny, nz) stands for the single particle wave function of the harmonic
oscillator model

ðnx; ny; nzÞ ¼ unx
ðx; mÞuny

ðy; mÞunz
ðz; mÞ; ð2:18Þ

unðx; mÞ ¼ one dimensinal harmonic oscillator function with

n quanta and size parameter m ¼ mx=2�h:
ð2:19Þ

The relation of Eq. (2.17) can be proved by using the expansion of g(r + (d/2)ez, m)
around g(r - (d/2)ez, m). We introduce the notation (nx, ny, nz)0 and (nx, ny, nz)00 to
express the Cartesian harmonic oscillator function (nx, ny, nz) around the spatial
position (d/2)ez and - (d/2)ez, respectively. Then we have g(r + (d/2)ez, m) =

(0, 0, 0)00 and g(r - (d/2)ez, m) = (0, 0, 0)0. We can easily prove the relation

ð0; 0; 0Þ00 ¼ exp �1
2
md2

� �

ð0; 0; 0Þ0 �
ffiffiffi

m
p

dð0; 0; 1Þ0 þ Oðd2Þ
� �

; ð2:20Þ

where O(d2) expresses the terms of d2 and higher order terms of d than d2. The
insertion of this relation together with Eq. (2.16) into WðdÞ gives us the proof of
Eq. (2.17).

2.3.1.2 Bayman–Bohr Theorem

A useful way to relate the Brink wave function WðdÞ to the shell-model wave
function is given by expressing WðdÞ in terms of internal a-cluster wave function /
(a) and inter-cluster relative wave function Cðraa; dÞ;

WðdÞ ¼ n0ðdÞA wða1;
d

2
ezÞw a2;�

d

2
ez

� �� �

¼ n0ðdÞA Cðraa; dÞ/ða1Þ/ða2Þf ggðXG; 8mÞ;
ð2:21Þ

Cðraa; dÞ ¼ gðraa � dez; 2mÞ ¼ 4m
p

� �3=4

expð�2mðraa � dezÞ2Þ; ð2:22Þ

gðXG; 8mÞ ¼ 16m
p

� �3=4

expð�8mðXGÞ2Þ; ð2:23Þ

raa ¼ X1 � X2; XG ¼
1
2
ðX1 þ X2Þ ¼

1
8

X

8

i¼1

ri; ð2:24Þ

X1 ¼
1
4

X

4

i¼1

ri; X2 ¼
1
4

X

8

i¼5

ri: ð2:25Þ
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Here we used the relation

wðak; aÞ ¼
8m
p

� �3=4

expð�4mðXk � aÞ2Þ/ðakÞ: ð2:26Þ

The actual form of the inter-a relative wave function Cðraa; dÞ deviates from the
Gaussian wave packet due of the effect of the antisymmetrization. The effect of the
antisymmetrization is well reflected in the following relation,

A Xðnx;ny;nzÞðraa; 2mÞ/ða1Þ/ða2Þ
n o

¼ 0; for nx þ ny þ nz\4; ð2:27Þ

where Xðnx;ny;nzÞðr; cÞ stands for the Cartesian harmonic oscillator function defined
as Xðnx;ny;nzÞðr; cÞ ¼ unx

ðx; cÞuny
ðy; cÞunz

ðz; cÞ: It is to be noted that, for c = m,

Xðnx;ny;nzÞðr; cÞ is equal to (nx, ny, nz) defined before. Eq. (2.27) is easy to under-
stand. We first notice the following relation

NopA Xðnx;ny;nzÞðraa; 2mÞ/ða1Þ/ða2Þ
n o

Xð0;0;0ÞðXG; 8mÞ

¼ ðnx þ ny þ nzÞA Xðnx;ny;nzÞðraa; 2mÞ/ða1Þ/ða2Þ
n o

Xð0;0;0ÞðXG; 8mÞ;
ð2:28Þ

where Xð0;0;0ÞðXG; 8mÞ ¼ ð16m=pÞ3=4
expð�8mðXGÞ2Þ ¼ gðXG; 8mÞ and Nop stands for

the total number operator of harmonic oscillator quanta. Eq. (2.28) is verified to
hold by noting the following relation

ðNopÞr ¼
X

8

i¼1

ðNopðiÞÞr ¼ ðNopða1ÞÞr þ ðNopða2ÞÞr þ ðNopðraaÞÞr þ ðNopðXGÞÞr;

ð2:29Þ

ðNopða1ÞÞr ¼
X

4

i¼1

ðNopðiÞÞr � ðNopðX1ÞÞr; ¼
X

8

i¼5

ðNopðiÞÞr � ðNopðX2ÞÞr;

ð2:30Þ

ðNopðX1ÞÞr þ ðNopðX2ÞÞr ¼ ðNopðraaÞÞr þ ðNopðXGÞÞr ð2:31Þ

ðNopðiÞÞr¼NððriÞr;mÞ; ðNopðraaÞÞr¼NðraaÞr;2mÞ; ðNopðXGÞÞr¼NðXGÞr;8mÞ;

ðNopðXkÞÞr¼NððXkÞr;4mÞ X1¼
1
4

X

4

i¼1

ri; X2¼
1
4

X

8

i¼5

ri;

ð2:32Þ

Nðr; lÞ ¼ 1
�hx

��h2

2l
o

or

� �2

þlx2

2
r2

 !

� 3
2
; ð2:33Þ
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Nop¼
X

r¼x;y;z

ðNopÞr; NopðiÞ¼
X

r¼x;y;z

ðNopðiÞÞr; NopðraaÞ¼
X

r¼x;y;z

ðNopðraaÞÞr;

NopðXGÞ¼
X

r¼x;y;z

ðNopðXGÞÞr; NopðakÞ¼
X

r¼x;y;z

ðNopðakÞÞr:

ð2:34Þ

Since NopðaÞ/ðaÞ ¼ NopðXGÞXð0;0;0ÞðXG; 8mÞ ¼ 0, there holds Eq. (2.28). Now, the
shell model teaches us that the lowest number of the total oscillator quanta of 8Be

is 4, which is given by detfð0sÞ4ð0pÞ4g: Therefore we have

A Xðnx;ny;nzÞðraa; 2mÞ/ða1Þ/ða2Þ
n o

gðXG; 8mÞ ¼ 0; for nx þ ny þ nz\4; ð2:35Þ

from which there follows Eq. (2.27).
By using the expansion of C(raa, d) with the harmonic oscillator basis func-

tions, Cðraa; dÞ ¼ expð�md2Þ
P1

n¼0fð
ffiffiffiffiffi

2m
p

dÞn=
ffiffiffiffi

n!
p
gXð0;0;nÞðraa; 2mÞ; we obtain

WðdÞ ¼ n0ðdÞA Cðraa; dÞ/ða1Þ/ða2Þf ggðXG; 8mÞ

¼ n0ðdÞ expð�md2Þ ð
ffiffiffiffiffi

2m
p

dÞ4
ffiffiffiffi

4!
p A Xð0;0;4Þðraa; 2mÞ/ða1Þ/ða2Þ

� �

þ Oðd6Þ
( )

� gðXG; 8mÞ;
ð2:36Þ

where we used Eq. (2.27). From this relation we obtain

lim
d!0

WðdÞ ¼ C0A Xð0;0;4Þðraa; 2mÞ/ða1Þ/ða2Þ
� �

gðXG; 8mÞ; ð2:37Þ

where C0 ¼ 4
ffiffiffiffiffiffiffiffiffiffi

4!=8!
p

¼ 1=
ffiffiffiffiffiffi

7!!
p

: By combining this with Eq. (2.17) we obtain

1
ffiffiffiffi

8!
p detfð0; 0; 0Þ4ð0; 0; 1Þ4g

¼ C0A Xð0;0;4Þðraa; 2mÞ/ða1Þ/ða2Þ
� �

gðXG; 8mÞ:
ð2:38Þ

This relation is known as an example of the relations of Bayman–Bohr theorem
[12] which says that the SU(3) shell model wave function of the ground state is in
most cases equivalent to the cluster model wave function. Eq. (3.38) can be proved
more directly by noticing that both the left-side and right-side wave functions are
the eigenstates of (Nop)x, (Nop)y, and (Nop)z with eigenvalues 0, 0, 4, respectively.
Since it is evident that there is only one wave function of 8Be which is an
eigenstate of (Nop)x, (Nop)y, and (Nop)z with eigenvalues 0, 0, 4, respectively. the
right-side cluster wave function of Eq. (3.38) is necessarily equal to the left-side
wave function. By applying the angular momentum projection to Eq. (3.38), we
get the Bayman–Bohr theorem written in the form of good angular momentum
states,
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jð0sÞ4ð0pÞ4; ðk; lÞ ¼ ð4; 0ÞLMi
¼ C0A RN¼4;Lðraa; 2mÞYLMðr̂aaÞ/ða1Þ/ða2Þ

� �

gðXG; 8mÞ;
ð2:39Þ

where RN,L(r, c) stands for the radial harmonic oscillator function with the size
parameter c and with the number of oscillator quanta N namely with the number of
nodes n = (N - L)/2.

2.3.1.3 a–a Interaction and Spatial Localization of a Cluster

If the SU(3) shell model description is good for 8Be, it means that the inter-a
relative wave function in the intrinsic 8Be wave function is well descrived by the
harmonic oscillator function X(0,0,4)(raa, 2m). If the inter-a interaction is strongly
attractive, the inter-a relative wave function should express the most compact state
allowable by the Pauli principle and hence it is given by X(0,0,4)(raa, 2m). Therefore
whether the SU(3) shell model description is good or not for 8Be can be studied by
the investigation of the inter-a interaction. The microscopic study of the a–a
interaction has a long history [3–5, 13–17]. The essential feature of the a–a
interaction is described by the theory of the orthogonality condition model (OCM)
which is an approximation of the RGM (resonating group method) approach. The
RGM gives us the a–a relative wave function v(raa) as the solution of the integro-
differential equation

h/ða1Þ/ða2ÞjðH � EÞjA vðraaÞ/ða1Þ/ða2Þf gi ¼ 0; ð2:40Þ

H ¼
X

8

q¼1

Tq � TG þ
X

8

q\q0
V ð2Þq;q0 ; ð2:41Þ

where TG is the kinetic energy of the total center of mass. The OCM equation of
motion which is aimed at describing essential feature of the RGM equation of
motion is written as

K
��h2

2ð2mÞ
o

oraa

� �2

þVaaðraaÞ � ðE � 2EaÞ
 !

Kv̂ðraaÞ ¼ 0; ð2:42Þ

where Ea stands for the binding energy of a particle and K is the projection
operator given as

K ¼ 1�
X

nxþnyþnz\4

jXðnx;ny;nzÞðraa; 2mÞihXðnx;ny;nzÞðraa; 2mÞj

¼ 1�
X

N\4;L;M

jRN;Lðraa; 2mÞYLMðr̂aaÞihRN;Lðraa; 2mÞYLMðr̂aaÞj:
ð2:43Þ

The wave functions Xðnx;ny;nzÞðraa; 2mÞ with nx + ny + nz \ 4 and RN;Lðraa; 2mÞ
YLMðr̂aaÞ with N \ 4 are called the Pauli-forbidden states because they satisfy the
relation of Eq. (2.27) and
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A RN;Lðraa; 2mÞYLMðr̂aaÞ/ða1Þ/ða2Þ
� �

¼ 0; for N\4; ð2:44Þ

respectively. The operator K projects the relative wave function onto the functional
space orthogonal to the Pauli-forbidden states. The local potential Vaa(raa) is close
to the double folding potential and hence it is deep. Because of Eqs. (2.27) and
(2.44), K satisfies the relation, Af½KvðraaÞ	/ða1Þ/ða2Þg ¼AfvðraaÞ/ða1Þ/ða2Þg:
The wave function v̂ðraaÞ is related to v(raa) as

v̂ðraaÞ ¼
ffiffiffiffiffiffi

NK

p
vðraaÞ; ð2:45Þ

where NK is defined by

h/ða1Þ/ða2ÞjAfvðraaÞ/ða1Þ/ða2Þgi ¼ NK vðraaÞ: ð2:46Þ

NK and K satisfy the relations, KNK ¼ NKK ¼ NK ;K
ffiffiffiffiffiffi

NK
p

¼
ffiffiffiffiffiffi

NK
p

K ¼
ffiffiffiffiffiffi

NK
p

:

In the a–a system,
ffiffiffiffiffiffi

NK
p

is close to K and hence v̂ðraaÞ is close to v(raa). The OCM
equation of Eq. (2.42) implies that the essential effect of the Pauli principle is
expressed by the orthogonalization of the relative wave function to the Pauli-
forbidden states. Namely, OCM equation says that the relative wave function is
obtained by the deep potential Vaa(raa) similar to the double folding potential
under the condition of the orthogonality to the Pauli-forbidden states. It was shown
that the OCM equation reproduces well the a–a relative wave function v(raa) and
the a–a scattering phase-shifts given by the RGM equation [13, 14].

The calculated relative wave function v(raa) has characteristic features
[13–16]. The radial part of v(raa) for low energy has (4 - L)/2 nodes in the
interaction region which are almost energy-independent and its amplitude is
fairly small compared with the amplitude in the outer region. The outermost
node is at about 2 fm for both L = 0 and 2. The existence of nodal points is due
to the orthogonality of the relative wave function to the Pauli-forbiden states.
The oscillatory behavior of the radial relative wave function in the inner region
causes the large amount of the kinetic energy of the relative motion. The small
amplitude of the radial relative wave function in the inner region is caused in
order to make the contribution of the kinetic energy from the inner region small
as much as possible. If the amplitude of the radial relative wave function in the
inner region is large, it can gain energy from the deep attractive potential
Vaa(raa). Therefore the small amplitude of the radial relative wave function in
the inner region means that that the repulsive effect due to the orthogonality to
the Pauli-forbiden states is larger than the attractive effect of the potential
Vaa(raa). The small amplitude of the radial relative wave function in the inner
region is always obtained so far as the good reproduction of the a–a scattering
phase-shifts is to be guaranteed and this feature remains the same in the ground
band resonance states of 8Be. Since the function RN=4,L(raa, 2m) which the SU(3)
shell model assigns as the radial a–a relative wave function has even larger
amplitude in the inner region than in the outer region, we observe that the SU(3)
description of the 8Be ground band states is not compatible with the a–a
scattering data.
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2.3.1.4 a-Gas Like Nature of 8Be

Recently the 2a structure of 8Be which is the most fundamental two-cluster structure
was cast new light [18]. The 0+ wave function U0þ obtained by the GCM (generator
coordinate method) calculation, U0þ ¼

P

j fjPJ¼0AfCðraa; djÞ/ða1Þ/ða2Þg; was

shown to be almost 100% equivalent to a single 2a wave function U2aTHSRðc0Þwhich
is called 2a THSR wave function [37] and is defined as

U2aTHSRðc0Þ ¼A exp �2c0

X

2

k¼1

ðXk � XGÞ2
 !

/ða1Þ/ða2Þ
( )

: ð2:47Þ

Here PJ=0 is projection operator of angular momentum onto J = 0 and the size
parameter c0 is much smaller than m. Since the width parameters c0 is much smaller
than m, a clusters in the THSR wave function are distributed widely in space.
By noting that the orthogonality of the a–a relative wave function to Pauli-for-
bidden states removes the spatially compact components from the relative wave
function, we know that the THSR wave function has a very small staying prob-
ability of two a clusters in short relative distance region. Small staying probability
in the inner region and long tail probability in the outer region of two a clusters is
nothing but what the 2a RGM (or OCM) relative wave function v(raa) describes.

2.3.1.5 Ab Initio Calculation of 8Be

A remarkably important progress in theoretical study of 8Be structure was recently
achieved by Wiringa et al [19]. They showed that the wave function of 8Be
obtained by their ab initio method with realistic nuclear force has a clear a + a
structure with inter-a separation around 4 fm as shown in Fig. 2.1. According to
Ref. [19], the net energy contribution from the tensor force to the 8Be binding
energy is nearly twice that to 4He binding energy. This result is very plausible for
the a + a structure where each a cluster wave function is almost the same as the

Fig. 2.1 Density distribution
of 8Be obtained by ab initio
calculation (variational
Monte Carlo method) [19]
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free 4He wave function with large D-state mixture. It is important to check whether
mean-field type wave function can reproduce or not such energy contribution from
the tensor force.

2.3.2 12C Case

2.3.2.1 From Linear-Chain Structure to Gas-Like Structure
of 3a for the Hoyle State

The second 0+ state of 12C is located near the 3a breakup threshold. It is called the
Hoyle state [20, 21] in honor of astrophysicist Fred Hoyle who predicted the
existence of this state which plays an astrophysically crucial role for the synthesis
of 12C in the universe. From the viewpoint of nuclear structure, this state is well
known as one of the mysterious 0+ states in light nuclei. The understanding of its
structure has been actually one of the most difficult and challenging problems of
nuclear structure. Its small excitation energy of 7.66 MeV has been regarded to be
difficult to explain by the shell model. The no-core shell model which is the most
advanced modern shell model approach at present has so far not succeeded to
reproduce it [22, 23].

More than 40 years ago Morinaga proposed the assignment of 3a linear-chain
structure to this Hoyle state [24, 25]. The 3a linear-chain structure is intimately
related to the deformed mean-field structure with 4 particle jump from 0p shell to
1s0d shell;

lim
d!0

m0ðdÞA wða1; dezÞwða2; 0Þwða3;�dezÞf g

¼ 1
ffiffiffiffiffiffiffi

12!
p detfð0; 0; 0Þ4ð0; 0; 1Þ4ð0; 0; 2Þ4g;

ð2:48Þ

where m0(d) is the normalization constant. However the observed reduced a decay
width of the Hoyle state is larger than the Wigner limit value and therefore it is
contradictory to the linear-chain structure which gives small reduced width. The
linear chain structure necessarily contains high partial waves between 8Be and
a clusters in spite of the fact that only the S wave contributes to the a decay
because of the small Q value. The 3a linear-chain structure can thus give at most
only one third of the Wigner limit value [26]. The reduced a decay width h2(a)
deduced from the width Cexp = 8.7 eV of the Hoyle state is given in Table 2.1.
The definition of h2(a) is as follows,

Table 2.1 Experimental value of h2(a) of the Hoyle state

a 4.4 4.8 5.2 5.6 6.0
h2(a) 2.7 2.2 1.6 1.2 0.9

Channel radius a is in unit of fm

68 H. Horiuchi



C ¼ 2P‘¼0h
2ðaÞc2

WðaÞ; P‘ ¼
ka

G2
‘ðaÞ þ F2

‘ ðaÞ
; c2

WðaÞ ¼
3�h2

2la2
; ð2:49Þ

where a is channel radius, l reduced mass, and F‘ and G‘ are regular and irregular
Coulomb functions. In terms of reduced width amplitude y(r), we can express h2(a)
as h2ðaÞ ¼ ð1=3Þa3y2ðaÞ: Note that, in the case of yðrÞ ¼ constantða
 r
 0Þ,
h2(a) = 1. In Table 2.2 we show the calculated value of h2(a) when 3a linear-chain
structure is assumed for the Hoyle state, which is taken from Ref. [26].

The observed large a-decay reduced width of the Hoyle state in the 8Be(01
+) + a

channel was successfully reproduced by a full three-body OCM calculation [27, 28].

The wave function v̂ðn̂1; n̂2Þ of the 3a OCM which should be totally symmetric with
respect to the particle permutation is obtained by solving the following equation of
motion

� �h2

2Ma

X

3

i¼1

o

oxi

� �2

�T̂G þ
X

3

i [ j

V2aðjxi � xjjÞ � E

" #

v̂ðn̂1; n̂2Þ ¼ 0; ð2:50Þ

n̂1 ¼ x1 �
1
2
ðx2 þ x3Þ; n̂2 ¼ x2 � x3; ð2:51Þ

hvFðxi � xjÞjv̂ðn̂1; n̂2Þi ¼ 0; ð1� j\i� 3Þ: ð2:52Þ

The coordinate xi is the position vector of the ith a cluster. T̂G is the kinetic energy
of the total center of mass. The 2a wave functions vF stand for the Pauli
forbidden states of the 2a relative motion which we explained in the previous
subsection. Namely, vF satisfy A½vFðXi � XjÞ/ðaiÞ/ðajÞ	 ¼ 0; with Xi ¼ ð1=4Þ
PIðiÞþ4

k¼IðiÞþ1 rk; IðiÞ ¼ 4ði� 1Þ, where rk stands for kth nucleon coordinate. The

numbers of Pauli-forbidden states are two and one for S and D waves, respectively.
The structure of the Hoyle state obtained by this 3a OCM calculation has, as the
dominant component of the Hoyle state, the 8Be(01

+) + a structure with relative S
wave between two clusters, 8Be(01

+) and a. Since 8Be(01
+) consists of two a clusters

weakly coupled in relative S wave, the Hoyle state was concluded to have a weakly
coupled 3a structure in relative S waves with large spatial extent. Namely it was
regarded as being a gas-like structure of a clusters.

A few years later, this understanding of the structure of the Hoyle state was
reported to be confirmed by fully microscopic 3a calculations by two groups,
namely the 3a RGM calculations by Kamimura et al. [29, 30] and the 3a GCM
calculations by Uegaki et al. [31–33]. The wave functions of the 3a RGM

Table 2.2 Calculated value of h2(a) when 3a linear-chain structure is assumed for the Hoyle
state

Raa 1.0 2.0 3.0 4.0
h2(a) 0.29 0.32 0.35 0.37

Raa is the inter-a distance of the chain state, and is in unit of fm
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and GCM have the form, UJð12CÞ ¼AfvJðn1; n2Þ/ða1Þ/ða2Þ/ða3Þg with n1 ¼
X1 � 1

2ðX2 þ X3Þ; and n2 = X2 - X3. The 3a relative wave function vJ(n1, n2)
satisfies the following equation of motion

h/ða1Þ/ða2Þ/ða3ÞjðH � EÞjA vJðn1; n2Þ/ða1Þ/ða2Þ/ða3Þf gi ¼ 0; ð2:53Þ

H ¼
X

12

q¼1

Tq � TG þ
X

12

q\q0
V ð2Þq;q0 ; ð2:54Þ

where TG is the kinetic energy of the total center of mass. It is to be noted that, due
to the Bayman–Bohr theorem, the SU(3) shell model wave function

jð0sÞ4ð0pÞ8; ðk; lÞ ¼ ð04ÞJ ¼ 0i can be expressed by the 3a cluster wave function,

jð0sÞ4ð0pÞ8; ðk; lÞ ¼ ð04ÞJ ¼ 0i
¼ N0A R4;0ðn1; ð8=3ÞmÞR4;0ðn2; 2mÞ/ða1Þ/ða2Þ/ða3Þ

� �

� gðXG; 12mÞ:
ð2:55Þ

Figure 2.2 shows that the obtained wave function supports the dominance of
8Be(01

+) + a (S wave) structure of the Hoyle state. The reduced width amplitude
yc(r) in this figure is defined as

yc¼ðL;‘ÞðrÞ ¼
ffiffiffiffiffiffiffiffi

12!

4!8!

r

dðn1 � rÞ
r2

/Lð8BeÞY‘ðn̂1Þ
h i

J
/ða1ÞjUJð12CÞ

	 


: ð2:56Þ

These calculations nicely reproduced not only the energy position of the Hoyle
state but also other experimental properties including inelastic electron form factor
and E0 and E2 transition properties. In Table 2.3 we show the good reproduction
of the 12C data by 3a calculation.

2.3.2.2 AMD and FMD + UCOM Calculations

About 20 years later after the 3a calculations of Refs. [29, 30] and [31–33], the
results by these microscopic 3a cluster model calculations were confirmed by the
antisymmetrized molecular dynamics (AMD) calculation [34] which does not

Fig. 2.2 Reduced width
amplitudes of [L � L] chan-
nels (8BeðLÞ þ að‘ ¼ LÞ
channels) of the 02

+ state of
12C [31–33]

70 H. Horiuchi



assume the alpha clustering. Figure 2.3 shows the energy spectra and density
distributions of obtained states by AMD. Furthermore recently the fermionic
molecular dynamics (FMD) calculations [35, 36] gave us quite similar results as
the AMD results. This FMD approach which also does not assume the alpha
clustering starts from a realistic bare N–N force by using the unitary correlation
operator method (UCOM) technique. Since both AMD and FMD+UCOM do not
assume alpha clustering but build up wave functions totally on nucleonic degrees
of freedom, the obtained wave functions contain components with broken spatial
symmetry. Table 2.4 shows the good reproduction by the AMD calculation of the
observed b+ decay strengths to 12C states from the ground 1+ state of 12N which are
due to the components with broken spatial symmetry of 12C wave function.

Table 2.3 Reproduction of
the 12C data by 3a
calculation of Ref. [29, 30]

Exp. Theor.

Excitation energy (02
+) (MeV) 7.65 7.74

Width (02
+) (eV) 8.7 ± 2.7 7.7

Mð0þ2 ! 0þ1 Þðfm2Þ 5.4 ± 0.2 6.7

BðE2 : 0þ2 ! 2þ1 Þðe2fm4Þ 13 ± 4 5.6

BðE2 : 2þ1 ! 0þ1 Þðe2fm4Þ 7.8 9.3

Rrms(01
+) (fm) 2.43 2.4

Rrms(02
+) (fm) 3.37

Fig. 2.3 Energy spectra and density distributions of 12C by AMD [34]
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2.3.2.3 3a-BEC-Like Structure of the Hoyle State

Almost 30 years after the first proposal of the 8Beð0þ1 Þ þ a structure for the Hoyle
state, this state was reconsidered in a new light in Ref. [37]. The authors of this
paper presented, for the description of the Hoyle state, the following new model
wave function U3aTHSRðBÞ which is called the 3a THSR wave function :

U3aTHSRðBÞ ¼A exp � 2
B2
ðX2

1 þ X2
2 þ X2

3Þ
� �

/ða1Þ/ða2Þ/ða3Þ
� �

¼ exp � 6
B2

n2
3

� �

A exp � 4
3B2

n2
1 �

1
B2

n2
2

� �

/ða1Þ/ða2Þ/ða3Þ
� �

;

ð2:57Þ

where n3 ¼ 1
3ðX1 þ X2 þ X3Þ: As shown in Eq. (2.57), the THSR wave function

can be regarded as expressing the cluster structure where the a1 cluster and a
8Be(01

+)-like cluster Afexpð�ð1=B2Þn2
2Þ/ða2Þ/ða3Þg couple via S-wave with

inter-cluster wave function expð�ð4=3B2Þn2
1Þ: On the other hand, Eq. (2.57)

shows that the THSR wave function represents the state where three a clusters
occupy the same single 0S-orbit expð�ð2=B2ÞX2Þ, namely a 3a-condensate-like
state which is the finite size counterpart of the macroscopic a-particle
Bose–Einstein condensation (BEC) in infinite nuclear matter at low density [38].
If the parameter B is so large that the antisymmetrization operator A has no
effect, the 3a THSR wave function of Eq. (2.57) actually represents the simple
product state where three a particles occupy the same single 0S-orbit
expð�ð2=B2ÞX2Þ: On the other hand, in the limit where the parameter B takes its
smallest value B = b with b standing for the single-nucleon size parameter of /
(a) (m = 1/(2b2)), the normalized 3a THSR wave function is equivalent to the
shell model wave function;

lim
B!b

NðBÞU3aTHSRðBÞ ¼ jð0sÞ4ð0pÞ8; ð0; 4ÞJ ¼ 0i; ð2:58Þ

where N(B) is normalization constant. When we calculate the energy curve by
the THSR wave function, we have only one energy minimum corresponding to
a compact shell-model-like structure and no energy minimum at a large value
of B corresponding to the dilute 3a-condensate-like state. Therefore in order to

Table 2.4 The experimental
data for b decays 12N(b+)12C
compared with the AMD
results

States in 12C (MeV) J± (log ft)exp (log ft)AMD (Jf
±)

0 0+ 4.120 ± 0.003 3.8
4.44 2+ 5.149 ± 0.007 4.8 (21

+)
7.65 0+ 4.34 ± 0.06 4.0 (02

+)
10.3 (0+) 4.36 ± 0.17 4.7 (03

+)
12.71 1+ 3.52 ± 0.14 3.8 (11

+)
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study the 3a-condensate-like state, we need to perform the GCM calculation by
adopting the parameter B as the generator coordinate. In Ref. [37], this GCM
calculation with respect to the parameter B was performed for na systems with
n = 3 and 4,

WkðnaÞ ¼
X

j

f k
j A exp � 2

B2
j

X

n

i¼1

X2
i

" #

/ða1Þ � � �/ðanÞ
( )

; ð2:59Þ

This GCM calculation gave excited 0+ state with very large radius in the vicinity
of the na breakup threshold in each na system (n = 3 and 4).

The results of the calculated 0þ2 state for 3a system were found to be very
similar to those of the previous micrpscopic 3a calculations of Refs. [29–33].
Actually it was soon discovered [39] that the microscopic 3a wave functions of
both of Refs. [29–33] have overlaps of more than 95% with a single 3a THSR
wave function with a large size parameter B. This result is very striking since the
microscopic 3a wave functions of the 0þ2 state were obtained by solving very
complicated integro-differential three-body equation of motion. This striking fact
reported in Ref. [39] means without doubt that the Hoyle state structure has a
strong relation with the a condensation physics in dilute infinite nuclear
matter [38].

The a-particle condensate-like state is the lowest energy state of the a-particle
gas-like state. In nuclear physics, gas-like state of nucleons has been an
important subject of study for a long time. Such a state has a very high exci-
tation energy and therefore has been a subject of nuclear matter and nuclear
reaction rather than nuclear structure. On the other hand, the gas-like state of
clusters, if it exists, is not a so highly excited state, and can be a discrete state
accessible spectroscopically. This situation is shown in Fig. 2.4. Gas-like state of
clusters is a new concept of nuclear structure and this concept was first proposed
for the Hoyle state of 12C in 1970s. However, the discussion at that time was
confined only for the Hoyle state. Now in 2000s, gas like state of clusters is
expected to be universal and is studied in many nuclei both theoretically and
experimentally.

10 MeV

100 MeV

ground state

liquid

α cluster gas

nucleon gas

excitation energyFig. 2.4 Excitation energies
of a-cluster gas state and
nucleon gas state in the case
of 12C
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2.3.2.4 Structure Change from the Ground State to the Hoyle State

The energy curve by the 3a THSR wave function shows no local minimum point
which corresponds to the Hoyle state and the Hoyle state needs to be obtained by
the GCM calculation. When we draw the energy curve by the wave function
ð1� j0þ1 ih0þ1 jÞU3aTHSRðBÞ with j0þ1 i standing for the GCM ground state, the
energy curve has a minimum point whose wave function is very close to the 0þ2
state by the GCM calculation [39]. This fact means that the 3a structure of the
Hoyle state is largely related to the orthogonality of the Hoyle state to the ground
state.

The important role of the orthogonality to the ground state for the formation of
the 3a structure of the Hoyle state was discussed already in Ref. [6] from the
viewpoint of the 3a dynamics with the a–a interaction described by the OCM. As
we explained in the Sect. 2.3.1 on 8Be, the OCM says that the a–a interaction is
composed of two main factors, one is the local attractive potential of the folding-
potential type and the other is the orthogonality condition of the a–a relative
motion to the Pauli-forbidden states. In the 2a system, because of the orthogonality
condition to the Pauli-forbidden states, the relative wave function should have
nodes, two nodes for S-wave and one node for D-wave, which means that the
relative wave function has the oscillatory behavior in the interaction region.
The positions of the nodal points are almost fixed unless we are not treating the
high energy motion. The oscillatory behavior of the relative wave function gives
rise to a large amount of the kinetic energy. Thus in order to avoid the large kinetic
energy, the amplitude of the oscillatory part of the relative wave function becomes
small. Small amplitude of the inner part of the relative wave function means that
the Pauli-forbidden states act like a repulsive core potential. Actually the radius of
the repulsive core of the phenomenological a–a potential like the Ali–Bodmer
potential [40] is about 2 fm which is the same as the outermost nodal point.

When the same a–a interaction acts in the 3a system, it is to be noted that
the attractive interaction between two a’s becomes effectively stronger than in
the 2a system because the attractive interaction via the third a cluster strengthen
the a–a attraction in the average by factor 1.5. This point can be explained also

in the following way. The 3a Hamiltonian can be written as H ¼
P3

i Ti þ
P3

ij Vij ¼ ð2=3Þ
P3

ij½Tij þ 1:5Vij	; where Tij and Vij are the kinetic and interaction
operators between ith and jth a clusters. This effectively strengthened a–a
attraction drastically changes the inter-a wave function in the interaction region.
Namely now the a–a attraction overwhelms the large relative kinetic energy in the
inner region, and therefore the amplitude of the relative wave function in the inner
region becomes large in order to gain the attractive potential energy. This leads to
the formation of the compact ground state of the 3a system (see Fig. 2.5). The
formation of the compact ground state affects largely the inter-a relative motion in
the excied 0+ state via the orthogonality of the excied 0+ state to the compact
ground state. The orthogonality to the compact ground state prevents two a’s in the
excied 0+ state from approaching close to each other. This implies the appearance
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of the ‘‘effective repulsive force’’ between two a’s in the excited 0+ state. Thus in
the excited 0+ state there is a combined repulsive interaction; one is this ‘‘effective
repulsive force’’ and the other is the repulsive effect due to the inner oscillation of
2a relative wave function originating from the Pauli-forbidden states. This com-
bined repulsive interaction now overwhelms the strengthened attractive force and
expel each a from other a’s, which explains the formation of the weakly inter-
acting gas-like 3a structure of the Hoyle state. We see thus that the formation of
the 3a structure of the Hoyle state is governed by the orthogonality of the Hoyle
state to the ground state.

2.3.3 16O Case

The nucleus 16O is a typical nucleus which shows that nuclear many-body system
is rich. It has been long known that, while the ground state is described dominantly
by double closed shell wave function, there exist many low-lying excited states
which are well described by the 12C + a cluster model around and above the
12C + a threshold. Recently it is strongly suggested that there exist 4a condensate-
like states around and above the 4a threshold. The formation of 4a condensate-like
states is made by the activation of the a-clustering of the 12C cluster of the 12C + a
structure and it is realized by the assistance of the orthogonality to the lower-lying
12C + a states and the ground state.

2.3.3.1 12C + a Clustering

The 16O nucleus is a doubly magic nucleus and the ground state is described
dominantly by double-closed shell structure. Thus this nucleus is a representative
nucleus of the nuclear shell model. In spite of this fact, however, the first excited
state is located at Ex = 6.05 MeV and has spin-parity Jp = 0+. Since the value of
�hx in this mass region is about 15 MeV, the positive-parity excitation of the
double-closed-shell ground state necessitates excitation energy around 2�hx �
30 MeV if the mean-field (shell model) dynamics works soundly. Therefore the
observed excitation energy 6.05 MeV means that this nucleus is not simply gov-
erned by the mean-field dynamics.

Fig. 2.5 Change of a–a rel-
ative wave function from 2a
cluster state to 3a compact
state
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In 1960s it was experimentally established that this 0þ2 state is the head state
of the positive-parity rotational band with Kp =0+ constituted by
Jp = 0+, 2+, 4+, 6+ states (Fig. 2.6). In correspondence with this experimental
knowledge, an idea of the deformed mean field for this excited rotational band
with Kp = 0+ prevailed [41, 42]. According to this idea, it is assumed that the
16O nucleus drastically changes its structure from the double closed shell
configuration of the ground state into the largely deformed configuration of the
Kp ¼ 0þ1 rotational band whose dominant component is of four-particle four-hole
nature. The small excitation energy of this Kp ¼ 0þ1 band was attributed to
the small energy gap between the deformed 0p-hole orbit and deformed
1s0d-particle orbit. Up to now, this interpretation of the 0þ2 state as having
deformed four-particle four-hole structure has remained unchanged in the mean-
field model approaches.

Contrary to this deformed four-particle four-hole model which assumes a single
common deformed mean field for both particles and holes, the weak coupling
model of Ref. [43] considers that particles and holes move in their respective (non-
common) mean fields. Namely rotational motion of particles does not couple
strongly with that of holes. When the coupling between particles and holes is
weak, the 4 0p-holes take the configuration similar to the ground state of 12C and
the four 1s0d-particles take the configuration similar to the ground rotational band
of 20Ne:

WðKp ¼ 0þ1 ; JÞ ¼ jð0pÞ�4ð12C; 0þÞ; ð1s0dÞ4ð20Ne; JþÞi: ð2:60Þ

The configuration of four 1s0d-particles of ground rotational band states of 20Ne is
well approximated by the SU(3) configuration with the symmetry (k, l) = (8, 0).
According to the Bayman–Bohr theorem[12], this SU(3) state is just equivalent to
the cluster state with 16O + a structure.

Fig. 2.6 Inversion doublet
rotational bands in 16O and
20Ne
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jð0sÞ4; ð0pÞ12; ð1s; 0dÞ4; ð8; 0ÞJi ¼ CJA R8;J rO�a;
16
5

m

� �

YJðr̂O�aÞ/ðaÞ/ð16OÞ
� �

� gðXG; 20mÞ:
ð2:61Þ

Thus the weak-coupling model wave function has a relation to the 12C + a cluster
wave function.

The 12C - a cluster model gives a very natural explanation of the observed
small excitation energy 6.05 MeV of the first excited state ð0þ2 Þ because the
threshold energy of 12C + a breakup is located at Ex = 7.16 MeV. If this first
excited state has a cluster structure of 12C + a, the excitation energy 6.06 MeV
is very reasonable because it means 1.1 MeV for the binding energy of the
12C - a relative motion. The assignment of 12C + a structure to the first
excited state of 16O was suggested already around 1960 by Wildermuth and his
coworkers [44, 45]. This work was an underlying knowledge for the weak-
coupling model by Arima and his coworkers [43]. The 12C + a cluster structure
for the 0þ2 state with definite idea of spatial localization of clusters was first
proposed by Horiuchi and Ikeda [46]. They noticed the negative-parity rotational
band states with Jp = 1-, 3-, 5-, 7- (Fig. 2.6) observed by a-particle resonant
scattering on 12C by Davis and his coworkers [47–49]. The band head 1- state is
located at Ex = 9.63 MeV. The authors of Refs. [47–49] found that the a-widths
of the rotational member states are large and comparable with Wigner-limit
values and, from these large widths and from the value of the moment of inertia,
they interpreted the rotational member states as consisting of an a-cluster
rotating outside the 12C core nucleus. The authors of Ref. [46] argued that, if the
intrinsic state of this negative-parity rotational band has a 12C + a structure with
spatial localization of clusters, the intrinsic state is of parity-asymmetric
(parity-violating) shape and hence this intrinsic state should possess a parity-
inverted positive-parity rotational band which constitutes a parity doublet
(inversion doublet) together with the negative-parity rotational band (Fig. 2.7).
They concluded that this positive-parity rotational band is just the observed
rotational band upon the 0þ2 state as the band head state (Fig. 2.6). The main
reason for this conclusion was firstly that, as we explained above, there already
existed theoretical arguments of Refs. [43–45] which assign the 12C + a struc-
ture to this positive parity band upon the 0þ2 state. The other reason was
that there is only this positive-parity band below the negative-parity band of
Davis et al. [47–49].

16O* = 12C + 
20Ne = 16O +

±
a a

a
a

Fig. 2.7 Inversion doublet
intrinsic wave functions of
core + a clustering
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2.3.3.2 12C + a OCM

In 1970s an extensive study of 16O was performed by Suzuki [50, 51] by using
12C + a coupled-channel OCM [52] where the 12C cluster can be excited to its
ground band states with 2+ and 4+. The equation of motion of the coupled-channel
OCM for the 12C + a syatem is given as;

TiðrÞ þ ðMECÞi þ Er


 �

v̂iðrÞ ¼ �
X

j

Ui;jv̂jðrÞ;
X

i

hvF
i ðrÞjv̂iðrÞi ¼ 0; ð2:62Þ

TiðrÞ ¼ Y‘iðr̂Þ
��h2

2l
o2

or2

�

�

�

�

�

�

�

�

Y‘iðr̂Þ
	 


; ðMECÞi ¼ ELiðCÞ � E0ðCÞ;

Er ¼ E � EðaÞ � E0ðCÞ;
ð2:63Þ

where l is the reduced mass of 12C and a and i is the index of a channel with total
angular mementum J. fvF

i ðrÞg stand for the Pauli-forbidden states to which fv̂iðrÞg
should be orthogonal. The wave function WJ of the system is obtained from the
solution of the relative wave function v̂iðrÞ as follows,

WJ ¼A
X

i

viðrÞhJ
i

" #

; v̂iðrÞ ¼
X

j

Z

ðN1=2
K Þi;jðr; r0Þvjðr0Þr0

2
dr0; ð2:64Þ

ðNKÞi;jða; bÞ ¼
dðr � aÞ
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i A
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; hJ
i ¼ Y‘iðr̂Þ½ /Li

ðCÞ
	 �

J

/ðaÞ:

ð2:65Þ

The Pauli-forbidden states fvF
i ðrÞg are defined as those states that satisfy

A
X

i

vF
i ðrÞhJ

i

" #

¼ 0: ð2:66Þ

The orthogonality requirement
P

ihvF
i ðrÞjv̂iðrÞi ¼ 0 means

0 ¼
X

i

hvF
i ðrÞjv̂iðrÞi ¼
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The Pauli-forbidden configurations
P

i v
F
i ðrÞhJ

i are specified by SU(3) irreducible
representations and are tabulated in Refs. [50–52].

According to the Bayman–Bohr theorem [12], the double closed shell wave
function of 16O can be described with the cluster model wave function:

det jð0sÞ4ð0pÞ12j ¼ cLA R4;LðrC�a; 3mÞ YLðr̂C�aÞ/Lð12
CÞ

h i

J¼0
/ðaÞ

h i

� gðXG; 16mÞ;
ð2:68Þ
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where R4,L (r, 3m) is harmonic oscillator radial function with oscillator parameter
3m, angular momentum L and number of oscillator quanta 4, 4 = 2n + L. This
equality holds for any L among L = 0, 2, and 4. Thus this OCM study could treat
the ground state and accordingly the structure change between the shell-model-like
structure and the cluster structure. The calculated results were very successful in
reproducing almost all the observed data. The good reproduction of the energy
spectra is shown in Fig. 2.8. Table 2.5 shows the good reproduction of electric
transition data. The ground state was shown to be dominantly given by double
closed shell wave function and the Kp ¼ 0þ1 and Kp ¼ 0�1 bands were shown to
have dominantly the 12C(01

+) + a cluster structure. Furthermore the negative parity
states with 3�1 ; 1

�
1 ; 2

�
1 were shown to have dominantly shell model structure with

1-particle 1-hole excitation although rather large mixture of cluster configuration is
existent. Beside the good reproduction of energy spectra and electric transitions
shown in Fig. 2.8 and Table 2.5, alpha-decay data are also well reproduced as
shown in Table 2.6. The 12Cð2þ1 Þ þ a structure with S-wave of a motion is realized
in the observed 2þ2 state at 9.85 MeV.

The results of the 12C + a OCM deny the formation of single deformed
structure composed of strong coupling of the rotational motion of 12C cluster and
the orbiting motion of a cluster around 12C cluster. In the case of the 2þ2 state at
9.85 MeV, as mentioned above, the dominant component of the 2þ2 wave func-
tion is composed of 12C(2+) coupled with S-wave a cluster. This result is in

Fig. 2.8 Energy spectra by 12C + a OCM [6, 50, 51] classified by dominant component Lþ �
‘ð12CðLþÞ þ að‘ÞÞ: Classification denoted as (1) is for the mean-field-type states including the
ground state and 1p - 1h type states
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accordance with the weak-coupling shell model of Ref. [43] which describes this
2þ2 state as composed of the four-hole configuration (0p)-4(Jh = 2) and the four-
particle configuration (1s0d)4(Jp = 0). In usual mean-field models, this state is

Table 2.5 Electric transition
rates in 16O compared with
12C + a OCM calculation
[50, 51]

Transition exp. 12C + a

B(E2)(e2fm4)
2þ1 ! 0þ1 7.8 ± 0.3 2.20

2þ1 ! 0þ2 76 ± 13 60.2

1�1 ! 3�1 51 ± 10 25.5
2�1 ! 3�1 14-4

+3 13.8
2�1 ! 1�1 36 ± 5 15.1
2þ2 ! 0þ1 0.082 ± 0.007 0.247

2þ2 ! 0þ2 3.0 ± 0.7 9.68

4þ1 ! 2þ1 150 ± 18 102

4þ2 ! 2þ1 2.4 ± 0.6 0.0405

2þ3 ! 0þ1 3.7 ± 0.1 1.21

2þ3 ! 0þ2 7.6 ± 2 1.20

M(E0)(fm2)
01

+ - 02
+ 3.55 ± 0.21 3.88

01
+ - 03

+ 4.03 ± 0.09 3.50
B(E3) (e2fm6)

3�1 ! 0þ1 213 ± 11 130

Table 2.6 Alpha decay
0data in 16O compared with
12C + a OCM calculation
[50, 51]

Reduced widths h2 are at the
channel radius a = 5.2 fm

Jp (Ex (MeV)) C (keV) Decay hexp
2 hcal

2

12
- (9.63) 510 ± 60 a0 0.71 0.59

22
+ (9.85) 0.9 ± 0.3 a0 0.0019 0.0079

41
+ (10.35) 27 ± 4 a0 0.37 0.42

42
+ (11.10) 0.28 ± 0.05 a0 0.0011 0.047

23
+ (11.52) 74 ± 4 a0 0.033 0.048

32
- (11.60) 800 ± 100 a0 0.63 0.51

03
+ (12.05) 1.5 ± 0.5 a0 0.00037 0.097

13
- (12.44) 98 ± 7 a0 0.024 0.000064

0.025 a1 0.084 0.18
22

- (12.53) B0.5 a1 B0.59 0.13
24

+ (13.02) 150 ± 11 a0 0.039 0.069
33

- (13.13) 90 ± 14 a0 0.032 0.091
�20 a1 � 0:36 0.41

11
+ (13.66) 64 ± 3 a1 0.54 0.54

51
- (14.67) 530 ± 71 a0 0.38 0.30

28 ± 4 a1 0.10 0.074
61

+ (14.82) 22 a0 0.043 0.025
48 a1 0.62 0.41

62
+ (16.29) 490 ± 40 a0 0.42 0.42

72
- (20.88) 650 ± 75 a0 0.27 0.34
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regarded as the band-head state of the Kp = 2+ side band with four-particle four-
hole structure.

2.3.3.3 4a OCM and 4a-Gas Like States

Recently Funaki and his coworkers have reported the results of the full four-body
calculations in the framework of 4a OCM [53]. They claim that the calculated
lowest six 0+ states reproduce or well correspond to the observed six 0+ states up to
the 0þ6 state at 15.1 MeV as shown in Fig. 2.9. The calculated 0þ1 has, as its
dominant component, the double closed shell wave function. From the calculation
of the reduced width amplitudes y(r) of various 12C + a channels,

yðrÞ ¼ dðrC�a � rÞ
r2

YLðr̂C�aÞ/Lð12CÞ
h i

0
jUð16O; 0þk Þ

	 


; ð2:69Þ

the calculated 0þ2 and 0þ3 states proved to have, as their dominant components,
12Cð0þ1 Þ þ a and 12Cð2þ1 Þ þ a cluster structures, respectively. In Eq. (2.69)
/L(12C) is the wave function of 12C given by the 3a OCM calculation [54] with the
same effective inter-a interaction. One of the most important results of Ref. [53] is
that the calculated 0þ6 state has a structure of 4a-condensate-like state. The radius
of the calculated 0þ6 state has a very large value of about 5 fm. This large size
suggests that the calculated 0þ6 state is composed of a weakly interacting gas of a
particles. The reduced width amplitudes yðrÞ of the calculated 0þ6 state proved to
have a large amplitude only in the 12Cð0þ2 Þ + a channel.

From the analyses of the reduced width amplitudes in various 12C + a channels,
the calculated 0þ4 and 0þ5 states were found to have dominantly 12Cð0þ1 Þ þ a and

Fig. 2.9 Energy spectra by
4a OCM [53] with two kinds
of effective nuclear force,
SW and MHN
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12C(1-) + a cluster structures, respectively. The widths of the calculated 0þ4 ; 0
þ
5

and 0þ6 states are � 150; � 50, and � 50 keV, respectively, while those of the
observed 0þ4 ; 0

þ
5 and 0þ6 states are 600, 185, and 166 keV, respectively.

The full four-body calculation of alpha clusters of Ref. [53] shows us that
nuclear many-body system undergoes actually drastic structure changes as the
excitation energy increases, namely from compact shell-model-like structure to
various 12C + a structures and furthermore to a 4a gas-like structure. Since the
various 12C + a structures have been well confirmed to be realized in many excited
states, the calculations of Ref. [53] which succeeded to reproduce these 12C + a
states can be regarded as highly reliable.

2.3.4 20Ne Case

2.3.4.1 Ikeda Diagram and Transitional Character of the Ground Band
Between Mean-Field Like Structure and Cluster Structure

As we mentioned in the previous section on 16O, Horiuchi and Ikeda proposed in
16O to regard the Kp = 0+ band upon 6.05 MeV 0+ state and Kp = 0- band upon
9.63 MeV 1- state as being inversion doublet bands with the parity-violating
structure of 12C + a [46]. In the same Ref. [46] the authors also proposed in 20Ne
to regard the Kp = 0+ ground band and Kp = 0- band upon 5.78 MeV 1- state as
being inversion doublet bands with the parity-violating structure of 16O + a
(Figs. 2.7, 2.8). One of the grounds of this proposal was the report given in Ref.
[47–49] which reported on the resonant scattering of a particles on 16O together
with that on 12C. The authors of Refs. [47–49] found that the a-widths of the
Kp = 0- band member states are large to be comparable with Wigner-limit values
and, from these large widths and from the value of the moment of inertia, they
interpreted the Kp = 0- band member states as having a structure of 16O + a.
Another ground of the proposal was the fact that the shell model study of the 20Ne
teaches us that the dominant component of the ground band is given by the SU(3)

configuration with (k, l) = (8, 0), jð0sÞ4; ð0pÞ12; ð1s; 0dÞ4; ð8; 0ÞJi [55, 56].
According to the Bayman–Bohr theorem this wave function is equivalent to the
16O + a cluster model wave function as was shown in Eq. (2.61). It was also
important to note that below the Kp = 0- band upon 5.78 MeV 1- state the
ground band is the only band with Kp = 0+.

Ikeda and his collaborators noticed the fact that the states in light nuclei which
were assigned to have cluster structures are energetically located near or above the
cluster-breakup thresholds corresponding to respective cluster structure. Typical
examples are ground band states of 8Be, the Hoyle state of 12C, and the above-
explained inversion doublet band states in 16O and in 20Ne. Supported by this fact,
they proposed the so-called Ikeda diagram which gives necessary conditions for
the formation of cluster states [57] (Fig. 2.10). The first condition is the stability of
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the constituent clusters which is necessary for keeping the identity of the clusters.
The second condition is the weakness of inter-cluster interaction. If the inter-
cluster interaction is strongly attractive, the clusters will dissolve into mean-field-
like structure. The weakness of the inter-cluster interaction results in the energy
location of the cluster state near the breakup threshold into constituent clusters.
Thus the Ikeda diagram says that the energy location of the cluster state is nec-
essarily near the breakup threshold into constituent clusters. Usually ground states
of nuclei are located well below the a breakup threshold and thus they have mean-
field-like structure. A clear violation for this statement is the ground state of 8Be
which is located slightly above the a–a breakup threshold. The well-known fact
that the ground state of 8Be has an a–a cluster structure is in good accordance of
the Ikeda diagram.

As mentioned above, the ground state is usually considered to have mean-field-
like structure except the case of 8Be. But in Ref. [46] the authors assigned the
16O + a cluster structure to the ground state of 20Ne. Thus this assignment needs to
be checked carefully. The ground state of 20Ne is located below the 16O + a
breakup threshold by 4.73 MeV. This value of 4.73 MeV is fairly smaller than
the corresponding binding energies of the ground states measured from the a
breakup threshold in other nuclei. For example in 12C the ground state is located
below the 8Be + a or 3a threshold by about 7.5 MeV and also in 16O the ground
state is located below the 12C + a threshold also by about 7.2 MeV. Hence it is
conceivable that the ground state of 20Ne does not have so good cluster structure of
16O + a. At the same time it is conceivable that the ground state of 20Ne does not
have so good mean-field-like structure. This intermediate character of the
ground band of 20Ne was noticed from the beginning in Refs. [46, 57] and was

Fig. 2.10 Ikeda diagram [57]
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named [58, 6] ‘‘transitional character of the ground band of 20Ne between mean-
field like structure and cluster structure’’. In Refs. [46, 57] it was pointed out that,
because of the transitional character of 20Ne ground band, the magnitude of the
gap energy between the band head states of the Kp = 0+ band and the Kp = 0-

band is much larger in 20Ne (5.5 MeV) than in 16O (3.0 MeV).

2.3.4.2 AMD Study of 20Ne

AMD studies of 20Ne [59–61] have made important contributions for the clarifi-
cation of structural problems of 20Ne, including the transitional character of the
ground band. Figure 2.11 shows good reproduction of the observed energy spectra
by the calculation of Ref. [60]. Table 2.7 shows that the E2 transitions inside the
ground, Kp ¼ 0�1 , and Kp ¼ 2�1 bands are also well reproduced by the calculation
of Ref. [60] without use of any effective charge. The magnitudes of the defor-
mations of the Kp ¼ 0þ1 (ground), Kp ¼ 0�1 ; and Kp ¼ 2�1 bands are shown in their
energy curves with respect to the quadrupole deformation parameter b in Fig. 2.12.
Here ‘‘deformed-basis AMD’’ means that the nucleon wave packets of AMD wave
function are deformable while ‘‘spherical-basis AMD’’ means that the nucleon
wave packets of AMD wave function are kept spherical. We note that for
the Kp ¼ 0þ1 and Kp ¼ 2�1 bands the deformation of nucleon wave packets makes
the binding energies of these bands appreciably deeper while for the Kp ¼ 0�1 band
the nucleon wave packets favor spherical shape. The value of b at the minimum
energy point is about 0.4 for both the Kp ¼ 0þ1 and Kp ¼ 2�1 bands while it is
about 0.5 for the Kp ¼ 0�1 band. The 16O + a clustering features of these three
bands can be seen in Fig. 2.13 which shows the position of centroids of the
nucleon wave packets of the AMD wave function. This figure shows that

Fig. 2.11 Energy spectra of 20Ne by AMD [60]
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the Kp ¼ 0�1 wave function around b = 0.5 has nucleon wave packets of an a
cluster separated largely apart from other 16 nucleon wave packets. This means
that the Kp ¼ 0�1 band has a clear cluster structure of 16O + a. On the contrary, the
nucleon wave packets of the Kp ¼ 2�1 wave function around b = 0.4 are all
located close to one another. This means that the Kp ¼ 2�1 band has a mean-field-
type structure. The wave function of the Kp ¼ 0þ1 band at the minimum energy

Table 2.7 B(E2) (e2fm2) in
20Ne compared with AMD
calculation [60]

Jp
i ! Jþf EXP AMD

[Kp = 01
+]

2þ1 ! 0þ1 65 ± 3 70.3

4þ1 ! 2þ1 71 ± 6 83.7

6þ1 ! 4þ1 64 ± 10 52.7

8þ1 ! 6þ1 29 ± 4 21.0

[Kp = 0-]
3� ! 1� 164 ± 26 151.2

[Kp = 2-]
3�1 ! 2� 113 ± 29 102.8
4� ! 3�1 77 ± 16 77.8
4� ! 2� 34 ± 6 38.5
5�1 ! 4� \808 84.5
5�1 ! 3�1 84 ± 19 56.6
6�1 ! 5�1 32 ± 13 29.9
6� ! 4� 55-13

+23 64.0

Fig. 2.12 Energy curves of 20Ne with respect to quadrupole deformation by AMD [60]
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point around b = 0.4 is seen to have rather similar spatial distribution of nucleon
wave packets to that of the Kp ¼ 2�1 band. However it is also seen that the
Kp ¼ 0þ1 band wave function with slightly larger b = 0.5 has a feature of weak
clustering of 16O + a. Fig. 2.14 gives the density distributions of the intrinsic wave
functions which have nucleon wave packet distributions shown in Fig. 2.13. We
see in this figure that the density distribution of the Kp ¼ 0�1 intrinsic state around
b = 0.5 has a clear parity-violating shape due to the 16O + a clustering while that
of the Kp ¼ 0þ1 intrinsic state in the region of b = 0.3 *0.5 does not show, just
like the Kp ¼ 2�1 band with mean-field-type structure, clear parity-violating shape.

Although the density distribution of the intrinsic state of the ground band does
not have a clear parity-violating shape due to the 16O + a clustering, the wave
function of the ground band has a large component of 16O + a clustering.
Table 2.8 shows that the squared amplitude of the 16O + a component WJ of the
ground band is about 70% for low spin states and decreases to about 30% for high
spin states. The magnitude WJ of the 16O + a component of a given wave function

UJ is obtained as WJ ¼ jaJ j2 with aJ defined as

UJ ¼ aJU
Jð16Oþ aÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� jaJ j2
q

UJ
R; ð2:70Þ

UJð16Oþ aÞ ¼ nJA vJðrO�aÞYJðr̂O�aÞ/ð16OÞ/ðaÞ
n o

; ð2:71Þ

where UJð16Oþ aÞ is normalized wave function in the functional space of 16O + a
and UJ

R is normalized component orthogonal to the 16O + a functional space.
A detailed explanation how to calculate WJ is given in Sect. 2.3.4.3. For the
large value of WJ = 70%, the fact due to the Bayman–Bohr theorem given in

Eq. (2.61), jð0sÞ4; ð0pÞ12; ð1s; 0dÞ4; ð8; 0ÞJi ¼ CJAfR8;JðrO�a; ð16=5ÞmÞYJðr̂O�aÞ

Fig. 2.13 Spatial positions of nucleon-wave-packet centroids of AMD wave functions of
20Ne [60]
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/ðaÞ/ð16OÞggðXG; 20mÞ;makes a large contribution. The percentage of the 16O + a
component of the Kp ¼ 0�1 band is much larger than the ground band and is about
95% for low spin states but it again decreases to about 70% for high spin states. We
can regard that the magnitude of WJ = 70% for the ground band is large enough to
allow the inversion doublet picture for the ground band and Kp ¼ 0�1 band.

AMD calculation reproduces the Kp ¼ 0þ4 band which has the band head 0+

state at 8.3 MeV. This band has been known by many cluster model studies [6] to
have an 16O + a structure which has one more nodal points in their relative wave
functions of 16O - a compared with the ground band. In terms of the quantum
number N = 2n + L with n standing for the number of nodes, the Kp ¼ 0þ4 band
has N = 10, while for the ground and Kp ¼ 0�1 bands N = 8 and 9, respectively.
Table 2.8 shows the magnitude of WJ of the Kp ¼ 0þ4 band is about 80% for low
spin states and it decreases to about 60% for high spin states. The 16O + a clus-
tering character is reflected in the a decay strength. Table 2.9 shows that the
observed a decay strengths of the ground, Kp ¼ 0�1 ; and Kp ¼ 0þ4 bands are well
reproduced by the AMD calculations.

In all three bands of Kp ¼ 0þ1 ; Kp ¼ 0�1 ; and Kp ¼ 0þ4 ; the magnitude WJ of the
16O + a component decreases from low spin to high spin states. An important
reason of this decrease is the nucleon spin aligment which is against the formation
of a cluster [59]. Figure 2.15 shows the expectation value of the intrinsic spin

Fig. 2.14 Density distributions of AMD intrinsic wave functions with various quadrupole
deformation [60]
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angular momentum (non orbital angular momentum) in the ground band which
grows larger for high spin states. The nucleon spin alignment is reflected in the
expectation value of the two-body spin-orbit force which, for the ground band, is
-5.2 MeV for the Jp ¼ 0þ1 state and increases to -8.4 MeV for the Jp = 8+

state. Since the Kp ¼ 0�1 band has very large component of 16O + a, the expec-
tation value of the two-body spin-orbit force is small and is only -0.8 MeV for
the Jp = 1- state, but it still increases to -1.3 MeV the Jp = 9- state. The effect
of the nucleon spin aligment is reflected in the shape of the quadrupole

Table 2.8 Squared
amplitudes of 16O + a
component WJ and
expectation values of
two-body spin-orbit force
h�Vlsi by AMD [60]

Kp Jp WJ h�Vlsi

01
+ 01

+ 0.70 -5.2
21

+ 0.68 -5.3
41

+ 0.54 -5.9
61

+ 0.34 -8.4
81

+ 0.28 -10.9
04

+ 04
+ 0.82 -3.2

24
+ 0.81 -3.0

44
+ 0.79 -4.9

64
+ 0.67 -6.8

84
+ 0.55 -7.4

01
- 11

- 0.95 -0.8
32

- 0.93 -0.8
52

- 0.88 -0.7
72

- 0.71 -0.9
92

- 0.70 -1.3
2- 21

- -12.9
31

- -13.0
41

- -14.1
51

- -14.4
61

- -16.5

Table 2.9 a reduced widths
h2 multiplied by 100 in 20Ne
compared with AMD
calculations [60]

Channel radius a is 6 fm

Kp Jp EXP AMD

01
+ 61

+ 1.0 ± 0.2 0.53
81

+ 0.094 ± 0.027 0.08
04

+ 04
+ [50 69.0

24
+ [59 68.0

44
+ 23 35.5

01
- 1- [16 31.0

32
- 26 29.1

52
- 30 28.8

72
- 22 ± 5 11.5

9- 17 8.9
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deformation [60]. Figure 2.16 shows that the ground band intrinsic wave function
of AMD changes its shape from prolate deformation for low spin states to the
oblate deformation of the Jp = 8+ state. This effect was discussed in detail in Ref.
[59]. It is quite interesting that the nucleon spin alignment which is a mean-field-
like dynamics is coexistent together with the clustering dynamics in the ground
band and also even in the typical cluster band of Kp ¼ 0�1 :

In this lecture we do not discuss the Kp ¼ 0þ2 and Kp ¼ 0þ3 bands whose band-
head Jp = 0+ states are located between the ground state and the Kp ¼ 0þ4

Fig. 2.15 Expectation values
of intrinsic spin angular
momentum for the ground
band states of 20Ne by AMD
[59]

Fig. 2.16 Change of deformation with increase of angular momentum for ground, Kp = 0-, and
Kp = 2- bands of 20Ne [60]
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band-head Jp = 0+ state. The Kp ¼ 0þ2 band has a shell-model-like structure with
less collectivity than the ground band [6]. The Kp ¼ 0þ3 band has been discussed to
have a 12C + 2a structure [6] which has been recently supported by an AMD
calculation [61].

2.3.4.3 Projection Operator onto the Cluster Model Space

The projection operator onto the cluster model space can be constructed by using
the eigenvalues and eigenfunctions of the RGM norm kernel NK [63]. Here we
explain a practical method of numerical construction of the projection operator
onto the cluster model space spanned by the wave functions of the form
AfvLðrÞYLðr̂Þ/ðC1Þ/ðC2Þg with r standing for the relative coordinate between
clusters C1 and C2. We first prepare sufficient number of Brink wave functions
fWLðRiÞ; ði ¼ 1�NÞg;

WLðRÞ ¼ DðRÞPLA wðC1; n1rÞwðC2; n2rÞf g ¼ ULðRÞgðXG;AmÞ; ð2:72Þ

ULðRÞ ¼ DðRÞPLA gðr � r;ArmÞ/ðC1Þ/ðC2Þf g ð2:73Þ

n1 ¼
A2

A
; n2 ¼ �

A1

A
; Ar ¼

A1A2

A
; A ¼ A1 þ A2; ð2:74Þ

where PL is the projection operator of angular momentum, D(R) is normalization
constant, and A1 and A2 are mass numbers of the clusters C1 and C2, respec-
tively. The functional space spanned by fULðRiÞ; ði ¼ 1�NÞg is intended to be
approximately the same as the cluster model space under consideration. The
orthonormal basis wave functions fÛi

L; ði ¼ 1�NÞg of this functional space are
obtained by diagonalizing the overlap matrix {Aij} with orthogonal matrix {eij},

Ûi
L ¼

1
ffiffiffiffi

li
p

X

N

j¼1

eijULðRjÞ;
X

N

i¼1

Aijekj ¼ lkeki; ð2:75Þ

Aij ¼ hULðRiÞjULðRjÞi ¼ hWLðRiÞjWLðRjÞi: ð2:76Þ

The desired projection operator P onto the cluster model space and the percentage
WJ of the C1 + C2 cluster component of a given wave function U are approxi-
mately calculated as

P ¼
X

N

i¼1

jÛi
LihÛi

Lj ¼
X

N

i;j¼1

ðA�1ÞijjUi
LihU

j
Lj; ð2:77Þ

WJ ¼ hUjPjUi ¼
X

N

i;j¼1

ðA�1ÞijhUjUi
LihU

j
LjUi: ð2:78Þ
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2.4 Coexistence of Cluster Structure and Superdeformation
in Heavy sd-Shell and Light pf-Shell Nuclei

Studies of cluster states in heavy sd-shell and light pf-shell nuclei have been
pursued by many authors but microscopic studies have not been so extensive as in
light sd-shell and p-shell nuclei. One of the characteristic features of the studies of
clustering in this mass number region is the study of molecular resonances in
somewhat high excitation energy region [64–66]. Recently a new stimulation has
been brought to this subject by the accumulation of the experimental knowledge of
superdeformed and hyperdeformed states in this mass number region which is by
the use of powerful gamma detectors used in heavier mass regions. Representative
examples are for nuclei like 36Ar [67], 38Ar [68], 40Ca [69], and 44Ti [70]. For the
study of the coexistence of cluster states and mean-field-type states, the study of
the interrelation between superdeformed states and cluster states including
molecular resonances is a very important new subject to be investigated more in
future. In this lecture we discuss this subject in two nuclei, 44Ti and 32S.

2.4.1 44Ti Case

2.4.1.1 40Ca + a Cluster States and Superdeformed States

The 44Ti nucleus is the pf-shell analogue of the nucleus 20Ne and several studies by
using microscopic 40Ca + a cluster wave function were performed [71–73]. An
important knowledge on the 40Ca + a structure in 44Ti was obtained by using the
unique 40Ca + a potential which was derived by fitting the anomalous large angle
scattering (ALAS) and nuclear rainbow phenomena of 40Ca + a elastic scattering
[66, 74]. The lowest 0+ state of this potential was found to be located about 4 MeV
below the 40Ca + a threshold which is near the experimental ground state located
about 5 MeV below the threshold (Eth = 5.14 MeV). This result suggested that
the ground state contains large component of 40Ca + a cluster structure [75–77].
Similar conclusion was obtained by the 40Ca + a RGM study of Ref. [78]. In this
RGM study the parameters of the effective nuclear force were chosen so as to
reproduce the observed elastic scattering cross sections in a wide energy range by
using the same imaginary potential as Ref. [74]. Then this RGM calculation
proved to give the lowest 0+ state near the experimental ground state.

An important experimental finding which supports the existence of the 40Ca + a
cluster structure in 44Ti was obtained by the a transfer experiment on 40Ca [80].
This transfer experiment confirmed the existence of the negative-parity rotational
band with Kp = 0- which has the 40Ca + a cluster structure. The band head
1- level was found at *7 MeV and band member states were found to have large
a spectroscopic factors. As are the cases of the 12C + a structure in 16O and the
16O + a structure in 20Ne, the existence of the negative-parity rotational band with
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Kp = 0- is a necessary condition in order for the 40Ca + a cluster structure to
exist.

The two low-lying rotational bands, one with Kp ¼ 0þ2 upon 02
+ state at

1.90 MeV and the other with Kp = 2+ upon 2+ state at 2.89 MeV, are now sug-
gested to be a superdeformed band and its side band, respectively [70]. The low
spin members of these bands have been known since long [81, 82] and recently
their high spin members were found to extend up to Jp = 12+ states. Shell model
calculation assigned 8-particle four-hole configuration to this superdeformed band
[83], and mean-field-type calculations confirmed the appearance of low-lying 8-
particle four-hole band [84, 85] with superdeformation. On the other hand some
cluster model studies assume 40Ca* + a cluster structure to this band [77, 86, 87]
with 40Ca* standing for the 02

+ and 21
+ states assumed to have 36Ar + a cluster

structure.

2.4.1.2 AMD Study of 44Ti

AMD study of 44Ti in Ref. [8] has contributed for the clarification of the actual
coexistence features of 40Ca + a cluster states and mean-field-type states including
superdeformed states.

Figure 2.17 shows good reproduction of the observed energy spectra by the
calculation of Ref. [88]. Table 2.10 shows that the E2 transitions, intra-band
transitions inside the ground band and two superdeformed bands with Kp = 02

+ and
Kp = 2+ and also the inter-band transitions between Kp = 02

+ and Kp = 2+ bands,
are well reproduced by the calculation of Ref. [88] without use of any effective
charge.

Table 2.10 B(E2) (e2fm2)
in 44Ti compared with AMD
calculation [88]

Jp
i ! Jp

f EXP AMD

[Kp = 01
+]

2þ1 ! 0þ1 120 ± 30 142

4þ1 ! 2þ1 280 ± 60 222

6þ1 ! 4þ1 160 ± 30 167

8þ1 ! 6þ1 14[ 172

10þ1 ! 8þ1 140 ± 30 99

12þ1 ! 10þ1 40 ± 8 69

½Kp ¼ 2þ ! Kp ¼ 0þ2 	
2þ3 ! 0þ2 43\ 24

[Kp = 02
+]

2þ2 ! 0þ2 220 ± 50 320

4þ2 ! 2þ2 268 ± 50 361

Kp = 2+

3þ3 ! 2þ3 \590 298

4þ3 ! 2þ3 175-60
+100 220

4þ3 ! 3þ1 \785 ± 650 302
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Figure 2.18 gives positive-parity energy curves with respect to the quadrupole
deformation parameter b. We see, in addition to the minimum-energy point near
b = 0.2 which corresponds to the ground band, the existence of the minimum-
energy points near b = 0.5 which correspond to two superdeformed bands with
Kp = 02

+ and Kp = 2+. The calculated superdeformed bands have the wave
function with 4�hx excitation (four particle jump from deformed sd to pf). The
superdeformed state is triaxially deformed (c = 0.25). In the case of the negative-
parity energy curves, we see three minimum-energy points for Jp = 1- states with
Kp = 0- in the low excitation energy region. The highest minimum-energy point
is located near b = 0.27 and corresponds to the 40Ca + a cluster state. The other
two minimum-energy points around b = 0.25 and 0.4 correspond to structures
with dominantly 1�hx and 3�hx excitations, respectively. In Fig. 2.18 we give the
density distributions of the intrinsic wave functions of the Jp = 1- state with
Kp = 0- near b = 0.27. This density distribution clearly shows the 40Ca + a
structure of this state. In this density distribution, the black points show the spatial
positions of the centroids of the single-nucleon wave packets of AMD Slater
determinant. While the nucleon wave packet centroids are divided clearly into two
spatial groups for the Kp =0- band, we do not see clear division of the nucleon
wave packet centroids for the ground and 4�hx-jump bands. Thus the superde-
formed states in 44Ti are mean-field-type states and do not have clear clustering
structure. It is reported in Ref. [88] that, if nucleon wave packets are not allowed to
deform, the AMD wave function around the superdeformed deformation b has
36Ar + 2a structure.

In Table 2.11 we show the squared amplitudes WJ of the 40Ca + a component
of the ground band states. The definition of WJ is given in Sect. 2.3.4.3. WJ values
of the ground band are about 40% for low spin members which are fairly smaller

Table 2.11 Squared amplitudes of 40Ca + a component WJ and a spectroscopic factor Sa by
AMD calculation [88]

Jp WJ Sa (Sa)exp Jp WJ Sa

[ground] [N = 14]
0+ 0.39 0.14 0.20 0+ 0.46 0.22
2+ 0.34 0.12 0.20 2+ 0.42 0.23
4+ 0.32 0.12 0.18 4+ 0.38 0.19
6+ 0.25 0.09 0.16 6+ 0.30 0.17
8+ 0.21 0.08 0.13 8+ 0.21 0.13
10+ 0.06 0.01 10+ 0.12 0.08
12+ 0.06 0.00

[N = 13] [N = 15]
1- 0.56 0.20 0.25 1- 0.63 0.34
3- 0.50 0.18 0.37 3- 0.59 0.32
5- 0.43 0.16 0.30 5- 0.56 0.31
7- 0.38 0.12 7- 0.48 0.28
9- 0.32 0.10 9- 0.35 0.20

For ground and N = 13 bands Sa are compared with experiments
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than the WJ values of the 16O + a component in the low spin members of the
ground band of 20Ne. But still they are of sizable magnitude in view of the density
distributions of the ground band states which do not show clear clustering feature.
For this sizable magnitude of WJ of the ground band, the following relation due to
the Bayman–Bohr theorem makes a large contribution:

j40Ca; ð0f ; 1pÞ4; ð12; 0ÞLi ¼ DLA R12;LðrCa�a; ð40=11ÞmÞYLðr̂Ca�aÞ/ðaÞ/ð40CaÞ
n o

� gðXG; 40mÞ:
ð2:79Þ

The smaller WJ value of the 40Ca + a component in 44Ti than the WJ value of the
16O + a component in 20Ne is reasonable because the spin-orbit effect is much
stronger than in 20Ne and the core nucleus 40Ca is much larger than the 16O core in
20Ne. As seen in the above equality due to the Bayman–Bohr theorem, the 40Ca - a
relative wave functions contained in the ground band states have the value 12 for the
quantum number N = 2n + L with n standing for the number of nodes.

The percentage WJ of the 40Ca + a component of the Kp = 0- band which has
40Ca + a density distribution is larger than the ground band and is about 56% for
the band head 1- state but it decreases to about 32% for the 9- state. The
expectation value of the two-body spin-orbit force is -9.5 MeV for the ground
state while it is -4.3 MeV for the band head 1- state of the Kp = 0- band, which
is the reflection of the smaller breaking of the spatial symmetry of the Kp = 0-

band. The 40Ca - a relative wave functions contained in the Kp = 0- band states
have the value 13 for the quantum number N = 2n + L, and hence in Table 2.11
this band is called the N = 13 band. In Table 2.11 we see good reproduction of the
observed spectroscopic factor of 40Ca + a by AMD for the ground and N = 13
bands.

The AMD calculation gives excited bands with Kp = 0+ and Kp = 0- which
have 40Ca + a component with respective percentage numbers 46 and 63% for the
band head 0+ and 1- states. The 40Ca + a components of these Kp = 0± bands
have one more nodal points than the lower Kp = 0± bands in their 40Ca - a
relative wave functions, namely N = 14 and 15, respectively. Therefore, in
Table 2.11 these bands are called the N = 14 and 15 bands, respectively. The
N = 14 and 15 bands are called higher nodal Kp = 0± bands. In Ref. [80] the
higher nodal Kp = 0± bands are reported to be observed experimentally, and they
are shown in Fig. 2.17.

In the ground state of 44Ti, the 40Ca + a component is contained by only about
40%. But the AMD calculation does not give any other 0+ state which has larger
percentage of 40Ca + a component with N = 12 below the higher nodal 0+ state.
Thus we are allowed to say that the parity inversion partner of the observed
Kp = 0- band built upon the 1- state around 7 MeV is the ground band. The
higher nodal Kp = 0± bands can be regarded as the excited bands which are
formed by the activation of the 40Ca - a clustering degree of freedom embedded
in the ground band.
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2.4.2 32S Case

2.4.2.1 Superdeformed States and 16O + 16O Molecular Resonance States

In 32S, many mean-field calculations predict the presence of the band with doubly
superdeformed magic structure whose band head 0+ state is located near

Fig. 2.17 Energy spectra of 44Ti by AMD [88]. (Eth)exp for 40Ca + a breakup is 5.14 MeV

Fig. 2.18 Energy curves of positive-parity AMD states of 44Ti with respect to quadrupole
deformation and the density distribution of the intrinsic AMD wave function of the Jp = 1- state
of Kp = 0- band [88]
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Ex = 10 MeV [89–91], although no definite experimental information has been
obtained until now. The intrinsic state has a configuration with four nucleons
raised into the deformed intruder orbit coming down from pf shell. The density
distribution of this intrinsic state wave function looks like that of 16O + 16O
molecular configuration. The microscopic study of the 16O + 16O molecular
structure has been made by many authors [92–98], which is partly because the
cluster system of two double-closed-shell nuclei is of fundamental importance and
partly because the 16O + 16O molecular resonances were experimentally observed
[99]. However, it was not easy to give any definite suggestion from microscopic
theory to the 16O + 16O molecular resonance phenomena.

An important progress in the study of 16O + 16O system was made at the end of
80’s, which was the discovery of the nuclear rainbow phenomena in the 16O + 16O
elastic scattering [100]. This discovery made possible the derivation of unique
16O - 16O potential by Kondo and his coworkers [101, 102]. This unique potential
proved to be deep contrary to the very shallow potentials long used to describe low
energy scattering [99]. Additional measurements and calculations reinforced this
deep potential picture for this 16O - 16O system [103–105] and neighboring
systems like 12C - 12C and 12C - 16O [106]. Thus after years of controversy
about the nature of the inter-nucleus potential, it is now definitely agreed that the
potential is deep [17, 106, 107].

Recently it was argued, by calculating the eigenstates of the unique 16O - 16O
potential, that the band of observed 16O - 16O molecular resonance states cor-
responds to the calculated rotational band having the number of N = 2n + L = 28
of the 16O - 16O relative motion with respect to the excitation energy [108] as
shown in Fig. 2.19. Here n and L are the number of nodes and angular momentum
of the relative wave function, respectively. Furthermore it was argued that the
lowest rotational band having the lowest Pauli-allowed number of
N = 2n + L = 24 has its band head 0+ state at about 10 MeV in excitation energy
(Fig. 2.19).

2.4.2.2 AMD Study of 32S

AMD study of 32S [109] teaches us how superdefomed states can be related to
the molecular states. The AMD calculation by the use of the Gogny D1S force
gives almost the same answer for the superdeformed excited rotational band as
the Hartree–Fock calculations (Fig. 2.20). It is here to be noted that the
minimum energy by the 16O + 16O Brink wave function is calculated to be
higher by about 10 MeV than the superdeformed 0+. The Hill-Wheeler calcu-
lation by superposing the states on the AMD energy curve gives the refined
superdeformed band and other two higher-lying rotational bands in addition to
the ground state and low-lying excited states as shown in Fig. 2.21. The
16O + 16O component contained in the superdeformed band head state is about
42% and those contained in other two higher-lying rotational band head states
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are 71 and 73%. The expectation values of the two-body spin-orbit force are
-4.5, -3.2, and -2.8 MeV for the superdeformed and two higher-lying band
head states, respectively. The 16O + 16O components contained in the

Fig. 2.19 Several lowest
molecular bands calculated
with unique 16O - 16O
potential (circle points) [108].
Filled triangle points are
averaged energy positions of
observed 16O + 16O reso-
nances. Observed angular
distributions (dots) in the
inset are from Ref. [99]

Fig. 2.20 Energy curves of 32S with respect to quadrupole deformation by AMD [109]
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superdeformed and high-lying bands have the 16O - 16O relative wave functions
whose number of N = 2n + L are 24, 26, and 28, respectively.

For the magnitude, about 42%, of the 16O + 16O component in the superde-
formed band head state, the following relation due to the Bayman–Bohr theorem
makes a large contribution:

ð0; 0; 0Þ4ð1; 0; 0Þ4ð0; 1; 0Þ4ð0; 0; 1Þ4ð1; 0; 1Þ4ð0; 1; 1Þ4ð0; 0; 2Þ4ð0; 0; 3Þ4

¼ nA Xð0;0;24ÞðrO�O; 8mÞ/ð16OÞ/ð16OÞ
n o

gðXG; 32mÞ:
ð2:80Þ

In Ref. [109] the Hill-Wheeler calculation was made in wider basis space
by adopting 16O + 16O Brink wave functions in addition to the basis states on
the AMD energy curve (Fig. 2.21). This improved Hill-Wheeler calculation
gave only little change to the superdeformed band; the energy gain was very
small and the percentage of the 16O + 16O component contained in the su-
perdeformed band head state changed from about 42 to about 44%. However
the improved Hill-Wheeler calculation gave rather large change to the two
higher-lying bands, namely the percentages of the 16O + 16O components
contained in these two band head states changed from about 71 and 73% to
about 90 and 98%, respectively, although the energy gains for these two
bands were rather small. The higher band with N = 28 is thus almost pure
16O + 16O molecular band.

When we compare three bands of AMD with N = 24, 26, and 28 with the three
bands of unique 16O - 16O potential, we see good correspondence between them in
excitation energies. Especially we can regard the AMD band with N = 28 as cor-
responding to the band of observed molecular resonances of 16O + 16O. The AMD
study teaches us that the 16O + 16O molecular resonance band is formed by the
activation of the 16O - 16O clustering degree of freedom embedded in the super-
deformed band.

Fig. 2.21 Superdeformed
rotational band and two
excited bands in 32S by AMD
[109]
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2.5 Structure Change Between Cluster States
and Mean-Field-Type States

2.5.1 Dual Character of Nuclear Wave Function

In previous sections we discussed the Bayman–Bohr theorem for the wave func-
tions of the ground states of 8Be, 12C, 16O, 20Ne, and 44Ti, and for that of the
superdeformed excited state of 32S. This theorem says that the nuclear many-body
wave function possesses two faces, face of ‘mean-field-type structure’ and face of
‘cluster structure’. This fact may look like only a mathematical feature of the wave
function. But it also represents a physical feature. It is because there do exist two
kinds of excitation modes on the basis of this dual nature of the wave function. We
below summarize what we discussed in previous sections in this lecture from this
viewpoint.

In 8Be we discussed Bayman–Bohr theorem for the ground state, but the ground
state is a 2a cluster state rather than a mean-field-type state. In this nucleus,
beyond the Bayman–Bohr theorem which compares the SU(3) shell model wave
function with the cluster model wave function, the deformed Hartree–Fock wave
functions for several types of Skyrme forces were compared with the 2a cluster
wave function [111]. The result showed that the Hartree–Fock wave functions
contain a large amount of the 2a component (WJ of Sect. 2.3.4.3) more than 97%.
It is desirable to compare the Hartree–Fock wave functions with the optimum
(minimum energy) 2a cluster wave function.

In 12C, the ground state wave function is known to contain large amount of the

SU(3) shell model wave function jð0sÞ4ð0pÞ8; ðk; lÞ ¼ ð04ÞJ ¼ 0i. According to
the Bayman–Bohr theorem, this wave function is equivalent to a 3a cluster wave
function as follows,

jð0sÞ4ð0pÞ8;ðk;lÞ¼ð04ÞJ¼0i

¼N0A R4;0ðn1;ð8=3ÞmÞR4;0ðn2;2mÞ/ða1Þ/ða2Þ/ða3Þ
� �

�gðXG;12mÞ;

ð2:81Þ

where n1 = X1 - (X2 + X3)/2, n2 = X2 - X3, and Xi stands for the center-of-mass
coordinate of ith a cluster. Since the Hoyle state can be well described by the wave
function AfPA expð�ð4=ð3B2ÞÞn2

1 � ð1=B2Þn2
2Þ/ða1Þ/ða2Þ/ða3Þg with PA stand-

ing for the projection operator onto the functional space having the number of
oscillator quanta larger than 8, the formation of the Hoyle state can be regarded to
be the excitation of the 3a relative wave function from R4,0(n1, (8/3)m) R4,0(n2, 2m)
of the ground state to PA expð�ð4=ð3B2ÞÞn2

1 � ð1=B2Þn2
2Þ of the Hoyle state. On

the other hand, there is, of course, mean-field-type excitation of the ground state as
is typically seen in the formation of the 1+ excited state at 12.7 MeV having non-
zero intrinsic spin S = 1.
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In 16O, it has been long known that the excited states of 31
-, 11

-, 21
-, 01

-, are
dominantly of the structure of 1-particle 1-hole, namely they are the excited states
due to the mean-field-type excitation mode. At the same time, as we described in
section 3, it is now well known that lot of excited states including
02

+, 21
+, 22

+, 41
+, 61

+, 12
-, 32

-, 51
-, 71

-, are dominantly of the cluster structure of 12C + a
described by the wave function of the form Afv‘;L;JðrC�aÞ½Y‘ðr̂C�aÞ
/Lð

12CÞ	J/ðaÞg: Since the Bayman–Bohr theorem assures that the double-closed-
shell wave function of the ground state is equivalent to 12C + a cluster wave function
as,

det jð0sÞ4ð0pÞ12j ¼ cLA R4;LðrC�a; 3mÞ YLðr̂C�aÞ/Lð12CÞ
h i

J¼0
/ðaÞ

h i

� gðXG; 16mÞ;
ð2:82Þ

where L is arbitrary among L = 0, 2, and 4, the formation of 12C + a cluster states
can be regarded to be the excitation of the 12C - a relative motion from
R4;LðrC�a; 3mÞYLðr̂C�aÞof the ground state to v‘;L;JðrC�aÞY‘ðr̂C�aÞof the cluster states.

In 20Ne, the ground band states contain the 16O + a component at most 70%.
This 16O + a component is mostly equivalent to SU(3) shell model wave function
with (k, l) = (8, 0) due to Bayman–Bohr theorem (Eq. (2.61)):

jð0sÞ4ð0pÞ12ð1s; 0dÞ4; ð8; 0ÞLi ¼ CLA R8;LðrO�a; ð16=5ÞmÞYLðr̂O�aÞ/ð16
OÞ/ðaÞ

n o

� gðXG; 20mÞ:
ð2:83Þ

We saw in Sect. 2.3 that the excitations of 16O - a clustering degree of freedom
imbedded in the ground band states give rise to the excited cluster bands, Kp = 0-

and Kp = 04
+ bands which are described by the wave functions of the form

AfvLðrO�aÞYLðr̂O�aÞ/ð16OÞ/ðaÞg: On the other hand, in 20Ne there exists the
low-lying Kp = 2- band having mean-field-type structure. This band is domi-
nantly formed by 1-particle 1-hole excitation of the ground state.

In 44Ti, the ground band states contain the 40Ca + a component at most 40%.
This 40Ca + a component is mostly equivalent to SU(3) shell model wave function
with (k, l) = (12, 0) due to Bayman–Bohr theorem :

j40Ca; ð0f ; 1pÞ4; ð12; 0ÞLi ¼ DLA R12;LðrCa�a; ð40=11ÞmÞYLðr̂Ca�aÞ/ð40CaÞ/ðaÞ
n o

� gðXG; 40mÞ:
ð2:84Þ

We saw in Sect. 2.4 that the excitations of 40Ca - a relative motion imbedded in
the ground band give rise to the excited cluster bands, Kp = 0-, and N = 14, 15
higher nodal bands which are described by the wave functions of the form

AfvLðrCa�aÞYLðr̂Ca�aÞ/ð40CaÞ/ðaÞg: On the other hand, in 44Ti there exists the
low-lying Kp = 3- band having mean-field-type structure. This band is
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dominantly formed by 1-particle 1-hole excitation of the ground state. Further-
more, there exist two low-lying superdeformed bands with mean-field-type
structure formed by four-particle jump.

In 32S we showed that the superdeformed band contains 16O + 16O component
by about 44%. This 16O + 16O component is mostly equivalent to shell model
wave function with 4p - 4h excitation due to Bayman–Bohr theorem :

ð0; 0; 0Þ4ð1; 0; 0Þ4ð0; 1; 0Þ4ð0; 0; 1Þ4ð1; 0; 1Þ4ð0; 1; 1Þ4ð0; 0; 2Þ4ð0; 0; 3Þ4

¼ nA Xð0;0;24ÞðrO�OÞ/ð16OÞ/ð16OÞ
n o

gðXG; 32mÞ:
ð2:85Þ

We explained that the excitation of 16O - 16O relative motion imbedded in the
superdeformed band gives rise to the 16O + 16O molecular resonance band.

From these actual features of the coexistence of cluster states and mean-field-
type states in 12C, 16O, 20Ne, 44Ti, and 32S, one may say that the coexistence of
cluster structure and mean-field-type structure is rather of logical necessity of the
dual character of nuclear wave function. Recently this point has been argued by
H. Horiuchi, K. Ikeda, K. Kato, and T. Yamada, who have called this dual nature
of nuclear states the Janus nature of nuclei [110]. Of course this mechanism of
the coexistence of mean-field type and cluster type states is based on the nature
of nuclear force. Nuclear force has strong tensor force which gives rise to tightly
bound alpha cluster and it is of course responsible to the formation of the mean
field which is close to the harmonic oscillator field.

2.5.2 E0 Transitions Between Ground State and Cluster
States in 16O and 12C

An important observable quantity which directly verifies the dual nature of the
nuclear wave function expressed by the Bayman–Bohr theorem is the large
strength of the monopole transition between shell model type ground state and the
excited cluster states. E0 transition strengths between ground state and cluster
states in light nuclei are actually strong in general with their order of magnitude
comparable with single-nucleon strength [112, 113]. This looks strange because
cluster states are many-particle many-hole states in the shell model description
which implies E0 strengths from the ground state are much smaller than the single-
nucleon strength.

Below we explain that the above problem of the E0 transition strength can be
answered quite naturally by applying the Bayman–Bohr theorem to the ground
state wave functions, by explicitly analysing the E0 transitions in 16O and 12C
[113]. The observed strengths M(E0) of the E0 transition in 16O are 3.55, 4.03,
and 3.3 fm2 for 0þ2 $ 0þ1 ; 0

þ
3 $ 0þ1 ; and 0þ5 $ 0þ1 ; respectively, while the

observed M(E0) in 12C for 0þ2 $ 0þ1 is 5.4 fm2. A rough estimation of the
single-nucleon strength huf ðrÞjr2juiðrÞi is given by (3/5)R2 with R standing for
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the nuclear radius. This estimation is obtained under the uniform-density

approximation of uðrÞ�
ffiffiffiffiffiffiffiffiffiffi

3=R3
p

for ui(r) and uf(r). For R� 3 fm; we have
huf ðrÞjr2juiðrÞi� 5:4 fm2: Another strange point, from shell model viewpoint,
about the observed values of M(E0) is the fact that the three excited 0+ states of
16O have very similar magnitude of M(E0) although they have different com-
plicated configurations of many-particle many-hole. The explanation given below
also answers to this question.

2.5.2.1 E0 Transitions in 16O

As we explained in Sect. 2.3, the 02
+ and 03

+ states can be dominantly described by
12C + a cluster model wave functions, A½v0ðrC�aÞ½Y0ðr̂C�aÞ/0ð12CÞ	J¼0/ðaÞ	 and

A½v2ðrC�aÞ½Y2ðr̂C�aÞ/2ð12CÞ	J¼0/ðaÞ	; respectively. On the other hand, the
ground state is dominantly described by the double-closed-shell wave function

UDCS which is equivalent to A½R4;LðrC�a; 3mÞ½YLðr̂C�aÞ/Lð
12CÞ	J¼0/ðaÞ	 with

arbitrary L = 0, 2, 4. Therefore the E0 transition between the ground state and a
12C + a cluster state is the transition between the relative wave function R4,L

(rC - a, 3m) and vL(rC - a). Actually, in spite of the presence of the antisym-
metrization, the E0 transition strength comes only from the relative motion part of
the wave function. It means that the E0 transition strength comes only from the E0
operator O(E0, rel.) of the relative motion. In order to verify this, we decompose
the total E0 operator O(E0) between zero isospin states as

OðE0Þ ¼ 1
2

X

16

i¼1

ðri � XGÞ2 ¼ OðE0;12 CÞ þ OðE0; aÞ þ OðE0; rel:Þ; ð2:86Þ

OðE0;12 CÞ ¼ 1
2

X

i212C

ðri � XCÞ2; OðE0;12 CÞ ¼ 1
2

X

i2a
ðri � XaÞ2; ð2:87Þ

OðE0; rel:Þ ¼ 1
2

12� 4
16

r2
C�a: ð2:88Þ

We then note the fact that the relative wave function vL(rC - a) has the harmonic
oscillator components whose number of the oscillator quanta is larger than 4 of
R4,L (rC - a, 3m). From this fact we obtain the following equations,

UDCSjA vLðrC�aÞ YLðr̂C�aÞOðE0;12 CÞ/Lð12CÞ
h i

J¼0
/ðaÞ

n oD E

¼ 0; ð2:89Þ

UDCSjA vLðrC�aÞ YLðr̂C�aÞ/Lð12CÞ
h i

J¼0
OðE0; aÞ/ðaÞ

n oD E

¼ 0: ð2:90Þ

In these equations use is made of the fact that the numbers of the oscillator quanta
of O(E0, 12C) /L(12C) and O(E0, a) /(a) are not smaller than those of /L(12C) and
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/(a), respectively, because both /L(12C) and /(a) have minimum numbers of
oscillator quanta for 12C and a nuclei, respectively. We thus obtain for the M(E0)

UDCSjOðE0ÞjA vLðrC�aÞ YLðr̂C�aÞ/Lð12CÞ
h i

J¼0
/ðaÞ

n oD E

¼ UDCSjOðE0ÞjA OðE0; rel:ÞvLðrC�aÞ YLðr̂C�aÞ/Lð12CÞ
h i

J¼0
/ðaÞ

n oD E

:

ð2:91Þ

In Ref. [113], exact analytical formulas of MðE0; 0þ2 ! 0þ1 Þ and MðE0; 0þ3 ! 0þ1 Þ
are obtained as

MðE0; 0þ2 ! 0þ1 Þ ¼
1
2

ffiffiffiffiffiffiffi

s0;4

s0;6

r

g6 R40ðr; mÞjr2jR60ðr; mÞ
� �

; ð2:92Þ

MðE0; 0þ3 ! 0þ1 Þ ¼
1
2

ffiffiffiffiffiffiffi

s2;4

s2;6

r

f6 R42ðr; mÞjr2jR62ðr; mÞ
� �

; ð2:93Þ

sL;N ¼ hWL;N jAfWL;Ngi; WL;N ¼ RN;LðrC�a; 3mÞ YLðr̂C�aÞ/Lð12CÞ
h i

J¼0
/ðaÞ;

ð2:94Þ

j0þ2 i ¼
X

1

N¼6

gNðCNAfW0;NgÞ; jjCNAfW0;Ngjj ¼ 1; ð2:95Þ

j0þ3 i ¼
X

1

N¼6

fNðDNAfW2;NgÞ; jjDNAfW2;Ngjj ¼ 1; ð2:96Þ

The quantity sL,N represents the effect of the antisymmetrization and actually is
fairly smaller than unity in general for non large N. However, in the above analytical
formulas, quantities sL,N appear in the form of ratio, s0,4/s0,6 and s2,4/s2,6, and the
magnitudes of these ratios are close to unity, which implies that the effect of anti-
symmetrizaion has only little influence on the M(E0) values. The quantities g6 and f6

are the coefficients of the 2�hx - jump component contained in j0þ2 i and j0þ3 i;
respectively, and their magnitudes are around 0.4. Note that g6 and f6 are not
percentage quantities, (g6)2 and (f6)2. The E0 matrix elements of the relative motion,
hR40ðr; mÞjr2jR60ðr; mÞi and hR42ðr; mÞjr2jR62ðr; mÞi; are larger than the corresponding
E0 matrix elements of the single-nucleon motion, hR00ðr; mÞjr2jR20ðr; mÞi and
hR11ðr; mÞjr2jR31ðr; mÞi; by about 50%. We thus see that the order of magnitude of
MðE0; 0þ2 ! 0þ1 Þ and MðE0; 0þ3 ! 0þ1 Þ are the same as the single-nucleon strength.
Also we see that MðE0; 0þ2 ! 0þ1 Þ and MðE0; 0þ3 ! 0þ1 Þ should have similar
magnitude because their analytical formulas are very similar each other.

The numerical values of MðE0; 0þ2 ! 0þ1 Þ and MðE0; 0þ3 ! 0þ1 Þ calculated
with the above formulas with suitable parameter values are 1.97 fm2 and 3.89
fm2, respectively. These values are somewhat smaller than the observed values
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although the order of magnitudes are reproduced. This problem was investigated
in Ref. [113], and it was shown that the inclusion of the ground state correlation
into the ground state wave function makes the reproduction of the observed values
by theory fairly satisfactory. The ground state correlation adopted is the one due to
the inter-cluster relative motion, namely the 12C - a relative wave function
embedded in the ground state is not simply R4,L (rC - a, 3m) but has contributions
from higher N components, RN,L (rC - a, 3m), with N [ 4. The important point
of this result is that the clustering degree of freedom described by the Bayman–
Bohr theorem induces the ground state correlation which affects the E0 matrix
elements.

2.5.2.2 E0 Transitions in 12C

In Ref. [113] similar analytical formula of M(E0) was derived for the transition
between the ground state and the 02

+ state of 12C (Hoyle state) as follows

MðE0; 0þ2 ! 0þ1 Þ ¼
ffiffiffi

7
6

r

ffiffiffiffiffiffiffiffiffi

hF4i
hF5i

s

r5hR40ðr; mÞjr2jR60ðr; mÞi; ð2:97Þ

hFni ¼ hQnjAfQngi; Qn ¼ Fnðn1; n2Þ/ða1Þ/ða2Þ/ða3Þ; ð2:98Þ

Fnðn1; n2Þ ¼
1

4p

X

n1þn2¼n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2n1 þ 1Þ!!ð2n2 þ 1Þ!!
2n1!!2n2!!

s

R2n1;0ðn1; ð8=3ÞmÞR2n2;0ðn2; 2mÞ;

ð2:99Þ

j0þ2 i ¼
X

1

n¼5

rnðenAfQngÞ; jjenAfQngjj ¼ 1; ð2:100Þ

Here, as before, jð0sÞ4ð0pÞ8; ð04ÞJ ¼ 0i was adopted as the ground state wave
function, and AfPA expð�ð4=ð3B2ÞÞn2

1 � ð1=B2Þn2
2Þ/ða1Þ/ða2Þ/ða3Þg was

adopted for the Hoyle state. Applying the Bayman–Bohr theorem to the ground
state, the E0 transition is shown to be the transition of the 3a relative wave
function between R4,0(n1, (8/3)m) R4,0(n2, 2m) and PA expð�ð4=ð3B2ÞÞn2

1 �
ð1=B2Þn2

2Þ by the E0 operator of relative motion O(E0, rel.) = (4/3)n1
2 ? n2

2.
The quantity hFni represents the effect of the antisymmetrization but in the above

analytical formula, it appears in the form of ratio, hF4i=hF5i; whose magnitude is
close to unity. Thus the effect of antisymmetrizaion has only little influence on the
M(E0) value like in the case of 16O. The quantity r5 is the amplitude of the 2�hx -
jump component contained in j0þ2 i and its magnitude is around 0.25. The E0 matrix
element of the relative motion, hR40ðr; mÞjr2jR60ðr; mÞi; is the same as in 16O, and
hence it is larger than the corresponding E0 matrix elements of the single-nucleon
motion, hR00ðr; mÞjr2jR20ðr; mÞi and hR11ðr; mÞjr2jR31ðr; mÞi; by about 50%. We thus
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obtain the same result as in 16O that the order of magnitude of MðE0; 0þ2 ! 0þ1 Þ is
the same as the single-nucleon strength.

The numerical value of MðE0; 0þ2 ! 0þ1 Þ calculated with the above formula
with suitable parameter values is 1.3 fm2. This value is smaller than the observed
value although the order of magnitude is reproduced. In Ref. [113], there was
given the same conclusion as in 16O that the clustering degree of freedom
described by the Bayman–Bohr theorem induces the ground state correlation
which makes the magnitude of the calculated E0 matrix element close to the
observed value.

2.6 Summary

(1) Actual features of coexistence of cluster states and mean-field-type states
were discussed in six self-conjugate nuclei, 8Be, 12C, 16O, 20Ne, 44Ti, and 32S.
(2) In many cases detailed studies with AMD were utilized. The existence of the
nucleon spin alignment in higher spin members of rotational bands even with
prominent clustering character is one of the interesting features of coexistence of
cluster dynamics and mean-field-type dynamics. (3) Rather large percentage of
clustering components in the ground bands of 20Ne and 44Ti (about 70 and 40%
for ground states of 20Ne and 44Ti, respectively) and the superdeformed bands in
32S (about 40% for band-head), is largely due to the Bayman–Bohr theorem. (4)
All the excited states with cluster structure discussed in this lecture can be
considered to be formed by the excitation of the clustering degrees of freedom
embedded in the ground states (superdeformed state in 32S) which is described
by the Bayman–Bohr theorem. (5) An important evidence of the dual nature of
ground state wave function described by the Bayman–Bohr theorem was shown
to be given by the fact that lots of E0 transitions between cluster states and
ground state in 16O and 12C are rather strong comparable to the single-nucleon
strength. (6) Coexistence of cluster states and mean-field-type states was dis-
cussed to be rather of logical necessity due to the dual character of nuclear wave
function.
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Chapter 3
Alpha-cluster Condensations in Nuclei
and Experimental Approaches
for their Studies

Wolfram von Oertzen

3.1 Binding Energy of Alpha Particles

The binding energies of nuclei in their ground states as a function of mass number
show a peculiar systematic behavior, explained by the liquid drop model. Devi-
ations from a smooth curve are due to shell effects, and are some times discussed
to be related to the formation of a-clusters. The specific properties of the nucleon–
nucleon force, namely the saturation which occurs if the spin and isospin quantum
numbers are both coupled to zero, produces a very strong binding of a-particles
[1]. In addition, due to the internal structure of the a’s an increased (30%) central
density is observed compared to the the usual central density in nuclei. The a-
particle is therefore a unique cluster subsystem in nuclei.

This feature is well known from the early history of nuclear science, and there
has been small but steady activity in the field of clustering in nuclei in the last
decades. Recently more attention to clustering in nuclei has emerged due to the
study of weakly bound nuclei at the drip lines. For these nuclei clustering is very
important even for the properties of ground states. These are well reproduced in
model independent approaches, like in the antisymmetrized fermionic molecular
dynamics (FMD) which uses all degrees of freedom in the nuclear forces, in the
approach by Feldmeier et al. [2, 3]. With a related approach, the antisymmetrized
molecular dynamics (AMD) with effective N–N forces, Horiuchi and Kanada-
En’yo [4-6] are able to reproduce the ground state properties and a large variety
of excited nuclear states, in particular those with molecular structure. In these
calculations the density distributions of the nucleons are obtained. Quite specta-
cular are the results for loosely bound nuclear systems [5, 6], where a-clusters
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appear naturally as dominant substructures. This work has established that
a-clusters play a decisive role in the description of light nuclei, in particular for the
loosely bound neutron-rich isotopes. For example the extra neutrons are found in
covalent molecular orbitals around two a-particles forming bound molecular two-
center systems for the beryllium isotopes [7].

Furthermore, the a-particle is the most important ingredient in the concept of
the Ikeda-diagram [8-11], where highly clustered states (e.g. linear chains) are
predicted at excitation energies around the energy thresholds for the decomposi-
tion into specific cluster channels.

In order to explore the dynamics of a-clustering in excited states of N = Z
nuclei the systematics of binding energies per a-particle in nuclei EBa/Na, has been
considered [12]. The experimental masses have been taken from Ref. [13], for
164Pb from a theoretical study of the mass A = 164 region [14]. With the total
binding energy EB

t (N, Z), the binding energy of all a-particles in N = Z nuclei can
be obtained, this will again follow the well known curve for the binding energy
(per nucleon) properly rescaled. We are interested in the binding energy per a-
particle, EBa/Na, determined from the experimental data, as shown in Fig. 3.1,
there we show the quantity,

EBa=Na ¼ Et
BðN; ZÞ � NaEa

B

� �

=Na: ð3:1Þ

Here we have the typical maximum values around Fe-nuclei. The energy for the
threshold states can be read from this figure. Searching for the alpha-condensed
states we can also include states with a strongly bound core, e.g. a core of 16O, a
core of 40Ca or 52Fe, with the appropriate number N0a of free a-particles outside.
The binding energy with a core shown in Fig. 3.1 being:

E
40Ca
Ba ðN 0aÞ=ðNaÞ ¼ Et

BðN; ZÞ � E
40Ca
B ðN; ZÞ � ðNa � 10ÞEa

B

h i.

ðNa � 10Þ: ð3:2Þ

From this figure we can deduce that the excitation energy, where the value of EBa/
Na reaches zero, the threshold for complete decay, becomes lower with the
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Fig. 3.1 The experimental
binding energies per a-parti-
cle in N = Z nuclei, as func-
tion of the number of
a-particles, Na. The lines are
drawn to connect the points.
The same quantities are
shown under the assumption
with two different heavy
clusters as cores: 40Ca and
52Fe, as indicated (adopted
from [12])
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inclusion of a core. For heavier nuclei around 100Sn and masses approaching 164Pb
the nuclei become unstable relative to single (or multiple) proton or a-particle
emission. The excitation energies, where the binding energy value for a’s
approaches zero—these are the values where a-particle condensates can form—
will be discussed below, Sect. 3.2. Although these a-condensed states are at rather
high excitation energies in the continuum of nucleonic states, they may have
collective properties, which can give them a smaller observable width. We expect
the decay into many a-particles, a decay not described by the Hauser–Fehsbach
formalism for statistical compound nucleus decay (see below).

3.2 The Formation of Alpha Condensates

The a-particle condensates formed at the thresholds will be unbound states, their
decay properties will be one of the most important points in the discussion of these
boson states. In lighter nuclei, in particular for the second 02

+ state in 12C, the Hoyle
state [15], which can be considered as the first boson condensate, a gamma-decay
is possible, here with the sequence 0þ2 ! 2þ1!0þ1 ; a process most important for the
formation of 12C in stars. The recent proposal of an a-particle condensate wave
function (THSR), by Tohsaki, Horiuchi, Schuck and Roepke [16], describes the
properties of the Hoyle state very well, whereas even the largest shell model
calculations fail completely to reproduce this state [17, 18], see also Refs. [20, 21]
for the most recent discussion.

In medium size nuclei (Z \ 20) the a-condensates, calculated using the known
alpha-alpha-potential with a self-consistent approach (based on the Gross–Pi-
atevski equation), will have Coulomb barriers [19] for the decay in to multiple a’s.
With these barriers the states will have sufficiently small width for potential
studies by inelastic scattering. However, the heaviest nucleus for which this barrier
can create a quasi-bound state [19], is estimated to be around 40Ca. In heavier
nuclei these states will be embedded high in the continuum of the fermionic states,
their decay is expected to be non statistical, the most characteristic property
to study.

3.2.1 Second Order Phase Transition

The ground states of nuclei are well described by the shell model with a self-
consistent potential of all nucleons. If a cluster model with a-clusters is used, their
strong spatial overlap, the anti-symmetrization of all nucleons destroys their ori-
ginal properties, a fact widely discussed in the literature (see Refs. [22] for the
most recent discussion). The intrinsic structure of a-clusters in these cases are very
different from that of free a-particles, still a large variety of molecular resonances
connected to clusters are observed in N = Z nuclei [23].
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We want to discuss the formation of an a-particle gas, where the average
distance between a-particles is much larger with rather small spatial overlap. The
corresponding nucleon density will be well below normal nuclear densities. In fact,
in the theoretical investigation of Bose–Einstein condensates in nuclei Tohsaki
et al. [16-19] find, that at the thresholds for multi a-particle decays, the states
with a-clusters have a much larger radial extension than the ground states (larger
a–a distances). From the view point of the nucleonic fermion gas the appearance
of such states will depend on the temperature (i.e. excitation energy, Ex

*) of the
nucleus. The concept of a second order phase transition as in a chemical reaction
with two components can be used [12], a concept well established in thermody-
namics of composite systems in statistical physics [24]. The basic equation is the
‘‘reaction’’ of four ‘‘free’’ nucleons (two protons and two neutrons coupled to total
values of spin and isospin of zero) forming a-clusters:

ðN1 þ N2 þ N3 þ N4Þ !a-particleþ 28:3 MeV:

The free nucleons, Ni, should have a definite volume and pressure, in order to
define thermodynamic quantities and where the density allows the occurrence of
the mentioned reaction. We can assume that the particles interact in a well defined
volume created by a self consistent mean field for the nucleons (the Hartree–Fock
approach) and for the a-clusters with the Gross–Piatevski approach for bosons.
This latter has been used in the work of Yamada and Schuck [19].

In models like the AMD [6] a certain number of nucleons are confined in a
volume with a positive kinetic energy, as suggested in Fig. 3.2. In this model a

Fig. 3.2 Schematic illustration of the relative values of the energies of free nucleons and
alternatively their binding energies in nuclei (8.2 MeV), the latter are generally larger than in a-
clusters (7.07 MeV). The difference DG between these binding energies decreases with excitation
energy (‘‘heating’’) in nuclei. At a critical value the two binding energies become equal, DG ¼ 0;
a collective state of bosons (potentially mixed with fermions), the condensed a-particle gas can be
formed. In the AMD this state is approached by ‘‘cooling’’ from a fermion gas

112 W. von Oertzen



cooling method is applied to find the states of the lowest energy and higher
density. The energy of the nucleons inside the nucleus is defined by their volume,
and their Fermi-energy can be deduced from the nuclear radius, as described in
text books [25]. In the AMD approach with the cooling process a certain a-cluster
phase is observed, before the formation of the higher density states with bound
fermions, and finally the ground states are reproduced. At the end the formation of
normal nuclei with a binding energy per nucleon of 8.2 MeV or more is observed,
a value which is higher than in the a-cluster (7.073 MeV). These two values define
the difference in the chemical potentials in the two phases (Fig. 3.2). For less
bound nuclei (binding energy per nucleon around 7.073 MeV), the a-clusters are
obtained in a ‘‘natural’’ way. Starting from the ground states of normal nuclei the
nucleons will form an a-cluster phase, with increasing temperature of the nucleus,
e.g. with increasing excitation energy, see Fig. 3.2, (‘‘heating’’). This excitation
energy becomes rather low in neutron-rich light exotic nuclei, where clustering
may appear already in the ground states as the dominant structure [6], this may
also happen potentially in very heavy N = Z nuclei.

For the nucleons confined in the nuclear volume we apply the concepts of
statistical physics for the reaction 4N !a-particle. The rate of the reaction is
governed by the free energy, G, and the difference in the chemical potentials, la

and ln. The chemical potentials are defined as li ¼ dG=dNi; i ¼ n; a: The ther-
modynamic free energy depends on the number of nucleons, Nn and on Na, with
G = G(Nn, Na). The change of the free energy becomes

DG ¼ DNala þ 4DNnln: ð3:3Þ

For the phase transition a minimum value of the free energy is needed, this gives
the condition DG ¼ 0; this feature will be observed at a critical excitation energy
Ex

crit. In the nuclear medium DG is the difference between the binding energy of
the four nucleons in the free a-particle to that in the nuclear medium, as illustrated
in Fig. 3.2.

The kinetic energy of the nucleons determines the temperature, T. However, we
will use the temperature of the nucleus, t, related to its excitation energy. In the
normal case of a mixed system of the two species, the relative abundance of Na–Nn

is a function of the temperature (in our case excitation energy) and is obtained
through the expression

Na

ðNnÞ4
¼ KðtÞ ¼ exp �DGðtÞ

RTðtÞ

� �

ð3:4Þ

The value of K is to be determined by experimental observation (the usual coef-
ficient R appears as in statistical physics). For the case of negative DGðtÞ; a
decrease of the free energy (corresponding to a large value of the ratio K) gives a
higher density of the a-particles as reaction products. A positive value of DG
corresponds to an energetic disadvantage for the reaction creating a-particles,
resulting in a smaller number Na as reaction products. In the case of nuclei, the
nucleons are embedded in the nuclear medium and are confined in the nuclear
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potential created by the mean field of all nucleons. The binding energy per nucleon
in nuclei is around 8 MeV (dependent on the size of the nucleus and its excitation
energy). The nucleons have a larger binding energy in the nuclear medium (in the
ground states of stable nuclei) compared to the value in the a-clusters. The relative
positions of the relevant energies are illustrated in Fig. 2, from Ref. [7]. The
change in the free energy of the nucleons in the medium is now in the difference
between the binding energies in the nucleus and in the a-clusters. Actually,
because the chemical potential of the nucleons will depend on the excitation
energy in the nucleus (or on its temperature), we put this dependence in the
expression for DGðtÞ.

Alpha-cluster formation is expected if 4Et
B/Nn is less than or equal to the total

binding energy of four nucleons in the a-cluster. As the binding energy per nucleon
becomes equal or smaller than in the a-particle, a new phase will be formed, a
strongly interacting Bose gas. For binding energies of the nucleons close to (or
larger) that in the a-particle it becomes possible to form a mixed phase of a-cluster
states (liquid) and of nucleons. The binding energy of nucleons in the ground states
of nuclei (see Fig. 3.2) Et

B/Nn = Enucleon
B , is usually larger than in the a-particle.

The condition for the excitation (condensation) energies is Ex
cond C Ex

crit. The values
for different nuclei relevant to this concept are given in Table 3.1.

We sumarize that the a-condensation condition is given by Et
B/Nn(Ex

crit) C

7.07 MeV, The value of the critical excitation energy/(per nucleon) in a nucleus,
Ex

crit, should be equal or larger than 7.07 MeV, which is the binding energy of

Table 3.1 Alpha-particle binding and critical excitation energies for the condensation condition
in nuclei with N = Z

Nuclide Na EB
t EB

t /Nn EBa/Na Ex
crit Ex

crit

4He 1 28.3 7.073 – – (40Ca)
12C 3 92.16 7.680 2.425 7.27 –
16O 4 127.6 7.976 3.609 14.44 –
20Ne 5 160.7 8.032 3.83 19.17 –
24Mg 6 197.2 8.260 4.787 28.72 –
28Si 7 236.5 8.447 5.495 38.47 –
32S 8 271.8 8.493 5.677 45.41 –
36Ar 9 306.7 8.519 5.78 52.02 –
40Ca 10 342.0 8.551 5.910 59.10 –
52Fe 13 447.7 8.609 6.143 79.86 –
56Ni 14 483.9 8.642 6.275 87.85 –
72Kr 18 607.1 8.432 5.433 97.8 87.78
80Zr 20 669.8 8.371 5.192 103.8 90.38
100Sn 25 824.5 8.244 4.684 117.1 97.65
112Ba 28 894.8 7.99 3.665 102.6 68.79
144Hf 36 1,090.9 7.577 2.074 74.6 19.68
164Pb 41 1,200.1 7.317 0.973 39.9 -25.21

The last column shows the values for the case of a 40Ca-cluster core. All energies in MeV
Na, number of a-particles; EB

t /Nn, binding energy per nucleon; EBa/Na, binding energy per
a-particle; Ex

crit, condensation energy
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nucleons in the a-particle. This statement is the same as the condition DGðtÞ ¼ 0:
Alternatively, the phase transition will be achieved at excitation energies of the
nucleus, Ex

*, corresponding to the thresholds where all clusters become unbound, the
condition being that EBa(N, Z) = 0. This is the original concept of the Ikeda diagram.
The Ikeda diagram [8, 9] gives a phenomenological condition for the appearance of
clustered states (with the inclusion of other clusters like 12C, 16O, etc.) in nuclei. We
can state that the Ikeda diagram with a-particles can be deduced from thermody-
namic considerations. The level density for the fermionic phase space grows very fast
with excitation energies, whereas those for the bosons will grow much slower.

Most important for the properties of the a-particle gas is, that they do not represent
the ‘‘ideal’’ gas, they interact via an interaction which has similarities with a van der
Waals interaction, with a strongly repulsive core due to the Pauli principle, see
Fig. 3.3. Two a-particles form as the lowest state, the ground state of 8Be, a
resonance at Ex

* = 92 keV. We can calculate the de Broglie wave length,
k ¼ h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2lE�xÞ
p

for this case and have k = 67 fm (relative motion between the two
a-particles). If for higher excitation we incorporate the 2+ at 3.04 MeV the value of k
is still 12.4 fm. Similarly three a-particles can form the Hoyle-state just above the
three a-particle threshold in 12C, the 0+ at 7.654 MeV (288 keV above the threshold
of 7.346 MeV). With these values for three a-particles we again get a similarly large
de Broglie wave length of relative motion. Also the third 03

+ at 10.3 MeV excitation
energy can participate in the formation of a multi-a-particle correlation.

Fig. 3.3 The equivalent local potentials describing the a–a and the a–16O interaction. The
resonant energies in 8Be and the phase shifts are reproduced. With these interactions the a-
particle gas can be calculated. For the a–16O potential a similar van der Waals type of interaction
is obtained, a potential suited for an a-particle gas with (and additional binding) by a core
(adopted from [7])
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Overall we have values for k in the condensed state larger (by factors 2–5) then
the radial extension of the nucleus. The multi-a-particle states will contain the a-
particles mainly in their resonant states in 8Be. The condensed states at the binding
energy threshold consisting of a-particles will form coherent super-fluid states.
The resonant states in 8Be and 12C act in a similar way as the residual interaction
in the formation of the superfluid neutron pairing states, see Ref. [1], volume II.
The calculations of THSR based on a local a–a potential reproduce the states of
8Be, and the threshold states in other light nuclei. Inspecting the local potentials in
Fig. 3.3 for the system of 16O + a-particle, we conclude that alpha-condensates
with a 16O-core can be formed, where this potential will create a common binding
potential, for a larger number of alpha’s (e.g. 40Ca = 16O + 6a).

In Fig. 3.4 we illustrate the possible situation for an a-condensate in 100Sn, with
a core of 40Ca and 15 a’s. These configurations can be formed in a reaction with a
72Kr beam and a 28Si target. At excitation energies of 97 MeV or more (excitation
energies discussed earlier) many compound nuclear (CN) states will exist,
consisting of different configurations of the a-particle gas plus a core. Here again
the threshold rules apply with respect to excitation energies. We may expect many
overlapping states (with a large decay width), which will interact coherently (see
Ref. [28]), because the same compound states of the a-particle phase can be
formed with a different number of a-particles. These will interact through the
0+ and 2+ resonances of 8Be and 12C�; depending on the excitation energy of the
state. The decay of such a state (in the figure there is no barrier for the a-particles,
in difference to the figure shown in Ref. [7]) can occur sequentially with different
energies in each step, as in CN-decay. However, the most interesting case would
be the simultaneous decay, with many a-particles with almost equal kinetic

Fig. 3.4 Schematic illustration of the two models for states in 100Sn. States of low excitation
energy are formed by the mean field of nucleons, in this case the potentials for neutrons and
protons are rather different due to the Coulomb interaction. Thus, the formation of a-particle
structures is strongly suppressed. At the critical excitation energy of 97 MeV (for 100Sn, see
Fig. 3.1), a collective state of bosons with a-particles occupying the same orbit (relative S-states)
outside a 40Ca-core, will be energetically favored

116 W. von Oertzen



energies, a process, which can also be considered as Coulomb explosion [41], see
Sect. 3.3.

3.3 Experimental Observables

For the observation of states in nuclei, which have spin(parity) = 0(+) and the
properties of a-particle condensates, there are several characteristic experimental
features which we can propose for future studies.

1. The study of the radial extension, e.g. observed in inelastic a-scattering and in
the form factors from electron scattering experiments.

2. Coherent emission of a-particles from compound nuclei in coincidence with
large c-detection arrays.

3. Fragmentation into multiple a-particle channels at GeV/nucleon energies.
4. a–a-correlations, for CN decay similar to 2.

A further approach which should be mentioned here is the detection of multi-
a-clusters in a ternary cluster decay as described in Refs. [42, 43]. In these cases
the coplanar detection of two heavier fragments as in a binary decay, shows
missing mass and charge of multi-a-clusters. The study of these fission processes
indicates that the missing a-clusters are emitted from the neck with very small
intrinsic excitation and small angular momentum. These multi-a-clusters, will be
emitted towards very small angles, where they should be detected with charged
particle counter-telescopes.

3.3.1 Inelastic Scattering, Radial Extensions, Form Factors

The threshold states in nuclei with condensed a-particles have spin/parity Jp = 0+,
these must be populated by monopole excitations (a collective radial density mode).
In fact the most important predicted properties of these states, are the larger radial
extensions. These can be manifested in inelastic electron and hadron scattering. The
inelastic electron scattering on a 12C-target has been studied repeatedly. The form
factor for the transition to the excited state at 7.65 MeV, the (Hoyle State), with
Jp = 0+ is thus well known see Refs. [33, 34] and earlier references therein.

Similarly there are extensive studies of inelastic hadron scattering on 12C
using a large variety of projectiles. We concentrate here on the elastic and
inelastic a-scattering at energies between 104 and 240 MeV, which has recently
been analyzed with microscopic transition densities and the double folding
approach for the scattering potential [32] and with a diffraction model [35]. The
angular distributions exhibit at smaller angles strong diffraction patterns, and
partially also a refractive maximum at larger angles. One feature, known from the
early history of nuclear physics, is the Blair phase-rule established in a-particle
scattering [34]. If states are populated in inelastic scattering and sufficiently high
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energy, diffractive patterns (strong maxima and minima) are observed at forward
angles, the structures of the elastic scattering and inelastic scattering are out of
phase if no parity change has occurred. At higher energies the effect of Q-values,
i.e. their influence on the position of the maxima and minima is small. The
position of the diffractive minima depend on the radial extension (e.g. of the
excited states).

The result at an incident energy of 240 MeV is shown in Fig. 3.5, the angular
distributions show pronounced diffraction structures. Indeed the diffractive pattern
for the inelastic excitation to the 2+ state at 4.43 MeV is clearly out of phase with
that for the ground state. For the 0+ state at 7.65 MeV the diffractive pattern is
more pronounced and is shifted by approximately 2� to forward angles, indicating
a larger radius. The calculations, which were performed with the double folding
model for the elastic scattering potential and for the transition densities [34], are
also shown in Fig. 3.5. With this approach and a proper choice of the imaginary
potential for the 02

+ state the absolute values are reproduced with a correct value for
the E0-transition strength. The other inelastic transitions have been calculated, and
are perfectly reproduced due to the choice of the transition densities obtained in
the folding model. The analysis with a diffraction model [35] of such data gives
the systematics of the diffraction radius over a large energy range and indicates a
10% larger radius for the 02

+ state compared to the ground state. Similar results will
be expected for 06

+ at 15.1 MeV in 16O, which is just above the four a-threshold
(14.4 MeV), and has been searched for recently [36].

0 10 20 30 40 50 60
10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

dσ
/d

Ω
 (

m
b/

sr
)

Θ
c.m.

(deg)

12C(α,α')12C* @240 MeV

x10-3

x10-2

x10-1

  0+ (g.s.)
  2+ @ 4.44 MeV
  3- @ 9.64 MeV
  0+ @ 7.65 MeV

Fig. 3.5 The elastic and
inelastic scattering of a + 12C
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ler angles for the transition to
the 7.65 MeV (Hoyle
state), due to its larger radial
extension

118 W. von Oertzen



3.3.2 Compound Nucleus Decay, Correlated
Emission of Alpha’s

In the formation of N = Z compound nuclei up to mass A = 60–80, the heaviest
combination of stable targets and projectiles is 40Ca + 40Ca giving 80Zr compound
states with appropriate excitation energy (see Table 3.1) and coherent a-particle
states can be formed. For heavy N [ Z compound nuclei with a small neutron
excess, however, the features discussed below may also apply. For even heavier
systems with N = Z, we will have to resort to beams of unstable nuclei, like
e.g. a 72Kr beam, which has a good chance of being produced in the future
with usable intensities. The compound nucleus with a 40Ca-target will be
112Ba (Q = -52.54 MeV). Because of the fact that the heavier compound nuclei
are very far off-stability the reaction Q value becomes very negative. With an
incident energy close to the Coulomb barrier, the final excitation energy (Ex) can
be well controlled and moderate values of Ex can be reached (see Table 3.1).
These compound nuclei will have also favorable Q values for the emission
of several a-particles. Actually a new collective decay mode, where all alpha-
particles share the same kinetic energy, as in Coulomb explosion, can be predicted.
However, heavier compound nuclei will be unstable to charged-particle emission
(protons and a’s) already in their ground states.

Further we may consider an excess of two or more neutrons (with an isotope
with a more intense beam), this would most likely not destroy the special states
discussed here. The excess neutrons will be placed in quantum orbits around the
emitted clusters, for example as in the 9�10Be isotopes forming bound or meta-
stable molecular states and configurations with low nucleon density [7].

We are interested in the multiple a-particle emission. Due to the coherent
properties of the threshold states consisting of a-particles interacting coherently
with a large de Broglie wave length, the decay of the CN will not follow the
Hauser–Feshbach assumption of the statistical model: that all decay steps are
statistically independent. If we consider a sequential process, after emission of the
first a-particle, the residual nucleus contains the phase of the first emission pro-
cess; the subsequent decays will follow with very short time delays related to
nuclear reaction times (or their inverse, decays), favoring the formation of reso-
nances like 8Be(0+, 2+) and the 12C�ð0þ2 ; 2þ2 Þ states.

Another view for the a-gas in nuclei is the concept of a collective super-fluid
state with a broken symmetry, the a-particle number, a concept much used for
neutron pairing in superfluid states in nuclei [1, 37]. For the two-neutron pairing
states in heavy nuclei, the transfer of neutron pairs between superfluid nuclei [37,
38] is strongly enhanced. The analogy to the enhancement of the transfer of
correlated neutron-pairs, is the multiple emission of a-particles as a collective
transition (changing the particle-number as a collective variable) from compound
nuclei with superfluid properties (with a-condensates), i.e. between nuclei with
different numbers of a-particles. This feature has been discussed for a-particle
transfer between very heavy nuclei in the valley of stability in Ref. [39]. Thus the
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observation of enhanced multiple emissions of a-particles from the compound
state can be proposed as the signature for the observation of the collective Bose-
gas. The emission should be strongly enhanced, relative to the statistical model
prediction. For the latter case the emission of several a-particles would be
observed into different angles [27].

The coherent emission should occur into the same (identical) angle. This will
lead to the situation that the observation of unbound resonances becomes possible,
such as 8Be(0+, 2+) and the excited states of 12C, 12C�ð0þ2 ; 0þ3 Þ-clusters. This feature
in fact has been observed in the recent data [26–31] discussed in the next section.

3.3.3 Compound States with Multi-a Decays

We are interested in the coherent multiple a-particle emission from excited
compound nuclei (CN). Due to the coherent properties of the threshold states
consisting of a-particles interacting with a large de-Broglie wave length [12], the
decay of the CN will not follow the Hauser–Feshbach assumption of the statistical
model: a sequential decay and that all decay steps are statistically independent.

After emission of the first a-particle, the residual a-particles in the nucleus
contain the phase of the first emission process; the subsequent decays will follow
with very short time delays related to nuclear reaction times, and possibly shorter
then the 10-18 s of CN decay, actually a simultaneous decay can be considered.
This fact should be responsible for the enhanced formation of resonances like 8Be
and the 12C�ð0þ2 ; 2þ2 Þ states. An enhanced emission of multiple a-particles is
predicted [12]. Most relevant, however, is the larger radial extension of the Boson
condensate states, as discussed in Refs. [18, 19, 28].

The best way to study such decays is the combination of multi-detector arrays
for particle detection with DE-E detectors and a ‘‘calorimeter’’ to observe the
remaining compound nucleus residue via its c-decay. Such experiments have been
performed with the large c-detector array GASP at the Legnaro National Labo-
ratory LNL at Padua (Italy), combined with the charged particle detector ball ISIS
(details are given in Ref. [27]) consisting of 42 DE-E telescopes (see Fig. 3.6).

These experiments were performed in a study of c-decays of compound nuclei
selected with a particular particle decay [26]. The large opening angle of the
individual ISIS-DE-E telescopes, which was 27�, allows to select the spontaneous
decay of the weakly unbound states, namely of 8Be into two a’s and the 12C�ð0þ2 Þ;
into three a-particles. With the rather modest kinetic energy of these fragments and
the small decay energies of a few 100 KeV the opening angles between the a’s are
in the range of 10�–25�, which fit into these solid angles. Therefore these prompt
multiple a-decays are observed by the pile-up of the signals produced by indi-
vidual alpha-particles in one of the DE-E telescopes. This is shown in Fig. 3.7. The
corresponding coincident (particle gated) c-decays are compared with the spectra
obtained from statistical emission (with the same a-multiplicity) into different
DE-E telescopes (see Fig. 3.8).
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Fig. 3.7 Top This part shows
the kinematical situation for
the triple pile-up of the
signals for three a’s in one
detector and the emission
cone for a’s from the decay of
12C�ð0þ2 Þ: Bottom Plot of
DE-E-signals as observed
with the ISIS charged particle
detector system. The events
with the emission of single
a’s, of 8Be and with three a’s
from the state 12C�ð0þ2 Þ are
indicated. The reaction is
28Siþ24Mg!52Fe!40Ca
þX at Elab = 130 MeV
(courtesy of Tz. Kokalova)

Fig. 3.6 Picture of the
c-detector ball GASP, opened
to give view on the detector
ball ISIS with 42
DE-E telescopes. With these
the emission of three a’s at
different angles in different
detectors (upper panel in
Fig. 3.8), or the pile-up
events for the three a’s
from the decay of
12C�0þ ; see Fig. 3.7,
are registered (courtesy
of A. de Angelis, LNL)
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The comparison of the two c-sprectra with different triggers is shown in
Fig. 3.8 for the reaction 28Siþ24Mg!52 Fe!40 Caþ 3a; an experiment
designed for the spectroscopy of 40Ca. The spectrum gated with three a’s in one
telescope shows additional c-transitions in 36Ar, connected with an emission of
an additional a-particle, it is a dramatic effect, because these transitions are
completely absent in the other spectrum gated by random directions of the three
a’s. Initial attempts to explain these differences by parameters of the statistical
compound nucleus decay failed, see Ref. [27]. A subsequent analysis [28], which
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Fig. 3.8 Coincident c-spectra gated with the particles from DE-E-telescopes with the emission
of three random a’s at different angles in different detectors (upper panel), in comparison with
that obtained by the 12C�0þ -gate (lower panel). The reaction is 28Siþ24Mg!52Fe!40Caþ 3a
at 130 MeV. Note the additional lines for 36Ar in the lower panel (courtesy of Tz. Kokalova)
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uses the the features of a a-condensed state, namely the larger diffuseness and
the larger radial extension gave as an important effect a strong lowering by
10 MeV of the emission barrier for the emission of 12C�0þ : This fact explains,
that the energies of the 12C�0þ are concentrated at much lower energies as
compared to the summed energy of three a-particles under the same kinematical
conditions. In this way the residual nucleus (40Ca) attains a much higher residual
excitation energy.

I also show the results of the previous study of the reactions 32S + 24Mg for the
c-spectroscopy of 48Cr with 8Be-emission [29–31] performed with the same
mentioned ISIS-GASP-combinations at the LNL in Legnaro. In Fig. 3.9 we show
the identification of 8Be, and on the right side the comparison of the energy
spectra, under the same kinematical conditions, for 8Be and the sum energy of the
two a’s. We note that the energy spectrum of the 8Be is shifted to smaller energies,
as in the previous case. This again must be explained by a larger diffuseness of the
CN-state (an a-condensed state) and a lowered Coulomb barrier for the 8Be
emission. The c-spectra with the two possible particle gates are shown in Fig. 3.10.
It shows the case of 8Be-emission compared with the statistical emission of two a’s
in two different detectors, the latter representing the usual statistically independent
decay into two different detection angles. Again we found that the particular
channel with 8Be carries less energy and less angular momentum, therefore more
subsequent decays are observed. In this case a subsequent neutron and proton
emission is observed, the 46Ti-channel is strongly increased for the 8Be-gate.
Attempts to explain these differences in terms of parameters of CN-decay,

Fig. 3.9 The kinematics for 8Be-observation, and comparison of the summed energies of two a’s
with the energy of 8Be under the same kinematical conditions (courtesy of S. Thummerer)
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(discussed in Ref. [30]) gave no conclusive result. At that time the concept of
condensed a-particle states in the CN was not considered.

3.3.4 Inelastic Excitation and Fragmentation

The last entry in Table 3.1, the last column for the 40Ca-core has a negative sign
for 164Pb, indicating that this nucleus, as well as lighter nuclei (actually above
Z = 72), are unstable in their ground state to single and multiple proton or multi-a-
particle decay. For lighter N = Z nuclei, at excitation energies above Ecrit

* another
decay mode (as already mentioned) becomes possible, which we call Coulomb
explosion. The condensed states are radial monopole excitations with respect to
the ground state. The monopole states located at high excitation energies can best
be excited by Coulomb excitation at the highest projectile energies. Coulomb
excitations of the GQR (giant quadrupole resonance) or the GDR (giant dipole

2 α

8
Be

Fig. 3.10 Coincident
c-spectra gated
with the particles from
DE-E-telescopes with the
emission of two random
a’s in different detectors
(upper panel), in
comparison with that
obtained by the 8Be-gate
(lower panel). The reaction
is 32S + 24Mg ?56Ni ?
48Cr + 2a at 130 MeV
(courtesy of S. Thummerer)
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resonance) have been studied [40] up to 300 MeV/nucleon. The highest cross
sections are expected at projectile energies above 1 GeV/nucleon. Because of the
larger step in excitation energy the increment for the dynamical matching becomes
optimum at these highest energies. Such studies exist for some of the lighter
N = Z nuclei (12C, 16O, 20Ne) and heavier [44, 45]. In these studies nuclear
emulsions have been used, the silver nuclei (Ag) acting as target nuclei for
Coulomb excitation.

The results were obtained at the JINR in Dubna with beams from the nucletron
accelerator [44, 45]. The reaction products are registered in nuclear emulsions, the
Coulomb break-up being induced by the heavy target nuclei (Silver, Ag) of the
material. In this way very characteristic multiple tracks after break-up have been
observed (see Figs. 3.11, 3.12). In the case of 16O we observe two a’s and a 8Be,
this fact points to the previous discussions of a coherent emission, two a’s must be
emitted in a close correlation (in energy and space) in order to be able to form a
8Be resonance. We expect the formation of 8Be from the internal structure of the
condensate state in 16O, but also in the case of a simultaneous (coherent) emission
(and only in this case) the interaction of the two a’s can form 8Be.

Fig. 3.11 Break-up of 16O at 4.5 GeV/nucleon with the emission of four a’s, registered in an
emulsion. Details of the decay can bee seen, e.g. the more narrow cone of two a’s, due to the
emission of 8Be. Different stages of the decay, registered down stream in the emulsion are shown
in consecutive panels. P. Zarubin private communication and Refs. [44, 45]

Fig. 3.12 Break-up of 20Ne
at 3.65 GeV/nucleon with the
emission of five a’s (again
partially as 8Be), registered in
an emulsion. Different stages
of the decay, registered down
stream in the emulsion are
shown in three panels on top
of each other. P. Zarubin
private communication and
[44, 45]

3 Alpha-cluster Condensations in Nuclei and Experimental Approaches for their Studies 125



The result for the break-up of 20Ne is shown in Fig. 3.12, among the different
observed break-up’s the emission of five a’s is observed with remarkable intensity.
Again at least one pair of a’s is observed, indicating coherent emission with strong
correlations, which allow the formation of the low lying 8Be resonances.

In this context we mention that Coulomb explosion has been observed in highly
charged atomic van der Waals clusters and is discussed by Last and Jortner [41]. In
our case the simultaneous emission of many a-particles is expected, a decay
process very different from standard statistical compound nucleus decay. In fact in
this decay mode the a-particles must have all the same energy.

3.3.5 a–a Correlations

There have been numerous studies of particle–particle correlations in higher
energy nuclear reactions around 50–100 MeV/nucleon [46], as well as for reac-
tions at relativistic energies, where pion–pion correlations have been studied [47].
From this work we find that the spacial and time extension of the source can be
studied in these correlations. A specific feature appears here, that the correlations
of bosons will exhibit a maximum at the smallest angles and smallest relative
momenta. However, with two a-particles the Coulomb interaction and the reso-
nances in the a–a channel, states in the 8Be nucleus dominate the correlations [46].
With an experimental set-up consisting of DE-E telescopes like the detector ball
EUROSIB, which contains sufficiently small angular resolution, and a c-detector
ball as in the experiments described in Sect. 3.3, the a–a correlations should be
studied in coincidence with c-transitions of the residual N = Z compound nucleus
(minus two a-particles). With the use of inverted kinematics, the heavier projec-
tiles on a lighter target, the rather low energies of the a-particles in the cm system
of the compound nucleus will have sufficiently high energy in the laboratory
system to be registered in DE-E-telescopes (an absorber has to be used to block the
heavy projectiles). A correlation matrix with (Ea1 � Ea2 ), can be constructed. Such
correlation matrices (for two c-rays) have been constructed in c-spectroscopy [48]
with c-detector balls. The correlations and the resonances can then be constructed
over a wide range of momenta.

3.4 Conclusions

The data presented here show clearly experimental features, which point to the
existence of a-condensed states giving rise to coherent multi a-particle states in
excited N = Z nuclei. With the most recent experimental developments, we can
expect that very new features of such states can be observed. These can potentially
establish the existence of Bose–Einstein condensates in nuclei, a very promising
field of research for future studies. The author is indebted to Peter Schuck for
numerous discussions.
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Chapter 4
Cluster Structure of Neutron-Rich Nuclei
Studied with Antisymmetrized Molecular
Dynamics Model

Yoshiko Kanada-En’yo and Masaaki Kimura

4.1 Introduction

Following the progress in physics of unstable nuclei in these decades, a variety of
novel cluster structures has been discovered. Theoretical studies has been revealed
that valence neutrons play important roles to bring about such novel clustering
phenomena. For description of clustering in unstable nuclei, various theoretical
models have been developed. Among them, a method of antisymmetrized
molecular dynamics (AMD) [1–8] is a powerful approach that successfully
describes clustering and deformations of light unstable nuclei. Since the AMD
method does not rely on specific cluster assumption and is applicable to general
unstable nuclei, the method is useful for systematic study of various nuclei along
isotope chains. In this chapter, we review formulation of the AMD and theoretical
studies on structure of neutron-rich nuclei from Li to Mg isotopes.

4.2 Antisymmetrized Molecular Dynamics

4.2.1 Development of Theoretical Approaches for Cluster

Various exotic cluster structures has been discovered in the recent progress of
unstable nuclear physics. For description of such novel structures in unstable nuclei,
conventional cluster models for two- or three-body cluster systems are no longer
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applicable because one often needs to solve more than three-body dynamics due to
the degrees of freedom for excess nucleons. Therefore, various theoretical models
have been developed for study of cluster phenomena in unstable nuclei. To describe
many-body system consisting of cluster cores and valence nucleons, extended
cluster models such as a stochastic variational method (SVM) [9–13], a molecular–
orbital method (MO) [14–23], a generator coordinate method (GCM) [24–27], and
an extended two-center model [28, 29] have been applied to unstable nuclei.

In these models, existence of clusters is a priori assumed. Although such cluster
models are useful to describe detailed behavior of inter-cluster motion, the
assumption of clusters is not necessarily obvious in real nuclear systems, because
cluster states may have components of cluster breaking and they often coexist with
the non-cluster states. Furthermore, for exotic nuclei with excess nucleons, another
problem arises, i.e., it is unknown whether constituent clusters can be assumed.

To overcome this problem, it is important to take into account degrees of all
single nucleons and construct new frameworks with no assumption of existence of
specific clusters. In this point of view, a method of AMD [1–8] is one of the powerful
approaches that do not rely on model assumption of constituent clusters. An AMD
wave function is given by a Slater determinant of single-particle Gaussian wave
functions, where all centers of the Gaussians are independently treated as variational
parameters. Therefore, degrees of all single nucleons are independently treated in
this framework. Moreover, because the AMD model space includes Bloch-Brink
cluster wave functions, it can also describe cluster states. If a system favors a specific
cluster channel, such cluster structure is naturally obtained by the energy variation.

A method of Fermionic molecular dynamics (FMD) [30, 31] is another
promising approach whose model space is similar to that of the AMD but is a more
generalized one. We should comment that, phenomenological effective nuclear
forces with no hard core nor tensor term are used in the AMD method as well as in
usual cluster models, while the effects of the hard core and the tensor force of N–N
interactions are incorporated based on realistic nuclear forces in a recent version of
the FMD [31] with unitary correlation operator method (UCOM).

After the first application of a simplest AMD method for structure study of
unstable nuclei in 1995 [5, 6], the AMD framework has been developed to many
versions (Refs. [4–7, 32–37] and references therein). In this section, we review the
formulation of the simplest AMD and some advanced versions.

4.2.2 AMD Wave Function: Spherical Case

We set the model space for a wave function of a nuclear system as follows. In
general, an A-nucleon system is given by a superposition of AMD wave functions,

U ¼ UAMDðZÞ þ UAMDðZ0Þ þ UAMDðZ00Þ: ð4:1Þ

Here, each AMD wave function is expressed by a Slater determinant of Gaussian
wave packets;
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UAMDðZÞ ¼
1
ffiffiffiffiffi

A!
p Afu1;u2; . . .;uAg; ð4:2Þ

where the ith single-particle wave function is written by a product of spatial (/),
intrinsic spin (v), and isospin (s) wave functions as,

ui ¼ /Xi
visi; ð4:3Þ

/Xi
ðrjÞ / exp �m rj �

Xi
ffiffiffi

m
p

� �2
 !

; ð4:4Þ

vi ¼
1
2
þ ni

� �

v" þ
1
2
� ni

� �

v#: ð4:5Þ

The spatial part /Xi
of the ith single-particle wave function is represented by

complex variational parameters, Xi1, Xi2, and Xi3, which indicate the center of the
Gaussian wave packet.The spin part vi is parametrized by the complex number
parameter, ni. si is isospin function which is fixed to be up (proton) or down
(neutron). The width parameter m takes a common value for all nucleons,
and is chosen to be an optimum value for each nucleus. Accordingly, an
AMD wave function is expressed by a set of variational parameters,
Z: {X1, X2,...,XA, n1, n2,...,nA}. The parameters Z: {X1, X2,...,XA, n1, n2,...,nA}
indicate the centroids of the localized Gaussians and the spin orientations, which are
treated independently for all nucleons. Therefore, a system written by a single AMD
wave function is specified by the configuration of single-nucleon wave packets in the
phase space and their spin orientations. In the simplest AMD calculations, the spin
part vi is sometimes fixed to be spin up or down. In this paper, the spin orientations are
treated as free parameters in case of no explanation.

The AMD wave function can describe a Bloch-Brink cluster wave function if
the parameters take a specific configuration (see Fig. 4.1a). Let us consider an
example of an a + 3H cluster structure for 7Li. If Gaussian centers of single-
nucleon wave packets for two protons and two neutrons are located at a same
position and Gaussian wave packets for the other nucleons (one proton and two
neutrons) are set at another position, the AMD wave function is equivalent to the
Bloch-Brink cluster wave function consisting of a and 3H clusters which are
written by the (0s)4 and (0s)3 configurations, respectively. With increase of the
inter-cluster distance d, the spatial development of the corresponding cluster
structure enhances. More generally, multi-cluster structure can be described by
grouping of single-nucleon Gaussian wave packets in the spatial configuration. On
the other hand, if centroids of Gaussians gather around the origin, the AMD wave
function becomes equivalent to the harmonic oscillator shell-model wave function
due to the effect of antisymmetrization (see Fig. 4.1b). Therefore, the model space
of the AMD framework includes shell-model structure as well as various kinds of
cluster structure. As we explain later, the optimum solution for complex number
parameters Z is determined by energy variation. It means that if a system favors a
specific cluster structure it is obtained automatically after the energy variation.
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4.2.3 Deformed-Basis AMD

In the method of deformed-basis AMD [37, 38], triaxially deformed Gaussians are
employed as the single-particle wave packets instead of spherical ones.

/Xi
ðrjÞ ¼ exp �

X

r¼x;y;z

mr rjr � Xir
� �2

( )

; ð4:6Þ

where the width parameters, mx, my, and mz, take different values for each direction,
x, y, and z. They are determined in the energy variation to optimize energy of a
system. By using this deformed basis, it is possible to describe sufficiently
coexistence and mixing of the cluster and deformed mean-field structures that are
essential in particular in medium-mass systems.

4.2.4 Parity and Angular-Momentum Projection

In calculation of expectation values for observable operators such as Hamiltonian,
radii, moments, transitions, AMD wave functions are projected to parity and angular-
momentum eigenstates. The parity-projected AMD wave function is given as

d

shell model state

example

d

(b)

(a)
cluster in   Li7

Fig. 4.1 Schematic figure of AMD wave functions. a Cluster structure. b H.O. shell-model
structures are described with AMD wave functions. A indicates the antisymmetrizing operator
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jU�AMDi � P�jUAMDi ¼
1� P̂x

2
jUAMDi; ð4:7Þ

where P� ¼ ð1� P̂xÞ=2 is the parity projection operator. The angular-momentum
projected AMD wave function is written as

jUJ
MKi ¼ PJ

MK jUAMDi ¼
Z

dXDJ�
MKðXÞR̂ðXÞjUAMDi; ð4:8Þ

where DJ
MK(X) is Wigner’s D function and R̂ðXÞ is a rotation operator with

respect to Euler angle X. It is clear that the angular-momentum projected state is
expressed by a linear combination of wave functions rotated from the intrinsic
state UAMD with the weight function, D. For a tensor operator T̂k

q ; where k is the
rank and q is the z-component, the matrix element of the operator for
hPJ

MKUAMDðZÞj and jPJ0
M0K 0UAMDðZ0Þi can be calculated

hPJ
MKUAMDðZÞjT̂k

q jPJ0
M0K 0UAMDðZ0Þi ¼

8p2

2J þ 1
hJ0M0kqjJMi

X

lm

hJ0lkmjJKi

�
Z

dXDJ0�
lK0 ðXÞhUAMDðZÞjT̂k

m R̂ðXÞjUAMDðZ0Þi:

ð4:9Þ

4.2.5 Hamiltonian and Energy Variation

The Hamiltonian consists of the kinetic energy, the nuclear and Coulomb
potentials,

Ĥ ¼ T̂ þ V̂nuclear þ V̂Coulomb � T̂g: ð4:10Þ

Here the energy of the center-of-mass motion is subtracted. Since the single-
particle wave functions are described by Gaussians with a common width
parameter m, the total wave function can be separated into the internal wave
function and the center-of-mass wave function, and thus, the energy of the center-
of-mass motion is calculated exactly.

For the effective nuclear potential V̂nuclear; finite-range forces are used as well
as zero-range forces. For instance, Volkov [39], modified Volkov (MV1) [40],
Gogny [41, 42], and Skyrme [43–45] forces have been used in the practical
calculations. The Volkov force is the finite-range two-body force with no density
dependent term, the Gogny force the finite-range two-body force with a zero-range
density dependent force, the MV1 force the finite-range two-body force with
a zero-range three-body force, while the Skyrme force is the zero-range
density dependent force. Coulomb force is approximated by the seven-range
Gaussian.
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The AMD is a variational method. Namely, the variational parameters Z are
optimized to minimize the expectation value of the Hamiltonian within the AMD
model space. The energy variation for the AMD wave function is performed by the
frictional cooling method which is one of the imaginary time development
methods. Here, we explain the frictional cooling method for a parity-projected
AMD wave function. We introduce the following time development equation for
the variational parameters Xi and ni,

dZi

dt
¼ l

�h

o

oZ�i

hU�AMDjĤjU�AMDi
hU�AMDjU�AMDi

; ði ¼ 1; 2; . . .;AÞ: ð4:11Þ

Here, Zi indicates Xi1, Xi2, Xi3, and ni. The value l is an arbitrary negative real
number. It is easily proved that the energy of the system,

E ¼ hU�AMDjĤjU�AMDi=hU�AMDjU�AMDi; ð4:12Þ

decreases as time develops. We first start the energy variation from an initial AMD
wave function which is given by randomly chosen parameters Zinit. After enough
cooling steps (iterations), we finally obtain the optimum set of parameters Zmin

which gives the AMD wave function for the minimum energy state in the model
space (Fig. 4.2). In the deformed-basis AMD, the triaxial width parameters, also
mx, my, and mz are optimized by the frictional cooling method.

4.2.6 GCM in AMD

In general, structures beyond the picture of independent single particles in a mean-
field can be described by superposition of many Slater determinants. Superposition
of Slater determinants is already done in the parity and/or angular-momentum

Energy surface
randomly chosen
initial state

model space (Z plane)
(optimum solution)

energy−minimum
states

(variation)
energy cooling

Fig. 4.2 Schematic figure of the frictional cooling method in the AMD model space
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projections of an AMD wave function. For excited states, it is useful to superpose
many independent AMD wave functions. To adopt efficient AMD wave functions
as basis wave functions for superposition, a constraint AMD method is applied.
Let us consider the constraint on the nuclear quadrupole deformation parameter b.
First, the energy variation after parity projection is performed with the constraint
that the b value must be a given number �b: After the variation, the minimum
energy state under the condition b ¼ �b is obtained. In more general, with a
constraint of hĝi ¼ �g; the minimum energy state U�AMDð�gkÞ is obtained by the
constraint energy variation after parity projection for each constraint value
�g ¼ �g1; �g2; . . .; �gk; . . . Then, the angular-momentum projection is performed for the
obtained states U�AMDð�gkÞ; and finally, the projected states of are superposed

jUJ�
n i ¼

X

kK

ckK jPJ
MKU�AMDð�gkÞi: ð4:13Þ

Here the values for the coefficients ckK are determined by the variational principle,

d hUJ�
n jĤjUJ�

n i � enhUJ�
n jUJ�

n i
� �

¼ 0; ð4:14Þ

which is equivalent to diagonalization of the norm and the Hamiltonian matrices.
The sum for the K quanta stands for the K-mixing. When an enough number of the
basis wave functions with respect to the constraint value �gk are taken into account,
the superposition of different �gk wave functions corresponds to the GCM, and �g is
regarded as the generator coordinate. Many excited states can be described by
superposing the parity and angular-momentum projected wave functions
(GCM calculation). As the constraint hĝi, principal oscillator quantum number

hayai � hU�j
PA

i âyi � âijU�i=hU�jU�i is sometimes employed as well as the
quadrupole deformation b.

The practical procedure of the GCM calculations with the constraint AMD
method is schematically illustrated in Fig. 4.3. First, the energy variation under the
constraint is performed for a parity-projected AMD wave function. This means the
constraint variation after parity projection but before angular-momentum

Variation
w/o J−pro. J−projection

GCM

GCM
GCM

g.s.band band
low−lying

excited band

(deformation, inter−cluster distance etc.)
Constraint g

E
ne

rg
y

Fig. 4.3 Schematic figure of
the procedure of the GCM
calculations with the con-
straint AMD
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projection (J-projection). After the variation for various constraint values, the
parity and angular-momentum eigenstates projected from all the obtained AMD
wave functions are superposed to construct the ground and excited states. Usually,
the ground state wave functions are given by a linear combination of basis wave
functions around the energy minimum state after the parity and angular-momen-
tum projections. If there exists a local minimum on the parity and angular-
momentum projected energy surface, the corresponding excited state may be
obtained with the basis wave functions around the local minimum state in the
GCM results. In case of the quadrupole deformation b constraint, it corresponds to
the situation of shape coexistence where a low-lying deformed band appears in
addition to the ground band. Moreover, in the GCM calculations, further excited
bands might be obtained due to an excited mode in the generator coordinate. Thus,
various excited states are obtained by a linear combinations of AMD wave
functions in the GCM calculations. We note that, when a system has a cluster
structure, the GCM calculation is also important to describe the detailed behavior
of inter-cluster motion

4.2.7 Variation After Parity and Angular-Momentum
Projections

For study of excited states, it is also efficient to perform variation after angular-
momentum projection as well as parity projection. Namely, the energy expectation
value for a parity and angular-momentum projected AMD wave function is
minimized by the frictional cooling method,

dZi

dt
¼ l

�h

o

oZ�i

hPJ�
MKUAMDjĤjPJ�

MKUAMDi
hPJ�

MKUAMDjPJ�
MKUAMDi

: ð4:15Þ

Here PMK
J ± is a spin-parity projection operator defined as PMK

J ± : PMK
J P ± . The

lowest J± state is denoted as UJ�
1 ðfZg

J�
1 Þ ¼ PJ�

MKUAMDðfZgJ�
1 Þ, where fZgJ�

1
stands for the parameter set {Z} which gives the energy minimum state for given
spin and parity, J ±. The nth J ± state is provided by varying {Z} to minimize the
energy for the wave function UJ�

n ðfZgÞ orthogonalized to the already-obtained

lower states UJ�
k ðfZg

J�

k Þðk ¼ 1; . . .; n� 1Þ;

UJ�
n ðfZgÞ ¼ PJ�

MKUAMDðfZgÞ �
X

n�1

k¼1

hUJ�
k ðfZg

J�
k ÞjPJ�

MKUAMDðfZgÞi
hUJ�

k ðfZg
J�
k ÞjUJ�

k ðfZg
J�
k Þi

UJ�
k ðfZg

J�
k Þ:

ð4:16Þ

After variation for various spins and parities, we superpose the intrinsic wave

functions UAMDðfZgJ�
n Þ obtained by the variational calculations so as to get

better wave functions. In the present paper, we call the variation after spin-parity
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projection ‘‘VAP’’. Details of the VAP calculations are explained in Refs.
[33, 46].

4.2.8 HF Single-Particle Orbits in an AMD Wave Function

In order to study the mean-field character of an intrinsic state given by an AMD
wave function, it is useful to analyze the HF single-particle orbit contained in the
AMD wave function [32] instead of the spatial configuration of single-nucleon
wave packets. First, we transform the single-particle wave packets juii of the
AMD wave function to an orthonormalized basis |ai,

Bij ¼ huijuji;
X

A

j¼1

Bijdja ¼ ladia; jai ¼ 1
ffiffiffiffiffi

la
p

X

A

j¼1

djajuji: ð4:17Þ

From this orthonormalized basis |ai, we construct the HF single-particle Hamil-
tonian as follows. When Hamiltonian consists of the kinetic term and the two-body
interaction, HF single-particle Hamiltonian is given as follows;

hab ¼ haĵtjbi þ
X

c

hacjvjbc� cbi: ð4:18Þ

Then we diagonalize hab and obtain the single-particle energy ep and single-
particle orbit |pi.

habgbp ¼ epgap; ð4:19Þ

jpi ¼
X

a

gapjai ð4:20Þ

It is easily proved that the Slater determinant of |pi is equivalent to that of juii
except for a normalization.

4.2.9 Projection and Variation

As we mentioned before, an AMD wave function is expressed by a Slater deter-
minant, however, the parity and angular-momentum projected wave function is no
longer a Slater determinant but it is given by a linear combination of Slater
determinants. Therefore, higher correlations beyond mean field may be incorpo-
rated in such projected states. Because of such correlation effects, clustering and
deformation tend to enhance in the variation after projections in general.

For an example, we describe the results of 9Li calculated by variation before
parity and angular-momentum projections and that after parity and angular-
momentum projections as well as the results of the b-constraint variation and the
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variation with fixed nucleon spins. Density distributions of the intrinsic states, each
of which are written by a single AMD wave function, are illustrated in Fig. 4.4.

The intrinsic density of the AMD wave functions obtained by variation before
parity and angular-momentum projections, that after parity projection but before
angular-momentum projection, and that after parity and angular-momentum pro-
jections are shown in Fig. 4.4a–c, respectively. The state calculated by variation
before projections (Fig. 4.4a) is the true energy minimum in a single AMD wave
function and it corresponds to the Hartree–Fock solution within the AMD model
space. This state has the most spherical shape due to an effect of the p3/2 neutron
shell closure. The variation after only parity projection yields a small deformation
(Fig. 4.4b), however, a largely deformed state is obtained by the variation after
parity and angular-momentum projections (Fig. 4.4c). The energies for the
3/2-states projected from these AMD wave functions (a), (b) and (c) are -29.9,
-30.7 and -35.1 MeV, respectively. The energy gain in the VAP calculation
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Fig. 4.4 Intrinsic density distributions of the AMD wave functions for 9Li obtained by a vari-
ation before parity projection (Pp=-) and before angular-momentum projection (PJ=3/2), b vari-
ation after parity projection and before angular-momentum projection, c variation after parity
projection and after angular-momentum projection, d variation with the constraint b = 0.35 after
parity projection and before angular-momentum projection, e variation of an AMD wave function
with fixed intrinsic spins after parity projection and before angular-momentum projection. The
distribution of proton density (qp), neutron density (qn), and matter density (qm) of the intrinsic
AMD wave functions are illustrated. In the illustration, axes are chosen to be hx2i B hy2i B hz2i,
and the density is integrated along the x direction and shown on the z–y plane. The size of squares
is 10 fm 9 10 fm. The adopted interaction consists of the Volkov No. 2 force with m = 0.60,
b = h = 0.125 and the spin–orbit term from the G3RS interaction with uls = uI =

- uII = 1,600 MeV
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(c) is as much as 5 MeV in a 9Li system, and it originates in many-body corre-
lations. These results indicates that the state with mean-field features is favored in
the variation without projections while many-body correlations beyond mean-field
are incorporated in the variation after parity and spin projections.

Many-body correlations can be contained also in the state obtained by the con-
straint variation before projections. We perform the variation after parity projection
but before angular-momentum projection under the b constraint of quadrupole
deformation. After the variation, we project the obtained AMD wave functions to the
parity and angular-momentum eigenstates and calculate the J ± = 3/2--projected
energies. The energy minimum in the projected energy curve is at b = 0.35, and the
corresponding intrinsic state is a deformed state shown in Fig. 4.4d. The J ± = 3/2-

energy for this state is -33.7 MeV which is much lower than -30.7 MeV of state
(b) for the energy minimum solution without the b constraint. This energy gain is
considered to come from the beyond mean-field correlations incorporated in the
angular-momentum projection after the constraint variation.

We also show the AMD wave function obtained by variation after parity
projection but before angular-momentum projection with fixed nucleon spins
(vi) in Fig. 4.4e. The model space with fixed nucleon spins is rather restricted
and it is included in the free spin model space. However, surprisingly, the
J± = 3/2--projected energy for the state (e) with fixed spins is -32.2 MeV, and it
is lower than -30.7 MeV for state (b) with free spins. This is naturally understood
because the correlations between spin-up and spin-down neutrons may be
enhanced in the restricted model space of fixed spins while they are smeared out in
the free spin model space due to mean-field features in the variation of a single
Slater determinant.

In this paper, we show mainly the results calculated by the variation after parity
projection but before angular-momentum projection with AMD wave functions
having free spins.

4.3 Properties of Low-Lying States in Light Nuclei

In this section, we briefly review structures of ground states in Li, Be, B, C isotopes
based on studies with the AMD. We present the results obtained by the AMD
calculations of variation after parity projection but before spin projection with fixed
nucleon spins. More details are shown in Refs. [5–8] and references therein.

4.3.1 Structure Changes in Li, Be, B, C Isotopes

In 1990’s, the AMD method has been applied for structure study of light neutron-
rich nuclei such as Li, Be, B and C isotopes [5–8]. The AMD calculations succeed
to reproduce various experimental data for structure properties.
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The results of the AMD calculations for Li, Be, B and C isotopes show that
structures of ground states rapidly change depending on the neutron and proton
numbers. Density distributions of the intrinsic wave functions for Be and B iso-
topes are shown in Fig. 4.5. Interestingly, various deformed states arise accom-
panying developed cluster structures in these isotopes.

Because of recent progress of theoretical and experimental investigations,
structures of light neutron-rich nuclei have been revealed. We briefly summarize a
current understanding of structure changes in Li, Be, B and C isotopes (Fig. 4.6)
mainly based on the AMD calculations.

In the intrinsic states of Li isotopes, 7Li has the largest prolate deformation with
a well-developed a + t cluster structure. As the neutron number N increases, the
cluster structure becomes less prominent, and finally disappears in 11Li with a
spherical shape. We should comment that 11Li is known to have an extremely large
radius because of the two-neutron halo structure [47, 81–88], though it is difficult
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to describe such halo structure in the simple AMD framework because a single-
nucleon wave function is written by a Gaussian in the model.

In Be isotopes, it is well-known that the 2a cluster structure is prominent in 8Be
[89]. The AMD results indicate that the 2a cluster core is formed also in neutron-
rich Be isotopes as seen in the dumbbell shape of proton density in Fig. 4.5. As the
neutron number increases from 8Be, the 2a cluster structure becomes less devel-
oped in 10Be. In 12Be, which has the neutron magic number N = 8, a spherical
0�hx state and a deformed 2�hx coexists in the low energy region. Although the
spherical state with the neutron p-shell closure is the lowest state in the simple
AMD calculations as shown in Fig. 4.5, this state may correspond to the excited
state experimentally observed at 2.1 MeV. Instead, the improved AMD calcula-
tions suggested that the deformed 2�hx state with developed 2a clusters comes
down due to the molecular-orbital structure and it dominates the real 12Be ground
state [90]. This phenomena is called ‘‘breaking of neutron magic number’’.
The details of 10Be, 11Be, 12Be will be explained in the next section.

In the case of B isotopes, the structure changes as a function of N is similar to
that in Be isotopes except for the N*8 region. 13B with N = 8 has the most
spherical shape because it is dominated by the neutron p-shell closed configura-
tion. As the neutron number increases, a cluster feature develops with enhance-
ment of the prolate deformation. For 19B at a neutron drip line, the improved AMD
calculations suggested that shape coexistence may occur, i.e., the prolate state
shown in Fig. 4.5 may be an excited state whereas an oblate state becomes the
ground state in 19B [91].

In contrast to development of the cluster structures in neutron-rich Be and B
isotopes, neutron-rich C isotopes are suggested not to have prominent cluster
structures at least in ground states. In light C isotopes, cluster aspects are seen as in
12C with an oblate deformation because of the 3a cluster feature. On the other
hand, in neutron-rich C isotopes, even though the neutron structure rapidly varies
as N increases, proton density remains in an inner compact region. As a result, the
neutron skin structure may remarkably grow near the drip line.

It should be pointed out that the cluster features found in neutron-rich Be and B
isotopes differ from the standard cluster structure consisting of weakly coupling
clusters. They are regarded as new-type cluster structures, which are composed by
a few cluster cores with surrounding neutrons.

4.3.2 Magnetic Moments of Li and B Isotopes

The AMD calculations show good reproductions for the electric and magnetic
moments and transitions such as the magnetic dipole moments l, electric quad-
rupole moments Q, and the E2 transition strength [5–8]. The experimental data for
such magnetic and electric properties are successfully reproduced by the AMD
calculations with the bare charges and the bare g-factors of nucleons instead of the
phenomenological effective values that are usually used in shell model
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calculations. It owes to flexibility of the AMD approach which can explicitly treat
such structure aspects as large deformation, core excitation, development of cluster
structure, and many-body correlations due to developed cluster structures.

It is helpful to investigate experimental data such as the moments along a chain
of isotopes and discuss their neutron number dependence in relation with intrinsic
structure changes. In Refs. [5–7], the structure of light neutron-rich nuclei were
discussed by connecting experimental data of magnetic and electric moments with
the cluster structures. We here discuss the magnetic moments of Li and B isotopes
and effects of the cluster structure on them.

The nuclear magnetic moment is defined as

l � hJMjl̂0jJMiM¼J ð4:21Þ

l̂0 ¼ gp
s Sp

z þ gp
l Lp

z þ gn
s Sp

z ; ð4:22Þ

where gp
s and gn

s are the g-factors of a proton and a neutron, gp
s ¼ 5:58 and

gn
s ¼ �3:82; and gp

l ¼ 1 is the factor for proton orbital angular momentum. Sp
z and

Sn
z are the z-components of the total intrinsic spins for protons and neutrons,

respectively, and Lp
z is that of the total orbital angular momentum for protons.

Thus, the magnetic moment reflects components carrying the total angular
momentum J in the highest M state.

Let us consider the magnetic moments of odd-even Li and Be isotopes which
have J = 3/2- ground states. In the simplest picture that all spins for even
nucleons couple to be zero spin and gives no contribution to the total angular
momentum, the total angular momentum is simply given by a single valence
proton in the p3/2 orbit. In this limit, the l value can be simply estimated to be
l ¼ gp

s � 0:5þ gp
l � 1 ¼ 3:79 from the p3/2 proton component (Fig. 4.8a). This

value is called the Schmidt value. In reality, even nucleons do not necessarily pair
off but may give non-zero spin contributions. In particular, a state with cluster
structure may contain strong correlations in coupling of orbital angular momenta
of nucleons, or in other words, much orbital excitations. As a result of such many-
body correlations, non-zero spin contributions arise from even nucleons, and
therefore the l moment may deviate from the Schmidt value for the ideal case.

The values of l moments for odd-even Li and B isotopes calculated by the
AMD are shown in Fig. 4.7 as well as the experimental data. The theoretical
values are in good agreement with the experimental data. In each series of iso-
topes, one can find the neutron number (N) dependence of the l moment. This N
dependence can be understood by cluster structures in Li and B isotopes. It is
useful to discuss the deviation of l moments from the Schmidt value l = 3.79 for
the p3/2 proton orbit.

In 11Li, the l value is almost equal to the Schmidt value. This is because 11Li
has no cluster structure and 8 neutrons give no contribution to the magnetic
moment. As the neutron number decreases in Li isotopes, the l value becomes
small and the deviation from the Schmidt value grows up following the devel-
opment of cluster structure. That is to say that, because of cluster structure,
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neutrons give non-zero component of finite orbital angular momentum Ln
= 0 for

neutron which causes the tilted proton orbital angular momentum Lp and reduction
of the Lp

z component in the highest M state (Fig. 4.8). As a result, the term hLp
z i

becomes smaller than 1 and the l value decreases.
The behavior of l moments in B isotopes can be understood in a similar sce-

nario. Also in B isotopes, 13B with N = 8 shows the smallest deviation from the
Schmidt value because it has the least cluster structure. In such non-cluster state,
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the neutron part with the p-shell closed configuration gives no contribution to
the l moment. As described before, the cluster structure develops in 15B and 17B
with the increase of the neutron number. In such cluster structure, neutrons
give non-zero orbital-angular-momentum Ln

= 0 bringing the reduction of Lp
z

component in the highest M state. Consequently, the deviation from the Schmidt
value is larger in 15B and 17B than that in 13B. It is also interesting that the l values
of B isotopes are systematically smaller than those in Li isotopes. This is because,
in case of B isotopes, correlations of three protons in p-shell yields additional
quenching of the l moments of B.

4.4 Properties of Nuclei in the Island of Inversion

Several neutron-rich N*20 nuclei are known to have anomalous properties in the
binding and excitation energies, spin-parity and electro-weak transitions. These
anomalies originate in large nuclear deformation and the resultant inversion of sd-
and pf-shells (breakdown of the magic number N = 20). Experimentally, it was
firstly pointed out from the observation of the anomalous binding energy and spin-
parity of 31Na [48, 49]. More convincing evidence was given by the observation of
the small excitation energy [50, 51] and the large E2 transition probability [52] of
the 2þ1 state of 32Mg. Theoretically, the Hartree–Fock calculation [53] showed that
shape transition from spherical to prolate shapes possibly took place in neutron-
rich N = 20 nuclei. Shell model calculations [54–56] that allowed particle hole
excitations across the N = 20 shell gap explained these abnormal properties and
suggested strong deformation of 31Na and neighboring nuclei caused by the
inversion between the normal and intruder configurations. Since then, many
experimental [57–64] and theoretical [65–76] studies have been made and now the
systematic breaking of N = 20 magic number is theoretically investigated and the
large deformation is observed in 31,32,34Mg [52, 61, 64], 30,31,32Na [49, 77, 78] and
30,32Ne [63, 79]. Thus, our knowledge of the breakdown of the neutron magic
number N = 20 in the neutron-rich nuclei has been increasing rapidly in this
decade. This domain of the nuclear chart is called ‘‘Island of Inversion’’ (Fig. 4.9).
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In this section, we briefly discuss the properties of nuclei in the island of
inversion and try to illustrate the landscape of the island based on the deformed-
basis AMD. For more detail, readers are directed to the references [74–76].

4.4.1 Deformation, Particle-Hole Configuration and Spectrum

To make clear the onset of nuclear deformation in and around the island of
inversion, it is most convenient to see the energy curve as function of nuclear
quadrupole deformation, which indicates the b dependence of the expectation
value of Hamiltonian obtained by b-constraint calculations. Fig. 4.10 shows the
energy curves of Ne, Mg and Al isotopes with N = 18, 20, 22, calculated by the
deformed-basis AMD. For a moment, let us focus on the energy curves of 32Mg
that is located at the middle of the island. There are three minima in the positive-
parity energy curve and two in the negative-parity. These minima have different
single-particle configurations. Fig. 4.11a shows the single-particle orbitals occu-
pied by the last 12 neutrons in the positive-parity state. We can see the Nilsson-
model-like behavior of the orbitals. In the spherical region, the last two neutrons
occupy the orbital originates in sd-shell. Therefore, the system has the closed shell
(0p0h) configuration at small deformation (hereafter, we denote particle hole
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configurations with respect to N = 20 shell closure). Around b = 0.3 an orbital
intrudes from pf-shell into sd-shell. Two neutrons occupy this intruding orbital and
the system has 2p2h configuration. Around b = 0.5, another orbital comes down
from pf-shell and the system has the 4p4h configuration. Thus, the minima on the
positive-parity energy curve are understood to have 0p0h, 2p2h and 4p4h con-
figurations in ascending order of deformation. In the same way, the minima on the
negative-parity energy curve have 1p1h and 3p3h configurations.

After the angular momentum projection, the 2p2h configuration around b = 0.4
has the smallest energy. By superposing those wave functions with different
configurations and performing the GCM calculation, we have obtained the low-
lying level spectrum (Fig. 4.11b). The ground band is dominated by the 2p2h
configurations and strongly deformed. It is confirmed by the calculated and
observed large BðE2; 2þ1 ! 0þ1 Þ and small excitation energy of the 2þ1 state. It is
notable that the calculation predicts the low-lying excited bands dominated by
different particle-hole configurations in both positive- and negative-parity. Since
the particle-hole configurations changes bustlingly as function of deformation, the
low-lying bands with different configurations appear at small excitation energy.
This is peculiar to the nuclei in the island of inversion and discussed later.

Now, let us move on the Ne, Mg and Al isotopes. These are several striking
features in their energy curves and they are related to the mechanism of the
breaking of the magic number N = 20; (a) there are several minima (shoulders) on
the surface, (b) number of minima depends on neutron number but not on proton
number, (c) relative energy between minima strongly depends on proton number.

The particle-hole configuration of each minimum shown in Fig. 4.10 tells that
up to four particle or four hole configurations (from np4h to 4pnh) appear at small
excitation energy. It is consistent with the behavior of neutron single-particle
orbital in which two orbitals originates in the pf-shell and two from sd-shell cross
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as deformation becomes larger. Since the states on the energy curve is dominated
by the neutron particle-hole configurations, (a) minima with different neutron
configurations appear, and (b) the single-particle configurations of each minimum
depends on the neutron number. As proton number decreases, the binding energy
of the spherical (or small deformed) states become smaller. It reduces the relative
energy between different particle hole configurations and, in some case as 32Mg,
strongly deformed configuration becomes the ground state. From energy curve and
the angular momentum projection, we will also see that 30,32Ne and 32,34Mg are in
the island of inversion and other nuclei are out of the border of the island.

4.4.2 Probing the Particle Hole Configuration

We have seen that many particle hole configurations dominates the island of
inversion. Since the neutron single-particle orbital is difficult to observe directly,
an alternative way to confirm deformation and the neutron particle configuration is
required. As an illustrative example, we discuss the spin-parity and b decay of
31Mg. Here, 31Mg is in the island of inversion [64] and dominated by the 2p1h
configurations, while 31Al is out of the island [80]. The spectrum of 31Mg
(Fig. 4.12a) confirms it. 31Mg has odd neutron number, and hence, the orbital
occupied by the last neutron determines the spin-parity of the system. From the
Nilsson-model-like behavior, we can conclude that there is no other way to explain
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the observed and calculated ground state spin 1/2+ [64] except for the 2p3h
configuration associated with the strong deformation.

The b decays also sensitive to the particle hole configurations of 31Mg as
illustrated in Fig. 4.12b. Since the ground state of 31Mg has the 2p3h configura-
tion, it will most strongly feed the 2p4h configuration of 31Al. Here, 31Al is located
at out of the island and its ground state is dominated by the 0p2h configuration and
the intruder 2p4h configuration appear as the excited band around 3 MeV. Both
the observation [51, 57] and the calculation shows the strong decays to the excited
states of 31Al and weaker decays to the low-lying states.

4.5 Cluster Structure in Excited States

4.5.1 Be Isotopes

4.5.1.1 Outline of Structure in Neutron-Rich Be

Cluster structure in neutron-rich Be isotopes is one of the interesting topics on
cluster phenomena in unstable nuclei. Low-lying states of neutron-rich Be isotopes
are understood by a molecular–orbital picture based on the structure with a 2a core
and surrounding valence neutrons [8, 11–23, 32].

In the molecular–orbital picture, neutron-rich Be isotopes are considered to
consist of a 2a core and valence neutrons. The molecular orbitals are formed by a
linear combination of atomic orbitals around each cluster, and then valence neu-
trons occupy the molecular orbitals. In case of Be systems, so-called p and
r orbitals in the 2a system are considered for molecular orbitals of valence
neutrons. The idea of the molecular orbitals surrounding a 2a core was suggested
in 9Be with a 2a + n cluster model [14–16] in 1970’s. The molecular–orbital
model was applied to neutron-rich Be isotopes by Seya et al. [17] in 1980’s. In
1990’s, in the works by von Oertzen et al. [18–20] and Itagaki et al. [21, 22],
molecular–orbit models for the 2a + Xn cluster structure have been extended for
systematic study on neutron-rich Be isotopes.

Recently, cluster structures of neutron-rich Be isotopes were theoretically
investigated by many groups by using extended cluster models and molecular–
orbital models, where the existence of 2a clusters are a priori assumed in the
models. In contrast to these cluster models, the AMD method relies on neither
existence of the cluster cores nor formation of the molecular orbitals, and there-
fore, it is suitable to check whether the molecular–orbital structure appears in real
neutron-rich Be systems. The results of the AMD calculations suggested that the
molecular–orbital structures with the 2a core and surrounding valence neutrons
actually appear in low-lying states of Be isotopes, while di-cluster states with two-
body He + He cluster structures arise in highly excited states of 12Be.

In this section, we report the cluster structures of neutron-rich Be isotopes based
on the AMD calculations [8, 23, 46, 90, 92]. The ground and excited states of
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Beisotopeswere calculatedwith theVAPmethod in theAMDframework [46,90,92].
The calculated results suggested that many rotational bands with the 2a core
structure appear in Be isotopes. Fig. 4.13 shows the density distribution of the
intrinsic wave functions for the band-head states of 10Be, 11Be and 12Be. One can
see that the proton-density distribution indicates the formation of the 2a-cluster
core, while the neutron density distribution displays the feature of valence neu-
trons surrounding the 2a core.

By analyzing the single-particle behavior of the valence neutrons, it was found
that the single-particle wave functions of the valence neutrons in the low-lying
states of Be isotopes are associated with the molecular orbitals around the 2a core.
As described before, in the molecular–orbital picture, valence neutrons occupy the
molecular orbital formed by a linear combination of neutron orbits surrounding
each cluster. In case of a 2a system, the lowest allowed neutron orbit around a
single a cluster is the p orbit. Therefore, the molecular orbitals (p and r) in a 2a
system are expressed by a linear combination of p orbits around the two a cores as
displayed in Fig. 4.14a. Let us analyze the HF single-particle orbits for the valence
neutron in the intrinsic states of 10Be. As shown in Fig. 4.14b, the valence neutron

12

0+
2

Be

12

0+
1

Be

12

0
Be

3
+

12

1
Be

1
−

ρ/2 ρproton ρneutron

10

0+
2

Be

10

0+
1

Be

10

1
Be

1
−

ρ/2 ρproton ρneutron

ρ/2 ρproton ρneutron

11

+
1

Be
1/2

11

1

Be

11Be
2
−

1/2

3/2

−

Fig. 4.13 Density distributions of the intrinsic states for the band-head states of 10Be, 11Be and
12Be obtained by the VAP calculations. Distributions for matter, proton, and neutron densities are
illustrated in the left, middle and right panels. The figures are taken from Ref. [8]
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wave functions in the 10Beð0þ1 Þ state is associated with the p orbital, while those in
the 10Beð0þ2 Þ state can be regarded as the r orbital in terms of molecular orbitals.
Therefore, the structure of the 0þ1 ð0þ2 Þ is interpreted as the molecular–orbital
structure where two valence neutrons occupy the p(r) orbitals around the 2a core.
It is interesting that the cluster structure in the excited state, 10Beð0þ2 Þ; is promi-
nent, while it is weaker in the ground state. The reason is that the r orbital has
nodes along the a–a direction and therefore it gains its kinetic energy if the
distance between two a clusters becomes large. This enhancement of the 2a cluster
is consistent with the discussions of Refs. [18–23]. In a similar way, also the low-
lying states in 11Be and 12Be can be understood in terms of the molecular orbitals.
For instance, 11Be(1/2+), 11Be(1/2-), and 11Beð3=2�2 Þ correspond to p2r, p3, and
pr2 configurations, respectively, and the 12Beð0þ1 Þ, 12Beð0þ2 Þ, and 12Beð1�1 Þ states
are dominated by the p2r2, p4, and p3r1 configurations, respectively, in terms of
the molecular orbitals occupied by the valence neutrons.

We show a schematic figure of the cluster states suggested in 10Be, 11Be and
12Be in Fig. 4.15, where neutrons occupying the r-type molecular orbital are
explicitly drawn. The experimental values of excitation energies for the corre-
sponding states are also shown in the figures. One of interesting features is that the
degree of cluster development strongly correlates with the number of valence
neutrons in the r orbital. Namely, the 2a cluster structure develops with the
increase of the number of r-orbital neutrons. As we already mentioned, it is
because the r orbital gains its single-particle kinetic energy in a developed 2a
system. On the other hand, as the number of p-orbital neutrons increases, the
cluster structure tends to weaken.
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Fig. 4.14 Schematic figure
for molecular orbitals, a left
The p and right r orbitals
around a 2a core. b Upper
panels Density distributions
of the HF single-particle
wave functions for valence
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panels Distributions of total
matter density in the
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Another interesting feature is that the ground states of 11Be and 12Be are the
intruder states with r-orbital neutron(s) instead of the normal states with 0�hx
configurations. In terms of molecular orbitals, the ground 1/2+ state of 11Be
corresponds to the p2r configuration, and 12Beð0þ1 Þ is dominated by the intruder
p2r2 configurations. In the one-center limit where two a cores are close to each other,
the p orbital becomes equivalent to the p orbit and the r orbital becomes the
corresponding sd orbit of the spherical harmonic oscillator basis. Therefore, in terms
of shell model configurations, the 11Beð1=2þ1 Þ and 12Beð0þ1 Þ states are dominated by
the neutron excited configurations of 1�hx with a sd-shell neutron and 2�hx with two
sd-shell neutrons, respectively. In other words, the energy gain of the r orbital in the
deformed system with the developed 2a structure plays an important role for the
breaking of the N = 8 neutron magic number in 11Be and 12Be [7, 90, 92]. In highly
excited states of 12Be, well-developed di-cluster structures with He + He clustering
have been theoretically suggested above the low-lying molecular–orbital states.
More details of band structures in 10Be and 12Be are explained below.

4.5.1.2 10Be

The calculated energy levels of 10Be are shown in Fig. 4.16. The calculations well
reproduce the level structure of the experimental data and also give theoretical
suggestion for some new excited states. Moreover the experimental values for
transition strength such as E2 and E1 transitions and b decays for 10Be are
reproduced well by the calculations [46].

By analyzing intrinsic structures, we can classify the excited states into four
rotational bands, Kp ¼ 0þ1 ; 2

þ; 0þ2 ; and 1-, whose members are ð0þ1 ; 2þ1 ; 4þ1 Þ;
ð2þ2 ; 3þ1 Þ; ð0þ2 ; 2þ3 ; 4þ2 ; 6þ1 Þ; and (1-, 2-, 3-, 4-, 5-), respectively. Various kinds of
cluster structures are found in these bands. As mentioned before, the 2a core and 2n
structure is found in most of the intrinsic states in the low-energy region.
In particular, the Kp ¼ 0þ2 and 1- bands have the structure with well-developed
2a clusters. As seen in Fig. 4.13, the development of clusters is larger in the 1- band
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than the 0þ1 band, and it is most prominent in the 0þ2 band. On the other hand, the
Kp = 2+ band is regarded as the side-band of the ground band. Cluster features in the
present results are consistent with the results by extended cluster models of 2a
clusters and surrounding neutrons [12, 21, 22]. An important point is that the AMD
calculations [5–7, 32, 46] actually have confirmed formation of the 2a core in 10Be in
the framework without assuming existence of any clusters. As mentioned before, in
the analysis of the HF single-particle orbits, the 0þ1 ; 2

þ
2 ; 1

�; and 0þ2 states are
interpreted as the p2, p2, pr, r2 molecular–orbital configurations, respectively
(Fig. 4.14).

4.5.1.3 12Be

In the recent past years, experimental and theoretical investigations of 12Be has
been progressing, and properties of low-lying states and also those of highly
excited states are being revealed [20, 23, 26, 29, 90, 94–102].

The ground and excited states of 12Be have been calculated with VAP by
adjusting the effective nuclear interactions to reproduce the parity inversion in
11Be [90, 92]. The calculated energy levels of 12Be are shown in Fig. 4.17 with the
experimental data. We can classify the calculated positive-parity states with nat-
ural spins into three rotational bands, Kp ¼ 0þ1 ; 0

þ
2 and 0þ3 . The ground band

consists of the intruder states (2�hx excited configurations), which are well-
deformed states with a 2a core and surrounding neutrons. On the other hand, the
normal neutron p-shell closed states belong to the Kp ¼ 0þ2 band whose band-head
state is assigned to the experimental second 0+ state at 2.1 MeV [100]. It means
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that breaking of the neutron magic number N = 8 occurs in 12Be. As mentioned
before, these low-lying states are understood by the molecular-orbital picture.
It should be stressed again that the valence neutrons in the r orbital play an
important role in the breaking of the N = 8 magic number. In the Kp ¼ 0þ3 band, a
di-cluster structure of 6He + 6He clustering are suggested. The experimental
0+, 2+, 4+ and 6+ states above the He+He threshold energy measured in He+He
break-up reactions [95–97] are candidates of these di-cluster states.

The breaking of the N = 8 magic number in 12Be has been also suggested in
experimental investigations. One of the experimental evidence for the intruder
2�hx configurations of the 12Be ground state is weak b decays to 12B as discussed
in the early works [103–105]. It has been also supported by recent observations of
the 1- and 0þ2 excited states a few MeV above the ground state [98–100].
Recently, the neutron configurations of the ground state of 12Be have been
investigated in more details by neutron removal reactions, which indicate the
dominant (sd)2 components in 12Beð0þ1 Þ [101, 102]. These experimental reports are
consistent with the theoretical suggestions by the AMD calculations [90] that show
the dominant r2 molecular–orbital structure in the ground state.

Next, let us explain negative-parity states of 12Be. For the negative-parity
states, the AMD calculations suggest two bands, Kp = 1- and Kp = 0-. The
lower band Kp = 1- consists of the 1-, 2-, 3-, 4- and 5- states. These states are
interpreted as the molecular–orbital states, which can be described by the p3r1

(three neutrons in the p orbitals and one neutron in the r orbital) configuration for
four valence neutrons around the 2a-cluster core. This Kp = 1- band is consistent
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with the molecular–orbital band predicted by von Oertzen et al. [20, 23]. On the
other hand, we also obtain the higher negative-parity band (Kp = 0-) than the
Kp = 1- band. This Kp = 0- band is formed by a parity asymmetric neutron
structure with 4He + 8He-like component in the intrinsic state, and it is consistent
with the negative-parity band suggested in the GCM calculations with coupled
channels of 6He + 6He and 4He + 8He by Descouvemont and Baye [26]. This band
is associated with the well-known parity doublet Kp = 0- band in 20Ne.

Thus, the AMD calculations suggested two negative-parity bands, the Kp = 1-

band with the molecular–orbital structure and the Kp = 0- one formed by the
parity asymmetric intrinsic state. As mentioned, these two bands have developed
cluster structure in a sense, however, they have different origins for negative
parity. In the Kp = 1- band, the negative parity originates from one-particle
excitation in molecular–orbital neutrons. However, in the Kp = 0- band, it arises
from parity asymmetry of the intrinsic structure. The experimentally observed
Kp = 1- state [99] may correspond to the band-head state of the Kp = 1- band,
while the Kp = 0- band member has not been experimentally established yet.

Thus, it is concluded that low-lying states of 12Be can be systematically
understood by the molecular–orbital picture, while di-cluster resonant states with
6He + 6He and 8He + a clusters were suggested in highly excited states of 12Be
(Fig. 4.15).

4.5.2 F and Ne Isotopes

We have seen that the low-lying states of Be isotopes are dominated by the
molecular–orbital structure, while as excitation energy increases, the di-cluster
resonant states such as 6He + 6He appears. This picture suggests a new binding
mechanism and a new type of clustering peculiar to N = Z nuclei. At present,
such phenomena is experimentally confirmed only in Be isotopes. Therefore, the
exploration of clustering in heavier N = Z system is of interest and importance for
the understanding of the clustering of atomic nuclei.

O, F and Ne isotopes will be the promising candidate of such clustering in N = Z
nuclei, since the clustering of their N = Z isotopes are well established [106]. For
example, in 22Ne (Z = 10, N = 12) it is reported based on the a scattering on 18O
[107–109] that there are several a + 18O molecular bands at high excitation energy.
These bands correspond to the predicted a + 18O molecular resonances [110–112].
Furthermore, by the a transfer reaction to 18O, several candidates of a cluster states
are reported below the a threshold energy [113, 114] whose structure has not
established yet. Recently, similar situation is also reported in 18O. Namely, many
candidates of a cluster state are reported in highly excited region [115–119] by the a
scattering and several are observed around the a threshold energy [120]. Thus, many
a cluster states in N = Z nuclei are reported in two energy region, at high excitation
energy and around the a threshold energy suggesting much more complicated a
clustering systematics than those of N = Z nuclei.
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Theoretically, these nuclei have been studied in detail by Dufour, Descouve-
mont and Baye based on the cluster model [110–112, 121]. Some of the a cluster
states in high excitation energy are well understood as the di-cluster states such as
a + 18O, but the structure of the cluster states around the threshold energy are still
uncertain. As a possible interpretation of these low-lying cluster states, Oertzen
[122] has proposed the possible existence of the molecular–orbital structure in Ne
isotopes and suggested a new assignment of the rotational bands of 21Ne.

In this subsection, we discuss the clustering phenomena below the a threshold
and at high excitation energy in Z = N nuclei based on AMD study. The sys-
tematics of the clustering in 22Ne is discussed in detail and the evolution of the
cluster states toward the neutron drip-line is shown in F isotopes.

4.5.2.1 Feature of the Cluster States in F and Ne Isotopes

Before the detailed results, we first discuss the molecular orbitals occupied by
valence neutrons in O, F and Ne isotopes. Here, as an example, we assume a + 16O
as the inert core and neglect the nucleon spin (Fig. 4.18). We consider three atomic
orbitals around a (p-shell) and six orbitals around 16O (sd-shell). By taking the
linear combination of them and assuming the axial symmetry, we can construct six
independent molecular orbitals. Two of them which we shall call the p and r
orbitals will appear at smaller excitation energy. The most striking difference from
Be isotope is the parity asymmetry originates in the asymmetry of the core, that
will lead to the parity doublet band.

Another difference exists in the assumption of the cluster core. In the case of
the Be isotopes, we may be able to justify the assumption of the 2a inert core.
However, the assumption of the cluster core is not trivial in the case of sd-shell
nuclei. For example, in the case of 20Ne, the shell and cluster structure mix in the
ground band and they coexist in the excited bands [38]. Therefore, we can expect
more dynamical structure change between the shell and cluster structure depending
on the motion of valence neutrons.

4.5.2.2 22Ne

To investigate the structure change and clustering depending on the motion of
valence neutrons, we have performed the variational calculation with the

16O α+ 16O α

16O α+ 16O α

π molecular orbital
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z(x±iy) x±iy

zz2-a2

Fig. 4.18 Schematic figure
of the p and r molecular
orbitals around the a + 16O
cluster core
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constraint on the valence neutron orbitals. Practically, we have added the con-
straint potential,

VN ¼ vNðhN̂vali � N0Þ2; vN [ 0; ð4:23Þ

to the total energy. N̂val is the principal quantum number of valence neutrons
defined as the difference between the principal quantum numbers of protons and
neutrons,

N̂val ¼ N̂n � N̂p; ð4:24Þ

N̂s ¼
X

i2s
âyi âi ¼

X

i2s

X

r¼x;y;z

1
�hxr

p̂2
ir

2m
þ 1

2
mx2

rr̂2
r

� �

� 3
2
; s ¼ p or n; ð4:25Þ

where the oscillation numbers are defined by the width parameters of the single
particle wave packet, xr ¼ 2�hmr=m. For example, if N0 is set to 4, two valence
neutrons occupy the sd-shell, while N0 = 6 generates the states in which two
neutrons occupy the pf-shell.

Figure 4.19a shows the energy curves with different valence neutron configu-
ration obtained by this method. In this figure, energy curve (I) has two valence
neutrons in sd-shell, energy curves (II) and (III) have those in pf-shell and energy
curve (IV) has one valence neutron in sd-shell and another in pf-shell. Depending
on the valence neutron configuration, energy curves have energy minima with
different energy and deformation. Hereafter, we shall call those minima the state
(I)–(IV). Figure 4.20 shows the density distribution of the core and valence neu-
trons in the state (I)–(IV) where the most weakly bound two neutron orbitals are
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defined as valence neutrons and the remaining nucleons as the core. There are two
different kinds of valence neutron orbitals. First one has a node along the sym-
metry axis and sd-shell nature, while another has three nodes and pf-shell nature.
These neutron orbitals can be regarded as p and r molecular orbitals explained in
Fig. 4.18. We can see that the a + 16O clustering of the core develops in the state
(II), (III) and (IV) in which one or two valence neutrons occupy the r molecular
orbital. Therefore, we can conjecture that the r orbital induces the core clustering.
On the contrary, the state (I) that corresponds to the ground state and have two
valence neutrons in p orbital does not show the core clustering. Different form Be
isotopes, valence neutrons in p orbital demolishes the core clustering.
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Experimentally, we can confirm this effect from the reduction of BðE2; 0þ1 ! 2þ1 Þ
compared to 20Ne that have a + 16O clustering.

As a typical example of the molecular–orbital structure, Fig. 4.21 shows the
neutron single-particle orbitals in the state (III). There are six neutron orbitals with
different density distribution and two neutrons occupy each orbital in this state.
The orbital (1)–(5) are well confined within the a or 16O clusters and corresponds
to the single-particle orbitals inside of clusters. It means the pronounced clustering
of this state and the weak interaction between clusters. Only the most weakly
bound neutrons (r orbital) orbit around the entire system and bound two weakly
interacting clusters.

Figure 4.19b shows the spectrum of the 22Ne obtained by the angular
momentum projection and Hybrid-GCM calculation (see Ref. [123] for the
detail). We have obtained five rotational bands with the pronounced clustering
(plus the ground band without a + 16O clustering). Among them, Kp ¼ 0þ2 , 0-

1

and 1- bands have the molecular-orbital structure in which a + 16O cluster core
is surrounded by two covalent neutrons. The Kp = 0+

2 and 0-
1 bands are

dominated by the state (II) and (III) in which two valence neutrons occupy the r
molecular orbital. We note that the state (II) and (III) have quite similar structure
to each other as seen in Fig. 4.20. Therefore, the Kp ¼ 0þ2 and 0-

1 bands are
regarded as the parity doublet. This is the unique character of the molecular-
orbital states in which the cluster core has the parity asymmetry. The Kp = 1-

band is dominated by the state (III) that have neutrons in p and r orbitals.
Similar to the case of Be isotopes, the combination of the molecular orbital
generates the various cluster structures. We can consider that the Kp ¼ 0þ2 and
0�1 bands are the analog of the Kp ¼ 0þ2 band of 10Be and the Kp ¼ 1� corre-
sponds to that of 10Be.

Compared to the Be isotopes, experimental information is rather poor. Here we
point out that several states below the a threshold energy are reported as the
candidates of the a cluster states of 22Ne based the a transfer reaction on 18O
[113, 114]. They have tens times larger a reduced width amplitude (aRWA) than
the ground state. Since the aRWA of the molecular–orbital states by AMD shows
the qualitative agreement with the observation, the observed a cluster states will
correspond to the molecular-orbital states discussed here. They will also have large
6He reduced width amplitude to be confirmed by the experiment, because of
covalent nature of the valence neutrons.

Above these molecular-orbital state, we have also obtained the di-cluster bands
(Kp ¼ 0þ3 and 0�2 bands) as similar to the a + 8He state in 12Be. In these bands, two
valence neutrons orbit only around the 16O cluster, and hence, they are regarded as
the a + 18O di-cluster bands. Because of the different motion of the valence
neutrons, they have hundreds times larger aRWA than the molecular–orbital bands
but smaller 6He reduced width amplitude. Experimentally, this di-cluster bands are
confirmed by the a scattering. AMD results shows a good agreement with the
observed energies, moment of inertia and aRWA [107–109] and also with the
cluster model calculation [111, 112].
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Thus, we have seen that even in the case of the heavier system, the molecular–
orbital state will exist. The clustering systematic in 22Ne is summarized as shown
in Fig. 4.22. There are r2 (Kp = 0+ and 0-) and pr (Kp = 1-) bands that are quite
analogous to 10Be. Different from the Be isotopes, p2 configuration demolishes the
clustering in the ground state. Another difference appears as the parity doublet.
The parity asymmetry of the core generates the positive- and negative-parity
doublet with the same intrinsic configuration (r2). In the highly excited states,
di-cluster bands with the a + 18O clusters appear. We also comment that similar
molecule-like structure is also predicted in 18,20O by AMD study [124] and the
experimental candidates are observed [125].

4.5.2.3 Neutron-Rich F Isotopes

If we add more neutrons to the molecular-orbital states, what will happen?
To illustrate what we can expect in neutron-rich nuclei, we discuss the cluster
states in F isotopes. 19F (N*Z stable nucleus) has a famous cluster state 1/21

- at
very small excitation energy. It is known that this state has the a + 15N cluster
structure, while the ground state has the shell structure with the (sd)3 configuration.
It is reminded that we need to promote at least a proton from p-shell to sd-shell to
have the a clustering in F isotopes. This proton excitation changes the parity from
positive to negative.

By performing the same AMD calculation, we have found that F isotopes also
have the molecular–orbital states. The r molecular orbital plays the central role for
the clustering again. Namely, if one or two neutrons occupies the r molecular
orbital, the a clustering occurs in the core nucleus. It is also noted that a proton must
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be excited into sd-shell from p-shell for the clustering as explained above.
Figure 4.23 shows the band head states with a proton excitation into sd-shell. As the
density distribution of 21F shows, if no neutrons occupies the r molecular orbital,
a + 15N clustering is diminished, while r neutrons enhances the a clustering.
The most striking feature is that the excitation energies of the r2 and pr bands
greatly reduce toward the neutron drip-line. Since the r2 configuration is the 3�hx
excitation (proton 1�hx and neutron 2�hx excitation) from the normal configuration,
its excitation energy in 27,29F is abnormally small. This great reduction is closely
related to the breaking of neutron magic number N = 20 discussed in Sect. 4.4.
Readers are reminded that the breaking of the magic number N = 20 is caused by the
intruder orbital from pf-shell and 27,29F are located in or on the border of the island of
inversion. The point is that the r molecular orbital discussed here is nothing but the
intruder orbital in the island. Therefore, we can understand the reduction of exci-
tation energy as follows. Since 27,29F have much excess neutrons, the energy of the r
molecular orbital (intruder orbital) is small and it does not cost much energy to excite
neutrons into this orbital from sd-shell. As explained in the case of 22Ne, neutrons in
this orbital induces the clustering of the core that leads to the large deformation of the
system. Then, deformation of the core also reduces the single particle energy of r
molecular orbital. Due to this cooperative effect of clustering and intruder orbital,
the reduction of excitation energy is achieved. It is also noted that this mechanism is
similar to that of the breaking of neutron magic number N = 8 in 12Be discussed in
the previous subsection.

Experimentally, these molecular states in F isotopes have not been identified
yet, though there are several candidates reported in 23F [126] and 25,27F [127].
It will be very important and interesting to explorer these states.

Fig. 4.23 Calculated excitation energies of the proton hole states in F isotopes. Only the band
head states with different neutron configuration are shown. The density distribution of these states
in 21F are shown in the left
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4.6 Conclusions

Cluster structures and deformations of neutron-rich nuclei from Li to Mg isotopes
were reported based on theoretical studies with the AMD method. In Li, Be, B and
C isotopes, it was shown that clusterings and deformations rapidly change as a
function of the proton and neutron numbers. For neutron-rich Be, O, F and Ne
isotopes, the structure of ground and excited states were discussed focusing on
cluster phenomena. Island of inversion around 32Mg was also described.

It has revealed that various exotic cluster structures appear in neutron-rich
nuclei where excess neutrons play important roles. One of the key aspects for
understanding the structure of Be isotopes is formation of a 2a-cluster core sur-
rounded by valence neutrons. Around the ground state, molecular–orbital structure
with covalent neutrons manifests, while the pronounced two-body cluster struc-
tures dominate as the excitation energy increases. Also in O, F and Ne isotopes,
quite analogous molecular–orbital and two-body cluster structure is suggested in
excited states.

These results suggest that cluster is one of the essential features in unstable
nuclei as well as in stable nuclei. Even a nucleus has non-cluster ground state,
developed cluster states are expected to exist in excited states. In the excited states
of neutron-rich nuclei, various cluster structures such as molecular orbital structure
may emerge because of a variety of neutron configurations.
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Chapter 5
Di-Neutron Clustering and Deuteron-like
Tensor Correlation in Nuclear Structure
Focusing on 11Li

Kiyomi Ikeda, Takayuki Myo, Kiyoshi Kato and Hiroshi Toki

5.1 Unstable Nuclei and the Halo Structure of 11Li

We are in the era of being able to study experimentally unstable nuclei up to the
drip lines and even up to super-heavy nuclei. We are able now to provide precious
informations for astrophysics and cosmo-physics directly from experiment. All
these activities started with the discovery of the halo structure of 11Li [1]. Hence,
there are many experimental data on 11Li and surrounding nuclei. First of all, we
would like to discuss the characteristics of 11Li found by various experiments. We
should present all the existing experimental facts about the Li-isotopes, in
particular 9Li and 10Li

The formation of the halo structure in 11Li is a difficult subject to understand
theoretically. The fact that the binding energy is extremely small urges us to
develop a theory to handle continuum states as precisely as bound states. This fact
of small binding energy of the last two neutrons forces us to consider the pairing
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interaction at low density, which leads to the concept of the di-neutron clustering
phenomenon. Most fascinating physics necessary for the quantitative under-
standing of the halo structure turned out to be the discovery of the deuteron-like
correlation caused by the strong tensor interaction. Theoretically we have expe-
rienced these conceptual developments on the theoretical framework to treat the Li
isotopes. We discuss first the experimental facts on the Li isotopes and then
discuss the theoretical tools for the understanding of 11Li. All these theoretical
tools developed for the Li isotopes are to be used for many new phenomena found
in unstable nuclei.

5.1.1 Experimental Facts on 9,10Li and 11Li

There are many experimental data indicating that the 11Li nucleus has a halo
structure. A schematic picture of the halo structure is shown in Fig. 5.1. The halo
structure of 11Li was discovered as an anomalously large reaction cross section of
this nucleus with target nuclei. The matter radii extracted from the reaction cross
sections and other standard methods are shown in Fig. 5.2. We can see from this
figure that the matter radius of 11Li is much larger than that of the neighboring
nucleus 9Li. The matter radius of 11Li corresponds to those of medium mass
nuclei. If we were to pick up nuclei, whose radii are suddenly increased from the
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Fig. 5.1 A schematic image
of halo structure in 11Li
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neighboring nuclei, they are 6He, 11Be and 14Be in addition to 11Li. Detailed
studies on these sudden jumps of the matter radii made these phenomena as caused
by the halo formation.

There are many experiments performed on the halo structure of unstable
nuclei. Out of all these experiments, those of 11Li are very interesting due to
important nuclear many body physics behind the experimental data. In order to
find the reason of the sudden increase, experiments were performed for the
neutron separation momentum distributions. The momentum distributions of
neutron separation were measured experimentally by Kobayashi et al. [2] by
bombarding unstable nuclei on some stable target nuclei. The momentum dis-
tribution for the case of 11Li is much narrower than other cases. The narrowness
of the momentum distribution is related with large extension of the neutron
distributions due to the uncertainty principle. Hence, this is a data showing
directly the halo structure or at least a large spatial extension of the neutron
distribution in 11Li. As for the structure of 11Li, there was an experiment per-
formed by Simon et al. [3], who bombarded 11Li on a carbon target and measure
the momentum distribution of the 10Li fragments. From the shape of the dis-
tribution, the (1s1/2)2 contribution to the mixture of (1s1/2)2 and (0p1/2)2 com-
ponents was determined to be (45 ± 10)%.

If there is a halo structure, we may expect an interesting excitation mode of
11Li. If the core nucleus 9Li is surrounded by neutrons in the nuclear halo
region, there is a possibility of making oscillation of the core nucleus in the
neutron sea. This is called a soft dipole resonance to be excited by photo-
disintegration as shown in Fig. 5.3 [4, 5]. The excitation energy is expected
around a few MeV as compared to the standard giant E1 resonance of a few
tens MeV. There are several experiments of Coulomb excitation of 11Li. We
show the most recent experimental data on Coulomb excitation taken by
Nakamura et al. in Fig. 5.4 [6]. There is a bump structure just above the
threshold energy. However, it is still debated if the bump structure is caused by
the soft dipole resonance or not due to the complicated nuclear structure of 11Li.
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SDR GDRFig. 5.3 A schematic spec-
trum of E1 excitation of soft
dipole resonance and giant
dipole resonance modes of
halo nuclei. Shown above in
the left is a schematic view of
the soft dipole resonance
(SDR) and the one in the
right is that of the giant
dipole resonance (GDR)
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There are many other experimental data on 11Li as the magnetic moment and
quadrupole moment. These experimental data will be presented together with
theoretical results later.

We should also see experimental data for 10Li, which is the neighboring
nucleus, although this nucleus is unbound. We list the neutron single and double
separation energies in 9,10,11Li in Table 5.1. The two neutron separation energy
in 11Li is very small as 0.32 MeV. The separation energies in 9Li are large and
this nucleus should be considered as a standard shell model type nucleus. In
10Li, the single neutron separation energy is -0.3 MeV, indicating this nucleus
is not stable. This resonance structure seems to have positive parity and is
assigned to have the (p3/2)p(p1/2)m structure. At the same time, there are few
informations on virtual states. There is an experimental data on neutron scat-
tering with 9Li at the threshold energy [7]. The scattering length comes out to
be a * -20fm, which is comparable with the one of neutron-neutron scattering
a = -18.5 ± 0.4 fm [8]. Hence, the large scattering length indicates the exis-
tence of strong attraction in the s-wave channel, which is close to the condition

Fig. 5.4 Coulomb excitation
of 11Li in 11Li+Pb at
70 MeV/nucleon as a
function of the 9Li + n + n
relative energy. Details are
explained in the original
papar [6]

Table 5.1 Single and double neutron separation energies in unit of MeV in 9,10,11Li

Nucleus S2n [MeV] Sn [MeV]
11Li 0.32 0.62
10Li – –0.3
9Li 6.10 4.07
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of forming a bound state in the free space. This means that the s-state structure
appears close to the threshold energy of 9Li + n.

5.1.2 Theoretical Studies on the Halo Structure in 11Li

The halo structure was completely new in nuclear physics community. Hence,
there were many theoretical studies to describe this interesting phenomenon.
We have recognized immediately that the standard shell model approach badly
fails due to the fact that the two additional neutrons in 11Li ought to enter in
the p1/2 neutron orbit but not in the s1/2 orbit due to the N = 8 magic structure.
Hence, most of theoretical studies introduce some phenomenology to bring
down the s1/2 orbit. For example, in the work of Thompson and Zhukov [9],
they treat 9Li as a core and add two neutrons by taking state dependent neu-
tron-core interactions. The additional attraction for s-wave component makes
the (s1/2)2 state energetically close to the (p1/2)2 state. In this case, the (s1/2)2

state has a large component in the ground state, which provides the halo
structure for 11Li.

There is a theoretical study on the pairing property and the E1 excitation in 11Li
by Esbensen and Bertsch [10]. In their study, it is essential to bring down the s1/2

orbit to reproduce the experimental E1 excitation spectrum. As for the pairing
correlation, there are many studies to describe 11Li as the BCS state. In the study
of Meng and Ring [11], they describe 11Li in terms of a relativistic Hartree–
Bogoliubov model. In this study, they can include the continuum effect in their
pairing correlations. In the relativistic Hartree–Bogoliubov model, the s-wave
contribution comes out to be about a quarter of the p-wave contribution for the
paired two neutrons. We need more participation of the s-wave component as
compared to the finding of the experimental data of Simon et al. [3].

There is another interpretation on the halo structure as due to deformation.
In the work of Varga et al. [12], they try to break the 9Li core and introduce the
cluster structure. The wave function of 11Li is written as 4He + t + 4n and takes
the interaction among them by a phenomenological central interaction. In this way,
they can introduce the effect of the deformation and pairing correlations among the
nucleons. The deformation effect provides a large matter radius and some s-wave
component in the wave function.

The theoretical challenge on the halo structure is therefore summarized as
follows. There are many indications that the s-wave component is very large in
the ground state wave function. Hence, we have to find a mechanism to bring
down the s1/2 orbit with the amount to wash out the N = 8 magic structure.
The pairing properties are also very important to cause admixture of (p1/2)2 and
(s1/2)2 states. In the halo nucleus, we ought to consider the di-neutron pairing
correlation in a small nuclear matter density. All these new phenomena should
be understood in terms of the many body framework with the nucleon–nucleon
interaction.
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5.1.3 Nucleon–Nucleon Interaction and the Deuteron
and the Di-Neutron System

We should learn the properties of the nucleon–nucleon interaction in order to
understand the halo structure in 11Li. To this end, we would like to show the
central and the tensor interactions in the 3S1 channel of the AV8’ potential [13],
which are shown in Fig. 5.5. In the central interaction, there are strong hard core
(short range repulsive interaction) and intermediate range attraction of moderate
strength. As for the tensor interaction, the long range part drops with the pion
range, while the short range part increases until 0.2 fm and goes to zero at the
origin due to the form-factor coming from the nucleon finite size. On the other
hand, we have the similar structure for the central interaction in the 1S0 channel,
where there is a strong hard core due to the short range quark dynamics. In this
channel, there is no tensor contribution due to zero total spin. The deuteron-like
tensor correlation is produced by the NN interaction in the 3S1 channel, while the
di-neutron clustering is produced by the NN interaction in the 1S0 channel.

In order to understand the role of the hard core and the tensor interaction, let us
solve the Schrödinger equation for the deuteron by using the AV8’ nucleon–
nucleon interaction. The wave function of the deuteron is written as

Wd ¼ uðrÞ½Y0ðr̂Þ � v1ðr1r2Þ�1M þ wðrÞ½Y2ðr̂Þ � v1ðr1r2Þ�1M: ð5:1Þ

The deuteron wave function is written by the s-wave and d-wave components. The
tensor interaction mixes these two components. In Fig. 5.6 and Table 5.2, we show
the deuteron properties for the wave functions and the various energy contributions
and radii. In the wave function, the s-wave component is dominant and shows the
long-tail due to the weak binding of 2 MeV. In the short-range part less than the
0.5 fm region, the s-wave function is largely reduced due to the short-range
repulsion in the central interaction. Looking at the d-wave component, its
amplitude starts from the origin, because of the centrifugal barrier in the L = 2
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Fig. 5.5 Central and tensor interactions of the AV8’ potential [13] in singlet even (SE) and
triplet even (TE) channels
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partial wave, which is absent in the s-wave case. These features of the s-wave and
d-wave components have to be expressed using the shell model framework in finite
nuclei as the deuteron-like tensor correlation. These features will be treated for
finite nuclei by using the tensor optimized shell model (TOSM) and the unitary
correlation operator method (UCOM) to be discussed later.

Among the expectation values of all the two-body interactions in the deuteron,
the tensor interaction has the largest contribution of about -17 MeV. This
expectation value is four times of that of the central interaction. This tensor
interaction is the origin of the d-wave mixing in the wave function. From these
results, it is found that the dominant energy contribution comes from the coupling
of the s- and d-wave components by changing the relative orbital angular
momentum by 2, DL = 2. As for the radius of the deuteron, we decompose the
radius into the s-wave and d-wave components and normalize them by using the
corresponding amplitudes. It is interesting to see the size difference between two
angular components, where the d-wave size is much smaller than the s-wave size.
This compact d-wave structure produces high momentum component caused by
the tensor interaction, namely the pion exchange effect. Hence, we can learn the
role and the properties of the tensor interaction in finite nuclei from the deuteron.
That is, the tensor interaction creates the relative d-wave component in the wave

Table 5.2 Deuteron
properties using the AV8’
nucleon–nucleon potential

Energy -2.24 [MeV]
Kinetic 19.88
(SS) 11.31
(DD) 8.57
Central -4.46
(SS) -3.96
(DD) -0.50
Tensor -16.64
(SD) -18.93
(DD) 2.29
LS -1.02
P(D) 5.78 [%]
Radius 1.96 [fm]
(SS) 2.00 [fm]
(DD) 1.22 [fm]
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function, which is spatially compact and involves high momentum components.
These features should appear in finite nuclei as the deuteron-like tensor correla-
tion. We shall treat this correlation in terms of the tensor optimized shell model
(TOSM) in finite nuclei.

As for the di-neutron correlation, we have a moderate intermediate attraction
with a short range repulsion as shown in Fig. 5.5. There is no tensor interaction
and the relative motion is completely described by the central interaction. We are
aware that there is no bound state in the 1S0 channel, but that the scattering length
is negatively very large a = -18.5 ± 0.4 fm [8]. This negatively large scattering
length indicates that the di-neutron system is close to develop a bound state.
Hence, for a system like 11Li, we expect a strong di-neutron clustering phenom-
enon in the halo region. For the quantitative account we ought to use the NN
interaction for this phenomenon.

5.1.4 Wave Functions for 9,10Li and 11Li

We write the wave functions of the Li isotopes in order to understand the standard
shell model state, the di-neutron clustering and the deuteron-like tensor correla-
tion. It is illustrative to start writing the 9Li wave function.

j9Lii ¼ C1jðs1=2Þ2pðs1=2Þ2mðp3=2Þpðp3=2Þ4miJ¼3=2

þ C2jðs1=2Þ2pðs1=2Þ2mðp3=2Þpðp3=2Þ2mJ¼0ðp1=2Þ2mJ¼0iJ¼3=2

þ C3j½ðs1=2Þpðs1=2Þm�J¼1ðp3=2Þpðp3=2Þ4m ½ðp1=2Þpðp1=2Þm�J¼1iJ¼3=2

þ � � �

ð5:2Þ

We have written here only the dominant components explicitly where p and m for
each configuration denote proton and neutron, respectively. The term with the
amplitude C1 corresponds to the standard shell model state. The term with the
amplitude C2 corresponds to the main component of the two neutron pairing states,
where a two-neutron pair couples to Jp = 0+. The term with the amplitude
C3 corresponds to the main component of the deuteron-like tensor correlation
states, where a proton-neutron pair couples to Jp = 1+.

The di-neutron clustering correlation, which is associated with the C2 amplitude
component, should involve further particle states in sd and higher shells. As for
9Li, the di-neutron clustering correlation provides a similar structure as the BCS
state due to the fact that the nuclear density of the surface neutrons is ordinary as
expected from the standard size of neutron separation energies listed in Table 5.1.
With the increase of the neutron number, the nuclear density of the surface neu-
trons becomes very small and hence the di-neutron clustering correlation should
show up. This change of the di-neutron clustering correlation due to the nuclear
density is related with the BCS-BEC crossover. On the other hand, the deuteron-
like tensor correlation, which is associated with the C3 amplitude component,
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needs excitation of a proton-neutron pair with Jp = 1+ from occupied states to
unoccupied states. We have to include each particle state of the proton-neutron
pair up to very high angular momentum state.

We write the 10Li wave function in terms of the 9Li wave function.

j10Lii ¼A½j9Lii � jvni� ð5:3Þ

The additional neutron may enter the p1/2 orbit in the shell model state. The
addition of one more neutron to the pair correlated state has an effect to weaken
the pairing correlation due to the blocking effect of the neutron. The addition of
one more neutron to the deuteron-like configuration is very interesting, since the
additional neutron may go into the p1/2 orbit or into the s1/2 orbit in the shell model
state. If the last neutron goes into the p1/2 orbit, the deuteron-like correlation is
weakened by the additional neutron. Instead, if the last neutron goes into the s1/2

orbit, the deuteron-like correlation is not weakened, because 2p–2h states with the
use of s1/2 orbit are not important for the deuteron-like correlation. Hence, there
should appear the competition of the neutron s1/2 and p1/2 configurations in 10Li

We write the 11Li wave function in terms of 9Li wave function.

j11Lii ¼A½j9Lii � jvnni� ð5:4Þ

In this case, there is an important physics to be added in addition to all the
interesting phenomena in 10Li As for the pair correlated state, two neutrons block
the pair correlated state by entering in the p1/2 orbit. More interesting is the case of
the two neutrons going into the higher shell orbits. In this case, the two neutrons
stay in a low density region far from the 9Li core and hence the di-neutron
clustering phenomenon is expected. How large is the attraction due to the di-
neutron clustering effect for the 11Li binding energy needs full account of all the
effects. As for the C3 component, two neutrons going into the p1/2 orbit generate a
strong blocking effect of the deuteron-like correlation and this configuration is
disfavored by the tensor interaction. On the other hand, when the two neutrons go
into the s1/2 orbit, the deuteron-like correlation is not disturbed and therefore this
configuration is favored. Hence, as the consequence of these di-neutron clustering
correlation and the deuteron-like tensor correlation, these two correlations
cooperate to wash out the N = 8 magic structure and provide the interesting halo
phenomenon in 11Li.

5.2 Di-Neutron Clustering and the Hybrid-VT Model

In 11Li [14] and 6He [15], abnormally large matter radii were observed experi-
mentally. This phenomenon was interpreted as a result of the halo structure, where
two valence neutrons are spatially extended around the core nucleus due to their
weak binding. It is important to investigate the dynamics of the motion of valence
neutrons for the understanding of the halo structure. In such a situation, it is
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necessary to develop a theoretical method to handle spatially extended structure of
the Borromean system consisting of core nucleus and two neutrons. For this
purpose, we have developed the hybrid-VT model as the most suitable model to
describe the halo structure. In the hybrid-VT model for two-neutron halo nuclei,
shown in Fig. 5.7, the mean field nature of each valence neutron can be described
in the V-type basis states (the cluster orbital shell model (COSM), Fig. 5.7a).
Further, the explicit neutron–neutron correlation is treated in the T-type (Fig. 5.7b)
basis states. Here, the basic idea of this hybrid-VT model is presented, and in the
next sub-section we explain the formulation of the hybrid-VT model in detail.

In the weak binding system it is necessary to consider the large spatial
extension of single particle wave functions of valence neutrons. This situation
corresponds to the coupling of the valence neutrons to continuum states. Suzuki
and Ikeda [16] proposed the cluster orbital shell model (COSM, V-type), and
applied to 6He and 11Li [17–23]. The COSM is one extension of the shell
model, in which the spatially extended character of valence neutrons can be
treated. The V-type coordinates in the COSM are the suitable coordinates to
express the mean field property of the valence neutrons, and therefore can
express the shell model properties of 5,6He and 10,11Li most effectively. How-
ever, from the analysis of neutron-rich nuclei with the COSM, it was shown that
the binding energies of the Borromean nuclei can not be described quantita-
tively. Furthermore, it was found that in a weakly bound system, the n–n
clustering correlation, namely the di-neutron clustering correlation, becomes
important to provide an extra binding energy. This is characterized by the
participation of many Jp = 0+ pair configurations with large single particle
orbital angular momenta [24, 25].

Hence, it is important to include the physical effect of di-neutron clustering
correlation explicitly in two-neutron halo nuclei, and the T-type wave function is
suitable for this purpose [18, 19, 23, 24, 26]. We combine the T-type basis
functions with the V-type ones as shown in Fig. 5.7. It has been shown that this
hybrid-VT model describes the di-neutron clustering correlation with full
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convergence of the binding energy and radius as will be discussed in the following
sub-sections. Hence, the hybrid-VT model wave function involves two-kinds of
physical correlations as the mean-field and di-neutron clustering correlations, in
the two-neutron halo nuclei. The hybrid-VT model is also a special case of few-
body systems; a three-body system is generally described by using the Jacobi-
coordinates [27] as shown in Fig. 5.7. In the case of core + n + n, the core nucleus
has a large mass in comparison with that of valence neutrons. Therefore, as shown
in Fig. 5.7, the V-type coordinates ðg1; g2Þ correspond to the symmetric Y-type
Jacobi coordinates, (X, x) and (Y, y).

In this section, we explain the construction of the COSM and the hybrid-VT
model [24–26, 28–37] and its application to the three-body systems: 6He and 11Li.
The subject of the di-neutron clustering is discussed in terms of BCS-BEC cross
over in recent literature [38, 39, 40].

5.2.1 Formulation of Hybrid-VT Model

We consider the hybrid-VT model for a spatially extended core + n + n system.
Here, we derive the three-body Hamiltonian from the A-nucleon system. This
consideration is useful when we extend this model to include the core excitation in
the halo nuclear system. The A-body Hamiltonian is given as

H ¼
X

A

i¼1

ti � Tcm þ
X

A

i [ j

vij ¼ T þ V ; ð5:5Þ

where T =
P

ti - Tcm is the kinetic energy operator of the system after removing
the center-of-mass motion (Tcm) and V =

P

vij is the two-body potential energy.
We decompose the Hamiltonian of an A-nucleon system into a core part with Ac

nucleons and N(= A - Ac) valence neutrons. The relative coordinates between the

core and the valence nucleons are given as gi ¼ ri � 1
Ac

PAc
i¼1 ri;as shown in

Fig. 5.7. The kinetic energy term T is rewritten as

T ¼
X

A

i¼1

ti � Tcm

¼ Tc þ
X

N

i¼1

p2
i

2l
þ
X

N

i\j

pi � pj

ðAc þ 1Þl ;
ð5:6Þ

Here, Tc ¼
PAc

i¼1 ti � Tc
cm is the kinetic energy with Tc

cm being the center of mass
motion of the core nucleus. The operator p ¼ �i�hrg is the momentum conjugate
to g and l = Ac/(Ac + 1)m is the reduced mass between the core and a single
neutron. The term of pi � pj is the recoil motion from the center of mass system.
The potential term is similarly decomposed as
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V ¼
X

Ac

i\j

vij þ
X

N

i¼1

X

Ac

j¼1

vij þ
X

N

i\j

vij;

¼ Vc þ
X

N

i¼1

Vi þ
X

N

i\j

vij;

ð5:7Þ

where the mean field potential Vi for each valence neutron is given as

Vi ¼
X

Ac

j¼1

vij: ð5:8Þ

Here, Vc are the potential term of the core nucleus, and the Hamiltonian is
rewritten as

H ¼ Tc þ
X

N

i¼1

p2
i

2l
þ
X

N

i\j

pi � pj

ðAc þ 1Þl

" #

þ Vc þ
X

N

i¼1

Vi þ
X

N

i\j

vij

" #

;

¼ Hc þ
X

N

i¼1

p2
i

2l
þ Vi

� �

þ
X

N

i\j

vij þ
pi � pj

ðAc þ 1Þl

� �

;

ð5:9Þ

where the first term Hc = Tc + Vc is the Hamiltonian of the core and the second
and third terms are for valence neutrons. The second term is the single particle
Hamiltonian for the relative motion between the single neutron and the core. This
defines the orbitals for the valence nucleons. The third term is the two-body
operator between the valence neutrons, which produces the coupling between
valence neutrons, such as the di-neutron correlation.

We start with the core part U(Ac) and write the Schrödinger equation as

UðAcÞ ¼
X

a

Ca/aðAcÞ; ð5:10Þ

HcUðAcÞ ¼ EcUðAcÞ; ð5:11Þ

where the index a is the label to distinguish various configurations of the core
nucleus and the amplitudes Ca are those used in Eq. (5.2). They are determined by
the variational equations obtained by the energy minimization of Ec. We employ
the shell model like basis wave function for /a(Ac).

The wave function of the two valence neutrons v(nn) in the hybrid-VT model of
two neutron halo nuclei (N = 2) is expressed as the superposition of the COSM
(V-type) and T-type wave functions as

vðnnÞ ¼ vVðnVÞ þ vTðnTÞ: ð5:12Þ

Here, the coordinate sets nV and nT represent V-type and T-type ones, respectively,
as shown in Fig. 5.7. We take antisymmetrization between two neutrons, explic-
itly. The radial components of the relative wave functions are expanded with a
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finite number of Gaussian functions centered at the origin with various length
parameters [41, 42].

In the hybrid-VT model, the total wave function of the A-nucleon system and
the corresponding Schrödinger equation are given as

WðAÞ ¼A
X

a

/aðAcÞvaðnnÞ
( )

; ð5:13Þ

HWðAÞ ¼ EWðAÞ; ð5:14Þ

where the total Hamiltonian H is given in Eq. (5.9). We omit the angular
momentum coupling between the core nucleus and the valence neutrons for
simplicity. The operator A is the antisymmetrizer between core nucleons and
valence neutrons. The mixing amplitudes of the core configurations a are
included in the wave functions va(nn). Equation (5.13) is useful to understand
the asymptotic condition of the wave function, in which some of the valence
neutrons are located far away from the core, such as the tail part of halo
structure and the scattering states. This will be discussed later in the numerical
results of 11Li.

In order to solve Eq. (5.14), we employ the orthogonality condition model
(OCM) [43–46] instead of the resonating group method (RGM) [47]. In the
OCM, the antisymmetrizer A between core nucleons and valence nucleons is
replaced by introducing the projection operator to remove the Pauli forbidden
states from the relative motion of the valence neutrons. The projection is
expressed by introducing the following one-body term in the original Hamil-
tonian in Eq. (5.9).

vPF
i ¼ k

X

Ni

k

j/PF
k ih/

PF
k j; ð5:15Þ

where the indices i and k are the labels representing each valence neutron and each
Pauli-forbidden state for one valence neutron. Ni is the number of Pauli-forbidden
states for one valence neutron. We take a sufficiently large value for k in the
numerical calculation.

In the calculation of the matrix element of the Hamiltonian in Eq. (9), we fold
the Hamiltonian by using the wave function of the core nucleus. In the coupled
channel OCM with the hybrid-VT model, we obtain the following equation for the
valence neutrons va(nn),

X

b

Hc
ab þ

X

2

i¼1

p2
i

2l
dab þ VF

i;ab þ vPF
i dab

� �

"

þ
X

2

i\j

vij þ
pi � pj

ðAc þ 1Þl

� �

dab

#

vbðnnÞ ¼ EvaðnnÞ;
ð5:16Þ
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where

Hc
ab ¼ h/aðAcÞjHcj/bðAcÞi; ð5:17Þ

VF
i;ab ¼ h/aðAcÞjVij/bðAcÞi ¼ h/aðAcÞj

X

Ac

j¼1

vijj/bðAcÞi: ð5:18Þ

We explain here the Gaussian expansion method to describe the wave functions of
valence neutrons va(nn) in the hybrid-VT model. The spatial part of the basis
functions for one relative motion r is given by the following Gaussian wave
functions,

wb
l ðrÞ ¼ NlðbÞ rl expð� r2

2b2
Þ Ylð̂rÞ; ð5:19Þ

NlðbÞ ¼
2b�ð2lþ3Þ

Cðlþ 3=2Þ

� �

1
2

; ð5:20Þ

where l is the orbital angular momentum. The set of the length parameter b is
usually chosen in geometric progression [48]. In V- and T-type basis functions, we
commonly use these basis states. We expand each relative motion of the hybrid-VT
model with a finite number of the above basis functions. The Gaussian expansion
method is able to describe the halo structure very nicely.

For the coupling with intrinsic spin of neutrons, in the COSM (V-type), we
adopt the j–j coupling scheme in a sense of the shell model. This representation is
suitable to express the motion of each valence neutron in the mean field potential
provided by the core nucleus. In the T-type basis function, we take the L–S cou-
pling scheme. This is because the di-neutron pair is considered to have the
dominant component of the 0+ state with spin singlet state. In the T-type basis,
we directly take into account the 1S0 component of the two neutrons. Actually,
the analysis of 6He provides more than 80% in the spin singlet states. In the COSM
(V-type basis), its basis wave function corresponding the configuration of the core
nucleus /a is given as

vJ
a;VðnnÞ ¼

X

p

Cp
a;V A12 ½wb1

l1
ðg1Þ; vr

1=2�j1 ; ½w
b2
l2
ðg1Þ; vr

1=2�j2
h i

J

p ¼ fb1; b2; l1; l2; j1; j2; Jg;
ð5:21Þ

where A12 is an antisymmetrizer between two valence neutrons, and Ca,V
p are

variational coefficients for the basis set.
The T-type basis function is similarly described as

vJ
a;TðnnÞ ¼

X

q

Cq
a;T A12 wbr

l ðrÞ;w
bR
L ðR~Þ

� �

IvS

� �

J
;

q ¼ fbr; bR; l; L; S; Jg; vS ¼ ½vr
1=2; v

r
1=2�S:

ð5:22Þ
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In the calculation of the hybrid-VT model, we take various sets of orbital angular
momenta and spins until we reach the convergence of the solutions. The variation
of the total energy E with respect to the total wave function W(A) is given by

d
hWjHjWi
hWjWi ¼ 0; ð5:23Þ

which leads to the following equations:

ohWjH � EjWi
oCp

a;V
¼ 0;

ohWjH � EjWi
oCq

a;T
¼ 0: ð5:24Þ

5.2.2 Application of the Hybrid-VT Model to 6He

We discuss the results of the hybrid-VT model for the two-neutron halo nuclei 6He
as 4He + n + n and 11Li as 9Li + n + n. An extension to a core plus many valence
neutrons (e.g. 7He = 4He + n + n + n) is straightforward [49, 50]. For 6He case,
we take a single configuration for the 4He core. The Hamiltonian in Eq. (16) can be
written as

H ¼ Hc þ
X

2

i¼1

p2
i

2l
þ VF

cnðgiÞ þ vPF
i

� �

þ vnn þ
p1 � p2

ðAc þ 1Þl : ð5:25Þ

Here, Hc can be replaced by the observed energy of 4He (-28.3 MeV) and we
can discuss only the relative motion of valence two neutrons in 6He. For the
4He–n potential VF

cn we adopt the microscopic KKNN potential [24, 51], which
reproduces the observed phase shift between 4He and n. The Minnesota inter-
action [52] is used for vnn between two valence neutrons, where the
exchange mixture u is chosen to be 0.95. These choices are the same as those in
Refs. [26, 32] and [53].

It is important to understand the model performance for 6He as a simple system
for the description of more complicated systems as 11Li. The binding energy of the
6He ground state is shown as a function of the channel number in Fig. 5.8. The
calculated results in the COSM and the hybrid-VT model are shown by the open
and solid circles, respectively. In both cases, the convergence was achieved and it
is found that the hybrid-VT model converges much faster than the COSM. In the
hybrid-VT model, it is sufficient to take shell model states up to the d5/2-shell orbit
(Channel number is five) using the V-type coordinates and add the di-neutron
channel of l = L = 0 states in Eq. (5.22) using the T-type coordinates. Thus, the
di-neutron correlation is very important for the ground state of 4He. The hybrid-VT
model is an efficient framework to treat the di-neutron correlation in the shell
model basis.
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The radii of 6He are converged as 2.46 and 2.06 fm for matter and charge rms
radii, respectively. These values agree with the recent observations [1, 55]. The
core-n and n–n mean distances are obtained as 3.42 and 4.90 fm, respectively. In
addition to the radius, the spatial correlations of the halo neutrons in 6He are
interesting [10, 38, 56, 57] and the calculated results are shown in Fig. 5.9. We
show the density distribution of halo neutrons qnn(r, h) in 6He as a contour in the
plane of 4He–n distance r and the opening angle between two neutrons h with the
following definition [54, 62];

qnnðr; hÞ ¼
Z

1

0

dr0qnnðr; r0; hÞ ð5:26Þ

qnnðr; r0; hÞ ¼ 8p2r2r02 sin h hWJð6He; r; r0; hÞjdðr � r00Þdðr0 � r000Þ
� dðh� h0ÞjWJð6He; r00; r000; h0Þi;

ð5:27Þ

where the total wave function of 6He has three variables, the 4He–n distances with
r and r0 for each neutron and their opening angle h in Eq. (5.27). We integrate out
only the variables of the ket part. It is confirmed that the di-neutron type
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configuration (a large r and a small h) gives a maximum value of the density,
although the density of neutrons is widely distributed. There is another component
of the cigar type configuration (a small r and a large h), which coexists with the
di-neutron type configuration. The characteristics of these two structures in the
density distribution come from the p3/2

2 configuration of two neutrons in
6He, which is the dominant component by 90.2% in the ground state wave func-
tion. The mixing of the higher orbital configurations makes a spatial extension of
the distribution and enhances the di-neutron component, such as p2

1=2 with 4.3%,

1s2
1=2 with 1.2%, d2

5=2 with 2.6% and d2
3=2 with 0.9%. The results indicate that the

j–j coupling scheme is well established in 6He.

5.2.3 Hybrid-VT Model on Di-Neutron Clustering in 11Li

We consider the three-body problem of 9Li + n + n using the orthogonality con-
dition model (OCM). The Hamiltonian consists of the similar form as given in
Eq. (5.25) for 6He. The difference from the 6He model is the configuration mixing
for the 9Li core nucleus, because of the small neutron separation energy of 9Li in
comparison with 4He. This means that we take into account the core excitation in
11Li. In this section, we first take into account the neutron 0+ pairing correlation of
the 9Li core and examine this effect on the structures of 11Li and 10Li. Later, we
include the tensor correlation in 9Li.

Before showing the numerical results, we generally formulate the coupled
9Li + n + n model of 11Li, in which the configuration mixing is performed for the
9Li core. This framework is straightforward to apply when the tensor correlation is
included in the core part, later. In the coupled hybrid-VT model of 9Li + n + n, we
consider the Pauli forbidden (PF) states in the 9Li–n relative motion [60]. In this
model, PF states removed from the relative motion depend on the configuration
of 9Li, namely the orbits occupied by neutrons in the 9Li core. The main config-
urations are given in Eq. (5.2) and the amplitudes are written as C1, C2 and C3.
The PF states corresponding to those wave functions are given as

/PF ¼
0s1=2; 0p3=2 for C1

0s1=2; 0p3=2; ð0p1=2Þmm for C2

0s1=2; 0p3=2; ð0p1=2Þpm for C3:

8

<

:

ð5:28Þ

In case of C2 the PF p1/2 orbit is used by the pairing state and indicated as
(p1/2)mm, while in case of C3 the PF p1/2 orbit is used by the deuteron-like tensor
correlation and indicated as (p1/2)pm. From Eq. (5.13), the wave function of 11Li is
given as

WJð11
LiÞ ¼

X

Na

a

A ½/3=2�

a ; v j
aðnnÞ�J

n o

: ð5:29Þ
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Here, va
j (nn) represents the wave functions of two valence neutrons, and j and J are

the spin of two valence neutrons and the total spin of 11Li, respectively. The three-
body eigenstates are obtained by solving the eigenvalue problem for the coupled-
channel Hamiltonian given in Eq. (5.9).

Hð11LiÞWð11LiÞ ¼ Eð11LiÞWð11LiÞ ð5:30Þ

We discuss the coupling between the 9Li configurations /3=2�

a and the motion of
valence neutrons. In 11Li, the amplitudes Ca of each configuration of 9Li in
Eq. (5.10) are determined variationally. Asymptotically, when the two valence
neutrons are far away from 9Li, the wave function of 11Li becomes

vj
aðnnÞ �!

g1;g2!1
Ca � vjðnnÞ; ð5:31Þ

U Jð11
LiÞ �!

g1;g2!1

X

Na

a

Ca/
3=2�

a

 !

; vjðnnÞ
" #J

: ð5:32Þ

The first equation implies that the asymptotic wave function of the two valence
neutrons is decomposed into the internal amplitude Ca of the 9Li configuration and
the relative wave function vj(nn), which is independent of the 9Li configuration.
This means that the coupling between the valence neutrons and 9Li disappears. As
for the di-neutron wave function vj(nn), the correlation between the two neutrons
disappears also at far distance, because the two neutrons do not form bound state in
the free space. The mixing amplitudes {Ca} of 9Li in Eq. (5.32) are the same as
those of the isolated 9Li in Eq. (5.10). Contrastingly, when the two valence neu-
trons are close to the 9Li core, the motions of the two valence neutrons dynami-
cally couple to the configuration of 9Li in order to satisfy the Pauli principle, which
changes the mixing amplitudes {Ca} in 9Li from those of the isolated 9Li core.

We now carry out the coupled-channel three-body calculation for 11Li. In the
model, the 9Li–n interaction Vc n is taken as a folding-type potential with the MHN
interaction [46, 58, 59], which is constructed from the G-matrix using the bare
nucleon–nucleon interaction. The folding potential for 9Li–n includes the coupling
between intrinsic spins of the valence neutron and 9Li (3/2-). This coupling
produces splittings of the energy levels, for instance 1+–2+ (for the p1/2-neutron)
and 1-–2- (for the s1/2-neutron) in the 10Li spectra.

The important points we wish to study in this calculation are whether the
present model can solve the under-binding problem and describe the halo struc-
ture. This is because the three-body model of 11Li by using only the inert core
model of 9Li, which corresponds to the use of the C1 term alone in Eq. (5.2), does
not make a bound state [26]. We also want to see how the pairing correlations act
on the binding mechanism. The results are shown in Fig. 5.10. The binding energy
of the 11Li ground state measured from the three-body threshold is obtained as
0.5 MeV by considering the pairing correlation in 9Li. The matter radius is
obtained as 2.69 fm, which is smaller than the experimental value [1, 61].
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We discuss the role of the pairing correlation between valence neutrons in 11Li.
In Fig. 5.10 two kinds of the energy convergence of 11Li are plotted as functions of
the channel number of the jp = 0+ pairing configuration for valence neutrons. One
of them is the calculation employing only the COSM basis and the other is
that with the hybrid-VT basis. In the calculation, we take the first channel as
(p1/2)2, and the order in which channels are added to the first one is (s1/2)2,
(p3/2)2, (d5/2)2, (d3/2)2,…, (lj)

2. The maximum number of channel is 31, where the
orbital angular momentum and the spin of one valence neutron are l = 15 and
j ¼ 31

2 : We see rapid convergence of the energy in the hybrid-VT model. This result
indicates that the pairing correlation between valence neutrons is important to
reproduce the weak binding state of 11Li. This result is similar to the 6He case
shown in Fig. (5.8). We comment here that the binding energy comes out to be
0.5 MeV, which is larger than the experimental value of 0.3 MeV. At the same
time, the s-wave component is less than 10% as compared with the experimental
value *50%. In the present analysis, we determine the 9Li–n interaction to
reproduce the 1+ state at 0.42 MeV and the virtual s-wave state just at the 9Li?n
threshold energy in the 10Li spectrum. In this case, two neutrons of 11Li are
slightly overbound, which indicate that the pairing correlation of 9Li partially
solves the problem of 10,11Li. This over-binding property together with other
problems will be removed consistently by considering the deuteron-like tensor
correlation, which pushes up the (p1/2)2 state energetically close to the (s1/2)2 state,
as will be shown later.

We also discuss the di-neutron correlation in 11Li. The spatial correlations of
the halo neutrons in 11Li are interesting [10, 38, 56, 57] and they are shown in
Fig. 5.11. We calculate the density distribution of halo neutrons qnn(r, h) in 11Li as
functions of the 9Li–n distance r and the opening angle h between two neutrons. In
order to present the realistic case, which reproduce the large s2 component of halo
neutrons [3], we show here the result of calculations with the tensor optimized
shell model (TOSM), which includes both the pairing and deuteron-like tensor
correlations in 9Li [62]. This TOSM wave function contains the s-wave component
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in 11Li by a large amount 47%. We will discuss the details of the TOSM in the
following section. In the TOSM case (a), it is confirmed that the di-neutron
clustering configuration gives a maximum value of the density, although the
density of neutrons is widely distributed. Contrastingly, the Inert Core case (b)
with a small s2 component of 4%, does not show much enhancement of the
di-neutron clustering configuration and the cigar type configuration coexists with
the di-neutron clustering configuration. This feature of the case (b) is similar to
6He [56]. These two results indicate the role of the s2 component on the formation
of the di-neutron clustering configuration as follows: The s2 component in 11Li
increases the amplitude of the tail region of two neutrons far from 9Li, and these
neutrons tend to come close to each other to gain the interaction energy between
them. As a result, the di-neutron clustering configuration is enhanced, although the
spatial distribution of neutrons is still wide. The spatial distribution of two neu-
trons also affects the opening angle h, where the TOSM case having large
di-neutron component, shows a smaller h value (65�) than the Inert Core one (73�).

5.3 Continuum and Resonance States
in Complex Scaling Method

The halo nuclei have extremely small binding energies and it is very important to
take into account the continuum and resonance states for quantitative account of
the halo nuclei. At the same time, neighboring nuclei have odd numbers of neu-
trons and often those nuclei do not have bound states. Hence, in order to obtain
precious informations on the neutron-core potentials, it is important to describe
resonance states of the neighboring nuclei. In this section, we would like to
develop a powerful method of treating continuum and resonance states as if they
are bound states. This method is called the complex scaling method (CSM). We
can also apply the CSM for excitation functions of halo nuclei. We would like to
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Fig. 5.11 Two neutron correlation density qnn(rcore - n, h) for 11Li [62]. The case (a) is the
calculation with the TOSM of 9Li and (b) is the Inert Core case of 9Li, respectively
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emphasize here that there has not been any method to treat three-body unbound
systems. In particular, there is a case where two-body system out of the three-body
system may be in the resonance state. We can treat these interesting possibilities in
the CSM.

5.3.1 Formulation of CSM

We explain the CSM, which describes resonances and non-resonant continuum
states of a many-body system. Hereafter, we refer to non-resonant continuum
states as simply continuum states. In the CSM, we transform every relative
coordinates frig of the system such as core+ n + n model, by the operator Uh as

Uh : ri ! ri eih for i ¼ 1; . . .;N; ð5:33Þ

where h is a scaling angle and N the total number of particles in the system.
The Hamiltonian H is transformed into the complex-scaled Hamiltonian
Hh = UhHUh

-1, and the corresponding complex-scaled Schrödinger equation is
given as

HhW
J
h ¼ EWJ

h; ð5:34Þ

WJ
h ¼ eð3=2ÞihX WJðfrie

ihgÞ; ð5:35Þ

where X stands for the number of degrees of freedom. The phase factor e(3/2)ihX is
attached here due to the phase freedom of wave function and originates from the
Jacobian in the integral over the coordinates. In the three-body model of
11Li, X = 2. The eigenstates WJ

h are obtained by solving the eigenvalue problem
of Hh in Eq. (5.34). In the CSM, we obtain all the energy eigenvalues E of
bound and unbound states on a complex energy plane, governed by the ABC
theorem [63, 64]. In this theorem, it is proved that the boundary condition of
Gamow resonances is transformed to the damping behavior at the asymptotic
region. The Gamow resonance is a pole of S-matrix and has an complex energy
eigenvalue of E = Er - iC/2, where Er and C are the resonance energies
measured from the lowest threshold and the decay widths, respectively.

For simple understanding of this theorem, we consider the asymptotic wave
functions for Gamow states in the two-body case. The Gamow states with complex
wave number kp are described by the outgoing waves exp(ikpreih). It is easily
understood that the bound state wave functions maintain the damping behavior for
h\p/2. The wave functions of resonances, which had divergent behavior origi-
nally as eikR�r ¼ eiðjr�icrÞr ¼ ecrr�eijrr; behave as

eikR�reih ¼ eiðjr�icrÞreih ¼ eirðjr�icrÞðcos hþi sin hÞ

¼ eð�jr sin hþcr cos hÞr � eiðjr cos hþcr sin hÞr:
ð5:36Þ
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This equation shows that the divergent behavior of the resonant wave functions
is regularized when we take the scaling angle h to be larger than the angle
hr ¼ tan�1ðcr

jr
Þ of the resonance position jr - icr. This damping condition enables

us to use the same theoretical method to obtain many-body resonance states as
those used for bound states. For a finite value of h, every Riemann branch cut is
commonly rotated down by 2h. We can identify the resonance poles of complex
eigenvalues without any ambiguities.

In the wave function, the h dependence is included in the variational coeffi-
cients in Eqs. (21) and (22) as {Ca,V

p,h} and {Ca,T
p,h}, respectively. The wave functions

are expanded with the finite number of the L2 basis functions, so that all the
obtained states are discretized on the complex energy plane. The stability of the
calculated matrix elements of resonant and continuum states using the CSM
has been shown in many works [28, 46, 65]. For continuum states, we adopt the
discretized representation using the L2 integrable basis functions. This discreti-
zation has been checked to reproduce the genuine continuum states by using the
CSM [66–68].

In the study, we use the CSM not only to search for the resonance positions, but
also to calculate the strength functions, such as E1 responses. This is related to the
continuum level density of the scattering states. We have shown that the CSM
provides us with the accurate continuum level density even if the states are dis-
cretized. This fact means that the continuous strength function into scattering
states can be obtained in the CSM, which is performable in the many-body case.
So far, we have succeeded to apply this characteristics of the CSM to calculate the
electric responses, Gamow–Teller strengths, nucleon-removal strength and so on.

In the calculation of the strength function, we need a complete set of the
core+ n + n system including bound, resonant, and continuum states. We express
this complete set using the complex-scaled eigenstates Wh

J obtained in the cor-
e+n+n model. We briefly explain the extended completeness relation (ECR) using
the CSM [28, 65, 69]. When we take a large h like in Fig. 5.12, three-body
scattering states are decomposed into three categories of discrete three-body res-
onances, three-body continuum states of core+n+n, and two-body continuum
states of [core + n]res + n. Here, the [core + n]res + n two-body continuum states
are obtained on the branch cuts, whose origins are resonance positions of the
core+n system, as shown in Fig. 5.12. Using all the unbound states, we introduce

Re(E)

Im(E)

three-body
continuum

resonance
bound

3-body scattering (θ=0)

2θ

[core+n]*res+n

[core+n]res+n
core+n+n

two-body continuum

Fig. 5.12 A schematic
distribution of energy
eigenvalues of the Borromean
core + n + n system in the
CSM, where the origin of
energy is chosen as the
three-body threshold
energy [46]
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the extended three-body completeness relation (ECR) of the complex-scaled
Hamiltonian Hh as

1 ¼
X

m

Z

jUh
miheUh

m j

¼ fthree-body boundstateg
þ fthree-body resonanceg
þ fthree-body continuum states of coreþ nþ ng
þ ftwo-body continuum states of ½coreþ n�res þ ng;

ð5:37Þ

where fUh
m ;
eUh

mg are the complex-scaled wave functions and form a set of bior-
thogonal bases. This relation is an extension of the two-body ECR [46, 65].
Because the detailed definition of the biorthogonal bases is written in the previous
works [28, 65], we only briefly explain it here. When the wave number km of Um is

for discrete bound and resonance states, the adjoint wave number ekm of eUm is

defined as ekm ¼ �k�m ; which leads to the relation eUm ¼ ðUmÞ� [65, 69, 70]. For
continuum states, the same relation of the bi-orthogonal states of resonances is
adopted, because we use a discretized representation. In the core+n+n model, the
core + 2n channel is included in the three-body continuum components of the
core+n + n system, because two neutrons do not have any bound states or physical
resonances.

We explain how to calculate the strength function S(E) using the ECR model.
The strength S(E) is a function of the real energy of the whole system E. We
first introduce the Green’s function GðE; g; g0Þ; which is used in the derivation
of the strength [28, 29]. The coordinates, g and g0; represent the set of ri

(i = 1,…, X) in Fig. 5.7. Here, we introduce the complex-scaled Green’s function
GhðE; g; g0Þ as

GðE; g; g0Þ ¼ g
1

E � H

�

�

�

�

�

�

�

�

g0
	 


ð5:38Þ

! GhðE; g; g0Þ ¼ g
1

E � Hh

�

�

�

�

�

�

�

�

g0
	 


¼
X

m

Z

Uh
mðgÞ½eU�mðg0Þ�

h

E � Eh
m

¼
X

m

Z

Gh
mðE; g; g0Þ:

ð5:39Þ

In the derivation from Eq. (5.38) to Eq. (5.39), we insert the ECR of the
whole system given in Eq. (5.37). The total energy Em

h corresponds to the
eigen wave function Uh

m. The h dependence of Em
h appears only in the con-

tinuum spectra.
The strength function S(E)a for the arbitrary operator Oa, in which a is

the quantum number for the operator, is defined using the ordinary Green’s
function as
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SaðEÞ ¼
X

m

Z

h eW0jOyajUmiheUmjOaiW0 dðE � EmÞ

¼ � 1
p

Im

Z

dgdg0 eW�0ðgÞOyaGðE; g; g0ÞOaW0ðg0Þ
� �

:

ð5:40Þ

For simplicity, we omit the labels of the angular momenta and their z components
of the wave functions and of the operators. The wave function W0 is the initial
state. We also consider the sum rule value of the strength Sa(E) in Eq. (5.40),
which is defined by the integration of Sa(E) over the real energy E. Using the
completeness relation of the final states of 6He, the sum rule value is given as

Z

dE SaðEÞ ¼
X

m

Z

h eW0jOyajUmiheUmjOajW0i

¼ h eW0jOyaOajW0i:
ð5:41Þ

Thus, it is also confirmed that the energy integrated value of Sa(E) satisfies the
expectation value of the operator Oa for the initial state. In the case of the E1
transition of halo nuclei, the sum rule value corresponds to the relative distance
between core and the center of mass of valence neutrons. When Oa is an
annihilation operator, for example, 7He into 6He + n, the integrated value sat-
isfies the associated particle number of 7He, namely the number of three valence
neutrons.

To calculate the strength function Sa(E) in Eq. (5.40), we operate the complex
scaling on Sa(E), and use the complex-scaled Green’s function of Eq. (5.39) as

SaðEÞ ¼ �
1
p

Im
Z

dgdg0½ eW�0ðgÞ�
hðOyaÞ

hGhðE; g; g0ÞOh
aW

h
0ðg0Þ

� �

¼
X

m

Z

Sa;mðEÞ;
ð5:42Þ

Sa;mðEÞ ¼ �
1
p

Im
h eWh

0jðOyaÞ
hjUh

miheUh
m jOh

ajWh
0i

E � Eh
m

" #

: ð5:43Þ

In Eq. (5.43), the strength function is calculated using the matrix elements

heUh
m jOh

ajWh
0i: It is noted that the function Sa,m(E) is independent of h [28, 50, 65,

68]. This is because any matrix elements are obtained independently of h in the
complex scaling method, and also because the state m is uniquely classified
according to the ECR defined in Eq. (5.37). As a result, the decomposed strength
Sa,m(E) is uniquely obtained. Thus, the strength Sa(E) is calculated as a function of
the real energy E of the nucleus of interest. When we discuss the structures
appearing in Sa(E), it is useful to decompose Sa(E) into each component Sa,m(E) by
using the complete set of the final state m of the whole system. We can categorize
m using the ECR in Eq. (5.37). Because of this decomposition of unbound states,
we can unambiguously investigate how much each resonant and continuum state
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of the whole system exhausts the strength. This can be performed in the Coulomb
breakup strengths of 6He, 11Li and 11Be and many other three-body systems.

5.3.2 Three Body Resonance and Continuum States in 6He

We discuss the results of the complex scaling method (CSM) for the halo system
6He. We describe 6He as a 4He + n + n system in the hybrid-VT model [23, 27].
Here, we briefly recapitulate the important properties of the CSM. The Hamilto-
nian of the model is the same as the one in Ref. [24] except for an introduction of a
three-body interaction;

H ¼
X

3

i¼1

ti � TG þ
X

2

i¼1

Van;i þ vPF
i

� �

þ vnn þ V3
ann; ð5:44Þ

where ti and TG are kinetic energies of each particle and the center-of-mass of the
three-body system, respectively. The 4He core cluster is assumed to have the
(0s)4-closed configuration with the length parameter bc = 1.4 fm, which repro-
duces the experimental charge radius of 4He. The Pauli-forbidden PF state is the
0s orbit in the relative motion. The two-body interactions Van and vnn are given by
the microscopic KKNN potential [51] for 4He–n and the Minnesota potential [51]
for n–n, respectively. These potentials well reproduce the low-energy scattering
data of each two-body system.

A phenomenological three-body 4He–n–n interaction V3
ann is introduced to fit

the binding energy of the 6He ground state. This is introduced to overcome
the small underbinding (few hundreds keV) of the 6He ground state with a frozen
4He core assumption. By taking into account the excitation or the dissociation of
the 4He core, this underbinding problem in 6He is believed to be solved [71, 72].
We include effectively the excitation of the 4He core inside 6He by this three-body
interaction term. We introduce the three-body interaction assuming a single
Gaussian function

V3
ann ¼ V3 e�mðr2

1þr2
2Þ; ð5:45Þ

V3 ¼ �0:218MeV; m ¼ ð0:1=bcÞ2fm�2: ð5:46Þ

Using this Hamiltonian, the present hybrid-VT model reproduces the observed
energies and decay widths of 5,6He, simultaneously [73], namely, the threshold
energies of the particle emissions for the He isotopes.

The three-body eigenstates are obtained by solving the eigenvalue problem of
the complex-scaled Hamiltonian. We use 30 Gaussian basis functions for 1 radial
component in order to achieve stabilization of the calculated results for the
position of resonances, distributions of continuum states and their transition matrix
elements. The maximum range of Gaussian basis functions is about 40 fm.
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In Fig. 5.13, we show the eigenvalue distribution for 1- states of 6He. This result
is obtained by diagonalization of the complex-scaled Hamiltonian of the
4He + n + n model with h = 35 deg. From Fig. 5.13, we see that all eigenvalues
are obtained along three lines of rotated Riemann cuts corresponding to two
two-body and one three-body continuum channels. There is no 1- resonance.
Therefore, these results indicate that the 1- unbound states above the 4He + n + n
threshold are classified into two-body continuum states of 5He(3/2-, 1/2-) + n and
three-body continuum states of 4He + n + n.

In Fig. 5.14, we show the obtained 2+
1,2 resonances and continuum solutions

which are decomposed into two- and three-body continuum states, similar to the
1- spectra. The whole energy levels of 6He are displayed in Fig. 5.15. We can see
a good agreement between our calculation and experimental data. The present
calculation does not predict any 1- resonance in the low excitation energy region.
This result is consistent with the experimental results [73, 74].
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In Fig. 5.16, we show the Coulomb breakup cross section with respect to the
excitation energy of 6He. This cross section is calculated using the E1 strength
with the equivalent photon method, considering the experimental resolution [75].
The target is Pb and the incident energy of the 6He projectile is 240 MeV/nucleon.
It is found that there is a low energy enhancement in the strength at around 1 MeV
measured from the three-body threshold energy. This energy is just above the
two-body threshold (0.74 MeV) of the 5He(3/2-) + n system [24], and the cross
section gradually decreases with the excitation energy. This structure of the
strength indicates the sequential breakup process via the 5He(3/2-) + n channel
[28]. We also compare the strength with experiments [75]. The obtained result
fairly reproduces the trend of the observed cross section, especially in the low
excitation energy region below E *2 MeV. The height and position of the low-
energy enhancement in the strength agree well with the experimental data.

In this section, we have discussed the complex scaling method (CSM) in order
to treat resonance and continuum states in nuclear composite systems. As an
example of the usefulness of the CSM, we have discussed the case of 6He as a
core + n + n three-body system. We can interpret the calculated results nicely and
can distinguish any structure in the continuum spectrum. As for the application of
the CSM to the Li isotopes, we defer the detailed discussions after the introduction
of the deuteron-like tensor correlation. The interpretation of the experimental
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results further need the participation of the s1/2 orbit in the wave functions of the Li
isotopes. For this, we have to introduce the deuteron-like tensor correlation, which
is the subject of the next section.

5.4 Deuteron-like Tensor Correlation and Tensor
Optimized Shell Model (TOSM)

In this section, we would like to discuss the role of the deuteron-like tensor
correlation on the nuclear structure in 4He before applying the developed method
to the halo nucleus 11Li. The tensor interaction is one of the most important
ingredients of the bare nucleon–nucleon interaction and plays the central role for
the formation of finite nuclei and nuclear matter. In this lecture note, we have
shown explicitly the case of the deuteron in Sect. 2, where the tensor interaction
plays the central role to provide a strong binding energy through coupling of the
s-wave component with the d-wave component. Although the tensor interaction is
known to be important, the standard approach of nuclear many-body problems is
to obtain the effective interaction (G-matrix) by solving the Brueckner equation to
include the high momentum components in the effective G-matrix interaction.
Hence, we are used to treat a well behaved central effective interaction and have
not faced to treat the tensor interaction explicitly for shell model states. This is the
reason why we have not developed a method of treating the tensor interaction
explicitly in nuclear physics.

Recently it became possible to calculate nuclei up to mass around A*12
[13, 76, 77] using the realistic nucleon–nucleon interaction. The method used for
the calculation is the Green’s function Monte-Carlo method (GFMC) with the use
of relative nucleon coordinates. This method introduces various correlation
functions with many variational parameters in the nuclear wave function. In the
GFMC, the nuclear structures and binding energies were successfully reproduced
by including the three-body interaction. One big surprise is extremely a large
contribution of the one pion exchange interaction, which is about 70–80% of the
whole nucleon–nucleon interaction. In principle, they can extend this method to
calculate heavier nuclei. As for the tensor interaction, it contributes about 50% of
the whole two-body matrix element. It is however extremely time consuming even
with the present computer power. Hence, it is strongly desired to develop a new
method to calculate nuclei with large nucleon numbers by using the nucleon–
nucleon interaction.

The nucleon–nucleon interaction has distinctive features that there exists the
strong tensor interaction at intermediate distance caused by pion exchange and
strong short range repulsive interaction at short distance caused by quark
dynamics. The explicit form of the nucleon–nucleon interaction is presented in
Sect. 2. Although these two interactions have totally different characters, it is
customary to adopt the Brueckner Hartree–Fock theory to integrate out the high
momentum components on the same footing and use the resulting G-matrix as an
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effective interaction in the shell model. In this way, we lose information of the
tensor correlation and the short range correlation in the shell model wave function.
Hence, we search for a powerful method to treat explicitly both the tensor inter-
action and the short range interaction for the study of not only light nuclei but also
medium and heavy nuclei.

There have been two important developments for this purpose. One is to find
out that the tensor interaction is of intermediate range and hence we are able to
express the tensor correlation in a reasonable shell model space [78, 79]. We name
this method as the Tensor Optimized Shell Model (TOSM), where the nuclear
wave function is written in terms of the standard shell model state and enough
amount of two-particle two-hole (2p2h) states. This TOSM formalism is based on
the success of the parity and charge projection in the treatment of the pion
exchange interaction [80, 81]. We have shown that the tensor interaction could be
treated properly by taking a reasonable amount of multipoles (l B 5) in the 2p2h
wave functions with the optimization of the radial parts of the particle states. The
other is the Unitary Correlation Operator Method (UCOM) for the treatment of the
short range correlation [82, 83]. The short range repulsive interaction is of very
short range and it is suited to treat the short range correlation using a unitary
transformation and take the approximation to use only up to the two-body oper-
ators. This approximation is justified because the volume associated with the short
range correlation is extremely small, where more than three nucleons rarely enter
into the small volume. This is not the case for the tensor correlation, since the
tensor interaction is of intermediate and long range as discussed by Neff and
Feldmeier [83].

Our idea is to combine these two methods, TOSM and UCOM, for our purpose
to develop a theoretical framework to describe furthermore medium and heavy
nuclei beyond the light nuclei using the realistic nucleon–nucleon interaction. We
can use the TOSM for the strong tensor interaction utilizing the intermediate
nature caused by finite angular momentum of the relative wave function and the
UCOM for the strong short range interaction utilizing the short range nature. We
use completely different methods for these two distinctive characters of the
nucleon–nucleon interaction. After demonstrating its power we hope to apply a
newly developed method, which we name TOSMU, to many nuclei. Using the
TOSMU, we aim at understanding the roles of the tensor and short range corre-
lations in nuclei using the bare nucleon–nucleon interaction. As a good start, we
would like to apply the TOSMU to 4He. Hence, there are two purposes for this
study. One is to see how this method works for the treatment of the bare nucleon–
nucleon interaction. The other is to compare with rigorous calculations to check
the accuracy of the results obtained in the TOSMU. From this comparison, we can
see how far we can describe the short range and tensor correlations and find what
we are supposed to do for further improvement of the TOSMU in order to solve the
nucleus as precisely as possible.

On the other hand, we would like to develop a theoretical framework to
describe wave functions in terms of single particle coordinates, which we call a
V-coordinate method. This V-coordinate method has ability to describe nuclei
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with many nucleons relatively easier than the T-coordinate method. Furthermore,
we are able to describe the wave function based on the shell model picture and
hence it is easier to interpret the calculated results in the shell model sense. The
difficulty, on the other hand, is to express the correlations of the relative motion
between two nucleons, which are caused by the short range repulsive interaction
and the tensor interaction in the nucleon–nucleon interaction. We overcome this
problem by developing the TOSMU to describe the short range and the tensor
correlations simultaneously.

5.4.1 Formulation of TOSM

We explain the formulation of the Tensor optimized shell model (TOSM). We
shall begin with the many-body Hamiltonian with mass number A.

H ¼
X

A

i

Ti � Tcm þ
X

A

i\j

Vij ð5:47Þ

with

Vij ¼ vC
ij þ vT

ij þ vLS
ij þ vClmb

ij : ð5:48Þ

Here, Ti is the kinetic energy of all the nucleons with Tcm being the center of mass
kinetic energy. We take the bare nucleon–nucleon interaction for Vij such as the
AV80 consisting of central ðvC

ij Þ; tensor ðvT
ijÞ and spin-orbit ðvLS

ij Þ terms. The vClmb
ij is

the Coulomb term. We describe the many-body system with many-body wave
function, W, by solving the Schrödinger equation H W = EW. In the TOSM, we
take the V-coordinates to express W.

We have discussed the property of the deuteron, whose wave function is
expressed in terms of the s-wave and d-wave components. We ought to express the
deuteron-like tensor correlation in finite nuclei. We show the deuteron-like structure
is expressed in terms of 2p–2h configurations in the shell model framework by
taking the case of 4He. The two nucleons in the s-orbit have two components. One is
the 3S1 pair and the other is the 1S0 pair. The 3S1 pair can be expressed as

j½ð0s1=2Þ2�1Mi�WL¼0ðRÞwl¼0ðrÞ½Y0ðr̂Þ � v1ðr1r2Þ�1M: ð5:49Þ

Hence, the relative wave function is in the s-state. On the other hand, when two
nucleons are in the p-orbit, we can write the wave function of the relative motion
being in the triplet even channel as

j½ð0p1=2Þ2�1Mi�WL¼0ðRÞwl¼2ðrÞ½Y2ðr̂Þ � v1ðr1r2Þ�1M : ð5:50Þ

Hence, the relative wave function is in the d-state. As discussed for the deuteron
wave function being written in terms of the s and d wave components, we are able
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to express the deuteron-like wave function in the shell model framework by taking
both the above two components. Hence, we have to introduce 2p–2h wave func-
tions to express the deuteron-like tensor correlation in the shell model basis. There
is the other p-wave component, (p3/2)2. In this case, the spin and the angular
momentum have a stretched configuration and this state is not mixed by the tensor
interaction. This consideration naturally leads us to introduce the tensor optimized
shell model (TOSM). It remains for us to check if we can express the deuteron-like
tensor correlation within reasonable amount of multipoles in the TOSM [78]. As
for the short range correlation appearing in the s-wave component in the deuteron
wave function, we ought to take a clever method. For this problem, Feldmeier
et al. have demonstrated that the unitary correlation operator method (UCOM) can
be used to treat the short-range correlation [82, 83].

In the TOSM, the total wave function W is written in terms of a linear com-
bination of 0p–0h and 2p–2h wave functions.

W ¼ C0j0i þ
X

p

Cpj2p2hip: ð5:51Þ

Here, the wave function |0i is a shell model wave function and | (0s)4i for 4He.
|2p2hi represents a 2p2h state with various ranges for the radial wave functions of
particle states. We can write |2p2hi as

j2p2hip ¼ ½Wn1
a1
ðx1ÞWn2

a2
ðx2Þ�J � ½ ~Wn3

a3
ðx1Þ ~Wn4

a4
ðx2Þ�J

h i0
�

�

�

�




A

: ð5:52Þ

The suffix A of the wave function indicates anti-symmetrization of the wave
functions. Here, p denotes a set of quantum numbers of 2p2h states, which are
expressed with particle (hole) wave functions Wn

að ~Wn
aÞ: The index n is to distin-

guish the different radial components of the single-particle wave function W. The
index a is a set of three quantum numbers, l, j and tz, to distinguish the single-
particle orbits, where l and j are the orbital and total angular momenta of the
single-particle states, respectively, and tz is the projection of the nucleon isospin.
The normalization factors of the two particle states are included in the wave
functions given in Eq. (5.52). For 4He, the coupled spin, J, of two nucleons is
J = 0 or J = 1. We omit writing the coupled isospin, which should be either 0 or 1
depending on the value of J. We have used Gaussian functions for radial wave
functions to express more effectively compressed radial wave functions [78]. The
shell model technique is used to calculate all the necessary matrix elements, which
are expressed explicitly in Ref. [84]. In more heavier nuclei, such as 12C and
16O, the dominant configuration |0i can be extended to the superposed ones, which
includes the few �hx configurations such as 2�hx: This part describes the
low-momentum component of the wave function and the tensor force contribution
is not so decisive to determine the nuclear structure. The high momentum part
is treated by considering the 2p2h excitations |2p2hip from the each low-
momentum configurations. In that case, the spatial shrinkage of particle states
becomes important.
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We explain the Gaussian expansion technique for single-particle orbits [46, 48].
Each Gaussian basis function has the form of a nodeless harmonic oscillator wave
function (HOWF), except for the 1s orbit. When we superpose a sufficient number
of Gaussian bases with appropriate length parameters, we can fully optimize the
radial component of every orbit of every configuration with respect to the total
Hamiltonian in Eq. (5.47). We construct the following ortho-normalized single-
particle wave function wn

a with a linear combination of Gaussian bases {/a} with
length parameters ba,m.

Wn
aðrÞ ¼

X

Na

m¼1

dn
a;m/aðr; ba;mÞ for n ¼ 1; . . .;Na: ð5:53Þ

Here, Na is the number of basis functions for a, and m is an index that distin-
guishes the bases with different values of ba,m. The explicit form of the Gaussian
basis function is expressed as

/aðr; ba;mÞ ¼ Nlðba;mÞ rle�ðr=ba;mÞ2=2½Ylðr̂Þ; vr
1=2�jvtz ; ð5:54Þ

Nlðba;mÞ ¼
2 b�ð2lþ3Þ

a;m

Cðlþ 3=2Þ

" #1
2

: ð5:55Þ

The coefficients {da,m
n } are determined by solving the eigenvalue problem for the

norm matrix of the non orthogonal Gaussian basis set in Eq. (5.54) with the
dimension Na. Following this procedure, we obtain new single-particle wave
functions {wa

n} using Eq. (5.53).
We choose the Gaussian bases for the particle states to be orthogonal to the

occupied single-particle states, which is 0s1/2 in the 4He case. For 0s1/2 states, we
employ one Gaussian basis function, namely, the HOWF with the length parameter
b0s1=2;m¼1 ¼ b0s. For 1s1/2 states, we introduce an extended 1s basis function
orthogonal to the 0s1/2 states and possessing a length parameter b1s,m that differs
from b0s [78]. In the extended 1s basis functions, we change the polynomial part
from the usual 1s basis states to satisfy the conditions of the normalization and the
orthogonality to the 0s state.

Two-body matrix elements in the Hamiltonian are analytically calculated using
the Gaussian bases [46, 48], whose explicit forms are given in Ref. [84]. In the
numerical calculation of following, we prepare 9 Gaussian functions at most with
parameters of various ranges to obtain a convergence of the energy. Furthermore,
we have to take care of the center-of-mass excitations. For this purpose, we use the
well-tested method of introducing a center-of-mass term in the many-body
Hamiltonian [85, 86].

Hcm ¼ k
P2

cm

2A m
þ 1

2
A m x2 R2

cm �
3
2

�hx


 �

; ð5:56Þ

196 K. Ikeda et al.



Pcm ¼
X

A

i¼1

pi; Rcm ¼
1
A

X

A

i¼1

ri; x ¼ �h

m b2
0s

: ð5:57Þ

Here, m and A are the nucleon mass and the mass number, respectively, and b0s is
the length parameter of the HOWF for the hole 0s state. We take a sufficiently
large coefficient, k, to project out only the lowest HO state for the center-of-mass
motion. In the numerical calculation, the excitation of the spurious center-of-mass
motion is suppressed to be less than 10 keV.

The variation of the energy expectation value with respect to the total wave
function W(4He) is given by

d
hWjHjWi
hWjWi ¼ 0; ð5:58Þ

which leads to the following equations:

ohWjH � EjWi
oba;m

¼ 0;
ohWjH � EjWi

oCp
¼ 0: ð5:59Þ

Here, E is a Lagrange multiplier corresponding to the total energy. The parameters
{ba,m} for the Gaussian bases appear in non linear forms in the energy expectation
value. We solve two types of variational equations in the following steps. First,
fixing all the length parameters ba,m, we solve the linear equation for {Cp} as an
eigenvalue problem for H with partial waves up to Lmax. We thereby obtain the
eigenvalue E, which is a function of {ba,m}. Next, we try to search various sets of
the length parameters {ba,m} to find the solution that minimizes the total energy.
In this wave function, we can describe the spatial shrinkage with an appropriate
radial form, which is important for the tensor correlation [78].

5.4.2 Formulation of UCOM

We employ the UCOM for the short-range correlation. Feldmeier et al. [82, 83]
worked out a unitary correlation operator in the form,

C ¼ exp �i
X

i\j

gij

 !

¼
Y

i\j

cij ð5:60Þ

with cij = exp(-i gij). Here, i and j are the indices to distinguish particles. Here,
the two-body operator gij is a Hermite operator, and hence C is a unitary operator.
We express the full wave function W in terms of less sophisticated wave function
U as W = CU. Hence, the Schrödinger equation, HW = EW becomes ĤU ¼ EU,
where Ĥ ¼ CyHC: If we choose properly the unitary correlator C we are able to
solve more easily the Schrödinger equation. Moreover, once we obtain U, we can
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then obtain the full wave function, W, by the unitary transformation W = CU.
Since C is expressed with a two-body operator in the exponential, it is a many-
body operator. In the case of the short-range correlation, we are able to truncate
modified operators at the level of two-body operators [82].

In the actual calculation of the UCOM, we define the operator gij as

gij ¼
1
2

pr;ijsðrijÞ þ sðrijÞpr;ij

� �

; ð5:61Þ

where the momentum pr,ij is the radial component of the relative momentum,
which is conjugate to the relative coordinate rij. s(rij) is the amount of the shift of
the relative wave function at the relative coordinate rij for each nucleon pair.
Hereafter, we omit the indices i and j for simplicity. We also introduce R+(r) as

Z

RþðrÞ

r

dn
sðnÞ ¼ 1; ð5:62Þ

which leads to the following relation,

dRþðrÞ
dr

¼ s RþðrÞð Þ
sðrÞ : ð5:63Þ

In the UCOM, we use R+(r) instead of s(r) to use the UCOM prescription. R+(r)
represents the correlation function to reduce the amplitude of the short-range part
of the relative wave function in nuclei and can be determined for four spin-isospin
channels independently. The explicit form of the transformation of the operator for
the relative motion is given as

cyrc ¼ RþðrÞ; cyprc ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffi

R0þðrÞ
q pr

1
ffiffiffiffiffiffiffiffiffiffiffiffi

R0þðrÞ
q ; cylc ¼ l; ð5:64Þ

cysc ¼ s; cyS12c ¼ S12; cyvðrÞc ¼ vðRþðrÞÞ; ð5:65Þ

where the operators l, s and S12 are the relative orbital angular momentum oper-
ator, the intrinsic spin operator and the tensor operator, respectively. v(r) is the
arbitrary function depending on r, such as potential.

In the calculation using the UCOM, we parametrize R+(r) in the same manner as
proposed by Neff-Feldmeier and Roth et al. [82, 83, 87]. We assume the following
forms for even and odd channels, respectively.

Reven
þ ðrÞ ¼ r þ a

r

b


 �c

exp½� expðr=bÞ�; ð5:66Þ

Rodd
þ ðrÞ ¼ r þ a 1� expð�r=cÞð Þexp½�expðr=bÞ�: ð5:67Þ
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Here, a, b, c are the variational parameters to optimize the function R+(r) and
minimize the energy of the system. They are independently determined for four
channels of the spin-isospin pair. In the actual procedure of the variation, once we
fix the parameters included in R+(r), we solve the eigenvalue problem of the
Hamiltonian using Eq. (5.59) and determine the configuration mixing of the shell
model-type bases. Next, we try to search various sets of the R+(r) parameters to
minimize the obtained energy.

In the present framework of the UCOM, we introduce the UCOM function
R+(r) for each spin-isospin channel and ignore the partial wave dependence of
R+(r). It is generally possible to introduce the partial wave dependence in the
UCOM and then R+(r) functions are determined in each relative partial wave in the
two-body matrix elements. Here, we consider the specific case of this extension of
the UCOM by taking care of the characteristics of the short-range correlation. One
of the simplest cases of this extension is the UCOM for only the s-wave relative
motion, since all the other partial waves l except for s-wave (l = 0) have
rl behavior near the origin, where the short-range hard core is extremely large.
Hence, this rl behavior largely cuts down the effect of the short-range hard core.
However, only the s-wave function is finite at the origin, and the behavior in the
origin is determined by the hard core dynamics. In fact, the method used by
Feldmeier et al. [82] is to determine the unitary operator to reproduce the short-
range behavior of the s-wave relative wave function.

When we incorporate the S-wave UCOM (S-UCOM, hereafter) into the TOSM,
we extract the relative s-wave component in all the two-body matrix elements in
the TOSM using the V-type basis expanded by the Gaussian functions. For
numerical calculations, we prepare the completeness relation consisting of the
T-type basis functions |Ti as

1 ¼
X

i

jTiihTij; jTii ¼ j½½Wr
l W

R
L �L0 ; vS�JvTi; ð5:68Þ

where the T-type basis is expanded by the two coordinates of the relative part r
and the center of mass part R of two nucleons, which are the set of Jacobi
coordinates. The orbital angular momenta of each coordinate, r and R, are
l and L, respectively. It is easy to prepare the s-wave relative part by con-
sidering l as zero in the T-type basis. We construct the above completeness
relation of the T-type basis states by diagonalizing the norm matrix expanded
by the finite number of Gaussian basis functions for two coordinates. In the
actual calculation, we use 12 bases for each coordinate, with which conver-
gence is achieved.

We calculate the matrix elements of the arbitrary two-body operator Ô
including the S-UCOM correlator Cs using the V-type basis with indices a and b.
Here, we insert the above T-type completeness relation in Eq. (5.68) as

hVajCys ÔCsjVbi ¼
X

ij

hVajTii � hTijCys ÔCsjTji � hTjjVbi: ð5:69Þ
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The matrix element using the T-type base, hTijCys ÔCsjTji; is calculated for the two-
body kinetic part and the central and tensor interactions. For the kinetic part and
the central interaction, the matrix elements conserve the relative angular
momentum, and then we can easily calculate the matrix elements of the trans-
formed operator Cys ÔCs: For the tensor interaction, the sd coupling matrix ele-
ments are properly treated, in which Cs is operated on only the s-wave part of the
relative motion. In this case, the operator Cs acts on the s-wave relative Gaussian
basis function /l=0(r), which is transformed as

CS/l¼0ðrÞ ¼
R�ðrÞ

r

ffiffiffiffiffiffiffiffiffiffiffiffi

R0�ðrÞ
q

/l¼0ðR�ðrÞÞ; ð5:70Þ

where R-(r) is the inverse transformation of R+(r), namely, R-(R+(r)) = r. The
matrix elements of the T-type basis function are calculated using the above
transformed wave function.

5.4.3 Numerical Results of TOSM for 4He

It is important to understand the origin of the large binding energy of 4He for the
study of the Li isotopes. Particularly, it is important to develop a method to
describe the source of the large binding energy in the shell model language. Hence,
we describe in detail the structure of 4He in the TOSM and also the role of the
UCOM. First of all, we determine the UCOM functions R+(r) for the calculation of
the TOSMU. In the UCOM, we optimize the R+(r) function by changing the three
parameters of a, b and c to search for the energy minimum in the TOSMU. In
Table 5.3, the optimized three parameters in the S-UCOM are listed. In Fig. 5.17,
R+(r) functions used in the present study are plotted in comparison with the case in
Ref. [87]. For the odd channel, in accordance with the discussion in Refs. [83] and
[87], we cannot find the optimum value of R+(r) in the two-body cluster approx-
imation of the UCOM transformation for the Hamiltonian. Hence, we decide to fix
the range of R+(r), namely, b as the same one adopted in Ref. [87] and optimize
a and c, while the variation of R+(r) for the odd channel does not have significant
effects on the energy and other properties of 4He in comparison with the original
case [83, 87]. Essentially, two types of parameter set of R+(r) in the present study
and Ref. [87] give the similar form of R+(r) for even channels, in which we omitted
the correlation function for the even channels except for s-waves. This result
indicates that the correlation functions for the short-range repulsion are uniquely
determined for each channel.

Table 5.3 Optimized
parameters in R+(r) in
TOSM+UCOM for four
channels in fm in the
present work

a b c

singlet even 1.32 0.88 0.36
Triplet even 1.33 0.93 0.41
Singlet odd 1.57 1.26 0.73
Triplet odd 1.18 1.39 0.53
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Next, we show the calculated results of the energy of 4He as a function of Lmax

in Fig. 5.18. We shall then compare the obtained results with the benchmark
calculation given in Ref. [89]. To start with, we show the ordinary UCOM case
where the UCOM is used for all the partial waves. The calculated results of the
energy are indicated in Fig. 5.18 by circles as a function of the maximum angular
momentum Lmax. The results show good convergence to reach -19 MeV, while
the exact value of the few-body calculations is approximately -26 MeV as
indicated in Fig. 5.18. Although the binding energy is small, we point out here that
we can calculate the binding energy directly using the nucleon–nucleon interaction
in the TOSMU. The tensor interaction matrix element is approximately -50 MeV.
On the other hand, in the previous study [78], we obtained approximately
-60 MeV for the tensor interaction matrix element to check the validity of the
TOSM, when we used the G-matrix for the central interaction to renormalize the
short-range repulsion and retained the bare tensor interaction of AV80 in our
previous calculation. This fact indicates that the treatment of the short-range
repulsive interaction is interfering with the contribution of the tensor interaction.
This is due to a large removal of the short-range part of the relative wave functions
in the UCOM, in particular, in the d-wave part of the sd coupling of the tensor
interaction matrix element, where the tensor interaction possesses some amount of
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strength. We have also calculated the contributions beyond the 2p2h configurations
in the TOSM such as 3p3h and 4p4h configurations. When we include the 4p4h
configurations within the p-shell, their contribution to the binding energy is
approximately 50 keV. This fact denotes that these more complicated wave
functions contribute very little in the total 4He wave function.

We have decided to restrict the use of the UCOM to the relative s-wave only for
the even channel (S-UCOM), where the treatment of the short-range repulsion is
absolutely necessary. In other partial waves, we have the centrifugal potential that
cuts out the short-range part from the wave functions of the higher partial waves.
In this case, we can use the modified interaction and the kinetic energy only for the
relative s-wave component in the even channels. Since the use of the UCOM for
the odd partial wave is slightly better, we use the UCOM for all odd partial waves.
As a starting calculation, we have neglected the S-UCOM correlation in the cal-
culation of the tensor interaction matrix elements. The energy converges to
-24 MeV, which is now very close to the exact one as shown in Fig. 5.18. In this
case, the tensor interaction matrix element is -61 MeV, which becomes close to
the exact value of -68 MeV. This improvement mainly comes from the increase
in the sd coupling of the tensor interaction matrix element, however, this calcu-
lation is still not yet perfect. We have to treat the effects of the short-range
repulsion on the tensor interaction matrix element. Hence, we have worked out the
formulation to treat the rigorous s-wave function with the effect of the short-range
repulsion for the calculation of the tensor interaction matrix elements as explained
in the previous section.

The numerical calculation is quite involved in the S-UCOM case, since the
s-wave relative wave function with the effect of short-range repulsion should be
used for the tensor interaction matrix element. We show the calculated results for
the total energy by the squares in Fig. 5.18. We see quite a satisfactory result for
the total energy, which is approximately -22 MeV. We show now all the com-
ponents of the energy for 4He in Fig. 5.19. All the energy components show the
saturation behavior as function of Lmax. In the tensor component, the saturation is
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Fig. 5.19 Matrix elements of
the central interaction
(VC), tensor interaction (VT)
and the spin-orbit interaction
(VLS) together with the kinetic
energy (Kinetic) and total
energy (Energy) in the Ham-
iltonian for 4He as function of
Lmax. We observe good con-
vergence for all the matrix
elements. These values are
compared with the bench-
mark results of Ref. [88],
which are indicated by the
thick short solid lines on the
right-hand side of the figure

202 K. Ikeda et al.



obtained at around Lmax being 8. For the other components, their saturation points
are seen at the similar Lmax. A very interesting feature is the kinetic energy, which
goes up to a large value as the tensor interaction matrix element becomes large. As
for the comparison with the rigorous calculation, we see that Vc satisfies the
rigorous value, which is approximately -55 MeV. On the other hand, the tensor
interaction matrix element, VT converges to -55 MeV, while the rigorous one is
-68 MeV. The kinetic energy is approximately 90 MeV, while the rigorous one is
102 MeV. The LS matrix element is also smaller than the rigorous value. As the
net value, the total energy, E, is -22 MeV and the rigorous value is -26 MeV.
A detailed comparison is performed in Table 5.4, in which the converged energies
in the TOSMU are shown with the rigorous calculations. One of the possibilities
for the lack of the energy in the TOSMU is due to the separate treatment of the
short-range and tensor correlations. Although the dominant part of the tensor
interaction is of intermediate and long range, there may remain some small
strength in the short-range part of the tensor interaction, which can couple with the
short-range correlations. This effect can be included by extending the truncation of
the UCOM transformation in the Hamiltonian to more than the two-body level.
Three-body term of the UCOM transformation is one of the possibilities to
overcome the lack of energy in the TOSMU [82].

In Table 5.5, we list the mixing probabilities of the dominant configurations in
4He. The subscripts 00 and 10 represent J and T, the spin and isospin quantum
numbers, respectively. It is found that the 2p2h configurations with (J, T) = (1, 0)
for the particle pair state are significantly mixed. These spin and isospin are the
same as those for the deuteron, and thus, this two-nucleon coupling can be
understood as a deuteron-like correlation [78].

Table 5.4 Total energy, matrix elements of the Hamiltonian and radius of 4He are compared
with the benchmark results denoted by FY

Energy Kinetic Central Tensor LS Radius

Present (UCOM) –19.46 88.64 -56.81 -50.05 -1.24 1.555
Present (S-UCOM) –22.30 90.50 -55.71 -54.55 -2.53 1.546
FY –25.94 102.39 -55.26 -68.35 -4.72 1.485

Units are in MeV for the total energy and the matrix elements, and fm for the radius of 4 He

Table 5.5 Mixing
probabilities in the 4He
ground state in %

(0s)00
4 82.48

(0s)10
-2(0p1/2)10

2 2.54
(0s)10

-2[(1s1/2)(0d3/2)]10 2.34
(0s)10

-2[(0p3/2)(0f5/2)]10 1.90
(0s)10

-2[(0p1/2)(0p3/2)]10 1.55
(0s)10

-2[(0d5/2)(0g7/2)]10 0.79
(0s)10

-2(0d3/2)10
2 0.44

remaining part 7.96
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We have been describing 4He as an example of the TOSMU for the strong
tensor correlation with the use of the UCOM for the short range correlation. This
method is able to describe the 4He system almost precisely with the use of the
bare nucleon–nucleon interaction. We are working out further the small differ-
ence present between the TOSM and the few body many body methods. We
believe now that the difference comes from the competition of the short range
repulsion and the tensor attraction in the very short range part of the relative
wave function. However, we believe that the TOSM is able to describe the
deuteron-like tensor correlation and we shall apply this method for the
description of the Li isotopes.

5.5 Di-Neutron Clustering and Deuteron-like
Tensor Correlation in Li Isotopes

The biggest puzzle from the theory side is the large s-wave component for the
halo neutrons in 11Li. If we interpret this fact in the shell model, the shell gap at
N = 8 has to disappear. However, the mean field treatment of a central force is
not able to provide the disappearance of the N = 8 shell gap. So far, there were
many theoretical studies for 11Li [9, 10, 12, 20, 25, 26, 89–94] and essentially all
the theoretical works of 11Li had to accept that the 1s1/2 single particle state is
brought down to the 0p1/2 state without knowing its reason [9, 92]. It is therefore
the real challenge for theoretician to understand this disappearance of the N = 8
shell gap, to be called s–p shell gap problem, which is discussed in this section
by developing a framework to treat the deuteron-like tensor correlation explicitly
using the nucleon–nucleon interaction. The halo structure of 11Li is also related
with the 1s-state and the 0p-state in 10Li. Several experiments suggest the dual
states of the s1/2-state coupled to the 3/2- proton state appears close to
the threshold energy of 9Li + n together with the dual states of the p1/2-state
[95, 96].

The tensor interaction, on the other hand, plays an important role in the nuclear
structure. For example, the contribution of the tensor interaction in the binding of
4He is comparable to that of the central force [88, 97]. The tensor correlation
induced by the tensor interaction was demonstrated important for the 4He+n
system [98–101]. We treated there the tensor interaction in the shell model basis
by 2p–2h excitations, and found that the (0s1/2)-2(0p1/2)2 excitation of the proton-
neutron pair has a special importance in describing the tensor correlation in 4He
[80, 101]. This 2p–2h excitation causes the strong Pauli-blocking in the 4He + n
system for the p1/2-orbit of the last neutron, which contributes to the p-wave
doublet splitting in 5He [101]. The same effect of the deuteron-like tensor corre-
lation with the Pauli-blocking of the additional two neutrons in the p1/2 orbit is
expected in 11Li. The occupation of the two neutrons in the p1/2 orbit interferes
with the deuteron-like tensor correlation, which is used to provide a large binding
effect of 4He in 9Li.
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Hence, it is important to study the effect of the deuteron-like tensor correlation
together with the pairing correlation for the s–p shell gap problem in 11Li. This is
the purpose of this section. We shall perform the configuration mixing based on
the shell model framework for 9Li to describe the tensor and pairing correlations
explicitly. In particular, we pay attention to the special features of the tensor
correlation. For 11Li, we shall solve the coupled 9Li + n + n problem which treats
both correlations and investigate further the Coulomb breakup strength of 11Li and
other observables to see the effect of these correlations.

5.5.1 Model of Li Isotopes

We shall begin with the introduction of the model for 9Li, whose Hamiltonian is
given as

Hð9LiÞ ¼
X

9

i¼1

ti � tG þ
X

9

i\j

vij: ð5:71Þ

Here, ti, tG, and vij are the kinetic energy of each nucleon, the center-of-mass (c.m.)
term and the two-body NN interaction consisting of central, spin-orbit, tensor and
Coulomb terms, respectively. The wave function of 9Li(3/2-) is described in the
tensor-optimized shell model [78, 101]. We express 9Li by a multi-configuration,

Wð9LiÞ ¼
X

N

i

Ci U
3=2�

i ; ð5:72Þ

where we consider up to the 2p–2h excitations within the 0p shell for Ui
3/2^- in a

shell model type wave function, and N is the configuration number. Based on the
previous study of the tensor-optimized shell model [78, 101], we adopt the spa-
tially modified harmonic oscillator wave function (Gaussian function) as a single
particle orbit and treat the length parameters ba of every orbit a of 0s, 0p1/2 and
0p3/2 as variational parameters. This variation is shown to be important to optimize
the tensor correlation [78, 80, 81, 101].

Following the procedure of the tensor-optimized shell model, we solve the
variational equation for the Hamiltonian of 9Li and determine {Ci} in Eq. (5.72)
and the length parameters {ba} of three orbits. The variation of the energy
expectation value with respect to the total wave function W(9Li) is given by

d
hWjHð9LiÞjWi
hWjWi ¼ 0; ð5:73Þ

which leads to the following equations:

ohWjHð9LiÞ � EjWi
oba

¼ 0;
ohWjHð9LiÞ � EjWi

oCi
¼ 0: ð5:74Þ
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Here, E is the total energy of 9Li. The parameters {ba} for the Gaussian bases
appear in non-linear forms in the total energy E. We solve two kinds of variational
equations in the following steps. First, fixing all the length parameters ba, we solve
the linear equation for {Ci} as an eigenvalue problem for H(9Li). We thereby
obtain the eigenvalue E, which is a function of {ba}. Next, we try various sets of
the length parameters {ba} to find the solution which minimizes the energy of 9Li.
In this wave function, we can optimize the radial form of single particle orbit
appropriately so as to describe the spatial shrinkage of the particle state, which is
important for the tensor correlation [78, 80, 81, 101].

For 11Li and 10Li, their Hamiltonians are written in terms of 9Li + n + n and
9Li + n, respectively, and are given as

Hð11LiÞ ¼ Hð9LiÞ þ
X

2

k¼0

Tk � Tð3ÞG þ
X

2

k¼1

Vcn;k þ Vnn; ð5:75Þ

Hð10LiÞ ¼ Hð9LiÞ þ
X

1

k¼0

Tk � T ð2ÞG þ Vcn; ð5:76Þ

where H(9Li), Tk, T(3)
G and T(2)

G are the internal Hamiltonian of 9Li given by
Eq. (5.71), the kinetic energies of each cluster (k = 0 for 9Li) and the c.m. terms
of three or two cluster systems, respectively. Vcn,k are the 9Li core-n interaction
(k = 1, 2) and Vnn is the interaction between last two neutrons. The wave func-
tions of 11Li and 10Li with the spin J and J0, respectively, are given as

WJð11
LiÞ ¼

X

N

i

A ½U3=2�

i ; vJ0
i ðnnÞ�J

n o

; ð5:77Þ

WJ0 ð10
LiÞ ¼

X

N

i

A ½U3=2�

i ; v
J00
i ðnÞ�

J0
n o

: ð5:78Þ

We obtain the coupled differential equations for the neutron wave functions
vJ0ðnnÞ and vJ00ðnÞ; where J0 and J0

0
are the spins of the additional neutron part of

11Li and 10Li, respectively. To obtain the total wave function WJ(11Li) and
WJ^0(10Li), we actually use the orthogonality condition model (OCM) [20, 25, 46]
to treat the antisymmetrization between last neutrons and neutrons in 9Li. In OCM,
the neutron wave functions v are imposed to be orthogonal to the occupied orbits
by neutrons in 9Li, which depend on the configuration Ui

3/2^- in Eq. (5.72). We
obtain the following coupled Schrödinger equations with OCM for the set of the

wave functions fvJ0
i ðnnÞg for 11Li and fvJ00

i ðnÞg for 10Li, where i = 1,…, N:

X

N

j¼1

T ð3Þrel þ
X

2

k¼1

Vcn;k þ Vnn þ Ki

 !

dij þ hijð9LiÞ
" #

vJ0
j ðnnÞ ¼ E vJ0

i ðnnÞ; ð5:79Þ

206 K. Ikeda et al.



X

N

j¼1

T ð2Þrel þ Vcn þ Ki

� �

dij þ hijð9LiÞ
h i

v
J00
j ðnÞ ¼ E v

J00
i ðnÞ; ð5:80Þ

Ki ¼ k
X

a2Uið9LiÞ

j/aih/aj; ð5:81Þ

where hijð9LiÞ ¼ hU3=2�

i jHð9LiÞjU3=2�

j i. T ð3Þrel and T ð2Þrel are the total kinetic energies
consisting of the relative motions for 11Li and 10Li, respectively. Ki is the pro-
jection operator to remove the Pauli forbidden states /a from the relative wave
functions [53, 60], where /a is the occupied single particle wave function of the
orbit a in 9Li defined in Eq. (5.28). This Ki depends on the neutron occupied

orbits in the configuration U3=2�

i of 9Li and plays an essential role to produce the
Pauli-blocking in 11Li and 10Li, explained later. This Pauli blocking term Ki

reduces the pairing and the deuteron-like tensor correlations depending on the
occupation of the additional neutrons in shell model single particle orbits. In 10Li
and 11Li, the term is particularly effective when the neutron or neutrons occupy
the p1/2 single particle orbit. The value of k is taken large as 106 MeV in the
present calculation in order to project out the components of the Pauli forbidden
states into an unphysical energy region. Here, we keep the length parameters {ba}
of the single particle wave functions as those obtained for 9Li.

We explain the method of treating the orthogonality condition including the
particle-hole excitations of 9Li in more detail [25, 101]. When the neutron orbit in
9Li is fully occupied, the orthogonality condition for the last neutrons to this orbit
is given by Ki in Eqs. (79) and (80). When neutron orbits in 9Li are partially
occupied, such as in the 2p-2h states, the last neutrons can occupy these orbits with
particular probabilities, which are determined by the fractional parentage coeffi-
cients of the total wave functions of 10,11Li consisting of 9Li and the last neutrons.

We describe the two neutron wave functions v(nn) in Eq. (5.79) for 11Li
precisely in a few-body approach of the hybrid-VT model [20, 24, 25];

vJ0
i ðnnÞ ¼ vJ0

i ðnVÞ þ vJ0
i ðnTÞ; ð5:82Þ

where nV and nT are V-type and T-type coordinate sets of the three-body system,
respectively, as shown in Fig. 5.7.

Here, we discuss the coupling between 9Li and the last neutrons, whose details
were already explained in the pairing-blocking case [25, 29, 53, 102]. We consider
the case of 11Li. In the present three-body model, the Pauli forbidden states for the
relative motion provides the Pauli-blocking effect caused by the last two neutrons
[25, 53]. This blocking depends on the relative distance between 9Li and the two
neutrons, and change the structure of 9Li inside 11Li, which is determined varia-
tionally to minimize the energy of the 11Li ground state. Asymptotically, when the
last two neutrons are far away from 9Li ðnV ;T !1Þ; the effects of antisymmet-
rization and the interaction between 9Li and two neutrons vanish in Eq. (5.79).
Therefore, any coupling between 9Li and two neutrons disappears and 9Li becomes
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its ground state. Namely, the mixing coefficients {Ci} are the same as those
obtained in Eq. (5.72). Contrastingly, when the two neutrons are close to 9Li, the
two neutrons dynamically couple to the configuration Ui

3/2^- of 9Li satisfying the
Pauli principle. This coupling changes {Ci} of 9Li from those of the 9Li ground
state, and makes the tensor and pairing correlations to be different from those in
the isolated case. For 10Li, the similar coupling scheme is considered. The
dynamical effect of the coupling arising from the Pauli-blocking is explained in
the results in detail.

5.5.2 Effective Interactions

We explain here the interactions employed in Hamiltonians in Eqs. (71), (75) and
(76). Before explaining the present interactions, we give a brief review of the
situation of the treatment of the effective interactions for the study of 9,10,11Li. As
was mentioned, most theoretical studies based on the three-body model of 11Li
employ the state-dependent 9Li–n potential where only the s-wave potential is
made deeper than other partial waves [9], while the 9Li core is described as inert.
This state-dependence in the 9Li–n potential is phenomenologically determined in
order to satisfy the experimental observations of a large s2 component and a two-
neutron-separation energy of 11Li, and a virtual s-state in 10Li, simultaneously. On
the other hand, for the nn part, the interaction having a mild short-range repulsion
[26, 90] or the density-dependent one are often used [10]. However, even in the
microscopic cluster models using an unique effective NN interaction consisting of
the central and LS forces [12, 89], the s–p shell gap problem in 11Li and 10Li
cannot be solved simultaneously. From these results, we consider that the usual
approach based on the effective central and LS interactions may be insufficient to
explain the exotic structures of 10,11Li. For this problem, even the so-called ab-
initio calculations using the realistic NN interactions, such as Green’s function
Monte Calro [103], do not provide good results for 11Li.

In this study, we focus on the tensor correlation, which is newly considered to
figure out the s–p shell gap problem. To do this, we extend the three-body model of
11Li to incorporate the tensor correlation fully, in particular, for the 9Li part. In the
present study, our policy for the study of 11Li is to use the experimental informations
and the corresponding theoretical knowledge for 9Li and 10Li as much as possible.
Following this policy, we explain our interactions in three terms; vij of H(9Li) in
Eq. (5.71), core-n Vcn and n–n Vnn of the Hamiltonians in Eqs. (75) and (76).

For the potential Vnn between the last two neutrons, we take a realistic inter-
action AV80 in Eq. (5.75). Our interest is to see the n–n correlation in the two-
neutron halo structure, and therefore it is necessary to solve two-neutron relative
motion without any assumption. For this purpose, our model space of two neutrons
using the hybrid-VT model shown in Eq. (5.82) has no restriction and wide enough
to describe the short range correlation under the realistic nuclear interaction AV80.
Therefore, there is no parameter in the potential Vnn.
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The 9Li–n potential, Vc n, in Eqs. (75) and (76) is given by folding an effective
interaction, the MHN interaction [59, 104], which is obtained by the G-matrix
calculation and frequently used in the cluster study of light nuclei [20, 37, 46, 53,
59]. In the 9Li + n system, the folding potential for the 9Li density calculated by
using H.O. wave function has been discussed to reproduce the proper energies of
the 10Li spectra [20, 25, 53]. Furthermore, considering the small one-neutron-
separation energy of 9Li and a long-range exponential tail of the density, we
improve the tail behavior of the folding potential to have a Yukawa type form
[25, 29]. Any state-dependence is not used in the present 9Li–n potential, such as a
deeper potential for the s-wave. This is possible because the Pauli blocking effect
of the single particle state is in action and the state with the p1/2 orbit is pushed up
in energy and becomes close to the state with the s1/2 orbit [25, 53]. We will
discuss the results on 10Li after the discussion on 11Li. We introduce one parameter
d, which is the second-range strength of the MHN G-matrix interaction in the
calculation of the 9Li–n potential as shown in Table 5.9. The parameter d is to
describe the starting energy dependence dominantly coming from the tensor
interaction in the G-matrix calculation [46, 59]. In the present calculation, we
chose this d parameter to reproduce the two-neutron-separation energy of 11Li as
0.31 MeV after working out the tensor and the pairing correlation effects
as explained later. It is found that this folding potential also reproduces the
positions of the p-wave resonances in 10Li, just above the 9Li + n threshold energy
[100], as shown in the results.

Now we discuss the choice of the interaction between nucleons in the 9Li
core; vij in H(9Li), where we use the limited shell model wave functions up to
the p shell for the 9Li core in Eq. (5.72). Since our main interest in this work is
to investigate the role of the tensor interaction and the Pauli blocking effect on
the two-neutron halo formation, we describe the tensor correlation in addition to
the pairing correlation in the 9Li core. Along this line, recently we have many
interesting works [80, 81, 105–107]. We have also studied the role of the tensor
interaction in the shell model framework, and proposed the tensor-optimized
shell model [78, 101]. As a reliable effective interaction considered from those
studies, in this calculation, we use GA proposed by Akaishi [101, 106, 107] for
vij in Eqs. (71), (75) and (76). This effective interaction GA has a term of the
tensor interaction obtained from the G-matrix calculation using the AV80 real-
istic potential keeping the large momentum space [106, 107]. Since we limit the
shell model space, we increase the tensor strength by 50%. This increase of
the tensor strength has been studied in the full TOSM to provide a quantitative
account of the tensor correlation in the limited shell model space. In GA, the
obtained 9Li wave function in Eq. (5.72) shows smaller matter radius than the
observed one due to the high momentum component produced by the tensor
correlation [80, 81, 101]. Hence, we have to adjust the central force, which is
done by changing the second range of the central force by reducing the strength
by 21.5% and increasing the range by 0.185 fm to reproduce the observed
binding energy and the matter radius of 9Li in the same manner as done for 4He
[78, 101].
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5.5.3 9Li

We first show the results of the 9Li properties, which give a dynamical influence
on the motion of last neutrons above the 9Li core in 11,10Li. In Fig. 5.20, we
display the energy surface of 9Li as functions of the length parameters of two 0p
orbits, where b0s is already optimized as 1.45 fm. There are two energy minima,
(a) and (b), which have almost a common b0p3=2

value of 1.7-1.8 fm, and a small
(0.85 fm) and a large (1.8 fm) b0p1=2

values, respectively. The properties of two
minima are listed in Table 5.6 with the dominant 2p–2h configurations and
their probabilities. It is found that the minimum (a) shows a large tensor contri-
bution, while the minimum (b) does not. Among the 2p–2h configurations, the

largest probabilities are given by ð0sÞ�2
10 ð0p1=2Þ210 for (a), similar to the results in

Ref. [101], and ð0p3=2Þ�2
01 ð0p1=2Þ201, namely the 0p shell pairing correlation for (b).

These results indicate that the minima (a) and (b) represent the different correla-
tions of the tensor and pairing characters, respectively. The spatial properties are
also different from each other; the tensor correlation is optimized with spatially
shrunk excited nucleons for (a) and the pairing correlation is optimized when two
0p orbits make a large spatial overlap for (b). In Table 5.6, we show the results of
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Fig. 5.20 (Color online)
Energy surface of 9Li with
respect to the length parame-
ters ba of 0p orbits [79].
The two minima indicated
by (a) and (b) in the contour
map correspond to the states
due to the tensor correlation
and the paring correlation,
respectively

Table 5.6 Properties of 9Li with configuration mixing

Present Expt.

(a) (b) (c)

E [MeV] -43.8 -37.3 -45.3 -45.3
hVTi [MeV] -22.6 -1.8 -20.7 –
Rm [fm] 2.30 2.32 2.31 2.32 ± 0.02[1]
0p–0h 91.2 60.1 82.9 –
(0p3/2)-2

01(0p1/2)2
01 0.03 37.1 9.0 –

(0s1/2)-2
10(0p1/2)2

10 8.2 1.8 7.2 –

The states (a) and (b) correspond to the each energy minimum shown in Fig. 5.20, respectively.
The states (c) is obtained by superposing (a) and (b)
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the superposition of minima (a) and (b), named as (c), to obtain a 9Li wave
function including the tensor and pairing correlations, simultaneously. For (c), the
favored two configurations in each minimum (a) and (b) are still mixed with the
0p–0h one, and the property of the tensor correlation is kept in (c). The superposed
9Li wave function possesses both the tensor and pairing correlations.

5.5.4 Pauli-Blocking Effect in 11Li

We discuss here the Pauli-blocking effect in 11Li and 10Li. Considering the
properties of the configuration mixing of 9Li, we discuss the Pauli-blocking effects
in 10Li and 11Li and their difference as shown in Fig. 5.21. For (a) in Fig. 5.21, the
9Li ground state (GS) is strongly mixed, in addition to the 0p–0h state, with the
2p–2h states caused by the tensor and pairing correlations.

Let us add one neutron to 9Li for 10Li. For (b) in Fig. 5.21, when a last neutron
occupies the 0p1/2 orbit for the p-state of 10Li, the 2p–2h excitation of the pairing

11Li
(0p)2

νπ

νπ

νπ νπ

νπ νπ

Pauli blocking

11Li
(1s)2

0p3/2

0p1/2

0s1/2

1s1/2

0p3/2

0p1/2

0s1/2

1s1/2

(d)

(e)

+ +

10Li
0p

νπ

νπ

νπ νπ

νπ νπ

Pauli blocking

10Li
1s

0p3/2

0p1/2

0s1/2

1s1/2

0p3/2
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last neutron

Fig. 5.21 Schematic illus-
tration for the Pauli-blocking
in 11Li. Details are described
in the text
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correlation in 9Li are Pauli-blocked. The tensor correlation is also blocked par-
tially, but not fully by the Pauli principle because the 0p1/2 orbit is not fully
occupied by a last neutron. Accordingly, the correlation energy of 9Li is partially
lost inside 10Li. Contrastingly, for (c) in Fig. 5.21, the 1s state of 10Li, the Pauli-
blocking does not occur and 9Li gains its correlation energy fully by the config-
uration mixing with the 2p–2h excitations. Hence, the energy difference between
p and s states of 10Li becomes small to explain the inversion phenomenon [25, 53].

For 11Li, let us add two neutrons to 9Li. The similar blocking effect is expected
for 11Li, whose important properties were given in the previous paper [79]. For (d)
in Fig. 5.21, when two neutrons occupy the 0p1/2-orbit, the 2p–2h excitations of
the tensor and pairing correlations in 9Li are Pauli-blocked. In particular, the
blocking of the tensor correlation in 11Li is expected to work stronger than the 10Li
case, due to the presence of the last two neutrons in the p1/2 orbit. Accordingly, the
correlation energy of 9Li is lost inside 11Li stronger than the 10Li case. For (e) in
Fig. 5.21, (1s)2 of two neutrons, the Pauli-blocking does not occur, similar to the
1s state of 10Li. Hence, the relative energy distance between (0p)2 and (1s)2

configurations of 11Li becomes small to break the magicity in 11Li. It is found that
there is a difference in the blocking effects between 11Li and 10Li. It is interesting
to examine how this difference affects the s–p shell gap problem in these nuclei.
For the pairing correlation, we already pointed out the different blocking effects
between 10Li and 11Li in the previous study [25]. We further consider the blocking
effect in the dipole excited states of 11Li later, which is also different from the
ground state case. In the previous paper [79], we examined that the configuration
mixing of the sd-shell for 9Li would give a small influence on the blocking effect
on the (1s)2 configuration of 11Li.

5.5.5 10Li

We solve 10Li in a coupled 9Li + n model, in which the 9Li–n folding potential is
determined to reproduce the two-neutron separation energy S2n of 11Li as
0.31 MeV. The resonant states are described using the complex scaling method.
On this condition, we investigate the spectroscopic properties of 10Li. In Table 5.7,
it is shown that using the TOSM for 9Li, the dual p-state resonances are obtained
near the 9Li + n threshold energy. The dual states come from the coupling of
½ð0p3=2Þpð0p1=2Þm�1þ=2þ , while the experimental uncertainty is still remaining

including the spin assignment [7]. The 1+ state is predicted at a lower energy
than the 2+ state due to the attractive effect of the triplet-even 3E channel in the
pn interaction.

For the s-wave states, their scattering lengths as of the 9Li + n system show
negative values. In particular, the 2- state shows a large negative value of
as, which is comparable to that of the nn system (-18.5 fm) with the 1S0 channel
[8], and indicates the existence of the virtual s-state near the 9Li + n threshold
energy. Therefore the inversion phenomenon in 10Li is reasonably explained in the
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present model. The order of 2- and 1- also comes from the attractive 3E com-
ponent in the pn interaction.

For comparison, we calculate 10Li without the core excitations of 9Li (‘‘Inert
Core’’), namely, we adopt only the single 0p–0h configuration for 9Li without
the Pauli blocking effect explained in Fig. 5.21d. In this case, we adjust the
d parameter of the potential strength (1 + d)Vcn to be 0.066. In Table 5.7, the
p-wave resonances are obtained just above the 9Li + n threshold energy, and as

values show small positive values for both 1- and 2- states, which means that the
virtual s-states are not located near the 9Li + n threshold, and the s–p shell gap is
large. These results mean that the Pauli-blocking nicely describes the spectro-
scopic properties of 10Li.

The d-wave resonance states of 10Li are also predicted using the TOSM case of
9Li, as shown in Table 5.8, whose excitation energies are higher than those of the
p-states. The whole spectra of 10Li is summarized in Fig. 5.22 in comparison with
the experimental data [108].

5.5.6 11Li

We solve 11Li in a coupled 9Li + n + n model and show the detailed properties of
11Li in Table 5.9, the partial wave components P((nlj)2) for halo neutrons, the
various rms radius, the relative distance between halo neutrons ðRn�nÞ and the
core-2n distance ðRc�2nÞ; and the expectation value of the opening angle between
two neutrons h measured from the 9Li core, respectively. The case using TOSM
for 9Li gives a large P((1s)2) value, comparable to P((p1/2)2) for halo neutrons and
a large matter radius Rm for 11Li, which are enough to explain the observations.

Table 5.7 The resonance energies Er and the decay widths C of the p-wave resonance states
(1+ and 2+ states) of 10Li in unit of MeV, measured from the 9Li + n threshold

TOSM Inert Core

(Er, C)(1+) [MeV] (0.22, 0.09) (0.03, 0.005)
(Er, C)(2+) [MeV] (0.64, 0.45) (0.33, 0.20)
as(1

-) [fm] -5.6 1.4
as(2

-) [fm] -17.4 0.8

The scattering lengths as of the s-states (1- and 2- states) are shown in unit of fm. We show
here the two kinds of the results using TOSM and Inert Core for 9 Li

Table 5.8 The resonance
energies Er and the decay
widths C of the d-wave
resonance states in 10Li in
unit of MeV

TOSM

(Er, C)(1-) (5.84, 5.16)
(Er, C)(2-) (5.81, 5.20)
(Er, C)(3-) (6.57, 6.31)
(Er, C)(4-) (5.30, 3.84)
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The case of ‘‘Inert Core’’ gives small P((1s)2) and small Rm values, which disagree
with the experiments. From the difference between two models, it is found that the
tensor and pairing correlations in 9Li play important roles to break the magicity
and make the halo structure of 11Li, in addition to the s–p inversion phenomenon
in 10Li. As was shown in the previous study [79], the Pauli blocking effect from
the tensor correlation is stronger than the pairing one to break the magicity of 11Li.
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Fig. 5.22 10Li spectrum
using TOSM and Inert core
for 9Li description [62].
Experimental data is taken
from Ref. [108]

Table 5.9 Ground state properties of 11Li with S2n = 0.31 MeV, where two kinds of the 9Li
descriptions of TOSM and Inert Core are shown, respectively

TOSM Inert Core Expt.

P((p1/2)2)) [%] 42.7 90.6 –
(1s1/2)2 46.9 4.3 45 ± 10[3]
(p3/2)2 2.5 0.8 –
(d3/2)2 1.9 1.3 –
(d5/2)2 4.1 2.1 –
(f5/2)2 0.5 0.2 –
(f7/2)2 0.6 0.3 –
Rm [fm] 3.41 2.99 3.12 ± 0.16[1]

3.53 ± 0.06[61]
3.71 ± 0.20[109]

Rp 2.34 2.24 2.88 ± 0.11[1]
Rn 3.73 3.23 3.21 ± 0.17[1]
Rch 2.44 2.34 2.467 ± 0.037[110]

2.423 ± 0.034[111]
Rn�n 7.33 6.43
Rc�2n 5.69 4.26
h [deg.] 65.3 73.1

Details are described in the text
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In Fig. 5.23, ‘‘Present’’ is found to give a large amount of the (1s)2 probability
P(s2), 46.9% for the last two neutrons and a large matter radius Rm, 3.41 fm for
11Li, which are enough to explain the observations. The probabilities of (p1/2)2,
(p3/2)2, (d5/2)2 and (d3/2)2 for the last two neutrons are obtained as 42.7%, 2.5%, 4.1%
and 1.9%, respectively. In Fig. 5.23, when we individually consider the tensor and
pairing correlations for 9Li, P(s2) is larger for the tensor case than for the pairing case.
Finally, both blocking effects furthermore enhance P(s2) and provide almost equal
amount of (1s)2 and (0p)2 configurations. Hence, two correlations play important
roles to break the magicity and make the halo structure for 11Li.

In Table 5.10, we also estimate the relative energy difference DE between (1s)2

and (0p)2 configurations for 11Li using the mixing probabilities of these configu-
rations and the coupling matrix element between them as 0.5 MeV obtained in
Ref. [25]. The present model is found to give the degenerated energies enough to
cause a large coupling between the (0p)2 and (1s)2 configurations by the pairing
interaction between the last neutrons.

In addition to the matter radius, the halo structure also affects the proton radius
of 11Li, because of the recoil effect of the c.m. motion. In the three-body model of
11Li, its proton radius (Rp) consisting of the proton radius of 9Li and the relative
distance between 9Li and the c.m. of two neutrons (Rc-2n) with the following
relation

hR2
pð

11
LiÞi ¼ hR2

pð
9
LiÞi þ 2

11


 �2

hR2
c�2ni; ð5:83Þ

where the second term represents the recoil effect. When the halo structure
develops, hRc-2n

2 i is expected to be large. Experimentally, considering the nucleon
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Table 5.10 d used in the 9Li–n potential, and the energy differences DE between the (1s)2 and
(0p)2 configurations of 11Li in MeV

Inert
core

Pairing Tensor Present

d 0.066 0.143 0.1502 0.1745
DE 2.1 1.4 0.5 -0.1
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radius, the charge radius of 11Li was measured recently and its value is
2.467 ± 0.037 fm, which is enhanced from the one of 9Li, 2.217 ± 0.035 fm
[110]. The improved calculation for the isotope shift determination [111] shows
that 2.423 ± 0.037 fm and 2.185 ± 0.033 fm for 11Li and 9Li, respectively.
The present wave functions provide 2.44 and 2.23 fm for 11Li and 9Li, respec-
tively, which are in a good agreement with the experimental values. This

enhancement is mainly caused by the large value of
ffiffiffiffiffiffiffiffiffiffiffiffiffi

hR2
�2ni

p

obtained as 5.69 fm.
For comparison, the distance between last two neutrons is 7.33 fm, which is larger
than the core-2n case.

5.5.7 Electromagnetic Properties of Li Isotopes

We show the Q and l moments of 9Li and 11Li in Tables 5.11 and 5.12, where
only the absolute value of the Q moment of 11Li is reported in the experiments
[11]. The present model describes reasonably those values for 9Li and 11Li.
For Q moments, the values of 9Li and 11Li do not differ so much to each other.
This result is similar to that of the anti-symmetrized molecular dynamics (AMD)
model [113] and different from the stochastic variational method (SVM) based on
the multi-cluster model [12]. Here, similar to the charge radius, we discuss the
recoil effect in the Q moment of 11Li by expanding its operator Q(11Li) into the
core part (Q(9Li)), the last neutron part and their coupling part as

Qð11
LiÞ ¼ Qð9LiÞ þ

ffiffiffiffiffiffiffiffi

16p
5

r

3e
2

11


 �2

Y20ðRc�2nÞ

� 8p

ffiffiffi

2
3

r

½O1ð9LiÞ;Y1ðRc�2nÞ�20;

ð5:84Þ

Table 5.11 Q moments of
9Li and 11Li in units of e fm2

9Li 11Li

TOSM -2.65 -2.80
AMD[113] -2.66 -2.94
SVM[12] -2.74 -3.71
Expt.[112] -2.74 ± 0.10 3.12 ± 0.45

(|Q|)
Expt.[114] -3.06 ± 0.02 —

Table 5.12 l moments of
9Li and 11Li in units of lN

9Li 11Li

TOSM 3.69 3.77
AMD[113] 3.42 3.76
SVM[12] 3.43 3.23
Expt.[112] 3.44 3.67
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O1mð9LiÞ ¼ e
X

i2proton

Y1mðaiÞ; ð5:85Þ

where YlmðrÞ 	 rlYlmðr̂Þ and faig are the internal coordinates of protons in 9Li.
In our wave function of 11Li, last two neutrons almost form the 0+ state with the
probability of around 99%. In that case, the Q moment for the relative motion part
of 9Li–2n(c–2n) having the relative coordinate Rc�2n almost vanishes because of
the non-zero rank properties of the Q moment operator. This means that the recoil
effect from the clusterization is negligible. Therefore, the Q moment of 11Li is
caused mainly by the 9Li core part inside 11Li. In our wave function, the spatial
properties of the proton part of 9Li inside 11Li do not change so much. Hence, the
Q moment of 11Li is similar to the value of the isolated 9Li. Small enhancement
from 9Li to 11Li mainly comes from the lacking of the high momentum component
of the tensor correlation due to the Pauli-blocking in 11Li, which extends the radial
wave function of 11Li. The experimental information of the Q moment is important
to understand the structure of 11Li. It is highly desired that further experimental
data are available for the Q moment of 11Li.

For the l moment, the value observed in 11Li is almost the Schmidt value of
3.79 lN of the 0p3/2 proton. In 9Li, the p1/2 proton is slightly mixed, which
decreases the l moment. In 9Li, this p1/2 proton is excited from the 0p3/2-orbit in a
pair with the p1/2 neutron and the 2p–2h excitation is Pauli-blocked in 11Li due
to the additional neutrons. As a result, the excitation of p1/2 is suppressed,
which makes the l moment of 11Li close to the Schmidt value of the p3/2 orbit.
The tendency of the increase of the l moment from 9Li to 11Li can be obtained
also in the shell model analysis using various effective interactions [115].

We further calculate the three-body Coulomb breakup strength of 11Li into the
9Li + n + n system to investigate the properties of the dipole excited states and
compare the strength with the new data from the RIKEN group [6]. We use the
Green’s function method combined with the complex scaling method [46] to
calculate the three-body breakup strength [29] using the dipole strength and the
equivalent photon method, where the experimental energy resolution is taken into
account [6]. We do not find any resonances with a sharp decay width enough to
make a resonance structure. In Fig. 5.24, it is found that the present model well
reproduces the experiment, in particular, for low energy enhancement and its
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threshold energy. Data are
taken from Ref. [6]
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magnitude. Seeing more closely, however, our results seem to underestimate the
cross section at E [ 1 MeV, while overestimate at low energy peak region
slightly. As a result, the integrated dipole strength for E B 3 MeV gives 1.35 e2

fm2, which agrees with the experimental value of 1.42 ± 0.18e2 fm2 [6]. We also
slightly change the two neutron separation energy of the ground state of
11Li, which is close to the recent observation [116, 117].

Summarizing this section, we have considered newly the tensor correlation in
11Li based on the extended three-body model. We have found that the tensor and
pairing correlations play important roles in 9Li with different spatial characteris-
tics, where the tensor correlation prefers a shrunk spatial extension. The tensor and
pairing correlations in 9Li inside 11Li are then Pauli-blocked by additional two
neutrons, which makes the (1s)2 and (0p)2 configurations close to each other and
hence activates the pairing interaction to mix about equal amount of two config-
urations. As a result we naturally explain the breaking of magicity and the halo
formation for 11Li. We also reproduce the recent results of the Coulomb breakup
strength and the charge radius of 11Li. For 10Li, the inversion phenomenon is
explained from the Pauli-blocking effect.

5.6 Conclusion

We have presented the physics of the di-neutron clustering and the deuteron-like
tensor correlations by focusing on the halo structure of 11Li. The halo structure
provides an ideal platform for the di-neutron clustering to play an important role.
This di-neutron clustering phenomenon is strongly related with the central inter-
action in the 1S0 channel, where the large scattering length in the nucleon–nucleon
scattering suggests the appearance of the bound state by changing slightly the
environment. On the other hand, in order to produce the halo structure, there
should be an active participation of the s1/2 configuration in the neutron wave
function. This participation of the s1/2 orbit was very difficult in the standard shell
model framework. We had to invoke the deuteron-like tensor correlation in
11Li, which blocks the two neutrons to enter the p1/2 orbit and hence provides a
mechanism to put neutrons in the s1/2 orbit.

The theoretical description of these two new correlations to realize in 11Li was
very difficult. In fact, we had to develop the cluster orbit shell model (COSM) to
handle an extended object and further the hybrid-VT model (Hybrid-VT) to treat
the di-neutron clustering correlation in finite nuclei. We had to deal with unbound
and resonance states quantitatively, since the halo structure appears when the
binding energy of the last neutrons is very small. The excitation function of several
MeV forces us to treat the spectral function in the continuum region. At the same
time, the neighboring nuclei are also unbound. Hence, we had to develop the
complex scaling method (CSM) to treat the continuum and resonance states. All
these theoretically involved methods have been developed for the quantitative
description of the halo nucleus 11Li. The most essential mechanism to bring down
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the s1/2 configuration for the halo formation came from the deuteron-like tensor
correlation in nuclei. The strong binding energy of 4He comes from the strong
tensor interaction. We had to develop the tensor optimized shell model (TOSM) to
describe the deuteron-like tensor correlation in the shell model basis. The TOSM
provided a clear key to push up the configuration involving the p1/2 orbit, since the
strong binding of the 4He nucleus requires the use of the p1/2 orbit. Hence, natu-
rally the s1/2 configuration is energetically favored for the halo structure formation.

We are used to treat the central interaction with the spin-orbit interaction in the
shell model basis to treat many body systems. In the theoretical challenge to
describe the halo structure of 11Li, we had to face to treat the strong tensor
interaction for the important role of the deuteron-like tensor correlation in many
body systems. We have seen that the deuteron-like correlation worked out in the
shell model basis is able to treat the Pauli blocking effect due to the (p1/2)2

neutrons to wash away the N = 8 shell gap. This effect allows the participation of
the (s1/2)2 configuration to provide a platform to develop the di-neutron clustering
correlation in the halo structure of 11Li. Hence, we expect many interesting many-
body phenomena in unstable nuclei to be found in near future, where the deuteron-
like tensor and/or di-neutron clustering correlations play important roles.

In this lecture note, we have gone through all these theoretical materials in
details. We have tried to make the motivation of the development of the theoretical
tools in each step to describe the halo nucleus quantitatively. These theoretical
frameworks are not only for use of the halo structure, but should play a very
important role for the description of finite nuclei. In fact, the TOSM is essential to
describe the deuteron-like tensor correlation, which should be the most important
ingredient to provide large binding energies for all the nuclei.
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Chapter 6
Collective Clusterization in Nuclei
and Excited Compound Systems:
The Dynamical Cluster-Decay Model

Raj K. Gupta

6.1 Introduction

Clustering is a general feature of light, N = Z, a-like stable nuclei for both the
ground and (intrinsic) excited states. This phenomenon is observed in spontaneous
decays of heavy radioactive nuclei, and seems to play an important role in the
decay of excited compound systems formed in heavy ion reactions. It is also
shown to be present in exotic light-halo, super-heavy and super-superheavy nuclei.

In these Lecture Notes, we propose to analyze the clustering phenomenon first
very briefly within the relativistic (and, also non-relativistic) mean field approach,
and then develop a collective clusterization model for both the spontaneous
(ground-state) and excited-state decay of nuclei. Thus, a dynamical collective
clusterization model, called the dynamical cluster-decay model (DCM), is devel-
oped for the decay of a hot and rotating compound nucleus, which contains the
spontaneous ground-state decay as its special case in terms of, so-called, pre-
formed cluster model (PCM). The concept of preformed clusters in nuclei will be
introduced, which leads to a non-statistical description for the decay of a com-
pound nucleus to light particles (n, p, a-particle and c-rays), the intermediate mass
fragments (both light and heavy), fusion–fission and quasi-fission (equivalently,
capture) processes. Hence, a model, alternative to the well known Hauser–
Feshbach analysis (statistical evaporation code) and statistical fission models, will
be developed. For the ground-state decay of a nucleus, we get the phenomena of
a-decay and exotic cluster radioactivity. In other words, the PCM for ground-state
decays, and the DCM for decay of excited compound nuclei, consider all decay
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products as dynamical mass motion of preformed fragments or clusters through the
interaction barrier, thereby including the structure effects of nuclei and/or com-
pound nuclei explicitly.

The DCM calls for the introduction of temperature-dependent binding energies,
and the deformations and orientations degrees of freedom, together with the use of
‘‘optimum’’ or ‘‘compact’’ orientations, for incoming nuclei as well as out-going
nuclei/fragments. The deformation and orientation effects of both the parent and
decay products (daughter and cluster nuclei) are also found essential in the PCM
for ground-state, spontaneous decays. Applications of the model (PCM/DCM) will
be discussed for illustrative decays from various mass regions of the Periodic
Table.

6.2 Clustering in Light, Medium-Mass, Heavy, Super-Heavy,
and Super-Superheavy Nuclei: Mean Field Approach

In this section, we first look for the possible existence of clusters in the ground-
and intrinsic excited states of various nuclei, in a mean field approach. If clusters
are found in the mean-field description of nuclei, this will give strength to the
concept of ‘‘pre-formed clusters’’ in nuclei and the compound systems formed in
heavy ion reactions, which is used in the next section on dynamical cluster-decay
model (DCM) for hot and rotating compound nuclei, and its ground-state version,
the preformed cluster model (PCM), for spontaneous decays of radioactive nuclei.

The first place to look for clustering structure in nuclei is the light N = Z, a-like
stable nuclei which are a multiple of a-particles. Cluster structure of light nuclei is
very well studied on the basis of cluster models, but then the existence of clusters
is assumed a priori. A major drawback of such a model is that it could not be
applied to, say, ‘‘exotic’’ (unstable) nuclei, where structural information is not that
abundant.

When cluster structures are prominent, like in light, N = Z, a-nuclei, the
description by conventional mean field models based on the shell-model-like
picture becomes insufficient. Examples of frameworks which could explain both
the mean-field and clustering properties of nuclei are the methods of Fermionic
molecular dynamics (FMD) [1] and antisymmetrized molecular dynamics (AMD)
[2–4], which describe well the structural properties of several nuclei, and their
excited states, in the lighter mass region [5–9]. In the following, however, we
discuss another model, the relativistic mean field (RMF) model, which is recently
shown to be capable of explaining the clustering shapes in light, stable and exotic
nuclei [10, 11]. The RMF model seems to work well for light-mass regime, including
also the light-halo nuclei, in-spite of several arguments put forth to its shortcomings
related to the inadequacy of the mean-field approximation itself, the RMF
parameters, the shape degrees of freedom, and the lack of proper pairing correla-
tions, etc. Further applications of the RMF model to medium-mass nuclei [12],
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the heavy radioactive nuclei [13–15], the super-heavy nuclei [12, 16], and a super-
superheavy nucleus [17] seem to establish the cluster picture in both the ground
and excited states of nuclei, without any a priori assumption of clustering inter-
action in the formalism. Here, in the following, after presenting a very brief
description of the formalism itself, we discuss some of these above stated
applications.

6.2.1 Relativistic Mean Field Method

In RMF model, we begin with the relativistic Lagrangian density for a nucleon-
meson many-body system [18, 19–24]

L ¼ �wiðiclol �MÞwi

þ 1
2
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1
2
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The field for the r-meson is denoted by r, that of the x-meson by Vl and of the
isovector q-meson by ql. Al denotes the electromagnetic field. wi are the Dirac
field for the nucleons, whose third component of isospin is denoted by s3i. Here gs,
gw, gq and e2/4p = 1/137 are the coupling constants for r, x, q mesons and
photon, respectively. M is the mass of the nucleon and mr, mx and mq are the
masses of the r, x and q-mesons, respectively. Xlm, Blm and Flm are the field
tensors for the Vl, ql and the photon fields, respectively, and are defined as:

Xlm ¼ olVm � omVl

Blm ¼ olqm � omql � gqðq� qÞ
Flm ¼ olAm � omAl:

ð6:2Þ

The meson and electromagnetic fields are assumed to be static, time-indepen-
dent classical fields, whereas the nucleon wavefunctions oscillate with a single
particle energy ei. From the above Lagrangian, using equation of motion, the
mean-field equations for mesons and nucleons are obtained as:

�Dþ m2
r

� �

rðrÞ ¼ �gsqsðrÞ � g2r
2ðrÞ � g3r

3ðrÞ ð6:3Þ

ð�Dþ m2
xÞV0ðrÞ ¼ gxqðrÞ � c3ðV0ðrÞÞ3 ð6:4Þ
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with the scalar, baryon (vector), isovector, and proton densities defined, respec-
tively, as
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Here we get bosonic equation for r, x and q mesons and Dirac equation for the
nucleons. The r-field gives the attractive and the x-field the repulsive component
of the nuclear potential. However, the q meson field takes care of the proton–
neutron asymmetric energy. This set of coupled partial differential equations is
solved by expanding the upper and lower components of the Dirac spinors and the
wavefunctions of the boson fields in an axially deformed harmonic oscillator
potential basis, taking volume conservation into account [20, 25, 26], and with an
initial quadrupole deformation parameter b2 = b0. The frequencies �hx? and �hxz

of the harmonic oscillator potential can be expressed in terms of the deformation
parameter b2 [20, 25, 26]. A large number of parameter sets are obtained by
different authors to fit the ground state properties of a small number of nuclei,
listed in Table 1 of Ref. [27]. The most commonly used parameter sets are the
NL3 [28] and NL-SH [29].

In numerical calculations, the wavefunctions for the bosons and fermions are
expanded in a fairly large basis with the number of oscillator shells NB for bosons
and NF for fermions. The coupled equations are solved iteratively to obtain con-
vergent self-consistent solutions. The b2 is obtained from the calculated quadru-
pole moments for the protons and neutrons through

Q ¼ Qn þ Qp ¼
ffiffiffiffiffiffi

9
5

p

r

AR2b2; ð6:12Þ
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where R = 1.2A1/3 fm and Q are the quadrupole moments. The charge radius is

given by rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
p þ 0:64

q

(considering the radius of proton as 0.8 fm), while the

root mean square (rms) matter radius is defined as

r2
m

� 	

¼ 1
A

Z

qðr?; zÞr2 ds; ð6:13Þ

with A as the mass number, and qðr?; zÞ, the deformed density. Analogous
definitions of protons and neutrons distribution radii are hr2

pi ¼ 1
Z

R

qprp
2 ds and

hr2
ni ¼ 1

N

R

qnrn
2 ds; respectively. The total binding energy of the system is given

by - Etotal, where

Etotal ¼ Epart þ Er þ Ex þ Eq þ Ec þ Epair þ ECM: ð6:14Þ

The Epart is the sum of the single-particle energies of the nucleons and Er, Ex, Eq,
Ec, and Epair are the contributions of the meson fields, the Coulomb field and the
pairing energy, respectively. The effects of pairing interaction can be added in the

Table 6.1 Calculated binding energies (BE) and deformation parameters b2 for a-nuclei from
12C to 32S, together with the experimental data

Nucleus BE (MeV) b2 Probable structure Similar
predictions

RMF Expt. RMF Expt.
12C 89.74 92.16 -0.29 0.58 3a-Equilateral triangle [2–4, 6, 39, 40]

89.63 0.00 Spherical
72.55 2.33 3a-Linear chain [41]

16O 128.84 127.62 0.00 4a-Tetrahedron [6, 39, 42]
112.95 0.95 4a-Kite [40]

92.28 3.79 4a-Linear chain [41]
20Ne 156.70 160.64 0.54 0.73 5a-Trigonal bipyramid [5, 39, 42]

151.96 -0.24 10B + 10B
108.24 7.76 10B + 10B (fragments)

24Mg 194.37 198.26 0.50 0.61 12C + 12C -(Central bishpenoid) [39]
186.82 -0.26 12C + 12C-Trigonal biprism

28Si 232.08 236.54 -0.34 0.41 D3d symmetry [39]
231.18 0.00 Hollow sphere (Pentagonal

bipyramid)
224.11 0.60 12C + a + 12C Trigonal biprism [9, 39, 42]

32S 265.96 271.78 0.25 0.31 16O + 16O (Kite)
256.38 1.03 16O + 16O (Tetrahedron)

The (interpreted) probable structures obtained from the RMF calculated density distributions
are also shown, along with the references where similar structures were predicted (see, e.g.,
Figs. 4.5 and 4.6 in Ref. [3], or Fig. 2.1 for 8Be in Ref. [4]). Some of the structures
proposed are rather speculative due to the symmetry conservation and other limitations of
our RMF calculations, put in braces. The Table is taken from our published work in
Ref. [10]
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BCS formalism with a constant pairing gap, wherever necessary. Note that for very
light nuclei, the effects of pairing are not known in all necessary details. For light
systems, since the number of protons and neutrons is very small, the pairing
correlations can be neglected. However, these correlations get more and more
important with the increase of nucleon number in the nucleonic system. The

center-of-mass energy correction ECM ¼ �3
4ð41A�

1
3Þ, in the non-relativistic har-

monic oscillator approximation.
As outputs of the above equations, we obtain different potentials, densities,

single-particle energy levels, radii, quadrupole deformations and the binding
energies. For a given nucleus, the maximum binding energy corresponds to the
ground state and other solutions are obtained as various excited intrinsic states,
provided the nucleus does not undergo fission. However, when a nucleus under-
goes fission [30–32], in most cases, depending on the total number of nucleons in a
nucleus, the total energy of the nuclear system (of, say, two fragments) is more
than its own binding energy as a single nucleus. Thus, after the scission point,
when a nucleus is in a process of fission, the total energy is more than the ground
state binding energy. For example, for the highly deformed solutions (scission
states) of 112Ba and 114Ba isotopes with b2 = 10.71 and 10.58, respectively, the
energies of the systems at scission are 897.33 and 920.61 MeV, which are more
than the ground state solutions 895.38 and 920.13 MeV, respectively [12].

In these Lecture Notes, we present our results only on the calculated neutron,
proton and total (neutrons + protons)-matter density distributions, and the neutron–
proton asymmetry variable a ¼ qn�qp

qnþqp
. For other properties, like the binding energies

(BE), quadrupole deformation parameters (b2), and the root-mean-square (rms)
matter radii (rm), we refer the reader to our publications [10–17] and earlier refer-
ences there in them. It is apparent that |a| = 1 means only one type of nucleons
(protons or neutrons), and |a| = 0 refers to a N = Z, a-like matter. The matter
densities are obtained in the positive quadrant of the plane parallel to the symmetry
z-axis, i.e., in the r? � z plane where x ¼ y ¼ r?: As the space reflection symmetry
about z-axis, as well as about r? axes, is conserved in our formalism, the results
obtained in the positive quadrant are suitably reflected in other quadrants so as to
have a complete picture in the r? � z plane. Such unbroken symmetries of our
numerical procedure lead to several limitations, which are discussed in Ref. [10].

The density distribution of nucleons also plays the prominent role for studying
the internal or cluster structure of a nucleus. For a differently quadrupole deformed
nucleus, the density distribution qðr?; zÞ inside the nucleus must vary. For
example, the qðr?; zÞ for a spherical nucleus is symmetrical in ðr?; zÞ-plane.
However, it is highly asymmetric for a largely deformed nucleus. Knowing the
density distribution of the spherical or (oblate/prolate) deformed configuration, we
can calculate the number of nucleons for each configuration, defined in [12] as

n ¼
Z

z2

z1

Z

r2

r1

qðr?; zÞ ds; ð6:15Þ
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with n as number of neutrons N, protons Z or mass A. Though a straight forward
calculation, this gives an important information about the internal or sub-structure
of the cluster configuration in the ground or intrinsic excited states of a nucleus.

Furthermore, having obtained the density distributions qc and qd in RMF
method for the emitted cluster (c) and remaining daughter (d) nucleus, the nuclear
interaction potential Vn(R) can be obtained by folding [33], say, the M3Y nucleon–
nucleon interaction plus the zero-range pseudo-potential representing the single-
nucleon exchange effects [34], denoted M3Y + Ex, without including the Pauli
blocking effect, i.e., the density-dependence [35–37] in the interaction,

VnðRÞ ¼
Z

qcðrcÞqdðrdÞvðj rc � rd þ R j� sÞd3rcd3rd; ð6:16Þ

where the well known M3Y + Ex interaction [34] is given as

vðsÞ ¼ 7; 999
e�4s

4s
� 2; 134:25

e�2:5s

2:5s
þ J00ðEÞdðsÞ; ð6:17Þ

with the zero-range pseudo-potential (exchange term) given by

J00ðEÞ ¼ �276ð1� 0:005E=AaðcÞÞMeV fm3:

Here Aa(c) is the a-particle (cluster) mass, and E, the energy measured in the
centre-of-mass of the a- or cluster–daughter nucleus system, is equal to the
released Q value. Compared to, say, the energies involved in high energy
a-scattering, practically J00(E) is independent of energy for the a- or cluster-decay
process and hence can be taken as -276 MeV fm3, an approximation also used by
other authors [38].

Adding to Vn(R) the Coulomb interaction Vc(R), we get the total interaction
potential V(R) = Vn(R) + Vc(R) between the cluster and daughter nuclei, which
can be used to calculate, say, the cluster penetration probability for determining its
decay constant, etc., as discussed below.

6.2.2 Applications of the RMF Model

6.2.2.1 Light a- and Exotic-Nuclei

RMF calculations for light nuclei are made [10, 11] for the stable and exotic
6-14Be, odd-mass 11-19B, and the even N = Z, a-nuclei 12C to 32S and 56Ni, using
the NL3 (NL-SH for 12C) parameter set with no pairing effects included. In the
following, we first present our results for the N = Z, a-nuclei, showing a-particle
and a-nucleus clustering structures in both the ground and excited intrinsic states.
The non-relativistic Skyrme Hartree Fock (SHF) calculation for light nuclei is
made for 56Ni only [11], which supports the RMF result, discussed below.
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Figure 6.1 shows in x(=y)-z plane, the a-a clustering in 8Be, which serves as
a benchmark nucleus of the formalism. The next two a-nuclei, 12C and 16O, show
several known ground-state (g.s.) structures such as the 3a-equilateral triangle
(co-existing with spherical shape) and 4a-tetrahedron or kite-like, plus the 3a- and
4a-linear chains for excited states [10]. This is illustrated in Fig. 6.2 for 16O, and
listed in Table 6.1 for all the a-nuclei from 12C to 32S. For a-nuclei beyond 16O,
i.e., from 20Ne up to 32S, both a and non-a cluster structures, like 10B + 10B,
12C + 12C, 12C + a + 12C and 16O + 16O, are seen. Also, 5-a-trigonal bipyramid
and pentagonal bipyramid (hollow sphere) are obtained, but no 5-a, 6-a chains,
etc., for 20Ne, 24Mg, etc., in agreement with other known results (for more details,
see Ref. [10]).

For other Be and B nuclei, we get [10] the a-clustering and ‘‘halo’’ structures of
(a + a)-core or (a + a + p)-core plus xn, i.e., xn playing the role of ‘‘halo’’ neu-
trons. Some interesting observations for Be-nuclei, heavier than 8Be, are (i) the
clustering in proton matter remains undisturbed, and (ii) the a clustering in proton
density distribution of 9,10Be are more closely packed, i.e., the smallest distance
between two a clusters occurs for 10Be which, according to some authors [43], may
be due to the strong pairing effects (for further details of the calculation, we refer

Fig. 6.1 Contour plots of
neutron, proton and matter
density distributions in 8Be,
using RMF(NL3). This figure
is based on Fig. 2 of our
published work in Ref. [10]

(a) (b)

(c)

Fig. 6.2 Contour plots of
matter density distributions in
a spherical ground-state with
hollowness at the center due
to a regular 4a-Tetrahedron
clustering in three dimen-
sions, b A highly deformed
first excited-state at
b2 = 0.95 forming a 4a
Kite-like structure, and c the
highest deformed second
excited-state at b2 = 3.79 of
a linear 4a-chain, in 16O,
using RMF(NL3). This figure
is taken from our published
work in Ref. [10]
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the reader to Ref. [10]). Finally, 56Ni shows [11] a preferred N = Z, a-nucleus
clustering for states with deformations up to hyper-deformation (b B 2.45).
The SHF calculation for 56Ni nucleus is also made [11], which supports the above
result, and shows a two cluster or symmetric fission for the hyper-hyperdeformed
(b C 4.87) state (for more details, see Ref. [11]).

6.2.2.2 Medium Mass Nuclei

In the medium mass region, we have studied the clustering structure of various
Z ¼ 56 112–122Ba nuclei, within the RMF model, with an additional attempt to
determine for the first time the number of protons and neutrons in a cluster, i.e., the
internal structure(s) of the cluster(s) [12]. In our earlier calculations [13, 17], only
the N/Z (=qn/qp) ratios were calculated which are indeterminate up to *20%
since only average densities were obtained.

Decay of such ‘‘stable’’ nuclei, specifically, the neutron-deficient and neutron-
rich isotopes of Z = 54-64 nuclei, against exotic cluster decays were first studied
by us [44–47] on the basis of the preformed cluster model (PCM) of Gupta and
collaborators [48–54] (see, also the works of other authors [55, 56, 57]). From the
neutron-deficient parents, the N = Z, a-nuclei 8Be, 12C, 16O, 20Ne, 24Mg, and 28Si
are predicted to be the most probable clusters emitted with a much smaller decay
half-life compared to N [ Z clusters predicted preferably or observed from neu-
tron-rich parents (e.g., 14C from 146Ba or 222Ra with 132Sn or 208Pb as the daughter,
respectively). Thus, other than the a particle, 12C decay of 112–120Ba nuclei is
shown to be the most probable one with 100Sn, and its heavier isotopes, as the
daughter nuclei.

The ground-state decay of Ba, however, could not be established as yet [58, 59],
and a new phenomenon of intermediate mass fragments (IMFs) with 3 B Z B 9,
also referred to as ‘clusters’ or ‘complex fragments’, is observed to be emitted
from the compound nucleus 116Ba* formed in 58Ni + 58Ni ? 116Ba* reactions at
both the high [60, 61] and medium energies [62, 63]. The measured IMF cross-
section rIMF for the 116Ba* decay at all the above mentioned medium and high
energies are so far understood only on the preformed-clusters (PCM) based
dynamical cluster-decay model (DCM) of Gupta and collaborators [64], to be
discussed in next section. In this subsection, we are interested to see if the RMF
model supports a clustering structure for the ground and/ or excited states of Ba
nuclei.

Analyzing the clustering configurations of the density distributions for both
the ground and excited state solutions of 112-122Ba nuclei (illustrated in Fig. 6.3
for the prolate-deformed ground-state solutions), we determine the number of
nucleons by using the general formula in (6.15), for both the protons and neu-
trons (using individual density distributions), which are listed in Table 6.2. For
this calculation, we first find the range of the integral (marked in Fig. 6.3 for the
clusters formed in 112Ba, and listed in Table 6.2, i.e., the lower and the upper
limits of the (r and z) axes from the plotted density distributions like in Fig. 6.3,
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and then evaluate the integral for each case. Note that, due to un-even shapes of
the clusters formed, the ranges can be determined to the extent of the Zclus. and
Nclus. being correct within one unit, i.e., the obtained Zclus. and Nclus. give Aclus.

within Aclus. ±2.
We notice from Table 6.2 that the prolate-deformed ground-states (g.s.) of

112Ba, 114Ba and 116Ba nuclei, and the first excited oblate-deformed states (e.s. I)
of 118Ba and 120Ba, show the presence of 12C cluster configuration. Note that
12C cluster refers to 100Sn daughter, and its existence inside the Ba nuclei has been
of interest both from experimental and theoretical points of views. The g.s. of

Fig. 6.3 Contour plots of matter density distributions in prolate deformed ground-state solutions
of 112-122Ba nuclei, using RMF(NL3). For one nucleus, the ranges of integration in (6.15),
i.e., r1, r2; z1, z2 (in fm), are marked for all the clusters formed. This figure is taken from our work
in Ref. [12]
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112-116Ba also show the presence of other lighter and relatively heavier clusters,
like 6Li, 14N, 25Mg and 35Cl, 36Ar, respectively, whereas the same for the g.s. of
118,122Ba are predicted to be only the relatively heavier ones like 42Ca and 43Ca.
The g.s. of 120Ba, e.s.II of 114Ba and e.s.III of 116Ba seem to present isolated cases
each of a relatively higher density (red color) 1H, 8Be and 6Li cluster, respectively.

Table 6.2 The number of protons Zclus. and neutrons Nclus., and their sum, the nucleons Aclus., in
clusters inside the 112–122Ba nuclei for different solutions of deformations b2 obtained from the
RMF(NL3) formalism

Nucleus State b2 Cluster range (r1, r2; z1, z2) Zclus. Nclus. Aclus. Cluster
112Ba g.s. 0.24 (-1.5, 1.5; 1.9, 4.5) 17.7 18.3 36.0 36Ar

(1.3, 2.45; -1.3, 1.3) 5.8 6.2 13.0 12C
(2.9, 3.8; -2.0, 2.0) 7.1 7.4 14.5 14N

e.s. I -0.39 (-3.45, 3.45; -1.7, 1.7) 50.4 52.9 103.3 103Sn
e.s. II 1.24 (-1.0, 1.0; -6.4, 6.4) 46.5 48.8 95.3 95Pd
e.s. III 10.71 (-3.5, 3.5, -6.3, 6.3) 0.7 0.8 1.6 2H

114Ba g.s. 0.24 (-1.5, 1.5; 2.1, 4.6) 16.9 17.9 34.7 35Cl
(1.25, 2.5; -1.1, 1.1) 5.8 6.2 12.0 12C
(3.3, 3.7; 0.7, 2.0) 1.1 1.2 2.3 2H

e.s. I -0.39 (-3.35, 3.35; -1.5, 1.5) 49.9 54.7 104.6 105Sn
e.s. II 1.19 (-0.7, 0.7; 3.9, 5.4) 4.1 4.3 8.4 8Be
e.s. III 10.58 (-3.8, 3.8; -6.6, 6.3) 1.1 1.1 2.2 2H

116Ba g.s. 0.36 (-1.6, 1.6; 4.4, 6.2) 12.3 13.1 25.3 25Mg
(-0.9, 0.9; 2.6, 3.4) 2.8 3.4 6.1 6Li
(2.9, 3.6; -2.0, 2.0) 5.74 6.10 11.95 12C
(1.6, 2.3; -1.1, 1.1) 3.07 3.36 6.43 6Li

e.s. I -0.39 (-3.3, 3.3; -1.5, 1.5) 48.8 54.9 103.7 104In
e.s. II 1.20 (-1.0, 1.0; -6.7, 6.7) 47.8 52.5 103.3 103Cd
e.s. III 10.40 (-0.8, 0.8; 11.0, 12.2) 3.7 3.8 7.5 8Be

(2.3, 2.9; 9.9, 12.8) 3.2 3.4 6.6 6Li
(-3.4, 3.4; -6.1, 6.1) 0.9 1.0 1.9 2H

118Ba g.s. 0.33 (-1.6, 1.6; 2.5, 5.5) 19.9 22.2 42.0 42Ca
(3.3, 3.6; 0.7, 2.0) 0.8 0.9 1.7 2H
(1.6, 2.1; -0.4, 0.4) 0.7 0.8 1.6 2H

e.s. I -0.24 (-1.1, 1.1; -0.6, 0.6) 5.6 6.4 12.0 12C
e.s. III 10.24 (-3.7, 3.7; -6.2, 6.2) 1.2 1.6 2.8 3H

120Ba g.s. 0.32 (0.7, 1.2; 5.0, 5.5) 0.3 0.6 0.9 1H
e.s. I -0.23 (-1.1, 1.1; -0.6, 0.6) 5.9 6.3 12.2 12C
e.s. III 10.97 (-4.3, 4.3; -6.3, 6.3) 1.6 2.1 3.8 4He

122Ba g.s. 0.32 (-1.7, 1.7; 2.5, 5.3) 19.7 22.8 42.6 43Ca
(3.4, 3.7; 0.8, 2.0) 0.7 0.8 1.6 2H

e.s. I -0.22 (-1.5, 1.5; -1.0, 1.0) 11.2 13.2 24.4 23Na
e.s. III 9.96 (-3.7, 3.7; -6.1, 6.1) 1.0 1.4 2.4 2H

The clusters are listed as the ground state (g.s.), and first excited state (e.s. I) and second excited
state (e.s. II), etc., solutions. The ranges of integration in (6.15), i.e., r1, r2; z1, z2 (in fm), for each
cluster are also given. The Table is taken from our work in Ref. [12]
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Furthermore, the oblate state in 122Ba also shows the presence of a lighter cluster
23Na, whereas the oblate states of 112-116Ba show only very heavy clusters of mass
Aclus.*100. The important point to note here is that 12C cluster is formed inside
the Ba nuclei and, as noted below, are not from the neck region where 2,3H or 4He
nuclei are shown to exist. In other words, 12C does constitute the cluster structure
both in ground and excited states of some Ba isotopes, particularly in 112-116Ba
and 118,120Ba, respectively, and other lighter clusters of masses below the Ca
nucleus are also predicted.

Next, the hyper-deformed (b2 * 1.2) solutions exist only in 112-116Ba iso-
topes, and 114Ba shows the 8Be cluster configuration, the only nucleus showing
clustering configuration at such large deformations. Finally, for very large
b2 * 10.5 (the fission state), the internal configurations of the isotopic chain
112-122Ba are of the form of two separated (identical) nuclei which are connected
by a neck like configuration. The neck configurations contain simply the hydrogen
isotopes 2,3H or 4He nucleus.

Concluding, the results of 12C constituting the cluster configuration in both the
prolate-deformed ground-state and oblate-deformed excited states of some Ba
nuclei, together with clusters such as 6Li, 8Be, 14N, and in the neighborhood of
N = Z, 22Na, 24Mg, 34Cl, 36Ar and 40Ca, with the scission stage of all 112-122Ba
nuclei constituting of 2,3H and 4He as the neck between two symmetrical frag-
ments, are of interest, respectively, for observed intermediate mass fragments
(IMFs), fusion–fission and the so far unobserved evaporation residues from the
decaying Ba* compound nuclei formed in heavy ion reactions. In other words, the
clusters are shown to be formed inside the Ba nuclei, and the evaporation residues
seem to come from the neck region. This is an important result of the RMF(NL3)
method for nuclear structure physics.

6.2.2.3 Heavy Mass Radioactive Nuclei

For the known (g.s.) spontaneous cluster-emitting heavy actinides [54, 65], such as
222Ra, 232U, 236Pu and 242Cm, we have first looked for the possible cluster con-
figurations in the ground and intrinsic excited states of these nuclei, and then
calculated the interaction potential Vn(R) by using (6.16) for the experimentally
observed cluster–daughter configuration, which is then used to calculate the decay
half-life within the PCM. We analyze the cluster configurations here in the fol-
lowing, and calculate the decay half-lives in next section after the PCM is
introduced.

Figure 6.4 shows that the RMF(NL3) densities predict [13] not only the N & Z,
a-like matter or clustering in the ground state, but also the N & Z matter and
exotic N = Z clustering in excited intrinsic states of the above said radioactive
nuclei. On the other hand, clustering is not so general for the SHF(SkI4), as is
illustrated in Fig. 6.5 for both the ground and excited states. Note that the BCS
pairing is included here for heavy (superheavy and super-superheavy) nuclei, in an
axially deformed harmonic oscillator basis.
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Fig. 6.5 Matter density distributions for Skyrme–Hartree–Fock model of 222Ra, 232U, 236Pu and
242Cm nuclei, using SkI4 parameter set [SHF(SkI4)]. This figure is taken from our published
work in Ref. [13]

Fig. 6.4 Matter density distributions for the ground- and intrinsic excited-states of 222Ra, 232U,
236Pu and 242Cm nuclei, using RMF(NL3). This figure is taken from our published work in Ref. [13]
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6.2.2.4 Superheavy Nuclei

Our density distribution calculations [13, 16] for superheavy Z = 114 and 120,
N = 172-184 nuclei, using the RMF(NL3), show cases of non-clustering, bubble-
like (hollow sphere) structures as signatures of doubly closed shell nuclei in the
(spherical) ground and normal-(oblate)-deformed states, as well as the exotic
N = Z clusters at the centre of their superdeformed ground state (co-existing with
spherical shape), as is illustrated in Fig. 6.6 for Z = 114 nuclei [13] and in Fig. 6.7
for the three solutions of Z = 120, N = 172, 292120 nucleus [16] (see also, n–p
asymmetry distribution plots in Figs. 5 and 6 of Ref. [16]). Specifically, Z = 114,
N = 184 and Z = 120, N = 172 are shown as the doubly magic nuclei. Also, we
obtain Z = 120, N = 184 as a two cluster configuration. In fact, the clustering in to
two large and some small pieces is universal for all superdeformed ground states in
Z = 120, N = 172-184 nuclei for RMF(NL3), the number and size of smaller
pieces (fragments) decreasing as the neutron number increases, becoming zero for
N = 184 (see Fig. 4 in [16]).

6.2.2.5 Super-Superheavy Nuclei

Clustering structures of the various resonance states of the compound nucleus
476184* formed in 238U + 238U reaction are also studied within both the

Fig. 6.6 Matter density distributions for superheavy nuclei 286,290,294,298114, taken from our
published work in Ref. [13]
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RMF(NL3) and SHF(SkI4) formalism [17]. Figure 6.8 illustrates our results for
the RMF(NL3). Interesting enough, the super-superheavy nucleus 476184*

also supports the clustering phenomenon, more so for RMF, with a kind of triple
fission of an exotic cluster in the neck region of two equal fragments of N = Z
matter [17].

Concluding this section, the clustering phenomenon, observed in spontaneous
decay of heavy radioactive nuclei, is shown to be a general feature of nuclei
throughout the Periodic Table, and hence should play an important role for the
decay of compound systems formed in heavy ion reactions.

6.3 The Preformed-Cluster Based Dynamical Cluster-Decay
Model for the Decay of Hot and Rotating
Compound Nucleus

Historically, the preformed cluster model (PCM) [48–54] was given first for the
ground-state, spontaneous emission of clusters from the radioactive nuclei. It was
then extended to the decay of hot and rotating compound nucleus formed in heavy
ion reactions, in terms of the so-called dynamical cluster-decay model (DCM)
[64, 66–74]. In the following, we discuss the DCM in detail, showing that the PCM is
a special case of DCM for temperature T = 0. The applications of PCM to observed
cases of spontaneous cluster emission are then discussed in the next section. Finally,
the applications of the DCM, in the section following the application of the PCM,
show how the cluster preformation factor is important for the decay process in both
the radioactive nuclei and the nuclei formed in heavy ion reactions.

Fig. 6.7 Matter density
distributions for the
superheavy nucleus
292120, taken from
our published work
in Ref. [16]
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A compound nucleus (CN), formed in low energy (\15 MeV/A) heavy-ion
reactions, in general, decays by emitting the multiple light-particles (LPs; n, p, a
and c-rays), resulting in evaporation residue cross section rER, the intermediate
mass fragments (IMFs) of masses 5 B A B 20, charges 2 \ Z \ 10 (rIMFs =

5-10% rER), and the symmetric fission (SF) and near symmetric fission (nSF), the
fusion–fission process (rff). Different mass regions of the Periodic Table show
different combinations of these processes or any one of them as a dominant mode.
In addition, there are effects of non-compound nucleus decays, like the quasi-
fission (qf), pre-equilibrium or deep-inelastic collisions (DIC), occurring mostly at
higher incident center of mass (c.m.) energies. These effects could be small or
large enough to compete with CN decays. Within the CN decay model, an
empirical estimate of, say, rqf can be obtained from the measured and calculated
fusion cross sections as

rqf ¼ rExpt
fus � rCal

fus ; where rCal
fus ¼ rER þ rIMFs þ rff : ð6:18Þ

As an alternative of the well known [75] Hauser–Feshbach analysis for LPs
(statistical evaporation codes) and the statistical fission model treatment of IMFs

Fig. 6.8 The matter density
distribution (right) and the
neutron–proton asymmetry
variable a ¼ qn�qp

qnþqp
(left) for

different solutions of com-
pound nucleus 476184, using
the RMF(NL3) formalism,
taken from our published
work in Ref. [17]
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and ff, in the DCM we treat all of these processes within one and the same
formalism, as the dynamical collective mass motion of preformed clusters through
the interaction barrier. The cluster-decay model is in fact also a fission-model
where the structure effects of CN are included via the preformation probability of
the (decay or fission) fragments.

The DCM is based on the dynamical (or quantum mechanical) fragmentation
theory of fission process and cold fusion phenomenon in heavy ion reactions
[76–80], whose collective coordinates are:

(i) the mass and charge asymmetries

g ¼ ðA1 � A2Þ=ðA1 þ A2Þ and gz ¼ ðZ1 � Z2Þ=ðZ1 þ Z2Þ;

1 and 2 represent, respectively, the heavy (H) and light (L) fragments.
(ii) relative separation R.

(iii) neck parameter e, and
(iv) the multi-pole deformations bkiðk ¼ 2; 3; 4; . . .; i ¼ 1; 2Þ; orientations hi of

two nuclei or fragments and the azimuthal angle / between their principal
planes.

In DCM, the above coordinates characterize, respectively,

(i) the nucleon-division (or -exchange) between the outgoing fragments, and
(ii) the transfer of kinetic energy of incident channel Ec.m. to internal excitation

(total excitation energy TXE and/ or total kinetic energy TKE) of the outgoing
channel, since the fixed R = Ra (defined later), at which the process is cal-
culated, depends on temperature T as well as on g, i.e., R(T, g). This energy
transfer process, for negative Qout, illustrated in Fig. 6.9 (see also Fig. 1 in
[66]), follows the relation

E�CN ¼ Ec:m: þ Qin ¼j QoutðTÞ j þTKEðTÞ þ TXEðTÞ: ð6:19Þ

Here Qin is positive (or negative) and hence would add to (or subtract from)
entrance channel energy Ec.m.. If Qout were positive, it would instead add on left
hand side of (6.19) to the CN excitation energy ECN

* . The ECN
* is related to CN

temperature T (in MeV) as

E�CN ¼ A=að ÞT2 � T ; ð6:20Þ

with a = 8 - 10, depending on mass A of the CN.
(iii) the neck parameter e = 1 for touching configurations (R = R1 + R2), and

hence a neck length parameter DR (defined later) is introduced (see Fig. 6.9).
(iv) both the coplanar (/ = 0�) and non-coplanar (/ = 0�) nuclei are considered

[81–83].

For the de-coupled g- and R-motions, in terms of partial waves, the DCM
defines the fragment formation or CN-decay cross section as [64, 66–74].
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r ¼
X

‘max

‘¼0

r‘ ¼
p
k2

X

‘max

‘¼0

ð2‘þ 1ÞP0P; k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2lEc:m:

�h2

r

: ð6:21Þ

Here, the penetrability P refers to R-motion, and the pre-formation probability P0 to
g-motion, both depending on ‘, T, bki, hi and /. Here, l ¼ ½A1A2=ðA1 þ A2Þ�m ¼
1
4Amð1� g2Þ is the reduced mass with m as the nucleon mass, and ‘max, the maximum
angular momentum, to be defined later.

Apparently, for s-wave (‘ = 0 case),

r0 ¼
p
k2

P0P; ð6:22Þ

equivalently, the g.s. (T = 0) decay constant

Fig. 6.9 The T and ‘ dependent scattering potentials V(R), illustrated for 64Ni ?
100Mo ? 164Yb* ? 163Yb ? n, at two different ‘ and T (equivalently, Ec.m.) values. The
potential for each ‘ is calculated by using V(R, T, ‘) = Vc(T) ? VP(T) ? V‘(T), normalized to
exit channel T-dependent binding energies BL(T) ? BH(T), each defined as B(T) =

VLDM(T) ? dU(T). The decay path, defined by V(Ra, ‘) = Qeff(T, ‘) for each ‘ is shown to
begin at Ra ¼ R1 þ R2 þ DR for the ‘min value. The definition of ‘‘barrier lowering’’ DVB ¼
VðRaÞ � VB is also shown in this figure for both the ‘min and ‘max values. This figure is taken from
our published work in Ref. [73]
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k ¼ m0P0P or decay half-life T1=2 ¼ ln2=k; ð6:23Þ

with m0 as the barrier assault frequency, giving the g.s. decay constant or decay
half-life in PCM. In other words, r0 in DCM and k in PCM differ through a
constant only. Thus, both the cluster–daughter system in PCM and the complex
fragments (like LPs, IMFs and ff) in DCM are treated as the dynamical collective
mass motion of the preformed clusters or fragments through the barrier. The
structure information of the CN enters the model via the preformation probabilities
P0 (also known as the spectroscopic factors) of the fragments.

Furthermore, the same formula (6.21) is also applicable [68] to the (competing)
non-compound, quasi-fission decay channel rqf or, equivalently [84], the capture
cross-section rcapture, where P0 = 1 for the incoming channel since the target and
projectile nuclei can be considered to have not yet lost their identity [85]. Let me
remind here that (6.21) for P0 = 1 is the well known (‘ summed up explicitly)
Wong formula [86] where, in its approximately ‘-summed form, the barrier
position RB and barrier height V(RB) refer to the ‘ = 0 values. The role of explicit
‘-summation in Wong formula is also studied recently by the author and collab-
orators [87].

P0 is the solution of stationary Schrödinger equation in g, at a fixed R = Ra, the
first turning point(s) of the penetration path(s) shown in Fig. 6.9 for different
‘ values,

� �h2

2
ffiffiffi

B
p

gg

o

og
1
ffiffiffi

B
p

gg

o

og
þ VðR; g; TÞ

( )

wmðgÞ ¼ EmwmðgÞ; ð6:24Þ

with m = 0, 1, 2, 3... referring to ground-state (m = 0) and excited-states solutions.
Then, the probability

P0ðAiÞ ¼j wðgðAiÞÞ j2
ffiffiffiffiffiffiffi

Bgg

p 2
A
; ð6:25Þ

where for a Boltzmann-like function

j w j2¼
X

1

m¼0

j wm j2 expð�Em=TÞ: ð6:26Þ

For the position R = Ra, the first turning point where P0 is calculated, in the
case of the decay of a hot CN, we use the postulate [88–92],

RaðTÞ ¼ R1ða1; TÞ þ R2ða2; TÞ þ DRðg;TÞ;
¼ Rtða; g; TÞ þ DRðg; TÞ;

ð6:27Þ

with radius vectors

Riðai; TÞ ¼ R0iðTÞ 1þ
X

k

bkiY
ð0Þ
k ðaiÞ

" #

ð6:28Þ
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and the temperature-dependent nuclear radii R0i(T) for the equivalent spherical
nuclei [93],

R0i ¼ ½1:28A1=3
i � 0:76þ 0:8A�1=3

i �ð1þ 0:0007T2Þ: ð6:29Þ

For the definition of angles ai, hi, etc., see Fig. 6.10. In Ra above, DRðg; TÞ is the
neck-length parameter that assimilates the deformation and neck formation effects
between two nuclei, introduced within the extended model of Gupta and collab-
orators [50, 94, 95]. This method of introducing a neck-length parameter DR is
similar to that used in both the scission-point [96] and saddle-point [97, 98]
statistical fission models. Also, we use the Süsmann central radii Ci = Ri - b2/Ri

(in fm), where the surface thickness parameter (in fm) [93] is

bðTÞ ¼ 0:99ð1þ 0:009T2Þ: ð6:30Þ
The choice of parameter Ra [equivalently, DR in (6.27)], for the best fit to the

data (on emission of LPs), allows us to relate in a simple way the V(Ra, ‘) to
the top of the barrier VB(‘) for each ‘, by defining their difference DVBð‘Þ as the
effective ‘‘lowering of the barrier’’

DVBð‘Þ ¼ VðRa; ‘Þ � VBð‘Þ: ð6:31Þ

Note, DVB for each ‘ is defined as a negative quantity since the actually used
barrier is effectively lowered. This is illustrated in Fig. 6.9 for ‘min and ‘max values,
whose values are fixed for the light-particles (here xn, x = 1-4) cross section
P

x rxnð‘Þ ! 0 and the penetrability starts to contribute, i.e., rER [ 10-9 mb and
Pxn [ 10-9 for the example studied [73]. Thus, fitting parameter DR controls
‘‘barrier lowering’’ DVB.

Note from Fig. 6.9 (or, from Fig. 1 in [66]), that DRðg; TÞ depends on the total
kinetic energy TKE(T). The corresponding potential V(Ra) acts like an effective

ψ1

R1(α1)

α1

θ1

θ2

α2

-180-θ2+α2

R2(α2)

R

s0
X1 X2

α1-θ1

n

n
ψ2

P1

P2

z

Fig. 6.10 Schematic configuration of two unequal axially symmetric deformed, oriented nuclei,
lying in the same plane (azimuthal angle / = 0�) for various h1 and h2 values in the range
0�–180�. The hi are measured anti-clockwise from the colliding axis and the angle ai in the
clockwise from the symmetry axis. This figure is taken from our published work in Ref. [83]
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Q value, Qeff, for the decay of the hot CN at temperature T, to two exit-channel
fragments observed in g.s. (T = 0), defined by

Qeff ðTÞ ¼ BðTÞ � ½B1ðT ¼ 0Þ þ B2ðT ¼ 0Þ�
¼ TKEðTÞ ¼ VðRaðTÞÞ:

ð6:32Þ

Here B’s are the respective binding energies.
Equation (6.32) above, could apparently be achieved only by emitting some

light particle(s), like n, p, a, or c-rays, of energy

Ex ¼ BðTÞ � Bð0Þ ¼ Qeff ðTÞ � QoutðT ¼ 0Þ
¼ TKEðTÞ � TKEðT ¼ 0Þ

ð6:33Þ

which is zero for the g.s. (T = 0) decay, the case of exotic Cluster Radioactivity,
treated within PCM. Note that the second equality in (6.33) is not defined for a
negative Qout(T = 0) system since the negative TKE(T = 0) has no meaning.
Apparently, (6.33) w.r.t (6.32) suggests that the emission of light-particles starts
early in the decay process. The fact that exit channel fragments in (6.32)
are obtained in the ground-state with TKE(T = 0), can be seen by calculating
ECN

* - Ex:

E�CN � Ex ¼j QoutðTÞ j þTKEðT ¼ 0Þ þ TXEðTÞ; ð6:34Þ

where, excitation energy TXE(T) is used in the secondary emission of light
particles from the fragments, which are otherwise in their g.s. with TKE(T = 0) in
the radial motion, not treated here. Instead, we compare our calculations with the
primary pre-secondary-evaporation fragment emission data [98, 99]. Thus, by
defining Qeff(T) as in (6.32), via T-dependent binding energies, DCM becomes a
parameter free [66], non-statistical dynamical treatment of the complete decay of
hot and rotating CN, where the LPs emission are treated at par with the IMFs and
ff decays.

The collective fragmentation potential V(R, g, T) in (6.24), that brings in the
structure effects of the CN in to the formalism, is calculated according to the
Strutinsky renormalization procedure (B = VLDM + dU), using the T-dependent
liquid drop model energy VLDM(T) of Davidson et al. [100], and the ‘‘empirical’’
shell corrections dU of Myers and Swiatecki [101], denoted dU(MS), for spherical
nuclei, also made T-dependent to vanish exponentially with T0 = 1.5 MeV [102].
Then, including also the T-dependence in nuclear proximity VP, Coulomb VC, and
‘-dependent potential V‘,

VðR; g; TÞ ¼
X

2

i¼1

VLDMðAi; Zi; TÞ½ � þ
X

2

i¼1

dUi½ �exp �T2

T0
2

� �

þ VPðR;Ai; bki; hi;/; TÞ þ VCðR; Zi; bki; hi;/; TÞ
þ V‘ðR;Ai; bki; hi;/;TÞ:

ð6:35Þ
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where VP, VC and V‘ are also for deformed, oriented nuclei. The VLDM(T) of [100]
in Eq. (6.35), based on the semi-empirical mass formula of Seeger [103], is

VLDMðA; Z; TÞ ¼ aðTÞAþ bðTÞA2
3 þ cðTÞ � gðTÞ

A
1
3

� �

I2 þ 2 j I j
A

� �

þ Z2

r0ðTÞA
1
3

1� 0:7636

Z
2
3

� 2:29

½r0ðTÞA
1
3�2

 !

þ dðTÞf ðZ;AÞ
A

3
4

;

ð6:36Þ

where

I ¼ aaðZ � NÞ; aa ¼ 1;

and, respectively, for even–even, even–odd, and odd–odd nuclei,

f ðZ;AÞ ¼ ð�1; 0; 1Þ:

Seeger [103] fitted the constants from ground-state (T = 0) binding energies of
some 488 nuclei available at that time (in 1961) and obtained:

að0Þ ¼ �16:11 MeV, bð0Þ ¼ 20:21 MeV, cð0Þ ¼ 20:65 MeV,
gð0Þ ¼ 48:00 MeV,

with the pairing energy term d(0) = 33.0 MeV, from Ref. [104]. These con-
stants, however, are now readjusted by some of us [68, 89, 90] to give the new
experimental binding energies, by defining BExpt = VLDM(T = 0) + dU. This was
first done [89, 90] for the 1995 Audi Wapstra Tables [105] of binding energies,
and more recently [68] for the 2003 Tables [106]. (Note: In the Appendix of [89]
and Eq. (8) of [90], aa=0.5, instead of aa=1 used in [68]). Whenever the BExpt

were not available, the theoretical estimates of Möller et al. [107] are used.
Since the aim here was simply to include the T-dependence on experimental
binding energies, and not to obtain the new parameter set of VLDM, simply the
bulk constant a(0) and the proton–neutron asymmetry constant aa are readjusted
to obtain BExpt within \1.5 MeV. The temperature dependencies of the constants
of VLDM in (6.36) are given in Fig. 1 of [100]. Note that the missing deformation
effects in spherical shell corrections dU (discussed below) are also included here
to some extent in the VLDM since we essentially use the experimental binding
energies split in to two contributions, VLDM and dU, for reasons of adding the
T-dependence on it.

The above procedure is particularly useful for light nuclei where shell
corrections dU could not be defined on any shell model basis, and is also applied to
neutron- and proton-clusters, xn and xp, x = 1, 2, 3,..., by defining [108, 109] the
binding energy of a cluster with x-neutrons as x times the binding energy of one-
neutron (equivalently, the mass excess Dmn ¼ 8:0713 MeV), i.e.,

BðA2 ¼ xnÞ ¼ xDmn; ð6:37Þ

and the same for proton-clusters, as
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BðA2 ¼ xpÞ ¼ xDmp � acA5=3
2 ; ð6:38Þ

with Dmp ¼ 7:2880 MeV, the one-proton mass excess or equivalently the binding
energy of one-proton. ac = 0.7053 MeV [101], with the additional term due to ac

acting as the disruptive Coulomb energy (=-ac(Z2
2/A2

1/3)) between the x protons
(here x = A2 = Z2). Since it is difficult to define the volume and surface of n- or
p-clusters, the T-dependence of their binding energy is included here only via the
shell correction term dU, and not in VLDM. The above definitions of n- or p-clusters
mean that the nucleons in these clusters are taken to be unbound, following the
model of Hansen and Jonson [110], the few-body theories [111] or as is suggested
by some experiments [112, 113].

The shell effects dU, added to the liquid drop energy in (6.35), are the
empirically obtained ones of Myers and Swiatecki [101], for spherical
shapes, as

dU ¼ C
FðNÞ þ FðZÞ
ðA=2Þ

2
3

� cA
1
3

" #

ð6:39Þ

with

FðXÞ ¼ 3
5

M
5
3
i �M

5
3
i�1

Mi �Mi�1

 !

X �Mi�1ð Þ � 3
5

X
5
3 �M

5
3
i�1


 �

;

where, X = N or Z, and Mi-1 \ X \ Mi. Mi are the magic numbers 2, 8, 14 (or 20),
28, 50, 82, 126 and 184 for both neutrons and protons. The constants are
C = 5.8 MeV and c = 0.26 MeV. The shell effects are also known to be strongly
dependent on the deformation of the nucleus, but a similar prescription for
deformed nuclei is not available. However, as already stated above, the missing
deformation effects in spherical dU are included to some extent in the re-adjusted
constants of VLDM.

The proximity potential VP for deformed and oriented nuclei in the same plane
(/ = 0�) [81], including T-dependence, is

VPðs0ðTÞÞ ¼ 4p�RðTÞcbðTÞUðs0ðTÞÞ; ð6:40Þ

where the nuclear surface thickness b(T) is defined in (6.30), and the surface
energy constant

c ¼ 0:9517 1� 1:7826
N � Z

A

� �2
" #

MeV fm�2:

Uðs0Þ in (6.40) is the universal function, which is independent of the shapes of
nuclei or the geometry of nuclear system but depends on the minimum separation
distance s0(T) (see Fig. 6.10), and is given as
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Uðs0Þ ¼ �1
2ðs0 � 2:54Þ2 � 0:0852ðs0 � 2:54Þ3

�3:437exp � s0
0:75

� �

�

ð6:41Þ

respectively, for s0(T) B 1.2511 and C1.2511, with the s0 (in units of b), given as
(see Fig. 6.10)

s0 ¼ R� X1 � X2

¼ R� R1ða1; TÞcosðh1 � a1Þ � R2ða2; TÞcosð180þ h2 � a2Þ;
ð6:42Þ

minimized in ai. The minimization conditions, known as normal vector conditions,
are

tanðh1 � a1Þ ¼ �
R01ða1Þ
R1ða1Þ

tanð180þ h2 � a2Þ ¼ �
R02ða2Þ
R2ða2Þ

;

ð6:43Þ

the Ri
0
(ai) being the first order derivative of Ri(ai) with respect to ai. Finally, �RðTÞ;

the mean curvature radius, characterizing s0, i.e., the points of closest approach for
nuclei lying in the same plane (/ = 0�), is

1
�R2
¼ 1

R11R12
þ 1

R21R22
þ 1

R11R22
þ 1

R21R12
; ð6:44Þ

where Ri1 and Ri2 are the principal radii of curvatures at the points P1 and P2 in
Fig. 6.10. For explicit expressions of Ri1 and Ri2 and other details on generalized
proximity potential for co-planar nuclei, see Ref. [81].

Next, for non-coplanar nuclei (/ = 0�) we use the same formalism as for
/ = 0� above, but by replacing for the out-of-plane nucleus (i = 1 or 2) the
corresponding radius parameter Ri(ai) with the projected radius parameter Ri

P(ai) in
the definitions of both the mean curvature radius �R and the shortest distance s0

[82]. The Ri
P(ai) is determined by defining, for the out-of-plane nucleus, two

principal planes X0Z0 and Y0Z0, respectively, with radius parameters Ri(ai) and
Rj(dj), such that their projections into the plane (XZ) of the other nucleus are (see
Fig. 6.11)

RP
i ðaiÞ ¼ RiðaiÞ cos / i ¼ 1 or 2; ð6:45Þ

and

RP
j ðdjÞ ¼ RjðdjÞ cosð/� djÞ j ¼ i ¼ 1 or 2: ð6:46Þ

Then, maximizing Rj(dj) in angle dj, we get

RP
i ðaiÞ ¼ RP

i ðai ¼ 00Þ þ RP
i ðai 6¼ 00Þ

¼ RP
j ðdmax

j Þ þ Riðai 6¼ 00Þ cos /;
ð6:47Þ
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with dj
max given by the condition (for fixed /),

tanð/� djÞ ¼ �
R0jðdjÞ
RjðdjÞ

: ð6:48Þ

Thus, the /-dependence of projected radius vector Ri
P(ai) is also contained in

maximized Rj
P(dj

max). For further details, see [82]. Then, for nuclear proximity
potential, denoting by VP

12 the potential for the nucleus 1 to be out-of-plane, and
by VP

21 for the nucleus 2 to be out-of-plane, the effective nuclear proximity
potential

VP ¼
1
2

V12
P þ V21

P


 �

: ð6:49Þ
The Coulomb potential for two non-overlapping nuclei, with higher multi-pole

deformations included by following [86], is given as

Nucleus 2 
(in XZ plane)

Nucleus 1 
(out of XZ plane)

R1(δ1)

Principal X'Z' plane
Principal Y'Z' plane

δ1

α1

α2

R2(α2)

φ

XZ plane 

θ1

R1(α1)

θ2

900

Fig. 6.11 Schematic configuration of two unequal nuclei, oriented at angles h1 and h2, with their
principal planes X0Z0 and XZ making an azimuthal angle /. The angle / is shown by a dashed
line, since it is meant to be an angle coming out of the plane XZ. Nucleus 2 is in XZ plane and for
the out-of-plane nucleus 1, another principal plane Y0Z0, perpendicular to X0Z0, is also shown. The
angles hi are measured anti-clockwise from the collision Z axis, and the angles ai (and di) are
measured in the clockwise direction from the nuclear symmetry axis. Only lower-halves of the
two nuclei are depicted. This figure is taken from our published work in Ref. [82]
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VC ¼
Z1Z2e2

R
þ 3Z1Z2e2

X

k;i¼1;2

1
2kþ 1

Rk
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Yð0Þk ðhiÞ
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4
7
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;

ð6:50Þ

and the angular momentum dependent potential,

V‘ðTÞ ¼
�h2‘ð‘þ 1Þ

2IðTÞ ; ð6:51Þ

where, in complete sticking limit, the moment of inertia

IðTÞ ¼ ISðTÞ ¼ lR2 þ 2
5

A1mR2
1ða1; TÞ þ

2
5

A2mR2
2ða2; TÞ: ð6:52Þ

In general, the experimental numbers for ‘ are based on the moment of inertia
calculated in non-sticking limit I = INS = lR2. This use of reduced mass alone
corresponds to the supposition of prompt emission of fragments, and there are also
other possible hypotheses besides sticking limit as the rolling or sliding conditions.
We find that the sticking limit IS used here is more appropriate for the proximity
potential (nuclear surfaces B2 fm apart) which has consequences for the limiting
‘ value to be much larger. For nuclear collisions, use of larger ‘max value due to
relatively larger magnitude of IS is shown [68, 72] to result in reduction of the
nuclear surface separation distance DR; and vice-versa for INS.

The mass parameters Bgg, entering (6.24) for the P0 calculations, are the smooth
classical hydrodynamical masses [114], since at large T values the shell effects are
almost completely washed out. For smaller T (\1.5 MeV), in principle, the shell
corrected masses, like the Cranking masses, should be used, but for simplicity we
use the smooth classical hydrodynamical masses. In the classical hydro-dynamical
model, for touching spheres (Ct = C1 + C2),

Bgg ¼
AmC2

t ðTÞ
4

vtðTÞð1þ bðTÞÞ
vcðTÞ

� 1

� �

ð6:53Þ

with

bðTÞ ¼ RcðTÞ
2CtðTÞ

2� RcðTÞ
C1ðTÞ

� RcðTÞ
C2ðTÞ

� �

vcðTÞ ¼ pR2
cðTÞCtðTÞ RcðTÞ ¼ 0:4C2ðTÞ

and vt = v1 + v2, the total conserved volume. Also, C2� C1 and Rcð6¼0Þ is the
radius of a cylinder of length Ct, whose existence is assumed for a homogeneous
radial flow of mass between the two spherical fragments. Note that here all radial
or radial-dependent quantities are T-dependent.
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The penetrability P in (6.21) is the WKB integral,

P ¼ exp �2
�h

Z

Rb

Ra

f2l½VðR; TÞ � Qeff �g1=2 dR

2

4

3

5; ð6:54Þ

solved analytically [48, 49], with the second turning point Rb (see Fig. 6.9 or
Fig. 1 in [66]) satisfying

VðRaÞ ¼ VðRbÞ ¼ Qeff ¼ TKEðTÞ: ð6:55Þ

This means that V(Ra, ‘) acts like an effective Q value, Qeff(T, ‘), given by the
total kinetic energy TKE(T). As ‘ value increases, the Qeff(T) (=TKE(T)) increases
and hence V(Ra, ‘) increases. Thus, Ra acts like a parameter through DRðg; TÞ; and
we define that Ra is the same for all ‘ values, i.e., V(Ra) = Qeff(T, ‘ = 0). This is
required because we do not know how to add the ‘-effects in binding energies.
Alternatively, we define Ra and hence DRðg; TÞ in terms of the T-dependent
binding energies B(T), as in (6.32).

Finally, the ‘ = ‘max value in (6.21) is either the critical ‘c value, in terms of the
bombarding energy Ec.m., the reduced mass l and the first turning point Ra of the
entrance channel gin, given by

‘c ¼ Ra

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2l Ec:m: � VðRa; gin; ‘ ¼ 0Þ½ �
p

=�h; ð6:56Þ

or, alternatively, it could be fixed for the vanishing of fusion barrier of the
incoming channel, called ‘fus, or else the ‘ value where the light-particle cross
section rLP ? 0. This could also be taken as a variable parameter [98, 99].

6.3.1 The Preformed Cluster Model for Exotic
Cluster Radioactivity

After about three decades of its theoretical prediction [115] and a quarter of
century of first experimental observation [116], the novel process of cluster
radioactivity is now well established, and the experimental data on cluster-decay
half-lives and its branching ratios w.r.t. a-decays up to the year 2007 are nicely
reviewed in [65] (for an older review, see, e.g., [54], and for a discussion on
fission model, see [56]). Spontaneous emissions of some thirteen to fourteen
neutron-rich clusters, ranging from 14C up to 34Si, are measured for the ground-
state decays of certain parent nuclei in trans-lead region, specifically from 221Fr
to 242Cm. More recently, 14C and 15N decays of 223Ac and 34Si decay of 238U are
also observed [117, 118]. The study of 223Ac decays is interesting for the
odd–even effects of both the daughter and the cluster, which were earlier
observed for a few cases only, like 14C from 221Fr and 225Ac or 23F from 231Pa.
Since the cluster decay process is observed with a magic or near magic daughter
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nucleus always (see, e.g., the review [54]), 15N decay of 223Ac is expected to be
more favored because the daughter nucleus is a doubly magic 208Pb nucleus in
this case, but only the upper limits are measured. Similarly, for 238U parent, 34Si
is the heaviest cluster observed to-date, but in this case with the longest decay
half-life ever measured. Also, an un-successful attempt on decay of 114Ba is
made [119], which was first proposed theoretically [45, 46, 55, 56, 57, 120] on
the basis of doubly magic 100Sn daughter. The cluster decay process is well
understood by taking explicit contributions of shell effects in to account (see,
e.g., the review [54]).

Recently, the PCM of Gupta and collaborators [48–51] has been extended to
include the deformation and orientation effects of nuclei [52, 53]. In addition to
shell effects, deformations and orientations of nuclei are also found to play
important role in the cluster decay process. The calculated decay half-lives for the
observed cluster decays are generally in good agreement with the measured values
for calculations performed with quadrupole deformations b2 alone and ‘‘optimum’’
orientations of cold elongated configurations [83]. In some cases, however, par-
ticularly for the observed 14C decays of 221Fr, 221-224, 226Ra, and 225Ac, the
inclusion of multi-pole deformations up to hexadecapole b4 is found essential for
comparison with data. Note that the measured b4 values are not available in
general, and hence the available higher multi-pole deformations values from
calculations [107], particularly for clusters in mass region 16 B A B 26, need be
used with caution. Another important result of this recent study [52, 53] is to show
that the decay half-life depends strongly on the Q value of the decay process, and
hence the two quantities (the decay half-life and Q value) should be measured
together in the same experiment.

In the following, we first present some details of the PCM, with effects of
deformation and orientation of nuclei included. Our calculations for ground-state
decays of all the observed cases, illustrated mainly for newly observed 14C and 15N
decays of 223Ac and 34Si decay of 238U are then presented, first for the use of nuclear
proximity potential, and then for the RMF-densities based folding potential.

6.3.1.1 The Preformed Cluster Model

As per (6.23) above, the decay constant, and hence the decay half-life time, in
PCM is defined as,

k ¼ m0P0P; T1=2 ¼
ln 2
k
; ð6:57Þ

which means to say that in PCM the clusters are taken to be preborn in the parent
nucleus at R = Ra with preformation probability P0, which hit the barrier with
impinging frequency m0, and penetrate it with penetrability P, as is illustrated in
Fig. 6.12. If R0 is the radius of parent nucleus and E2 ¼ 1

2lv2 is the kinetic energy
of the emitted cluster, m0 is given by

250 R. K. Gupta



m0 ¼
v

R0
¼ ð2E2=lÞ1=2

R0
: ð6:58Þ

m0 is nearly constant *1021 s-1 for all the observed cluster decays. In terms of the
(positive) Q value of decay, since both the emitted cluster and daughter nuclei are
produced in ground state, the entire Q value is the total kinetic energy,
(Q = E1 + E2), available for the decay process, which is shared between the two
fragments, such that for the emitted cluster (1 and 2 stand, respectively, for
daughter and cluster),

E2 ¼
A1

A
Q ð6:59Þ

and, E1(=Q - E2) is the recoil energy of daughter nucleus. P0 and P are calcu-
lated, as described above for the DCM, within the well-known quantum
mechanical fragmentation theory (QMFT) [76, 77, 83], with effects of deformation
and orientation degrees of freedom included. Apparently, the relative separation
coordinate R refers to the transfer of positive Q value to the total kinetic energy
(E1 + E2) of two nuclei, determining the penetrability P, and the preformation
factor P0, referring to mass asymmetry coordinate g, is determined only for the
ground-state solution (m = 0, T = 0). Also, for ground-state decays, ‘ = 0 is a
good approximation [54].

Fig. 6.12 The scattering
potential for the decay
231Pa ? 207Tl + 24Ne, with
both the daughter and cluster
taken with quadrupole defor-
mations b2i alone, and with
‘‘optimum’’ cold orientation
angles hi

opt. of Table 1 in Ref.
[83]. For the decay path, note
that the tunneling begins at
R = Ra and terminates at
R = Rb, with V(Rb) = Q
value, since exotic cluster
radioactivity is a ground-state
decay. This figure is taken
from our published work in
Ref. [53]
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6.3.1.2 Applications of the PCM Based on Nuclear Proximity Potential

The model is applied to all the measured cluster radioactive decays [54, 65],
considering both the cases of spherical and deformed nuclei. A compilation of our
results, together with the best fitted Ra values, is given in Table 6.3, taken mostly
from our published work in Ref. [53]. The experimental data on decay half-life
times are from Refs. [54, 65]. The frequency m0*1021 s-1, fixed for each case.
QM.N. refers to Q value based on the calculated binding energies of Möller et al.
[107], used to fit the Ra (equivalently, DR) value. The experimental Q value, QExpt.,
is also given for comparison, calculated from the measured binding energies [106],
wherever available. The limiting value of calculated log10T1/2(s) \ 30, in view of
the present experiments.

Table 6.3 shows that the deformations and orientations of nuclei modify the
decay half-life considerably, which is due to the change in both the preformation
probability P0 and tunneling probability P. As P0 is a relative quantity, its cal-
culation depends on all the possible fragmentations of the parent nucleus, whose
potential is illustrated in Fig. 6.13 for 223Ac and 238U parent nuclei at R = Ra, for
both the cases of all fragments taken as spheres (open circles) and with quadrupole
deformation b2 and optimum orientations (solid circles). The value of Ra

(equivalently, the neck-length parameter DR) is for the best fit to the data in
Table 6.3. Here, the case of higher multi-pole deformations, i.e., quadrupole,
octupole and hexadecapole deformations (b2, b3, b4) taken in to account is not
plotted since it leads to deeper minima for many un-observed clusters (like in
Figure 2(b) of [52]), which get ruled out by the calculated penetrability P (small
P). The important point to note in Fig. 6.13 is that, with deformation and orien-
tation effects included, many new minima are predicted in 223Ac for cluster mass
A2 [ 25, and in 238U for A2 [ 40. The changes in fragmentation potentials are
evident even for lighter mass clusters, which would change the relative P0 sig-
nificantly, as is illustrated in Fig. 6.14 for the 238U parent. P0 are, in general, larger
for the case of deformations and orientations included. Furthermore, P0 for clusters
like 26Ne, 30Mg and 32Mg are as large as for the observed cluster 34Si. However,
with the contribution of P included, all clusters other than 34Si get ruled out due to
their smaller penetrability P, or large calculated decay half-life times T1/2(s), as is
shown in Table 6.4 where the T1/2(s)’s are calculated for the four clusters (26Ne,
30Mg, 32Mg and 34Si) preformed in 238U with larger P0 in the neighborhood of the
observed 34Si cluster. Interesting enough, though P0 for, say, 32Mg is larger than
for 34Si (see Fig. 6.14) or the minimum in fragmentation potential is deeper for
32Mg as compared to that for 34Si (see Fig. 6.13, lower panel), the decay half-life
time is the smallest for the 34Si decay for 238U, in complete agreement with the
experimental data for the case of quadrupole deformed nuclei. This happens
because P for 32Mg is much smaller than for 34Si such that the product P0P is
smaller, and hence T1/2(s) larger for 32Mg.

Finally, the role of Q value is illustrated in Fig. 6.15, which depicts the com-
parison of experimentally observed and our calculated T1/2(s) for 34Si emitted from
238U parent nucleus, as a function of Q value, for both the cases of nuclei taken as
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Table 6.3 Half-life times and other characteristic quantities for various cluster decays, calcu-
lated on PCM for spherical, b2 alone and b2-b4 deformed nuclei, and ‘‘optimum’’ orientations of
cold decay process [83]

Decay QExpt. Ra QM.N. Half-lives log10T1/2(s) Expt.

PCM

Sph. b2 b2, b3, b4

114Ba ? 12C + 102Sn 18.98 Rt + 1.7 21.4 5.43 6.89 6.83 [4.10
221Fr ? 14C + 207Tl 31.29 Rt + 1.21 31.09 19.80 17.76 14.41 14.52
221Ra ? 14C + 207Pb 32.40 Rt + 1.18 32.13 18.87 17.55 13.37 13.39
222Ra ? 14C + 208Pb 33.05 Rt + 1.26 32.47 17.36 15.89 11.20 11.01
223Ra ? 14C + 209Pb 31.83 Rt + 1.15 31.89 19.83 18.51 15.03 15.06
224Ra ? 14C + 210Pb 30.54 Rt + 1.23 31.16 19.95 18.98 15.74 15.86
226Ra ? 14C + 212Pb 28.20 Rt + 1.01 28.61 26.60 25.35 21.20 21.19
223Ac ? 14C + 209Bi 33.07 Rt + 0.65 32.89 12.98 12.02 12.60
223Ac ? 15N + 208Pb 39.47 Rt + 0.65 38.97 15.54 14.73 [14.76
225Ac ? 14C + 211Bi 30.48 Rt + 1.1 31.08 20.94 19.78 17.15 17.16
226Th ? 14C + 212Po 30.55 Rt + 0.65 31.70 20.9 19.56 24.34 [15.3
226Th ? 18O + 208Pb 45.73 Rt + 0.65 47.55 20.10 18.35 [15.3
228Th ? 20O + 208Pb 44.72 Rt + 0.5 45.91 21.72 20.40 20.87
230Th ? 24Ne + 206Hg 57.76 Rt + 0.5 58.57 24.06 24.19 24.61
231Pa ? 23F + 208Pb 51.84 Rt + 0.25 50.81 28.73 27.38 9.28 26.02
231Pa ? 24Ne + 207Tl 60.41 Rt + 0.25 60.59 25.86 23.07 23.23
230U ? 22Ne + 208Pb 61.39 Rt 61.69 26.15 19.41 1.27 19.57
230U ? 24Ne + 206Pb 61.35 Rt 61.81 25.35 23.07 [18.2
232U ? 24Ne + 208Pb 62.31 Rt 62.03 24.04 22.88 11.19 21.05
232U ? 28Mg + 204Hg 74.32 Rt 74.06 28.78 20.31 21.23 [22.26
233U ? 24Ne + 209Pb 60.49 Rt + 0.5 60.55 24.06 24.57 24.84
233U ? 28Mg + 205Hg 74.23 Rt + 0.5 74.42 24.06 19.22 15.02 [27.59
234U ? 24Ne + 210Pb 58.83 Rt + 0.5 59.30 24.06 25.99 25.92
234U ? 26Ne + 208Pb 59.47 Rt + 0.5 58.65 28.00 26.49 16.15 25.92
234U ? 28Mg + 206Hg 74.11 Rt + 0.5 74.22 26.72 18.44 15.02 25.54
235U ? 28Mg + 207Hg 72.16 Rt 72.62 30.08 26.19 [ 28.09
236U ? 28Mg + 208Hg 70.56 Rt 71.33 31.53 25.55 27.58
238U ? 34Si + 204Pt 84.65a Rt + 0.215 85.82 30.37 29.04 29.04
237Np ? 30Mg + 207Tl 74.82 Rt 75.18 28.12 26.44 [26.93
236Pu ? 28Mg + 208Pb 79.67 Rt - 0.4 78.75 28.7 21.57 21.67
238Pu ? 28Mg + 210Pb 75.91 Rt - 0.4 75.83 33.7 25.40 25.70
238Pu ? 30Mg + 208Pb 76.82 Rt + 0.5 76.82 24.77 21.87 25.70
238Pu ? 32Si + 206Hg 91.19 Rt + 0.5 90.03 25.16 25.27
241Am ? 34Si + 207Tl 93.93 Rt 93.62 25.23 22.83 [22.71
242Cm ? 34Si + 208Pb 96.51 Rt 95.78 23.59 21.47 23.24
252Cf ? 46Ar + 206Hg 126.70 Rt 126.19 20.29 19.66 28.07 [15.89
252Cf ? 48Ca + 204Pt Rt 138.33 21.56 [15.89
252Cf ? 50Ca + 202Pt 138.20 Rt 137.71 21.76 20.06 [15.89

The table is from [53], with improved calculations for various 14C decays
a Q value used by the authors of experimental work [118]
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spherical or with b2 deformation. Apparently, the 34Si decay of 238U parent shows
a clear preference for the case of quadrupole deformed nuclei. The only parameter
of model is the neck-length DR, fitted for QM.N., the Q value based on binding
energies of Möller et al. [107]. We have also shown in Fig. 6.15, the Q value
(QExpt.) used by the authors of the experimental work [118], indicating large
differences with QM.N. value.

Fig. 6.13 The fragmentation
potentials for the parent
nuclei 223Ac and 238U, taking
all possible fragments as
spheres (open circles) and
with quadrupole deformation
b2 and cold ‘‘optimum’’
orientations hi

opt. of Table 1
in Ref. [83] (solid circles) at
the best fitted DR values.
This figure is taken from our
published work in Ref. [53]

Fig. 6.14 The preformation
probability P0 for the parent
nucleus 238U alone taking all
possible fragments as spheres
(open circles) and with
quadrupole deformation b2

and cold ‘‘optimum’’
orientations hi

opt. of Table 1
in Ref. [83] (solid circles) at
the best fitted DR value.
This figure is taken from our
published work in Ref. [53]
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Summarizing the results of this section, in cluster radioactivity, not only the
shell effects but also the deformations and orientations of decay fragments are
found to be important. Except for the 14C decays of 221Fr, the 221-224, 226Ra
isotope, and 225Ac, where higher multi-pole deformations up to b4 are found
essential, and the 25Ne and 28Mg decays of 234U and 30Mg emitted from 238Pu,
where spherical considerations seem to do better, the quadrupole deformation b2

alone seem to give the results of experiments. Also, 34Si decay of 242Cm via 208Pb
daughter gives a better result for spherical nuclei since both the cluster and
daughter are spherical nuclei. The cluster-decay process is shown to occur, in
general, at or near the touching configuration (DR is zero or small).

6.3.1.3 Applications of the PCM using the RMF-Densities
Based Folding Potential

We have applied these considerations [14, 15] to cluster radioactive decays having
the doubly magic 208Pb as the daughter nucleus always. Figure 6.16 illustrates the

Table 6.4 The cluster-decay half-lives for some best preformed clusters in the neighborhood of
34Si from 238U, calculated on PCM

Decay QM.N. Half-life time T1/2 (s)

PCM Expt.

Sph. b2

238U ? 26Ne + 212Pb 54.14 1.74 9 1038 1.83 9 1037 –
238U ? 30Mg + 208Hg 70.90 6.56 9 1032 1.18 9 1031 –
238U ? 32Mg + 206Hg 70.39 1.26 9 1033 9.90 9 1031 –
238U ? 34Si + 204Pt 85.82 2.36 9 1030 1.09 9 1029 (1.1 ± 0.6

2.4) 9 1029

The experimental data is known only for 34 Si decay of 238 U [118]. This Table is taken from our
published work in Ref. [53]

Fig. 6.15 Comparison
between the experimentally
observed and calculated half-
life time for the 34Si cluster
emitted from the 238U, as a
function of the Q value. The
QM.N. and QExpt. refer,
respectively to Q values cal-
culated by using the binding
energies from Möller et al.
[107] and used by the authors
of experimental work [118].
This figure is taken from our
published work in Ref. [53]

6 Collective Clusterization in Nuclei and Excited Compound Systems 255



double-folded M3Y + Exchange term (M3Y + Ex) nuclear interaction potential
Vn(R) (dotted line), together with the the total interaction potential
V(R) = Vn(R) + VC (solid line), using the RMF calculated densities for spherical
cluster 14C and daughter 208Pb nuclei in the decay of 222Ra. The interaction
potential V(R) is used to calculate the WKB penetration probability P, which in
turn is used to calculate the ‘‘empirical’’ preformation factor P0

emp by comparing
within PCM the product Pm0 with experimental value of decay constant kexpt

(or decay half-life T1/2
expt), as follows

Pemp
0 ¼ kexpt

Pm0
¼ 1

Pm0

ln 2

Texpt
1=2

: ð6:60Þ

The calculated -log P0
emp as a function of cluster mass, for all the considered

parents, is shown in Fig. 6.17, and compared with the simple phenomenological
formula proposed by Blendowske and Walliser [121] for the light clusters
(A2 B 28), as

Pclus
0 ¼ Pa

0

� �

Aclus�1
3 ; ð6:61Þ

with a-preformation factor P0
a = 6.3 9 10-3 for decay from even parents, since

only even parents are considered here (solid line). For odd parents,
P0

a = 3.2 9 10-3, not used here. Interesting enough, the two calculations match
within two to three orders of magnitude (compare solid squares with dotted and
dashed lines), which is a reasonable comparison. The important point is that the
microscopic RMF formalism, combined with a realistic nucleon–nucleon
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Fig. 6.16 The double-folded
M3Y + Ex potential Vn based
on RMF (spherical) densities,
the Coulomb VC and the total
interaction potential V as a
function of radial separation
R between the cluster 14C and
daughter nucleus 208Pb. The
Q value is based on experi-
mental binding energies
[106]. This figure is from our
publication in Ref. [14, 15],
where by mistake M3Y + Ex
is termed as DDM3Y
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interaction, supports the concept of preformation of clusters in nuclei, introduced
first by Gupta and collaborators in PCM for cluster radioactive decays [48, 49].

6.3.2 Applications of the DCM Using Nuclear
Proximity Potential

Applications of the DCM are successfully made to the emission of IMFs in
light and medium mass compound systems, namely, 48Cr* [67], 56Ni* [66] and
58Ni + 58Ni ? 116Ba* [64], fission (and quasi-fission) of 246Bk* [68] formed in
11B + 235U and 14N + 232Th reactions. A small qf component in 11B + 235U ?

246Bk* decay at higher incident energies [68], and an additional ff window of
14 B Z B 28 in 116Ba* [64] are predicted. This later result is now supported by
the recent IMFs and ff data [122] for decays of heavier 118,122Ba* nuclei
studied via 78,82Kr + 40Ca reactions, and reasonably well interpreted more
recently on DCM [71]. Also, the three processes of ER, ff and qf are well
understood on DCM in reactions 48Ca + 244Pu ? 292114* [72] and
48Ca + 154Sm ? 202Pb* [74]. In the 48Ca + 244Pu reaction or, in general, 48Ca-
plus-actinide reactions, the ER cross-sections are very small (in pb) compared
to rff and rqf (in mb), and that rqf [ rff by at least one order of magnitude,
almost independent of CN excitation energy ECN

* . On the other hand, in the
48Ca + 154Sm reaction the three decay processes (ER, ff and qf) are quite
comparable (all in mb) at low excitation energies, ER being the most dominant,
but at higher excitation energies the ff becomes most probable followed by ER
and qf. However, at (nearly) the same excitation energy, but at above barrier
energies, no qf component is measured in another 48Ca + 144Sm reaction,
perhaps because both the nuclei are then spherical. A divergent application of

Fig. 6.17 The ‘‘empirically’’
estimated preformation
probability -log P0

emp on
RMF-densities based folding
potential (solid squares) as a
function of cluster mass for
even parents decaying in each
case to 208Pb daughter,
compared with the predic-
tions of Blendowske and
Walliser [121] formula (solid
line) and its scaled values
(dotted and dashed lines).
This figure is based on our
publication [14, 15]
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the DCM to the 48Ca + 238U reaction data is also made [123] for establishing
the island of stability for superheavy elements to be at Z = 114, 120 or 126
with N = 184. This calculation, made for only the ER data, seems to support
such an island to be centered around Z = 126, N = 184, though the pre-
liminary results of the extended calculation to include the complete data on all
the three processes (ER, ff and qf) prefer Z = 120, N = 184 a bit over
Z = 126, N = 184. Both the calculations for 48Ca-plus-actinide reactions
[72, 123] are based on the ‘‘compact’ orientations of nuclei [124, 125]. Fur-
thermore, the dominant ER cross-sections for the 64Ni + 100Mo ? 164Yb*

reaction are also nicely explained on the DCM [73] with the ‘‘barrier lowering’’
DVB given in a straightforward way through the neck-length parameter DR for
LPs (see, Fig. 6.9). Also, the ff cross-sections are predicted on DCM at
above-barrier energies only, which are compatible with the statistical model
(CASCADE) estimates. In the following, we illustrate our DCM results for rER

data [126, 127] on 64Ni + 100Mo and 64Ni + 64Ni reactions. A brief report on
64Ni + 64Ni reaction is recently published in Ref. [128, 129].

For 64Ni + 100Mo and 64Ni + 64Ni reactions (so also for 58Ni + 58Ni reaction),
at energies far below the Coulomb barrier, the unexpected behavior of the mea-
sured ER cross-sections rER, has challenged the theoretical models to explain the,
so called, fusion hindrance phenomenon in coupled-channels calculations (ccc)
[126, 127]. In ccc, however, this phenomenon could simply be sensitive to the so-
far unobserved, hence not-included, high-lying states. The only acceptable
explanation so-far is the ‘‘modification of the shape of the inner part of the
potential in terms of a thicker barrier and shallower pocket’’ [130, 131]. As already
stated above, this property of ‘‘lowering of barriers’’ at sub-barrier energies is also
supported by the DCM calculations [73, 128, 129], discussed below. Very
recently, we have also shown [87] that the Wong formula, with its ‘-summation
carried out explicitly, also shows the necessity of ‘‘barrier modification’’ at sub-
barrier energies, which can be affected empirically in terms of either the ‘‘barrier
lowering’’ DVemp

B or ‘‘barrier narrowing’’ D�hxemp via the curvature constant. In
fact, the ‘-summed Wong formula is shown [87] to be a special case of the DCM,
more suitable for the capture or quasi-fission cross-sections where the incoming
nuclei keep their identity (P0 = 1).

In the following, first of all, we look for the energetically favored LPs (A2 B 4),
and the other, not yet observed, mass fragmentations (ff = IMFs + HMFs + SF,
where HMFs are the heavy mass IMFs) predicted by the DCM for the compound
nucleus 164Yb* formed in 64Ni + 100Mo reaction. This is illustrated in Fig. 6.18 at
different ‘ values, minimized in charge coordinate gZ, calculated for a fixed
T = 2.0 MeV and R ¼ Ra ¼ Rt þ DR;DR ¼ 1:75 fm, corresponding to the
64Ni + 100Mo reaction at the highest center-of-mass energy Ec.m. = 158.8 MeV
[126, 127]. The deformations bki of two fragments are included up to hexadeca-
pole (k = 2, 3, 4; i = 1, 2), taken from [107], and the orientations are ‘‘optimum’’
orientations hi

opt of ‘‘hot fusion’’ process, taken from Table 1 of [83]. The Ra value
(equivalently, DR) is chosen for the best fit to available ER data and ‘min and ‘max
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values are 32 and 101 �h; respectively, for rER(‘) [ 10-9 mb or equivalently
P0(‘) [ 10-7 and P(‘) [ 10-9 (see, Figs. 4–6 in [73]).

Figure 6.19 depicts the results of both the neck-length parameter DR as a
function of Ec.m., and the fusion excitation functions, rER(Ec.m.). We notice in
Fig. 6.19a that DRðEc:m:Þ or, equivalently, DRðTÞ vary smoothly from above-
barrier to below-barrier energies, always remaining within the range of proximity
potential (\2 fm). Figure 6.19b shows that the fitting of the data is rather very
good for the case of LPs = 1n–4n, and the deformations and orientations of nuclei
included. Similar results are obtained for the DCM calculations of 64Ni + 64Ni
reaction [128, 129]. This means to say that the physics of problem, now contained
in DRðTÞ, suggest no new phenomenon, like the hindrance in ccc, at below barrier
energies different from near and above barrier energies. However, the ‘‘barrier
lowering’’ DVBðTÞ; associated with hindrance phenomenon [130, 131], is con-
tained in fitted DRðTÞ values, and is again a smooth function, as is discussed
below. In Fig. 6.19b, we have also plotted the cases of (i) LPs consisting of only
2n, 3n and 4n, and (ii) nuclei taken to be spheres, using in each case the same
relative separation Ra as are obtained in Fig. 6.19a for deformed, oriented nuclei.
Evidently, both the cases under-estimate rER, thereby stressing the importance of
including both the 1n-emission and the deformation and orientation effects of
nuclei in the present study on DCM.

Figure 6.20 shows the DCM calculated index of ‘‘barrier lowering’’ DVB as a
function of Ec.m. for the 64Ni + 100Mo and 64Ni + 64Ni reactions. The actual barrier
height VB at each ‘ and the barrier height V(Ra) actually used for fitting the ER data
are as marked in Fig. 6.9 with barrier position Ra obtained as in Fig. 6.19a (solid

Fig. 6.18 The fragmentation
potential V(A) at different ‘
values, defined by (6.35), for
the energetically favored
fragmentation of the com-
pound system 164Yb*, formed
in 64Ni ? 100Mo reaction at a
fixed temperature
T = 2.0 MeV (equivalently,
Ec.m. = 158.8 MeV) and
DR ¼ 1:75 fm. For mass four
fragment, the binding energy
of the energetically favored
fragment 4H is replaced by
that of the observed 4n in
view of the experiments. This
figure is from our earlier
work published in Ref. [73]
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circles with solid line) at each c.m. energy. The ER is considered to be due to
1n–4n. Only the case of ‘ = ‘max is shown here in Fig. 6.20, and an exactly the
same result is evident from Fig. 6.9 at ‘ = ‘min. The interesting result of Fig. 6.20
is that barrier modification is minimum and nearly constant for the top two/three
energies, and it becomes larger and larger as the c.m. energy decreases and goes
below the barrier energy. In other words, at the above barrier energies, where
barrier modification should be zero, we get a small (*2 MeV) constant value, and
the modification is large of *8–10 MeV for 64Ni + 100Mo, and *10–12 MeV in
the case of 64Ni + 64Ni, for below barrier energies. The important point is that the
‘‘lowering of barrier’’ at sub-barrier energies is obtained in a natural way by the
fitting procedure of the DCM. It may be reminded here that in DCM, the DR and
‘max are related quantities, and our choice of DR is good within ‘max ± 1, fixed for
LPs cross-section rER(‘) ? 0 at ‘ = ‘max value. Another factor responsible for
the success of DCM in fitting the ER cross-section is the varying preformation
factor P0, not included in models such as the Statistical models and the Wong
formula.

Summarizing the results of this section, the DCM gives a complete description
of the fusion–evaporation (ER) cross-section, with additional contributions of
intermediate mass fragments (IMFs), heavy mass fragments (HMFs), near sym-
metric fission (nSF) and symmetric fission (SF) processes, or the dominantly fis-
sion or quasi-fission decays of hot and rotating nuclei. The only parameter of the

(a) (b)

Fig. 6.19 a Variation of DR with Ec:m: obtained for the best fit to fusion ER data [126, 127],
taking LPs as xn (x = 1 - 4) (solid circles with solid line), and to fusion–fission CASCADE
data [126, 127] (open circles with solid line, not discussed here). b Calculated rER for
64Ni + 100Mo ? 164Yb* reaction as a function of Ec.m., compared with experimental data
[126, 127]. Different cases of LPs as xn (x = 1 - 4 or 2–4), and of deformed, oriented and
spherical shapes are considered. This figure is from our earlier work published in Ref. [73]
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model is the neck-length DR; shown to be related to ‘‘barrier lowering’’ of the
proximity potential in the present calculations, similar to one in M3Y double-
folding potential of Refs. [130, 131], for reactions known for the hindrance effect
in coupled-channel calculations.

6.4 Conclusions

We have seen that clustering is a general characteristic of nuclei, and mean field
approaches, without any extra clustering correlations, are suitable to study this
phenomenon (more so for RMF than for SHF). Also, the dynamical collective
clusterization process is shown to be an effective alternative to the statistical
Hauser–Feshbach analysis and/or fission models for the decay of hot and rotating
compound nucleus. The dynamical collective clusterization model, the DCM, is
given as an extension of the preformed cluster model (PCM) propounded for
exotic cluster radioactivity. Thus, the concept of preformed clusters in spontane-
ously decaying nuclei or excited compound systems was introduced, which seems
to be supported now equally well by the rigorous RMF model.
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(a) (b)

Fig. 6.20 The barrier lowering DVB in DCM, as defined by (6.31), as a function of Ec.m. for the
case of ‘ = ‘max in a64Ni ? 100Mo ? 164Yb*, taken from our work published in Ref. [73], and
b64Ni ? 64Ni ? 128Ba* reaction, taken from our work published in Ref. [128, 129]
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in understanding much of the physics associated with the problem of Collective cluterization in
stable and radioactive nuclei as well as in excited compound systems.
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Chapter 7
Giant Nuclear Systems of Molecular Type

Valery Zagrebaev and Walter Greiner

7.1 Introduction

Cluster structure is very often set off against the shell structure of light and
medium nuclei. However the appearance of clusters themselves (compact pieces of
nuclear matter) is conditioned just by the shell effects. In light nuclei these clusters
are mainly alpha-particles. In heavy nuclear systems tightly packed nuclei (such as
132Sn or 208Pb) may lead to energetically favorable two (and even three) center
configurations. These cluster configurations play an important role both in the
structure of heavy nuclear systems and in the low-energy nuclear dynamics.
The asymmetric nuclear fission (see, for example, Ref. [1]), the heavy-ion
radioactivity [2, 3], the shape isomeric states of heavy nuclei [4] and the true
ternary fission of superheavy nuclei (see below) are the manifestations of such
kind of clusterization. Our studies of fusion–fission reactions and multi-nucleon
transfer processes in low-energy heavy ion collisions demonstrated that the shell
effects have also a strong influence upon evolution of heavy nuclear systems.
Low-energy nuclear dynamics is regulated mainly by the multidimensional
potential energy surface in the space of collective variables. At low excitation
energies the nuclear system creeps along the fission and quasi-fission valleys of the
potential energy caused by the nascent cluster structure. It falls and delays in the
local minima of this potential surface (shape isomeric states) and finally splashes
out in the exit channels with formation of energetically favorable closed shell
nuclei.
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7.2 Potential Energy of Heavy Nuclear System

The potential energy of any physics system is a key quantity which determines its
properties and time evolution. At low excitation energies of a heavy nuclear
system (consisting of many nucleons) only a few collective degrees of freedom
play most important role. The proper choice of these degrees of freedom is
essential and rather difficult. The number of the degrees of freedom should not be
too large so that one is able to solve numerically the corresponding set of dynamic
equations of motion and understand quite well the behavior of the nuclear system
under study. On the other hand, however, with a restricted number of collective
variables it is difficult to describe properly and simultaneously all the strongly
coupled reaction channels and processes. The distance between the nuclear centers
(corresponding to the elongation of a mono-nucleus), dynamic surface deforma-
tions, mutual orientations of deformed nuclei and charge and mass asymmetry are
probably the most relevant degrees of freedom both for description of the fusion–
fission dynamics and the deep inelastic scattering.

7.2.1 Diabatic Potential Energy

The interaction potential of two separated nuclei may be calculated rather easily
within the folding procedure with effective (density dependent) nucleon–nucleon
interaction or parameterized, e.g., by the proximity potential. Of course, some
uncertainty remains here, but the heights of the Coulomb barriers obtained in these
models coincide with the empirical Bass parametrization [5] within 1 or 2 MeV.
After contact the mechanism of interaction of two colliding nuclei becomes more
complicated. For fast collisions (E/A * eFermi or higher) the nucleus–nucleus
potential, Vdiab, should reveal a strong repulsion at short distances preventing the
‘‘frozen’’ nuclei to penetrate each other and form a region of nuclear matter with
double density (diabatic conditions, sudden potential [6]). For slow collisions
(near-barrier energies, vrel � vFermi), when nucleons have enough time to reach
equilibrium distribution within a volume with a constant nuclear density (adiabatic
conditions), the nucleus–nucleus potential energy, Vadiab, is quite different (see
Fig. 7.1. It is clear that for far separated nuclei in the entrance channel these
potentials coincide.

Thus, at collision energies well above the Coulomb barrier we need to use a
time-dependent potential [7], which after contact gradually transforms from a
diabatic potential energy into an adiabatic one:

V ¼ Vdiab½1� f ðtÞ� þ Vadiabf ðtÞ: ð7:1Þ

Here t is the time of interaction and f(t) is a smoothing function with parameter
srelax * 10-21 s [8, 9], f(t = 0) = 0, f(t � srelax) = 1. Note that at slow near-
barrier collisions the first (diabatic) term plays a minor role. It dissolves almost
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completely during slow motion from the Coulomb barrier to the contact config-
uration (d ¼ RBarrier � Rcont� 1�2 fm, t * 10-21 s) and just the adiabatic
potential energy regulates the whole process.

Nucleon exchange and rearrangement between the reaction fragments play an
important role in low-energy dynamics of the heavy nuclear system. It is conve-
nient to include the change in binding energies of the fragments (arising due to
nucleon rearrangement) just into the potential energy which may be written as

VdiabðA; Z; R; b1;X1; b2;X2; gÞ ¼ V12ðA1; Z1;A2; Z2; R; b1;X1; b2;X2Þ
þMðA1; Z1; b1Þ þMðA2; Z2; b2Þ �MðAP; ZP; bg:s:

P Þ �MðAT ; ZT ; bg:s:
T Þ:

ð7:2Þ

Here V12 is the interaction potential of two nuclei, M(Ai, Zi) =

Zimpc2 + Nimnc2 - B(Ai, Zi) is the mass of the fragment (B is the binding energy)
and the constant M(AP, ZP) + M(AT, ZT) (sum of the masses of initial nuclei) is
subtracted to give a zero value of the potential energy at infinite distance of the
colliding nuclei in the entrance channel. In all the other channels at infinite dis-
tance (R ? ?) the potential energy (2) is equal to the Q-value of the corre-
sponding two-body reaction AP + AT ? A1 + A2. b1,2 = {b1,2

k } in (2) are the
dynamic deformations of interacting nuclei (k = 2, 3, … are the multipolarities of
surface deformations), X1,2 = (u1,2, w1,2) are the orientations of deformed nuclei
(u1,2 are the polar orientations of the symmetry axes relative to the beam direction
and w1,2 are the azimuthal orientations of the colliding nuclei, see Fig. 7.13), and
g = (A2 - A1)/(A2 + A1) is the mass asymmetry. The multi-dimensional potential
energy surface written in the form (2) is named usually ‘‘driving potential’’.

The simplest and effective method for the calculation of the diabatic nucleus–
nucleus interaction potential is the use of some phenomenological model. In that
case the interaction potential is written as a sum of nuclear and Coulomb energy,
V12 = V12

N + V12
C . The Coulomb interaction of uniformly charged nuclei is usually

Fig. 7.1 Potential energy of the nuclear system formed in collision of 48Ca + 248Cm at diabatic
(dashed curve) and adiabatic (solid curve) conditions depending on the distance between the
nuclear centres
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defined in analytical form (decomposed over multipoles in the case of deformed
nuclei [10]) and the short-range nuclear part, V12

N , is simply parameterized. For
example, the proximity forces [11], which practically have no free adjustable
parameters, seems to be more convenient for estimation of the nuclear part of the
diabatic potential energy of two interacting medium and heavy nuclei. The absence
of adjustable parameters is the main advantage of the proximity potential. This
interaction essentially depends only on a choice of matter radii of nuclei. Realistic
results can be obtained choosing r0 &1.16 fm for heavy nuclei (A [ 40) and
r0 &1.22 fm for nuclei with A * 16. The following expression can be recom-
mended for nuclei heavier than oxygen:

r0ðAÞ ¼ 1:16þ 16
A2
: ð7:3Þ

For deformed nuclei dependence of the proximity interaction on the curvatures of
their surfaces (i.e. on the area of touched surfaces) is rather important and should
be also taken into account [12].

More sophisticated calculation of the diabatic interaction potential may be
performed within the energy-density functional approach [13–16]. The interaction
energy of two nuclei is defined here as the difference of the total system energy and
those of the isolated nuclei V12 (R, b1, X1, b2, X2) = E1+2 (R, b1, X1, b2, X2) -

E1(b1) - E2(b2), where E1+2 is the energy of the system of two interacting nuclei
and E1, E2 are the energies of isolated nuclei. Also the ‘‘sudden’’ two-center shell
model [17] may be utilized for the calculation of interaction potential for fast
nucleus–nucleus collisions.

The double folding procedure (i.e. direct summation of two-body nucleon–
nucleon forces averaged over density distributions) is the most natural method for
the calculation of the diabatic nucleus–nucleus potential (see, for example [18])

V12ðR; b1;X1; b2;X2Þ ¼
Z

V1

q1ðr1Þ
Z

V2

q2ðr2ÞvNNðr12Þd3r1d3r2: ð7:4Þ

Here vNN(r12 = R + r2 - r1) is the nucleon–nucleon potential and qi=1,2(ri) are the
nuclear matter density distributions. A realistic nucleus–nucleus potential in this
method is obtained only if one uses the ‘‘effective’’ density dependent nucleon–
nucleon interactions vNN with the extra term which simulates a repulsion for strongly
overlapping nuclei. The M3Y nucleon–nucleon potential [19–21] with effective
repulsion [22, 23] is usually used is this method. The zero-range density dependent
Migdal nucleon–nucleon forces [24] combined with the properly parameterized
nuclear densities may be also used for rather fast calculation of the folding potential
[12]. In Fig. 7.2 the diabatic potential energy of 48Ca + 208Pb nuclei is shown
calculated within the different theoretical models mentioned above.

One can see from Fig. 7.2 that several methods give more or less close values
of the height (within 2 or 3 MeV) and position (within 0.5 fm) of the Coulomb
barrier. At the same time these potentials are quite different at contact point and in
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the region of overlapping of colliding nuclei. Available experimental data on
heavy-ion induced nuclear reactions do not allow one to determine better the
diabatic nucleus–nucleus potential energy at short distances. The main reason for
that is a strong coupling of the nucleus–nucleus relative motion (coordinate R)
with many other internal degrees of freedom and collective variables for such
configurations.

Note finally that all the methods mentioned above may be used for calculation of
the interaction diabatic potential (2) for deformed and arbitrary oriented nuclei.
In Fig. 7.3 the calculated folding potential with the Migdal nucleon–nucleon forces
is shown for two deformed nuclei, 64Zn (b2

g.s. = 0.22) + 150Nd (b2
g.s. = 0.24)

depending on the orientation of their axes of symmetry [12]. One can see that just the
mutual polar orientation of deformed nuclei (deviations of axes of symmetry u1 and
u2 from the internuclear axis) strongly influences the interaction potential—for
heavy statically deformed nuclei the Coulomb barrier for the ‘‘nose-to-nose’’ (tip)
configuration may be 20 MeV less than for the side one. The azimuthal orientations
change the Coulomb barrier within 1 or 2 MeV only, see Fig. 7.3a and b.

(a) (b) (c)

Fig. 7.3 Interaction potential of two deformed nuclei 64Zn (b2
g.s. = 0.22) + 150Nd (b2

g.s. = 0.24)
depending on their azimuthal—a and b, and polar c orientations. a u1 = u2 = p/4,
b u1 = u2 = p/2, c w1 = w2, i.e., Dw = 0. Schematic orientations of the nuclei are shown in
upper part of the figure

Fig. 7.2 Diabatic potential
energy of 48Ca + 208Pb cal-
culated within the folding
procedure with the Migdal
forces [12] (solid curve) and
with M3Y + repulsion
nucleon–nucleon potential
[23] (dashed curve), energy–
density functional potential
[16] (dash-dotted curve),
proximity potential [11] (long
dashed curve) and the Bass
potential [5] (dotted curve)
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In low-energy collisions (and decay) of heavy nuclei their dynamic deforma-
tions play a very important role due to a change of the distance between nuclear
centers (change of V12

C ) and between nuclear surfaces (change of V12
N ). Thus the

deformation energy itself should be also added to the diabatic interaction potential
(2) (it is included by definition into the adiabatic potential energy, see below). For
small deformations we may restrict ourselves by consideration of the deformation
energy in the harmonic approximation

1
2

X

k

C1;kðb1;k � bg:s:
1;k Þ

2 þ 1
2

X

k

C2;kðb2;k � bg:s:
2;k Þ

2; ð7:5Þ

where Ci,k are the rigidities (stiffness parameters) of nuclear surfaces, which can
be estimated within the liquid drop model [25] or derived from the experimental
properties of vibrational states of a given nucleus, and bi,k are the dynamic
deformations of multipolarity k. For large dynamic deformations the harmonic
approximation (5) may be insufficient and more correct calculation of the defor-
mation energy should be performed, for example, within the macro-microscopic
model (see below).

As can be seen from Fig. 7.4 the diabatic nucleus–nucleus potential energy
strongly depends on dynamic deformations of interacting nuclei. The Coulomb
barrier of two heavy nuclei (spherical in their ground states) may decrease by more
than 10 MeV due to their dynamic deformations. Thus, it is incorrect to keep in
mind one specific value of the Coulomb barrier even for interaction of spherical

(a) (b)

Fig. 7.4 a Landscape of the interaction potential of 48Ca + 208Pb depending on quadrupol
dynamic deformations of both nuclei b = b1 + b2 (at b1 = b2). The dashed curve shows the
ridge of the two-dimensional Coulomb barrier, whereas the dotted one corresponds to the contact
configurations. The crosses indicate position of the Coulomb barrier at zero deformations and the
minimal value of the barrier for dynamically deformed nuclei (fusion saddle point). The circle
shows the minimum of the potential pocket and the hatched arrow indicates the most probable
path for fusing nuclei at low energies. b Potential energy along the barrier ridge (dashed curve at
the left panel)
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nuclei. There is the multi-dimensional Coulomb barrier ridge and we have to use a
concept of the barrier distribution function [26] describing nucleus–nucleus
interaction. First, this effect significantly enhances the sub-barrier penetration
probability in fusion reactions (the channel coupling and empirical model calcu-
lations give here similar results [27]). Second, as can be seen from Fig. 7.4, at
contact configuration the potential energy has a minimal value (potential pocket) at
non-zero dynamic deformations. Thus, at low collision energies even two magic
nuclei (such as 48Ca and 208Pb, spherical in their ground states) after overcoming
the Coulomb barrier immediately acquire rather elongated shapes. This effect
strongly influences subsequent evolution of the nuclear system (see below).

7.2.2 Adiabatic Potential Energy and the Two-Center
Shell Model

The calculation of the multidimensional adiabatic potential energy (equilibrated
over the fast single particle motion) remains a very complicated physical problem,
which is not yet solved in full. For a heavy nuclear system the adiabatic potential
energy may be defined as a difference between the mass of the whole nuclear
system (the system could be either a mononucleus or two separated nuclei) and the
ground-state masses of initial target and projectile

VadiabðA; Z; R; b; gÞ ¼ MðA; Z; R; b; gÞ �MðAP; ZP; bg:s:
P Þ �MðAT ; ZT ; bg:s:

T Þ:
ð7:6Þ

The constant M(AP, ZP) + M(AT, ZT) provides as before a zero value of the
potential energy at infinite distance of the fragments in the entrance channel.

The purely microscopic self-consistent methods of the Hartree–Fock type with
effective density-dependent nucleon–nucleon interactions (see, e.g. [28, 29]) or the
relativistic mean field approach [30, 31] may be used for a calculation of the mass
of deformed nuclear system. These methods, however, are rather complicated and
time-consuming. In the ‘‘macro-microscopical’’ approach the mass of deformed
nucleus is composed of the two parts

MðA; Z; R; b; gÞ ¼ MmacðA;Z; R; b; gÞ þ dEðA; Z; R; b; gÞ: ð7:7Þ

The macroscopic part, Mmac, smoothly depends on the proton and neutron numbers
and may be calculated within the finite-range liquid-drop model [32–34]. The
microscopic part, dE, describes the shell effects. It is constructed from the single-
particle energy spectra by the Strutinsky procedure [35, 36].

At low dynamic deformations (ground state or saddle point masses) the Woods–
Saxon mean-field potential may be used for a calculation of the single-particle
energy spectra [34, 37]. For large dynamic deformations (up to configuration of
two separated nuclei) the two-center shell model (TCSM) [38] seems to be most
appropriate for calculation of the adiabatic potential energy. The mean-field
potential of the TCSM consists of two axially symmetric harmonic oscillator
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potentials with independent centers. This model describes correctly transition from
the small ellipsoidal deformations near the ground state configuration (here it
coincides with the well-known Nilsson model) to the strongly deformed shapes up
to the configuration of two separated nuclei (giving the Nilsson model for each of
the fragments). In [38] the model was extended for the case of mass-asymmetric
shapes and the mean-field potential was smoothed at the contact point.

The mean-field potential [its momentum-independent part V(q, z), where q and z
are the cylindrical coordinates] determines the shape parametrization of the
nuclear system—the nuclear surface is an equipotential surface of V(q, z), see
Fig. 7.5. The external parts of the shape are axially symmetric ellipsoids with
semi-axes ci and bi (i = 1, 2). Internal part of the shape is more complicated.
The shape parametrization of the TCSM has five independent parameters, that
allows one to introduce five collective variables: (1) the elongation R of the system,
which for separated nuclei is the distance between mass centers of the nuclei; (2, 3)
the ellipsoidal deformations of the two parts of the system d1 and d2,
defined as di = ci/bi - 1 (at small values the quadrupole and ellipsoidal deforma-

tions are similar, b2 ¼ 4=3
ffiffiffiffiffiffiffiffi

p=5
p

d � 1:057d); (4) the mass-asymmetry parameter
g = (A2 - A1)/(A2 + A1), where A1 and A2 are the mass numbers of the system
halves; (5) the neck parameter e smoothes the shape of overlapping nuclei (see
Fig. 7.5b). Smaller values of e correspond to a thicker neck at fixed values of other
parameters. The details of calculation of the single particle energy spectra
within the TCSM and the explanation of all the parameters used may be found in
Refs [12, 38].

(a) (b) (c)

Fig. 7.5 Nuclear shape and the mean-field potential V(q = 0, z) of the TCSM shown
for d1 = d2 = d = 0.5 and e = 0.5. The mass asymmetry parameter g = 0 for a and g = 0.625
for b and c. Dark hatched areas marked by a1 and a2 in b denote two cores, whereas DA are the
collectivized nucleons (Sect. 2.3)
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The standard version of the TCSM (as well as any macro-microscopic model)
meets some problems at the calculation of potential energy for contact (scission)
configuration and for separated nuclei. In particular, it does not reproduce cor-
rectly the value of the Coulomb barrier and the depth of potential pocket at
contact. Figure 7.6 shows the adiabatic potential energy calculated within the
standard TCSM approach (dashed curve) in comparison with the diabatic
proximity potential (dotted curve) for 48Ca + 248Cm. As noted above, the adia-
batic and diabatic potentials should give identical results for separated nuclei, for
which the energy is known to be the sum of the experimental values of masses
plus the Coulomb interaction energy. It is clear from Fig. 7.6 that the adiabatic
potential energy, calculated in the standard macro-microscopic model, substan-
tially differs from the ‘‘true’’ value in the asymptotic and contact regions of two
nuclei.

The reason for this limitation of macro-microscopic model is the non-additive
terms in the macroscopic part of the total mass (7) (i.e. nonadditivity of the
Weizsäcker formula) and incorrect single particle energy spectra of two separated
nuclei being calculated as for a mono-nucleus. However, this limitation has been
overcome recently in the extended version of the two-center shell model [12]. The
standard macro-microscopic model agrees well with the experimental data on the
ground-state masses and fission barriers. On the other hand, the double-folding
model reproduces the data on the fusion barriers and the potential energy in the
region of separated nuclei (as mentioned above in this region the diabatic and
adiabatic potential energies should coincide). In Ref. [12] it was proposed to use
the correct properties of these two potentials and to construct the adiabatic
potential energy as follows:

VTCSM
adiab ðA;Z;R;d;gÞ¼ð½MFRLDMðA;Z;R;d;gÞþdETCSMðA;Z;R;d;gÞ�

�½MFRLDMðAP;ZP;dg:s:
P ÞþdETCSMðAP;ZP;dg:s:

P Þ�

�½MFRLDMðAT ;ZT ;dg:s:
T ÞþdETCSMðAT ;ZT ;dg:s:

T Þ�ÞBðR;d1;d2;gÞ

þVdiabðA;Z;R;d1;d2;gÞ½1�BðR;d1;d2;gÞ�:
ð7:8Þ

Fig. 7.6 Potential energy of
nuclear system 296116$48

Caþ248 Cm (g.s. masses and
deformations of colliding
nuclei) calculated within the
standard (dashed curve) and
extended (solid curve) ver-
sions of TCSM. The dotted
curve shows the diabatic
proximity potential. The
contact point is indicated by
the vertical line
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The ‘‘smoothing’’ function B(R, d1, d2, g) defines the transition from the properties
of two separated nuclei to those of the mono-nucleus. The function B(R, d1, d2, g) is
rather arbitrary. It should be unity for the ground state region of mono-nucleus and it
should tend to zero for completely separated nuclei. The following simple expres-
sion for this function can be used: B(R, d1, d2, g) = (1 + exp[(R - Rcont)/a])-2,
where Rcont(A1, A2;d1, d2) is the distance between the mass centers corresponding to
the touching (scission) point of the nuclei, and a is the adjustable parameter. With the
quite appropriate value of a = 0.5 fm the fusion barriers are reproduced quite well.
The adiabatic potential energy calculated within the extended macro-microscopic
Eq. (8) is shown in Fig. 7.6 by the solid curve. As can be seen the proposed
improvement leads to the correct adiabatic potential energy which reproduces
properly the ground state properties of mono-nucleus as well as the fission and fusion
barriers and the asymptotic behavior of the potential energy for two separated nuclei.

The two-center parametrization has five free parameters (five collective degrees
of freedom) which determine the shape of the nucleus: R, d1, d2, g and e. This
parametrization is quite flexible and gives reasonable shapes both for the fusion
and fission processes. However, the use of all the five degrees of freedom in the
dynamical equations of motion (see below) is beyond the present computational
possibilities (mainly due to impossibility to keep in memory the five-dimensional
potential energy and all its derivatives). First, we may decrease the number of
collective variables assuming equality of the deformation forces acting onto the
nuclear surfaces, i.e., C1d1 = C2d2, where C1,2 are the LDM stiffness parameters
of the fragments, see Eq. (5). Using this ratio and the definition d1 + d2 = 2d, the
deformations of the fragments are easily derived from the common variable d.

Evolution of the neck parameter e (smoothing the single-particle mean field at
the contact point, see Fig. 7.5b) may be also considered in an approximate way.
Figure 7.7, shows the macroscopic potential energy in the space of (R, e) and the
map of the corresponding nuclear shapes. At scission configuration in the fission
channel the nuclear shape has a large distance between mass centers and a well

Fig. 7.7 The potential energy (right panel) and the corresponding shapes of nuclei (left panel) in
the coordinates (R, e) for the system 224Th calculated for g = 0 and d1 = d2 = 0. The potential
energy is normalized to zero for the spherical compound nucleus. The thick dashed curve is the
scission (contact) line
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pronounced neck. On the contrary, at the contact point of the fusion channel the
nuclear shape is rather compact and almost without neck, i.e., e = 1. For the exit
fission channels the value of the neck parameter should be chosen to minimize the
potential energy along the fission path. The value eout &0.35 was recommended in
[39] for the fission processes. One can see from Fig. 7.7, that the potential energy
is practically independent of the neck parameter for separated nuclei. Therefore,
the neck parameter keeps the constant value (ein = 1) in the entrance channel,
whereas the fission process (motion from the ground state configuration along the
bottom of the potential energy surface to scission point) takes place at e \ 1 and
finishes at some eout for separated fission fragments.

It is clear that we should take into account somehow the difference of nuclear
shapes in the entrance and exit channels. Nevertheless, to restrict ourselves by the
three-dimensional configurational space (R, g, d), we may consider evolution of
the neck parameter as a relaxation process with the characteristic time se which is
evidently comparable with fission time *10-20 s. In that case the adiabatic
potential energy calculated within the two-center shell model, second term in
Eq. (1), becomes also time-dependent

VTCSM
adiab ðR; g; d; tÞ ¼ VTCSM

adiab ðeinÞexpð�t=seÞ þ VTCSM
adiab ðeoutÞ½1� expð�t=seÞ�; ð7:9Þ

where t is the interaction time (i.e., time after contact), ein ¼ 1 and eout ¼ 1 & 0.35
is the adjustable parameter found from the best fit of experimental energy distri-
bution of the fission fragments.

Note finally that all the potentials discussed above (diabatic phenomenological
and folding potentials as well as adiabatic ones) may be properly calculated
depending on chosen degrees of freedom just in the Web window of the low-
energy nuclear knowledge base [40].

7.2.3 Two-core Approximation for Adiabatic Potential

The calculation of the adiabatic driving potential within the TCSM is still rather
difficult and time-consuming problem. To avoid complex numerical calculations of
the shell correction term one may use the empirical two-core model [41, 42], in
which the shell correction is taken into account by means of the use of the ground
state masses of intermediate fragments (cores). This approximation is also based on
the two-center shell model idea, in which the lowest single particle states of non-
overlapping cores of two nuclei (see dark hatched areas in Fig. 7.5b) are rather close
to the states of isolated core nuclei. It is assumed in this model that on the way from
the initial configuration of two touching nuclei to the compound mononucleus (and
back to fission or quasi-fission channel), the system consists of two cores,
a1 = z1 + n1 and a2 = z2 + n2, and a number of common (collectivized) nucleons
DA = ACN - a1 - a2 occupying the quasi-molecular states and moving in the
whole volume of the nuclear system, see the upper hatched area in Fig. 7.5b.
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Let us denote by DACN such number of common (shared) nucleons at which the
two cores a1 and a2 fit the volume of the compound nucleus (and are completely
‘‘dissolved’’ in it), i.e., R(a1, d1) + R(a2, d2) = R(ACN, dCN

g.s.) (left part of Fig. 7.8).
Apparently, DACN \ ACN. The compound nucleus formation (DA ? DACN),
nuclear fission and quasi-fission (DA ? 0) proceed in the space (z1, n1, d1;
z2, n2, d2). The formation of the compound nucleus is assumed to be completed if
the elongation of the system is less than that of the corresponding saddle con-
figuration (R \ R(ACN, dCN

saddle)). The adiabatic driving potential in the two-core
approximation is defined as

VTC
adiabðR; z1; n1; d1; z2; n2; d2Þ ¼ ~V12ðR; z1; n1; d1; z2; n2; d2Þ

� ½~Bða1Þ þ ~Bða2Þ þ ~BðDAÞ� þ BðAPÞ þ BðATÞ:
ð7:10Þ

Here ~Bða1Þ ¼ ~b1 � a1; ~Bða2Þ ¼ ~b2 � a2 and ~BðDAÞ ¼ 0:5ð~b1 þ ~b1ÞDA are the
binding energies of the two cores and of the common (shared) nucleons. These
values depend on the number of collective nucleons. Let us define the degree of
collectivization as x = DA/DACN, then the reduced binding energies ~b1;2 can be

calculated as ~biðaiÞ ¼ bexp
i ðaiÞuðxÞ þ bexp

CN ½1� uðxÞ�. Here bi
exp and bCN

exp are the
reduced binding energies of the isolated fragments which are known experimentally.
u(x) is a monotonic function constrained as u(x = 0) = 1 and u(x = 1) = 0.
Therefore, the reduced binding energies of the cores gradually change from the
values which correspond to the isolated nuclei to those of the compound nucleus as
DA increases from zero to DACN. Thus all the shell effects are explicitly accounted
for in (10) through the experimental binding energies b1,2

exp and bCN
exp.

The interaction potential ~V12 between two fragments is defined at R C Rcont as a
usual diabatic potential (see Sect. 2.1). At R \ Rcont the interaction between the
two cores a1 and a2 weakens as the number of common nucleons DA increases and
the cores are gradually dissolved in a compound nucleus, ~V12ðx! 1Þ ! 0 (see
details in [41, 42]). Thus, for the compound nucleus configuration (DA = DACN)
the total energy Vadiab

TC = Qgg
fus = B(AP) + B(AT) - B(ACN), as it should be if the

zero value of the energy corresponds to configuration of initial nuclei AP and AT

(in their ground states) at infinite distance.

Fig. 7.8 Schematic picture of nuclear system in the two-core approximation. From right to left:
the contact, intermediate and compound nucleus configurations are shown
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In Fig. 7.9, the driving potentials calculated within the two-center shell model
and within the two-core model are compared for the nuclear system formed in the
collision of 48Ca + 248Cm leading to a compound nucleus 296116. As can be seen, the
results of the two calculations are rather close. At the same time, there are several
advantages of the empirical approach. To get a reasonable value for the fission
barrier one may use the shell corrections at zero and ground state deformations
calculated according to [34] and the parametrization of the liquid drop energy
proposed in [43]. Based on these values the adiabatic potential may be easily
calculated for small values of elongation and deformation (up to the saddle point
configuration). Then it is joined together with the potential of two touching nuclei as
described above. The use of experimental binding energies of the two cores gives us
the ‘‘true’’ values of the shell corrections. As a result, the two-core model gives
automatically an explicit (experimental) value of the nucleus–nucleus interaction
energy in the asymptotic region for well-separated nuclei where it is well known (the
Coulomb interaction plus experimental reaction Q-value). This potential has quite
realistic (diabatic) heights of the Coulomb barriers, which is important for the
description of near-barrier heavy-ion reactions. It is defined in the whole region
RCN \ R \? as a smooth and continuous function of R, d, g and, thus, may be
used for a simultaneous description of the whole fusion–fission process.

7.2.4 ‘‘Cold Valleys’’ within the Potential Energy Surface

A multi-dimensional character of the adiabatic potential (8) or (10) significantly
complicates its visualization. In the case of the three collective variables

Fig. 7.9 Fusion–fission driving potential of the nuclear system formed in collision of
48Ca + 248Cm as a function of mass asymmetry. The potential energy was calculated at fixed
distance between nuclear centers R = 12 fm and zero deformation. Dotted, dashed and solid
curves correspond to the liquid-drop model, two-center shell model and two-core model,
respectively
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(elongation, deformation and mass asymmetry) evolution of the system in fission
process and in a head-on collision of heavy ions occurs in the three-dimensional
configurational space inside the cube shown in Fig. 7.10. Schematic views of the
deep inelastic scattering (DI), quasi-fission (QF), fusion and regular fission are
shown on the left panel of this figure. Only the landscapes of the driving potential
may be drawn on the cube faces. Any real trajectory locates inside the cube
(Fig. 7.15) and only its projections on a given plane may be shown here (right
panel of Fig. 7.10).

Rather better view may be obtained by the two-dimensional plots of the driving
potential. In Fig. 7.11a the potential energy is shown at fixed (zero) value of
dynamic deformation depending on elongation and mass rearrangement. Sche-
matic trajectories of DI, QF and fusion–fission processes are also shown. In
Figs. 7.10 and 7.11 the deep valleys caused by the shell effects are distinctly
visible. They correspond to the formation of doubly magic nuclei in the exit
channel: 208Pb (at g & 0.4) and 132Sn (at g & 0.1).

The more symmetric valley with formation of well-bound nuclei around 132Sn
is well known and always reveals itself in regular fission processes (for example,
in a preferable asymmetric spontaneous fission of uranium). Another deep valley
caused by formation of the doubly magic nucleus 208Pb (biggest nuclear cluster)
is more pronounced but hardly may be reached in normal fission of heavy nuclei
(this valley is too far from the fission saddle point, see Figs. 7.10 and 7.11a.
However it manifests quite distinctly in experimental mass distributions of the
reaction fragments formed in collisions of heavy nuclei with actinide targets, see
Fig. 7.11b.

The process, which is responsible for formation of lead-like fragments in col-
lisions of such nuclei as 48Ca + 248Cm (rearrangement of more than 40 nucleons),

Fig. 7.10 Left schematic evolution of nuclear system in the space of ‘‘elongation–mass asym-
metry–deformation’’. Right adiabatic driving potential for the nuclear system formed in
48Ca + 248Cm collision. The solid lines show schematically projections onto the plane of zero
deformation of the trajectories corresponding to the deep inelastic scattering (DI), quasi-fission
(QF) and fusion processes. Also shown is the projection of the regular fission path onto the plane
of zero mass asymmetry (g = 0)
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was named ‘‘quasi-fission’’. It is qualitatively distinguished both from the deep
inelastic scattering with formation of projectile-like and target-like fragments and
from the more symmetric regular fission. This process, caused by the shell effects,
dominates in collisions of heavy nuclei with actinide targets preventing them from
fusion and, thus, reduces the yield of superheavy nuclei synthesized in such
reactions. The quasi-fission process is observed also for lighter nuclear systems, in
which the lighter closed shell nuclear clusters play the main role [44].

Note, that the heavy nuclear system, formed, for example, in the collision of
48Ca with 248Cm, may come also to the mass-symmetric exit channels without
formation of compound nucleus—see the path marked by QF2 in Fig. 7.11a. This
quasi-fission process of second type cannot be distinguished from the regular
fission of the compound nucleus and, thus, experimentally it is impossible to
measure the fusion cross section for such heavy nuclear systems. Theoretical
estimation of the fusion cross section for 48Ca + 248Cm collisions at 203 MeV
center-of-mass energy (Bass barrier for this system is equal to 201 MeV) gives a
very low value of 0.02 mb [7] (whereas the quasi-fission cross section is about
10 mb at this energy). It is the low value of the fusion cross section multiplied by
low survival probability of the excited compound nucleus (about 10-7 at the

(a) (b)

(c)

Fig. 7.11 a Adiabatic driving potential for the nuclear system formed in 48Ca + 248Cm collision.
The solid lines with arrows show schematically (without fluctuations) the quasi-fission trajec-
tories going to the lead and tin valleys. The dashed curves correspond to fusion (CN formation)
and fission processes. Experimental b [44] and calculated c [7] mass–energy distribution of
reaction fragments in collision of 48Ca with 248Cm at 203 MeV center-of-mass energy. Different
colors in c indicate the interaction time of different events (longer for larger mass rearrangement)
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corresponding excitation energy ECN
* * 40 MeV) which leads to extremely low

yield of superheavy elements in such reactions [41].

7.3 Local Potential Minima and Shape Isomeric States

Within the two-center shell model, after contact of colliding nuclei, the processes
of compound nucleus formation, fission and quasi-fission may be described both in
the space of (R, g, d1, d2) and in the space (a1, d1, a2, d2), because for a given
nuclear configuration (R, g, d1, d2) we may unambiguously determine the two
deformed cores a1 and a2 surrounded with a certain amount of shared nucleons
DA = ACN - a1 - a2. This double choice of equivalent sets of coordinates is
extremely important for clear understanding and interpretation of physical
meaning of the intermediate local minima appearing on the multi-dimensional
adiabatic potential energy surface.

The adiabatic driving potential for formation and decay of superheavy nucleus
296116 at fixed deformations of both fragments is shown in Fig. 7.12 as a function
of elongation and mass asymmetry and also as a function of charge numbers z1 and
z2 (minimized over neutron numbers n1 and n2) at R B Rcont. It is easy to see that
the shell structure, clearly revealing itself at the contact of two nuclei, is also
retained at R \ Rcont (see the deep minima in the regions of z1,2 * 50 and
z1,2 * 82 in Fig. 7.12b).

Following the fission path (dotted curves in Fig. 7.12a, b) the nuclear system
passes through the optimal configurations (with minimal potential energy) and
overcomes the multi-humped fission barrier (Fig. 7.12c). The intermediate minima
located along this path correspond to the shape isomeric states. From the analysis
of the driving potential one may unambiguously conclude that these isomeric
states are nothing else but the two-cluster configurations with magic or semi-magic
cores surrounded with a certain amount of shared nucleons. Thus, the shape
isomeric states (discovered experimentally in Dubna many years ago [45]) are the
most obvious and vivid manifestation of the clusterization of heavy nuclei. Note
that these isomeric states are rather similar in physics to the light nuclear mole-
cules consisting of two alpha-particles and extra neutrons in covalent binding
orbits [46, 47].

In our case (fission of nucleus 296116) the second (after ground state) minimum
on the fission path appears due to the two-cluster nuclear configuration consisting
of tin-like and krypton-like cores and about 70 shared nucleons. The third mini-
mum corresponds to the mass-symmetric clusterization with two magic 132Sn
cores (surrounded with about 30 common nucleons), which finally decay to the
preferable asymmetric fission valley with 132Sn and 164Dy fragments. It is clear
that the same interpretation of the shape isomeric states should be true also for
lighter nuclei. Of course, if the compound nucleus is lighter than Fm (ZCN B 100)
the second minimum caused by two tin cores cannot appear. Such nuclei should
have in general two-humped fission barriers with one pronounced shape isomeric

282 V. Zagrebaev and W. Greiner



state (the other minima may arise, in principle, due to deformed closed shell
cores).

7.4 Cluster (Shell) Effects in Low Energy
Heavy-Ion Collisions

Clustering phenomena should reveal themselves also in collisions of heavy ions.
Of course, at high incident energies the nucleon degrees of freedom become to
prevail over the collective ones. Large excitation energy of heavy nuclear system
also destroy the shell effects. Under these conditions only small nuclear clusters
(such as a-particles) may appear, but not so heavy as lead-like or tin-like frag-
ments. The issue about maximal excitation energy, at which the shell effects are
still important and heavy nuclear clusters play a noticeable role, remains open. In
fact, there are not many experimental data on low-energy near-barrier collisions of

(a)

(b)

(c)

Fig. 7.12 Adiabatic driving potential of heavy nuclear system formed in collision of 48Ca with
248Cm. a Potential energy in the ‘‘elongation–mass asymmetry’’ space. b Topographical land-
scape of the same driving potential in the (z1, z2) plane. Dashed, solid and dotted curves show
most probable trajectories of fusion, quasi-fission and regular fission, respectively. The diagonal
corresponds to the contact configurations (R = Rcont, z1 + z2 = ZCN, DA = 0). c The three-
humped barrier calculated along the fission path (dotted curve)
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heavy nuclei (moreover, most of them are rather incomplete), and we are still far
from a clear understanding and proper description of all the strongly coupled
channels of such reactions.

7.4.1 Equations of Motion

A choice of dynamic equations for the description of low-energy deep inelastic
scattering of heavy ions, fusion, quasi-fission and regular fission is not evident. For
the collective coordinates R, d various equations can be used, namely: classical
Newtonian and Langevin type [48] or quantum Schrödinger coupled differential
equations. The corresponding inertia parameters lR and ld can be calculated, for
example, within the Werner–Wheeler approach [49, 50] or within the cranking
model [51]. However a proper description of the nucleon transfer and the change
of the mass asymmetry g (which is a discrete variable by its nature) is not so
simple. Moreover, the corresponding inertia parameter lg, being calculated within
the Werner–Wheeler approach, becomes infinite at contact (scission) point and for
separated nuclei. Thus the nucleon transfer and a change of the mass asymmetry
requires a separate consideration.

The master-equation for the distribution function u(A, t)

ou
ot
¼

X

A0¼A	1

kðA0 ! AÞuðA0; tÞ � kðA! A0ÞuðA; tÞ ð7:11Þ

seems to be good for the description of nucleon transfer in deep inelastic scattering
[52, 53]. Here A is the number of nucleons in one of the fragments at time t and
kðA0 $ AÞ is the macroscopic transition probability. This equation was success-
fully used also for the description of CN formation in strong competition with the
dominant quasi-fission channels in reactions leading to the synthesis of superheavy
nuclei [41, 42].

Nevertheless, Eq. (11) defines the evolution of the distribution function
u(A, t) * u(g, t) and not of the coordinate g itself! Thus, it cannot be included
directly in a common set of coupled differential equations for the coordinates R
and d. However, by certain rules (see, for example, Refs [54, 55]) this equation

may be transformed first to the Fokker–Planck equation ou
ot ¼ � o

oAðDð1ÞuÞ þ
o2

oA2ðDð2ÞuÞ and then to the Langevin type equation dA
dt ¼ Dð1Þ þ

ffiffiffiffiffiffiffiffi

Dð2Þ
p

CðtÞ; or (so
far as g = (2A - ACN)/ACN)

dg
dt
¼ 2

ACN

Dð1ÞA ðgÞ þ
2

ACN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dð2ÞA ðgÞ
q

CðtÞ; ð7:12Þ

where C(t) is the normalized random variable with Gaussian distribution,
hCðtÞi ¼ 0; hCðtÞCðt0Þi ¼ 2dðt � t0Þ. This random variable is responsible for the
fluctuations and, thus, for diffusion of nucleons between overlapping nuclei. The
transport coefficients D(1) and D(2) are defined as follows
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Dð1Þ ¼
Z

ðA0 � AÞkðA! A0ÞdA0;

Dð2Þ ¼ 1
2

Z

ðA0 � AÞ2kðA! A0ÞdA0:

ð7:13Þ

Note that Eq. (12) describes an inertialess change of the mass asymmetry g, i.e.,
there is no kinetic energy connected with nucleon transfer (whereas the potential
energy strongly depends on g).

Assuming that sequential nucleon transfers play a main role in mass rear-
rangement, i.e. A0 = A ± 1, we have

Dð1Þ ¼ kðA! Aþ 1Þ � kðA! A� 1Þ;

Dð2Þ ¼ 1
2
kðA! Aþ 1Þ þ kðA! A� 1Þ:

ð7:14Þ

For nuclei in contact the transition probability k(A0 = A ± 1) is defined by a

change of nuclear level density [52, 53], q� exp½2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aE
ðR; d; gÞ
p

� (which, in turn,
depends on the local excitation energy)

kð	Þ ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qðA	 1Þ=qðAÞ
p

� k0exp½ðVðR; d;A	 1Þ � VðR; d;AÞ=2T �: ð7:15Þ

Here T ¼
ffiffiffiffiffiffiffiffiffiffi

E
=a
p

is the local nuclear temperature, E* excitation energy, a level
density parameter, and k nucleon transfer rate, which is about 1022 s-1 as it was
estimated in [52, 53]. The nucleon transfer rate may, in principle, depend on the
excitation energy (the same hold for the transport coefficients D(1,2)). This feature,
however, is not completely clear. In [52] the mass diffusion coefficient was
assumed to be independent of excitation energy, whereas the microscopic con-
sideration gives a square root dependence of it on nuclear temperature [56].
A linear dependence of the mass diffusion coefficient on T can be also found in the
literature [57]. For the moment, it looks much better to use the nucleon transfer
rate k0 as an adjustable parameter of the model [7]. The temperature dependence of
this parameter and its precise value may be derived from a systematic analysis of
available experimental data on DI scattering of heavy ions.

Nucleon transfers for slightly separated nuclei are also rather probable.
They are determined by extension of the tails of the single particle wave functions.
This intermediate (before contact) nucleon exchange plays a very important role in
sub-barrier fusion processes [58, 59] and has to be taken into account in Eq. (12).
This can be done by using the following final expression for the transition
probability

kð	Þ ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qðA	 1Þ
qðAÞ

s

PtrðR; d;A! A	 1Þ: ð7:16Þ

Here Ptr(R, d, A ? A ± 1) is the probability of one nucleon transfer depending on
the distance between the nuclear surfaces and nucleon separation energy.
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This probability goes exponentially to zero at R ? ? and it is equal to unity for
overlapping nuclei. A rather simple semiclassical approximation for Ptr proposed
in Ref. [58] can be used for this quantity. Equation (12) along with (16) defines a
continuous change of the mass asymmetry in the whole space. It is clear that
dg
dt ! 0 (no nucleon transfer) for far separated nuclei.

To describe properly the yield of different isotopes of a given element
(including the extremely neutron-rich ones, see below) one needs to consider
separately neutron and proton transfers. Thus, we should extend the model
described above and (instead of only one mass-asymmetry variable g) take into
consideration the neutron and proton asymmetries, gN = (2N - NCN)/NCN and
gZ = (2Z - ZCN)/ZCN, where N and Z are the neutron and proton numbers in one
of the fragments, whereas NCN and ZCN refer to the compound nucleus. This
noticeably complicates the problem because of the necessity to deal with the four-
dimensional potential energy surface V(R, d, gN, gZ) for overlapping nuclei. In that
case, instead of Eq. (12), we have a set of two equations defining the proton and
neutron rearrangement

dgN

dt
¼ 2

NCN

Dð1ÞN þ
2

NCN

ffiffiffiffiffiffiffiffi

Dð2ÞN

q

CNðtÞ;
dgZ

dt
¼ 2

ZCN

Dð1ÞZ þ
2

ZCN

ffiffiffiffiffiffiffiffi

Dð2ÞZ

q

CZðtÞ: ð7:17Þ

The transport coefficients DN,Z
(1,2) are defined by Eqs. (14) with the neutron and

proton transition probability given by

kð	ÞN;Z ¼ k0
N;Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qðA	 1Þ
qðAÞ

s

Ptr
N;ZðR; d;A! A	 1Þ: ð7:18Þ

There is no information in the literature on a difference between neutron and
proton transfer rates, and for simplicity we assume here that kN

0 = kZ
0 = k0/2,

where k0 is the nucleon transfer rate defined above.
Finally, we have the following set of 14 coupled Langevin type equations for 8

degrees of freedom fR; #;d1; d2;u1;u2;gN ;gZg � x shown in Fig. 7.13.

Fig. 7.13 Degrees of free-
dom used in the model
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dt
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dt
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dt
¼ �hL2
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;
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NCN
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2
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ffiffiffiffiffiffiffiffi

Dð2ÞN

q

CNðtÞ;
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dt
¼ 2

ZCN

Dð1ÞZ þ
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Here u1 and u2 are the angles of rotation of the nuclei in reaction plane (their

moments of inertia are =1;2ðd1;2Þ ¼ k2
5M1;2R0

1;2
2ð1þ d1;2=3Þ; k � 0:4Þ; a1;2 ¼

R=2	 ðR1 � R2Þ=2 are the distances from the centers of fragments up to the

middle point between nuclear surfaces, and R1;2 ¼ R0
1;2½1þ

ffiffiffiffiffiffiffiffiffiffi

5=4p
p

d1;2 9

P2ðcosðu1;2 � #ÞÞ� are the nuclear radii. ‘ is the orbital angular momentum of
relative motion and L1,2 are the angular momenta of two fragments. cR, ctang and
cd_1,2 are the friction forces which depend generally on the coordinates x. The
random forces in the last eight equations (proportional to the friction forces and
ffiffiffiffi

T
p

) are responsible for the fluctuations of all the degrees of freedom. These
fluctuations (appearing when nuclei approach each other) increase with increasing
excitation energy (temperature) of nuclear system.

For the moment we ignore the non-diagonal terms of the mass and friction
parameters. The so called ‘‘sliding friction’’ (which is proportional to the relative
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velocity of nearest nuclear surfaces vtang ¼ �h‘
lRR�

�hL1
=1

a1 � �hL2
=2

a2) is mainly

responsible for the dissipation of the angular momentum (see, for example [5],
p. 265 and [60]). The nucleus–nucleus potential energy depends on the distance
between nuclear surfaces n = R - Rcont, where Rcont = R1(g, d1, u1 - 0) +
R2(g, d2, u2 - 0). Therefore oV

ou1
þ oV

ou2
¼ �oV

o# and the total angular momentum

‘ + L1 + L2 is evidently conserved in the processes described by the set of Eqs. (19).
The unified set of dynamic equations of motion (19) may be used for simul-

taneous and continuous (not interrupted in time) description of the evolution of a
heavy nuclear system starting from the approaching stage in the entrance channel
and ending in the DI, QF and/or fusion–fission reaction channels. The double
differential cross-sections of all the processes are calculated as follows:

d2rN;Z

dXdE
ðE; hÞ ¼

Z

1

0

bdb
DNN;Zðb;E; hÞ

NtotðbÞ
1

sinðhÞDhDE
: ð7:20Þ

Here DNN,Z(b, E, h) is the number of events at a given impact parameter b in
which a nucleus (N, Z) is formed with kinetic energy in the region (E, E + DE)
and center-of-mass outgoing angle in the region (h, h + Dh), Ntot(b) is the total
number of simulated events for a given value of impact parameter. Expression (20)
describes the mass, charge, energy and angular distributions of the excited primary
fragments formed in a binary reaction. Subsequent de-excitation cascades of these
fragments via emission of light particles and gamma-rays in competition with
fission has to be taken into account for each event (for example, within the sta-
tistical model) leading to the final distributions of the detected reaction products.
All the parameters of the model can be found in Refs [7, 61] and those needed for
description of decay of excited primary fragments in Ref. [62]. The decay prop-
erties of excited nuclei (fission, light particle evaporation and gamma emission
widths as well as the corresponding survival probabilities) may be easily calcu-
lated within the standard statistical model on the Web page [40].

The model described above allows one to perform also a time analysis of the
studied reactions. Each tested event is characterized by the reaction time sint,
which is calculated as a difference between re-separation (scission) and contact
times. Those events, in which nuclei do not come in contact (e.g., for large impact
parameters), are excluded from the analysis. In such a way, for all the channels we
may calculate and analyze reaction-time distributions and the corresponding cross
sections drg/ dsint (see below).

7.4.2 Shell Effects in Low-Energy Damped Collisions

The most evident manifestation of the shell (cluster) effects in heavy ion collisions
are the quasi-fission phenomena discussed above. These effects should reveal
themselves also in transfer reactions at low collision energies. Damped collisions
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of heavy nuclei were studied extensively about 30 years ago (see, for example,
review [60] and references therein). Among others, there had been great interest in
the use of heavy-ion transfer reactions with actinide targets to produce new nuclear
species in the transactinide region [63–68]. The cross sections were found to
decrease very rapidly with increasing atomic number of surviving target-like
fragments, however, Fm and Md neutron-rich isotopes were produced at the level
of 0.1 lb. At the same time it was also observed that the nuclear structure might
strongly influence the nucleon flow in the low-energy dissipative collisions of
heavy ions. For example, in 238U-induced reactions on 110Pd at about 6 MeV/u
bombarding energy an enhanced proton flow along the neutron shells N1 = 82 and
N2 = 126 (reached almost simultaneously in target-like and projectile-like frag-
ments) was observed in the distribution of binary reaction products [69]. Unfor-
tunately, up to now, most experimental studies of damped collisions were
performed at rather high incident energies (well-above the Coulomb barrier) and
were not aimed at revealing the shell effects.

New interest in the damped collision of heavy nuclei is conditioned first of all
by a search for new ways for production of neutron rich superheavy (SH) nuclei
and isotopes. SH elements obtained in ‘‘cold’’ fusion reactions with Pb or Bi target
[70] are situated along the proton drip line being very neutron-deficient with a
short half-life. In fusion of transactinides with 48Ca more neutron-rich SH nuclei
were produced [71] with much longer half-life. But they are still far from the
center of the predicted ‘‘island of stability’’ formed by the neutron shell around
N = 184 and proton shell at Z = 114 and/or Z = 120. In the ‘‘cold’’ fusion, the
cross sections for formation of SH nuclei decrease very fast with increasing charge
of the projectile and become less than 1 pb for Z C 112. On the other hand,
heaviest transactinide, Cf, which can be used as a target in the second method,
leads to the SH nucleus with Z = 118 being fused with 48Ca. Using the next
nearest elements instead of 48Ca (e.g., 50Ti, 54Cr, etc.) in fusion reactions with
actinides is expected less encouraging, though experiments of such a kind are
already in progress. In this connection other ways for the production of SH ele-
ments in the region of the ‘‘island of stability’’ should be searched for [72].

In [61, 73] low-energy collisions of very heavy nuclei (238U + 238U,
232Th + 250Cf, and 238U + 248Cm) have been studied and a possibility for the
formation of the surviving superheavy long-lived neutron-rich nuclei has been
predicted as a matter of principle (see below). It was found that the charge and
mass transfers strongly depend on the shell structure of the multi-dimensional
potential energy surface and also on the values of the fundamental parameters of
nuclear dynamics, such as nuclear viscosity and nucleon transfer rate, which are
not well determined yet. In spite of the rather good agreement of recent experi-
mental data on 238U + 238U collisions [74] with our predictions, more detailed
experiments have to be performed in order to find out and to study the shell effects
in multi-nucleon transfer reactions in low-energy damped collisions of heavy ions.

In this connection we proposed to explore the effect of the ‘‘inverse’’ (anti-
symmetrizing) quasi-fission process in experiments with less heavy nuclei, in
particular, in collisions of 160Gd with 186W [75]. The choice of the projectile and
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target nuclei is conditioned by the fact that these nuclei are located just between
the closed shells (Z1 = 50, N1 = 82) and (Z2 = 82, N2 = 126), which, as we
expect, play a significant role in the multi-nucleon transfer processes. Comparison
of theoretical predictions with experimental probability for multi-nucleon transfer
(which can be measured for this reaction much easier as compared to U + Cm
collisions, for example) may be used then for a realistic estimation of a possibility
for the synthesis of long-living neutron-rich SH nuclei in low-energy damped
collisions of heavy ions (including those induced by the accelerated neutron-rich
fission fragments).

In Fig. 7.14 the multi-dimensional adiabatic driving potential is shown in the
spaces of ‘‘elongation–mass asymmetry’’ and ‘‘elongation–deformation’’ for the
axially symmetric nuclear system formed in the collision of 160Gd + 186W. The
deep valley corresponding to formation of well bound nuclei 138Ba and 208Pb is
clearly visible on the surface. There is no potential pocket for this heavy nuclear
system. However, as can be seen from Fig. 7.14, the potential energy at contact
point is rather flat (particularly along the deformation coordinate), which means
that the nuclei may keep in touch a long time due to fluctuations and nucleon
transfer. One of the ‘‘trajectories’’ showing evolution of the nuclear system formed
in the collision of 160Gd with 186W at zero impact parameter and 460 MeV center-
of-mass energy (corresponding to the Bass barrier [5] of this combination) is
presented in Fig. 7.15. Moving along this trajectory the nuclear system was in
contact during 0.5 9 10-20 s, the time from the moment when colliding nuclei
(Gd + W, g = 0.075) came in touch in the entrance channel and up to the moment
of scission (at g = 0.013) in the exit one.

In Fig. 7.16a the potential energy of this nuclear system is shown at contact
configuration depending on mass asymmetry (mass transfer). As can be seen from
Fig. 7.14b the potential energy depends strongly on deformations of touching
fragments. However, even for rather large deformations the shell effects are still
quite visible. In particular, the configuration of 138Ba + 208Pb has much lower

(a) (b)

Fig. 7.14 Potential energy surface of the nuclear system formed in collision of 160Gd + 186W
[75]. a Dependence on elongation and mass asymmetry (deformation is fixed at d = 0.2);
b dependence on elongation and deformation at fixed value of the mass asymmetry g = 0.075
(entrance channel)
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potential energy as compared with nearest ones due to the influence of the neutron
(N = 82 and N = 126) and proton (Z = 82) shells. The mass distributions of the
primary fragments in the 160Gd + 186W reaction calculated with and without
the shell corrections to the potential energy are shown in Fig. 7.16b (mass
distribution of the final fragments is rather close, see Ref. [75]). Only the events
with energy loss higher than 15 MeV were taken into account to exclude a
contribution from the quasi-elastic scattering. As can be seen at near barrier col-
lision energies, the shell effects really play a very important role and may increase
by two orders of magnitude the yield of the reaction products even for a transfer of
20 nucleons.

Fig. 7.15 Typical trajectory
showing evolution of the
nuclear system formed in
collision of 160Gd + 186W at
460 MeV center-of mass
energy (zero impact parame-
ter) in the space of ‘‘elonga-
tion–deformation–mass
asymmetry’’ [75]

(a) (b)

Fig. 7.16 a Potential energy at contact configuration of different fragments formed in collision
of 160Gd with 186W. The deformation is fixed at d = 0.1 (upper curves) and d = 0.3 (lower
curve). The dashed curve shows the potential energy without shell corrections at d = 0.1.
b Primary fragment mass distribution in the 160Gd + 186W reaction at 460 MeV center-of mass
energy calculated with (solid) and without (dashed histogram) shell corrections in potential
energy [75]
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For more asymmetric combinations (such as Ca + Cm and so on) the shell
effects, caused by the magic nuclei located between the masses of colliding partners
(132Sn and 208Pb in the case of Ca + Cm collision), reveal themselves in the
quasi-fission processes (see above Sect. 2.4). The process we discuss here is rather
similar. However there are two important distinctions. First, CN is not formed at all
in collision of very heavy nuclei. This is not a fusion–fission process as in the case of
Ca + Cm collision but a deep inelastic (damped) reaction. Second, the magic nuclei
(Z = 50, N = 82) and (Z = 82, N = 126) are located here from the outside of the
colliding partners. Thus the shell effects drive the system to increase the initial mass
asymmetry and decay in the two (light and heavy) massive clusters—that is why we
name this process ‘‘inverse (antisymmetrizing) quasi-fission’’. Note that the
macroscopic part of the adiabatic potential energy always drives heavy nuclear
system to symmetric configuration (see, for example, Fig. 7.9).

This process has not yet been studied experimentally, even though experimental
observation of the effect is quite important! First, it would give us a better
understanding of the low-energy dynamics of heavy nuclear systems and clarify to
what extend the shell effects (clusterization) influence the mass transfer in damped
collisions of heavy ions. Second, the experimentally measured enhancement factor
in the yield of closed shell nuclei might allow us to make more accurate predic-
tions (or simple extrapolations) of this effect for other nuclear combinations,
which are more difficult for experimental study. If experimental observations
confirm our predictions, then the production of long-living neutron-rich SH nuclei
in collisions of transuranium ions will be really possible due to a large mass and
charge rearrangement in the inverse (anti-symmetrizing) quasi-fission process
caused by the Z = 82 and N = 126 nuclear shells (see below).

7.4.3 Production of New Heavy Neutron Rich Nuclei
at the ‘‘North-East’’ Part of Nuclear Map

During the last years the study of exotic nuclei located far from the stability line
has been of increased interest from experimental and theoretical point of view and
the progress in the investigation of these nuclei has been impressive. Nowadays,
nuclei far from stability are accessible for experimental study in almost any region
of the map of nuclides. The only exception is the north-east part where a vast
‘‘blank spot’’ is still unexplored. The present limits of the upper part of the nuclear
map is very close to stability while the unexplored area of heavy neutron-rich
nuclides (to the east of the stability line) is extremely important for nuclear
astrophysics investigations and, in particular, for the understanding of the r-pro-
cess of astrophysical nucleo-genesis.

According to a recent report by the National Research Council of the National
Academy of Sciences (USA), the origin of heavy elements from iron to uranium
remains one of the 11 greatest unanswered questions of modern physics (see, for
example [76]), and it is likely to remain a hot research topic for the years to come.
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The r-process path is located (and interrupted by fission) just in the region of
unknown heavy nuclei with a large neutron excess. The neutron shell N = 126
(and Z * 70) is the last ‘‘waiting point’’ on this path (see Fig. 7.17). The half-lives
and other characteristics of these nuclei are extremely important for the r-process
scenario of the nucleosynthesis [77]. Study of the structural properties of nuclei
along the neutron shell N = 126 could also contribute to the present discussion of
the quenching of shell effects in nuclei with large neutron excess.

As a rule, new (neutron and proton rich) isotopes located far from the stability line
are obtained in the fragmentation (spallation) processes at intermediate colliding
energies, in fission of heavy nuclei and in low-energy fusion reactions. Two first
methods are extensively used today for the production of new isotopes in the light
and medium mass region including those which are close to the drip lines. Due to the
‘‘curvature’’ of the stability line, in the fusion reactions of stable nuclei we may
produce only proton rich isotopes of heavy elements. For example, in fusion of
neutron rich 18O and 186W nuclei one may get only the neutron deficient 204Pb
excited compound nucleus, which after evaporation of several neutrons shifts even
more to the proton rich side. This is the main reason for the impossibility to reach the
center of the ‘‘island of stability’’ (Z * 114, 120 and N * 184) in the superheavy
mass region in fusion reactions with stable projectiles. Because of that we also have
almost no information about neutron rich isotopes of heavy elements located in the
north-east part of the nuclear map—for example, there are 19 known neutron-rich
isotopes of cesium (Z = 55) and only 4 of platinum (Z = 78).

A novel idea was recently proposed in [78, 79] for the production of the heavy
neutron-rich nuclei (located along the closed neutron shell N = 126) via the

Fig. 7.17 Top part of the nuclear map. The r-process path is shown schematically. In the inset
the abundance of the elements is shown
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multi-nucleon transfer processes of low-energy collisions of heavy ions. It is well
known that in the deep inelastic (damped) collisions of heavy ions the relative
motion energy is quickly transformed into internal excitation of the projectile-like
and target-like reaction fragments which are de-excited then by evaporation of
light particles (mostly neutrons). This seems not to give us a chance for production
of nuclei with large neutron excess in such reactions. However, if the colliding
energy is rather low and the reaction Q-value is not very high, the formed primary
reaction fragments might be not very much excited and will descend to their
ground states after evaporation of a few neutrons thus remaining far from the
stability line. The questions are how big is the cross section for the multi-nucleon
transfer reactions at low colliding energies and could these reactions be considered
as an alternative way for the production of exotic nuclei.

For the production of heavy neutron rich nuclei located along the neutron
closed shell N = 126 we proposed to explore the multi-nucleon transfer reactions
in low-energy collisions of 136Xe with 208Pb. The idea is to use the stabilizing
effect of the closed neutron shells in both nuclei, N = 82 and N = 126, respec-
tively (see the left panel of Fig. 7.18). The proton transfer from lead to xenon
might be rather favorable here because the light fragments formed in such a
process are well bound (stable nuclei) and the reaction Q-values are almost zero,
for example, even for a transfer of six protons in the reaction
136Xe + 208Pb ? 142Nd + 202Os the Q-value is equal to -8.3 MeV.

The landscape of the calculated cross sections for the yield of the different
reaction fragments in low-energy collision of 136Xe with 208Pb is shown in the
right panel of Fig. 7.18, whereas the cross sections for production of final (after a
few neutron evaporation) heavy neutron-rich nuclei in this reaction at the incident
energy Ec.m. = 450 MeV, which is very close to the Coulomb barrier (Bass barrier
for this combination is about 434 MeV), is shown in Fig. 7.19.

Fig. 7.18 Left panel schematic picture for preferable proton transfer reactions in low-energy
collisions of 136Xe with 208Pb. Black rectangles indicate stable nuclei. Right panel landscape of
the total cross section d2r/dZdN (microbarns, numbers near the curves) for the production of
heavy fragments in collisions of 136Xe with 208Pb at Ec.m. = 450 MeV. The contour lines are
drawn over one order of magnitude
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Thus, we may conclude that the low-energy multi-nucleon transfer reactions
can really be used for the production of heavy neutron rich nuclei. The estimated
yields of neutron-rich nuclei are found to be rather high in such reactions (much
larger than in high-energy proton-removal nuclear reactions [80], see Fig. 7.19b)
and several tens of new nuclides can be produced, for example, in the near-barrier
collision of 136Xe with 208Pb. This finding may spur new studies at heavy-ion
facilities and should have significant impact on future experiments. Similar
reactions with uranium and thorium targets may be used for the production of new
neutron rich isotopes with Z C 82. Accelerated neutron rich fission fragments
(which hardly may be useful for the synthesis of superheavy nuclei in fusion
reactions due to low cross sections [72]) look especially promising for production
of new heavy neutron rich isotopes in low-energy multi-nucleon transfer pro-
cesses. In the 132Sn + 208Pb reaction, for example, the nuclei 202OsN=126 (six
protons transferred) and 200WN=126 (eight protons transferred) are produced with
the Q-values of +4 and -3 MeV, correspondingly, which should significantly
increase the cross sections. Note, that a possibility for the production of new heavy
isotopes in the multi-nucleon transfer reactions with neutron-rich calcium and
xenon beams at much higher energies (at which the shell effects do not play any
role) has been discussed also in [81] within the semiclassical approach.

Cross sections of one microbarn are quite reachable at the available experi-
mental setups. However the identification of new heavy nuclei obtained in the
multi-nucleon transfer reactions is a rather complicated problem. Most of these
nuclei undergo b- decay. The atomic mass could be determined by the time-of-
flight technique rather accurately. The identification of the atomic number of the
heavy nucleus is more difficult. The same is true for the determination of its half-
life, which is the most important property of the nuclei in the region of N * 126
(last waiting point in the r-process). In principle, it could be done by the regis-
tration of the electron cascade in the b--decay chain in coincidence with the

(a) (b)

Fig. 7.19 a Cross sections for production of heavy neutron-rich nuclei in collisions of 136Xe with
208Pb at Ec.m. = 450 MeV. Open circles indicate unknown isotopes. b Yield of nuclei with
neutron closed shell N = 126. The dashed curve shows the yield of the nuclei in high energy
proton removal process [80]
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gamma-rays of the daughter nuclei. Anyhow, the synthesis and study of these
nuclei (important for many reasons) is a challenge for low-energy nuclear physics
now and in forthcoming years.

7.5 Low-Energy Collisions of Heavy Actinide Nuclei
and Giant Nuclear Systems of Molecular Type

The idea to take advantage of the shell effects also for the production of SH nuclei
in the multi-nucleon transfer processes of low-energy heavy ion collisions was
proposed recently in [61, 73]. As shown above the shell effects play an important
role in fusion of heavy ions with actinide targets driving the nuclear system to the
quasi-fission channels (into the deep lead and tin valleys) and, thus, decreasing the
fusion probability. On the contrary, in the transfer reactions the same effects may
lead to enhanced yield of SH nuclei. It may occur if one of the heavy colliding
nuclei, say 238U, gives away nucleons transforming to the double magic 208Pb
nucleus (sui generis clustering), whereas another one, say 248Cm, accepts these
nucleons becoming superheavy in the exit channel—the so called ‘‘inverse’’
(anti-symmetrizing) quasi-fission process (see Sect. 4.2). The time analysis of the
damped collisions of actinide nuclei is also very interesting. If the system
consisting of two very heavy nuclei holds in contact rather long time (forming a
giant nuclear molecule), then the positron line structure (emerging on top of the
background dynamical positron spectrum) may appear due to spontaneous e+e-

production from the supercritical electric field of a giant atom. This fundamental
QED process (‘‘decay of the vacuum’’) was predicted many years ago [82–84] and
was not observed yet experimentally.

7.5.1 Production of Superheavy Elements in Collisions of
Actinide Nuclei

The use of multi-nucleon transfer from heavy-ion projectile to an actinide target
nucleus for the production of new nuclear species in the transuranium region has a
long history. Light (carbon [85], oxygen and neon [86]), medium (calcium [63,
87], krypton and xenon [67, 68]) and very heavy (238U [64, 66]) projectiles were
used and heavy actinides (up to Mendelevium) have been produced in these
reactions. The cross sections were found to decrease very rapidly with increasing
transferred mass and atomic number of surviving target-like fragments. The level
of 0.1 lb was reached for chemically separated Md isotopes [66]. These experi-
ments seem to give not so great chances for production of new SH nuclei.
However, we may expect that the shell structure of the driving potential (deep
valleys caused by the double shell closure Z = 82 and N = 126) might
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significantly influence the nucleon rearrangement between primary fragments at
low collision energies.

In Fig. 7.20, the potential energies are shown depending on mass rearrangement
at contact configuration of the nuclear systems formed in 48Ca + 248Cm and
232Th + 250Cf collisions. The lead valley evidently reveals itself in both cases (for
48Ca + 248Cm system there is also a tin valley). In the first case (48Ca + 248Cm), a
discharge of the system into the lead valley (normal or symmetrizing quasi-fission)
is the main reaction channel, which decreases significantly the probability of CN
formation (see Sect. 2.4). In collisions of heavy nuclei (Th + Cf, U + Cm and so
on), one may expect that the existence of this valley may notably increase the yield
of surviving neutron-rich super-heavy nuclei complementary to the projectile-like
fragments around 208Pb (‘‘inverse’’ or anti-symmetrizing quasi-fission process).

Using the model described in Sect. 4 we calculated the yield of primary and
surviving fragments formed in the 232Th + 250Cf collision at 800 MeV center-of
mass energy. Low fission barriers of the colliding nuclei and of the most of the
reaction products jointly with rather high excitation energies of them in the exit
channel lead to very low yield of surviving heavy fragments. Indeed, sequential
fission of the projectile-like and target-like fragments dominate in these collisions,
see Fig. 7.21. At first sight, there is no chances to get surviving superheavy nuclei
in such reactions.

However the results of much longer calculations (shown in Fig. 7.22, where
the mass and charge distributions of surviving fragments obtained in the
232Th + 250Cf collision at 800 MeV are presented) demonstrate quite clear an
appearance of the pronounced shoulder in the mass distribution of the primary
fragments near the mass number A = 208. It is obviously explained by the
existence of a deep valley in the potential energy surface [see Fig. 7.20b], which
corresponds to the formation of doubly magic nucleus 208Pb. If one fragment
becomes lighter than lead, the potential energy sharply increases and the mass
distribution of the primary fragments decreases rapidly at A \ 208 ( A [ 274).
The same is true for the charge distribution at Z \ 82 (Z [ 106). As a result, in
the charge distribution of the surviving heavy fragments, Fig. 7.22b, there is also
a shoulder at Z * 106 and the yield of nuclei with Z [ 108 was found in this
reaction at the level of less than 1 pb. This result differs sharply from those

(a)
(b)

Fig. 7.20 Potential energy at contact ‘‘nose-to-nose’’ configuration for the two nuclear systems
formed in 48Ca + 248Cm a and 232Th + 250Cf b collisions. The spheroidal deformation is equal to
0.2 for both cases. The arrows indicate initial configurations and possible clusterization of
nuclear systems
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obtained in Ref. [88], where the reactions of such kind have been analyzed
within the parametrized diffusion model and the yield of heavy primary frag-
ments was found to diminish monotonically with increasing charge number. The
authors of Ref. [88] concluded, however, that the ‘‘fluctuations and shell effects
not taken into account may considerably increase the formation probabilities’’.
This is indeed the case.

A possibility for the production of more neutron rich SH isotopes is another
advantage of using multi-nucleon transfer processes. As mentioned above, in the
fusion reactions of stable nuclei we may produce only proton rich isotopes of
heavy elements and cannot approach the center of the ‘‘island of stability’’
(Z * 114, 120 and N * 184) in the superheavy mass region. At the same time,
we know that in low-energy damped collisions of heavy ions just the potential

Fig. 7.21 Schematic view of DI scattering in the 232Th + 250Cf collision at 800 MeV center-of-
mass energy and the calculated mass distributions of primary (solid histogram), survived and
sequential fission fragments (hatched areas)

(a) (b)

Fig. 7.22 Mass a and charge b distributions of primary (solid histograms) and surviving (dashed
histograms) fragments in the 232Th + 250Cf collision at 800 MeV center-of-mass energy [61].
Thin solid histogram in b shows the primary fragment distribution in the hypothetical reaction
248Cm + 250Cf
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energy surface regulates to a great extent the evolution of the nuclear system
driving it to the minimal values of potential energy in the multidimensional space
of collective variables.

The potential energy surface of the giant nuclear system formed in collision of
238U and 248Cm nuclei is shown in Fig. 7.23. It is calculated within the two-center
shell model for a configuration of two touching nuclei (with the fixed value of
dynamic deformation d = 0.2) depending on numbers of transferred protons and
neutrons. The initial configuration of 238U and 248Cm touching nuclei is shown by
the crosses. From this figure one sees that in the course of nucleon exchange the
most probable path of the nuclear system formed by 238U and 248Cm lies along the
line of stability with formation of SH nuclei which have many more neutrons as
compared with those produced in the ‘‘cold’’ and ‘‘hot’’ fusion reactions. Due to
fluctuations even more neutron rich isotopes of SH nuclei may be formed in such
transfer reactions.

The calculated cross sections for formation of primary fragments in low-energy
collisions of 238U with 248Cm target are shown in Fig. 7.24 by the counter lines in
logarithmic scale. As can be seen, the superheavy nuclei located very close to the
center of the island of stability may be produced in this reaction with rather high
cross section of one microbarn. Note one again that this region of the nuclear map
cannot be reached in any fusion reaction with stable projectiles and long-lived
targets. Of course, the question arises whether these excited superheavy primary

Fig. 7.23 Landscape of potential energy surface of the nuclear system formed in collision of
238U with 248Cm (contact configuration, dynamic deformation d = 0.2, contour lines are drawn
over 1 MeV energy interval) [72]. Open circles correspond to the most neutron-rich nuclei
synthesized in 48Ca induced fusion reactions while the filled ones show SH nuclei produced in the
‘‘cold’’ fusion with lead target. The dashed line shows the most probable evolution of the nuclear
system in multi-nucleon transfer process
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fragments produced in the transfer reactions may survive in competition with fast
fission which is a dominated decay channel for heavy nuclei.

Indeed, the yield of survived SH elements produced in the low-energy colli-
sions of actinide nuclei is rather low, though the shell effects (see two double
magic crossing in Fig. 7.24) give us a definite gain as compared to a monotonous
exponential decrease of the cross sections with increasing number of transferred
nucleons. In Fig. 7.25 the calculated EvR cross sections for production of SH
nuclei in damped collisions of 238U with 248Cm at 800 MeV center-of-mass energy

Fig. 7.24 Landscape of the
cross sections (microbarns,
logarithmic scale) for pro-
duction of primary fragments
in collision of 238U with
248Cm at 780 MeV center-
of-mass energy (contour lines
are drawn over one order of
magnitude). Vertical and
horizontal strips indicate the
magic proton and neutron
numbers

Fig. 7.25 Yield of primary and survived isotopes of SH nuclei produced in collisions of 238U
with 248Cm at 800 MeV center-of-mass energy. Experimental data for Cf (filled circles), Es (open
rectangles), Fm (open circles) and Md isotopes (filled rectangles) obtained in [66] are also
shown. Dashed line shows the expected locus of transfer reaction cross sections without the shell
effects. Open circles at the curve with Z = 106 indicate unknown isotopes of Siborgium and their
positions at the nuclear map (right panel)
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are shown along with available experimental data. As can be seen, really much
more neutron rich isotopes of SH nuclei might be produced in such reactions (new
isotopes of Siborgium (Z = 106) are shown in Fig. 7.25 by the open circles).
Reactions of such kind can be also used to fill the gap between the SH nuclei
produced in the ‘‘hot’’ fusion reactions with 48Ca and the continent of known
nuclei (see Fig. 7.17). This gap hinders one from obtaining a clear view of the
properties of SH nuclei in this region.

Certainly, the reliability of our predictions for the production of neutron-rich
superheavy nuclei in the processes with a transfer of several tens of nucleons is not
very high. Up to now very few experiments were performed on heavy-ion multi-
nucleon transfer reactions at energies close to the Coulomb barrier and the role of
the shell effects in these reactions is unknown. In this connection more detailed
experiments have to be done aimed on the study of the shell effects in the mass
transfer processes in low-energy damped collisions of heavy ions. The effect of
‘‘inverse’’ quasi-fission may be studied also in experiments with less heavy nuclei
(for example, in the collision of 160Gd with 186W as discussed above). The
experimental observation of this effect and the measurement of the corresponding
enhancement factor in the yield of closed shell nuclei might allow us to make
better predictions (and/or simple extrapolations) for heavier nuclear combinations
which are more difficult for experimental study.

7.5.2 Giant Nuclear Systems of Molecular Type and
Spontaneous Positron Formation

Direct time analysis of the reaction dynamics within the model described above
allows one to estimate also the lifetime of the composite system consisting of two
touching heavy nuclei with total charge Z * 180. Such ‘‘long-living’’ configu-
rations may lead to spontaneous positron emission from super-strong electric field
of giant quasi-atoms by a static QED process (transition from neutral to charged
QED vacuum) [82–84], see schematic Fig. 7.26. About 20 years ago an extended
search for this fundamental process was carried out and narrow line structures in
the positron spectra were first reported at GSI. Unfortunately these results were not
confirmed later, neither at ANL [89], nor in the last experiments performed at GSI
[90, 91] (see also hierarchical references therein). These negative findings, how-
ever, were contradicted by Jack Greenberg (private communication and supervised
thesis at Wright Nuclear Structure Laboratory, Yale university). Thus the situation
remains unclear, while the experimental efforts in this field have ended. The
principal problem was that there has been no trigger for long lifetimes of the giant
nuclear system involved! We hope that new experiments and new analysis, per-
formed according to the predictions of our dynamical model (see below), may shed
additional light on this problem and also answer the principal question: are there
some reaction features (triggers) testifying long reaction delays? If they exist, new
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experiments should be planned to detect the spontaneous positrons in the specific
reaction channels.

Of course, for such heavy nuclei there is most likely no attractive potential
pocket typical for lighter nuclear systems, the potential is repulsive everywhere.
However, the potential energy is not very steep in the region of the contact point
and two nuclei may keep in contact for a long time changing their deformations
and transferring nucleons to each other. Projections of the multi-dimensional
adiabatic potential energy surface onto the (R - g) and (R - d) planes are shown
in Fig. 7.27 along with a typical ‘‘trajectory’’ for the nuclear system formed in
collision of 232Th + 250Cf.

Fig. 7.26 Schematic picture for spontaneous positron formation in supercritical electric field of
long-lived giant quasi-atom. Here a sharp lifetime distribution is assumed

(a) (b)

Fig. 7.27 Potential energy surface for the nuclear system formed by 232Th + 250Cf as a function
of R and g (d = 0.22) (a), and R and d(g = 0.037) (b) [73]. A typical trajectories are shown by
the thick curves with arrows. Before nuclei reach the region of nuclear friction forces, they are in
their ground states (zero temperature) and no fluctuations occur. However when nuclei come in
contact they very quickly become well excited and fluctuations start to play a significant role
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The time analysis of the damped collisions of actinide nuclei shows that in spite
of non-existing attractive potential pocket the system consisting of two very heavy
nuclei may hold in contact rather long in some cases. The exchange of nucleons
forth and back between the colliding fragments and also the forth and back change
of deformations of the fragments act like a ‘‘glue’’. During the interaction time the
giant nuclear system moves over the multidimensional potential energy surface
with almost zero kinetic energy (result of large nuclear viscosity).

The total reaction time distribution, dr
dlogðsÞ (s denotes the time after the contact

of two nuclei), is shown in Fig. 7.28 for the 238U + 248Cm collision. We found that
the dynamic deformations are mainly responsible here for the time delay of the
nucleus–nucleus collision. Ignoring the dynamic deformations in the equations of
motion significantly decreases the reaction time, see Fig. 7.28a. With increase of
the energy loss and mass transfer the reaction time becomes longer and its dis-
tribution becomes more narrow, see Fig. 7.28b.

The lifetime of a giant composite system more than 10-20 s is quite enough to
expect positron line structure emerging on top of the dynamical positron spectrum
due to spontaneous e+e- production from the supercritical electric fields [82–84].
The absolute cross section for long events (s[ 10-20 s) is found to be about half
millibarn. It reaches the maximal value just at the beam energy ensuring the two
nuclei to be in contact, see Fig. 7.28c. Note that the same energy is also optimal
for the production of the most neutron-rich SH nuclei (see above). Of course, there
are some uncertainties in the used parameters, mostly in the value of nuclear
viscosity. However we found only a linear dependence of the reaction time on the
strength of nuclear viscosity, which means that the obtained reaction time distri-
bution is rather reliable, see logarithmic scale on both axes in Fig. 7.28a. Note also
that the time distribution shown in Fig. 7.28 corresponds to the time intervals
between contact and scission of reaction fragments. However the electron eigen-
states of the quasi-atom are weakly sensitive to a re-separation of nuclei (and

(a) (b) (c)

Fig. 7.28 Reaction time distributions for the 238U + 248Cm collision at 800 MeV center-of-mass
energy. Thick solid histograms correspond to all events with energy loss more than 30 MeV.
a Dashed histogram shows the effect of switching-off dynamic deformations. Thin histograms
show the reaction time distributions in the channels with formation of primary fragments with
Eloss [ 200 MeV and Eloss [ 200 MeV, hc.m. \ 70�, correspondingly. b Shaded histograms show
reaction time distributions in the channels with formation of primary fragments with
Eloss [ 200 MeV, hc.m. \ 70� and A B 220, A B 210 and A B 204 (numbers near the histo-
grams). c Cross section for events with interaction time longer than 10-20 s depending on beam
energy
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depend on the total charge Z1 + Z2) as long as the distance between nuclear centers
is shorter than the electron Compton wavelength (validating the monopole
approximation for the Dirac orbits, see [83, 84]). Thus the lifetime distribution of
giant quasi-atoms is even slightly wider than it is shown in Fig. 7.28a.

Formation of the background positrons in these reactions forces one to find
some additional trigger for the longest events. Such long events correspond to the
most damped collisions with formation of mostly excited primary fragments
decaying by fission, see Figs. 29a. However there is also a chance for production
of the primary fragments in the region of doubly magic nucleus 208Pb, which could
survive against fission due to nucleon evaporation. The number of the longest
events depends weakly on impact parameter up to some critical value. On the other
hand, in the angular distribution of all the excited primary fragments (strongly
peaked at the center-of-mass angle slightly larger than 90�) there is the rapidly
decreasing tail at small angles corresponding to the trajectories with non-zero
impact parameters at which the sticking giant nuclear system rotates almost half-
turn before scission, see Fig. 7.29b. Time distribution for the most damped events
(Eloss [ 150 MeV) in which a large mass transfer occurs and primary fragments
with masses A * 200 scatter in forward angles (hc.m. \ 70�) is rather narrow and
really shifted to longer time delay, see hatched areas in Fig. 7.28b.

Thus, we learned that a long enough lifetime distribution should exist for
making the vacuum decay in supercritical electrical fields possible for observation.
For the considered case of 238U + 248Cm collision at 800 MeV center-of-mass
energy, the detection of the surviving nuclei in the lead region at the laboratory
angles of about 25� and at the low-energy border of their spectrum (around
1,000 MeV for Pb) could be a real trigger for longest reaction time. Because of the
lifetime distribution the positron spectrum should not show a narrow line as
indicated in Fig. 7.26, but, instead, a very strong and broad line structure as that in
Fig. 7.30 should emerge.

(a) (b)

Fig. 7.29 Energy–time a and angular-time b distributions of primary fragments in the
238U + 248Cm collision at 800 MeV (Eloss [ 15 MeV). Landscape is shown in logarithmic scale-
lines are drawn over one order of magnitude. Quasi-elastic peak is removed
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7.6 Three-Cluster Configurations of Giant Nuclear Systems

In this section we discuss briefly a possibility for a simultaneous formation of three
heavy clusters in decay of heavy nuclear system (ternary fission). Today the term
‘‘ternary fission’’ is commonly used to denote the process of formation of light
charged particle accompanied fission [93]. This is a rare process (less than 1%)
relative to binary fission, see Fig. 7.31. As can be seen the probability of such a
process decreases sharply with increasing mass number of accompanied third
particle. These light particles are emitted almost perpendicularly with respect to

(a) (b)

Fig. 7.30 The effect of a nuclear time delay distribution f(T), here a Gaussian distribution, on
positron spectra. A mean time T ¼ 15� 10�21 s have been assumed. a In the subcritical system
Pb + Pb the interference pattern is damped out. b In the supercritical system U + U the spon-
taneous positron line is still present and will survive even for large deviations s. The figure is
taken from Ref. [92]

Fig. 7.31 Relative to binary
fission yields of ternary par-
ticles in the (nth, f) reactions
with thermal neutrons [94]
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the fission axis (equatorial emission) [93]. It is interpreted as an indication that the
light ternary particles are emitted from the neck region and are accelerated by the
Coulomb fields of both heavy fragments.

In contrast to such a process, the term ‘‘true ternary fission’’ is used for a
simultaneous decay of heavy nucleus into three fragments of not very different
mass [93]. Such decays of low excited heavy nuclei were not observed yet. The
true ternary fission of atomic nuclei has a long history of theoretical and experi-
mental studies. Early theoretical considerations based on the liquid drop model
(LDM) [95] showed that for heavy nuclei ternary fission produces a larger total
energy release in comparison to binary fission, but the actual possibility of ternary
fission is decided, in fact, by barrier properties and not by the total energy release.
It was found that the LDM ternary fission barriers for oblate (triangle) deforma-
tions are much higher as compared to the barriers of prolate configurations [96],
and it seems that the oblate ternary fission may be excluded from consideration.
Further study of this problem within the more sophisticated three-center shell
model [97] showed that the shell effects may significantly reduce the ternary
fission barriers even for oblate deformations of very heavy nuclei. However an
overall study of the problem was not performed yet, and the question about a
possibility for three-body clusterization of heavy nuclei remains unanswered both
in theory and in experiment. In the meanwhile, today it becomes possible to study
experimentally the properties and dynamics of formation and decay of superheavy
nuclei, for which the ternary fission could be rather probable (see below).

A three-body clusterization might appear in a vicinity of the scission point of
heavy nucleus (more exactly, on the path from the saddle point to scission), where
the shared nucleons DA may form a third cluster located between the two heavy
cores a1 and a2 (see Figs. 7.8, 7.12). In Fig. 7.32 schematic view is shown for
normal (two-body) and ternary fission starting from the configuration of the last
shape isomeric minimum of CN consisting of two magic tin cores and 36 extra
nucleons shared between the two cores and moving in the whole volume of the
mono-nucleus. In the two-body fission scenario these extra nucleons gradually
spread between the two fission fragments (or pass into one of the fragments if the
other is a magic nucleus) with formation of two nuclei in the exit channel (Sn and
Dy in our case, see the fission path in Fig. 7.12, mass-symmetric fission of this CN
is energetically less favorable). However there is a chance for these extra nucleons
DA to concentrate in the neck region between the two cores and form finally the
third fission fragment (36S in our case).

Fig. 7.32 Schematic view of the regular (with formation of 130Sn and 166Dy nuclei in accordance
with Fig. 7.12) and ternary fission of superheavy nucleus 296116
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It is clear that there are too many collective degrees of freedom needed for
proper description of potential energy of a nuclear configuration consisting of three
deformed heavy cores. Here we restricted ourselves by consideration of potential
energy of a three-body axially symmetric configuration (shown in Fig. 7.33) as a
function of three variables, a1, a3 and elongation R at fixed dynamic deformations
of the fragments (d1 = d2 = d3 = d). Note that the third fragment may appear
only when the elongation of the whole system is rather large to involve the two
cores a1 and a2, i.e. at R [ R(a1) + R(a2). Up to this distance the two-body and
three-body potential energies coincide and a3 = DA nucleons spread over the
whole volume (see Figs. 7.5 and 7.32).

Potential energy of the three-body contact configuration at R = R(A1) +
2R(A3) + R(A2) is shown in Fig. 7.34 for 248Cm at fixed dynamic deformation
d = 0.1. To make the result quite visible we minimized the potential energy over
the neutron numbers of the fragments, N1 and N3, and plot the energy as a function
of Z1 and Z3. As can be seen, this nucleus preferably decays in two (tin-like and
palladium-like) fragments (Z3 * 0). The potential energy smoothly increases with
increasing charge of the third nucleus and no other local deep minima appear on
the potential energy surface. Though the combinations like Te–O–Kr or Sn–O–Sr
are located not so high up on the potential energy surface (10–20 MeV), and they
are quite reachable due to fluctuations at several tens of MeV of excitation energy.

We calculated also the three-dimensional potential energy V(R, d, A3) for the
three-body symmetric configuration with two equal cores a1 = a2 (and, thus, with
two equal fragments A1 = A2 in the exit fission channels) trying to find a pref-
erable path for ternary fission and estimate how larger is the barrier for three-body
decay as compared to binary fission. For better visualization we plot the calculated

Fig. 7.33 Three-body axi-
ally symmetric configuration
of heavy nuclear system

Fig. 7.34 Landscape of the potential energy surface for three-body clusterization of 248Cm
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potential energy V(R, d, A3) as a function of (R/R0 - 1)cos(a3) and ðR=R0 � 1Þ
sin ða3Þ at fixed dynamic deformation d, where a3 = pA3/100 and R0 is the radius
of sphere of equivalent volume (CN).

The macroscopic (LDM) part of the potential energy for 248Cm is shown in left
panel of Fig. 7.35 at d = 0.2. The binary fission of 248Cm evidently dominates
because after the barrier the potential energy is much steeper just in the binary exit
channel (right bottom corner, A3 * 0). Emission of light third particle is possible
here but not the true ternary fission. The shell correction (which makes deeper the
ground state of this nucleus by about 3 MeV) does not change distinctively the
total potential energy (see the right panel of Fig. 7.35). Nevertheless the experi-
ments aimed on observation of real ternary fission of actinide nuclei (with for-
mation of heavy third fragment) are currently in progress [98, 99].

We found, however, that the situation changes for heavier transactinide nuclei.
With increasing mass number of heavy nucleus more and more possibilities for its
clusterization appear. In the case of superheavy nuclei the macroscopic potential
energy does not lead to any barrier at all (neither in binary nor in ternary exit
channel) and stability of these nuclei is determined completely by the shell cor-
rections. In Fig. 7.36 the calculated potential energy is shown for superheavy

Fig. 7.35 Potential energy for ternary fission of 248Cm. Macroscopic part of potential energy and
the total one (LDM plus shell corrections) are shown at left and right panels, respectively,
depending on elongation and mass of third fragment (italic numbers) at A1 = A2. Contour lines
are drawn over 3 MeV

Fig. 7.36 Potential energy for ternary fission of superheavy nucleus 296116. Macroscopic part of
potential energy and the total one are shown at left and right panels, respectively, depending on
elongation and mass of third fragment (italic numbers) at d = 0.2. Contour lines are drawn over
5 MeV
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nucleus 296116 in the space of ‘‘elongation–A3’’ at A1 = A2. In contrast with
248Cm, in this case a real possibility for ternary fission appears with formation of
third fragment A3 * 30 and two heavy fragments A1 = A2 * 130. The ternary
fission valley is quite well separated by the potential ridge from the binary fission
valley. This means that the ternary fission of 296116 nucleus into the ‘‘tin–sulfur–
tin’’ combination should dominate as compared with other true ternary fission
channels of this nucleus.

More sophisticated consideration of the multi-dimensional potential energy
surface is needed to estimate the ‘‘ternary fission barrier’’ accurately. However, as
can be seen from Fig. 7.36, the height of the ternary fission barrier is not
immensely high. It is quite comparable with the regular fission barrier because the
ternary fission starts in fact from the configuration of the shape isomeric state
which is located outside from the first (highest) saddle point of superheavy nucleus
296116 (see Fig. 7.12).

Conditions for the three-body fission (quasi-fission) are even better in the giant
nuclear systems formed in low-energy collisions of actinide nuclei. In this case the
shell effects significantly reduce the potential energy of the three-cluster config-
urations with two strongly bound lead-like fragments. In Fig. 7.37 the landscape of
the potential energy surface is shown for a three-body clusterization of the nuclear
system formed in collision of U + U. Here the potential energy was calculated as a
function of three variables, Z1, Z3 and R at fixed (equal) dynamic deformations of
the fragments being in contact (R1 + 2R3 + R2 = R).

As can be seen, the giant nuclear system, consisting of two touching uranium
nuclei, may split into the two-body exit channel with formation of lead-like
fragment and complementary superheavy nucleus—the so-called anti-symmetriz-
ing quasi-fission process which may lead to an enhanced yield of SH nuclei in
multi-nucleon transfer reactions (see above). Beside the two-body Pb–No clus-
terization and the shallow local three-body minimum with formation of light
intermediate oxygen-like cluster, the potential energy has the very deep minimum

Fig. 7.37 Landscape of potential energy of three-body configurations formed in collision of
238U + 238U
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corresponding to the Pb–Ca–Pb-like configuration (or Hg–Cr–Hg) caused by the
N = 126 and Z = 82 nuclear shells.

Thus we found that for superheavy nuclei the three-body clusterization (and,
hence, real ternary fission with a heavy third fragment) is quite possible. The
simplest way to discover this phenomena is a detection of two tin or xenon-like
clusters in low energy collisions of medium mass nuclei with actinide targets, for
example, in 64Ni + 238U reaction. Note, that the experiments, in which the two-
body quasi-fission processes have been studied in collisions of 48Ca with 248Cm
[44] (see Fig. 7.11), were not aimed originally on a search of the three-body
reaction channels. This should be done with a new experimental procedure. These
unusual ternary decays (a new type of radioactivity) could be searched for also
among the spontaneous fission events of superheavy nuclei.

The extreme clustering process of formation of two lead-like double magic
fragments in collisions of actinide nuclei is also a very interesting subject for
experimental study. Such measurements, in our opinion, are not too difficult. It is
sufficient to detect two coincident lead-like ejectiles (or one lead-like and one
calcium-like fragments) in U + U collisions to conclude unambiguously about the
ternary fission of the giant nuclear system (in this connection the combination of
233U + 233U is more preferable). More flat radial dependence of the potential
energy (as compared with a two-body system) is another feature of the three body
clusterization, see Fig. 7.38. This means that decay of U + U-like nuclear system
into the energetically preferable (and more stable in some sense) three-body
configurations may also significantly prolong the reaction time, which (among
other things) could be important for spontaneous positron formation in super-
strong electric field (see Sect. 5.2).

7.7 Conclusion

As we know clustering is a common feature of many body systems. In each
case it is nothing else but formation of energetically favorable clusters of

Fig. 7.38 Radial dependence
of the potential energy of two
uranium nuclei (solid curve)
and of the three-body nuclear
configuration formed in col-
lision of 238U + 238U (dashed
curve)
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particles: binding energy of particles inside the cluster is higher than in medium.
As a result, due to conservation of total energy, the binding energy between
clusters becomes lower. Due to the shell effects, inside the nuclear matter
(depending on its size) the nucleons prefer to form the compact strongly bound
double magic fragments, 4He, 16O, 48Ca, 132Sn, 208Pb. In some cases the
binding energy between these fragments becomes positive leading to a cluster
decay of heavy nuclei (a-decay, heavy-ion radioactivity, fission). Bound (or long-
lived) two-body cluster configurations of heavy actinide nuclei reveal themselves
as the shape isomers which are the most obvious and vivid manifestation of the
two-body clusterization of heavy nuclei.

The clustering phenomena caused by the shell effects play an important role
also in low-energy dynamics of nuclear systems. Fission and quasi-fission are the
most known processes of such kind. In damped multi-nucleon transfer reactions
the shell effects might be also rather important. As shown above, the use of these
effects may help us to synthesize new heavy neutron rich nuclei located at the
‘‘north-east’’ part of the nuclear map. The properties of these nuclei are extremely
important for the understanding the r-process of astrophysical nucleosynthesis of
heavy elements. The study of the structural properties of nuclei along the neutron
shell N = 126 would also contribute to the present discussion of the quenching of
shell effects in nuclei with large neutron excess.

This ‘‘blank spot’’ of the nuclear map can be filled neither in fission reactions
nor in fusion processes. Our calculations show that just the low-energy multi-
nucleon transfer reactions can be used for the production of heavy neutron rich
nuclei. Several tens of new isotopes of the elements with Z ¼ 70�80 (also those
located along the closed neutron shell N = 126) may be produced in the collision
of 136Xe with 208Pb with cross sections higher than one microbarn. It is clear, that
there are many other combinations of colliding nuclei. In particular, uranium and
thorium targets may be used, for example, for the production of new neutron rich
isotopes with Z C 82. Also the accelerated neutron rich fission fragments (which
are most likely useless for the synthesis of superheavy nuclei in fusion reactions)
can be used for the production of new heavy isotopes in low-energy multi-nucleon
transfer processes.

A possibility for the production of long-lived neutron-rich SH nuclei in colli-
sions of actinide ions is also very important finding. In these reactions a large mass
and charge transfer due to the inverse (anti-symmetrizing) quasi-fission process is
significantly enhanced by the Z = 82 and N = 126 nuclear shells, that is by the
release of strongly bound lead-like cluster with formation of SH residue. At first
stage, radiochemical identification of long-living 267,268Db and/or 271,272Bh iso-
topes, produced in the Th ? Cf or U ? Cm reactions, could be performed, for
example, to test this conclusion. If the found cross sections were to be higher than
several picobarns, then the subsequent experiments with such reactions could be
planned aiming at the production of SH nuclei just in the region of the ‘‘island of
stability’’.

The lifetime of a giant nuclear molecule (giant nuclear system) formed in low-
energy collision of two uranium-like nuclei may be in some cases rather long,
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more than 10-20 s. This time delay (in spite of absence of attractive potential
pocket) is caused by the dynamic deformations and nucleon exchange between two
fragments. The longest events correspond to higher energy loss and largest mass
transfer. The absolute cross section for long events ([10-20 s) was found to be
about half millibarn. It reaches the maximal value just at the low beam energy
ensuring two nuclei to be in contact. Thus, in such collisions one may really detect
the process of spontaneous e?e- production from the strong electric field if the
additional trigger for longest events will be used to decrease the contribution from
the background positrons. The coincident with positrons detection of the nuclei in
the lead region (30 nucleons transferred from uranium) with lowest kinetic energy
at forward laboratory angles could be a definite witness of a long reaction time.
The process of spontaneous positron formation in the strong electric field
(appearance of a vacation in the Dirac see) is a most fundamental QED process
which is not discovered yet experimentally.

We found that for superheavy nuclei the three-body clusterization (and, hence,
a real ternary fission with formation of a heavy third fragment) is quite possible.
The simplest way to discover this phenomena is a detection of two tin or xenon-
like clusters in low energy collisions of medium mass nuclei ðCa�NiÞ with
actinide targets. The extreme clustering process of formation of two lead-like
double magic fragments in collisions of actinide nuclei is also a very interesting
subject for experimental study. Such measurements, in our opinion, are not too
difficult. It is sufficient to detect two coincident lead-like ejectiles (or one lead-like
and one calcium-like fragments) in U ? U collisions to conclude unambiguously
about the ternary fission (quasi-fission) of the giant nuclear system.

Acknowledgment The work was supported by the DFG-RFBR collaboration project under
Grant No. 09-02-91334.

References

1. R. Vandenbosch, J.R. Huizenga, Nuclear Fission (Academic Press, New York, 1973)
2. A. Sandulescu, D.N. Poenaru, W. Greiner, Sov. J. Part.Nucl. 11, 528 (1980)
3. W. Greiner, D.N. Poenaru, see this volume of Lect. Notes Phys
4. V. Zagrebaev, W. Greiner, Int. J. Mod. Phys. E 17, 2199 (2008)
5. R. Bass, Nuclear Reactions with Heavy Ions (Springer, Berlin, 1980)
6. W. Scheid, R. Ligensa, W. Greiner, Phys. Rev. Lett. 21, 1479 (1968)
7. V. Zagrebaev, W. Greiner, J. Phys. G 31, 825 (2005)
8. G.F. Bertsch, Z. Phys. A289, 103 (1978)
9. W. Cassing, W. Nörenberg, Nucl. Phys. A 401, 467 (1983)

10. N. Takigawa, T. Rumin, N. Ihara, Phys. Rev. C 61, 044607 (2000)
11. J. Blocki, J. Randrup, W.J. Swiatecki, C.F. Tsang, Ann. Phys. (N.Y.) 105, 427 (1977)
12. V.I. Zagrebaev, A.V. Karpov, Y. Aritomo, M. Naumenko, W. Greiner, Phys. Part.Nucl. 38,

469 (2007)
13. K.A. Brueckner, J.R. Buchler, M.M. Kelly, Phys. Rev. 173, 944 (1968)
14. C. Ngô, B. Tamain, M. Beiner, R.J. Lombard, D. Mas, H.H. Deubler, Nucl. Phys. A252, 237

(1975)

312 V. Zagrebaev and W. Greiner



15. M. Brack, C. Guet, H.-B. Høakansson, Phys. Rep. 123, 275 (1985)
16. V. Yu. Denisov, W. Nörenberg, Eur. Phys. J. A 15, 375 (2002)
17. K. Pruess, W. Greiner, Phys. Lett. B 33, 197 (1970)
18. G.R. Satchler, W.G. Love, Phys. Rep. 55, 183 (1979)
19. G. Bertsch, J. Borysowicz, H. McManus, W.G. Love, Nucl. Phys. A 284, 399 (1977)
20. M. Lacombe, B. Loiseau, J.M. Richard, R. Vinh Mau, J. Côté, P. Pirès, R. de Tourreil, Phys.

Rev. C 21, 861 (1980)
21. N. Anantaraman, H. Toki, G.F. Bertsch, Nucl. Phys. A 398, 269 (1983)
22. E. Uegaki, Y. Abe, Prog. Theor. Phys. 90, 615 (1993)
23. S. Misicu, H. Esbensen, Phys. Rev. Lett. 96, 112701 (2006)
24. A.B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Wiley

Interscience, New York, 1967)
25. A. Bohr, B.R. Mottelson, Nuclear Structure, vol 2, Nuclear Deformations (W.A. Benjamin,

New York, 1974)
26. N. Rowley, G.R. Satchler, P.H. Stelson, Phys.Lett. B 254, 25 (1991)
27. V. Zagrebaev, V. Samarin, Phys. Atom. Nucl. 67, 1462 (2004)
28. J. Dobaczewski, H. Flocard, J. Treiner, Nucl. Phys. A 422, 103 (1983)
29. J.F. Berger, M. Girod, D. Gogny, Nucl. Phys. A 428, 23 (1984)
30. P.-G. Reinhard, M. Rufa, J. Maruhn, W. Greiner, J. Friedrich, Z. Phys. A 323, 13 (1986)
31. M. Bender, P.-H. Heenen, P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003)
32. H.J. Krappe, J.R. Nix, A.J. Sierk, Phys. Rev. C 20, 992 (1979)
33. A.J. Sierk, Phys. Rev. C 33, 2039 (1986)
34. P. Möller, J.R. Nix, W.D. Myers, W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995)
35. V.M. Strutinsky, Nucl. Phys. A 95, 420 (1967)
36. V.M. Strutinsky, Nucl. Phys. A 122, 1 (1968)
37. A. Sobiczewski, A. Gyurkovich, M. Brack, Nucl. Phys. A 289, 346 (1977)
38. J. Maruhn, W. Greiner, Z. Phys. A 251, 431 (1972)
39. S. Yamaji, H. Hofmann, R. Samhammer, Nucl. Phys. A 475, 487 (1988)
40. V.I. Zagrebaev et al., Low-energy Nuclear Knowledge Base, http://www.nrv.jinr.ru/nrv
41. V.I. Zagrebaev, Phys. Rev. C 64, 034606 (2001)
42. V.I. Zagrebaev, AIP Conf. Proc. 704, 31 (2004)
43. W.D. Myers, W. Swiatecki, Ann. Phys. 84, 186 (1974)
44. M.G. Itkis, J. Äystö, S. Beghini, A.A. Bogachev, L. Corradi, O. Dorvaux, A. Gadea, G.

Giardina, F. Hanappe, I.M. Itkis, M. Jandel, J. Kliman, S.V. Khlebnikov, G.N. Kniajeva, N.A.
Kondratiev, E.M. Kozulin, L. Krupa, A. Latina, T. Materna, G. Montagnoli, Y.T. Oganessian,
I.V. Pokrovsky, E.V. Prokhorova, N. Rowley, V.A. Rubchenya, A.Y. Rusanov, R.N.
Sagaidak, F. Scarlassara, A.M. Stefanini, L. Stuttge, S. Szilner, M. Trotta, W.H. Trzaska,
D.N. Vakhtin, A.M. Vinodkumar, V.M. Voskressenski, V.I. Zagrebaev, Nucl. Phys. A 734,
136 (2004)

45. S.M. Polikanov, V.A. Druin, V.A. Karnaukhov, V.L. Mikheev, A.A. Pleve, N.K. Skobelev,
V.G. Subbotin, G.M. Ter-Akopian, V.A. Fomichev, JETP 42, 1464 (1962)

46. W. von Oertzen, Physics of atomic nuclei, 66, 1591 (2006)
47. W. von Oertzen, see this volume of Lect. Notes Phys
48. P. Fröbrich, I.I. Gonchar, Phys. Rep. 292, 131 (1998)
49. F.G Werner, J.A. Wheeler, unpublished
50. K.T.R. Davies, A.J. Sierk, J.R. Nix, Phys. Rev. C 13, 2385 (1976)
51. J.M. Eisenberg, W. Greiner, Microscopic Theory of the Nucleus (North-Holland, Amsterdam,

1972)
52. W. Nörenberg, Phys. Lett. B 52, 289 (1974)
53. L.G. Moretto, J.S. Sventek, Phys. Lett. B 58, 26 (1975)
54. H. Risken, The Fokker Planck Equation (Springer, Berlin, 1984)
55. C.W. Gardiner, Stochastic Methods (Springer, Berlin, 1990)
56. S. Ayik, B. Schürmann, W. Nörenberg, Z. Phys. A 279, 174 (1976)
57. R. Schmidt, G. Wolschin, Z. Phys. A 296, 215 (1980)

7 Giant Nuclear Systems of Molecular Type 313

http://www.nrv.jinr.ru/nrv


58. V.I. Zagrebaev, Phys. Rev. C 67, 061601 (2003)
59. V.I. Zagrebaev, V.V. Samarin, W. Greiner, Phys. Rev. C 75, 035809 (2007)
60. W.U. Schröder, J.R. Huizenga, Damped Nuclear Reactions, in Treatise on Heavy-Ion Science

vol 2, ed. by D.A. Bromley (Plenum Press, New York, 1984), p.140
61. V. Zagrebaev, W. Greiner, J. Phys. G 34, 1 (2007)
62. V.I. Zagrebaev, Y. Aritomo, M.G. Itkis, Yu.Ts. Oganessian, M. Ohta, Phys. Rev. C 65,

014607 (2002)
63. E.K. Hulet, R.W. Lougheed, J.F. Wild, J.H. Landrum, P.C. Stevenson, A. Ghiorso, J.M.

Nitschke, R.J. Otto, D.J. Morrissey, P.A. Baisden, B.F. Gavin, D. Lee, R.J. Silva, M.M.
Fowler, G.T. Seaborg, Phys. Rev. Lett. 39, 385 (1977)

64. M. Schädel, J.V. Kratz, H. Ahrens, W. Brüchle, G. Franz, H. Gäggeler, I. Warnecke, G.
Wirth, G. Herrmann, N. Trautmann, M. Weis, Phys. Rev. Lett. 41, 469 (1978)

65. H. Freiesleben, K.D. Hildenbrand, F. Pühlhofer, W.F.W. Scneider, R. Bock, D.V. Harrach,
H.J. Specht, Z. Phys. A 292, 171 (1979)

66. M. Schädel, W. Brüchle, H. Gäggeler, J.V. Kratz, K. Sümmerer, G. Wirth, G. Herrmann, R.
Stakemann, G. Tittel, N. Trautmann, J.M. Nitschke, E.K. Hulet, R.W. Lougheed, R.L. Hahn,
R.L. Ferguson, Phys. Rev. Lett. 48, 852 (1982)

67. K.J. Moody, D. Lee, R.B. Welch, K.E. Gregorich, G.T. Seaborg, R.W. Lougheed, E.K. Hulet,
Phys. Rev. C 33, 1315 (1986)

68. R.B. Welch, K.J. Moody, K.E. Gregorich, D. Lee, G.T. Seaborg, Phys. Rev. C 35, 204 (1987)
69. W. Mayer, G. Beier, J. Friese, W. Henning, P. Kienle, H.J. Körner, W.A. Mayer, L. Müller,

G. Rosner, W. Wagner, Phys. Lett. B 152, 162 (1985)
70. S. Hofmann, G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000)
71. Y.T. Oganessian, V.K. Utyonkov, Y.V. Lobanov, F.S. Abdullin, A.N. Polyakov, I.V.

Shirokovsky, Y.S. Tsyganov, G.G. Gulbekian, S.L. Bogomolov, B.N. Gikal, A.N. Mezentsev,
S. Iliev, V.G. Subbotin, A.M. Sukhov, A.A. Voinov, G.V. Buklanov, K. Subotic, V.I.
Zagrebaev, M.G. Itkis, J.B. Patin, K.J. Moody, J.F. Wild, M.A. Stoyer, N.J. Stoyer, D.A.
Shaughnessy, J.M. Kenneally, P.A. Wilk, R.W. Lougheed, R.I. Il’kaev, S.P. Vesnovskii,
Phys. Rev. C 70, 064609 (2004)

72. V.I. Zagrebaev, W. Greiner, Phys. Rev. C 78, 034610 (2008)
73. V.I. Zagrebaev, Yu.Ts. Oganessian, M.G. Itkis, W. Greiner, Phys. Rev. C 73, 031602 (2006)
74. A.C.C. Villari, C. Golabek, W. Mittig, S. Heinz, S. Bhattacharyya, D. Boilley, R. Dayras, G.

De France, A. Drouart, L. Gaudefroy, L. Giot, A. Marchix, V. Maslov, M. Morjean, G.
Mukherjee, A. Navin, Yu. Penionzkevich, F. Rejmund, M. Rejmund, P. Roussel-Chomaz, C.
Stodel, M. Winkler, in Tours Symposium on Nuclear Physics VI, Tours, France, 2006, AIP
Conf. Proc. 891, 60 (2007)

75. V. Zagrebaev, W. Greiner, J. Phys. G 34, 2265 (2007)
76. E. Haseltine, http://www.discovermagazine.com/2002/feb/cover
77. C.E. Rolfs, W.S. Rodney, Cauldrons in the Cosmos (The University of Chicago Press,

Chicago, 1988) 469
78. V. Zagrebaev, W. Greiner, Phys. Rev. Lett. 101, 122701 (2008)
79. V. Zagrebaev, W. Greiner, J. Phys. G 35, 125103 (2008)
80. T. Kurtukian Nieto, Ph.D. Thesis, Universidade de Santiago de Compostela, 2007
81. C.H. Dasso, G. Pollarolo, A. Winther, Phys. Rev. Lett. 73, 1907 (1994)
82. J. Reinhardt, U. Müller, W. Greiner, Z. Phys. A 303, 173 (1981)
83. W. Greiner (ed.), Quantum Electrodynamics of Strong Fields (Plenum Press, New York,

1983)
84. W. Greiner, B. Müller, J. Rafelski, QED of Strong Fields, 2nd edn (Springer, Berlin, 1985)
85. R.L. Hahn, P.F. Dittner, K.S. Toth, O.L. Keller, Phys. Rev. C 10, 1889 (1974)
86. D. Lee, H. von Gunten, B. Jacak, M. Nurmia, Y.F. Liu, C. Luo, G.T. Seaborg, D.C. Hoffman,

Phys. Rev. C 25, 286 (1982)
87. A. Türler, H.R. von Gunten, J.D. Leyba, D.C. Hoffman, D.M. Lee, K.E. Gregorich, D.A.

Bennett, R.M. Chasteler, C.M. Gannett, H.L. Hall, R.A. Henderson, M.J. Nurmia, Phys. Rev.
C 46, 1364 (1992)

314 V. Zagrebaev and W. Greiner

http://www.discovermagazine.com/2002/feb/cover


88. C. Riedel, W. Nörenberg, Z. Phys. A 290, 385 (1979)
89. I. Ahmad, S.M. Austin, B.B. Back, R.R. Betts, F.P. Calaprice, K.C. Chan, A. Chishti, C.M.

Conner, R.W. Dunford, J.D. Fox, S.J. Freedman, M. Freer, S.B. Gazes, A.L. Hallin, Th.
Happ, D. Henderson, N.I. Kaloskamis, E. Kashy, W. Kutschera, J. Last, C.J. Lister, M. Liu,
M.R. Maier, D.M. Mercer, D. Mikolas, P.A.A. Perera, M.D. Rhein, D.E. Roa, J.P. Schiffer,
T.A. Trainor, P. Wilt, J.S. Winfield, M. Wolanski, F.L.H. Wolfs, A.H. Wuosmaa, A.R.
Young, J.E. Yurkon (APEX collaboration), Phys. Rev. C 60, 064601 (1999)

90. R. Ganz, R. Bär, A. Balanda, J. Baumann, W. Berg, K. Bethge, A. Billmeier, H. Bokemeyer,
H. Fehlhaber, H. Folgera, J. Foryciara, O. Fröhlich, O. Hartung, M. Rhein, M. Samek, P.
Salabura, W. Schön, D. Schwalm, K.E. Stiebing, P. Thee (EPoS II collaboration), Phys. Lett.
B 389, 4 (1996)

91. U. Leinberger, E. Berdermanna, F. Heine, S. Heinz, O. Joeres, P. Kienle, I. Koenig, W.
Koenig, C. Kozhuharov, M. Rhein, A. Schröter, H. Tsertos, (ORANGE Collaboration), Phys.
Lett. B 394, 16 (1997)

92. U. Müller, G. Soff, T. deReus, J. Reinhardt, B. Müller, W. Greiner, Z. Phys. A 313, 263
(1983)

93. C. Wagemans, Ternary Fission in The Nuclear Fission Process, Chap. 12, ed. by Cyriel
Wagemans (CRC Press, Boca Raton, 1991)

94. F. Gönnenwein, M. Wöstheinrich, M. Hesse, H. Faust, G. Fioni, S. Oberstedt, in Seminar on
Fission, Pont d’Oye IV, Belgium, 1999, edited by Cyriel Wagemans et al., (World Scientific,
Singapore, 1999) p. 59

95. W.J. Swiatecki, Second UN Int. Conf. on the Peaceful Uses of Atomic Energy, Geneva, 1958,
p. 651

96. H. Diehl, W. Greiner, Nucl. Phys. A229, 29 (1974)
97. A.R. Degheidy, J.A. Maruhn, Z. Phys. A 290, 205 (1979)
98. Y.V. Pyatkov, D.V. Kamanin, W.H. Trzaska, W. Von Oertzen, S.R. Yamaletdinov, A.N.

Tjukavkin, V.G. Tishcenko, V.G. Lyapin , Y.E. Penionzhkevich, A.A. Alexandrov, S.V.
Khlebnikov, Rom Rep Phy, 59(2), 569 (2007)

99. D.V. Kamanin, Yu.V. Pyatkov, A.N. Tyukavkin, Yu.N. Kopatch, Int. J. Mod. Phys. E17,
2250 (2008)

7 Giant Nuclear Systems of Molecular Type 315


	Clusters in Nuclei
	Preface
	Contents
	1 Cluster Radioactivity
	2 Coexistence of Cluster States and Mean-Field-Type States
	3 Alpha-cluster Condensations in Nuclei and Experimental Approaches for their Studies
	4 Cluster Structure of Neutron-Rich Nuclei Studied with Antisymmetrized Molecular Dynamics Model
	5 Di-Neutron Clustering and Deuteron-like Tensor Correlation in Nuclear Structure Focusing on 11Li
	6 Collective Clusterization in Nuclei and Excited Compound Systems: The Dynamical Cluster-Decay Model
	7 Giant Nuclear Systems of Molecular Type


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<


    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>



    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <>

    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
    /SKY <>

    /SUO <>
    /SVE <>
    /TUR <>

    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




