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Preface

The purpose of this book is to give the reader two things, to paraphrase Mark Twain:
Roots to know the basics of modeling networks and Wings to fly away and attempt
modeling other proposed systems of interest.

The Internet phenomenon is affecting us all in the way we communicate, conduct
business, and access information and entertainment. More unforeseen applications
are still to come. All of this is due to the existence of an efficient global high-
performance network that connects millions of users and moves information at a
high rate with small delay.

High-Performance Networks

A high-performance network is characterized by two performance measures band-
width and delay. Traditional network design focused mainly on bandwidth planning;
the solution to network problems was to add more bandwidth. Nowadays, we have
to consider message delay particularly for delay-sensitive applications such as voice
and real-time video. Both bandwidth and delay contribute to the performance of the
network. Bandwidth can be easily increased by compressing the data, by using links
with higher speed, or by transmitting several bits in parallel using sophisticated
modulation techniques. Delay, however, is not so easily improved. It can only be
reduced by the use of good scheduling protocols, very fast hardware and switching
equipment throughout the network. The increasing use of optical fibers means that
the transmission channel is close to ideal with extremely high bandwidth and low
delay (speed of light). The areas that need optimization are the interfaces and devices
that connect the different links together such as hubs, switches, routers, and bridges.
The goal of this book is to explore the design and analysis techniques of these
devices. There are indications, however, that the optical fiber channel is becom-
ing less than ideal due to the increasing bit rates. Furthermore, the use of wireless
mobile networking is becoming very popular. Thus new and improved techniques
for transmitting across the noisy, and band-limited, channel become very essential.
The work to be done to optimize the physical level of communication is devising
algorithms and hardware for adaptive data coding and compression. Thus digital
signal processing is finding an increasing and pivotal role in the area of networking.
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Scope

The three main building blocks of high-performance networks are the links, the
switching equipment connecting the links together, and the software employed at
the nodes and switches. The purpose of this book is to provide the basic techniques
for modeling and analyzing the last two components: the software and the switching
equipment. The book also reviews the design options used to build efficient switch-
ing equipment. For this purpose, different topics are covered in the book such as
Markov chains and queuing analysis, traffic modeling, interconnection networks,
and switch architectures and buffering strategies.

There are many books and articles dealing with continuous-time Markov chains
and queuing analysis. This is because continuous-time systems are thought to be
easily modeled and analyzed. However, digital communications are discrete in na-
ture. Luckily, discrete-time Markov chains are simple, if not even easier, to analyze.
The approach we chose to present Markov chains and queuing analysis is to start
with explaining the basic concepts, then explain the analytic and numerical tech-
niques that could be used to study the system. We introduce many worked examples
throughout to get a feel as to how to apply discrete-time Markov chains to many
communication systems.

We employ MATLAB � throughout this book due to its popularity among
engineers and engineering students. There are many equally useful mathematical
packages available nowadays on many workstations and personal computers such
as Maple � and Mathematica �.

Organization

This book covers the mathematical theory and techniques necessary for analyzing
telecommunication systems. Queuing and Markov chain analyses are provided for
many protocols that are used in networking. The book then discusses in detail ap-
plications of Markov chains and queuing analysis to model over 15 communica-
tions protocols and hardware components. Several appendices are also provided that
round up the discussion and provide a handy reference for the necessary background
material.

Chapter 1 discusses probability theory and random variables. There is discussion of
sample spaces and how to count the number of outcomes of a random experiment.
Also discussed is probability density function and expectations. Important distribu-
tions are discussed since they will be used for describing traffic in our analysis. The
Pareto distribution is discussed in this chapter, which is usually not discussed in
standard engineering texts on probability. Perhaps what is new in this chapter is the
review of techniques for generating random numbers that obey a desired probability
distribution. Inclusion of this material rounds up the chapter and helps the designer
or researcher to generate the network traffic data needed to simulate a switch under
specified conditions.
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Chapter 2 discusses random processes and in particular Poisson and exponen-
tial processes. The chapter also discusses concepts associated with random pro-
cesses such as ensemble average, time average, autocorrelation function, and cross-
correlation function.

Chapter 3 discusses discrete-time Markov chains. Techniques for constructing the
state transition matrix are explored in detail as well as how the time step is de-
termined since all discrete-time Markov chains require awareness of the time step
value. The chapter also discusses transient behavior of Markov chains and explains
the various techniques for studying it such as diagonalization, expansion of the ini-
tial distribution vector, Jordan canonic form, and using the z-transform.

Chapter 4 discusses Markov chains at equilibrium, or steady state. Analytic tech-
niques for finding the equilibrium distribution vector are explained such as finding
the eigenvalues and eigenvectors of the state transition matrix, solving difference
equations, and the z-transform technique. Several numerical techniques for finding
the steady-state distribution are discussed such as use of forward- and backward-
substitution, and iterative equations. The concepts of balance equations and flow
balance are also explained.

Chapter 5 discusses reducible Markov chains and explains the concept of closed
and transient states. The transition matrix for a reducible Markov chain is parti-
tioned into blocks and the closed and transient states are related to each partitioning
block. An expression is derived for the state of a Markov chain at any time instant
n and also at equilibrium. The chapter also discusses how a reducible Markov chain
could be identified by studying its eigenvalues and eigenvectors. It is shown that the
eigenvectors enable us to identify all sets of closed and transient states.

Chapter 6 discusses periodic Markov chains. Two types of periodic Markov chains
are identified and discussed separately. The eigenvalues of periodic Markov chains
are discussed and related to the periodicity of the system. Transient analysis of a
periodic Markov chain is discussed in detail and asymptotic behavior is analyzed.

Chapter 7 discusses discrete-time queues and queuing analysis. Kendall’s notation
is explained and several discrete-time queues are analyzed such as the infinite-sized
M/M/1 queue and the finite-sized M/M/1/B queue. Equally important queues
encountered in this book are also considered such as Mm/M/1/B and M/Mm/1/B
queues. The important performance parameters considered for each queue are the
throughput, delay, average queue size, loss probability, and efficiency. The chapter
also discusses how to analyze networks of queues using two techniques: the flow
balance approach and the merged approach.

Chapter 8 discusses the modeling of several flow control protocols using Markov
chains and queuing analysis. Three traffic management protocols are considered:
leaky bucket, token bucket, and the virtual scheduling (VS) algorithm.

Chapter 9 discusses the modeling of several error control protocols using Markov
chains and queuing analysis. Three error control using automatic repeat request
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algorithms are considered: stop-and-wait (SW ARQ), go-back-N (GBN ARQ), and
selective repeat protocol (SRP ARQ).

Chapter 10 discusses the modeling of several medium access control protocols using
Markov chains and queuing analysis. Several media access protocols are discussed:
IEEE Standard 802.1p (static priority), pure and slotted ALOHA, IEEE Standard
802.3 (CSMA/CD, Ethernet), Carrier sense multiple access with collision avoid-
ance (CSMA/CA), IEEE Standard 802.4 (token bus) & 802.5 (Token ring), IEEE
Standard 802.6 (DQDB), IEEE Standard 802.11 distributed coordination function
for ad hoc networks, and IEEE Standard 802.11 point coordination function for
infrastructure networks (1-persistent and p-persistent cases are considered).

Chapter 11 discusses the different models used to describe telecommunication traf-
fic. The topics discussed deal with describing the data arrival rates, data destinations,
and packet length variation. The interarrival time for Poisson traffic is discussed in
detail and a realistic model for Poisson traffic is proposed. Extracting the parameters
of the Poisson traffic model is explained given a source average and burst rates. The
interarrival time for Bernoulli sources is similarly treated and a realistic model is
proposed together with a discussion on how to determine the Bernoulli model pa-
rameters. Self-similar traffic is discussed and the Pareto model is discussed. Extract-
ing the parameters of the Pareto traffic model is explained given a source average
and burst rates. Modulated Poisson traffic models are also discussed such as the
on–off model and the Markov modulated Poisson process. In addition to modeling
data arrival processes, the chapter also discusses the traffic destination statistics for
uniform, broadcast, and hot-spot traffic types. The chapter finishes by discussing
packet length statistics and how to model them.

Chapter 12 discusses scheduling algorithms. The differences and similarities be-
tween scheduling algorithms and media access protocols are discussed. Scheduler
performance measures are explained and scheduler types or classifications are ex-
plained. The concept of max–min fairness is explained since it is essential for the
discussion of scheduling algorithms. Twelve scheduling algorithms are explained
and analyzed: first-in/first-out (FIFO), static priority, round robin (RR), weighted
round robin (WRR), processor sharing (PS), generalized processor sharing (GPS),
fair queuing (FQ), packet-by-packet GPS (PGPS), weighted fair queuing (WFQ),
frame-based fair queuing (FFQ), core-stateless fair queuing (CSFQ), and finally
random early detection (RED).

Chapter 13 discusses network switches and their design options. Media access tech-
niques are first discussed since networking is about sharing limited resources using
a variety of multiplexing techniques. Circuit and packet-switching are discussed
and packet switching hardware is reviewed. The basic switch components are ex-
plained and the main types of switches are discussed: input queuing, output queuing,
shared buffer, multiple input queue, multiple output queue, multiple input and output
queue, and virtual routing/virtual queuing (VRQ). A qualitative discussion of the
advantages and disadvantages of each switch type is provided. Detailed quantitative
analyses of the switches is discussed in Chapter 15.
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Chapter 14 discusses interconnection networks. Time division networks are dis-
cussed and random assignment time division multiple access (TDMA) is analyzed.
Several space division networks are studied: crossbar network, generalized cube
network (GCN), banyan network, augmented data manipulator network (ADMN),
and improved logical neighborhood network (ILN). For each network, a detailed
explanation is provided for how a path is established and, equally important, the
packet acceptance probability is derived. This last performance measure will prove
essential to analyze the performance of switches.

Chapter 15 discusses modeling techniques for input buffer, output buffer, and shared
buffer switches. Equations for the performance of each switch are obtained to de-
scribe packet loss probability, average delay within the switch, the throughput, and
average queue size.

Chapter 16 discusses the design of two next-generation high-performance network
switches. The first Promina 4000 switch developed by N.E.T. Inc. The second is
the VRQ switch which was developed at the University of Victoria and is being
continually improved. The two designs are superficially similar and a comparative
study is reported to show how high-performance impacted the design decisions in
each switch.

Appendix A provides a handy reference for many formulas that are useful while
modeling the different queues considered here. The reader should find this informa-
tion handy since it was difficult to find all the formulas in a single source.

Appendix B discusses techniques for solving difference equations or recurrence re-
lations. These recurrence relations crop up in the analysis of queues and Markov
chains.

Appendix C discusses how the z-transform technique could be used to find a closed-
form expression for the distribution vector s(n) at any time value through finding
the z-transform of the transition matrix P.

Appendix D discusses vectors and matrices. Several concepts are discussed such
as matrix inverse, matrix nullspace, rank of a matrix, matrix diagonalization, and
eigenvalues and eigenvectors of a matrix. Techniques for solving systems of linear
equations are discussed since these systems are encountered in several places in
the book. Many special matrices are discussed such as circulant matrix, diagonal
matrix, echelon matrix, Hessenberg matrix, identity matrix, nonnegative matrix, or-
thogonal matrix, plane rotation, stochastic (Markov) matrix, substochastic matrix,
and tridiagonal matrix.

Appendix E discusses the use of MATLAB in engineering applications. A brief
introduction to MATLAB is provided since it is one of the more common math-
ematical packages used.

Appendix F discusses design of databases. A database is required in a switch to
act as the lookup table for important properties of transmitted packets. Hashing and
B-trees are two of the main techniques used to construct the fast routing or lookup
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tables used in switches and routers. The performance of the hashing function and
average lookup delay are analyzed. The B-tree data structure is discussed and the
advantages of B-trees over regular binary trees and multiway trees are explained.

Advanced Topics

I invested special effort in making this book useful to practicing engineers and
students. There are many interesting examples and models throughout the book.
However, I list here some interesting topics:

• Chapter 1 discusses heavy-tailed distribution in Section 1.20 and generation of
random numbers in Section 1.35.

• Chapter 3 discusses techniques for finding higher powers for Markov chain state
transition matrix in Sections 3.13 and 3.14.

• Chapter 5 discusses reducible Markov chains at steady state in Section 5.7 and
transient analysis of reducible Markov chains in Section 5.6. Also, there is a dis-
cussion on how to identify a reducible Markov chain by examining its eigenvalues
and eigenvectors.

• Chapter 6 discusses transient analysis of periodic Markov chains in Section 6.15
and asymptotic behavior of periodic Markov chains in Section 6.15. Also, there
is a discussion on how to identify a periodic Markov chain and how to determine
its period by examining its eigenvalues.

• Chapter 7 discusses developing performance metrics for the major queue types.
• Chapter 8 discusses how to model three flow control protocols dealing with traffic

management.
• Chapter 9 discusses how to model three flow control protocols dealing with error

control.
• Chapter 10 discusses how to model three flow control protocols dealing with

medium access control.
• Chapter 11 discusses developing realistic models for source traffic using Poisson

description (Section 11.3.2), Bernoulli (Section 11.4.3), and Pareto traffic (Sec-
tion 11.8). There is also discussion on packet destination and length modeling.

• Chapter 12 discusses 12 scheduling algorithms and provides Markov chain anal-
ysis for many of them.

• Chapter 13 discusses seven types of switches based on their buffering strategies
and the advantages and disadvantages of each choice.

• Chapter 14 discusses many types of interconnection networks and also provides,
for the first time, analysis of the performance of each network.

Web Resource

The website http://www.ece.uvic.ca/∼fayez/Book, www.springer.com/978-0-387-
74437-7 contains information about the textbook and any related web resources.
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Errors

This book covers a wide range of topics related to communication networks and
provides an extensive set of analyses and worked examples. It is “highly probable”
that it contains errors and omissions. Other researchers and/or practicing engineers
might have other ideas about the content and organization of this book. We welcome
receiving any constructive comments and suggestions for inclusion in the next edi-
tion. If you find any errors, we would appreciate hearing from you. We also welcome
ideas for examples and problems (along with their solutions if possible) to include
in the next edition with proper citation.

You can send your comments and bug reports electronically to fayez@uvic.ca,
or you can fax or mail the information to

Dr. Fayez Gebali
Elec. and Comp. Eng. Dept.
University of Victoria Victoria, B.C., Canada V8W 3P6
Tel: (250) 721-6509
Fax: (250)721-6052.
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Chapter 1
Probability

1.1 Introduction

The goal of this chapter is to provide a review of the principles of probability,
random variables, and distributions. Probability is associated with conducting a ran-
dom experiment or trial and checking the resulting outcome.

Definition 1.1 Outcome: An outcome is any possible observation of a random
experiment.

For example, the random experiment might be flipping a coin and the outcome
would be heads or tails depending on whether the coin lands face up or down. The
possible outcomes of a random experiment could be discrete or continuous. An
example of a random experiment with discrete outcomes is rolling a die since the
possible outcomes would be the numbers 1, 2, . . . , 6. An example of a random
experiment with continuous outcomes is spinning a pointer and measuring its an-
gle relative to some reference direction. The angle we measure could be anything
between 0◦ and 360◦.

Definition 1.2 Sample space: The collection of all possible, mutually exclusive
outcomes is called the sample space S.

For the random experiment of rolling a die, the sample space will be the set

S = {1, 2, 3, 4, 5, 6} .

This sample space is discrete since the possible outcomes were discrete. For the
example of spinning a pointer, the sample space is specified by the equation

S = {θ | 0◦ ≤ θ < 360◦} .

Definition 1.3 Event: An event is a set of outcomes sharing a common
characteristic.

In that sense, an event could correspond to one or several outcomes of an exper-
iment. An event could be thought of as a subset of the sample space S. On the other
hand, an outcome is an element of the subset space.

F. Gebali, Analysis of Computer and Communication Networks,
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2 1 Probability

Definition 1.4 Event space: The event space is the collection of all possible,
mutually exclusive events of a random experiment.

In that sense, the event space is the partitioning of S into subsets that do not share
their elements.

For the case of die rolling experiment, we might be interested in the event E that
the outcome is an even number. Thus we can specify E : the number is even or E :
the number is odd. In that case, there are six outcomes and two events. The event
space will be composed of two events

S = {
E, E

}

Another event could be that the outcome is less than or equal to 2, say. In that
case, there are two events again for the experiment—E : the number = 1 or 2 and
E : the number > 2. The event space will also consist of two events.

1.2 Applying Set Theory to Probability

We saw above that sets are used to describe aspects of random experiments such as
sample space, outcomes, and events. Table 1.1 shows the correspondence between
set theory terminology and probability definitions.

Assume A and B are two events in a random experiment. These two events might
be graphically shown using the Venn diagram of Fig. 1.1. The event defined as
any outcome that belongs to either A or B is called the union of A and B and is
represented by the expression

A ∪ B

Figure 1.1(a) shows the union operation as the shaded area.
The event defined as any outcome that belongs to both A and B is called the

intersection of A and B and is represented by the expression

A ∩ B

Figure 1.1(b) shows the intersection operation as the shaded area.

Table 1.1 Correspondence
between set theory and
probability definitions

Probability Set theory

Outcome Element of a set
Sample space S Universal set U
Event Set
Impossible event Null set ∅



1.2 Applying Set Theory to Probability 3

Fig. 1.1 Venn diagram for
two events A and B in a
sample space S. (a) The
union operation A ∪ B. (b)
The intersection operation
A ∩ B

(b)(a)

B
A A

B

Definition 1.5 Complementary event: Given an event A, the complementary event
A is a set of all outcomes that do not belong to the set A.

Figure 1.2 shows that the universal set U is partitioned into two sets A and A.
These two sets are not overlapping in the sense that there is not a single outcome
that belongs to both A and A simultaneously.

We can write the following equations describing the operations on events.

A = U − A

A ∪ A = U

A ∩ A = Ø

De Morgan’s law for sets applies also for events and we can write

A ∩ B = A ∪ B

Example 1.1 Let U = {a, b, c, d, e, f, g, h, i, j, k}, A = {a, c, e, h, j},
and B = {c, d, e, f, k}. Find the events

1. A ∪ B
2. A ∩ B

Prove also that A ∩ B = A ∪ B.

A ∪ B = {a, c, d, e, f, h, j, k}
A ∩ B = {c, e}

Fig. 1.2 Event A and its
complementary event A (b)(a)

A A
A
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We also have

A ∩ B = {a, b, d, f, g, h, i, j, k}
A = {b, d, f, g, i, k}
B = {a, b, g, h, i, j}

A ∪ B = {a, b, d, f, g, h, i, j, k}

Hence De Morgan’s law is proved by direct counting.

Definition 1.6 Mutually exclusive events: Events A and B are said to be mutually
exclusive or disjoint events if they have no elements in common.

From that definition, we can write

A ∩ B = φ (1.1)

1.3 Counting Sample Space Points

In many discussions of probability, we need to determine the number of possible
outcomes of a given experiment or trial. The multiplication principle, permutations,
and combinations, to be discussed in the following sections, will prove useful.

1.4 The Multiplication Principle

The fundamental principle of counting is useful in finding the number of points in
the sample space. Suppose that the number of outcomes for doing experiment E1 is
x and the number of outcomes for doing experiment E2 is y. Then the number of
outcomes for doing experiment E1 followed by experiment E2 is the product x y.

Example 1.2 Assume there are 3 different ways for a data packet to travel through
network A and 15 different ways to travel through network B. Use the multiplication
principle to find the number of ways the packet could travel through network A
followed by network B.

The multiplication principle states that there are 3 × 15 or 45 ways for the packet
to travel through network A followed by network B.

We can generalize the multiplication principle as follows. Suppose that N1 is the
number of outcomes for doing experiment E1, and N2 is the number of outcomes for
doing experiment E2, . . ., and Nn is the number of outcomes for doing experiment
En . The number of outcomes of performing experiments E1, E2, . . ., En is given by
the product

N = N1 N2 · · · Nn
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Example 1.3 A die is thrown three times and the sequence of numbers is recorded.
Determine the number of 3-digit sequences that could result.

We perform three experiments where each one is the act of throwing the die.
One possible outcome would be the number sequence 312, which corresponds to
obtaining 3 on the first throw, 1 on the second, and 2 on the third. The number of
outcomes of each experiment is 6. Therefore, the total number of outcomes is

N = 6 × 6 × 6 = 216

Example 1.4 In time division multiplexing (also known as synchronous transmis-
sion mode), each slot in a frame is reserved to a certain user. That slot could be
occupied or empty when the user is busy or idle, respectively. Assuming the frame
consists of 10 slots, how many slot occupancy patterns can be received in a single
frame?

Each time slot can be treated as an experiment with only two outcomes, busy or
idle. The experiment is repeated 10 times to form the frame. The total number of
possible outcomes is

N = 210 = 1024

1.5 Permutations

Permutations arise when we are given n objects and we want to arrange them accord-
ing to a certain order. In other words, we arrange the objects by randomly picking
one, then the next, etc. We have n choices for picking the first item, n − 1 choices
for picking the second item, etc.

1.5.1 n Distinct Objects Taken n at a Time

The number of permutations of n distinct objects taken n at a time is denoted by
P(n, n) and is given by

P(n, n) = n! = n × (n − 1) × (n − 2) × · · · × 3 × 2 × 1

The function n! is called Factorial-n and can be obtained using the MATLAB func-
tion factorial(n).

Example 1.5 Packets are sent through the Internet in sequence; however, they are
received out of sequence since each packet could be sent through a different route.
How many ways can a 5-packet sequence be received?
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If we number our packets as 1, 2, 3, 4, and 5, then one possible sequence of
received packets could be 12543 when packet 1 arrives first followed by packet 2,
then packet 5, etc. The number of possible received packet sequences is given by

P(5, 5) = 5! = 120

1.5.2 n Distinct Objects Taken k at a Time

A different situation arises when we have n distinct objects but we only pick k
objects to arrange. In that case, the number of permutations of n distinct objects
taken k at a time is given by

P(n, k) = n × (n − 1) × · · · × (n − k + 1)

= n!

(n − k)!
(1.2)

Example 1.6 Assume that 10 packets are sent in sequence, but they are out of se-
quence when they are received. If we observe only a 3-packet sequence, how many
3-packet sequences could we find?

A possible observed packet arrival sequence could be 295. Another might be 024,
etc. We have n = 10 and k = 3.

P(10, 3) = 10!

7!
= 720

1.6 Permutations of Objects in Groups

Now, assume we have n objects in which n1 objects are alike, n2 objects are alike,
and so on, and nk objects are alike such that

n =
k∑

i=1

ni (1.3)

Here we classify the objects not by their individual labels but by the group in which
they belong. An output sequence will be distinguishable from another if the objects
picked happen to belong to different groups. As a simple example, suppose we have
20 balls that could be colored red, green, or blue. We are now interested not in
picking a particular ball, but in picking a ball of a certain color.
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In that case, the number of permutations of these n objects taken n at a time is
given by

x = n!

n1! n2! · · · nk!
(1.4)

This number is smaller than P(n, n) since several of the objects are alike and this
reduces the number of distinguishable combinations.

Example 1.7 Packets arriving at a terminal could be one of three possible service
classes: class A, class B, or class C. Assume that we received 10 packets and we
found out that there were 2 packets in class A, 5 in class B, and 3 in class C. How
many possible service class arrival order could we have received?

We are not interested here in the sequence of received packets. Instead, we are
interested only in the arrival order of the service classes.

We have n1 = 2, n2 = 5, and n3 = 3 such that n = 10. The number of service
class patterns is

x = 10!

2! 5! 3!
= 2, 520

In other words, there are 10 possibilities for receiving 10 packets such that ex-
actly 2 of them belonged to class A, 5 belonged to class B, and 3 belonged to class C.

Example 1.8 In time division multiplexing, each time slot in a frame is reserved to
a certain user. That time slot could be occupied or empty when the user is busy or
idle, respectively. If we know that each frame contains 10 time slots and 4 users
are active and 6 are idle, how many possible active slot patterns could have been
received?

We are interested here in finding the different ways we could have received 4
active slots out of 10 possible slots. Thus we “color” our slots as active or idle
without regard to their location in the frame.

We have n1 = 4 and n2 = 6 such that n = 10.

x = 10!

4! 6!
= 210

Example 1.9 A bucket contains 10 marbles. There are 5 red marbles, 2 green mar-
bles, and 3 blue marbles. How many different color permutations could result if we
arranged the marbles in one straight line?

We have n1 = 5, n2 = 2, and n3 = 3 such that n = 10. The number of different
color permutations is

x = 10!

5! 2! 3!
= 2, 520
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1.7 Combinations

The above permutations took the order of choosing the objects into consideration. If
the order of choosing the objects is not taken into consideration then combinations
are obtained.

The number of combinations of n objects taken k at a time is called the binomial
coefficient and is given by

C(n, k) =
(

n

k

)
= n!

k! (n − k)!
(1.5)

MATLAB has the function nchoosek (n,k) for evaluating the above equation
where 0 ≤ k ≤ n.

Example 1.10 Assume 10 packets are received with 2 packets in error. How many
combinations are there for this situation?

We have n = 10 and k = 2.

C(10, 2) =
(

10

2

)
= 10!

2! 8!
= 45

Example 1.11 Assume 50 packets are received but 4 packets are received out of
sequence. How many combinations are there for this situation?

We have n = 50 and k = 4.

C(50, 4) =
(

50

4

)
= 50!

4! 46!
= 230, 300

1.8 Probability

We define probability using the relative-frequency approach. Suppose we perform
an experiment like the tossing of a coin for N times. We define event A is when the
coin lands head up and define NA as the number of times that event A occurs when
the coin tossing experiment is repeated N times. Then the probability that we will
get a head when the coin is tossed is given by

p(A) = lim
N→∞

NA

N
(1.6)

This equation defines the relative frequency that event A happens.
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1.9 Axioms of Probability

We defined our sample space S as the set of all possible outcomes of an experiment.
An impossible outcome defines the empty set or null event ∅. Based on this we can
state four basic axioms for the probability.

1. The probability p(A) of an event A is a nonnegative fraction in the range 0 ≤
p(A) ≤ 1. This can be deduced from the basic definition of probability in (1.6).

2. The probability of the null event ∅ is zero, p(∅) = 0.
3. The probability of all possible events S is unity, p(S) = 1.
4. If A and B are mutually exclusive events (cannot happen at the same time), then

the probability that event A or event B occurs is

p(A ∪ B) = p(A) + p(B) (1.7)

Event E and its complement Ec are mutually exclusive. By applying the above
axioms of probability, we can write

p(E) + p(Ec) = 1 (1.8)

p(E ∩ Ec) = 0 (1.9)

1.10 Other Probability Relationships

If A and B are two events (they need not be mutually exclusive), then the probability
that event A or event B occurring is

p(A ∪ B) = p(A) + p(B) − p(A ∩ B) (1.10)

The probability that event A occurs given that event B occurred is denoted by
P(A|B) and is sometimes referred to as the probability of A conditioned by B. This
is given by

p(A|B) = p(A ∩ B)

p(B)
(1.11)

Now, if A and B are two independent events, then we can write p(A|B) = p(A)
because the probability of event A taking place will not change whether event B
occurs or not. From the above equation we can now write the probability that event
A and event B occurs is

p(A ∩ B) = p(A) × p(B) (1.12)

provided that the two events are independent.
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The probability of the complement of an event is given by

p(Ac) = 1 − p(A) (1.13)

1.11 Random Variables

Many systems based on random phenomena are best studied using the concept of
random variables. A random variable allows us to employ mathematical and numer-
ical techniques to study the phenomenon of interest. For example, measuring the
length of packets arriving at random at the input of a switch produces as outcome a
number that corresponds to the length of that packet.

According to references [1–4], a random variable is simply a numerical descrip-
tion of the outcome of a random experiment. We are free to choose the function
that maps or assigns a numerical value to each outcome depending on the situa-
tion at hand. Later, we shall see that the choice of this function is rather obvious
in most situations. Figure 1.3 graphically shows the steps leading to assigning a
numerical value to the outcome of a random experiment. First we run the experi-
ment, then we observe the resulting outcome. Each outcome is assigned a numerical
value.

Assigning a numerical value to the outcome of a random experiment allows us to
develop uniform analysis for many types of experiments independent of the nature
of their specific outcomes [1].

We denote a random variable by a capital letter (the name of the function) and
any particular value of the random variable is denoted by a lower case letter (the
value of the function).

The following are the examples of random variables and their numerical values.

1. Number of arriving packets at a given time instance is an example of a discrete
random variable N with possible values n = 0, 1, 2, · · · .

2. Tossing a coin and assigning 0 when a tail is obtained and 1 when a head is
obtained is an example of a discrete random variable X with values x ∈ {0, 1}.

3. The weight of a car in kilograms is an example of a continuous random variable
W with values in the range 1000 ≤ w ≤ 2000 kg typically.

4. The temperature of a day at noon is an example of random variable T . This
random variable could be discrete of continuous depending on the type of ther-
mometer (analog or digital).

Random
Experiment

Random
Outcome

Corresponding
Number: x

Mapping
Function

Fig. 1.3 The steps leading to assigning a numerical value to the outcome of a random experiment
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5. The atmospheric pressure at a given location is an example of a random vari-
able P . This random variable could be discrete of continuous depending on the
accuracy of the barometer (analog or digital).

1.12 Cumulative Distribution Function (cdf)

The cumulative distribution function (cdf) for a random variable X is denoted by
FX (x) and is defined as the probability that the random variable is less than or equal
to x . Thus the event of interest is X ≤ x and we can write

FX (x) = p(X ≤ x) (1.14)

The subscript X denotes the random variable associated with the function while
the argument x denotes a numerical value. For simplicity we shall drop the subscript
and write F(x) when we are dealing with a single random variable and there is no
chance of confusion. Because F(x) is a probability, it must have the same properties
of probabilities. In addition, F(x) has other properties as shown below.

F(−∞) = 0 (1.15)

F(∞) = 1 (1.16)

0 ≤ F(x) ≤ 1 (1.17)

F(x1) ≤ F(x2) whenx1 ≤ x2 (1.18)

p(x1 < X ≤ x2) = F(x2) − F(x1) (1.19)

The cdf is a monotonically increasing function of x . From the last equation, the
probability that x lies in the region x0 < x ≤ x0 + ε (where ε is arbitrarily small) is
given by

p(x0 < X ≤ x0 + ε) = F(x0 + ε) − F(x0) (1.20)

Thus the amount of jump in cdf at x = x0 is the probability that x = x0.

Example 1.12 Consider the random experiment of spinning a pointer around a cir-
cle and measuring the angle it makes when it stops. Plot the cdf F�(θ ).

Obviously, the random variable � is continuous since the pointer could point
at any angle. The range of values for θ is between 0◦ and 360◦. Thus the function
F�(θ ) has the following extreme values

FΘ (−0◦) = p (θ ≤ −0◦) = 0

FΘ (360◦) = p (θ ≤ 360◦) = 1

There is no preference for the pointer to settle at any angle in particular and the
cdf will have the distribution as shown in Fig. 1.4.



12 1 Probability

Fig. 1.4 Cumulative
distribution function for a
continuous random variable

360o

FΘ(θ)

1

θ0o

1.12.1 cdf in the Discrete Case

For the case of a discrete random variable, we make use of the cdf property in
(1.20). The cdf for a discrete random variable will be a staircase as illustrated in the
following example.

Example 1.13 Consider again the case of the spinning pointer experiment but define
the discrete random variable Q which identifies the quadrant in which the pointer
rests in. The quadrants are assigned the numerical values 1, 2, 3, and 4. Thus the
random variable Q will have the values q = 1, 2, 3, or 4.

Since the pointer has equal probability of stopping in any quadrant, we can write

p(q = 1) = 1

4

p(q = 2) = 1

4

p(q = 3) = 1

4

p(q = 4) = 1

4

The cdf for this experiment is shown in Fig. 1.5.

Fig. 1.5 Cumulative
distribution function for a
discrete random variable q

FQ(q)

0 1 2 3 4

1

0.5
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1.13 Probability Density Function (pdf)

The probability density function (pdf) for a continuous random variable X is de-
noted by fX (x) and is defined as the derivative of FX (x)

fX (x) = d FX (x)

dx
(1.21)

Because FX (x) is a monotonically increasing function of x , we conclude that
fX (x) will never be negative. It can, however, be zero or even greater than 1.

We will follow our simplifying convention of dropping the subscript when there
is no chance of confusion and write the pdf as f (x) instead of fX (x). By integrating
the above equation, we obtain

∫ x2

x1

f (x) dx = F(x2) − F(x1) (1.22)

Thus we can write

p(x1 < X ≤ x2) =
∫ x2

x1

f (x) dx (1.23)

The area under the pdf curve is the probability p(x1 < X ≤ x2)

f (x) has the following properties:

f (x) ≥ 0 for all x (1.24)
∫ ∞

−∞
f (x) dx = 1 (1.25)

∫ x

−∞
f (y) dy = F(x) (1.26)

∫ x2

x1

f (x) dx = p(x1 < X ≤ x2) (1.27)

f (x) dx = p(x < X ≤ x + dx) (1.28)

1.14 Probability Mass Function

For the case of a discrete random variable, the cdf is discontinuous in the shape of a
staircase. Therefore, its slope will be zero everywhere except at the discontinuities
where it will be infinite.

The pdf in the discrete case is called the probability mass function (pmf) [5]. The
pmf is defined as the probability that the random variable X has the value x and is
denoted by pX (x). We can write

pX (x) ≡ p(X = x) (1.29)
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θ

fΘ(θ)

0 q

pQ(q)

0

1/4

1/360o

360o

(a) (b)

4321

Fig. 1.6 Continuous and discrete random variables. (a) pdf for the continuous case. (b) pmf for
the discrete case

where the expression on the right-hand side (RHS) indicates the probability that the
random variable X has the value x .

We will follow our simplifying convention of dropping the subscript when there
is no chance of confusion and write the pmf as p(x) instead of pX (x). pX (x) has the
following properties:

pX (x) ≥ 0 for all x (1.30)
∑

x

pX (x) = 1 (1.31)

Example 1.14 The pointer spinning experiment was considered for the continuous
case (Example 1.12) and the discrete case (Example 1.13). Plot the pdf for the
continuous random variable � and the corresponding pmf for the discrete random
variable Q.

Figure 1.6(a) shows the pdf for the continuous case where the random variable
� measures the angle of the pointer. Figure 1.6(b) shows the pmf for the discrete
case where the random variable Q measures the quadrant where the pointer is
located.

1.15 Expected Value and Variance

The pdf and pmf we obtained above help us find the expected value E [X ] of a
random variable X . For the continuous case, the expected value is given by

E [X ] =
∫ ∞

−∞
x f (x) dx (1.32)

For the discrete case, the expected value is given by the weighted sum

E [X ] =
∑

i

xi p(xi ) (1.33)



1.15 Expected Value and Variance 15

The expectation is sometimes referred to as the first moment of the random vari-
able. Sometimes μ is used as another symbol for the expected value.

μ = E[X ]

The mean (m) of a set of random variable samples is defined as

m = 1

n

n∑

i=1

xi (1.34)

The mean is not exactly equal to the expected value μ since m changes its value
depending on how many samples we take. However, as n → ∞, the two quantities
become equal [5]. Higher moments are also useful and we define the variance, or
second central moment, of the random variable as

σ 2 = E
[
(X − μ)2

]
(1.35)

The variance describes how much of the mass of the distribution is close to the
expected value. A small value for σ 2 indicates that most of the random variable
values lie close to the expected value μ. In other words, small variance means that
the pdf is large only in regions close to the expected value μ. For an archery target
practice experiment, this might mean that most of the arrows were clustered together
and landed very close at some spot on the target (not necessarily dead center).

Conversely, a large variance means that the pdf is large for values of X far away
from μ. Again for the archery experiment, this means that most of the arrows were
not clustered together and landed at different spots on the target. The standard devi-
ation σ is simply the square root of the variance.

Example 1.15 Assume a random variable A from a binary random experiment in
which only two events result. A has two values a and 0. The probability that the
value a is obtained is p and the probability that the value 0 is obtained is q = 1− p.
Find the expected value of A.

This is a discrete random variable and the pmf for A is

p(a) =
{

q when A = 0
p when A = a

(1.36)

The expected value is obtained from (1.33) as

E[A] = q × 0 + p × a = p a (1.37)

Notice that the expected value will be between 0 and a since p is a nonnegative
fraction.
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1.16 Common Continuous RVs

We discuss in the following sections some continuous random variables that are
useful for network simulations. Discussion of common discrete random variables is
found in later sections.

1.17 Continuous Uniform (Flat) RV

The uniform random variable, or uniform distribution, usually arises in physical
situations where there is no preferred value for the random variable. For example,
the value of a signal during analog-to-digital conversion could lie anywhere within
each quantization level. This distribution is also useful in our studies because it is
often used to obtain random numbers that obey the more sophisticated distributions
to be discussed below. These random numbers are then considered to be the “traffic”
generated at the inputs of our communication networks.

A uniform distribution is characterized by a random variable that spans in the
range a–b such that a < b,

f (x) =
{

1/(b − a) a ≤ x < b
0 otherwise

(1.38)

and the corresponding cdf is given by

F(x) =
⎧
⎨

⎩

0 x < a
(x − a)/(b − a) a ≤ x < b
1 x ≥ b

(1.39)

Typically a = 0 and b = 1. Figure 1.7(a) shows the pdf for the uniform distribu-
tion and Fig. 1.7(b) shows the corresponding cdf. The mean and variance for X are
given by

Fig. 1.7 The uniform
distribution for a continuous
random variable. (a) The pdf
and (b) is the corresponding
cdf

FX(x)

1

x0 1

(b)

fX(x)

1

x0 1

(a)
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μ = b + a

2
(1.40)

σ 2 = (b − a)2

12
(1.41)

The following MATLAB code generates and plots a random variable having a
uniform distribution in the range 0 ≤ x < 1.

%uniform.m
n=1000 % number of samples is 1000
x=rand(1,n)
subplot(1,2,1)
plot(x,‘k’)
box off, axis square
xlabel(‘Sample index’), ylabel(‘Random number value’)
subplot(1,2,2)
hist(y)
title(‘pdf plot’)
box off, axis square
xlabel(‘Bins’), ylabel(‘Number of samples)

Figure 1.8 shows the result of running the code. Figure 1.8(a) shows the samples
and Figure 1.8(b) shows the histogram of the random variable. Notice that the distri-
bution of the samples in the different bins is almost equal. If we chose the number of
samples to be larger than 1000, the histogram would show more equal distribution
among the bins.
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Fig. 1.8 (a) One thousand samples of a random variable having the uniform distribution in the
range 0–1. (b) Histogram for the samples showing a uniform distribution
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1.18 Gaussian RV

This distribution arises in many random variables used in electrical engineering such
as the noise in a wireless channel. The Gaussian distribution applies for the case of a
continuous random variable X that is allowed to have the values ranging from −∞
to +∞. The pdf for this distribution is given by

f (x) = 1

σ
√

2π
e−(x−μ)2/(2σ 2) (1.42)

where μ is the mean and σ is the standard deviation of the distribution. The cdf for
this distribution is given by

F(x) =
∫ x

−∞
f (y) dy (1.43)

There is no closed-form formula for the cdf associated with the Gaussian distri-
bution but that function is tabulated in many textbooks on statistics. The standard
or normal random variable is a Gaussian RV with μ = 0 and σ = 1 [5]. Figure 1.9
shows the output of a Gaussian random variable with zero mean and unity variance
using the randn function of MATLAB. One thousand samples were generated in
this experiment.
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Fig. 1.9 Random numbers generated using the Gaussian distribution with zero mean and unity
variance. (a) shows the random samples and (b) shows their histogram
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1.19 Exponential RV

The exponential distribution applies for the case of a continuous random variable X
that is allowed to have the values ranging from 0 to +∞. The pdf for this distribution
is given by

f (x) = be−b x x ≥ 0 (1.44)

where b > 0. The corresponding cdf is given by

F(x) = 1 − e−b x (1.45)

The mean and variance for X are

μ = 1

b
(1.46)

σ 2 = 1

b2
(1.47)

A famous example of exponential RV is the radioactive decay where we have

f (t) = λe−λt t ≥ 0 (1.48)

Here λ is the rate of decay of an element. In that case 1/λ is called the lifetime when
the radioactive material decreases by the ratio 1/e.

1.20 Pareto RV

The Poisson and binomial distributions have been traditionally employed to model
traffic arrival at networks. Recent work has shown that such models may be in-
adequate because the traffic may exhibit periods of high data rates even when the
average data rate is low. This type of traffic is described as being self-similar (fractal)
[6–8]. Self-similar traffic has distributions with very high variance. Sometimes such
distributions are described as being heavy-tailed since the pdf has large values for x
far away from the mean μ. This type of distribution might then prove more accurate
in describing the pdf for the rate of data produced by a bursty source.

The Pareto distribution could be made to be a heavy-tailed distribution by proper
choice of its parameters. The Pareto distribution is described by the pdf

f (x) = b ab

xb+1
with a ≤ x < ∞ (1.49)

where a is the position parameter and b > 0 is the shape parameter. Figure 1.10
shows the pdf distribution for the case when a = 2 and b = 3 (solid line) and b = 5
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Fig. 1.10 Pareto pdf
distribution for the case when
a = 2 and b = 3 (solid line)
and b = 5 (dashed line)
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(dashed line). For the smaller value of shape parameter b, the pdf becomes flatter
and has higher values at larger values of x . This results in larger variance for X . The
corresponding cdf is

F (x) = 1 −
(a

x

)b
(1.50)

The mean and variance for X are

μ = ba

b − 1
(1.51)

σ 2 = b a2

(b − 1)2 (b − 2)
(1.52)

The mean is always positive as long as b > 1. The variance is meaningful only
when b > 2. From 1.50, we can write

p(X > x) = 1 − p(X ≤ x)

=
(a

x

)b
(1.53)

which means that the probability that the random variable has a value greater than
x decreases geometrically [9].

Pareto distribution is typically used to generate network traffic that shows bursty
behavior. This means that when a traffic burst is encountered, it is very probable that
the burst will continue. For such traffic, the shape parameter b is typically chosen in
the range 1.4–1.6.
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Fig. 1.11 Random numbers generated using the Pareto distribution with a = 2 and b = 2.5.
(a) shows the random samples and (b) shows their histogram

Figure 1.11 shows the output of a Pareto random variable with position parameter
a = 2 and shape parameter b = 2.5. One thousand samples were generated in this
experiment using the inversion method as described later in Section 1.35.2.

1.21 Common Discrete RVs

We discuss in the following sections some discrete random variables that are useful
for network simulations.

1.22 Discrete Uniform RV

Assume N is a random variable such that there are k distinct sample points. The
pmf for the discrete uniform RV is defined by

p(n) =
⎧
⎨

⎩

1/k 1 ≤ n ≤ k

0 otherwise

where n is the sample index. Alternatively, the pmf can be expressed in the form

p(n) = 1

k

k∑

i=1

δ(n − i) (1.54)

where δ( j) is the Dirac delta function which is one when j = 0 and zero for all
other values of j �= 0.
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1

0.2

FX(x)

x0 5
(b)

fX(x)

x0 5
(a)

Fig. 1.12 The uniform distribution for a discrete random variable whose values are 0, 1, . . . , 5.
(a) The pmf and (b) is the corresponding cdf

Figure 1.12 shows the pmf for a random variable consisting of six samples which
are assumed to take the values 0, 1, . . ., 5.

Example 1.16 Study the statistical distribution of rounding errors in computer arith-
metic.

The truncation or rounding operation is required after fixed and floating point
number multiplication and also after floating point number addition. Rounding or
truncation is employed to reduce the number of bits back to their original size n,

say. Without loss of generality, we assume the inputs to be fractions with the binary
point at the left such that the weight of the most significant bit is 2−1 and the weight
of the least significant bit (LSB) is 2−n . Figure 1.13 shows the location of the binary
point for the fixed-point number and also shows the bits that will be truncated or
rounded.

Truncating the extra bits to the right of LSB results in an error e whose magnitude
varies approximately in the range

− 2−n ≤ e ≤ 2−n (1.55)

Assume the number of bits to be truncated is m. In that case, our truncated data has
m bits and the number of possible error samples is k = 2 × 2m − 1. The factor 2
comes from the fact that the error could be positive or negative.

Define the discrete random variable E that corresponds to the rounding or trun-
cation error. Since the probability of any truncation error is equally likely, we have

p(e) = 1

k
= 1

2(m+1) − 1

Fig. 1.13 Truncation of a
fractional number from
n + m bits to n bits

Quantization bits

2 n1 . . .

Truncated bits

Binary point

0
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1.23 Bernoulli (Binary) RV

Many systems in communications have two outcomes. For example, a received
packet might be error-free or it might contain an error. For a router or a switch,
a packet might arrive at a given time step or no packet arrives. Consider a chance
experiment that has two mutually exclusive outcomes A and A that occur with prob-
abilities p and q, respectively. We define the discrete random variable X where
X = 1 when A occurs and X = 0 when A occurs. We can write

p(1) = p (1.56)

p(0) = q (1.57)

where q = 1 − p. Alternatively, p(x) can be expressed by a single equation in the
form

p(x) = q δ(x) + p δ(x − 1) (1.58)

The mean and variance for X are

μ = p (1.59)

σ 2 = p (1 − p) (1.60)

Figure 1.14(a) shows the pmf for the binary distribution and Fig. 1.14(b) shows
the cdf.

Example 1.17 The 50/50 draw is one of the traditions of a typical minor lacrosse
or baseball sports events. Spectators purchase numbered tickets. One of the tickets
is picked at random and half the proceeds goes to the winner and the rest goes to
support the team (or the executive council might just use the money for their own
purposes). Assume you purchased one ticket and there was a total of 100 entries at
the start of the draw. What are your chances of winning or losing? How much would
your winnings be?

1

q

p

PX(x)pX(x)

x0 1
(b)

x0 1
(a)

Fig. 1.14 The binary distribution. (a) The pmf and (b) is the corresponding cdf
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The total number of entries is 100, and the probabilities of winning or losing are

p = 1

100
= 0.01

q = 1 − p = 0.99

Assuming the purchase price of the ticket is $1, the winner takes $50. The money
won would be $49.

1.24 Geometric RV

This distribution is encountered when success, event A, occurs after n failures. This
is the case when several devices are attached to a bus and compete for access. The
probability of success is a and the probability of failure is b = 1 − a.

The pmf is the probability of success after n repeated failures and is given by

p(N = n) = a bn for n ≥ 0 (1.61)

Alternatively, p(n) can be expressed by a single equation in the form

p(n) =
∑

i≥0

a bi δ(n − i) for n ≥ 0 (1.62)

The mean and variance for N are

μ = b

a
(1.63)

σ 2 = b

a2
(1.64)

Example 1.18 Assume packets arrive at a certain device with probability a at a
given time slot. The probability that a packet does not arrive at a time slot is
b = 1 − a.

(a) What is the probability that we have to wait for n time slots before a packet
arrives?

(b) What is the average number of time slots between packet arrivals?

(a) The probability that we have to wait for n time slots before a packet ar-
rives is

p(n) = a bn

(b) The average number of time slots between packet arrivals is given by

E[n] =
∞∑

i=0

n p(n) =
∞∑

i=0

n a bn
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From Appendix A, the above equation becomes

E[n] = a b

(1 − b)2
= b

a

1.25 Binomial RV

Consider a chance experiment that has two mutually exclusive outcomes A and A
that occur with probabilities a and b, respectively. We define the discrete random
variable K which equals the number of times that A occurs in any order in N trials
or repetitions of the random experiment. We can write the pmf for this distribution as

p(K = k) =
(

N

k

)
ak bN−k for 0 ≤ k ≤ N (1.65)

where b = 1 − a. Basically, the probability of event A occurring k times during N
trials and not occurring for N − k times is ak bN−k , and the number of ways of this
event taking place is the binomial coefficient C(N , k).

Alternatively, p(k) can be expressed by a single equation in the form

p(k) =
N∑

i=0

(
N

i

)
ai bN−i δ (k − i) for 0 ≤ k ≤ N (1.66)

The mean and variance for K are

μ = N a (1.67)

σ 2 = N a b (1.68)

The binomial distribution is sometimes referred to as sampling with replacement
as, for example, when we have N objects and each one has a certain property (color,
for example). We pick an object, inspect its property, then place it back in the pop-
ulation. If the selected object is removed from the population after inspection, then
we would have the case of the hypergeometric distribution, which is also known as
sampling without replacement, but this is outside our present interest.

Example 1.19 Assume a classroom has n students. What are the chances that m
students have a birthday today?

The probability that a student has a birthday on a given day is a = 1/365 and the
probability that a student does not have a birthday on a given day is b = 1 − a =
364/365. The probability that m students have a birthday today is

p(m) =
(

n

m

)
am bn−m
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For example, when n = 20 and m = 2, we get

p(2) =
(

20

2

)
a2 b18 = 1.35 × 10−3 (1.69)

1.25.1 Approximating the Binomial Distribution

We saw in the binomial distribution that p(k) is given by

p(k) =
(

N

k

)
ak bN−k (1.70)

where b = 1 − a. When N is large, it becomes cumbersome to evaluate the above
equation. Several approximations exist for evaluating the binomial distribution using
simpler expressions. We discuss two techniques in the following two subsections.

DeMoivre-Laplace Theorem

We can approximate p(k) by the Gaussian distribution provided that the following
condition is satisfied [2].

n a b � 1 (1.71)

When this condition is true we can write

p(k) ≈ 1

σ
√

π
e−(k−μ)2/σ 2

(1.72)

where we have to choose the two parameters μ and σ according to the following
two equations.

μ = N a (1.73)

σ = √
2N a b (1.74)

The above approximation is known as the DeMoivre-Laplace Theorem and is
satisfactory even for moderate values of n such as when n ≈ 5.

Poisson Theorem

If Na is of the order of one (i.e., Na ≈ 1), then DeMoivre-Laplace approximation is
no longer valid. We can still obtain a relatively simple expressions for the binomial
distribution if the following condition applies [2].

n a ≈ 1 (1.75)
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When this condition is true we can write

p(k) ≈ (n a)k

k!
e−n a (1.76)

Thus we are able to replace the binomial distribution with the Poisson distribution
which is discussed in Section 1.26.

Example 1.20 A file is being downloaded from a remote site and 500 packets are
required to transmit the entire file. It has been estimated that on the average 5 percent
of received packets through the channel are in error. Determine the probability that
10 received packets are in error using the binomial distribution and its approxima-
tions using DeMoivre-Laplace and Poisson approximations.

The parameters for our binomial distribution are

N = 500

a = 0.05

b = 0.95

The probability that 5 packets are in error is

p(10) =
(

500

10

)
(0.05)10 (0.95)490 = 2.9165 × 10−4

Use the DeMoivre-Laplace Theorem with the parameters

μ = N a = 25

σ =
√

N a b = 6.892

In that case, the required probability is

p(10) = 7.1762 × 10−4

Use the Poisson Theorem which results in the probability

p(10) = 3.6498 × 10−4

Under the above parameters, the Poisson approximation gives better results than
the DeMoivre-Laplace approximation.
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1.26 Poisson RV

The Poisson distribution defines the probability p(k) that an event A occurs k times
during a certain interval. The probability is given by

p(K = k) = ak e−a

k!
(1.77)

where a > 0 and k = 0, 1, . . . .
The parameter a in the above formula is usually expressed as

a = λ t

where λ is the rate of event A and t is usually thought of as time. Because we
talk about rates, we usually associate Poisson distribution with time or with aver-
age number of occurrences of an event. So let us derive the expression for Poisson
distribution based on this method of thinking.

Consider a chance experiment where an event A occurs at a rate λ events/second.
In a small time interval (�t), the probability that the event A occurs is p = λ�t . We
chose �t so small so that event A occurs at most only once. For example, λ might
indicate the average number of packets arriving at a link per unit time. In that case,
the variable t will indicate time. λ might also refer to the average number of bits in
error for every 1000 bits, say. In that case, the variable t would indicate the number
of bits under consideration. In these situations, we express the parameter a in the
form a = λt , where λ expresses the rate of some event and t expresses the size or
the period under consideration.

Typically, the Poisson distribution is concerned with the probability that a spec-
ified number of occurrences of event A take place in a specified interval t . By
assuming a discrete random variable K that takes the values 0, 1, 2, . . . , then the
probability that k events occur in a time t is given by

p(k) = (λt)k e−λt

k!
(1.78)

Alternatively, p(k) can be expressed by a single equation in the form

p(k) =
∑

i≥0

(λ t)i e−λ t

i!
δ(k − i) for k ≥ 0 (1.79)

The mean and variance for K are

μ = λ t (1.80)

σ 2 = λ t (1.81)
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Deriving Poisson Distribution from Binomial Distribution

We saw in the binomial distribution that p(k) is given by

p(k) =
(

N

k

)
ak bN−k (1.82)

where b = 1 − a. When N is large, it becomes cumbersome to evaluate the above
equation. We can easily evaluate p(k) in the special case when the number of trials
N becomes very large and a becomes very small such that

N a = μ (1.83)

where μ is non-zero and finite. This gives rise to Poisson distribution

p(k) = lim
N→∞,a→0

(
N

k

)
ak bN−k ≈ (μ)k e−μ

k!
(1.84)

We can prove the above equation using the following two simplifying expres-
sions. We start by using Stirling’s formula

N ! ≈
√

2π N N e−N (1.85)

and the following limit from calculus

lim
N→∞

(1 − a

N
)N = e−a (1.86)

Using the above two expressions, we can write [10]

p(k) =
(

N

k

)
ak bN−k (1.87)

= N !

k!(N − k)!
ak (1 − b)N−k (1.88)

= N N e−N

k! (N − k)N−k e−(N−k)

(μ

N

)k (
1 − μ

N

)N−k
(1.89)

= μk

k!

(
N

N − k

)N−k (
1 − μ

N

)N−k
(1.90)

≈ μk

k!
e−μ (1.91)

where μ = N a. This gives the expression for the Poisson distribution. This is
especially true when N > 50 and a < 0.1 in the binomial distribution.
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Example 1.21 Packets arrive at a device at an average rate of 500 packets per sec-
ond. Determine the probability that four packets arrive during 3 ms.

We have λ = 500, t = 3 × 10−3 and k = 4

p(4) = (1.5)4 e−1.5

4!
= 4.7 × 10−2

1.27 Systems with Many Random Variables

We reviewed in Section 1.11 the concept of a random variable where the outcome of
a random experiment is mapped to a single number. Here, we consider random ex-
periments whose output is mapped to two or more numbers. Many systems based on
random phenomena are best studied using the concept of multiple random variables.
For example, signals coming from a Quadrature Amplitude Modulation (QAM) sys-
tem are described by the equation

v(t) = a cos(ωt + φ) (1.92)

Incoming digital signals are modulated by assigning different values to a and φ.
In that sense, QAM modulation combines amplitude and phase modulation tech-
niques. The above signal contains two pieces of information: viz, the amplitude a
and the phase φ that correspond to two random numbers A and �. So every time
we sample the signal v(t), we have to find two values for the associated random
variables A and �.

Figure 1.15 graphically shows the sequence of events leading to assigning mul-
tiple numerical values to the outcome of a random experiment. First we run the
experiment then we observe the resulting outcome. Each outcome is assigned mul-
tiple numerical values.

As an example, we could monitor the random events of packet arrival at the input
of a switch. Several outcomes of this random event could be observed such as (1)
packet length; (2) packet type (voice, video, data, etc.); (3) interarrival time—i.e.
the time interval between arriving packets; and (4) destination address. In these
situations, we might want to study the relationships between these random variables
in order to understand the underlying characteristics of the random experiment we
are studying.

Random
Experiment

Random
Outcome

Corresponding
Number: x, y, ...

Mapping
Function

Fig. 1.15 The sequence of events leading to assigning multiple numerical values to the outcome
of a random experiment
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1.28 Joint cdf and pdf

Assume our random experiment gives rise to two discrete random variables X and
Y . We define the joint cdf of X and Y as

FXY (x, y) = p(X ≤ x, Y ≤ y) (1.93)

When the two random variables are independent, we can write

p(X ≤ x, Y ≤ y) = p(X ≤ x) p(Y ≤ y) (1.94)

Thus for independent random variables the joint cdf is simply the product of the
individual cdf’s.

FXY (x, y) = FX (x) FY (y) (1.95)

For continuous RVs, the joint pdf is defined as

fXY (x, y) = �2 FXY

�x �y
(1.96)

The joint pdf satisfies the following relation.

∫

x,y
fXY (x, y) dx dy = 1 (1.97)

The two random variables are independent when the joint pdf can be expressed
as the product of the individual pdf’s.

fXY (x, y) = fX (x) fY (y) (1.98)

For discrete RVs, the joint pmf is defined as the probability that X = x and
Y = y

pXY (x, y) = p(X = x, Y = y) (1.99)

The joint pmf satisfies the following relation.

∑

x

∑

y

pXY (x, y) = 1 (1.100)

Two random variables are independent when the joint pmf can be expressed as
the product of the individual pmf’s.

pXY (x, y) = p(X = x) p(Y = y) (1.101)
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Example 1.22 Assume arriving packets are classified according to two properties:
packet length (short or long) and packet type (voice or data). Random variable X =
0, 1 is used to describe packet length and random variable Y = 0, 1 is used to
describe packet type. The probability that the received packet is short is 0.9 and
probability that it is long is 0.1. When a packet is short, the probability that it is a
voice packet is 0.4 and probability that it is a data packet is 0.6. When a packet is
long, the probability that it is a voice packet is 0.05 and probability that it is a data
packet is 0.95. Find the joint pmf of X and Y .

We have the mapping:

X =
{

0 short packet
1 long packet

Y =
{

0 voice packet
1 data packet

Based on the above mapping, and assuming independent RVs, we get

pXY (0, 0) = 0.9 × 0.4 = 0.36

pXY (0, 1) = 0.9 × 0.6 = 0.54

pXY (1, 0) = 0.1 × 0.05 = 0.005

pXY (1, 1) = 0.1 × 0.95 = 0.095

Note that the sum of all the probabilities must add up to 1.

1.29 Individual pmf From a Given Joint pmf

Sometimes we want to study an individual random variable even though our random
experiment generates multiple RVs. An individual random variable is described by
its pmf which is obtained as

pX (x) = p(X = x) (1.102)

If our random experiment generates two RVs X and Y , then we have two indi-
vidual pmf’s given by

pX (x) =
∑

y

pXY (x, y) (1.103)

pY (y) =
∑

x

pXY (x, y) (1.104)
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From the definition of pmf we must have

∑

x

pX (x) = 1 (1.105)

∑

y

pY (y) = 1 (1.106)

Example 1.23 Assume a random experiment that generates two random variables
X and Y with the given joint pmf.

pXY (x, y) x = 1 x = 2 x = 3

y = 0 0.1 0.05 0.1
y = 3 0.1 0.05 0
y = 7 0 0.1 0.1
y = 9 0.2 0 0.2

Find the individual pmf for X and Y . Are X and Y independent RVs?
We have

pX (x) x = 1 x = 2 x = 3

0.4 0.2 0.4

and

pY (y) y = 0 y = 3 y = 7 y = 9

0.25 0.15 0.2 0.4

1.30 Expected Value

The joint pmf helps us find the expected value of one of the random variables.

μX = E(X ) =
∑

x

∑

y

x pXY (x, y) (1.107)

Example 1.24 Using values in Example 1.23, find the expected values for the ran-
dom variables X and Y .

We can write

μX = 1 × 0.4 + 2 × 0.2 + 3 × 0.4 = 2

μy = 0 × 0.25 + 3 × 0.15 + 7 × 0.2 + 9 × 0.4 = 5.45
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1.31 Correlation

The correlation between two random variables is defined as

rXY = E[XY ]

=
∑

x

∑

y

x y pXY (x, y) (1.108)

We say that the two random variables X and Y are orthogonal when rXY = 0.

1.32 Variance

The variance of a random variable is defined as

σ 2
X = E[(X − μX )2]

=
∑

x

∑

y

(x − μX )2 pXY (x, y) (1.109)

The following equation can be easily proven.

σ 2
X = E[X2] − μ2

X (1.110)

1.33 Covariance

The covariance between two random variables is defined as

cXY = E[(X − μX )(Y − μY )]

=
∑

x

∑

y

(x − μX )(y − μY ) pXY (x, y) (1.111)

The following equation can be easily proven.

cXY = rXY − μX μY (1.112)

We say that the two random variables X and Y are uncorrelated when cXY = 0.
The correlation coefficient ρXY is defined as

ρXY = cXY /

√
σ 2

X σ 2
Y (1.113)



1.34 Transforming Random Variables 35

When we are dealing with two random variables obtained from the same random
process, the correlation coefficient would be written as

ρX (n) = cX (n)/σ 2
X (1.114)

We expect that the correlation coefficient would decrease as the value of n becomes
large to indicate that the random process “forgets” its past values.

1.34 Transforming Random Variables

Mathematical packages usually have functions for generating random numbers
following the uniform and normal distributions only. However, when we are sim-
ulating communication systems, we need to generate network traffic that follows
other types of distributions. How can we do that? Well, we can do that through
transforming random variables, which is the subject of this section. Section 1.35
will show how to actually generate the random numbers using the techniques of this
section.

1.34.1 Continuous Case

Suppose we have a random variable X with known pdf and cdf and we have another
random variable Y that is a function of X

Y = g(X ) (1.115)

X is named the source random variable and Y is named the target random vari-
able. We are interested in finding the pdf and cdf of Y when the pdf and cdf of X are
known. The probability that X lies in the range x and x +dx is given from (1.28) by

p(x ≤ X ≤ x + dx) = fX (x) dx (1.116)

But this probability must equal the probability that Y lies in the range y and
y + dy. Thus we can write

fY (y) dy = fX (x) dx (1.117)

where fY (y) is the pdf for the random variable Y and it was assumed that the func-
tion g was monotonically increasing with x . If g was monotonically decreasing with
x , then we would have

fY (y) dy = − fX (x) dx (1.118)
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The above two equations define the fundamental law of probabilities, which is
given by

| fY (y) dy| = | fX (x) dx | (1.119)

or

fY (y) = fX (x)

∣∣∣∣
dx

dy

∣∣∣∣ (1.120)

since fY (y) and fX (x) are always positive.
In the discrete case the fundamental law of probability gives

pY (y) = pX (x) (1.121)

where pX (x) is the given pmf of the source random variable and pY (y) is the pmf
of the target random variable.

Example 1.25 Given the random variable X whose pdf has the form

fX (x) = e−x2
x ≥ 0 (1.122)

Find the pdf for the random variable Y that is related to X by the relation

Y = X2 (1.123)

We have

x = ±√
y (1.124)

dx

dy
= ± 1

2
√

y
(1.125)

From (1.120) we can write

fY (y) = 1

2
√

y
× e−x2

(1.126)

By substituting the value of x in terms of y, we get

fY (y) = 1

2
√

y
e−y y ≥ 0 (1.127)

Example 1.26 Assume the sinusoidal signal

x = cos ωt
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where the signal has a random frequency ω that varies uniformly in the range ω1 ≤
ω ≤ ω2. The frequency is represented by the random variable �. What are the
expected values for the random variables � and X?

We can write

f� = 1/ (ω2 − ω1)

and E[�] is given by the expression

E[�] = 1

ω2 − ω1

∫ ω2

ω1

ω dω (1.128)

= ω2 + ω1

2
(1.129)

We need to find fX and E[X ]. For that we use the fundamental law of probability.
First, we know that −1 ≤ x ≤ 1 from the definition of the sine function, so fX (x) =
0 for |x | > 1. Now we can write

fX (x) = f� (ω)

∣∣∣∣
dω

dx

∣∣∣∣ |x | ≤ 1 (1.130)

Now

ω = 1

t
cos−1 x (1.131)

and
∣∣∣∣
dω

dx

∣∣∣∣ = 1

t
√

1 − x2
|x | ≤ 1 (1.132)

Thus we get

fX (x) = 1

ω2 − ω1
× 1

t
√

1 − x2
|x | ≤ 1 (1.133)

The expected value for X is given by

E[X ] = 1

(ω2 − ω1) t

∫ 1

−1

x√
1 − x2

dx = 0 (1.134)

due to the odd symmetry of the function being integrated.

Example 1.27 Suppose our source random variable is uniformly distributed and our
target random variable Y is to have a pdf given by

fY (y) = λe−λy λ > 0 (1.135)
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Derive Y as a function of X.

This example is fundamentally important since it shows how we can find the
transformation that allows us to obtain random numbers following a desired pdf
given the random numbers for the uniform distribution. This point will be further
discussed in the next section.

We use (1.120) to write

λe−λy = fX (x)

∣∣∣∣
dx

dy

∣∣∣∣ (1.136)

Assume the source random variable X is confined to the range 0–1. From Section
1.17 we have fX (x) = 1 and we can write

λe−λy = dx

dy
(1.137)

By integrating (1.137), we get

e−λy = x (1.138)

and we obtain the dependence of Y on X as

Y = g(X ) = − ln X

λ
0 ≤ x ≤ 1 (1.139)

1.34.2 Discrete Case

In the discrete case the fundamental law of probability gives

pY (y) = pX (x) (1.140)

where pX (x) is the given pmf of the source random variable and pY (y) is the pmf
of the target random variable. The values of Y are related to the values of X by the
equation

Y = g(X ) (1.141)

The procedure for deriving the pmf for Y given the pmf for X is summarized as
follows:

1. For each value of x obtain the corresponding value p(X = x) through observa-
tion or modeling.

2. Calculate y = g(x).
3. Associate y with the probability p(X = x).



1.35 Generating Random Numbers 39

1.35 Generating Random Numbers

We review briefly in this section how to generate sequences of random numbers
obeying one of the distributions discussed in the previous section. This background
is useful to know even if packages exist that fulfill our objective.

Before we start, we are reminded of Von Neumann’s remark on the topic:

Anyone who considers arithmetical methods of producing random digits is, of course, in a
state of sin. (John Von Neumann 1951)

1.35.1 Uniform Distribution

To generate a sequence of integer random numbers obeying the uniform distribu-
tion using C programming, one invokes the function srand(seed). This function
returns an integer in the range 0 to RAND MAX [11]. When a continuous random
number is desired, drand is used. The function rand in MATLAB is used to
generate random numbers having uniform distribution.

1.35.2 Inversion Method

To generate a number obeying a given distribution, we rely on the fundamental law
of probabilities summarized by (1.120). When X has a uniform distribution over the
range 0 ≤ x ≤ 1, we can use the following procedure for obtaining y. We have

dx

dy
= f (y) (1.142)

where f (x) = 1 and f (y) is the function describing the pdf of the target distribution.
By integrating (1.142), we get

∫ y

0
f (z) dz = x (1.143)

Thus we have

F(y) = x (1.144)

y = F−1(x) (1.145)

The procedure then to obtain the random numbers corresponding to y is to generate
x according to any standard random number generator producing a uniform distri-
bution. Then use the above equation to provide us with y. Thus the target random
number value y is obtained according to the following steps:
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Fig. 1.16 Transformation
method for finding y given x

y

F(y)

0

1

Input x

Output y

1. Obtain the source random number x having a uniform distribution.
2. Lookup the value of F(y) that is numerically equal to x according to (1.144).

F(y) is either computed or stored in a lookup table.
3. Find the corresponding value of y according to (1.145). If the inverse function

is not available, then a lookup table is used and y is chosen according to the
criterion F (y) ≤ x ≤ F (y + ε), where y + ε denotes the next entry in the table.

Graphically, the procedure is summarized in Fig. 1.16.
The inversion technique was used to generate random numbers that obey the

Pareto distribution using MATLAB. In that case, when x is the trial source input,
the output y is given from the F−1 by the equation

y = − a

exp [(1/b) ln (1 − x)]
(1.146)

Figure 1.11 shows the details of the method for generating random numbers fol-
lowing the Pareto distribution. The Pareto parameters chosen were a = 2, b = 2.5,

minimum value for data was xmin = a. One thousand samples were chosen to gen-
erate the data. Note that the minimum value of the data equals a according to the
restrictions of the Pareto distribution.

1.35.3 Rejection Method

The previous method requires that the target cdf be known and computable such that
the inverse of the function can be determined either analytically or through using a
lookup table. The rejection method is more general since it only requires that the
target pdf is known and computable. We present here a simplified version of this
method.

Assume we want to generate the random numbers y that lie in the range a ≤ y
< b and follow the target pdf distribution specified by f (y). We choose the uniform
distribution g(y) that covers the same range a–b such that the following condition
is satisfied for y in the range a ≤ y < b

g(y) = 1

b − a
> f (y) (1.147)
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Fig. 1.17 The rejection
method

yba

g(y)

f(y)

1/(b-a)

If this condition cannot be satisfied, then a different g(y) must be chosen that
might not follow the uniform distribution. We proceed as follows.

1. Obtain the source random number x using any random number generator having
the uniform distribution.

2. Accept the candidate value x as the target value y = x with probability

p (acceptx) = f (y)

g(y)
(1.148)

= (b − a) f (y) (1.149)

We are assured by (1.147) that the above expression for the probability is always
valid. This technique is not efficient when f (y) is mostly small with few large peaks
since most of the candidate points will be rejected. Graphical representation of the
rejection method is given in Fig. 1.17.

1.35.4 Importance Sampling Method

Importance sampling is a generalization of the rejection method. A trial pdf, g (y),
is chosen as in the rejection method. It is not necessary here to choose g (y) such
that it is larger than f (y). Each point y has a weight associated with it given by

w(y) = f (y)

g (y)
(1.150)

Based on this array of weights, we choose a weight W that is slightly larger than
the maximum value of w(y)

W = max [w(y)] + ε ε > 0 (1.151)

The method is summarized in the following steps.

1. Obtain the source random number x that has a uniform distribution.
2. Apply the inversion method using g (y) to obtain a candidate value for y.
3. Accept the candidate y value with probability

p (accept y) = w(y)

W
(1.152)
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Problems

The Multiplication Principle

1.1 A pair of fair dice is rolled once. Identify one possible outcome and identify
the sample space of this experiment.

1.2 Consider the above experiment where we are interested in the event that
“seven” will show. What are the outcomes that constitute the event?

1.3 A student has to take three courses from three different fields. Field A offers 5
courses, field B offers 10 courses, and field C offers 3 courses. In how many
ways can the student select the course load?

1.4 A car dealer specializes in selling three types of vehicles: sedans, trucks,
and vans. Each vehicle could be rated as excellent, okay, lemon, or “bring
your own jumper cables”. In how many different ways can a customer buy a
vehicle?

1.5 Car license plates in British Columbia consist of three letters followed by three
numbers. How many different license plate numbers could be formed?

Permutations

1.6 Internet packets have different lengths. Assume 10 packets have been received
such that two are over-length, four have medium length, and four are short.
How many different packet patterns are possible?

1.7 In Time Division Multiple Access (TDMA) communication, a time frame is
divided into ten time slots such that each time slot can be used by any user.
Suppose that a frame is received that contains three packets due to user 1, two
due to user 2, and the rest of the time slots were empty. How many frame
patterns are possible?

1.8 A router receives 15 packets from 15 different sources. How many ways could
these packets be received?

1.9 In Problem 1.8, of the 15 packets received, five were due to one user and the
rest were due to 10 different users. How many ways could the packets types
be received?

Combinations

1.10 A packet buffer has 50 packets. If it is known that 15 of those packets be-
long to a certain user and the rest belong to different users then in how many
possibilities can these packets be stored in the buffer?

1.11 A router receives 10 packets such that four of them are in error. How many
different packet patterns are possible?
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1.12 In a cellular phone environment, a cell has 100 users that want access and
there are only 16 available channels. How many different possibilities exist
for choosing among these users?

Probability

1.13 A signal source randomly moves from being active to being idle. The active
period lasts 5 seconds and the idle period lasts 10 seconds. What is the proba-
bility that the source will be active when it is sampled?

1.14 In a wireless channel a certain user found that for each 1000 packets transmit-
ted 10 were lost, 100 were in error, and 50 were delayed. Find the following.

(a) Probability that a packet is lost.
(b) Probability that a packet is received without delay.
(c) Probability that a packet is received without delay and without errors.
(d) Probability that a packet is received without delay or without errors.

1.15 Assume a gambler plays double or nothing game using a fair coin and starts
with one dollar. What is the probability that he/she will wind up winning
$1,024?

1.16 Four friends decide to play the following game. A bottle is spun and the person
that the bottle points to is unceremoniously thrown out of the game. What is
the probability that you are still in the game after n spins? Is there an upper
limit on the value of n?

1.17 A bird breeder finds that the probability that a chick is male is 0.2 and a female
is 0.8. If the nest has three eggs, what is the probability that two male chicks
will be produced?

Random Variables

1.18 Indicate the range of values that the random variable X may assume and
classify the random variable as finite/infinite and continuous/discrete in the
following experiments.

(a) The number of times a coin is thrown until a head appears.
(b) The wait time in minutes until a bus arrives at the bus stop.
(c) The duration of a telephone conversation.
(d) The number of students in a classroom.
(e) The number of retransmissions until a packet is received error free.

1.19 A packet is received either correctly or in error on a certain channel. A random
variable X is assigned a value equal to the number of error free packets in a
group of three packets. Assume that the error in a packet occurs independent
of the other packets.
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(a) List all the possible outcomes for the reception of three packets.
(b) List all the possible values of X .
(c) Express the probability for the event x = 2 in terms of fX (x) and FX (x).

1.20 In some communication scheme, when a packet is received in error, a request
for retransmission is issued until the packet is received error free. Let the ran-
dom variable Y denote the number of retransmission requests. What are the
values of Y ?

1.21 Packets arrive at a certain input randomly at each time step (a time step is
defined here as the time required to transmit or receive one complete packet).
Let the random variable W denote the wait time (in units of time steps) until a
packet is received. What values may W assume?

The Cumulative Distribution Function (cdf)

1.22 Assume a random variable X whose cdf is F(x). Express the probability
p(X > x) as a function of F(x).

1.23 A system monitors the times between packet arrivals, starting at time t = 0.
This time is called the interarrival time of packets. The interarrival time is a
random variable T with cdf FT (t). The probability that the system receives a
packet in the time interval (t, t + δt) is given by pδt .

(a) Find the probability that the system receives a packet in a time less than
or equal to t .

(b) Find the probability that the system receives a packet in a time greater
than t .

1.24 Plot the cdf for the random variable in Problem 1.19.
1.25 Explain the meaning of equations (1.15) to (1.19) for the cdf function. Note

that (1.19) is really a restatement of (1.7) since the events X ≤ x1 and x1 ≤
X ≤ x2 are mutually exclusive.

1.26 A buffer contains ten packets. Four packets contain an error in their payload
and six are error free. Three packets are picked at random for processing. Let
the random variable X denote the number of error-free packets selected.

(a) List all possible outcomes of the experiment.
(b) Find the value of X for each outcome.
(c) Find the probability associated with each value of X .
(d) Plot the cdf for this random variable.

Note that this problem deals with sampling without replacement: i.e. we pick a
packet but do not put it back in the buffer. Hence the probability of picking an
error-free packet will vary depending on whether it was picked first, second,
or third.

1.27 Sketch the pdf associated with the random variable in Problem 1.26.
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1.28 A router has ten input ports and at a given time instance each input could
receive a packet with probability a or it could be idle (with probability b =
1 − a). Let the random variable X denote the number of active input ports.

(a) List all possible outcomes of the experiment.
(b) Find the value of X for each outcome.
(c) Find the probability associated with each value of X .
(d) Sketch the cdf for this random variable.

1.29 Sketch the pdf associated with the random variable in Problem 1.28.
1.30 A traffic source generates a packet at a certain time step with probability a.

Let the random variable X denote the number of packets produced in a period
T = 5 time steps.

(a) List all possible outcomes of the experiment.
(b) Find the value of X for each outcome.
(c) Find the probability associated with each value of X .
(d) Sketch the cdf for this random variable assuming a = 0.2.

The Probability Density Function (pdf)

1.31 Sketch the pdf and cdf for the binomial distribution. Assume a = 0.3 and
N = 5.

1.32 Sketch the pdf associated with the random variable in Problem 1.19.
1.33 Sketch the pdf associated with the random variable in Problem 1.23.
1.34 Sketch the pdf associated with the random variable in Problem 1.24.
1.35 Sketch the pdf associated with the random variable in Problem 1.26.

Expected Value

1.36 Prove that (1.34) on page 15 converges to (1.33) as n → ∞. Start your analysis
by (a) assuming that n samples are grouped such that n j samples produce
the same outcome. (b) Use the definition of probability in (1.6) on page 8 to
complete your proof.

1.37 What are the expected values for the random variables � and Q in Example
1.14?

1.38 Assume a Poisson process, rate parameter is λ, that gives rise to two random
variables X1 and X2 which correspond to k packets received at times t1 and
t2, respectively where t2 ≥ t1. (a) Find the mean and variance for these two
random variables. (b) Now define a new random variable Y = X2 − X1 and
find its mean and variance.

1.39 Find the expected value for the random variable in Problem 1.19.
1.40 Find the expected value for the random variable in Problem 1.23.
1.41 Find the expected value for the random variable in Problem 1.24.
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1.42 Find the expected value for the random variable in Problem 1.26.
1.43 Repeat Example 1.16 when the random variable E is treated as a discrete

random variable.

The Uniform Distribution

1.44 Write down the pdf and cdf for the uniform distribution of a continuous ran-
dom variable X that spans the range a ≤ x < b.

1.45 Repeat the above problem when the random variable is discrete and has n
discrete values in the same range given above.

1.46 Find the average value and variance for the random variable in Problem 1.44.
1.47 Find the average value and variance for the random variable in Problem 1.45.

The Binomial Distribution

1.48 Prove that the mean and standard deviation of the binomial distribution are
Na and

√
a(1 − a), respectively.

1.49 Sketch the pdf for the binomial distribution. Assume values for a and N .
1.50 The probability of error in a single packet is 10−5. What is the probability that

three errors occur in 1,000 packets assuming binomial distribution.
1.51 Assume q as the probability that people making reservations on a certain flight

will not show up. The airline then sells t tickets for a flight that takes only s
passengers (t > s). Write an expression for the probability that there will be a
seat available for every passenger that shows up. What is that probability for
the special case when only one seat is oversold (i.e., t = s + 1)?

The Poisson Distribution

1.52 Verify that the mean and standard deviation for the binomial and Poisson dis-
tributions become almost identical for large N and small p as was discussed
in Section 1.26.

1.53 The probability of a defective electronic component is 0.1. Find the follow-
ing.

(a) The mean and standard deviation for the distribution of defective com-
ponents in a batch of 500 components using the Poisson and binomial
distributions.

(b) The probability that 2 components are defective in a batch of 500 compo-
nents.

1.54 Sketch the pdf for the Poisson distribution for different values of λt and k.

Comment on your results.
1.55 Sketch on one graph the binomial and Poisson distributions for the case N = 5

and p = 0.1. Assume λt = 0.5.
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1.56 Repeat question 1.50 assuming Poisson distribution with λt = 0.1, where
we assumed the “rate” λ of occurrence of error per packet is 10−4 and the
“duration” of interest is t = 1000 packets.

1.57 Five percent of the rented videos are worth watching. Find the probability that
in a sample of 10 videos chosen at random, exactly two will be worth watching
using

(a) binomial distribution and
(b) Poisson distribution.

The Exponential Distribution

1.58 Derive the cdf for the exponential distribution.
1.59 Prove that the Pareto distribution formula given by (1.49) is a valid pdf (i.e.,

the area under the curve is 1).

Joint pmf

1.60 Consider the random experiment of throwing a dart at a target. The point of
impact is characterized by two random variables X and Y to indicate the lo-
cation of the dart assuming the center is the point of origin. We can justifiably
assume that X and Y are statistically independent.

(a) Write down the joint cdf FXY (x, y) as a function of the individual cdfs
FX (x) and FY (y).

(b) Write down the joint pdf fXY (x, y) as a function of the individual pdfs
fX (x) and fY (y).

(c) Write down an expression for fX (x) and fY (y) assuming that each follows
the normal (Gaussian) distribution.

1.61 Find the correlation between the two random variables X and Y in Example
1.22 on page 32.

1.62 Find the variance of random variable X in Example 1.22 on page 32.
1.63 Find the covariance between the two random variables X and Y in Example

1.22 on page 32.
1.64 Prove (1.110) on page 34.
1.65 Find the correlation coefficient for the two random variables X and Y in

Example 1.22 on page 32.

Random Numbers

1.66 Use the inversion method to generate y in the range 1–5 such that the target
pdf is f (y) ∝ 1/

√
y.

1.67 Generate the random number y that has pdf f (y) = (1 + y)/
√

y using the
importance sampling method.
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Chapter 2
Random Processes

2.1 Introduction

We saw in Section 1.11 on page 10 that many systems are best studied using the
concept of random variables where the outcome of a random experiment was associ-
ated with some numerical value. Next, we saw in Section 1.27 on page 30 that many
more systems are best studied using the the concept of multiple random variables
where the outcome of a random experiment was associated with multiple numerical
values. Here we study random processes where the outcome of a random experiment
is associated with a function of time [1]. Random processes are also called stochastic
processes. For example, we might study the output of a digital filter being fed by
some random signal. In that case, the filter output is described by observing the
output waveform at random times.

Thus a random process assigns a random function of time as the outcome of a
random experiment. Figure 2.1 graphically shows the sequence of events leading to
assigning a function of time to the outcome of a random experiment. First we run
the experiment, then we observe the resulting outcome. Each outcome is associated
with a time function x(t).

A random process X (t) is described by

• the sample space S which includes all possible outcomes s of a random experi-
ment

• the sample function x(t) which is the time function associated with an outcome
s. The values of the sample function could be discrete or continuous

• the ensemble which is the set of all possible time functions produced by the ran-
dom experiment

• the time parameter t which could be continuous or discrete
• the statistical dependencies among the random processes X (t) when t is changed.

Based on the above descriptions, we could have four different types of random
processes:

1. Discrete time, discrete value: We measure time at discrete values t = nT with
n = 0, 1, 2, . . .. As an example, at each value of n we could observe the number
of cars on the road x(n). In that case, x(n) is an integer between 0 and 10, say.

F. Gebali, Analysis of Computer and Communication Networks,
DOI: 10.1007/978-0-387-74437-7 2, C© Springer Science+Business Media, LLC 2008
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Random
experiment

Random
outcome

Corresponding
function of
time: x(t)

Mapping
function

Fig. 2.1 The sequence of events leading to assigning a time function x(t) to the outcome of a
random experiment

Each time we perform this experiment, we would get a totally different sequence
for x(n).

2. Discrete time, continuous value: We measure time at discrete values t = nT with
n = 0, 1, 2, . . .. As an example, at each value of n we measure the outside tem-
perature x(n). In that case, x(n) is a real number between −30◦ and +45◦, say.
Each time we perform this experiment, we would get a totally different sequence
for x(n).

3. Continuous time, discrete value: We measure time as a continuous variable t . As
an example, at each value of t we store an 8-bit digitized version of a recorded
voice waveform x(t). In that case, x(t) is a binary number between 0 and 255,
say. Each time we perform this experiment, we would get a totally different se-
quence for x(t).

4. Continuous time, continuous value: We measure time as a continuous variable
t . As an example, at each value of t we record a voice waveform x(t). In that
case, x(t) is a real number between 0 V and 5 V, say. Each time we perform this
experiment, we would get a totally different sequence for x(t).

Figure 2.2 shows a discrete time, discrete value random process for an observa-
tion of 10 samples where only three random functions are generated. We find that
for n = 2, the values of the functions correspond to the random variable X (2).

Therefore, random processes give rise to random variables when the time value t
or n is fixed. This is equivalent to sampling all the random functions at the specified
time value, which is equivalent to taking a vertical slice from all the functions shown
in Fig. 2.2.

Example 2.1 A time function is generated by throwing a die in three consecutive
throws and observing the number on the top face after each throw. Classify this
random process and estimate how many sample functions are possible.

This is a discrete time, discrete value process. Each sample function will be have
three samples and each sample value will be from the set of integers 1 to 6. For
example, one sample function might be 4, 2, 5. Using the multiplication principle
for probability, the total number of possible outputs is 63 = 216.
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n0 1 2 3 4 5 6 7 8 9

x1

n0 1 2 3 4 5 6 7 8 9

x2

n0 1 2 3 4 5 6 7 8 9

x3

Fig. 2.2 An example of a discrete time, discrete value random process for an observation of 10
samples where only three random functions are possible.

2.2 Notation

We use the notation X (t) to denote a continuous-time random process and also to
denote the random variable measured at time t . When X (t) is continuous, it will
have a pdf fX (x) such that the probability that x ≤ X ≤ x + ε is given by

p(X = x) = fX (x) dx (2.1)

When X (t) is discrete, it will have a pmf pX (x) such that the probability that
X = x is given by

p(X = x) = pX (x) (2.2)

Likewise, we use the notation X (n) to denote a discrete-time random process
and also to denote the random variable measured at time n. That random variable is
statistically described by a pdf fX (x) when it is continuous, or it is described by a
pmf pX (x) when it is discrete.
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2.3 Poisson Process

We shall encounter Poisson processes when we describe communication traffic. A
Poisson process is a stochastic process in which the number of events occurring in a
given period of time depends only on the length of the time period [2]. This number
of events k is represented as a random variable K that has a Poisson distribution
given by

p(k) = (λ t)ke−λ t

k!
(2.3)

where λ > 0 is a constant representing the rate of arrival of the events and t is the
length of observation time.

2.4 Exponential Process

The exponential process is related to the Poisson process. The exponential process
is used to model the interarrival time between occurrence of random events. Exam-
ples that lead to an interarrival time include the time between bus arrivals at a bus
stop, the time between failures of a certain component, and the time between packet
arrival at the input of a router.

The random variable T could be used to describe the interarrival time. The prob-
ability that the interarrival time lies in the range t ≤ T ≤ t + dt is given by

λe−λ t dt (2.4)

where λ is the average rate of the event under consideration.

2.5 Deterministic and Nondeterministic Processes

A deterministic process is one where future values of the sample function are known
if the present value is known. An example of a deterministic process is the modula-
tion technique known as quadrature amplitude modulation (QAM) for transmitting
groups of binary data. The transmitted analog waveform is given by

v(t) = a cos(ωt + φ) (2.5)

where the signal amplitude a and phase angle φ change their value depending on
the bit pattern that has been received. The analog signal is transmitted for the time
period 0 ≤ t < T0. Since the arriving bit pattern is random, the values of the
corresponding two parameters a and φ are random. However, once a and φ are
determined, we would be able to predict the shape of the resulting waveform.
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A nondeterministic random process is one where future values of the sample
function cannot be known if the present value is known. An example of a nondeter-
ministic random process is counting the number of packets that arrive at the input
of a switch every one second and this observation is repeated for a certain time.
We would not be able to predict the pattern even if we know the present number of
arriving packets.

2.6 Ensemble Average

The random variable X (n1) represents all the possible values x obtained when time
is frozen at the value n1. In a sense, we are sampling the ensemble of random func-
tions at this time value.

The expected value of X (n1) is called the ensemble average or statistical average
μ (n1) of the random process at n1. The ensemble average is expressed as

μX (t) = E[X (t)] continuous-time process (2.6)

μX (n) = E[X (n)] discrete-time process (2.7)

The ensemble average could itself be another random variable since its value
could change at random with our choice of the time value t or n.

Example 2.2 The modulation scheme known as frequency-shift keying (FSK) can
be modeled as a random process described by

X (t) = a cos ωt

where a is a constant and ω corresponds to the random variable � that can have
one of two possible values ω1 and ω2 that correspond to the input bit being 0 or 1,
respectively. Assuming that the two frequencies are equally likely, find the expected
value μ(t) of this process.

Our random variable � is discrete with probability 0.5 when � = ω1 or � = ω2.
The expected value for X (t) is given by

E [X (t)] = 0.5 a cos ω1t + 0.5 a cos ω2t

= a cos

[
(ω1 + ω2) t

2

]
× cos

[
(ω1 − ω2) t

2

]

Example 2.3 The modulation scheme known as pulse amplitude modulation (PAM)
can be modeled as a random process described by
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X (n) =
∞∑

i=0

g(n) δ(n − i)

where g(n) is the amplitude of the input signal at time n. g(n) corresponds to the
random variable G that is uniformly distributed in the range 0–A. Find the expected
value μ(t) of this process.

This is a discrete time, continuous value random process. Our random variable
G is continuous and the expected value for X (n) is given by

E [X (n)] = 1

A

∫ A

0
g dg

= A

2

2.7 Time Average

Figure 2.2 helps us find the time average of the random process. The time average
is obtained by finding the average value for one sample function such as X1(n) in
the figure. The time average is expressed as

X = 1
T

∫ T
0 X (t) dt continuous-time process (2.8)

X = 1
N

∑N−1
0 X (n)] discrete-time process (2.9)

In either case we assumed we sampled the function for a period T or we observed
N samples. The time average X could itself be a random variable since its value
could change with our choice of the random function under consideration.

2.8 Autocorrelation Function

Assume a discrete-time random process X (n) which produces two random vari-
ables X1 = X (n1) and X2 = X (n2) at times n1 and n2 respectively. The au-
tocorrelation function for these two random variables is defined by the following
equation:

rX X (n1, n2) = E [X1 X2] (2.10)
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In other words, we consider the two random variables X1 and X2 obtained from the
same random process at the two different time instances n1 and n2.

Example 2.4 Find the autocorrelation function for a second-order finite-impulse re-
sponse (FIR) digital filter, sometimes called moving average (MA) filter, whose
output is given by the equation

y(n) = a0x(n) + a1x(n − 1) + a2x(n − 2) (2.11)

where the input samples x(n) are assumed to be zero mean independent and identi-
cally distributed (iid) random variables.

We assign the random variable Yn to correspond to output sample y(n) and Xn

to correspond to input sample x(n). Thus we can have the following autocorrelation
function

rY Y (0) = E [YnYn] = a2
0 E

[
X2

0

]+ a2
1 E

[
X2

1

]+ a2
2 E

[
X2

2

]
E
[
X2

0

]
(2.12)

= (
a2

0 + a2
1 + a2

2

)
σ 2 (2.13)

Similarly, we can write

rY Y (1) = E (YnYn+1) = 2a0a1 σ 2 (2.14)

rY Y (2) = E (YnYn+2) = a0a2 σ 2 (2.15)

rY Y (k) = 0; k > 2 (2.16)

where σ 2 is the input sample variance. Figure 2.3 shows a plot of the autocorre-
lation assuming all the filter coefficients are equal.

RY 
(n)

0 n

Shift
1 2 3–1–2–3

Fig. 2.3 Autocorrelation function of a second-order digital filter whose input is uncorrelated
samples
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2.9 Stationary Processes

A wide-sense stationary random process has the following two properties [3]

E [X (t)] = μ = constant (2.17)

E [X (t) X (t + τ )] = rX X (t, t + τ ) = rX X (τ ) (2.18)

Such a process has a constant expected value and the autocorrelation function
depends on the time difference between the two random variables.

The above equations apply to a continuous time random process. For a discrete-
time random process, the equations for a wide-sense stationary random process
become

E [X (n)] = μ = constant (2.19)

E [X (n1) X (n1 + n)] = rX X (n1, n1 + n) = rX X (n) (2.20)

The autocorrelation function for a wide-sense stationary random process exhibits
the following properties [1].

rX X (0) = E
[
X2(n)

] ≥ 0 (2.21)

|rX X (n)| ≤ rX X (0) (2.22)

rX X (−n) = rX X (n) even symmetry (2.23)

A stationary random process is ergodic if all time averages equal their corre-
sponding statistical averages [3]. Thus if X (n) is an ergodic random process, then
we could write

X = μ (2.24)

X2 = rX X (0) (2.25)

Example 2.5 The modulation scheme known as phase-shift keying (PSK) can be
modeled as a random process described by

X (t) = a cos(ωt + φ)

where a and ω are constant and φ corresponds to the random variable � with two
values 0 and π which are equally likely. Find the autocorrelation function rX X (t) of
this process.
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The phase pmf is given by

p(0) = 0.5

p(π ) = 0.5

The autocorrelation is found as

rX X (τ ) = E [a cos(ωt + Φ) a cos(ωt + ωτ + Φ)]

= 0.5 a2 cos(ωτ ) E [cos(2ωt + ωτ + 2Φ)]

= 0.5 a2 cos(ωτ ) cos(2ωt + ωτ )

We notice that this process is not wide-sense stationary since the autocorrelation
function depends on t .

2.10 Cross-Correlation Function

Assume two discrete-time random processes X (n) and Y (n) which produce two
random variables X1 = X (n1) and Y2 = Y (n2) at times n1 and n2, respectively.
The cross-correlation function is defined by the following equation.

rXY (n1, n2) = E [X1 Y2] (2.26)

If the cross-correlation function is zero, i.e. rXY = 0, then we say that the two
processes are orthogonal. If the two processes are statistically independent, then we
have

rXY (n1, n2) = E [X (n1)] × E [Y (n2)] (2.27)

Example 2.6 Find the cross-correlation function for the two random processes

X (t) = a cos ωt

Y (t) = b sin ωt

where a and b are two independent and identically distributed random variables with
mean μ and variance σ 2.

The cross-correlation function is given by

rXY (t, t + τ ) = E [a cos ωt b sin(ωt + ωτ )]

= 0.5[sin ωτ + sin(2ωt + ωτ )] E[a] E[b]

= 0.5 μ2 [sin ωτ + sin(2ωt + ωτ )]
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2.11 Covariance Function

Assume a discrete-time random process X (n) which produces two random variables
X1 = X (n1) and X2 = X (n2) at times n1 and n2, respectively. The autocovariance
function is defined by the following equation:

cX X (n1, n2) = E [(X1 − μ1) (X2 − μ2)] (2.28)

The autocovariance function is related to the autocorrelation function by the fol-
lowing equation:

cX X (n1, n2) = rX (n1, n2) − μ1μ2 (2.29)

For a wide-sense stationary process, the autocovariance function depends on the
difference between the time indices n = n2 − n1.

cX X (n) = E [(X1 − μ) (X2 − μ)] = rX X (n) − μ2 (2.30)

Example 2.7 Find the autocovariance function for the random process X (t) given
by

X (t) = a + b cos ωt

where ω is a constant and a and b are iid random variables with zero mean and
variance σ 2.

We have

cX X = E {(A + B cos ωt)[A + B cos ω(t + τ )]}
= E

[
a2
]+ E[ab] [cos ωt + cos ω(t + τ )] + E

[
b2
]

cos2 ω(t + τ )

= σ 2 + E[a] E[b] [cos ωt + cos ω(t + τ )] + σ 2 cos2 ω(t + τ )

= σ 2
[
1 + cos2 ω(t + τ )

]

The cross-covariance function for two random processes X (n) and Y (n) is de-
fined by

cXY (n) = E [(X (n1) − μX ) (Y (n1 + n) − μY )]

= rXY (n) − μXμY (2.31)

Two random processes are called uncorrelated when their cross-covariance func-
tion vanishes.

cXY (n) = 0 (2.32)
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Example 2.8 Find the cross-covariance function for the two random processes X (t)
and Y (t) given by

X (t) = a + b cos ωt

Y (t) = a + b sin ωt

where ω is a constant and a and b are iid random variables with zero mean and
variance σ 2.

We have

cXY (n) = E {(A + B cos ωt)[A + B sin ω(t + τ )]}
= E

[
A2
]+ E[AB] [cos ωt + sin ω(t + τ )] + E

[
B2
]

cos ωt sin ω(t + τ )

= σ 2 + E[A] E[B] [cos ωt + sin ω(t + τ )] + σ 2 cos ωt sin ω(t + τ )

= σ 2 [1 + cos ωt sin ω(t + τ )]

2.12 Correlation Matrix

Assume we have a discrete-time random process X (n). At each time step i we define
the random variable Xi = X (i). If each sample function contains n components, it
is convenient to construct a vector representing all these random variables in the
form

x = [
X1 X2 · · · Xn

]t
(2.33)

Now we would like to study the correlation between each random variable Xi

and all the other random variables. This would give us a comprehensive understand-
ing of the random process. The best way to do that is to construct a correlation
matrix.

We define the n × n correlation matrix RX , which gives the correlation between
all possible pairs of the random variables as

RX = E
[
x xt

] = E

⎡

⎢⎢⎢
⎣

X1 X1 X1 X2 · · · X1 Xn

X2 X1 X2 X2 · · · X2 Xn
...

...
. . .

...
Xn X1 Xn X2 · · · Xn Xn

⎤

⎥⎥⎥
⎦

(2.34)
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We can express RX in terms of the individual correlation functions

RX =

⎡

⎢⎢⎢
⎣

rX X (1, 1) rX X (1, 2) · · · rX X (1, n)
rX X (1, 2) rX X (2, 2) · · · rX X (2, n)

...
...

. . .
...

rX X (1, n) rX X (2, n) · · · rX X (n, n)

⎤

⎥⎥⎥
⎦

(2.35)

Thus we see that the correlation matrix is symmetric. For a wide-sense stationary
process, the correlation functions depend only on the difference in times and we get
an even simpler matrix structure:

RX =

⎡

⎢⎢⎢
⎣

rX X (0) rX X (1) · · · rX X (n − 1)
rX X (1) rX X (0) · · · rX X (n − 2)

...
...

. . .
...

rX X (n − 1) rX X (n − 2) · · · rX X (0)

⎤

⎥⎥⎥
⎦

(2.36)

Each diagonal in this matrix has identical elements and our correlation matrix
becomes a Toeplitz matrix.

Example 2.9 Assume the autocorrelation function for a stationary random process
is given by

rX X (τ ) = 5 + 3e−|τ |

Find the autocorrelation matrix for τ = 0, 1, and 2.
The autocorrelation matrix is given by

RX X =
⎡

⎣
8 6.1036 5.4060
6.1036 8 6.1036
5.4060 6.1036 6

⎤

⎦

2.13 Covariance Matrix

In a similar fashion, we can define the covariance matrix for many random variables
obtained from the same random process as

CX X = E
[
(x − μ) (x − μ)t

]
(2.37)

where μ = [
μ1 μ2 · · · μn

]t
is the vector whose components are the expected val-

ues of our random variables. Expanding the above equation we can write
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CX X = E
[
XXt]− μ μt (2.38)

= RX − μ μt (2.39)

When the process has zero mean, the covariance matrix equals the correlation
matrix:

CX X = RX X (2.40)

The covariance matrix can be written explicitly in the form

CX X =

⎡

⎢⎢⎢
⎣

CX X (1, 1) CX X (1, 2) · · · CX X (1, n)
CX X (1, 2) CX X (2, 2) · · · CX X (2, n)

...
...

. . .
...

CX X (1, n) CX X (2, n) · · · CX X (n, n)

⎤

⎥⎥⎥
⎦

(2.41)

Thus we see that the covariance matrix is symmetric. For a wide-sense stationary
process, the covariance functions depend only on the difference in times and we get
an even simpler matrix structure:

CX X =

⎡

⎢⎢⎢
⎣

CX X (0) CX X (1) · · · CX X (n − 1)
CX X (1) CX X (0) · · · CX X (n − 2)

...
...

. . .
...

CX X (n − 1) CX X (n − 2) · · · CX X (0)

⎤

⎥⎥⎥
⎦

(2.42)

Using the definition for covariance in (1.114) on page 35, we can write the above
equation as

CX X = σ 2
X

⎡

⎢⎢⎢⎢⎢
⎣

1 ρ(1) ρ(2) · · · ρ(n − 1)
ρ(1) 1 ρ(1) · · · ρ(n − 2)
ρ(2) ρ(1) 1 · · · ρ(n − 3)

...
...

ρ(n − 1) ρ(n − 2) ρ(n − 3) · · · 1

⎤

⎥⎥⎥⎥⎥
⎦

(2.43)

Example 2.10 Assume the autocovariance function for a wide-sense stationary ran-
dom process is given by

cX X (τ ) = 5 + 3e−|τ |

Find the autocovariance matrix for τ = 0, 1, and 2.
Since the process is wide-sense stationary, the variance is given by

σ 2 = cX X (0) = 8
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The autocovariance matrix is given by

CX X = 8

⎡

⎣
1 0.7630 0.6758

0.7630 1 0.7630
0.6758 0.7630 1

⎤

⎦

Problems

2.1 Define deterministic and nondeterministic processes. Give an example for
each type.

2.2 Let X be the random process corresponding to observing the noon temperature
throughout the year. The number of sample functions are 365 corresponding
to each day of the year. Classify this process.

2.3 Let X be the random process corresponding to reporting the number of defec-
tive lights reported in a building over a period of one month. Each month we
would get a different pattern. Classify this process.

2.4 Let X be the random process corresponding to measuring the total tonnage
(weight) of ships going through the Suez canal in one day. The data is plotted
for a period of one year. Each year will produce a different pattern. Classify
this process.

2.5 Let X be the random process corresponding to observing the number of cars
crossing a busy intersection in one hour. The number of sample functions are
24 corresponding to each hour of the day. Classify this process.

2.6 Let X be the random process corresponding to observing the bit pattern in an
Internet packet. Classify this process.

2.7 Amplitude-shift keying (ASK) can be modeled as a random process de-
scribed by

X (t) = a cos ωt

where ω is constant and a corresponds to the random variable A with two
values a0 and a1 which occur with equal probability. Find the expected value
μ(t) of this process.

2.8 A modified ASK uses two bits of the incoming data to generate a sinusoidal
waveform and the corresponding random process is described by

X (t) = a cos ωt

where ω is a constant and a is a random variable with four values a0, a1, a2,
and a3. Assuming that the four possible bit patterns are equally likely find the
expected value μ(t) of this process.
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2.9 Phase-shift keying (PSK) can be modeled as a random process described by

X (t) = a cos(ωt + φ)

where a and ω are constant and φ corresponds to the random variable Φ with
two values 0 and π which occur with equal probability. Find the expected
value μ(t) of this process.

2.10 A modified PSK uses two bits of the incoming data to generate a sinusoidal
waveform and the corresponding random process is described by

X (t) = a cos(ωt + φ)

where a and ω are constants and φ is a random variable Φ with four values
π/4, 3π/4, 5π/4, and 7π/4 [4]. Assuming that the four possible bit patterns
occur with equal probability, find the expected value μ(t) of this process.

2.11 A modified frequency-shift keying (FSK) uses three bits of the incoming data
to generate a sinusoidal waveform and the random process is described by

X (t) = a cos ωt

where a is a constant and ω corresponds to the random variable � with eight
values ω0, ω1, . . ., ω7. Assuming that the eight frequencies are equally likely,
find the expected value μ(t) of this process.

2.12 A discrete-time random process X (n) produces the random variable X (n)
given by

X (n) = an

where a is a uniformly distributed random variable in the range 0–1. Find the
expected value for this random variable at any time instant n.

2.13 Define a wide-sense stationary random process.
2.14 Prove (2.23) on page 56.
2.15 Define an ergodic random process.
2.16 Explain which of the following functions represent a valid autocorrelation

function.

rX X (n) = an 0 ≤ a < 1 rX X (n) = |a|n 0 ≤ a < 1
rX X (n) = an2

0 ≤ a < 1 rX X (n) = |a|n2
0 ≤ a < 1

rX X (n) = cos n rX X (n) = sin n

2.17 A random process described by

X (t) = a cos(ωt + φ)
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where a and ω are constant and φ corresponds to the random variable � which
is uniformly distributed in the interval 0 to 2π . Find the autocorrelation func-
tion rX X (t) of this process.

2.18 Define what is meant by two random processes being orthogonal.
2.19 Define what is meant by two random processes being statistically independent.
2.20 Find the cross-correlation function for the following two random processes.

X (t) = a cos ωt

Y (t) = α a cos(ωt + θ )

where a and θ are two zero mean random variables and α is a constant.
2.21 Given two random processes X and Y , when are they uncorrelated?

References

1. R. D. Yates and D. J. Goodman, Probability and Stochastic Processes, John Wiley, New York,
1999.

2. Thesaurus of Mathematics. http://thesaurus.maths.org/dictionary/map/word/1656.
3. P. Z. Peebles, Probability, Random Variables, and Random Signal Principles, McGraw-Hill,

New York, 1993.
4. S. Haykin, An Introduction to Analog and Digital Communications, John Wiley, New York,

1989.



Chapter 3
Markov Chains

3.1 Introduction

We explained in Chapter 1 that in order to study a stochastic system we map its
random output to one or more random variables. In Chapter 2 we studied other
systems where the output was mapped to random processes which are functions of
time. In either case we characterized the system using the expected value, variance,
correlation, and covariance functions. In this chapter we study stochastic systems
that are best described using Markov processes. A Markov process is a random
process where the value of the random variable at instant n depends only on its
immediate past value at instant n − 1. The way this dependence is defined gives rise
to a family of sample functions just like in any other random process. In a Markov
process the random variable represents the state of the system at a given instant
n. The state of the system depends on the nature of the system under study as we
shall see in that chapter. We will have a truly rich set of parameters that describe a
Markov process. This will be the topic of the next few chapters. The following are
the examples of Markov processes we see in many real life situations:

1. telecommunication protocols and hardware systems
2. customer arrivals and departures at banks
3. checkout counters at supermarkets
4. mutation of a virus or DNA molecule
5. random walk such as Brownian motion
6. arrival of cars at an intersection
7. bus rider population during the day, week, month, etc
8. machine breakdown and repair during use
9. the state of the daily weather

3.2 Markov Chains

If the state space of a Markov process is discrete, the Markov process is called a
Markov chain. In that case the states are labeled by the integers 0, 1, 2, etc. We will
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be concerned here with discrete-time Markov chains since they arise naturally in
many communication systems.

3.3 Selection of the Time Step

A Markov chain stays in a particular state for a certain amount of time called the
hold time. At the end of the hold time, the Markov chain moves to another state
at random where the process repeats again. We have two broad classifications of
Markov chains that are based on how we measure the hold time.

1. Discrete-time Markov chain: In a discrete-time Markov chain the hold time as-
sumes discrete values. As a result, changes in the states occur at discrete time
values. In that case time is measured at specific instances:

t = T0, T1, T2, . . .

The spacing between the time steps need not be equal in the general case. Most
often, however, the discrete time values are equally spaced and we can write

t = nT (3.1)

n = 0, 1, 2, . . . (3.2)

The time step value T depends on the system under study as will be explained
below.

2. Continuous-time Markov chain: In a continuous-time Markov chain the hold
time assumes continuous values. As a result, changes in the states occur at any
time value. The time value t will be continuous over a finite or infinite interval.

3.3.1 Discrete-Time Markov Chains

This type of Markov chains changes state at regular intervals. The time step could
be a clock cycle, start of a new day, or a year, etc.

Example 3.1 Consider a packet buffer where packets arrive at each time step with
probability a and depart with probability c. Identify the Markov chain and specify
the possible buffer states.

We choose the time step in this example to be equal to the time required to
receive or transmit a packet (transmission delay). At each time step we have two
independent events: packet arrival and packet departure. We model the buffer as a
Markov chain where the states of the system indicate the number of packets in the
buffer. Assuming the buffer size is B, then the number of states of the buffer is B +1
as identified in Table 3.1.
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Table 3.1 States of buffer
occupancy

State Significance

0 buffer is empty
1 buffer has one packet
2 buffer has two packets
...

...
B buffer has B packets (full)

Example 3.2 Suppose that packets arrive at random on the input port of a router
at an average rate λa (packets/s). The maximum data rate is assumed to be σ

(packets/s), where σ > λa . Study the packet arrival statistics if the port input is
sampled at a rate equal to the average data rate λa .

The time step (seconds) is chosen as

T = 1

λa

In one time step we could receive 0, 1, 2, . . ., N packets; where N is the maxi-
mum number of packets that could arrive

N = �σ × T � = � σ

λa
�

where the ceiling function f (x) = �x� gives the smallest integer larger than or equal
to x .

The statistics for packet arrival follow the binomial distribution and the proba-
bility of receiving k packets in time T is

p(k) =
(

N

k

)
ak bN−k

where a is the probability that a packet arrives and b = 1 − a. Our job in almost all
situations will be to find out the values of the parameters N , a, and b in terms of the
given data rates.

The packet arrival probability a could be obtained using the average value of the
binomial distribution. The average input traffic Na(in) is given from the binomial
distribution by

Na(in) = N a

But Na(in) is also determined by the average data rate as

Na(in) = λa × T = 1
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From the above two equations we get

a = 1

N
≤ λa

σ

Example 3.3 Consider Example 3.2 when the input port is sampled at the rate σ .
The time step is now given by

T ′ = 1

σ

In one time step we get either one packet or no packets. There is no chance to get
more than one packet in one time step since packets cannot arrive at a rate higher
than σ . Therefore, the packet arrival statistics follow the Bernoulli distribution. For
a time period t , the average number of packets that arrives is

Na(in) = λa t

From the Bernoulli distribution that average is given by

Na(in) = a′ t

T ′

The fraction on RHS indicates the number of time steps spanning the time period
t . From the above two equations we get

a′ = λa T ′ = λa

σ

3.4 Memoryless Property of Markov Chains

In a discrete-time Markov chain, the value of the random variable S(n) represents the
state of the system at time n. The random variable S(n) is a function of its immediate
past value—i.e. S(n) depends on S(n−1). This is referred to as the Markov property
or memoryless property of the Markov chain where the present state of the system
depends only on its immediate past state [1, 2]. Alternatively, we can say that the
Markov property of the Markov chain implies that the future state of the system
depends only on the present sate and not on its past states [3].

The probability that the Markov chain is in state si at time n is a function of its
past state s j at time n − 1 only. Mathematically, this statement is written as

p [S(n) = si ] = f
(
s j
)

(3.3)
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3 40 1 2

Fig. 3.1 The occupancy states of a buffer of size four and the possible transitions between the
states

for all i ∈ S and j ∈ S where S is the set of all possible states of the system.
Transition from a state to the next state is determined by a transition probability

only with no regard to how the system came to be in the present state. Many commu-
nication systems can be modeled as Markov or memoryless systems using several
techniques such as introducing extra transitions, defining extra states, and adjusting
the time step value. This effort is worthwhile since the memoryless property of a
Markov chain will result in a linear system that can be easily studied.

Example 3.4 Consider a data buffer in a certain communication device such as a
network router for example. Assume the buffer could accommodate at most four
packets. We say the buffer size is B = 4. Identify the states of this buffer and show
the possible transitions between states assuming at any time step at most one packet
can arrive or leave the buffer. Finally explain why the buffer could be studied using
Markov chain analysis.

Figure 3.1 shows the occupancy states of a buffer of size four and the possible
transitions between the states. The buffer could be empty or it could contain 1, 2, 3,
or 4 packets. Furthermore, the assumptions indicate that the size of the buffer could
remain unchanged or it could increase or decrease by one.

The transition from one state to another does not depend on how the buffer
happened to be in the present state. Thus the system is memoryless and could be
modeled as a Markov chain.

3.5 Markov Chain Transition Matrix

Let us define pi j (n) as the probability of finding our system in state i at time step
n given that the past state was state j . We equate pi j to the conditional probability
that the system is in state i at time n given that it it was in state j at time n − 1.
Mathematically, we express that statement as follows.

pi j (n) = p [S(n) = i | S(n − 1) = j ] (3.4)

The situation is further simplified if the transition probability is independent of
the time step index n. In that case we have a homogeneous Markov chain, and the
above equation becomes

pi j = p [S(n) = i | S(n − 1) = j ] (3.5)
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Let us define the probability of finding our system in state i at the nth step as

si (n) = p [X (n) = i] (3.6)

where the subscript i identifies the state and n denotes the time step index. Using
(3.4), we can express the above equation as

si (n) =
m∑

j=1

pi j × s j (n − 1) (3.7)

where we assumed the number of possible states to be m and the indices i and j
lie in the range 1 ≤ i ≤ m and 1 ≤ j ≤ m. We can express the above equation in
matrix form as

s(n) = P s(n − 1) (3.8)

where P is the state transition matrix of dimension m × m

P =

⎡

⎢⎢⎢
⎣

p11 p12 · · · p1,m

p21 p22 · · · p2,m
...

...
. . .

...
pm,1 pm,2 · · · pm,m

⎤

⎥⎥⎥
⎦

(3.9)

and s(n) is the distribution vector (or state vector) defined as the probability of the
system being in each state at time step n:

s(n) = [
s1(n) s2(n) · · · sm(n)

]t
(3.10)

The component si (n) of the distribution vector s(n) at time n indicates the proba-
bility of finding our system in state si at that time. Because it is a probability, our
system could be in any of the m states. However, the probabilities only indicate
the likelihood of being in a particular state. Because s describes probabilities of all
possible m states, we must have

m∑

i=1

si (n) = 1 n = 0, 1, 2, · · · (3.11)

We say that our vector is normalized when it satisfies (3.11). We call such a
vector a distribution vector. This is because the vector describes the distribution of
probabilities among the different states of the system.

Soon we shall find out that describing the transition probabilities in matrix form
leads to great insights about the behavior of the Markov chain. To be specific, we
will find that we are interested in more than finding the values of the transition
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probabilities or entries of the transition matrix P. Rather, we will pay great attention
to the eignevalues and eigenvectors of the transition matrix.

Since the columns of P represent transitions out of a given state, the sum of each
column must be one since this covers all the possible transition events out of the
state. Therefore we have, for all values of j,

m∑

i=1

pi j = 1 (3.12)

The above equation is always valid since the sum of each column in P is unity.
For example, a 2×2 transition matrix P would be set up as in the following diagram:

Present state

1 2

↓

Next state
1

2
←

⎡

⎣
p11 p12

p21 p22

⎤

⎦

The columns represent the present state while the rows represent the next state.
Element pi j represents the transition probability from state j to state i . For example,
p12 is the probability that the system makes a transition from state s2 to state s1.

Example 3.5 An on–off source is often used in telecommunications to simulate
voice traffic. Such a source has two states: The silent state s1 where the source
does not send any data packets and the active state s2 where the source sends one
packet per time step. If the source were in s1, it has a probability s of staying in that
state for one more time step. When it is in state s2, it has a probability a of staying
in that state. Obtain the transition matrix for describing that source.

The next state of the source depends only on its present state. Therefore, we can
model the state of the source as a Markov chain. The state diagram for such source
is shown in Fig. 3.2 and the transition matrix is given by

P =
[

s 1 − a
1 − s a

]

Fig. 3.2 Transition diagram
for an on–off source

1-s

1-a

as
Active
State

Silent
State



72 3 Markov Chains

Fig. 3.3 A Markov chain
involving three states
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Example 3.6 Assume that the probability that a delivery truck moves between three
cities at the start of each day is shown in Fig. 3.3. Write down the transition
matrix and the initial distribution vector assuming that the truck was initially in
Langford.

We assume the city at which the truck is located is the state of the truck. The next
state of the truck depends only on its present state. Therefore, we can model the state
of the truck as a Markov chain. We have to assign indices to replace city names. We
chose the following arbitrary assignment, although any other state assignment will
work as well.

City State index

Colwood 1
Langford 2
Sooke 3

Based on the state assignment table, the transition matrix is given by

P

⎡

⎣
0 1/4 1/4

3/4 0 1/4
1/4 3/4 1/2

⎤

⎦

The initial distribution vector is given by

s (0) = [
0 1 0

]t

Example 3.7 Assume an on–off data source that generates equal length packets with
probability a per time step. The channel introduces errors in the transmitted packets
such that the probability of a packet is received in error is e. Model the source using
Markov chain analysis. Draw the Markov chain state transition diagram and write
the equivalent state transition matrix.
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The Markov chain model of the source we use has four states:

State Significance

1 Source is idle
2 Source is retransmitting a frame
3 Frame is transmitted with no errors
4 Frame is transmitted with an error

Since the next state of the source depends only on its present state, we can model
the source using Markov state analysis.

Figure 3.4 shows the Markov chain state transition diagram. We make the fol-
lowing observations:

• The source stays idle (state s1) with probability 1 − a.
• Transition from s1 to s3 occurs under two conditions: the source is active and no

errors occur during transmission.
• Transition from s1 to s4 occurs under two conditions: the source is active and an

error occurs during transmission.
• Transition from s2 to s3 occurs under only one condition: no errors occur.

The associated transition matrix for the system is given by

P =

⎡

⎢⎢
⎣

1 − a 0 1 0
0 0 0 1

a(1 − e) 1 − e 0 0
a e e 0 0

⎤

⎥⎥
⎦

Example 3.8 In an ethernet network based on the carrier sense multiple access with
collision detection (CSMA/CD), a user requesting access to the network starts trans-
mission when the channel is not busy. If the channel is not busy, the user starts

Fig. 3.4 State transition
diagram for transmitting a
packet over a noisy channel

S3S1

S2 S4

1-a
a (1-e)

1-e

e

a e

1

1
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transmitting. However, if one or more users sense that the channel is free, they will
start transmitting and a collision will take place. If a collision from other users is
detected, the user stops transmitting and returns to the idle state gain. In other words,
we are not adopting any backoff strategies for simplicity in this example.

Assume the following probabilities:

u0 Probability all users are idle
u1 Probability only one user is transmitting
1 − u0 − u1 Probability two or more users are transmitting

(a) Justify using Markov chain analysis to describe the behavior of the channel or
communication medium.

(b) Select a time step size for a discrete-time Markov chain model.
(c) Draw the Markov state transition diagram for this channel and show the state

transition probabilities.

(a) A user in that system will determine its state within a time frame of twice the
propagation delay on the channel. Therefore, the current state of the channel
or communication medium and all users will depend only on the actions of
the users in time frame of one propagation delay only. Thus our system can be
described as a Markov chain.

(b) The time step T we can choose is twice the propagation delay. Assume packet
transmission delay requires n time steps where all packets are assumed to have
equal lengths.

(c) The channel can be in one of the following states:

(1) i : idle state
(2) t : transmitting state
(3) c: collided state

Fig. 3.5 Markov chain state
transition diagram for the
CSMA/CD channel
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Figure 3.5 shows the state of the channel and the transition probabilities between
these states.

1. The channel remains in the idle state with probability u0.
2. The channel moves from idle to transmitting state with probability u1.
3. The channel moves from idle to the collided state with probability 1 − u0 − u1.

The other transitions are explained in the same way. We organize our state transi-
tion matrix such that first row or column corresponds to the idle state i . The second
row or column correspond to the collided state. The third row or column corresponds
to transmit state t1, etc. For n transmit states, the transition matrix will have the
dimension (n + 2) × (n + 2):

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

u0 u0 0 0 · · · u0

1 − u0 − u1 1 − u0 − u1 0 0 · · · 1 − u0 − u1

u1 u1 u1 0 · · · u1

0 0 0 1 · · · 0
0 0 0 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

3.6 Markov Matrices

The definition of the transition matrix P results in a matrix with peculiar properties:

1. The number of rows equals the number of columns. Thus P is a square matrix.
2. All the elements of P are real numbers. Thus P is a real matrix.
3. 0 ≤ pi j ≤ 1 for all values of i and j . Thus P is a nonnegative matrix.
4. The sum of each column is exactly 1 (i.e.,

∑m
j=1 pi j = 1).

5. The magnitude of all eigenvalues obey the condition |λi | ≤ 1. Thus the spectral
radius of P equals 1.

6. At least one of the eigenvalues of P equals 1.

From all the above properties we conclude that the transition matrix is square,
real, and nonnegative. Such a matrix is termed column stochastic matrix or Markov
matrix. Notice that all column stochastic matrices are a subset of nonnegative ma-
trices. Thus nonnegative matrices need not be column stochastic.

Nonnegative matrices have many interesting properties related to their eigen-
values and eigenvectors but this is beyond the scope of this book [4]. The above
mentioned properties have implications on the eigenvalues of the transition matrix.
The following theorem indicates one such implication.

Theorem 3.1 Let P be any m × m column stochastic matrix. Then P has 1 as an
eigenvalue [4].
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Proof We know that if λ is an eigenvalue of P, then the determinant of the charac-
teristic equation must vanish, i.e.

det (P − λI) = 0 (3.13)

where I is an m × m unit matrix. By Assuming that P has 1 as an eigenvalue, then
the determinant is given by

det (P − 1 × I) =

∣∣∣∣∣∣∣∣∣

p11 − 1 p12 · · · p1m

p21 p22 − 1 · · · p2m
...

...
. . .

...
pm1 pm2 · · · pmm − 1

∣∣∣∣∣∣∣∣∣

(3.14)

where |A| indicates the determinant of matrix A. The determinant will not change
if we add all the remaining rows to the first row

det (P − 1 × I) =

∣∣∣∣∣∣∣∣∣

∑
pi1 − 1

∑
pi2 − 1 · · · ∑

pim − 1
p21 p22 − 1 · · · p2m
...

...
. . .

...
pm1 pm2 · · · pmm − 1

∣∣∣∣∣∣∣∣∣

(3.15)

But the sum of the elements in each column is 1, and the first row of the above
determinant will be zero. As a result, the determinant is zero and this proves that 1
is an eigenvalue of P.

Conversely, assume that (3.13) is satisfied for some value of λ. In that case we
can write an equation similar to (3.15), namely:

det (P − 1 × I) =

∣∣∣∣∣∣∣∣∣

∑
pi1 − λ

∑
pi2 − λ · · · ∑

pim − λ

p21 p22 − 1 · · · p2m
...

...
. . .

...
pm1 pm2 · · · pmm − 1

∣∣∣∣∣∣∣∣∣

(3.16)
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But we know that this determinant is zero. This is true for all values of pi j which
implies that the elements in the first row of the matrix must be zero. Thus we must
have

∑
pi1 − λ = 0 (3.17)

But the sums in the above equation is equal to 1 independent of the value of i .
Thus we must have

1 − λ = 0 (3.18)

The above equation implies that λ = 1 is a root of the equation which proves the
second part of the theorem.

The following theorem will prove useful when we start multiplying Markov ma-
trices to perform transient analysis on our Markov chain. The theorem essentially
explains the effect of premultiplying any matrix by a column stochastic matrix.

Theorem 3.2 The sum of columns of any matrix A will not change when it is pre-
multiplied by a column stochastic matrix P.

Proof When A is premultiplied by P we get matrix B.

B = PA (3.19)

Element bi j is given by the usual matrix product formula

bi j =
m∑

k=1

pik ak j (3.20)

The sum of the j th column of matrix B is denoted by σ j (B) and is given by

σ j (B) =
m∑

i=1

bi j =
m∑

i=1

m∑

k=1

pik ak j (3.21)

Now reverse the order of summation on the right-hand side of the above equation:

σ j (B) =
m∑

k=1

ak j

m∑

i=1

pik (3.22)

Because P is column stochastic we have

σk(P) =
m∑

i=1

pik = 1 (3.23)
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Therefore, (3.22) becomes

σ j (B) =
m∑

i=1

bi j =
m∑

k=1

ak j (3.24)

= σ j (A) (3.25)

Thus we proved that sum of columns of a matrix does not change when the matrix
is premultiplied by a column stochastic matrix.

3.6.1 The Diagonals of P

We mentioned above the significance of each element pi j of the transition matrix P
as the probability of making a transition from state j to state i. Further insight can be
gained for Markov chains representing queues. Queuing systems are a special type of
Markov chains in which customers arrive and lineup to be serviced by servers. Thus
a queue is characterized by the number of arriving customers at a given time step,
the number of servers, the size of the waiting area for customers, and the number
customers that can leave in one time step.

The state of a queuing system corresponds to the number of customers in the
queue. If we take the lineup for a bank as an example, then the queue size increases
when new customers arrive. The number of arriving customers could be one in some
cases or many in others. This depends on the specifics of the situation. For example,
if there is only one door to the bank, then we could expect at most one customer
to arrive at any time. At the head of the queue, the number of servers also varies
depending on how many bank tellers are ready, or disposed, to serve the customers.
If there is only one teller, then we expect the size of the queue to decrease by at
most one each time a customer is served. The duration of the service time also
varies depending on the type of transaction being done.

The diagonals of P reflect the queuing system characteristics. Table 3.2 illustrates
the significance of each diagonal of the matrix P.

Table 3.2 Significance of diagonals of P

Diagonal Significance

Main probabilities queue will retain its size
1st upper probabilities queue size will decrease by one
2nd upper probabilities queue size will decrease by two
3rd upper probabilities queue size will decrease by three
...

...
1st lower probabilities queue size will increase by one
2nd lower probabilities queue size will increase by two
3rd lower probabilities queue size will increase by three
...

...
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3.7 Eigenvalues and Eigenvectors of P

The eigenvalues and eigenvectors of the transition matrix P will prove to be of ut-
most importance in the analyses of this book. The following theorem makes certain
predictions about the eigenvector corresponding to the eigenvalue λ = 1.

Theorem 3.3 Given a column stochastic matrix P and the eigenvector x corre-
sponding to the eigenvalue λ = 1, the sum of the elements of x is nonzero and
could be taken as unity, i.e. σ (x) = 1.

Proof The eigenvector x corresponding to λ = 1 satisfies the equation

P x = x (3.26)

We can write the above equation as

(P − I) x = 0 (3.27)

This is a system of linear equation with an infinite number of solutions since the
matrix (P − I) is rank deficient (i.e., rank(P) < m). To get a unique solution for x,
we need one extra equation which we choose as

σ (x) = 1 (3.28)

We cannot choose the sum to be zero since this is a trivial solution. Any nonzero
value is acceptable. We choose to have σ (x) = 1 for reasons that will become
apparent later on. This proves the theorem.

The following theorem makes certain predictions about the sum of elements of
the other eigenvectors of P corresponding to the eigenvalues λ < 1.

Theorem 3.4 Given a column stochastic matrix P and an eigenvector x corre-
sponding to the eigenvalue λ �= 1, the sum of the elements of x must be zero, i.e.
σ (x) = 0.

Proof The eigenvector x satisfies the equation

P x = λ x (3.29)

The sum of columns of both sides of the above equation are equal

σ (P x) = λ σ (x) (3.30)

From Theorem 3.2, on page 77, we are assured that the sum of the elements of x
will not change after being multiplied by matrix P. Thus we can write

σ (P x) = σ (x) (3.31)
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From the above two equations we have

σ (x) = λσ (x) (3.32)

or

σ (x)(1 − λ) = 0 (3.33)

Since λ �= 1, the only possible solution to the above equation is σ (x) = 0. This
proves the theorem.

Example 3.9 Verify Theorems 3.3 and 3.4 for the Markov matrix

P =

⎡

⎢⎢
⎣

0.3 0.1 0 0.2
0.1 0.6 0.3 0.1
0.4 0.2 0.4 0.5
0.2 0.1 0.3 0.2

⎤

⎥⎥
⎦

MATLAB gives the following eigenvectors and corresponding eigenvalues:

[X,D] = eig(P)

X =
-0.1965 0.5887 -0.1002 -0.4286
-0.6309 0.3983 -0.7720 0.1644
-0.6516 -0.5555 0.5190 -0.4821
-0.3724 -0.4315 0.3532 0.7463

D =

1.0000 0 0 0
0 0.2211 0 0
0 0 0.3655 0
0 0 0 -0.0866

We have to normalize our eigenvectors so that the sum of the components of the first
column, which corresponds to λ = 1 is one.

X = X/sum(X(:,1))

X =
0.1061 -0.3179 0.0541 0.2315
0.3408 -0.2151 0.4169 -0.0888
0.3520 0.3001 -0.2803 0.2604
0.2011 0.2330 -0.1907 -0.4031
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We can write, ignoring rounding errors,

σ1(X) = 1

σ2(X) = 0

σ3(X) = 0

σ4(X) = 0

3.8 Constructing the State Transition Matrix P

The state transition matrix P is the key to analyzing Markov chains and queues. To
construct the matrix the following steps are usually followed [3].

1. Verify that the system under study displays the Markov property. In other words,
ensure that transition to a new state depends only on the current state.

2. All possible states of the system are identified and labeled. The labeling of the
states is arbitrary although some labeling schemes would render the transition
matrix easier to visualize.

3. All possible transitions between the states are either drawn on the state transi-
tion diagram, or the corresponding elements of the state transition matrix are
identified.

4. The probability of every transition in the state diagram is obtained.
5. The transition matrix is constructed.
6. Relabeling of the states is always possible. That will change the locations of the

matrix elements and make the structure of the matrix more visible. This rear-
rangement will still produce a column stochastic matrix and will not disturb its
eigenvalues or the directions of its eigenvectors.

Example 3.10 The closing price of a certain stock on a given weekday is either
falling or rising compared to the previous day’s price. If the price stays the same,
then it is classified as rising if the previous day’s trend was rising, and vice versa.
The probabilities of price transitions between these two states are shown in Fig. 3.6.
Construct state transition matrix.

The price of the stock has only two states, falling (s1) or rising (s2). The transition
matrix will be

Fig. 3.6 Day-to-day closing
price fluctuations of a certain
stock

falling

0.3

rising

0.6

0.7
0.4
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P =
[

0.3 0.6
0.7 0.4

]

3.9 Transient Behavior

From (3.8) on page 70 we can write the distribution vector at time step n = 1 as

s(1) = P s(0) (3.34)

and

s(2) = P s(1) (3.35)

= P [P s(0)] (3.36)

= P2 s(0) (3.37)

and we can generalize to express the distribution vector at step n as

s(n) = Pn s(0) n = 0, 1, 2, ... (3.38)

This equation allows us to calculate the distribution vector at the nth time step
given the transition matrix and the initial distribution vector s(0).

Example 3.11 In Example 3.6, on page 72, what is the probability that our truck is
in Colwood after five deliveries assuming that it was Langford initially?

We are looking for element p12 in matrix P5. Using any mathematical tool such
as MAPLE or MATLAB, we get

P5 =
⎡

⎣
0.199 0.2 0.200
0.288 0.277 0.278
0.513 0.523 0.522

⎤

⎦

Hence the required probability is 0.2.

Example 3.12 Assume a ball falls on the pegs shown in Fig. 3.7. The pegs are setup
such that the ball must hit a peg at each level and bounce off one of the two pegs
immediately below. The location of the ball at the bottom bucket indicates the prize
to be won.

(a) Define a Markov chain describing the state of the ball.
(b) Write down the transition matrix.
(c) Write down the initial distribution vector if the ball is dropped in the middle

hole.
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Fig. 3.7 A ball falling
through a maze of pegs

s0 s2 s4 s6 s8

s7s5s3s1

W0 W2 W4 W6 W8

row 0

row 1

row 2

row 3

row 4

row 5

row 6

row 7

row 8

(d) Determine the probability of hitting the middle bucket.
(e) Assume the money to be won is given by the vector

w = [
$5 $1 $10 $1 $5

]t

Determine the average amount of money that could be won.

Since the next location of the ball depends only on its present location, we can
describe this system using Markov chains.

(a) We can model this system as a Markov chain with nine states s1 to s9, as indi-
cated in the figure. State si (n) indicates that the ball is at column i and row n
in the game. The rows are numbered starting with zero at the top row. Thus our
distribution vector could be written as

s = [
s0 s1 s2 s3 s4 s5 s6 s7 s8

]t

where at even time steps the even states could be occupied and at odd time steps
only the odd states could be occupied.
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(b) The transition matrix is given by

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 0.5 0 0 0 0 0 0 0
1 0 0.5 0 0 0 0 0 0
0 0.5 0 0.5 0 0 0 0 0
0 0 0.5 0 0.5 0 0 0 0
0 0 0 0.5 0 0.5 0 0 0
0 0 0 0 0.5 0 0.5 0 0
0 0 0 0 0 0.5 0 0.5 0
0 0 0 0 0 0 0.5 0 1
0 0 0 0 0 0 0 0.5 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(c) The initial distribution vector is given by

s(0) = [
0 0 0 0 1 0 0 0 0

]t

(d) After eight iterations, the ball finally falls into one of the buckets. Thus the
distribution vector after eight iterations is given by

s(8) = P8 s(0)

= [
0.11 0 0.25 0 0.28 0 0.25 0 0.11

]t

Note that the only valid states are the ones that correspond to a bucket loca-
tions at the bottom of the figure. This explains the zeros in the odd locations 1,
3, 5, and 7. The probability of settling into the middle bucket is s4 = 0.28.

(e) The average winnings are given by

Wa = W0 s0(8) + W2 s2(8) + W4 s4(8) + W6 s6(8) + W8 s8(8)

= $4.4

It is interesting that if hundreds of balls are dropped at the center toward the
bottom, then their distribution at the bottom barrels is bell-shaped and their
number is the binomial coefficients [5]

Example 3.13 A computer memory system is composed of very fast on-chip cache,
fast on-board RAM, and slow hard disk. When the computer is accessing a block
from each memory system, the next block required could come from any of the three
available memory systems. This is modeled as a Markov chain with the state of the
system representing the memory from which the current block came from: state s1

corresponds to the cache, state s2 corresponds to the RAM, and state s3 corresponds
to the hard disk. The transition matrix is given by

P =
⎡

⎣
0.7 0.1 0
0.2 0.7 0.1
0.1 0.2 0.9

⎤

⎦
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Find the probability that after three consecutive block accesses the system will
read a block from the cache.

The starting distribution vector is s(0) = [
1 0 0

]t
and we have

P2 =
⎡

⎣
0.51 0.14 0.01
0.29 0.53 0.16
0.20 0.33 0.83

⎤

⎦

P3 =
⎡

⎣
0.386 0.151 0.023
0.325 0.432 0.197
0.289 0.417 0.780

⎤

⎦

The distribution vector after three iterations is

s(3) = P3 s(0) = [
0.386 0.325 0.289

]t

The probability that the system will read a block from the cache is 0.386.

3.9.1 Properties of Pn

Matrix Pn has many interesting properties that we list below:

• Pn remains a column stochastic matrix according to Lemma 3.1.
• A nonzero element in P can increase or decrease in Pn but can never become

zero.
• A zero element in P could remain zero or increase in Pn but can never become

negative.

As a result of Theorem 3.2 on page 77, we deduce the following two lemmas.

Lemma 3.1 Given a column stochastic matrix P, then Pn, for n ≥ 0, is also column
stochastic.

The proof is easily derived from Theorem 3.2.

Lemma 3.2 The state vector s(n) at instance n is given by

s(n) = Pn s(0) (3.39)

This vector must be a distribution vector for all values of n ≥ 0. The proof is easily
derived from Theorem 3.2 after applying the theorem to the state vector s(0).

3.10 Finding s (n)

We can determine the state of our Markov chain at time step n if we are able to
calculate Pn. In general, performing n matrix multiplications is tedious and leads to
computational noise. Besides, no insight can be gained from repeatedly multiplying
a matrix. Alternative techniques for obtaining an expression for s(n) or Pn include
the following:



86 3 Markov Chains

1. Repeated multiplications to get Pn .
2. Expanding the initial distribution vector s(0).
3. Diagonalizing the matrix P.
4. Using the Jordan canonic form of P.
5. Using the z-transform.

The first method is simple and is best done using a mathematical package such
as MATLAB. We have seen examples of this technique in the previous section. We
show in the following sections how the other techniques are used.

3.11 Finding s (n) by Expanding s (0)

In most cases the transition matrix P is simple, i.e. it has m distinct eigenvalues. In
that case we can express our initial distribution vector s(0) as a linear combination
of the m eigenvectors:

s(0) = c1 x1 + c2 x2 + · · · + cm xm (3.40)

where xi is the i th eigenvector of P and ci is the corresponding scalar expansion
coefficients. We can write the above equation as a simple matrix expression:

s(0) = X c (3.41)

where X is an m × m matrix whose columns are the eigenvectors of P and c is an
m-component vector of the expansion coefficients:

X = [
x1 x2 · · · xm

]
(3.42)

c = [
c1 c2 · · · cm

]t
(3.43)

We need not normalize the eigenvectors before we determine the coefficients
vector c because any normalization constant for X will be accounted for while de-
termining c.

To find s(n) we will use the technique explained below. Equation (3.41) is a
system of m-linear equations in m unknowns, namely the components of the column
vector c. There are many numerical techniques for finding these components like
Gauss elimination, Kramer’s rule, etc. MATLAB has a very simple function for
finding the eigenvectors of P:

X = eig(P) (3.44)

where matrix X will contain the eigenvectors in its columns. To find the coefficient
vector c we use MATLAB to solve the system of linear equations in (3.41) by typing
the MATLAB command
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c = X \ s(0) (3.45)

where the backslash operator “\” effectively solves for the unknown vector c using
Gaussian elimination.

Note: The function EIGPOWERS(P,s) can be used to expand s in terms of the
eigenvectors of P.

Example 3.14 A Markov chain has the state matrix

P =

⎡

⎢⎢
⎣

0.3 0.2 0.2 0.2
0.3 0.4 0.2 0.2
0.2 0.2 0.2 0.2
0.2 0.2 0.4 0.4

⎤

⎥⎥
⎦

Check to see if this matrix has distinct eigenvalues. If so, expand the initial dis-
tribution vector

s(0) = [
1 0 0 0

]t

in terms of the eigenvectors of P.
The eigenvalues of P are λ1 = 1, λ2 = 0.1, λ3 = 0.2, and λ4 = 0. The eigenvec-

tors corresponding to these eigenvalues are

X =

⎡

⎢⎢
⎣

0.439 −0.707 0.0 0.0
0.548 0.707 0.707 0.0
0.395 0.0 0.0 0.707
0.592 0.0 −0.707 −0.707

⎤

⎥⎥
⎦

Therefore, we can expand s(0) in terms of the corresponding eigenvectors

s(0) = X c

where c given by

c = [
0.507 −1.1 0.707 0.283

]t
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Now let us see how to get a simple expression for evaluating s(n) given the ex-
pansion of s(0). We start by using (3.41) to find s(1) as

s(1) = P s(0) (3.46)

= P (c1x1 + c2x2 + · · · + cmxm) (3.47)

= c1λ1x1 + c2λ2x2 + · · · + cmλmxm (3.48)

where λi is the i-th eigenvalue of P corresponding to the i-th eigenvector xi .
We can express s(1) in the above equation in matrix form as follows:

s(1) = X D c (3.49)

where X was defined before and D is the diagonal matrix whose diagonal elements
are the eigenvalues of P.

D =

⎡

⎢⎢⎢
⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λm

⎤

⎥⎥⎥
⎦

(3.50)

MATLAB provides a very handy function for finding the two matrices X and D
using the single command

[X,D] = eig(P) (3.51)

Having found s(1), we now try to find s(2)

s(2) = P s(1) (3.52)

= P X D c (3.53)

but the eigenvectors satisfy the relation

Pxi = λi xi (3.54)

In matrix form we can write the above equation as

PX = X D (3.55)

By substituting (3.55) into (3.53) we get

s(2) = X D2 c (3.56)
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where

D2 =

⎡

⎢⎢⎢
⎣

λ2
1 0 · · · 0

0 λ2
2 · · · 0

...
...

. . .
...

0 0 · · · λ2
m

⎤

⎥⎥⎥
⎦

(3.57)

In general the distribution vector at time step n is given by

s(n) = XDnc (3.58)

where

Dn =

⎡

⎢⎢⎢
⎣

λn
1 0 · · · 0

0 λn
2 · · · 0

...
...

. . .
...

0 0 · · · λn
m

⎤

⎥⎥⎥
⎦

(3.59)

It is relatively easy to find the n-th power of a diagonal matrix by simply raising
each diagonal element to the n-th power. Then the distribution vector at time step n
is simply obtained from (3.58).

Example 3.15 Consider the Markov chain in Example 3.14. Find the values of the
distribution vector at time steps 2, 5, and 20.

For the given transition matrix, we can write

s(n) = XDnc

where the matrices X, D, and the vector c are given by

X =

⎡

⎢⎢
⎣

0.439 −0.707 0.0 0.0
0.548 0.707 0.707 0.0
0.395 0.0 0.0 0.707
0.592 0.0 −0.707 −0.707

⎤

⎥⎥
⎦

D =

⎡

⎢⎢
⎣

1 0 0 0
0 0.1 0 0
0 0 0.2 0
0 0 0 0

⎤

⎥⎥
⎦

c = [
0.507 −1.1 0.707 0.283

]t
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Thus we can simply write

s(2) = XD2c

= [
0.23 0.29 0.2 0.28

]t

s(5) = XD5c

= [
0.22 0.28 0.2 0.3

]t

s(20) = XD20c

= [
0.22 0.28 0.2 0.3

]t

We see that the distribution vector settles down to a fixed value after a few it-
erations. The above results could be confirmed by directly finding the distribution
vectors using the usual formula

s(n) = Pn s(0)

Sometimes two eigenvalues are the complex conjugate of each other. In that case
the corresponding eigenvectors will be complex conjugate and so are the corre-
sponding coefficient c such that the end result s(n) is purely real.

Example 3.16 A Markov chain has the transition matrix

P =
⎡

⎣
0.1 0.4 0.2
0.1 0.4 0.6
0.8 0.2 0.2

⎤

⎦

Check to see if this matrix has distinct eigenvalues. If so,

(a) Expand the following initial distribution vector

s(0) = [
1 0 0

]t

in terms of the eigenvectors of P.
(b) Find the value of s(3).

The eigenvalues of P are

λ1 = 1

λ2 = −0.15 + j0.3122

λ3 = −0.15 − j0.3122
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We see that complex eigenvalues appear as complex conjugate pairs. The eigen-
vectors corresponding to these eigenvalues are

X =
⎡

⎣
−0.4234 −0.1698 + j0.3536 −0.1698 − j0.3536
−0.6726 −0.5095 − j0.3536 −0.5095 + j0.3536
−0.6005 0.6794 0.6794

⎤

⎦

We see that the eigenvectors corresponding to the complex eigenvalues appear
also as complex conjugate pairs. Therefore, we can expand s(0) in terms of the
corresponding eigenvectors.

s(0) = X c

where c given by

c = [ −5863 −0.2591 − j0.9312 −0.2591 + j0.9312
]t

We see that the expansion coefficients corresponding to the complex eigenvectors
appear as complex conjugate pairs also. This ensures that all the components of the
distribution vector will always be real numbers.

The distribution vector at time step n = 3 is

s(3) = XD3c = [
0.2850 0.3890 0.3260

]t

3.12 Finding s(n) by Diagonalizing P

According to [4], matrix P is diagonalizable when it has m distinct eigenvalues and
we can write

P = XDX−1 (3.60)

where X is the matrix whose columns are the eigenvectors of P, and D is a diago-
nal matrix whose diagonal elements are the eigenvalues arranged according to the
ordering of the columns of X. MATLAB provides a very handy function for finding
the matrices X and D using the single command

[X,D] = eig(P)

It does not matter here whether the columns of X are normalized or not since any
scaling factor in X will be cancelled by X−1. MATLAB also offers a very simple
function for inverting a matrix by using the command

X inv = inv(X)
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We can calculate P2 as

P2 = (
XDX−1

)× (
XDX−1

)
(3.61)

= XD2X−1 (3.62)

In general we have

Pn = XDnX−1 (3.63)

where

Dn =

⎡

⎢⎢⎢⎢⎢
⎣

λn
1 0 0 · · · 0

0 λn
2 0 · · · 0

0 0 λn
3 · · · 0

...
...

...
. . .

...
0 0 0 · · · λn

m

⎤

⎥⎥⎥⎥⎥
⎦

(3.64)

It is easy therefore to find s(n) for any value of n by simply finding Dn and then
evaluate the simple matrix multiplication expression

s(n) = Pn s(0)

= XDnX−1 s(0) (3.65)

3.12.1 Comparing Diagonalization with Expansion of s (0)

Diagonalizing the matrix P is equivalent to the previous technique of expanding s(0)
in terms of the eigenvectors of P. As a proof, consider calculating s(n) using both
techniques.

Using diagonalization technique, we have

s(n) = Pns(0) (3.66)

= XDnX−1 s(0) (3.67)

Using the expansion of s(0) technique in (3.41) we know that

s(0) = Xc (3.68)

By substituting this into (3.67) we get

s(n) = XDnX−1X c

= XDn c (3.69)
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Now the value for c = X−1s(0) can be found to yield

s(n) = XDnX−1 s(0) (3.70)

This last expression for s(n) is identical to (3.67). Thus we see that the two tech-
niques are equivalent. Before we finish this section we state the following lemma
which will prove useful later on.

Lemma 3.3 Assume the first column of X is the normalized eigenvector corre-
sponding to eigenvalue λ = 1. Then the matrix X−1 will have ones in its first row.

In general, if the first column of X is not normalized, then the theorem would
state that the matrix X−1 will have the value 1/σ (x1) in the elements in its first row.
Proof Assume Y = X−1 then we can write

X × Y = I (3.71)

where I is the m × m unit matrix. Let us express the above equation in terms of
the elements of the two matrices X and Y:

⎡

⎢⎢⎢
⎣

x11 x12 · · · x1m

x21 x22 · · · x2m
...

...
. . .

...
xm1 xm2 · · · xmm

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

y11 y12 · · · y1m

y21 y22 · · · y2m
...

...
. . .

...
ym1 ym2 · · · ymm

⎤

⎥⎥⎥
⎦

= I (3.72)

The element at location (i, j) is obtained from the usual formula

m∑

k=1

xik yk j = δ(i − j) (3.73)

where δ(i − j) is the Dirac delta function which is one only when the argument is
zero, i.e. when i = j . The function is zero for all other values of i and j .

The sum of the j-th column on both sides of (3.71) and (3.73) is given by

m∑

i=1

m∑

k=1

xik yk j = 1 (3.74)

Now reverse the order of summation on the left-hand side (LHS) of the above
equation

m∑

k=1

yk j

m∑

i=1

xik = 1 (3.75)
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Because of the properties of the eigenvectors in Theorem 3.3 on page 79 and
Theorem 3.4 on page 79, the second summation becomes

m∑

k=1

yk j δ(k − 1) = 1 (3.76)

δ(k − 1) expresses the fact that only the sum of the first column of matrix X
evaluates to 1. All other columns add up to zero. Thus the above equation becomes

y1 j = 1 (3.77)

This proves that the elements of the first row of matrix X−1 must be all ones.

3.13 Expanding Pn in Terms of Its Eigenvalues

We shall find that expanding Pn in terms of the eigenvalues of P will give us addi-
tional insights into the transient behavior of Markov chains. Equation (3.63) related
Pn to the n-th powers of its eigenvalues as

Pn = XDnX−1 (3.78)

Thus we can express Pn in the above equation in the form

Pn = λn
1A1 + λn

2A2 + · · · + λn
mAm (3.79)

Assume that λ1 = 1 and all other eigenvalues have magnitudes lesser than unity
(fractions) because P is column stochastic. In that case, the above equation becomes

Pn = A1 + λn
2A2 + · · · + λn

mAm (3.80)

This shows that as time progresses, n becomes large and the powers of λn
i will

quickly decrease. The main contribution to Pn will be due to A1 only.
The matrices Ai can be determined from the product

Ai = X Yi X−1 (3.81)

where Yi is the selection matrix which has zeros everywhere except for element
yii = 1.

For a 3 × 3 matrix, we can write

Pn = [
x1 x2 x3

]
⎡

⎣
λn

1 0 0
0 λn

2 0
0 0 λn

3

⎤

⎦[ x1 x2 x3
]−1

(3.82)
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A1 = X

⎡

⎣
1 0 0
0 0 0
0 0 0

⎤

⎦X−1 (3.83)

A2 = X

⎡

⎣
0 0 0
0 1 0
0 0 0

⎤

⎦X−1 (3.84)

A3 = X

⎡

⎣
0 0 0
0 0 0
0 0 1

⎤

⎦X−1 (3.85)

The selection matrix effectively ensures that Ai is given by the product of the
i-th column of X and the i-th row of X−1

WWW: We developed the function SELECT(P) that can be used to obtain the
different matrices Ai for a diagonalizable matrix.

It will prove useful to write Ai explicitly in terms of the corresponding eigenvec-
tor. Ai can be written in the alternative form

Ai = xi zi (3.86)

where xi is the i-th eigenvector of P, which is also the i-th column of X, and zi is
the m-row vector corresponding to the i-th row of X−1. Thus we have

Ai = [
zi1xi zi2xi zi3xi · · · zimxi

]
(3.87)

The following two theorems discuss some interesting properties of the expansion
matrices Ai .

Theorem 3.5 Matrix A1 is column stochastic and all its columns are identical.

Proof A1 is found from (3.87) as

A1 = [
z11x1 z12x1 z13x1 · · · z1mx1

]
(3.88)

But Lemma 3.3 on page 93 proved that z11, z12, . . . , z1m are all equal to unity.
Thus the above equation becomes

A1 = [
x1 x1 · · · x1

]
(3.89)

This proves the theorem.
Theorem 3.5 results in the following very useful lemma.

Lemma 3.4 The steady-state distribution vector s(∞) = s must be independent of
the initial value s(0) and equals any column of A1.

From Theorem 3.5 and Lemma 3.4 we can state the following very useful
lemma.
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Lemma 3.5 Each column of A1 represents the steady-state distribution vector for
the Markov chain.

We define a differential matrix as a matrix in which the sum of each column is
zero. The following theorem states that matrices Ai corresponding to eigenvalues
λi �= 1 are all differential matrices.

Theorem 3.6 The expansion matrices Ai corresponding to eigenvalues λi �= 1 are
differential, i.e. σ (Ai ) = 0.

Proof The sum of column j in (3.80) is given by

σ j (Pn) = σ j (A1) + λn
2 σ j (A2) + λn

3 σ j (A3) + · · · (3.90)

Lemma 3.1 on page 85 assures us that Pn is column stochastic and Theorem 3.5
on page 95 assures us that A1 is also column stochastic. Therefore, we can write the
above equation as

1 = 1 + λn
2 σ j (A2) + λn

3 σ j (A3) + · · · (3.91)

Since this equation is valid for all values of λi and n, we must have

σ j (A2) = σ j (A3) = · · · = σ j (Am) = 0 (3.92)

The above equations are valid for all values of 1 ≤ j ≤ m. Thus all the matrices
Ai which correspond to λi �= 1 are all differential matrices. And we can write

σ (A2) = σ (A3) = · · · = σ (Am) = 0 (3.93)

This proves the theorem.

The following theorem is related to Theorem 3.2 on page 77. The theorem es-
sentially explains the effect of premultiplying any matrix by a differential matrix.

Theorem 3.7 Given any matrix A and a differential matrix V, then matrix B = VA
will be a differential matrix.

Proof When A is premultiplied by V matrix B results

B = VA (3.94)

Element bi j is given by the usual matrix product formula

bi j =
m∑

k=1

vik ak j (3.95)
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The sum of the j-th column of matrix B is denoted by σ j (B) and is given by

σ j (B) =
m∑

i=1

bi j =
m∑

i=1

m∑

k=1

vik ak j (3.96)

Now reverse the order of summation on the right-hand side of the above equation

σ j (B) =
m∑

i=1

bi j =
m∑

k=1

ak j

m∑

i=1

vik (3.97)

Because V is differential we have

σ j (V) =
m∑

i=1

vik = 0 (3.98)

Therefore, (3.97) becomes

σ j (B) =
m∑

i=1

bi j

=
m∑

k=1

ak j × 0

= 0 (3.99)

Thus we proved that sum of columns of a matrix becomes zero when the matrix
is premultiplied by a differential matrix.

Example 3.17 The following is a diagonalizable state matrix.

P =
⎡

⎣
0.1 0.3 1
0.2 0.3 0
0.7 0.4 0

⎤

⎦

We would like to express Pn in the form as in (3.80).
First thing is to check that P is diagonalizable by checking that it has three distinct

eigenvalues. Having assured ourselves that this is the case, we use the MATLAB
function select that we developed, to find that

Pn = A1 + λn
2A2 + λn

3A3
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where λ1 = 1 and

A1 =
⎡

⎣
0.476 0.476 0.476
0.136 0.136 0.136
0.388 0.388 0.388

⎤

⎦

A2 =
⎡

⎣
0.495 0.102 −0.644

−0.093 −0.019 0.121
−0.403 −0.083 0.524

⎤

⎦

A3 =
⎡

⎣
0.028 −0.578 0.168

−0.043 0.883 −0.257
0.015 −0.305 0.089

⎤

⎦

Notice that matrix A1 is column stochastic and all its columns are equal. Notice
also that the sum of columns for matrices A2 and A3 is zero.

Sometimes two eigenvalues are the complex conjugate of each other. In that case
the corresponding eigenvectors will be complex conjugate and so are the corre-
sponding matrices Ai such that the end result P(n) is purely real.

Example 3.18 A Markov chain has the transition matrix

P =
⎡

⎣
0.2 0.4 0.2
0.1 0.4 0.6
0.7 0.2 0.2

⎤

⎦

Check to see if this matrix has distinct eigenvalues. If so,

(a) expand the transition matrix Pn in terms of its eigenvalues
(b) find the value of s(3) using the expression in (3.80).

The eigenvalues of P are λ1 = 1, λ2 = −0.1 + j0.3, and λ3 = −0.1 − j0.3. We
see that complex eigenvalues appear as complex conjugate pairs. The eigenvectors
corresponding to these eigenvalues are

X =
⎡

⎣
0.476 −0.39 − j0.122 −0.39 + j0.122
0.660 0.378 − j0.523 0.378 + j0.523
0.581 0.011 + j0.645 0.011 − j0.645

⎤

⎦

We see that the eigenvectors corresponding to the complex eigenvalues appear
also as complex conjugate pairs. Using the function select(P), we express Pn

according to (3.80)

Pn = A1 + λn
2A2 + λn

3A3
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where

A1 =
⎡

⎣
0.277 0.277 0.277
0.385 0.385 0.385
0.339 0.339 0.339

⎤

⎦

A2 =
⎡

⎣
0.362 + j0.008 −0.139 − j0.159 −0.139 + j0.174

−0.192 + j0.539 0.308 − j0.128 −0.192 − j0.295
−0.169 − j0.546 −0.169 + j0.287 0.331 + j0.121

⎤

⎦

A3 =
⎡

⎣
0.362 − j0.008 −0.139 + j0.159 −0.139 − j0.174

−0.192 − j0.539 0.308 + j0.128 −0.192 + j0.295
−0.169 + j0.546 −0.169 − j0.287 0.331 − j0.121

⎤

⎦

We see that the expansion coefficients corresponding to the complex eigenvec-
tors appear as complex conjugate pairs. This ensures that all the components of the
distribution vector will always be real numbers. The distribution vector at time step
n = 3 is

s(3) = P3 s(0)

= [
A1 + λ3

2A2 + λ3
3A3

]
s(0)

= [
0.285 0.389 0.326

]t

Example 3.19 Consider the on–off source example whose transition matrix was
given by

P =
[

s 1 − a
1 − s a

]
(3.100)

Express this matrix in diagonal form and find an expression for the n-th power
of P.

Using MAPLE or MATLAB’s SYMBOLIC packages, the eigenvectors for this
matrix are

x1 = [
(1 − a) / (1 − s) 1

]t
; withλ0 = 1 (3.101)

x2 = [ −1 1
]t

; withλ1 = s + a − 1 (3.102)

Thus we have

X =
[

(1 − a)/(1 − s) −1
1 1

]
(3.103)

X−1 = 1

α

[
1 − s 1 − s
s − 1 1 − a

]
(3.104)
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where α = (s + a − 1). And Pn is given by

Pn = X
[

1 0
0 αn

]
X−1 (3.105)

= 1

α

[
1 − a − αn (s − 1) (1 − αn) (1 − a)

(1 − αn) (1 − s) 1 − s + αn (1 − a)

]
(3.106)

We can write Pn in the summation form

Pn = A1 + αnA2 (3.107)

where

A1 = 1

2 − a − s

[
1 − a 1 − a
1 − s 1 − s

]
(3.108)

A2 = 1

2 − a − s

[
1 − s a − 1
s − 1 1 − a

]
(3.109)

The observations on the properties of the matrices A1 and A2 can be easily
verified.

For large values of n, we get the simpler form

lim
n→∞ Pn = A1 = 1

2 − a − s

[
1 − a 1 − a
1 − s 1 − s

]
(3.110)

and in the steady-state our distribution vector becomes

s = 1

2 − a − s

[
(1 − a) (1 − s)

]t

and this is independent of the initial state of our source.

Example 3.20 Consider the column stochastic matrix

P =
⎡

⎣
0.5 0.8 0.4
0.5 0 0.3
0 0.2 0.3

⎤

⎦ .

This matrix is diagonalizable. Express it in the form given in (3.63) and ob-
tain a general expression for the distribution vector at step n. What would be the
distribution vector after 100 steps assuming an initial distribution vector s(0) =[

1 0 0
]t

The eigenvalues for this matrix are λ1 = 1, λ2 = −0.45, λ3 = 0.25. Since
they are distinct, we know that the matrix is diagonalizable. The eigenvectors corre-
sponding to these eigenvalues are
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x1 = [
0.869 0.475 0.136

]t

x2 = [ −0.577 0.789 −0.211
]t

x3 = [ −0.577 −0.211 0.789
]t

and matrix X in (3.63) is simply X = [
x1 x2 x3

]
which is given by

X =
⎡

⎣
0.869 −0.577 −0.577
0.475 0.789 −0.212
0.136 −0.212 0.789

⎤

⎦

Notice that the sum of the elements in the second and third columns is exactly
zero. We also need the inverse of this matrix which is

X−1 =
⎡

⎣
0.676 0.676 0.676

−0.473 0.894 −0.106
−0.243 0.123 1.123

⎤

⎦

Thus we can express Pn as

Pn = X

⎡

⎣
1 0 0
0 λn

2 0
0 0 λn

3

⎤

⎦X−1

= A1 + λn
2A2 + λn

3A3

where the three matrices A1, A2, and A3 are given using the following expressions.

A1 = X

⎡

⎣
1 0 0
0 0 0
0 0 0

⎤

⎦X−1 (3.111)

A2 = X

⎡

⎣
0 0 0
0 1 0
0 0 0

⎤

⎦X−1 (3.112)

A3 = X

⎡

⎣
0 0 0
0 0 0
0 0 1

⎤

⎦X−1 (3.113)
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The above formulas produce

A1 =
⎡

⎣
0.587 0.587 0.587
0.321 0.321 0.321
0.092 0.092 0.092

⎤

⎦

A2 =
⎡

⎣
0.273 −0.516 0.062

−0.373 0.705 −0.084
0.1 −0.189 0.022

⎤

⎦

A3 =
⎡

⎣
0.141 −0.071 −0.649
0.051 −0.026 −0.237

−0.192 0.097 0.886

⎤

⎦

We notice that all the columns in A1 are identical while the sums of the columns
in A2 and A3 is zero. These properties of matrices Ai guarantee that Pn remains a
column stochastic matrix for all values of n between 0 and ∞.

Since each λ is a fraction, we see that the probabilities of each state consist of
a steady-state solution (independent of λ) and a transient solution that contains the
different λ′s. In the steady state (i.e., when n → ∞) we have the distribution vector
that equals any column of A1:

s (∞) = [
0.587 0.321 0.092

]t
(3.114)

Thus we get after 100 steps

s(100) = P100 s(0)

=
⎡

⎣
0.6 + 0.3 × λ100

2 + 0.1 × λ100
3

0.3 − 0.4λ100
2

0.1 + 0.1λ100
2 − 0.2λ100

3

⎤

⎦

= [
0.587 0.321 0.092

]t

Thus the distribution vector settles down to its steady-state value irrespective of
the initial state.

3.13.1 Test for Matrix Diagonalizability

The above two techniques expanding s(0) and diagonalizing P both relied on the
fact that P could be diagonalized. We mentioned earlier that a matrix could be diag-
onalized when its eigenvalues are all distinct. While this is certainly true, there is a
more general test for the diagonalizability of a matrix.

A matrix is diagonalizable only when its Jordan canonic form (JCF) is
diagonal [4].
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We will explore this topic more in the next section.

Example 3.21 Indicate whether the matrix in Example 3.6 on page 72 is diagonal-
izable or not.

The eigenvalues of this matrix are λ1 = 1 and λ2 = λ3 = −1/4. Since some
eigenvalues are repeated, P might or might not be diagonalizable. Using Maple or
the MATLAB function JORDAN(P), the Jordan canonic form for this matrix is

J =
⎡

⎣
1 0 0
0 −1/4 1
0 0 −1/4

⎤

⎦

Since J is not diagonal, P is not diagonalizable. It is as simple as that!

3.14 Finding s (n) Using the Jordan Canonic Form

We saw in Section 3.12 how easy it was to find s(n) by diagonalizing P. We would
like to follow the same lines of reasoning even when P cannot be diagonalized
because one or more of its eigenvalues are repeated.

3.14.1 Jordan Canonic Form (JCF)

Any m × m matrix P can be transformed through a similarity transformation into its
Jordan canonic form (JCF) [4]

P = UJU−1 (3.115)

Matrix U is a nonsingular matrix and J is a block-diagonal matrix

J =

⎡

⎢⎢⎢⎢⎢
⎣

J1 0 0 · · · 0
0 J2 0 · · · 0
0 0 J3 · · · 0
...

...
...

. . .
...

0 0 0 · · · Jt

⎤

⎥⎥⎥⎥⎥
⎦

(3.116)

where the matrix Ji is an mi × mi Jordan block or Jordan box matrix of the form

Ji =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

λi 1 0 · · · 0
0 λi 1 · · · 0
0 0 λi · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · λi

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

(3.117)
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such that the following equation holds

m1 + m2 + · · · + mt = m (3.118)

The similarity transformation performed in (3.115) above ensures that the eigen-
values of the two matrices P and J are identical. The following example proves this
statement.

Example 3.22 Prove that if the Markov matrix P has Jordan canonic form matrix J,
then the eigenvalues of P are identical to those of J. Having proved that, find the
relation between the corresponding eigenvectors for both matrices.

We start first by proving that the characteristic equations for both matrices are
identical. The characteristic equation or characteristic polynomial of P is given by

x(λ) = det (P − λI) (3.119)

where det(A) is the determinant of the matrix A. The characteristic polynomial of J
is given by

y(α) = det (J − αI) (3.120)

where α is the assumed root or eigenvalue of J. But (3.115) indicates that J can be
expressed in terms of P and U as

J = U−1PU

Using this, we can express (3.120) as

y(α) = det
(
U−1PU − αU−1U

)

We can factor out the matrices U−1 and U to get

y(α) = det
[
U−1 (P − αI) U

]

But the rules of determinants indicate that det(AB) = det(A)×det(B). Thus we
have

y(α) = det
(
U−1

)
det (U) det (P − αI)

But the rules of determinants also indicate that det(A−1)×det(A) = 1. Thus we
have

y(α) = det (P − αI) (3.121)
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This proves that the polynomial x(λ) in (3.119) and the polynomial y(α) in
(3.121) are identical and the matrices P and J have the same roots or eigenvalues.

So far, we proved that the two matrices P and J have the same roots or eigen-
values. Now we want to prove that they have related eigenvectors. Assume x is an
eigenvector of P associated with eigenvalue λ.

Px = λx

but P = UJU−1 and we can write the above equation as

UJU−1 x = λx

Now we premultiply both sides of the equation by U−1 to get

JU−1 x = λU−1x

We write u = U−1x to express the above equation as

J u = λu

Thus the relation between the eigenvectors of P and J is

u = U−1x

This is why the transformation

P = UJU−1

is called a similarity transformation. In other words, a similarity transformation
does not change the eigenvalues and scales the eigenvectors.

MATLAB offers the command [U,J] = JORDAN(P) to obtain the Jordan
canonic form as the following example shows.

Example 3.23 Obtain the Jordan canonic form for the transition matrix

P =
⎡

⎣
0 0.25 0.25
0.75 0 0.25
0.25 0.75 0.5

⎤

⎦
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Using MATLAB we are able to obtain the Jordan canonic form

[U,J] = jordan(P)

U =
0.2000 0 0.8000
0.2800 0.4000 −0.2800
0.5200 −0.4000 −0.5200

J =
1.0000 0 0
0 −0.2500 1.0000
0 0 −0.2500

3.14.2 Properties of Jordan Canonic Form

We make the following observations on the properties of the Jordan canonic form:

1. The number of Jordan blocks equals the number of linearly independent eigen-
vectors of P.

2. The elements in P are real but matrix U might have complex elements.
3. Matrix U can be written as

U = [
U1 U2 · · · Ut

]

where each matrix Ui is a rectangular matrix of dimension m × mi such that

m1 + m2 + · · · + mt = m

4. Rectangular matrix Ui corresponds to the Jordan block Ji and eigenvalue λi .
5. Each rectangular matrix Ui can be decomposed into mi column vectors:

Ui = [
ui,1 ui,2 · · · ui,mi

]
(3.122)

where each column vector has m components.
6. The first column ui,1 is the eigenvector of matrix P and corresponds to the

eigenvalue λi :

P ui,1 = λi ui,1 (3.123)

7. The other column vectors of Ui satisfy the recursive formula

P ui, j = λi ui, j + ui, j−1 (3.124)

where 2 ≤ j ≤ mi .
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8. There could be one or more blocks having the same eigenvalue. In other words,
we could have two Jordan blocks J1 and J2 such that both have the same eigen-
value on their main diagonals.

9. The eigenvalue λi is said to have algebraic multiplicity of mi .
10. If all Jordan blocks are one-dimensional (i.e., all mi = 1), then the Jordan

matrix J becomes diagonal. In that case, matrix P is diagonalizable.

Example 3.24 Given the following Jordan matrix, identify the Jordan blocks and
find the eigenvalues and the number of linearly independent eigenvectors.

J =

⎡

⎢⎢⎢⎢
⎣

0.5 1 0 0 0
0 0.5 0 0 0
0 0 0.2 1 0
0 0 0 0.2 0
0 0 0 0 1

⎤

⎥⎥⎥⎥
⎦

We have three Jordan blocks as follows:

J1 =
[

0.5 1
0 0.5

]

J2 =
[

0.2 1
0 0.2

]

J3 = [1]

From the three Jordan blocks, we determine the eigenvalues as λ1 = 0.5,
λ2 = 0.2, and λ3 = 1. We also know that we must have three linearly independent
eigenvectors. Using MATLAB, the eigenvectors of J are

x1 = [
1 0 0 0 0

]t

x2 = [
0 0 1 0 0

]t

x3 = [
0 0 0 0 1

]t

we notice that these eigenvectors are linearly independent because they are orthog-
onal to each other.

3.15 Properties of Matrix U

According to Theorem 3.3 on page 79, Theorem 3.4 on page 79, and Lemma 3.3 on
page 93, the columns of matrix U must satisfy the following properties:

1. The sum of the elements of the vector u corresponding to the eigenvalue λ = 1
is arbitrary and could be taken as unity, i.e. σ (u) = 1.

2. The sum of the elements of the vectors u belonging to Jordan blocks with eigen-
value λ �= 1 must be zero, i.e. σ (u) = 0.

3. Matrix U−1 has ones in its first row.
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3.16 Pn Expressed in Jordan Canonic Form

We explained in the previous subsection that the transition matrix could be ex-
pressed in terms of its Jordan canonic form which we repeat here for convenience:

P = UJU−1 (3.125)

where U is a unitary matrix. Equation 3.125 results in a very simple expression for
Pn in (3.38). To start, we can calculate P2 as

P2 = (
UJU−1

)× (
UJU−1

)
(3.126)

= UJ2U−1 (3.127)

In general we have

Pn = UJnU−1 (3.128)

where Jn has the same block structure as J

Jn =

⎡

⎢⎢⎢⎢⎢
⎣

Jn
1 0 0 · · · 0

0 Jn
2 0 · · · 0

0 0 Jn
3 · · · 0

...
...

...
. . .

...
0 0 0 · · · Jn

t

⎤

⎥⎥⎥⎥⎥
⎦

(3.129)

In the above equation, the Jordan block Jn
i of dimension mi × mi is an upper

triangular Toeplitz matrix in the form

Jn
i =

⎡

⎢⎢⎢⎢⎢
⎣

f n
i0 f n

i1 f n
i2 f n

i3 · · · f n
i,mi −1

0 f n
i0 f n

i1 f n
i2 · · · f n

i,mi −2
0 0 f n

i0 f n
i1 · · · f n

i,mi −3
...

...
...

...
. . .

...
0 0 0 0 · · · f n

i0

⎤

⎥⎥⎥⎥⎥
⎦

(3.130)

where f n
i j is given by

f n
i j =

(
n

j

)
λ

n− j
i 0 ≤ j < mi (3.131)
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We assumed the binomial coefficient vanishes whenever j > n. In fact, the term
f n
i j equals the j-th term in the binomial expansion

(λi + 1)n =
mi −1∑

j=0

f n
i j (3.132)

3.17 Expressing Pn in Terms of Its Eigenvalues

Equation (3.128) related Pn to the n-th power of its Jordan canonic form as

Pn = UJnU−1 (3.133)

Thus we can express Pn in the above equation in the form

Pn =
m1−1∑

j=0

f n
1 j A1 j +

m1−1∑

j=0

f n
2 j A2 j +

m2−1∑

j=0

f n
3 j A3 j + · · · (3.134)

The above equation can be represented as the double summation

Pn =
t∑

i=1

mi −1∑

j=0

f n
i j Ai j (3.135)

where t is the number of Jordan blocks and it was assumed that f n
i j is zero whenever

j > n.
The matrices Ai j can be determined from the product

Ai j = U Yi j U−1 (3.136)

where Yi j is the selection matrix which has zeros everywhere except for the ele-
ments corresponding to the superdiagonal j in Jordan block i which contains the
values 1. For example, assume a 6×6 Markov matrix whose Jordan canonic form is

J =

⎡

⎢⎢⎢⎢⎢⎢
⎣

1 0 0 0 0 0
0 0.2 1 0 0 0
0 0 0.2 1 0 0
0 0 0 0.2 0 0
0 0 0 0 0.5 1
0 0 0 0 0 0.5

⎤

⎥⎥⎥⎥⎥⎥
⎦

This Jordan canonic form has three Jordan blocks (t = 3) and the selection
matrix Y21 indicates that we need to access the first superdiagonal of the second
Jordan block:
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Y21 =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥
⎦

WWW: We have prepared the MATLAB function J POWERS(n,P) that accepts
a Markov matrix (or any square matrix) and expresses the matrix Pn in the form
given by (3.134).

Example 3.25 Consider the Markov matrix

P =
⎡

⎣
0 0.25 0.4
0.75 0 0.3
0.25 0.75 0.3

⎤

⎦

Use the Jordan canonic form technique to find the decomposition of P3 according
to (3.134).

We start by finding the Jordan canonic form for the given matrix to determine
whether P can be diagonalized or not. The Jordan decomposition produces

U =
⎡

⎣
0.20 0.00 0.80
0.44 0.20 −0.44
0.36 −0.20 −0.36

⎤

⎦

J =
⎡

⎣
1 0 0
0 −0.25 1
0 0 −0.25

⎤

⎦

The given Markov matrix has two eigenvalues λ1 = 1 and λ2 = −0.25, which is
repeated twice. Since the Jordan matrix is not diagonal, we cannot diagonalize the
transition matrix and we need to use the Jordan decomposition techniques to find
Pn . By using the function J POWERS, we get

P3 = A1 + f 3
20A20 + f 3

21A21

where

f 3
20 = 0.0156

f 3
21 = 0.187
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and the corresponding matrices are given by

A1 =
⎡

⎣
0.20 0.20 0.20
0.44 0.44 0.44
0.36 0.36 0.36

⎤

⎦

A20 =
⎡

⎣
0.80 −0.20 −0.20

−0.44 0.56 −0.44
−0.36 −0.36 0.64

⎤

⎦

A21 =
⎡

⎣
0 0 0
0.2 −0.05 −0.05

−0.2 0.05 0.05

⎤

⎦

3.18 Finding Pn Using the Z-Transform

The z-transform technique has been proposed for finding expressions for Pn . In
our opinion, this technique is not useful for the following reasons. Obtaining the
z-transform is very tedious since it involves finding the inverse of a matrix using
symbolic, not numerical, techniques. This is really tough for any matrix whose
dimension is above 2 × 2 even when symbolic arithmetic packages are used. Fur-
thermore, the technique will not offer any new insights that have not been already
covered in this chapter. For that reason, we delegate discussion of this topic to
Appendix C on page xxx. The interested reader can gloss over the appendix and
compare it to the techniques developed in this chapter.

3.19 Renaming the States

Sometimes we will need to rename or relabel the states of a Markov chain. When we
do that, the transition matrix will assume a simple form that helps in understanding
the behavior of the system.

Renaming or relabeling the states amounts to exchanging the rows and columns
of the transition matrix. For example, if we exchange states s2 and s5, then rows 2
and 5 as well as columns 2 and 5 will be exchanged. We perform this rearranging
through the elementary exchange matrix E(2, 5) which exchanges states 2 and 5:

E(2, 5) =

⎡

⎢⎢⎢⎢
⎣

1 0 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0

⎤

⎥⎥⎥⎥
⎦
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In general, the exchange matrix E(i, j) is similar to the identity matrix except
that rows i and j of the identity matrix are exchanged. The exchange of states is
achieved by pre and post multiplying the transition matrix:

P′ = E(2, 5) P E(2, 5)

Assume for example that P is given by

P =

1
2
3
4
5

1 2 3 4 5⎡

⎢⎢⎢⎢
⎣

0 0.1 0 0.1 1
0 0.3 0 0.2 0
1 0.2 0 0.2 0
0 0.3 0 0.4 0
0 0.1 1 0.1 0

⎤

⎥⎥⎥⎥
⎦

where the state indices are indicated around P for illustration.
Exchanging states 2 and 5 results in

P′ =

1
5
3
4
2

1 5 3 4 2⎡

⎢⎢⎢⎢
⎣

0 1 0 0.1 0.1
0 0 1 0.1 0.1
1 0 0 0.2 0.2
0 0 0 0.4 0.1
0 0 0 0.2 0.3

⎤

⎥⎥⎥⎥
⎦

Problems

Markov Chains

3.1 Consider Example 3.2 where the time step value is chosen as T = 8/λa .
Estimate the packet arrival probability a.

3.2 Three workstation clusters are connected to each other using switching hubs.
At steady state the following daily traffic share of each hub was observed. For
hub A, 80% of its traffic is switched to its local cluster, 5% of its traffic is
switched to hub B, and 15% of its traffic is switched to hub C. For hub B,
90% of its traffic is switched to its local cluster, 5% of its traffic is switched
to hub A, and 5% of its traffic is switched to hub C. For hub C, 75% of its
traffic is switched to its local cluster, 10% of its traffic is switched to hub A,
and 15% of its traffic is switched to hub B. Assuming initially the total traffic
is distributed among the three hubs as 60% in hub A, 30% in hub B, and 10%
in hub C,

(a) write the initial distribution vector for the total traffic
(b) construct the transition matrix for the Markov chain that describes the

traffic share of the three hubs.
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3.3 In order to plan the volume of LAN traffic flow in a building, the system
administrator divided the building into three floors. Traffic volume trend in-
dicated the following hourly pattern. In the first floor, 60% of traffic is local,
30% of traffic goes to second floor, 10% of traffic goes to third floor. In the
second floor, 30% of traffic is local, 40% of traffic goes to first floor, 30%
of traffic goes to third floor. In the third floor, 60% of traffic is local, 30%
of traffic goes to first floor, 10% of traffic goes to second floor. Assuming
initially traffic volume is distributed as 10% in first floor, 40% in second floor,
and 50% in third floor,

(a) write the initial distribution vector for the total traffic
(b) construct the transition matrix for the Markov chain that describes the

traffic share of the three floors.

3.4 The transition matrix for a Markov chain is given by

P =
[

0.3 0.6
0.7 0.4

]

What does each entry represent?
3.5 A traffic data generator could be either idle or is generating data at five dif-

ferent rates λ1 < λ2 < · · · < λ5. When idle, the source could equally likely
remain idle or it could start transmitting at the lowest rate λ1. When in the
highest rate state λ5, the source could equally likely remain in that state or it
could switch to the next lower rate λ4. When in the other states, the source
is equally likely to remain in its present state or it could start transmitting at
the next lower or higher rate. Identify the system states and write down the
transition matrix.

3.6 Repeat the above problem when transitions between the different states is
equally likely.

3.7 The market over reaction theory proposes that stocks with low return (called
“losers”) subsequently outperform stocks with high return (called “winners”)
over some observation period. The rest of the market share is stocks with
medium return (called “medium”). It was observed that winners split accord-
ing to the following ratios: 70% become losers, 25% become medium, and
5% stay winners. Medium stocks split according to the following ratios: 5%
become losers, 90% stay medium, and 5% become winers. Losers split ac-
cording to the following ratios: 80% stay losers, 5% become medium, and
15% become winners. The Markov chain representing the state of a stock is
defined as follows: s0 represents loser stock, s1 represent medium stock, and
s2 represent winner stocks. Assuming an aggressive manager’s portfolio is
initially split among the stocks in the following percentages, 5% losers, 70%
medium, and 25% winners,

(a) write the initial distribution vector for the portfolio
(b) construct the transition matrix for the Markov chain that describes the

stock share of the portfolio.
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3.8 Consider Example 3.8, but this time the source is transmitting packets having
random lengths. Assume for simplicity that the transmitted packets can be one
out of three lengths selected at random with probability li (i = 1, 2, 3).

(a) Identify the different states of the system.
(b) Draw the corresponding Markov state transition diagram.
(c) Write down the transition matrix.

Time Step Selection

3.9 Develop the proper packet arrival statistics for the case considered in Section
3.3.1 when the line is sampled at a rate r while the packets arrive at an average
rate λa .

Markov Transition Matrices

3.10 Explain what is meant by a homogeneous Markov chain.
3.11 By Assuming P is a transition matrix, prove that the unit row vector

u = [
1 1 1 · · · 1

]

is a left eigenvector of the matrix and its associated eigenvalue is λ = 1.
3.12 Prove (3.11) on page 70 which states that at any time step n, the sum of the

components of the distribution vector s(n) equals 1. Do your proof by pro-
ceeding as follows:

(a) Start with an initial distribution vector s(0) of an arbitrary dimension m
such that

∑m
i=1 si (0) = 1.

(b) Prove that s(1) satisfies (3.11).
(c) Prove that s(2) also satisfies (3.11) and so on.

3.13 Prove the properties stated in Section 3.9.1 on page 85.
3.14 Prove Lemma 3.1 on page 85.
3.15 Given a column stochastic matrix P with an eigenvector x that corresponds to

the eigenvalue λ = −1, prove that σ (x) = 0 in accordance with Theorem 3.4.

3.16 In problems 3.17–3.26 determine which of the given matrices are Markov
matrices and justify your answer. For the Markov matrices, determine the
eigenvalues, the corresponding eigenvectors, and the rank.

3.17
[

0.4 0.4
0.6 0.3

]
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3.18

[
0.8 0.5
0.3 0.5

]

3.19

[ −0.1 0.8
−0.9 0.2

]

3.20

[
1.2 0.8

−0.2 0.2

]

3.21

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

3.22

[
0.4 0.4
0.6 0.3

]

3.23

⎡

⎣
0.1 0.3
0.2 0.5
0.7 0.2

⎤

⎦

3.24

⎡

⎣
0 1 0
1 0 0
0 0 1

⎤

⎦

3.25

[
0.8 0.3 0.5
0.2 0.7 0.5

]
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3.26

⎡

⎢⎢
⎣

0.7 0.3 0.5 0.3
0.1 0.1 0.2 0.3
0.1 0.3 0.1 0.3
0.1 0.3 0.2 0.3

⎤

⎥⎥
⎦

3.27 Choose any column stochastic matrix from the matrices in the above prob-
lems, or choose one of your own, then reduce the value of one of its nonzero
elements slightly (keeping the matrix nonnegative of course). In that way, the
matrix will not be a column stochastic matrix any longer. Observe the change
in the maximum eigenvalue and the corresponding eigenvector.

3.28 Assume a source is sending packets on a wireless channel. The source could
be in one of three states: (1) idle state. (2) successful transmission state where
source is active and transmitted packet is received without errors. (3) erro-
neous transmission state where source is active and transmitted packet is re-
ceived with errors.

Assume the probability the source switches from idle to active is a and the
probability that the source successfully transmits a packet is s. Draw a state
transition diagram indicating the transition probabilities between states and
find the transition matrix.

Transient Behavior

3.29 For problem 3.2 how much share of the traffic will be maintained by each hub
after one day and after two days?

3.30 For problem 3.3 how much share of the traffic will be maintained by each floor
after one hour and after two hours?

3.31 The transition matrix for a Markov chain is given by

P =
[

0.8 0.1
0.2 0.9

]

(a) Given that the system is in state s0, what is the probability the next state
will be s1?

(b) For the initial distribution vector s(0) find s(1):

s(0) = [
0.4 0.6

]t
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3.32 The transition matrix for a Markov chain is given by

P =
⎡

⎣
0.5 0.3 0.5
0 0.3 0.25
0.5 0.4 0.25

⎤

⎦

(a) What does the entry p01 represent?
(b) Given that the system is in state s0, what is the probability the next state

will be s1?
(c) For the initial distribution vector s(0)

s(0) = [
0.4 0.6 0

]t

find s(1).
3.33 Given a transition matrix

P =
[

0.2 0.7
0.8 0.3

]

what is the probability of making a transition to state s0 given that we are in
state s1?

3.34 Assume a hypothetical city where yearly computer buying trends indicate that
95% of the people who own a desktop computer will purchase a desktop and
the rest will switch to laptops. On the other hand, 60% of laptop owners will
continue to buy laptops and the rest will switch to desktops. At the begin-
ning of the year 65% of the computer owners had desktops. What will be the
percentages of desktop and laptop owners after one, two, and ten years?

3.35 Assume the state of a typical winter day in Cairo to be sunny, bright, or partly
cloudy. Observing the weather pattern reveals the following. When today is
sunny, tomorrow will be bright with probability 80%, and partly cloudy with
probability 20%. When today is bright, tomorrow will be sunny with proba-
bility 60%, bright with probability 30%, and partly cloudy with probability
10%. When today is partly cloudy, tomorrow will be sunny with probability
30%, bright with probability 40%, and partly cloudy with probability 30%.
Assume state 1 represents a sunny day, state 2 represents a bright day, and
state 3 represents a partly cloudy day.

(a) Construct a state transition matrix.
(b) What is the probability that it will be partly cloudy tomorrow given that it

is sunny today?
(c) What is the probability that it will be bright day after tomorrow given that

is bright today?

3.36 Assume a gambler plays double or nothing game using a fair coin and starting
with one dollar.
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(a) Draw a state diagram for the amount of money with the gambler and ex-
plain how much money corresponds to each state.

(b) Derive the transition matrix.
(c) What is the probability that the gambler will have more than $500 after

playing the game for 10 tosses of the coin?

3.37 Suppose you play the following game with a friend, both of you start with $2.
The game starts when the coin is filipped. If the coin comes up heads, you win
$1. If the coin comes up tails, you lose $1. The game ends when either of you
do not have anymore money.

(a) Construct a Markov transition diagram and transition matrix for this game.
(b) Find the eigenvectors and eigenvalues for this matrix.
(c) What is the initial probability vector when you start the game?

3.38 Assume you are playing a truncated form of the snakes and ladder game using
a fair coin instead of the dice. The number of squares is assumed to be 10,
to make things simple, and each player starts at the first square (we label it
square 1 and the last square is labeled 10). Tails mean the player advances one
square and heads mean the player advances by two squares. To make the game
interesting, some squares have special transitions according to the following
rules which indicate the address on the next square upon the flip of the coin.

Square Heads Tails

2 4 2
3 6 1
5 7 2
8 9 4

Write the initial distribution vector and the transition matrix. What will be
the distribution vector be after 5 flips of the coin? What are the chances of a
player winning the game after 10 flips?

3.39 Assume a particle is allowed to move on a one-dimensional grid and starts at
the middle. The probability of the particle moving to the right is p and to the
left is q, where p + q = 1. Assume the size of the gird to extend from 1 to N ,

with N assumed odd. Assume that at the end points of the grid, the particle is
reflected back with probability 1. Draw a Markov transition diagram and write
down the corresponding transition matrix. Assume p = 0.6 and q = 0.4, and
N = 7. Plot the most probable position for the particle versus time.

3.40 A parrot breeder has birds of two colors, blue and green. She finds that 60%
of the males are blue if the father was blue and 80% of the males are green
if the father was green. Write down the transition matrix for the males parrot.
What is the probability that a blue male has a blue male after two and three
generations?
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3.41 A virus can mutate between N different states (typically N = 20). In each
generation it either stays the same or mutates to another sate. Assume that
the virus is equally likely to change state to any of the N states. You can
reduce the size of the transition matrix P from N × N to 2×2 only by studying
two sates: original state and “others” state which contains all other mutations.
Construct the transition matrix describing the two-state Markov chain. What
is the probability that in the n-th generation it will return to its original state?

3.42 Consider the stock portfolio Problem 3.7.

(a) What will be the performance of the portfolio after one, two, and ten
years?

(b) Investigate the performance of the conservative portfolio that starts with
the following percentage distribution of stocks s(0) = [

0.5 0.5 0
]t

over the same period of time as in (a) above.
(c) Investigate the performance of a “very aggressive” portfolio that starts

with the following percentage distribution of stocks s(0) = [
0 0 1

]t

over the same period of time as in (a) above.
(d) Compare the long-term performance of the conservative and aggressive

portfolios.

3.43 A hidden Markov chain model can be used as a waveform generator. Your task
is to generate random waveforms using the following procedure.

(1) Define a set of quantization levels Q1, Q2, · · · , Qm for the signal values.
(2) Define a m ×m Markov transition matrix for the system. Choose your own

transition probabilities for the matrix.
(3) Choose an initial state vector from the set with only one nonzero entry

chosen at random from the set of quantization levels

s(0) = [
0 · · · 0 1 0 · · · 0

]t

If that single element is in position k, then the corresponding initial
output value is Qk .

(4) Evaluate the next state vector using the iteration

s(i) = P s(i − 1)

(5) Generate the cumulative function

Fj (i) =
j∑

k=1

sk(i)

(6) Generate a random variable x using the uniform distribution and estimate
the index j for the output Q j that satisfies the inequality

Fj−1(i) < x ≤ Fj (i)

(7) Repeat 4.
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Finding Pn by Expanding s (0)

3.44 In Section 3.11 we expressed s(0) in terms of the eigenvectors of the transition
matrix according to (3.41). Prove that if a pair of the eigenvectors is a complex
conjugate pair, then the corresponding coefficients of c are also a complex
conjugate pair.

3.45 The given transition matrix

P =
⎡

⎣
0.1 0.4 0.6
0.1 0.4 0.2
0.8 0.2 0.2

⎤

⎦

has distinct eigenvalues. Express the initial state vector

s(0) = [
0 1 0

]t

in terms of its eigenvectors, then find the distribution vector for n = 4.
3.46 The given transition matrix

P =

⎡

⎢⎢
⎣

0.1 0.4 0.4 0.1
0.1 0.4 0.2 0.1
0.1 0.1 0.2 0.7
0.7 0.1 0.2 0.1

⎤

⎥⎥
⎦

has distinct, but complex, eigenvalues. Express the initial state vector

s(0) = [
0 1 0 0

]t

in terms of its eigenvectors, then find the distribution vector for n = 5.
3.47 The given transition matrix

P =

⎡

⎢⎢
⎣

0.1 0.4 0.1 0.8
0.1 0.4 0.5 0
0.3 0.1 0.4 0.1
0.5 0.1 0.0 0.1

⎤

⎥⎥
⎦

has distinct, but complex, eigenvalues. Express the initial state vector

s(0) = [
0 1 0 0

]t

in terms of its eigenvectors, then find the distribution vector for n = 5.
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3.48 The given transition matrix

P =
⎡

⎣
0.5 0.3 0.5
0.5 0.3 0
0 0.4 0.5

⎤

⎦

has distinct, but complex, eigenvalues. Express the initial state vector

s(0) = [
0 1 0

]t

in terms of its eigenvectors, then find the distribution vector for n = 7.
3.49 The given transition matrix

P =
[

0.5 0.75
0.5 0.25

]

has distinct, and real, eigenvalues. Express the initial state vector

s(0) = [
0 1

]t

in terms of its eigenvectors, then find the distribution vector for n = 7.
3.50 The given transition matrix

P =
[

0.9 0.75
0.1 0.25

]

has distinct, and real, eigenvalues. Express the initial state vector

s(0) = [
0 1

]t

in terms of its eigenvectors, then find the distribution vector for n = 7.
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Chapter 4
Markov Chains at Equilibrium

4.1 Introduction

In this chapter we will study the long-term behavior of Markov chains. In other
words, we would like to know the distribution vector s(n) when n → ∞. The state
of the system at equilibrium or steady state can then be used to obtain performance
parameters such as throughput, delay, loss probability, etc.

4.2 Markov Chains at Equilibrium

Assume a Markov chain in which the transition probabilities are not a function of
time t or n, for the continuous-time or discrete-time cases, respectively. This defines
a homogeneous Markov chain. At steady state as n → ∞ the distribution vector s
settles down to a unique value and satisfies the equation

P s = s (4.1)

This is because the distribution vector value does not vary from one time instant
to another at steady state. We immediately recognize that s in that case is an eigen-
vector for P with corresponding eigenvalue λ = 1. We say that the Markov chain
has reached its steady state when the above equation is satisfied.

4.3 Significance of s at “Steady State”

Equation (4.1) indicates that if s is the present value of the distribution vector, then
after one time step the distribution vector will be s still. The system is now in equilib-
rium or steady state. The reader should realize that we are talking about probabilities
here.

At steady state the system will not settle down to one particular state, as one
might suspect. Steady state means that the probability of being in any state will not
change with time. The probabilities, or components, of the vector s are the ones that
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are in steady state. The components of the transition matrix Pn will also reach their
steady state. The system is then said to be in steady state.

Assume a five-state system whose equilibrium or steady-state distribution
vector is

s = [
s1 s2 s3 s4 s5

]t
(4.2)

= [
0.2 0.1 0.4 0.1 0.2

]t
(4.3)

Which state would you think the system will be in at equilibrium? The answer
is, the system is in state s1 with probability 20%, or the system is in state s2 with
probability 10%, etc. However, we can say that at steady state the system is most
probably in state s3 since it has the highest probability value.

4.4 Finding Steady-State Distribution Vector s

The main goal of this chapter is to find s for a given P. Knowledge of this vector
helps us find many performance measures for our system such as packet loss proba-
bility, throughput, delay, etc. The technique we choose for finding s depends on the
size and structure of P.

Since the steady-state distribution is independent of the initial distribution vector
s (0), we conclude therefore that Pn approaches a special structure for large values
of n. In this case we find that the columns of Pn, for large values of n, will all be
identical and equal to the steady-state distribution vector s. We could see that in
Examples 3.11 on page 82 and Example 3.20 on page 100.

Example 4.1 Find the steady-state distribution vector for the given transition
matrix by

(a) calculating higher powers for the matrix Pn

(b) calculating the eigenvectors for the matrix.

P =
⎡

⎣
0.2 0.4 0.5
0.8 0 0.5
0 0.6 0

⎤

⎦

The given matrix is column stochastic and hence could describe a Markov chain.
Repeated multiplication shows that the entries for Pn settle down to their stable
values.
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P2 =
⎡

⎣
0.36 0.38 0.30
0.16 0.62 0.40
0.48 0 0.30

⎤

⎦

P5 =
⎡

⎣
0.3648 0.3438 0.3534
0.4259 0.3891 0.3970
0.2093 0.2671 0.2496

⎤

⎦

P10 =
⎡

⎣
0.3535 0.3536 0.3536
0.4042 0.4039 0.4041
0.2424 0.2426 0.2423

⎤

⎦

P20 =
⎡

⎣
0.3535 0.3535 0.3535
0.4040 0.4040 0.4040
0.2424 0.2424 0.2424

⎤

⎦

The entries for P20 all reached their stable values. Since all the columns of P20

are identical, the stable-distribution vector is independent of the initial distribution
vector. (Could you prove that? It is rather simple.) Furthermore, any column of P20

gives us the value of the equilibrium distribution vector.
The eigenvector corresponding to unity eigenvalue is found to be

s = [
0.3535 0.4040 0.2424

]t

Notice that the equilibrium distribution vector is identical to the columns of the
transition matrix P20.

4.5 Techniques for Finding s

We can use one of the following approaches for finding the steady-state distribu-
tion vector s. Some approaches are algebraic while the others rely on numerical
techniques.

1. Repeated multiplication of P to obtain Pn for high values of n.
2. Eigenvector corresponding to eigenvalue λ = 1 for P.
3. Difference equations.
4. Z-transform (generating functions).
5. Direct numerical techniques for solving a system of linear equations.
6. Iterative numerical techniques for solving a system of linear equations.
7. Iterative techniques for expressing the states of P in terms of other states.

Which technique is easier depends on the structure of P. Some rough guidelines
follow.

1. The repeated multiplication technique in 1 is prone to numerical roundoff er-
rors and one has to use repeated trials until the matrix entries stop changing for
increasing values of n.
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2. The eigenvector technique (2) is used when P is expressed numerically and its
size is reasonable so that any mathematical package could easily find the eigen-
vector. Some communication systems are described by a small 2 × 2 transition
matrix and it is instructive to get a closed-form expression for s. We shall see this
for the case of packet generators.

3. The difference equations technique (3) is used when P is banded with few subdi-
agonals. Again, many communication systems have banded transition matrices.
We shall see many examples throughout this book about such systems.

4. The z-transform technique (4) is used when P is lower triangular or lower
Hessenberg such that each diagonal has identical elements. Again, some commu-
nication systems have this structure and we will discuss many of them throughout
this book.

5. The direct technique (5) is used when P is expressed numerically and P has no
particular structure. Furthermore, the size of P is not too large such that round-
ing or truncation noise is insignificant. Direct techniques produce results with
accuracies dependent on the machine precision and the number of calculations
involved.

6. The iterative numerical technique (6) is used when P is expressed numerically
and P has no particular structure. The size of P has little effect on truncation
noise because iterative techniques produce results with accuracies that depend
only on the machine precision and independent of the number of calculations
involved.

7. The iterative technique (7) for expressing the states of P in terms of other states
is illustrated in Section 9.3.2 on page 312.

We illustrate these approaches in the following sections.

4.6 Finding s Using Eigenvector Approach

In this case we are interested in finding the eigenvector s which satisfies the
condition

P s = s (4.4)

MATLAB and other mathematical packages such as Maple and Mathematica
have commands for finding that eigenvector as is explained in Appendix E. This
technique is useful only if P is expressed numerically. Nowadays, those mathemat-
ical packages can also do symbolic computations and can produce an answer for s
when P is expressed in symbols. However, symbolic computations demand that the
the size of P must be small, in the range of 2–5, at the most to get any useful data.

Having found a numeric or symbolic answer, we must normalize s to ensure that

∑

i

si = 1 (4.5)
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Example 4.2 Find the steady-state distribution vector for the following transition
matrix.

P =
⎡

⎣
0.8 0.7 0.5
0.15 0.2 0.3
0.05 0.1 0.2

⎤

⎦

We use MATLAB to find the eigenvectors and eigenvalues for P :

s1 = [
0.9726 0.2153 .0877

]t ↔λ1 = 1

s2 = [
0.8165 −0.4882 −0.4082

]t ↔λ2 = 0.2

s3 = [
0.5345 −0.8018 0.2673

]t ↔λ3 = 0

The steady-state distribution vector s corresponds to s1 and we have to normalize
it. We have

∑

i

si = 1.2756

Dividing s1 by this value we get the steady-state distribution vector as

s1 = [
0.7625 0.1688 0.0687

]t

4.7 Finding s Using Difference Equations

This technique for finding s is useful only when the state transition matrix P is
banded. Consider the Markov chain representing a simple discrete-time birth–death
process whose state transition diagram is shown in Fig. 4.1. For example, each state
might correspond to the number of packets in a buffer whose size grows by one
or decreases by one at each time step. The resulting state transition matrix P is
tridiagonal with each subdiagonal composed of identical elements.

0 1 2 3

f0

bc
f f f

ad ad ad ad

bc bc bc

Fig. 4.1 State transition diagram for a discrete-time birth–death Markov chain
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We make the following assumptions for the Markov chain.

1. The state of the Markov chain corresponds to the number of packets in the buffer
or queue. si is the probability that i packets are in the buffer.

2. The size of the buffer or queue is assumed unrestricted.
3. The probability of a packet arriving to the system is a at a particular time, and

the probability that a packet does not arrive is b = 1 − a.
4. The probability of a packet departing the system is c at a particular time, and the

probability that a packet does not depart is d = 1 − c.
5. When a packet arrives it could be serviced at the same time step and it could

leave the queue, at that time step, with probability c.

From the transition diagram, we write the state transition matrix as

P =

⎡

⎢⎢⎢⎢⎢
⎣

f0 bc 0 0 · · ·
ad f bc 0 · · ·

0 ad f bc · · ·
0 0 ad f · · ·
...

...
...

...
. . .

⎤

⎥⎥⎥⎥⎥
⎦

(4.6)

where f0 = ac + b and f = ac + bd. For example, starting with state 1, the system
goes to state 0 when a packet does not arrive and the packet that was in the buffer
departs. This is represented by the term bc at location (1,2) of the matrix.

Using this matrix, or the transition diagram, we can arrive at difference equa-
tions relating the equilibrium distribution vector components as follows. We start
by writing the equilibrium equation

P s = s (4.7)

Equating corresponding elements on both sides of the equation, we get the fol-
lowing equations.

ad s0 − bc s1 = 0 (4.8)

ad s0 − g s1 + bc s2 = 0 (4.9)

ad si−1 − g si + bc si+1 = 0 i > 0 (4.10)

where g = 1 − f and si is the i th component of the state vector s which is equal
to the probability that the system is in state i . Appendix B gives techniques for
solving such difference equations. However, we show here a simple method based
on iterations. From (4.8), (4.9), and (4.10) we can write the expressions
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s1 =
(

a d

b c

)
s0

s2 =
(

a d

b c

)2

s0

s3 =
(

a d

b c

)3

s0

and in general

si =
(

ad

bc

)i

s0 i ≥ 0 (4.11)

It is more convenient to write si in the form

si = ρi s0 i ≥ 0 (4.12)

where

ρ = a d

b c
< 1 (4.13)

In that sense ρ can be thought of as distribution index that dictates the magnitude
of the distribution vector components. The complete solution is obtained from the
above equations, plus the condition

∞∑

i=0

si = 1 (4.14)

By substituting the expressions for each si in the above equation, we get

s0

∞∑

i=0

ρi = 1 (4.15)

Thus we obtain

s0

1 − ρ
= 1 (4.16)

from which we obtain the probability that the system is in state 0 as

s0 = 1 − ρ (4.17)

and the components of the equilibrium distribution vector is given from (4.12) by

si = (1 − ρ)ρi i ≥ 0 (4.18)
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For the system to be stable we must have ρ < 1. If we are interested in situations
where ρ ≥ 1 then we must deal with finite-sized systems where the highest state
could be sB and the system could exist in one of B + 1 states only. This situation
will be treated more fully in Section 7.6 on page 233.

Example 4.3 Consider the transition matrix for the discrete-time birth–death pro-
cess that describes single-arrival, single-departure queue with the following param-
eters a = 0.4 and c = 0.6. Construct the transition matrix and find the equilibrium
distribution vector.

The transition matrix becomes

P =

⎡

⎢⎢⎢⎢⎢
⎣

0.84 0.36 0 0 · · ·
0.16 0.48 0.36 0 · · ·
0 0.16 0.48 0.36 · · ·
0 0 0.16 0.48 · · ·
...

...
...

...
. . .

⎤

⎥⎥⎥⎥⎥
⎦

Using (4.13), the distribution index is equal to

ρ = 0.4444

From (4.17) we have

s0 = 0.5556

and from (4.18) we have

si = (1 − ρ)ρi = (0.5556) × 0.4444i

The distribution vector at steady state is

s = [
0.5556 0.2469 0.1097 0.0488 0.0217 · · · ]t

4.8 Finding s Using Z-Transform

This technique is useful to find the steady-state distribution vector s only if the
state transition matrix P is lower Hessenberg such that elements on one diagonal
are mostly identical. This last restriction will result in difference equations with
constant coefficients for most of the elements of s. This type of transition matrix
occurs naturally in multiple-arrival, single-departure (Mm/M/1) queues. This queue
will be discussed in complete detail in Section 7.6 on page 233.
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Let us consider a Markov chain where we can move from state j to any state i
where i ≥ j − 1. This system corresponds to a buffer, or queue, whose size can
increase by more than one due to multiple packet arrivals at any time, but the size of
the queue can only decrease by one due to the presence of a single server. Assume
the probability of K arrivals at instant n is given by

p(K arrivals) = aK K = 0, 1, 2, ... (4.19)

for all time instants n = 0, 1, 2, . . . Assume that the probability that a packet is able
to leave the queue is c and the probability that it is not able to leave the queue is
d = 1 − c.

The condition for the stability of the system is

∞∑

K=0

K aK < c (4.20)

which indicates that the average number of arrivals at a given time is less than the
average number of departures from the system. The state transition matrix will be
lower Hessenberg:

P =

⎡

⎢⎢⎢⎢⎢
⎣

a0 b0 0 0 · · ·
a1 b1 b0 0 · · ·
a2 b2 b1 b0 · · ·
a3 b3 b2 b1 · · ·
...

...
...

...
. . .

⎤

⎥⎥⎥⎥⎥
⎦

(4.21)

where bi = ai c + ai−1d and we assumed

ai = 0 when i < 0

Note that the sum of each column is unity, as required from the definition of a
Markov chain transition matrix. At equilibrium we have

P s = s (4.22)

The general expression for the equilibrium equations for the states is given by
the i-th term in the above equation

si = ai s0 +
i+1∑

j=1

bi− j+1 s j (4.23)

This analysis is a modified and simpler version of the one given in reference [1].
Define the z-transform for the state transition probabilities ai and bi as
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A(z) =
∞∑

i=0

ai z−i (4.24)

B(z) =
∞∑

i=0

bi z−i (4.25)

One observation worth mentioning here for later use is that since all entries in
the transition matrix are positive, all the coefficients of A(z) and B(z) are positive.
We define the z-transform for the equilibrium distribution vector s as

S(z) =
∞∑

i=0

si z−i (4.26)

where si are the components of the distribution vector. From (4.23) we can write

S(z) = s0

∞∑

i=0

ai z−i +
∞∑

i=0

i+1∑

j=1

bi− j+1 s j z−i (4.27)

= s0 A(z) +
∞∑

i=0

∞∑

j=1

bi− j+1 s j z−i (4.28)

we were able to change the upper limit for j , in the above equation, by assuming

bi = 0 when i < 0 (4.29)

Now we change the order of the summation

S(z) = s0 A(z) +
∞∑

j=1

∞∑

i=0

bi− j+1 s j z−i (4.30)

Making use of the assumption in (4.29), we can change the limits of the summa-
tion for i

S(z) = s0 A(z) +
⎡

⎣
∞∑

j=1

s j z− j

⎤

⎦×
∞∑

i= j−1

bi− j+1 z−(i− j) (4.31)

We make use of the definition of S(z) to change the term in the square brackets:

S(z) = s0 A(z) + [S(z) − s0] ×
∞∑

i= j−1

bi− j+1 z−(i− j) (4.32)

We now change the summation symbol i by using the new variable m = i − j +1
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S(z) =s0 A(z) + [S(z) − s0] × z
∞∑

m=0

bm z−m

=s0 A(z) + z [S(z) − s0] B(z) (4.33)

We finally get

S(z) = s0 × z−1 A(z) − B(z)

z−1 − B(z)
(4.34)

Below we show how we can obtain a numerical value for s0. Assuming for the
moment that s0 is found, MATLAB allows us to find the inverse z-transform of
S(z) using the command RESIDUE(a,b) where a and b are the coefficients of
A(z) and B(z), respectively, in descending powers of z−1. The function RESIDUE
returns the column vectors r , p, and c which give the residues, poles, and direct
terms, respectively.

The solution for si is given by the expression

si = ci +
m∑

j=1

r j (p j )
(i−1) i > 0 (4.35)

where m is the number of elements in r or p vectors. The examples below show
how this procedure is done.

When z = 1, the z-transforms for s, ai , and bi are

S(1) =
∞∑

j=1

s j = 1 (4.36)

A(1) = B(1) = 1 (4.37)

Thus we can put z = 1 in (4.34) and use L’Hospital’s rule to get

s0 = 1 + B ′(1)

1 + B ′(1) − A′(1)
(4.38)

where

A′(1) = d A(z)

dz

∣∣∣∣
z=1

< 0 (4.39)

B ′(1) = d B(z)

dz

∣∣∣∣
z=1

< 0 (4.40)

Since all the coefficients of A(z) and B(z) are positive, all the coefficients of A′

and B ′ are negative and the two numbers A′(1) and B ′(1) are smaller than zero. As a
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result of this observation, it is guaranteed that s0 < 1 as expected for the probability
that the queue is empty.

We should note that the term −A′(1) represents the average number of packet
arrivals per time step when the queue is empty. Similarly, −B ′(1) represents the
average number of packet arrivals per time step when the queue is not empty.

Having found a numerical value for s0, we use (4.34) to obtain the inverse z-
transform of S(z) and get expressions for the steady-state distribution vector

s = [
s0 s1 s2 · · · ]

(4.41)

Example 4.4 Use the z-transform technique to find the equilibrium distribution vec-
tor for the Markov chain whose transition matrix is

P =

⎡

⎢⎢⎢⎢⎢
⎣

0.84 0.36 0 0 · · ·
0.16 0.48 0.36 0 · · ·
0 0.16 0.48 0.36 · · ·
0 0 0.16 0.48 · · ·
...

...
...

...
. . .

⎤

⎥⎥⎥⎥⎥
⎦

The transition probabilities are given by

a0 = 0.84

a1 = 0.16

ai = 0 when i > 1

b0 = 0.36

b1 = 0.48

b2 = 0.16

bi = 0 when i > 2

We have the z-transforms of A(z) and B(z) as

A(z) = 0.84 + 0.16z−1

B(z) = 0.36 + 0.48z−1 + 0.16z−2

Differentiation of the above two expressions gives

A(z)′ = −0.16z−2

B(z)′ = −0.48z−2 − 0.32z−3

By substituting z−1 = 1 in the above expressions, we get
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A(1)′ = −0.16

B(1)′ = −0.8

By using (4.38) we get the probability that the queue is empty

s0 = 1 + B ′(1)

1 + B ′(1) − A′(1)
= 0.5556

From (4.34) we can write

S(z) = 0.2 − 0.2z−1

0.36 − 0.52z−1 + 0.16z−2

We can convert the polynomial expression for S(z) into a partial-fraction expan-
sion (residues) using the MATLAB command RESIDUE:

b = [0.2, -0.2]; a = [0.36,
-0.52, 0.16]; [r,p,c] = residue(b,a)
r =

0.0000
0.2469

p =
1.0000
0.4444

c =
0.5556

where the column vectors r , p, and c give the residues, poles, and direct terms,
respectively. Thus we have

s0 = c = 0.5555

which confirms the value obtained earlier. For i ≥ 1 we have

si =
∑

j

r j
(

p j
)i−1

Thus the distribution vector at steady state is given by

s = [
0.5556 0.2469 0.1097 0.0488 0.0217 · · · ]t

Note that this is the same distribution vector that was obtained for the same ma-
trix using the difference equations approach in Example 4.3.

As as a check, we generated the first 50 components of s and ensured that their
sum equals unity.
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Example 4.5 Use the z-transform technique to find the equilibrium distribution vec-
tor for the Markov chain whose transition matrix is

P =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

0.5714 0.4082 0 0 0 · · ·
0.2857 0.3673 0.4082 0 0 · · ·
0.1429 0.1837 0.3673 0.4082 0 · · ·
0 0.0408 0.1837 0.3673 0.4082 · · ·
0 0 0.0408 0.1837 0.3673 · · ·
...

...
...

...
...

. . .

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

We have the z-transforms of A(z) and B(z) as

A(z) = 0.5714 + 0.2857z−1 + 0.1429z−2

B(z) = 0.4082 + 0.3673z−1 + 0.1837z−2 + 0.0408z−3

Differentiation of the above two expressions gives

A(z)′ = −0.2857z−2 − 0.2857z−3

B(z)′ = −0.3673z−2 − 0.3673z−3 − 0.1224z−4

By substituting z−1 = 1 in the above expressions, we get

A(1)′ = −0.5714

B(1)′ = −0.8571

By using (4.38) we get the probability that the queue is empty

s0 = 1 + B ′(1)

1 + B ′(1) − A′(1)
= 0.2

From (4.34) we can write

S(z) = 0.0816 − 0.0408z−1 − 0.0204z−2 − 0.0204z−3

0.4082 − 0.6326z−1 + 0.1837z−2 + 0.0408z−3

We can convert the polynomial expression for S(z) into a partial-fraction expan-
sion (residues) using the MATLAB command residue:

b = [0.0816, -0.0408, -0.0204, -0.0204];
a = [0.4082, -0.6327, 0.1837, 0.0408];
[r,p,c] = residue(b,a)
r =

0.0000
0.2574
-0.0474
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p =
1.0000
0.6941
-0.0474

c =
0.2000

where the column vectors r , p, and c give the residues, poles, and direct terms,
respectively. Thus we have

s0 = c = 0.2

which confirms the value obtained earlier. For i ≥ 1 we have

si =
∑

j

r j
(

p j
)i−1

Thus the distribution vector at steady state is given by

s = [
0.2100 0.1855 0.1230 0.0860 0.0597 · · · ]t

As as a check, we generated the first 50 components of s and ensured that their sum
equals unity.

4.9 Finding s Using Forward- or Back-Substitution

This technique is useful when the transition matrix P is a lower Hessenberg matrix
and the elements in each diagonal are not equal. In such matrices the elements pi j =
0 for j > i +1. The following example shows a lower Hessenberg matrix of order 6:

P =

⎡

⎢⎢⎢⎢⎢⎢
⎣

h11 h12 0 0 0 0
h21 h22 h23 0 0 0
h31 h32 h33 h34 0 0
h41 h42 h43 h44 h45 0
h51 h52 h53 h54 h55 h56

h61 h62 h63 h64 h65 h66

⎤

⎥⎥⎥⎥⎥⎥
⎦

(4.42)

This matrix describes the Mm/M/1 queue in which a maximum of m packets
may arrive as will be explained in Chapter 7. At steady state the distribution vector
s satisfies

Ps = s (4.43)

and when P is lower Hessenberg we have
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⎡

⎢⎢⎢
⎣

h11 h12 0 0 · · ·
h21 h22 h23 0 · · ·
h31 h32 h33 h34 · · ·

...
...

...
...

. . .

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

s1

s2

s3
...

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

s1

s2

s3
...

⎤

⎥⎥⎥
⎦

(4.44)

where we assumed our states are indexed as s1, s2, . . . Forward substitution starts
with estimating a value for s1 then proceeding to find s2, s3, etc. The first row gives

s1 = h11 s1 + h12 s2 (4.45)

We assume an arbitrary value for s1 = 1. Thus the above equation gives us a
value for s2

s2 = (1 − h11) /h12 (4.46)

We remind the reader again that s1 = 1 by assumption. The second row gives

s2 = h21 s1 + h22 s2 + h23 s3 (4.47)

By substituting the values we have so far for s1 and s2, we get

s3 = (1 − h11) (1 − h22) / (h12 h23) − h21/h23 (4.48)

Continuing in this fashion, we can find all the states si where i > 1.
To get the true value for the distribution vector s, we use the normalizing equation

m∑

i=1

si = 1 (4.49)

Let us assume that the sum of the components that we obtained for the vector s
gives

m∑

i=1

si = b (4.50)

then we must divide each value of s by b to get the true normalized vector that we
desire.

Backward substitution is similar to forward substitution but starts by assuming
a value for sm then we estimate sm−1, sm−2, etc. Obviously, backward substitution
applies only to finite matrices.

Example 4.6 Use forward substitution to find the equilibrium distribution vector s
for the Markov chain with transition matrix given by
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P =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0.4 0.2 0 0 0 0
0.3 0.35 0.2 0 0 0
0.2 0.25 0.35 0.2 0 0
0.1 0.15 0.25 0.35 0.2 0
0 0.05 0.15 0.25 0.35 0.2
0 0 0.05 0.2 0.45 0.8

⎤

⎥⎥⎥⎥⎥⎥
⎦

Assume s1 = 1. The distribution vector must satisfy the equation

s =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0.4 0.2 0 0 0 0
0.3 0.35 0.2 0 0 0
0.2 0.25 0.35 0.2 0 0
0.1 0.15 0.25 0.35 0.2 0
0 0.05 0.15 0.25 0.35 0.2
0 0 0.05 0.2 0.7 0.8

⎤

⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢
⎣

1
s2

s3

s4

s5

s6

⎤

⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢
⎣

1
s2

s3

s4

s5

s6

⎤

⎥⎥⎥⎥⎥⎥
⎦

The first row gives us a value for s2 = 3. Continuing, with successive rows,
we get

s3 = 8.25

s4 = 22.0625

s5 = 58.6406

s6 = 156.0664

Summing the values of all the components gives us

6∑

j=1

s j = 249.0195 (4.51)

Thus the normalized distribution vector is

s = [
0.0040 0.0120 0.0331 0.0886 0.2355 0.6267

]t
(4.52)
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4.10 Finding s Using Direct Techniques

Direct techniques are useful when the transition matrix P has no special structure
but its size is small such that rounding errors 1 are below a specified maximum level.
In that case we start with the equilibrium equation

P s = s (4.53)

where s is the unknown n-component distribution vector. This can be written as

(P − I) s = 0 (4.54)

A s = 0 (4.55)

which describes a homogeneous system of linear equations with A = P − I. The
rank of A is n − 1 since the sum of the columns must be zero. Thus, there are
many possible solutions to the system and we need an extra equation to get a unique
solution.

The extra equation that is required is the normalizing condition

m∑

i=1

si = 1 (4.56)

where we assumed our states are indexed as s1, s2, . . ., sm . We can delete any row
matrix A in (4.55) and replace it with (4.56). Let us replace the last row with (4.56).
In that case we have the system of linear equations

⎡

⎢⎢⎢⎢⎢
⎣

a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
. . .

...
am−1,1 am−1,2 · · · am−1,m

1 1 · · · 1

⎤

⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢
⎣

s1

s2
...

sm−1

sm

⎤

⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢
⎣

0
0
...
0
1

⎤

⎥⎥⎥⎥⎥
⎦

(4.57)

This gives us a system of linear equations whose solution is the desired steady-
state distribution vector.

Example 4.7 Find the steady-state distribution vector for the state transition matrix

P =
⎡

⎣
0.4 0.2 0
0.1 0.5 0.6
0.5 0.3 0.4

⎤

⎦

1 Rounding errors occur due to finite word length in computers. In floating-point arithmetic,
rounding errors occur whenever addition or multiplication operations are performed. In fixed-point
arithmetic, rounding errors occur whenever multiplication or shift operations are performed.
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First, we have to obtain matrix A = P − I

A =
⎡

⎣
−0.6 0.2 0

0.1 −0.5 0.6
0.5 0.3 −0.6

⎤

⎦

Now we replace the last row in A with all ones to get

A =
⎡

⎣
−0.6 0.2 0

0.1 −0.5 0.6
1 1 1

⎤

⎦

The system of linear equations we have to solve is

⎡

⎣
−0.6 0.2 0

0.1 −0.5 0.6
1 1 1

⎤

⎦

⎡

⎣
s1

s2

s3

⎤

⎦ =
⎡

⎣
0
0
1

⎤

⎦

The solution for s is

s = [
0.1579 0.4737 0.3684

]t

4.11 Finding s Using Iterative Techniques

Iterative techniques are useful when the transition matrix P has no special structure
and its size is large such that direct techniques will produce too much rounding er-
rors. Iterative techniques obtain a solution to the system of linear equations without
arithmetic rounding noise. The accuracy of the results is limited only by machine
precision. We enumerate below three techniques for doing the iterations. These tech-
niques are explained in more detail in Appendix D.

1. Successive overrelaxation
2. Jacobi iterations
3. Gauss-Seidel iterations.

Basically, the solution is obtained by first assuming a trial solution, then this is
improved through successive iterations. Each iteration improves the guess solution
and an answer is obtained when successive iterations do not result in significant
changes in the answer.
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4.12 Balance Equations

In steady state the probability of finding ourselves in state si is given by

si =
∑

j

pi j s j (4.58)

The above equation is called the balance equation because it provides an expres-
sion for each state of the queue at steady state.

From the definition of transition probability, we can write

∑

j

p ji = 1 (4.59)

which is another way of saying that the sum of all probabilities of leaving state i is
equal to one. From the above two equations we can write

si

∑

j

p ji =
∑

j

pi j s j (4.60)

Since si is independent of the index of summation on the LHS, we can write

∑

j

p ji si =
∑

j

pi j s j (4.61)

Now the LHS represents all the probabilities of flowing out of state i. The RHS
represents all the probabilities of flowing into state i. The above equation describes
the flow balance for state i.

Thus we proved that in steady state, the probability of moving out of a state
equals the probability of moving into the same state. This conclusion will help us
derive the steady-state distributions in addition to the other techniques we have dis-
cussed above.

Problems

Finding s Using Eigenvectors

4.1 Assume s is the eigenvector corresponding to unity eigenvalue for matrix P.
Prove that this vector cannot have a zero component in it if P does not have any
zero elements.
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4.2 Find the steady-state distribution vector corresponding to the unity eigenvalue
for the following transition matrix.

P =
⎡

⎣
0.45 0.2 0.5
0.5 0.2 0.3
0.05 0.6 0.2

⎤

⎦

4.3 Find the steady-state distribution vector corresponding to the unity eigenvalue
for the following transition matrix.

P =
⎡

⎣
0.29 0.46 0.4
0.4 0.45 0.33
0.31 0.09 0.27

⎤

⎦

4.4 Find the steady-state distribution vector corresponding to the unity eigenvalue
for the following transition matrix.

P =
⎡

⎣
0.33 0.48 0.41
0.3 0.01 0.48
0.37 0.51 0.11

⎤

⎦

4.5 Find the steady-state distribution vector corresponding to the unity eigenvalue
for the following transition matrix.

P =
⎡

⎣
0.33 0.51 0.12
0.24 0.17 0.65
0.43 0.32 0.23

⎤

⎦

4.6 Find the steady-state distribution vector corresponding to the unity eigenvalue
for the following transition matrix.

P =
⎡

⎣
0.03 0.19 0.07
0.44 0.17 0.53
0.53 0.64 0.4

⎤

⎦

4.7 Find the steady-state distribution vector corresponding to the unity eigenvalue
for the following transition matrix.

P =
⎡

⎣
0.56 0.05 0.2
0.14 0.57 0.24
0.3 0.38 0.56

⎤

⎦
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4.8 Find the steady-state distribution vector corresponding to the unity eigenvalue
for the following transition matrix.

P =

⎡

⎢⎢
⎣

0.08 0.19 0.07
0.04 0.17 0.53
0.18 0.17 0.53
0.7 0.64 0.4

⎤

⎥⎥
⎦

4.9 Find the steady-state distribution vector corresponding to the unity eigenvalue
for the following transition matrix.

P =

⎡

⎢⎢⎢⎢
⎣

0.12 0.06 0.42 0.1 0.09
0.18 0.14 0.03 0.14 0.01
0.23 0.33 0.17 0.14 0.32
0.26 0.32 0.38 0.43 0.18
0.21 0.15 0 0.19 0.4

⎤

⎥⎥⎥⎥
⎦

Finding s by Difference Equations

4.10 A queuing system is described by the following transition matrix:

P =

⎡

⎢⎢⎢⎢
⎣

0.8 0.5 0 0 0
0.2 0.3 0.5 0 0
0 0.2 0.3 0.5 0
0 0 0.2 0.3 0.5
0 0 0 0.2 0.5

⎤

⎥⎥⎥⎥
⎦

(a) Find the steady-state distribution vector using the difference equations ap-
proach.

(b) What is the probability that the queue is full?

4.11 A queuing system is described by the following transition matrix.

P =

⎡

⎢⎢⎢⎢
⎣

0.3 0.2 0 0 0
0.7 0.1 0.2 0 0
0 0.7 0.1 0.2 0
0 0 0.7 0.1 0.2
0 0 0 0.7 0.8

⎤

⎥⎥⎥⎥
⎦

(a) Find the steady-state distribution vector using the difference equations ap-
proach.

(b) What is the probability that the queue is full?
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4.12 A queuing system is described by the following transition matrix.

P =

⎡

⎢⎢⎢⎢
⎣

0.9 0.1 0 0 0
0.1 0.8 0.1 0 0
0 0.1 0.8 0.1 0
0 0 0.1 0.8 0.1
0 0 0 0.1 0.9

⎤

⎥⎥⎥⎥
⎦

(a) Find the steady-state distribution vector using the difference equations ap-
proach.

(b) What is the probability that the queue is full?

4.13 A queuing system is described by the following transition matrix.

P =

⎡

⎢⎢⎢⎢
⎣

0.75 0.25 0 0 0
0.25 0.5 0.25 0 0
0 0.25 0.5 0.25 0
0 0 0.25 0.5 0.25
0 0 0 0.25 0.75

⎤

⎥⎥⎥⎥
⎦

(a) Find the steady-state distribution vector using the difference equations ap-
proach.

(b) What is the probability that the queue is full?

4.14 A queuing system is described by the following transition matrix.

P =

⎡

⎢⎢⎢⎢
⎣

0.6 0.2 0 0 0
0.2 0.4 0.2 0 0
0.2 0.2 0.4 0.2 0
0 0.2 0.2 0.4 0.2
0 0 0.2 0.4 0.8

⎤

⎥⎥⎥⎥
⎦

(a) Find the steady-state distribution vector using the difference equations ap-
proach.

(b) What is the probability that the queue is full?

4.15 A queuing system is described by the following transition matrix.

P =

⎡

⎢⎢⎢⎢⎢
⎣

0.8 0.5 0 · · ·
0.2 0.3 0.5 · · ·
0 0.2 0.3 · · ·
0 0 0.2 · · ·
...

...
...

. . .

⎤

⎥⎥⎥⎥⎥
⎦

Find the steady-state distribution vector using the difference equations ap-
proach.
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4.16 A queuing system is described by the following transition matrix.

P =

⎡

⎢⎢⎢⎢⎢
⎣

0.8 0.7 0 · · ·
0.2 0.1 0.7 · · ·
0 0.2 0.1 · · ·
0 0 0.2 · · ·
...

...
...

. . .

⎤

⎥⎥⎥⎥⎥
⎦

Find the steady-state distribution vector using the difference equations ap-
proach.

4.17 A queuing system is described by the following transition matrix.

P =

⎡

⎢⎢⎢⎢⎢
⎣

0.9 0.2 0 · · ·
0.1 0.7 0.2 · · ·
0 0.1 0.7 · · ·
0 0 0.1 · · ·
...

...
...

. . .

⎤

⎥⎥⎥⎥⎥
⎦

Find the steady-state distribution vector using the difference equations ap-
proach.

4.18 A queuing system is described by the following transition matrix.

P =

⎡

⎢⎢⎢⎢⎢
⎣

0.85 0.35 0 · · ·
0.15 0.5 0.35 · · ·
0 0.15 0.5 · · ·
0 0 0.15 · · ·
...

...
...

. . .

⎤

⎥⎥⎥⎥⎥
⎦

Find the steady-state distribution vector using the difference equations ap-
proach.

4.19 A queuing system is described by the following transition matrix.

P =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

0.7 0.6 0 0 · · ·
0.2 0.1 0.6 0 · · ·
0.1 0.2 0.1 0.6 · · ·
0 0.1 0.2 0.1 · · ·
0 0 0.1 0.2 · · ·
...

...
...

...
. . .

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

Find the steady-state distribution vector using the difference equations ap-
proach.
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Finding s Using Z-Transform

4.20 Given the following state transition matrix, find the first 10 components of the
equilibrium distribution vector using the z-transform approach.

P =

⎡

⎢⎢⎢⎢⎢
⎣

0.8 0.3 0 · · ·
0.2 0.5 0.3 · · ·
0 0.2 0.5 · · ·
0 0 0.2 · · ·
...

...
...

. . .

⎤

⎥⎥⎥⎥⎥
⎦

4.21 Given the following state transition matrix, find the first 10 components of the
equilibrium distribution vector using the z-transform approach.

P =

⎡

⎢⎢⎢⎢⎢
⎣

0.95 0.45 0 · · ·
0.05 0.5 0.45 · · ·
0 0.05 0.5 · · ·
0 0 0.05 · · ·
...

...
...

. . .

⎤

⎥⎥⎥⎥⎥
⎦

4.22 Given the following state transition matrix, find the first 10 components of the
equilibrium distribution vector using the z-transform approach.

P =

⎡

⎢⎢⎢⎢⎢
⎣

0.95 0.45 0 · · ·
0.05 0.5 0.45 · · ·
0 0.05 0.5 · · ·
0 0 0.05 · · ·
...

...
...

. . .

⎤

⎥⎥⎥⎥⎥
⎦

4.23 Given the following state transition matrix, find the first 10 components of the
equilibrium distribution vector using the z-transform approach.

P =

⎡

⎢⎢⎢⎢⎢
⎣

0.86 0.24 0 · · ·
0.14 0.62 0.24 · · ·
0 0.14 0.62 · · ·
0 0 0.14 · · ·
...

...
...

. . .

⎤

⎥⎥⎥⎥⎥
⎦
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4.24 Given the following state transition matrix, find the first 10 components of the
equilibrium distribution vector using the z-transform approach.

P =

⎡

⎢⎢⎢⎢⎢
⎣

0.93 0.27 0 · · ·
0.07 0.66 0.27 · · ·
0 0.07 0.66 · · ·
0 0 0.07 · · ·
...

...
...

. . .

⎤

⎥⎥⎥⎥⎥
⎦

4.25 Given the following state transition matrix, find the first 10 components of the
equilibrium distribution vector using the z-transform approach.

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0.512 0.3584 0 0 · · ·
0.384 0.4224 0.3584 0 · · ·
0.096 0.1824 0.4224 0.3584 · · ·
0.008 0.0344 0.1824 0.4224 · · ·
0 0.0024 0.0344 0.1824 · · ·
0 0 0.0024 0.0344 · · ·
...

...
...

...
. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

4.26 Given the following state transition matrix, find the first 10 components of the
equilibrium distribution vector using the z-transform approach.

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0.720 0.4374 0 0 · · ·
0.243 0.4374 0.4374 0 · · ·
0.027 0.1134 0.4374 0.4374 · · ·
0.001 0.0114 0.1134 0.4374 · · ·
0 0.0004 0.0114 0.1134 · · ·
0 0 0.0004 0.0114 · · ·
...

...
...

...
. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

4.27 Given the following state transition matrix, find the first 10 components of the
equilibrium distribution vector using the z-transform approach.

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0.9127 0.3651 0 0 · · ·
0.0847 0.5815 0.3651 0 · · ·
0.0026 0.0519 0.5815 0.3651 · · ·
0 0.0016 0.0519 0.5815 · · ·
0 0 0.0016 0.0519 · · ·
0 0 0 0.0016 · · ·
...

...
...

...
. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦
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4.28 Given the following state transition matrix, find the first 10 components of the
equilibrium distribution vector using the z-transform approach.

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0.6561 0.5249 0 0 · · ·
0.2916 0.3645 0.5249 0 · · ·
0.0486 0.0972 0.3645 0.5249 · · ·
0.0036 0.0126 0.0972 0.3645 · · ·
0.0001 0.0008 0.0126 0.0972 · · ·
0 0 0.0008 0.0126 · · ·
...

...
...

...
. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

4.29 Given the following state transition matrix, find the first 10 components of the
equilibrium distribution vector using the z-transform approach.

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0.512 0.4096 0 0 · · ·
0.384 0.4096 0.4096 0 · · ·
0.096 0.1536 0.4096 0.4096 · · ·
0.008 0.0256 0.1536 0.4096 · · ·
0.0001 0.0016 0.0256 0.1536 · · ·
0 0 0.0016 0.0256 · · ·
...

...
...

...
. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦
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Chapter 5
Reducible Markov Chains

5.1 Introduction

Reducible Markov chains describe systems that have particular states such that once
we visit one of those states, we cannot visit other states. An example of systems
that can be modeled by reducible Markov chains is games of chance where once
the gambler is broke, the game stops and the casino either kicks him out or gives
him some compensation (comp). The gambler moved from being in a state of play
to being in a comp state and the game stops there. Another example of reducible
Markov chains is studying the location of a fish swimming in the ocean. The fish
is free to swim at any location as dictated by the currents, food, or presence of
predators. Once the fish is caught in a net, it cannot escape and it has limited space
where it can swim.

Consider the transition diagram in Fig. 5.1(a). Starting at any state, we are able
to reach any other state in the diagram directly, in one step, or indirectly, through
one or more intermediate states. Such a Markov chain is termed irreducible Markov
chain for reasons that will be explained shortly. For example, starting at s1, we can
directly reach s2 and we can indirectly reach s3 through either of the intermediate
s2 or s5. We encounter irreducible Markov chains in systems that can operate for
long periods of time such as the state of the lineup at a bank, during business hours.
The number of customers lined up changes all the time between zero and maxi-
mum. Another example is the state of buffer occupancy in a router or a switch. The
buffer occupancy changes between being completely empty and being completely
full depending on the arriving traffic pattern.

Consider now the transition diagram in Fig. 5.1(b). Starting from any state, we
might not be able to reach other states in the diagram, directly or indirectly. Such a
Markov chain is termed reducible Markov chain for reasons that will be explained
shortly. For example, if we start at s1, we can never reach any other state. If we
start at state s4, we can only reach state s5. If we start at state s3, we can reach all
other states. We encounter reducible Markov chains in systems that have terminal
conditions such as most games of chance like gambling. In that case, the player
keeps on playing till she loses all her money or wins. In either cases, she leaves the
game. Another example is the game of snakes and ladders where the player keeps
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Fig. 5.1 State transition
diagrams. (a) Irreducible
Markov chain. (b) Reducible
Markov chain

1 2 3 4 5

1

34

2

5

(a)

(b)

on playing but cannot go back to the starting position. Ultimately, the player reaches
the final square and could not go back again to the game.

5.2 Definition of Reducible Markov Chain

The traditional way to define a reducible Markov chain is as follows.

A Markov chain is irreducible if there is some integer k > 1 such that all
the elements of Pk are nonzero.

What is the value of k? No one seems to know; the only advice is to keep on
multiplying till the conditions are satisfied or computation noise overwhelms us!

This chapter is dedicated to shed more light on this situation and introduce, for
the first time, a simple and rigorous technique for identifying a reducible Markov
chain. As a bonus, the states of the Markov chain will be simply classified too with-
out too much effort on our part.

5.3 Closed and Transient States

We defined an irreducible (or regular) Markov chain as one in which every state
is reachable from every other state either directly or indirectly. We also defined a
reducible Markov chain as one in which some states cannot reach other states. Thus
the states of a reducible Markov chain are divided into two sets: closed state (C)
and transient state (T ). Figure 5.2 shows the two sets of states and the directions of
transitions between the two sets of states.

When the system is in T , it can make a transition to either T or C . However, once
our system is in C , it can never make a transition to T again no matter how long we
iterate. In other words, the probability of making a transition from a closed state to
a transient state is exactly zero.
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Fig. 5.2 Reducible Markov
chain with two sets of states.
There are no transitions from
the closed states to the
transient states as shown.

Transient
State

Closed
State

When C consists of only one state, then that state is called an absorbing state.
When si is an absorbing state, we would have pii = 1. Thus inspection of the
transition matrix quickly informs us of the presence of any absorbing states since
the diagonal element for that state will be 1.

5.4 Transition Matrix of Reducible Markov Chains

Through proper state assignment, the transition matrix P for a reducible Markov
chain could be partitioned into the canonic form

P =
[

C A
0 T

]
(5.1)

where

C = square column stochastic matrix
A = rectangular nonnegative matrix
T = square column substochastic matrix

Appendix D defines the meaning of nonnegative and substochastic matrices. The
matrix C is a column stochastic matrix that can be studied separately from the rest
of the transition matrix P. In fact, the eigenvalues and eigenvectors of C will be used
to define the behavior of the Markov chain at equilibrium.

The states of the Markov chain are now partitioned into two mutually exclusive
subsets as shown below.

C = set of closed states belonging to matrix C
T = set of transient states belonging to matrix T

The following equation explicitly shows the partitioning of the states into two
sets, closed state C and transient state T .

C T

P = C
T

[
C A
0 T

]
(5.2)
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Example 5.1 The given transition matrix represents a reducible Markov chain.

P =
s1

s2

s3

s4

s1 s2 s3 s4⎡

⎢⎢
⎣

0.8 0 0.1 0.1
0 0.5 0 0.2
0.2 0.2 0.9 0
0 0.3 0 0.7

⎤

⎥⎥
⎦

where the states are indicated around P for illustration. Rearrange the rows and
columns to express the matrix in the canonic form in (5.1) or (5.2) and identify
the matrices C, A, and T. Verify the assertions that C is column stochastic, A is
nonnegative, and T is column substochastic.

After exploring a few possible transitions starting from any initial state, we see
that if we arrange the states in the order 1, 3, 2, 4 then the following state matrix is
obtained

P =
s1

s3

s2

s4

s1 s2 s3 s4⎡

⎢⎢
⎣

0.8 0.1 0 0.1
0.2 0.9 0.2 0
0 0 0.5 0.2
0 0 0.3 0.7

⎤

⎥⎥
⎦

We see that the matrix exhibits the reducible Markov chain structure and matrices
C, A, and T are

C =
[

0.8 0.1
0.2 0.9

]

A =
[

0 0.1
0.2 0

]

T =
[

0.5 0.2
0.3 0.7

]

The sum of each column of C is exactly 1, which indicates that it is column
stochastic. The sum of columns of T is less than 1, which indicates that it is column
substochastic.

The set of closed states is C = {1, 3} and the set of transient states is T = {2, 4}.
Starting in state s2 or s4, we will ultimately go to states s1 and s3. Once we

are there, we can never go back to state s2 or s4 because we entered the closed
states.

Example 5.2 Consider the reducible Markov chain of the previous example. As-
sume that the system was initially in state s3. Find the distribution vector at 20 time
step intervals.
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We do not have to rearrange the transition matrix to do this example. We have

P =

⎡

⎢⎢
⎣

0.8 0 0.1 0.1
0 0.5 0 0.2
0.2 0.2 0.9 0
0 0.3 0 0.7

⎤

⎥⎥
⎦

The initial distribution vector is

s = [
0 0 1 0

]t

The distribution vector at 20 time step intervals is

s(20) = [
0.3208 0.0206 0.6211 0.0375

]t

s(40) = [
0.3327 0.0011 0.6642 0.0020

]t

s(60) = [
0.3333 0.0001 0.6665 0.0001

]t

s(80) = [
0.3333 0.0000 0.6667 0.0000

]t

We note that after 80 time steps, the probability of being in the transient state
s2 or s4 is nil. The system will definitely be in the closed set composed of states s1

and s3.

5.5 Composite Reducible Markov Chains

In the general case, the reducible Markov chain could be composed of two or more
sets of closed states. Figure 5.3 shows a reducible Markov chain with two sets of
closed states. If the system is in the transient state T , it can move to either sets of
closed states, C1 or C2. However, if the system is in state C1, it cannot move to T
or C2. Similarly, if the system is in state C2, it cannot move to T or C1. In that case,
the canonic form for the transition matrix P for a reducible Markov chain could be
expanded into several subsets of noncommunicating closed states

P =
⎡

⎣
C1 0 A1

0 C2 A2

0 0 T

⎤

⎦ (5.3)

where

C1 and C2 = square column stochastic matrices
A1 and A2 = rectangular nonnegative matrices

T = square column substochastic matrix

Since the transition matrix contains two-column stochastic matrices C1 and C2,
we expect to get two eigenvalues λ1 = 1 and λ2 = 1 also. And we will be getting
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Fig. 5.3 A reducible Markov
chain with two sets of closed
states

Transient
State T

Closed
State
C1

Closed
State
C2

two possible steady-state distributions based on the initial value of the distribution
vector s(0)—more on that in Sections 5.7 and 5.9.

The states of the Markov chain are now divided into three mutually exclusive sets
as shown below.

1. C1 = set of closed states belonging to matrix C1

2. C2 = set of closed states belonging to matrix C2

3. T = set of transient states belonging to matrix T

The following equation explicitly shows the partitioning of the states.

P =
C1

C2

T

C1 C2 T⎡

⎣
C1 0 A1

0 C2 A2

0 0 T

⎤

⎦ (5.4)

Notice from the structure of P in (5.4) that if we were in the first set of closed
state C1, then we cannot escape that set to visit C2 or T . Similarly, if we were in the
second set of closed state C2, then we cannot escape that set to visit C1 or T . On the
other hand, if we were in the set of transient states T , then we can not stay in that
set since we will ultimately fall into C1 or C2.

Example 5.3 You play a coin tossing game with a friend. The probability that one
player winning $1 is p, and the probability that he loses $1 is q = 1 − p. As-
sume the combined assets of both players is $6 and the game ends when one of the
players is broke. Define a Markov chain whose state si means that you have $i and
construct the transition matrix. If the Markov chain is reducible, identify the closed
and transient states and rearrange the matrix to conform to the structure of (5.3)
or (5.4).

Since this is a gambling game, we suspect that we have a reducible Markov chain
with closed states where one player is the winner and the other is the loser.
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A player could have $0, $1, · · · , or $6. Therefore, the transition matrix is of
dimension 7 × 7 as shown in (5.5).

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 q 0 0 0 0 0
0 0 q 0 0 0 0
0 p 0 q 0 0 0
0 0 p 0 q 0 0
0 0 0 p 0 q 0
0 0 0 0 p 0 0
0 0 0 0 0 p 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(5.5)

Notice that states 0 and 6 are absorbing states since p00 = p66 = 1. The set
T = {

s1, s2, · · · , c5
}

is the set of transient states. We could rearrange
our transition matrix such that states s0 and s6 are adjacent as shown below.

P =

s0

s6

s1

s2

s3

s4

s5

s0 s6 s1 s2 s3 s4 s5⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 0 q 0 0 0 0
0 1 0 0 0 0 p

0 0 0 q 0 0 0
0 0 p 0 q 0 0
0 0 0 p 0 q 0
0 0 0 0 p 0 q
0 0 0 0 0 p 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

We have added spaces between the elements of the matrix to show the outline of
the component matrices C1, C2, A1, A2, and T. In that case, each closed matrix cor-
responds to a single absorbing state (s0 and s6), while the transient states correspond
to a 5 × 5 matrix.

5.6 Transient Analysis

We might want to know how a reducible Markov chain varies with time n since this
leads to useful results such as the probability of visiting a certain state at any given
time value. In other words, we want to find s(n) from the expression

s(n) = Pn s(0) (5.6)

Without loss of generality we assume the reducible transition matrix to be given
in the form

P =
[

C A
0 T

]
(5.7)
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After n time steps the transition matrix of a reducible Markov chain will still be
reducible and will have the form

Pn =
[

Cn Yn

0 Tn

]
(5.8)

where matrix Yn is given by

Yn =
n−1∑

i=0

Cn−i−1 A Ti (5.9)

We can always find Cn and Tn using the techniques discussed in Chapter 3 such
as diagonalization, finding the Jordan canonic form, or even repeated multiplica-
tions. The stochastic matrix Cn can be expressed in terms of its eigenvalues using
(3.80) on page 94.

Cn = C1 + λn
2C2 + λn

3C3 + · · · (5.10)

where it was assumed that C1 is the expansion matrix corresponding to the eigen-
value λ1 = 1 and C is assumed to be of dimension mc × mc. Similarly, the sub-
stochastic matrix Tn can be expressed in terms of its eigenvalues using (3.80) on
page 94.

Tn = λn
1T1 + λn

2T2 + λn
3T3 + · · · (5.11)

We should note here that all the magnitudes of the eigenvalues in the above equa-
tion are less than unity. Equation (5.9) can then be expressed in the form

Yn =
m∑

j=1

C j A
n−1∑

i=0

λn−i−1
j Ti (5.12)

After some algebraic manipulations, we arrive at the form

Yn =
m∑

j=1

λn−1
j C j A

[
I −

(
T
λ j

)n](
I − T

λ j

)−1

(5.13)
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This can be written in the form

Yn = C1A (I − T)−1
[
I − Tn

]+

λn−1
2 C2A

(
I − 1

λ2
T
)−1 [

I − 1

λn
2

Tn

]
+

λn−1
3 C3A

(
I − 1

λ3
T
)−1 [

I − 1

λn
3

Tn

]
+ · · · (5.14)

If some of the eigenvalues of C are repeated, then the above formula has to be
modified as explained in Section 3.14 on page 103. Problem 5.25 discusses this
situation.

Example 5.4 A reducible Markov chain has the transition matrix

P =

⎡

⎢⎢⎢⎢
⎣

0.5 0.3 0.1 0.3 0.1
0.5 0.7 0.2 0.1 0.3
0 0 0.2 0.2 0.1
0 0 0.1 0.3 0.1
0 0 0.4 0.1 0.4

⎤

⎥⎥⎥⎥
⎦

Find the value of P20 and from that find the probability of making the following
transitions:

(a) From s3 to s2.
(b) From s2 to s2.
(c) From s4 to s1.
(d) From s3 to s4.

The components of the transition matrix are

C =
[

0.5 0.3
0.5 0.7

]

A =
[

0.1 0.3 0.1
0.2 0.1 0.3

]

T =
⎡

⎣
0.2 0.2 0.1
0.1 0.3 0.1
0.4 0.1 0.4

⎤

⎦

We use the MATLAB function EIGPOWERS, which we developed to expand matrix
C in terms of its eigenpowers, and we have λ1 = 1 and λ2 = 0.2. The corresponding
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matrices according to (3.80) are

C1 =
[

0.375 0.375
0.625 0.625

]

C2 =
[

0.625 −0.375
−0.625 0.375

]

We could now use (5.13) to find P20 but instead we use repeated multiplication here

P20 =

⎡

⎢⎢⎢⎢
⎣

0.375 0.375 0.375 0.375 0.375
0.625 0.625 0.625 0.625 0.625
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥⎥⎥⎥
⎦

(a) p32 = 0.625
(b) p22 = 0.625
(c) p14 = 0.375
(d) p43 = 0

Example 5.5 Find an expression for the transition matrix at times n = 4 and n = 20
for the reducible Markov chain characterized by the transition matrix

P =

⎡

⎢⎢⎢⎢
⎣

0.9 0.3 0.3 0.3 0.2
0.1 0.7 0.2 0.1 0.3
0 0 0.2 0.2 0.1
0 0 0.1 0.3 0.1
0 0 0.2 0.1 0.2

⎤

⎥⎥⎥⎥
⎦

The components of the transition matrix are

C =
[

0.9 0.3
0.1 0.7

]

A =
[

0.3 0.1 0.3
0.2 0.1 0.3

]

T =
⎡

⎣
0.2 0.2 0.1
0.3 0.3 0.1
0.2 0.1 0.4

⎤

⎦

Cn is expressed in terms of its eigenvalues as

Cn = λn
1C1 + λn

2C2
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where λ1 = 1 and λ2 = 0.6 and

C1 =
[

0.75 0.75
0.25 0.25

]

C2 =
[

0.25 −0.75
−0.25 0.75

]

At any time instant n the matrix Yn has the value

Yn = C1A (I − T)−1
[
I − Tn

]+

(0.6)n−1C2A
(

I − 1

0.6
T
)−1 [

I − 1

0.6n
Tn

]

By substituting n = 4, we get

P4 =

⎡

⎢⎢⎢⎢
⎣

0.7824 0.6528 0.6292 0.5564 0.6318
0.2176 0.3472 0.2947 0.3055 0.3061
0 0 0.0221 0.0400 0.0180
0 0 0.0220 0.0401 0.0180
0 0 0.0320 0.0580 0.0261

⎤

⎥⎥⎥⎥
⎦

By substituting n = 20, we get

P20 =

⎡

⎢⎢⎢⎢
⎣

0.7500 0.7500 0.7500 0.7500 0.7500
0.2500 0.2500 0.2500 0.2500 0.2500
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥⎥⎥⎥
⎦

We see that all the columns of P20 are identical, which indicates that the steady-state
distribution vector is independent of its initial value.

5.7 Reducible Markov Chains at Steady-State

Assume we have a reducible Markov chain with transition matrix P that is expressed
in the canonic form

P =
[

C A
0 T

]
(5.15)

According to (5.8), after n time steps the transition matrix will have the form

Pn =
[

Cn Yn

0 Tn

]
(5.16)
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where matrix Yn is given by

Yn =
n−1∑

i=0

Cn−i−1 A Ti (5.17)

To see how Pn will be like when n → ∞, we express the matrices C and T in terms
of their eigenvalues as in (5.10) and (5.11).

When n → ∞, matrix Y∞ becomes

Y∞ = C∞ A
∞∑

i=0

Ti (5.18)

= C1 A (I − T)−1 (5.19)

where I is the unit matrix whose dimensions match that of T.
We used the following matrix identity to derive the above equation

(I − T)−1 =
∞∑

i=0

Ti (5.20)

Finally, we can write the steady-state expression for the transition matrix of a re-
ducible Markov chain as

P∞ =
[

C1 Y∞

0 0

]
(5.21)

=
[

C1 C1A (I − T)−1

0 0

]
(5.22)

The above matrix is column stochastic since it represents a transition matrix. We
can prove that the columns of the matrix C1A (I − T)−1 are all identical and equal
to the columns of C1. This is left as an exercise (see Problem 5.16). Since all the
columns of P at steady-state are equal, all we have to do to find P∞ is to find one
column only of C1. The following examples show this.

Example 5.6 Find the steady-state transition matrix for the reducible Markov chain
characterized by the transition matrix

P =

⎡

⎢⎢⎢⎢
⎣

0.8 0.4 0 0.3 0.1
0.2 0.6 0.2 0.2 0.3
0 0 0.2 0.2 0.1
0 0 0 0.3 0.1
0 0 0.6 0 0.4

⎤

⎥⎥⎥⎥
⎦
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The components of the transition matrix are

C =
[

0.8 0.4
0.2 0.6

]

A =
[

0 0.3 0.1
0.2 0.2 0.3

]

T =
⎡

⎣
0.2 0.2 0.1
0 0.3 0.1
0.6 0 0.4

⎤

⎦

The steady-state value of C is

C∞ = C1 =
[

0.6667 0.6667
0.3333 0.3333

]

The matrix Y∞ has the value

Y∞ = C1 A (I − T)−1 =
[

0.6667 0.6667
0.3333 0.3333

]

Thus the steady state value of P is

P∞ =

⎡

⎢⎢⎢⎢
⎣

0.6667 0.6667 0.6667 0.6667 0.6667
0.3333 0.3333 0.3333 0.3333 0.3333
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥⎥⎥⎥
⎦

The first thing we notice about the steady-state value of the transition matrix is
that all columns are identical. This is exactly the same property for the transition
matrix of an irreducible Markov chain. The second observation we can make about
the transition matrix at steady-state is that there is no possibility of moving to a
transient state irrespective of the value of the initial distribution vector. The third
observation we can make is that no matter what the initial distribution vector was,
we will always wind up in the same steady-state distribution.

Example 5.7 Find the steady-state transition matrix for the reducible Markov chain
characterized by the transition matrix

P =

⎡

⎢⎢⎢⎢
⎣

0.5 0.3 0.1 0.3 0.1
0.5 0.7 0.2 0.1 0.3
0 0 1 0.2 0.1
0 0 0 0.3 0.1
0 0 0 0.1 0.4

⎤

⎥⎥⎥⎥
⎦
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The components of the transition matrix are

C =
[

0.5 0.3
0.5 0.7

]

A =
[

0.1 0.3 0.1
0.2 0.1 0.3

]

T =
⎡

⎣
0.2 0.2 0.1
0.1 0.3 0.1
0.4 0.1 0.4

⎤

⎦

The steady-state value of C is

C∞ = C1 =
[

0.375 0.375
0.625 0.625

]

The matrix Y∞ has the value

Y∞ = C1 A (I − T)−1 =
[

0.375 0.375 0.375
0.625 0.625 0.625

]

Thus the steady-state value of P is

P∞ =

⎡

⎢⎢⎢⎢
⎣

0.375 0.375 0.375 0.375 0.375
0.625 0.625 0.625 0.625 0.625
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥⎥⎥⎥
⎦

5.8 Reducible Composite Markov Chains at Steady-State

In this section, we will study the steady-state behavior of reducible composite
Markov chains. In the general case, the reducible Markov chain could be composed
of two or more closed states. Figure 5.4 shows a reducible Markov chain with two
sets of closed states. If the system is in the transient state T , it can move to either
sets of closed states, C1 or C2. However, if the system is in state C1, it cannot move
to T or C2. Similarly, if the system is in state C2, it can not move to T or C1.

Assume the transition matrix is given by the canonic form

P =
⎡

⎣
C1 0 A1

0 C2 A2

0 0 T

⎤

⎦ (5.23)
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Transient
State T

Closed
State
C1

Closed
State
C2

Fig. 5.4 A reducible Markov chain with two sets of closed states

where

C1 and C2 = square column stochastic matrices
A1 and A2 = rectangular nonnegative matrices

T = square column substochastic matrix

It is easy to verify that the steady-state transition matrix for such a system will be

P∞ =
⎡

⎣
C′

1 0 Y1

0 C′′
1 Y2

0 0 0

⎤

⎦ (5.24)

where

C′
1 = C∞

1 (5.25)

C′′
1 = C∞

2 (5.26)

Y1 = C′
1A1 (I − T)−1 (5.27)

Y2 = C′′
1A2 (I − T)−1 (5.28)

Essentially, C′
1 is the matrix that is associated with λ = 1 in the expansion of C1

in terms of its eigenvalues. The same also applies to C′′
1, which is the matrix that is

associated with λ = 1 in the expansion of C2 in terms of its eigenvalues.
We observe that each column of matrix Y1 is a scaled copy of the columns of

C′
1. Also, the sum of each column of Y1 is lesser than one. We can make the same

observations about matrix Y2.

Example 5.8 The given transition matrix corresponds to a composite reducible
Markov chain.

P =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0.5 0.3 0 0 0.1 0.4
0.5 0.7 0 0 0.3 0.1
0 0 0.2 0.7 0.1 0.2
0 0 0.8 0.3 0.1 0.1
0 0 0 0 0.1 0.2
0 0 0 0 0.3 0

⎤

⎥⎥⎥⎥⎥⎥
⎦
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Find its eigenvalues and eigenvectors then find the steady-state distribution
vector.

The components of the transition matrix are

C1 =
[

0.5 0.3
0.5 0.7

]

C2 =
[

0.2 0.7
0.8 0.3

]

A1 =
[

0.2 0.4
0.2 0.1

]

A2 =
[

0.1 0.2
0.1 0.1

]

T =
[

0.1 0.2
0.3 0

]

The steady-state value of C1 is

C′
1 =

[
0.375 0.375
0.625 0.625

]

The matrix Y1 has the value

Y1 = C′
1 A1 (I − T)−1 =

[
0.2455 0.2366
0.4092 0.3943

]

The steady-state value of C2 is

C′′
1 =

[
0.4667 0.4667
0.5333 0.5333

]

The matrix Y2 has the value

Y2 = C′′
1 A2 (I − T)−1 =

[
0.1611 0.1722
0.1841 0.1968

]

Thus the steady-state value of P is

P∞ =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0.375 0.375 0 0 0.2455 0.2366
0.625 0.625 0 0 0.4092 0.3943
0 0 0.4667 0.4667 0.1611 0.1722
0 0 0.5333 0.5333 0.1841 0.1968
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥
⎦
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We notice that all columns are identical for the closed state matrices. However,
the columns for the matrices corresponding to the transient states (Y1 and Y2) are
not. The second observation we can make about the transition matrix at steady-state
is that there is no possibility of moving to a transient state irrespective of the value
of the initial distribution vector. The third observation we can make is that no matter
what the initial distribution vector was, we will always wind up in the same steady-
state distribution.

5.9 Identifying Reducible Markov Chains

We saw above that reducible Markov chains have a transition matrix that can be
expressed, by proper reordering of the states, into the canonic form

P =
[

C A
0 T

]
(5.29)

This rearranged matrix allowed us to determine the closed and transient states.
We want to show in this section how to easily identify a reducible Markov chain and
how to find its closed and transient states without having to rearrange the matrix.
The following theorem helps us to determine if our Markov chain is reducible or not
by observing the structure of its eigenvector corresponding to the eigenvalue λ = 1.

Theorem 5.1 Let P be the transition matrix of a Markov chain whose eigenvalue
λ = 1 corresponds to an eigenvector s. Then this chain is reducible if and only if s
has one or more zero elements.

Proof. We start by assuming that the eigenvector s has k nonzero elements and
m − k zero elements where m is the number of rows and columns of P. Without loss
of generality we can write s in the canonic form

s =
[

a
0

]
(5.30)

where the vector a has k elements none of which is zero such that 0 < k < m.
Partition P into the form

P =
[

A B
C D

]
(5.31)

where A is a square k × k matrix, D is a square (m − k) × (m − k) matrix, and
the other two matrices are rectangular with the proper dimensions. Since s is the
eigenvector corresponding to λ = 1, we can write

P s = s (5.32)
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or
[

A B
C D

] [
a
0

]
=
[

a
0

]
(5.33)

This equation results in

A a = a (5.34)

and

C a = 0 (5.35)

Having a = 0 is contrary to our assumptions. Since the above two equations
are valid for any nonzero value of a, we conclude that A is column stochastic and
C = 0.

Thus the transition matrix reduces to the form

P =
[

A B
0 D

]
(5.36)

This is the general canonic form for a reducible Markov chain and this completes
one part of the proof.

Now let us assume that P corresponds to a reducible Markov chain. In that case,
we can write P in the canonic form

P =
[

C A
0 T

]
(5.37)

There are two cases to consider here: A = 0 and A �= 0.

Case 1: A = 0
This is the case when we have

P =
[

C 0
0 T

]
(5.38)

We have in reality two independent and noncommunicating Markov systems.
Assume vector s is the distribution vector associated with the unity eigenvalue for
matrix C. In that case, we can express s as

s = [
a b

]t
(5.39)

and s satisfies the equations
[

C 0
0 T

] [
a
b

]
=
[

a
b

]
(5.40)
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We can write

C a = a (5.41)

T b = b (5.42)

The first equation indicates that a is an eigenvector of C and it should be a valid
distribution vector. Since the sum of the components of a must be unity, the sum of
the components of b must be zero, which is possible only when

b = 0 (5.43)

This completes the second part of the proof for Case 1.
The same is true for the eigenvector corresponding to unity eigenvalue for matrix

T. In that case, a will be null and b will be the valid distribution vector. Either way,
this completes the second part of the proof for Case 1.

Case 2: A �= 0
This is the case when we have

P =
[

C A
0 T

]
(5.44)

In that case, T is a substochastic matrix and T∞ = 0. Now for large time values
(n → ∞) we have

P∞ =
[

X
0

]
(5.45)

But we can also write

P∞ s = s (5.46)

We partition s into the form

s =
[

a
b

]
(5.47)

Substitute the above equation into (5.46) to get

[
X
0

] [
a
b

]
=
[

a
b

]
(5.48)

And we get the two equations

X a = a (5.49)
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and

b = 0 (5.50)

Thus the distribution vector corresponding to the eigenvalue λ = 1 will have the
form

s =
[

a
0

]
(5.51)

This completes the proof of the theorem for Case 2.

Example 5.9 Prove that the given transition matrix corresponds to a reducible
Markov chain.

P =

⎡

⎢⎢⎢⎢
⎣

0 0.7 0.1 0 0
0.3 0 0.1 0 0
0.1 0.1 0.2 0 0
0.4 0 0.1 0.6 0.7
0.2 0.2 0.5 0.4 0.3

⎤

⎥⎥⎥⎥
⎦

We calculate the eigenvalues and eigenvectors for the transition matrix. The dis-
tribution vector associated with the eigenvalue λ = 1 is

s = [
0 0 0 0.6364 0.3636

]t

Since we have zero elements, we conclude that we have a reducible Markov
chain.

5.9.1 Determining Closed and Transient States

Now that we know how to recognize a reducible Markov chain, we need to know
how to recognize its closed and transient states. The following theorem provides the
answer.

Theorem 5.2 Let P be the transition matrix of a reducible Markov chain whose
eigenvalue λ = 1 corresponds to an eigenvector s. The closed states of the chain
correspond to the nonzero elements of s and the transient states of the chain corre-
spond to the zero elements of s.

Proof. Since we are dealing with a reducible Markov chain, then without loss of
generality, the transition matrix can be arranged in the canonic form

P =
[

C A
0 T

]
(5.52)
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where it is assumed that C is a k × k matrix and T is a (m − k) × (m − k) matrix.
The first k states correspond to closed states and the last m − k states correspond to
transient states.

Assume the eigenvector s is expressed in the form

s =
[

a
b

]t

(5.53)

where some of the elements of s are zero according to Theorem 5.1. Since this is the
eigenvector corresponding to unity eigenvalue, we must have

[
C A
0 T

] [
a
b

]
=
[

a
b

]
(5.54)

And we get the two equations

C a + A b = a (5.55)

and

T b = b (5.56)

The above equation seems to indicate that T has an eigenvector b with unity
eigenvalue. However, this is a contradiction since T is column substochastic and it
cannot have a unity eigenvalue. The absolute values of all the eigenvalues of T are
less than unity [1]. For such a matrix, we say that its spectral radius cannot equal
unity.1 The above equation is satisfied only if

b = 0 (5.57)

In that case, (5.55) becomes

C a = a (5.58)

Thus the eigenvector s will have the form

s =
[

a
0

]t

(5.59)

where a is a k-distribution vector corresponding to unity eigenvalue of C.
We can therefore associate the closed states with the nonzero components of s

and associate the transient states with the zero components of s.

1 Spectral radius equals the largest absolute value of the eigenvalues of a matrix.
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So far we have proven that s has the form given in (5.59). We must prove now
that all the components of a are nonzero. This will allow us to state with certainty
that any zero component of s belongs solely to a transient state.

We prove this by proving that a contradiction results if a is assumed to have one
or more zero components in it. Assume that a has one or more zero components.
We have proven, however, that a satisfies the equation

C a = a (5.60)

where C is a nonreducible matrix. Applying Theorem 5.1, on page 167, to the above
equation would indicate that C is reducible. This is a contradiction since C is a
nonreducible matrix.

Thus the k closed states correspond to the nonzero elements of s and the transient
states of the chain correspond to the zero elements of s. This proves the theorem.

Example 5.10 Prove that the given transition matrix corresponds to a reducible
Markov chain.

P =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0.3 0.2 0.3 0.4 0.1 0.2
0 0.1 0.2 0 0 0
0 0.2 0.1 0 0 0

0.4 0.1 0.2 0.1 0.2 0.3
0.1 0.1 0.2 0.2 0.3 0.4
0.2 0.3 0 0.3 0.4 0.1

⎤

⎥⎥⎥⎥⎥⎥
⎦

We calculate the eigenvalues and eigenvectors for the transition matrix. The dis-
tribution vector associated with the eigenvalue λ = 1 is

s = [
0.25 0 0 0.25 0.25 0.25

]t

Since we have zero elements, we conclude that we have a reducible Markov
chain. The zero elements identify the transient states and the nonzero elements
identify the closed states.

Closed States Transient States
1, 4, 5, 6 2, 3

5.10 Identifying Reducible Composite Matrices

We can generalize Theorem 5.2 as follows. Let P be the transition matrix of a
composite reducible Markov chain with u mutually exclusive closed states corre-
sponding to the sets C1, C2, . . ., Cu . The canonic form for the transition matrix of
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such a system will be

P =

⎡

⎢⎢⎢⎢⎢
⎣

C1 0 · · · 0 A1

0 C1 · · · 0 A2
...

...
. . .

...
...

0 0 · · · Cu Au

0 0 · · · 0 T

⎤

⎥⎥⎥⎥⎥
⎦

(5.61)

The eigenvalue λ = 1 corresponds to the eigenvectors s1, s2, . . ., su such that

P s1 = s1 (5.62)

P s2 = s2 (5.63)
...

P su = su (5.64)

The eigenvectors also satisfy the equations

C1 s1 = s1 (5.65)

C2 s2 = s2 (5.66)
...

Cu su = su (5.67)

We can in fact write each eigenvector si in block form as

s1 = [
a1 0 0 · · · 0 0

]t
(5.68)

s2 = [
0 a2 0 · · · 0 0

]t
(5.69)

...

su = [
0 0 0 · · · au 0

]t
(5.70)

where each ai is a nonzero vector whose dimension matches Ci such that

C1 a1 = a1 (5.71)

C2 a2 = a2 (5.72)
...

Cu au = au (5.73)

which means that ai is a distribution (sum of its components is unity).
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Vector si corresponds to the set of closed states Ci and the transient states of the
chain correspond to the zero elements common to all the vectors si .

Example 5.11 Assume a composite reducible transition matrix where the number
of closed states is u = 3 such that the partitioned matrices are

C1 =
[

0.3 0.6
0.7 0.4

]

C2 =
[

0.5 0.1
0.5 0.9

]

C3 =
[

0.2 0.3
0.8 0.7

]

A1 =
[

0.1 0
0.1 0.1

]

A2 =
[

0.3 0.1
0.2 0.1

]

A3 =
[

0 0.2
0.1 0

]

T =
[

0.1 0.2
0.1 0.3

]

Determine the eigenvectors corresponding to the eigenvalue λ = 1 and identify
the closed and transient states with the elements of those eigenvectors.

The composite transition matrix P is given by

P =

⎡

⎢⎢
⎣

C1 0 0 A1

0 C2 0 A2

0 0 C3 A3

0 0 0 T

⎤

⎥⎥
⎦

Let us find the eigenvalues and eigenvectors for P. The eigenvalues are

λ1 = −0.3

λ2 = 1

λ3 = 0.4

λ4 = 1

λ5 = −0.1

λ6 = 1

λ7 = 0.0268

λ8 = 0.3732
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The eigenvectors corresponding to unity eigenvalue (after normalization so their
sums is unity) are

s1 = [
0.4615 0.5385 0 0 0 0 0 0

]t

s2 = [
0 0 0.1667 0.8333 0 0 0 0

]t

s3 = [
0 0 0 0 0.2727 0.7273 0 0

]t

The sets of closed and transient states are as follows.

Set States

C1 1, 2
C2 3, 4
C3 5, 6
T 7, 8

Problems

Reducible Markov Chains

For Problems 5.1–5.8: (a) Determine whether the given Markov matrices have ab-
sorbing or closed states; (b) express such matrices in the form given in (5.2) or
(5.3); (c) identify the component matrices C, A, and T; and (d) identify the closed
and transient states.

5.1

P =
[

0.3 0
0.7 1

]

5.2

P =
⎡

⎣
0.5 0 0.2
0.3 1 0.3
0.2 0 0.5

⎤

⎦

5.3

P =
⎡

⎣
0.5 0.5 0
0.3 0.5 0
0.2 0 1

⎤

⎦
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5.4

P =
⎡

⎣
0.7 0.5 0.1
0.3 0.5 0
0 0 .9

⎤

⎦

5.5

P =
⎡

⎣
0.2 0 0
0.3 1 0
0.5 0 1

⎤

⎦

5.6

P =

⎡

⎢⎢
⎣

0.1 0 0.5 0
0.2 1 0 0
0.3 0 0.5 0
0.4 0 0 1

⎤

⎥⎥
⎦

5.7

P =

⎡

⎢⎢
⎣

1 0 0 0
0 0.5 0 0.2
0 0.2 1 0
0 0.3 0 0.8

⎤

⎥⎥
⎦

5.8

P =

⎡

⎢⎢
⎣

1 0 0 0
0 0.1 0 0.5
0 0.2 1 0
0 0.7 0 0.5

⎤

⎥⎥
⎦

Composite Reducible Markov Chains

The transition matrices in Problems 5.9–5.12 represent composite reducible Markov
chains. Identify the sets of closed and transient states, find the eigenvalues and
eigenvectors for the matrices, and find the value of each matrix for large values
of n, say when n = 50.
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5.9

P =

⎡

⎢⎢
⎣

1 0 0 0.3
0 0.5 0 0
0 0.5 1 0.6
0 0 0 0.1

⎤

⎥⎥
⎦

5.10

P =

⎡

⎢⎢
⎣

0.7 0 0 0
0.1 0.9 0.2 0
0.1 0.1 0.8 0
0.1 0 0 1

⎤

⎥⎥
⎦

5.11

P =

⎡

⎢⎢⎢⎢
⎣

0.4 0 0 0 0
0.2 0.5 0.8 0 0
0.1 0.5 0.2 0 0
0.1 0 0 0.7 0.9
0.2 0 0 0.3 0.1

⎤

⎥⎥⎥⎥
⎦

5.12

P =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0.2 0 0 0.2 0 0.6
0 0.3 0 0.3 0 0
0 0 0.2 0.2 0.3 0
0 0.3 0 0.3 0 0
0 0.2 0.8 0 0.7 0
0.8 0.2 0 0 0 0.4

⎤

⎥⎥⎥⎥⎥⎥
⎦

Transient Analysis

5.13 Check whether the given transitions matrix is reducible or irreducible. Identify
the closed and transient states and express the matrix in the form of (5.2) or
(5.3) and identify the component matrices C, A, and T.

P =

⎡

⎢⎢⎢⎢
⎣

0.5 0 0 0 0.5
0 0.5 0 0.25 0
0 0 1 0.25 0
0 0.5 0 0.25 0
0.5 0 0 0.25 0.5

⎤

⎥⎥⎥⎥
⎦
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Find the value of P10 using (5.8) and (5.9) on page 158 and verify your
results using repeated multiplications.

5.14 Assume the transition matrix P has the structure given in (5.1) or (5.2). Prove
that Pn also possesses the same structure as the original matrix and prove
also that the component matrices C, A, and T have the same properties as the
original component matrices.

5.15 Find an expression for the transition matrix using (5.13) at time n = 4
and n = 20 for the reducible Markov chain characterized by the transition
matrix

P =

⎡

⎢⎢⎢⎢
⎣

0.7 0.9 0.3 0.3 0.2
0.3 0.1 0.2 0.1 0.3
0 0 0.2 0.2 0
0 0 0.2 0.2 0.3
0 0 0.1 0.2 0.2

⎤

⎥⎥⎥⎥
⎦

Find the value of P10 using (5.8) and verify your results using repeated
multiplications.

Reducible Markov Chains at Steady-State

5.16 In Section 5.7, it was asserted that the transition matrix for a reducible Markov
chain will have the form of (5.22) where all the columns of the matrix are
identical. Prove that assertion knowing that

(a) all the columns of C1 are all identical
(b) matrix C1 is column stochastic
(c) matrix Y∞ is column stochastic
(d) the columns of Y∞ are identical to the columns of C1.

5.17 Find the steady-state transition matrix and distribution vector for the reducible
Markov chain characterized by the matrix

P =

⎡

⎢⎢⎢⎢
⎣

0.9 0.2 0.5 0.1 0.1
0.1 0.8 0.1 0.2 0.3
0 0 0.2 0.2 0.1
0 0 0.2 0.2 0.1
0 0 0 0.3 0.4

⎤

⎥⎥⎥⎥
⎦
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5.18 Find the steady-state transition matrix and distribution vector for the reducible
Markov chain characterized by the matrix

P =

⎡

⎢⎢
⎣

0.9 0.2 0.5 0.1
0.1 0.8 0.1 0.2
0 0 0.4 0.2
0 0 0 0.5

⎤

⎥⎥
⎦

5.19 Find the steady-state transition matrix and distribution vector for the reducible
Markov chain characterized by the matrix

P =

⎡

⎢⎢⎢⎢
⎣

0.1 0.2 0.5 0.1 0.1
0.5 0.7 0.1 0.2 0.3
0.4 0.1 0.4 0.2 0.1
0 0 0 0.2 0.1
0 0 0 0.3 0.4

⎤

⎥⎥⎥⎥
⎦

5.20 Find the steady-state transition matrix and distribution vector for the reducible
Markov chain characterized by the matrix

P =

⎡

⎢⎢⎢⎢
⎣

1 0.2 0.2 0.1 0.1
0 0.3 0.1 0.2 0.3
0 0.1 0.4 0.2 0.1
0 0.3 0.1 0.2 0.1
0 0.1 0.2 0.3 0.4

⎤

⎥⎥⎥⎥
⎦

5.21 Find the steady-state transition matrix and distribution vector for the reducible
Markov chain characterized by the matrix

P =

⎡

⎢⎢⎢⎢
⎣

1 0 0.2 0.1 0.1
0 1 0.1 0.2 0.3
0 0 0.4 0.2 0.1
0 0 0.1 0.2 0.1
0 0 0.2 0.3 0.4

⎤

⎥⎥⎥⎥
⎦

Note that this matrix has two absorbing states.
5.22 Consider the state transition matrix

P =
⎡

⎣
0 1 0

1 − p 0 q
p 0 1 − q

⎤

⎦
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(a) Can this matrix represent a reducible Markov chain?
(b) Find the distribution vector at equilibrium.
(c) What values of p and q give s0 = s1 = s2?

5.23 Consider a discrete-time Markov chain in which the transition probabilities
are given by

pi j = q |i− j | p

For a 3 × 3 case, what are the values of p and q to make this a reducible
Markov chain? What are the values of p and q to make this an irreducible
Markov chain and find the steady-state distribution vector.

5.24 Consider the coin-tossing Example 5.3 on page 156. Derive the equilibrium
distribution vector and comment on it for the cases p < q, p = q, and p > q.

5.25 Rewrite (5.10) on page 158 to take into account the fact that some of the eigen-
values of C might be repeated using the results of Section 3.14 on page 103.

Identification of Reducible Markov Chains

Use the results of Section 5.9 to verify that the transition matrices in the follow-
ing problems correspond to reducible Markov chains and identify the closed and
transient states. Rearrange each matrix to the standard form as in (5.2) or (5.3).

5.26

P =
⎡

⎣
0.3 0.1 0.4
0 0.1 0

0.7 0.8 0.6

⎤

⎦

5.27

P =
⎡

⎣
0.4 0.6 0
0.4 0.3 0
0.2 0.1 1

⎤

⎦

5.28

P =

⎡

⎢⎢
⎣

0.5 0.3 0 0
0.1 0.1 0 0
0.3 0.4 0.2 0.9
0.1 0.2 0.8 0.1

⎤

⎥⎥
⎦
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5.29

P =

⎡

⎢⎢
⎣

0.1 0 0 0
0.3 0.1 0.5 0.3
0.4 0.3 0.4 0.2
0.2 0.6 0.1 0.5

⎤

⎥⎥
⎦

5.30

P =

⎡

⎢⎢⎢⎢
⎣

0.2 0.3 0 0.3 0
0.2 0.4 0 0 0
0.3 0 0.5 0.1 0.2
0.2 0 0 0.4 0
0.1 0.3 0.5 0.2 0.8

⎤

⎥⎥⎥⎥
⎦

5.31

P =

⎡

⎢⎢⎢⎢
⎣

0.2 0.1 0.3 0.1 0.6
0 0.3 0 0.2 0
0.2 0.2 0.4 0.1 0.3
0 0.1 0 0.4 0
0.6 0.3 0.3 0.2 0.1

⎤

⎥⎥⎥⎥
⎦

5.32

P =

⎡

⎢⎢⎢⎢
⎣

0.8 0.4 0 0.5 0
0 0.1 0 0 0
0 0.1 0.8 0 0.3
0.2 0.2 0 0.5 0
0 0.2 0.2 0 0.7

⎤

⎥⎥⎥⎥
⎦

5.33

P =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0.1 0 0.2 0 0 0.3
0.2 0.5 0.1 0 0.4 0.1
0.1 0 0.3 0 0 0.3
0.2 0 0.1 1 0 0
0.3 0.5 0.2 0 0.6 0.1
0.1 0 0.1 0 0 0.2

⎤

⎥⎥⎥⎥⎥⎥
⎦

5.34

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0.1 0.5 0 0.1 0 0 0.6
0.7 0.3 0 0.2 0 0 0.3
0 0 0.5 0.3 0.1 0 0
0 0 0 0.2 0 0.3 0
0 0 0.5 0 0.9 0.2 0
0 0 0 0.2 0 0.4 0
0.2 0.2 0 0 0 0.1 0.1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦
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Chapter 6
Periodic Markov Chains

6.1 Introduction

From Chapter 4, we infer that a Markov chain settles down to a steady-state distri-
bution vector s when n → ∞. This is true for most transition matrices representing
most Markov chains we studied. However, there are other times when the Markov
chain never settles down to an equilibrium distribution vector, no matter how long
we iterate. So this chapter will illustrate periodic Markov chains whose distribution
vector s(n) repeats its values at regular intervals of time and never settles down to
an equilibrium value no matter how long we iterate.

Periodic Markov chains could be found in systems that show repetitive behavior
or task sequences. An intuitive example of a periodic Markov chain is the population
of wild salmon. In that fish species, we can divide the life cycle as eggs, hatchlings,
subadults, and adults. Once the adults reproduce, they die, and the resulting eggs
hatch and repeat the cycle as shown in Fig. 6.1. Fluctuations in the salmon pop-
ulation can thus be modeled as a periodic Markov chain. It is interesting to note
that other fishes that lay eggs without dying can be modeled as nonperiodic Markov
chains.

Another classic example from nature where periodic Markov chains apply is the
predator–prey relation—where the population of deer, say, is related to the pop-
ulation of wolves. When deer numbers are low, the wolf population is low. This
results in more infant deer survival rate, and the deer population grows during the
next year. When this occurs, the wolves start having more puppies and the wolf
population also increases. However, the large number of wolves results in more
deer kills, and the deer population diminishes. The reduced number of deer results
in wolf starvation, and the number of wolves also decreases. This cycle repeats as
discussed in Problem 6.14.

Another example for periodic Markov chains in communications is data trans-
mission. In such a system, first, data are packetized to be transmitted, and then
the packets are sent over a channel. The received packets are then analyzed for the
presence of errors. Based on the number of bits in error, the receiver is able to correct
for the errors or inform the transmitter to retransmit, perhaps even with a higher level
of data redundancy. Figure 6.2 shows these states which are modeled as a periodic

F. Gebali, Analysis of Computer and Communication Networks,
DOI: 10.1007/978-0-387-74437-7 6, C© Springer Science+Business Media, LLC 2008
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Fig. 6.1 Wild salmon can be
modeled as a periodic
Markov chain with the states
representing the number of
each phase of the fish life
cycle

Adults

Eggs

Hatchlings

Subadults

Fig. 6.2 Data communication
over a noisy channel can be
modeled as a periodic
Markov chain with the states
representing the state of each
phase

Transmit

Channel

Reception

Decision

Fig. 6.3 A periodic Markov
chain where states are divided
into groups and allowed
transitions occur only
between adjacent groups

S2

S1

S3

Markov chain. In each transmission phase, there could be several states indicating
the level of decoding required or the number of random errors introduced.

Consider the abstract transition diagram shown in Fig. 6.3, where the states of the
Markov chain are divided into groups and allowed transitions occur only between
adjacent groups. The sets of states S1, S2, · · · are called periodic classes of the
Markov chain. A state in set S1 is allowed to make a transition to any other state in
set S2 only. Thus, the states in the set S1 cannot make a transition to any state in S1

or S3. A similar argument applies to the states in sets S2 or S3.

6.2 Definition

A periodic Markov chain has the property that the number of single-step transitions
that must be made after leaving a state to return to that state is a multiple of some
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integer γ > 1 [1]. This definition implies that the distribution vector never settles
down to a fixed steady-state value no matter how long we iterate.

Having mentioned that Markov chains could be periodic, we naturally want to
know how to recognize that the transition matrix P represents a periodic Markov
chain. In addition, we will also want to know the period of such a system. The
theorems presented here will specify the properties of the transition matrix when
the Markov chain is periodic.

Of course, a Markov chain that is not periodic would be called nonperiodic. A
nonperiodic Markov chain does not show repetitive behavior as time progresses,
and its distribution vector settles down to a fixed steady-state value.

6.3 Types of Periodic Markov Chains

There are two types of periodic Markov chains

1. Strongly periodic Markov chains the distribution vector repeats its values with a
period γ > 1. In the next section, we will find out that the state transition matrix
satisfies the relation

Pγ = I. (6.1)

In other words, in a strongly periodic Markov chain, the probability of returning
to the starting state after γ time steps is unity for all states of the system.

2. Weakly periodic Markov chains the system shows periodic behavior only when
n → ∞. In other words, the distribution vector repeats its values with a period
γ > 1 only when n → ∞. We will find out in Section 6.12 that the state
transition matrix satisfies the relation

Pγ �= I (6.2)

In other words, in a weakly periodic Markov chain, the probability of returning
to the starting state after γ time steps is less than unity for some or all states of
the system.

In both cases, there is no equilibrium distribution vector. Strongly periodic
Markov chains are not encountered in practice since they are a special case of the
more widely encountered weakly periodic Markov chains. We start this chapter,
however, with the strongly periodic Markov chains since they are easier to study,
and they will pave the ground for studying the weakly periodic type.

6.4 The Transition Matrix

Let us start by making general observations on the transition matrix of a strongly
periodic Markov chain. Assume that somehow, we have a strongly periodic Markov
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chain with period γ . Then the probability of making a transition from state j to
state i at time instant n will repeat its value at instant n + γ . This is true for all valid
values of i and j :

pi j (n + γ ) = pi j (n) (6.3)

It is remarkable that this equation is valid for all valid values of n, i , and j . But
then again, this is what a strongly periodic Markov chain does.

We can apply the above equation to the components of the distribution vector and
write

s(n + γ ) = s(n) (6.4)

But the two distribution vectors are also related to each other through the transi-
tion matrix

s(n + γ ) = Pγ s(n) (6.5)

From the above two equations, we can write

Pγ s(n) = s(n) (6.6)

or

(Pγ − I) s(n) = 0 (6.7)

and this equation is valid for all values of n and s(n). The solution to the above
equations is

Pγ = I (6.8)

where I is the unit matrix and γ > 1. The case is trivial when γ = 1, which indicates
that P is the identity matrix.

Example 6.1 The following transition matrix corresponds to a strongly periodic
Markov chain. Estimate the period of the chain

P =
[

0 1
1 0

]
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We start by performing repeated multiplications to see when Pk = I for some value
of k. We are lucky since

P2 = I

The period of this Markov chain is γ = 2. The given transition matrix is also known
as a circulant matrix where the adjacent rows or columns advance by one position.
The matrix P could also be considered a permutation matrix or exchange matrix
where rows 1 and 2 are exchanged after premultiplying any 2 × m matrix [2].

6.5 The Transition Matrix Determinant

This section provides one specification on the transition matrix of a strongly peri-
odic Markov chain. Theorem 6.1 indicates the allowed values of the determinant of
the transition matrix.

Theorem 6.1 Let P be the transition matrix of a strongly periodic Markov chain.
The determinant of P will be given by [3]

� = ±1

Proof We start by assuming that the Markov chain is strongly periodic. We have
from the assumptions

Pγ = I (6.9)

Equate the determinants of both sides

�γ = 1 (6.10)

where � is the determinant of P and �γ is the determinant of Pγ .
Taking the γ -root of the above equation, we find that � is the γ -root of unity:

� = exp

(
j2π × k

γ

)
k = 1, 2, · · · , γ (6.11)

But � must be real since the components of P are all real. Thus, the only possible
values for � are ±1. This proves the theorem.

From the properties of the determinant of the transition matrix of a strongly
periodic Markov chain, we conclude that P must have the following equivalent
properties:
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1. The m × m transition matrix P of a strongly periodic Markov chain is full rank,
i.e., rank(P) = m.

2. The rows and columns of the transition matrix P of a strongly periodic Markov
chain are linearly independent.

3. λ < 1 can never be an eigenvalue for the transition matrix P of a strongly periodic
Markov chain. Any value of λ < 1 would produce a determinant that is not equal
to ±1.

4. All eigenvalues must obey the relation |λ| = 1. This will be proved in the next
section.

6.6 Transition Matrix Diagonalization

The following theorem indicates that the transition matrix of a strongly periodic
Markov chain can be diagonalized. This fact naturally leads to a great simplification
in the study of strongly periodic Markov chains.

Theorem 6.2 Let P be the transition matrix of a strongly periodic Markov chain
with period γ > 1. Then P is diagonalizable.

Proof If P is diagonalizable, then its Jordan canonic form will turn into a diagonal
matrix. Let us assume that P is not diagonalizable. In that case, P is similar to its
Jordan canonic form

P = UJU−1 (6.12)

Since P is periodic, we must have

Pγ = UJγ U−1 = I (6.13)

Multiplying both sides of the equation from the right by U, we get

UJγ = IU = UI (6.14)

This implies that we must have

Jγ = I (6.15)

The above equation states that the matrix Jγ is equal to the diagonal matrix I.
However, J can never be diagonal if it is not already so. Thus the above equation is
only possible when the Jordan canonic form J is diagonal, which happens when P
is diagonalizable, and the theorem is proved.
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Example 6.2 Verify that the following transition matrix is diagonalizable.

P =

⎡

⎢⎢
⎣

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎤

⎥⎥
⎦

We start by finding the Jordan canonic form for the matrix P.

[V,J] = jordan(P)

V =
0.3333 0.3333 0.3333 0
0.3333 -0.1667 - 0.2887j -0.1667 + 0.2887j 0
0.3333 -0.1667 + 0.2887j -0.1667 - 0.2887j 0
1.0000 0 0 1.0000

J =

1.0000 0 0 0
0 -0.5000 + 0.8660j 0 0
0 0 -0.5000 - 0.8660j 0
0 0 0 1.0000

Thus we see that P is diagonalizable. We also see that all the eigenvalues lie on
the unit circle.

λ1 = exp

(
j2π × 1

3

)

λ2 = exp

(
j2π × 2

3

)

λ3 = exp

(
j2π × 3

3

)

λ4 = exp

(
j2π × 3

3

)

where j = √−1.

The following theorem will add one more specification on the transition matrix
of a strongly periodic Markov chain.

Theorem 6.3 Let P be the transition matrix of a strongly periodic Markov chain.
Then P is unitary (orthogonal)

Proof Assume x is an eigenvector of the transition matrix P, then we can write

P x = λ x (6.16)
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Transposing and taking the complex conjugate of both sides of the above equa-
tion, we get

xH PH = λ∗ xH (6.17)

where the symbol H indicates complex conjugate of the transposed matrix or vector,
and λ∗ is the complex conjugate of λ.

Now multiply the corresponding sides of Equations (6.16) and (6.17) to get

xH PH P x = λ∗ λ xH x (6.18)

or

xH PH P x = |λ|2 |x|2 (6.19)

where

|x|2 = x∗
1 x1 + x∗

2 x2 + · · · + x∗
m xm (6.20)

We know from Theorem 6.5 that the eigenvalues of P lie on the unit circle, and
(6.19) can be written as

xH Y x = |x|2 (6.21)

where Y = PH P. The above equation can be written as

m∑

i=1

m∑

j=1

x∗
i yi j x j =

m∑

i=1

x∗
i xi (6.22)

This equation can only be satisfied for arbitrary values of the eigenvectors when

m∑

j=1

x∗
i yi j x j = x∗

i xi (6.23)

Similarly, this equation can only be satisfied for arbitrary values of the eigenvec-
tors when

yi j = δi j (6.24)

where δi j is the Kronecker delta which satisfies the equation

δi j =
{

1 when i = j
0 when i �= j

(6.25)
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We conclude therefore that

PH P = I (6.26)

Thus P is a unitary matrix whose inverse equals the complex conjugate of its
transpose. Since P is real, the unitary matrix is usually called orthogonal matrix.
This proves the theorem.

6.7 Transition Matrix Eigenvalues

So far, we have discovered several restrictions on the transition matrix of a strongly
periodic Markov chain. The following theorem specifies the allowed magnitudes of
the eigenvalues for strongly periodic Markov chains.

Theorem 6.4 Let P be the transition matrix of a Markov chain. The Markov chain
will be strongly periodic if and only if all the eigenvalues of P lie on the unit circle.

Proof Let us start by assuming that the Markov chain is strongly periodic. Accord-
ing to Theorem 6.1, the determinant of the transition matrix is

� = ±1

The determinant can be written as the product of all the eigenvalues of the tran-
sition matrix

� =
∏

i

λi (6.27)

but we know that � = ±1 and we can write

∏

i

λi = ±1 (6.28)

Since P is column stochastic, all its eigenvalues must satisfy the inequality

|λi | ≤ 1 (6.29)

The above inequality together with (6.28) imply that

|λi | = 1 (6.30)

This proves one side of the theorem.
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Let us now assume that all the eigenvalues of P lie on the unit circle. In that case,
we can write the eigenvalues as

λi = exp

(
j2π

γi

)
(6.31)

Therefore, we can write the transition matrix determinant as

� =
∏

i

λi (6.32)

Raising the above equation to some power γ , we get

�γ =
∏

i

λ
γ

i (6.33)

Thus we have

�γ = exp

[
j2π

(
γ

γ1
+ γ

γ2
+ · · · + γ

γm

)]
(6.34)

If γ is chosen to satisfy the equation

γ = lcm(γi ) (6.35)

where lcm is the least common multiple, then we can write

�γ = 1 (6.36)

According to Theorem 6.1, this proves that the Markov chain is strongly periodic.
This proves the other part of the theorem.

Figure 6.4 shows the locations of the eigenvalues of P in the complex plane. We
see that all the eigenvalues of a strongly periodic Markov chain lie on the unit circle
as indicated by the ×s. Since P is column stochastic, the eigenvalue λ = 1 must
be present as is also indicated. The figure also indicates that complex eigenvalues
appear in complex conjugate pairs.

Example 6.3 Consider the following transition matrix

P =

⎡

⎢⎢
⎣

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎤

⎥⎥
⎦

Verify that this matrix is strongly periodic and find its period.
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Fig. 6.4 All the eigenvalues
of a strongly periodic Markov
chain lie on the unit circle in
the complex plane

Complex plane

Unit circle

Re

Im

The determinant is det(P) = 1, and the rank of the transition matrix is rank
(P) = 4.

Performing repeated multiplications, we find that

P3 = I

The period of the given transition matrix is γ = 3.
The eigenvalues of the transition matrix are

λ1 = exp

(
j2π × 1

3

)

λ2 = exp

(
j2π × 2

3

)

λ3 = exp

(
j2π × 3

3

)

λ4 = exp

(
j2π × 3

3

)

Thus all the eigenvalues lie on the unit circle.

The following theorem defines the allowed eigenvalues for the transition matrix
of a strongly periodic Markov chain.

Theorem 6.5 Let P be the transition matrix of an irreducible strongly periodic
Markov chain with period γ > 1. Then the eigenvalues of P are the γ -roots of
unity, i.e.,

λi = exp

(
j2π × i

γ

)
i = 1, 2, · · · , γ (6.37)

where j = √−1.
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Proof Since we proved in Theorem 6.2 that P is diagonalizable, it is similar to a
diagonal matrix D such that

P = XDX−1 (6.38)

where X is the matrix whose columns are the eigenvectors of P, and D is the diagonal
matrix whose diagonal elements are the eigenvalues of P.

Since P is periodic, we must have

Pγ = XDγ X−1 = I (6.39)

Multiplying both sides from the right by X, we get

XDγ = IX = XI (6.40)

Therefore, we must have

Dγ = I (6.41)

This implies that any diagonal element dγ

i of Dγ must obey the relation

dγ

i = 1 (6.42)

Therefore, the eigenvalues of P are the γ -root of unity and are given by the
equation

di = exp

(
j2π × i

γ

)
i = 1, 2, · · · , m (6.43)

This proves the theorem. Note that the theorem does not preclude repeated eigen-
values having the same value as long as P can be diagonalized.

Example 6.4 The given transition matrix corresponds to a strongly periodic Markov
chain. Confirm the conclusions of Theorems 6.1, 6.2, and 6.5

P =

⎡

⎢⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤

⎥⎥
⎦
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The period of the given matrix is 4 since P4 = I. Using MATLAB, we find that
the determinant of P is � = −1. The eigenvalues of P are

λ1 = 1 = exp

(
j2π × 4

4

)

λ2 = j = exp

(
j2π × 1

4

)

λ3 = − j = exp

(
j2π × 3

4

)

λ4 = −1 = exp

(
j2π × 2

4

)

The matrix can be diagonalized as

P = XDX−1

where

X =

⎡

⎢⎢
⎣

0.5 −0.49 − 0.11 j −0.49 + 0.11 j −0.5
−0.5 0.11 − 0.40 j 0.11 + 0.49 j −0.5

0.5 0.40 + 0.11 j 0.49 − 0.11 j −0.5
−0.5 −0.11 + 0.40 j −0.11 − 0.49 j −0.5

⎤

⎥⎥
⎦

and

D =

⎡

⎢⎢
⎣

−1 0 0 0
0 j 0 0
0 0 − j 0
0 0 0 1

⎤

⎥⎥
⎦

We see that Theorems 6.1, 6.2, and 6.5 are verified.

6.8 Transition Matrix Elements

The following theorem imposes surprising restrictions on the values of the elements
of the transition matrix for a strongly periodic Markov chain.

Theorem 6.6 Let P be the m × m transition matrix of a Markov chain. The Markov
chain is strongly periodic if and only if the elements of P are all zeros except for m
elements that have 1s arranged such that each column and each row contains only
a single 1 entry in a unique location.

Proof We begin by assuming that the transition matrix P corresponds to a strongly
periodic Markov chain. We proved that P must be unitary which implies that the
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rows and columns are orthonormal. This implies that no two rows shall have nonzero
elements at the same location since all elements are nonnegative. Similarly, no two
columns shall have nonzero elements at the same location. This is only possible if
all rows and columns are zero except for a single element at a unique location in
each row or column.

Further, since we are dealing with a Markov matrix, these nonzero elements
should be equal to 1. This completes the first part of the proof.

Now let us assume that the transition matrix P is all zeros except for m elements
that have 1s arranged such that each column and each row of P contains only a
single 1 entry in a unique location.

The unique arrangement of 1s implies that P is column stochastic. The unique
arrangement of 1s also implies that the determinant of P must be ±1. Thus the
product of the eigenvalues of P is given by

∏

i

λi = ±1 (6.44)

Since P was proved to be the column stochastic, we have

|λi | ≤ 1 (6.45)

The above equation together with (6.44) imply that

|λi | = 1 (6.46)

Thus we proved that all the eigenvalues of P lie on the unit circle of the complex
plane when P has a unique distribution of 1s among its rows and columns. Accord-
ing to Theorem 6.4, this implies that the Markov chain is strongly periodic. This
proves the theorem.

6.9 Canonic Form for P

A strongly periodic Markov chain will have its m × m transition matrix expressed
in the canonic form

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 0 0 · · · 0 0 1
1 0 0 · · · 0 0 0
0 1 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 0 0
0 0 0 · · · 1 0 0
0 0 0 · · · 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(6.47)
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This matrix can be obtained by proper ordering of the states and will have a period
γ = m, which can be easily proved (see Problem 5).This matrix is also known as
a circulant matrix since multiplying any matrix by this matrix will shift the rows or
columns by one location.

6.10 Transition Diagram

Based on the above theorems, specifying the structure of a strongly periodic Markov
chain, we find that the transition diagram for a strongly periodic Markov chain of
period γ = 3 is as shown in Fig. 6.5. We see that each set of periodic classes
consists of one state only, and the number of states equals the period of the Markov
chain.

Example 6.5 Prove that the given transition matrix is periodic and determine the
period.

P =

⎡

⎢⎢⎢⎢
⎣

0 1 0 0 0
0 0 0 0 1
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0

⎤

⎥⎥⎥⎥
⎦

The given matrix is column stochastic, full rank, and all its rows and columns
are zeros except for five elements that contain 1 at unique locations in each row
and column. Thus P is periodic according to Theorem 6.6. From MATLAB, the
eigenvalues of P are given by

λ1 = 1∠144◦ = exp
(

j2π × 2
5

)

λ2 = 1∠ − 144◦ = exp
(

j2π × 3
5

)

λ3 = 1∠72◦ = exp
(

j2π × 1
5

)

Fig. 6.5 Transition diagram
for a strongly periodic
Markov chain with period
γ = 3

S2

S1

S3
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λ4 = 1∠ − 72◦ = exp
(

j2π × 4
5

)

λ5 = 1∠0◦ = exp
(

j2π × 5
5

)

Thus the period is γ = 5. As a verification, MATLAB assures us that P5 = I.

6.11 Composite Strongly Periodic Markov Chains

In general, a composite strongly periodic Markov chain can be expressed, through
proper ordering of states, in the canonic form

P =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

C1 0 0 · · · 0 0
0 C2 0 · · · 0 0
0 0 C3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · Ch−1 0
0 0 0 · · · 0 Ch

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

(6.48)

where Ci is an mi × mi circulant matrix whose period is γi = mi . The period of
the composite Markov chain is given by the equation

γ = lcm (γ1, γ2, · · · , γh) (6.49)

Figure 6.6 shows the periodic classes of a composite strongly periodic Markov
chain. The states are divided into noncommunicating sets of periodic
classes.

Fig. 6.6 Transition diagram
for a composite strongly
periodic Markov chain. The
states are divided into
noncommunicating sets of
periodic classes

S2

S4

S5

S1

S3

S7

S8

S9

S6
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Example 6.6 Find the period of the following periodic transition matrix

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0
0 0 0 0 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

We identify C1 as a circulant 4 × 4 matrix with period γ1 = 4, and we identify
C2 as a circulant 3 × 3 matrix with period γ2 = 3. Indeed, the eigenvalues of
P are

λ1 = 1∠180◦ = exp

(
j2π × 2

4

)

λ2 = 1∠90◦ = exp

(
j2π × 1

4

)

λ3 = 1∠ − 90◦ = exp

(
j2π × 3

4

)

λ4 = 1∠0◦ = exp

(
j2π × 4

4

)

λ5 = 1∠120◦ = exp

(
j2π × 1

3

)

λ6 = 1∠ − 120◦ = exp

(
j2π × 2

3

)

λ7 = 1∠0◦ = exp

(
j2π × 3

3

)

We expect P to have a period equal to the least common multiple of 3 and 4,
which is 12. Indeed, this is verified by MATLAB where the smallest power k for
which Pk = I is when k = 12.

Example 6.7 Find the period of the following transition matrix for a strongly peri-
odic Markov chain and express P in the form given by (6.48).
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P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

By inspection, we know that the given matrix is periodic since the elements are
either 1 or 0 and each row or column has a single 1 at a unique location.

Indeed, all the eigenvalues of P lie on the unit circle

λ1 = 1∠120◦ = exp

(
j2π × 1

3

)

λ2 = 1∠ − 120◦ = exp

(
j2π × 2

3

)

λ3 = 1∠0◦ = exp

(
j2π × 3

3

)

λ4 = 1∠0◦ = exp

(
j2π × 2

2

)

λ5 = 1∠180◦ = exp

(
j2π × 1

2

)

λ6 = 1∠180◦ = exp

(
j2π × 2

4

)

λ7 = 1∠90◦ = exp

(
j2π × 1

4

)

λ8 = 1∠ − 90◦ = exp

(
j2π × 3

4

)

λ9 = 1∠0◦ = exp

(
j2π × 4

4

)

Using MATLAB, we find that P3 �= I, P2 �= I, and P4 �= I. However, the LCM
of 2, 3, and 4 is 12 and P12 = I.

We notice that there are three eigenvalues equal to 1; mainly

λ3 = λ4 = λ9 = 1
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The eigenvectors corresponding to these eigenvalues give three sets of periodic
classes:

C1 = {1, 3, 4}
C2 = {2, 8}
C3 = {5, 6, 7, 9}

Each set is identified by the nonzero components of the corresponding eigen-
vector.

To group each set of periodic states together, we exchange states 2 and 4 so
that C1 will contain the new states 1, 3, and 4. This is done using the elementary
exchange matrix

E(2, 4) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

The new matrix will be obtained with the operations

P′ = E(2, 4) × P × E(2, 4)

Next, we group the states of C2 together by exchanging states 5 and 8 so that C2

will contain the new states 2 and 8, and C3 will contain the states 5, 6, 7, and 9. The
rearranged matrix will be

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦
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From the structure of the matrix, we see that the periods of the three diagonal
circulant matrices is γ1 = 4, γ2 = 2, and γ3 = 3. The period of the matrix is
γ = lcm(4, 2, 3) = 12. As a verification, we find that the first time Pn becomes the
identity matrix when n = 12.

6.12 Weakly Periodic Markov Chains

Periodic behavior can sometimes be observed in Markov chains even when some
of the eigenvalues of P lie on the unit circle while other eigenvalues lie inside the
unit circle. In spite of that, periodic behavior is observed because the structure of the
matrix is closely related to the canonic form for a periodic Markov chain in (6.47) on
page 196. To generalize the structure of a circulant matrix, we replace each “1” with
a block matrix and obtain the canonic form for a weakly periodic Markov chain:

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 0 0 · · · 0 0 Wh

W1 0 0 · · · 0 0 0
0 W2 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 0 0
0 0 0 · · · Wh−2 0 0
0 0 0 · · · 0 Wh−1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(6.50)

where the block-diagonal matrices are square zero matrices and the nonzero matri-
ces Wi could be rectangular but the sum of each of their columns is unity since P is
column stochastic. Such a matrix will exhibit periodic behavior with a period γ = h
where h is the number of W blocks.

As an example, consider the following transition matrix

P =

⎡

⎢⎢⎢⎢
⎣

0 0 0.1 0.6 0.5
0 0 0.9 0.4 0.5
0.5 0.2 0 0 0
0.1 0.4 0 0 0
0.4 0.4 0 0 0

⎤

⎥⎥⎥⎥
⎦

≡
[

0 W2

W1 0

]
(6.51)

We know this matrix does not correspond to a strongly periodic Markov chain
because it is not a 0–1 matrix whose elements are 0 or 1. However, let us look at the
eigenvalues of this matrix:

λ1 = −1

λ2 = 1
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λ3 = 0.3873 j

λ4 = −0.3873 j

λ5 = 0

Some of the eigenvalues are inside the unit circle and represent decaying modes,
but two eigenvalues lie on the unit circle. It is this extra eigenvalue on the unit circle
that is responsible for the periodic behavior.

Let us now see the long-term behavior of the matrix. When n > 25, the contri-
bution of the decaying modes will be < 10−10. So let us see how Pn behaves when
n > 25.

P25 =

⎡

⎢⎢⎢⎢
⎣

0 0 0.4 0.4 0.4
0 0 0.6 0.6 0.6
0.32 0.32 0 0 0
0.28 0.28 0 0 0
0.40 0.40 0 0 0

⎤

⎥⎥⎥⎥
⎦

(6.52)

P26 =

⎡

⎢⎢⎢⎢
⎣

0.28 0.28 0 0 0
0.40 0.40 0 0 0
0 0 0.4 0.4 0.4
0 0 0.6 0.6 0.6
0.32 0.32 0 0 0

⎤

⎥⎥⎥⎥
⎦

(6.53)

P27 =

⎡

⎢⎢⎢⎢
⎣

0 0 0.4 0.4 0.4
0 0 0.6 0.6 0.6
0.32 0.32 0 0 0
0.28 0.28 0 0 0
0.40 0.40 0 0 0

⎤

⎥⎥⎥⎥
⎦

(6.54)

We see that Pn repeats its structure every two iterations.
We can make several observations about this transition matrix:

1. The transition matrix displays periodic behavior for large value of n.
2. Pn has a block structure that does not disappear. The blocks just move vertically

at different places after each iteration.
3. The columns of each block in Pn are identical and the distribution vector will be

independent of its initial value.
4. The period of Pn is 2.

Let us see now the distribution vector values for n = 25, 26, and 27. The initial
value of the distribution vector is not important, and we arbitrarily pick

s(0) = [
0.2 0.2 0.2 0.2 0.2

]t
(6.55)
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We get

s(25) = P25s(0) = [
0.240 0.360 0.128 0.112 0.160

]t
(6.56)

s(26) = [
0.160 0.240 0.192 0.168 0.240

]t
(6.57)

s(27) = [
0.240 0.360 0.128 0.112 0.160

]t
(6.58)

We notice that the distribution vector repeats its value for every two iterations.
Specifically, we see that s(25) = s(27), and so on.

Example 6.8 The following transition matrix can be expressed in the form of (6.50).
Find this form and estimate the period of the Markov chain.

P =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0 0.5 0.1 0 0 0
0 0.3 0.5 0 0 0
0 0.2 0.4 0 0 0

0.9 0 0 0 0 0
0.1 0 0 0 0 0
0 0 0 1 1 1

⎤

⎥⎥⎥⎥⎥⎥
⎦

Our strategy for rearranging the states is to make the diagonal zero matrices
appear in ascending order. The following ordering of states gives the desired result:

1 ↔ 6 2 ↔ 5 3 ↔ 4

The rearranged matrix will be

P =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0 0 0 1 1 1
0.1 0 0 0 0 0
0.9 0 0 0 0 0
0 0.2 0.4 0 0 0
0 0.3 0.5 0 0 0
0 0.5 0.1 0 0 0

⎤

⎥⎥⎥⎥⎥⎥
⎦

The structure of the matrix is now seen to be in the form

P =
⎡

⎣
0 0 W3

W1 0 0
0 W2 0

⎤

⎦
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where

W1 =
[

0.1
0.9

]

W2 =
⎡

⎣
0.2 0.4
0.3 0.5
0.5 0.1

⎤

⎦

W3 = [
1 1 1

]

The eigenvalues for P are

λ1 = exp

(
j2π × 1

3

)

λ2 = exp

(
j2π × 2

3

)

λ3 = 1 = exp

(
j2π × 3

3

)

λ4 = 0

λ5 = 0

λ6 = 0

The period of P is 3. As a verification, we chose

s(0) = [
0.2 0.2 0.2 0.2 0.2 0

]t

and found the following distribution vectors

s(3) = [
0.2000 0.0400 0.3600 0.1520 0.1920 0.0560

]t

s(4) = [
0.4000 0.0200 0.1800 0.1520 0.1920 0.0560

]t

s(5) = [
0.4000 0.0400 0.3600 0.0760 0.0960 0.0280

]t

s(6) = [
0.2000 0.0400 0.3600 0.1520 0.1920 0.0560

]t

s(7) = [
0.4000 0.0200 0.1800 0.1520 0.1920 0.0560

]t

We see that the distribution vector repeats itself over a period of three iterations.
Specifically, we see that s(3) = s(6), s(4) = s(7), and so on.
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Example 6.9 The following transition matrix has the form of (6.50). Estimate the
period of the Markov chain and study the distribution vector after the transients have
decayed.

P =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0 0 0 0 0.3 1
0 0 0 0 0.7 0

0.9 0.6 0 0 0 0
0.1 0.4 0 0 0 0
0 0 0.5 0.9 0 0
0 0 0.5 0.1 0 0

⎤

⎥⎥⎥⎥⎥⎥
⎦

The eigenvalues for this matrix are

λ1 = exp

(
j2π × 1

3

)

λ2 = exp

(
j2π × 2

3

)

λ3 = 1 = exp

(
j2π × 3

3

)

λ4 = 0.438 exp

(
j2π × 1

3

)

λ5 = 0.438 exp

(
j2π × 2

3

)

λ6 = 0.438 exp

(
j2π × 3

3

)

The period of this matrix is γ = 3.
The transients would die away after about 30 iterations since the value of the

eigenvalues within the unit circle would be

λ30 = 0.43830 = 1.879 × 10−11

The value of Pn at high values for n would start to approach an equilibrium
pattern

Pn =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0.5873 0.5873 0 0 0 1
0.4127 0.4127 0 0 0 0

0 0 0.7762 0.7762 0 0
0 0 0.2238 0.2238 0 0
0 0 0 0 0.5895 0.5895
0 0 0 0 0.4105 0.4105

⎤

⎥⎥⎥⎥⎥⎥
⎦
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where n > 30. As a verification, we chose

s(0) = [
0.2 0.2 0.2 0.2 0.2 0

]t

and found the following distribution vectors

s(30) = [
0.2349 0.1651 0.3105 0.0895 0.1179 0.0821

]t

s(31) = [
0.1175 0.0825 0.3105 0.0895 0.2358 0.1642

]t

s(32) = [
0.2349 0.1651 0.1552 0.0448 0.2358 0.1642

]t

s(33) = [
0.2349 0.1651 0.3105 0.0895 0.1179 0.0821

]t

s(34) = [
0.1175 0.0825 0.3105 0.0895 0.2358 0.1642

]t

We see that the distribution vector repeats itself with a period of three iterations.
Specifically, we see that s(30) = s(33), s(31) = s(34), and so on.

Example 6.10 Assume a wireless packet transmission system that employs an adap-
tive forward error correction scheme. There are two levels of data forward error
correction that could be employed depending on the number of errors detected
in the received packet as shown in Fig. 6.7. The upper row of states corresponds
to lower error levels and the lower row of states corresponds to higher error
levels.

Transmission
in channel

Reception/
adaptation

AFEC
coding

to s1s1

s4

s3 s7

s8

s9

s2 s5

s6

s12

s11

s10

to s1

to s2

to s1

to s2

to s2

Fig. 6.7 An adaptive forward error correction scheme that uses two levels of encoding depending
on the number of errors introduced in the channel
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For example, if the coder is in state s1 and errors occur during transmission, we
move to state s4. If the receiver is able to correct the errors, we move to state s8.
We then conclude that the error correction coding is adequate, and we move to state
s1 for the next transmission. If the errors cannot be corrected, we conclude that the
error coding is not adequate and we move from state s9 to s2 at the next transmission.

Write down the transition matrix and show that it corresponds to a weakly peri-
odic Markov chain.

The sets of periodic states are identified at the bottom of the figure. We can see
that we have three sets of states such that the states in each set make transitions
only to the next set. This seems to imply a weakly periodic Markov chain. As a
verification, we construct the transition matrix and see its structure.

P =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0 0 0 0 p15 p16

0 0 0 0 p25 p26

p31 p32 0 0 0 0
p41 p42 0 0 0 0
0 0 p53 p54 0 0
0 0 p63 p64 0 0

⎤

⎥⎥⎥⎥⎥⎥
⎦

We see that the transition matrix has the same structure as a weakly periodic
Markov chain with period γ = 3. The exact values of the transition probabilities
will depend on the details of the system being investigated.

6.13 Reducible Periodic Markov Chains

A reducible periodic Markov chain is one in which the transition matrix can be
partitioned into the canonic form

P =
⎡

⎣
C A

0 T

⎤

⎦ (6.59)

where

C = square column stochastic periodic matrix
A = rectangular nonnegative matrix
T = square column substochastic matrix

Some of the eigenvalues of the transition matrix will lie on the unit circle. The
other eigenvalues will be inside the unit circle as shown in Fig. 6.8. Note that the
periodic matrix C could be strongly periodic or could be weakly periodic.
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Fig. 6.8 The eigenvalues of a
reducible periodic Markov
chain. Some of the
eigenvalues lie on the unit
circle in the complex plane
and some lie inside the unit
circle

Complex plane

Unit circle

Re

Im

Example 6.11 Check to see if the given matrix below corresponds to a reducible
periodic Markov chain.

P =
1
2
3
4
5

1 2 3 4 5
⎡

⎢⎢⎢⎢
⎣

0 0.1 0 0.1 1
0 0.3 0 0.2 0
1 0.2 0 0.2 0
0 0.3 0 0.4 0
0 0.1 1 0.1 0

⎤

⎥⎥⎥⎥
⎦

where the state indices are indicated around P for illustration. Rearrange the rows
and columns to express the matrix in the form of (6.59) and identify the matrices C,
A, and T. Verify the assertions that C is column stochastic, A is nonnegative, and T
is column substochastic.

The best way to study a Markov chain is to explore its eigenvalues.

λ1 = exp

(
j2π × 1

3

)

λ2 = exp

(
j2π × 2

3

)

λ3 = exp

(
j2π × 3

3

)

λ4 = 0.6 exp ( j2π )

λ5 = 0.1 exp ( j2π )

Thus we see that we have two decaying modes, but three other eigenvalues lie on
the unit circle. We classify this system as a weakly periodic Markov chain.

The vector corresponding to the unity eigenvalue is given by

x = [
0.5774 0 0.5774 0 0.5774

]t
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The zero components of the eigenvector indicate that we have transient states,
namely s2 and s4. The fact that we have only one eigenvalue, that is unity, indicates
that we have one set only of closed states: C = 1, 3, and 5. Based on that, we
further classify this system as reducible weakly periodic Markov chain.

We cluster states 1, 3, and 5 together since they correspond to the closed states,
and cluster states 2 and 4 together since they correspond to the transient states.
We perform this rearranging through the elementary exchange matrix E(2, 5) which
exchanges states 2 and 5:

E(2, 5) =

⎡

⎢⎢⎢⎢
⎣

1 0 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0

⎤

⎥⎥⎥⎥
⎦

The exchange of states is achieved by pre- and post-multiplying the transition
matrix:

P′ = E(2, 5) P E(2, 5)

This results in

P′ =
1
5
3
4
2

1 5 3 4 2
⎡

⎢⎢⎢⎢
⎣

0 1 0 0.1 0.1
0 0 1 0.1 0.1
1 0 0 0.2 0.2
0 0 0 0.4 0.1
0 0 0 0.2 0.3

⎤

⎥⎥⎥⎥
⎦

We see that the transition matrix represents a reducible periodic Markov chain,
and matrices C, A, and T are

C =
⎡

⎣
0 1 0
0 0 1
1 0 0

⎤

⎦

A =
⎡

⎣
0.1 0.1
0.1 0.1
0.2 0.2

⎤

⎦

T =
[

0.5 0.1
0.2 0.3

]

The sum of each column of C is exactly 1, which indicates that it is column
stochastic and strongly periodic. The sum of columns of T is less than 1, which
indicates that it is column substochastic.
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The set of closed periodic states is C = { 1, 3, 5 }, and the set of transient states
is T = { 2, 4 }

Starting in state 2 or 4, we will ultimately go to states 1, 3, or 5. Once we are
there, we cannot ever go back to state 2 or 4 because we entered the closed periodic
states.

6.14 Transient Analysis

After n time steps, the transition matrix of a reducible Markov chain will still be
reducible and will have the form

Pn =
[

Cn Yn

0 Tn

]
(6.60)

where matrix Yn is given by

Yn =
n−1∑

i=0

Cn−i−1 A Ti (6.61)

We can always find Cn and Tn using the techniques discussed in Chapter 3 such
as diagonalization, finding the Jordan canonic form, or even repeated multiplica-
tions.

The stochastic matrix Cn can be expressed in terms of its eigenvalues using (3.80)
on page 94.

Cn = C1 + λn
2C2 + λn

3C3 + · · · (6.62)

where it was assumed that C1 is the expansion matrix corresponding to the eigen-
value λ1 = 1.

Similarly, the substochastic matrix Tn can be expressed in terms of its eigenval-
ues using (3.80) on page 94.

Tn = λn
1T1 + λn

2T2 + λn
3T3 + · · · (6.63)

Equation (6.61) can then be expressed in the form

Yn =
m∑

j=1

C j A
n−1∑

i=0

λn−i−1
j Ti (6.64)

After some algebraic manipulations, we arrive at the form

Yn =
m∑

j=1

λn−1
j C j A

[
I −

(
T
λ j

)n](
I − T

λ j

)−1

(6.65)
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This can be written in the form

Yn = C1A (I − T)−1
[
I − Tn

]+

λn−1
2 C2A

(
I − 1

λ2
T
)−1 [

I − 1

λn
2

Tn

]
+

λn−1
3 C3A

(
I − 1

λ3
T
)−1 [

I − 1

λn
3

Tn

]
+ · · · (6.66)

If some of the eigenvalues of C are repeated, then the above formula has to be
modified as explained in Section 3.14 on page 103.

Example 6.12 Consider the reducible weakly periodic Markov chain of the pre-
vious example. Assume that the system was initially in state 4. Explore how the
distribution vector changes as time progresses.

We do not have to rearrange the transition matrix to do this example. We have

P =

⎡

⎢⎢⎢⎢
⎣

0 0.1 0 0.1 1
0 0.3 0 0.2 0
1 0.2 0 0.2 0
0 0.3 0 0.4 0
0 0.1 1 0.1 0

⎤

⎥⎥⎥⎥
⎦

The eigenvalues for this matrix are

λ1 = exp

(
j2π × 1

3

)

λ2 = exp

(
j2π × 2

3

)

λ3 = exp

(
j2π × 3

3

)

λ4 = 0.1 exp

(
j2π × 3

3

)

We see that the period of this system is γ = 3. The initial distribution vector is

s = [
0 0 1 0

]t

The distribution vector at the start is given by

s(0) = [
0 0 0 1 0

]t

s(1) = [
0.1000 0.2000 0.2000 0.4000 0.1000

]t

s(2) = [
0.1600 0.1400 0.2200 0.2200 0.2600

]t



6.15 Asymptotic Behavior 213

s(3) = [
0.2960 0.0860 0.2320 0.1300 0.2560

]t

s(4) = [
0.2776 0.0518 0.3392 0.0778 0.2536

]t

s(5) = [
0.2666 0.0311 0.3035 0.0467 0.3522

]t

Continuing the iterations, the distribution vector settles down to the following
sequence.

s(19) = [
0.3265 0.0000 0.3775 0.0000 0.2959

]t

s(20) = [
0.2959 0.0000 0.3265 0.0000 0.3775

]t

s(21) = [
0.3775 0.0000 0.2959 0.0000 0.3265

]t

s(22) = [
0.3265 0.0000 0.3775 0.0000 0.2959

]t

s(23) = [
0.2959 0.0000 0.3265 0.0000 0.3775

]t

s(24) = [
0.3775 0.0000 0.2959 0.0000 0.3265

]t

We note that after about 20 time steps, the probability of being in the tran-
sient state 2 or 4 is nil. The system will definitely be in the closed set composed
of states 1, 3, or 5. The distribution vector will show periodic behavior with a
period γ = 3.

6.15 Asymptotic Behavior

Assume we have a reducible periodic Markov chain with transition matrix P that is
expressed in the form

P =
[

C A
0 T

]
(6.67)

According to (6.60), after n time steps, the transition matrix will have the form

Pn =
[

Cn Yn

0 Tn

]
(6.68)

where matrix Yn is given by (6.65) in the form

Yn =
m∑

j=1

λn−1
j C j A

[
I −

(
T
λ j

)n](
I − T

λ j

)−1

(6.69)



214 6 Periodic Markov Chains

when n → ∞; Tn will become zero since it is column substochastic. Further-
more, the eigenvalues of C satisfy the following equations because of the periodicity
of C.

|λi | = 1 1 ≤ i ≤ K (6.70)

|λi | < 1 K < i ≤ m (6.71)

The eigenvalues that lie in the unit circle will have no contribution at large values
of n, and matrix P∞ becomes

P∞ =
[

E F
0 0

]
(6.72)

The matrices E and F are given by

E =
K∑

k=1

λi
kCk (6.73)

F =
[

γ∑

i=1

K∑

k=1

λi−1
k Ck A Ti−1

]

(I − Tγ )−1 (6.74)

where I is the unit matrix whose dimensions match that of T.

Example 6.13 Find the asymptotic transition matrix for the reducible weakly peri-
odic Markov chain characterized by the transition matrix

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 0 0.9 0.1 0.1 0.3 0.1
0 0 0.1 0.9 0.2 0.1 0.3
0.2 0.8 0 0 0 0.1 0
0.8 0.2 0 0 0.1 0 0.1
0 0 0 0 0.2 0.2 0.1
0 0 0 0 0.1 0.1 0
0 0 0 0 0.3 0.2 0.4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

The components of the transition matrix are

C =

⎡

⎢⎢
⎣

0 0 0.9 0.1
0 0 0.1 0.9
0.2 0.8 0 0
0.8 0.2 0 0

⎤

⎥⎥
⎦
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A =

⎡

⎢⎢
⎣

0.1 0.3 0.1
0.2 0.1 0.3
0 0.1 0
0.1 0 0.1

⎤

⎥⎥
⎦

T =
⎡

⎣
0.2 0.2 0.1
0.1 0.1 0
0.3 0.2 0.4

⎤

⎦

C is a weakly periodic Markov chain whose eigenvalues are

λ1 = 1

λ2 = −1

λ3 = 0.6928 j

λ3 = −0.6928 j

and Ci can be decomposed into the form

Ci = C1 + (−1)i C2

where

C1 =

⎡

⎢⎢
⎣

0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25

⎤

⎥⎥
⎦

C2 =

⎡

⎢⎢
⎣

0.25 0.25 −0.25 −0.25
0.25 0.25 −0.25 −0.25

−0.25 −0.25 0.25 0.25
−0.25 −0.25 0.25 0.25

⎤

⎥⎥
⎦

According to (6.72), the matrix E has the value

E =

⎡

⎢⎢
⎣

0.2742 0.3044 0.3018
0.2742 0.3044 0.3018
0.2258 0.1956 0.1982
0.2258 0.1956 0.1982

⎤

⎥⎥
⎦

According to (6.72), the matrix F has the value

F =

⎡

⎢⎢
⎣

0.2742 0.3044 0.3018
0.2742 0.3044 0.3018
0.2258 0.1956 0.1982
0.2258 0.1956 0.1982

⎤

⎥⎥
⎦
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The asymptotic value of P is given by the two values

P1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0.5 0.5 0 0 0.2258 0.1956 0.1982
0.5 0.5 0 0 0.2258 0.1956 0.1982
0 0 0.5 0.5 0.2742 0.3044 0.3018
0 0 0.5 0.5 0.2742 0.3044 0.3018
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

P2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 0 0.5 0.5 0.2742 0.3044 0.3018
0 0 0.5 0.5 0.2742 0.3044 0.3018
0.5 0.5 0 0 0.2258 0.1956 0.1982
0.5 0.5 0 0 0.2258 0.1956 0.1982
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

At steady state, the two matrices are related by

P1 = P P2

P1 = P P1

Therefore, at steady state, the system oscillates between two state transition ma-
trices and periodic behavior is observed.

We can make several observations on the asymptotic value of the transition
matrix.

(a) The columns are not identical as in nonperiodic Markov chains.
(b) There is no possibility of moving to a transient state irrespective of the value of

the initial distribution vector.
(c) The asymptotic values of the transition matrix has two forms P1 and P2 such

that the system makes periodic transitions between the states, and a steady-state
value can never be reached.

6.16 Identification of Markov Chains

e are now able to discuss how we can determine if the given transition matrix cor-
responds to a periodic Markov chain or not and to determine if the chain is strongly
or weakly periodic. Further, we are also able to tell if the Markov chain is reducible
or irreducible and to identify the transient and closed states.
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Inspection of the elements of the transition matrix does not help much except
for the simplest case when we are dealing with a strongly periodic Markov chain.
In that case, the transition matrix will be a 0–1 matrix. However, determining the
period of the chain is not easy since we have to rearrange the matrix to correspond
to the form (6.48) on page 198.

A faster and more direct way to classify a Markov chain is to simply study its
eigenvalues and eigenvector corresponding to λ = 1. The following subsections
summarize the different cases that can be encountered.

6.16.1 Nonperiodic Markov chain

This is the case when only one eigenvalue is 1 and all other eigenvalues lie inside
the unit circle:

|λi | < 1 (6.75)

For large values of the time index n → ∞, all modes will decay except the one
corresponding to λ1 = 1, which gives us the steady-state distribution vector.

6.16.2 Strongly periodic Markov chain

This is the case when all the eigenvalues of the transition matrix lie on the unit
circle:

λi = exp

(
j2π × i

γ

)
(6.76)

where 1 ≤ i ≤ γ .
For all values of the time index, the distribution vector will exhibit periodic be-

havior, and the period of the system is γ .

6.16.3 Weakly periodic Markov chain

This is the case when γ eigenvalues of the transition matrix lie on the unit circle,
and the rest of the eigenvalues lie inside the unit circle. Thus we can write

|λi | = 1 when 1 ≤ i ≤ γ (6.77)

|λi | < 1 when γ < i ≤ m (6.78)

The eigenvalues that lie on the unit circle will be given by

λi = exp

(
j2π × i

γ

)
(6.79)
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where 1 ≤ i ≤ γ .
For large values of the time index n → ∞, some of the modes will decay but γ

of them will not, and the distribution vector will never settle down to a stable value.
The period of the system is γ .

6.17 Problems

Strongly Periodic Markov Chains

6.1 The following matrix is a circulant matrix of order 3, we denote it by C3. If it
corresponds to a transition matrix, then the resulting Markov chain is strongly
periodic. Find the period of the Markov chain.

P =
⎡

⎣
0 0 1
1 0 0
0 1 0

⎤

⎦

6.2 Prove Theorem 6.5 using the result of Theorem 6.1 and the fact that all eigen-
values of a column stochastic matrix are in the range 0 ≤ |λ| ≤ 1.

6.3 Does the following transition matrix represent a strongly periodic Markov
chain?

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

6.4 Verify that the following transition matrix corresponds to a periodic Markov
chain and find the period. Find also the values of all the eigenvalues.

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

6.5 Prove that the m×m circulant matrix in (6.47) has a period γ = m. You can do
that by observing the effect of premultiplying any m ×k matrix by this matrix.
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From that, you will be able to find a pattern for the repeated multiplication of
the transition matrix by itself.

Weakly Periodic Markov Chains

6.6 Does the following transition matrix represent a periodic Markov chain?

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1/3 0 0 0 0 1/3 1/3
1/3 1/3 0 0 0 0 1/3
1/3 1/3 1/3 0 0 0 0
0 1/3 1/3 1/3 0 0 0
0 0 1/3 1/3 1/3 0 0
0 0 0 1/3 1/3 1/3 0
0 0 0 0 1/3 1/3 1/3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

6.7 The weather in a certain island in the middle of nowhere is either sunny or
rainy. A recent shipwreck survivor found that if the day is sunny, then the
next day will be sunny with 80% probability. If the day is rainy, then the next
day will be rainy with 70% probability. Find the asymptotic behavior of the
weather on this island.

6.8 A traffic source is modeled as a periodic Markov chain with three stages. Each
stage has three states: silent, transmitting at rate λ1, and transmitting at rate
λ2.

(a) Draw the periodic transition diagram.
(b) Write down the transition matrix.
(c) Assign transition probabilities to the system and find the asymptotic be-

havior of the source.
(d) Plot the state of the system versus time by choosing the state with the

highest probability at each time instant. Can you see any periodic behavior
in the traffic pattern?

6.9 A computer goes through the familiar fetch, decode, and execute stages for in-
struction execution. Assume that the fetch stage has three states depending on
the location of the operands in cache, RAM, or in main memory. The decode
stage has three states depending on the instruction type. The execute state also
has three states depending on the length of the instruction.

(a) Draw the periodic transition diagram.
(b) Write down the transition matrix.
(c) Assign transition probabilities to the system and find the asymptotic be-

havior of the program being run on the machine.

6.10 Table look up for packet routing can be divided into three phases: database
search, packet classification, and packet processing. Assume that the database
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search phase consists of four states depending on the location of the data
among the different storage modules. The packet classification phase consists
of three states depending on the type of packet received. The packet processing
phase consists of four different states depending on the nature of the process-
ing being performed.

(a) Draw the periodic transition diagram.
(b) Write down the transition matrix.
(c) Assign transition probabilities to the system and find the asymptotic be-

havior of the lookup table operation.

6.11 A bus company did a study on commuter habits during a typical week. Es-
sentially, the company wanted to know the percentage of commuters who use
the bus, their own car, or stay at home each day of the week. Based on this
study, the company can plan ahead and assign more buses or even bigger buses
during heavy usage days.

(a) Draw the periodic transition diagram.
(b) Write down the transition matrix.
(c) Assign transition probabilities to the system and find the asymptotic be-

havior of the commuter patterns.

6.12 Assume a certain species of wild parrot to have two colors: red and blue. It
was found that when a red–red pair breeds, their offspring are red with a 90%
probability due to some obscure reasons related to recessed genes and so on.
When a blue–blue pair breeds, their offspring are blue with a 70% probability.
When a red–blue pair breeds, their offspring are blue with a 50% probability.

(a) Draw the periodic transition diagram.
(b) Write down the transition matrix.
(c) Assign transition probabilities to the system and find the asymptotic be-

havior of the parrot colors in the wild.

6.13 A packet source is modeled using periodic Markov chain. The source is as-
sumed to go through four repeating phases and each phase has two states:
idle and active. Transitions from phase 1 to phase 2 are such that the source
switches to the other state with a probability 0.05. Transitions from phase 2 to
phase 3 are such that the source switches to the other state with a probability
0.1. Transitions from phase 3 to phase 4 are such that the source switches to
the other state with a probability 0.2. Transitions from phase 4 to phase 1 are
such that the source switches to the other state with a probability 0.90.

(a) Draw the periodic transition diagram.
(b) Write down the transition matrix.
(c) Assign transition probabilities to the system and find the asymptotic be-

havior of the source.
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6.14 The predator and prey populations are related as was explained at the start
of this chapter. Assume that the states of the predator–prey population are as
follows.

State Predator polulation Prey population

s0 Low Low
s1 Low High
s2 High Low
s3 High High

The transitions between the states of the system take place once each year. The
transition probabilities are left for the reader to determine or assume.

1. Construct state transition diagram and a Markov transition matrix.
2. Justify the entries you choose for the matrix.
3. Study the periodicity of the system.
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Chapter 7
Queuing Analysis

7.1 Introduction

Queuing analysis is one of the most important tools for studying communication
systems. The analysis allows us to answer endless questions about the system per-
formance. This chapter explains that queuing analysis is a special case of Markov
chains. Some examples of queues are as follows:

• The number of patients in a doctor’s waiting room
• The number of customers in a store checkout line
• The number of packets stored in a router’s buffer
• The number of print jobs present in a printer’s queue
• The number of workstations requesting access to the LAN

Without being specific to a certain system, we can state that queuing analysis
deals with queues where customers compete to be processed by shared servers. The
queue size is the waiting room provided for the customers that have not been served
yet plus the customers that are being served. We will talk about packets instead of
customers in this chapter since most of networking analysis deals with transmitting
and processing packets.

The objective of queuing analysis is to predict the system performance such as
how many customers get processed per time step, the average delay a customer en-
dures before being served, and the size of the queue or waiting room required. These
performance measures have obvious applications in telecommunication systems and
the design of hardware for such systems.

We list here some typical examples of queues and point out the customers and
servers in each.

• People lining up at a bank where the bank teller is the server and the bank patrons
are of course the customers.

• Workstations connected in a local-area network (LAN) where the communication
medium (e.g., Ethernet cable) represents the shared resource while the commu-
nicating applications represent the customers and the server is the media access
control (MAC) protocol that enables access to the medium.

F. Gebali, Analysis of Computer and Communication Networks,
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• A parallel processing system in which a common shared memory is accessed
by all the computers. The computers, or rather the memory requests, represent
the customers and the arbitration protocol that resolves memory access conflicts
represents the server.

Most of the literature and textbooks deal with continuous-time systems. In these
systems, only single customer arrival or departure takes place at a given time instant.
However, analyzing the systems for general arrival or departure statistics proved to
be difficult such that most textbooks simply provide tables of performance formulas
for the most common situations. Subsequent researchers simply adopt these formu-
las without any form of adaptation or innovation.

Most of computer and communication systems, however, are migrating to the
digital domain. In this domain, time is measured in discrete units or steps of finite
size. As a consequence, there could be multiple arrivals or departures at a given
time step. We will find that discrete-time systems are simple to analyze compared
to continuous-time systems. Adapting discrete-time systems to a large variety of
situations is really simple using the techniques we provide in this book.

In this chapter, we study different types of discrete-time queues characterized by
the following attributes:

1. The total number of customers in the system.
2. The number of customers that could possibly request service at a given time step.
3. The arrival process statistics for the customers.
4. The number of servers which dictate how many customers can leave the queue

at a given time step.
5. The service discipline for deciding which customer or customers are to be served.

Examples of service disciplines are first-come-first-serve (FIFO), random selec-
tion, polling, and priority [1].

6. The size of the queue to accommodate customers waiting for service.

7.1.1 Kendall’s Notation

Kendall’s notation is frequently used to succinctly describe a queuing system. This
notation is represented as A/B/c/n/p, where [2]

A Arrival statistics
B Service or departure statistics
c Number of servers
n Queue size
p Customer population size

The final two fields are optional and are assumed infinite if they are omitted [3].
The letters A and B denoting arrival and server statistics are given the following
notations:
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D Deterministic, process has fixed arrival or service rates
M Markovian, process is Poisson or binomial
G General or constant time

A common practice is to attach a superscript to the letters A and B to denote
multiple arrivals or “batch service”. Using this notation, the discrete-time M/M/1
queue has binomial, or Poisson, arrivals and departures. At a given time step at most
one customer arrives and at most one customer departs. The queue has infinite buffer
size and the population size is also infinite.

The queue M/M/1/B has binomial, or Poisson, arrivals and departures. At a
given time step, at most one customer arrives and at most one customer departs. The
queue has a finite buffer of size B and the population size is infinite. This queue is
frequently encountered when the time step is so short that only one customer can
arrive or depart in that time.

The queue M/M/J/B has binomial, or Poisson, arrivals and departures. At a
given time step, at most one customer arrives and at most one customer could depart
through one of the J available servers. The queue has a finite buffer of size B and the
population size is infinite. This type of queue might be encountered when a server
might be busy serving a customer at a given time step and the remaining servers
become available to serve other customers in the queue.

The queue Mm/M/1/B has binomial, or Poisson, arrivals and departures. There
is one server in the queue, and at a given time step, at most m customers arrive and
at most one customer departs because there is one server. The queue has a finite
buffer of size B and the population size is infinite.

The queue M/Mm/1/B has binomial, or Poisson, arrivals and departures. There
is one server in the queue, and at a given time step, at most one customer arrives
and at most J customers depart because the server could handle J customers in one
time step. The queue has a finite buffer of size B and the population size is infinite.

The queues we shall deal with here will be one of the following types:

1. Single arrival, single departure infinite-sized queues in which the transition
matrix P is tridiagonal. Such a queue will be denoted by the symbols M/M/1.

2. Single arrival, single departure finite-sized queues in which P is tridiagonal. Such
a queue will be denoted by the symbols M/M/1/B.

3. Multiple arrival, single departure finite queues in which P is lower Hessenberg.
Such a queue will be denoted by the symbols Mm/M/1/B.

4. Single arrival, multiple departure finite-sized queues in which P is upper
Hessenberg. Such a queue will be denoted by the symbols M/Mm/1/B.

7.2 Queue Throughput (Th)

Most often we are interested in estimating the rate of customers leaving the queue;
which is expressed as customers per time step or customers per second. We call
this rate the average output traffic Na(out), or throughput (Th) of a queue. The
throughput is given by
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Th = output data rate = Na(out) (7.1)

The units of Th in the above expression are packets/time step. Notice that this
definition implies that Th could never be negative.

When we talk about throughput of packets, we usually mean goodput which
represents the packets that got through intact without collisions or other problems.
Sometimes authors talk about throughput to include good and corrupted packets.
The difference between throughput and goodput is seldom discussed and the reader
is advised to make certain which quantity is being dealt with in any discussion.
Throughout this book, we shall use the term throughput to imply good packets that
got sent without corruption.

7.3 Efficiency (η) or Access Probability ( pa)

The efficiency (η) of the queue or its access probability (pa) essentially gives the
percentage of customers or packets transmitted in one time step through the system
relative to the total number of arriving customers or packets in one time step also.
We shall use the term efficiency when we talk about queues and switches and will
use the term access probability when we talk about interconnection networks. Effi-
ciency or access probability essentially measures the effectiveness of the queue at
processing data present at the input.

We define the access probability (pa) or efficiency η as the ratio of the average
output traffic relative to the average input traffic:

pa = η = Na(out)

Na(in)
(7.2)

This can be expressed in terms of the throughput

pa = η = Na(out)

Na(in)
= Th

Na(in)
≤ 1 (7.3)

Notice that the access probability or efficiency could never be negative and could
never be more than one.

If customers or packets are created within the queue, then we have to modify our
definitions of both the input and output traffic to ensure that the efficiency never
exceeds unity. This situation could in fact happen. For example, consider a packet
switch that receives packets at its inputs and then routes these packets to the output
ports. We expect that the number of packets leaving the switch per unit time will
be smaller than or equal to the number of packets coming to the switch per unit
time. The output traffic could be smaller than the input traffic when packets are lost
within the switch when its internal buffers become full. However, the switch itself
might generate its own packets to communicate with other switches or routers in the
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network. In that case, the traffic at the input could in fact be smaller than the output
traffic due to the internally generated traffic. Let us leave this point to the problems
at the end of the chapter.

Throughput and access probability are very useful in describing the behavior of
a system. The two concepts are not equivalent and in fact we will see that the curves
showing variation of efficiency with the queue parameters are not scaled version
of throughput variation with queue parameters. This point is clearly illustrated in
Fig. 14.4 on page 515, or Fig. 14.20 on page 538.

If the queue produces three customers on the average per time step while five
customers could arrive, then the throughput is Th = 3 while its efficiency is
η = 3/5 = 60%. On the other hand, if the queue produces four customers on the
average per time step while a maximum of six customers could potentially leave,
then the throughput is Th = 4 and its efficiency is η = 4/6 = 66.67%.

7.4 Traffic Conservation

When the queue reaches steady state, the incoming customers or packets have two
options when they arrive at a queue: either they get processed and move through the
queue or they get lost. We can therefore write the traffic conservation as

Na(in) = Na(out) + Na(lost) (7.4)

where Na(lost) is the average number of lost traffic or customers per unit time. The
above equation is valid at steady state since the number of packets in the queue will
be constant.

Dividing the above equation by Na(in) to normalize, we get

η + L = 1 (7.5)

where L is the customer, or traffic loss probability,

L = 1 − η (7.6)

Systems that have high efficiency will have low loss probability and vice versa.
This situation is very similar to mechanical or electrical energy conversion systems
characterized by input power, output power, and lost power due to friction or resis-
tive effects.

7.5 M/M/1 Queue

In an M/M/1 queue at any time step, at most one customer could arrive and at most
one customer could leave. An example of an M/M/1 queue is a first-in-first-out
buffer of a communication system. This gives rise to simplest of queues in queuing
analysis. The queue size here is assumed infinite. This is the discrete time equivalent
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of the famous M/M/1 queue for the continuous-time case. At a certain time step,
the probability of packet arrival is a, which is equivalent to a birth event or increase
in the queue population. The probability that a packet did not arrive is b = 1 − a.
The probability that a packet leaves the queue is c, which is equivalent to death or
reduction in the queue population. The probability that a packet does not leave the
queue is d = 1 − c. The probability c is representative of the server’s ability to
process the customers or packets in the queue in one time step.

The number of customers or packets stored in the queue is the state of our system.
Thus, the queue is in state si when there are i customers or packets in the queue.
The state transition diagram for the discrete-time M/M/1 queue is shown in Fig. 7.1.
Changes in the queue size occur by at most one, i.e., only one packet could arrive or
depart. Thus, we expect the transition matrix to be tridiagonal.

The future state of the queue depends only on its current state. Thus, we can
model the queue as a discrete-time Markov chain. Since packet arrivals and de-
partures are independent of the time index value, we have a homogeneous Markov
chain. We assume that when a packet arrives, it could be serviced at the same time
step and it could leave the queue with probability c. This results in the transition
matrix given by

P =

⎡

⎢⎢⎢⎢⎢
⎣

f0 bc 0 0 · · ·
ad f bc 0 · · ·

0 ad f bc · · ·
0 0 ad f · · ·
...

...
...

...
. . .

⎤

⎥⎥⎥⎥⎥
⎦

(7.7)

where b = 1 − a, d = 1 − c, f0 = 1 − ad, and f = ac + bd.
For example, starting with an empty queue (state s0), Fig. 7.1 indicates that we

move to state s1 only when a packet arrives and no packet can depart, which is term
ad in the diagram. This transition is also indicated in the above transition matrix as
the term at location (2,1) of the transition matrix.

In order for the queue to be stable, the arrival probability must be smaller than
the departure probability (a < c).

Since the dimension of P is infinite, we are going to obtain an expression for the
distribution vector s using difference equation techniques instead of studying the
eigenvectors of the matrix. The difference equations for the steady-state distribution
vector are obtained from the equation

P s = s (7.8)

Fig. 7.1 State transition
diagram for the discrete-time
M/M/1 queue
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bcbc
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which produces the following difference equations

ad s0 − bc s1 = 0 (7.9)

ad s0 − g s1 + bc s2 = 0 (7.10)

ad si−1 − g si + bc si+1 = 0 i > 0 (7.11)

where g = 1 − f and si is the probability that the system is in state i . For an
infinite-sized queue, we have i ≥ 0.

The solution to the above equations is given as

s1 =
(

a d

b c

)
s0

s2 =
(

a d

b c

)2

s0

s3 =
(

a d

b c

)3

s0

and in general,

si =
(

a d

b c

)i

s0 i ≥ 0

It is more convenient to write si in the form

si = ρi s0 i ≥ 0 (7.12)

where ρ is the distribution index

ρ = a d

b c
< 1 (7.13)

The value of the distribution index will affect the component values of the distri-
bution vector.

The complete solution is obtained from the above equations plus the condition∑∞
i=0 si = 1.

s0

∞∑

i=0

ρi = 1 (7.14)

Thus, we obtain

s0

1 − ρ
= 1 (7.15)
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from which we obtain

s0 = 1 − ρ (7.16)

and the components of the equilibrium distribution vector are given from (7.12) by

si = (1 − ρ)ρi i ≥ 0 (7.17)

It is interesting to compare this expression with the continuous-time M/M/1
queue. The components of the distribution vector for a continuous-time queue are
given by

si = (1 − ρ)ρi i ≥ 0 (7.18)

where ρ for the continuous-time queue is called the traffic intensity and equals the
ratio of the arrival rate to the service rate. The two expressions are identical for the
simple M/M/1 queue.

7.5.1 M/M/1 Queue Performance

Once s is found, we can find the queue performance such as the throughput, average
queue size, and packet delay.

The output traffic or average number of packets leaving the queue per time step
is given by

Na(out) = ac s0 +
∞∑

i=1

c si (7.19)

The first term on the RHS is the number of packets leaving the queue, given
the queue is empty. The second term on the RHS is the average number of packets
leaving the queue when it is not empty. Simplifying, we get

Na(out) = a c s0 + c (1 − s0)

= c − bc s0

= a (7.20)

The units of Na(out) are packets/time step.
The throughput for the M/M/1 queue is given by

Th = Na(out) = a (7.21)
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The throughput is measured in units of packets/time step. To obtain the through-
put in units of packets/s, we use the time step value:

Th′ = Th

T
(7.22)

The input traffic or average number of packets entering the queue per time step
is given by

Na(in) = 1 × a + 0 × b = a (7.23)

This output traffic is measured in units of packets/time step.
The efficiency of the M/M/1 queue is given by

η = Na(out)

Na(in)
= 1 (7.24)

The M/M/1 queue is characterized by maximum efficiency since input and out-
put data rates are equal. There is no chance for packets to be lost since the infinite
queue does not ever fill up.

The average queue size is given by the equation

Qa =
∞∑

i=0

i si (7.25)

Using (7.17) we get

Qa = ρ

1 − ρ
(7.26)

The queue size is measured in units of packets or customers.
Figure 7.2 shows the exponential growth of the average queue size as the distri-

bution index increases. A semilog plot was chosen here to show in more detail the
size of the queue.

We can invoke Little’s result to estimate the wait time, which is the average num-
ber of time steps a packet spends in the queue before it is routed, as

Qa = W × Th (7.27)

where W is the average number of time steps that a packet spends in the queue.
Thus, W is given by

W = ρ

a(1 − ρ)
(7.28)
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Fig. 7.2 Average queue size versus the distribution index ρ for the M/M/1 queue

This wait time is measured in units of time steps. The wait time in units of sec-
onds is given by the unnormalized version of Little’s result:

W ′ = Qa

Th′ (7.29)

Example 7.1 Consider the M/M/1 queue with the following parameters a = 0.6
and c = 0.8. Find the equilibrium distribution vector and the queue performance.

From (7.7), the transition matrix is

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0.88 0.32 0 0 0 · · ·
0.12 0.56 0.32 0 0 · · ·
0 0.12 0.56 0.32 0 · · ·
0 0 0.12 0.56 0.32 · · ·
0 0 0 0.12 0.56 · · ·
0 0 0 0 0.12 · · ·
...

...
...

...
...

. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

The steady-state distribution vector is found using (7.17):

s = [
0.625 0 0.234 4 0.087 9 0.033 0 0.012 4 0.004 6 0.001 7 · · · ]t
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The probability of being in state i decreases exponentially as i increases.
The queue performance is as follows:

Th = 0.6 packets/time step

η = 1

Qa = 0.6 packets

W = 1 time steps

Example 7.2 Investigate the queue in the previous example when the arrival proba-
bility is very close to the departure probability.

For the queue to remain stable, we must have a < c. Let us try a = 0.6 and
c = a + 0.01. The steady-state distribution vector is found using (7.17):

s = [
0.0410 0.0393 0.0377 0.0361 0.0347 0.0332 0.0319 · · · ]t

Comparing this distribution vector with its counterpart in the previous example,
we see that the probability of being in state i is increased for i > 0. This is an
indication that the queue is getting close to being unstable.

The queue performance is as follows:

Th = 0.6 packets/time step

η = 1

Qa = 23.4 packets

W = 39 time steps

We see that the throughput is increased since the probability that the queue is
empty (state 0) is decreased.

7.6 M/M/1/B Queue

This queue is similar to the discrete-time M/M/1 queue except that the queue has
finite size B. The state transition diagram is shown in Fig. 7.3.

Since packet arrivals and departures are independent of the time index value, we
have a homogeneous Markov chain. We assume that when a packet arrives, it could

Fig. 7.3 State transition
diagram for the discrete-time
M/M/1/B queue
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be serviced at the same time step and it could leave the queue with probability c.
This results in the transition matrix given by

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

f0 bc 0 · · · 0 0 0
ad f bc · · · 0 0 0
0 ad f · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · f bc 0
0 0 0 · · · ad f bc
0 0 0 · · · 0 ad 1 − bc

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(7.30)

where f0 = 1 − ad and f = ac + bd.
Since the dimension of P is arbitrary, we are going to obtain an expression for

the equilibrium distribution vector s using difference equations techniques. The dif-
ference equations for the state probability vector are given by

ad s0 − bc s1 = 0 (7.31)

ad s0 − g s1 + bc s2 = 0 (7.32)

ad si−1 − g si + bc si+1 = 0 0 < i < B (7.33)

where g = ad +bc and si is the component of the distribution vector corresponding
to state i .

The solution to the above equations is given as

s1 =
(

a d

b c

)
s0

s2 =
(

a d

b c

)2

s0

s3 =
(

a d

b c

)3

s0

and in general,

si =
(

a d

b c

)i

s0 i ≥ 0

It is more convenient to write si in the form

si = ρi s0 0 ≤ i ≤ B (7.34)

where ρ is the distribution index for the M/M/1/B queue:

ρ = a d

b c
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The complete solution is obtained from the above equations plus the condition∑B
i=0 si = 1, which gives

s0

B∑

i=0

ρi = 1 (7.35)

from which we obtain s0, which is the probability that the queue is empty,

s0 = 1 − ρ

1 − ρB+1
(7.36)

and the equilibrium distribution for the other states is given from (7.34) by

si = (1 − ρ)ρi

1 − ρB+1
0 ≤ i ≤ B (7.37)

Note that ρ for the finite-sized queue can be more than one. In that case, the
queue will not be stable in the following sense:

s0 < s1 < s2 · · · < sB (7.38)

This indicates that the probability that the queue is full (sB) is bigger than the
probability that it is empty (s0).

7.6.1 M/M/1/B Queue Performance

The throughput or output traffic for the M/M/1/B queue is given by

Th = Na(out)

= ac s0 +
B∑

i=1

c si

= ac s0 + c (1 − s0)

= c (1 − b s0) (7.39)

This throughput is measured in units of packets/time step. The throughput in
units of packets/s is

Th′ = Th

T
(7.40)

The input traffic is given by

Na(in) = 1 × a + 0 × b = a (7.41)
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Input traffic is measured in units of packets/time step.
The efficiency of the M/M/1/B queue is given by

η = Na(out)

Na(in)

= Th

a

= c (1 − b s0)

a
(7.42)

Data are lost in the M/M/1/B queue when it is full and packets arrive but does
not leave. The average lost traffic Na(lost) is given by

Na(lost) = sB a d (7.43)

The above equation is simply the probability that a packet is lost which equals
the probability that the queue is full, and a packet arrives, and no packets can leave.

Lost traffic is measured in units of packets/time step. The average lost traffic per
second is given by

N ′
a(lost) = Na(lost)

T
(7.44)

The packet loss probability L is the ratio of lost traffic relative to the input traffic

L = Na(lost)

Na(in)
= sB d (7.45)

The average queue size is given by the equation

Qa =
B∑

i=0

i si (7.46)

Queue size is measured in units of packets. Using (7.37), the average queue size
is given by

Qa = ρ × [
1 − (B + 1)ρB + BρB+1

]

(1 − ρ) × (
1 − ρB+1

) (7.47)

Figure 7.4 shows the exponential growth of the average queue size as the distri-
bution index increases (B = 10 in that case). The solid line is for the M/M/1/B
queue and the dotted line is for the M/M/1 queue for comparison. We see that Qa

for the finite-sized queue grows at a slower rate with increasing distribution index
compared to the infinite-sized queue. Furthermore, ρ for the infinite-sized queue
could increase beyond unity value.
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Fig. 7.4 Average queue size versus the distribution index ρ for the M/M/1/B queue when B = 10
(solid line). The dotted line is average queue size for an infinite-sized M/M/1 queue

We can invoke Little’s result to estimate the average number of time steps a
packet spends in the queue before it is routed as

Qa = W × Th (7.48)

where W is the wait time, or average number of time steps, that a packet spends in
the queue. The throughput in the above expression for the wait time must be in units
of packets time step. The wait time is simply

W = Qa

Th
(7.49)

Wait time is measured in units of time steps. The wait time in units of seconds is
given by

W ′ = Qa

Th′ seconds (7.50)

Example 7.3 Consider the M/M/1/B queue with the following parameters a =
0.6, c = 0.8 and B = 4. Find the equilibrium distribution vector and the queue
performance.
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From (7.30), the transition matrix is

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0.88 0.32 0 0 0 0 · · ·
0.12 0.56 0.32 0 0 0 · · ·
0 0.12 0.56 0.32 0 0 · · ·
0 0 0.12 0.56 0.32 0 · · ·
0 0 0 0.12 0.56 0.32 · · ·
0 0 0 0 0.12 0.56 · · ·
...

...
...

...
...

...
. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

The steady-state distribution vector is found using (7.37)

s = [
0.6297 0.2361 0.0885 0.0332 0.0125

]t

Compare this distribution vector with the distribution vector of Example 7.1,
which described an infinite-sized queue with the same arrival and departure statis-
tics. We see that components of the distribution vector here are slightly larger than
their counterparts in the infinite-sized queue as expected.

The queue performance is as follows:

Na(out) = Th = 0.5985 packets/time step

η = 0.9975

Na(lost) = 1.5 × 10−3 packets/time step

L = 0.0025

Qa = 0.5626 packets

W = 0.9401 time steps

We note that the M/M/1/B queue has smaller average size Qa and smaller
wait time W compared to the M/M/1 queue with the same arrival and departure
statistics. As expected, we have

Na(out) + Na(lost) = Na(in)

Example 7.4 Find the performance of the queue in the previous example when the
queue size becomes B = 20.

The queue performance is as follows:

Na(out) = Th = 0.6 packets/time step

η = 1

Na(lost) = 2.2682 × 10−10 packets/time step

L = 3.7804 × 10−10

Qa = 0.6 packets

W = 1 time steps
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We see that increasing the queue size exponentially decreases the loss probability.
The throughput is not changed by much, but the wait time is slightly increased due
to the increased average queue size.

Example 7.5 Plot the M/M/1/B performance when the input traffic varies between
0 ≤ a ≤ 1 for B = 10 and c = 0.5.

Figure 7.5 shows the throughput, efficiency, loss probability, and delay to plot
these quantities versus input traffic.

The important things to note from this example are as follows:

1. The throughput of the queue could not exceed the maximum value for the av-
erage output traffic. Section 7.6.2 below will prove that this maximum value is
simply c.

2. The efficiency of the queue is very close to 100% until the input traffic
approaches the maximum output traffic c.

3. Packet loss probability is always present but starts to increase when the input
traffic approaches the packet maximum output traffic c.

4. Packet delay increases sharply when the input traffic approaches the packet max-
imum output traffic c.
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Fig. 7.5 M/M/1/B throughput, efficiency, loss probability, and delay to plot versus input traffic
when B = 10 and c = 0.5
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5. Congestion conditions occur as soon as the input traffic exceeds the maximum
output traffic c. Congestion is characterized by decreased efficiency, increased
packet loss, and increased delay.

6. The delay reaches a maximum value determined by the maximum size of the
queue and the maximum output traffic c. The maximum delay could be approxi-
mated as

Maximum Delay = B

c
= 20 time steps

7.6.2 Performance Bounds on M/M/1/B Queue

The previous example helped us get some rough estimates for the performance
bounds of the M/M/1/B queue. This section formalizes these estimates.

Under full load conditions, the M/M/1/B become full and we can assume

a → 1 (7.51)

b → 0 (7.52)

s0 → 0 (7.53)

sB → 1 (7.54)

Qa → B (7.55)

The maximum throughput is given from (7.39) by

Th(max) = Na(out)max

= c (7.56)

The departure probability is most important for determining the maximum
throughput of the queue.

The minimum efficiency of the queue is given from (7.42) by

η(min) = c (7.57)

The departure probability is most important for determining the efficiency of the
queue.

The maximum lost traffic is given from (7.43) by

Na(lost)max = d = 1 − c (7.58)

The maximum packet loss probability is given from (7.45) by

L(max) = 1 − c (7.59)
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The maximum wait time is given by the approximate formula

W (max) = B

c
(7.60)

Larger queues result in larger wait times as expected.

7.7 Mm/M/1/B Queue

In an Mm/M/1 queue at any time step, at most m customers could arrive and at
most one customer could leave. We shall encounter this type of queue when we
study network switches where first-in-first-out (FIFO) queues exist at each output
port. For each queue, a maximum of m packets arrive at the queue input but only
one packet can leave the queue. Therefore, the queue size can increase by more
than one, but can only decrease by one in each time step. Assume that the binomial
probability of k arrivals at instant n is given by

ak =
(

m

k

)
ak bm−k (7.61)

where a is the probability that a packet arrives, b = 1 − a, and m is the maximum
number of packets that could arrive at the queue input. The queue size can only
decrease by at most one at any instant with probability c. The probability that no
packet leaves the queue is d = 1−c. We assume that when a packet arrives, it could
be serviced at the same time step and it could leave the queue with probability c.

The condition for the stability of the queue is

m∑

k=0

k ak = a m < c (7.62)

which indicates that the average number of arrivals at a given time is less than the
average number of departures from the system. The resulting state transition matrix
is a lower (B + 1) × (B + 1) Hessenberg matrix in which all the elements pi j = 0
for j > i + 1:

P =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

x y0 0 · · · 0 0
y2 y1 y0 . . . 0 0
y3 y2 y1 · · · 0 0
...

...
...

. . .
...

...
yB yB−1 yB−2 · · · y1 y0

zB zB−1 zB−2 · · · z1 z0

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

(7.63)
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where

x = a1 c + a0 (7.64)

yi = ai c + ai−1 d (7.65)

zi = ai d +
m∑

k=i+1

ak (7.66)

where we assumed

ak = 0 k < 0 (7.67)

ak = 0 k > m (7.68)

The above transition matrix has m subdiagonals when m ≤ B.

7.7.1 Mm/M/1/B Queue Performance

To calculate the throughput of the Mm/M/1/B, we need to consider the queue in
two situations: when it is empty and when it is not.

The throughput of the Mm/M/1/B queue when the queue is in state s0 is
given by

Th0 = (1 − a0) c (7.69)

This is simply the probability that one or more packets arrive and one packet
leaves the queue. When the queue is in any other state, the throughput is given by

Thi = c 1 ≤ i ≤ B (7.70)

This is simply the probability that a packet leaves the queue. The average
throughput is estimated as

Th =
B∑

i=0

Thi si

= c (1 − a0 s0) (7.71)

The throughput is measured in units of packets/time step. The throughput in units
of packets/s is

Th′ = Th

T
(7.72)
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The input traffic is given by

Na(in) =
m∑

i=0

i ai

= m a (7.73)

The efficiency of the Mm/M/1/B queue is given by

η = Na(out)

Na(in)

= Th

m a

= c (1 − a0 s0)

m a
(7.74)

Data are lost in the Mm/M/1/B queue when it becomes full and packets arrive
but does not leave. However, due to multiple arrivals, packets could be lost even
when the queue is not completely full. For example, we could still have one location
left in the queue but three customers arrive. Definitely packets will be lost then.
Therefore, we conclude that average lost traffic Na(lost) is a bit difficult to obtain.
However, the traffic conservation principle is useful in getting a simple expression
for lost traffic. The average lost traffic Na(lost) is given by

Na(lost) = Na(in) − Na(out)

= m a − c (1 − a0 s0) (7.75)

The lost traffic is measured in units of packets per time step. The average lost
traffic measured in packets per second is given by

N ′
a(lost) = Na(lost)

T
(7.76)

The packet loss probability L is the ratio of lost traffic relative to the input traffic:

L = Na(lost)

Na(in)
= 1 − η

= 1 − c (1 − a0 s0)

m a
(7.77)

The average queue size is given by the equation

Qa =
B∑

i=0

i si (7.78)
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We can invoke Little’s result to estimate the wait time, which is the average num-
ber of time steps a packet spends in the queue before it is routed, as

Qa = W × Th (7.79)

where W is the average number of time steps that a packet spends in the queue.
Thus, W is given by

W = Qa

Th
(7.80)

The wait time is measured in units of time steps. The wait time in units of seconds
is given by the unnormalized version of Little’s result:

W ′ = Qa

Th′ (7.81)

Example 7.6 Consider the Mm/M/1/B queue with the following parameters
a = 0.04, m = 2, c = 0.1, and B = 5. Check its stability condition and find
the equilibrium distribution vector and queue performance.

The packet arrival probability is

ak =
(

2

k

)
(0.04)k(0.96)2−k

The stability condition is found from (7.62):

2∑

k=0

k ak = 0.08 < c

The queue is stable and the transition matrix is

P =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0.9293 0.0922 0 0 0 0
0.0693 0.8371 0.0922 0 0 0
0.0014 0.0693 0.8371 0.0922 0 0
0 0.0014 0.0693 0.8371 0.0922 0
0 0 0.0014 0.0693 0.8371 0.0922
0 0 0 0.0014 0.0707 0.9078

⎤

⎥⎥⎥⎥⎥⎥
⎦

The transition matrix has two subdiagonals because m = 2.
The steady-state distribution vector is the eigenvector of P that corresponds to

unity eigenvalue. We have

s = [
0.2843 0.2182 0.1719 0.1353 0.1065 0.0838

]t
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We see that the most probable state for the queue is state s0 which occurs with
probability 28.43%.

The queue performance is as follows:

Th = 0.0738 packets/time step

η = 0.9225

Na(lost) = 6.2 × 10−3 packets/time step

L = 0.0775

Qa = 1.813 packets

W = 24.5673 time steps

Flow conservation is verified since the sum of the throughput and the lost traffic
equals the input traffic Na(in) = m a.

Example 7.7 Find the performance of the queue in the previous example when the
queue size becomes B = 20. The queue performance is as follows:

Th = 0.0799 packets/time step

η = 0.9984

Na(lost) = 1.3167 × 10−4 packets/time step

L = 0.0016

Qa = 1.813 packets

W = 44.3432 time steps

We see that increasing the queue size decreases the loss probability which results
in only a slight increase in the throughput. The wait time is almost doubled.

In Chapter 4, we explored different techniques for finding the equilibrium dis-
tribution for the distribution vector s. For simple situations when the value of m is
small (1 or 2), we can use the difference equation approach. When m is large, we
can use the z-transform technique as in Section 4.8.

Example 7.8 Plot the Mm/M/1/B performance when m = 2 and the input traffic
varies between 0 ≤ a ≤ 1 for B = 10 and c = 0.5.

Figure 7.6 shows the variation of the throughput, efficiency, loss probability, and
delay versus the average input traffic.

The important things to note from this example are as follows:

1. The throughput of the queue could not exceed the maximum output traffic c.
2. The efficiency of the queue is very close to 100% until the input traffic

approaches the maximum output traffic c.
3. Packet loss probability is always present but starts to increase when the input

traffic approaches the packet maximum output traffic c.
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Fig. 7.6 Mm/M/1/B throughput, efficiency, loss probability, and delay to plot versus input traffic
when m = 2, B = 10 and c = 0.5

4. Packet delay increases sharply when the input traffic approaches the packet max-
imum output traffic c.

5. Congestion conditions occur as soon as the input traffic exceeds the maximum
output traffic c. Congestion is characterized by decreased efficiency, increased
packet loss, and increased delay.

7.7.2 Performance Bounds on Mm/M/1/B Queue

The previous example helped us get some rough estimates for the performance
bounds of the Mm/M/1/B queue. This section formalizes these estimates.

Under full load conditions, the Mm/M/1/B becomes full and we can assume

a → 1 (7.82)

b → 0 (7.83)

s0 → 0 (7.84)

sB → 1 (7.85)

Qa → B (7.86)
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The maximum value for the throughput from (7.71) becomes

Th (max) = c (7.87)

The packet departure probability determines the maximum throughput of the
queue.

The minimum efficiency of the Mm/M/1/B queue is given from (7.74) by

η(min) = c

m
(7.88)

The maximum lost traffic is given from (7.77) by

Na(lost)max = m − c (7.89)

The maximum packet loss probability is given from (7.77) by

L(max) = 1 − c

m
(7.90)

When more customers arrive per time step (large m), the probability of loss
increases. Maximum loss probability increases when packet departure probability
decreases and when the number of arriving customers increases.

The maximum delay is given from (7.80) by

W (max) = B

Th(max)

= B

c
(7.91)

7.7.3 Alternative Solution Method

When B is large, it is better to use numerical techniques such as forward- or back-
ward substitution using Givens rotations.1 [5]

At steady state, we can write

P s = s (7.92)

We can use the technique explained in Section 4.10 on page 140 to construct a
system of linear equations that can be solved using any of the specialized software
designed to solve large systems of linear equations.

1 Another useful technique for triangularizing a matrix is to use Householder transformation. How-
ever, we prefer Givens rotation due to its numerical stability. Alston Householder once commented
that he would never fly in an airplane that was designed with the help of a computer using floating
point arithmetic [4].
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7.8 M/Mm/1/B Queue

In an M/Mm/1 queue at any time step, at most one customer could arrive and at
most m customers could leave. We shall encounter this type of queue when we
study network switches where first-in-first-out (FIFO) queues exist at each input
port. For each queue, one packet arrives at the input line to the storage buffer, but a
maximum of m packets can leave the queue destined to the different switch outputs.
Therefore, the queue size can increase by one, but can decrease by more than one.
The probability that a packet arrives is a and b = 1 − a is the probability that a
packet does not arrive at a time step. Define ci, j as the probability that j customers
leave the queue when there are i customers in the queue.

ci, j =
(

i

j

)
c j di− j (7.93)

where c is the probability that a packet departs and d = 1 − c. The state transition
matrix is an upper (B + 1) × (B + 1) Hessenberg matrix in which all the elements
of subdiagonals 2, 3, . . . are zero—i.e., pi j = 0 for i > j + 1. The matrix has only
m superdiagonals. If we assume an arriving packet is served at the same time step,
then the transition matrix for the case when B = 6 and m = 3 will have the form

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

q0 r1 s2 t3 0 0 0
p0 q1 r2 s3 t4 0 0
0 p1 q2 r3 s4 t5 0
0 0 p2 q3 r4 s5 y
0 0 0 p3 q4 r5 x2

0 0 0 0 p4 q5 x1

0 0 0 0 0 p5 x0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(7.94)

where the matrix elements are given by the general expressions

pi = a ci+1,0 (7.95)

qi = a ci+1,1 + b ci,0 (7.96)

ri = a ci+1,2 + b ci,1 (7.97)

si = a
i+1∑

j=m

ci+1, j + b ci,2 (7.98)

ti = b
i∑

j=m

ci, j (7.99)

xi = c6,i (7.100)

y =
B∑

j=m

cB, j (7.101)
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The condition for the stability of the queue is when average traffic at the queue
input is smaller than the average traffic at the queue output:

a < m c (7.102)

7.8.1 M/Mm/1/B Queue Performance

The average input traffic for the M/Mm/1/B queue is obtained simply as

Na(in) = a (7.103)

Traffic is lost in the M/Mm/1/B queue when it becomes full and a packet
arrives while no packets leave. The average lost traffic Na(lost) is expressed
simply as

Na(lost) = a sB cB,0 (7.104)

The packet loss probability L is the ratio of lost traffic relative to the input
traffic:

L = Na(lost)

Na(in)
= sB cB,0 (7.105)

The throughput of the queue is obtained using the traffic conservation principle:

Th = Na(in) − Na(lost)

= a (1 − sB) (7.106)

The efficiency of the M/Mm/1/B queue is given by

η = 1 − L

= 1 − sB cB,0 (7.107)

The average queue size is given by the equation

Qa =
B∑

i=0

i si (7.108)

We can invoke Little’s result to estimate the wait time, which is the average num-
ber of time steps a packet spends in the queue before it is routed:

Qa = W × Th (7.109)
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where W is the average number of time steps that a packet spends in the queue.
Thus, W is give by

W = Qa

Th
(7.110)

The wait time is measured in units of time steps. The wait time in units of seconds
is given by the unnormalized version of Little’s result.

W ′ = Qa

T h′ (7.111)

Example 7.9 Consider the M/Mm/1/B queue with the following parameters
a = 0.1, c = 0.07, m = 2, and B = 5. Check its stability condition and find
the equilibrium distribution vector and the queue performance.

Using (7.94), the transition matrix is

P =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0.9070 0.0635 0.0044 0 0 0
0.0930 0.8500 0.1186 0.0126 0 0
0 0.0865 0.7966 0.1661 0.0241 0
0 0 0.0804 0.7464 0.2069 0.0425
0 0 0 0.0748 0.6994 0.2618
0 0 0 0 0.0696 0.6957

⎤

⎥⎥⎥⎥⎥⎥
⎦

The transition matrix has two superdiagonals because m = 2.
The steady-state distribution vector is the eigenvector of P that corresponds to

unity eigenvalue. We have

s = [
0.2561 0.3584 0.2414 0.1043 0.0324 0.0074

]t

We see that the most probable state for the queue is state s1 which occurs with
probability 35.8%.

The queue performance is as follows:

Na(lost) = 6.4058 × 10−4 packets/time step

Th = 0.0994 packets/time step

L = 0.0064 × 10−2

η = 0.9936

Qa = 1.3205 packets

W = 13.2906 time steps

Example 7.10 Find the performance of the queue in the previous example when the
queue size becomes B = 10.
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The queue performance is as follows:

Na(lost) = 2.6263 × 10−8 packets/time step

Th = 0.1 packets/time step

L = 2.6263 × 10−7

η = 1

Qa = 1.3286 packets

W = 13.2862 time steps

We see that increasing the queue size exponentially decreases the loss probability.
The throughput is not changed by much.

Example 7.11 Plot the M/Mm/1/B performance when m = 2 and the input traffic
varies between 0 ≤ a ≤ 1 for B = 5 and c = 0.05.

Figure 7.7 shows the throughput, efficiency, loss probability, and delay to plot
these quantities versus input traffic.
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Fig. 7.7 M/Mm/1/B throughput, efficiency, loss probability and delay versus input traffic when
m = 2, B = 5, and c = 0.05
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The important things to note from this example are as follows:

1. The throughput of the queue increases with increasing input traffic but shows
slight decrease when the input traffic approaches the value m c.

2. The efficiency of the queue is very close to 100% until the input traffic ap-
proaches the maximum output traffic m c.

3. Packet loss probability is always present but starts to increase when the input
traffic approaches the value m c.

4. Packet decreases when the input traffic approaches the value m c. This is due to
the queue size becoming constant while the throughput keeps increasing.

7.8.2 Performance Bounds on M/Mm/1/B Queue

The previous examples help us get some rough estimates for the performance
bounds of the M/M/m1/B queue.

Under full load conditions, the M/Mm/1/B becomes full and we can assume

a → 1 (7.112)

b → 0 (7.113)

s0 → 0 (7.114)

sB → 1 (7.115)

Qa → B (7.116)

The maximum lost traffic is given from (7.104) by

Na(lost)max = cB,0

= (1 − c)m

≤ dm (7.117)

where n = min(B, m). The reason for the inequality sign is that sB seldom
approaches 1.

The maximum packet loss probability is given from (7.105) by

L(max) = cB,0

= (1 − c)n

≤ dn (7.118)

The maximum throughput is given from (7.106) by

Th(max) = 1 − cB,0

≥ 1 − (1 − c)m

= 1 − dm (7.119)
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The minimum efficiency of the M/Mm/1/B queue is given from (7.107) by

η(min) ≥ 1 − dm (7.120)

The maximum delay is given by the approximate formula

W (max) ≤ B

Th(max)

≤ B

1 − dm

≤ B

1 − dm
(7.121)

7.8.3 Alternative Solution Method

When B is large, it is better to use numerical techniques such as forward- or back-
ward substitution using Givens rotations.

At steady state, we can write

P s = s (7.122)

We can use the technique explained in Section 4.10 on page 140 to construct a
system of linear equations that can be solved using any of the specialized software
designed to solve large systems of linear equations.

7.9 The D/M/1/B Queue

In the D/M/1/B queue, packets arrive at a fixed rate but leave the queue in a ran-
dom fashion. Let us assume that the time step is chosen such that exactly one packet
arrives at the nth time step. Assume also that c is the probability that a packet leaves
the queue during one time step. We also assume that at most one packet leaves
the queue in one time step. d = 1 − c has the usual meaning. Figure 7.8 shows
the state transition diagram for such queue for the case when n = 4 and B = 4
also. The number of rows correspond to the number of time steps between packet
arrivals. The last row corresponds to the states when a packet arrives. The number of
columns corresponds to the size of the queue such that each column corresponds to a
particular state of queue occupancy. For example, the leftmost column corresponds
to the case when the queue is empty. The rightmost column corresponds to the case
when the queue is full. The state of occupancy of the queue is indicated in Table 7.1.
In that case, we know that a packet arrives when the queue is in one of the bottom
states s3,0, s3,1, s3,2, s3,3, or s3,4.
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Fig. 7.8 State transition diagram for the discrete-time D/M/1/B queue

Table 7.1 Relation of the
queue states and the
D/M/1/B queue occupancy

States Queue occupancy

s0,0–s3,0 Queue empty
s0,1–s3,1 One customer in queue
s0,2–s3,2 Two customers in queue

...
...

s0, j –s3, j j customers in queue
...

...

The state vector s can be grouped into B subvectors

s = [
s0 s1 · · · sB

]t
(7.123)

where the subvector s j correspond to the j th column in Fig. 7.8 and is given by

s j = [
s0, j s1, j · · · sn−1, j

]t
(7.124)

which corresponds to the case when there are j customers in the queue. The
state transition matrix P corresponding to the state vector s will be of dimension
n(B + 1) × n(B + 1). We describe the transition matrix P as a composite matrix of
size (B + 1) × (B + 1) as follows:
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P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

A C 0 · · · 0 0 0
B D C · · · 0 0 0
0 B D · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · D C 0
0 0 0 · · · B D C
0 0 0 · · · 0 B E

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(7.125)

where all the matrices A, B, C, D, and E are of dimension n×n. For the case n = 4,
we can write

A =

⎡

⎢⎢
⎣

0 0 0 c
1 0 0 0
0 1 0 0
0 0 1 0

⎤

⎥⎥
⎦ , B =

⎡

⎢⎢
⎣

0 0 0 d
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥
⎦ , C =

⎡

⎢⎢
⎣

0 0 0 0
c 0 0 0
0 c 0 0
0 0 c 0

⎤

⎥⎥
⎦

D =

⎡

⎢⎢
⎣

0 0 0 c
d 0 0 0
0 d 0 0
0 0 d 0

⎤

⎥⎥
⎦ , E =

⎡

⎢⎢
⎣

0 0 0 1
d 0 0 0
0 d 0 0
0 0 d 0

⎤

⎥⎥
⎦

Having found the state transition matrix, we are now able to find the steady-
state value for the distribution vector of the D/M/1/B queue. At steady state, the
distribution vector s is derived from the two equations

P s = s (7.126)

1 s = 1 (7.127)

where 1 is a row vector whose components are all 1s.
We can find the vector s by iterations as follows. We start by assuming a value

for element s0,0 = 1. As a consequence, all the elements of the vector s0 can be
found as follows

s1,0 = s0,0 = 1 (7.128)

s2,0 = s1,0 = 1 (7.129)

s3,0 = s2,0 = 1 (7.130)
...

Thus, we know that s0 is assumed to be a vector whose components are all 1s. To
find s1 we use the equation

s0 = As0 + Cs1 (7.131)
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or

s1 = C−1(I − A)s0 (7.132)

Since we have an initial assumed value for s0, we now know s1. In general, we
can write the iterative expressions

si = C−1(I − A)si−1 1 ≤ i ≤ B (7.133)

Having found all the vectors si , we obtain the normalized distribution vector s′

as

s′ = s

/
n−1∑

i=0

B∑

j=0

si, j (7.134)

7.9.1 Performance of the D/M/1/B Queue

The average input traffic Na(in) is needed to estimate the efficiency of the queue and
queue delay. Since we get one packet every n time steps, Na(in) is given by

Na(in) = 1

n
(7.135)

The throughput of the queue is given by

Th = csn−1,0 + c
n−1∑

i=0

B∑

j=1

si, j

= c

(

1 −
n−2∑

i=0

si,0

)

(7.136)

The efficiency of the D/M/1/B queue is given by

η = Th

Na(in)
= cn

(

1 −
n−2∑

i=0

si,0

)

(7.137)

Packets are lost in the D/M/1B queue when the queue is full and a packet arrives
but does not leave. The average lost traffic is given by

Na(lost) = dsn−1,B (7.138)
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The packet loss probability L is given by

L = Na(lost)

Na(in)
= dnsn−1,B (7.139)

The average queue size is given by

Qa =
n−1∑

i=0

B∑

j=0

i si, j (7.140)

7.10 The M/D/1/B Queue

In the M/D/1/B queue, packets arrive in a random fashion but leave the queue at a
fixed rate. Let us assume that the time step is chosen such that a packet leaves at the
nth time step. Assume also that a is the probability that it arrives at queue during one
time step. b = 1 − a has the usual meaning. We also assume that at most one packet
arrives in the queue in one time step. Figure 7.9 shows the state transition diagram
for such queue for the case when n = 4 and B = 4 also. The number of rows
corresponds to the number of time steps between packet departures. The last row
corresponds to the states when a packet leaves. The number of columns corresponds
to the size of the queue such that each column corresponds to a particular state of
queue occupancy. For example, the leftmost column corresponds to the case when
the queue is empty. The rightmost column corresponds to the case when the queue
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Fig. 7.9 State transition diagram for the discrete-time M/D/1/B queue
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Table 7.2 Relation of the
queue states and the
M/D/1/B queue occupancy

States Queue occupancy

s0,0–s3,0 Queue empty
s0,1–s3,1 One customer in queue
s0,2–s3,2 Two customers in queue

...
...

s0, j –s3, j j customers in queue
...

...

is full. The state of occupancy of the queue is indicated in Table 7.2. In that case,
we know that a packet leaves when the queue is in one of the bottom states s3,1, s3,2,
s3,3, or s3,4.

The state vector s can be grouped into B sub vectors

s = [
s0 s1 · · · sB

]t
(7.141)

where the subvector s j corresponds to the j th column in Fig. 7.8 and is given by

s j = [
s0, j s1, j · · · sn−1, j

]t
(7.142)

corresponds to the case when there are j customers in the queue.
The state transition matrix P corresponding to the state vector s will be of dimen-

sion n(B +1)×n(B +1). We describe the transition matrix P as a composite matrix
of size (B + 1) × (B + 1) as follows:

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

A C 0 · · · 0 0 0
B D C · · · 0 0 0
0 B D · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · D C 0
0 0 0 · · · B D C
0 0 0 · · · 0 B E

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(7.143)

where all the matrices A, B, C, D, and E are of dimension n×n. For the case n = 4,
we can write

A =

⎡

⎢⎢
⎣

0 0 0 1
b 0 0 0
0 b 0 0
0 0 b 0

⎤

⎥⎥
⎦ , B =

⎡

⎢⎢
⎣

0 0 0 0
a 0 0 0
0 a 0 0
0 0 a 0

⎤

⎥⎥
⎦ , C =

⎡

⎢⎢
⎣

0 0 0 b
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥
⎦

D =

⎡

⎢⎢
⎣

0 0 0 a
b 0 0 0
0 b 0 0
0 0 b 0

⎤

⎥⎥
⎦ , E =

⎡

⎢⎢
⎣

0 0 0 a
1 0 0 0
0 1 0 0
0 0 1 0

⎤

⎥⎥
⎦
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Having found the state transition matrix, we are now able to find the steady-
state value for the distribution vector of the M/D/1/B queue. At steady state, the
distribution vector s is derived from the two equations

P s = s (7.144)

1 s = 1 (7.145)

where 1 is a row vector whose components are all 1s.
We can find the vector s by iterations as follows. We start by assuming a value

for element s0,0 = 1. As a consequence, all the elements of the vector s0 can be
found as follows:

s1,0 = bs0,0 = b (7.146)

s2,0 = bs1,0 = b2 (7.147)

s3,0 = bs2,0 = b3 (7.148)
...

Thus we know s0. To find s1, we use the equation

s0 = As0 + Cs1 (7.149)

or

s1 = C−1(I − A)s0 (7.150)

Since we have an initial assumed value for s0, we now know s1. In general, we
can write the iterative expressions

si = C−1(I − A)si−1 1 ≤ i ≤ B (7.151)

Having found all the vectors si , we obtain the normalized distribution vector s′

as

s′ = s

/
n−1∑

i=0

B∑

j=0

si, j (7.152)

7.10.1 Performance of the M/D/1/B Queue

The average input traffic Na(in) is needed to estimate the efficiency of the queue and
queue delay. Na(in) is given by

Na(in) = N a (7.153)
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The throughput of the queue is given by

Th = a
B∑

j=0

sn−1, j (7.154)

The efficiency of the D/M/1/B queue is given by

η = Th

Na(in)
= 1

N
×

B∑

j=0

sn−1, j (7.155)

Packets are lost in the M/D/1/B queue when the queue is full and a packet
arrives but does not leave. The average lost traffic is given by

Na(lost) = a
n−2∑

i=0

si,B (7.156)

The packet loss probability L is given by

L = Na(lost)

Na(in)
= 1

N

n−2∑

i=0

si,B (7.157)

The average queue size is given by

Qa =
n−1∑

i=0

B∑

j=0

i si, j (7.158)

7.11 Systems of Communicating Markov Chains

In the previous sections, we investigated the behavior of single Markov chains or
single queues. More often than not, communication systems are composed of in-
terconnected or interdependent Markov chains or queues. As an example, let us
consider Figure 7.10. This system represents an entity that is connected to a bus or
a communication channel in general. This could be the Ethernet network interface

Transmit
Buffer (B)

 Traffic
Source

Medium
Access
Module

 Communication
Channel

Fig. 7.10 A system of several Markov chains or queues
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card (NIC) on a computer connected to a local-area network. The system to be
analyzed consists of

1. Traffic source
2. Packet or transmit buffer
3. Medium access module

Each one of these components can be modeled individually using Markov chain
analysis. For example, the traffic source can be modeled using the techniques in
Chapter 11. The transmit buffer is of course modeled using any of the queuing
models discussed in this chapter. The medium access module could be modeled
using the techniques discussed in Chapter 10.

Let us assume that the Markov models for the three components are characterized
by s1 states for the traffic source, s2 states for the queue, and s3 states for the medium
access module. We could develop a unified Markov model for our system and this
would probably require s1 × s2 × s3 states. This is the state explosion problem asso-
ciated with most Markov chain models. If we, on the other hand, treat the problem
as a system of dependent Markov chains, then we are in effect dealing with the
individual components and the total number of states is s1 + s2 + s3. Of course, we
cannot solve each system separately since the state of each component depends on
the other components communicating with it.

We can generalize the problem by considering a communicating Markov chain
system composed of n modules. Module i is characterized by four quantities:

1. State transition matrix Pi

2. Steady-state distribution vector si

3. Probabilities xi corresponding to the module inputs
4. Probabilities yi corresponding to the module outputs

The parameters of each transition matrix Pi (0 ≤ i < n) depend, in general,
on the values of s j , x j , and y j of all the other modules or systems. Furthermore,
the module inputs and outputs xi and yi might also depend on the queue param-
eters such as s j . In this analysis, we assume that xi and yi are independent vari-
ables for simplicity. Figure 7.11 shows the system of n interdependent Markov
chains.

Fig. 7.11 Model of a network
of interdependent Markov
chains

P0 
, s0x0 y0

P1 
, s1x1 y1

Pn–1, sn–1xn–1 yn–1

...
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If we attempt to model the system in Fig. 7.11 as a single Markov chain, the
number of states we have to deal with would be given by

Merged number of states = n−1
�

i=0
Ki

where Ki is the number of states of module i . If all the modules had the same
number of states (K ), then the total number of states would have been

Merged number of states = K n

If we deal with the system as a system of communicating and dependent Markov
chains, then the total number of states we have to deal with would be given by

Number of states =
n−1∑

i=0

Ki

where Ki is the number of states of module i . If all the modules had the same
number of states (K ), then the total number of states would have been

Number of states = nK

For typical systems, the quantity nK is much smaller than K n . As an example,
assume a modest system where each module has K = 10 states and we have n
modules where n = 5. The number of states using the two approaches yields

Number of states = K n = 105 = 100, 000

Number of states = nK = 50

The situation is even worse and had K = 100 where our states would have been
10 billion using the former approach compared to 500 using the latter.

This is one reason that researchers and engineers alike attempt to use Petri nets
to describe typical systems [6, 7]. However, Petri nets are basically graphical tools.
Our approach in this section could be very loosely considered as approaching Petri
nets through establishing the communicating channels and dependencies between
the different modules of the system.

For each module in the system, we can write the steady-state equation

Pi (s j , x j , y j ) × si = si 0 ≤ i, j < n (7.159)

where the notation Pi (s j , x j , y j ) indicates that Pi is a function of s j , x j , and y j .

Example 7.12 Assume a system of two interdependent queues such that the first
queue is a simple M/M/1/B queue with parameters: arrival probability a, departure
probability c, and size B = 2. The second queue depends on the first queue as
indicated by the state transition matrix
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Y =
[

α 1 − x0

1 − α x0

]

where α < 0 and x0 is the probability that the first queue is empty. Explain how the
steady-state distribution vectors x and y of the two queues could be obtained.

We have for the first queue

X =
⎡

⎣
1 − ad bc 0

ad f bc
0 ad 1 − bc

⎤

⎦ x = [
x0 x1 x2

]t

where f = ac + bd. Since the first queue is not dependent on the second queue, the
steady-state distribution vector is found using Equation (7.17)

x = 1 − ρ

1 − ρ3
× [

1 ρ ρ2
]t

where ρ = ad/bc.
For the second queue, we have

Y =
[

α 1 − x0

1 − α x0

]
y = [

y0 y1
]t

Matrix Y is determined since we know the value of x0. Thus, we can find the
value of y using any of the techniques that we studied in Chapter 4.

7.11.1 A General Solution for Communicating Markov Chains

In the general case, a simple solution for the system is not possible due to the com-
plexity of the transition matrices. The general steps we recommend to employ can
be summarized as follows:

Step 0: Initialization of si

Set initial nonzero values for all the distribution vectors si (0) for all 0 ≤ i < n. Of
course, each vector must be normalized in the sense that the sum of its components
must always be 1. In general, at iteration k, the estimated value of si (k) is known.
The notation si (k) indicates the value of si at iteration k.

Step 1: Estimating Pi

The elements of the transition matrices Pi (k) at iteration k can now be estimated
since si (k), xi , and yi are known. Initially, k = 0 to start our iterations and we are
then able to calculate the initial Pi (0).

Step 2: Calculating si

Knowing Pi (k) we can now calculate the values si,c(k), where the notation si,c(k)
indicates the calculated value of si (k) which will most probably be different from
the assumed si (k). We calculate si,c(k) using the equation
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si,c(k) = Pi (k) si (k) (7.160)

Again, initially k = 0 at the start of iterations.

Step 3: Calculating the Estimation Error ei (k)
The calculated value si,c(k) will not be equal to the values si (k). The estimation error
vector is calculated as

ei (k) = si,c(k) − si (k) (7.161)

The magnitude of the estimation error for si (k) is given by

εi (k) =
√

et
i (k) ei (k) (7.162)

Step 4: Updating Value of si (k)
We are now able to update our guess of the state vectors and obtain new and better
values si (k + 1) according to the update equations

si (k + 1) = si (k) + αei (k) 0 ≤ i < n (7.163)

where α � 1 is a small correction factor to ensure smooth convergence.

Step 5: Improving the Estimated Values of si (k)
We repeat steps 1–4 with the new values si (k + 1) until the total error measure εt is
below an acceptable level

εt =
n∑

i=0

εi ≤ γ (7.164)

where γ is the acceptable error threshold.
We are “confident” that convergence will take place since at each iteration the

matrices Pi (k) are all column stochastic and their eigenvalues satisfy the inequality
λ ≤ 1.

Problems

Throughput and Efficiency

7.1 Consider a switch that generates its own traffic, Na(internal), in addition to the
traffic arriving at its input, Na(in), according to the discussion in Section 7.3.
Define the throughput and the efficiency for this system in terms of Na(in),
Na(internal), and Na(out), such that η never exceeds unity.
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M/M/1 Queue

7.2 Prove that (7.13) on page 229 is true when the M/M/1 queue is stable.
7.3 Consider an M/M/1 with a distribution vector ρ very close to unity such that

ρ = 1 − ε

where ε � 1. Find the equilibrium distribution vector.
7.4 Consider an M/M/1 queue with arrival probability a = 0.5 and departure

probability c = 0.6.

(a) Construct the first six rows and columns of the transition matrix P.
(b) Find the values of the first ten components of the equilibrium distribution

vector.
(c) Calculate the queue performance.

7.5 Repeat Problem 7.4 when the departure probability becomes almost equal to
the arrival probability (e.g., c = 0.55).

7.6 Consider an M/M/1 queue with arrival probability a = 0.1 and departure
probability c = 0.5.

(a) Construct the first six rows and columns of the transition matrix P.
(b) Find the values of the first ten components of the equilibrium distribution

vector.
(c) Calculate the queue performance.

7.7 Repeat Problem 7.6 when the departure probability becomes almost equal to
the arrival probability (e.g., c = 0.11).

7.8 In an M/M/1 queue, it was found out that the average queue size Qa = 5
packets and the average waiting time is W = 20 time steps. Calculate the
queue arrival and departure probabilities and find the first ten entries of the
distribution vector.

7.9 In an M/M/1 queue, it was found out that the average queue size Qa = 2
packets and the average waiting time is W = 100 time steps. Calculate the
queue arrival and departure probabilities and find the first ten entries of the
distribution vector.

7.10 Equation (7.7) describes the M/M/1 queue when a packet could be served in
the same time step at which it arrives. Suppose that an arriving packet cannot
be served until the next time step. What will be the expression for the state
matrix? Compare your result to (7.7).

7.11 Derive the performance for the M/M/1 queue described in Problem 7.10.
7.12 In the M/M/1 queue in Problem 7.10, it was found that the average queue

size is Qa = 2 packets and the average waiting time is W = 100 time steps.
Calculate the queue arrival and departure probabilities and find the first ten
entries of the distribution vector.
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M/M/1/B Queue

7.13 Prove the average queue size formula for the M/M/1/B queue given in (7.47)
on page 236.

7.14 Consider an M/M/1/B queue with arrival probability a = 0.5, departure
probability c = 0.6, and the maximum queue size is B = 4.

(a) Construct the transition matrix P.
(b) Find the values of the components of the equilibrium distribution vector.
(c) Calculate the queue performance.
(d) Compare your results with those of the M/M/1 queue in Problem 7.4

having the same arrival and departure probabilities.

7.15 Repeat Problem 7.14 when the departure probability becomes almost equal
to the arrival probability (e.g., c = 0.55). Compare your results with those
of the M/M/1 queue in Problem 7.5 having the same arrival and departure
probabilities.

7.16 Repeat Problem 7.14 when the departure probability actually exceeds the
arrival probability (e.g., c = 0.8). Compare your results with those of the
M/M/1 queue in Problem 7.5 having the same arrival and departure proba-
bilities.

7.17 Consider an M/M/1/B queue with arrival probability a = 0.1, departure
probability c = 0.5, and maximum queue size B = 5.

(a) Construct the transition matrix P.
(b) Find the values of the equilibrium distribution vector.
(c) Calculate the queue performance.
(d) Compare your results with those of the M/M/1 queue in Problem 7.6

having the same arrival and departure probabilities.

7.18 Repeat Problem 7.17 when the departure probability becomes almost equal
to the arrival probability (i.e., c = 0.11). Compare your results with those
of the M/M/1 queue in Problem 7.7 having the same arrival and departure
probabilities.

7.19 Equation (7.30), on page 234, describes the M/M/1/B queue when a packet
could be served in the same time step at which it arrives. Suppose that an
arriving packet cannot be served until the next time step. What will be the
expression for the state matrix? Compare your result to (7.30).

7.20 Derive the performance for the M/M/1/B queue described in Problem 7.19.
7.21 Consider an M/M/1/B queue with arrival probability a = 0.4, departure

probability c = 0.39, and maximum queue size B = 5. The queue is not
stable since the arrival probability is larger than the departure probability.

(a) Construct the transition matrix P.
(b) Find the values of the equilibrium distribution vector.
(c) Calculate the queue performance.
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7.22 In the M/M/1 queue in Problem 7.20 it was found out that the average queue
size Qa = 2 packets and the average waiting time is W = 100 time steps.
Calculate the queue arrival and departure probabilities and find the first ten
entries of the distribution vector.

Mm/M/1/B Queue

7.23 Write down the entries for the transition matrix of an Mm/M/1/B queue in
terms of the arrival and departure statistics ak and c, respectively. Consider the
case when B = 4.

7.24 Equation (7.63), on page 241, describes the Mm/M/1/B queue when up to
m packets could arrive at one time step. Prove that for the special case when
m = 1, (7.63) becomes identical to (7.30).

7.25 Equation (7.63) describes the Mm/M/1/B queue when a packet could be
served in the same time step at which it arrives. Suppose that an arriving packet
cannot be served until the next time step. What will be the expression for the
state matrix? Compare your result to (7.63).

7.26 Consider an Mm/M/1/B queue with arrival probability a = 0.2, m = 2,
departure probability c = 0.39, and maximum queue size B = 5. The queue
is not stable since the average number of arrivals is larger than the average
number of departures.

(a) Construct the transition matrix P.
(b) Find the values of the equilibrium distribution vector.
(c) Calculate the queue performance.

7.27 In the analysis of the Mm/M/1 queue, it was assumed that when a packet
arrives, it can be serviced at the same time step. Suppose the arriving packet
is serviced the next time step. Draw the state transition diagram and at write
down the corresponding transition matrix. Derive the main performance equa-
tions of such a queue.

M/Mm/1/B Queue

7.28 Write down the entries for the transition matrix of an M/Mm/1/B queue in
terms of the arrival and departure statistics a and ck , respectively. Consider the
case when B = 4.

7.29 Equation (7.94), on page 248, describes the M/Mm/1/B queue when up to
m packets could leave at one time step. Prove that for the special case when
m = 1, (7.94) becomes identical to (7.30).

7.30 Equation (7.94) describes the Mm/M/1/B queue when a packet could be
served in the same time step at which it arrives. Suppose that an arriving packet



268 7 Queuing Analysis

cannot be served until the next time step. What will be the expression for the
state matrix? Compare your result to (7.94).

7.31 Consider an M/Mm/1/B queue with arrival probability a = 0.5, departure
probability c = 0.2, m = 2, and maximum queue size B = 5. The queue
is not stable since the average number of arrivals is larger than the average
number of departures.

(a) Construct the transition matrix P.
(b) Find the values of the equilibrium distribution vector.
(c) Calculate the queue performance.

7.32 In the analysis of the M/Mm/1 queue, it was assumed that when a packet
arrives, it can be serviced at the same time step. Suppose the arriving packet
is serviced the next time step. Draw the state transition diagram and at write
down the corresponding transition matrix. Derive the main performance equa-
tions of such a queue.
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Chapter 8
Modeling Traffic Flow Control Protocols

8.1 Introduction

In this chapter, we illustrate how to develop queuing models for three protocols of
traffic management:

1. The leaky bucket algorithm
2. The token bucket algorithm
3. Virtual scheduling algorithm (VS)

Modeling a protocol or a system is just like designing a digital system, or any
system for that matter. There are many ways to model a protocol based on the as-
sumptions that one makes. My motivation here is simplicity and not taking a guided
tour through the maze of protocol modeling. My recommendation to the reader is
to read the discussion on each protocol and then lay down the outline of a model
that describes the protocol. The model or models developed here should then be
compared with the one attempted by the reader.

8.2 The Leaky Bucket Algorithm

Computer traffic is seldom uniform and is characterized by periods of burstiness.
Traffic bursts tax the network resources such as switch buffers and lead to network
congestion and data loss. Because it is impossible for the network to accept only
uniform traffic, mechanisms have been proposed to regulate or smooth out these
bursts.

Thus traffic shaping, also known as traffic policing, aims at regulating the aver-
age rate of traffic flow even in the presence of occasional bursts [1]. This helps to
manage the congestion problem at the switches.

When a user accesses the network, the important parameter to describe the traffic
is the average data rate (λa). This is estimated by observing the number of packets
(N ) sent over a long time interval t and finding the average data rate as λa = N/t .
This rate is compared to a maximum rate (λb) that is specified by the leaky bucket
algorithm. As long as λa < λb, the user is classified as conforming, and data is

F. Gebali, Analysis of Computer and Communication Networks,
DOI: 10.1007/978-0-387-74437-7 8, C© Springer Science+Business Media, LLC 2008
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270 8 Modeling Traffic Flow Control Protocols

accepted. Users that obey this traffic contract are termed conforming users, while
users that violate this contract are termed violating or nonconforming users. Traffic
policing to ensure that each user is conforming is done at the points where users
access the network (ingress points).

Leaky bucket is a rate-based algorithm for controlling the maximum rate of traf-
fic arriving from a source. If the input data rate is less than the maximum rate spec-
ified by the algorithm, leaky bucket accepts the data. If the input data rate exceeds
the maximum rate, leaky bucket passes the data at the maximum rate and excess
data is buffered. If the buffer is full, then excess data is discarded. In our modeling
of the leaky bucket algorithm, we are interested only in the state of the data buffer
since the state of that buffer dictates the actions to be done on the incoming traffic.
Our aim then is to simply model the buffer state so that we are able to predict the
performance of the algorithm.

Figure 8.1(a) shows the leaky bucket buffer. The buffer accepts incoming data
and releases the stored packets at a data rate that does not exceed λb. Depending on
the data arrival rate λa and the state of occupancy of the packet buffer, the following
scenarios could take place.

1. λa < λb: Data arrive at a rate (λa) lower than the maximum rate (λb) specified by
the leaky bucket algorithm. In that case, data will be accepted as shown by the
arrival of packets 1 and 2 in Fig. 8.1(b). The long time interarrival time between
packets 1 and 2 indicate a low data arrival rate. We assumed in the figure that the
maximum departure rate λb is equivalent to three time steps between packets.
As soon as these packets arrive, they are passed through by the leaky bucket
algorithm.

Variable rate
input traffic

Output traffic with
fixed maximum rate

Packet buffer

Output traffic with maximum rate

time

1 2 3 5 6 74

1 2 3 54

(a)

(b)

Input traffic with variable rate

6

8 9 10

7

Fig. 8.1 The leaky bucket algorithm smoothes input variable rate traffic by buffering it and regu-
lating the maximum buffer output traffic rate: (a) Packet buffer; (b) Packet arrival and departure
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2. λa > λb: Data arrive at a rate higher than λb, and the data buffer is not full. In
that case, data will be buffered so that it can be issued at the maximum rate λb.
This is shown by the arrival of packets 3, 4, and 5 in Fig. 8.1(b). Note that packets
3, 4, and 5 arrive close together in time at the input indicating a high-input data
rate. The interarrival time is 2 time steps, which indicates higher data rate than λb

which is equivalent to two time steps. At the output, the spacing between these
packets is equivalent to data transmitted at the rate λb.

3. λa > λb: Data arrive at a rate higher than λb, and the data buffer is full. In that
case, data will be discarded or labeled as nonconforming. This is shown by, ar-
rival of packets 6 and 7 in Fig. 8.1(b).

Figure 8.2 shows the variation of output data rate in relation to the input data rate.
Grey areas indicate input data rate and solid black lines indicate maximum data rate
λb. Output data rate does not exceed λb, and any excess input traffic is buffered or
lost. The figure shows two occasions when the input data rate exceeds λb. When this
situation happens, excess data are buffered and then released when the output data
rate becomes low again.

8.2.1 Modeling the Leaky Bucket Algorithm

In this section, we perform Markov chain analysis of the leaky bucket algorithm.
The states of the Markov chain represent the number of packets stored in the leaky
bucket buffer.

Packets arrive at the input of the buffer at a rate λin, which varies with time
because of the burstiness of the source. To model the source burstiness in a simple
manner, we assume that the data source has the following parameters:

λa average data rate of source
σ source burst rate when it is nonconforming
λa and σ typically satisfy the relations

λa < λb (8.1)

σ > λb (8.2)

Time0

Maximum output rate

D
at

a 
ra

te

Fig. 8.2 Control of data rate by the leaky bucket algorithm. Data rate at the input is indicated by
the grey areas, and data rate at the output is indicated by the black lines
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where λb is the maximum data departure rate as determined by the leaky bucket
algorithm.

On the other hand, packets leave the buffer with an output rate λout given by

λout =
{

min (λin, λb) when packet buffer is empty
λb when packet buffer is not empty

(8.3)

Notice that the output data rate is governed by the state of the data buffer and not
by the input data rate.

The leaky bucket algorithm can be modeled using two different types of queues
depending on our choice of the time step. These two approaches are explained in
the following two sections.

8.2.2 Single Arrival/Single Departure Model (M /M /1/B)

In this approach to modeling the leaky bucket algorithm, we take the time step equal
to the inverse of the maximum data rate on the line.

T = 1

λl
(8.4)

where the time step value is measured in units of seconds, and λl is the maximum
input line rate (in units of packets/second) such that

λb < λl

The above inequality is true since the line is shared by many users. The time T
is the time between packet arrivals at the maximum allowable rate on the input line.
When λl is specified in units of bits per second (bps), T is obtained as

T = A

λl
(8.5)

where A is the average packet length.
Figure 8.3 shows the events of packet arrival and departure and also the time step

value as indicated by the spacing between the grey tick marks.
At a given time step, a maximum of one packet could arrive at or leave the buffer.

The packet arrival probability (a) is given by studying the number of arriving pack-
ets in a time t . The average number of packets arriving in this time frame is

N (in) = λa t (8.6)
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Variable rate input traffic

Output traffic with maximum rate

time

time step

1 2 3 4 5

1 2 3 4 5

6 7

Fig. 8.3 The leaky bucket algorithm where the time step is chosen equal to the inverse of the
maximum line rate

But during this time period, we have N time steps with N = t/T . The average
number of arriving packets is estimated also using the binomial distribution as

N (in) = a N = a
t

T
(8.7)

From the above two equations, we get

a = λa T = λa

λl
(8.8)

Of course, when the source is conforming, the departure probability is c = 1.
Using a similar argument, the minimum packet departure probability (c) is give by

c = λout

λl
(8.9)

Therefore, we have a single-input, single-output data buffer whose size is as-
sumed B. The queue, we are studying becomes M/M/1/B queue, and the transition
matrix is (B + 1) × (B + 1) and is given by

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

f0 bc 0 0 · · · 0 0 0 0
ad f bc 0 · · · 0 0 0 0
0 ad f bc · · · 0 0 0 0
0 0 ad f · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · f bc 0 0
0 0 0 0 · · · ad f bc 0
0 0 0 0 · · · 0 ad f bc
0 0 0 0 · · · 0 0 ad 1 − bc

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(8.10)

where b = 1 − a, d = 1 − c, f0 = 1 − ad, and f = 1 − ad − bc.
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8.2.3 Leaky Bucket Performance (M /M /1/B Case)

Having obtained the transition matrix, we are able to calculate the performance of
the leaky bucket protocol.

The throughput of the leaky bucket algorithm when the M/M/1/B model is used
is given from Section 7.6 by

Th = c (1 − bs0) (8.11)

The throughput is measured in units of packets/time step. The throughput in units
of packets/second is expressed as

Th′ = Th

T
= Th × λl

A
(8.12)

where we assumed λl was given in units of bits/second.
The average number of lost or tagged packets per time step is obtained using the

results of the M/M/1/B queue

Na(lost) = sB ad (8.13)

The lost traffic is measured in units of packets/time step. And the number of
packets lost per second is

N ′
a(lost) = Na(lost)

T

= Na(lost) × λl

A
(8.14)

where we assumed λl was given in units of bits/second. The packet loss probability
is given by

L = Na(lost)

Na(in)
= sB ad

λa
(8.15)

The average queue size is given by

Qa =
B∑

i = 0

i si (8.16)

where si is the probability that the data buffer has i packets.
Using Little’s result, the average wait time in the buffer is

W = Qa

Th
(8.17)
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The wait time is measured in units of time steps. The wait time in units of seconds
is given by

W ′ = Qa

Th′ (8.18)

Example 8.1 A leaky bucket traffic shaper has the following parameters.

λa = 1 Mbps σ = 4 Mbps
λb = 1.5 Mbps λl = 50 Mbps
A = 400 bits B = 5 packets

Derive the performance of this protocol using the M/M/1/B modeling approach.
The arrival probability is

a = λa

λl
= 0.02

The minimum departure probability is

c = λb

λl
= 0.03

We see that under the assumed traffic conditions the arrival probability is larger
than the departure probability and we expect the packet buffer to be filled.

The transition matrix will be

P =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0.9399 0.0281 0 0 0 0
0.0601 0.9117 0.0281 0 0 0
0 0.0601 0.9117 0.0281 0 0
0 0 0.0601 0.9117 0.0281 0
0 0 0 0.0601 0.9117 0.0281
0 0 0 0.0601 0.9719

⎤

⎥⎥⎥⎥⎥⎥
⎦

The equilibrium distribution vector is

s = [
0.0121 0.0258 0.0551 0.1177 0.2516 0.5377

]t

Since s5 = 0.5377, we conclude that 53.77% of the time the packet data buffer
is full. The other performance parameters are
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Th = 0.0297 packets/time step
Th′ = 3.7076 × 103 packets/s
Na(lost) = 0.0323 packets/time step
N ′

a(lost) = 4.0424 × 103 packets/s
L = 1.0432 × 10−8

Qa = 4.1843 packets
W = 141.0713 times steps
W ′ = 94.048 �s

We note that the leaky bucket is tagging or dropping 76.02% of the incoming
packets.

8.2.4 Multiple Arrival/Single Departure Model (M m/M /1/B)

In this approach to modeling the leaky bucket algorithm, we take the time step equal
to the inverse of the maximum data rate as dictated by the leaky bucket algorithm
for that particular source.

T = 1

λb
(8.19)

where the time step is measured in units of seconds and the leaky bucket rate λb is
in units of packets/second. Usually, λb is specified in units of bits/second. In that
case, T is obtained as

T = A

λb
(8.20)

where A is the average packet length.
Figure 8.4 shows the events of packet arrival and departure and also the time step

value as indicated by the spacing between the successive output packets.

Variable rate input traffic

Output traffic with maximum rate

time

time step

1 2 3 4 5

1 2 3 4 5

6 7

Fig. 8.4 Events of packet arrival and departure for the leaky bucket algorithm. The time step value
is equal to the time between two adjacent output packets
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At a given time step, one or more packets could arrive at the buffer and only
one packet can leave if the buffer is not empty. Therefore, we have an Mm/M/1/B
queue to describe the state of the packet buffer.

The average data rate of the source as seen by the leaky bucket algorithm is given
by λa. The maximum number of packets that could arrive at the queue input in one
time step is determined by the maximum burst rate σ

N = �σ × T � =
⌈

σ

λb

⌉
(8.21)

where �x� the is ceiling function which produces the smallest integer that is larger
than or equal to x .

The probability of k packets arriving in one time step is given by

ak =
(

N

k

)
ak bN−k k = 0, 1, 2, ..., N (8.22)

where a is the probability that a packet arrives and b = 1 − a.
The average number of packets arriving in one time step is estimated as

Na(in) = λa T (8.23)

The average input packets is estimated also using the binomial distribution as

Na(in) = a N = a �σ T � (8.24)

From the above two equations, we get

a = λa T

�σ T � ≤ λa

σ
(8.25)

Because of our choice for the time step size, the queue size can only decrease by
one at most at any instant with probability c = 1. Assuming the packet buffer size
is B, the transition matrix will be (B + 1) × (B + 1) and will be slightly modified
from the form given by (7.63) on page 241:

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

x a0 0 0 0 · · · 0
a2 a1 a0 0 0 · · · 0
a3 a2 a1 a0 0 · · · 0
a4 a3 a2 a1 a0 · · · 0
...

...
...

...
...

. . . 0
aB aB−1 aB−2 aB−3 aB−4 · · · a0

zB zB−1 zB−2 zB−3 zB−4 · · · z0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(8.26)
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where x = a0 + a1 and

zi = 1 −
i∑

j = 0

a j (8.27)

8.2.5 Leaky Bucket Performance (M m/M /1/B Case)

Having obtained the transition matrix, we are able to calculate the performance of
the leaky bucket protocol.

The throughput of the leaky bucket algorithm when the Mm/M/1/B model is
used is given from Section 7.7 on page 241 with a departure probability c = 1

Th = 1 − a0 s0 (8.28)

The throughput is measured in units of packets/time step and the throughput in
units of packets/second is

Th′ = Th × λb packets/s (8.29)

The lost or tagged packets are given by

Na(lost) = Na(in) − Na(out)

= Na − (1 − a0 s0) (8.30)

The lost traffic is measured in units of packets/time step. The average lost traffic
per second is given by

N ′
a(lost) = Na(lost)

T
= [Na − (1 − a0 s0)] λb (8.31)

The packet loss probability l is the ratio of lost traffic relative to the input traffic

L = Na(lost)

Na(in)

= 1 − 1 − a0 s0

Na
(8.32)

The average queue size is given by

Qa =
B∑

i=0

i si (8.33)

where si is the probability that the data buffer has i packets.
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Using Little’s result, the average wait time in the buffer is

W = Qa

Th
(8.34)

The wait time is measured in units of time steps. The wait time in units of seconds
is given by

W ′ = Qa

Th′ (8.35)

Example 8.2 Repeat Example 8.1 using the Mm/M/1/B modeling approach.
The average input data rate is

λa = 1 × 0.3 + 4 × 0.7 = 3.1 Mbps

N is found as

N =
⌈

σ

λb

⌉
= 3

The packet arrival probability is

a = λa × T = 0.6889

The probability that k packets arrive in one time step is

ak =
(

3

k

)
akb3−k K = 0, 1, 2, 3

The transition matrix will be

P =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0.2301 0.0301 0 0 0 0
0.4429 0.2000 0.0301 0 0 0
0.3269 0.4429 0.2000 0.0301 0 0
0 0.3269 0.4429 0.2000 0.0301 0
0 0 0.3269 0.4429 0.2000 0.0301
0 0 0 0.3269 0.7699 0.9699

⎤

⎥⎥⎥⎥⎥⎥
⎦

The equilibrium distribution vector is

s = [
0 0 0.0001 0.0014 0.0370 0.9615

]t

We see that 96% of the time the packet buffer is full. The other performance
parameters are:
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Th = 1 packets/time step
Th′ = 3.7500 × 103 packets/s
Na(lost) = 1.0667 packets/time step
L = 0.5161
Qa = 4.9600 packets
W = 4.96 time steps
W ′ = 1.3 ms

Comparing these performance figures with those obtained for the same system
using the M/M/1/B queue, we see that the packet throughput and delay in the
system are approximately similar. One possible reason for the small variation is the
use of the ceiling function in the Mm/M/1/B analysis.

8.3 The Token Bucket Algorithm

Token bucket is a credit-based algorithm for controlling the volume of traffic arriv-
ing from a source. Tokens are issued at a constant rate and arriving packets can leave
the system only if there are tokens available in the token buffer. Figure 8.5 shows the
token bucket algorithm as it applies to a packet buffer. Figure 8.5(a) shows the input
data buffer and token buffer. Input data arrive with a variable rate while the tokens
arrive with a constant rate. There is mutual coupling or feedback between the two

Input traffic arrive
at a variable rate Packet buffer

Output traffic with
variable rate

4

4

5

5

time

1 2

2

3

3

6 7

1

(a)

(b)

Input traffic with
variable rate

Arriving token
at a constant rate

6

8

Token arrive
at a constant rate Token buffer

Tokens and output
traffic depart with
same variable rate

Mutual coupling

Fig. 8.5 The token bucket algorithm smoothes input variable rate traffic by buffering it and regu-
lating the maximum buffer output traffic rate: (a) Packet buffer; (b) Packet arrival and departure
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buffers such that both the tokens and the packets depart at the same rate which varies
depending on the states of both queues.

Figure 8.5(b) shows the events of packet arrival and departure as well as token
arrival (indicated by the grey circles). Depending on the data arrival rate and the
state of occupancy of the token buffer, the following scenarios could take place.

1. No data arrive and tokens are stored in the buffer and count as credit for the
source. This is similar to the situation before the arrival of packet 1 in Fig. 8.5(b).

2. Data arrive at a rate lower than the token issue rate. In that cases, data will be
accepted and the excess tokens will be stored in the token buffer as credit since
the source is conforming. This is similar to the arrival of packets 1, 2 and 3 in
Fig. 8.5(b). More token arrive than data and token buffer starts filling up.

3. Data arrive at a rate higher than the token issue rate. In that cases, data will be
accepted as long as there are tokens in the buffer. This is similar to the arrival of
packets 4 and 5 in Fig. 8.5(b). Packets 4 and 5 go through although no tokens
have arrived because the token buffer was not empty. When the token buffer
becomes empty, data will be treated as in the following step.

4. Data arrive but no tokens are present. Only a portion of the data will be ac-
cepted at a rate equal to the token issue rate. The excess data can be discarded
or tagged as nonconforming. This is similar to the arrival of packets 6, 7, and 8
in Fig. 8.5(b). Packets 6 and 7 arrive when the token buffer is empty and do not
go through. The packets get stored in the packet buffer and when a token arrives
packet 6 goes through.

Figure 8.6 shows the variation of output data rate in relation to the input data
rate. Grey areas indicate input data rate and solid black lines indicate output data
rate. The dashed line in the middle of the figure indicates the token arrival rate. We
see that output data rate can temporarily exceed the token rate but only for a short
time. The duration of this burst depends on the amount of tokens stored in the token
buffer. Bigger token buffer size allows for longer bursts from the source. However,
a bursty source will not allow the token buffer enough time to fill up.

On the other hand, the packet buffer allows for temporary storage of arriving
packets when there are no tokens in the token buffer.

Time0

Token arrival rate

D
at
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te

Fig. 8.6 Control of data rate by the token bucket algorithm. Data rate at the input is indicated by
the grey areas, data rate at the output is indicated by the black lines and the dashed line is the token
issue rate
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8.3.1 Modeling the Token Bucket Algorithm

In this section, we perform Markov chain analysis of the token bucket algorithm.
The states of the Markov chain represent the number of tokens stored in the token
buffer or bucket and the number of packets stored in the packet buffer.

We cannot model the token buffer separately from the packet buffer since the
departure from one buffer depends on the state of occupancy of the other buffer. In
a sense, we have two mutually coupled queues as was shown in Fig. 8.5(a).

The token bucket algorithm can be modeled using two different types of queues
depending on our choice of the time step. These two approaches are explained in
the following two sections.

8.3.2 Single Arrival/Single Departures Model (M /M /1/B)

In this approach to modeling the token bucket algorithm, we take the time step equal
to the inverse of the maximum data rate on the line

T = 1

λl
(8.36)

where T is measured in units of seconds and λl is the maximum input line rate in
units of packets/second. Usually, λl is specified in units of bits per second. In that
case, T is obtained as

T = A

λl
(8.37)

where A is the average packet length.
Figure 8.7 shows the events of packet arrival and departure and also the time step

value as indicated by the spacing between the grey tick marks.

Output traffic with
variable rate

4

4

5

5

time

1 2

2

3

3

6 7

1

Input traffic with
variable rate

Arriving token
at fixed rate

6

8

time step

Fig. 8.7 The token bucket algorithm where the time step is chosen equal to the inverse of the
maximum line rate
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Packets arrive at the input of the buffer at a rate λa which varies with time because
of the burstiness of the source. To model the source burstiness in a simple manner,
we assume the data source has the following parameters:

λa Source average data rate.
σ Source burst rate.
λa and σ typically satisfy the relations

λa < λt (8.38)

σ > λt (8.39)

where λt is the token arrival rate.

The overall average data rate of the source as seen by the token bucket algorithm
is given by λa. At a given time step a maximum of one token could arrive at or leave
the token buffer. Thus the packet buffer is described by an M/M/1/B queue. The
token arrival probability (a) is given by

a = λt

λl
(8.40)

We also define b = 1 − a as the probability that a token does not arrive.
At a given time step, a maximum of one packet could arrive or leave the packet

buffer. Since a token leaves the token buffer each time a packet arrives, the token
departure probability c is given by

c = λa

λl
(8.41)

We also define d = 1 − c as the probability that a token does not leave the token
buffer.

The state of occupancy of the token buffer depends on the statistics of token and
packet arrivals as follows

1. The token buffer will stay at the same state with probability ac +bd, i.e., when a
token arrives and a packet arrives or when no token arrives and no packet arrives
too.

2. The token buffer will increase in size by one with probability ad; i.e., if a token
arrives but no packets arrive.

3. The token buffer will decrease in size by one with probability bc; i.e., if no token
arrives but one packet arrives.

The state of occupancy of the packet buffer depends on the statistics of the token
and packet arrivals as follows
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1. The packet buffer will stay at the same state with probability ac+bd, i.e., when a
token arrives and a packet arrives or when no token arrives and no packet arrives
too.

2. The packet buffer will increase in size by one with probability bc; i.e., if no token
arrives but one packet arrives.

3. The packet buffer will decrease in size by one with probability ad; i.e., if a token
arrives but no packets arrive.

Based on the above discussion, we have two single-input, single-output buffers.
The size of the token buffer is assumed Bt and the size of the packet buffer is as-
sumed Bp.

Figure 8.8 shows the Markov chain transition diagram for the system comprising
the token and packet buffers. The upper row represents the states of the token buffer
and the lower row represents the states of the packet buffer. The transition proba-
bilities are dictated by the token and packet arrival probabilities and the states of
occupancy of the token and packet buffers. The figure shows a token buffer whose
size is Bt = 4 and a packet buffer whose size is Bp = 3.

The numbering of the states is completely arbitrary and does not necessarily
represent the number of tokens or packets in a buffer. The meaning of each state is
shown in Table 8.1.

ad ad ad
ac+bd

bc bc bc

ac+bdac+bd

s7 s8

s5s4s3s2

s6

s1ac+bd

ac+bd 1-ad

1-bc

ac+bd

bc bc

ad ad

bc

ad

ad

bc

Token buffer states

Packet buffer states

Fig. 8.8 Markov chain transition diagram for the system comprising the token and packet buffers.
Token buffer size is Bt = 4 and packet buffer size is Bp = 3

Table 8.1 Defining the
binomial coefficient

Token buffer Packet buffer
State occupancy occupancy

s1 0 0
s2 1 0
s3 2 0
s4 3 0
s5 4 0

s6 0 1
s7 0 2
s8 0 3
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The transition matrix of the composite system is a
(
Bt + Bp + 1

)×(Bt + Bp + 1
)

tridiagonal matrix. For the case when Bt = 4 and Bp = 3, the matrix is given by

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

f bc 0 0 0 ad 0 0
ad f bc 0 0 0 0 0
0 ad f bc 0 0 0 0
0 0 ad f bc 0 0 0
0 0 0 ad 1 − bc 0 0 0
bc 0 0 0 0 f ad 0
0 0 0 0 0 bc f ad
0 0 0 0 0 0 bc 1 − ad

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(8.42)

where b = 1 − a, d = 1 − c, and f = ac + bd = 1 − ad − bc.

8.3.3 Token Bucket Performance (M /M /1/B Case)

Having obtained the transition matrix, we are able to calculate the performance of
the token bucket protocol.

The throughput of the token bucket algorithm is the average number of packets
per time step that are produced without being tagged or lost. To find the throughput
we must study all the states of the combined system. It is much easier to obtain the
throughput using the traffic conservation principle after we find the lost traffic.

Packets are lost or tagged for future discard if they arrive when the packet buffer
is full and no token arrives at that time step. The average number of lost or tagged
packets per time step is

Na(lost) = b c sBt + Bp + 1 (8.43)

The lost traffic is measured in units of packets/time step. And the number of
packets lost in units of packets/second is

N ′
a(lost) = Na(lost)

T
= Na(lost) λl (8.44)

The average number of packets arriving per time step is given by

Na(in) = c (8.45)

The packet loss probability is

L = Na(lost)

Na(in)

= b c sBt + Bp + 1

c
= b sBt + Bp + 1 (8.46)
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The throughput of the token bucket algorithm is obtained using the traffic con-
servation principle

Th = Na(in) − Na(lost)

= c − b c sBt + Bp + 1

= c
(
1 − b sBt + Bp + 1

)
(8.47)

The throughput is measured in units of packets/time step. The throughput in units
of packets/second is expressed as

Th′ = Th

T
= Th × λl

A
(8.48)

where we assumed λl was given in units of bits/second.
The packet acceptance probability pa or η of the token bucket algorithm is

pa = Th

Na(in)
= 1 − L

= 1 − b sBt + Bp + 1 (8.49)

We remind the reader that packet acceptance probability is just another name
for the efficiency of the token bucket algorithm. It merely indicates the percent-
age of packets that make it through that traffic regulator without getting lost or
tagged.

The average queue size for the tokens is given by

Qt =
Bt∑

i=1

i si+1 (8.50)

Notice the range of values of the state index in the above equation.
Similarly, the average queue size for the packets is given by

Qp =
Bp∑

i=1

i si+Bt+1 (8.51)

Notice the range of values of the state index in the above equation.
Using Little’s result, the average wait time or delay for the packets in the packet

buffer is

W = Qp

Th
(8.52)
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The wait time is measured in units of time steps. The wait time in seconds is
given by

W ′ = Qp

Th′ (8.53)

Example 8.3 Find the performance of a token bucket traffic shaper that has the fol-
lowing parameters, where A is the average packet length.

λa = 10 Mbps σ = 50 Mbps
λt = 15 Mbps λl = 100 Mbps
A = 400 bits Bt = 2 packets
Bp = 3 packets

The token arrival probability is

a = λt

λl
= 0.15

The average data rate at the input is

λa = p λa + (1 − p) σ = 26 Mbps

The token departure probability is

c = λa

λl
= 0.26

The transition matrix will be

P =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0.6680 0.2210 0 0.1110 0 0
0.1110 0.6680 0.2210 0 0 0
0 0.1110 0.7790 0 0 0
0.2210 0 0 0.6680 0.1110 0
0 0 0 0.2210 0.6680 0.1110
0 0 0 0 0.2210 0.8890

⎤

⎥⎥⎥⎥⎥⎥
⎦

The equilibrium distribution vector is

s = [
0.0641 0.0322 0.0162 0.1276 0.2541 0.5059

]t

We see that 50.59% of the time the packet buffer is full indicating that the source
is misbehaving. The other performance parameters are

Na(lost) = 0.1118 packets/time step
N ′

a(lost) = 2.7949 × 104 packets/s
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L = 0.7453
Th = 0.1482 packets/time step
Th′ = 3.7051 × 104 packets/s
pa = 0.57
Qa = 2.1533 packets
W = 14.5294 times steps
W ′ = 5.8118 × 10−5 s

Example 8.4 Investigate the effect of doubling the token buffer or the packet buffer
on the performance of the token bucket algorithm in the above example.

Doubling the token buffer to Bt = 4 or doubling the packet buffer result in the
following parameters:

Parameter Bt = 2, Bp = 3 Bt = 4, Bp = 3 Bt = 2, Bp = 6

Na(lost) 0.1118 0.1104 0.1102
L 0.4300 0.4248 0.4239
Th 0.1482 0.1496 0.1498
pa 0.57 0.5752 0.5761
Qa 2.1533 2.1274 5.0173
W 14.5294 14.2250 33.4988

We note that increasing the buffer size improves the system performance. How-
ever, doubling the packet buffer size doubles the delay without too much improve-
ment in throughput compared to doubling the token buffer size.

8.3.4 Multiple Arrivals/Single Departures Model (M m/M /1/B)

In this approach to modeling the token bucket algorithm, we take the time step equal
to the inverse of the fixed token arrival rate.

T = 1

λt
(8.54)

where T is measured in units of seconds and λt is the token arrival rate in units
of packets/s. Usually, λl is specified in units of bits per second. In that case, T is
obtained as

T = A

λt
(8.55)

where A is the average packet length.
Figure 8.9 shows the events of packet arrival and departure and also the time step

value as indicated by the spacing between the successive tokens.
Thus at a given time step only one token arrives at the buffer and one or more

tokens can leave if the buffer is not empty and data arrives. The token arrival prob-
ability per time step is given by
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Fig. 8.9 Events of packet arrival and departure for the token bucket algorithm. The time step value
is equal to the time between two adjacent arriving tokens

a = 1 (8.56)

The average number of arriving packets per time step is given by

Na(in) = λa

λt
(8.57)

where the average input data rate (λa) is given as before by

λa = pλa + (1 − p)σ (8.58)

where p is the probability that the source is producing data at the rate λa and 1 − p
is the probability that the source is producing data at the burst rate σ . λa could be
smaller or larger than λt depending on the probability p.

The maximum number of packets (N ) that could arrive at the queue input as
determined by the burst rate σ

N =
⌈

σ

λt

⌉
(8.59)

with �x� is the smallest integer that is larger than or equal to x . The average number
of packets that arrive per time step is given from (8.57) and (8.59) according to the
binomial distribution as

N x = Na(in) (8.60)

where x is the probability of a packet arriving. The above equation gives x as

x = Na(in)

N
(8.61)
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Thus we are now able to determine the packet arrival probabilities as

ci =
(

N

i

)
xi (1 − x)L−i i = 0, 1, 2, ..., N (8.62)

The state of occupancy of the token buffer depends on the statistics of token and
packet arrivals as follows:

1. The token buffer will stay at the same state with probability c1, i.e., when one
packet arrives.

2. The token buffer will increase in size by one with probability c0; i.e., when no
packets arrive.

3. The token buffer will decrease in size by one with probability c2; i.e., when two
packets arrive.

4. The token buffer will decrease in size by i with probability ci+1; i.e., when i + 1
packets arrive with i < N

The state of occupancy of the packet buffer depends on the statistics of token and
packet arrivals as follows

1. The packet buffer will stay at the same state with probability c1, i.e., when one
packet arrives.

2. The packet buffer will decrease in size by one with probability c0; i.e., when no
packets arrive.

3. The packet buffer will increase in size by one with probability c2; i.e., when two
packets arrive.

4. The packet buffer will increase in size by i with probability ci+1; i.e., when i + 1
packets arrive with i < N

Based on the above discussion, we have two buffers to hold the tokens and the
packets. The token buffer is single-input multiple output while the packet queue is
multiple input, single-output. The size of the token buffer is assumed Bt and the size
of the packet buffer is assumed Bp.

Figure 8.10 shows the Markov chain transition diagram for the system compris-
ing the token and packet buffers. The upper row represents the states of the token
buffer and the lower row represents the states of the packet buffer. The transition
probabilities are dictated by the packet arrival probabilities and the states of occu-
pancy of the token and packet buffers. The figure shows a token buffer whose size is
Bt = 4 and a packet buffer whose size is Bp = 3. The maximum number of packets
that could arrive in one time step is assumed N = 3. Figure 8.10 shows the c0, c1,
and c2 transitions. The c3 transitions are only shown out of states s4 and s6 in order
to reduce the clutter.

The meaning of each state is shown in Table 8.2.
The transition matrix of the composite system is a

(
Bt + Bp + 1

)×(Bt + Bp + 1
)

tridiagonal matrix. For the case when Bt = 4, Bp = 3, and, N = 3, the matrix is
given by
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P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

c1 c2 c3 0 0 c0 0 0
c0 c1 c2 0 0 0 0 0
0 c0 c1 c2 0 0 0 0
0 0 c0 c1 c2 0 0 0
0 0 0 c0 1 − c2 0 0 0

c2 c3 0 0 0 c1 c0 0
c3 0 0 0 0 c2 c1 c0

0 0 0 0 0 c3 c2 + c3 1 − c0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(8.63)

8.3.5 Token Bucket Performance (Multiple Arrival/Departure
Case)

Having obtained the transition matrix, we are able to calculate the performance
figures of the token bucket protocol.

The throughput of the token bucket algorithm is the average number of packets
per time step that are produced without being tagged or lost. To find the throughput

Ns2 s3 s4 s5

c0

c1 s1

s6 s7 s8

c2
c3c2

c2

c2

c0

c1 c1 c1
c0c0

c2 c2c2
c3

c0

c1

c0
c1

c0
1-c0

1-c2

Token buffer states

Packet buffer states

Fig. 8.10 Markov chain transition diagram for the system comprising the token and packet buffers.
Token buffer size is Bt = 4, packet buffer size is Bp = 3, and N = 3. The c3 transitions are only
shown out of states s4 and s6 in order to reduce the clutter

Table 8.2 Defining the
binomial coefficient

Token buffery Packet buffer
State occupancy occupancy

s1 0 0
s2 1 0
s3 2 0
s4 3 0
s5 4 0

s6 0 1
s7 0 2
s8 0 3
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we must study all the states of the combined system. It is much easier to obtain the
throughput using the traffic conservation principle after we find the lost traffic.

Packets are lost or tagged for future discard if more than one packet arrives when
the packet buffer cannot accommodate all of them.

When N < Bp, the average number of lost or tagged packets per time step is
given by

Na(lost) =
Bp−1∑

i=1

sBt+Bp+2−i

N∑

j=i+1

i ( j − 1)c j (8.64)

The lost traffic is measured in units of packets/time step. And the number of
packets lost per second is

N ′
a(lost) = Na(lost)

T
= Na(lost) λl (8.65)

The average number of packets arriving per time step is given by

Na(in) =
N∑

i=0

i ci = N x (8.66)

The packet loss probability is

L = Na(lost)

Na(in)

= Na(lost)

N c
(8.67)

The throughput of the token bucket algorithm is obtained using the traffic con-
servation principle

Th = Na(in) − Na(lost)

= N c − Na(lost) (8.68)

The throughput is measured in units of packets/time step. The throughput in units
of packets/second is expressed as

Th′ = Th

T
= Th × λl (8.69)

The packet acceptance probability of the token bucket algorithm is

pa = Th

Na(in)

= 1 − Na(lost)

N c
(8.70)
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We remind the reader that packet acceptance probability is just another name for
the efficiency of the token bucket algorithm. It merely indicates the percentage of
packets that make it through that traffic regulator without getting lost or tagged.

The average queue size for the tokens is given by

Qt =
Bt∑

i=1

i si+1 (8.71)

Notice the value of the state index in the above equation.
The average queue size for the packets is given by

Qp =
Bp∑

i=1

i si+Bt+1 (8.72)

Notice the value of the state index in the above equation.
Using Little’s result, the average wait time or delay for the packets in the packet

buffer is

W = Qp

Th
(8.73)

The wait time is measured in units of time steps. The wait time in seconds is
given by

W ′ = Qp

Th′ (8.74)

Example 8.5 Repeat Example 8.3 using the multiple arrival/departure modeling
approach.

The maximum number of packets that could arrive in one time step m is found
as

N =
⌈

σ

λout

⌉
= 4

The average input data rate is

λa = 10 × 0.6 + 50 × 0.4 = 26 Mbps

The packet arrival probability is

x = 26

100
= 0.4333

The probability that k packets arrive in one time step is
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ck =
(

4

k

)
akb4−k k = 0, 1, 2

The transition matrix will be 6 × 6 and is given by

P =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0.3154 0.3618 0.1844 0.1031 0 0
0.1031 0.3154 0.3618 0 0 0
0 0.1031 0.4184 0 0 0
0.3618 0.1844 0.0353 0.3154 0.1031 0
0.1844 0.0353 0 0.3618 0.3154 0.1031
0.0353 0 0 0.2197 0.5815 0.8965

⎤

⎥⎥⎥⎥⎥⎥
⎦

The equilibrium distribution vector is

s = [
0.0039 0.0006 0.0001 0.0231 0.1388 0.8334

]t

State s2 indicates that there is a 0.0006 probability that there is one token in
the token buffer. State s6 indicates that 83.34% of the time the packet buffer is full
indicating the source is misbehaving and the packet buffer is full.

The throughput of the queue is given by

Na(lost) = 0.3279 packets/time step
N ′

a(lost) = 1.2298 × 104 packets/s
L = 0.1892
Th = 1.4054 packets/time step
Th′ = 5.2702 × 104 packets/s
pa = 0.8108
Qa = 2.8 packets
W = 1.9931 time steps
W ′ = 5.3149 × 10−5 s

Example 8.6 Investigate the effect of doubling the token buffer or the packet buffer
on the performance of the token bucket algorithm in the above example.

Doubling the token buffer to Bt = 4 or doubling the packet buffer result in the
following parameters:

Parameter Bt = 2,Bp = 3 Bt = 4, Bp = 3 Bt = 2, Bp = 6

Na(lost) 0.3279 0.3279 0.3279
L 0.1892 0.1892 0.1892
Th 1.4054 1.4054 1.4054
pa 0.8108 0.8108 0.8108
Qa 2.8011 2.8011 5.8002
W 1.9931 1.9931 4.1271
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Because the token buffer was nearly empty in the original system, doubling the
size of the token buffer has no impact on the system performance as can be seen
by comparing the second and third columns of the above table. Doubling the packet
buffer size doubles the delay without noticeable improvement in throughput.

8.4 Virtual Scheduling (VS) Algorithm

The virtual scheduling (VS) algorithm manages the ATM network traffic by closely
monitoring the cell arrival rate. When a cell arrives, the algorithm calculates the
theoretical arrival time (TAT) of the next cell according to the formula

TAT = 1

λa
(8.75)

where λa is the expected average data rate (units of cells/second). TAT is measured
by finding the difference between the arrival times of the headers of two consecutive
ATM cells as explained in Fig. 8.11. This is not the time between the last bit of one
cell and the first bit of the other.

If the cell arrival rate is in units of bits/second, then TAT is written as

TAT = A

λa
(8.76)

where A is the size of an ATM cell which is 424 bits.
Assuming the time difference between the current cell and the next cell is t , then

the cell is treated as conforming if t satisfies the following inequality

t ≥ TAT − � (8.77)

time

Interarrival time

Cell n Cell n + 1

Fig. 8.11 Measuring the interarrival time between two consecutive ATM cells
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where � is a small time value to allow for the slight variations in the data rate. The
cell is treated as misbehaving, or nonconforming, when the cell arrival time satisfies
the inequality

t < TAT − � (8.78)

The problem with the above two equations is that a source could keep sending
data at a rate slightly higher than λa and still be conforming if every cell arrives
within the bound of (8.77).

Figure 8.12 shows the different cases for cell arrival in VS. Figure 8.12(a) shows
a conforming cell because the cell arrival time satisfies (8.77). Figure 8.12(b) shows
another conforming cell because the arrival time still satisfies (8.77). Figure 8.12(c)
also shows a conforming cell because the arrival time satisfies the equality part of
(8.77). Figure 8.12(d) shows a nonconforming cell because the arrival time does not
satisfy (8.77).

8.4.1 Modeling the VS Algorithm

In this section, we perform Markov chain analysis of the virtual scheduling algo-
rithm. We make the following assumptions for our analysis of the virtual scheduling
algorithm.

1. The states of the Markov chain represent how many times the arriving cells from
a certain flow have been nonconforming. In other words, state si of the penalty
queue indicates that the source has been nonconforming i times.

time

current cell event

TAT

Δ

time

next cell event

time

time

next cell event

next cell event

next cell event

(a)

(b)

(c)

(d)

Fig. 8.12 Different cases for cell arrival in the VS algorithm. (a) t > TAT and cell is conforming.
(b) t = TAT and cell is conforming. (c) t = TAT − � and cell is conforming. (d) t < TAT − � and
cell is nonconforming
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2. The number of states (B) of the queue will dictate the maximum burst size tol-
erated. Which is equal to the maximum number of penalties allowed for that
source.

3. The queue changes states upon arrival of each cell.
4. Credit is given to the source each time it is conforming.
5. A penalty is given to the source each time it is nonconforming.
6. a is the probability that the arriving cell satisfies the inequality t ≥ TAT. In that

case, credit is issued to the source.
7. b is the probability that the arriving cell satisfies the following inequality

TAT − � ≤ t ≤ TAT

In that case, no credit or penalty is issued.
8. c is the probability that the arriving cell satisfies the inequality t < TAT. In that

case, a penalty is issued to the source.

Of course, c = 1 − a − b since the source cannot be in any other state.
Based on the above assumptions, we have a single arrival, single departure

M/M/1/B queue with B + 1 states. Figure 8.13 shows the state transitions for
the VS queue.

It is interesting to note that the state transition diagram of the virtual scheduling
algorithm in Fig. 8.13 is a special case of the state transition diagram for the token
bucket algorithm in Fig. 8.8 when the token bucket buffer size is Bt = 1.

The corresponding transition matrix P will be (B + 1) × (B + 1) and will have
the following entries for the case B = 5.

P =

⎡

⎢⎢⎢⎢⎢⎢
⎣

1 − c a 0 0 0 0
c b a 0 0 0
0 c b a 0 0
0 0 c b a 0
0 0 0 c b a
0 0 0 0 c 1 − a

⎤

⎥⎥⎥⎥⎥⎥
⎦

(8.79)

Notice that the transition matrix is tridiagonal because of the single arrival, single
departure feature of the queue.

0 2 3 4 5

a a a a

c c c c
1 - c b b b 1 - a

1

a

c
b

Fig. 8.13 State transition diagram for the VS queue for the case B = 5
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8.4.2 VS Protocol Performance

Having obtained the transition matrix, we are able to calculate the performance of
the VS protocol.

The probability that an arriving cell is marked for discard is considered equal
to the cell loss probability. This happens when the source exceeds the maximum
number of penalties allowed. Thus cell loss probability is given by

L = c sB (8.80)

where c is the probability that a cell arrived while the source is nonconforming and
sB is the probability that the penalty queue is full.

The average number of cells that are dropped per time step is given by

Na(lost) = L λa (8.81)

where λa is the average input data rate (units cells/time step).
The efficiency or access probability pa is the probability that an arriving cell is

not dropped or marked for future discard. pa is given by

pa = 1 − L = 1 − c sB (8.82)

The average number of packets that are accepted without being dropped per time
step is the system throughput and is given by

Th = pa λa

= (1 − c sB) λa (8.83)

The maximum burst size allowed from the packet source is determined by the
size of the queue.

Max. burst size = B cells (8.84)

Example 8.7 Estimate the performance of the VS algorithm for a source having the
following properties:

a = 0.2 b = 0.5
c = 0.3 A = 424 bits
λ = 150 Mbps B = 5
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The transition matrix for the VS protocol is given by

P =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0.7 0.2 0 0 0 0
0.3 0.5 0.2 0 0 0
0 0.3 0.5 0.2 0 0
0 0 0.3 0.5 0.2 0
0 0 0 0.3 0.5 0.2
0 0 0 0 0.3 0.8

⎤

⎥⎥⎥⎥⎥⎥
⎦

The distribution vector for the system is

s = [
0.0481 0.0722 0.1083 0.1624 0.2436 0.3654

]t

The performance figures of the protocol are as follows:

L = 0.1096
Na(lost) = 16.4436 × 106 packets/s
pa = 0.8904
Th = 133.5564 × 106 packets/s

Example 8.8 What would happen in the above example if the VS algorithm uses a
buffer whose size is B = 2?

The following table illustrates the effect of reducing the buffer size.

Parameter B = 8 B = 2

L 0.1096 0.1421
Na(lost) (M packets/s) 16.4436 21.3158
pa 0.8904 0.8579
Th (M packets/s) 133.5564 128.6842

As expected, the reduced penalty buffer results in decreased performance such
as higher cell loss probability and lower throughput.

Problems

Leaky Bucket Algorithm

8.1 In a leaky bucket traffic shaper, the packet arrival rate for a certain user is
on the average 5 Mbps with a maximum burst rate of 30 Mbps. The output
rate is dictated by the algorithm to be 10 Mbps. Derive the performance of
this protocol using the M/M/1/B modeling approach assuming packet buffer
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size to be B = 5 and the maximum line rate is 200 Mbps. Assume different
values for the probability that the source is conforming.

8.2 Repeat problem 8.1 using the Mm/M/1/B modeling approach.
8.3 An alternative to modeling the leaky bucket algorithm using the Mm/M/

1/B queue is to assume the Bernoulli probability of packet arrival to be
given as

a = λa

λl

which is similar to the packet arrival statistics for the M/M/1/B queue. Study
this situation using the data given in Example 8.1 and comment on your re-
sults.

Token Bucket Algorithm

8.4 Consider the single arrival/departure model for the token bucket algorithm.
Assume that arriving data are buffered in a packet buffer. Now we have two
buffers to consider: the token buffer and the data buffer. Model the data buffer
based on the results obtained for the token buffer

8.5 Estimate the maximum burst size in the token bucket protocol.
8.6 In a token bucket traffic shaper, the packet arrival rate for a certain user is

on the average 15 Mbps with a maximum burst rate of 30 Mbps. Assume the
source is conforming 30% of the time and the token arrival rate is dictated
by the algorithm to be 20 Mbps. Study the state of the token buffer using
the M/M/1/B modeling approach assuming its size to be B = 5 and the
maximum line rate is 100 Mbps.

8.7 Repeat Problem 8.6 using the multiple arrival/departure modeling approach.
8.8 Draw the Markov state transition diagram for the multiple arrival/departure

model when Bt = 4, Bp = 3, and m = 4.
8.9 Write down the transition matrix for the above problem and compare with the

same system that had m = 3 in (8.63) on page 291.
8.10 Write down the transition matrix for the multiple arrival/departure model when

Bt = 4, Bp = 6, and m = 8.

Virtual Scheduling Algorithm

8.11 Analyze the virtual scheduling algorithm in which an arriving cell is conform-
ing if t ≥ TAT − � and is nonconforming if t < TAT − �.

8.12 Compare the performance of the VS algorithm treated in the text to the VS
algorithm analyzed in Problem 8.11.
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8.13 Analyze the virtual scheduling algorithm in which an arriving cell is issued a
credit or penalty according to the criteria:

credit : t ≥ TAT + �

no action : TAT ≤ t < TAT + �

no action : ATA −� ≤ t < TAT + �

credit : t ≥ TAT − �
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Chapter 9
Modeling Error Control Protocols

9.1 Introduction

Modeling a protocol or a system is just like designing a digital system, or any system
for that matter — There are many ways to model a protocol based on the assump-
tions that one makes. My motivation here is simplicity and not taking a guided
tour through the maze of protocol modeling. My recommendation to the reader is
to read the discussion on each protocol and then lay down the outline of a model
that describes the protocol. The model or models developed here should then be
compared with the one attempted by the reader.

Automatic-repeat-request (ARQ) techniques are used to control transmission er-
rors caused by channel noise [1]. All ARQ techniques employ some kind of error
coding of the transmitted data so that the receiver has the ability to detect the pres-
ence of errors. When an error is detected, the receiver requests a retransmission
of the faulty data. ARQ techniques are simple to implement in hardware and they
are especially effective when there is a reliable feedback channel connecting the
receiver to the transmitter such that the round-trip delay is small.

There are three main types of ARQ techniques:

• Stop-and-wait ARQ (SW ARQ)
• Go-back-N ARQ (GBN ARQ)
• Selective-repeat ARQ (SR ARQ)

We discuss and model each of these techniques in the following sections.

9.2 Stop-and-Wait ARQ (SW ARQ) Protocol

Stop-and-wait ARQ (SW ARQ) protocol is a simple protocol for handling frame
transmission errors when the round-trip time (2τp) for frame propagation and recep-
tion of acknowledgment is smaller than frame transmission time (τt). The propaga-
tion delay τp is given by

τp = d

c

F. Gebali, Analysis of Computer and Communication Networks,
DOI: 10.1007/978-0-387-74437-7 9, C© Springer Science+Business Media, LLC 2008
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where c is speed of light and d is the distance between transmitter and receiver. The
transmission delay τt is given by

τt = L

λ

where L is the number of bits in a frame and λ is the transmission rate in bits per
second.

Thus, ARQ protocols are efficient and useful when we have

2τp � τt (9.1)

If the above inequality is not true, then forward error correction (FEC) techniques
should be used [1].

When the sender transmits a frame on the forward channel, the receiver checks it
for errors. If there are no errors, the receiver acknowledges the correct transmission
by sending an acknowledge (ACK) signal through the feedback channel. In that
case, the transmitter proceeds to send the next frame. If there were errors in the
received frame, the receiver sends a negative acknowledgment signal (NAK) and
the sender sends the same frame again. If the receiver does not receive ACK or
NAK signals due to some problem in the feedback channel, the receiver waits for a
certain timeout period and sends the frame again.

Based on the above discussion, we conclude that the time between transmitted
frames is equal to 2τp, where τp is the one-way propagation delay.

Figure 9.1 shows an example of transmitting several frames using stop-and-wait
ARQ. Frame 1 was correctly received as indicated by the ACK signal and the sender
starts sending frame 2.

Frame 2 was received in error as indicated by NAK and the grey line. The trans-
mitter sends frame 2 one more time. For some reason, no acknowledgment signals
were received (indicated by short grey line) and the sender sends frame 2 for the
third time after waiting for the proper timeout period.

Frame 2 was received correctly as indicated by the ACK signal and the sender
starts sending frame 3.

Fig. 9.1 Stop-and-wait ARQ
protocol
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9.2.1 Modeling Stop-and-Wait ARQ

In this section, we perform Markov chain analysis of the stop-and-wait algorithm.
We make the following assumptions for our analysis of the stop-and-wait ARQ
(SW ARQ):

1. The average length of a frame is n bits.
2. The forward channel has random noise and the probability that a bit will be

received in error is ε. Another name for ε is bit error rate (BER) .
3. The feedback channel is assumed noise-free so that acknowledgment signals

from the receiving station will always be transmitted to the sending station.
4. The sender will keep sending a frame until it is correctly received. The effect of

limiting the number of retransmissions is discussed in Problem 9.2.

The state of the sender while attempting to transmit a frame depends only on the
outcome of the frame just sent. Hence we can represent the state of the sender as a
Markov chain having the following properties:

1. State i of the Markov chain indicates that the sender is retransmitting the frame
for the i th time. State 0 indicates error-free transmission.

2. The number of states is infinite since no upper bound is placed on the number of
retransmissions.

3. The time step is taken equal to the sum of transmission delay and round-trip
delay T = τt + 2τp.

The state transition diagram for the SW ARQ protocol is shown in Fig. 9.2. In
the figure, e represents the probability that the transmitted frame contained an error.
e is given by the expression

e = 1 − (1 − ε)n (9.2)

For a noise-free channel ε = 0 and so e = 0. When the average number of errors
in a frame is very small (i.e., ε n � 1), we can write

e ≈ ε n (9.3)

The quantity ε n is an approximation of the average number of bits in error in a
frame (see Problems 9.4 and 9.5). Naturally, we would like the number of errors to
be small so as not to waste the bandwidth in retransmissions. Thus, we must have

e = ε n � 1 (9.4)

Fig. 9.2 State transition
diagram of a sending station
using the SW ARQ error
control protocol
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Equation (9.2) assumed no forward error correction (FEC) coding is imple-
mented. Problem 9.4 requires you to derive an expression for e when FEC is
employed.

We organize the state distribution vector as follows:

s = [
s0 s1 s2 · · · ]t

(9.5)

where si corresponds to retransmitting the frame for the i th time. s0 corresponds
to transmitting the frame once with zero retransmissions. This is the case when the
frame was correctly received without having to retransmit it.

The corresponding transition matrix of the channel is given by

P =

⎡

⎢⎢⎢⎢⎢
⎣

1 − e 1 − e 1 − e 1 − e · · ·
e 0 0 0 · · ·
0 e 0 0 · · ·
0 0 e 0 · · ·
...

...
...

...
. . .

⎤

⎥⎥⎥⎥⎥
⎦

(9.6)

At equilibrium, the distribution vector is obtained by solving the two equations

P s = s (9.7)
∑

s = 1 (9.8)

The solution to the above two equations is simple:

s = (1 − e) × [
1 e e2 · · · ]t

(9.9)

9.2.2 SW ARQ Performance

The average number of retransmissions for a frame is given by

Nt = (1 − e) × (s1 + 2s2 + 3s3 + · · · )

= (1 − e)2 ×
∞∑

i=0

i ei

= e transmissions/frame (9.10)

For a noise-free channel, e = 0 and the average number of retransmissions is
also 0. This indicates that a frame is sent once for a successful transmission.

For a typical channel, e ≈ ε n � 1 and the average number of transmissions can
be approximated as

Nt ≈ ε n (9.11)
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We define the efficiency of the SW ARQ protocol as the inverse of the total num-
ber of transmissions which includes the first transmission plus the average number
of retransmissions. In that case, η is given by

η = 1

1 + Nt
= 1

1 + e
(9.12)

For an error-free channel, Nt = 0 and η = 100%. For a typical channel,
e ≈ ε n � 1 and the efficiency is given by

η ≈ 1 − ε n (9.13)

This indicates that the efficiency decreases with increase in bit error rate or frame
size. Thus, we see that the system performance will degrade gradually with any
increase in the number of bits in the frame or any increase in the frame error proba-
bility.

The throughput of the transmitter can be expressed as

Th = η = 1 − e frames/time step (9.14)

Thus, for an error-free channel, η = 1 and arriving frames are guaranteed to be
transmitted on the first try. We could have obtained the above expression for the
throughput by estimating the number of frames that are successfully transmitted in
each transmitter state:

Th = (1 − e)
∞∑

i=0

si

= 1 − e (9.15)

When errors are present in the channel, then η < 1 and so is the system
throughput.

Example 9.1 Assume an SW ARQ protocol in which the frame size is n = 1000
and the bit error rate is ε = 10−4. Find the performance of the SW ARQ protocol for
this channel. Repeat the example when the bit error rate increases by a factor of 10.

According to (9.10), the average number of transmissions for a window is

Nt = 0.1052

and the efficiency is

η = 90.48%

Notice that because the bit error rate is low, we need just about one transmission
to correctly receive a frame.
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Now we increase the bit error rate to e = 10−3 and get the following results.

Nt = 1.7196

and the efficiency is

η = 36.77

Notice that when the bit error rate is increased by one order of magnitude, the
average number of frame retransmission is increased by a factor of 16.35.

9.3 Go-Back-N (GBN ARQ) Protocol

In the go-back-N protocol, the transmitter keeps sending frames but keeps a copy
in a buffer, which is called the transmission window. The number of frames in the
buffer, or the window, is N which equals the number of frames sent during one
round-trip time.

When the sender transmits the frames on the forward channel, the receiver checks
them for errors. If there are no errors, the receiver acknowledges each frame by
sending acknowledge (ACK) signals through the feedback channel. Upon reception
of an ACK for a certain frame, the receiver drops it from the head of its buffer. If
a received frame is in error, the receiver sends a negative acknowledgment signal
(NAK) for that particular frame. When the transmitter receives the NAK signal, it
resends all N frames in its buffer starting with the frame in error.

Figure 9.3 shows an example of transmitting several frames using go-back-N
where the buffer size is N = 3. Solid arrows indicate ACK signals and grey arrows
indicate NAK signals. Frame 1 was correctly received while frame 2 was received
in error. We see that the transmitter starts to send frame 2 and the three subsequent
frames that were in its buffer.

Fig. 9.3 Go-back-N ARQ
protocol with buffer size
N = 3. Solid arrows indicate
ACK signals and grey arrows
indicate NAK signals
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9.3.1 Modeling the GBN ARQ Protocol

In this section, we perform Markov chain analysis of the GBN ARQ protocol. We
make the following assumptions for our analysis of the go-back-N protocol.

1. Each window contains N frames.
2. The average length of a frame is n bits.
3. The forward channel has random noise and the probability that a bit will be

received in error is ε. Another name for ε is bit error rate (BER).
4. The feedback channel is assumed noise-free so that acknowledgment signals

from the receiving station will always be transmitted to the sending station.
5. The maximum number of retransmissions is km after which the sender will de-

clare the channel to be not functioning.

The state of the sender while attempting to transmit a frame depends only on the
outcome of the frame just sent. Hence we can represent the state of the sender as a
Markov chain having the following properties:

1. The states of the Markov chain are grouped into the sets T , R1, R2, etc. These
sets are explained below.

2. The number of states is infinite since no upper bound is placed on the number of
retransmissions.

3. The time step is taken equal to the sum of transmission delay of one frame
T = τt. Thus, a window that contains N frames will require N time steps to
be transmitted.

The set T represents the states of the sender while it is transmitting a window for
freshly arrived N frames:

T = {
t1 t2 · · · tN

}
(9.16)

The set R1 represents the states of the sender while it is retransmitting frames for
the first time due to a damaged or lost frame. This set is the union of several subsets

R1 = R1,1 ∪ R1,2 ∪ · · · ∪ R1,N (9.17)

where subset R1,i is the subset of R1 that contains i states corresponding to retrans-
mitting i frames for the first time. In other words, the first N − i frames have been
correctly received. With the help of (9.23) below, we can verify that all states in
subset R1,i are equal so that we can write the i states associated with R1,i as

R1,i = {
r1,i r1,i · · · r1,i

}
(9.18)
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Thus R1 has N unique subsets such that subset R1,i has i equal states r1,i :
r1,1 corresponding to last frame in error
r1,2 corresponding to frame before last in error
...
r1,N corresponding first frame in error
Similarly, the set R2 represents the states of the sender while it is retransmitting

frames for the second time. This set is the union of several subsets

R2 = R2,1 ∪ R2,2 ∪ · · · ∪ R1,N (9.19)

where subset R2,i is the subset of R2 that contains i states corresponding to retrans-
mitting i frames for the second time. With the help of (9.23), we can verify that
all states in subset R2,i are equal so that we can write the i states associated with
R2,i as

R2,i = {
r2,i r2,i · · · r2,i

}
(9.20)

Thus R2 has N unique subsets such that subset R2,i has i equal states r2,i :

r2,1 corresponding to last frame in error
r2,2 corresponding to frame before last in error
...
r2,N corresponding first frame in error

The state transition diagram for the GBN ARQ protocol is shown in Fig. 9.4. The
sets of states T , R1, and R2 are shown. To reduce clutter, only transitions in and out
of R1 are indicated. The thick lines indicate multiple transitions lumped together.
However, (9.23) shows all the transitions between states.

In the figure, all states in each column are equal due to the fact that the transition
probabilities between them is 1.

Fig. 9.4 State transition
diagram of a sending station
using the GBN ARQ error
control protocol. Only
transitions in and out of R1

are indicated
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We organize the state distribution vector in the following order:

s = [
T R1 R2 · · · ]t

(9.21)

For the case when N = 2, the distribution vector can be written as

s = [
t t | r1,1 r1,2 r1,2 | r2,1 r2,2 r2,2 | · · · ]t

(9.22)

The corresponding transition matrix of the sender for the case when N = 2 is
given by

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 p2,0 p1,0 0 p2,0 p1,0 0 p2,0 · · ·
1 0 0 0 0 0 0 0 · · ·

0 p2,1 0 0 0 0 0 0 · · ·

0 p2,2 0 0 0 0 0 0 · · ·
0 0 0 1 0 0 0 0 · · ·

0 0 p1,1 0 p2,1 0 0 0 · · ·

0 0 0 0 p2,2 0 0 0 · · ·
0 0 0 0 0 0 1 0 · · ·
...

...
...

...
...

...
...

...
. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(9.23)

In the above matrix, the transition probability pi, j is the probability that the last
j frames need to be retransmitted, given that a frame of i frames was sent. For
instance, p5,2 indicates the probability that the last two frames have to be retrans-
mitted, given that five frames were sent and the first three frames were received
without error. pi, j is given by the expression

pi, j = (1 − e)i− j e (9.24)

where e is the probability that a frame contained one or more errors:

e = 1 − (1 − ε)n (9.25)

At equilibrium, the distribution vector is obtained by solving the two equations

P s = s (9.26)
∑

s = 1 (9.27)

When km is the maximum number of retransmissions, the dimension of s would
be given by

dim (s) = N + km N (N + 1)

2
(9.28)
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As an example, for a window size N = 32 frames and the maximum number
of retransmissions is km = 16, the size of s would be 33,344 and the state transi-
tion matrix would be of size 33, 344 × 33, 344. We can use MATLAB to find the
distribution vector s.

9.3.2 Using Iterations to Find s

An alternative approach is to find s using iterations. From the structure of the matrix
P, we can easily prove that all transmit states in the set T are equal:

t = t1 = t2 = · · · = tN (9.29)

In fact, all states in any column of the matrix are equal. For example, we can
write the N unique states of R1 as

r1,N = t pN ,N (9.30)

r1,N−1 = t pN ,N−1 (9.31)

r1,N−2 = t pN ,N−2 (9.32)
...

r1,1 = t pN ,1 (9.33)

In general, we have

r1, j = t pN , j j = 1, 2, . . . , N (9.34)

In that case, state r1,1 will be repeated once. State r1,2 will be repeated twice, and
finally r1,N will be repeated N times.

For the rest of the retransmission states, we use iterative expressions as follows.
The N unique states of R2 are expressed in terms of the unique states of R1 as

r2,N = r1,N pN ,N (9.35)

r2,N−1 =
N∑

i=N−1

r1,i pi,N−1 (9.36)

r2,N−2 =
N∑

i=N−2

r1,i pi,N−2 (9.37)

...

r2,1 =
N∑

i=1

r1,i pi,1 (9.38)
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In general, we have

r2, j =
N∑

i= j

r1,i pi, j j = 1, 2, . . . , N (9.39)

The states associated with the kth retransmission Rk are given by the iterative
expression

rk, j =
N∑

i= j

rk−1,i pi, j
k = 2, 3, . . .

j = 1, 2, . . . , N
(9.40)

with the initial condition

r1, j = t pN , j j = 1, 2, · · · N (9.41)

9.3.3 Algorithm for Finding s by Iterations

The above iterations express all the retransmission states in terms of the transmit
state t . In order to find the distribution vector s, we follow this algorithm:

1. Assign to each transmit state some value, for example,

t = 1 (9.42)

2. Estimate the retransmit states for R1 using the iterative expression (9.34).
3. Estimate the values of the other retransmit states Rk using the iterative

expression (9.40).
4. Find the sum of all states

S = N t +
km∑

k=1

N∑

j=1

j rk, j (9.43)

5. The normalized value of the distribution vector is given by the following
equation:

s = 1

S
[

t t | r1,1 r1,2 r1,2 | r2,1 r2,2 r2,2 | · · · ]t

(9.44)
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9.3.4 GBN ARQ Performance

As long as the sender keeps retransmitting frames that were received in error, the
next frame cannot be sent. Therefore, we are interested in estimating the average
number of retransmissions for a given frame (Ra), the average number of frames
sent in each retransmission attempt (Na), and the average delay a frame takes to be
transmitted when errors are present (Ta).

Estimating average number of retransmissions Ra

The probability that the source is in the kth retransmission state is given by

αk =
N∑

j=1

j rk, j (9.45)

αk is also equal to the average number of frames sent at the kth retransmission
(nk).

The average number of retransmissions by the source for a given frame is
given by

Ra =
km∑

k=1

k αk (9.46)

Estimating average delay Ta

The delay associated with the kth retransmission is given by the accumulation of all
the frames that were previously sent by earlier retransmissions. Thus, we can write

tk =
k∑

j=1

α j (9.47)

The average delay for transmitting a given frame is given by

Ta =
km∑

k=1

tk αk (9.48)

Estimating the average number of frames sent Na

The average number of frames sent due to all retransmissions is given by

Na =
km∑

k=1

nk αk (9.49)
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GBN ARQ efficiency η and throughput (Th)
The efficiency of the GBN ARQ protocol is the ratio of frame size to the total
number of frames transmitted:

η = N

N + Na
(9.50)

When there are no errors, Na = 0 and we get 100% efficiency.
The throughput of the transmitter can be expressed as

Th = η frames/time step (9.51)

Thus for an error-free channel, η = 1 and arriving frames are guaranteed to be
transmitted on the first try.

When errors are present in the channel, η < 1 and so is the system throughput.

Example 9.2 Assume a GBN ARQ protocol with the following parameters.

n = 500 bits

N = 8 frames

ε = 10−4

km = 16

Find the performance of the GBN ARQ protocol for this channel.
Using the technique in Section 9.3.2, the average number of retransmissions for

a given frame is

Ra = 0.2195

the average delay for a given frame is

Ta = 0.0306

the average number of retransmitted frames for a given frame is

Na = 0.026

and the efficiency is

η = 99.68%
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9.4 Selective-Repeat (SR ARQ) Protocol

The selective-repeat protocol is a general strategy for handling frame transmis-
sion errors when the round-trip time for frame transmission and reception of the
acknowledgment is comparable to frame transmission time. SR ARQ is used by
the TCP transport protocol. In this protocol, the transmitter groups the frames into
windows so that each window contains N frames. When the sender sends frames
within a window, the receiver stores the frames of the current window and checks
for errors. After a complete window has been received, or after the proper timeout
period, the receiver instructs the transmitter to resend only the frames that contained
errors. That results in a more efficient protocol compared to GBN ARQ that resends
frames in error as well as error-free frames.

Figure 9.5 shows an example of transmitting several frames using selective-
repeat protocol where the buffer size is N = 3. Solid arrows indicate ACK signals
and grey arrows indicate NAK signals. Frame 1 was correctly received while frame
2 was received in error. We see that the transmitter starts to send frame 2 as soon as
the corresponding NAK is received. Frame 4 was also received in error, and we can
see that it is retransmitted as soon as its NAK signal was received.

9.4.1 Modeling the SR ARQ Protocol

In this section, we perform Markov chain analysis of the SR ARQ protocol. We
make the following assumptions for our analysis of the selective-repeat protocol.

1. Each window contains N frames.
2. The average length of a frame is n bits.
3. The forward channel has random noise and the probability that a bit will be

received in error is ε. Another name for ε is bit error rate (BER).
4. The feedback channel is assumed noise-free so that acknowledgment signals

from the receiving station will always be transmitted to the sending station.
5. The maximum number of retransmissions is km after which, the sender will de-

clare the channel to be not functioning.

Fig. 9.5 Selective-repeat
ARQ protocol with buffer
size N = 3. Solid arrows
indicate ACK signals and
grey arrows indicate NAK
signals
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The state of the sender while attempting to transmit a frame depends only on the
outcome of the frame just sent. Hence we can represent the state of the sender as a
Markov chain having the following properties:

1. The states of the Markov chain are grouped into the sets T , R1, R2, etc. These
sets are explained below.

2. The number of states is infinite since no upper bound is placed on the number of
retransmissions.

3. The time step is taken equal to the sum of transmission delay of one frame
T = τt. Thus, a window that contains N frames will require N time steps to
be transmitted.

The set T represents the states of the sender while it is transmitting a window for
freshly arrived N frames:

T = {
t1 t2 · · · tN

}
(9.52)

The set R1 represents the states of the sender while it is retransmitting frames for
the first time. This set is the union of several subsets

R1 = R1,1 ∪ R1,2 ∪ · · · ∪ R1,N (9.53)

where subset R1,i is the subset of R1 that contains i states corresponding to re-
transmitting i frames for the first time. With the help of (9.59), we can verify that
all states in subset R1,i are equal so that we can write the i states associated with
R1,i as

R1,i = {
r1,i r1,i · · · r1,i

}
(9.54)

Thus R1 has N unique states:

r1,1 repeated once,
r1,2 repeated twice,
...
r1,N repeated N times.

Similarly, the set R2 represents the states of the sender while it is retransmitting
frames for the second time. This set is the union of several subsets

R2 = R2,1 ∪ R2,2 ∪ · · · ∪ R1,N (9.55)

where subset R2,i is the subset of R2 that contains i states corresponding to retrans-
mitting i frames for the second time. With the help of (9.59), we can verify that all
states in subset R2,i are equal so that we can write the i states associated with R2,i as

R2,i = {
r2,i r2,i · · · r2,i

}
(9.56)
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Fig. 9.6 State transition
diagram of a sending station
using the SR ARQ error
control protocol. Only
transitions in and out of R1

are indicated
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Thus R2 has N unique states:

r2,1 repeated once,
r2,2 repeated twice,
...
r2,N repeated N times.

The state transition diagram for the SR ARQ protocol is shown in Fig. 9.6. The
sets of states T , R1, and R2 are shown. To reduce clutter, only transitions in and out
of R1 are indicated. The thick lines indicate multiple transitions lumped together.
However, (9.59) shows all the transitions between states.

In the figure, all states in each column are equal due to the fact that the transition
probabilities between them is 1.

We organize the state distribution vector in the following order:

s = [
T R1 R2 · · · ]t

(9.57)

For the case when N = 2, the distribution vector can be written as

s = [
t t | r1,1 r1,2 r1,2 | r2,1 r2,2 r2,2 | · · · ]t

(9.58)
The corresponding transition matrix of the sender for the case when N = 2 is

given by
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P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 p2,0 p1,0 0 p2,0 p1,0 0 p2,0 · · ·
1 0 0 0 0 0 0 0 · · ·

0 p2,1 0 0 0 0 0 0 · · ·

0 p2,2 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 · · ·

0 0 p1,1 0 p2,1 0 0 0 · · ·

0 0 0 0 p2,2 0 0 0 · · ·
0 0 0 0 0 0 1 0 · · ·
...

...
...

...
...

...
...

...
. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(9.59)

In the above matrix, the transition probability pi, j is the probability that j frames
need to be retransmitted, given that a frame of i frames was sent. For instance, p5,2

indicates the probability that two frames have to be retransmitted, given that five
frames were sent. pi, j is given by the expression

pi, j =
(

i

j

)
(1 − e)i− j e j (9.60)

where e is the probability that a frame contained one or more errors:

e = 1 − (1 − ε)n (9.61)

At equilibrium, the distribution vector is obtained by solving the two equations

P s = s (9.62)
∑

s = 1 (9.63)

When km is the maximum number of retransmissions, the dimension of s would
be given by

dim (s) = N + km N (N + 1)

2
(9.64)

As an example, for a window size N = 32 frames and the maximum number
of retransmissions is km = 16, the size of s would be 33,344 and the state transi-
tion matrix would be of size 33, 344 × 33, 344. We can use MATLAB to find the
distribution vector s.
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9.4.2 SR ARQ Performance

As long as the sender keeps retransmitting frames that were received in error, the
next frame cannot be sent. Therefore, we are interested in estimating the average
number of retransmissions for a given frame (Ra), the average number of frames
sent in each retransmission attempt (Na), and the average delay a frame takes to be
transmitted when errors are present (Ta).

Estimating average number of retransmissions Ra

The probability that the source is in the kth retransmission state is given by

αk =
N∑

j=1

rk, j (9.65)

The average number of retransmissions by the source for a given frame is
given by

Ra =
km∑

k=1

k αk (9.66)

Estimating average delay Ta

The average number of frames sent at the kth retransmissions is given by

nk =
N∑

j=1

j rk, j (9.67)

The delay associated with the kth retransmission is given by the accumulation
of all the frames that were previously sent by earlier retransmissions. Thus, we can
write

tk =
k∑

j=1

n j (9.68)

The average delay for transmitting a given frame is given by

Ta =
km∑

k=1

tk αk (9.69)

Estimating the average number of frames sent Na

The average number of frames sent due to all retransmissions is given by

Na =
km∑

k=1

nk αk (9.70)
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SR ARQ efficiency η and throughput (Th)
The efficiency of the SR ARQ protocol is the ratio of frame size to the total number
of frames transmitted:

η = N

N + Na
(9.71)

When there are no errors, Na = 0 and we get 100% efficiency.
The throughput of the transmitter can be expressed as

Th = η frames/time step (9.72)

Thus, for an error-free channel, η = 1 and arriving frames are guaranteed to be
transmitted on the first try.

When errors are present in the channel, η < 1 and so is the system throughput.

Example 9.3 Assume an SR ARQ protocol with the following parameters.

n = 500 bits

N = 8 frames

e = 10−4

km = 16

Find the performance of the SR ARQ protocol for this channel.
Using the technique in Section 9.3.2, the average number of retransmissions for

a given frame is

Ra = 0.37

the average delay for a given frame is

Tt = 0.14

the average number of retransmitted frames for a given frame is

Na = 0.13

and the efficiency is

η = 98.41%

Comparing these results with those of GBN ARQ, we note that SR ARQ per-
forms better for the same parameters.
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Problems

Stop-and-Wait Automatic-Repeat-Request (SW ARQ) Protocol

9.1 Prove that the probability e that a frame in the SW ARQ protocol is in error is
e ≈ ε n when ε � 1.

9.2 One of the assumptions in Section 9.2.1 of the SW ARQ protocol was that the
sender will keep retransmitting the frame until it is correctly received. Assume
the maximum number of retransmissions is limited to km. How will this impact
the state transition diagram, state transition matrix, the distribution vector, and
the system performance?

9.3 Assume a SW ARQ protocol in which the frame size is 100 bits and the prob-
ability that a received frame is in error is ε = 10−5. Find the performance of
the protocol.

9.4 Assume a forward error control (FEC) coding is used such that the receiving
station can correctly decode a received frame if the number of errors does not
exceed k errors. Obtain an expression for the frame error probability e under
this scheme and compare the expression you get to Equation (9.2).

9.5 Assume a SW ARQ protocol in which the frame size is n bits but forward
error correction (FEC) is used to improve the performance. The FEC code
employed can correct only up to k = 3 bits in error.

1. Draw the transition diagram for such a protocol and compare with the stan-
dard SW ARQ protocol discussed in the text.

2. Derive the transition matrix and compare with the standard SW ARQ
protocol.

3. Estimate the performance of this protocol and compare with the standard
SW ARQ protocol.

9.6 Equations (9.11) and (9.13) indicate that SW ARQ performance will not
change if we scale n to αn, where α > 1, and decrease ε by the same scale
factor ε/α when ε � 1. Verify these assertions using SW ARQ parameters of
n = 100, ε = 10−4.

9.7 Assume SW ARQ where the sender has a transmit buffer of size B. Study the
sender transmit buffer.

GBN ARQ Protocol

9.8 Obtain the transition matrix for the GBN ARQ protocol having the following
parameters (chosen to make the problem manageable):

N = 3 km = 1
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Assume two cases of the channel: a very noisy channel (ε = 0.01) and for
a less noisy channel (ε = 10−5). Compare the two matrices and state your
conclusions.

9.9 Given a GBN ARQ protocol in which the window size is N = 20 frames
and the probability that a received frame is in error is e = 10−4, find the
performance of such a protocol for this channel assuming km = 8.

9.10 Given a GBN ARQ protocol in which the window size is N = 20 frames
and the probability that a received frame is in error is e = 5 × 10−4, find the
performance of such a protocol for this channel.

9.11 Assume the GBN ARQ protocol is now modified such that if the received
window contained one or more frames in error, then the whole window is
discarded and a request is issued to retransmit the entire window again.
This is repeated for a maximum of km times until an error-free window is
received.

1. Identify the states of this system.
2. Write down the transition matrix.
3. The transition matrix that results will be reducible. Derive the steady-state

distribution vector.

Selective-Repeat (SR ARQ) Protocol

9.12 Obtain the transition matrices for the SR ARQ protocol having the following
parameters (chosen to make the problem manageable):

N = 3 km = 1

Assume two cases of the channel: a very noisy channel (e = 0.01) and for
a less noisy channel (e = 10−5). Compare the two matrices and state your
conclusions.

9.13 Given a SR ARQ protocol in which the window size is N = 20 frames and the
probability that a received frame is in error is e = 10−4, find the performance
of such a protocol for this channel assuming km = 8.

9.14 Given a SR ARQ protocol in which the window size is N = 20 frames and
the probability that a received frame is in error is e = 5 × 10−4, find the
performance of such a protocol for this channel.

9.15 Consider a SR ARQ protocol where forward error correction (FEC) coding is
employed. In that scheme, the sender adds extra correction bits to each frame
or frame. The receiver is thus able to correct frames that have up to two errors
per window. Draw the transition diagram for this system and compare with the
SR ARQ protocol discussed in this chapter. Derive the relevant performance
for this modified protocol.

9.16 In the SR ARQ protocol discussed in the test, when a window is received with
i errors, the i frames are retransmitted until all of them are received without
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any errors. Now consider the case when the receiver only requests to retransmit
j frames out of the i frames that contained i errors originally. Do you expect
this protocol to perform better than the SR ARQ protocol discussed in text?
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Chapter 10
Modeling Medium Access Control Protocols

10.1 Introduction

In this chapter, we illustrate how to develop models for several medium access
control (MAC) protocols that are commonly used in computer communications. We
will model the following medium access protocols:

1. IEEE Standard 802.1p: The static priority scheduling algorithm
2. Pure ALOHA
3. Slotted ALOHA
4. IEEE Standard 802.3: carrier sense multiple access with collision detection

(CSMA/CD)
5. Carrier sense multiple access with collision avoidance (CSMA/CA)
6. IEEE Standard 802.11: for ad hoc wireless LANs using the distributed coordina-

tion function (DCF)
7. IEEE Standard 802.11: for infrastructure wireless LANs using the point coordi-

nation function (PCF) and a p-persistent backoff strategy
8. IEEE Standard 802.11: for infrastructure wireless LANs using the point coordi-

nation function (PCF) and a 1-persistent backoff strategy

The static, or fixed, priority scheduling algorithm is lumped with media access
algorithms since static priority is also used as a medium access protocol. Because
MAC belongs to the data link layer, our unit of data transfer is the frame since
packets are the business of the higher layer like the network layer and above.

Modeling a protocol is just like designing a digital system, or any system for that
mater—There are many ways to model a protocol based on the assumptions that
one makes. Our motivation here is simplicity and not taking a guided tour through
the maze of protocol modeling. Our recommendation to the reader is to read the
discussion on each protocol and then lay down the outline of a model that describes
the protocol. The model or models developed here should then be compared with
the one attempted by the reader.

F. Gebali, Analysis of Computer and Communication Networks,
DOI: 10.1007/978-0-387-74437-7 10, C© Springer Science+Business Media, LLC 2008
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10.2 IEEE Standard 802.1p: Static Priority Protocol

The IEEE 802.1p is based on the static priority scheduling algorithm. IEEE 802.1p
standard has a priority scheme such that frames queued in a lower priority queue are
not sent if there are frames queued in higher priority queues. The frames are sent
only when all higher priority queues are empty. In that sense, the static priority pro-
tocol is a scheduling protocol to provide access to an outgoing link among several
competing queues.

The IEEE 802.1p enables creating priority classes for network traffic. This en-
ables quality of service (QoS) support. The analysis given here provides insight into
how to use Markov chains to derive important performance figures.

10.2.1 Modeling the IEEE 802.1p: Static Priority Protocol

In this section, we assume there are N priority classes and each class has its own
queue to store incoming traffic for that class. The state of each queue depends only
on its immediate past history and we can model the queues using Markov chain
analysis. To start our analysis, we employ the following assumptions:

1. The states of the Markov chain represent the occupancy of the priority queues.
2. The time step is taken equal to the transmission delay of a frame.
3. There are N priority classes, with class 1 having the highest priority and so on

till class N which has the lowest priority.
4. The size of the queue in priority class i is equal to Bi .
5. ai is the frame arrival probability for queue i .
6. ci is the frame departure probability for queue i .
7. Arrivals are processed at the same time step.
8. All frames have equal lengths.

Figure 10.1 illustrates the flows into and out of each queue. The downward ar-
rows represent lost flows. Notice that some data are lost by each queue when the
arrival rate exceeds the departure rate. The highest priority queue does not suffer
any data loss since its data are guaranteed service. The highest priority queue does
not need a buffer to store incoming data when preemptive static priority is em-
ployed. If a nonpreemptive scheme is employed, then the highest priority queue
will require a buffer of size one to store incoming data until the frame being sent is
finished.

From the above assumptions, we can write for queue 1 the following frame arrival
and departure probabilities:

u1(arrival) = a1 (10.1)

u1(departure) = c1 = 1 (10.2)
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Fig. 10.1 The flows into and
out of each priority queue in
the static priority scheduling
protocol. The downward
arrows represent lost flows
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For queue 2, we can write the following frame arrival and departure probabilities:

u2(arrival) = a2 (10.3)

u2(departure) = c2 = e1 (10.4)

where e1 = b1 = 1 − a1 is the probability that queue 1 is empty since no frames
arrive. Thus queue 2 can access the output channel. The probability that queue 2 is
empty is given by the expression for state s0 of the M/M/1/B queue:

e2 = 1 − ρ2

1 − ρ
B2+1
2

(10.5)

where B2 is the size of the queue 2 buffer and ρ2 is the distribution index for queue 2:

ρ2 = a2 d2

b2 c2
(10.6)

with b2 = 1 − a2 and d2 = 1 − c2.
For queue 3, we can write the following frame arrival and departure probabilities:

p3(arrival) = a3 (10.7)

p3(departure) = c3 = e2 × e1 (10.8)

e3 = 1 − ρ3

1 − ρ
B3+1
3

(10.9)

In general, we can write the following iterative expression for queue i , where
1 < i ≤ N :
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pi (arrival) = ai (10.10)

pi (departure) = ci = ei−1 ei−2 · · · e1 (10.11)

ei = 1 − ρi

1 − ρ
Bi +1
i

(10.12)

where ρi is the distribution index for queue i and is given by

ρi = ai di

bi ci
(10.13)

with bi = 1 − ai and di = 1 − ci .
After the arrival and departure probabilities of each queue are found, we can

estimate the queue parameters according to the M/M/1/B analysis in Section 7.6.
The performance parameters for queue 1 are a bit unique due to its high priority:

Th1 = 1 frames/time step
pa,1 = 1
Na,1(lost) = 0 frames/time step
L1 = 0
Qa,1 = 0 frames
W1 = 0 time steps

For queue i with 1 < i ≤ N , we can write

Thi = ci (1 − bi ei ) frames/time step

pa,i =
ci (1 − bi ei )

ai

Na,i (lost) = ei ai di frames/time step

Li = ei di

Qa,i =

[
ρi − (Bi + 1)ρBi

i + Bi ρ
Bi +1
i

]

(1 − ρi )
(

1 − ρ
Bi +1
i

) frames

Wi =
Qa,i

Thi
time steps

Example 10.1 Consider a static priority protocol serving four users where the frame
arrival probabilities for all users are equal (i.e., ai = a for all 1 ≤ i ≤ 4) and all
users have the same buffer size (i.e., Bi = B for all 1 ≤ i ≤ 4). Estimate the
performance of each user.

The following table shows the performance parameters for each user starting with
the highest priority user:
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1 2 3 4

Th 1 0.3965 0.3167 0.0376
pa 1 0.9912 0.7916 0.0940
Na(lost) 0 0.0035 0.0833 0.3624
L 0 0.0088 0.2084 0.9060
Qa 0 0.6941 3.8790 4.9377
W 0 1.7507 12.2502 131.2926

As expected, the least priority queue has the worst performance.

10.3 ALOHA

ALOHA was developed by N. Abramson in the 1970s at the University of Hawaii
to allow several computers spread over a wide geographical area to communicate
using a broadcast wireless channel. The technique chosen was simple and applies to
any system where several users attempt to access a shared resource without the help
of a central controller. ALOHA did not require global time synchronization and this
impacted its performance.

In ALOHA network, a user that has a frame to transmit does so without waiting
to see if the channel is busy or not. When two users transmit at the same time both
colliding frames will be received in error due to interference. The collision phe-
nomenon that occurs in a shared medium is also known as contention. The sender
knows that contention has occurred by listening to the channel to check if the frame
it just sent is in error or not. If errors are detected, the sender retransmits the frame
after waiting for a random amount of time. Another way for the sender to sense
collision is to wait for an acknowledgment from the receiver.

Figure 10.2 illustrates the ALOHA contention problem. The figure assumes all
transmitted frames have equal lengths and each frame has a duration T . The time
T is equal to the maximum propagation delay between any pair of stations in the
network. Because of the “free for all” situation, anything can happen. Let us see how
a conflict might arise while attempting to transmit one frame, shown as the shaded
block in Fig. 10.2. Table 10.1 summarizes potential conflict situations.

Fig. 10.2 ALOHA
contention problem.
Illustrating all possible
conflict situations
encountered by the
transmitted frame (shaded
rectangle)

time

T

2

t1 t2 t3 t4 t5t0

3

4

5

1

Critical Zone 2T
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Table 10.1 ALOHA contention problem: illustrating all possible conflict situations encountered
by the transmitted frame (shaded rectangle in Fig. 10.2)

Frame Start time t Contention with shaded frame

1 t0 < t < t1 No
2 t1 < t < t2 No
3 t2 < t < t3 Yes
4 t3 < t < t4 Yes
5 t4 < t < t5 No

We make the following conclusions based on Fig. 10.2 and Table 10.1. Any frame
transmitted in the period T before our shaded frame will cause contention (e.g.,
frame 3). Any frame transmitted during the period T when our shaded frame is being
sent will cause contention (e.g., frame 4). The critical zone during transmission
of the shaded frame is shown at the bottom of Fig. 10.2. Thus for a successful
transmission at a given time step, the channel must be quiet and all users must be
idle for previous time step.

10.3.1 Modeling the ALOHA Network

In this section, we perform Markov chain analysis of the ALOHA network. We
make the following assumptions for our analysis of ALOHA:

1. The states of the Markov chain represent the status of the wireless channel: idle,
transmitting, and collided.

2. The propagation delay between any pair of users is less than the frame time T .
3. The time step value T is taken equal to the frame transmission delay.
4. There are N users in the system.
5. Users can transmit any time they want.
6. The probability that a user transmits a frame in one time step is a.
7. All frames have equal lengths and the duration of each frame is T .
8. Contention occurs if a frame is sent at time t and there are transmissions during

the time period T− t to t + T .
9. A user retransmits a corrupted frame after waiting a random amount of time.

Based on the above assumptions, the wireless channel can be in one of three
states: idle, collided, or transmitting. Figure 10.3 shows the transition diagram for
our Markov chain. The following observations help explain the figure:

Idle state: We remain in s1 as long as all users are idle (probability u0). We
move to transmitting state if exactly one user requests access (probability u1)
and we move to collided state if two or more users request access (probability
1 − u0 − u1).

Transmitting state: We move to idle state if all users are idle. If one or more
users request access, we move to collided state since there will be no period
of calm before the next transmission.
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Fig. 10.3 State transition
diagram for the ALOHA
channel u0
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Collided state: We move to idle state if all users are idle. Any arriving requests
keep the system in collided state.

Note in the figure that the channel can move to the transmitting state in the next
time step only if it is presently idle. If the channel is presently in the collided state,
it cannot move to the transmitting state in the next time step since this would violate
condition 8 above. The channel must first become idle and quiet since any user
that attempts to transmit will only succeed in jamming the channel again. When
the channel is transmitting, a period of calm has to be maintained for one time step
and the channel then moves to the transmitting state. Otherwise, the channel will
become collided again.

The probability that k users request access during a time step is given by binomial
statistics:

pk =
(

N

k

)
ak(1 − a)N−k (10.14)

The transition matrix of the system is

P =
⎡

⎣
u0 u0 u0

1 − u0 − u1 1 − u0 1 − u0

u1 0 0

⎤

⎦ (10.15)

At equilibrium, the distribution vector is obtained by solving the two equations

P s = s (10.16)

s1 + s2 + s3 = 1 (10.17)

The solution to the above two equations is simple:

s1 = u0

s2 = 1 − u0 − u0 u1 (10.18)

s3 = u0 u1
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10.3.2 ALOHA Performance

We are interested in the throughput of ALOHA, which is given by

Th = s3 = u0 u1 (10.19)

Substituting the values of u0 and u1 from (10.14), we get

Th = N a (1 − a)2N−1 (10.20)

For large N , the throughput can be expressed in terms of the input traffic as

Th = Nae−2Na (10.21)

The throughput is measured in units of frames/time step. The throughput in units
of frames/s is

Th′ = Th

T
(10.22)

The dotted line in Fig. 10.4 shows the variation of the throughput against the
average number of users transmitting frames per time step for the case when N = 10
users. The solid line is for the slotted ALOHA network, which is discussed in the
next section.

The input traffic is found from the binomial distribution

Na(in) = N a (10.23)

Fig. 10.4 The throughput for
ALOHA versus the average
number of requests per time
step for the case N = 10.
Dotted line is for ALOHA
and solid line is for slotted
ALOHA
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We define the acceptance probability or efficiency pa as the probability of a
successful transmission for a given user. pa is given by

pa = Th

Na(in)

= (1 − a)2N−1 (10.24)

≈ e−2aN (10.25)

The last equation relies on the approximation

lim
n→∞

(
1 − x

n

)n
= en

The average energy required to transmit a frame is estimated as

E = E0

∞∑

i=0

(i + 1)(1 − pa)i pa

= E0

pa
(10.26)

where E0 is the energy required to send the one frame. In dB, the above equation
can be written as

E = −10 log10 pa dB (10.27)

≈ 20aN log10 e = 8.7 aN dB (10.28)

We see that the average energy to transmit a packet increases exponentially with
increasing traffic.

The average number of attempts before a successful transmission is

na =
∞∑

n=0

n (1 − pa)n pa (10.29)

This evaluates to

na = 1 − pa

pa
(10.30)

If the average duration of the random wait period is τ (in seconds), then the
average wait for a frame before successful transmission is

W = na × τ = τ (1 − pa)

pa
seconds (10.31)
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Assume that the number of stations is fixed. In that case, we can vary the ar-
rival probability a and investigate how the throughput varies with input traffic. The
maximum throughput occurs when

d Th

d a
= 0 (10.32)

Differentiating (10.20) indicates that the maximum throughput for ALOHA oc-
curs when

a0 = 1

2 N
(10.33)

Thus, the maximum throughput is theoretically equal to

Th(max) = 1

2

(
1 − 1

2N

)2N−1

(10.34)

The above equation gives the maximum throughput for any number of users N .
A simple expression is obtained when the user population is very large, N → ∞:

Th(max) = 1

2 e

= 18.394% (10.35)

In summary, maximum throughput occurs when N → ∞ and we would have

Th = 0.18394 frames/time step (10.36)

Na(in) = 0.5 frames/time step (10.37)

a0 = 1/(2N ) (10.38)

pa = Th/Na(in) = 0.367 (10.39)

This discrete-time, and very general, result compares extremely well with the
throughput estimate obtained using fluid flow analysis [1] for a continuous-time
system with Poisson traffic. Thus when the number of users increases, the trans-
mission request probability must decrease in proportion. For example, when the
system has N = 50 users, the maximum throughput is approximately 18.487%,
using Equation (10.34), and the transmission request probability for maximum
throughput must be a ≈ 0.01. The problems at the end of the chapter confirm our
predictions.

Example 10.2 Assume an ALOHA network supporting N = 20 users and each user
issues a request per time step with probability a = 0.01. Find
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(a) The throughput
(b) The average number of time steps before successful transmission
(c) The maximum throughput
(d) The value of a for maximum throughput

The performance figures are as follows:

Th = 0.1351 frames/time step
na = 0.4799 attempts
Th(max) = 0.1839 frames/time step
a0 = 0.025 for maximum throughput

10.4 Slotted ALOHA

Slotted ALOHA was proposed to improve the throughput of the original ALOHA
[2]. As the name implies, time in slotted ALOHA is divided into slots and the value
of one time step equals the frame time T . Users know about the start of a new slot
through a synchronizing signal that is transmitted by a source. A user with data to
send is permitted to transmit only at the start of a time step. This removes the chaos
of pure ALOHA and improves the efficiency as we shall see below.

10.4.1 Modeling the Slotted ALOHA Network

In this section, we perform Markov chain analysis of the slotted ALOHA network.
We employ the same assumptions that we used to model ALOHA in Section 10.3.1
with the only exception that users are allowed to transmit only at the start of a time
step and not at any time as before.

Based on our assumptions, the wireless channel can be in one of three states: idle,
collided, or transmitting. Figure 10.5 shows the transition diagram for our Markov
chain. Further, the time step value is naturally chosen equal to the slot time value.
Now is a good time for the reader to compare that figure with the pure ALOHA
transition diagram of Fig. 10.3. What is the major difference?

The major difference is that the channel can move from collided state to trans-
mitting state in one time step. This basically creates more chances for the channel
to move to the transmitting state and this enhances the throughput and performance
in general.

Idle state: We remain in s1 as long as all users are idle (probability u0). We
move to transmitting state if exactly one user requests access (probability u1)
and we move to collided state if two or more users request access (probability
1 − u0 − u1).
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Fig. 10.5 State transition
diagram for the slotted
ALOHA channel u0
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Transmitting state: We move to idle state if all users are idle. We move to trans-
mitting state if exactly one user requests access (probability u1) and we move
to collided state if two or more users request access (probability 1−u0 −u1).

Collided state: We move to idle state if all users are idle. We move to transmit-
ting state if exactly one user requests access (probability u1) and we stay in
collided state if two or more users request access (probability 1 − u0 − u1).

The probability that k users request access during a time step is given as before
by binomial statistics:

pk =
(

N

k

)
ak(1 − a)N−k (10.40)

The transition matrix of the system is

P =
⎡

⎣
u0 u0 u0

1 − u0 − u1 1 − u0 − u1 1 − u0 − u1

u1 u1 u1

⎤

⎦ (10.41)

At equilibrium, the distribution vector is obtained by solving the two equations

P s = s (10.42)

s1 + s2 + s3 = 1 (10.43)

The solution to the above two equations is simple:

s1 = u0

s2 = 1 − u0 − u1 (10.44)

s3 = u1

Now is a good time for the reader to compare the above equation with the
corresponding equation for the equilibrium distribution vector of pure ALOHA
in (10.18). Several observations can be made even before we get any numerical
values:
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1. Pure ALOHA and slotted ALOHA channels have the same probability of being
in state s1 (the idle state).

2. Slotted ALOHA has a lower probability of being in state s2 (the collided state)
compared to pure ALOHA.

3. Slotted ALOHA has a higher probability of being in state s3 (the transmitting
state) compared to pure ALOHA.

All these factors contribute to enhance the performance of slotted ALOHA.

10.4.2 Slotted ALOHA Performance

We are interested in the throughput of slotted ALOHA, which is given by

Th = s3 = u1 = N a (1 − a)N−1 (10.45)

A frame will be transmitted if only one user requests to access the channel ir-
respective of the previous state of the channel. For large N , the throughput can be
expressed in terms of the input traffic as

Th = Nae−Na (10.46)

Slotted ALOHA has higher throughput compared to ALOHA by a factor of
u−1

0 = (1 − a)−N . We expect the two networks to perform almost the same for very
low traffic conditions (a � 1). Slotted ALOHA will perform better than ALOHA
by orders of magnitude for high values of traffic (a ≈ 1), especially for systems
with many users (N � 1).

The throughput in units of frames/s is

Th′ = Th

T
(10.47)

The solid line in Fig. 10.4 shows the variation of the throughput against the av-
erage number of users transmitting frames per time step for the case when N = 10
users. The average number of users is given by the binomial distribution

Na(in) = N a (10.48)

We define the acceptance probability or efficiency pa as the probability of a
successful transmission for a given user. pa is given by

pa = Th

Na(in)

= (1 − a)N−1 (10.49)

≈ e−aN (10.50)
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The average energy required to transmit a frame is estimated as

E = E0

∞∑

i=0

(i + 1)(1 − pa)i pa

= E0

pa
(10.51)

where E0 is the energy required to send one frame. In dB, the above equation can
be written as

E = −10 log10 pa dB (10.52)

≈ 10aN log10 e = 4.3 aN dB (10.53)

We see that average energy to transmit a packet increases exponentially with
increasing traffic but at a rate half that of pure ALOHA.

The average number of attempts before a successful transmission is

na =
∞∑

n=0

n (1 − pa)n pa (10.54)

This evaluates to

na = 1 − pa

pa
(10.55)

If the average duration of the random wait period is τ (in seconds), then the
average wait for a frame before successful transmission is

W = naτ = τ (1 − pa)

pa
seconds (10.56)

Assume that the number of stations is fixed. In that case, we can vary the arrival
probability a and investigate how the throughput varies. The maximum throughput
occurs when

d Th

d a
= 0 (10.57)

Differentiating (10.20) indicates that the maximum throughput for ALOHA oc-
curs when

a0 = 1

N
(10.58)
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Thus, the maximum throughput is theoretically equal to

Th(max) =
(

1 − 1

N

)N−1

(10.59)

The above equation gives the maximum throughput for any number of users N .
A simple expression is obtained when the user population is very large, N → ∞:

Th(max) = 1

e

= 36.788% (10.60)

In summary, maximum throughput occurs when N → ∞ and we have

Th = 36.788% frames/time step (10.61)

Na(in) = 1 frames/time step (10.62)

a0 = 1/N (10.63)

pa = Th/Na(in) = 0.367 (10.64)

This compares very well with the throughput estimate obtained using fluid flow
analysis [1] for a continuous-time system with Poisson traffic. Thus when the num-
ber of users increases, the transmission request probability must decrease in propor-
tion. For example, when the system has N = 100 users, the maximum throughput is
approximately 36.788% and the transmission request probability must be a ≈ 0.01.

Comparing these predictions with pure ALOHA, we find that slotted ALOHA
could support double the number of users and achieve double the throughput.

We note that at maximum throughput, pure ALOHA and slotted ALOHA have
the same efficiency. This is a bit surprising since it was not previously reported in
the literature. In fact, the efficiency for pure ALOHA is given by the expressions

pa = (1 − a0)2N−1

a0 = 1/2N

And the efficiency for slotted ALOHA is given by the expressions

pa = (1 − a0)N−1

a0 = 1/N

Both of these expressions evaluate to e−1 as N → ∞ and the arrival probability
at maximum throughput is taken as a0 = 1/2N (for pure ALOHA) and a0 = 1/N
(for slotted ALOHA).
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Both systems show maximum efficiency at very low traffic. As traffic increases,
the efficiencies of both systems start to decrease. However, the efficiency of slotted
ALOHA decreases at a slower rate compared to pure ALOHA.

Example 10.3 Repeat Example 10.2 assuming a slotted ALOHA network.
The performance figures are as follows:

Th = 0.1652 frames/time step
na = 0.2104 attempts
Th (max) = 0.3679 frames/time step
a0 = 0.05 for maximum throughput

We note that the throughput of slotted ALOHA is slightly higher than pure
ALOHA but it is not its double since we are far from the optimum traffic arrival
probability for either systems.

Similarly, the average number of tries is less for slotted ALOHA.

10.5 IEEE Standard 802.3 (CSMA/CD)

The IEEE 802.3 standard is used for wired LANs where the time required for one
bit to travel between the two farthest stations (propagation time) is much smaller
than the time required for one frame to be sent by the sender (transmission delay).
The IEEE Standard 802.3 specifies a carrier sense multiple access with collision
detection (CSMA/CD).

Signals on the channel travel very close to the speed of light and it takes a finite
amount of time before all stations become aware that a channel is starting to ac-
cess the medium. Therefore, a collision is said to take place when two or more
stations start transmitting within the frame propagation delay. Because during this
time, transmitting stations think that the medium is idle. When that happens, the two
colliding stations stop transmitting and wait for a random amount of time before at-
tempting to transmit again. This reduces the chance that the stations will once again
transmit simultaneously. The maximum distance limitation for CSMA/CD is about
2500 m (1.5 miles). At this value, the ratio of propagation delay to transmission
delay is less than 0.1 [3].

To summarize, in CSMA/CD protocol, all stations monitor the channel to de-
termine when it is free. This is done by special carrier sensing circuits in each
station. If the channel is busy, a station backs off and starts sensing the channel
with probability p. This is called p-persistent CSMA/CD. The station refrains from
transmitting on an idle channel with probability 1 − p. This reduces the probability
of collisions. If the channel is sensed free, the station starts to transmit. Transmitting
stations monitor the signal on the channel and compare it to the transmitted signal to
decide if a collision is taking place or not. This is done by special collision detection
circuits. When the LAN contains N stations, p is chosen such that Np < 1 [3].

The IEEE 802.3 standard describes a 1-persistent CSMA/CD with exponential
backoff strategy which is more commonly known as Ethernet.
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At this point, it is worthwhile mentioning three different CSMA access strategies:

• 1-persistent CSMA
• Nonpersistent CSMA
• p-persistent CSMA

In a 1-persistent CSMA, a station with frame to send senses the channel. If the
channel is sensed free, the frame is sent. If the channel is busy, the station continu-
ously monitors the channel and sends the frame when the channel is sensed idle.

In a nonpersistent CSMA, a station with frame to send senses the channel. If the
channel is sensed free, the frame is sent. If the channel is busy, the station waits
for a random amount of time before monitoring the channel and sends the frame
when the channel is sensed idle. If the channel is sensed busy, the station repeats the
random wait.

In a p-persistent CSMA, a station with frame to send senses the channel. If the
channel is sensed free, the frame is sent with probability p. The transmission is
deferred for the next time slot with probability 1 − p. This process is repeated until
the frame is sent.

10.5.1 IEEE 802.3 (CSMA/CD) Model Assumptions

A simple analysis of IEEE 802.3 was given in [4] and [5]. A more complicated
analysis of IEEE 802.3 can be found [6] which is by no means more accurate since
it makes drastic assumptions about the channel states and the probability of a suc-
cessful transmission. We follow here the middle ground and provide a tractable
analysis making reasonable approximations.

Let us define τc to be the delay time required for a user to detect that a collision
has taken place and τt to be the transmission delay for one frame. Typically, τc � τt

since collision detection is done using fast electronic circuits. Therefore, periods
of transmission are separated by one or more contention minislots [7]. Similar to
ALOHA, a user could determine if there is contention or not during a time period
equal to the propagation delay, i.e., τp.

To start our analysis, we employ a set of assumptions for IEEE 802.3 model as
follows:

1. Since the current state of the channel depends only on its immediate past his-
tory, we can model the channel using Markov chain analysis.

2. The states of the Markov chain represent the states of the channel: idle, trans-
mitting, and collided.

3. The channel is shared among N stations.
4. There is a single station class (equal priority).
5. The frame arrival probability per time step is a.
6. All transmitted frames have equal lengths.
7. A frame duration is equal to the transmission delay of a frame τt.
8. The time step of the Markov chain is chosen equal to the collision detection

delay, i.e., T = τc.
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9. We define n as the ratio of transmission delay to propagation delay, i.e., n =
τt/τc. We assume that n > 1, which is true for small LANs carrying long frames
or operating at low transmission speeds.

10. The time required to detect a collision is less than or equal to the time step
value T .

11. Probability that an idle station receives a frame for transmission during a frame
transmission time (or frame duration) is a.

12. A p-persistent CSMA/CD is assumed. This is equivalent to a 1-persistent
CSMA/CD with a backoff strategy.

13. An adaptive backoff strategy is assumed where a collided user starts to sense the
channel with probability α, which is taken equal to the frame arrival probability
(i.e., α = a). In that sense, each collided user adapts its request probability α

to be proportional to its incoming traffic probability a.
14. A station can have at most one message waiting for transmission.

The alert reader will note that the above assumptions lead to significant simpli-
fication. We were able to justify that collided users behave the same as uncollided
users through the adoption of 1-persistence and the adaptive backoff strategy.

10.5.2 IEEE 802.3 (CSMA/CD) State Transition Diagram

Based on the above assumptions, the wireless channel can be in one of three states:
idle, collided, or transmitting. Figure 10.6 shows the state diagram of CSMA/CD
protocol. The channel has several transmitting states because the time required for
transmitting one frame (τt) is bigger than the propagation delay τp.

The probability that i users are active at a given time step is given by

ui =
(

N

i

)
ai (1 − a)N−i (10.65)

where a is the probability that a station requests a transmission during a time step.
We organize the distribution vector at equilibrium as follows:

s = [
si st1 st2 · · · stn sc

]t
(10.66)

The corresponding transition matrix of the channel is given by

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

u0 0 0 0 · · · 0 1 1
u1 0 0 0 · · · 0 0 0
0 1 0 0 · · · 0 0 0
0 0 1 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 0 0 0
0 0 0 0 · · · 1 0 0

1 − u0 − u1 0 0 0 · · · 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(10.67)
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Fig. 10.6 State transition
diagram for the IEEE 802.3
CSMA/CD channel
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At equilibrium, the distribution vector is obtained by solving the two equations

P s = s (10.68)
∑

s = 1 (10.69)

The solution to the above two equations is simple:

s = 1

2 + u1(n − 1) − u0

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

1
u1

u1
...

u1

1 − u0 − u1

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

(10.70)

10.5.3 IEEE 802.3 (CSMA/CD) Protocol Performance

The throughput is given by the equation

Th =
n∑

i=1

sti

= nu1

2 + u1(n − 1) − u0
(10.71)

For large values of n, the throughput approaches 100% which is expected since
little time is wasted during the collision.

Figure 10.7 shows the throughput of the IEEE 802.3 protocol when n = 10,
N = 10, and p = 1. The solid line is the throughput of CSMA/CD, the dashed
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Fig. 10.7 The throughput for
CSMA/CD versus the
average input traffic when
n = 10, N = 10, and p = 1.
The solid line is the
throughput of CSMA/CD, the
dashed line represents the
throughput of slotted
ALOHA, and the dotted line
represents the throughput of
pure ALOHA
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line represents the throughput of slotted ALOHA, and the dotted line represents the
throughput of pure ALOHA.

The access probability for the user in the CSMA/CD protocol is given by

pa = Th

Na
(10.72)

Figure 10.8 shows the access probability of CSMA/CD protocol. The solid line
is the access probability of CSMA/CD, the dashed line represents the access prob-
ability of slotted ALOHA, and the dotted line represents the access probability of
pure ALOHA.

Fig. 10.8 Access probability
of the IEEE 802.3 CSMA/CD
protocol versus the average
input traffic per time step for
the case n = 10, N = 10, and
p = 1. The solid line is the
access probability of
CSMA/CD, the dashed line
represents the access
probability of slotted
ALOHA, and the dotted line
represents the access
probability of pure ALOHA
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Fig. 10.9 Frame delay for the
IEEE 802.3 CSMA/CD
protocol versus the average
input traffic frame for the
case n = 10, N = 10, and
p = 1. The solid line is the
delay of CSMA/CD, the
dashed line represents the
delay of slotted ALOHA, and
the dotted line represents the
delay of pure ALOHA
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The average number of attempts for a successful transmission is

na =
∞∑

i=0

i (1 − pa)i pa

= 1 − pa

pa
(10.73)

Figure 10.9 shows the delay of the IEEE 802.3 CSMA/CD protocol when
n = 10, N = 10, and p = 1. The solid line is the delay of CSMA/CD, the dashed
line represents the delay of slotted ALOHA, and the dotted line represents the delay
of pure ALOHA.

10.6 Carrier Sense Multiple Access-Collision Avoidance
(CSMA/CA)

Carrier sense multiple access with collision avoidance (CSMA/CA) is used in wire-
less LANs where a transmitting station is unable to determine if a collision occurred
while transmitting or not. Collision detection, as is employed in Ethernet, cannot
be used for the radio frequency transmissions. The reason is that when a node is
transmitting it cannot hear any other node in the system which may be transmitting,
since its own signal will drown out other signals arriving at the node. A station will
ultimately know when a collision has taken place by reception of negative acknowl-
edgment or by timeout mechanisms.

An ad hoc network is a collection of communicating nodes that do not have
established infrastructure or centralized administration [8]. CSMA/CA protocol is
useful in ad hoc networks where access to the network is decentralized since each
station coordinates its own decisions for accessing the medium. There is no central
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access point to coordinate activities of all station. Thus ad hoc networks are simpler
to implement and to modify. The price for this simplicity is that ad hoc networks are
prone to collisions.

10.6.1 CSMA/CA Model Assumptions

Let us define τp to be the propagation delay between users and τt to be the transmis-
sion delay for one frame. To start our analysis, we employ a set of assumptions for
CSMA/CA model as follows:

1. Since the current state of the channel depends only on its immediate past his-
tory, we can model the channel using Markov chain analysis.

2. The states of the Markov chain represent the states of the channel: idle, trans-
mitting, and collided.

3. The channel is shared among N stations.
4. There is a single station class (equal priority).
5. The frame arrival probability per time step is a.
6. All transmitted frames have equal lengths.
7. A frame duration is equal to the transmission delay of a frame τt.
8. The time step of the Markov chain is chosen equal to the propagation delay, i.e.,

T = τp.
9. We define n as the ratio of transmission delay to propagation delay, i.e.,

n = τt/τp. We assume that n > 1, which is true for small LANs carrying
long frames or operating at low transmission speeds.

10. A 1-persistent CSMA/CA is assumed.
11. A station can have at most one message waiting for transmission.

Based on the above assumptions, the wireless channel can be in one of three
states: idle, collided, or transmitting. Figure 10.10 shows the state diagram of
CSMA/CA protocol. The channel has several transmitting states because the time
required for transmitting one frame (τt) is bigger than the propagation delay τp.

The probability that i users are active at a given time step is given by

ui =
(

N

i

)
ai (1 − a)N−i (10.74)

We organize the distribution vector at equilibrium as follows.

s = [
si st1 st2 · · · stn sc1 sc2 · · · scn

]t
(10.75)

The corresponding transition matrix of the channel for the case when n = 3 is
given by
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P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

u0 0 0 1 0 0 1
u1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

1 − u0 − u1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(10.76)

At equilibrium, the distribution vector is obtained by solving the two equations

P s = s (10.77)
∑

s = 1 (10.78)

The solution to the above two equations is simple:

s = 1

n(1 − u0) + 1

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1
u1

u1
...

u1

1 − u0 − u1

1 − u0 − u1
...

1 − u0 − u1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(10.79)

Fig. 10.10 State transition
diagram for the CSMA/CA
channel

Idle

T
ra

ns
m

itt
in

g

i

u0

u1

t1

1

C
ol

lid
ed

1

11

1 1...

1

...

1

1-u0-u1

t2

tn

c2

c1

cn



348 10 Modeling Medium Access Control Protocols

10.6.2 CSMA/CA Protocol Performance

The throughput is given by the equation

Th =
n∑

i=1

sti

= nu1

n(1 − u0) + 1
(10.80)

For large values of N , we can write the throughput as

Th = ne−λ

n
(
1 − e−λ

)+ 1
(10.81)

For large values of n, the throughput approaches the expression

Th → u1/(1 − u0) < 100% (10.82)

≈ λe−λ

1 − e−λ
= λ

eλ − 1
< 100% (10.83)

which is expected since little time is wasted during collisions.
Figure 10.11 shows the throughput of CSMA/CA when n = 50 and N = 10. The

solid line is the throughput of CSMA/CA, the dashed line represents the throughput
of slotted ALOHA, and the dotted line represents the throughput of pure ALOHA.

It is interesting to compare Fig. 10.7 for CSMA/CD and Fig. 10.11 for CSMA/CA.
The latter protocol shows lower throughput for the same set of parameters as the

Fig. 10.11 The throughput
for CSMA/CA versus the
average input traffic when
n = 50 and N = 10. The
solid line is the throughput of
CSMA/CA, the dashed line
represents the throughput of
slotted ALOHA, and the
dotted line represents the
throughput of pure ALOHA
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former. This is due to the fact that CSMA/CA keeps transmitting frames even when
collisions have taken place. Therefore, precious bandwidth and time are wasted
transmitting frames while CSMA/CD stops the transmission promptly.

The access probability for a user in the CSMA/CA protocol is given by

pa = Th

Na
(10.84)

Figure 10.12 shows the access probability of CSMA/CA when n = 50 and
N = 10. The solid line is the access probability of CSMA/CA, the dashed line
represents the access probability of slotted ALOHA, and the dotted line represents
the access probability of pure ALOHA.

The average energy required to transmit a frame is estimated as

E = E0

∞∑

i=0

(i + 1)(1 − pa)i pa

= E0

pa
(10.85)

where E0 is the energy required to send one frame. In dB, the above equation can
be written as

E = −10 log10 pa dB (10.86)

Figure 10.13 shows the average energy required to transmit a frame for the
CSMA/CA when n = 50 and N = 10. The solid line is the average energy of

Fig. 10.12 Access
probability of CSMA/CA
protocol versus the average
input traffic per time step for
the case n = 50 and N = 10.
The solid line is the access
probability of CSMA/CA, the
dashed line represents the
access probability of slotted
ALOHA, and the dotted line
represents the access
probability of pure ALOHA
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Fig. 10.13 Average energy to
transmit a frame for the
CSMA/CA protocol versus
the average input traffic per
time step for the case n = 50
and N = 10. The solid line is
the energy for CSMA/CA,
the dashed line represents the
energy for slotted ALOHA,
and the dotted line represents
the energy for pure ALOHA
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CSMA/CA, the dashed line represents the average energy of slotted ALOHA, and
the dotted line represents the average energy of pure ALOHA.

The average number of attempts for a successful transmission is

na =
∞∑

i=0

i (1 − pa)i pa

= 1 − pa

pa
(10.87)

Figure 10.14 shows the delay of the CSMA/CA protocol when n = 50, N = 10,
and p = 1. The solid line is the delay of CSMA/CA, the dashed line represents the
delay of slotted ALOHA, and the dotted line represents the delay of pure ALOHA.

Fig. 10.14 Frame delay for
the CSMA/CA protocol
versus the average input
traffic for the case n = 50
and N = 10. The solid line is
the delay of CSMA/CA, the
dashed line represents the
delay of slotted ALOHA, and
the dotted line represents the
delay of pure ALOHA
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10.7 IEEE 802.11: DCF Function for Ad Hoc Wireless LANs

A major advance in wireless communications is introduction of the IEEE 802.11
medium access control (MAC) and physical layer (PHY) standard. The specification
includes three sublayers of the physical (PHY) layer: a frequency-hopping spread-
spectrum (FHSS) physical layer, a direct-sequence spread-spectrum (DSSS) link
layer, and a diffused infrared layer [9, 10]. IEEE 802.11 wireless LAN standard is
used for infrastructure as well as ad hoc networks.

Infrastructure wireless networks have a central controller called access point
(AP) that coordinates medium access among the users. This part of the protocol is
referred to as point coordination function (PCF) and it occupies a short time period
at the start of each transmitted frame as shown in Fig. 10.15. The frame starts with
a point coordination function (PCF) period, which is a time period to enable pri-
oritized access for control messages and time-critical traffic [11–13]. This form of
centralized medium access scheme enables the IEEE 802.11 to offer some quality
of service (QoS) guarantees through implementation of a scheduling algorithm at
the AP.

AD hoc wireless networks do not have a central controller. Instead, each node or
user attempts to access the shared medium on its own. This part of the protocol is
referred to as distributed coordination function (DCF) and it follows the PCF period
of each transmitted frame as shown in Fig. 10.15. This is a form of distributed
reservation scheme that could provide statistical QoS guarantees.

10.7.1 IEEE 802.11: DCF Medium Access Control

The DCF MAC part of IEEE 802.11 standard is based on CSMA-CA (listen-before-
talk) with rotating backoff window [11]. When a node receives a frame to be trans-
mitted, it chooses a random backoff value, which determines the amount of time the
node must wait until it is allowed to transmit its frame. A node stores this backoff
value in a backoff counter. During periods in which the channel is clear, the node
decrements its backoff counter. (When the channel is busy it does not decrement
its backoff counter.) When the backoff counter reaches zero, the node transmits the
frame. Since the probability that two nodes will choose the same backoff factor is
small, collisions between frames are minimized. Collision detection, as is employed
in Ethernet, cannot be used for the radio frequency transmissions of IEEE 802.11.
The reason is that when a node is transmitting it cannot hear any other node in the
system which may be transmitting, since its own signal will drown out any others
arriving at the node.

Fig. 10.15 Location of PCF
and DCF periods in the frame
of IEEE 802.11 protocol

Point Coordination
Function Period (PCF)

Frame

Transmitted packet
Distributed Coordination
Function Period (DCF)
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Fig. 10.16 DCF part of the
IEEE 802.11 frame
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In that sense, 802.11 could be classified as CSMA/CA but with provisions for
reducing the chance of collisions through adoption of the reservation slots using the
backoff counters. The slots have the effect of ensuring that a reduced number of
users compete for access to the channel during any given reservation slot.

Figure 10.16 shows the DCF part of the IEEE 802.11 frame. After the PCF period
(i.e., SIFS), there is the DCF period (i.e., DIFS) which is a contention window that
is divided into reservation slots. The figure shows six such slots. The duration of a
reservation slot depends on the propagation delay between stations. The rest of the
frame is dedicated to transmitting the frames.

A station that intends to transmit senses if the channel is busy. It will then wait
for the end of the current transmission and the PCF delay. It then randomly selects
a reservation slot within the backoff window. The figure shows that a station in time
reservation slot 2 starts transmitting a frame since the channel was not used during
reservation slots 0 and 1.

Collisions occur when two or more stations select the same reservation slot. If an-
other station started transmission at an earlier reservation slot, the station freezes its
backoff counter and waits for the remaining content of this counter after the current
transmission ends. We consider the behavior of one user, which we term the tagged
user. Figure 10.17 shows the IEEE 802.11 MAC scheme as viewed by a certain user
(called the tagged user). Figure 10.17 indicates that the tagged user, as indicated
by the black circle, randomly selected reservation slot 7 to start transmission. So its
backoff counter contains the value 7 now. However, another user starts transmission
at reservation slot 2 as indicated by the grey box. Since the channel was quiet for two
reservation slots (slot 0 and 1), the backoff counter of the tagged user will contain
the value 5 at the end of the current frame.

Figure 10.17(b) shows the next frame. However, another user at reservation slot
1 started transmission. Since the channel was quiet for one reservation slots (slot
0), the backoff counter of the tagged user will contain the value 4 at the end of the
current frame.

Figure 10.17(c) shows the next frame. The tagged user is successful in starting
transmission since the channel was quite for four reservation slots (0, 1, 2, and 3).

10.7.2 IEEE 802.11: DCF Model Assumptions

In order to facilitate developing an analytical model for the 802.11 protocol, we
model the backoff counters in each station in terms of allocation to a reservation
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Fig. 10.17 IEEE 802.11
MAC scheme
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Transmitted packet

0 1 2 3 4 5 6 7(a)
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slot. Figure 10.18 shows the backoff window divided into w reservation slots. The
value of w equals the maximum value that can be stored in the backoff counter of
any user.

At the start of the frame, users in slot 0 sense that the channel is idle and are able
to start transmission. When that happens, all users in the other slots will sense that
the channel is busy and will refrain from transmitting their data. A collision could
happen if two or more users in slot 0 begin to transmit simultaneously. However,
the likelihood of this event happening is small since the number of users in slot 0 is
lesser than the total number of users.

If all users in slot 0 remain idle, then users in slot 1 can transmit if they have
frames to send. The same argument can be applied to the rest of the reservation
slots.

We employ the following simplifying assumptions:

1. Since the current state of the channel depends only on its immediate past his-
tory, we can model the channel using Markov chain analysis.

2. The states of the Markov chain represent the states of the channel: idle, trans-
mitting, and collided.

Fig. 10.18 Modeling the
backoff counters in IEEE
802.11 MAC scheme in terms
of w reservation slots

w-1

Start of frame

Contention window

0 1 2 ...
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3. There are N equal priority users in the network. By network, we mean a single-
hop network or the nodes within the transmission range of a particular node.

4. There are w reservation slots in the contention window.
5. The duration of one time step in the contention window is roughly taken equal

to the maximum expected propagation delay τp plus the time it takes a station
to sense the presence of a carrier. This time is called the distributed interframe
spacing (DIFS).

6. The Markov chain time step is taken equal to the DIFS period.
7. The ratio of frame transmission delay to contention window delay is n > 1.
8. All frames have equal lengths such that a frame takes n time steps to be trans-

mitted.
9. Probability that an idle station receives a frame for transmission during a time

step is a.
10. A station can have at most one message waiting for transmission.
11. A user selects a time slot with the same probability.
12. Collided users use the same slot reservation protocol as uncollided users—i.e.,

collided users employ a random backoff strategy as opposed to binary exponen-
tial backoff strategy.

The probability that a user with data to send reserves a particular reservation slot
is given by

α = 1

w
(10.88)

Slot reservation requests are representative of incoming traffic. Therefore, the
user population seen by each slot in the contention window is given by

N ′ = αN = N

w
(10.89)

The above equation indicates that the number of users that compete to access the
medium is reduced from N to N ′. We expect therefore that the chance of collisions
is reduced compared to the case when there were no reservation slots.

The probability that k users attempt a transmission during a given reservation slot
is given by

uk =
(

N ′

k

)
ak(1 − a)N ′−k ; 0 ≤ k ≤ N ′ (10.90)

Based on the above assumptions, the 802.11 channel could be in one of three
states: idle, collided, or transmitting. Figure 10.19 shows the transition diagram for
our Markov chain. In the figure, the channel stays in the idle state with probability
x , which is the probability that all users do not have frames to send. The probability
x for this event is given by
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Fig. 10.19 State transition
diagram for the 802.11
channel
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The channel moves from idle to transmitting state with probability y, which is
the probability that only one user in any of the reservation slots requests a transmis-
sion and all users in the previous slots did not request to access the channel. The
probability y for this event is given by

y = u1 + u0u1 + u2
0u1 + · · · + uw−1

0 u1 = u1
(
1 − uw

0

)

1 − u0
(10.92)

The channel moves from the idle to the collided state with probability z, which
is the probability that more than one user in any of the reservation slots requests a
transmission and all other users in the previous slots are idle. The probability z for
this event is simply given by

z = 1 − x − y (10.93)

We organize the distribution vector at equilibrium as follows:

s = [
si st1 st2 · · · stn sc1 sc2 · · · scn

]t
(10.94)

The corresponding state transition matrix of the channel for the case when n = 3
is given by



356 10 Modeling Medium Access Control Protocols

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

x 0 0 1 0 0 1
y 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
z 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(10.95)

At equilibrium, the distribution vector is obtained by solving the two equations

P s = s (10.96)
∑

s = 1 (10.97)

The solution to the above two equations is simple:

s = 1

n(1 − x) + 1

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1
y
y
...
y
z
z
...
z

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(10.98)

When w = 1, the equilibrium distribution vector for IEEE 802.11 above becomes
identical to the equilibrium distribution vector for CSMA/CA in Eq. (10.79).

10.7.3 IEEE 802.11: DCF Protocol Performance

The throughput is given by the equation

Th =
n∑

i=1

sti

= ny

n(1 − x) + 1
(10.99)

Figure 10.20 shows the throughput of IEEE 802.11 when w = 8, n = 10, and
N = 32. The upper solid line is the throughput of IEEE 802.11/DCF, the lower
solid line is the throughput of CSMA/CA, the dashed line represents the throughput
of slotted ALOHA, and the dotted line represents the throughput of pure ALOHA.



10.7 IEEE 802.11: DCF Function for Ad Hoc Wireless LANs 357

Fig. 10.20 Throughput for
the IEEE 802.11/DCF
protocol versus the average
input traffic when w = 8,
n = 10, and N = 32. The
upper solid line is the
throughput of IEEE
802.11/DCF, the lower solid
line is the throughput of
CSMA/CA, the dashed line
represents the throughput of
slotted ALOHA, and the
dotted line represents the
throughput of pure ALOHA
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The throughput is high due to several factors such as distribution of users among
reservation channels and assuming the wireless medium is error free.

Changing the number of reservation slots has a direct effect on the throughput. To
test this, we selected values of w as 4, 8, and 16. Figure 10.21 shows the throughput
for the IEEE 802.11/DCF protocol versus the average input traffic when n = 10
and N = 32 and w = 4, 8, and 16. Dashed line represents the throughput of
slotted ALOHA, and the dotted line represents the throughput of pure ALOHA.
We note two things from this figure. First, reducing the value of n leads to lesser
throughput since more significant amount of time is spent listening to the carrier.
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Fig. 10.21 Throughput for the IEEE 802.11/DCF protocol versus the average input traffic when
n = 10 and N = 32 and w = 4, 8, and 16. Dashed line represents the throughput of slotted
ALOHA and the dotted line represents the throughput of pure ALOHA
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Fig. 10.22 Probability of collision for the IEEE 802.11/DCF protocol versus the average input
traffic when n = 10 and N = 32 and w = 4, 8, and 16

Second, adoption of reservation slots distributes the user requests among the slots.
This leads to less chance of collisions and more throughput results. To prove this
last point, the collision probability is shown in Fig. 10.22.

The user access probability is given by

pa = Th

Na
(10.100)

Figure 10.23 shows the access probability of IEEE 802.11/DCF when w = 8,
n = 10, and N = 32. The upper solid line is the access probability of IEEE
802.11/DCF, the lower solid line is the access probability of CSMA/CA, the dashed
line represents the access probability of slotted ALOHA, and the dotted line repre-
sents the access probability of pure ALOHA.

The average energy required to transmit a frame is estimated as

E = E0

∞∑

i=0

(i + 1)(1 − pa)i pa

= E0

pa
(10.101)

where E0 is the energy required to send one frame. In dB, the above equation can
be written as

E = −10 log10 pa dB (10.102)
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Fig. 10.23 Access probability for the IEEE 802.11 protocol versus the average input traffic when
w = 8, n = 10, and N = 32. The upper solid line is the access probability of IEEE 802.11/DCF,
the lower solid line is the access probability of CSMA/CA, the dashed line represents the ac-
cess probability of slotted ALOHA, and the dotted line represents the access probability of pure
ALOHA

Figure 10.24 shows the energy of IEEE 802.11/DCF when w = 8, n = 10, and
N = 32. The lower solid line is the energy of IEEE 802.11/DCF, the upper solid
line is the energy of CSMA/CA, the dashed line represents the energy of slotted
ALOHA, and the dotted line represents the energy of pure ALOHA.
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Fig. 10.24 Energy for the IEEE 802.11/DCF protocol versus the average input traffic when w = 8,
n = 10, and N = 32. The lower solid line is the energy of IEEE 802.11/DCF, the upper solid line is
the energy of CSMA/CA, the dashed line represents the energy of slotted ALOHA, and the dotted
line represents the energy of pure ALOHA
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Fig. 10.25 Delay for the IEEE 802.11/DCF protocol versus the average input traffic when w = 8,
n = 10, and N = 32. The lower solid line is the delay of IEEE 802.11/DCF, the upper solid line
is the delay of CSMA/CA, the dashed line represents the delay of slotted ALOHA, and the dotted
line represents the delay of pure ALOHA

The average number of attempts for a successful transmission is

na =
∞∑

i=0

i (1 − pa)i pa

= 1 − pa

pa
(10.103)

Figure 10.25 shows the delay of IEEE 802.11/DCF when w = 8, n = 10, and
N = 32. The lower solid line is the delay of IEEE 802.11/DCF, the upper solid line
is the delay of CSMA/CA, the dashed line represents the delay of slotted ALOHA,
and the dotted line represents the delay of pure ALOHA.

10.7.4 IEEE 802.11/DCF Final Remarks

The DCF mode of the IEEE 802.11 protocols has been studied by many researchers.
We tried to present here a simple model to start the reader in the area of model-
ing protocols. However, there are many ripe areas that have not been adequately
explored for this protocol and for others also. We enumerate some of these direc-
tions:

1. Channel errors have not been considered. This is a physical layer problem but
could also be considered in a cross-layer modeling. What matters here is to obtain
the probability that a frame or packet is in error.
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2. Simple backoff strategies were used here in order to obtain simple expressions.
Adopting binary exponential backoff (BEB) strategy would result in a model that
requires an iterative solution.

3. Perhaps the most serious deficiency in the models in this chapter is the implicit
assumption that no new traffic arrives while the user is attempting to access the
channel. This amounts to assuming the transmit buffer has a single storage lo-
cation only. Using a more realistic buffer would require solving two queuing
systems.

10.8 IEEE 802.11: PCF Function for Infrastructure Wireless
LANs

In the IEEE 802.11, there is a feature to support quality of service (QoS) in infras-
tructure LANs through implementation of the point coordination function (PCF). A
central controller polls the users to determine which user can access the medium
in the next frame. Such medium access scheme is used in infrastructure wireless
LANs where a central controller is provided to coordinate the activities of the users
or mobile terminals. The central controller in wireless LANs such as HiperLAN/2
is called the access point (AP).

The central controller prevents collisions from taking place since it coordi-
nates access to the channel through implementation of some kind of reservation or
scheduling algorithm. Thus we can classify the IEEE 802.11/PCF as a reservation-
based scheme that is collision-free.

In IEEE 802.11, using the PCF function, time is divided into time steps as shown
in Fig. 10.26. There are two directions of communication: the uplink from the users
to the central controller and downlink from the central controller to the users. The
uplink frames consist of a request phase and a data phase. In the request phase, users
issue their requests and in the data phase, users send their data when they are told to
do so by the central controller or scheduler.

time

Requests

Scheduling

Data packet Requests

Scheduling

Data packet

Uplink

Downlink

One frame

Fig. 10.26 Frame structure for IEEE 802.11 protocol using the PCF function
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The data phase transmits one frame in the uplink direction from one user based
on some scheduling policy. The receiver is told by the central controller to expect
an arriving frame. Alternatively, all users receive the transmitted frame and decide
whether it was destined to them or not.

IEEE 802.11/PCF is efficient when the time taken by the request phase is much
smaller than the data phase if both the uplink and downlink use the same channel.
If there are two separate channels, then the protocol is efficient as long as the delay
of the request phase is smaller than the duration of the data phase. If the central
controller requires a time that is comparable to the data phase, then the channel is
not well used and other MAC techniques should be used.

10.8.1 IEEE 802.11: PCF Medium Access Control

The central controller communicates with the users through the downlink. The con-
troller polls all users in the system and schedules only one user to access the medium
based on some scheduling strategy. In addition, the controller informs the receivers
to be ready for the transmitted frames. In a nonpersistent PCF protocol, users that
were not granted access to the channel issue another request to transmit with prob-
ability p when polled by the access point on the next poll period. A large value for
the persistence probability p would ensure that the user gets to compete in the next
poll period. On the other hand, a small p reduces the number of contending users.
We propose here to adopt a variable or adaptive persistence strategy. A user with
heavy traffic would use a large value for p, while a user with low traffic would use
a small value for p.

10.8.2 IEEE 802.11: Nonpersistent PCF Model Assumptions

In this section, we perform Markov chain analysis of the IEEE 802.11 (PCF) proto-
col. We make the following assumptions for our analysis of the simple
protocol:

1. The states of the Markov chain represent the channel state which could be idle
or transmitting.

2. The time step is equal to the poll period of the central controller.
3. The system has a fixed population of N users.
4. There is a single customer class. The case of multiple customer classes is treated

in Problem 10.46.
5. All frames have equal lengths and each frame requires n time steps to be trans-

mitted.
6. Probability that a user requests transmission during a time step is a and proba-

bility that the user is idle during a time step is b = 1 − a.
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Fig. 10.27 State transition diagram for the channel of the IEEE 802.11 protocol employing the
PCF function

7. If a user is refused access to the channel, it will issue a request at the next
poll period with persistence probability equal to the frame arrival probability
(i.e., p = a).

8. The channel is assumed to be always available for transmission in every time
step.

The state diagram for the channel is shown in Fig. 10.27. In the figure, x is the
probability that all users are idle and do not issue a request to access the channel
during the current time step and y = 1 − x . No collision takes place when more
than one request is present due to polling. The controller will then decide which
station is granted access and inform the others of that decision through ACK/NAK
mechanism. We can write

x = bN (10.104)

We organize the distribution vector at equilibrium as follows:

s = [
si st1 st2 · · · stn

]t
(10.105)

where si is the idle state and st j is the state when the channel is transmitting the j th
part of the frame. The corresponding transition matrix of the channel is given by
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P =

⎡

⎢⎢⎢⎢⎢
⎣

x 0 0 · · · 1
y 0 0 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎤

⎥⎥⎥⎥⎥
⎦

(10.106)

At equilibrium, the distribution vector is obtained by solving the two equations

P s = s (10.107)

si +
∑

i=1

ti = 1 (10.108)

From the structure of the matrix, we can write

t1 = t2 = · · · = tn = t (10.109)

We also have

t = y si (10.110)

Using simple algebra, we can finally obtain the distribution vector as

s = 1

ny + 1

[
1 y · · · y

]t
(10.111)

10.8.3 IEEE 802.11: Nonpersistent PCF Protocol Performance

Having obtained the transition matrix, we are able to find the performance of the
nonpersistent IEEE 802.11/PCF channel.

The input traffic is defined here as the average number of requests per time step
and is given by

Na(in) =
N∑

i=0

i

(
N

i

)
ai (1 − a)N−i

= N a (10.112)

The throughput of the system is given by

Th =
∑

i=1

nsti = ny

ny + 1
(10.113)

Notice that when n → ∞, the maximum throughput approaches 1. This is
because comparatively little time is wasted polling the users. On the other hand,
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Fig. 10.28 The throughput for nonpersistent IEEE 802.11/PCF versus the average input traffic
when n = 50 and N = 10. The solid line is the throughput of nonpersistent IEEE 802.11/PCF,
the dashed line represents the throughput of slotted ALOHA, and the dotted line represents the
throughput of pure ALOHA

when n ≈ 1, the maximum throughput approaches 50%. This is because approxi-
mately 50% of the time the access point is polling the users and no frames are being
transmitted during the period.

Figure 10.28 shows the throughput of the nonpersistent IEEE 802.11/PCF pro-
tocol when n = 50 and N = 10. The solid line is the throughput of nonpersistent
IEEE 802.11/PCF, the dashed line represents the throughput of slotted ALOHA, and
the dotted line represents the throughput of pure ALOHA.

Because all users are the same, the throughput seen by one user is given by

Th(user) = Th

N
= ny

N (ny + 1)
(10.114)

When n is very large, the maximum throughput for each user will approach 1/N .
This is to be expected due to the fair sharing of the medium among the users.

Define pa as the access probability for one user which is given by

pa = Th(user)

a
= Th

Na(in)
(10.115)

Figure 10.29 shows the access probability of nonpersistent IEEE 802.11/PCF
when n = 50 and N = 10. The solid line is the access probability of nonpersis-
tent IEEE 802.11/PCF, the dashed line represents the access probability of slotted
ALOHA, and the dotted line represents the access probability of pure ALOHA.

Having found the acceptance probability, we are able to determine the average
number of attempts before a user gets access to the medium:
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Fig. 10.29 Delay for the nonpersistent IEEE 802.11 protocol versus the average input traffic per
time step when n = 50 and N = 10. The solid line is the access probability of IEEE 802.11/PCF,
the dashed line represents the access probability of slotted ALOHA, and the dotted line represents
the access probability of pure ALOHA

na =
∞∑

k=0

k (1 − pa)k pa (10.116)

= 1 − pa

pa
(10.117)

Figure 10.30 shows the delay of nonpersistent IEEE 802.11/PCF when n = 50
and N = 10. The solid line is the delay of nonpersistent IEEE 802.11, the dashed
line represents the delay of slotted ALOHA, and the dotted line represents the delay
of pure ALOHA.

10.8.4 IEEE 802.11: 1-Persistent PCF

This section deals with modeling the point coordination function (PCF) of the
1-persistent IEEE 802.11 protocol. We make the following assumptions for our
analysis of the simple protocol.

1. The states of the Markov chain represent the number of queued users requesting
access to the channel at the start of any time step.

2. Time is divided into time steps such that each time step starts with a control phase
and then a data phase. In the control phase, all arriving requests are processed
and one access is granted. In the data phase, the user that was granted access to
the medium transfers its data.

3. The system has a fixed population of N users.
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Fig. 10.30 Delay for the nonpersistent IEEE 802.11/PCF protocol versus the average input traf-
fic per time step when n = 50 and N = 10. The solid line is the delay of nonpersistent IEEE
802.11/PCF, the dashed line represents the delay of slotted ALOHA, and the dotted line represents
the delay of pure ALOHA

4. There is a single customer class. The case of multiple customer classes is treated
in Problem 10.46.

5. A user can have, at most, one message waiting for transmission. At the end of
certain time step, users that have requests pending cannot issue more requests at
the next time step.

6. A user that is transmitting at a certain time step can issue a new request at the
next time step.

7. Users that were denied access will attempt a retransmission at the next time step.
8. Probability that a user requests transmission is a and probability that the user is

idle is b = 1 − a.
9. The channel is assumed to be always available for transmission in every time

step.

The state diagram for the system is shown in Fig. 10.31 where the user popu-
lation is N . Only transitions out of state 2 are shown for simplicity. In the figure,
state i indicates that there are i users requesting transmission. Based on the above
assumptions, it is impossible for the system to have N queued requests since one
request is always guaranteed to be processed in the same time step. The request

2 30 1 4N4

Fig. 10.31 State transition diagram for the single access reservation-based MAC protocol when
the system has N = 5 users. Only transitions out of state 2 are shown for simplicity
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queue will vary in size between the limits 0 and N − 1 since at worst N requests
could arrive at a time step but only N − 1 requests will remain queued at the end of
the time step.

Starting at state j , the probability of making a transition to state i is governed by
the following observations:

• It is impossible to make a transition to state i if i < j −1 since only one user can
access the medium.

• It is possible to stay in the same state j when one user leaves the system and
exactly one more user requests access.

• The next state would be in the range j ≤ i < N depending on how many users
request access to the medium.

• The transition probability pi j represents the probability that i users still request
access to the medium at the end of the current time step.

According to the assumptions we employed, the resulting transition matrix is
lower N × N Hessenberg matrix in which all the element pi j = 0 for j > i + 1.
Suppose there are j queued requests at the end of a time step. In the next time step,
we are sure that j requests will be issued plus a possible 0 to N − j additional
requests coming from the other users.

We organize the distribution vector at equilibrium as follows:

s = [
s0 s1 s2 · · · sN−1

]t
(10.118)

where si corresponds to the system state when there are i users with unsatisfied
(queued) requests. The corresponding transition matrix of the channel is given by

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

y p(N − 1, 0) · · · 0 0
p(N , 2) p(N − 1, 1) · · · 0 0
p(N , 3) p(N − 1, 2) · · · 0 0
p(3, 4) p(N − 1, 3) · · · 0 0
...

...
. . .

...
...

p(N , N − 2) p(N − 1, N − 3) · · · p(2, 0) 0
p(N , N − 1) p(N − 1, N − 2) · · · p(2, 1) p(1, 0)
p(N , N ) p(N − 1, N − 1) · · · p(2, 2) p(1, 1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(10.119)

where p(i, j) is the probability that there were i idle users and j of them issued
requests to access the medium. y represents the probability that there were N idle
users and at most one of them issued a request:

p(i, j) =
(

i

j

)
ai− j b j (10.120)

y = p(N , 0) + p(N , 1) (10.121)
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For the case N = 5, the transition matrix is 5 × 5 and is given by

P =

⎡

⎢⎢⎢⎢
⎣

y p(4, 0) 0 0 0
p(5, 2) p(4, 1) p(3, 0) 0 0
p(5, 3) p(4, 2) p(3, 1) p(2, 0) 0
p(5, 4) p(4, 3) p(3, 2) p(3, 1) p(1, 0)
p(5, 5) p(4, 4) p(3, 3) p(2, 2) p(1, 1)

⎤

⎥⎥⎥⎥
⎦

(10.122)

10.8.5 1-Persistent IEEE 802.11/PCF Performance

Having obtained the transition matrix, we are able to find the performance of the
1-persistent IEEE 802.11/PCF channel.

The throughput of the system is given by

Th = s0 [1 − p(N , 0)] + (1 − s0) (10.123)

= 1 − s0 p(N , 0) (10.124)

The first term corresponds to the probability that the queue is empty and one
or more requests arrive and the second term corresponds to the probability that the
queue is not empty. Figure 10.32 shows the throughput of the 1-persistent IEEE
802.11 protocol when N = 10. The solid line is the throughput of 1-persistent IEEE
802.11/PCF, the dashed line represents the throughput of slotted ALOHA, and the
dotted line represents the throughput of pure ALOHA.
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Fig. 10.32 The throughput for 1-persistent IEEE 802.11/PCF versus the average input traffic when
N = 10. The solid line is the throughput of 1-persistent IEEE 802.11/PCF, the dashed line rep-
resents the throughput of slotted ALOHA, and the dotted line represents the throughput of pure
ALOHA
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Fig. 10.33 The average number of queued users with frames to send in 1-persistent IEEE
802.11/PCF versus the average input traffic when N = 10

Notice that the throughput reaches 100% as soon as the input traffic approaches
1 since at this level there is more than one user with frames to send and there are no
collisions. Further, the use of transmit buffers ensures that arriving requests are not
dropped as long as the buffer is not full.

The average number of queued users with frames to send is given by

Qa =
N−1∑

i=0

i si (10.125)

Figure 10.33 shows the average number of queued users versus input traffic when
N = 10. Define pa as the access probability for one user which is given by

pa = Th(user)

a
= Th

Na(in)
(10.126)

Figure 10.34 shows the access probability versus input traffic when N = 10. The
solid line is the access probability of 1-persistent IEEE 802.11/PCF, the dashed line
represents the access probability of slotted ALOHA, and the dotted line represents
the access probability of pure ALOHA.

Having found the acceptance probability, we are able to determine the average
number of attempts before a user gets access to the medium:
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Fig. 10.34 The access probability in IEEE 802.11/PCF versus the average input traffic when
N = 10. The solid line is the access probability of 1-persistent IEEE 802.11/PCF, the dashed
line represents the access probability of slotted ALOHA, and the dotted line represents the access
probability of pure ALOHA

na =
∞∑

k=0

k (1 − pa)k pa (10.127)

= 1 − pa

pa
(10.128)

Figure 10.35 shows the delay of IEEE 802.11 when N = 10. The solid line is the
delay of 1-persistent IEEE 802.11, the dashed line represents the delay of slotted
ALOHA, and the dotted line represents the delay of pure ALOHA.

10.8.6 1-Persistent IEEE 802.11/PCF User Performance

The previous section modeled the states of all the N users of the 1-persistent IEEE
802.11/PCF. In this section, we study an individual user, usually called the tagged
user. Specifically, we would like to study the access probability pa which represents
the probability that a request for transmitting data will be granted.

Because all users are the same, the throughput seen by the tagged user is given by

Th(user) = Th

N
(10.129)

Define pa as the access probability for our tagged user which is given by
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Fig. 10.35 Delay for the 1-persistent IEEE 802.11/PCF protocol versus the average input traf-
fic when N = 10. The solid line is the delay of 1-persistent IEEE 802.11/PCF, the dashed line
represents the delay of slotted ALOHA, and the dotted line represents the delay of pure ALOHA

pa = Th(user)

a
= Th

Na(in)
(10.130)

Thus we obtain

pa = 1 − s0 p(N , 0)

aN
(10.131)

At light loading condition such that aN � 1, the acceptance probability becomes
pa = 1, which makes sense since most of the time only one user has a request and is
immediately granted access to the medium. For heavy traffic a ≈ 1, the acceptance
probability pa ≈ 1/N , which also makes sense since most of the time all users have
requests and only one is granted access with probability 1/N .

Having found the acceptance probability, we are able to determine the average
number of attempts before a user gets access to the medium:

na =
∞∑

k=0

k (1 − pa)k pa (10.132)

= 1 − pa

pa
(10.133)

Example 10.4 A 1-persistent IEEE 802.11 employing the PCF function serves 8
customers and the channel bit rate is 1,920 kbps, which is used for a wireless micro-
cellular system. Each customer is assumed to issue 20 requests each second and the
average length of a frame is 5.12 kb. Obtain the performance of this system.
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First, we must find the time step value knowing the duration of an average frame
length:

time step value = 5.12/1, 920 = 2.7 ms

To find the frame arrival probability a per time step, we need to estimate the
number of requests issued by the user over some observation time and we also
need to find the number of time steps during this same observation period. Take
the observation period to be 1 s. Thus the total user traffic during this period is

Na(in) = user request rate × 1 = 20 requests

The number of time steps during this period n is given by

n =
⌈

1 s

T

⌉
= 375

The number of requests from the binomial distribution is given from the relation

a × n = Na(in)

Thus we have the user request probability as

a = 0.0533

The transition matrix will be

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0.9357 0.6814 0 0 0 0 0 0
0.0573 0.2687 0.7198 0 0 0 0 0
0.0065 0.0454 0.2433 0.7603 0 0 0 0
0.0005 0.0043 0.0343 0.2433 0.8031 0 0 0
0 0.0002 0.0026 0.0343 0.1810 0.8484 0 0
0 0 0.0001 0.0026 0.0153 0.1434 0.8962 0
0 0 0 0.0001 0.0006 0.0081 0.1010 0.9467
0 0 0 0 0 0.0002 0.0028 0.0533

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

The distribution vector for the request queue states is

s = [
0.8988 0.0848 0.0145 0.0018 0.0002 0 0 0

]t

We see that approximately 90% of the time the queue is empty, which is the value
of the first element of the vector. The performance figures are
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Th = 0.4203 frames/time step
Qa = 0.1198 requests
pa = 0.832
na = 0.202 time steps

10.9 IEEE 802.11e: Quality of Service Support

The IEEE 802.11e provided enhancements over the legacy IEEE 802.11 to be able
to provide quality of service support such as voice over wireless and streaming
multimedia. True to our strategy throughout this book, we strive to provide sim-
plified analyses. The reader can then carry this approach further and develop more
sophisticated models.

Let us start by briefly explaining how quality of service is supported in this pro-
tocol. The distributed coordination function (DCF) of legacy IEEE 802.11 is now
replaced with enhanced distributed channel access (EDCA). High-priority traffic is
given better chance of accessing the channel compared to low-priority traffic. On
average, high-priority traffic waits less and experiences higher throughputs. We can
extend the analysis in Section 10.7 to describe the IEEE 802.11e using the following
assumptions:

1. There are two user priority classes: class 1 is the high-priority users and class 2
is the lower-priority users.

2. There are two contention windows: w1 for class 1 and w2 < w1 for class 2.
3. The probability that a user has a frame to send is a.
4. γ < 1 is the probability that a transmitted frame belongs to class 1, and 1 − γ

the probability that the frame belongs to class 2 traffic.

The probability that a class 1 user with data to send reserves a particular reserva-
tion slot is given by

α1 = 1

w1
(10.134)

Similarly, α2 = 1/w2 is defined for class 2 users. Slot reservation requests are
representative of incoming traffic. The user population seen by each slot in the con-
tention windows of the two service classes is given by

N1 = N

w1
(10.135)

N2 = N

w2
(10.136)

The probability that k class 1 users attempt a transmission during a given reser-
vation slot is given by
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uk =
(

N1

k

)
ak

1(1 − a1)N1−k ; 0 ≤ k ≤ N1 (10.137)

Likewise, the probability that k class 2 users attempt a transmission during a
given reservation slot is given by

vk =
(

N2

k

)
ak

2(1 − a2)N2−k ; 0 ≤ k ≤ N2 (10.138)

Figure 10.36 shows the IEEE 802.11e channel state transition diagram. We notice
that as far as the channel is concerned, it could be in one of four states:

• idle when no frames are being transmitted
• collided when two or more frames are being transmitted simultaneously
• transmitting class 1 traffic when exactly one class 1 frame is being transmitted
• transmitting class 2 traffic when exactly one class 2 frame is being transmitted

The channel stays in the idle state with probability x given by

x = u0 v0 = (1 − a1)N (1 − a2)N (10.139)

The channel moves from idle to class 1 transmitting state with probability y1,
which is the probability that only one class 1 user in any of the w1 reservation slots
requests a transmission and all users in the previous slots did not request to access
the channel. The probability y1 for this event is given by

y1

x
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Fig. 10.36 IEEE 802.11e channel state transition diagram
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y1 = u1v0 + u0v
2
0u1 + u2

0v
3
0u1 + · · · + uw1−1

0 v
w1
0 u1

= u1v0 × 1 − (u0v0)w1

1 − u0
(10.140)

In a similar fashion, the probability y2 is given by

y2 = u0v1 × 1 − (u0v0)w1

1 − u0v0
+ v1 (u0v0)w1 × 1 − v

w2−w1
0

1 − v0
(10.141)

We can now proceed to find the distribution vector at equilibrium using Fig. 10.36.
We can write the following equations:

t1 = y1 i (10.142)

t2 = y2 i (10.143)

c = z i (10.144)

It is easy to prove that the state probabilities are given by

i = 1/D (10.145)

t1 = y1/D (10.146)

t1 = y1/D (10.147)

c = z/D (10.148)

D = n(1 − x) + 1 (10.149)
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Fig. 10.37 Throughput for the IEEE 802.11e protocol versus the average input traffic when
γ = 0.5, w1 = 4, w2 = 8, n = 10, and N = 32. Dashed line represents the throughput of
slotted ALOHA and the dotted line represents the throughput of pure ALOHA



10.9 IEEE 802.11e: Quality of Service Support 377

The throughputs for both priority classes are given by

Th1 = ny1/D (10.150)

Th2 = ny2/D (10.151)

Figure 10.37 shows the throughput of IEEE 802.11e when γ = 0.5, w1 = 4,
w2 = 8, n = 10, and N = 32. The average input traffic Na(in) is defined as

Na(in) = a N (10.152)

We notice, as expected, that class 1 throughput is higher than class 2 throughput.
What is really important for quality of service support is not the absolute value of
each throughput component since incoming traffic belonging to a certain service
class could be low to start with. In that case, the resulting throughput would be low
but this does not indicate low performance by any means. What is important here is
the packet acceptance probability pa for each class. We define the packet acceptance
probabilities for the two service classes as

pa1 = Th1

γ Na(in)
(10.153)

pa2 = Th2

(1 − γ )Na(in)
(10.154)

We would like to be assured that pa1 > pa2 for all levels of incoming traffic.
Figure 10.38 shows the frame access probability for the IEEE 802.11e protocol

0
10–2

10–1

100

16 32

Input traffic 

A
cc

es
s 

P
ro

ba
bi

lit
y

CSMA/CA

80211e Class 1

80211e Class 2

Fig. 10.38 Frame access probability for the IEEE 802.11e protocol versus the average input traffic
when γ = 0.5, w1 = 4, w2 = 8, n = 10, and N = 32. Dashed line represents the access
probability of slotted ALOHA and the dotted line represents the probability of pure ALOHA
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versus the average input traffic when γ = 0.5, w1 = 4, w2 = 8, n = 10, and
N = 32. Dashed line represents the throughput of slotted ALOHA and the dotted
line represents the throughput of pure ALOHA.

We note from the figure that the access probability for the class 1 traffic is higher
than that of class 2. This will lead to lesser delay for class 1 traffic, which is the
desired performance.

Problems

ALOHA Network

10.1 Use Equation (10.20) to find the maximum value for the throughput of an
ALOHA network and the value of a at the maximum.

10.2 Using the results of Section A.6 in Appendix A on page 599, prove that the
maximum throughput of the ALOHA network approaches the value 1/2e as
N → ∞.

10.3 Assume an ALOHA network that is operating at its optimum conditions.
What is the average number of attempts for a user to be able to transmit a
frame under these conditions?

10.4 Assume an ALOHA network where the frame length is a multiple of some
unit of length with an upper limit on the maximum frame size. Draw a pos-
sible transition diagram for such system and write down the corresponding
state transition matrix.

10.5 Assume an ALOHA network where the propagation delay is bigger than the
frame time T . What would be a good choice for the time step of the Markov
chain? Draw a possible transition diagram for such system and write down
the corresponding state transition matrix.

10.6 Assume there are 25 users in an ALOHA network. What is the transmission
request probability a that corresponds to maximum throughput and what is
the value of the maximum throughput?

10.7 Assume there are 25 users in an ALOHA network and the probability that a
user request access is a = 0.06. What is the throughput of the channel and
what is the probability that a user will successfully transmit frame after three
unsuccessful attempts?

10.8 What is the average number of unsuccessful attempts before a user can trans-
mit a frame in the above problem?

Slotted ALOHA Network

10.9 What is the major difference between ALOHA and slotted ALOHA?
10.10 What are the major differences between the transition diagrams of ALOHA

and slotted ALOHA?
10.11 Write down the expressions for the steady-state distribution vectors for

ALOHA and slotted ALOHA and comment on their similarities and
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differences. Explain why slotted ALOHA is expected to perform better than
ALOHA.

10.12 Write down the ratio of throughput for slotted ALOHA compared to ALOHA.
Approximate the expression for the limits when a � 1 and a ≈ 1.

10.13 Use Equation (10.45) to find the maximum value for the throughput of a
slotted ALOHA network and the value of a at the maximum.

10.14 Using the results of Section A.6 in Appendix A on page 599, prove that the
maximum throughput of the slotted ALOHA network approaches the value
1/e as N → ∞.

10.15 Assume a slotted ALOHA network that is operating at its optimum condi-
tions. What is the average number of attempts for a frame to be transmitted
under these conditions?

10.16 Assume a slotted ALOHA network where the frame length is a multiple of
some unit of length with an upper limit on the maximum frame size. Draw a
possible transition diagram for such system and write down the correspond-
ing transition matrix.

10.17 Assume a slotted ALOHA network where the propagation delay is bigger
than the frame time T . Draw a possible transition diagram for such system
and write down the corresponding transition matrix.

10.18 Assume there are 25 users in a slotted ALOHA network. What is the trans-
mission request probability a that corresponds to maximum throughput and
what is the value of the maximum throughput?

10.19 Assume there are 25 users in a slotted ALOHA network and the probability
that a user request access is a = 0.06. What is the throughput of the channel
and what is the probability that a user will successfully transmit frame after
three unsuccessful attempts?

10.20 What is the average number of unsuccessful attempts before a user can trans-
mit a frame in the above problem?

10.21 Compare the maximum throughput values for ALOHA and slotted ALOHA
and the level of activity for the sources under these conditions assuming the
same number of users in both systems.

10.22 Assume an ALOHA network and a slotted ALOHA network. Both systems
support N users and each user is active with probability a = 0.02. What is
the optimum value of N for maximum throughput for both systems?

IEEE 802.3 (CSMA/CD, Ethernet)

10.23 Prove that the throughput for the IEEE 802.3 protocol in Section 10.5 ap-
proaches n/(n + 1) when under heavy traffic.

10.24 Assume an IEEE 802.3 network where the frame length is not constant. In
that case, the number of time slots required by the transmitted frames could
take between nmin and nmax slots.

(a) Draw the resulting state transition diagram.
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(b) Indicate on the diagram the transition probabilities.
(c) Write down the state transition matrix.

10.25 Assume the backoff parameter f = 1. What will be the expressions for the
IEEE 802.3 protocol

(a) Throughput
(b) Input traffic at maximum throughput
(c) Maximum throughput value

10.26 Assume an IEEE 802.3 network in which a transmitting user could move on
to transmit another frame without turning to the idle state. The probability of
this event happening is c.

(a) Identify the possible states of this Markov chain.
(b) Study the state transition probabilities and write down the state transition

matrix.

10.27 Analyze the IEEE 802.3 for p-persistent CSMA/CD where all collided users
attempt to access the channel with probability p.

10.28 Assume in the 802.3 that a collided station attempts a retransmission for a
limited number of times (assume two only). If it fails after two attempts, it
returns back to being idle. Analyze this situation.

10.29 In our analysis of CSMA/CD, we did not implement the exponential backoff
strategy for collided stations. How could the model we developed here be
modified to include this? Is there an alternative way to analyze this situation?

IEEE 802.11

10.30 Explain what is meant by the following PHY layer terms: frequency-hopping
spread-spectrum (FHSS), direct-sequence spread-spectrum (DSSS) link layer,
orthogonal frequency division multiple access (OFDM).

10.31 Explain what is meant by infrastructure wireless networks.
10.32 Explain what is meant by ad hoc wireless networks.
10.33 Explain what is meant by wireless sensor networks. How do these differ from

ad hoc networks?
10.34 Explain the operation of the distributed coordination function (DCF) and in-

dicate the type of LAN that uses it (infrastructure or ad hoc).
10.35 Explain how DCF reduces the probability of collisions.
10.36 Develop a discrete-time Markov chain model for the IEEE 802.11 user under

the DCF function. Choose a time step value equal to the propagation delay.
10.37 Simulate the performance of the IEEE 802.11 channel for different values of

the number of reservation slots w.
10.38 The analysis of the IEEE 802.11/DCF protocol assumed equally likely

assignment of users to the w reservation slots. Develop a model of the
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channel when the assignment of active users to reservation slots follows a
distribution different from the uniform distribution.

10.39 The analysis of the IEEE 802.11/DCF protocol assumed that the backoff
counters of active users decrement by one when the channel is free. Develop
a model of channel when the backoff counters assume a new random value
each time the channel is busy. Only users that can transmit a frame are the
ones that happen to have a backoff counter value of 0.

10.40 Explain the operation of the point coordination function (PCF) and indicate
the type of LAN that uses it (infrastructure or ad hoc).

10.41 Explain why PCF eliminates collisions.
10.42 Investigate the types of scheduling protocols that could be used in the PCF

portion of the IEEE 802.11 channel.
10.43 Develop a discrete-time Markov chain model for the IEEE 802.11 user under

the PCF function. Choose a time step value equal to the poll period.
10.44 Repeat Example 10.4 for the case when the number of requests per user in-

creases to 100 each second. Comment on your results.
10.45 Assume the IEEE 802.11/PCF protocol that serves 10 customers and the

channel speed is 1 Mbps. Each customer is assumed to issue requests at a
rate of 100 requests/s and the average length of a frame is 5.12 kb. Obtain the
performance of this system.

10.46 Analyze the IEEE 802.11/PCF protocol in which there are two customer
classes. Class 1 has N1 customers and class 2 has N2 customers. Users in
class 1 can access the channel when they issue a request, while users in class
2 can only access the channel when none of the users of class 1 has a request.
The system can be modeled as two separate queues for each class but the
transition probabilities in class 2 queue depends on the state of requests of
class 1.

10.47 In the analysis of the IEEE 802.11/PCF protocol, where users had transmit
buffers, it was assumed that requests arriving at a given time step are pro-
cessed in that time step. Develop a new analysis that processes these requests
at the next time step.

References

1. A.S. Tanenbaum, Computer Networks, Prentice Hall PTR, Upper Saddle River, New Jersey,
1996.

2. L. Roberts, “Extension of frame communication technology to a hand held personal terminal”,
NCC, AFIPS, pp. 711–716, 1973.

3. S. Keshav, An Engineering Approach to Computer Networks, Addison-Wesley, Reading,
Massachusetts, 1997.

4. R.M. Metcalfe and D.R. Boggs, “Ethernet: Distributed frame switching for local computer
networks”, Communications of the ACM, vol. 19, pp. 395–404, 1976.

5. F.A. Tobagi, “Analysis of a two-hop centralized frame radio network: Part I — Slotted Aloha”,
IEEE Transactions on Communications, vol. COM-28, pp. 196–207, 1980.



382 10 Modeling Medium Access Control Protocols

6. M.E. Woodward, Communication and Computer Networks, IEEE Computer Society Press,
Los Alamitos, California, 1994.

7. A. Leon-Garcia and I. Widjaja, Communication Networks, McGraw-Hill, New York, 2000.
8. D.B. Jhonson and D.A. Maltz, “Dynamic source routing in Ad Hoc wireless networks”, in

Mobile Computing, T. Imielinski and H. Korth, Eds., Kluwer Academic Publishers, 1996.
9. P. Karn, “MACA - A new channel access method for frame radio”, ARRL/CRRL Amateur

Radio 9th Computer Networking Conference, September,1990.
10. S. Kapp, “802.11a. More bandwidth without the wires”, IEEE Internet Computing, vol. 6,

no. 4, pp. 75–79, 2002.
11. J. Weinmiller, H. Woesner, and A. Wolisz, “Analyzing and improving the IEEE 802.11-MAC

protocol for wireless LANs”, Proceedings of the Fourth International Workshop on Model-
ing, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’96),
pp. 200–206, February, 1996.

12. S. Khurana, A. Kahol, S.K.S. Gupta, and P.K. Srimani, “Performance evaluation of distributed
coordination function for IEEE802.11 wireless LAN protocol in presence of mobile and hid-
den terminals”, Proceedings of 7th International Symposium on Modeling, Analysis and Sim-
ulation of Computer and Telecommunication Systems, pp. 40–47, Oct. 1999.

13. J. Liu, D.M. Nicol, L.F. Perrone, and M. Liljenstam, “Towards high performance modeling
of the 802.11 wireless protocol”, Proceedings of the Winter Simulation Conference, vol. 9,
pp. 1315–1320, December 2001.



Chapter 11
Modeling Network Traffic

11.1 Introduction

Models that describe and generate telecommunication traffic are important for
several reasons [1]:

Traffic description: Network users might be required to give a traffic description
to the service provider. Based on that, the service provider decides whether
the new connection can be admitted with a guaranteed quality of service and
without violating the quality of service for established connections.

System simulation: Future networks and new equipment could be designed and
the expected network performance checked.

Different models are used to describe different types of traffic. For example, voice
traffic is commonly described using the on–off source or the Markov modulated
Poisson process. Studies suggest that traffic sources such as variable-bit-rate video
and Ethernet traffic are better represented by self-similar traffic models [2–7]. The
important characteristics of a traffic source are its average data rate, burstiness, and
correlation. The average data rate gives an indication of the expected traffic volume
for a given period of time. Burstiness describes the tendency of traffic to occur in
clusters. A traffic burst affects buffer occupancy and leads to network congestion
and data loss. Data burstiness is manifested by the autocorrelation function which
describes the relation between packet arrivals at different times. It was recently dis-
covered that network traffic exhibits long-range dependence, i.e., the autocorrelation
function approaches zero very slowly in comparison with the exponential decay
characterizing short-range-dependent traffic [2–7]. Long-range-dependent traffic
produces a wide range in traffic volume away from the average rate. This great
variation in traffic flow also affects buffer occupancy and network congestion. In
summary, high burstiness or long-term correlation leads to buffer overflow and net-
work congestion. We begin by discussing the different models describing traffic
time arrival statistics.

Simple traffic models are sometimes called point processes since they are ba-
sically counting processes that count the number of packets that arrive in a time
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interval. These point processes sometime give the random sequence representing the
time separations between packets. Several random processes are grouped together to
give more complex traffic patterns. The Internet traffic archive (http://ita.ee.lbl.gov/
index.html) provides data sets for network traffic and some useful software.

The other extreme for traffic modeling is to use fluid flow models. Fluid flow
modeling groups the traffic into flows that are characterized by average and burst
data rates. The object in these models is to investigate traffic at the aggregate level
such as Ethernet traffic or traffic arriving at ingress and egress points of some Inter-
net service provider (ISP). Fluid flow models do not concern themselves with the
details of individual packet arrivals or departures.

The difference between point processes and fluid flow models is similar to the
difference in modeling an electric current in terms of the individual electrons or in
terms of the current equations.

11.2 Flow Traffic Models

Flow traffic or fluid traffic models hide the details of the different traffics flowing
in the network and replace them with flows that have a small set of characterizing
parameters. The resulting models are easily generated, measured, or monitored.

For an end-to-end application, a flow has constant addressing and service re-
quirements [8]. These requirements define a flow specification or flowspec, which
is used for bandwidth planning and service planning. Individual flows, belonging
to single sessions or applications, are combined into composite flows that share the
same path, link, or service requirements. Composite flows, in turn, are combined
into backbone flows when the network achieves a certain level of hierarchy. De-
scribing flows in this fashion makes it easier to combine flow characteristics and to
work with a smaller set of data. For example, a core router might separate incoming
data into individual flows, composite flows, and backbone flows depending on the
quality of service (QoS) required by the users. This results in smaller number of ser-
vice queues and simpler implementation of the scheduling algorithm implemented
in the router. In most networks, the majority of the flows are low-performance
backbone flows; there will also be some composite flows, and there will be few
high-performance individual flows. The high-performance flows will influence the
design of the scheduling algorithm in the switch, size, and number of the queues
required since they usually have demanding delay and/or bandwidth requirements.
The backbone flows will influence the buffer size required since they will usually
constitute the bulk of the traffic and most of the storage within the switch.

11.2.1 Modulated Poisson Processes

In a Markov modulated traffic model, states are introduced where the source changes
its characteristic based on the state it is in. The state of the source could represent its
data rate, its packet length, etc. When the Markov process represents data rate, the
source can be in any of several active states and generates traffic with a rate that is
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determined by the state. This is commonly called Markov modulated Poisson pro-
cess (MMPP). The simplest model is the on–off model, and more complex models
are described in the next section for video traffic.

11.2.2 On–Off Model

A popular model for bursty sources is the on–off model, where the source switches
between an active state, producing packets, and a silent state, where no packets
are produced. In that sense, the on–off model is a two-state MMPP. Traffic from
this type of source is characterized by many variable length bursts of activity, in-
terspersed with variable length periods of inactivity. This model is commonly used
to describe constant bit rate (CBR) traffic in ATM [9, 10]. Figure 11.1 shows the
two-state model for the on–off source.

The source stays in the active state with probability a and stays in the silent state
with probability s. When the source is in the active state (called the soujorn time),
the source generates data at a rate λ in units of bits per second or packets per second.
The traffic pattern generated by this source is shown in Fig. 11.2.

The probability that the length of the active period is n time steps is given by the
geometric distribution

A(n) = an(1 − a) n ≥ 1 (11.1)

The average duration of the active period is given by

Ta = a

1 − a
time steps (11.2)

Fig. 11.1 An on–off source
model
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Similarly, the probability that the length of the silent period is n time steps is
given by the geometric distribution

S(n) = sn(1 − s) i ≥ 1 (11.3)

The average duration of the silent period is given by

Ts = s

1 − s
time steps (11.4)

Assume that λ is the data rate when the source is in the active state. In that case,
the average data rate is obtained as

	a = 	 × Ta

Ta + Ts

= 	

1 + Ts/Ta
≤ 	 (11.5)

Example 11.1 Assume a 64 kbit/s voice source which is modeled as an on–off
source with an average duration of the active period of Ta = 0.45 s and average
duration of the silent period is Ts = 1.5 s. Estimate the source parameters and the
average data rate.

From (11.2), the probability that the source remains in active state is

a = Ta

1 + Ta
= 0.3103

From (11.4) the probability that the source remains silent is

s = Ts

1 + Ts
= 0.6

The average data rate is

	a = 14.77 kbps

11.2.3 Markov Modulated Poisson Process

The on–off traffic source model does not describe too well the effect of multiplexing
several data sources. There is only one rate when the source is active while actual
sources display differing data rates when they are active. To handle this situation,
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Fig. 11.3 A three-state
MMPP source model State
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more states are added to the MMPP. Figure 11.3 shows a three-state configuration
which is naturally called three-state MMPP.

For an MMPP with N states, we construct an N × N state transition matrix P
whose element pi j represents the probability of making a transition from state j to
state i . This choice is consistent with our definition for the transition matrix of a
Markov chain. Needless to say, this matrix is a column stochastic matrix.

When the source is in state i , 1 ≤ i ≤ N , the packets are produced at a rate 	i .
When the number of states is N = 2, we have a switched Poisson process (SPP)
[10]. When N = 2 and 	1 = 0, we have an interrupted Poisson process (IPP),
which is also the on–off model that was discussed above.

11.2.4 Autoregressive Models

Autoregressive models produce traffic with short-range dependence where the au-
tocorrelation function decays exponentially. An autoregressive model of order N ,
denoted AR(N ), is described by

X (n) =
N∑

k=1

ai X (n − k) + ε (n) (11.6)

where X (n) is a random variable indicating the traffic rate at that time; ε (n) is a
random variable having a small range to fit experimental data. The above formula
gives a simple method for generating the next random number, given the previous
set of N random numbers which is computationally appealing.

Alternative forms of the above expression using moving average (MA) and au-
toregressive moving average (ARMA) expressions were also proposed [11].

11.3 Continuous-Time Modeling: Poisson Traffic Description

Poisson traffic description is a model often used by many researchers due to the
simplicity of the model. A characteristic of traffic is the lull period in which no
packets arrive. We can think of the interarrival time between two successive packets
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as a random variable T . This r.v. is continuous for Poisson traffic. The attractive
feature of Poisson traffic is that the sum of several independent Poisson processes
results in a new Poisson process whose rate is the sum of the component rates [12].
Poisson traffic accurately describes user-initiated TELNET and FTP connections
[4]. To study the random variable T , we need to study the probability p(0) that no
packets arrive in the period t . Let us start by assuming Poisson traffic with proba-
bility p(k) that k packets arrive in a time period t which is given by

p(k) = (	a t)k

k!
e−	at (11.7)

where 	a (packets/s) is the average packet arrival rate. Note that this expression for
probability is valid for all values of 0 ≤ k < ∞. Of course, we do not expect an
infinite number of packets to arrive in a time interval t , but this is the expression
and that is what it predicts. Note that Poisson distribution really talks about num-
bers. It specifies the probability of getting a number of packets k in a given time
period t .

For the interarrival time, we ask a different sort of question: what is the probabil-
ity that the time separation between adjacent packets is t? To derive an expression
for the pdf distribution for the interarrival time, we need to find the probability that
no packets arrive in period t . The probability that no packets arrive in a time period
t is obtained by substituting k = 0 in (11.7) to obtain

p(0) = e−	at (11.8)

This probability is equivalent to the event A : T > t , and we can write

p(A : T > t) = p(0)

= e−	at (11.9)

The event A is basically the event that no packets arrived for a time period t .
What happens after this time period is not specified. A packet might arrive or no
packets arrive.

In order to find the pdf associated with the interarrival time, we need to define
event B which is complementary to A as follows:

B : T ≤ t

and the probability associated with event B is

p(B : T ≤ t) = 1 − p(A)

= 1 − e−	at (11.10)
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The cdf for the random variable T is given from (11.10) by

FT (t) = p(T ≤ t) = 1 − e−	at (11.11)

The pdf for this random variable is obtained by differentiating the above equation

fT (t) = 	ae−	a t (11.12)

Thus the pdf for the interarrival time of Poisson traffic follows the exponential
distribution that was discussed in Chapter 1.

Example 11.2 Find the average value for the exponentially distributed interarrival
time having the distribution in (11.12)

The average time between arriving packets Ta is given by

Ta =
∫ ∞

t=0
t 	ae−	at dt

= 1

	a
s

We see that as the rate of packet arrival decreases (	a � 1), the average time
between packets increases as expected.

Example 11.3 Consider an ATM channel where a source transmits data with an
average data rate of 500 kbps. Derive the corresponding Poisson distribution and
find the probability that 10 cells arrive in a period of 1 ms.

Since we are talking about cells, we have to convert all the data rates from bits
per second quantities into cells/second using the information we have about average
packet length A. We start by calculating the average arrival rate which is easily done
since we know the size of an ATM cell.

	a = 500 × 103

8 × 53
= 1.179 2 × 103 cells/s

The probability of 10 cells arriving in the time period t according to the Poisson
distribution is found using (11.7):

p(10) = (	a t)10

(10)!
e−	at = 4.407 × 10−7

11.3.1 Memoryless Property of Poisson Traffic

The memoryless property of Poisson traffic is defined using the following condi-
tional probability expression related to the interarrival time:
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p(T > t + ε|T > t) = p(T > ε) for all t, ε > 0 (11.13)

Basically, this equation states that the probability that no packets arrive for a time
t + ε, given that no packets arrived up to time t , does not depend on the value of
t . It depends only on ε. So, in effect, the expression states that we know that we
waited for t seconds and no packets arrived. Now we reset our clock and we ask
the question: What is the probability that a packet arrives if we wait for a period ε

seconds? The probability of this event only depends on our choice of ε value and
will not use our prior knowledge of the period t .

Let us state this property using two examples of systems having the memoryless
property. Assume that we are studying the interarrival times of buses instead of
packets. Assume also that the time between bus arrivals is a random variable with
memoryless property. We arrive at the bus stop at 9:00 a.m. and wait for 1 h yet no
buses show up. Now we know that no buses showed up for the past hour, and we
naturally ask the question: What are the odds that a bus will show up if we wait for
five more minutes. The probability that no buses will come in the next five minutes
will depend only on the wait period (5 min) and not on how long we have been
waiting at the bus stop.

Another example of memoryless property is the case of an appliance (a television
set for example). If the time between failures is a random variable with memoryless
property, then the probability that the TV will fail after 1 h of use is the same at any
time independent of when we bought the TV or how long the TV has been used.

Obviously, the time between failures in cars and airplanes has a memory property.
That is why an older car breaks down more often when compared to a new car or
when compared to an older car that is only driven on weekends in the summer
months only.

Let us turn back to our interarrival time statistics. From (11.9), we could write

p(T > t) = e−λa t (11.14)

Changing the time value from t to t + ε, we get

p(T > t + ε) = e−λa (t+ε) (11.15)

Equation (11.13) is a conditional probability, and we can write it as

p(A|B) = p
(

A
⋂

B
)

p(B)
(11.16)

where the events A and B are defined as

A : T > t + ε (11.17)

B : T > t (11.18)
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But A
⋂

B = A since ε > 0 implies that if event A took place, then event B has
taken place also. Thus we have

p(T > t + ε|T > t) = p(A)

p(B)
(11.19)

= e−λa (t+ε)

e−λat
(11.20)

= e−λaε (11.21)

Thus we have proved that the interarrival time for the exponential distribution is
memoryless.

11.3.2 Realistic Models for Poisson Traffic

The Poisson distribution and the interarrival time considered in Section 11.3 do
not offer much freedom in describing realistic traffic sources since they contain
one parameter only: λ (packets/s) that reflected the average data arrival rate. The
minimum value for the interarrival time is zero. This implies that the time interval
between two packet headers could be zero. An interarrival time value of zero implies
two things: that our packets have zero length and that the data rate could be infinity.
Both of these conclusions are not realistic.

A realistic bursty source could be described using the parameters.

λa the average data rate
σ the maximum data rate expected from the source

Since we are talking about rates in terms of packets/second, we need to make
sure that the rates are in terms of packet/second. The source parameters above could
be elaborated upon further, depending on our need. Section 11.2.1 discusses source
with multiple data rates.

Now we ask the question: How can we write down an expression for a Pois-
son distribution that takes into account all of the source parameters? We have two
options:

1. Flow description: This option allows us to specify the randomness of the instan-
taneous data rate produced by the source.

2. Interarrival time description: This option allows us to specify the randomness of
the periods between adjacent packets produced by the source.
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11.3.3 Flow Description

We start by writing the pdf for the instantaneous data rate in the form

fΛ(λ) = b e−bλ (11.22)

where λ is the data rate, and the parameter b is the shape parameter that determines
the steepness of the exponential curve.

Figure 11.4 shows the distribution; λa in the figure indicates the average data
rate. The distribution in (11.22) is a valid pdf since its integral equals unity.

To find the parameter b, we need to estimate the average data rate λa. The average
data rate for the distribution given in (11.22) is

λa =
∫ ∞

0
λ b e−b λ dλ = 1

b
(11.23)

Based on this equation, we can determine the pdf for the data rate produced by
the source, given its average rate. If λa is the average data rate of a source, then the
pdf for its rate is given by

f
(λ) = 1

λa
e−λ/λa (11.24)

Thus to describe the data rate of a source that follows the Poisson distribution,
we need to specify its average data rate λa only.

11.3.4 Interarrival Time Description

The pdf description of the interarrival time for a Poisson source follows the expo-
nential distribution which we repeat here for convenience.

fT (t) = λae−λat (11.25)

We mentioned that this equation is not sufficient to describe real traffic since it
contains only one parameter, λa , which describes only the average data rate. We can

Fig. 11.4 Exponential
distribution describing
instantaneous rate of a
Poisson source λ

fΛ(λ )

λ a

b
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modify the interarrival time distribution and obtain the biased exponential distribu-
tion as follows.

fT (t) =
{

0 t < a
b exp −b (t − a) t ≥ a

(11.26)

where a ≥ 0 is the position parameter (units s) and b > 0 is the shape parameter
(units s−1). Basically, a represents the minimum time between adjacent packets, and
b determines how fast the exponential function decays with time. Both a and b will
determine the average packet rate as will be explained in Example 11.4.

Figure 11.5 shows the distribution given by the expression in (11.26). The figure
details that a places the pdf at the desired position on the time axis and b determines
how fast the exponential function decays with time. The distribution in (11.26) is a
valid pdf since its integral equals unity. The next section explains how to obtain the
correct values for a and b for a typical source.

Example 11.4 Find the average value for the exponentially distributed interarrival
time with pdf given by (11.26)

The average time separation between arriving packets Ta is given by

Ta =
∫ ∞

t=a
tb exp(−b(t − a)) dt

= a + 1

b
s

The average interarrival time Ta depends on both a and b parameters. We see
that as the shape parameter decreases (b � 1), the average time between packets
increases.

On the other hand, when b is large (b � 1), the exponential function will ap-
proach a delta function, and the interarrival time will have its minimum value Ta ≈ a.

The variance of the interarrival time for the shifted exponential distribution is
given by

σ 2 = 1

b2

Fig. 11.5 A biased
exponential distribution with
two design parameters:
position parameter a and
shape parameter b Interarrival time
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which depends only on the shape parameter. So large values for b will result in
traffic with low burstiness approaching CBR (constant bit rate). Lower values for b
result in more bursty traffic.

11.3.5 Extracting Poisson Traffic Parameters

In this section, we show how to find the values of the position parameter a and shape
parameter b for a source whose average rate λa and burst rate σ are known.

The position parameter a is equivalent to the minimum time between two ad-
jacent packets. In a time period t , the maximum number of packets that could be
produced by the source is given by

Nm = σ t (11.27)

where it was assumed that σ was given in units of packets/second. The minimum
time between two adjacent packets was defined as a and is given by

α = t

Nm
= 1

σ
s (11.28)

Problem 11.5 discusses about obtaining the parameter a when σ is expressed in
units of bits/second.

In a time period t , the average number of packets that could be produced by the
source is given by

Na = λat (11.29)

The average time between two adjacent packets is given by

Ta = t

Na
= 1

λa
s (11.30)

But from Example 11.4, we obtained an expression for the average interarrival
time as

Ta = a + 1

b
s (11.31)

From the above two equations, we are able to obtain a value for the shape param-
eter b

1

λa
= a + 1

b
(11.32)
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Therefore, we have

b = σ λa

σ − λa
s−1 (11.33)

Problem 11.6 discusses obtaining the parameter a when σ and λa are expressed
in units of bits/second.

Example 11.5 A data source follows the Poisson distribution and has an average
data rate λa = 103 packets/s and maximum burst rate of σ = 3 × 103 packets/s.
Estimate the exponential distribution parameters that best describe that source.

The position parameter is given from (11.28) by

a = 1

3 × 106
= 3.33 × 10−4 s

The shape parameter b is given from (11.33) by

b = 1500 s−1

The pdf for the interarrival time is given by

fT (t) = 1500 exp −1000
(
t − 3.3 × 10−4

)

11.3.6 Poisson Traffic and Queuing Analysis

The previous subsection discussed how the biased exponential distribution parame-
ters can be extracted given the system parameters:

λa the average data rate
σ the maximum data rate expected from the source

A Poisson source matching these given parameters has position parameter given
by (11.28) and shape parameter given by (11.33). In this section, we ask the ques-
tion: Given a Poisson source with known parameters that feed into a queue, what is
the packet arrival probability for the queue? Remember that in queuing theory, the
two most important descriptors are the arrival statistics and the departure statistics.

There are two cases that must be studied separately based on the values of the
step size T and the position parameter a.
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Case When T ≤ a

The case T ≤ a implies that we are sampling our queue at a very high rate that is
greater than the burst rate of the source. Therefore, when T ≤ a at most, one packet
could arrive in one time step with a probability x that we have to determine. We use
the symbol x for arrival probability since the symbol α is used here to describe the
position parameter.

The number of time steps over a time period t is estimated as

n = t

T
(11.34)

The average number of packets arriving over a period t is given by

Na = λat

= λa n T (11.35)

where λa was assumed to be given in units of packets/second.
From the binomial distribution, the average number of packets in one step time is

Na = x n (11.36)

where x is the packet arrival probability in one time step.
From the above two equations, the packet arrival probability per time step is

given by

x = λa T (11.37)

We see in the above equation that as T gets smaller or as the source activity is
reduced (small λa), the arrival probability is decreased, which makes sense.

Example 11.6 Estimate the packet arrival probability for a source with the follow-
ing parameters. λa = 50 packets/s and σ = 150 packets/s. Assume that the time
step value is T = 1 ms.

The position parameter is

α = 1

σ
= 6.7 ms

The shape parameter is

β = λaσ

σ − λa
= 75 s−1
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The packet arrival probability is

x = 0.05

Case When T > a

The case T > a implies that we are sampling our queue at a rate that is slower than
the burst rate of the source. Therefore, when T > a, more than one packet could
arrive in one time step and we have to find the packet arrival statistics that describe
this situation.

We start our estimation of the arrival probability x by determining the maximum
number of packets that could arrive in one step time

Nm = �σ T � (11.38)

The ceiling function was used here, after assuming that the receiver considers
packets that partly arrive during one time step. If the receiver does not wait for
partially arrived packets, then the floor function should be used.

The average number of packets arriving in the time period T is

Na = λa T (11.39)

From the binomial distribution, the average number of packets in one step time is

Na = x Nm (11.40)

From the above two equations, the packet arrival probability per time step is

x = λa T

Nm
≤ λa

σ
(11.41)

The probability that k packets arrive at one time step T is given by the binomial
distribution

p(k) =
(

Nm

k

)
xk (1 − x)Nm−k (11.42)

Example 11.7 A data source follows the Poisson distribution and has an average
data rate of λa = 103 packets/s and maximum burst rate of σ = 5 × 103 packets/s.
Find the biased Poisson parameters that describe this source and find the packet
arrival probabilities if the time step is chosen equal to T = 1 ms.
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The biased Poisson parameters are

a = 2 × 10−4 ms

b = 1.250 × 103 s−1

The maximum number of packets that could arrive in one time step is

Nm = 5

The packet arrival probability per time step is

x = 0.2

The probability that k packets arrive per time step is

p(0) = 3.2768 × 10−4

p(1) = 4.0960 × 10−1

p(2) = 2.0480 × 10−1

p(3) = 5.1200 × 10−2

p(4) = 6.4000 × 10−3

p(5) = 3.2000 × 10−4

11.4 Discrete-Time Modeling: Interarrival Time for Bernoulli
Traffic

Poisson traffic description applies when time is treated as continuous. Bernoulli
traffic is analogous to Poisson traffic when time is discrete. Discrete-time traffic is
typically described by Bernoulli trials that give rise to a binomial process in which
the probability that a packet arrives at a given time step is x and the probability that
a packet does not arrive is y = 1 − x . We use the symbol x for arrival probability
since the symbol a is used here to describe the position parameter.

We can think of Bernoulli traffic with binomial packet arrival distribution as the
discrete version of Poisson traffic with exponential packet interarrival time distribu-
tion. The latter distribution could be termed a fluid flow traffic model since it deals
with flow rate as opposed to counting the number of packets that arrive in a certain
time period.
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The probability that k packets arrive in n time steps is given by the binomial
distribution

p(k) =
(

n

k

)
xk yn−k (11.43)

We can think of the interarrival time n between two successive packets as a ran-
dom variable N . This r.v. is discrete for Bernoulli traffic.

The probability p(0) that no packets arrive for at least n consecutive time steps
is given by

p(0) = yn

The above equation simply states that we did not get any packets in n time steps.
What happens during time step n + 1 is not specified in the above equation. We
might get a packet or we might not. Notice that for large n, the probability that no
packets arrive diminishes which makes sense.

The above probability is equivalent to the event A : N > n, and we can write

p(A : N > n) = p(0)

= (1 − x)n (11.44)

This equation will help us in the next section to prove the memoryless property
of Bernoulli traffic. However, we proceed here to find the pmf associated with the
interarrival time.

In order to find the pmf associated with the interarrival time, we need to find the
probability that the interarrival time exactly equals n time steps. In other words, our
event now specifies that no packets arrived for n time steps followed by a packet
arrival event at the next step when the time index is n + 1. The desired probability
is given by

p = x (1 − x)n (11.45)

This probability is equal to the pmf of the interarrival time and we can write the
pmf as

p(N = n) = x (1 − x)n (11.46)

Figure 11.6 illustrates the pmf for the interarrival time of Bernoulli traffic that
has geometric distribution. A simple geometric distribution with one parameter x ,
the probability that exactly one packet arrives at the end of time interval n, is shown
in Fig. 11.6.

Example 11.8 Find the average value for the interarrival time of Bernoulli traffic
which is described by the pmf distribution of (11.46).
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Fig. 11.6 A simple geometric
distribution with one
parameter x , the probability
that exactly one packet
arrives at the end of time
interval n

p(N = n)

x

n...

T

0 1 2

The average number of time steps between packets na is given by

na =
∞∑

n=0

n x yn

= y

1 − y
= y

x

We see that as the probability for the packet arrival decreases (x � 1), the aver-
age number of steps between the packets increases as expected. On the other hand,
when x approaches unity, the interarrival time becomes na ≈ 0 as expected. This
indicates that arriving packets have no empty time slots in between them.

Example 11.9 Consider communication channel where packets arrive with an aver-
age data rate of λa = 2.3×104 packets/s and a burst rate limited only by the line rate,
σ = λl = 155.52 Mbps. Derive the equivalent binomial distribution parameters and
find the probability that 10 packets arrive in one sample time period of T = 1 ms.

The average number of packets received in one time step period is given by

Na = 2.3 × 104 × 10−3 = 23

which represents the average traffic produced by the source.
The maximum number of packets that could be received in this time is found by

estimating the duration of one packet as determined by the line rate.

� = 8 × 53

155.52 × 106
= 2.7263 �s

The maximum number of packets that could be received in 1 ms period is given
by

Nm =
⌈

T

Δ

⌉
= 367

The packet arrival probability per time step is given the equation

x Nm = Na
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which gives

x = 23

367
= 0.0627

and of course y = 1 − x = 0.9373.
The probability of 10 cells arriving out of potential Nm cells is

p(10) =
(

Nm

10

)
x10 yNm−10 = 9.3192 × 10−4

We note that p(10) as obtained here is almost equal to p(10) as obtained using the
Poisson distribution in Example 11.4.

11.4.1 Realistic Models for Bernoulli Traffic

The Bernoulli distribution and the interarrival time considered in Section 11.4 do not
offer much freedom in describing realistic traffic sources since they contain only one
parameter: x represented the probability that a packet arrived at a given time step.
The minimum value for the interarrival time is zero (i.e., n = 0). This implies that
the time interval between two packet headers could be exactly one time step.

Equation (11.46) can be modified as follows

p(N = n) = x (1 − x)(n−n0) (11.47)

Now the traffic distribution can be described by two parameters x and n0. The
parameter n0 represents the minimum number of time steps between adjacent pack-
ets. Figure 11.7 illustrates the pmf for the interarrival time of Bernoulli traffic that
has geometric distribution. A simple shifted, or biased, geometric distribution with
two parameters x and n0 is shown in Fig. 11.7.

Fig. 11.7 A realistic model
for the geometric distribution
of Bernoulli traffic
interarrival time. The
distribution is described in
terms of two parameters x
and n0

p(N = n)

x

n...

T

n0 n0+1
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11.4.2 Memoryless Property of Bernoulli Traffic

Assume that n is the number of time steps between arriving packets. It is obvious
that the value of n shows random variations from one packet to another. Define N
as the random variable associated with n. The memoryless property of the interar-
rival time for Bernoulli traffic is defined using the following conditional probability
expression for discrete random variables

p(N > n + m|N > n) = p(N > m) for all n, m > 0 (11.48)

Basically, this equation states that the probability that a packet arrives after a time
n + m, given that no packets arrived up to time n, does not depend on the value of
n. It depends only on m.

From (11.44), we could write

p(n) = (1 − x)n (11.49)

where x is the packet arrival probability during one time step. Changing the time
value from n to n + m, we get

p(n + m) = (1 − x)n+m (11.50)

Equation (11.48) is a conditional probability, and we can write it as

p(A|B) = p
(

A
⋂

B
)

p(B)
(11.51)

where the events A and B are defined as

A : N > n + m (11.52)

B : N > n (11.53)

But A
⋂

B = A since m > 0, which implies that if event A took place, then
event B has also taken place. Thus we have

p(N > n + m|N > n) = p(A)

p(B)
(11.54)

= (1 − x)n+m

(1 − x)n
(11.55)

= (1 − x)m (11.56)

= p(N > m) (11.57)

Thus we have proved that the interarrival time for Bernoulli traffic is memoryless.
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11.4.3 Realistic Model for Bernoulli Traffic

The interarrival time considered in Section 11.4 does not offer much freedom in
describing realistic traffic sources since it contains only one parameter: x the prob-
ability that a packet arrives at a certain time step. As mentioned, a realistic source is
typically described using more parameters than just the average data rate.

λa the average data rate
σ the maximum data rate expected from the source

Then the question arises: How can we write down an expression similar to the
one given in (11.46) that takes into account all of these parameters? We can follow
a similar approach as we did for Poisson traffic in Section 11.3.2 when we modified
the exponential distribution by shifting it by the position parameter a. We modify
(11.46) to obtain the biased geometric distribution as follows.

p(N = n) =
{

0 n < α

x (1 − x)n−α n ≥ α
(11.58)

where n is the number of time steps between packet arrivals, α ≥ 0 is called the
position parameter, in units of time steps, and x is the probability that a packet
arrived during one time step. Basically, a represents the minimum number of time
steps between adjacent packets.

Figure 11.8 shows the discrete exponential distribution. We see from the figure
that a places the pmf at the desired position on the time axis, and x determines how
fast the exponential function decays with time. The distribution in (11.58) is a valid
pmf since its sum equals unity. The values of α and x will be derived in the next
section.

Example 11.10 Find the average value for the geometrically distributed interarrival
time given by (11.58).

Fig. 11.8 A biased geometric
distribution with two design
parameters: position
parameter α and packet
arrival probability x

p(N = n)

x

navg Interarrival time
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The average number of time steps between packets na is given by

na =
∞∑

n=α

n x (1 − x)n−α

= y

x
+ α

We see that as the probability for packet arrival decreases (x � 1), the average
number of steps between packets increases as expected. A high value for α implies
slow traffic since the minimum separation between packets is large. This results in
increased values for na.

The expression we obtained for the average interarrival time reduces to the ex-
pression obtained in Example 11.8 for the simple exponential distribution when the
position parameter α → 0.

11.4.4 Extracting Bernoulli Traffic Parameters

In this section, we show how to find the values of the position parameter a and
packet arrival probability x for a source whose average rate 	a and burst rate σ are
known.

The position parameter α in (11.58) is found by studying packet arrival during
a period t . The time step T associated with this discrete arrival process is arbitrary
and depends on the specifics of the system being studied.

If we study our system for a time period t , then the number of time steps n
spanned by this time period is given by

n = t

T
(11.59)

The maximum number of packets Nm that could arrive during this time period
depends on the burst rate σ

Nm = σ × t (11.60)

where σ was assumed to be given in units of packets/second.
The minimum number of time steps between adjacent packets when the source

is transmitting packets at the burst rate is given by

α =
⌊

n

Nm

⌋
=
⌊

1

σ T

⌋
(11.61)

where the floor function is used to find a conservative estimate of α. Now we have
an expression for the position parameter a for the biased exponential distribution
that depends on the source burst rate and the time step value.
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Now we turn our attention to estimating the arrival probability x . Consider a
time period t again, which corresponds to n time steps. Because we have Bernoulli
traffic, we can estimate x from the average number of packets received in that time
period t which corresponds to n time steps:

Na = x × n (11.62)

The average number of packets can also be estimated from the average data
rate 	a.

Na = λa × t (11.63)

We can find a value of x from the above two equations as

x = λa × t

n
= λa T (11.64)

Example 11.11 An ATM data source follows the binomial distribution and has an
average data rate of 	a = 400 packets/s and maximum burst rate of σ = 103 pack-
ets/s. Estimate the geometric distribution parameters that best describe that source
if the time step value T chosen is equal to 0.1 ms.

The position parameter is given by

α = 10 time steps

and the packet arrival probability per time step is given by

x = 0.04

Thus the pmf describing the interarrival time is given by

p(N = n) = 0.04 × 0.96n−10

11.4.5 Bernoulli Traffic and Queuing Analysis

The previous subsection discussed how the biased geometric distribution parameters
can be extracted given the system parameters:

	a the average data rate
σ the maximum data rate expected from the source

A Bernoulli source matching these given parameters has position and shape
parameters:
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a = 1/(σ T ) (11.65)

x = λa T (11.66)

In this section, we ask the question: Given a Bernoulli source with known param-
eters that feeds into a queue, what is the packet arrival probability for the queue?
Remember that in queuing theory the two most important descriptors are the arrival
statistics and the departure statistics. The analysis we undertake is very similar to
the one done for Poisson traffic in Section 11.4.

There are two cases that must be studied separately based on the values of the
step size T and the position parameter a.

Case When T ≤ a

The case T ≤ a implies that we are sampling our queue at a very high rate that is
greater than the burst rate of the source. Therefore, when T ≤ a at most, one packet
could arrive in one time step with probability x that we have to determine.

The number of time steps over a time period t is estimated as

n = t

T
(11.67)

The average number of packets arriving over a period t is given by

Na = λa t

= λa n T (11.68)

From the binomial distribution, the average number of packets in one step time is

Na = x n (11.69)

where x is the packet arrival probability in one time step.
From the above two equations, the packet arrival probability per time step is

given by

x = λa T (11.70)

We see in the above equation that as T gets smaller or as the source activity is
reduced (small λa), the arrival probability is decreased, which makes sense.

Case When T > a

The case T > a implies that we are sampling our queue at a rate that is slower than
the burst rate of the source. Therefore, when T > a, more than one packet could
arrive in one time step and we have to find the packet arrival statistics that describe
this situation.
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We start our estimation of the arrival probability x by determine the maximum
number of packets that could arrive in one step time

Nm = �σ T � (11.71)

The ceiling function was used here after assuming that the receiver will consider
packets that partly arrived during one time step. If the receiver does not wait for
partially arrived packets, then the floor function should be used.

The average number of packets arriving in the time period T is

Na(in) = λa T (11.72)

From the binomial distribution, the average number of packets in one step time is

Na(in) = x Nm (11.73)

From the above two equations, the packet arrival probability per time step is

x = λa T

Nm
(11.74)

The probability that k packets arrive at one time step T is given by the binomial
distribution

p(k) =
(

Nm

k

)
xk (1 − x)Nm−k (11.75)

11.5 Self-Similar Traffic

We are familiar with the concept of periodic waveforms. A periodic signal repeats
itself with additive translations of time. For example, the sine wave sin ωt will have
the same value if we add an integer, multiple of the period T = 2π/ω since

sin ωt = sin ω(t + i T )

On the other hand, a self-similar signal repeats itself with multiplicative changes
in the time scale [13, 14]. Thus a self-similar waveform will have the same shape
if we scale the time axis up or down. In other words, imagine we observe a certain
waveform on a scope when the scope is set at 1 ms/division. We increase the res-
olution and set the scale to 1�s/division. If the incoming signal is self-similar, the
scope would display the same waveform we saw earlier at a coarser scale.

Self-similar traffic describes traffic on Ethernet LANs and variable-bit-rate video
services [2–7]. These results were based on analysis of millions of observed packets
over an Ethernet LAN and an analysis of millions of observed frame data generated
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by variable-bit-rate (VBR) video. The main characteristic of self-similar traffic is
the presence of “similarly-looking” bursts at every time scale (seconds, minutes,
hours) [12].

The effect of self-similarity is to introduce long-range (large-lag) autocorrelation
into the traffic stream, which is observed in practice. This phenomenon leads to
periods of high traffic volumes even when the average traffic intensity is low. A
switch or router accepting self-similar traffic will find that its buffers will be over-
whelmed at certain times even if the expected traffic rate is low. Thus switches with
buffer sizes, selected based on simulations using Poisson, traffic, will encounter un-
expected buffer overflow and packet loss. Poisson traffic models predict exponential
decrease in data loss as the buffer size increases since the probability of finding the
queue in a high-occupancy state decreases exponentially. Self-similar models, on the
other hand, predict stretched exponential loss curves. This is why increasing link
capacity is much more effective in improving performance than increasing buffer
size. The rational being that it is better to move the data along than to attempt to
store them since any buffer size selected might not be enough when self-similar
traffic is encountered.

11.6 Self-Similarity and Random Processes

Assume that we have a discrete-time random process X (n) that produces the set of
random variables {X0, X1, · · · }. We define the aggregated random process Xm as a
random process whose data samples are calculated as

X (m)
0 = 1

m

[
X0 + X1 + · · · + Xm−1

]

X (m)
1 = 1

m

[
Xm + Xm+1 + · · · + X2m−1

]

X (m)
2 = 1

m

[
X2m + X2m+1 + · · · + X3m−1

]

...

The random process is self-similar if it satisfies the following properties.

1. The processes X and X (m) are related by the equation

X (m) = 1

m(1−H )
X (11.76)

where H is the Hurst parameter (0.5 < H < 1).
2. The means of X and X (m) are equal

E[X ] = E[X (m)] = μ (11.77)
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3. The autocovariance functions of X and and X (m) are equal

E [(X (n + k) − μ) (X (n) − μ)] = E
[(

X (n + k)(m) − μ
) (

X (n)(m) − μ
)]

(11.78)

A self-similar random process exhibits long-range dependence where the auto-
correlation function rX X (n) or the autocovariance function cX X (n) do not vanish
for large values of n. Distributions that have long-range dependence are sometimes
called heavy-tailed distributions. A random process that displays no long-range de-
pendence will have the autocorrelation, and autocovariance functions vanish for low
values of n. A typical random process that has no long-range dependence is the
Brownian motion.

Typically, self-similar phenomena are described using the Hurst parameter H
whose value lies in the range

0.5 < H < 1 (11.79)

The case H = 0.5 describes random walk problems or Brownian motion which
exhibit no self-similarity. As H → 1, the degree of self-similarity increases as well
as the long-range dependence.

One way to model self-similar traffic is to use pdf distributions for the interarrival
time that exhibit heavy-tailed distribution, as explained in the following section.

11.7 Heavy-Tailed Distributions

A heavy-tailed distribution gives rise to traffic that shows long-range dependence
like in compressed video traffic. A distribution is heavy-tailed if it exhibits the fol-
lowing characteristics

1. Its variance is high or infinite.
2. Its cdf has the property

1 − F(x) = p (X > x) ∼ 1

xα
x → ∞ (11.80)

where 0 < α < 2 is the shape parameter and X is a random variable.

11.8 Pareto Traffic Distribution

The Pareto distribution that we studied in Section 1.20 on page 19 is used here to
describe realistic traffic sources that have bursty behavior. The Pareto distribution is
described by the pdf

f (x) = b ab

xb+1
(11.81)
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where a is the position parameter, b is the shape parameter, and the random variable
X has values limited in the range a ≤ x < ∞. The Pareto distribution cdf is given
by

F (x) = 1 −
(a

x

)b
(11.82)

Notice that the Pareto distribution satisfies condition 2 of heavy-tailed distribu-
tions defined in Section 11.7.

The mean and variance for X are

μ = b a

b − 1
(11.83)

σ 2 = b a2

(b − 1)2 (b − 2)
(11.84)

The mean is always positive as long as b > 1. The variance is meaningful only
when b > 2. The variance of the Pareto distribution could be made high by properly
choosing the shape parameter b to be close to 1 as the above equation indicates.

The Hurst parameter corresponding to the Pareto distribution is given by the
equation

H = 3 − b

2
(11.85)

Table 11.1 shows the relation between the source burstiness and the two param-
eters H and Pareto distribution shape parameter b.

From the table, we conclude that in order to describe self-similar traffic using
the Pareto distribution, we must have the shape parameter b close to one—typically
H is chosen within the range 0.7–0.8 which would correspond to b values in the
range 1.4–1.6. By proper choice of b, we can satisfy all the conditions defining
heavy-tailed distributions defined in Section 11.7.

From 11.82, we can write

P(X > x) = 1 − F(x) =
(a

x

)b
(11.86)

which means that the probability that the random variable has a value greater than x
decreases at a rate that depends on the shape parameter b. If b ≈ 1, the distribution
has very large mean and variance [15].

Table 11.1 Relation between
the source burstiness and the
two parameters H and Pareto
distribution shape
parameter b.

Traffic statistics H value b value

Long-range dependent H → 1 b → 1
Short-range dependent H → 0.5 b → 2
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A realistic bursty source is typically described using some or all of these
parameter:

	min the minimum data rate
	a the average data rate
σ the maximum data rate expected from the source

Since we are talking about rates in terms of packets/second, we need to convert
these specifications into proper packet rates. The question becomes, how can we
write down an expression for a Pareto distribution that takes into account all of
these parameters?

We have two options:

1. Flow description: This option allows us to specify the randomness of the instan-
taneous data rate produced by the source.

2. Interarrival time description: This option allows us to specify the randomness of
the periods between adjacent packets produced by the source.

11.8.1 Flow Description

We start by writing the pdf for the instantaneous data rate in the form

f
(	) =
{

0 when 	 < 	min

b ab/	b+1 when 	 ≥ 	min
(11.87)

where 	min is the minimum data rate, which could be zero, a is the position
parameter and b is the shape parameter that determines the steepness of the curve.

The values of the two parameters a and b can be found for a source with traffic
descriptors (	min, 	a, σ ) as follows.

a = 	min (11.88)

b = λa

	a − 	min
(11.89)

To produce a bursty source, the value of b could be chosen close to 1, according
to the data in Table 11.1.

11.8.2 Interarrival Time Description

The interarrival time following the Pareto distribution has a pdf that is given by

fT (t) = b ab

tb+1
with a ≤ t < ∞ (11.90)
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Fig. 11.9 The pdf distribution for the case when a = 2 and b = 3 (solid line) and b = 7
(dashed line)

where a (units s) is the position parameter and b ≥ 1 is the shape parameter.
Figure 11.9 shows the pdf distribution for the case when a = 2 and b = 3 (solid
line), and b = 7 (dashed line). For the smaller value of shape parameter b, the pdf
becomes flatter and has higher values at larger values of t . This results in larger
variance in the interarrival time distribution.

11.8.3 Extracting Pareto Interarrival Time Statistics

A realistic source is typically described using some or all of these parameter:

λa the average data rate
σ the maximum data rate expected from the source

The question we pose here is, how to find a Pareto distribution that best matches
the given source parameters? In a time period t , the maximum number of packets
that could be produced by the source is given by

Nm = σ t (11.91)
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We use this estimate to calculate the minimum time between two adjacent packets
as follows.

a = t

Nm
= 1

σ
s (11.92)

The position parameter depends only on the average packet size and burst rate.
In the time period t , the average number of packets that could be produced by

the source is given by

Na = λat (11.93)

The average time between two adjacent packets is given by

Ta = t

Na
= 1

λa
s (11.94)

But from the Pareto pdf distribution, the average interarrival time is given by

Ta =
∫ ∞

t=a
t

b ab

tb+1
dt = b a

b − 1
s (11.95)

From the above two equations, we are able to obtain a value for the shape
parameter b

1

λa
= b a

b − 1
(11.96)

Therefore, we have

b = σ

σ − λa
(11.97)

The shape parameter depends only on the average rate λa and burst rate σ . Fur-
thermore, the shape parameter lies between the following extreme values

b = 1 when σ � λa

b → ∞ when λa → σ

The first expression applies to a fairly bursty source, and the second expression
applies to a constant-bit-rate source, where the average data rate equals the burst
rate. Thus the range of the shape parameter b can be expressed as

1 ≤ b < ∞ (11.98)
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Lower values of b imply bursty sources and higher values of b imply sources
with little variations in the interarrival times since we would have a constant rate
source.

Example 11.12 A bursty source produces data at an average rate of 5 Mbps, and its
maximum burst rate is 20 Mbps. Estimate the Pareto parameters that best describe
that source, assuming that the average packet size is 400 bits.

The position parameter is

a = A

σ
= 20 �s

The average data rate is used to determine the shape parameter b

b = σ

σ − λa
= 1.333

11.8.4 Pareto Distribution and Queuing Analysis

The previous subsection discussed how the Pareto distribution parameters can be
extracted, given the system parameters:

λa the source data rate
σ the maximum data rate expected from the source

A Pareto distribution matching these given source parameters has position and
shape parameters:

a = 1/σ s (11.99)

b = σ/(σ − λa) (11.100)

where we assumed the rates to be given in terms of packets/second.
In this section, we ask the question: Given a Pareto source with known parameters

that feeds into a queue, what is the packet arrival probability? There are two cases
that must be studied separately based on the values of the step size T and the position
parameter a.

Case When T ≤ a

When T ≤ a at most, one packet could arrive in one time step with probability x
that we have to determine.



11.8 Pareto Traffic Distribution 415

The number of time steps over a time period t is estimated as

n = t

T
(11.101)

The average number of packets in time period t is given by

Na = λat

= λa nT (11.102)

From the binomial distribution, the average number of packets that arrive during
time t is given by

Na = x n (11.103)

where x is the packet arrival probability in one time step.
From the above two equations, we get

x = λaT (11.104)

We see in the above equation that as T gets smaller or as the source activity
is reduced (small λa), the arrival probability is decreased, which makes sense. The
arrival probability for a Pareto distribution when T ≤ a is identical to the arrival
probability for the Poisson distribution.

Example 11.13 Estimate the Pareto parameters and the packet arrival probability
for a source with the following parameters. λa = 103 packets/s and σ = 1.5 × 104

packets/s, Assume that the time step value is T = 0.1 ms.
The position parameter is

a = 6.6667 × 10−4 s

The shape parameter is

b = 1.0714

The arrival probability is

x = 0.1

Case When T > a

When T > a, more than one packet could arrive in one time step, and we have to
find the binomial distribution parameters that describe this situation.
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We start our estimation of the arrival probability x by finding the maximum num-
ber of packets that could arrive in one time step

Nm = �σ T � (11.105)

The ceiling function was used here after assuming that the receiver will consider
packets that partly arrived during one time step. If the receiver does not wait for
partially arrived packets, then the floor function should be used. The average number
of packets arriving in the time period T is

Na = �λa T � (11.106)

From the binomial distribution, the average number of packets in one time step is

Na = x Nm (11.107)

From the above two equations, the packet arrival probability per time step is

x = Na

Nm
≤ λa

σ
(11.108)

The probability that k packets arrive at one time step T is given by the binomial
distribution

p(k) =
(

Nm

k

)
xk (1 − x)Nm−k (11.109)

Example 11.14 A data source follows the Pareto distribution and has an average
data rate λa = 2 × 103 packets/s and maximum burst rate of σ = 5 × 103 packets/s.
Find the Pareto pdf parameters that describe this source and find the packet arrival
probabilities if the time step chosen is equal to T = 2 ms.

The Pareto parameters are

a = 2 × 10−4 ms < T

The maximum number of packets that could arrive in one time step is

Nm = 10
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The average number of packets that could arrive in one time step is

Na = 4

The packet arrival probability per time step is

x = 0.4

11.9 Traffic Data Rate Modeling with Arbitrary Source
Distribution

In this section, we attempt to model a traffic source that follows a general or arbi-
trary user-defined data rate traffic pattern. Assume that the probability mass function
(pmf) of the source data rate is shown in Fig. 11.10. The number of pmf points is
assumed K and the time resolution is T . The traffic model for this source is defined
by two K -component vectors:

vp = [
p0 p1 · · · pK−1

]t
(11.110)

vλ = [
λ0 λ1 · · · λK−1

]t
(11.111)

where the vector vp contains the pmf probabilities and the vector vλ contains the
corresponding data rate values. The peak and average data rates (packets/s) are
given by

σ = λK−1 (11.112)

λa =
K−1∑

i=0

pi λi (11.113)

Fig. 11.10 pmf distribution
for a source with arbitrary
user-specified data rate
statistics Data Rate (λ)

...

p0

p1
p2

pK–1

λ K–1λ 2λ 1λ 0

p(Λ = λ)
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Fig. 11.11 The state
transition diagram for a
traffic source that follows a
particular pmf distribution
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To generate traffic that obeys that general distribution, we construct the source
state transition diagram as shown in Fig. 11.11. State si of the source states in
Fig. 11.11 corresponds to data rate λi .

We need to calculate the state transition probabilities xi in the figure and see
how they are related to the source probabilities pi . We cannot just assume that the
probabilities xi are equal to pi without some proof. From pmf definition and the
figure, we can write the probability pi as

pi ≡ si (11.114)

The RHS of the above equation indicates that the probability that the source data
rate is λi given by the probability that the source state is in state si . At steady state,
we can write

si = xi

K−1∑

i=0

si = xi (11.115)

And from the above two equations, we determine the state transition probabilities
xi as

xi = pi (11.116)

Although xi was proved to be equal to pi , this situation will not hold true for the
interarrival traffic model in Section 11.10.

11.10 Interarrival Time Traffic Modeling with Arbitrary Source
Distribution

In this section, we attempt to model a traffic source that follows a general or arbi-
trary user-defined interarrival time traffic pattern. Assume that the probability mass
function (pmf) of the interarrival time is shown in Fig. 11.12. The number of pmf
points is assumed K and the time resolution is T . The traffic model for this source
is defined by two K -component vectors:
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Fig. 11.12 pmf distribution
for a source with arbitrary
user-specified interarrival
time statistics

Interarrival Time

n0 n1 n2 nK–1

pK–1

...

T

p2
p1

p0p(N = n)

vp = [
p0 p1 · · · pK−1

]t
(11.117)

vn = [
n0 n1 · · · nK−1

]t
(11.118)

where the vector vp contains the pmf probabilities and the vector vn contains the
corresponding interarrival time values. The peak and average data rates (packets/s)
are given by

σ = 1

n0T
(11.119)

λa = 1
∑K−1

i=0 pi ni

(11.120)

To generate traffic that obeys that general distribution, we construct the source
state transition diagram as shown in Fig. 11.13. We take the time step value T in the
Markov chain equal to the time resolution value in Fig. 11.12. Row i of the source
states in Fig. 11.13 corresponds to data arrival with an interarrival time value of ti .
The right-most state in each row is the state where data is actually generated.

We need to calculate the state transition probabilities xi in the figure and see how
they are related to the source probabilities pi . From pmf definition and the figure,
we can write the probability pi as

pi = ni si (11.121)

Fig. 11.13 The state
transition diagram for a
traffic source that follows a
particular pmf distribution
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The RHS of the above equation indicates that the probability that the interarrival
time is ni given by the probability that the source state is any of the states in row i .
Thus we determine si as

si = pi

ni
(11.122)

At steady state, we can write

si = xi

K−1∑

i=0

si (11.123)

And from the above two equations, we determine the state transition probabilities
xi as

xi = si
∑K−1

i=0 si

(11.124)

11.11 Destination Statistics

Data or traffic arriving at the inputs of a switch or a router need to be routed to
the desired output ports based on the information provided in the packet header and
the routing table of the switch. The distribution of packets among the output ports
is random, and we identify three types of destination statistics as discussed in the
following sections.

11.11.1 Uniform Traffic

For a switch with N inputs and N outputs, uniform traffic implies that an incom-
ing packet chooses a particular output port with probability 1/N . This is true for
any packet arriving at any input port. This model is referred to as the independent
uniform traffic model [16]. Most studies assume uniform traffic to simplify the anal-
ysis. This assumption is true for traffic at routers or switching nodes in the network
since the queuing and gradual release of the packets leads to randomization of the
addressing [17]. These results apply to Ethernet LAN traffic as well as to WAN IP
and ATM traffic.

11.11.2 Broadcast Traffic

If incoming traffic is such that an input port requests to access all output ports, we
get what is called broadcast traffic. This type of traffic occurs when a site is sending
data to many users at the same time or when a computer updates the databases of
many computers.
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Assume an N × N switch with N input ports and N output ports. We assume
for simplicity that each input port carries two types of traffic flows: uniformly dis-
tributed traffic flow whose rate is λu and broadcast traffic flow whose rate is λb.

The traffic flows at each input and output port are given by

λin = λu + λb (11.125)

λout = λu + N λb (11.126)

Note that each output port now has to carry more output traffic than what came
in on the average because of the amplification effect of data broadcast.

The total traffic flows at the input and output of the switch are given by

f (in) = N λu + N λb (11.127)

f (out) = N λu + N 2 λb (11.128)

The amount of traffic through the network increases due to data broadcast.

11.11.3 Hot-Spot Traffic

If incoming traffic is such that many input ports request one particular output port,
we get what is called hot-spot traffic. This type of traffic occurs when a popular
web site is being browsed by many users at the same time or when many computers
request access to the same server. Reference [18] models hot spot traffic as a fixed
fraction of the arrival rate or arrival probability.

Assume an N × N switch with N input ports and N output ports. We assume
for simplicity that each input port carries two types of traffic flows: uniformly dis-
tributed traffic flow whose rate is λu and hot-spot traffic flow whose rate is λh.

The traffic flow at each output port that is not the destination of the hot-spot
traffic is given by

λr(out) = λu (11.129)

The data rate at the output port that is the destination of the hot-spot traffic is
given by

λh(out) = λu + Nλh (11.130)

Note that hot-spot traffic effectively increases the traffic at the hot-spot port.
The overall traffic flow at the input of the switch is given by

f (in) = N λu + N λh (11.131)
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The overall traffic flow at the output of the switch is given by

f (out) = N λu + N λh (11.132)

The amount of traffic through the network does not increase due to hot-spot
traffic.

11.12 Packet Length Statistics

Unlike ATM, many protocols produce packets that have variable lengths. Examples
of protocols that have variable length packets are IP, Frame Relay- and Ethernet.
Knowledge of the packet size is essential if one wants to estimate the buffer space
required to store data having a certain arrival distribution statistics.

Poisson distribution could be used to provide a simple model for packet length
statistics. The probability of receiving a packet of length A is given by

p(A) = μA

A!
e−μ (11.133)

where A = 1, 2, · · · units of length, and μ is the average packet length.
An exponential distribution could be used also in the form

f (A) = 1

μ
e−A/μ (11.134)

where μ is the average packet length. Alternatively, we could use the binomial dis-
tribution to describe the probability of receiving a packet of length A

p(A) =
(

N

A

)
x A(1 − x)N−A (11.135)

where N is the maximum packet length and x is the probability that one byte is
received. We could find the value of x if the average packet length μ is known:

x = μ

N
(11.136)

If the packet length is highly irregular, then a Pareto distribution might be used
in the form

f (A) = b ab

Ab+1
(11.137)
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where a is minimum packet length and b > 1 is a shape parameter. The average
packet length for this distribution is

μ = b a

b − 1
(11.138)

We could also use the MMPP models to describe packet length statistics as was
discussed in Section 11.2.3. In that model, we assume a Markov chain with N states
such that in state si , the source produces a packet with length Ai . The probability
of making transitions from one state to another is assumed based on experimental
observations or based on model assumptions.

11.13 Packet Transmission Error Description

The previous sections dealt with issues related to network traffic such as data rate
variation, packet length variation, and packet destination. When the packets are in
transit, they are corrupted due to channel impairment or they could be totally lost
due to congestion or address errors. We would like to model channel errors since
these will affect the performance of the overall data transmission.

Figure 11.14 shows a model for adding errors to traffic during transmission. We
have a data source that randomly generate frames as time progresses, such that the
interarrival time between the generated frames follows one of the distributions dis-
cussed earlier.

We could even add another degree of freedom by randomly assigning different
frame lengths. The number of packets per frame follows some distribution like Pois-
son, Bernoulli, or Pareto. The number of packets per frame is indicated in the figure
by the numbers n1, n2, etc.

An error source also randomly generates errors with time. The number of errors
per frame also follows some distribution like Poisson, Bernoulli, or Pareto. For ex-
ample, a bursty error source could follow the Pareto distribution to generate lengthy
error bursts. The number of packets in error per frame is indicated in the figure by
the numbers e1, e2, etc. When the number of errors is either 0 or 1, we have a binary
error source. When a Pareto distribution is used to generate the random numbers,
we get bursts of errors with high probability.

Fig. 11.14 Time series
sequence of generated data
and channel errors. A
received frame is in error if it
is generated at the same time
that an error is generated

e1 e2

n2 n3n1

e3

Errors per frame

Generated frames

Time
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Example 11.15 Assume an on–off data source that generates equal length frames
with probability a per time step. Assume for simplicity that each frame contains
only one packet. The channel introduces errors in the transmitted frames such that
the probability of a packet is received in error is e. Perform a Markov chain analysis
of the system and derive its performance parameters.

The Markov chain model we use has four states:

State Significance

1 Source is idle
2 Source is retransmitting a frame that was in error
3 Frame is transmitted with no errors
4 Frame is transmitted with an error

Figure 11.15 shows the Markov chain transition diagram, and the associated tran-
sition matrix for the system is given by

P =

⎡

⎢⎢
⎣

1 − a 0 1 0
0 0 0 1

a(1 − e) 1 − e 0 0
a e e 0 0

⎤

⎥⎥
⎦

The system throughput is given by

Th = s3

The average number of lost packets per time step is given by

Fig. 11.15 State-transition-
rate diagram for transmitting
a frame on a channel that
introduces random errors

S3

S4S2

S1

1-a
a (1-e)
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Na(lost) = Na(in) − Na(out)

= a − Th

= a − s3

The probability that the packet will be transmitted is

pa = Th

a
= s3

a

The packet loss probability is

L = Na(lost)

a
= 1 − s3

a

The average number of retransmissions is given by

W = 1 − pa

pa
= a

s3
− 1

Example 11.16 Assume in the above example that a = 0.7 and e = 0.1. Calculate
the performance of the system.

Figure 11.16 shows the variation of throughput (Th), delay (W ), access proba-
bility (pa), and loss probability (L) versus the input traffic (a). Two values of error
probability are used e1 = 0.1 (solid line) and e2 = 0.6 (dotted line). We note that
there is a maximum value on the throughput of Th(max) = 0.5 and that the system
performance deteriorates rapidly when the error probability increases.

Fig. 11.16 Throughput (Th),
delay (W ), access probability
(pa), and loss probability (L)
versus the input traffic (a).
Two values of error
probability are used e1 = 0.1
(solid line) and e2 = 0.6
(dotted line)
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Problems

Traffic Modeling

11.1 Why do we need to develop models for network traffic?
11.2 What is meant when we say that a source is bursty?
11.3 What is meant by a point process in traffic modeling?
11.4 What is meant by a fluid flow model to describe network traffic?

Exponential Interarrival Time

11.5 Obtain (11.28) on page 394 when the source maximum data rate σ is given
in units of bits/second.

11.6 Obtain (11.33) on page 395 when the source maximum data rate σ and aver-
age data rate λa are given in units of bits/second.

11.7 A Poisson packet source produces packets at the rate of 1500 packets/s. Find
the probability that a packet will be received within a 0.5 ms interval. What
is the average number of packets received within this same time interval?

11.8 A data source has the following parameters: λa = 200 kbps and σ =
300 kbps. Find the pdf that describes the data rate distribution using the re-
sults of Example 11.5 on page 395.

11.9 Obtain the mean and variance for the random variable T for the exponential
interarrival time whose pdf distribution is given in (11.12)

11.10 A radioactive material has a half-life of 1 ms. Find the average time interval
between the emitted particles assuming a Poisson process. Write down an
expression for the probability of detecting 5 radiated particles in a period of
0.5 ms.

11.11 A radioactive material has an average decay time of 10 ms. An observer finds
that the material did not emit a particle after 20 ms, what is the probability
that it will radiate a particle after 1 ms?

11.12 Consider the position parameter a in (11.28) for a Poisson source. What are
the effects of the packet length and maximum burst rate? Is a high data rate
source characterized by a small or a large a value?

11.13 Consider the position parameter a in (11.33) for a Poisson source. What are
the effects of, the packet length, average rate, and maximum burst rate? Is a
bursty source characterized by a small or a large, b value?

11.14 Obtain expressions for the position parameter a and shape parameter b in
Equations (11.28) and (11.33), respectively, for exponential interarrival time
distribution when the source exhibits burst rate such that σ � λa.

11.15 Obtain expressions for the position parameter a and shape parameter b in
Equations (11.28) and (11.33), respectively, for exponential interarrival time
distribution when the source is a constant bit rate source (CBR) such that
σ = λa. Comment on your results and sketch the resulting pdf distributions.
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11.16 A Poisson source has an interarrival time pdf distribution with the following
two parameter values a = 1 ms and b = 5000 packets/s. Write down an
expression for the probability that the source produces 20 packets in a period
of 1 ms.

11.17 A data source follows the Poisson distribution and has an average data rate of
100 kbps and maximum burst rate of 500 kbps. Estimate the exponential dis-
tribution parameters that best describe that source assuming that the average
packet size is 0.5 kB.

Discrete Exponential Interarrival Time

11.18 Because of the snow, the bus arrival times become messed up. Assume that
buses should arrive on the average each 10 min. However, because of the
snow, the probability that a bus arrives at this time on time is 30%. A passen-
ger just missed the bus, what is the probability that he/she will have to wait
for 1 h before the next bus arrives?

11.19 A data source has a exponential interarrival time pdf distribution with the
following two parameter values x = 0.1 and b = 5000. Write down an
expression for the probability that the source produces 20 packets in a period
of 20 time steps.

11.20 A data source follows the binomial distribution and has an average data rate
of 10 kbps and maximum burst rate of 100 kbps. Estimate the discrete ex-
ponential distribution parameters that best describe that source if packets are
being transmitted on an ATM network operating at OC-3 (155.52 Mbps).

11.21 A data source follows the binomial distribution and has an average data
rate of 10 packets/s and maximum burst rate of 100 packets/s. Estimate the
discrete exponential distribution parameters that best describe that source if
packets are being transmitted on an Ethernet network operating at 10 Mbps
where the average packet length is 1024 bytes.

Pareto Interarrival Time

11.22 Prove that the Pareto distribution is not memoryless. This implies that if a
burst is received, it is likely that the burst will continue.

11.23 A bursty source produces data at an average rate of 5 Mbps and its maximum
burst rate is 20 Mbps. Estimate the Pareto parameters that best describe that
source assuming the average packet size is 400 bits.

11.24 Find the average interarrival time for the source in the previous problem.

Packet Transmission Error Description

11.25 Use the results of Example 11.15 on page 424 to study the effect of channel
error on data transmission. Pick some value for a = 0.5, say, and vary the
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error probability between 0.001 < e < 0.9. Plot the system throughput and
comment on your results.

11.26 Consider Example 11.15 and suppose that there is an upper limit on the
number of retransmissions before the frame is considered lost. Obtain the
resulting Markov transition diagram and the associated transition matrix.

11.27 Consider Example 11.15 again and suppose that no transmissions are al-
lowed. This could be the case for real-time data or best-effort traffic. Obtain
the resulting Markov transition diagram and the associated transition matrix.

11.28 Consider Example 11.15 again, but this time assume that number of errors
per frame varies between 0 and 5. A forward error correction (FEC) scheme
is used and frame is considered to be error free if it contains up to two packets
in error. Obtain the resulting Markov transition diagram and the associated
transition matrix.

11.29 Assume an adaptive forward error correction (FEC) scheme where three lev-
els of error correction are employed:
FEC level 1: can correct one error in received frame only.
FEC level 2: can correct up to three errors.
FEC level 3: can correct up to five errors.
When the errors in the received frame can be corrected, the next frame is
transmitted using the next lower FEC level. When the errors in the received
frame cannot be corrected, the frame is retransmitted using the next higher
FEC level. Assume each frame to contain no more than five errors in it due
to packet size limitations. Derive the Markov chain transition diagram and
the associated transition matrix.
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Chapter 12
Scheduling Algorithms

12.1 Introduction

A scheduling algorithm must be implemented at each network router or switch
to enable the sharing of the switch-limited resources among the packets traveling
through it. The resources being shared include available link bandwidth and buffer
space. The main functions of a scheduler in the network are to (1) provide required
QoS for the different users, by making proper choices for selecting next packet for
forwarding to the next node; (2) select next packet for dropping during periods of
congestion when the switch buffer space is starting to get full; and (3) provide fair
sharing of network resources among the different users.

12.1.1 Packet Selection Policy

In a typical switch or router, several packets will request to access a certain output
port. Because only one packet can leave, the rest must be stored in an intermediate
buffer. Somehow we must find a way to decide which stored packet must be sent
next. Different selection policies could be implemented for different types of queues
depending on the service classes of the queues. For example, some applications have
rigid real-time constraints on delay and jitter, while other adaptive applications agree
to modify their behavior based on the network status. At the time of writing, most
Internet applications are handled using best-effort packet transfer policy with no
bandwidth or delay guarantees [1].

12.1.2 Packet Dropping Policy

The fact that packets have to be stored in each switching node of the network implies
that buffer storage in a switch is a resource that must be shared among the different
users or sessions. During periods of congestion, the switch buffers become full and
the scheduler must also decide which packets to drop.
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12.1.3 Fair Sharing Policy

The switch resources such as available output link bandwidth and local buffer space
must be shared among the switch users. Because of the different classes of service
supported by the switch, an equal sharing of the resources is not the best option.
Rather, the scheduler must allocate these finite resources in a fair manner so that
each user can get its share based on its class of service. Another issue related to fair
sharing is isolation or protection. This is required because not all users abide by their
agreed-upon data rate. When this happens, the misbehaving (nonconforming) user
starts to hog the resources at the expense of other well-behaving (conforming) users.

It is obvious from the previous discussion that data scheduling is required at each
node in the network for three reasons: (a) selection of a packet for transmission from
the population of queued packets destined to a certain switch output; (b) provide
QoS for the different types of flows going through the switch; and (c) drop packets
when the buffer space becomes full.

12.2 Scheduling as an Optimization Problem

From the above discussion, it is clear that the scheduling problem is an optimiza-
tion problem since the scheduler distributes the system-limited resources among
the user traffic which impacts the offered quality of service (QoS). The schedul-
ing algorithms to be discussed in the following sections are all heuristic and have
no solid proof that the proposed scheduling policy is optimal in any mathemati-
cal sense. Further, we will note that the scheduler discussed here reduces packet
delay by allocating large bandwidth to the delay-sensitive traffic. This might be
self-contradictory for some types of traffic, which is delay sensitive but does not
require high bandwidth.

The author developed a hierarchical scheduler [2] that is based on the transporta-
tion problem optimization technique [3, 4]. The transportation problem technique
allows optimizing different QoS types such as delay-sensitive traffic and bandwidth-
sensitive traffic through the same switch.

Finding the optimum solution to a transportation problem is not simple and might
consume a certain amount of time. However, the author developed a simple greedy
algorithm for solving the transportation problem based on computational geometric
concepts. The algorithm uses only simple add/subtract operations and hence should
be fast to compute [2].

12.3 Scheduler Location in Switches

The scheduler will be located in the switch where packets are buffered and where
packets must share a resource like the switch fabric or the output links.



12.3 Scheduler Location in Switches 433

Fig. 12.1 Virtual output
queuing (VOQ) and output
queuing switches with
different queues for each
service class. The points at
which packet contention
occurs are shown
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When a switch is capable of supporting different QoS classes, each service class
will have its own dedicated buffer. At the extreme, each session or user channel
will have its own dedicated buffer in each switch it encounters. Figure 12.1 shows
two buffer location options in switches. The rectangles labeled “SF” indicated the
switching fabric of the switch whose function is to provide connectivity between
each input port and each output port. The figure on the top shows an input queuing
switch where the buffers are located at each input port. The figure on the bottom
shows an output queuing switch where the buffers are located at each output port.
Multiple buffers are shown at each input or output port when multiple service classes
are supported.

Irrespective of the buffering strategy employed, packets will contend for the
shared resources and some form of scheduling algorithm will be required. The figure
shows that there are three types of shared resources: (1) the buffer storage space; (2)
the switch fabric (SF); and (3) the output links (i.e., available bandwidth)

For the input queuing switch, top sketch in Fig. 12.1, we can get two potential
contention points. Point 1 is a potential contention point where all the packets from
the different queues at an input port compete to access the switch fabric. Of course,
a remedy for this problem would be to modify the switch fabric to allow more than
one packet to access the fabric simultaneously. At point 1, the scheduler must also
determine which packets to drop when the buffers start being full. Point 2 is another
potential contention point where packets from the different inputs compete to access
a certain output port. At this point, usually the output link is only able to transmit
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one packet only except when the output link is composed of multiple channels such
as in wavelength division multiplexing (WDM).

For output queuing switch also, bottom sketch in Fig. 12.1, we can get two con-
tention points. Point 1 is a potential contention point where all the packets from
the different inputs compete to access the queues of a certain output port. Point
2 is another potential contention point where packets from the different queues in
each output compete to access the output link. At point 2 the scheduler must also
determine which packets to drop when the buffers start being full.

12.4 Scheduling and Medium Access Control

From the discussion in the previous section, we can tell that a scheduling algorithm
is a method to allow many users or traffic flows to access the output link. In that
sense, the problem is to access the shared resource. Chapters 10, 13, and 14 discuss
media access control techniques and architectures which allow packets to access
a shared resource such as the communication channel. A question naturally arises
whether schedulers and MAC protocols are one and the same. The quick answer is
that they are similar but not the same thing. Table 12.1 compares scheduler algo-
rithms and media access control (MAC) techniques.

12.5 Scheduler Design Issues

There are several design issues related to schedulers. These issues are reviewed in
the following subsections. In the discussion to follow we shall use the terms “user”,
“session”, “connection”, or “flow” to describe the traffic carried by the switch.

Table 12.1 Comparison between scheduling algorithms and media access control (MAC)
techniques

Scheduling algorithms MAC techniques

Designed to provide QoS guarantees Designed to provide resource access only
Determine the user’s share of bandwidth,

buffer space allocation, and packet
discard decisions

Does not deal with these issues

Shared resource is outgoing link of a
switch/router and buffer space

Shared resource is a bus, a wireless
channel, or a shared memory

Operate at switch or router output ports Operate at output ports or each device
connected to the medium

Used with switches or routers Used with buses, wireless channels, etc
Physically exists inside a switch or router Distributed among all users and MAC

controllers
Implemented in software (at least for

now)
Implemented in software and hardware

Operate at layers above the physical layer Operate at the physical layer
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12.5.1 Priority

Ideality dictates that equality is a good thing. However, real life tells us that special
people are “more equal”! Alas, equality is not a good thing in computers or net-
works. The scheduler is only able to do a decision to select a certain user only when
this user has higher priority compared to all other users. Priority assignment could
be static or dynamic. A static priority assignment implies that users belonging to a
certain class of service have a certain level of priority that does not change with time
or with the traffic load. On the other hand, dynamic priority allocation changes the
priority of a certain class of service with time or based on the traffic volume.

In addition to priority assignment, there is an arbitration rule that is invoked to
resolve the conflicts between users with the same priority.

12.5.2 Degree of Aggregation

In order to provide guaranteed QoS, the scheduler has to keep state information
about the performance of each user or connection. The problems with such sched-
ulers are limitations on scaling, deployment difficulties, and the requirement of map-
ping between application and network service parameters [5]. The large number of
states that must be maintained and references slow down the scheduler and limit
the number of users that can be accepted. Other schedulers aggregate several con-
nections into classes to reduce the amount of state information and workload. This
approach is more promising since it deals with large aggregates of network traffic
and its per-hop behavior is configurable [6]. The differentiated services scheduler
provides constant ratios of the quality of service ratios between the service classes
even when the quality level is varying. The price to be paid by aggregating traffic is
loss of deterministic QoS guarantees since the state of each connection is lost. QoS
guarantees for a high-level aggregation server are provided on a probabilistic basis.
In other words, the scheduler loses specific information about the status of each user
since it only keeps track of groups of users. This reduces the number of states that
must be checked and updated. Guarantees can be provided on the QoS for groups of
users, but each user cannot be guaranteed specific level of service.

12.5.3 Work-Conserving Versus Nonwork-conserving

A work-conserving algorithm is idle when all of the priority queues are empty. A
nonwork-conserving algorithm might not transmit a packet even when the priority
queues are occupied. This might happen to reduce the delay jitter for example [7].
This is nice in theory but is not implemented in practice. In general, it was found that
work-conserving algorithms provide lower average delay than nonwork-conserving
algorithm.
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Examples of work-conserving algorithms include generalized processor sharing
[8], weighted fair queuing [9], virtual clock [10], weighted round robin [11], delay-
earliest-due date (Delay-EDD) [12], and deficit round robin [13].

Examples of nonwork-conserving algorithms are stop-and-go, jitter earliest-due
date (jitter-EDD) [14], and rate-controlled static priorities (RCSP).

12.5.4 Packet Drop Policy

Schedulers not only select which packet to serve next, but also have to select which
packet to drop when the system resources become overloaded. There are several
options for dropping packets such as dropping packets that arrive after the buffer
reaches a certain level of occupancy (this is known as tail dropping). Another option
is to drop packets from any place in the buffer depending on their priority. As we
shall see later, a third approach is to randomly select packets for dropping once the
system resources become congested.

12.6 Rate-Based Versus Credit-Based Scheduling

Scheduling methods could be classified broadly as rate-based or time-based. A
rate-based scheduler selects packets based on the data rate allocated for the service
class. Rate-based scheduling methods include fair queuing (FQ) [9, 15], which is
equivalent to virtual clock (VC) [10] weighted fair queuing (WFQ) [9], hierarchi-
cal round robin (HRR) [16], deficit round robin (DRR) [13], stop-and-go (S&G)
[17, 18, 19, 20], and rate-controlled static priority (RCSP) [21]. Rate-based meth-
ods allow a variety of techniques for arriving at a service policy [22]. Some of the
methods are fairly complex to implement since they require complex mathematical
operations and require knowledge of the states of the different flows. However, they
can only provide guarantees based on the maximum delay or delay jitter bounds
since they translate these requirements into an equivalent bandwidth. This proves to
be the weak point on these algorithms since providing bandwidth guarantees to ef-
fect delay guarantees ignores the actual bandwidth requirements of the actual traffic
stream. Needless to say, this would lead to unfair bandwidth allocation to the other
services that have real QoS bandwidth requirements.

A time-based scheduler selects packets based on their time of arrival. Time-based
methods include earliest-due date for delay (EDD-D) [23], earliest-due date for jitter
(EDD-J) [24], and smallest response time (SRT) [25]. Scheduler-based methods
require keeping track of the arrival times of the different packets and calculate the
packet priority based on the packet arrival time and the deadline imposed on it. To
provide end-to-end guarantees on the delay and delay jitter, the scheduler must be
implemented at all the switching nodes and the incoming traffic must conform very
closely with the assumed model [22].
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12.7 Scheduler Performance Measures

A good scheduling algorithm must satisfy several of the following performance
measures [26]:

QoS: The scheduler must be able to support different types of QoS classes with
varying requirements such as bandwidth (throughput), delay, delay jitter, and
loss probability [27].

Fairness: The main goal of fairness is to serve sessions in proportion to some
specified value [28]. The simplest fair allocation of resources is to equally
divide the available bandwidth and buffer space among all the users and to
drop excess packets equally from the different queues. However, if a user
does not require all of its allocated share, then the excess share should be
divided equally among the other users.

Isolation or protection: Isolation means that a misbehaving user should not
adversely impact other users. The user becomes misbehaving when its packet
arrival rate exceeds what is expected. Isolating the effects of misbehaving
users is equivalent to protecting conforming users.

Simplicity: The scheduler must be easy to implement in hardware especially
at high network speeds. This requires that computations to be done by the
scheduler to be small in number and simple to calculate.

Scaling: The scheduler must perform well even when the number of sessions
increases or when the link speed is increased. Some scheduling algorithm
must keep state information about every user and must update this infor-
mation very frequently. This places limitations on how many users can be
supported by the scheduler and places limitations on the scheduler delay.

12.8 Analysis of Common Scheduling Algorithms

The remainder of this chapter discusses several scheduling algorithms that vary in
performance from support of best-effort traffic with no performance guarantees to
schedulers that support guaranteed services with bounds on bandwidth and delay.
Models that describe the performance of each algorithm are also developed.

12.9 First-In/First-Out (FIFO)

First-in/first-out (FIFO) is also known as first-come/first-served (FCFS). The FIFO
method sorts users according to their arrival time. The users that arrive early are
served first [29]. In that sense, all users have the same priority and the arbitration
rule is based on the time of arrival of the packets. This method is used naturally to
store incoming packets in queues that could be associated with the input or output
ports.
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FIFO is simple to implement and packet insertion and deletion are particularly
simple and do not require any state to be maintained for each session. However, this
proves to be a disadvantage since the server has no way of distinguishing between
the packets belonging to different users. Thus some users might be misbehaving and
fill a large portion of the queue which increases the chance of dropping the packets
of other users.

When all incoming flows are queued in a single queue, greedy users exhibiting
long periods of activity (bursty behavior) will take the lion’s share of the queue
capacity at the expense of other flows. When the queue is filled, packets at the tail
are dropped. This is the reason why this method is known as FIFO with tail drop.
Most routers adopt this method because of its simplicity.

FIFO does not provide per-connection delay or rate guarantees since priority is
based solely on arrival time. One way to provide delay bounds is to limit the size
of the queue so that the maximum delay equals the time to serve a full queue. Of
course, once the queue size is limited, there will be a probability that an arriving
packet will be discarded if it arrives when the queue is full. To reduce the packet
discard probability, the number of sessions should be limited.

12.9.1 Queuing Analysis of FIFO/FCFS

Let us perform a simple queuing analysis for a FIFO buffer. We make the following
simplifying assumptions:

1. The size of the buffer is B.
2. The maximum number of customers that could arrive at the input of the buffer at

a certain time step is m.
3. The average length of packets from any user is A.
4. The arrival probability for any user is a.
5. The departure probability for the buffer is c.

Figure 12.2 shows the FIFO buffer where several sessions converge at the input
and only one packet can leave which corresponds to an Mm/M/1/B queue. The
transition matrix for such queue was derived in Section 7.7 on page 241. Based on
that, we can derive expressions for the scheduling delay which corresponds to the
queuing delay in that situation.

Fig. 12.2 A FIFO buffer with
m flows at its input

Session 1

FIFOSession 2

Session m

...
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The throughput of the FCFS queue was given in Section 7.7, which we repeat
here for convenience.

The average throughput is estimated as

Th = c (1 − a0 s0) (12.1)

where a0 is the probability that no packets arrive during a time step and s0 is the
probability that the queue is empty.

The average lost traffic Na(lost) is given by

Na(lost) = Na(in) − Na(out)

= Na(in) − Th

= m a − c (1 − a0 s0) (12.2)

We refer the reader to Sections 7.7.1 and 7.7.2 for a more detailed discussion of
the performance figures for the Mm/M/1/B queue.

12.10 Static Priority (SP) Scheduler

In a static priority scheduler, separate queues are assigned different priorities. In-
coming data are routed to the different queues depending on their priority. The
scheduler serves packets in a lower priority queue only if all the higher priority
queues are empty [30, 31, 29, 32, 33].

The static priority scheduler is also known as the IEEE 802.1p, which was dis-
cussed in Chapter 10. A queuing analysis of the static priority scheduler was per-
formed in Section 10.2 on page 326.

12.11 Round Robin Scheduler (RR)

The round robin scheduler serves backlogged sessions one after another in a fixed
order. When the scheduler finishes transmitting a packet from session 1, say, it
moves on to session 2 and checks if there are any packets waiting for transmission.
After the scheduler has finished going through all sessions, it comes back to the first
session, hence the name round robin. Figure 12.3 shows a round robin scheduler
serving four sessions.

The main features of this scheduler are ease of implementation in hardware and
protection of all sessions even best-effort sessions. A greedy or misbehaving user
will not be able to transmit more than one packet per round. Hence all other users
will not be penalized. The misbehaving user will only succeed in filling its own
buffer and data will start getting lost. However, the long packets will be transmitted
since the scheduler serves whole packets. This could affect the delay experienced
by other sessions that might have short packets to transmit.
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Fig. 12.3 Round robin
scheduler serving four
sessions
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Assuming m sessions, the maximum bound on delay for a queue is given by

W (max) =
m∑

i=1

Ai

C
s (12.3)

where Ai is the head of the line packet length in bits for session i and C (bps) is the
output link rate.

The ratio of service provided for session i relative to the total service provided to
all sessions is equivalent to finding the ratio of number of bits moved from session
i relative to the total number of bits moved in one round. We define fi as that ratio
which is written as

fi = Ai∑m
j=1 A j

(12.4)

Thus the bandwidth Ci given to session i relative to the total output bandwidth is
simply given by

Ci = C fi (12.5)

In an ideal round robin algorithm, all packets have equal lengths and each session
share would be

fi = 1

m
(12.6)

Ci = C

m
(12.7)

The above two equations assume that all sessions are backlogged and have pack-
ets with equal lengths. The algorithm is not fair when some sessions have variable
length packets since the server will allocate more time for these sessions.
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12.11.1 Queuing Analysis for RR

We can study the occupancy of each queue in a round robin scheduler using the
following assumptions:

1. The outgoing link capacity is C .
2. The number of queues or sessions is m.
3. The size of queue i is Bi .
4. Time step equals T , the duration of one round of the scheduler.
5. The input data rate for session i is λi .
6. The maximum burst rate for queue i is σi .
7. The head of line packet length for queue i is Ai .
8. The arrival probability for queue i is ai .
9. A maximum of Ni packets could arrive during one round into queue i .

10. The size of queue i is Bi .
11. The probability of departure from queue i is ci = 1.

Based on the above assumptions, we find that we have an Mm/M/1/B queue.
The transition matrix for such queue was derived in Section 7.7 on page 241. Based
on that, we can derive expressions for the scheduling delay, which corresponds to
the queuing delay in that situation.

The arrival probability ai can be found as follows. The duration of one round T
is given by

T =
m∑

i=1

Ai

C
s (12.8)

and when all sessions have packets with equal length A, the above expression sim-
plifies to

T = m A

C
s (12.9)

The average interarrival time for session i is given by

Ti = Ai

λi
s (12.10)

The probability of k arrivals in one time step is given by

pi,k =
(

Ni

k

)
ak

i bNi −k
i k = 0, 1, 2, . . ., Ni (12.11)

where ai is the Bernoulli probability of packet arrival, bi = 1 − ai , and Ni is the
maximum number of packets that could arrive at the queue input as determined by
the maximum burst rate σi
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Ni =
⌈

σi × T

Ai

⌉
(12.12)

with �x� is the smallest integer that is larger than or equal to x . Assuming binomial
distribution, we can estimate ai from the average number of packets received on one
time step:

ai × Ni = λi × T

Ai
(12.13)

which gives

ai = λi × T

Ni Ai
(12.14)

Because of our choice for the step size, the queue size can only decrease by one
at most at any instant with probability ci = 1.

Assuming the packet buffer size Bi , the transition matrix for queue i will be
(Bi + 1) × (Bi + 1) and is given by

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

q p0 0 0 0 · · · 0
p2 p1 p0 0 0 · · · 0
p3 p2 p1 p0 0 · · · 0
p4 p3 p2 p1 p0 · · · 0
...

...
...

...
...

. . . 0
pBi pBi −1 pBi −2 pBi −3 pBi −4 · · · p0

f1 f2 f3 f4 f5 · · · fBi +1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(12.15)
where q = p0 + p1 and

f j = 1 −
Bi − j+1∑

k=0

pk (12.16)

Of course, if Bi > Ni , then the terms p j = 0 whenever Ni < j ≤ pBi .
The transition matrix helps us find performance parameters for queue i . For that,

we need to determine the equilibrium distribution vector s. Repeating the same pro-
cedure for all other queues, we would then be able to find the performance of the
round robin scheduler.

For queue i , the throughput is given by

Th = 1 − s0 packets/timestep (12.17)
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where s0 is the probability that the queue is empty. The throughput in units of pack-
ets/s is given by

Th = 1 − s0

T
packets/s (12.18)

And the throughput in units of bps is given by

Th = (1 − s0) Ai

T
bps (12.19)

The average queue length is given by

Qa =
Bi∑

j=0

i s j (12.20)

We can invoke Little’s result to estimate the wait time, which is the average num-
ber of time steps a packet spends in the queue before it is served, as

Qa = W × Th (12.21)

where W is the average number of time steps that a packet spends in the queue:

W = Qa

1 − s0
timesteps (12.22)

The wait time in units of seconds is given by

W = Qa T

(1 − s0) Ai
s (12.23)

Example 12.1 Assume a round robin scheduler in which all sessions are identical
with the following parameters:

N = 4 sessions C = 1 Mbps
B = 5 packets L = 1024 bits
λ = 50 kbps σ = 500 kbps

Determine the transition matrix and determine the system performance parame-
ters.

The duration of one round is

T = 4 × 1024

5 × 106
= 4.1 ms
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Based on the data burst rate, a maximum of two packets could arrive during
a time period T . The Bernoulli arrival probability at each queue during this time
period is given by

a = 0.1

The transition matrix is 6 × 6:

P =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0.99 0.81 0 0 0 0
0.01 0.18 0.81 0 0 0

0 0.01 0.18 0.81 0 0
0 0 0.01 0.18 0.81 0
0 0 0 0.01 0.18 0.81
0 0 0 0 0.01 0.19

⎤

⎥⎥⎥⎥⎥⎥
⎦

The equilibrium distribution vector is

s = [
0.9877 0.0122 0.0002 0 0 0

]t

The throughput of the queue is

Th = 1 − s0 = 0.0124 packets/timestep

= 3.0864 kbps

The average queue length is

Qa = 0.0125

The average wait time for a queue is

W = 4.05 �s

12.12 Weighted Round Robin Scheduler (WRR)

The round robin scheduler discussed in the previous section treats all connections
equally. When each connection has a different weight, we get the weighted round
robin (WRR) scheduler.

Assume session i has an integer weight wi associated with it. Then in each round
of service, the WRR scheduler transmits wi packets for session i , and so on.

The fraction of the bandwidth for session i in this algorithm can be measured as
the service associated with session i relative to the total service in one round. The
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service received by the head of the line packet in queue i is simply the number of
bits transmitted:

fi = wi Ai∑m
j=1 w j A j

(12.24)

In an ideal WRR algorithm, all packets have equal lengths and the share would
be

fi = wi∑m
j=1 w j

(12.25)

The algorithm is not fair when some sessions have variable length packets since
the server will allocate more time for these sessions.

12.12.1 Queuing Analysis for WRR

We can study the occupancy of each queue in a WRR scheduler using the following
assumptions:

1. The outgoing link capacity is C .
2. The number of queues or sessions is m.
3. The size of queue i is Bi .
4. The weight associated with queue i is wi .
5. Time step equals T , the duration of one round of the scheduler.
6. The input data rate for session i is λi .
7. The maximum burst rate for queue i is σi .
8. The head of line packet length for queue i is Ai .
9. The arrival probability for queue i is ai .

10. A maximum of Ni packets could arrive during one round into queue i .
11. A maximum of wi packets could leave during one round from queue i .
12. The probability of departure from queue i is ci = 1.

Based on the above assumptions, we find that we have an Mm/Mm/1/B queue.
The arrival probability ai can be found by first selecting a time step value. We

choose the time step to be equal to the duration of one round T

T =
m∑

i=1

wi Ai

C
(12.26)

Next, we have to estimate how many packets arrive in one time step from session
i . The average interarrival time for session i is given by

Ti = Ai

λi
(12.27)
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The probability of k arrivals in one time step is given by

pi,k =
(

Ni

k

)
ak

i bNi −k
i k = 0, 1, 2, . . ., Ni (12.28)

where ai is the Bernoulli probability of packet arrival, bi = 1 − ai , and Ni is the
maximum number of packets that could arrive in one time step. Ni is determined by
the maximum burst rate σi as follows

Ni = �σi × T � (12.29)

where the ceiling function �x� is the smallest integer that is larger than or equal to
x . Assuming binomial distribution, we can estimate ai from the average number of
packets received in one time step:

ai × Ni = λi × T (12.30)

which gives

ai = λi × T

Ni
(12.31)

Because of our choice for the step size, the queue size can decrease by wi packets
at most at any instant with probability ci = 1.

From the above calculations, we are able to construct a transition matrix for the
queue of session i . Having done that, we are able to obtain expressions for the queue
parameters such as throughput, delay, and average queue length.

12.13 Max–Min Fairness Scheduling

Scheduling deals with the sharing of a resource among several users. However, not
all users have the same demands on the resource. In many cases, not all users require
an equal share of that bandwidth. How should we divide the bandwidth among all
users in a fair manner? One way to do that is to use the max–min policy.

Max–min sharing policy is an iterative technique for fair sharing of the resource.
For example, assume the outgoing link capacity is C and there are m users. Assume
user i requires a bandwidth λi and the users are sorted such that

λ1 ≤ λ2 ≤ · · · ≤ λm (12.32)

The allocation of the bandwidth proceeds as follows:

1. Allocate the bandwidth equally among all users C/m.
2. If λ1 < C/m, then give user 1 only λ1.
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3. Allocate the remaining bandwidth C − λ1 equally among the remaining users
(C − λ1)/(m − 1).

4. If λ2 < (C − λ1)/(m − 1), then give user 2 only λ2.
5. Repeat the procedure until all users have been considered.

Example 12.2 Assume an outgoing link is being shared among five channels. The
system parameters (in units of Mbps) are as follows:

C = 155

λ1 = 10

λ2 = 20

λ3 = 60

λ4 = 80

λ5 = 80

Find the rates assigned to each flow according to the max–min algorithm.

The sum of the flows due to all users is

10 + 20 + 60 + 80 + 80 = 250 Mbps

which is larger than the link capacity. The initial fair rate f is given by

f = 155/5 = 31 Mbps

Flow 1 has the minimal rate and is assigned the flow

λ′
1 = min(10, 31) = 10 Mbps

We adjust the link capacity shared among the remaining four users as

C = 155 − 10 = 145 Mbps

The fair rate among four remaining users becomes

f = 145/4 = 36.25 Mbps

Flow 2 has minimal rate and is assigned the flow

λ′
2 = min(20, 36.25) = 20 Mbps

We adjust the link capacity shared among the remaining two users as

C = 145 − 20 = 125Mbps
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The fair rate among three remaining users becomes

f = 125/3 = 41.7 Mbps

Flow 3 has minimal rate and is assigned the flow

λ′
3 = min(60, 41.7) = 41.7 Mbps

We adjust the link capacity shared among the remaining two users as

C = 125 − 41.7 = 93.3 Mbps

The fair rate among two remaining users becomes

f = 93.3/2 = 46.7 Mbps

The bandwidths assigned to the flows become

λ′
1 = 10 Mbps

λ′
2 = 20 Mbps

λ′
3 = 41.7 Mbps

λ′
4 = 46.7 Mbps

λ′
5 = 46.7 Mbps

Note that the aggregate assigned rates equal the outgoing link capacity.

12.14 Processor Sharing (PS)

Processor sharing is an ideal work-conserving scheduler that treats each flow like
a fluid model. Data of a given flow is assumed to be infinitely divisible (even at
level smaller than a bit), and all flows are served simultaneously. Processor sharing
provides max–min fair service. However, PS is an ideal solution that is not imple-
mentable in practice. We study it only to provide the background to other practical
algorithms.

Assuming we have m(t) active flows at a given time t , the rate assigned to flow i
is given by

λi (t) = C

m(t)
(12.33)

where C is the outgoing link capacity. Figure 12.4 shows a PS scheduler serving
four queues.
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Fig. 12.4 Processor sharing
(PS) scheduling in which
each queue shares an equal
portion of server bandwidth
in a fluid flow fashion

Session 1

Scheduler

Session 2

Session 3

Session 4

Example 12.3 Assume a PS scheduler that serves three flows. Packets arrive at the
scheduler according to the following table:

Time 0 1 2 3 4

Flow 1 0 1 0 0 1
Flow 2 1 1 1 0 1
Flow 3 0 0 1 1 1

A “0” indicates that the flow is inactive and does not require any output band-
width. A “1” entry indicates an active flow that requires a fair portion of the outgoing
link capacity. For simplicity, we assume discrete time intervals T0, T1, etc. Calculate
the percentage of the outgoing link capacity allocated to each active flow at different
times.

According to PS scheduling, the percentage of the bandwidth dedicated to each
active flow is shown in the following table:

Time 0 1 2 3 4

Flow 1 0 1 0 0 1
Flow 2 1 1 1 0 1
Flow 3 0 0 1 1 1
% rate 100 50 50 100 33.3

12.15 Generalized Processor Sharing (GPS)

Generalized processor sharing (GPS) is an ideal work-conserving scheduling scheme
that is not implemented in practice. It only helps as a reference to compare the per-
formance of other more practical scheduling algorithm. GPS assumes a fluid flow
traffic model where the scheduler is able to serve an infinitely small amount of data
from each queue at the same time and at different rates.

The bit-by-bit GPS server works on incoming flows in a round robin fashion
transmitting one bit from each flow before it moves on to the next flow. When a
session is idle, the server skips over to the queue of the next session. Therefore, a
single packet requires several rounds of service before it is able to move out of the
scheduler but each packet is guaranteed a fair share of the outgoing link capacity.
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In processor sharing, all flows had the same weight and all active flows had an
equal share of the outgoing link capacity. In GPS, each session or flow is assigned
a weight that indicates the desired share of the outgoing link capacity. Flow i will
have a weight wi ≥ 1, and the share of session i out of the outgoing link bandwidth
C (bps) is given by

ci (t) = C × wi∑
j∈B(t) w j

(12.34)

where B(t) is the set of backlogged sessions at time t .
The number of bits transmitted from flow i in a time period t2 − t1 is given by

si = ci (t2 − t1) bits (12.35)

where t2 ≥ t1.
The time T required to completely transmit a packet of length Ai in flow i is

determined from the expression

Ai =
∫ T

t=0
ci (t) dt (12.36)

This time depends on the number of backlogged sessions which could vary.

Example 12.4 Assume a GPS scheduler serving four flows with associated weights
w1 = 1, w2 = 2, w3 = 3, and w4 = 4. The outgoing link capacity is 1 Mbps and
the packet arrival pattern in the different flows is as shown below:

t (ms) 0 10

Session 1 3
Session 2 1
Session 3 2
Session 4 7

where the numbers in the rows of each session indicate the length of the packet that
arrived at that time in units of kb. Calculate the assigned bandwidth and completion
times for the arriving packets.

At t = 0 sessions 1 and 3 are backlogged and their combined weights are 1+3 =
4. The bandwidth assigned to sessions 1 and 3 is

c1(0) = 106 × 1/4 = 0.25 Mbps

c3(0) = 106 × 3/4 = 0.75 Mbps
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Assuming the system is not changed, the completion times for the backlogged
packets are

t1 = 3 × 103/0.25 = 12 ms

t3 = 2 × 103/0.75 = 2.67 ms

At t = 10, packet 3 is gone but a small portion of packet 1 is still left.
The number of bits transmitted from packet 1 of session 1 is given from (12.35)

by

s1 = 0.25 × 10 = 2.5 kb

Thus at t = 10 ms, there are 0.5 kb still left to be transmitted for packet p1(1).
The bandwidth assigned to sessions 1, 3, and 4 is

c1(10) = 106 × 1/8 = 0.125 Mbps

c3(10) = 106 × 3/8 = 0.375 Mbps

c4(10) = 106 × 4/8 = 0.5 Mbps

Assuming no more sessions become backlogged, the completion times for the
backlogged packets are

t1 = 0.5 × 103/0.125 = 4 ms

t2 = 103/0.375 = 2.67 ms

t4 = 7 × 103/0.5 = 14 ms

12.16 Fair Queuing (FQ)

The fair queuing (FQ) algorithm proposed independently in [9, 15] is completely
equivalent to the virtual clock (VC) algorithm proposed by Zhang [10] in which
the individual sessions are assigned separate queues. The queues are serviced in a
round robin manner which prevents a source from arbitrarily increasing its share of
the bandwidth. It is called “fair” because it allocates an equal share of the output
bandwidth to each traffic flow or queue.

Figure 12.5 schematically shows queue serving sequence in FQ. In the figure, it
was assumed that the incoming flows are divided among m queues. Fair queuing is
used on a per-flow basis. Note, however, that the algorithm works on a packet-by-
packet basis with no consideration to the separate end-to-end connections carried in
each flow.
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Fig. 12.5 Fair queuing
scheduling in which each
queue shares an equal portion
of server bandwidth in a
round robin fashion
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SchedulerSession 2
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Assume flow i has an arrival rate λi . The bandwidth allocated to flow i is deter-
mined according to max–min scheduling strategy discussed in Section 12.13:

λ′
i = min (λi , f ) (12.37)

where f is the fair rate assigned by the algorithm to each flow as follows:

f = C

K
(12.38)

where C is the outgoing link rate and K is the number of backlogged sessions. f
is calculated such that when the switch is congested, the aggregate flow rate equals
the switch capacity C .

Equation (12.37) indicates that f is calculated recursively by removing the user
with the minimal λi and reducing the link capacity accordingly

C ← C − λmin (12.39)

Example 12.5 Assume four sessions are being served by a fair queuing scheduler.
The system parameters (in units of Mbps) are as follows:

C = 20

λ1 = 1

λ2 = 3

λ3 = 8

λ4 = 10

Find the rates assigned to each flow.

The sum of the flows due to all backlogged sessions is

1 + 3 + 8 + 10 = 22



12.16 Fair Queuing (FQ) 453

which is larger than the link capacity. The initial fair share f is give by

f = 20/4 = 5

Flow 1 has the minimal rate and is assigned the flow:

λ′
1 = min(1, 5) = 1

We adjust the link capacity shared among the remaining three users as

C = 20 − 1 = 19

The fair share becomes

f = 19/3 = 6.33

Flow 2 has minimal rate and is assigned the flow:

λ′
2 = min(3, 56.33) = 3

We adjust the link capacity shared among the remaining two users as

C = 19 − 3 = 16

The fair share becomes

f = 16/2 = 8

The bandwidths assigned to the flows become

λ′
1 = 1

λ′
2 = 3

λ′
3 = 8

λ′
4 = 8

The sum of all the assigned rates equals the outgoing link capacity.

Greedy flows that exceed the fair rate will have similar flow rate at the output
equal to the fair rate assigned by the scheduler and will succeed only in filling their
buffer which increases their cell loss probability.

Fair queuing is not completely satisfactory because it does not distinguish among
long versus short queues or high-priority versus low-priority queues. Thus when
bursty traffic is encountered, some queues will become full and their packets will be
lost even if some of the other queues are far from full.
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Switches or routers employing FQ have to classify each incoming packet to as-
sign it to the proper queue. Furthermore, the switch or router has to perform some
operations on each queue to determine its instantaneous flow λi .

12.17 Packet-by-Packet GPS (PGPS)

Packet-by-packet GPS (PGPS) is a packetized approximation of the GPS algorithms
for fluid flow [34, 35]. This algorithm is also known as weighted fair queuing
(WFQ). Thus in PGPS, data are served in terms of complete packets and only one
packet can be served at a time.

A PGPS/WFQ server works on incoming flows in a static priority fashion based
on a timestamp calculation. The flows or sessions are assigned separate queues
based on packet header information. The scheduler scans the backlogged queues or
sessions to select a packet for service. The packet with the highest priority (least
timestamp) is selected and the output link capacity is dedicated to sending that
packet without sharing the resource with any other queued packets. After a packet
has moved out of a FIFO queue, all packet in that queue move ahead by one position
and the head of the line (HOL) packet enters the pool of selection from among all
other HOL packets belonging to other sessions.

PGPS requires the computation of three quantities:

1. Virtual time, V (t): Indicates the share of the outgoing link capacity for each
backlogged session.

2. Finish number, Fi : Determines the priority of serving the packet in flow i . The
packet with the least finish number is the one that will be served by the scheduler.

3. Completion time, Ti : Determines the service time required by the packet based
on the packet length and outgoing link bandwidth.

12.17.1 Virtual Time Calculation for PGPS/WFQ

Assuming B(t) to the set of backlogged sessions at time t , the virtual time V (t) is
defined using the differential equation

V (0) = 0 (12.40)
dV (t)

dt
= 1
∑

i∈B wi
(12.41)

where wi ≥ 1 is the weight assigned to session i . Figure 12.6 shows the time devel-
opment of V (t) as packets arrive and sessions become backlogged.

When all sessions are idle, the virtual time is reset to zero

V (t) = 0 when all sessions are idle (12.42)
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Fig. 12.6 Development of the
virtual time V (t) in
PGPS/WFQ scheduling
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Example 12.6 Assume a PGPS/WFQ scheduler serving flows of equal weights.
The outgoing link capacity is 1 Mbps and all arriving packets equal lengths of 1 kb.
The packet arrival pattern is shown below where it is assumed that packets arrived
at the idle sessions:

t (ms) 0 1 2 3 4 5 6

Arrivals 4 1 2

Determine the number of backlogged sessions versus t and obtain the values for
V (t).

A packet will require 1 ms to be transmitted.
At t = 0, four packets arrived and the number of backlogged sessions is

m(0) = 4.
At t = 1, no packets arrive and number of active sessions is reduced by one.

Therefore, m(1) = 3 since one packet is guaranteed to be serviced.
At t = 2, no packets arrive and number of active sessions is decremented by one

m(2) = 2.
At t = 3, one packet arrives and one packet leaves which leaves m(3) =

m(2) = 2.
At t = 4, no packets arrive and number of active sessions is decremented by

one.
At t = 5, no packets arrive and number of active sessions is decremented by one

and we get m(5) = 0.
At t = 6, two packets arrive and m(6) = 2.
The following table shows the development of m(t):

t (ms) 0 1 2 3 4 5 6

Arrivals 4 0 0 1 0 0 2
m(t) 4 3 2 2 1 0 2
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We use (12.41) to determine the value of V (t) at each time:

t (ms) 0 1 2 3 4 5 6

Arrivals 4 0 0 1 0 0 2
m(t) 4 3 2 2 1 0 2
dV (t)/dt 1/4 1/3 1/2 1/2 1/1 0 1/2
V (t) 0.0 0.25 0.58 1.08 1.58 2.58 0

12.17.2 Finish Number Calculation for PGPS/WFQ

Assuming packet k has arrived at the queue for session i , then the finish number for
that packet is calculated as

Fi (k) = max [Fi (k − 1), V (t)] + Ai

wi
(12.43)

where Fi (k − 1) is the finish number for preceding packet in queue i and Ai is
the length of the arriving packet. An empty queue will have a zero finish number
associated with it.

The first term on the RHS ensures that for a backlogged queue, an arriving packet
will have bigger finish number compared to packets already in queue i so that each
queue functions as first-in/first-out (FIFO).

The second term on the RHS ensures that the finish number for packet k of queue
i takes into account the size of that packet and the weight associated with the session.
This ensures that sessions with lots of bits to send are slightly penalized to ensure
fairness to other users that might have smaller packets to send.

Notice that a long packet or a greedy session will be characterized by large finish
numbers and will receive lower service priority. On the other hand, short packets
belonging to a conforming session with short queue will by characterized by small
finish numbers and will be served more frequently. A greedy or bursty user traffic
will only succeed in filling its buffer and losing packets while other users will still
access their fair share of the link capacity.

The scheduler orders all the finish numbers for the packets at the head of all the
queues. The packet with the least finish number is served first.

One last remark is worth making here. The finish number equation (12.43) guar-
antees that packets already in the system at time t will be served before any packets
that arrive after t .

When session i is idle, its finish number is reset to zero

Fi = 0 whensessionisidle (12.44)
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12.17.3 Completion Time Calculation for PGPS/WFQ

The completion time for a packet is simple to calculate in PGPS/WFQ since the
outgoing resources are completely dedicated to the selected packet.

Assuming packet k in session i has a length Ak , then the time T required to
transmit it is given by

T = Ak

C
s (12.45)

where C is the outgoing link capacity in bps.

Example 12.7 Assume a PGPS/WFQ scheduler serving four flows of equal weights.
The outgoing link capacity is C = 1 Mbps and the packet arrival pattern is shown
below:

t (ms) 0 1 2 3

Session 1 3 2
Session 2 1 4
Session 3 2 7
Session 4 5

where the numbers in the rows of each session indicate the length of the packet in
units of kb. Calculate the system virtual time and finish numbers for the arriving
packets of each session.

A packet of unit length (1 kb) takes 1 ms to transmit. At the start, virtual time and
all the finish numbers are reset to 0.

At t = 0, our table will be

t (ms) 0 1 2 3
Session 1∗ 3 2
Session 2 1 4
Session 3∗ (2) 7
Session 4 5
dV/dt 0.5
V (t) 0.0

Sessions 1 and 3 are backlogged, as indicated by the asterisk (∗), and the finish
numbers for the arriving packets are

F1(1) = max(0, 0) + 3 = 3

F3(1) = max(0, 0) + 2 = 2

Packet p3(1) will be served first and will require 2 ms to transmit. This is indi-
cated by the brackets round the entry for this packet.
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At t = 1, our table will be

t (ms) 0 1 2 3
Session 1∗ 3
Session 2∗ 1 4
Session 3∗ (2) 7
Session 4 5
dV/dt 0.5 0.3
V (t) 0.0 0.5

The finish numbers for all congested sessions (i.e., 1, 2, and 3) are given by

F1(1) = 2

F2(1) = max(0, 0.5) + 1 = 1.5

F3(1) = 3

Since F2(1) has the least finish number, we could have chosen the packet in
session 2 for transmission. However, this would mean that we stop the transmis-
sion of packet in session 3 which is not finished yet. This is a form of preemptive
scheduling. We choose a nonpreemptive scheduling scheme and continue transmit-
ting packet out of session 3 as indicated by the brackets surrounding the packet of
session 3.

At t = 2, our table will be

t (ms) 0 1 2 3
Session 1∗ 3 2
Session 2∗ (1) 4
Session 3∗ 2 7
Session 4 5
dV/dt 0.5 0.3 0.3
V (t) 0.0 0.5 0.8

Packet p2(1) is chosen for transmission since it has the lowest finish number
among all the backlogged sessions. The finish numbers for the new packets are

F1(2) = max(3, 0.8) + 2 = 5

F3(2) = max(2, 0.8) + 7 = 9

Since finish number for packet in session 2 is 1.5, we choose this packet for
transmission as indicated by the brackets surrounding that packet.
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At t = 3, our table will be

t (ms) 0 1 2 3
Session 1∗ (3) 2
Session 2∗ 1 4
Session 3∗ 2 7
Session 4∗ 5
dV/dt 0.5 0.3 0.3 0.25
V (t) 0.0 0.5 0.8 1.1

The finish numbers for the new packets are

F2(2) = max(1.5, 1.1) + 4 = 5.5

F4(1) = max(0, 1.1) + 5 = 6.1

Since the finish number for the HOL packet in session 1 is 3, we pick this packet
for transmission.

12.18 Frame-Based Fair Queuing (FFQ)

Frame-based fair queuing (WFQ) belongs to the general class of rate-proportional
servers (RPS) proposed in [36]. This type of schedulers are claimed to offer similar
delay and fairness bounds as PGPS/WFQ but with much simpler computations of
the packet priorities.

FFQ server works on incoming flows in a static priority fashion based on a
timestamp calculation. The flows or sessions are assigned separate queues based on
packet header information. The scheduler scans the backlogged queues or sessions
to select a packet for service. The packet with the highest priority (least timestamp)
is selected and the output link capacity is dedicated to sending that packet without
sharing the resource with any other queued packets. After a packet has moved out
of a FIFO queue, all packets in that queue move ahead by one position and the head
of the line (HOL) packet enters the pool of selection from among all other HOL
packets belonging to other sessions.

FFQ requires the computation of three quantities:

1. System potential, P(t): Indicates the amount of data transferred through the out-
going link up to time t .

2. Timestamp, Si : Determines the priority of serving the packet in flow i . The packet
with the least timestamp is the one that will be served by the scheduler.

3. Completion time, Ti : Time required by the packet to be fully transmitted. It de-
pends on the packet length and outgoing link bandwidth.
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12.18.1 System Potential Calculation for FFQ

Assume that the server started serving a packet at time ts. At a later time t ≥ ts, the
system potential P(t) is defined as

P(t) ← P + C(t − ts)

F
(12.46)

where C (bps) is the outgoing link capacity and F is the frame size in bits. The
system potential P(t) measures the amount of data transferred up to time t relative
to the frame size F . The system potential is updated each time a packet starts service
and when all sessions are idle, the system potential is reset to zero.

P(t) = 0 when all sessions are idle (12.47)

The frame size F is chosen so that at least the maximum length packet from any
session can be sent during one frame period, i.e.,

F > Amax bits (12.48)

The frame period T corresponding to the chosen frame size is given by

T = F

C
s (12.49)

12.18.2 Timestamp Calculation for FFQ

When a k packet arrives at session i , a timestamp is associated with it according to
the following formula

Si (k) = max [Si (k − 1), P(t)] + Ai

λi
(12.50)

where Si (k−1) is the timestamp of the previous packet in the queue, Ai is the packet
length in bits, and λi is the reserved rate for session i . An empty queue will have a
zero timestamp associated with it.

A long packet will be penalized by having a large timestamp value and users with
higher reserved bandwidth will consistently receive lower timestamp values so as to
obtain their reserved rate in a fair manner.

One issue remains to be resolved which is determining when the current frame
is to be completed and a new frame is to be started. We mentioned above that a new
frame starts when all sessions are idle. When one or more sessions are backlogged,
a new frame is started when the accumulated bits transferred approaches the frame
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size F . To keep track of the number of bits transferred, a bit counter could be used.
When a packet is selected for transmission, the counter contents are updated

B(k) = B(k − 1) + Ak (12.51)

If B(k) ≤ F , the current frame is continued and the packet is sent. If B(k) > F ,
a new frame is started and the packet is sent during the new frame.

12.18.3 Completion Times Calculation for FFQ

The completion time for a packet is simple to calculate in FFQ since the outgoing
resources are completely dedicated to the selected packet.

Assuming packet k in session i has a length Ak , then the time T required to
transmit it is

T = Ak

C
s (12.52)

where C is the outgoing link capacity in bps.

Example 12.8 Assume a FFQ scheduler serving flows of equal weights. The outgo-
ing link capacity is 1 Mbps and the frame size is chosen as F = 104 bits. The packet
arrival pattern is shown below:

t (ms) 0 1 2 3

Session 1 3 2
Session 2 1 4
Session 3 2 7
Session 4 5

where the numbers in the rows of each session indicate the length of the packet in
units of kb. Calculate the system potential and timestamps for the arriving packets
of each session.

A packet of unit length (1 kb) takes 1 ms to transmit. At the start, system potential
and all the timestamps are reset to 0.

At t = 0, our table will be

t (ms) 0 1 2 3
Session 1∗ 3 2
Session 2 0 1 4
Session 3∗ (2) 7
Session 4 0 5
B(t) 0
P(t) 0.0
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where the session entries at t = 0 are timestamp values. Sessions 1 and 3 are back-
logged, as indicated by the asterisk (∗), and the timestamp values are

S1(1) = max(0, 0) + 3 = 3

S3(1) = max(0, 0) + 2 = 2

Packet p3(1) will be served first and will require 2 ms to transmit. This is indi-
cated by the brackets a round the entry for this packet.

At t = 1, our table will be

t (ms) 0 1 2 3
Session 1∗ 3
Session 2∗ 1 4
Session 3∗ (2) 7
Session 4 5
B(t) 0 1
P(t) 0.0 0.1

where the entry for B(t) is in kbits. The timestamp for p2(1) is

S2(1) = max(0, 0.1) + 1 = 1.1

At t = 2, our table will be

t (ms) 0 1 2 3
Session 1∗ 3 2
Session 2∗ (1) 4
Session 3∗ 2 7
Session 4 5
B(t) 0 1 2
P(t) 0.0 0.1 0.2

Packet p2(1) is chosen for transmission since it has the lowest timestamp among
all the backlogged sessions. The timestamps for the new packets are

S1(2) = max(3, 0.2) + 2 = 5

S3(2) = max(2, 0.2) + 7 = 9

At t = 3, our table will be

t (ms) 0 1 2 3
Session 1∗ (3) 2
Session 2∗ 1 4
Session 3∗ 2 7
Session 4∗ 5
B(t) 0 1 2 3
P(t) 0.0 0.1 0.2 0.3
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The timestamps for the new packets are

S2(2) = max(1.1, 0.3) + 4 = 5.1

S4(1) = max(0, 0.3) + 5 = 5.3

12.19 Core-Stateless Fair Queuing (CSFQ)

The problem with the schedulers discussed so far is the need to maintain a separate
state for each flow at all routers in the path of the packets. Such schedulers allow the
system to provide firm QoS guarantees for each flow. However, they are complex
to implement and their performance is limited by the number of flows that can be
supported [37].

Core-stateless fair queuing (CSFQ) attempts to simplify matters by dividing the
routers in the network into two categories: edge routers and core routers as shown
in Fig. 12.7 [37].

Edge routers maintain a per-flow state and label incoming packets accordingly.
They also regulate the incoming flows such that flow i receives a fair service rate λi

determined by

λi = min [λi , f ] (12.53)

where λi is the arrival rate for flow i and f is the fair share rate determined in the
following section.

Figure 12.8 shows the functions performed by each edge router. The rate of each
incoming flow is estimated based on the timing of arriving packets. The estimated
arrival rates for all incoming traffic are used to obtain an estimated value for the fair
share f . The edge router also decides whether to accept or drop the arriving packet
based on the arrival rate and the fair share estimate as discussed below. The figure

End-node

Edge switch/
router

Core switch/
router

Network

Fig. 12.7 Routers in core-stateless fair queuing (CSFQ) are divided into edge routers (grey circles)
and core routers (empty circles). End-nodes (squares) are connected to edge routers
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Fig. 12.8 The architecture of
an edge router implementing
CSFQ scheduling
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shows that the packet drop probability depends on the arrival rate, estimated fair
share, and the state of the FIFO buffer occupancy.

Core routers do not maintain a per-flow state but use the per-flow label in each
packet to decide whether to drop an incoming packet or to accept it. The probability
that a packet is dropped is calculated by each core router based on the packet label
and on the estimated fair rate at the core router. Accepted packets are placed in a
simple FIFO buffer for transmission.

Figure 12.9 shows the functions performed by each core router. The rate of each
incoming flow is extracted from the header of arriving packets. The arrival rates for
all incoming traffic are used to obtain an estimated value for the fair share f . The
core router also decides whether to accept or drop the arriving packet based on the
arrival rate and the fair share estimate as discussed below. The figure shows that
the packet drop probability depends on the arrival rate, estimated fair share, and the
state of the FIFO buffer occupancy.

12.19.1 Determination of Packet Arrival Rate λi

Central to CSFQ is obtaining an accurate estimate of the average packet arrival rate
for each flow. The arrival rate λi is estimated in an iterative manner each time a new
packet arrives:

λi (k) = (1 − α)
Ai (k)

Ti (k)
+ α λi (k − 1) (12.54)

α = exp −Ti (k)/K (12.55)

Fig. 12.9 The architecture of
a core router implementing
CSFQ scheduling

Packet
Dropping

Fair rate
Estimator

f

FIFO
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where Ti (k) is the packet interarrival time for flow i at time k, K is some constant,
and Ai (k) is the length of the arriving packet.

A conforming user will have a high value for the interarrival time Ti (k). This
will result in an exponentially low value for α which increases the assigned rate
λi (k).

12.19.2 Determination of Fair Rate f

The fair share f is determined based on whether the link is congested or uncon-
gested. The update operation is performed at regular intervals of time determined
by the system administrator.

The link is congested when the total arrival rate exceeds the outgoing link
capacity C :

C ≤
m∑

i=1

min (λi , f ) linkcongested (12.56)

and in that case, the fair share is set equal to its old value

f (k) = f (k − 1) (12.57)

The link is uncongested when the total arrival rate is smaller than the outgoing
link capacity C :

C >

m∑

i=1

min (λi , f ) linkuncongested (12.58)

and in that case, the fair share is determined as follows

f (k) = f (k − 1)
C

max (λi )
(12.59)

The estimated fair share also is slightly modified based on the level of occu-
pancy of the FIFO buffer but this is a minor detail that the reader could check in
reference [37].

12.19.3 Bit Dropping Probability pb

When the traffic rate for flow i is such that λi < f , then that session is conforming
and no bit dropping is necessary. The packets of that flow can pass through the
network.
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A misbehaving session i is characterized by λi > f and the packet must be
dropped with a bit drop probability given by

pb = max

(
0, 1 − f

λi

)
(12.60)

12.20 Random Early Detection (RED)

The schedulers we discussed in the previous sections emphasized techniques for
selecting the next packet for service. Selecting which packet to drop when the buffer
overflows was simple. The last packet to arrive is dropped when the buffer is full.
This type of packet drop is called tail drop strategy. To achieve max–min buffer
sharing, the scheduler must assign a buffer to each service class or each user.

Random early drop detection (RED) belongs to the class of early drop sched-
ulers where a packet is dropped even when the buffer is not full. There are several
plausible reasons why early dropping of packets is beneficial:

1. In tail drop schedulers, misbehaving users occupy precious buffer space and
packets belonging to conforming users would be dropped if they arrive when
the buffer is full.

2. Dropping packets from some sessions or classes sends a message to end points to
reduce their rate before the network becomes congested and more packets would
then be lost.

In random early detection, the switch calculates the average queue size at each
time step. Based on this estimate, the switch decides whether to drop the packet
or label it with a probability that is a function of the queue size [38]. The switch
calculates the average queue size Qa using a low-pass filter. Calculating an average
queue length based on filtering is better than using the instantaneous queue length
since this allows small temporary traffic bursts to go through unharmed.

The average queue size is compared to two thresholds Qmin and Qmax:

1. When Qa < Qmin, packets are not marked.
2. When Qa > Qmax, all packets are marked.
3. When Qmin ≤ Qa ≤ Qmax, packets are marked with a probability pa given by

pa = pb

1 − Q pb
(12.61)

where Q is the number of packets received since the last marked packet and pb

is given by

pb = Qa − Qmin

Qmax − Qmin
(12.62)
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One of the problems of RED is the amount of operations that have to be done at
each time step on each packet. This is one reason why FIFO with tail drop method
is still in use.

Another related algorithm that is similar to RED is flow random early drop
(FRED) where the switch drops each arriving packet with a fixed drop probability
pb when the queue size exceeds a certain drop threshold. FRED is classified as a
early random drop algorithm where arriving packets are randomly dropped. The
reasoning being that misbehaving users send more packets and will have a higher
probability that their packets are dropped. However, it has been shown that this drop
policy is not very successful [10].

12.21 Packet Drop Options

We discussed above two advantages for dropping packets in a router. Packets are
dropped to reduce network congestion and to improve its efficiency [39]. There are
several options for selecting the next packet to drop and for determining the times
when the drop policies are implemented. Below, we discuss some of the packet
drop policies that could be implemented alone or in combinations, depending on the
transmission and scheduler protocols being used.

The simplest packet drop policy is to drop incoming packets when the shared
buffer or queue is full. This drop policy does not offer protection against misbe-
having users. A full buffer most probably has been caused by a misbehaving user
and the packets dropped might belong to conforming users. Of course, such sim-
ple policy does not require maintaining any state information. There is only one
state to maintain here which is the level of occupancy of the buffer. Attempting to
protect conforming users requires defining state variables for each user indicating
the amount of packets present in the system and belonging to each session. During
periods of congestion, users that have high buffer occupancy states are eligible to
have their packets dropped. While this offers protection against misbehaving users,
the system must maintain many state variables.

An intermediate solution is to group or aggregate the users into classes of ser-
vice and maintain state information for these classes only. This solution offers some
protection and isolation and also reduces the amount of state variables required.

If the scheduler implements PGPS/WFQ or FFQ algorithms, then a simple packet
drop strategy is to drop the packet with the highest finish number or timestamp
value. The reasoning for this is that large values for these parameters indicate either
long packets or many packets belonging to this session.

Sometimes the packet header contains information that can help with the packet
drop policy. For example, in ATM, the AAL layer contains information about miss-
ing cells. When a switch or router detects that a connection has a missing cell, it
drops all subsequent cells until the last cell of the frame [39]. This frees the network
from supporting a cell stream that will be discarded by the receiver since the frame
will be retransmitted anyway.
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Problems

Scheduler Functions

12.1 Explain the main functions performed by a scheduler.
12.2 What are the main switch resources shared among the different users?
12.3 What are the scheduler performance measures most important to the follow-

ing applications: electronic mail, file transfer, web browsing, voice commu-
nications, and one-way video.

12.4 Which is the important QoS parameter for best-effort applications and CBR
traffic.

12.5 Explain the functions performed by the scheduler at the different contention
points for input, output, and shared buffer switches.

12.6 One solution to solve the HOL problem in input queued switches is to use
virtual output queuing (VOQ). Explain how VOQ works then explain how
the scheduler will work in such a scheme.

12.7 Explain what is meant by fairness and what is meant by protection from a
scheduler perspective.

12.8 It was explained that to provide deterministic QoS guarantees, the scheduler
must maintain separate queues for the separate sessions. Explain how this
can be done in input, output, and shared buffer switches. Discuss the pros
and cons of each scheme from the point of view of the implementation of the
scheduler in each case.

Scheduler Performance Measures

12.9 Explain what is meant by protection in terms of outgoing link bandwidth
utilization.

12.10 Explain what is meant by protection in terms of switch buffer utilization.
12.11 Investigate how a scheduler might be able to reduce delay jitter for the dif-

ferent sessions.

Scheduler Classifications

12.12 Explain the difference between work-conserving and nonwork-conserving
schedulers.

12.13 Explain what is meant by degree of aggregation and the advantages and dis-
advantages of this strategy.

12.14 Explain the different packet drop policies that could be used by sched-
ulers.
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Max–Min Fairness

12.15 Explain max–min fairness as it applies to outgoing link bandwidth.
12.16 Explain max–min fairness as it applies to outgoing shared buffer space in a

switch.
12.17 Assume an outgoing link is being shared among six channels. The system

parameters (in units of Mbps) are as follows:

C = 622

λ1 = 200

λ2 = 30

λ3 = 100

λ4 = 50

λ5 = 180

λ6 = 180

Find the rates assigned to each flow according to the max–min algorithm.
12.18 Assume a 1000 byte buffer is being shared among five sessions. The buffer

requirements (in units of bytes) for each session are as follows:

B1 = 250

B2 = 250

B3 = 300

B4 = 400

B5 = 150

Find the buffer space assigned to each flow according to the max–min algo-
rithm.

FIFO (or FCFS) Scheduling

12.19 Assume a FIFO scheduler where the output link rate is C and the arrival rate
for each session is λ, the number of arriving sessions is m and all flows have
equal packet lengths L . Find the performance of the system assuming a fluid
flow model.

12.20 Assume a FIFO scheduler where there are m users accessing the buffer but
one of the users has an arrival probability that is different from that of the
other users. Derive the transition matrix for such a system.

12.21 Assume a FIFO scheduler where there are m users accessing the buffer but
one of the users produces packets with different lengths compared to those
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of the other users. Derive an expression for the average length of the queue
and the average queuing delay of such a system.

Static Priority Scheduling

12.22 Consider queue i in the static priority scheduler. Assume the arrival proba-
bility for this queue ai and its priority is i , where lower values of i indicate
higher priority. Write down the transition matrix for this queue and comment
on methods to find its steady-state distribution vector.

12.23 Repeat Problem 12.22 for the case when all queues have the same size B and
have the same arrival probability a.

12.24 Consider a static priority protocol serving four users where the packet arrival
probabilities for all users are equal (i.e., ai = 0.3 for all 1 ≤ i ≤ 4) and all
users have the same buffer size (i.e., Bi = 8 for all 1 ≤ i ≤ 4). Estimate the
performance of each user.

12.25 Consider a static priority protocol serving four users where the packet arrival
probabilities for all users are equal (i.e., ai = 0.6 for all 1 ≤ i ≤ 4) and all
users have the same buffer size (i.e., Bi = 4 for all 1 ≤ i ≤ 4). Estimate the
performance of each user.

12.26 Repeat Problem 12.25 when the probability of the queue being empty be-
comes high e = 0.9.

Round Robin Scheduler

12.27 Assume a round robin scheduler in which all packets have equal lengths.
Obtain expressions for the maximum scheduler delay and the fraction of the
bandwidth assigned to any session.

12.28 Assume a round robin scheduler in which all queues have identical traffic
characteristics (arrival probability, packet length, etc.) Obtain the transition
matrix for one queue and obtain expressions for its performance parameters:
queue length, throughput, and loss probability.

12.29 Assume a round robin scheduler in which all sessions are identical with the
following parameters:

m = 8 sessions C = 10 Mbps

B = 8 packets L = 512 bits

λ = 100 kbps σ = 500 kbps

Determine the transition matrix and determine the system performance pa-
rameters.
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Generalized Processor Sharing

12.30 Assume a GPS scheduler serving four flows with associated weights w1 = 4,
w2 = 2, w3 = 3, and w4 = 1. The outgoing link capacity is 10 Mbps and the
packet arrival pattern in the different flows is as shown below:

t (ms) 0 1 2

Session 1 3 2
Session 2 1 3
Session 3 2
Session 4 7

where the numbers in the rows of each session indicate the length of the
packet that arrived at that time in units of kb. Calculate the assigned band-
width and completion times for the arriving packets.

12.31 What is the longest delay bound experienced by the packet in session i in
GPS?

Fair Queuing (FQ)

12.32 Assume four sessions are being served by a fair queuing scheduler. The sys-
tem parameters (in units of Mbps) are as follows:

C = 40

λ1 = 6

λ2 = 2

λ3 = 20

λ4 = 16

Find the rates assigned to each flow.

Packet-by-Packet GPS (PGPS)/Weighted Fair Queuing (WFQ)

12.33 Assume a PGPS/WFQ scheduler serving flows of equal weights. The out-
going link capacity is 1 Mbps and all arriving packets have equal lengths of
1 kb. The packet arrival pattern is shown below:

t (ms) 0 1 2 3 4 5 6

Arrivals 2 2 4

Determine the number of backlogged sessions versus t and obtain the values
for V (t).
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12.34 Assume a PGPS/WFQ scheduler serving flows of equal weights. The outgo-
ing link capacity is 1 Mbps and the packet arrival pattern is shown below:

t (ms) 0 1 2 3

Session 1 4 2
Session 2 2 3
Session 3 1 5
Session 4 4

where the numbers in the rows of each session indicate the length of the
packet in units of kb. Calculate the system virtual time and finish numbers
for the arriving packets of each session.

12.35 Assume a PGPS/WFQ scheduler serving flows of equal weights. The outgo-
ing link capacity is 1 Mbps and the packet arrival pattern is shown below:

t (ms) 0 1 2 3

Session 1 2
Session 2 3 2 1
Session 3 1 2
Session 4 1 5

where the numbers in the rows of each session indicate the length of the
packet in units of kb. Calculate the system virtual time and finish numbers
for the arriving packets of each session.

12.36 Assume a PGPS/WFQ scheduler serving flows of equal weights. The out-
going link capacity is 2 Mbps and the packet arrival pattern is shown be-
low:

t (ms) 0 1 2 3

Session 1 7 2
Session 2 3 2
Session 3 3 7
Session 4 8

where the numbers in the rows of each session indicate the length of the
packet in units of kb. Calculate the system virtual time and finish numbers
for the arriving packets of each session.

Frame-Based Fair Queuing (FFQ)

12.37 Assume a FFQ scheduler serving flows of equal weights. The outgoing link
capacity is 1 Mbps and the frame size is chosen as F = 104 bits. The packet
arrival pattern is shown below:
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t (ms) 0 1 2 3

Session 1 1 2
Session 2 1 4
Session 3 2 7
Session 4 5

where the numbers in the rows of each session indicate the length of the
packet in units of kb. Calculate the system potential and timestamps for the
arriving packets of each session.

12.38 Assume a FFQ scheduler serving flows of equal weights. The outgoing link
capacity is 1 Mbps and the frame size is chosen as F = 104 bits. The packet
arrival pattern is shown below.

t (ms) 0 1 2 3

Session 1 2 2
Session 2 1 4
Session 3 1 7
Session 4 5

where the numbers in the rows of each session indicate the length of the
packet in units of kb. Calculate the system potential and timestamps for the
arriving packets of each session.
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Chapter 13
Switches and Routers

13.1 Introduction

The three main building blocks of high-performance networks are the links, the
switching equipment connecting the links together, and the software layers (com-
prising protocols and applications) implemented at the switching equipments and
end-nodes. These components enable transferring information between the users of
the network [1]. Figure 13.1 shows the principal network hardware elements which
are end-nodes, links, and switches.

The end-nodes, shown as squares in the figure, are the sources and sinks of
information and users access the network through these end-nodes. Examples of
end-nodes could be a personal computer, a file server, a printer, or a scanner.

The links provide the paths to carry the information streams from one end-node to
another. Examples of links could be the telephone copper wires, TV cable, wireless
transmitters/receivers, optical fiber cables, and satellite links through dish antennas.
As can be expected, different channels offer different service characteristics such as
the available data rate, the bit error rate to be expected, and the propagation delay
encountered in each hop. It is often mentioned that the optical fiber channel is the
most ideal one since it has the highest data rate and least amount of bit error rate.
However, the increasing data rates on these channels lead to increased bit error rate
due to channel imperfection (dispersion and attenuation) and detection problems. If
I am allowed to digress a bit here, I note that the current prevalent way to move data
on a fiber channel is to send optical pulses. This is the same technique that was used
to send data on the telegraph channel (dots and dashes) about 200 years ago at the
time when Custer hastily sheared his hair during the heat of battle, so he would not
be recognized during the battle of Little-Big-Horn!

The links or channels comprising the network need not be identical. For example,
some end-nodes could be connected to the network through TV cables while other
end-nodes could be connected through telephone wires.

Not only need the links of the network in Fig. 13.1 not be identical, but also the
data rates supported by the different links are different. For example, an end-node
might access the network using an old-style modem operating at 56.6 kbps while
another user could be accessing the network using a TV cable connection offering
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Fig. 13.1 The main network
elements are end-nodes
(squares), links, and
switches. The links connect
the end-nodes and switches
together

End-node

Edge switch/
router

Core switch/
router

Network

a maximum (advertised) data rate of 1 Mbps. Some of the links of that network
might also be optical fiber lines operating at OC-192 rate, which corresponds to
9.9533 Gbps.

The switches connect several incoming and outgoing links together. The function
of the switch is to route the data flows or streams from one incoming link to another
outgoing link. The switch determines the proper outgoing link for each incoming
packet based on the information in its header. We see that such decisions require
quick classification of data which is done electronically at electronic data rates
even when incoming data are optical pulses. Figure 13.1 identifies two types of
switches: edge switches (grey circles) and core switches (empty circles). An edge
switch connects one or more end-nodes to the network. On the other hand, core
switches connect to other core switches.

The software enables error-free transfer of data between the network users. That
software spans many layers of the network. Table 13.1 shows some examples of
networking software components and their location in the TCP/IP and ISO models
of the network.

Table 13.1 Examples of networking software components and their location in the TCP/IP and
ISO models of the network

Software TCP/IP layer OSI layer

E-mail Application layer Layer 7
FTP Application layer Layer 7
SNMP Application layer Layer 7
DNS Application layer Layer 7
Voice over IP Application layer Layer 7
World-Wide Web Application layer Layer 7
TCP Transport layer Layer 4
UDP Transport layer Layer 4
ATM Transport and Internet layer Layers 4 and 3
Frame relay Internet layer Layer 3
IP Internet Layer 3
HDLC Internet layer Layer 3
Ethernet Host-to-network Layer 2
SONET/SDH Physical layer Layer 1
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The performance of a communication network is determined by the links, the
routers, and the switches that tie the network together. We will find that message
switching through the network is the fundamental activity done by the different
components of the network. The network performance parameters such as capacity,
bandwidth, and delay, are basically determined by the switches and routers. We start
this chapter by reviewing the concepts of switching networks and identifying their
main components. Different switch design strategies are introduced which include
input queuing, output queuing, and shared buffering. The impact of each design
option on the switch performance is discussed such as packet loss probability, speed,
and ability to support broadcast and hot-spot traffic.

13.2 Networking

Communication networks are used to achieve connectivity between users through
shared communication links. Users could be physically close or they could be at dif-
ferent continents. For any reasonable number of users, it is not possible to establish
one-to-one connection since this has many disadvantages such as cost and the need
to reconfigure the network every time someone joins or leaves the group. Commu-
nication networks aim to achieve the desired connectivity without the disadvantages
of one-to-one connections by using shared communication links. The cost to each
user of the network drops as the network size grows. This is known as the economies
of scale which we are all familiar with from the classic telephone network and in
the dropping prices of computers and related hardware and software products. The
natural downside to sharing is a reduced quality of service (QoS) such as increased
delay to reach the intended user or occasional loss of data. The dropping of price per
user in networks allows for establishing global high-performance networks whose
price would otherwise be beyond the reach of small groups of users. Local-area
networks (LANs) are examples of communication networks where a group of users
is connected at a reasonable cost.

Wide and metropolitan area networks are constructed in a hierarchical fashion
from groups of LANs through the use of switches1 that connect the different parts
together. The result is called a switched network since switches are used as the
glue that connects the different parts of the network together [2]. In effect, switches
enable users with few links to access a large high-capacity network and be able to
connect to any location in the globe at a very reasonable cost.

13.3 Media Access Techniques

We mentioned earlier that the links in a network could be wire based, point-to-point
wireless, broadcast wireless, or optical. Irrespective of the nature of the medium, the
techniques used for sharing it among several users are similar and we discuss them

1 Most network components such as bridges and routers contain switches in their hardware.
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briefly here. Access to the medium is done through a sharing scheme commonly
referred to as media access control (MAC) .

13.3.1 Time Division Multiple Access (TDMA)

In time division multiple access, a single link is shared among many users but each
user has sole access to the link at any given time. This is similar to staying in a
hotel room. The room is shared among many guests but each guest has sole access
to the room at any given time. Figure 13.2 shows two different TDMA schemes
where time is divided into frames and each frame is in turn divided into time slots.
Figure 13.2(a) shows TDMA using fixed assignment where each user has a reserved
time slot in each frame. Figure 13.2(b) shows TDMA using random assignment
where each user has to compete to use any time slot in each frame.

An example of TDMA is the use of a wireless broadcast channel within one
geographical cell of a cellular phone system. In that case, several users in the geo-
graphical cell are allocated a portion of the time to use the channel. Another example
of TDMA is of course the backplane bus in computers where the peripherals access
the shared channel (bus) one at a time using an interrupt mechanism.

13.3.2 Space Division Multiple Access (SDMA)

In space division multiple access (SDMA), several physical links are provided and
the users get access to them through some arbitration protocol, which could be con-
sidered as media access control (MAC) protocol. An example of SDMA is the tele-
phone switching network where separate lines are used to connect the users to the
central office. Another example is in cellular telephones where a certain region or
city is divided into several cells. The users in the different cells can use the network
using the same frequency band since there is no chance of interference. Thus SDMA
refers to the simultaneous use of several communication media in parallel.

Fig. 13.2 Time division
switching: (a) fixed
assignment, (b) random
assignment
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Fig. 13.3 Frequency division
multiple access assigns a
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Similar to TDMA, there are two ways that SDMA could be used. Fixed as-
signment is called circuit switching and is discussed in Section 13.4.1. Random
assignment is called packet switching which is discussed in Section 13.4.2.

13.3.3 Frequency Division Multiple Access (FDMA)

In this technique, each user is assigned a unique frequency band in the frequency
spectrum. Radio and analog TV broadcasting use this technique where each station
is allocated a frequency band. Figure 13.3 shows the assignment of the frequency
bands among users versus time.

This technique is also used in optical fibers by assigning a particular optical
wavelength (light color) to each channel. This is known as wavelength division
multiple access (WDMA).

13.3.4 Code Division Multiple Access (CDMA)

In code division multiple access technique, data from each user are used to modulate
a unique binary pattern that belongs to the user. The binary patterns (called polyno-
mials) are designed such that no interference takes place when the signals are sent.
At the receiver end, information carried on each pattern can be extracted with no
interference from the other signals. Figure 13.4 shows an example of CDMA where
N codes are used to transmit data from N users.

13.4 Circuit and Packet Switching

In digital communications, there are two main techniques for establishing a path
through the network: circuit switching and packet switching.
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Fig. 13.4 Code division
multiple access assigns a
binary pattern (or
polynomial) to each user. The
gaps between packets
indicate that the channel is
idle and the channel is not in
use
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13.4.1 Circuit Switching

In circuit switching, a unique path is used to move data between the two end users.
Thus, the path or the resource is reserved for the duration of a particular session. This
is a waste of resources when there is no activity on the channel while other users
are waiting to access the channel. Constant bit rate traffic does well with circuit
switching since the path is dedicated and there are always data sent on the channel.
Computer communication, however, is bursty and does not do well under circuit-
switched techniques. The telephone network is circuit switched and the path is held
up by the user until it is released.

The important characteristics of circuit switching are as follows:

1. Overhead of establishing the path is only spent at the start of the session.
2. Data format is simple since the path is already established beforehand.
3. In-sequence delivery of data is possible since all packets will arrive using the

same route.
4. The channel bandwidth is guaranteed and this suites constant bit rate traffic.
5. The channel is better utilized carrying constant bit rate traffic and not bursty

traffic.
6. Traffic information is easily observable since switching nodes maintain informa-

tion about each call.

To establish a path in circuit switching, three consecutive phases are required:

1. Connection establishment: For data to be transferred between two end users,
a connection (path) must be established. The intermediate switches exchange
information related to the availability of a path and inform the end users when
the path is available. This is similar to using the phone by waiting for the dial
tone, then dialing the desired number.

2. Data transfer: Data can now be moved between the users over the connection
that was established. The type of connection will determine the data rate, average
delay, and data loss rate. This is similar to talking on the phone once the other
party picks up the phone.
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3. Connection tear down: After data transfer is complete, the end users inform the
intermediate switches to free the connection. This is similar to placing the phone
on the hook to inform the phone company that the circuit can be released.

13.4.2 Packet Switching

In packet switching, data are broken into packets of fixed or variable size, depending
on the protocol used. There are two approaches for packet switching: datagram and
virtual circuit.

In datagram switching, each packet carries with it all the routing information it
needs to reach its destination and each packet is treated independently of the ones
before it or after it. In fact, it is possible that different packets might travel down
different paths. This is actually an advantage since the resulting network is immune
to faults, and packets can be dynamically routed on any available links. This was the
main reason for using packet communication in the first place in the 1970s to build a
highly fault-tolerant communication network that is immune to enemy attack. Since
each packet carries all the information it needs to determine its destination, there
is no need to establish a connection before transmitting the data. The connection
establishment phase of circuit switching is removed. However, packet switching
carries the following penalties:

1. In-sequence delivery of data is not possible since different packets might travel
down different paths.

2. Packet routing will be complex since the router has to choose the optimum route
to send each packet.

3. Packet delay will vary depending on the route chosen for each packet.
4. Packet loss cannot be detected by the network. The end-nodes are able to detect

lost packets.
5. Traffic information is not easily observable since switching nodes do not have

information about the state of each stream.

In virtual circuit switching, a unique path is used to move data between the two
end users. This is similar to the circuit switching approach. However, the channel or
path could be used by other data when there are no packets to send. Virtual circuit
switching has several advantages over circuit switching and datagram switching:

1. Since packets belonging to a certain session are distinct, it is easy to associate
quality of service guarantees to the session and deliver those guarantees.

2. The ability to identify individual sessions enables the service provider to guar-
antee the service, monitor the user traffics, and charge for the services provided.

3. Different classes of service are easily established for the different sessions. The
cost of these services is definitely cheaper compared to leasing a private tele-
phone line.

4. The packets have a simple format since the routing information has been deter-
mined during path, or connection, establishment phase.
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5. Packet routing is simple since there is only one route associated with all the
packets belonging to a call.

6. In-sequence delivery of data is possible since the packets from a certain call
traverse the same route.

7. The channel is well utilized since different calls share the same channel. This
results in an overall gain in the network capacity, which is usually referred to as
statistical gain.

8. Packet loss can be detected by the network since the packets follow each other
in sequence and each carries a unique sequence number.

9. Virtual circuit switching is suited to both bursty and constant bit rate traffic.

To establish a path in virtual circuit switching, the same steps are followed as
in circuit switching: connection establishment, data transfer, then connection tear
down.

13.5 Packet Switching Hardware

We review some of the hardware components that are commonly used in communi-
cation networks. We should point out that the following definitions are not very strict
since the capabilities of the components become more sophisticated with advances
in technology. The component capabilities are implemented in software or hardware
and there are grey areas where a device bridges the gap between two classifications
or partially implements the functionality of a given class of devices. We discuss
below several important networking components in the order of their level of com-
plexity. Figure 13.5 shows the ISO and TCP/IP reference model layers implemented
by the different components: hubs, bridges, switches, routers, and gateways.

13.5.1 End-Node

An end-node is a device that is attached to the network. The user accesses the net-
work through the end-node, which could be a workstation, a PC, a printer, a file
server, etc.

Fig. 13.5 Hubs, bridges,
switches, routers, and
gateways and the layers
implemented by each
component
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13.5.2 Hub

A hub connects several segments of a LAN. A hub has several ports such that when
a packet arrives at a port, it is copied to all the other ports so that all segments of the
LAN see the packet. In that sense, a hub acts as a repeater to repeat one message on
one LAN to all the other LANs [3].

A passive hub serves simply as a conduit for the data, enabling it to go from
one device (or network segment) to another. An intelligent hub includes additional
features that enable an administrator to monitor the traffic passing through the hub
and to configure each port in the hub. A switching hub actually reads the destination
address of each packet and then forwards the packet to the correct port based on
the header information. A hub does not improve network capacity or performance.
It only acts as the “wiring” between the network segments. Thus we can think of
the hub as operating mainly in Layer 1 of the ISO reference model since it only
enables the operation of the physical layer of the ISO reference model. Figure 13.5
shows the location of the hub and the other main network connectivity components
in relation to the ISO reference model layers.

13.5.3 Bridge

A bridge is a device that connects two local-area networks (LANs) or two segments
of the same LAN. The two LANs being connected can be alike or dissimilar. For ex-
ample, a bridge can connect an Ethernet with a token-ring network. Unlike routers,
bridges are protocol independent. They simply forward packets without analyzing
and re-routing messages. Consequently, they are faster than routers, but less versa-
tile. A bridge uses the packet header to determine whether to pass the packet to the
other LAN or not. A bridge operates at Layer 2 of the ISO reference model since it
supports the operation of the data link (network access ) layer . A bridge is simpler
than a router but still requires a switch for delivering the packets to the correct output
port.

13.5.4 Switch

A switch connects several LANs. A switch has several ports such that when a
packet arrives at a port, it is forwarded only to the appropriate output port based
on the header information. In that sense, a switch provides a temporary dedicated
connection between an input port and an output port. A switch improves network
performance by dividing the network into several independent segments, thereby
increasing the overall capacity. In that sense, the switch is smarter than a hub. Typ-
ically, switches work in Layer 2 of the ISO reference model, which is equivalent
to a bridge. The new trend is to move to Layer 3 switching, which is capable of
switching millions of packets per second. It should be mentioned that a switch is
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protocol specific. However, newer switches are able to handle several protocols such
as multi-protocol label switching (MPLS).

13.5.5 Router

A router connects networks that may or may not be similar. A router uses the packet
header and a forwarding table to determine the best way a packet should go between
the networks. Routers use ICMP2 to communicate with each other and determine the
best route between any two hosts. Very little filtering of data is done through routers.
Routers know how the whole network is connected and how to move information
from one part of the network to another. They free the end-nodes from having to do
these tasks. Routers enhance the network by connecting networks that use different
protocols. Note that a router requires the use of a switch to perform its packet rout-
ing (switching) functions. Routers are smarter than hubs and switches. The router
operates at Layer 3 of the ISO reference model since its supports the operation of
the network layer (such as data transmission and switching) [2] .

13.5.6 Gateway

A gateway is a computer that uses a combination of hardware and software to link
two different types of networks using different protocols. Gateways between e-mail
systems, for example, allow users on different e-mail systems to exchange messages.
Thus a gateway translates between two different protocols and sometimes topolo-
gies. For example, a gateway is needed to translate between TCP/IP over Ethernet
and ATM over SONET. We can think of the gateway as operating mainly above
Layer 3 of the ISO model since its enables the operation of the application layer and
above.

From the above definitions, we see that a switch is the basic component of net-
working, and the design of an efficient high-speed switch is absolutely necessary to
obtain networks capable of meeting customer demands for ever-increasing capacity
and reduced delay.

13.6 Basic Switch Components

As was explained above, network routers rely on switches to perform their functions.
Thus it is worthwhile to study the construction of switches in more detail. A switch
is a hardware device that accepts packets at its inputs and routes them to its outputs
according to the routing information provided in the packet header and the switch

2 Internet Control Message Protocol. ICMP supports packets containing error, control, and infor-
mational messages.
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routing table. Figure 13.6 is a block diagram showing the main components of a
switch.

The switch has three main architectural components: a network processor unit
(NPU), a controller, a datapath comprising input/output ports, and switch fabric.
The functionalities of each are explained in the following sections. In general, the
functions of intensive data processing and control should be distributed, whenever
possible, among the different switch components to reduce the delay and be able
to handle many inputs/outputs simultaneously. The components of the switch that
have the most impact on its performance are the storage buffers/queues and the
switch fabric. For example, packet loss in the switch results due to buffer overflow
or inability to establish a path from an input to an output port through the switching
fabric. Also, the maximum line rate depends on the memory access speed.

13.6.1 Network Processing Unit (NPU)

The network processing unit is required to do compute-intensive tasks to enable
the switch to process data at high speeds. An NPU is a programmable processor
with special instructions or hardware components that are specifically designed to
efficiently perform networking tasks. A general-purpose processor proves too slow
to do the required networking tasks. However, specialized hardware meets the de-
mands but has the disadvantages that once the tasks or protocols are upgraded, a
major redesign is required and this takes time. By the time a specialized hardware is
available, the protocols might have changed already. Thus the major motives for an
NPU are flexibility/programmability and efficiency in executing networking tasks.

Figure 13.7 shows a switch with NPU-specialized hardware components that do
specific tasks. Examples of the tasks that the NPU might be required to perform
include the following:

1. Implementation of security protocols for firewalls, network security, data encryp-
tion/decryption, etc
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Fig. 13.7 A switch incorporating NPU components

2. Deep packet search which is essentially string search for pattern matching using
the packet payload as input

3. Implementation of quality of service protocols
4. Traffic shaping
5. Packet routing using routing tables
6. Interface

13.6.2 Control Section

The control section deals with packet streams and establishing and tearing down
circuits and is composed of the bottom two components of the switch block diagram
in Fig. 13.6. The control section performs the following functions:

1. Maintains the contents of the routing table, which determines the proper destina-
tion output port of an incoming packet

2. For the case of circuit switching, decides whether to accept new connections or
not based on current utilization of switch resources

3. Provides congestion control for the switch by continually monitoring the switch
resources (e.g., buffer occupancy) and issuing proper actions

4. Assigns switch resources to the established connections based on the class of
service
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It should be mentioned that these functionalities could be centralized or they
could be distributed between the input and output ports. The latter option is desirable
to ensure high-speed operation.

13.6.3 Datapath Section

The datapath deals with individual packets or cells and is composed of the top three
components of the switch block diagram in Fig. 13.6. The datapath performs the
following functions:

1. Accepts incoming packets on any of its N input ports and stores them in tempo-
rary buffers for processing their header information

2. Establishes a path to the desired output port through the switch fabric (SF)
3. Stores the routed packets in the output queues and schedules the stored packets

for transmission based on some scheduling protocol

13.6.4 Switch Fabric

The switch fabric (SF) establishes the required paths between pairs of input and out-
put ports. The switch fabric must also support any type of connection such as single
cast (one input to one output), multicast (one input to many outputs), broadcast (one
input to all outputs), or hot point (many inputs to one output). A detailed discussion
of switch fabrics and their performance is found in Chapter 14.

13.6.5 Lookup Table Design

The routing or lookup table stores information about which output ports should
receive a packet that arrives at an input port. This information is maintained and
updated by the control processor. The data in the lookup table could be organized
using any of the following approaches:

1. Heap storage: Store the data in a heap with no particular order using a random-
access memory (DRAM or SRAM). This approach is simple but searching for
a particular data item requires searching the entire memory. RAMs suffer from
I/O port limitations (typically one!) and large cycle time. Thus accessing the
database is done one item at a time using a slow search strategy which is not
practical in high-speed switches.

2. Content-addressable memory (CAM): This is sometimes called associative mem-
ory or associative storage. CAM could be a small memory but complex in design
and slow in performance. Searching for a data item is done in a distributed fash-
ion within the memory which speeds up the search operation. The design of an
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efficient and fast CAM is certainly a challenging and exciting hardware design
problem.

3. Hash tables: Here the input header information is compressed to a smaller num-
ber of bits (e.g., from 48 bits to 16 bits) using a hashing function to reduce the
RAM size [4–6]. The hashing function should be simple to implement without
requiring much processing time. Typically, hashing functions are implemented
using a linear feedback shift register (LFSR) that performs polynomial division.
The input to the LFSR is treated as a polynomial and the LFSR contents are the
“signature” that corresponds to the input. See Appendix F for a discussion of
hashing.

4. Balanced tree (B-tree): The B-tree is a data structure that is used to efficiently
build large dictionaries and implement the algorithms used to search, insert, and
delete keys from it. The advantage of using B-trees for constructing lookup tables
is the small time required to search for the routing information. However, com-
plex hardware design is required to implement the other lookup table functions
such as data insertion and deletion. Again, the design of B-trees is a very chal-
lenging and exciting hardware design project. See Appendix F for a discussion
of B-trees.

In an ATM switch, the routing table uses direct lookup to determine the desti-
nation output port and to update the VPI/VCI bytes. For an Ethernet switch, the
lookup table uses associative lookup (content-addressable memory or CAM). For
an IP router, the routing table could be based on the new CIDR or cache memory.

13.7 Switch Functions

A switch or a router has to perform several functions beside simply routing packets
from its inputs to its outputs.

13.7.1 Routing

The switch or router must be able to read the header of each incoming packet to
determine which output link must be used to move the packet to its destination. It is
obvious that an arriving packet cannot be routed until packet classification based on
its header information has been performed. These routing decisions are done using
routing tables. Techniques for building routing tables are discussed in more detail
in Section 13.6.5 and in Appendix F.

13.7.2 Traffic Management

When too many packets are present in the network, congestion is said to have taken
place. When congestion occurs in a router, the buffers become filled and packets
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start getting lost. This situation typically gets worse since the receiver will start
sending negative acknowledgments and the sender will start retransmitting the lost
frames. This leads to more packets in the network and the overall performance starts
to deteriorate [7]. Traffic management protocols must be implemented at the routers
to ensure that users do not tax the resources of the network. Examples of traffic
management protocols are leaky bucket, token bucket, and admission control tech-
niques. Chapter 8 discusses the traffic management protocols in more detail.

13.7.3 Scheduling

Routers must employ scheduling algorithms for two reasons: to provide different
quality of service (QoS) to the different types of users and to protect well-behaved
users from misbehaving users that might hog the system resources (bandwidth and
buffer space). A scheduling algorithm might operate on a per-flow basis or it could
aggregate several users into broad service classes to reduce the workload. Chapter 12
discusses scheduling techniques in more detail.

13.7.4 Congestion Control

The switch or router drops packets to reduce network congestion and to improve its
efficiency. The switch must select which packet to drop when the system resources
become overloaded. There are several options such as dropping packets that arrive
after the buffer reaches a certain level of occupancy (this is known as tail dropping).
Another option is to drop packets from any place in the buffer depending on their
tag or priority. Chapter 12 discusses packet dropping techniques in more detail.

13.8 Switch Performance Measures

Many switch designs have been proposed and our intention here is not to review
them but to discuss the implications of the designer’s decisions on the overall perfor-
mance of the switch. This, we believe, is crucial if we are to produce novel switches
capable of supporting terabit communications.

The basic performance measures of a switch are as follows:

1. Maximum data rate at the inputs.
2. The number of input and output ports.
3. The number of independent logical channels or calls it can support.
4. The average delay a packet encounters while going through the switch.
5. The average packet loss rate within the switch.
6. Support of different quality of service (QoS) classes, where QoS includes data

rate (bandwidth), packet delay, delay variation (jitter), and packet loss.
7. Support of multicast and broadcast services.
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8. Scalability of the switch, which refers to the ability of the switch to work sat-
isfactorily if the line data rates are scaled up or if the number of inputs and
outputs is scaled up.

9. The capacity (packets/s or bits/s) of the switch is defined as

Switch capacity = input line rate × number of input ports (13.1)

10. Flexibility of the switch architecture to be able to upgrade its components. For
example, we might be interested in upgrading the input/output line cards or we
might want to replace only the switch fabric.

13.9 Switch Classifications

The two most important components of a switch are its buffers and its switching
fabric. Based on that we can describe the architecture of a switch based on the
following two criteria:

• The type of switch fabric (SF) used in the switch to route packets from the switch
inputs (ingress points) to the switch outputs (egress points). Detailed qualitative
and quantitative discussion of switch fabrics, also known as interconnection net-
works, is found in Chapter 14.

• Location of the buffers and queues within the switch. An important characteristic
of a switch is the number and location of the buffers used to store incoming
traffic for processing. The placement of the buffers and queues in a switch is of
utmost importance since it will impact the switch performance measures such as
packet loss, speed, ability to support differentiated services, etc. The following
sections discuss the different buffering strategies employed and the advantages
and disadvantages of each option. Chapter 15 provides qualitative discussion of
the performance parameters of the different switch types.

The remainder of this chapter and Chapter 16 discuss the different design options
for switch buffering. Chapter 14 discusses the different possible design options for
interconnection networks.

13.10 Input Queuing Switch

Figure 13.8 shows an input queuing switch. Each input port has a dedicated FIFO
buffer to store incoming packets. The arriving packets are stored at the tail of the
queue and only move up when the packet at the head of the queue is routed through
the switching fabric to the correct output port. A controller at each input port classi-
fies each packet by examining its header to determine the appropriate path through
the switch fabric. The controller must also perform traffic management functions.
In one time step, an input queue must be able to support one write and one read
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Fig. 13.8 Input queuing
switch. Each input has a
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operations which is a nice feature since the memory access time is not likely to
impose any speed bottlenecks.

Assuming an N × N switch, the switch fabric (SF) must connect N input ports
to N output ports. Only a space division N × N switch can provide simultaneous
connectivity.

The main advantages of input queuing are

1. Low memory speed requirement.
2. Distributed traffic management at each input port.
3. Distributed table lookup at each input port.
4. Support of broadcast and multicast does not require duplicating the data.

Distributed control increases the time available for the controller to implement its
functions since the number of sessions is limited at each input. Thus input queuing
is attractive for very high bandwidth switches because all components of the switch
can run at the line rate [8].

The main disadvantages of input queuing are

1. Head of line (HOL) problem, as discussed below
2. Difficulty in implementing data broadcast or multicast since this will further slow

down the switch due to the multiplication of HOL problem
3. Difficulty in implementing QoS or differentiated services support, as discussed

below
4. Difficulty in implementing scheduling strategies since this involves extensive

communications between the input ports

HOL problem arises when the packet at the head of the queue is blocked from
accessing the desired output port [9]. This blockage could arise because the switch
fabric cannot provide a path (internal blocking) or if another packet is accessing the
output port (output blocking). When HOL occurs, other packets that may be queued
behind the blocked packet are consequently blocked from reaching possibly idle
output ports. Thus HOL limits the maximum throughput of the switch [10]. A de-
tailed discrete-time queuing analysis is provided in Section 15.2 and the maximum
throughput is not necessarily limited to this figure.

The switch throughput can be increased if the queue service discipline examines
a window of w packets at the head of the queue, instead of only the HOL packet.
The first packet out of the top w packets that can be routed is selected and the queue
size decreases by one such that each queue sends only one packet to the switching
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fabric. To achieve multicast in an input queuing switch, the HOL packet must remain
at the head of the queue until all the multicast ports have received their own copies at
different time steps. Needless to say, this aggravates the HOL problem since now we
must deal with multiple blocking possibilities for the HOL packet before it finally
leaves the queue. Alternatively, the HOL packet might make use of the multicast
capability of the switching fabric if one exists.

Packet scheduling is difficult because the scheduler has to scan all the packets in
all the input ports. This requires communication between all the inputs which limits
the speed of the switch. The scheduler will find it difficult to maintain bandwidth
and buffer space fairness when all the packets from different classes are stored at
different buffers at the inputs. For example, packets belonging to a certain class of
service could be found in different input buffers. We have to keep a tally of the
buffer space used up by this service class.

In input queuing, there are three potential causes for packet loss:

1. Input queue is full. An arriving packet has no place in the queue and is discarded.
2. Internal blocking. A packet being routed within the switch fabric is blocked in-

side the SF and is discarded. Of course, this type of loss occurs only if the input
queue sends the packet to the SF without waiting to verify that a path can be
provided.

3. Output blocking. A packet that made it through the SF reaches the desired output
port but the port ignores it since it is busy serving another packet. Again, this
type of loss occurs only if the input queue sends the packet to the output without
waiting to verify that the output link is available.

13.11 Output Queuing Switch

To overcome the HOL limitations of input queuing, the standard approach is to aban-
don input queuing and place the buffers at the output ports as shown in Fig. 13.9.
Notice, however, that an output queuing switch must have small buffers at its inputs
to be able to temporarily hold the arriving packets while they are being classified
and processed for routing.

An incoming packet is stored at the input buffer and the input controller must read
the header information to determine which output queue is to be updated. The packet
must be routed through the switch fabric to the correct output port. The controller

Fig. 13.9 Output queuing
switch. Each output has a
queue for storing the packets
destined to that output. Each
input must also have a small
FIFO buffer for storing
incoming packets for
classification

SF

Small Input
Buffers

N

1

N
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... ...

Main Output
Buffers
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must also handle any contention issues that might arise if the packet is blocked from
leaving the buffer for any reason.

A controller at each input port classifies each packet by examining the header to
determine the appropriate path through the switch fabric. The controller must also
perform traffic management functions.

In one time step, the small input queue must be able to support one write and one
read operations which is a nice feature since the memory access time is not likely
to impose any speed bottlenecks. However, in one time step, the main buffer at each
output port must support N write and one read operations.

Assuming an N × N switch, the switch fabric (SF) must connect N input ports
to N output ports. Only a space division N × N switch can provide simultaneous
connectivity.

The main advantages of output queuing are

1. Distributed traffic management
2. Distributed table lookup at each input port
3. Ease of implementing QoS or differentiated services support
4. Ease of implementing distributed packet scheduling at each output port

The main disadvantages of output queuing are

1. High memory speed requirements for the output queues.
2. Difficulty of implementing data broadcast or multicast since this will further

slow down the switch due to the multiplication of HOL problem.
3. Support of broadcast and multicast requires duplicating the same data at different

buffers associated with each output port.
4. HOL problem is still present since the switch has input queues.

The switch throughput can be increased if the switching fabric can deliver more
than one packet to any output queue instead of only one. This can be done by
increasing the operating speed of the switch fabric which is known as speedup.
Alternatively, the switch fabric could be augmented using duplicate paths or by
choosing a switch fabric that inherently has more than one link to any output port.
When this happens, the output queue has to be able to handle the extra traffic by
increasing its operating speed or by providing separate queues for each incoming
link.

As we mentioned before, output queuing requires that each output queue must
be able to support one read and N write operations in one time step. This, of course,
could become a speed bottleneck due to cycle time limitations of current memory
technologies.

To achieve multicast in an output queuing switch, the packet at an input buffer
must remain in the buffer until all the multicast ports have received their own copies
at different time steps. Needless to say, this leads to increased buffer occupancy
since now we must deal with multiple blocking possibilities for the packet before it
finally leaves the buffer. Alternatively, the packet might make use of the multicast
capability of the switching fabric if one exists.
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In output queuing, there are four potential causes for packet loss:

1. Input buffer is full. An arriving packet has no place in the buffer and is discarded.
2. Internal blocking. A packet being routed within the switch fabric is blocked in-

side the SF and is discarded.
3. Output blocking. A packet that made it through the SF reaches the desired output

port but the port ignores it since it is busy serving another packet.
4. Output queue is full. An arriving packet has no place in the queue and is

discarded.

13.12 Shared Buffer Switch

Figure 13.10 shows a shared buffer switch design that employs a single common
buffer in which all arriving packets are stored. This buffer queues the data in separate
queues that are located within one common memory. Each queue is associated with
an output port. Similar to input and output queuing, each input port needs a local
buffer of its own in which to store incoming packets until the controller is able to
classify them.

A flexible mechanism employed to construct queues using a regular random-
access memory is to use the linked list data structure. Each linked list is dedicated
to an output port. In a linked list, each storage location stores a packet and a pointer
to the next packet in the queue as shown. Successive packets need not be stored in
successive memory locations. All that is required is to be able to know the address
of the next packet though the pointer associated with the packet. This pointer is
indicated by the solid circles in the figure. The lengths of the linked lists need not
be equal and depend only on how many packets are stored in each linked list. The
memory controller keeps track of the location of the last packet in each queue, as
shown by the empty circles. There is no need for a switch fabric since the packets
are effectively “routed” by being stored in the proper linked list.

When a new packet arrives at an input port, the buffer controller decides which
queue it should go to and stores the packet at any available location in the memory,
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Write
Controller

2
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Inputs Outputs
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Fig. 13.10 Shared buffer switch. Solid circles indicate next packet pointers. Empty circles indicate
pointers to the tail end of each linked list
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then appends that packet to the linked list by updating the necessary pointers. When
a packet leaves a queue, the pointer of the next packet now points to the output port
and the length of the linked list is reduced by one.

The main advantages of shared buffering are

1. Ability to assign different buffer space for each output port since the linked list
size is flexible and limited only by the amount of free space in the shared buffer.

2. A switching fabric is not required.
3. Distributed table lookup at each input port.
4. There is no HOL problem in shared buffer switch since each linked list is dedi-

cated to one output port.
5. Ease of implementing data broadcast or multicast.
6. Ease of implementing QoS and differentiated services support.
7. Ease of implementing scheduling algorithms at each linked list.

The main disadvantages of shared buffering are

1. High memory speed requirements for the shared buffer.
2. Centralized scheduler function implementation which might slow down the

switch.
3. Support of broadcast and multicast requires duplicating the same data at different

linked lists associated with each output port.
4. The use of a single shared buffer makes the task of accessing the memory

very difficult for implementing scheduling algorithms, traffic management al-
gorithms, and QoS support.

The shared buffer must operate at a speed of at least 2N since it must perform a
maximum of N write and N read operations at each time step.

To achieve multicast in a shared buffer switch, the packet must be duplicated
in all the linked lists on the multicast list. This needlessly consumes storage area
that could otherwise be used. To support differentiated services, the switch must
maintain several queues at each input port for each service class being supported.

In shared buffering, there are two potential causes for packet loss:

1. Input buffer is full. An arriving packet has no place in the buffer and is discarded.
2. Shared buffer is full. An arriving packet has no place in the buffer and is

discarded.

13.13 Multiple Input Queuing Switch

To overcome the HOL problem in input queuing switch and still retain the advan-
tages of that switch, m input queues are assigned to each input port as shown in
Fig. 13.11. If each input port has a queue that is dedicated to an output port (i.e.,
m = N ), the switch is called virtual output queuing (VOQ) switch. In that case,
the input controller at each input port will classify an arriving packet and place it in
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Fig. 13.11 Multiple input
queue switch. Each input port
has a bank of FIFO buffers.
The number of queues per
input port could represent the
number of service classes
supported or it could
represent the number of
output ports
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the FIFO buffer belonging to the destination output port. In effect, we are creating
output queues at each input and hence the name “virtual output queuing”.

This approach removes the HOL problem and the switch efficiency starts to
approach 100% depending only on the efficiency of the switch fabric and the
scheduling algorithm at each output port. Multicast is also very easily supported
since copies of an arriving packet could be placed at the respective output queues.
Distributed packet classification and traffic management are easily implemented in
that switch also.

There are, however, several residual problems with this architecture. Scheduling
packets for a certain output port becomes a major problem. Each output port must
choose a packet from N virtual queues located at N input ports. This problem is
solved in the VRQ switch that is discussed in Section 13.16 and Chapter 16. Another
disadvantage associated with multiple input queues is the contention between all the
queues to access the switching fabric. Dedicating a direct connection between each
queue and the switch fabric results in a huge SF that is of dimension N 2 × N which
is definitely not practical.

In multiple input queuing, there are three potential causes for packet loss:

1. Input buffer is full. An arriving packet has no place in the buffer and is discarded.
2. Internal blocking. A packet being routed within the switch fabric is blocked in-

side the SF and is discarded.
3. Output blocking. A packet that made it through the SF reaches the desired output

port but the port ignores it since it is busy serving another packet.

13.14 Multiple Output Queuing Switch

To support sophisticated scheduling algorithms, n output queues are assigned to
each output port as shown in Fig. 13.12. If each output port has a queue that is
dedicated to an input port (i.e., n = N ), the switch is called virtual input queuing
(VIQ) switch. In that case, the output controller at each output port will classify an
arriving packet and place it in the FIFO buffer belonging to the input port it came on.
In effect, we are creating input queues at each output and hence the name “virtual
input queuing”. Another advantage of using several output queues is that the FIFO
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Fig. 13.12 Multiple output
queuing switch. Each output
port has bank of FIFO
buffers. The number of
queues per output port could
represent the number of
service classes supported or it
could represent the number of
connections supported
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speed need not be N times the line rate as was the case in output queuing switch
with a single buffer per port.

Several disadvantages are not removed from output queue switch using this ap-
proach. The HOL problem is still present and packet broadcast still aggravates the
HOL problem. Another disadvantage associated with multiple output queues is the
contention between all the queues to access the switching fabric. Dedicating a direct
connection between each queue and the switch fabric results in a huge SF that is of
dimension N × N 2, which is definitely not practical. This problem is solved in the
VRQ switch that is discussed in Section 13.16 and Chapter 16.

In multiple output queuing, there are four potential causes for packet loss:

1. Input buffer is full. An arriving packet has no place in the buffer and is discarded.
2. Internal blocking. A packet being routed within the switch fabric is blocked in-

side the SF and is discarded.
3. Output blocking. A packet that made it through the SF reaches the desired output

port but the port ignores it since it is busy serving another packet.
4. Output queue is full. An arriving packet has no place in the queue and is dis-

carded.

13.15 Multiple Input/Output Queuing Switch

To retain the advantages of multiple input and multiple output queuing and avoid
their limitations, multiple queues could be placed at each input and output port as
shown in Fig. 13.13. An arriving packet must be classified by the input controller at
each input port to be placed in its proper input queue. Packets destined to a certain
output port travel through the switch fabric (SF), and the controller at each output
port classifies them, according to their class of service, and places them in their
proper output queue.

The advantages of multiple queues at the input and the output are removal of
HOL problem, distributed table lookup, distributed traffic management, and ease of
implementation of differentiated services. Furthermore, the memory speed of each
queue could match the line rate.

The disadvantage of the multiple input and output queue switch is the need to
design a switch fabric that is able to support a maximum of N 2 × N 2 connections
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Fig. 13.13 Multiple input
and output queuing switch.
Each input port has bank of
FIFO buffers and each output
port has bank of FIFO buffers

SF

Input
Queues

N

1

...

1: m

1: m

Output
Queues

N

1

...

1: n

1: n

simultaneously. This problem is solved in the VRQ switch that is discussed in Sec-
tion 13.16 and Chapter 16.

In multiple input and output queuing, there are four potential causes for packet
loss:

1. Input buffer is full. An arriving packet has no place in the buffer and is discarded.
2. Internal blocking. A packet being routed within the switch fabric is blocked in-

side the SF and is discarded.
3. Output blocking. A packet that made it through the SF reaches the desired output

port but the port ignores it since it is busy serving another packet.
4. Output queue is full. An arriving packet has no place in the queue and is

discarded.

13.16 Virtual Routing/Virtual Queuing (VRQ) Switch

We saw in the previous sections the many alternatives for locating and segmenting
the buffers. Each design had its advantages and disadvantages. The virtual rout-
ing/virtual queuing (VRQ) switch has been proposed by the author such that it has
all the advantages of earlier switches but none of their disadvantages. In addition,
the design has extra features such as low power, scalability, etc. [11–13].

A more detailed discussion of the design and operation of the virtual rout-
ing/virtual queuing (VRQ) switch is found in Chapter 16. Figure 13.14 shows the
main components of that switch. Each input port has N buffers (not queues) where
incoming packets are stored after being classified. Similarly, each output port has K
FIFO queues, where K is determined by the number of service classes or sessions
that must be supported. The switch fabric (SF) is an array of backplane buses. This
gives the best throughput compared to any other previously proposed SF architecture
including crossbar switches.

The input buffers store incoming packets which could be variable in size. The
input controller determines which output port is desired by the packet and sends
a pointer to the destination output port. The pointer indicates to the output port
the location of the packet in the input buffer, which input port it came from, and
any other QoS requirements. The output controller queues that pointer—The packet
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Fig. 13.14 The virtual
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itself remains in the input buffer. The buffer storage requirements for the output
queues are modest since they store pointer information, which is small in size com-
pared to the size of the packets stored in the input buffers.

When a pointer is selected from an output queue, the location of the correspond-
ing packet is determined and the packet is selected to access the SF. We call this
mode of operation output-driven routing, which never leads to SF contention. The
classic or usual way of accessing the SF is called input-driven routing, which is
guaranteed to lead to contention as we have seen in each switch design we have
studied so far.

Let us see how the VRQ switch is able to overcome all the limitations of earlier
designs:

1. Traffic management, scheduling, and congestion control are all distributed
among the input and output ports. This allows more time for the algorithms to
complete their operations and for the designer to implement more sophisticated
algorithms.

2. The HOL problem is completely eliminated because the VRQ switch is output
driven and not input driven.

3. The input buffers operate at the line rate and each output queue needs to process
at most N pointers which is much more simpler than processing N packets.

4. Packets are stored at the inputs in regular memory, not FIFO memory, which is
more simpler to implement.

5. There is great freedom in configuring the output queues. The queues could
be constructed based on a per-connection basis, per-input basis, or per-service
class basis.

6. Data broadcast is very simple to implement and no extra copies of a packet need
to be stored.
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Table 13.2 Switch types
capable of supporting the
different switch features

Feature Input Output Shared VRQ

QoS support X X X
HOL elimination X X
Scheduling support X X X
Broadcast support X X
Memory speed X X
Scalability X X
Contentionless SF X X

7. An incoming packet does not leave its location in the input buffer until it
is ready to be moved through the switch. This reduces power and storage
requirements.

8. Internal blocking is completely removed since each input port has its own ded-
icated bus.

9. Output blocking is completely removed since each output port is able to process
all the pointers that arrive to it.

10. The backplane buses operate at the line rate in a bit-serial fashion with no need
whatsoever for internal speedup or use of parallel data lines.

11. The switch fabric is contentionless since it is based on a matrix of dedicated
buses that are output driven.

Table 13.2 summarizes the desirable features to be supported by a switch and
switch type that can support these features. From the table, we see that both the
shared buffer switch and the VRQ switch can easily implement most of the func-
tionalities of a high-speed switch. The performance results in Chapter 15 show that
indeed both the shared buffer switch and the VRQ switch perform the best compared
to all the other switch types.

Problems

Networking

13.1 What are the main components of a computer network?
13.2 Give examples of communication links used in computer networks and in

other types of networks (e.g., cable TV, radio, telephone, etc.)
13.3 Give examples of network software used at the different layers of the net-

work.
13.4 What is a core switch and an edge switch?
13.5 What are the main performance parameters of a link in a computer network?
13.6 Why should users in a network share the links even though this reduces the

quality of service offered?
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Media Access Techniques

13.7 What are the main multiplexing techniques that allow users to share links?
13.8 Explain the two main types of TDMA and state the advantages and disad-

vantages of each.
13.9 What types of random assignment MAC protocols could be used to guarantee

fair access to the medium in a reasonable time delay?
13.10 Develop a model for the access probability of a user in a TDMA system

supporting N users where all users have equal priority and each time frame
has m available slots. What is the throughput of each user and the average
time delay?

13.11 Assume a TDMA system with a fixed priority protocol in which each user
has a priority equal to its index. Derive an expression for the probability of
accessing the medium for any user. Based on that, find the average delay that
each user experiences and the average throughput for each user.

13.12 Explain the two main types of SDMA and state the advantages and disadvan-
tages of each.

13.13 Explain how cellular phone technology uses both SDMA and FDMA or
SDMA and CDMA.

13.14 Explain how fixed assignment and random assignment could be used in
FDMA.

13.15 Explain CDMA and explain how fixed assignment and random assignment
could be used.

Circuit and Packet Switching

13.16 Explain the two main types of packet switching.
13.17 What are the advantages and disadvantages of circuit switching?
13.18 What are the important characteristics of circuit switching?
13.19 Explain the steps necessary to establish a path in circuit switching.
13.20 What are the advantages and disadvantages of packet switching?
13.21 Derive expressions for channel usage efficiency for the case of packet switch-

ing using datagram versus virtual circuit switching. Assume each packet for
datagram is composed of n1 header/trailer bytes and n2 payload bytes. For
virtual circuit switching, assume n1 header/trailer bytes, n2 payload bytes,
and n3 bytes required for call establishment and tear down.

13.22 Explain what is meant by virtual circuit switching.
13.23 What are the advantages and disadvantages of virtual circuit switching?

Packet Switching Hardware

13.24 Explain the functions performed by a hub.
13.25 What is a passive hub?
13.26 What is an intelligent hub?
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13.27 What is a switching hub?
13.28 Explain the functions performed by a switch.
13.29 Explain the functions performed by a bridge.
13.30 Explain the functions performed by a router.
13.31 Explain the functions performed by a gateway.

Switch Components

13.32 What are the two main architectural components in a switch?
13.33 Explain the functions performed by the datapath section of a switch.
13.34 Explain the functions performed by the control section of a switch.
13.35 Explain the main components of a switch and the functions performed by

each component.
13.36 One of the necessary components of a switch is the FIFO. How can this be

implemented using an ordinary one-ported random-access memory?
13.37 One of the necessary components of a switch is a CAM (content-addressable

memory). Discuss how a CAM could be implemented using specialized
hardware or using a random-access memory or groups of random-access
memories.

Switch Functions

13.38 What are the main tasks performed by a switch?

Input Queuing Switch

13.39 Explain the basic operation of input queuing switch.
13.40 What is the head of line (HOL) problem in input queuing switches?
13.41 In input queuing switch, it was mentioned that HOL problem leads to re-

duced throughput and increased packet loss probability. Suppose a window-
ing scheme is used to examine w packets at the head of the queue instead of
only one. How can this scheme preserve the packet sequence?

13.42 What are the advantages of input queuing switches?
13.43 What are the disadvantages of input queuing switches?
13.44 What are the potential sources of packet loss in input queuing switches?
13.45 Explain how a per-connection scheduling scheme can be implemented in an

input queuing switch.

Output Queuing Switch

13.46 Explain the basic operation of output queuing switch.
13.47 What are the advantages of output queuing switches?
13.48 What are the disadvantages of output queuing switches?
13.49 What are the potential sources of packet loss in output queuing switches?
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13.50 Explain how a per-connection scheduling scheme can be implemented in an
output queuing switch.

Shared Buffer Switch

13.51 Explain the basic operation of shared buffer switch.
13.52 What are the advantages of shared buffer switches?
13.53 What are the disadvantages of shared buffer switches?
13.54 What are the potential sources of packet loss in shared buffer switches?
13.55 In shared buffer switches, it was mentioned that the shared buffer must per-

form many read and write operations per time step. Discuss how this can be
implemented using a bank of one-ported memories that is accessible by all
inputs and outputs of the switch.

13.56 Explain how a per-connection scheduling scheme can be implemented in a
shared buffer switch.

13.57 Assume a protocol is devised to evenly distribute packets between two
buffers (A and B) as follows:

1. Start with n packets (assume n even).
2. Pick a packet at random and move it to the other buffer.
3. The state of the system is the number of packets in buffer A.

Study the long-term performance of this protocol.

Multiple Input Queuing Switches

13.58 Explain how a per-connection scheduling scheme can be implemented in a
multiple input queuing switch.

13.59 Explain the basic operation of a virtual output queuing (VOQ) switch.
13.60 What are the advantages of virtual output queuing switch?
13.61 What are the disadvantages of virtual output queuing switch?

Multiple Output Queuing Switches

13.62 Explain the basic operation of a multiple output queuing switch.
13.63 What are the advantages of multiple output queuing switch?
13.64 What are the disadvantages of multiple output queuing switch?
13.65 Explain how a per-connection scheduling scheme can be implemented in an

multiple output queuing switch.

Virtual Routing/Virtual Queuing (VRQ) Switch

13.66 Explain the basic operation of virtual routing/virtual queuing (VRQ) switch.
13.67 Discuss the advantages and disadvantages of the VRQ switch.
13.68 What is meant by virtual routing in the VRQ switch?
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13.69 How is broadcast operation implemented in the VRQ switch?
13.70 What is meant by “input-driven” and “output-driven” operation in a switch?
13.71 Why does input-driven switching suffer from contention?
13.72 Why is output-driven switching contentionless?
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Chapter 14
Interconnection Networks

14.1 Introduction

Interconnection networks form the switching fabric part of any switch. The capa-
bilities and characteristics of the interconnection network have a direct influence on
the resulting performance of the switch. We review in this chapter the different types
of switching networks and derive analytic expression for their performance.

14.2 Network Design Parameters

An interconnection network (IN) is also known as the switching fabric (SF). We
shall use the two terms interchangeably. The main purpose of the SF is to provide
full connectivity between the inputs and the outputs of the switch with reasonable
hardware and delay. In that sense, the input and output ports share the SF as a
common communication resource and, as such, conflicts may arise that have to be
resolved using some contention-resolving technique or arbitration protocol. There
are several arbitration protocols and each impacts the performance of the switch.
Reference [1] reviews and models five protocols and explains how they can be im-
plemented in hardware.

Because of logistics and office building code limitations, the maximum practical
number of ports in a central office switch is 16–128. Backbone or core switches and
routers deal with even smaller number of very high-speed links. Thus the switch
size in core routers could be between 8 and 32, according to references [2, 3].

14.2.1 Network Performance

Different interconnection networks have varying performance features due to the
design decisions employed. Throughput depends on the type of network used
and the number of input and output ports it can support. Packet loss probability
also depends on the type of network since this determines the number of paths
that can be simultaneously established to reduce the amount of buffer occupancy.
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Fault tolerance is the ability of the network to operate even in the presence of faulty
links or internal components. Gradual degradation of performance is desirable so
that the operators have a chance of isolating and replacing the faulty component.
Hot insertion is the ability to replace faulty components without having to halt, or
rest, the entire system.

14.2.2 Network Hardware

Synchronization and clock speed determine whether data will move within the SF in
a synchronous or an asynchronous manner. As the switching fabric gets bigger and
the operating speed increases, it becomes very difficult to synchronize the whole
system to a single clock with little skew. Further, the clock lines supporting the
fast clock transitions will consume power and will result in system noise. On the
other hand, asynchronous data transmission will require more control lines and more
sophisticated data transfer protocols.

Complexity includes several aspects such as: (a) how many bits of a packet will
move from one location to another within the SF in once clock cycle; (b) the number
and type of packages or boards required to implement the SF; (c) the number of I/O
pins per chip which impact the overall price and reliability of the system; (d) the
routing algorithm required to establish a path between an input and an output. This
routing algorithm might be simple and distributed among all the components of
the interconnection network or it could require complex operations and need to be
centralized thereby slowing down the whole system.

Power consumption is intimately dependent on the level of chip integration used,
amount of inter-chip communication, and the operating speed. Total power con-
sumed will determine the size, price, cooling, and weight of the required power
supply.

Modularity implies the SF is built from a small number of modules.
Hierarchy and partitionability are the ability to divide the SF into subsystems

that might simplify the task of building and operating the system.
Communication between the modules and the chips will have an impact on the

speed and power consumption of the SF and also on the size and reliability of the
switch.

14.2.3 Scalability Issues

Number of input and output ports might have an upper limit due to the way the SF
was built. Increasing that number might require complete rewiring and use of other
basic modules. Alternatively, increasing the number of I/O ports in some SFs might
degrade the performance or might not be feasible from a hardware point of view
due, for example, to pin limitations of the chips.

Operating speed of the SF might have an upper limit dictated by the way the
SF operates. For example, if communication is required between all the input ports
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to decide which one gains access to the shared memory, say, then the larger the
network, the slower this operation will become which will in turn reduce the overall
throughput.

14.3 Classification of Networks

A detailed classifications for interconnection networks can be found in [4]. A broad
classification of networks could be based on the protocol used to provide access
to the users to the shared medium—this is also called media access control (MAC).
Section 13.3 on page 479 provided a detailed discussion of the possible media access
control schemes. However, as in [5] and [6], we classify a switch fabric based on
time division multiplexing or space-division multiplexing which we discuss in the
following sections.

14.4 Time Division Multiple Access (TDMA)

In time division multiple access (TDMA), the communication medium gives sole
access to the communication medium for a short amount of time. Time division
requires a communication medium be shared among all the users (packets in our
case). The shared medium could be a bus that joins all the inputs and outputs or it
could be a wireless channel, as in the case of satellite communications and cellular
telephones. Simultaneous requests lead to contention or corruption of data and a
contention resolution protocol is used to resolve these conflicts. A shared medium
has a maximum bandwidth that is determined by the channel used. For the case of
a shared bus, the maximum bandwidth is set by the electrical drive capability of the
bus drivers and the physical length of the bus. For the case of a wireless channel, the
channel bandwidth is determined by the frequency and power restrictions of wireless
and any channel impairment such as noise and fading. Many routers and multiport
bridges are shared media switches with bandwidth limitations of 800 Mbits/s to
3.2 Gbits/s [2].

We classify TDMA into two types: static assignment and random assignment,
which we discuss next.

14.4.1 Static-Assignment TDMA

Constant bit rate traffic is efficiently served by the static-assignment protocol. In
that scheme, time is broken into frames and each frame is divided into slots. Each
user is assigned a certain slot in each frame. Figure 14.1(a) shows such a scheme
where five users are assumed to share the medium. Each user is guaranteed access
to the medium even when there is no data to send. Static-assignment techniques do
not work well for bursty traffic or mixed traffic with long idle times since either the
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Fig. 14.1 Time division
switching: (a) Static
assignment. (b) Random
assignment
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medium will be grossly underutilized or the access time will be large. Examples of
static-assignment networks include the token ring and the telephone network trunk
lines.

14.4.2 Random Assignment TDMA

This is also known as statistical multiplexing in packet switching. Bursty traffic is
efficiently served by the random-assignment protocol. Figure 14.1(b) shows such a
scheme where again five users are assumed to share the medium. At a given time
step, all users with data to send compete to access that slot and only one winner gains
access and the others wait for the next slot. As a result, idle sources do not interfere
with active users but access time now is not guaranteed and could be long at times
of heavy traffic. Random assignment techniques do not work well for constant bit
rate traffic since the access time will be needlessly large. An important aspect of
random assignment schemes is the arbitration protocol used to resolve contention
among the competing users and assign the channel to one user. Reference [1] dealt
with five types of common arbitration protocols and their distributed hardware im-
plementation.

From the above, we see that time division multiplexing is characterized by low
bandwidth assigned for each user. On the other hand, it requires little hardware
resources since the interconnection network comprises one shared medium which
requires a small wiring area, or a narrow frequency band. As such, it might not
be well suited to high-speed communications, but can still be used in the switch for
communicating the control information between the different modules. Examples of
random assignment networks include Ethernet LANs and common computer buses.

14.5 Space Division Switching

Space division switching is the method of choice to implement high-performance
switches since they provide high capacity and low access time delay. Space division
switching can be broadly classified as crossbar networks and multistage intercon-
nection networks (MIN). We discuss each in the following sections.
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14.6 Crossbar Network

Crossbar switches have not been well represented in the literature, with the excep-
tion of [7], perhaps due to the original article by Clos [8], in which he claimed that
a crossbar network is very expensive to implement. With the current state of VLSI
technology, it is possible to place several switching elements and their state registers
on a single chip with the only limitation being the number of I/O pins and pad size
[2]. Happily, several companies already produce high-speed network switches built
around a crossbar network [9–11].

An N × N crossbar network consists of N inputs and N outputs. It can connect
any input to any free output without blocking. Figure 14.2 shows a 6 × 6 crossbar
network. The network consists of an array of crosspoints (CP) connected in a grid
fashion. CP(i, j) lies at the intersection of row i with column j . Each CP operates
in one of two configurations as shown in Fig. 14.3. The X -configuration is the de-
fault configuration where the SE allows simultaneous data flow in the vertical and
horizontal directions without interference. If CP(3,5) was in the X -configuration,
then data flowing horizontally originates at input 3 and is sent to all the intersection
points at this row. Data flowing vertically in column 5 could have originated from
any input above or below row 3.

In the T -configuration, the CP allows data flow in the horizontal direction and
interrupts data flow in the vertical direction. Data flowing vertically at its output is a
copy of the horizontal data. For example, if CP(3,5) was in the T -configuration, then
data flowing horizontally originates at input 3. Data flowing downward at the output

Fig. 14.2 A 6 × 6 crossbar
interconnection network
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is a copy of the horizontal data coming from row 3. This way, output at column 5
sees a copy of the data that was moving in row 3.

A crossbar network supports high capacity due to the N simultaneous connec-
tions it can provide. This comes at the expense of the number of CPs that grows as
N 2. This is one reason why a crossbar network is used mainly for demanding appli-
cations that requires a relatively small values of N (about 10). However, advances
in VLSI technology and electro-optics make crossbar switches a viable switching
alternative.

Data multicast in a crossbar network can be easily accomplished. Suppose that
input 3 requests to multicast its data to outputs 1, 3, and 5. Input 3 would then
request to configure CP(3,1), (3,3), and (3, 5) into the T -configuration and all other
CPs in row 3 would remain in the default X -configuration.

14.6.1 Crossbar Network Contention and Arbitration

Suppose that two or more inputs request access to the same output. In that case,
contention arises and some arbitration mechanism has to be provided to settle this
dispute. In fact, we have to provide N arbiters such that each one is associated with
a column in the crossbar network. For example, when input 1 requests to commu-
nicate with output 3, it requests to configure CP(1,3) into the T -configuration and
must wait until the arbiter in column 3 issues a grant to that input. At the same time,
the arbiter in column 3 must inform all other inputs that they cannot access column
3 in that time step. This happens only after the arbiter checks to see if there are
any requests coming from other inputs demanding access to output 3. These arbiters
slow down the system especially for large networks where signal propagation up
and down the columns takes a substantial amount of time.

Arbitration was necessary because access to the crossbar network was input
driven where the inputs issue the requests to configure the crosspoint switches. In
an output-driven crossbar network, the outputs initiate issuing of requests for data
from the inputs and this eliminates the need for the arbiters. Needless to say, this
mode of operation leads to much faster switch operation and was first proposed by
the author in references [12–14].

14.6.2 Analysis of Crossbar Network

The crossbar switch can be considered as a collection of N shared media, viz., the
columns of the crossbar network, since each column is associated with an output
link or channel. All N columns operate in parallel and each output accepts traffic
from all N inputs (rows). Thus the traffic arriving at each output port is a fraction of
the traffic arriving at the inputs.

Assume a is the packet arrival probability at an input port of an N × N crossbar
switch. Let us study the activity of a certain output port. We call this the tagged



14.6 Crossbar Network 513

output port. The probability that a packet arrives at any input port such that it is
destined to the tagged output port is given by

a′ = a

N
(14.1)

This is because an arriving packet has an equal probability of requesting one of
N output ports. Essentially, each output port deals with N users but the probability
of packet arrival is reduced to a/N . The probability that i requests arrive at a time
slot addressed to the tagged output port is given by

p(i) =
(

N

i

)( a

N

)i (
1 − a

N

)N−i
(14.2)

The input traffic Na(in) that is destined for the tagged output port per time slot is
given by

Na(in) = E [i p (i)] =
N∑

i=0

i p (i) = a (14.3)

The throughput of the tagged output port is equal to the output traffic of the
tagged output port and is given by the expression

Th =
N∑

i=1

p(i) = 1 − p(0) (14.4)

After substituting the value for a′ we could write

Th = Na(out)

= 1 −
(

1 − a

N

)N
packets/time step (14.5)

The second term in the RHS is simply the probability that no packets are destined
to the tagged output port. For light loading, we get Th ≈ a which indicates that most
of the arriving packets are transmitted.

In the limit for large networks (N → ∞), we get

Th = lim
N→∞

[
1 −

(
1 − a

N

)N
]

= 1 − e−a packets/time step (14.6)

For very large crossbar network at very light loads a � 1, we get Th → a which
indicates that almost all the arriving packets make it through the switch due to the
light loading.
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What is really exciting is the performance of very large crossbar networks under
extremely heavy loading. The maximum throughput Th(max) occurs at very heavy
traffic (a = 1):

Th(max) = 1 − e−1 = 63.21% packets/time step (14.7)

Thus the crossbar network is characterized by very high throughput even at the
highest load and for large networks.

From (14.3) and (14.5), the packet acceptance probability is given by

pa = Na(out)

Na(in)
= 1

a

[
1 −

(
1 − a

N

)N
]

(14.8)

For light traffic (a � 1), we get pa ≈ 1 which indicates very high efficiency. In
the limit for large networks, we get

pa = lim
N→∞

1

a

[
1 −

(
1 − a

N

)N
]

= 1 − e−a

a
(14.9)

The minimum acceptance probability pa(min) occurs at very heavy traffic
(a = 1):

pa(min) = 1 − e−1 = 63.21% (14.10)

Thus the crossbar network is characterized by very high acceptance probability
even at the highest load and for large networks.

The delay of the network is defined as the average number of attempts to access
the desired output. The probability that the packet succeeds after k tries is given by
the geometric distribution

p(k) = pa (1 − pa)k (14.11)

The average delay time is

na =
∞∑

k=0

k p(k)

=
∞∑

k=0

k pa (1 − pa)k

= 1 − pa

pa
time steps (14.12)
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Fig. 14.4 Variation of the throughput, the packet acceptance probability, and the delay with the
input traffic for the crossbar network when N = 8 (solid line) and N = 16 (dotted line)

For light traffic (a ≈ 0), we get na ≈ 0 which indicates that arriving packets get
through on their first attempt. For heavy traffic, a = 1 and the maximum number of
attempts becomes 0.582 on the average.

Example 14.1 Plot the throughput (Th), the access probability (pa), and the average
delay (na) versus the input traffic for the crossbar network when the size of the
network is N = 8 and N = 16.

We evaluate the expressions for throughput, packet acceptance probability, and
delay when N has the values 8 and 16 and a is varied. Figure 14.4 shows the vari-
ation of throughput, the packet acceptance probability, and the delay with the input
traffic when N = 8 (solid line) and N = 16 (dotted line). We see that the minimum
throughput is around 63.66% and occurs at a = 1. What is striking is the good
overall performance of the crossbar network and the little dependence on N .

14.7 Multistage Interconnection Networks

As Fig. 14.5 shows, an N × N multistage interconnection network consists of n
stages with stage i connected to stages i − 1 and i + 1 through some pattern of
connection lines. Each stage has w crossbar switching elements (SE) that vary in
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Fig. 14.5 A 4 × 4 MIN with
three stages and four switches
per stage
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size from 2 × 2 and up. The SEs in each stage are numbered starting at the top as
shown. For the MIN in the figure, we have N = 4, n = 3, and w = 4. The labeling
of the stages and switches is also shown in the figure. Typically, the number of
stages1 n = lg N . The design parameters for a MIN are the size of the network
N , the number of stages n, the number of switches per stage w, and the size of
each switch. These four factors determine the MIN complexity. Another important
measure of the cost of a MIN is the number and length of the wires in the connection
links between the stages. This last factor determines the required number of pins or
connections at every level of integration or packaging. MINs are classified into three
classes according to the ability of the network to establish a path between an input
and an output [4, 15]:

Blocking MIN: A connection between a free input/output pair cannot be estab-
lished due to conflicts with already-existing connections. This blocking is
called internal blocking since the internal wiring of the network prevented
path establishment. This type of MIN usually has a single path connecting
any input/output pair which leads to hardware economy at the cost of reduc-
ing the fault tolerance and the throughput due to internal blocking.

Nonblocking MIN: A connection between a free input/output pair can be es-
tablished independent of already-existing connections. This type of MIN has
many alternative routes connecting any input/output pair which makes them
expensive to implement although they are not as expensive as a crossbar
network.

Rearrangeable MIN: Any input can be connected to any free output port by
rearranging existing connections. Rearrangeable networks should not be con-
fused with nonblocking networks that do not rearrange existing paths to
establish new connections. Rearrangeable networks are less expensive than
nonblocking or crossbar networks.

1 We use Knuth’s [11] notation “lg N” to denote the base-2 logarithm log2 N .
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14.7.1 Definitions

We start our study of MINs by defining some functions that are commonly used in
the field of multistage interconnection networks:

Shuffle function: Assume the label for a row in the MIN is represented as binary
number A. The perfect shuffle function S performs a circular left shift on the
bits of A:

A = an−1 an−2 · · · a1 a0

S(A) = an−2 an−3 · · · a0 an−1

Inverse shuffle function: The inverse perfect shuffle function S−1 performs a
circular right shift on the bits of A:

A = an−1 an−2 · · · a1 a0

S−1(A) = a0 an−1 · · · a2 a1

Exchange function: The exchange function Ei, j exchanges the bits at positions
i and j leaving all other bits intact:

A = an−1 · · · ai · · · a j · · · a0

Ei, j (A) = an−1 · · · a j · · · ai · · · a0

Butterfly function: The butterfly function Bi exchanges the least significant bit
(a0) and the i th bit (ai ) of the binary number leaving all other bits intact:

A = an−1 · · · ai+1 ai ai−1 · · · a0

Bi (A) = an−1 · · · ai+1 a0 ai−1 · · · ai

Cube function: The cube function Ci complements the i th bit (ai ) of the binary
number leaving all other bits intact:

A = an−1 · · · ai+1 ai ai−1 · · · a0

Ci (A) = an−1 · · · ai+1 ai ai−1 · · · a0

Plus–Minus 2i (PM2I) function: The plus–minus 2i (PM2I) function adds ±2i

to the row address of a packet. The result is reduced using the modulo func-
tion as follows:

PM2+i (A) = (
A + 2i

)
mod N

PM2−i (A) = (
A − 2i

)
mod N
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where i varies between 0 and n = lg N . Notice that the Ci function could be
implemented using the PM2I function:

Ci (A) = A + ai PM2+i (A) − ai PM2−i (A)

Below we show examples of several MINs that were proposed for applications
in communications.

14.8 Generalized-Cube Network (GCN)

Figure 14.6 shows an 8 × 8 generalized-cube network [16, 17]. The interconnection
pattern of the network is based on the cube and shuffle functions. For an N × N
network, the number of stages is n where n = lg N and the number of SEs in
each stage is N/2. Each SE is a 2 × 2 crossbar switch and the number of links
between stages is N . This network is equivalent to many other networks that were
proposed such as the omega [18], banyan [19], delta, and baseline. The generalized-
cube network is a blocking network and provides only one path from any input to
any output. As such, it possesses no tolerance for faults.

Switching element SE(i, j) at stage i and position j is connected to SE(i + 1, k)
such that k is given by

k =
{

j straight connection
Ci ( j) cube connection

(14.13)

where 0 ≤ i < n and 0 ≤ j < N/2. Note that the SE row label j requires only n−1
bits for its representation. Thus when N = 8, the switch row label is composed only
of two bits.

As an example, SE(1,2) at stage 1 is connected to switches SE(2,2), the straight
connection, and switch SE(2,0), the C1 (2) connection.

Fig. 14.6 Generalized-cube
network for N = 8 0
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At the last stage, output stage, switch SE(2, j) is connected to row k such that k
is given by

k =
{

j straight connection
C2 ( j) cube connection

(14.14)

where 0 ≤ j < N . Note that the output row label j requires only n − 1 for its
representation. Thus when N = 8, the switch row label is composed of three bits.

As an example, SE(2,3) is connected to output rows 3 and 7 since we have j = 3
which has the binary equivalent 011 and applying the straight and cube connection
C2(3) gives output rows 3 and 7, respectively.

The GCN provides one unique path from any input to any output based on the
input row address and the destination address. The packet path is established by
properly configuring the connections within each SE that the packet goes through.
Figure 14.7 shows the two types of connections that could be simultaneously estab-
lished for the two inputs of an SE at stage i :

Straight connection: The packet enters and exits at the same row location.
Cube connection: The packet enters at row location R and exits at row location

Ci (R).

Depending on the SE design, one SE input could simultaneously establish the
straight and cube connections for itself, while the other input will not be able to
access the two outputs. This situation is useful to broadcast packets to two or more
outputs.

14.8.1 Routing Algorithm for GCN Network

The routing algorithm in GCN is distributed among the SEs and is based on per-
forming a bitwise XOR operation on the source row address (S) and destination row
address D. S indicates the row location of the input port and D indicates the row

Fig. 14.7 The straight and
cube connections for each
input of an SE in a GCN
network

The straight connection for
each input

The cube connection for each
input
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location of the desired output port. The routing vector r is used to determine the
path of the packet through the network. r is obtained as follows:

r = XOR (S, D) (14.15)

where the n-bit routing vector r carries the information about the desired path. Bit i
of that vector specifies the type of connection of the SE at stage i :

ri =
⎧
⎨

⎩

0 straight connection

1 cube connection
(14.16)

For an 8 × 8 GCN network n = lg 8 = 3 and the routing vector r will have three
bits. If an incoming packet arrives at row 2 (binary 010) and is destined to row 6
(binary 110), then we have

S = [
0 1 0

]t
(14.17)

D = [
1 1 0

]t
(14.18)

r = [
1 0 0

]t
(14.19)

The path selected is explained in Table 14.1.
Figure 14.8 shows the path chosen to route a packet from input at row 2 to output

at row 6 based on binary bit pattern of routing vector r .

Table 14.1 SE settings for
path in GCN network from
input 2 to output 6

Stage i = 0 i = 1 i = 2

Bit scanned r0 r1 r2

Bit value 0 0 1
Connection type Straight Straight Cube

Fig. 14.8 Path chosen in the
GCN network to route a
packet from input at row 2 to
output at row 6 based on
binary bit pattern of routing
vector r
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14.8.2 Analysis of GCN Network

An N × N GCN network is built using 2 × 2 crossbar switching elements. We use
the analysis for the N × N crossbar network to study each 2× 2 SE, then extend the
analysis to the whole network [20, 21].

Consider a 2 × 2 SE at stage i and define ai (in) as the probability that a packet
appears at one of its two inputs and ai (out) as the probability that a packet appears
at one of the two outputs. Both these probabilities are equal to the input and output
traffic, respectively.

For any SE at the input stage (i = 0), we can adapt the crossbar throughput given
by (14.5) when N = 2:

a0(in) = a (14.20)

a0(out) = 1 −
(

1 − a

2

)2
(14.21)

Now we know the throughput at the output of all SEs at stage 0.
For the SEs at the other stages, we have the recursive expression

ai (in) = ai−1(out) (14.22)

ai (out) = 1 −
[

1 − ai (in)

2

]2

(14.23)

for 0 < i < n.
According to (14.3), we can write the traffic at the input of the SE at the first

stage i = 0 as

Na(in) = a (14.24)

and the output traffic at the tagged output of the network is

Na(out) = an−1(out) (14.25)

The throughput of the GCN network is given by

Th = Na(out) = an−1(out) (14.26)

A simple expression for the throughput is not possible because of the nonlinear
nature of (14.23).

The packet acceptance probability of the GCN network is given by

pa = Th

Na(in)
(14.27)
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The delay of the network is defined as the average number of attempts to access
the desired output. The probability that the packet succeeds after k tries is given by
the geometric distribution

p(k) = pa (1 − pa)k (14.28)

The average delay time is

na =
∞∑

k=0

k p(k)

=
∞∑

k=0

k pa (1 − pa)k

= 1 − pa

pa
(14.29)
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Fig. 14.9 Variation of the throughput, the packet acceptance probability, and the delay with the
input traffic when N = 64 for the GCN network (solid line) and the similar-sized crossbar network
(dotted line).
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Example 14.2 Plot the throughput (Th), the access probability (pa), and the average
delay (na) for the GCN network versus the input traffic when the size of the network
is N = 64, and compare this with the similar-sized crossbar network.

We evaluate the expressions for throughput, packet acceptance probability, and
delay when N = 64, and a is varied for both the GCN network and the cross-
bar network. Figure 14.9 shows the variation of throughput, the packet acceptance
probability, and the delay with the input traffic when N = 64 for the GCN network
(solid line) and the crossbar network (dotted line). We see that the crossbar net-
work shows superior performance for the same number of input and output ports as
expected.

14.9 The Banyan Network

Figure 14.10 shows an 8 × 8 banyan network. For an N × N network, the number
of stages is n + 1, where n = lg N , and the number of SEs in each stage is N . Each
SE is a 2 × 2 crossbar switch and the number of links between the stages is 2N .

An N × N banyan network is built using 1-to-2 selectors in the input stage
(i = 0), 2 × 2 crossbar SEs in the n − 1 internal stages (0 < i < n), and 2-to-1
concentrators in the output stage (i = n). However, the banyan network is a block-
ing network and provides only one path from any input to any output. As such, it
possesses no tolerance for faults.

Switching element SE(i, j) at stage i and row position j is connected to
SE(i + 1, k) such that k is given by

k =
⎧
⎨

⎩

j straight connection

Ci ( j) cube connection
(14.30)

where 0 ≤ i < n. Thus, at stage 1, we see that SE(1, 2) is connected to switches
SE(2, 2), the straight connection, and switch SE(2, 0), the C1 (2) connection.

Fig. 14.10 An 8 × 8 banyan
network 0 1 2 3Stage:
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The banyan network provides one unique path from any input to any output
based on the input row address and the destination address. Figure 14.7 shows the
two types of connections that could be established for the two inputs of an SE at
stage i :

Straight connection: The packet enters and exits at the same row location.
Cube connection: The packet enters at row location R and exits at row location

Ci (R).

14.9.1 Routing Algorithm for Banyan Network

The routing algorithm for the banyan network is identical to that of the GCN net-
work.

Figure 14.11 shows the path chosen to route a packet from input at row 2 to
output at row 6 based on binary bit pattern of routing vector r .

14.9.2 Analysis of Banyan Network

An N × N banyan network is built using 1-to-2 selectors in the input stage (i = 0),
2×2 crossbar SEs in the n −1 internal stages (0 < i < n), and 2-to-1 concentrators
in the output stage (i = n). Therefore, we can use the results we obtained for the
crossbar network after some modifications.

Because we have 1-to-2 selectors at stage 0, the packet arrival probabilities at the
input and the outputs of each selector are given by

a0(in) = a (14.31)

a0(out) = a

2
(14.32)

Fig. 14.11 Path chosen in the
banyan network to route a
packet from input at row 2 to
output at row 6 based on
binary bit pattern of routing
vector r 0 1 2 3Stage:
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For the SEs at the internal stages (0 < i < n), we use the expression for the
throughput in (14.5) with N = 2

ai (in) = ai−1(out) (14.33)

ai (out) = 1 −
[

1 − ai (in)

2

]2

(14.34)

where 0 < i < n.
At the output stage (i = n), we have 2-to-1 concentrators. Depending on the

design, an output concentrator could accept one packet only per time step. In other
designs, the output concentrator could accept two packets coming on the two input
links at the same time step.

For the output concentrator that accepts only one packet per time step, the packet
arrival and departure probabilities at the output are given by

an(in) = an−1(out) (14.35)

an(out) = x1 + x2 (14.36)

where x j is the probability that j packets arrived

x j =
(

2

j

)
a j

n (in) [1 − an(in)]2− j (14.37)

From the definition of x j , we can write an(out) as

an(out) = 2 an(in) − a2
n(in) (14.38)

For the output concentrator that accepts all packets arriving at its two inputs, the
packet arrival and departure probabilities are given by

an(in) = an−1(out) (14.39)

an(out) = x1 + 2x2 (14.40)

From the definition of x j , we can write an(out) as

an(out) = 2 an(in) (14.41)

According to (14.3), we can write the traffic at the input of the banyan network as

Na(in) = a (14.42)
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and the output traffic at the tagged output of the network is

Na(out) = an(out) (14.43)

where an(out) is given by (14.38) or (14.41) depending on the details of the design.
The throughput of the banyan network is given by

Th = Na(out) = an(out) (14.44)

The packet acceptance probability for the banyan network is given by

pa = Th

Na(in)
(14.45)

The delay of the banyan network is defined as the average number of attempts
to access the desired output. The probability that the packet succeeds after k tries is
given by the geometric distribution

p(k) = pa (1 − pa)k (14.46)

The average delay time is

na =
∞∑

k=0

k p(k)

=
∞∑

k=0

k pa (1 − pa)k

= 1 − pa

pa
(14.47)

Example 14.3 Plot the throughput (Th), the access probability (pa), and the average
delay (na) for the banyan network versus the input traffic when the size of the net-
work is N = 64 and compare this with the similar-sized crossbar network. Assume
an output concentrator that accepts only one packet.

We evaluate the expressions for throughput, packet acceptance probability, and
delay when N = 64 and a is varied for both the banyan network and the cross-
bar network. Figure 14.12 shows the variation of throughput, the packet acceptance
probability, and the delay with the input traffic when N = 64 for the banyan net-
work (solid line) and the crossbar network (dotted line). We see that the crossbar
network shows superior performance for the same number of input and output ports
as expected.
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Fig. 14.12 Variation of the throughput, the packet acceptance probability, and the delay with the
input traffic when N = 64 for the banyan network (solid line) and the similar-sized crossbar
network (dotted line). The output concentrator accepts only one packet

14.10 Augmented Data Manipulator Network (ADMN)

Figure 14.13 shows an 8 × 8 ADMN network. For an N × N network, the number
of stages is n + 1 where n = lg N , and the number of SEs in each stage is N . Each
SE is a 3 × 3 crossbar switch and the number of links between the stages is 3N .

An N × N ADMN network is built using 1-to-3 selectors in the input stage
(i = 0), 3 × 3 crossbar SEs in the n − 1 internal stages (0 < i < n), and 3-to-1
concentrators in the output stage (i = n) [17]. The ADMN network is a nonblocking
network and provides two paths from any input to any output. As such, it is 1-fault
tolerant.

As the packet travels through the stages of the network, each SE is capable of
shifting the path of the packet among the rows. The shifting distance decreases as
packets traverse the network.

Switching element SE(i, j) is connected to SE(i + 1, k) such that k is given by

k =

⎧
⎪⎨

⎪⎩

(
j − 2n−i−1

)
mod N −2I : up connection

j s : straight connection
(

j + 2n−i−1
)

mod N +2I : down connection

(14.48)
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Fig. 14.13 An augmented
data manipulator network
(ADMN) for N = 8 and
n = lg 8 = 3
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where 0 ≤ i < n. Notice that the plus–minus links connecting stage 0 to stage 1
perform a shift of ±2n−1. These links coincide since we could write

(
j − 2n−1

)
mod N = (

j + 2n−1
)

mod N

The ADMN depends on the PM2I function, which implies that it relies on arith-
metic operations on the addresses of the SEs. The number format for routing in-
formation could be decimal notation, (n + 1)-bit 2’s complement notation, or the
n-bit radix-2 redundant signed-digit (RSD) number notation. In the RSD system,
any n-bit number x can be represented as

x =
n−1∑

i=0

xi × 2i (14.49)

where xi ∈ {−1, 0,+1}. The range of an n-bit RSD number is

− 2n + 1,−2n + 2, · · · ,−1, 0, 1, · · · , 2n − 2, 2n − 1 (14.50)

or

− N + 1,−N + 2, · · · , −1, 0, 1, · · · , N − 2, N − 1 (14.51)

where n = lg N .
One bit location in that number system is represented not in binary format

(0, 1) but in ternary format (1, 0, 1), where 1 denotes the value −1. For example, a
number r = 3 could be represented as

r = [
0 1 1

]
(14.52)
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14.10.1 Routing Algorithms for ADMN Network

We discuss here three routing algorithms for the ADMN network. The algorithms
are distributed among the SEs. The first routing algorithm uses the decimal value
of the routing vector, which is calculated once at the input stage but has to be up-
dated at all the internal stages. The second routing algorithm uses the (n + 1)-bit
2’s complement of the routing vector, which has to be calculated once at the input
stage. The other stages merely scan the bits of the routing vector to make configure
their SEs. The third routing algorithm uses the (n)-bit RSD bit pattern of the routing
vector which is calculated once at the input stage. The other stages merely scan the
bits of the routing vector to make configure their SEs.

14.10.2 First ADMN Routing Algorithm

This algorithm updates the routing vector value at each stage and uses current value
to make its routing decisions. To establish a path from a source address at an input
port location S to a destination address at an output port location D, we initialize
the routing vector r as

r0 = D − S (14.53)

where r0 is the routing vector at the input of the SE at stage 0. A packet that has
been routed as far as stage i will have a routing vector ri . Upon exiting stage i , the
routing vector ri is updated according to the equation

ri+1 = ri + μi δi 0 ≤ i < n (14.54)

where

δi = 2n−i−1 (14.55)

μi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−1 ri ≥ δi

0 −δi < ri < δi

+1 ri ≤ −δi

(14.56)

Our objective in Equation (14.54) is to reduce ri to zero. When ri = 0, we know
that the packet has reached the desired destination row D.

With the values of δi and μi determined, the packet will move to row location
Ri+1 at stage i + 1 where Ri+1 is given by

Ri+1 = (Ri − μi δi ) mod N , 0 ≤ i < n (14.57)
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Table 14.2 SE settings for path in ADMN network from input 6 to output 1 based on the decimal
value of the routing vector r

Stage i = 0 i = 1 i = 2 i = 3

δi = 2n−i−1 4 2 1 NA
μi +1 0 +1 NA
Input routing vector (ri ) −5 −1 −1 0
Output routing vector (ri+1) −1 −1 0 0
Entry row location of packet (Ri ) 6 2 2 1
Exit row location of packet (Ri+1) 2 2 1 1

As an example, assume a packet arrives at input port 6 and is destined to output
port 1. In that case, we have

S = 6 (14.58)

D = 1 (14.59)

r0 = 1 − 6 = −5 (14.60)

The routing decisions at each stage are explained in Table 14.2
Figure 14.14 shows the path chosen to route a packet from input at row 6 to

output at row 1 based on decimal value of routing vector r .

Finding the Alternative Route

To find an alternative route for the incoming packet, we calculate the routing vector,
as in the previous section, then we find the new routing vector obtained from the
operation

r0 = (r0 ± N ) mod N (14.61)

Fig. 14.14 Path chosen in the
ADMN network to route a
packet from input at row 6 to
output at row 1 based on
decimal value of routing
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Table 14.3 SE settings for path in ADMN network from input 6 to output 1 based on decimal
value of routing vector r0 = (r0 ± N )modN

Stage i = 0 i = 1 i = 2 i = 3

δi = 2n−i−1 4 2 1 NA
μi 0 −1 −1 NA
Input routing vector (r i ) 3 3 1 0
Output routing vector (r i+1) 3 1 0 0
Entry row location of packet (Ri ) 6 6 0 1
Exit row location of packet (Ri+1) 6 8 ≡ 0 1 1

For our case, the new routing vector will be

r0 = (−5 + 8) mod 8 = 3 (14.62)

Let us illustrate this routing algorithm by finding how a path is established be-
tween input at row 6 and output at row 1 when r0 = 3. The routing decisions at each
stage are explained in Table 14.3.

Figure 14.15 shows the path chosen to route a packet from input at row 6 to
output at row 1 based on modulo operation on decimal value of routing vector r0.

The maximum shift that a packet experiences using this network is ±(N − 1).
This implies that there is only one possible route when R = D. This problem could
be solved by introducing double links for the straight connection and changing our
SEs to 4 × 4 switches instead of 3 × 3 ones.

14.10.3 Second ADMN Routing Algorithm

The first routing algorithms discussed in the previous section required addition and
subtraction operations—and these operations were repeated at each stage. Needless

Fig. 14.15 Path chosen in the
ADMN network to route a
packet from input at row 6 to
output at row 1 based on
modulo operation on routing
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Table 14.4 SE settings for
path establishment in ADMN
network based on 2’s
complement number format

Sign bit value Bit value Connection type

0 0 Straight
0 1 Up
1 0 Straight
1 1 Down

to say, these operations are complex and slow compared to the operations required
of the second routing algorithm discussed here. This routing algorithm is also dis-
tributed among the SEs and relies on 2’s complement representation of the routing
vector. Calculating the routing vector is done only once at the input stage. The rest
of the stages merely scan the bits of the routing vector to make up their routing
decisions.

To establish a path from a source address at an input port location S to a destina-
tion address at an output port location D, we calculate r as

r = D − S (14.63)

where r is represented in (n + 1)-bit 2’s complement notation.
A switching element at stage i will have to scan two bits of the routing vector:

the sign bit (which is bit n) and bit n − i − 1. Therefore, an SE at stage 0 scans the
sign bit and bit n − 1. An SE at stage 1 scans the sign bit and bit n − 2, and so on.
Finally, an SE at stage n − 1 scans the sign bit and bit 0. The SE settings for path
establishment are based on the rules explained in Table 14.4.

As an example, assume S = 7 and D = 2. In that case, r is given as

r = D − S = −5 (14.64)

The routing vector in n + 1-bit 2’s complement notation will be

r = [
1 0 1 1

]
(14.65)

The path selected is explained in Table 14.5, and Fig. 14.16 shows the path cho-
sen to route a packet from input at row 7 to output at row 2 based on 2’s complement
representation of routing vector r .

Table 14.5 SE settings for path in ADMN network from input S = 7 to output D = 2 based on
the 2’s complement representation of the routing vector r . The sign bit for routing vector is rn = 1

Stage i = 0 i = 1 i = 2 i = 3

Bit scanned r2 = 0 r1 = 1 r0 = 1 NA
SE connection Straight Down Down NA
Row location (Ri ) 7 7 1 2
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Fig. 14.16 Path chosen in the
ADMN network to route a
packet from input at row 7 to
output at row 2 based on 2’s
complement representation of
routing vector
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Finding the Alternative Route

To find an alternative route for the incoming packet, we calculate the routing vector,
as in the previous section, then we find the 2’s complement of the routing vector.
For our case, the original routing vector is

r = [
1 0 1 1

]
(14.66)

The 2’s complement of this vector is

r = [
0 1 0 1

]
(14.67)

The path selected is explained in Table 14.6, and Fig. 14.17 shows the path chosen
to route a packet from input at row 7 to output at row 2 based on routing vector r .

14.10.4 Third ADMN Routing Algorithm

The third ADMN routing algorithm is also distributed among the SEs and relies on
combining RSD with modulo operation. Calculating the routing vector is done only

Table 14.6 SE settings for path in ADMN network from input S = 7 to output D = 2 based on
the 2’s complement representation of the routing vector r . The sign bit for routing vector is rn = 0

Stage i = 0 i = 1 i = 2 i = 3

Bit scanned r2 = 1 r1 = 0 r0 = 1 NA
SE connection Up Straight Up NA
Row location (Ri ) 7 3 3 2
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Fig. 14.17 Path chosen in the
ADMN network to route a
packet from input at row 7 to
output at row 2 based on
routing vector r
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once at the input stage. The rest of the stages merely scan the bits of the routing
vector to make up their routing decisions.

To establish a path from a source address at an input port location S to a destina-
tion address at an output port location D, we need to calculate the routing vector r
as given by the formula

r = D − S (14.68)

where r is now represented in an n-bit RSD notation. The bits of the resulting RSD
number are examined starting with the MSB first. So bit n−1 is examined by SEs at
stage 0. Bit n −2 is examined by SEs at stage 1, and so on. Finally, bit 0 is examined
by SEs at stage n − 1. The SE settings for path establishment are based on the rules
explained in Table 14.7.

As an example, assume S = 5 and D = 2. In that case r is given as

r = D − S = −3 (14.69)

The routing vector in n-bit RSD notation will be

r = [
0 1 1

]
(14.70)

Table 14.7 SE settings for
path establishment in ADMN
network based on RSD
number format

Bit value Connection type

1 Up

0 Straight

1 Down
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Table 14.8 SE alternative
settings for path in ADMN
network from input 5 to
output 2 based on RSD
number format

Stage 0 1 2

Bit scanned r2 r1 r0

Bit value 0 1 1

Connection type Straight Up Up

The path selected is explained in Table 14.8.
Figure 14.18 shows the path chosen to route a packet from input at row 5 to

output at row 2 based on RSD number format of the routing vector r .

Finding the Alternative Route

The alternative route using the RSD number format is obtained by finding the value
of r according to the formula

r = (r ± N ) mod N (14.71)

The alternate path r is

r = (−3 + 8) mod 8 = 5 (14.72)

which corresponds to the routing vector

r = [
1 0 1

]
(14.73)

Fig. 14.18 Path chosen in the
ADMN network to route a
packet from input at row 5 to
output at row 2 based on RSD
number format of the routing
vector r 0 1 2 3Stage:
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Table 14.9 SE alternative
settings for path in ADMN
network from input 5 to
output 2 based on RSD
number format

Stage i = 0 i = 1 i = 2

Bit scanned r2 r1 r0

Bit value 1 0 1

Connection type Down Straight Down

The path selected is explained in Table 14.9. Note that each stage scans one bit
in descending order.

Figure 14.19 shows the path chosen to route a packet from input at row 5 to
output at row 2 based on RSD value of routing vector r .

The maximum shift that a packet experiences using this network is ±(N − 1).
This implies that there is only one possible route when R = D. This problem could
be solved by introducing double links for the straight connection and changing our
SEs to 4 × 4 switches instead of 3 × 3 ones.

14.10.5 Analysis of ADMN Network

An N × N ADMN network is built using 1-to-3 selectors in the input stage (i = 0),
3 × 3 crossbar SEs in n − 1 internal stages (0 < i < n), and 3-to-1 concentrators
in the output stage (i = n). Therefore, we can use the results we obtained for the
banyan network after some modifications.

Because we have 1-to-3 selectors at stage 0, the packet arrival and departure
probabilities at each selector are given by

Fig. 14.19 Path chosen in the
ADMN network to route a
packet from input at row 5 to
output at row 2 based on RSD
number format for the
alternative routing vector r 0 1 2 3Stage:
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a0(in) = a (14.74)

a0(out) = a

3
(14.75)

For the SEs at the internal stages (0 < i < n), we use the expression for the
throughput in (14.5) with N = 3

ai (in) = ai−1(out) (14.76)

ai (out) = 1 −
[

1 − ai (in)

3

]3

(14.77)

At the output stage (i = n), we have 3-to-1 concentrators. For an ADMN network
whose output concentrator accepts m packets (1 ≤ m ≤ 3), we can write the arrival
and departure probabilities at the output as

an(in) = an−1(out) (14.78)

an(out) =
m−1∑

j=1

j x j + m
3∑

j=m

x j (14.79)

where 1 ≤ m ≤ 3 is the maximum number of packets that could be accepted at the
output in one time step and x j is the probability that j packets arrived

x j =
(

3

j

)
a j

n (in) [1 − an(in)]3− j (14.80)

According to (14.3), we can write the traffic at the input of the ADMN network
as

Na(in) = a (14.81)

and the output traffic at the tagged output of the network is

Na(out) = an(out) (14.82)

where an(out) is given by (14.79).
The throughput of the ADMN network is given by

Th = Na(out) = an(out) (14.83)

The packet acceptance probability for the ADMN network is given by

pa = Th

Na(in)
(14.84)
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The delay of the ADMN network is defined as the average number of attempts
to access the desired output. The probability that the packet succeeds after k tries is
given by the geometric distribution

p(k) = pa (1 − pa)k (14.85)

The average delay time is

na =
∞∑

k=0

k p(k)

=
∞∑

k=0

k pa (1 − pa)k

= 1 − pa

pa
(14.86)

Example 14.4 Plot the throughput (Th), the access probability (pa), and the aver-
age delay (na) for the ADMN network versus the input traffic when the size of
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Fig. 14.20 Variation of the throughput, the packet acceptance probability, and the delay with the
input traffic when N = 64 for the ADMN network (solid line) and the similar-sized crossbar
network (dotted line). The output concentrator accepts only one packet
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the network is N = 64 and compare this with the similar-sized crossbar network.
Assume an output concentrator that accepts only one packet.

We evaluate the expressions for throughput, packet acceptance probability, and
delay when N = 64 and a is varied for both the ADMN network and the cross-
bar network. Figure 14.20 shows the variation of throughput, the packet acceptance
probability, and the delay with the input traffic when N = 64 for the ADMN net-
work (solid line) and the crossbar network (dotted line). We see that the crossbar
network shows superior performance for the same number of input and output ports
as expected.

14.11 Improved Logical Neighborhood (ILN)

This family of networks is based on the data manipulator network but has much
better fault tolerance capability [22]. Figure 14.21 shows an 8×8 ILN network. For
an N × N network, the number of stages is n + 1 where n = lg N , and the number
of SEs in each stage is N . Each SE is an (n + 1) × (n + 1) crossbar switch and the
number of links between the stages is (n + 1)N .

An N × N ILN network is built using 1-to-(n + 1) selectors in the input
stage (i = 0) and all internal stages (0 < i < n) have identical SEs that are
(n + 1) × (n + 1) crossbar switches. The output stage (i = n) has (n + 1)-to-1
concentrators.

The ILN network provides n! alternate paths between any input and any out-
put. For the 8 × 8 case, we have six alternate paths. As such, the network is
very fault tolerant and the blocking probability is much smaller than other MIN
networks.

SE(i, j) is connected to SE(i + 1, k) such that k is given by

Fig. 14.21 An improved
logical neighborhood
network (ILN) for N = 8 and
n = lg 8 = 3 0 1 2 3Stage:
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k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

j straight connection

C0 ( j) 0-cube connection

C1 ( j) 1-cube connection

C2 ( j) 2-cube connection

(14.87)

where 0 ≤ i < n. Figure 14.22 shows the four outputs of the switch and the opera-
tions they do on incoming packets.

14.11.1 Routing Algorithm for ILN Network

We discuss here one distributed routing algorithm that does not involve arithmetic
operations and relies only on bitwise XOR operations involving the source address
S and the destination address D. This leads to very fast routing decisions at each SE
and is very compatible with high-performance switches.

The routing vector r is given by

r = XOR (S, D) (14.88)

where the routing vector r carries the information about the desired path. The path
selected corrects the routing vector r such that all its bits are zeros to indicate that
the packet has reached the destination row address.

Each SE is able to correct a “1” bit located at any position in r . In addition, any
SE is also able to destroy an already-existing “0” in r by changing it to a “1”. This
action might be necessary in order to select an alternative route in case of contention.
The reason for this strategy will be explained in the next section.

Table 14.10 shows the outputs that should be used to establish the path based on
the numerical value of r . The number of bits that need correction by proper selection
of the output ports varies between 0 and 3. For example, if the input address were
010 and the destination address were 010, then the routing vector is r = 000 and
the straight connection should be chosen through all stages. On the other hand, if
the source address were 010 and the destination address were 101, then the routing

Fig. 14.22 Each output of an
ILN switching element
SE(i, j) performs a different
function on j

S (straight) connection

C0 connection

C1 connection

C2 connection

SE(i,j)

0

1

3

2In
pu

ts
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Table 14.10 Possible SE
outputs based on the routing
vector r

Binary value of r C2 C1 C0 S

000 x
001 x
010 x
100 x
011 x x
101 x x
110 x x
111 x x x

vector is r = 111. In that case, any of the cube connections could be used in any
order at each stage to eliminate any of the “1”s in any bit location.

The vector r carries information about the mismatch between the incoming ad-
dress and the destination address. This mismatch should decrease by one bit each
time the packet goes through each stage of the network.

As an example, let us attempt to move a packet from input 6 (110) to output 0
(000). The resulting routing vector is r = [ 1 1 0 ]. Figure 14.23 shows two possible
paths for routing a packet from input at row 6 to output at row 1 based on routing
vector r .

Stage 0: We have r = [ 1 1 0 ]. Thus we need to access ports C1 or C2. Picking
the C1 connection produces the updated routing vector r ′ = [ 1 0 0 ]. This
choice makes the packet travel from row 6 to row 4 at stage 1. On the other
hand, picking the C2 connection produces the updated routing vector r ′ =
[ 0 1 0 ]. This choice makes the packet travel from row 6 to row 2 at stage 1.

Stage 1: If routing vector at this stage is r = [ 1 0 0 ], we choose port C2.
The updated routing vector becomes r ′ = [ 0 0 0 ]. This choice makes the
packet travel from row 4 to row 0 at stage 2. If routing vector at this stage
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Fig. 14.23 Paths chosen in the ILN network to route a packet from input at row 6 to output at row 0
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is r = [ 0 1 0 ], we choose port C1. The updated routing vector becomes
r ′ = [ 0 0 0 ]. This choice makes the packet travel from row 2 to row 0 at
stage 2.

Stage 2: Since our routing vector is r = [ 0 0 0 ], we have to choose the straight
connection to route the packet to the desired output at row 0 at stage 3.

As an illustration of the richness of paths from any input to any output, Fig. 14.23
shows the paths chosen to route a packet from input at row 6 to output at row 1.

14.11.2 Path Selection Issues

The routing algorithm chosen by each SE in the ILN network is based on choosing a
connection that will change an existing “1” in r to a “0”. It was also mentioned that
contention might force the routing algorithm to change a “0” bit to “1” to choose
an alternative path. These newly created “1”s will be corrected at later stages in the
network. Let us illustrate that using a simple example. Assume only two packets, a
and b, arrive at the inputs 0 and 4, respectively, at a given slot time. Both packets
are destined to output 0. In that case, packet a will choose the straight connection
throughout switching elements SE(0,0), SE(1,0), and SE(2,0). Packet b will choose
the C2 connection for SE(0,4) and it will require the straight connection for switch-
ing elements SE(1,0) and SE(2,0). Thus, only one packet will be routed and the
others will be blocked even though there are many alternative routes to output 0.

The routing algorithm at each SE must be able to identify the alternative routes
at any stage in order to prevent this unnecessary contention and fully utilize the link
redundancy.

The intelligent routing algorithm, in effect, destroys some of the zero bits in r ,
trusting that they will be returned back to zero value at later stages. The destruction
of 0-bits is equivalent to choosing alternative routes to reach the desired output.

Figure 14.24 shows the path chosen to route a packet from input at row 6 to
output at row 0 based on routing vector r .

Fig. 14.24 All possible paths
chosen in the ILN network to
route a packet from input at
row 6 to output at row 0
based on routing vector r 0 1 2 3Stage:
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14.11.3 Analysis of ILN Network

An N × N ILN network is built using 1-to-(n + 1) selectors in the input stage
(i = 0), (n + 1) × (n + 1) crossbar SEs in the n − 1 internal stages (0 < i < n),
and (n +1)-to-1 concentrators in the output stage (i = n). Therefore, we can use the
results we obtained for the banyan and ADMN networks after some modifications.

Because we have 1-to-(n+1) selectors at stage 0, the packet arrival and departure
probabilities at the input and the outputs of each selector are given by

a0(in) = a (14.89)

a0(out) = a

n + 1
(14.90)

For the SEs at the internal stages (0 < i < n), we use the expression for the
throughput in (14.5) with N = n + 1:

ai (in) = ai−1(out) (14.91)

ai (out) = 1 −
[

1 − ai (in)

n + 1

](n+1)

(14.92)

At the output stage (i = n), we have (n + 1)-to-1 concentrators. For an ILN
network whose output concentrator accepts m packets (1 ≤ m ≤ n + 1), we can
write the arrival and departure probabilities at the output as

an(in) = an−1(out) (14.93)

an(out) =
m−1∑

j=1

j x j + m
n+1∑

j=m

x j (14.94)

where 1 ≤ m ≤ n + 1 is the maximum number of packets that could be accepted at
the output in one time step and x j is the probability that j packets arrived

x j =
(

n + 1

j

)
a j

n (in) [1 − an(in)]n+1− j (14.95)

According to (14.3), we can write the traffic at the input of the banyan network as

Na(in) = a (14.96)

and the output traffic at the tagged output of the network is

Na(out) = an(out) (14.97)

where an(out) is given by (14.94).
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The throughput of the ILN network is given by

Th = Na(out) = an(out) (14.98)

The packet acceptance probability for the ADMN network is given by

pa = Th

Na(in)
(14.99)

The delay of the ILN network is defined as the average number of attempts to
access the desired output. The probability that the packet succeeds after k tries is
given by the geometric distribution

p(k) = pa (1 − pa)k (14.100)

The average delay time is
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Fig. 14.25 Variation of the throughput, the packet acceptance probability, and the delay with the
input traffic when N = 64 for the ILN network (solid line) and the similar-sized crossbar network
(dotted line)
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na =
∞∑

k=0

k p(k)

=
∞∑

k=0

k pa (1 − pa)k

= 1 − pa

pa
(14.101)

Example 14.5 Plot the throughput (Th), the access probability (pa), and the average
delay (na) for the ILN network versus the input traffic when the size of the network
is N = 64 and compare this with the similar-sized crossbar network. Assume an
output concentrator that accepts all the packets that arrive at its two inputs.

We evaluate the expressions for throughput, packet acceptance probability, and
delay when N = 64 and a is varied for both the ILN network and the crossbar
network. Figure 14.25 shows the variation of throughput, the packet acceptance
probability, and the delay with the input traffic when N = 64 for the ILN net-
work (solid line) and the crossbar network (dotted line). We see that the crossbar
network shows superior performance for the same number of input and output ports
as expected.

Problems

Interconnection Networks

14.1 What is the main function of an interconnection network and what are the
main performance requirements of the network?

14.2 Discuss the main issues related to synchronous data transfer in the switching
fabric and between the main components of a switch.

14.3 Assume two communicating modules in the switch using synchronous clock-
ing scheme. Construct a table explaining (a) the main signal lines required
between the two modules; (b) the direction of signal on each line; and (c) the
function of each signal.
Using a timing diagram show how a packet could move between the two
modules.

14.4 To maintain data integrity using a system-wide clock, clock skew must be
controlled and clock signal integrity must be maintained. How can clock skew
be controlled?

14.5 Assume two modules exchange data using a common clock. One option is to
use a two-phase clock and the other is to use single-phase clock. Explain the
two options using timing diagrams and explain the problem of clock skew in
both of them.

14.6 Discuss the main issues related to asynchronous data transfer in the switching
fabric and between the main components of a switch.
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14.7 Assume two communicating modules in the switch using asynchronous clock-
ing scheme. Construct a table explaining (a) the main signal lines required
between the two modules; (b) the direction of signal on each line; and (c) the
function of each signal.
Using a timing diagram show how a packet could move between the two
modules.

14.8 Assume you need two transfer a packet between two blocks in the switch in
the least amount of time. What are your options and what are the advantages
and disadvantages of each option?

14.9 What are the main sources of power loss in a chip operating at very high data
rates? Is there much difference between using GaAs or CMOS logic at high
speeds?

Time Division Multiple Access (TDMA)

14.10 Explain the two main types of TDMA.
14.11 Discuss the advantages and disadvantages of static-assignment TDMA.
14.12 Discuss the advantages and disadvantages of random assignment TDMA.

Multiplexing Techniques (TDMA)

14.13 In time division switching, one media access protocol was mentioned, the
random assignment. What other types of MAC protocols could be used to
guarantee fair access to the medium in a reasonable time delay.

14.14 Perform numerical simulations of the random assignment TDS with N = 10
for variable arrival probability a between 0.1 and 1. Plot the average delay
for an input and plot the average throughput of any input.

14.15 Assume a TDS with a static priority protocol in which each user has a priority
equal to its index. Derive an expression for the probability of accessing the
medium for any user. Based on that, find the average delay that each user
experiences and the average throughput for each user.

Crossbar Interconnection Network

14.16 Explain how a path is established in the crossbar switch and explain why the
switch is nonblocking.

14.17 Discuss the need for arbitration in a crossbar network and propose some
techniques for resolving output contention. Discuss the advantages and dis-
advantages of the arbitration techniques you propose from the point of view
of hardware complexity and speed.

14.18 Assume we have N devices attached to a bus and each device has a priority
of accessing the bus equal to its index number. Thus device 0 has the least
probability, device 1 has higher probability than device 0, and so on. Derive
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an expression for the probability that device i access the bus. Having done
that, derive an expression for the delay.

14.19 Derive expressions for channel usage efficiency of packet switching using
datagram versus virtual circuit switching. Assume each packet for datagram
is composed of n1 header/trailer bytes and n2 payload bytes. For virtual cir-
cuit switching, assume n1 header/trailer bytes, n2 payload bytes, and n3 bytes
required for call establishment and tear down.

14.20 Prove equation (14.23) by estimating the probability of a packet transmitted
to the output of an SE as the sum of two probabilities: (a) only one packet
arrives on one of the input links; (b) packets arrive at both input links.

14.21 One of the necessary components of a switch is the FIFO. How can this be
implemented using an ordinary one-ported random-access memory?

14.22 One of the necessary components of a switch is a CAM (content address-
able memory). Discuss how a CAM could be implemented using specialized
hardware or using a random-access memory or groups of random-access
memories.

14.23 In input queuing switch, it was mentioned that HOL problem leads to re-
duced throughput and increased packet loss probability. Suppose a window-
ing scheme is used to examine w packets at the head of the queue instead of
only one. How can this scheme preserve the packet sequence?

14.24 In shared buffer switches, it was mentioned that the shared buffer must per-
form many read and write operations per time step. Discuss how this can be
implemented using a bank of one-ported memories that is accessible by all
inputs and outputs of the switch.

14.25 Perform numerical simulations for the crossbar network of size 8 × 8 for
variable arrival probability a between 0.1 and 1. Plot the average delay for
an input and plot the average throughput of any input.

Generalized-Cube Network (GCN)

14.26 Sketch a 4 × 4 GCN network.
14.27 Sketch a 16 × 16 GCN network.
14.28 Find the path taken by a packet in an 8 × 8 GCN network if the source row

address is S = 2 and the destination row address is D = 1.
14.29 Find the path taken by a packet in an 8 × 8 GCN network if the source row

address is S = 7 and the destination row address is D = 0.

Banyan Interconnection Network

14.30 Prove (14.32) on page 524.
14.31 Prove (14.38) on page 525.
14.32 Prove (14.41) on page 525.
14.33 Sketch a 4 × 4 banyan network.
14.34 Sketch a 16 × 16 banyan network.
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14.35 Find the path taken by a packet in an 8 × 8 banyan network if the source row
address is S = 2 and the destination row address is D = 1.

14.36 Find the path taken by a packet in an 8 × 8 banyan network if the source row
address is S = 7 and the destination row address is D = 0.

14.37 Assume a banyan network is built using 3 × 3 switching elements instead of
2 × 2. Plot the resulting network and derive an expression for the recurrence
formula.

14.38 Perform numerical simulation for an 8×8 banyan network for variable arrival
probability a between 0.1 and 1. Plot the average delay for an input and plot
the average throughput of any input.

ADMN Interconnection Network

14.39 Perform numerical simulation for an 8 × 8 ADMN network for variable ar-
rival probability a between 0.1 and 1. Plot the average delay for an input and
plot the average throughput of any input.

14.40 Perform numerical simulation for an 8 × 8 ILN network for variable arrival
probability a between 0.1 and 1. Plot the average delay for an input and plot
the average throughput of any input.

14.41 Sketch a 4 × 4 ADMN network.
14.42 Sketch a 16 × 16 ADMN network.
14.43 Find the paths taken by a packet in an 8 × 8 ADMN network if the source

row address is S = 2 and the destination row address is D = 1.
14.44 Find the paths taken by a packet in an 8 × 8 ADMN network if the source

row address is S = 7 and the destination row address is D = 0.

ILN Interconnection Network

14.45 Explore other alternative routes for the routing example given for the ILN
network.

14.46 Sketch a 4 × 4 ILN network.
14.47 Sketch a 16 × 16 ILN network.
14.48 Find the paths taken by a packet in an 8 × 8 ILN network if the source row

address is S = 2 and the destination row address is D = 1.
14.49 Find the paths taken by a packet in an 8 × 8 ILN network if the source row

address is S = 7 and the destination row address is D = 0.
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Chapter 15
Switch Modeling

15.1 Introduction

As we saw in Chapter 13, a packet switch must contain input (ingress) ports, output
(egress) ports, switch fabric, and control section. When a packet arrives at a switch,
it must be processed at the input before it can be routed to the proper switch output
port. Processing involves matching the packet header to information in a lookup
table to determine the destination and the priority and type of packet. These opera-
tions take time and the packets must be temporarily stored in input buffers.

Chapter 13 discusses several types of switches based on the placement of buffers
within each switch which includes.

1. Input queuing switch
2. Output queuing switch
3. Shared buffer switch
4. Multiple input queuing switch
5. Multiple output queuing switch
6. Multiple input and output queuing switch
7. Virtual routing/virtual queuing (VRQ) switch

The placement of the buffers and the priority queues in the switch has direct
impact on the overall switch performance.

The literature abounds with sophisticated models for all types of switches
[1–14]. Most of these models assumed an deal switch fabric in order to simplify
the analysis. This assumption is not true in reality. We saw in Chapter 14 that all the
interconnection networks in use today have limitations and the ability of a packet to
go through the SF decreases with increasing input traffic or increasing network size.

In this chapter, we illustrate how to model the performance of the three main
switch types taking into consideration the limitations of the switching fabric (SF).
We choose here to present simple and accurate analyses that take into consideration
the effect of the interconnection network. Having developed the relevant equations,
we derive expressions for the switch performance figures such as throughput, aver-
age buffer size, packet loss probability, and packet delay.

F. Gebali, Analysis of Computer and Communication Networks,
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552 15 Switch Modeling

15.2 Input Queuing Switch

Figure 15.1 shows an input queuing switch where each input port has a queue that
accepts all incoming packets for the input line.

At the beginning of each time step, packets arrive at the inputs and are stored in
the input FIFO queues. The input controller services the packets at the head of each
queue – These packets are usually called head of line (HOL) packets. The controller
sets up a path to the desired output port for each HOL packet. Sometimes the path
cannot be established due to internal or output blocking as discussed in Chapter 14
and the blocked packets remain in their respective queues.

We make the following assumptions to simplify our analysis:

1. Each input queue has one input and one output.
2. The size of the input queue is B.
3. a is the packet arrival probability for any input of the switch.
4. pa is the packet departure probability from any input queue where pa is the

packet acceptance probability of the switching fabric.
5. Packets could be served in the same time step at which they arrive.
6. Each packet has equal probability 1/N of requesting an output port.
7. Data broadcast or multicast are not implemented.
8. Packets will be lost when a packet arrives at a full input queue whose HOL packet

cannot be routed in that time step.

Under these assumptions, we can model each input queue as an M/M/1/B queue.
The arrival probability for this queue is a and the departure probability c is given by

c = pa (15.1)

where pa is the packet acceptance probability of the interconnection network used.
Notice that if a path is established for the packet, we are assured the output will
accept it. This was part of our simplifying assumptions.

Figure 15.2 shows one input queue associated with an input port. The arrival
probability a and departure probability pa are shown at the queue input and output,
respectively.

Equation (15.1) poses a problem for us. From the results of Chapter 14, we know
that the switching fabric (SF) packet acceptance probability pa depends on the traf-
fic arriving at the inputs. In other words, we can determine pa only if we knew

Fig. 15.1 The input queuing
switch
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Fig. 15.2 The arrival and
departure probabilities for
one queue of an input
queuing switch

a c = pa 

Input link To switching
fabric

Queue size = B

which input queues are occupied and demand to access the network. The state of
occupancy of the queues depends on the pa, and this is the circular argument that is
posing the problem.

Researchers and development engineers chose the easy way out by assuming the
switch fabric to have pa = 1 and dealt with each input queue in isolation. However,
this is a very optimistic assumption. We get around this problem by assuming a fixed
value for pa that we set depending on the type of SF we plan to use.

According to Equation (7.36) on page 235, we have the following expression for
the probability that the M/M/1/B queue is empty

s0 = 1 − ρ

1 − ρB+1
(15.2)

where B is the size of the input queue and ρ was identified as the distribution index
which is given by

ρ = a d

b c
= a d

b pa
(15.3)

with b = 1 − a and d = 1 − pa.
The throughput or output traffic for the input queuing switch is given by

Th = Na(out)

= a pa s0 +
B∑

i=1

pa si

= a pa s0 + pa (1 − s0) packets/time step (15.4)

where si is the probability that the queue has i packets. The first term on the RHS
is the probability that a packet arrives while the queue is empty and the second term
on the RHS is the probability that the queue has packets to transmit. Simplifying,
we get

Th = pa (1 − bs0) packets/time step (15.5)

The throughput in units of packets/s is

Th′ = Th

T
packets/s (15.6)

where T is the time step value.
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To find the efficiency of the switch, we must estimate the input traffic in units of
packets/time step. The input traffic is given by

Na(in) = 1 × a + 0 × b = a packets/time step (15.7)

The efficiency of the input queuing switch is defined as the ratio between output
traffic and input traffic:

η = Na(out)

Na(in)

= pa (1 − bs0)

a
(15.8)

According to our assumptions, packets are lost in an input queuing switch when
a packet arrives on a full queue and no packet can leave the queue. To find the lost
traffic in the switch, we must first find the probability that the queue becomes full.
Using the traffic conservation principle, the average lost traffic Na(lost) is given by

Na(lost) = Na(in) − Na(out)

= a − pa (1 − bs0) packets/time step (15.9)

The average lost traffic per second is given by

N ′
a(lost) = Na(lost)

T
(15.10)

The packet loss probability L at the input queue is given by

L = Na(lost)

Na(in)

= 1 − pa (1 − bs0)

a
(15.11)

The average queue size is given by the equation

Qa =
B∑

i=0

isi packets (15.12)
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where si is the probability that there are i packets in the input queue. si is given by
the equation

si = (1 − ρ)ρi

1 − ρB+1
; 0 ≤ i ≤ B (15.13)

The wait time, or delay, of the input queuing switch is mainly due to the input
queue. Using Little’s result, the switch delay is given by

Qa = W Th (15.14)

or

W = Qa

Th
time steps (15.15)

The delay in seconds is given by

W ′ = W T seconds (15.16)

15.2.1 Congestion in Input Queuing Switch

When the arrival probability starts to increase, congestion takes place due to the
unstable situation described below:

1. The increasing input traffic results in s0 → 0.
2. The queues start to demand access to the switching fabric.
3. The increased traffic sensed by the SF leads to decreased acceptance probabil-

ity pa.
4. Decreased pa will lead to decreased throughput at the switch outputs.
5. The decreased pa will lead to more filling of the queues.
6. Ultimately cell loss starts to occur.

15.2.2 Performance Bounds on Input Queuing Switch

Under full load conditions, the buffers of the input queuing switch become full and
we can assume

a → 1 (15.17)

s0 → 0 (15.18)

Qa → B (15.19)
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The maximum throughput is given, from (15.5), by

Th(max) = pa packets/time step (15.20)

The minimum efficiency of the switch is given, from (15.8), by

η(min) = pa (15.21)

The maximum lost traffic is given, from (15.9), by

Na(lost)max = 1 − pa packets/time step (15.22)

Packet loss probability is given, from (15.11), by

L(max) = 1 − pa (15.23)

The maximum wait time is given, from (15.15), by

W (max) = B

Th(max)
(15.24)

= B

pa
(15.25)

We see the importance of designing a good switching fabric (i.e., high packet
acceptance probability pa → 1) as a prerequisite for designing a high-performance
switch.

Example 15.1 Plot the input queuing switch performance for a 10 × 10 switch that
uses two different input buffer sizes B1 = 16 and B2 = 64 and assuming the SF
packet acceptance probability is pa = 0.7.

Figure 15.3 shows the switch throughput, efficiency, and loss probability for the
switch with two input buffer sizes. The dotted line is for B = 16 and the solid line
is for B = 64.

We note that the switch throughput saturates and becomes equal to the SF accep-
tance probability pa as soon as the input traffic a approaches pa = 0.7. This trend
is the same irrespective of the buffer size.

The switch efficiency is 100% as long as a < pa. However, when a ≈ pa, the
efficiency of both switches decreases at approximately the same rate.

The delay of both switches increases with increased input traffic since the input
buffers start to fill up. As soon as the arrival probability approaches the SF accep-
tance probability (a ≈ pa), we see that the delay of both switches saturates very
rapidly toward its maximum value. Of course, the switch with the smaller buffers
has lower delay as shown by the dotted line. Furthermore, the maximum delay of
each switch is governed by the expression
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Fig. 15.3 Performance of an input queuing switch versus the input traffic. Switch throughput,
efficiency, delay, and loss probability are plotted against input traffic. The solid line is for a switch
with input queue size B = 64 and the dotted line is for a switch with input queue size B = 16.
Switching fabric packet acceptance probability pa = 0.7

W (max) = B/pa

The packet loss probability is very small for both switches as long as the input
traffic is small. However, packet loss probability increases early on with increasing
traffic for the switch with smaller buffer size. As soon as a ≈ pa, both switches will
have large packet loss probability equal to its maximum value given by

L(max) = 1 − pa

Although the previous example was crude and employed several simplifications,
we can make one very important conclusion. The throughput of the input queu-
ing switch is limited by the performance of the switch fabric it is using. The best
throughput we can hope to achieve is given by

Th(max) ≤ pa (15.26)
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Furthermore, the maximum delay of each switch is governed by the expression

W (max) = B/pa

And the packet loss probability is given from the conservation of flow by

L = 1 − Th = 1 − pa (15.27)

15.3 Output Queuing Switch

Figure 15.4 shows an output queuing switch. In an output queuing switch, there are
input buffers and output queues.

At the beginning of each time step, packets arrive at the inputs and are stored
in the input buffers. The input controller services the packets by setting up a path
to the desired output port for each incoming packet. Sometimes the path cannot be
established due to internal or output blocking as discussed in Chapter 13. In that
case, the blocked packets remain in their buffers.

We make the following assumptions for our analysis.

1. Each input buffer has one input and one output.
2. The size of the input buffer is B1.
3. a is the packet arrival probability for any input of the switch.
4. pa is the packet departure probability from any input buffer, where pa is the

packet acceptance probability of the switching fabric.
5. Packets could be served in the same time step at which they arrive.
6. Each arriving packet has equal probability 1/N of requesting an output port.
7. Each output queue has m inputs and one output. m depends on the specific

design of the switch fabric.
8. The size of the output queue is B2.
9. The packet departure probability from the output queue is 1 assuming the queue

is not empty.
10. Data broadcast or multicast are not implemented.
11. Packets will be lost when a packet arrives at full input buffer or a full output

queue.

Fig. 15.4 The output queuing
switch

SF

Small Input
Buffers

N

1

N

1

... ...

Main Output
Queues
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The last assumption implies that HOL packets travel through the interconnection
network to the output queue even if it is full. This assumption effectively decouples
the analysis of input buffers and output queue models.

Figure 15.5 shows one output queue associated with an input port and one output
queue associated with an output port. The arrival and departure probabilities for
each queue are shown.

15.3.1 Modeling the Input Buffer

Queuing analysis of the buffers at each input port is very similar to the analysis used
for the input queue switch previously discussed. The assumptions imply the input
buffer can be treated as M/M/1/B queue since only one packet can arrive per time
step and only one packet can depart. The arrival probability at an input buffer is
given by

a1 = a (15.28)

where a is the packet arrival probability at one of the input ports. The departure
probability from an input buffer c1 is given by

c1 = pa (15.29)

where pa is the packet acceptance probability of the interconnection network used.
The probability that the input buffer is empty is given by

e1 = s0 = 1 − ρ1

1 − ρ
B1+1
1

(15.30)

Fig. 15.5 The arrival and
departure probabilities for
one input buffer and one
output queue of an output
queuing switch

a1 = a c1 = pa

c2 = 1

Input link To switching
fabric

Queue size = B1

Queue size = B2

Input Queue

a2 = Th1/m

From switching
fabric

Output linkOutput Queue

...

1
2

m
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where e1 is the probability that the input buffer is empty, B1 is the size of the input
buffer, and ρ1 was identified as the distribution index which is given by

ρ1 = a1 d1

b1 c1
(15.31)

with b1 = 1 − a1 and d1 = 1 − c1. Substituting the values of a1 and c1, we get

ρ1 = a d

b pa
(15.32)

where b = 1 − a and d = 1 − pa.
The throughput or output traffic for the input buffer is given by

Th1 = Na,1(out)

= a1 c1 e1 +
B1∑

i=1

c si

= a pa e1 + pa (1 − e1) packets/time step (15.33)

where si is the probability that the buffer has i packets. The first term on the RHS
is the probability that a packet arrives while the buffer is empty and the second term
on the RHS is the probability that the buffer has packets to transmit. Simplifying,
we get

Th1 = pa (1 − b e1) packets/time step (15.34)

The throughput in units of packets/s is

Th′
1 = Th1

T
packets/s (15.35)

where T is the time step value.
To find the efficiency of the input buffer, we must estimate the input traffic in

units of packets per time step. The input traffic is given by

Na(in) = 1 × a1 + 0 × b1 = a packets/time step (15.36)

The efficiency of the input buffer is defined as the ratio between output traffic
and input traffic:

η1 = Th1

Na(in)

= pa (1 − be1)

a
(15.37)

where b = 1 − a.
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The average lost traffic in the input buffer is given by

Na,1(lost) = Na(in) − Th1

= a − pa (1 − be1) packets/time step (15.38)

The packet loss probability at the input buffer is given by

L1 = 1 − η1

= 1 − pa (1 − be1)

a
(15.39)

The average buffer size is given by the equation

Q1 =
B1∑

i=0

i si packets (15.40)

where si is the probability that there are i packets in the input buffer. si is given by
the equation

si = (1 − ρ1)ρi
1

1 − ρ
B1+1
1

; 0 ≤ i ≤ B1 (15.41)

The distribution index ρ1 is obtained as usual for a M/M/1/B queue.
Using Little’s result, the input buffer delay is given by

Q1 = W1 Th1 packets (15.42)

or

W1 = Q1

Th1
time steps (15.43)

The delay in seconds is given by

W ′
1 = W1 T seconds (15.44)

15.3.2 Modeling the Output Queue

The assumptions we used for the switch imply that the output queue can be treated
as Mm/M/1/B queue since a maximum of m packets can arrive per time step and
only one packet can depart. The value of m depends on the switching fabric (SF)
used and the maximum number of packets that could be accepted in one time step
by the output queue. For example, if we had a GCN network, then m = 1. If we had
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a banyan network, then m = 2. If we had an ADMN network, then m = 3. If we
had an ILN network, then m = lg N + 1, where N is the number of input ports of
the switch.

The packet arrival probability at each of the m links for an output queue is de-
noted by a2. We obtain a value for a2 using the flow conservation principle which
states that

Total traffic into switching fabric ≈ Total traffic out of switching fabric

The above equation is true only if we ignore packet loss flow in the switch, which
is reasonable for most high-performance switches. Mathematically, we could write
this as

N × Th1 ≈ Nma2 (15.45)

Therefore, a2 is given by

a2 = Th1

m

= pa (1 − b e1)

m
(15.46)

Thus, if we are able to determine the throughput of the input buffers, we will be
able to proceed with the study of the output queues.

The probability of i packets arriving at an output queue is given by

ri =
(

m

i

)
ai

2 (1 − a2)m−i (15.47)

where m is the maximum number of packets that could arrive at an output queue in
one time step. The departure probability of the output queue is really simple

c2 = 1 (15.48)

Output Queue State Transition Matrix

Having found the probability ri that i packets arrive at each output port, we are now
able to write down the state transition matrix for the tagged output queue. This is a
lower Hessenberg matrix of dimension (B2 + 1) × (B2 + 1) with m subdiagonals.
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For the special case when m = 3 and B2 = 6, P2 is 7 × 7 and is given by

P2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

r0 + r1 r0 0 0 0 0 0
r2 r1 r0 0 0 0 0
r3 r2 r1 r0 0 0 0
0 r3 r2 r1 r0 0 0
0 0 r3 r2 r1 r0 0
0 0 0 r3 r2 r1 r0

0 0 0 0 r3 p2 p1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(15.49)

where the terms pi at the bottom row are such that the sum of each column must
add to unity. It was assumed that packets could be served in the same time step at
which they arrive. This explains the double term for element p11 of the matrix.

We are now able to derive the output queue performance once we solve for the
equilibrium distribution vector. The equation we have to solve is

P2 s = s (15.50)

This is an eigenvalue problem or we can convert it to a system of homogeneous
linear equations:

(P2 − I) s = 0 (15.51)

Since we have a lower Hessenberg matrix, we use forward substitution by as-
suming a value for s0 = 1, say. The above matrix gives us all the other components
of s. To get the true value for the state vector s, we use the normalizing equation

5∑

i=0

si = 1 (15.52)

Let us assume that the sum of the components that we obtained for the vector s
gives

5∑

i=0

si = x (15.53)

Then we must divide each value of s by x to get the true normalized vector that
we desire.

Output Queue Performance

The throughput of the output queue Th2 (packets/time step) is obtained from the
equation

Th2 = (1 − e2) + e2 (1 − r0) (15.54)
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where e2 is the probability that the output queue is empty. The first term on the RHS
is the probability that a packet leaves the queue, given that the output queue is not
empty. In that case, the statistics of packet arrival do not matter. The second term on
the right-hand side is the probability that a packet leaves the queue, given that it was
empty and one or more packets arrived at the output queue. Simplifying, we get

Th2 = 1 − r0 e2 packets/time step (15.55)

To find the efficiency of the output queue, we must estimate the input traffic at
that queue in units of packets/time step. The average number of packets arriving at
the tagged output is given by

Na,2(in) =
m∑

i=0

i ri (15.56)

= a2 m (15.57)

= Th1 packets/time step (15.58)

The efficiency of the output queue is given by

η2 = Th2

Na,2(in)

= Th2

Th1

= 1 − r0 e2

pa (1 − b e1)
(15.59)

According to our assumptions, packets are lost at an output queue if more than
one packet arrive when the queue is starting to fill. The maximum number of arriving
packets depends on the details of the interconnection network. To find the lost traffic
at the tagged output queue, we must first find the traffic at its input. It is a lot more
simpler to estimate the lost traffic using the traffic conservation principle:

Na,2(lost) = Na,2(in) − T h2

= Th1 − Th2 packets/time step (15.60)
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The packet loss probability is

L2 = Na,2(lost)

Na,2(in)

= 1 − Th2

Th1

= 1 − 1 − r0e2

pa (1 − b e1)
(15.61)

The average queue size is given by the equation

Q2 =
B2∑

i=0

i si packets (15.62)

where si is the probability that there are i packets in the output queue.
We can invoke Little’s result to estimate the average wait time (number of time

steps) a packet spends in the input queue before it is routed as

Q2 = W2 × Th2 packets (15.63)

where W2 is the average number of time steps that a packet spends in the queue.

W2 = Q2

Th2
time steps (15.64)

15.3.3 Putting It All Together

The throughput of the switch per output port equals the throughput of the output
queue

Th = Th2

= 1 − r0 e2 packets/time step (15.65)

The efficiency of the switch is given by

η = Na,2(out)

Na,1(in)

= Th2

a

= 1 − r0e2

a
(15.66)
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The lost traffic for the switch is given by

Na(lost) = Na,1(in) − Na,2(out)

= a − Th2

= a − 1 + r0e2 packets/time step (15.67)

Because the events of packet loss in the input buffer and output queue are not
mutually exclusive, the total packet loss probability is given by

L = L1 + L2 − L1 L2

= Na(lost)

Na(in)

= 1 − 1 − r0e2

a
(15.68)

The average queue length is given by

Qa = Q1 + Q2 packets (15.69)

The total delay of packets within the switch is given by

W = W1 + W2 time steps (15.70)

15.3.4 Performance Bounds on Output Queuing Switch

Under full load conditions, the input queue switch becomes full and we can assume

a → 1 (15.71)

e1 → 0 (15.72)

a2 → pa/m (15.73)

e2 → ε (15.74)

Q1 → B1 (15.75)

Q2 → B2 (15.76)

where 0 < ε � 1.
The maximum throughput is found from (15.65) when e2 = ε and a = 1:

Th(max) = 1 − ε
(

1 − pa

N

)N

≈ 1 − ε e−pa packets/time step (15.77)
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The minimum efficiency of the switch is given from (15.66) by

η(min) = Th(max)

Na(in)max

= 1 − ε
(

1 − pa

m

)m

≈ 1 − ε e−pa (15.78)

The maximum lost traffic is given from (15.67) by

Na(lost)max = Na(in)max − Th(max)

= ε
(

1 − pa

m

)m

≈ ε e−pa packets/time step (15.79)

where we assumed at maximum load Na(in)max = 1.
Maximum packet loss probability in (15.68) is be given by

L(max) = Na(lost)max

Na(in)max

= ε e−pa (15.80)

The maximum queue size is given by

Q(max) = B1 + B2 (15.81)

The maximum wait time is given from (15.70) by

W (max) = B1

pa
+ B2

1 − ε e−pa
(15.82)

We see the importance of designing a good switching fabric (i.e., high packet
acceptance probability pa → 1) as a prerequisite for designing a high-performance
switch.

Example 15.2 Plot the output queuing switch performance for switches; one has
B1 = 16 and B2 = 64 and the other has B1 = 4 and B2 = 16. Assume the SF is an
ADMN network with packet acceptance probability pa = 0.7.

For an ADMN network, m = 3. Figure 15.6 shows the switch throughput,
efficiency, and loss probability for the switch with two input queue sizes. The solid
line is for a switch with B1 = 16 and B2 = 64. The dotted line is for a switch with
B1 = 4 and B2 = 16.

We note that the switch throughput saturates at a maximum value Th = pa as
soon as a approaches pa. This trend is the same irrespective of the buffer size.
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Fig. 15.6 Performance of an output queuing switch versus the input traffic. Switch throughput,
efficiency, delay, and loss probability are plotted against input traffic. The solid line is for a switch
with B1 = 16 and B2 = 64. The dotted line is for a switch with B1 = 4 and B2 = 16. An ADMN
network is assumed with pa = 0.7

The switch efficiency is 100% for most of the input traffic as long as a ≤ pa.
When the input traffic is a ≈ pa, the efficiency of both switches decreases at ap-
proximately the same rate. However, the efficiency of the switch with smaller input
and output queues starts its decrease slightly before a approaches pa.

The delay of both switches increases with increased input traffic since the input
queues start to fill up. As soon as the arrival probability approaches the SF accep-
tance probability (a ≈ pa), we see that the delay of both switches saturates at its
maximum value. The switch with larger buffers shows higher delay as shown.

The switch with smaller input and output queues shows higher packet loss prob-
ability even for very small values of a. As soon as a ≈ pa, both switches give very
high and equal cell loss probabilities.

Although the previous example was crude and employed several simplifications,
we can make one very important conclusion. The throughput of the input queu-
ing switch is limited by the performance of the switch fabric it is using. The best
throughput we can hope to achieve is given by

Th(max) ≤ pa (15.83)
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And the packet loss probability is given from the conservation of flow by

L = 1 − Th = 1 − pa (15.84)

15.4 Shared Buffer Switch

Figure 15.7 shows a shared buffer switch. In a shared buffer switch, there is one
common memory that is accessed by all input and output ports. The memory is
organized, using linked lists, into several FIFO queues such that each output port
has associated with it at least one queue. At the beginning of each time step, packets
arrive at the inputs and are temporarily stored in a small buffer at each input port
until the shared memory controller services them. The shared memory controller
scans each input port in turn and appends incoming packets to the correct FIFO
queue associated with each output port.

We make the following assumptions to simplify our analysis:

1. The shared buffer is divided into N linked lists (or queues) such that each linked
list is associated with an output port.

2. The maximum size of each linked list is B and the total size of the shared memory
is N B.

3. Each queue has N inputs and one output.
4. a is the packet arrival probability at any input of the switch.
5. Packet departure probability from any queue is 1.
6. Packets could be served in the same time step at which they arrive.
7. Each arriving packet has equal probability 1/N of being appended at the end of

any linked list associated with an output port.
8. Data broadcast or multicast are not implemented.
9. Packets will be lost when more than one packet are destined to an output port

whose linked list is full.

N

1

Shared Buffer

Write
Controller

2

N

1

2

Inputs Outputs

Read
Controller
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1

2

Fig. 15.7 The shared buffer switch
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Fig. 15.8 The arrival and
departure probabilities for
one linked list associated
with an output port. The
arrival and departure
probabilities are shown

c = 1

Output link

Queue size = B

...

x = a/N
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Figure 15.8 shows one linked list associated with an output port. The arrival and
departure probabilities are shown.

Under these assumptions, we can model the shared buffer as a collection of inde-
pendent M N /M/1/B queues. We study one linked list belonging to an output port.
We call this the tagged output port. The probability that an input port has a packet
destined to the tagged output is

x = a

N
(15.85)

The probability that the tagged output port receives i packets in one time slot is
given by

ri =
(

N

i

)
xi (1 − x)N−i (15.86)

where 0 ≤ i ≤ N .
According to our assumptions, the departure probability from the linked list is

c = 1 (15.87)

Having found the arrival and departure probabilities, we are now able to write
down the state transition matrix for the tagged linked list. This is a lower Hessenberg
matrix of dimension (B + 1) × (B + 1) with B subdiagonals.

For the special case when B = 6, P is given by

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

r0 + r1 r0 0 0 0 0 0
r2 r1 r0 0 0 0 0
r3 r2 r1 r0 0 0 0
r4 r3 r2 r1 r0 0 0
r5 r4 r3 r2 r1 r0 0
r6 r5 r4 r3 r2 r1 r0

0 p5 p4 p3 p2 p1 p0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(15.88)

where the terms pi at the bottom row are given by

pi = 1 −
i∑

j=0

r j (15.89)
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This ensures that that the sum of each column of the transition matrix is unity.
For example, p2 is given by

p2 = 1 − (r0 + r1 + r2) (15.90)

The solution to the state vector is simply found by assuming a value for s0 and
then using forward substitution to find all the other components. The normalizing
condition is invoked to obtain the true value for the state vector. Once the state
vector is determined using numerical techniques, the switch performance can be
calculated.

Shared buffer performance
The throughput of the tagged output Th is given by

Th = (1 − s0) + s0 (1 − r0) (15.91)

where s0 is the probability that the linked list is empty. The first term on the RHS is
the probability that a packet leaves the queue given that the queue is not empty. In
that case, the statistics of packet arrival do not matter. The second term on the RHS
is the probability that a packet leaves the queue, given that it was empty and one or
more packets arrived at the queue input. Simplifying, we get

Th = 1 − s0r0 packets/time step (15.92)

To find the efficiency of the shared buffer switch, we must first find the traffic
arriving at the tagged linked list. The average number of packets arriving at the
tagged output is given by

Na(in) =
N∑

i=0

i ri

= x N

= a packets/time step (15.93)

The efficiency of the input queuing switch is defined as the ratio between output
traffic and input traffic:

η = Na(out)

Na(in)

= 1 − s0 r0

a
(15.94)

According to our assumptions, packets are lost in a shared buffer switch if more
than one packet arrive when the tagged linked list is starting to fill. To find the lost
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traffic at the tagged output linked list, we must first find the traffic at its input. It is
a lot more simpler to estimate the lost traffic using the traffic conservation principle

Na(lost) = Na(in) − T h

= a − (1 − s0 r0) packets/time step (15.95)

The packet loss probability is given by

L = 1 − η = 1 − 1 − s0 r0

a
(15.96)

The average queue size is given by the equation

Qa =
B∑

i=0

i si packets (15.97)

where si is the probability that there are i packets in the queue.
We can invoke Little’s result to estimate the average wait time (number of time

steps) a packet spends in the input buffer before it is routed as

Qa = W × T h (15.98)

where W is the average number of time steps that a packet spends in the queue.

W = Qa

T h
time steps (15.99)

15.4.1 Performance Bounds on Shared Buffer Switch

Under full load conditions, the buffer of the shared buffer switch becomes full and
we can assume

a → 1 (15.100)

s0 → ε (15.101)

Qa → B (15.102)

where ε � 1 . The maximum throughput is found from (15.92) when s0 = ε and
a = 1:

Th(max) = 1 − ε

(
1 − 1

N

)N

≈ 1 − ε e−1 packets/time step (15.103)
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The minimum efficiency of the switch is given from (15.94) by

η(min) = 1 − ε

(
1 − 1

N

)N

≈ 1 − ε e−1 (15.104)

The switch efficiency is very close to 100% even at full load. Maximum packet
loss probability in (15.96) will be given by

L(max) = ε

(
1 − 1

N

)N

= ε e−1 (15.105)

The maximum lost traffic is

Na(lost)max = L × Na(in)max

= ε

(
1 − 1

N

)N

= ε e−1 packets/time step (15.106)

where we assumed at maximum load Na(in)max = 1. The maximum wait time is
given by the approximate formula

W (max) = B

Th(max)

= B

1 − ε
(
1 − 1

N

)N

= B

1 − ε e−1
(15.107)

Example 15.3 Find the performance of a 10 × 10 shared buffer switch for the two
cases when the size of the linked list per output port is limited to Q = 16 and
B = 4.

Figure 15.9 shows the switch throughput, efficiency, and loss probability for the
switch with two buffer sizes. The solid line is for a switch with B = 16 and the
dotted line is for a switch with B = 4.

We note that the switch throughput shows little signs of saturation. However, the
smaller buffer size results in slightly reduced throughput at high input traffic.

The switch efficiency is 100% for most of the operating range. However, when
a ≈ 1, the efficiency of the switch with the smaller buffer decreases slightly.
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Fig. 15.9 Performance of a shared buffer switch versus the input traffic. Switch throughput, effi-
ciency, delay, and loss probability are plotted against input traffic. The solid line is for a switch
with B = 16 and the dotted line is for a switch with B = 4

The delay of both switches increases with increased input traffic since the buffers
start to fill up. The switch with the larger buffer shows increased delay compared to
the switch with the smaller buffer.

The packet loss probability increases with input traffic. However, the switch with
the smaller buffer shows higher packet loss probability even for very small input
traffic.

15.5 Comparing the Three Switches

In this section, we attempt to compare the performance of the three types of switches
discussed earlier. For a full comparison, the switch parameters should be changed
over their practical ranges. However, our aim here is simplicity.

We assume that the input queuing switch has an input buffer of size B = 16 and
the packet acceptance probability of the switching fabric is pa = 0.7.

We assume that the output queuing switch has an input buffer of size B1 = 4 and
an output queue of size B2 = 16. The packet acceptance probability of the switching
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fabric is pa = 0.7. The switch fabric is such that only three packets can be accepted
by the output buffer at any time step (i.e., m = 3).

We assume that the shared buffer switch such that each output port has a queue
of size B = 16 and the switch is of size N = 10.

Under these conditions, the simplified models for the three switches produce the
performance curves shown in Fig. 15.10.

The throughput of all switch types are identical until the input traffic approaches
a ≈ pa. After that, the shared buffer switch shows increasing throughput but the
input and output queuing switches show signs of throughput saturation.

The efficiency of all switch types are identical and equal to unity until the in-
put traffic approaches a ≈ pa. After that, the shared buffer switch still has unity
efficiency but the input and output queuing switches show signs of decreasing effi-
ciency.

The shared buffer switch shows the least delay among the three switch types for
most of the input traffic range. On the other hand, the input and output queuing
switches show almost identical delays until a ≈ pa. After that, the input buffer
switch shows larger delay.
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Fig. 15.10 Performance of an input buffered switch (solid lines), output buffer switch (dashed
lines), and shared buffer switch (dotted lines) versus the input traffic. Switch throughput, efficiency,
delay, and loss probability are plotted against input traffic
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The packet loss probability is lowest for the shared buffer switch under the
assumed parameters. The output and input queuing switches showed the highest
packet loss probability.

15.6 Modeling Other Switch Types

It is possible to use the techniques developed in the previous sections to model
other switch types such as multiple input queuing, multiple output queuing, and
multiple input and output queuing. We leave this to the problems at the end of this
chapter.

Problems

Input Queuing Switch

15.1 Explain the HOL problem in input queuing switches.
15.2 In Chapter 13, it was mentioned that there are three sources of packet loss in

an input queuing switch. Explain why our model for that switch here assumed
only one source of packet loss.

15.3 Assume an input queuing switch with an “ideal” switching fabric (SF). De-
fine what you think an ideal SF should be and explain why there is still packet
blocking, HOL, and packet loss in the switch.

15.4 An input queuing switch suffers from HOL problem. It has been proposed to
monitor the top L packets at the head of the queue and route the first one that
was accepted by the network. Analyze this situation.

15.5 An input queuing switch has the following parameters: N = 8, a = 0.2,
pa = 0.5, and B = 16. Find the switch performance.

15.6 An input queuing switch has the following parameters: N = 4, a = 0.5,
pa = 0.5, and B = 16. Find the switch performance.

15.7 An input queuing switch has the following parameters: N = 4, a = 0.8,
pa = 0.5, and B = 64. Find the switch performance.

15.8 Write down the transition matrix for an input queuing switch with an ideal
SF where pa = 1 and the output can only accept one packet from any of its
inputs at a given time step.

15.9 Assume an input queuing switch with an ideal switch fabric and output ports
that can accept any number of packets destined to them from any input port.
Do you think we still need large input buffers? Under what circumstances
can we replace the input buffer with one that holds at most only one packet
so that the input port can process it.
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Output Queuing Switch

15.10 In the output queuing switch we assumed that the output queue can accept
a maximum of L packets per time step. Based on that, do you think output
queuing has HOL problems just like input queuing switches? Explain your
answer.

15.11 In Chapter 13, it was mentioned that there are four sources of packet loss
in an output queuing switch. Explain why our model for that switch here
assumed only two sources of packet loss.

15.12 Equation (15.61) on page 565 for packet loss probability in the output queue
assumed that the maximum number of arriving packets is smaller than the
size of the buffer (m < B2). Write down the equation when m > B2.

15.13 Write down the transition matrix for an output queuing switch with an ideal
SF where pa = 1 and the output can only accept one packet from any of its
inputs at a given time step.

15.14 An output queuing switch has the following parameters: N = 8, a = 0.2,
pa = 0.5, B1 = 4, and B2 = 16. Find the switch performance.

15.15 An output queuing switch has the following parameters: N = 4, a = 0.5,
pa = 0.5, B1 = 4, and B2 = 16. Find the switch performance.

15.16 An output queuing switch has the following parameters: N = 4, a = 0.8,
pa = 0.5, B1 = 16, and B2 = 64. Find the switch performance.

15.17 In the output queue switch analysis, we effectively decoupled the input buffer
from the output queue by insisting that packets at the output buffer can move
to an output queue even if it were full. Can you remove this assumption and
analyze the switch?

Shared Buffer Switch

15.18 In Chapter 13, it was mentioned that there are two sources of packet loss in
a shared buffer switch. Explain why our model for that switch here assumed
only one source of packet loss.

15.19 Equation (15.96) on page 572 for packet loss probability in the linked list
assumed that the maximum number of arriving packets is smaller than the
size of the buffer (N < B). Write down the equation when N > B.

15.20 In the shared buffer switch, we assumed that the linked list for each output
can accept a maximum of N packets per time step. Based on that, do you
think shared buffering has HOL problems just like input queuing switches?
Explain your answer.

15.21 In a shared buffer switch, the linked list for each output can accept a max-
imum of one packet only per time step. Based on that, do you think shared
buffering has HOL problems just like input queuing switches? Explain your
answer.
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15.22 Assume that the linked list for each output of a shared buffer switch can ac-
cept a maximum of m packets only per time step (1 ≤ m ≤ N ). Write down
an expression for the transition matrix and derive the performance equations.

Other Switch Structures

15.23 Develop a Markov chain analysis of the multiple input queuing switch.
15.24 Develop a Markov chain analysis of the multiple output queuing switch.
15.25 Develop a Markov chain analysis of the multiple input and output queuing

switch.

References

1. H.J. Siegel, R.J. McMillen and P.T. Mueller, “A survey of Interconnection methods for recon-
figurable parallel processing systems”, Proc. AFIPS 1979, vol. 48, pp. 529–542, 1979.

2. F.A. Tobagi, “Fast packet switch architectures for broadband integrated services digital net-
works”, Proc. IEEE, vol. 78, pp. 133–166, 1990.

3. S.E. Butner and R. Chivukula, “On the limits of electronic ATM switching”, IEEE Networks,
vol. 10, no. 6, pp. 26–31, Nov./Dec. 1996.

4. A. Sabaa, F. Elguibaly and D. Shpak, “Design and modeling of a nonblocking input-buffer
ATM switch”, Canadian Journal of Electrical and Computer Engineering, vol. 22, pp. 87–93,
1997.

5. D. Present, C. Fayet, and G. Pujolle, “An optimal solution for ATM switches”, Computer
Networks and ISDN Systems, vol. 29, pp. 2039–2052, 1998.

6. R.Y. Awdeh and H.T. Muftah, “Survey of ATM switch architectures”, Computer Networks and
ISDN Systems, vol. 27, pp. 1567–1613, 1995.

7. J. Garcia-Haro and A. Jajszczyk, “ATM shared-memory switching architectures”, IEEE Net-
works, vol. 8, no. 4, pp. 18–26, Jul./Aug. 1994.

8. M. Murata, “Requirements on ATM switch architectures for quality-of-service guarantees”,
IEICE Transactions on Communications., vol. E81-B, pp. 138–151, 1998.

9. A. Patavinal, “Nonblocking architecture for ATM switching”, IEEE Communications Maga-
zine, pp. 38–48, Feb. 1993.

10. B. Patel, F. Schaffa, and M. Willebeek-LeMair, “The helix switch: A single chip cell switch
design”, Computer Networks and ISDN Systems, vol. 28, pp. 1791–1807, 1996.

11. “Design and evaluation of scalable shared-memory ATM switches”, IEICE Transactions on
Communications., vol. E81-B, pp. 224–236, 1998.

12. N. Endo, T. Kozaki, T. Ohuchi, H. Kuwahara, and S. Gohara, “Shared buffer memory switch
for an ATM exchange”, IEEE Trans. Commun., vol. 41, pp. 237–245, 1993.

13. J.-F. Lin and S.-D. Wang, “A high performance fault-tolerant switching network for ATM”,
IEICE Transactions on Communications., vol. E781-B, pp. 1518–1528, 1995.

14. S.-C. Yang and J.A. Silvester, “A reconfigurable ATM switch fabric for fault tolerance and
traffic balancing”, IEEE Journal on Selected Areas in Communications, vol. 9, pp. 1205–1217,
1991.



Chapter 16
Examples of Switches

16.1 Introduction

The different switch architectures discussed in Chapter 13 attempts to provide
simultaneous paths between any input to any output. The switch performance varied
depending on the location of the buffers/queues and depended on the type of switch-
ing fabric employed. As a result, different switches produced different throughput,
delay, and packet loss probability. In addition to high performance, a switch must be
able to provide extra features such as multiple service classes (differentiated service)
and multicast and broadcast capabilities.

Traffic through the switch encounters multiple contention points before a path to
the desired output could be found. The main contention points in a switch occur at
these locations:

1. At the input ports
2. Within the switching fabric
3. At the output port

Contentions lead to delay, packet loss, congestion, and reduced throughput. Like
a chain, the performance of the switch is as good as the performance of the worst-
managed contention point [1]. Multiple contention points may also introduce head
of line (HOL) blocking, a state in which a packet at the head of a queue loses
contention and so blocks packets behind it from traversing the switch fabric. In
an attempt to avoid HOL blocking, some architectures use feedback flow control.
This strategy references the available capacity of output buffers to control the flow
rate from input buffers. Multiple contention points may add complex overhead and
queue-management tasks, introducing the potential for performance degradation.

To counteract the effect of performance loss due to multiple contention points,
the switch designer must consider these approaches:

1. Increase buffer and queue sizes and place the queues at the output only.
2. Create multiple queues for each connection (per VC in ATM jargon) or service

class.
3. Employ selective packet discard based on the connection or service class.

F. Gebali, Analysis of Computer and Communication Networks,
DOI: 10.1007/978-0-387-74437-7 16, C© Springer Science+Business Media, LLC 2008
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4. Use a switching fabric that does not offer as much internal contention. Typically,
this is achieved through switching fabrics with multiple paths, dilating each link,
and speedup of the switch fabric operation.

5. Employ sophisticated routing algorithms through the switch fabric if possible.
6. Employ large buffers or queues at each contention point. This might not be prac-

tical if buffers are used within the switch fabric.
7. Use traffic shaping or flow control to reduce congestion by limiting the number

of packets coming from a certain input.

In an effort to support multiple service classes and certain quality of service
guarantees, a design might provide several queues at each input port. Each queue is
dedicated to a virtual circuit (VC) or flow. The total number of queues Q required
in the switch is given by

Q = N V (16.1)

where N is the number of ports and V is the number of virtual circuits, or flows,
supported per port. It is possible to have Q = 64 × 4000 or more.

Good switch architectures eliminate unnecessary points of contention by com-
bining a contentionless switch fabric with buffering on output which confines con-
tention to the output ports. And good switch performance is ensured only if the
output queues are managed with sophisticated traffic scheduling algorithms.

Next-generation switches are characterized by their lack of traditional switch
fabric and use of output queuing. These two features lead to single contention point
during accessing output ports. This chapter presents two next-generation designs:
the VRQ switch and N.E.T.’s Promina 4000� ATM switch.

16.2 Promina 4000 Switch

A block diagram of the Promina 4000 switch is shown in Fig. 16.1 [1, 2]. The switch
is an output queue switch since the queues are located at the output ports. This is
one of the main requirements of a high-performance switch. The switch fabric is
contention-free (contentionless) and is based on a broadcast matrix of dedicated
backplane buses.

The switch is composed of N input/output port cards and N backplane buses.
The input block in each module is a four-to-one multiplexer such that the output of
the multiplexer is connected to a dedicated backplane bus. The output block in each
module has N inputs and four outputs, as indicated. Each backplane bus is dedicated
to carry the traffic of one input port and is connected to one of the N inputs of each
output port.
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Fig. 16.1 Block diagram for
N.E.T.’s Promina 4000 ATM
switch
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16.2.1 Input Port Operation

The input port accepts data from four 155 Mbps lines. A TDMA multiplexer places
those packets on the bus dedicated to the input port. The input data are broadcast to
all the outputs and each output selects the data destined to it. Note that the switch
does not require any input buffers, thereby circumventing the HOL problem. Input
buffers are not needed since each incoming packet is broadcast to all the output ports
and each output port decides whether to accept the packet or not.

16.2.2 Backplane Bus Operation

Each bus is dedicated to an input port. The bus operates at 622 Mbps and sends its
data to all the output ports. Thus, each bus can carry one 622 Mbps channel or four
155 Mbps TDMA channels.

16.2.3 Output Port Operation

Each input port accepts data from N buses at a maximum rate of 622 × N Mbps.
The output port has a common buffer that is used to queue the packets. However,
the switch maintains information about buffer occupancy for each connection (VC).
Thus, packet discard is performed on a per-VC basis which is fair to all other con-
nections and all the service classes supported by the switch.

We see that the switch is inherently modular in architecture since the inputs do
not communicate among themselves to do their operation. Similarly, we see that the
outputs do not communicate among themselves to do their operation.
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16.2.4 Promina 4000 Features

In summary, the main features of the Promina 4000 switch are the following:

1. The switch is equipped with a per-VC accounting capability to meet goals of
fairness, QoS guarantees, and efficient buffer use.

2. The switch fabric is based on a contentionless broadcast matrix.
3. An output buffer is employed with adaptive packet discard scheme on a per-VC

basis.
4. The switch can support more than one service class for each of the standard ATM

Forum service classes (CBR, rt-VBR, nrt-VBR, ABR, and UBR).

16.3 The VRQ Switch

A block diagram of the virtual routing, virtual queuing (VRQ) switch is shown in
Fig. 16.2 [3–5]. The VRQ switch has buffers at both the input and output modules.
However, the switch could be classified as an output queue switch since all decisions
about packet transmission and scheduling are carried out at the output ports. This
is one of the main requirements of a high-performance switch. The switch fabric
is contention-free (contentionless) and is based on a broadcast matrix of dedicated
backplane buses.

An N × N VRQ switch is composed of N stacked modules where each module
contains an input port and an output port, as shown. The modules are connected
together using N backplane buses. Each bus is dedicated to an output port but can
take its data from any input port. The reader can immediately see that contention

1

N

Dedicated
input buffers

1

N

1

K

1

K

Module 1

1 N
Module N

Virtual
output queues

Dedicated
backplane buses

...
...

...
...

... ...

...

Output
selectors

Fig. 16.2 The virtual routing, virtual queuing (VRQ) high-performance switch
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could potentially occur when two or more inputs want to access a certain output.
This is prevented here since the bus is output driven, not input driven, in the sense
that each output dictates which input is to access the bus. This choice is based on
the scheduling algorithm employed at each output port.

16.3.1 Input Port Operation

The input port contains N buffers and each buffer is dedicated to an output port.
This in itself presents certain advantages and disadvantages. The main advantage is
that a buffer has to perform only one read/write operation per time step, irrespective
of the switch size.

Clever memory design ensures that each input buffer has a cycle time that is the
least possible through elimination of memory address decoders and bit line drivers.
This design ensures that buffer speed will present no bottleneck to switch perfor-
mance.

When a packet arrives, the input port controller routes it to one of the input buffer
in the module, based on the header information. The input controller also informs
the destination output port that a packet has arrived and also provides to the output
an address, or a pointer, indicating where this packet is located in the input buffer.
Thus packet routing has been virtually accomplished through this pointer exchange,
hence the name virtual routing. The packet will actually get routed out of the switch
when the output port selects it based on its scheduling algorithm.

16.3.2 Backplane Bus Operation

Each bus is dedicated to an output port and could be driven by any input port, as
shown in the figure. The output port controls access to the bus, and we say that the
bus is output driven. Thus, only one packet moves across the bus per time step and
the bus speed matches the line speed without the need to use any speedup factor or
multiplexing schemes, such as TDMA. Again, bus speed will present no bottleneck
to switch performance. In effect, the switch fabric is contentionless since it is based
on a matrix of dedicated buses that are output driven.

16.3.3 Output Port Operation

The output port contains K queues. The queues store the packet pointers and not the
actual packets, hence the name virtual queuing. The queues could be constructed
based on a per-connection basis, per-input basis, or per-service class basis. In either
case, the size of these queues is minimal since they do not store actual packets.
They only store pointer to the packets. This gives the designer much freedom in
configuring the queues based on actual traffic requirements.
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16.3.4 VRQ Features

In summary, the main features of the VRQ switch are as follows:

1. Fast input buffers: Each input module of the switch contains input buffers to store
incoming packets. Those buffers are shift register based, as opposed to RAM
based. The use of shift registers dramatically increases buffer speed due to re-
moval of address decoding circuitry, word and bit line drivers, and sense ampli-
fier delays. A shift register acts in effect as a pipelined memory with operation
speed dictated only by the speed of moving data between adjacent flip-flops.
Thus, memory delay is the sum of setup and delay times of one-bit flip-flop.
This is a much higher memory speed compared to a standard memory where the
delay time is determined by the sum of delays of the address decoder, word line,
bit line, and sense amplifier.

2. Distributed routing: The routing operation is localized in each input port.
3. Distributed scheduling algorithm: Packet selection among the different output

queues is localized in each output port. The small size of output queues enables
supporting several scheduling algorithms.

4. Contentionless switch fabric: The switching fabric is output driven which pre-
vents any contention and its operating speed matches the line rate.

5. Modularity: The switch is very modular at the input ports, output ports, and at
the backplane switch matrix itself.

6. Local communication: The input and output modules need not communicate any
state information. This removes the need for global communication between the
input ports.

7. Point-to-point bussing: The backplane buses between each output port and as-
sociated buffers at the inputs can be implemented by point-to-point optical fiber
lines. This results in fast operation and ability to directly drive output optical
fiber links.

8. Low packet loss probability: Packets can only be lost due to filled input buffers
because internal and output blocking are eliminated.

16.4 Comparing Promina 4000 with VRQ Switch

As a final note, we can compare the two switches since superficially both seem
to possess very similar structures. The main differences between the two switches
are:

1. In the VRQ switch, each backplane bus is dedicated to an output port. In the
Promina 4000 switch, each backplane bus is dedicated to an input port.

2. The buses in the VRQ switch are output driven to prevent contention and colli-
sions. Thus, contention is removed in the VRQ switch without having to resort
to time multiplexing, as in the Promina 4000 switch. The buses in the Promina
switch are input driven and contention, or collision, is avoided by using TDMA
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multiplexing. This implies high bus speed which could prove to be a bottleneck
for higher line rates.

3. The backplane bus speed in the VRQ switch exactly matches the line rate (e.g.,
155 Mbps), while the bus speed in the Promina 4000 switch is four times the
input line rate. This might prove to be a bottleneck if higher line rates are contem-
plated unless space division switching (SDM), instead of TDMA, is employed.
Of course, this will only increase the area, power, and pin count of the system.

4. The buffer location is different in the two switches. In the VRQ switch, pack-
ets are stored in input buffers. In one time step, only one read/write operation
is required as a maximum. This relaxes to a great extent the requirements on
memory cycle time. In the Promina 4000 switch, the buffer is located at each
output port. In one time step, a maximum of N write and one read operations
are required. This naturally is a severe restraint on the memory cycle time. The
option, of course, is not to share the buffer among all the connections or ser-
vice classes but to partition the memory so that the number of access requests
is reduced.

5. Buffer partitioning is also different in the two switches. In the VRQ switch,
a two-level partitioning scheme is employed. First, the buffers are distributed
among the input ports. Second, the buffers in each input port are further parti-
tioned such that each local partition stores packets destined to a particular out-
put port. In the 4000 switch, a one-level partitioning scheme is employed. The
buffers are distributed among the output ports. In one time step, a maximum of N
write and one read operations are required. This naturally is a severe restraint on
the memory cycle time. The option of course is not to share the buffer among all
the connections or service classes but to partition the memory so that the number
of access requests is reduced.

6. Traffic flow in the VRQ switch is output driven which eliminates contention
altogether. In the Promina 4000 switch, traffic flow is input driven which nor-
mally gives rise to contention. This is avoided by use of time-division multiplex-
ing and dedicated backplane buses dedicated to each input port.

16.5 Modeling the VRQ Switch

We provide in this section a simple queuing model for the VRQ switch to illustrate
its performance and to provide more examples of applying queuing theory to another
switch architecture. Figure 16.3 is a simplified version of the VRQ switch. The
diagram shows a VRQ switch with N input ports and each input port has N buffers
for storing the packets destined to the N output ports. Each output port has N virtual
queues such that there is one virtual output queue dedicated to each input port. Let
us look at a particular tagged output port. That port will have associated with it N
input buffers in each of the N input ports as shown in Fig. 16.4. The figure shows
the backplane bus connecting all the input buffers in each input to the output virtual
queue at the tagged output port.
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Fig. 16.3 A simple implementation of the virtual routing, virtual queuing (VRQ) high-
performance switch
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We make the following assumptions for our analysis.

1. There are N buffers at each input port.
2. Each input buffer has one input and one output.
3. The size of each input buffer is B1.
4. a is the packet arrival probability at any input of the switch.
5. An arriving packet is served at the same time step at which it arrives.
6. Each arriving packet has equal probability 1/N of requesting an output port.
7. There is only one service class supported by the switch. Support of different

service classes requires more elaborate modeling or can be done accurately
only using numerical techniques.

8. There are N queues at each output port such that each output queue is dedicated
to a particular input port.

9. Each output queue has N inputs and one output.
10. The size of each output queue is B2.
11. When a packet arrives at an input port, the corresponding output queue is also

updated.
12. When a packet leaves an output port, the corresponding input buffer is also

updated.
13. Data broadcast or multicast are not implemented.
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14. Packet loss occurs only in the input buffers.
15. The backplane bus is contentionless.

Based on the above assumptions, we model the input buffer in each input port
as an M/M/1/B queue and we model each output queue as an M/M/1/B queue.
Furthermore, each input buffer has an identical output queue and the buffer size for
both queues are equal and is given by

B1 = B2 = B

16.5.1 Analysis of the Input Buffer

Queuing analysis of the buffers at each input port is very similar to the analysis used
for the input buffer switch discussed in Chapter 15. The assumptions imply that the
input buffer can be treated as M/M/1/B queue since only one packet can arrive per
time step and only one packet can depart. The arrival probability at an input buffer
is given simply by

a1 = a

N
(16.2)

and the departure probability from an input buffer c1 is given by

c1 = c2 (16.3)

where c2 is the departure probability from an output queue. This equation shows
that there is close and unavoidable coupling between the input and output queues in
the VRQ switch.

The transition matrix for the input buffer is of dimension (B + 1) × (B + 1) and
is given by

P1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 − a1d1 b1c1 0 · · · 0 0 0
a1d1 f b1c1 · · · 0 0 0

0 a1d1 f · · · 0 0 0
0 0 a1d1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · b1c1 0 0
0 0 0 · · · f b1c1 0
0 0 0 · · · a1d1 f b1c1

0 0 0 · · · 0 a1d1 1 − b1c1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(16.4)



588 16 Examples of Switches

where

b1 = 1 − a1

d1 = 1 − c1

f = a1c1 + b1d1

The throughput or output traffic for the input buffer is given by

Th1 = Na,1(out)

= a1 c1 s0 +
B∑

i=1

c1 si packets/time step (16.5)

where si is the probability that the queue has i packets. The first term on the RHS
is the probability that a packet arrives while the queue is empty and the second term
on the RHS is the probability that the queue has packets to transmit. Simplifying,
we get

Th1 = c1 × (1 − b1 s0) packets/time step (16.6)

The throughput in units of packets/s is

Th′
1 = Th1

T
packets/s (16.7)

where T is the time step value.
To find the efficiency of the input buffer, we must estimate the input traffic in

units of packets per time step. The input traffic is given by

Na(in) = 1 × a1 + 0 × b1

= a1

= a

N
packets/time step (16.8)

The efficiency of the input buffer is defined as the ratio between output traffic
and input traffic

η1 = Th1

Na(in)

= c1 (1 − b1s0)

a1
(16.9)
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The average lost traffic in the input buffer is given by

Na,1(lost) = Na(in) − Na,1(out)

= a1 − c1 (1 − b1 s0) packets/time step (16.10)

The packet loss probability at the input buffer is given by

L1 = 1 − η1

= 1 − c1 (1 − b1s0)

a1
(16.11)

The average queue size is given by the equation

Q1 =
B∑

i=0

i si packets (16.12)

where si is the probability that there are i packets in the input queue.
Using Little’s result, the input buffer delay is given by

Q1 = W1 Th1 packets (16.13)

or

W1 = Q1

Th1
time steps (16.14)

The delay in seconds is given by

W ′
1 = W1 T seconds (16.15)

16.5.2 Analysis of the Output Queue

The VRQ dedicates at least one output queue for each output port. The output
scheduler selects a packet from one of the queues for service based on any of the
scheduling techniques discussed in Chapter 12.

For the case when the VRQ supports differentiated services with K classes, each
output port would dedicate K queues for each input port. Thus, each output port
would have a total of K N queues. The output scheduler selects a packet from one
of the queues for service based on any of the scheduling techniques discussed in
Chapter 12. However, we assume that K = 1 here for simplicity.

The assumptions we used for the VRQ switch imply that the output queues are
M/M/1/B type. The VRQ works on the principle that an arriving packet at an
input port updates the contents of the virtual queue of its destination output port.
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Therefore, the arrival probability at the input of a tagged output queue is given by

a2 = a1 = a

N
(16.16)

The departure probability of the output queue is really simple

c2 = c1 = 1

N
(16.17)

We conclude, therefore, that the output queue dedicated to an input port behaves
exactly like the input buffer we studied in the previous section.

We can write

Th2 = Th1

= 1

N
× (1 − b1s0) packets/time step (16.18)

η2 = η1 = 1 − b1s0

a
(16.19)

Na,2(lost) = Na,1(lost)

= 1

N
× (a − 1 + b1s0) packets/time step (16.20)

L2 = L1 = 1 − 1 − b1s0

a
(16.21)

W2 = W1 = Q1

Th1
time steps (16.22)

16.5.3 Putting It All Together

The throughput of the switch per output port equals the throughput of the output
queue

Th = Th1

= 1

N
× (1 − b1s0) packets/time step (16.23)

The lost traffic for the switch is given by

Na(lost) = Na,1(lost)

= 1

N
× (a − 1 + b1s0) packets/time step (16.24)
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The total packet loss probability is given by

L = L1

= 1 − 1 − b1s0

a
(16.25)

and the total delay of packets within the switch is given by

W = W1

= Q1

Th1
time steps (16.26)

16.5.4 Performance Bounds on VRQ Switch

Under full load conditions (a → 1), the packet arrival probability in (16.2) becomes

a1 = 1

N
(16.27)

Thus, the packet arrival and departure probabilities from any input buffer become
equal

a1 = c1 = 1

N
(16.28)

The M/M/1/B queue distribution index ρ becomes unity

ρ = a1 d1

b1 c1
= 1 (16.29)

Thus, the probability of the queue being in state i is given from the M/M/1/B
queue results in 7.17 on page 230 by

si = 1

B
0 ≤ i ≤ B (16.30)

The throughput in (16.18) under full load conditions will become

Th(max) = 1

N
×
[

1 − 1

B

(
1 − 1

N

)]
packets/time step (16.31)
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When N > 10 and B > 10, we can approximate the above equation as

Th(max) = 1

N

(
1 − 1

B

)

≈ 1

N
packets/time step (16.32)

The efficiency in (16.19) of the VRQ switch will be

η(min) = 1 − 1

B
≈ 1 (16.33)

We note that the minimum efficiency of the VRQ switch depends on the local
buffer size and not on the switch size N . This is evidence that the VRQ switch
provides isolation between users.

The lost traffic in (16.20) will be

Na(lost) = 1

NB
packets/time step (16.34)

Maximum packet loss actually decreases with the buffer size and the switch size.
It is obvious that the VRQ switch actually performs better as its size increases.

Packet loss probability in (16.21) is given by

L = 1

B
(16.35)

The maximum packet loss probability depends only on the buffer size. This is,
again, further evidence of the user isolation properties of the VRQ switch.

The maximum delay is given from (16.22) by

W (max) = NB

2
time steps (16.36)

Example 16.1 Plot the VRQ switch performance when the switch size is 10 × 10.
Choose two different buffer sizes. One switch has B = 64 and the other has
B = 16.

Figure 16.5 shows the switch throughput, efficiency, and loss probability for the
VRQ switch with two input buffer sizes. The solid line is for a switch with B = 64
and the dotted line is for a switch with B = 16.

We note that the switch throughput does not saturate even at full load. The two
switches show almost identical throughput but the one with smaller input buffers
shows slight throughput saturation near full load.

The switch efficiency is flat at its maximum value of 100% for most of the input
traffic range. The efficiency of the switch with bigger buffer size hardly shows any
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Fig. 16.5 Performance of a 10 × 10 VRQ switch versus the input traffic. Switch throughput,
efficiency, delay, and loss probability are plotted against input traffic. The solid line is for a switch
with B = 64 and the dotted line is for a switch with B = 16

signs of decreasing. The switch with smaller buffer shows slightly decreased effi-
ciency only at full load.

The delay of both switches increases slowly with increased input traffic since the
input buffers start to fill up. Near full load conditions, the switch with bigger buffer
shows higher delay because of its larger buffer size.

The switch packet loss performance is very impressive even when buffer size is
small. The switch with smaller buffer shows higher packet loss probability even for
very small values of input traffic. The switch with larger buffer hardly shows any
buffer loss for over one half of the range of input traffic.

Problems

Switch Design Strategies

16.1 What is congestion and how does it lead to degradation of throughput, packet
loss, delay, and efficiency?
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16.2 What is contention within a switch and where are the major contention points
located?

16.3 What are the steps that could be taken to counteract switch performance loss
due to contention?

16.4 How can multiple service classes be supported in an input queuing switch,
output queuing switch, and shared buffer switch?

16.5 What is the main characteristic of next-generation switches compared to tra-
ditional switches?

16.6 Check and see other examples of high-performance network switches. Com-
pare some of those switches with the two described in this chapter from the
points of view of buffer speed, contention, and support of multiple service
classes.

16.7 An important requirement in switch buffers is the ability to do multiple write
or multiple read operations in one time step. Can you discover hardware
techniques to build two buffers. One that can support many read and one
write operations per time step. The other can support one write and many
read operations per time step.

16.8 Network switches require FIFO queues. Can you design a queue out of a
regular RAM? What would be the glue logic required?

16.9 Network switches sometimes require a collection of queues with flexible
sizes. How can this be implemented such that when a queue is close to being
filled, it can take from the locations of the queues that are not quite full?

Promina 4000 Switch

16.10 Explain how the Promina 4000 switch works.
16.11 Explain why the inputs of the Promina 4000 switch do not require any input

buffers, thereby circumventing the HOL problem.
16.12 Is there any limitation on the Promina 4000 scaling (size and speed) based

on input port operation?
16.13 How is the switch fabric of the Promina 4000 switch contentionless?
16.14 Is there any limitation on the Promina 4000 scaling (size and speed) based

on backplane bus operation?
16.15 Is there any limitation on the Promina 4000 scaling (size and speed) based

on output port operation?
16.16 Explain how the scheduling algorithm is implemented in the Promina 4000

switch.

VRQ Switch

16.17 Explain how the VRQ switch works.
16.18 Explain why the input buffers of the VRQ switch do not suffer from the HOL

problem.
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16.19 Is there any limitation on the VRQ switch scaling (size and speed) based on
input port operation?

16.20 How is the switch fabric of the VRQ switch contentionless?
16.21 Is there any limitation on the VRQ switch scaling (size and speed) based on

backplane bus operation?
16.22 Is there any limitation on the VRQ switch scaling (size and speed) based on

output port operation?
16.23 Explain how the scheduling algorithm is implemented in the VRQ switch.
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Appendix A
Summation of Series

A.1 Arithmetic Series

n−1∑

i=0

(a + id) = n

2
(a + l)

where l = a + (n − 1)d

A.2 Geometric Series

n−1∑

i=0

ar i = a(1 − rn)

1 − r

∞∑

i=0

ar i = a

1 − r

where r �= 1 in the above two equations.

A.3 Arithmetic–Geometric Series

n−1∑

i=0

(a + id) r i = a(1 − rn)

1 − r
+ rd

[
1 − nrn−1 + (n − 1) rn

]

(1 − r )2
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where r �= 1 in the above two equations. If −1 < r < 1, the series converge, and
we get

∞∑

i=0

(a + id) r i = a

1 − r
+ rd

(1 − r )2

∞∑

i=0

i2 r i = r + r2

(1 − r )3

A.4 Sums of Powers of Positive Integers

n∑

i=1

i = n(n + 1)

2
(A.1)

n∑

i=1

i2 = n(n + 1)(2n + 1)

6
(A.2)

n∑

i=1

i3 = n2(n + 1)2

4
(A.3)

A.5 Binomial Series

n∑

i=0

(
n

i

)
an−i bi = (a + b)n

special cases

n∑

i=0

(
n

i

)
= 2n

n∑

i=0

(−1)i

(
n

i

)
= 0

n∑

i=0

(
n

i

)2

=
(

2n

n

)

(1 + x)q = 1 + qx + q(q − 1)

2!
x2 + q(q − 1)(q − 2)

3!
x3 · · ·

(1 + x)−1 = 1 − x + x2 − x3 + x4 − · · ·

where x < 1 in the above equations.
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A.5.1 Properties of Binomial Coefficients

(
n

i

)
=
(

n

n − i

)

(
n

i

)
= n

i

(
n − 1

i − 1

)

(
n

i

)
+
(

n

i − 1

)
=
(

n + 1

i

)

(
n

n

)
=
(

n

0

)
= 1

n! ∼
√

2πnn+ 1
2 e−n Stirling’s formula

A.6 Other Useful Series and Formulas

n∑

i=0

i

(
n

i

)
ai−1bn−i = na(a + b)n−1

n∑

i=0

i2

(
n

i

)
ai bn−i = n(n − 1)a2(a + b)n−2 + na(a + b)n−1

n∑

i=1

(
n − 1

i − 1

)
1

i
ai (1 − a)n−i = 1

n

[
1 − (1 − a)n

]

∞∑

i=0

ai

i!
= ea

∞∑

i=0

(i + 1)
ai

i!
= ea (a + 1)

lim
n→∞

(
1 ± x

n

)n
= e±x

lim
n→∞ xn

(
n

i

)
= 0 |x | < 1

(
n

i

)
+
(

n

i − 1

)
=
(

n + 1

i

)

lim
n→∞

(
1 − a

n

)n
= e−a

lim
n→∞

(
n

i

)
ai (1 − a)n−i = ai e−a

i!
a < 1

The last equation is used to derive the Poisson distribution from the binomial
distribution.



Appendix B
Solving Difference Equations

B.1 Introduction

Difference equations describe discrete-time systems just as differential equations
describe continuous-time systems. We encounter difference equations in many fields
in telecommunications, digital signal processing, electromagnetics, civil engineer-
ing, etc.

In Markov chains and many queuing models, we often get a special structure for
the state transition matrix that produces a recurrence relation between the system
states. This appendix is based on the results provided in [1], [2], and [3]. We start
first by exploring simple approaches for simple situations; then we deal with the
more general situation.

B.2 First-Order Form

Assume we have the simple recurrence equation

si = asi−1 + b (B.1)

where a and b are given. Our task is to find values for the unknown si for all values
of i = 0, 1, · · · that satisfy the above equation. This is a first-order form since each
sample depends on the immediate past value only.

Since this is a linear relationship, we assume that the solution for si is composed
of two components, a constant component c and a variable component v that depend
on i . Thus, we write the trial solution for si as

si = vi + c (B.2)

Substitute this into our recursion to get

vi + c = a (vi−1 + c) + b (B.3)
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We can group the constant parts and the variable parts together to get

c = ac + b (B.4)

vi = avi−1 (B.5)

and the value of the constant component of s is

c = b

1 − a
(B.6)

Assume a solution for vi in (B.5) of the form

vi = 	i (B.7)

Substitute this solution in the recursion formula (B.5) for vi to get

	i = a 	i−1 (B.8)

which gives

	 = a (B.9)

and vi is given by

vi = 	i = ai (B.10)

Thus, si is given from (B.2) as

si = ai + b

1 − a
(B.11)

This is the desired solution to the difference equation.

B.3 Second-Order Form

Assume that we have the simple recurrence equation

si+1 + a si + b si−1 = 0 (B.12)

This is a second-order form since each sample depends on the two most recent
past samples. Assume a solution for si of the form

si = 	i (B.13)
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The recursion formula gives

	2 + a 	 + b = 0 (B.14)

There are two possible solutions (roots) for 	, which we denote as α and β, and
there are three possible situations.

B.3.1 Real and Different Roots α �= β

When the two roots are real and different, si becomes a linear combination of these
two solutions

si = Aαi + Bβ i (B.15)

where A and B are constants. The values of A and B are determined from any
restrictions on the solutions for si , such as given initial conditions. For example, if
si represent the different components of the distribution vector in a Markov chain,
then the sum of all the components must equal unity.

B.3.2 Real and Equal Roots α = β

When the two roots are real and equal, si is given by

si = (A + iB) αi (B.16)

B.3.3 Complex Conjugate Roots

In that case, we have

α = γ + jθ (B.17)

β = γ − jθ (B.18)

si is given by

si = γ i [A cos(i θ ) + B sin(i θ )] (B.19)

B.4 General Approach

Consider the N -order difference equation given by

si =
N∑

k=0

ak si−k, i > 0 (B.20)

where we assumed si = 0 when i < 0.
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We define the one-sided z-transform of si as

S(z) =
∞∑

i=0

si z−i (B.21)

Now take the z-transform of both sides of (B.20) to obtain

S(z) − s0 =
N∑

k=0

ak z−k ×
[ ∞∑

i=0

si−k z−(i−k)

]

(B.22)

We assume that ak = 0 when k > N and we also assume that si = 0 when i < 0.
Based on these two assumptions, we can change the upper limit for the summation
over k and we can change the variable of summation of the term in square brackets
as follows.

S(z) − s0 =
∞∑

k=0

ak z−k ×
[ ∞∑

m=0

sm z−m

]

(B.23)

where we introduced the new variable m = i − k. Define the z-transform of the
coefficients ak as

A(z) =
∞∑

k=0

ak z−k (B.24)

Thus, we get

S(z) − s0 = A(z) ×
[ ∞∑

m=0

sm z−m

]

= A(z) × S(z) (B.25)

Notice that the two summations on the right-hand side are now independent.
Thus, we finally get

S(z) = s0

1 − A(z)
(B.26)

We can write the above equation in the form

S(z) = s0

D(z)
(B.27)
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where the denominator polynomial is

D(z) = 1 − A(z) (B.28)

MATLAB allows us to find the inverse z-transform of S(z) using the command

RESIDUE (a, b)

where a and b are the coefficients of the nominator and denominator polynomials
A(z) and B(z), respectively, in descending powers of z−1.

The function RESIDUE returns the column vectors r , p, and c which give the
residues, poles, and direct terms, respectively.

The solution for si is given by the expression

si = ci +
m∑

j=1

r j (p j )
(i−1) i > 0 (B.29)

where m is the number of elements in r or p vectors.
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Appendix C
Finding s(n) Using the z-Transform

When the transition matrix P of a Markov chain is not diagonalizable, we could
use the z-transform technique to find the value of the distribution vector at any time
instance s(n). An alternative, and more appealing technique, is to use the Jordan
canonic form—however, we will explain the z-transform here. The z-transform of
the distribution vector s is given by

S(z) =
∞∑

n=0

s(n) z−n (C.1)

We express s(n) in the above equation in terms of the transition matrix P using
the relation

s(n) = Pn s(0) (C.2)

Alternatively, s(n) can be written as

s(n) = P s(n − 1) (C.3)

From (C.1), the z-transform of s(n) can be written as

S(z) = s(0) +
∞∑

n=1

P s(n − 1)z−n (C.4)

Thus we have

S(z) − s(0) = z−1P
∞∑

n=1

s(n − 1) z−(n−1) (C.5)

Changing the index of summation, we get

S(z) − s(0) = z−1 PS(z) (C.6)
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We can thus obtain an expression for the z-transform of the distribution vector as

S(z) = (
I − z−1P

)−1
s(0) (C.7)

Denoting the transform pair

S(z) ⇔ s(n) (C.8)

then we can write (C.7), using (C.2), in the form

(
I − z−1P

)−1
s (0) ⇔ Pns (0) (C.9)

Since s (0) is arbitrary, we have the z-transform pair

Pn ⇔ (
I−z−1P

)−1
(C.10)

WWW: We have defined the MATLAB function invz(B,a)which accepts the
matrix B whose elements are the nominator polynomials of

(
I − z−1P

)−1
and the

polynomial a which is the denominator polynomial of
(
I − z−1P

)−1
. The function

returns the residue matrices r that correspond to each pole of the denominator.
The following two examples illustrate the use of this function.

Example C.1 Consider the Markov chain matrix

P =
⎡

⎣
0.5 0.8 0.4
0.5 0 0.3
0 0.2 0.3

⎤

⎦

Use the z-transform technique to find a general expression for the distribution
vector at step n and find its value when n = 3 and 100 assuming an initial distribu-
tion vector s(0) = [

1 0 0
]t

First, we must form

I − z−1P =
⎡

⎣
1 − 0.5z−1 −0.8z−1 −0.4z−1

−0.5z−1 1 −0.3z−1

0 −0.2z−1 1 − 0.3z−1

⎤

⎦

We have to determine the inverse of this matrix using determinants or any other
technique to obtain

(I −z−1P
)−1 = 1

D
×

⎡

⎣
1 − 0.3z−1 − 0.06z−2 0.8z−1 − 0.16z−2 0.4z−1 + 0.24z−2

0.5z−1 − 0.15z−2 1 − 0.8z−1 + 0.15z−2 0.3z−1 + 0.05z−2

0.10z−2 0.2z−1 − 0.10z−2 1 − 0.5z−1 − 0.40z−2

⎤

⎦
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where

D = (
1 − z−1

) (
1 + 0.45z−1

) (
1 − 0.25z−1

)

We notice that the poles of this matrix are the eigenvalues of P. We now have to
find the inverse z-transform of

(
I − z−1P

)−1
which can be done on a term-by-term

basis [1] or by using the MATLAB function invz(B,a) [1]:

Pn =
⎡

⎣
0.59 0.59 0.59
0.32 0.32 0.32
0.09 0.09 0.09

⎤

⎦+

(−0.45)n

⎡

⎣
0.27 −0.51 0.06

−0.37 0.70 −0.08
0.10 −0.19 0.02

⎤

⎦+

(0.25)n

⎡

⎣
0.14 −0.08 −0.64
0.05 −0.02 −0.24

−0.19 0.10 0.88

⎤

⎦ n = 0, 1, . . .

We notice that the matrix corresponding to the pole z−1 = 1 is column stochastic
and all its columns are equal. For the two matrices corresponding to the poles z−1 =
−0.45 and 0.25, the sum of each column is exactly zero.

s(3) is given from the above equation by substituting n = 3 in the expression
for Pn:

s(3) = P3s(0) = s(3) =
⎡

⎣
0.57
0.36
0.08

⎤

⎦

t

s(100) is given by

s(100) = P100s(0) =
⎡

⎣
0.59
0.32
0.09

⎤

⎦

t

Example C.2 Consider the Markov chain matrix

P =
⎡

⎣
0.2 0.4 0.4
0.8 0.1 0.4
0 0.5 0.2

⎤

⎦

Use the z-transform technique to find a general expression for the distribution
vector at step n and find its value when n = 7 for an initial distribution vector
s(0) = [

1 0 0
]t
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First, we must form

I − z−1P =
⎡

⎣
1 − 0.2z−1 −0.4z−1 −0.4z−1

−0.8z−1 1 − 0.1z−1 −0.4z−1

0 −0.5z−1 1 − 0.2z−1

⎤

⎦

We have to determine the inverse of this matrix using determinants or any other
techniques to obtain

(I −z−1P
)−1 = 1

D
×

⎡

⎣
1 − 0.3z−1 − 0.18z−2 0.4z−1 + 0.12z−2 0.4z−1 + 0.12z−2

0.8z−1 − 0.16z−2 1 − 0.4z−1 + 0.40z−2 0.4z−1 + 0.24z−2

0.40z−2 0.5z−1 − 0.10z−2 1 − 0.3z−1 − 0.30z−2

⎤

⎦

where

D = (
1 − z−1) (1 + 0.3z−1) (1 + 0.2z−1)

We notice that the poles of this matrix are the eigenvalues of P. We now have to
find the inverse z-transform of

(
I − z−1P

)−1
which can be done on a term-by-term

basis [1] or by using the function invz(B,a):

Pn =
⎡

⎣
0.33 0.33 0.33
0.41 0.41 0.41
0.26 0.26 0.26

⎤

⎦+

(−0.3)n

⎡

⎣
0.0 0.0 0.0

−3.08 1.92 0.92
3.08 −1.92 −0.92

⎤

⎦+

(−0.2)n

⎡

⎣
0.67 0.67 0.67
2.67 2.67 2.67

−3.33 −3.33 −3.33

⎤

⎦ n = 0, 1, . . .

We notice that the matrix corresponding to the pole z−1 = 1 is column stochastic
and all its columns are equal. For the two matrices corresponding to the poles z−1 =
−0.3 and 0.2, the sum of each column is exactly zero.

s(7) is given from the above equation as

s(7) = P7s(0)



Reference 611

or

s(7) =
⎡

⎣
0.33
0.41
0.26

⎤

⎦

Problems

C.1 Use the z-transform to find the distribution vector at any time instant n for the
transition matrix

⎡

⎣
0.2 0.4 0.4
0.8 0.1 0.4
0 0.5 0.2

⎤

⎦

C.2 Use the z-transform to find the distribution vector at any time instant n for the
transition matrix

[
0.5 0.3
0.5 0.7

]

C.3 Use the z-transform to find the distribution vector at any time instant n for the
transition matrix

⎡

⎢⎢
⎣

0.2 0.3 0.5 0.6
0.3 0.1 0.2 0.1
0.5 0.1 0.1 0.2
0 0.5 0.2 0.1

⎤

⎥⎥
⎦

C.4 Use the z-transform to find the distribution vector at any time instant n for the
transition matrix

⎡

⎣
0.1 0.4 0.1
0.7 0 0.3
0.2 0.6 0.6

⎤

⎦

Reference

1. V.K. Ingle and J.G. Proakis, Digital Signal Processing Using MATLAB, Brooks/Cole, Pacific
Grove, CA, 2000.



Appendix D
Vectors and Matrices

D.1 Introduction

The objective of this appendix is to briefly review the main topics related to ma-
trices since we encounter them in most of our work on queuing theory. There are
excellent books dealing with this subject and we refer the reader to them for a more
comprehensive treatment. Perhaps one of the best books on matrices is [1]. This
book is not only easy to read, but the author’s writing style and insights make the
topic actually enjoyable. The reader that wants to read a comprehensive book, albeit
somewhat dry, could consult [2].

D.2 Scalars

A scalar is a real or complex number. We denote scalars in this book by lower-case
letters or Greek letters. Sometimes, but not too often, we use upper-case letters to
denote scalars.

D.3 Vectors

A vector is an ordered collection of scalars v1, v2, · · · , which are its components. We
use bold lower-case letters to indicate vectors. A subscript on a vector will denote a
particular component of the vector. Thus the scalar v2 denotes the second component
of the vector v. Usually, we say v is a 3-vector to signify that v has three components.

A vector v could have its component values change with the time index n. At
time n, that vector will be denoted by v(n).

As an example, a vector that has only three components is written as

v =
⎡

⎣
v1

v2

v3

⎤

⎦ (D.1)

613
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To conserve space, we usually write a column vector in the following form

v = [
v1 v2 v3

]t
(D.2)

where the superscript t indicates that the vector is to be transposed by arranging the
components horizontally instead of vertically.

A vector is, by default, a column vector. A row vector r could be obtained by
transposing v

r = vt = [
v1 v2 v3

]
(D.3)

D.4 Arithmetic Operations with Vectors

Two vectors can be added if they have the same number of components

v + w =
⎡

⎣
v1 + w1

v2 + w2

v3 + w3

⎤

⎦ = [
(v1 + w1) (v2 + w2) (v3 + w3)

]t
(D.4)

A vector can be multiplied by a scalar if all the vector components are multiplied
by the same scalar as shown by

a v = [
av1 av2 av3

]t
(D.5)

A row vector can multiply a column vector as long as the two vectors have the
same number of components:

r c = [
r1 r2 r3

]
⎡

⎣
c1

c2

c3

⎤

⎦ (D.6)

= r1 c1 + r2 c2 + r3 c3 (D.7)

The dot product of a vector is just a scalar that is defined as

v · w = v1 w1 + v2 w2 + v3 w3 (D.8)

where corresponding components are multiplied together.
Two vectors x and y are said to be orthogonal if their dot product vanishes:

x · y = 0
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D.5 Linear Independence of Vectors

The two vectors x1 and x2 are said to be linearly independent or simply independent
when

a1x1 + a2x2 = 0 (D.9)

is true if and only if

a1 = 0

a2 = 0

D.6 Matrices

Assume we are given this set of linear equations

a11 x1 + a12 x2 + a13 x3 = b1

a21 x1 + a22 x2 + a23 x3 = b2 (D.10)

a31 x1 + a32 x2 + a33 x3 = b3

We can write the equations in the form

⎡

⎣
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤

⎦

⎡

⎣
x1

x2

x3

⎤

⎦ =
⎡

⎣
b1

b2

b3

⎤

⎦ (D.11)

where the first equation is obtained by multiplying the first row and the vector x and
the second equation is obtained by multiplying the second row and the vector x, and
so on. A concise form for writing the system of linear equations in (D.10) is to use
vectors and matrices:

Ax = b (D.12)

The coefficient matrix of this system of equations is given by the array of numbers

A =
⎡

⎣
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤

⎦ (D.13)

A matrix with m rows and n columns is called a matrix of order m × n or simply
an m × n matrix. When m = n, we have a square matrix of order n. The elements
aii constitute the main diagonal of A.
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D.7 Matrix Addition

If A is an m × n matrix and B is an m × n matrix, then we can add them to produce
an m × n matrix C

C = A + B (D.14)

where the elements of C are given by

ci j = ai j + bi j (D.15)

with 1 ≤ i ≤ m and 1 ≤ j ≤ n.

D.8 Matrix Multiplication

If A is an l × m matrix and B is an m × n matrix, then we can multiply them to
produce an l × n matrix C

C = A B (D.16)

where the elements of C are given by

ci j =
m∑

k=1

aik bk j (D.17)

with 1 ≤ i ≤ l and 1 ≤ j ≤ n.

D.9 Inverse of a Matrix

Given the matrix A, its left inverse is defined by the equation

LA = I (D.18)

The right inverse is defined by the equation

AR = I (D.19)

When A is square, the left and the right inverses are equal and we denote the
inverse as A−1, which satisfies the equations

AA−1 = A−1A = I (D.20)
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The inverse of the matrix is found by treating the above equation as a system
of simultaneous equations in the unknown matrix A−1. The matrix A−1 is first
written as

A−1 = [
a1 a2 · · · an

]
(D.21)

where n is the dimension of A. The i th column ai of A−1 is treated as an unknown
vector that is to be found from the equation

A ai = [
0 · · · 0 1 0 · · · 0

]t
(D.22)

where the vector on the RHS has 1 in the i th location. Gauss elimination is a useful
technique for finding the inverse of the matrix.

Not all matrices have inverses. A square matrix has an inverse only if its rank
equals the number of rows (rank is explained Section D.11).

D.10 Null Space of a Matrix

Given an m ×n matrix A, a nonzero n-vector x is said to be a null vector for A when

Ax = 0 (D.23)

All possible solutions of the above equation form the null space of A, which we
denote by null (A). If n is the number of all possible and independent solutions, then
we have

n = null (A) (D.24)

Finding the null vectors x is done by solving (D.23) as a system of homogeneous
linear equations.

MATLAB offers the function null to find all the null vectors of a given ma-
trix. The function null(A) produces the null space basis vectors. The function
null(A,’r’) produces the null vectors in rational format for presentation pur-
poses. For example

A =
⎡

⎣
1 2 3
1 2 3
1 2 3

⎤

⎦

null(A,′ r ′) =
⎡

⎣
−2 −3

1 0
0 1

⎤

⎦
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D.11 The Rank of a Matrix

The maximum number of linearly independent rows or columns of a matrix A is the
rank of the matrix. This number r is denoted by

r = rank (A) (D.25)

A matrix has only one rank regardless of the number of rows or columns. An
m × n matrix (where m ≤ n) is said to be full rank when rank(A) = m.

The rank r of the matrix equals the number of pivots of the matrix when it is
transformed to its echelon form (see Section D.19.3 for definition of echelon form).

D.12 Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors apply only to square matrices. Consider the special
situation when we have

Ax = 	x (D.26)

The number 	 is called the eigenvalue and x is called the eigenvector. Math
packages help us find all possible eigenvalues and the corresponding eigenvectors
of a given matrix.

We can combine all the eigenvectors into the eigenvector matrix X whose
columns are the eigenvectors and we could write

A X = X D (D.27)

where

X = [
x1 x2 · · · xn

]
(D.28)

D =

⎡

⎢⎢⎢
⎣

	1 0 · · · 0
0 	2 · · · 0
...

...
. . .

...
0 0 · · · 	n

⎤

⎥⎥⎥
⎦

(D.29)

When the inverse X−1 exists, we can diagonalize A in the form

A = X D X−1 (D.30)
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D.13 Diagonalizing a Matrix

We say that the square matrix A is diagonalized when it can be written in the form
(D.30). A matrix that has no repeated eigenvalues can always be diagonalized. If
some eigenvalues are repeated, then the matrix might or might not be diagonalizable.

A general rule for matrix diagonalization is as follows: A matrix is diagonalizable
only when its Jordan canonic form (JCF) is diagonal. Section 3.14.1 on page 103
discusses the Jordan canonic form of a matrix.

D.14 Triangularizing a Matrix

Sometimes it is required to change a given matrix A to an upper triangular matrix.
The resulting matrix is useful in many applications such as

1. Solving a system of linear equations.
2. Finding the eigenvector of a matrix given an eigenvalue.
3. Finding the inverse of a matrix.

Householder or Givens techniques can be used to triangularize the matrix. We
illustrate Givens technique here only. The idea is to apply a series of plane rotation,
or Givens rotation, matrices on the matrix in question in order to create zeros below
the main diagonal. We start with the first column and create zeros below the element
a11. Next, we start with the second column and create zeros below the element a22

and so on. Each created zero does not disturb the previously created zeros. Further-
more, the plane rotation matrix is very stable and does not require careful choice of
the pivot element. Section D.19.7 discusses the Givens plane rotation matrices.

Assume, as an example, a 5 × 5 matrix A and we are interested in eliminating
element a42, we choose the Givens rotation matrix G42

G42 =

⎡

⎢⎢⎢⎢
⎣

1 0 0 0 0
0 c 0 s 0
0 0 1 0 0
0 −s 0 c 0
0 0 0 0 1

⎤

⎥⎥⎥⎥
⎦

(D.31)

where c = cos θ and s = sin θ . Premultiplying a matrix A by G42 modifies only
rows 2 and 4. All other rows are left unchanged. The elements in rows 2 and 4
become

a2 j = c a2 j + s a4 j (D.32)

a4 j = −s a2 j + c a4 j (D.33)
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The new element a42 is eliminated from the above equation if we have

tan θ = a42

a22
(D.34)

The following MATLAB code illustrates how an input matrix is converted to an
upper triangular matrix.

%File: givens.m
%The program accepts a matrix performs a seriesof
%Givens rotations to transform the matrix into an
%upper-triangular matrix.
%The new matrix is printed after eachzero is created.
%
%Input matrix to be triangularized
A=[-0.6 0.2 0.0

0.1 -0.5 0.6
0.5 0.3 -0.6]

n=3;
%iterate for first n-1 columns
for j=1:n-1
%cancel all subdiagonal elements
%in column j
for i=j+1:n

%calculate theta
theta=atan2(q(i,j),q(j,j))
for k=j:n

temp_x= A(j,k)*cos(theta)+A(i,k)*sin(theta);
temp_y=-A(j,k)*sin(theta)+A(i,k)*cos(theta);
%update new elements in rows i and j
A(j,k) = temp_x;
A(i,k) = temp_y;

end
A %print q after each iteration.

end
end

An example of using the Givens rotation technique is explained in the next
section.

D.15 Linear Equations

A system of linear equations has the form

Ax = b (D.35)
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where the coefficient matrix A is a given n × n nonsingular matrix so that the
system possesses a unique solution. The vector b is also given. The unknown vector
x is to be found. The system is said to be homogeneous when b is zero, otherwise
the system is said to be nonhomogeneous. Before we discuss methods for obtaining
the solution to the above equation, we define first some elementary row operations
[3], [2]:

1. Interchange of two rows.
2. Multiplication of a row by a nonzero constant.
3. Addition of a constant multiple of one row to another row.

Each of the above elementary row operations is implemented by multiplying
the matrix from the left by an appropriate matrix E called an elementary matrix.
The three elementary matrices corresponding to the above three elementary row
operations are illustrated below for 4 × 4 matrices [4]:

⎡

⎢⎢
⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤

⎥⎥
⎦ ,

⎡

⎢⎢
⎣

1 0 0 0
0 a 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ ,

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
a 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ (D.36)

There are two classes of numerical methods for finding a solution. The direct
methods guarantee to find a solution in one step. This is the recommended approach
for general situations and for small values of n. The iterative methods start with an
assumed solution then try to refine this assumption until the succeeding estimates
of the solution converge to within a certain error limit. This approach is useful for
large values of n and for sparse matrices where A has a large number of zeros.
The advantage of iterative solutions is that they practically eliminate arithmetic
roundoff errors and produce results with accuracy close to the machine precision
[5]. We discuss the two approaches in the following sections. We refer the reader
to Appendix E for a discussion of the techniques used by MATLAB to numerically
find the solution.

In the following section, we review the useful techniques for solving systems of
linear equations.

D.15.1 Gauss Elimination

Gauss elimination solves a system of linear equations by transforming A into upper
triangular form using elementary row operations. The solution is then found using
back-substitution. To create a zero at position (2,1), we need to multiply row 2 by
a21/a11, then subtract this row from row 1. This is equivalent to a row operation
matrix of the form
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E21 =
⎡

⎣
1 0 0
e 1 0
0 0 1

⎤

⎦ with e = −a21

a11
(D.37)

The reader could verify that this matrix performs the desired operation and cre-
ates a zero at position (2,1).

We illustrate this using an example of a 3 × 3 system for a matrix with rank 2:

⎡

⎣
−0.5 0.3 0.2
0.3 −0.4 0.5
0.2 0.1 −0.7

⎤

⎦

⎡

⎣
s0

s1

s2

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦ (D.38)

Step 1 Create a zero in the (2,1) position using the elementary matrix E21

E21 =
⎡

⎣
1 0 0
r 1 0
0 0 1

⎤

⎦ with e = −a21

a11

which gives

T1 = E21A =
⎡

⎣
−0.5 0.3 0.2

0 −0.22 0.62
0.2 0.1 −0.7

⎤

⎦

Step 2 Create a zero in the (31) position using the elementary matrix E31

E31 =
⎡

⎣
1 0 0
0 1 0
r 0 1

⎤

⎦ with r = −a31

a11

which gives

T2 = E31T1 =
⎡

⎣
−0.5 0.3 0.2

0 −0.22 0.62
0 0.22 −0.62

⎤

⎦

Step 3 Create a zero in the (3, 2) position using the elementary matrix E32

E32 =
⎡

⎣
1 0 0
0 1 0
0 e 1

⎤

⎦with e = −a32

a22
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which gives

T3= E32T2 =
⎡

⎣
−0.5 0.3 0.2

0 −0.22 0.62
0 0 0

⎤

⎦

Note that the triangularization operation produced a row of zeros, indicating
that the rank of this matrix is indeed 2.

Step 4 Solve for the components of s assuming s3 = 1

s = [
2.0909 2.8182 1

]

After normalization, the true state vector becomes

s = [
0.3538 0.4769 0.1692

]

D.15.2 Gauss–Jordan Elimination

Gauss–Jordan elimination is a powerful method for solving a system of linear equa-
tions of the form

Ax = b (D.39)

where A is a square matrix of dimension n × n and x and b are column vectors with
n components each. The above equation can be written in the form

Ax = Ib (D.40)

where I is the n × n unit matrix.
We can find the unknown vector x by multiplying by the inverse of matrix A to

get the solution

x = A−1b (D.41)

It is not recommended to find the inverse as mentioned above. Gauss elimination
and Gauss–Jordan elimination techniques are designed to find the solution without
the need to find the inverse of the matrix. This solution in the above equation can be
written in the form

Ix = A−1b (D.42)

Comparing (D.40) to (D.42), we conclude that we find our solution if some-
how we were able to convert the matrix A to I using repeated row operation.
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Gauss–Jordan elimination does exactly that by constructing the augmented matrix[
A I

]
and converting it to the matrix

[
I A−1

]
.

Example D.1 Solve the following set of linear equations:

2x1 −x2 = 0
−x1 +2x2 −x3 = 3

−x2 +2x3 = 2

We have

A =
⎡

⎣
2 −1 0

−1 2 −1
0 −1 2

⎤

⎦

b = [
0 3 2

]t

The augmented matrix is

[
A I

] =
⎡

⎣
2 −1 0 1 0 0

−1 2 −1 0 1 0
0 −1 2 0 0 1

⎤

⎦

→
⎡

⎣
2 −1 0 1 0 0
0 3 −2 1 2 0
0 −1 2 0 0 1

⎤

⎦ row 1 + 2 row 2

→
⎡

⎣
2 −1 0 1 0 0
0 3 −2 1 2 0
0 0 4 1 2 3

⎤

⎦ row 2 + 3 row 3

So far, we have changed our system matrix A into an upper triangular matrix.
Gauss elimination would be exactly that and our solution could be found by forward
substitution.

Gauss–Jordan elimination continues by eliminating all elements not on the main
diagonal using row operations:

[A I ] →
⎡

⎣
6 0 −2 4 2 0
0 3 −2 1 2 0
0 0 4 1 2 3

⎤

⎦ 3 row 1 + row 2

→
⎡

⎣
12 0 0 9 6 3

0 3 −2 1 2 0
0 0 4 1 2 3

⎤

⎦ 2 row 1 + row 3

→
⎡

⎣
12 0 0 9 6 3

0 6 0 3 6 3
0 0 4 1 2 3

⎤

⎦ 2 row 2 + row 3
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Now we can simplify to get the unit matrix as follows

[
I A−1

] =
⎡

⎣
1 0 0 3

4
1
2

1
4

0 1 0 1
2 1 1

2
0 0 1 1

4
1
2

3
4

⎤

⎦

As a result, we now know the matrix A−1, and the solution to our system of
equations is given by

x = A−1b

= [
2 4 3

]t

D.15.3 Row Echelon Form and Reduced Row Echelon Form

The row echelon forms tells us the important information about a system of lin-
ear equations such as whether the system has a unique solution, no solution, or an
infinity of solutions.

We start this section with a definition of a pivot. A pivot is the first nonzero
element in each row of a matrix. A matrix is said to be in row echelon form if it has
the following properties [7]:

1. Rows of all zeros appear at the bottom of the matrix.
2. Each pivot has the value 1.
3. Each pivot occurs in a column that is strictly to the right of the pivot above it.

A matrix is said to be in reduced row echelon form if it satisfies one additional
property

4. Each pivot is the only nonzero entry in its column.

MATLAB offers the function rref to find the reduced row echelon form of a
matrix.

Consider the system of equations

x1 +2x2 +3x3 = 1
2x1 +3x2 +4x3 = 4
3x1 +3x2 +5x3 = 3

The augmented matrix is given by

[
A b

] =
⎡

⎣
1 2 3 1
2 3 4 4
3 3 5 3

⎤

⎦
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The reduced echelon form is given by

R = rref(A, b)

=
⎡

⎣
1 0 0 2
0 1 0 4
0 0 1 −3

⎤

⎦

Thus the solution to our system of equations is

x = [
1 4 −3

]t

Let us now see the reduced echelon form when the system has no solution:

3x1 +2x2 +x3 = 1
2x1 +x2 +x3 = 0
6x1 +2x2 +4x3 = 6

The augmented matrix is given by

[
A b

] =
⎡

⎣
3 2 1 3
2 1 1 0
6 2 4 6

⎤

⎦

The reduced echelon form is given by

R = rref(A, b)

=
⎡

⎣
1 0 1 0
0 1 −1 0
0 0 0 1

⎤

⎦

The last equation implies that

0x1 + 0x2 + 0x3 = 1

There are no values of x1, x2, and x3 that satisfy this equation and hence the
system has no solution.

The following system has an infinite number of solutions.

3x1 +2x2 +x3 = 3
2x1 +x2 +x3 = 0
5x1 +3x2 +2x3 = 3
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The augmented matrix is given by

[
A b

] =
⎡

⎣
3 2 1 3
2 1 1 0
5 3 2 3

⎤

⎦

The reduced echelon form is given by

R = rref(A, b)

=
⎡

⎣
1 0 1 −3
0 1 −1 6
0 0 0 0

⎤

⎦

Thus we have two equations for three unknowns and we could have infinity so-
lutions.

D.16 Direct Techniques for Solving Systems of Linear Equations

Direct techniques for solving systems of linear equations are usually the first one
attempted to obtain the solution. These techniques are appropriate for small matrices
where computational errors will be small. In the next section, we discuss iterative
techniques which are useful for large matrices.

D.16.1 Givens Rotations

Givens rotations operation performs a number of orthogonal similarity transforma-
tions on a matrix to make it an upper triangular matrix. Another equivalent technique
is the Householder transformation; but we will illustrate the Givens technique here.
The technique is very stable and does not suffer from the pivot problems of Gauss
elimination. We start with the equilibrium steady-state Markov chain equation

P s = s (D.43)

and write it in the form

(P − I) s = 0 (D.44)

A s = 0 (D.45)

where 0 is a zero column vector. Thus, finding s amounts to solving a homogeneous
system of n linear equations in n unknowns. The system has a nontrivial solution
if the determinant of A is zero. This is assured here since the determinant of the
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matrix is equal to the product of its eigenvalues. Here, A has a zero eigenvalue,
which results in a zero determinant and this guarantees finding a nontrivial solution.

Applying a series of Givens rotations [6] will transform A into an upper triangu-
lar matrix T such that

T s = 0 (D.46)

We are now able to do back-substitution to find all the elements of s. The last
row of T could be made identically zero since the rank of T is n − 1. We start our
back-substitution by ignoring the last row of T and assuming an arbitrary value for
sn = 1, then proceed to evaluate sn−1, and so on. There still remains one equation
that must be satisfied:

n∑

i=1

si = 1 (D.47)

Let us assume that the sum of the components that we obtained for the vector s
gives

n∑

i=1

si = b (D.48)

then we must divide each value of s by b to get the true normalized vector that we
desire.

Example D.2 Use Givens method to find the equilibrium state vector state s for the
Markov chain with transition matrix given by

P =
⎡

⎣
0.4 0.2 0
0.1 0.5 0.6
0.5 0.3 0.4

⎤

⎦

Step 1 Obtain the matrix A = P − I

A =
⎡

⎣
−0.6 0.2 0.0

0.1 −0.5 0.6
0.5 0.3 −0.6

⎤

⎦

Step 2 Create a zero in the (2, 1) position using the Givens rotation matrix G21

G21 =
⎡

⎣
c s 0

−s c 0
0 0 1

⎤

⎦ with θ = tan−1 0.1

−0.6
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which gives

T1 = G21A =
⎡

⎣
0.6083 −0.2795 0.0986
0 0.4603 −0.5918
0.5 0.3 −0.6

⎤

⎦

Step 3 Create a zero in the (3, 1) position using the Givens rotation matrix G31

G31 =
⎡

⎣
c 0 s
0 1 0

−s 0 c

⎤

⎦ with θ = tan−1 0.5

0.6083

which gives

T2 = G31T1 =
⎡

⎣
0.7874 −0.0254 −0.3048
0 0.4603 −0.5918
0 0.4092 −0.5261

⎤

⎦

Step 4 Create a zero in the (3, 2) position using the Givens rotation matrix G32

G32 =
⎡

⎣
1 0 0
0 c s
0 −s c

⎤

⎦with θ = tan−1 0.4092

0.4603

which gives

T3 = G32T2 =
⎡

⎣
0.7874 −0.0254 −0.3048
0 0.6159 −0.7919
0 0 0

⎤

⎦

Step 5 Solve for the components of s assuming s3 = 1

s = [
0.3871 1.2857 1

]

After normalization, the true state vector becomes

s = [
0.1448 0.4810 0.3741

]

D.17 Iterative Techniques

Iterative techniques continually refine the estimate of the solution while at the same
time suppressing computation noise. Thus, the answer could be accurate within the
machine precision. Iterative techniques are used when the system matrix is large and
sparse. This is a typical situation in Markov chains and queuing theory.
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D.17.1 Jacobi Iterations

We start with the steady-state Markov chain equation

P s = s (D.49)

The matrix P is broken down as the sum of three components

P = L + D + U (D.50)

where L is the lower triangular part of P, D is the diagonal part of P, and U is the
upper triangular part of P. Thus, our steady-state equation can be written as

(L + D + U) s = s (D.51)

We get Jacobi iterations if we write the above equation as

D s = (I − L − U) s (D.52)

where I is the unit matrix and it is assumed that P has nonzero diagonal elements.
The technique starts with an assumed solution s0, then iterates to improve the guess
using the iterations

sk+1 = D−1(I − L − U) sk (D.53)

Each component of s is updated according to the equation

sk+1
i = 1

pii

⎛

⎝sk
i −

i−1∑

j=0

pi j sk
j −

n−1∑

j=i+1

pi j sk
j

⎞

⎠ (D.54)

D.17.2 Gauss–Seidel Iterations

We get Gauss–Seidel iterations if we write (D.51) as

(D + L) s = (I − U) s (D.55)

The technique starts with an assumed solution s0, then iterates to improve the
guess using the iterations

sk+1 = (D + L)−1 (I − U) sk (D.56)
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Each component of s is updated according to the equation

sk+1
i = 1

pii

⎛

⎝sk
i −

i−1∑

j=0

pi j sk+1
j −

n−1∑

j=i+1

pi j sk
j

⎞

⎠ (D.57)

Notice that we make use of previously updated components of s to update the
next components as is evident by the iteration index associated with the first sum-
mation term (compare that with Jacobi iterations).

D.17.3 Successive Overrelaxation Iterations

We explain successive overrelaxation (SOR) technique by rewriting a slightly mod-
ified version of (D.57)

sk+1
i = sk

i + 1

pii

⎛

⎝sk
i −

i−1∑

j=0

pi j sk+1
j −

n−1∑

j=i

pi j sk
j

⎞

⎠ (D.58)

We can think of the above equation as updating the value of sk
i by adding the

term in brackets. We multiply that term by a relaxation parameter ω to get the SOR
iterations:

sk+1
i = sk

i + ω

pii

⎛

⎝sk
i −

i−1∑

j=0

pi j sk+1
j −

n−1∑

j=i

pi j sk
j

⎞

⎠ (D.59)

when ω = 1, we get Gauss–Seidel iterations again of course.

D.18 Similarity Transformation

Assume there exists a square matrix M whose inverse is M−1. Then the two square
matrices A and B = M−1AM are said to be similar. We say that B is obtained from
A by a similarity transformation. Similar matrices have the property that they both
have the same eigenvalues. To prove that, assume x is the eigenvector of A

Ax = λx (D.60)

We can write the above equation in the form

A MM−1 x = λx (D.61)
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Premultiplying both sides of this equation by M−1, we obtain

M−1 A MM−1 x = λM−1x (D.62)

But B = M−1AM, by definition, and we have

B
(
M−1x

) = λ
(
M−1x

)
(D.63)

Thus, we proved that the eigenvectors and eigenvalues of B are M−1x and λ,

respectively.
Thus, we can say that the two matrices A and B are similar when their eigenvalues

are the same and their eigenvectors are related through the matrix M.

D.19 Special Matrices

The following is an alphabetical collection of special matrices that were encountered
in this book.

D.19.1 Circulant Matrix

A square circulant matrix has the form

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 0 0 · · · 0 0 1
1 0 0 · · · 0 0 0
0 1 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 0 0
0 0 0 · · · 1 0 0
0 0 0 · · · 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(D.64)

Premultiplying a matrix by a circulant matrix results in circularly shifting all the
rows down by one row and the last row will become the first row.

An m × m circulant matrix C has the following two interesting properties:

Repeated multiplication m-times produces the identity matrix

Ck = I (D.65)

where k is an integer multiple of m.
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Eigenvalues of the matrix all lie on the unit circle

λi = exp

(
j2π × ki

m

)
ki = 1, 2, · · · , m (D.66)

where j = √−1 and

|λi | = 1 (D.67)

D.19.2 Diagonal Matrix

A diagonal matrix has ai j = 0 whenever i �= j and aii = di . A 3 × 3 diagonal
matrix D is given by

D =
⎡

⎣
d1 0 0
0 d2 0
0 0 d3

⎤

⎦ (D.68)

An alternative way of defining D is

D = diag
(

d1 d2 d3
)

(D.69)

or

D = diag (d) (D.70)

where d is the vector of diagonal entries of D.

D.19.3 Echelon Matrix

An m × n matrix A can be transformed using elementary row operations into an
upper triangular matrix U, where elementary row operations include

1. Exchanging two rows.
2. Multiplication of a row by a nonzero constant.
3. Addition of a constant multiple of a row to another row.

Such operations are used in Givens rotations and Gauss elimination to solve the
system of linear equations

Ax = b (D.71)

by transforming it into

Ux = c (D.72)
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then doing back-substitution to find the unknown vector x. The matrix U that results
is in echelon form. An example of a 4 × 6 echelon matrix is

U =

⎡

⎢⎢
⎣

x x x x x x
0 x x x x x
0 0 0 0 x x
0 0 0 0 0 x

⎤

⎥⎥
⎦ (D.73)

Notice that the number of leading zeros in each row must increase. The number
of pivots1 equals the rank r of the matrix.

D.19.4 Identity Matrix

An identity matrix has ai j = 0 whenever i �= j and aii = 1. A 3 × 3 identity matrix
I is given by

I =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ (D.74)

D.19.5 Nonnegative Matrix

An m × n matrix A is nonnegative when

ai j ≥ 0 (D.75)

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n

D.19.6 Orthogonal Matrix

An orthogonal matrix has the property

AAt = I (D.76)

The inverse of A is trivially computed as A−1 = At . The inverse of an orthogonal
matrix equals its transpose. Thus, if G is an orthogonal matrix, then we have by
definition

Gt G = G−1G = I (D.77)

1 A pivot is the leading nonzero element in each row.
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It is easy to prove that the Givens matrix is orthogonal. A matrix A is invertible
if there is a matrix A−1 such that

AA−1 = A−1A = I (D.78)

D.19.7 Plane Rotation (Givens) Matrix

A 5 × 5 plane rotation (or Givens) matrix is one that looks like the identity matrix
except for elements that lie in the locations pp, pq, qp, and qq. Such a matrix is
labeled Gpq . For example, the matrix G42 takes the form

G42 =

⎡

⎢⎢⎢⎢
⎣

1 0 0 0 0
0 c 0 s 0
0 0 1 0 0
0 −s 0 c 0
0 0 0 0 1

⎤

⎥⎥⎥⎥
⎦

(D.79)

where c = cos θ and s = sin θ . This matrix is orthogonal. Premultiplying a matrix A
by Gpq modifies only rows p and q. All other rows are left unchanged. The elements
in rows p and q become

apk = capk + saqk (D.80)

aqk = −sapk + caqk (D.81)

D.19.8 Stochastic (Markov) Matrix

A column stochastic matrix P has the following properties:

1. ai j ≥ 0 for all values of i and j .
2. The sum of each column is exactly 1 (i.e.,

∑m
j=1 pi j = 1).

Such a matrix is termed column stochastic matrix or Markov matrix. This matrix
has two important properties. First, all eigenvalues are in the range −1 ≤ λ ≤ 1.
Second, at least one eigenvalue is λ = 1.

D.19.9 Substochastic Matrix

A column substochastic matrix V has the following properties:

1. ai j ≥ 0 for all values of i and j .
2. The sum of each column is less than 1 (i.e.,

∑m
j=1 pi j < 1).
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Such a matrix is termed column substochastic matrix. This matrix has the impor-
tant property that all eigenvalues are in the range −1 < λ < 1.

D.19.10 Tridiagonal Matrix

A tridiagonal matrix is both upper and lower Hessenberg, i.e., nonzero elements
exist only on the main diagonal and the adjacent upper and lower subdiagonals. A
5 × 5 tridiagonal matrix A is given by

A =

⎡

⎢⎢⎢⎢
⎣

a11 a12 0 0 0
a21 a22 a23 0 0
0 a32 a33 a34 0
0 0 a43 a44 a45

0 0 0 a54 a55

⎤

⎥⎥⎥⎥
⎦

(D.82)

D.19.11 Upper Hessenberg Matrix

An upper Hessenberg matrix has hi j = 0 whenever j < i − 1. A 5 × 5 upper
Hessenberg matrix H is given by

H =

⎡

⎢⎢⎢⎢
⎣

h11 h12 h13 h14 h15

h21 h22 h23 h24 h25

0 h32 h33 h34 h35

0 0 h43 h44 h45

0 0 0 h54 h55

⎤

⎥⎥⎥⎥
⎦

(D.83)

A matrix is lower Hessenberg if its transpose is an upper Hessenberg matrix.
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Appendix E
Using MATLAB

E.1 Introduction

MATLAB is the most used software package for many engineering applications [1].
There are other useful packages such as Maple and Mathematica. Another pack-
age that is worth mentioning is Scientific Workplace [2] that combines document
typesetting with the ability to perform symbolic and numerical computations from
within the package using Maple. The results could be plotted with simple menu
commands also.

MATLAB is based on vectors and matrices and its usefulness comes from the
available commands and functions to manipulate and analyze these quantities. We
should mention at the start that MATLAB indexes arrays starting with 1. Throughout
this book, we also tried to start our arrays with the index value 1. Examples of
functions available are statistical analysis, Fourier transform, matrix operations, and
graphics.

E.2 The Help Command

The help command is the most basic way to determine the syntax and behavior of
a particular function. Information is displayed directly in the Command Window.
For example, to know more about the EIG function for finding the eigenvalues and
eigenvectors of a matrix, one would type the command help eig. The result is
shown in Fig. E.1.

E.3 Numbers in MATLAB

MATLAB uses several number types and number formats as shown in Table E.1. For
very large or very small numbers, one could use the “e” notation or just multiply the
number by 10 raised to the proper value:

-1.5e-3 = −1.5 ∗ 10(−3) = -0.0015
3.6e2 = 3.6 ∗ 102 = 360

637
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help eig

EIG Eigenvalues and eigenvectors. E = EIG(X) is a
vector containing the eigenvalues of a square
matrix X.

[V,D] = EIG(X) produces a diagonal matrix D of
eigenvalues and a full matrix V whose columns
are the corresponding eigenvectors so that X∗V =
V∗D.

[V,D] = EIG(X,’nobalance’) performs the
computation with balancing disabled, which,
sometimes gives more accurate results for
certain problems with unusual scaling.

E = EIG(A,B) is a vector containing the
generalized eigenvalues of square matrices A
and B.

[V,D] = EIG(A,B) produces a diagonal matrix D
of generalized eigenvalues and a full matrix V
whose columns are the corresponding eigenvectors
so that A∗V = B∗V∗D.

See also CONDEIG, EIGS.

Fig. E.1 The result of typing the command help eig

Table E.1 Number types in MATLAB

Number type Example Comment

Integer 4,-12 Type the number without a decimal point
Real 1.5,-12.0 Type the number with a decimal point
Complex 5.9-4.1i Include i or j for imaginary part of number

The user can control how the numbers are displayed using the format com-
mand. Table E.2 shows the common types of formatting instructions.

Table E.2 Formatting numbers in MATLAB

Command Example of display

format short 31.4162 (4-decimal places)
format short e 3.1416e+01 (4-decimal places)
format short g Best for displaying fixed or floating point numbers
format bank 3.14 (2-decimal places)
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Table E.3 Basic MATLAB operations for scalars

Operation Symbol Example

Addition + 1 + 2
Subtraction − 5 − 3
Multiplication ∗ 2 ∗ 8
Division / or \ 10/6
Exponentiation ∧ 2∧8

E.4 Basic Arithmetic Operations on Scalars

The basic arithmetic operations on scalars in MATLAB are explained in
Table E.3.

E.5 Variables

We can define variables in MATLAB by assigning a value to the name of the
variable:

x = 3 ∗ 4

In that case, MATLAB will print

x =

12

to confirm that x has been assigned the desired value.
The following is a summary of some special features of MATLAB:

• Variable names can contain up to 31 characters and are case-sensitive. Under-
score ( ) could be used but a variable name must start with a character.

• MATLAB has several special variables such as pi (the ratio of circumference of
a circle to its diameter) and i or j = √−1.

• When a command ends with a semicolon (;), the result of the command is not
printed.

• Comments start with the percent sign (%).
• A succession of three periods (· · · ) tells MATLAB that the rest of the statement

appears on the next line.
• The functions REAL and IMAG are used to extract the real and imaginary com-

ponents of a complex number. The functions ABS and ANGLE are used to extract
its magnitude and angle, respectively.
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Table E.4 Special array declarations in MATLAB

ones(3) Returns a 3 × 3 matrix containing all ones
ones(2,3) Returns a 2 × 3 matrix containing all ones
zeros(4,5) Returns a 4 × 5 matrix containing all zeros
zeros(size(A)) Returns a matrix whose dimension matches matrix

A and containing all zeros

E.6 Arrays

An array is an ordered set of numbers. A row vector x can be declared using the
command

x = [
6, 9, 8, 6, 4, 2

]

The elements of the array can be entered separated by spaces or commas be-
tween them. A column vector y can be declared by separating the elements using
semicolons or entering each element on a separate line:

y = [
6; 9; 8; 6; 4; 2

]

To create a matrix A, we separate the rows using semicolons or by entering each
row on a separate line:

A = [
1, 2, 3; 4, 5, 6

]

which will create the 2 × 3 matrix

A =
[

1 2 3
4 5 6

]

There are special arrays in MATLAB as explained in Table E.4.

E.7 Neat Tricks for Arrays

Most often, we need to plot (x, y) data where x is a vector representing the in-
put data and y is the output data. As an example, if we want to obtain a plot of
y = √

x over the range 0 ≤ x ≤ 10, we need a large number of points, say 100,
to get a smooth curve. We can do that quickly in MATLAB using the following
commands:

points = 100; % generate 100 points
lower limit = 0; % lower limit for data
upper limit = 10; % upper limit for data
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% Now calculate the step size of input data
step = (upper limit - lower limit)/(points-1);

% Initialize a 100-point input data row vector
x = lower limit:step:upper limit;

% Initialize a 100-point output data row vector
y = sqrt(x);

% Plot the data
plot(x,y)

To find the length of a vector, the command length is used. To find the size of
an array, the command size is used.

E.8 Array–Scalar Arithmetic

Simple arithmetic operations such as multiply, divide, add, or subtract can be done
using a scalar and an array as explained below.

Assume we have a matrix A:

A =
[

1 2 3
4 5 6

]

Multiply A by a scalar:

2 ∗ A =
[

2 4 6
8 10 12

]

Divide A by a scalar:

A/2 =
[

0.5 1 1.5
2 2.5 3

]

Add a scalar to A:

A + 2 =
[

3 4 5
6 7 8

]

Subtract a scalar from A:

A − 2 =
[ −1 0 1

2 3 4

]
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E.9 Array–Array Arithmetic

Addition and subtraction operations among two arrays A and B are defined only
when the two arrays have the same dimensions according to matrix addition/subtraction
rules. Multiplication of the two arrays is defined only if the two arrays are compat-
ible according to matrix multiplication rules. Matrix division operator (\) will be
discussed later in Section E.16.

MATLAB has a special operator called the dot multiplication operator (.∗). As-
sume we have two arrays A and B having the same dimensions and we need to
multiply the elements of A by the corresponding elements of B on an element-by-
element basis. We have the operation

A . ∗ B

The dot division operator is similarly defined:

A ./B

Raising the elements of an array to a certain power is possible using the .∧

operator

A.∧2

which will square each element in array A. The following operation raises each
element in A by the value of the corresponding element in B:

A .∧ B

E.10 The Colon Notation

A shortcut for generating a row vector is to issue the command

m : n

which gives the answer m m + 1 · · · n.
The command

0 : 2 : 10

gives the answer 0 2 4 6 8 10.
In general, the command a : b : c specifies a as the start value, b as the step size,

and c as the limit (such that the final element will not exceed c).
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E.11 Addressing Arrays

The colon notation can be used to pick out selected rows, columns, and elements of
vectors, matrices, and arrays.

A(:) arranges all the elements of A as a column vector. This command is really
handy to ensure that any vector we generate is a column vector. Thus if v was a
vector and we are not sure if it is a column or a row vector, we could simply issue
the command

v = v(:)

Assuming A is a 3 × 3 matrix, we can set its top left element to zero using the
command

A(1, 1) = 0;

The first index indicates the row location (from top to bottom) and the second
index indicates the column location (from left to right).

To access several elements at the same time, the colon notation is used. Assuming
A is a 3 × 3 matrix, the following command defines a new column vector c that
contains the first column of A:

c = A(:, 1)

while the command

C = A(:, 1 : 2)

defines C to be a 3 × 2 matrix equal to the first two columns of A.
In general, the statement A(m : n, k : l) generates a matrix that contains rows m

to n and columns k to l. Thus the dimension of the new matrix would be (n-m+1) ×
(l − k + 1).

To delete the k-column of a matrix, we assign the null vector to it using the
command

A(:, k) = [ ]

Similarly, to delete the i-row of a matrix we issue the command

A(i, :) = [ ]
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E.12 Matrix Functions

The rank of a matrix can be found using the command

rank (A)

which returns the number of singular values of A that are larger than the default
tolerance.

The eigenvalues and eigenvectors of a matrix can be found using the command

d = eig (A)

which returns a vector d of the eigenvalues of matrix A. The command

[V, D] = eig (A)

produces matrices of eigenvalues (D) and eigenvectors (V) of matrix A, so that
A ∗ V = V ∗ D. Matrix D is the canonical form of A—a diagonal matrix with A’s
eigenvalues on the main diagonal. Matrix V is the modal matrix—its columns are
the eigenvectors of A. The eigenvectors are scaled so that the norm of each is 1.0.

Sometimes it is required to find the sum of elements of a matrix:

B = sum(A)

If A is a vector, sum(A) returns the sum of the elements. If A is a matrix, sum(A)
treats the columns of A as vectors, returning a row vector of the sums of each column
and

B = trace(A)

is the trace of A.
The inverse of a matrix found using the command

B = inv(A)

returns the inverse of the square matrix A. A warning message is printed if A is badly
scaled or nearly singular. In practice, it is seldom necessary to form the explicit
inverse of a matrix. A frequent misuse of inv arises when solving the system of
linear equations Ax = b. One way to solve this is with x = inv(A)∗b. A better way,
from both execution time and numerical accuracy standpoints, is to use the matrix
division operator x = A\b. This produces the solution using Gaussian elimination,
without forming the inverse as explained below.
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E.13 M-Files (Script Files)

One interacts with MATLAB through the command window. When a command or
group of commands is to be repeated, the user has to enter the whole sequence again.
There is a better way, however, which is to write that sequence of commands and
constant definitions in an M-file. An M-file must have a .m extension and commands
are written in it using any text editor or the text editor associated with MATLAB.

Before an M-file could be used, the current directory of MATLAB must be where
the file is saved. Changing the working directory is done either manually by typing
the cd command or by typing the path to the file in the Current Directory window
at the top right corner of the MATLAB command window. To issue the commands
contained in the file, it is now sufficient to type the name of the file in the command
window.

Here is a list of some useful commands that one could use in the MATLAB
command window:

1. To check which is the current working directory of MATLAB, type the print
working directory command:

pwd

2. To check what files are there in the current directory, type the command

ls

or

what

3. To open a certain file for editing its contents type,

open file name

E.14 Function M-Files

M-files can be used to create user-defined functions. For example, we might want
to define a function that finds the radius of a circle if the area is given.

We start by defining the name of the function as radius and we create a file
named radius.m. The contents of the file radius.m would be as shown in the
listing below. The numbers on the left are not part of the file. They are merely there
to help us refer to particular lines in the code.

1 function radius r = radius(A)
2 % RADIUS finds the radius of a circle
3 % ifthe area A is given.
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4 if A < 0
5 error(’area must be positive’);
6 end
7 r = sqrt(A/pi);

Line 1 defines the new function radius and indicates that it accepts a value A
as input and produces the number r as output. Lines 2 and 3 describe briefly the
purpose of this function, and typing the command

help radius

will print out the commented lines 2 and 3 to remind the user about the function.
Line 5 prints out an error message if we attempt to find the radius of a circle with
negative area.

We could now use this function in our MATLAB code by typing

x = radius(100)

which would return x = 5.6419.
Suppose we need to evaluate two properties of the circle, such as the radius r and

the associated circumference c when the circle area is given. The above function
should be changed to

1 function radius [r,c] = radius(A)
2 % RADIUS finds the radius and circumference of
3 % a circle if the area A is given.
4 if A < 0
5 error(’area must be positive’);
6 end
7 r = sqrt(A/pi);
8 c = 2 * pi * r;

We could now use this function in our MATLAB code by typing

[r,c] = radius(100)

which would return r = 5.6419 and c = 35.4491.

E.15 Statistical Functions

MATLAB has two random number generators RAND and RANDN. The command

x = rand (m, n)
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Table E.5 The different formats for using the rand function

Y = rand(n) Returns a square n × n matrix of random
entries

Y = rand(m, n) Returns an m × n matrix of random entries
Y = rand(m, n, p, . . .) Generates random arrays
Y = rand(si ze(A)) Returns an array of random entries that is the

same size as matrix A

Table E.6 The different formats for using the hist function

HIST(Y ) Draws a histogram of the elements in Y
HIST(Y, x) Draws a histogram using n bins, where n is

length(x). x also specifies the locations on
the x-axis where hist places the bins.

returns an m × n matrix of random numbers having a uniform distribution between
0 and 1. The command

x = randn (m, n)

returns an m ×n matrix of random numbers having a Gaussian distribution between
0 and 1 with zero mean and unity variance. Table E.5 explains the different ways
the rand function could be invoked.

The command

x = randperm (n) ;

returns a random permutation of the integers 1 to n.
To plot the pdf of a random number sequence, the hist and stairs functions

could be used. Table E.6 explains the different ways the hist function could be
invoked. For example, if x is a 5-element vector, HIST distributes the elements of
Y into five bins centered on the x-axis at the elements in x .

Example E.1 The following MATLAB code generates a Gaussian random variable
Y with mean 0 and standard deviation 1. The number of samples will be denoted
by n. The resulting data are plotted in one curve and the histogram is plotted in an
adjacent window.

n=1000; %number of samples
y=randn(1,n);
%plot theresulting dat
subplot(1,2,1)
plot(y);
box off
axis square
xlabel(’Sample index’)
ylabel(’Randomnumber value’)
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%generate a histogram of the data to view thepdf
x = -2.9:0.1:2.9;
subplot(1,2,2)
hist(y)
box off
axis square
xlabel(’Sample index’)
ylabel(’Bin count’)

The output of that code can be found in Fig. 1.9 on page 18.

E.16 System of Linear Equations

Solving a system of linear equations is perhaps one of the important problems en-
countered in linear algebra. We certainly encountered this problem in our queuing
analyses. The system of linear equations is expressed as

Ax = b (E.1)

where A is a matrix, x is the vector to be found, and b is a given vector. The solution
to this equation is simply

x = A−1b (E.2)

where A−1 is the inverse of A and in MATLAB this translates to

x = inv (A) ∗ b (E.3)

This is actually a misuse of the inv function. A better way, from both an execu-
tion time and numerical accuracy standpoint, is to use the matrix division operator
and we should write

x = A\b (E.4)

This produces the solution using Gaussian elimination without forming the
inverse.

E.16.1 A Is Overdetermined

If matrix A has more rows than columns, the system of equations is overdetermined
since the number of equations is greater than the number of unknowns. In that case
the \ and / operators find the solution that minimizes the squared error in Ax − b.
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E.16.2 A Is Underdetermined

If matrix A has more columns than rows, the system of equations is underdetermined
since the number of equations is less than the number of unknowns. In that case, the
backslash \ and forwardslash / operators find the solution that has the maximum
number of zeros in x.

E.16.3 b = 0 (Homogeneous Equations)

When b = 0, we have the equation

Ax = 0 (E.5)

and x is a null-vector of matrix A. A solution exists only if det(A) = 0, which
indicates that A must be rank deficient. Assuming rank(A) = n − 1, where n is the
size of A, we can find a solution by assuming a value for one of the components
of x and solving for the other components since we would have a system of n − 1
linear equations that can be solved using the backslash \ and / operators.

E.17 Solution of Nonlinear Equations

MATLAB has functions to obtain a solution for nonlinear equations or systems of
nonlinear equations.
FMINBND finds the local minimum of a nonlinear function of one variable within

an interval specified by the user

x = fminbnd(fun, x1, x2)

where FUN is a function that is described in an M-file and x1 and x2 are the lower
and upper values of the interval such that x1 < x < x2.
FZERO tries to find the zero of the function near a value specified by the user:

x = fzero(fun, x0)

where FUN is a function that is described in an M-file and x0 is the value near which
the zero is expected.
FMINSEARCH is a multidimensional unconstrained nonlinear minimization based

on Nedler–Mead technique [3], [4]:

x = fminsearch( f un, x0)

returns a vector x that is a local minimizer of the function that is described in FUN
(usually an M-file: fun.m) near the starting vector x0.
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E.18 Formatting Output

The command format compact allows closer presentation of MATLAB results.
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Appendix F
Database Design

F.1 Introduction

Each switch or router has a routing table or a lookup table, which is basically a
database associating the packet header information with routing and control infor-
mation such as priority, service class, updated VPI/VCI values, and destination out-
put port. Because it is a database, standard database issues are encountered such as

1. The sorting scheme used
2. How a search is performed
3. Inserting data
4. Deleting data
5. Average access time for insert, search, and delete operations
6. Percentage of memory utilized

We shall explain two schemes for implementing the database using hashing func-
tions and trees.

F.2 Hashing

Hashing is a technique used to implement databases where insert, search, and delete
operations are performed. Hashing is the transformation of a search key into a num-
ber by means of mathematical calculations. The search time using hashing is small,
which is an advantage over other search algorithms [1–3]. The mathematical opera-
tion is usually called hash function and the resulting number is called the hash value.
The number of bits required to represent the hash value is substantially smaller than
the number of bits required to represent the key itself.

If x is the key and h (x) is the resulting hash value, then we can divide our mem-
ory into B buckets. The entries corresponding to key z are stored in the bucket whose
label is h (x). Each bucket stores the data in the form of a heap, which is nothing but
a linked list that links all the data in the bucket with no particular order (i.e., like a
heap).
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A good hashing function must be able to equally distribute all possible entries of
x among the buckets. In other words, we are hoping that the lengths of the linked
lists in all buckets be equal so that the search time becomes small. Figure F.1 shows
the open hashing data organization where each bucket has associated with it a linked
list. Assume N is the number of entries in the set, which could be the number of
connections established in an ATM switch or the number of available routes in an
IP router.

Some hash functions are better than others at randomizing the hash values. The
use of linear feedback shift registers (LFSR) for polynomial division is one such
function, which is sometimes known as cyclic redundancy check (CRC). If the num-
ber of bits in the LFSR is b, then the number of buckets used is B = 2b. Another
hashing function that was based on the linear congruential method calculates h using
modulo arithmetic:

h = (x × y + 1) mod B (F.1)

where y is a number with no particular pattern in its digits except that it should end
with · · · x21, with x even [2].

Assume N to be the number of data items stored in the database and B to be
the number of buckets. The probability that a certain bucket contains i data items is
given by

pi =
(

N

i

)(
1

B

)i (
1 − 1

B

)N−i

(F.2)

The average length of the linked list in a bucket is given by

L =
N∑

i=0

i pi (F.3)

= N

B
(F.4)

Fig. F.1 Storage of data
using hashing

Bins

2

B

1

Linked lists associated with each bin

. .
 .

. .
 .
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When N ∼ B, then each linked list will have only one entry and the search time
will be small independent of N . The time required to implement insert, search, and
delete operations will be on the average equal to

T = Th + Tm + Ta

2

(
N

B

)
(F.5)

where the time delays encountered account for the following operations:

Th = Hashing function
Tm = Memory access
Ta = Arithmetic operations (e.g., comparison)

We must have N > B and (F.5) becomes

T ≈ Tm + Ta

2

(
N

B

)
(F.6)

We see that the delays Tm and Ta dominate our table lookup delay. It is worth-
while investigating how to speed up the memory and the arithmetic operations re-
quired than investigating fast hashing functions.

F.3 Trees

The search time is not deterministic in hashing or in binary tree types of data orga-
nization. Balanced trees (B-tree) guarantee that the worst-case search time will not
occur.

F.3.1 Binary Trees

Assume that we have to store numbers between 0 and 15. Later, we will want to
check if a number has been stored or not. For that, we sort our numbers using binary
sorting and store our data in a binary tree structure. Each node in the tree contains
a key and the left branch is used if the number is smaller than the key. The right
branch is used if the number is larger than the key.

Figure F.2 shows the binary search tree structure after several insertion and dele-
tion operations. Each node stores data which doubles also as keys while performing
a search.

It is apparent that the tree is unbalanced and the search time for a data item could
be very short or very long. In the worst case, the depth of the tree could be equal
to the number of data stored in it unless some ordering strategy is enforced. These
techniques are called balancing and will be discussed in the next sections.
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Fig. F.2 Binary search tree
structure after several
insertion and deletion
operations

5

6

7

8

13

12

14

In addition to the worst-case time delay problem, we should mention that search-
ing a tree implies comparing the search key to the contents of the nodes. This is
really a subtraction operation and its delay depends on the speed of the adder in the
switch processor. Typically, the number of bits used to represent the keys is 48 and
this could require a significant adder delay.

F.3.2 Multiway Trees

Multiway trees offer a short search time for large databases where the worst-case
time is guaranteed not to occur. In a multiway tree, each node stores several keys,
not just one as in the binary tree such that each node can have up to m children.
Figure F.3 shows a node in a multiway tree containing two keys k0 and k1.

Assuming m−1 keys and m branches per node, the keys are ordered in each node
and the branches out of the node are for keys that have the following properties:

Branch Property

0 k < k0

1 k0 < k < k1

...
...

m − 2 km−2 < k < km−1

m − 1 km−1 < k

Multiway trees suffer from the same problem as binary trees when adding and
removing data results in an unbalanced tree with potentially long search times. This

Fig. F.3 A node in a
multiway tree where each
node contains two keys k < k o

k1ko

ko< k < k1 k1 < k
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Fig. F.4 State of a multiway
2-tree after several insertion
and deletion operations. Like
the binary tree, it is also
unbalanced

37

4015

11

25 45

12

4 10

is illustrated in Fig. F.4 which shows the state of a 2-tree after some insertions and
deletions. Multiway trees form the basis for the B-trees as explained in the next
section.

F.3.3 B-Trees

There are many ways to define a B-tree. We choose a simple definition here. A
B-tree of order m is a multiway tree with certain restrictions or properties that
insure that the tree will always remain balanced. The properties of the B-tree are
as follows:

1. The root node contains 1 to 2m keys.
2. The root node contains up to m children (pointers to other nodes).
3. Any other node that is not the root node contains �m/2� to m − 1 keys. Thus

each node is at least half-full, except for the root node.
4. Any other node that is not the root node contains �m/2� to m children.

These properties ensure that no more than 50% of the memory space is wasted.
In the worst case, all nodes are half-full and the parent node has only one key and
two children.

Figure F.5 shows an example of a B-tree of order 5 after several insertion and
deletion operations. Since m = 5, the number of keys in any node, except the root,
is at most m − 1 = 4. The number of children per node must be between m/2 = 3
(after rounding up) and m = 5 as shown.

Fig. F.5 The structure of a
B-tree of order 5 after some
insertion and deletion
operations

25

8 10 403630

6 12 15 20 37 394
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Operations on a B-tree such as search, insertion, and deletion can be found in [4].
In the worst case, the root node will have only one key and all other nodes will have
m − 1 keys and m children. In that case, the number of entries in the table N will
depend on the tree height according to the following table [5]:

Tree height Number of keys
1 1
2 1 + m
3 1 + m + mc
4 1 + m + mc + mc2

...
...

h 1 + m
∑h−2

i=0 ci = ch−1 − 1

Reference
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finding Pn using Z-transform, 111
finding s(n), 85–86
finding s(n) by diagonalizing P, 91–92

comparing diagonalization with
expansion of s(0), 92–94

finding s(n) by expanding s(0), 86–91
finding s(n) using Jordan canonic form,

103
Jordan canonic form (JCF), 103–106
properties of JCF, 106–107

homogeneous, 123
equation, 69

identification of, 216
nonperiodic Markov chain, 216
strongly periodic, 217
weakly periodic, 217

involving three states, 72
irreducible, 151
Markov matrices, 75–78

diagonals of P, 78

matrix U, properties of, 107
memoryless property of, 68–69
model of network of interdependent, 261
periodic classes of, 184
Pn Expressed in Jordan canonic form,

108–109
reducible, 151
renaming states, 111–112
selection of time step, 66

continuous-time, 66
discrete-time, 66–68

solution for communicating, 263–264
state of sender as, 305, 317
state transition diagram, 73, 127

for CSMA/CD channel, 74
state transition matrix P, constructing,

81–82
systems of communicating, 260–263

general solution for, 263–264
transient behavior, 82–85

properties of Pn , 85
transition matrix, 69–75

Markov chains at equilibrium, 123
balance equations, 142
finding s

difference equations, 127–130
direct techniques, 140–141
eigenvector approach, 126–127
forward- or back-substitution, 137–139
iterative techniques, 141
Z-transform, 130–137

finding steady-state distribution vector s,
124–125

significance of s at “steady state,” 123–124
techniques for finding s, 125–126

algebraic and numerical techniques, 125
Markov matrices, 75–78

diagonals of P, 78
Markov process, 65

examples, 65
Markov property, 68
MATLAB, 637

arrays, 640
addressing, 643

array–array arithmetic, 642
array–scalar arithmetic, 641
colon notation, 642
commands, 645
features of, 639–640
format compact (formatting output), 650
formatting numbers, 638
formatting output, 650
function M-files, 645–646
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MATLAB (cont.)
help command, 637
hist function, 647
matrix functions, 644
M-files (script files), 645
neat tricks for arrays, 640–641
numbers in, 637–639
number types, 638
RAND and RANDN, 646
rand function, 647
scalars

arithmetic operations on, 639
basic operations for, 639

statistical functions, 646–648
system of linear equations, 648–649, 649
variables, 639–640

Matrices, 615
addition, 616
circulant, 632–633
coefficient, 615
correlation, 59–60
covariance, 60–62
diagonal, 633
diagonalizing, 619
echelon, 633–634
elementary, 621
identity, 634
inverse of, 616–617

left inverse, 616
right inverse, 616

multiplication, 616
nonnegative, 634
null space of, 617
orthogonal, 634–635
plane rotation (givens), 635
rank of, 618
row echelon form, 625
stochastic (Markov), 635
substochastic, 635–636
triangularizing, 619–620
tridiagonal, 636
upper Hessenberg, 636

Max–Min fairness scheduling, 446–448
M/D/1/B queue, 257–259

performance, 259–260
relation of queue states, 258
state transition diagram for

discrete-time, 257
Medium access control (MAC) protocols, 325

ALOHA, 329–330
modeling network, 330–331
performance, 332–335

carrier sense multiple access-collision
avoidance (CSMA/CA), 345–346

model assumptions, 346–347
protocol performance, 348–350

IEEE 802.11: DCF Function for Ad Hoc
Wireless LANs, 351

final remarks, 360–361
medium access control,

351–352
model assumptions, 352–356
protocol performance, 356–360

IEEE 802.11: PCF function for
infrastructure wireless LANs,
361–362

IEEE 802.11: 1-persistent PCF,
366–369

IEEE 802.11e: quality of service
support, 374–378

medium access control, 362
nonpersistent PCF model assumptions,

362–364
nonpersistent PCF protocol perfor-

mance, 364–366
1-persistent IEEE 802.11/PCF

performance, 369–371
1-persistent IEEE 802.11/PCF user

performance, 371–374
IEEE Standard 802.3 (CSMA/CD),

340–341
model assumptions, 341–342
protocol performance, 343–345
state transition diagram, 342–343

IEEE standard 802.1p: static priority
protocol, 326

modeling, 326–329
slotted ALOHA, 335

modeling network, 335–337
performance, 337–340

M/M/1/B queue, 225, 233–235
average queue size versus distribution

index ρ, 237
efficiency, 236
performance, 235–240

bounds on, 240–241
queue performance, 235–240

input traffic, 235–236
throughput or output traffic, 235

state transition diagram for discrete-time,
233–234

throughput, 235
M/M/J/B queue, 225
M/Mm/1/B queue, 225, 248–249

alternative solution method, 253
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efficiency of, 249
performance, 249–252
performance bounds, 252–253

Mm/M/1/B queue, 225, 241–242
alternative solution method, 247
efficiency, 243
performance, 242–246
performance bounds on, 246–247
stability of queue, 241

M/M/1 queue, 225, 227–230
average queue size versus distribution

index ρ, 225, 227–230
continuous-time, 230
for discrete-time

state transition diagram, 228
efficiency of, 230, 231
example, 227
performance, 230–233
queue performance, 230–233

throughput, 231
throughput for, 230–231

Modeling network traffic, 383–384
continuous-time modeling: Poisson traffic

description, 387–389
extracting Poisson traffic parameters,

394–395
flow description, 392
interarrival time description, 392–394
memoryless property of Poisson traffic,

389–391
Poisson traffic and queuing analysis,

395–398
realistic models for Poisson traffic, 391

destination statistics, 420
broadcast traffic, 420–421
hot-spot traffic, 421–422
uniform traffic, 420

discrete-time modeling: interarrival time
for Bernoulli traffic, 398–401

extracting parameters, 404–405
memoryless property of, 402
queuing analysis, 405–407
realistic models for, 401, 403–404

flow traffic models, 384
autoregressive models, 387
Markov modulated Poisson process,

386–387
modulated Poisson processes, 384–385
on–off model, 385–386

heavy-tailed distributions, 409
interarrival time traffic modeling with

arbitrary source distribution,
418–420

packet length statistics, 422–423
packet transmission error description,

423–425
Pareto traffic distribution, 409–411

extracting Pareto interarrival time
statistics, 412–414

flow description, 411
interarrival time description, 411–412
queuing analysis, 414–417

self-similarity and random processes,
408–409

self-similar traffic, 407–408
traffic data rate modeling with arbitrary

source distribution, 417–418
Modeling traffic flow control protocols, 269

leaky bucket algorithm, 269–271
modeling leaky bucket algorithm,

271–272
multiple arrival/single departure model

(Mm/M/1/B), 276–278
performance (M/M/1/B case),

274–276
performance (Mm/M/1/B case),

278–280
single arrival/single departure model

(M/M/1/B), 272–273
token bucket algorithm, 280–281

modeling, 282
multiple arrivals/single departures

model (Mm/M/1/B), 288–291
single arrival/single departures model

(M/M/1/B), 282–285
token bucket performance (M/M/1/B

case), 285–288
token bucket performance (multiple

arrival/departure case), 291–295
virtual scheduling (VS) algorithm, 295–296

modeling, 296–297
protocol performance, 298–299

Multiplication principle, probability, 4–5
Multistage interconnection networks, 515–516,

517–518
classification, 516
factors determining MIN complexity, 516
N × N multistage interconnection

network, 516
Mutually exclusive events, 4

N
Network, delay of, 514
Network design parameters, 507

network hardware, 508
network performance, 507–508
scalability issues, 508–509
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Network design parameters, interconnection
networks, 507

network hardware, 508
network performance, 507–508
scalability issues, 508–509

Network hardware, 508
Network Processing Unit (NPU),

487–488
examples of tasks, 487–488
switch incorporating, components, 488

Nondeterministic process, 53
Nonlinear equations, solution of, 649

FMINBND, 649
FMINSEARCH, 649
FZERO, 649

Nonperiodic Markov chain, 185, 216
Null (MATLAB function), 617

O
On–off model, 385–386

packet pattern for, 385
Outcome, 1
Output queuing switch, 558–559

assumptions for analysis of, 558
modeling input buffer, 559–561
modeling output queue, 561–562
output queue performance, 563–565,

566–569
transition matrix, 562–563

P
Packet buffer

Markov chain transition diagram, 284
state of occupancy, 283–284, 290

Packet-by-packet GPS (PGPS), 454
completion time calculation for

PGPS/WFQ, 457–459
finish number calculation for

PGPS/WFQ, 456
virtual time calculation for PGPS/WFQ,

454–456
Packet-by-packet GPS (PGPS), computation of

three quantities, 464
Packet drop options, 467
Packet dropping policy, 431
Packet length statistics, 422–423
Packet selection policy, 431
Packet switching, 481, 483–484

bridge, 485
end-node, 484
gateway, 486
hardware, 484
hub, 485
penalties, 483

router, 486
switch, 485–486

Packet transmission error description, 423–425
Pareto traffic distribution, 409–411

extracting Pareto interarrival time statistics,
412–414

flow description, 411
interarrival time description, 411–412
queuing analysis, 414–417

Passive hub, 485
Periodic Markov chains, 183–184, 184–185

asymptotic behavior, 213–216
canonic form for P, 196–197
composite strongly, 198–202
eigenvalues of reducible, 209
identification of Markov chains, 216

nonperiodic Markov chain, 216
strongly periodic, 217
weakly periodic, 217

intuitive examples
population of wild salmon, 183, 184
predator–prey relation, 183, 184

reducible, 208–211
states divided into groups and transitions

between adjacent groups, 184
strongly, 185, 217
transient analysis, 211–213
transition diagram, 197–198

for composite strongly, 198
transition matrix, 185–187

determinant, 187–188
diagonalization, 188–191
eigenvalues, 191–195
elements, 195–196

types, 185
weakly, 185, 202–208, 217

Permutations, 5
n distinct objects taken k at a time, 6
n distinct objects taken n at a time, 5–6
of objects in groups, 6–7

Plus–Minus 2i (PM2I) function, 517
Poisson distribution, expression for, 391
Poisson processes, 52

flow traffic models
Markov modulated, 386–387
modulated, 384–385

random processes, 52
Poisson source, exponential distribution

instantaneous rate of, 392
Poisson Theorem, 26–27
Poisson traffic description, 387–389

extracting Poisson traffic parameters,
394–395
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flow description, 392
interarrival time description, 392–394
memoryless property of Poisson traffic,

389–391
Poisson traffic and queuing analysis,

395–398
realistic models for Poisson traffic, 391

Position parameter, 403
Positive integers, sums of powers of, 598
Power consumption , network hardware, 508
Probability, 1–2, 8

applying set theory to, 2–4
axioms of, 9
Bernoulli (binary) RV, 23–24
binomial RV, 25–26

approximating binomial distribution,
26–27

combinations, 8
common continuous RVs, 16
common discrete RVs, 21
continuous uniform (flat) RV, 16–17
correlation, 34
counting sample space points, 4
covariance, 34–35
cumulative distribution function (cdf),

11–12
cdf in discrete case, 12

discrete uniform RV, 21–22
expected value, 33

and variance, 14–15
exponential RV, 19
Gaussian RV, 18
generating random numbers, 39

importance sampling method, 41
inversion method, 39–40
rejection method, 40–41
uniform distribution, 39

geometric RV, 24–25
individual Pmf from given joint Pmf,

32–33
joint cdf and pdf, 31–32
mass function, 13–14

for discrete random variables, 14
multiplication principle, 4–5
Pareto RV, 19–21
permutations, 5

n distinct objects taken k at a time, 6
n distinct objects taken n at a time,

5–6
of objects in groups, 6–7

Poisson RV, 28–30
Poisson Distribution from binomial

distribution, 29–30

probability density function (pdf), 13
random variables, 10–11

systems with many, 30
random variables, transforming, 35

continuous case, 35–38
discrete case, 38

relationships, 9–10
variance, 34
See also Relative-frequency approach

Probability density function (pdf), 13
Pareto distribution, 19

Processor sharing (PS), 448–449
Promina 4000 switch, 580–581

backplane bus operation, 581
block diagram for N.E.T.’s, 581
features, 582
input port, 581
output port, 581
versus VRQ switch, 584–585

Q
Quadrature Amplitude Modulation (QAM)

system, 30
Queues

discrete-time, attributes, 224
examples, 223
throughput (Th), 225–226
types of, 225

Queuing analysis, 223–224
D/M/1/B queue, 253–256

performance, 256–257
efficiency (�) or access probability (pa),

226–227
examples, 223–224
of FIFO/FCFS, 438–439
Kendall’s notation, 224–225
M/D/1/B queue, 257–259

performance, 259–260
relation of queue states, 258
state transition diagram for discrete-

time, 257
M/M/1/B queue, 233–235

performance, 235–240
performance bounds on, 240–241

M/Mm/1/B queue, 248–249
alternative solution method, 253
performance, 249–252
performance bounds, 252–253

Mm/M/1/B Queue, 241–242
alternative solution method, 247
performance, 242–246
performance bounds on, 246–247

M/M/1 queue, 227–230
performance, 230–233
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Queuing analysis (cont.)
objective of, 223
systems of communicating Markov chains,

260–263
general solution for, 263–264

Queuing systems, 78

R
Random early detection (RED), 466–467
Random early drop detection, 466
Random numbers, generating, 39

importance sampling method, 41
inversion method, 39–40
rejection method, 40–41
uniform distribution, 39
using Gaussian distribution, 18
using Pareto distribution, 21
Von Neumann’s remark, 39

Random processes, 49–51
autocorrelation function, 54–55
correlation matrix, 59–60
covariance function, 58–59
covariance matrix, 60–62
cross-correlation function, 57
deterministic and nondeterministic

processes, 52–53
ensemble average, 53–54
exponential process, 52
notation, 51
Poisson process, 52
stationary processes, 56–57
time average, 54
types, 49–50

Random variables
Bernoulli (binary), 23–24
binomial, 25–26

approximating binomial distribution,
26–27

common continuous, 16
common discrete, 21
continuous, 10

cdf for, 12
pdf for, 13

continuous uniform (flat), 16–17
correlation between two, 23–24
discrete, 10, 21

cdf for, 12
pdf for, see Probability, mass function
uniform, 21–22

discrete uniform, 21–22
examples and numerical values, 10–11
exponential, 19
Gaussian, 18

geometric, 24–25
mean (m) of, 15
Pareto, 19–21
Poisson, 28–30

distribution from binomial distribution,
29–30

probability, 10–11
systems with many, 30

systems with many, 30
transforming, 35

continuous case, 35–38
discrete case, 38

variance, 34
Realistic bursty source, 391, 411
Reducible Markov chains, 151–152, 152

closed and transient states, 152–153
composite, 155–157
composite, at steady-state, 164–167
example, 151
identifying, 167–170

determining closed and transient states,
170–172

reducible composite matrices, 172–175
at steady-state, 161–164
transient analysis, 157–161
transition matrix of, 153–155
two sets of closed state, 153

Relative-frequency approach, 8
RESIDUE (MATLAB command), 133, 135
Round robin scheduler (RR), 439–440

queuing analysis for RR, 441–444
serving four sessions, 440

Router, 486
Rref (MATLAB function), 625

S
Sample space, 1
Scalars, 613

arithmetic operations on, 639
basic operations for, 639

Scheduler design issues, 434
degree of aggregation, 435
packet drop policy, 436
priority, 435
work-conserving versus nonwork-

conserving, 435–436
Scheduling algorithms versus media access

control (MAC) techniques, 434
Selective-repeat (SR ARQ) protocol, 316

modeling, 316–319
performance, 320–321

Set theory, and probability, 2–4
Shared buffer switch, 496–497, 569–572

assumptions for analysis of, 569
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performance, 571–572
performance bounds on, 572–574

Shuffle function, 517
Simple traffic models (point processes), 383
S(n) using z-transform, finding, 607–611
Software, 478

networking components, examples, 478
Space division switching, 510
SR ARQ protocol, see Selective-repeat (SR

ARQ) protocol
Standard deviation �, 15
State of occupancy

packet buffer, 283–284, 290
token buffer, 283, 290

State transition diagram
for ALOHA channel, 331
for 802.11 channel, 355
for CSMA/CA, 347
for discrete-time M/M/1 queue, 228
of sending station using GBN ARQ error

control protocol, 310
sending station using SR ARQ error control

protocol, 318
State transition matrix

constructing, P, Markov chains, 81–82
State vector, see Distribution vector
Static priority (SP) scheduler, 439
Stationary random processes, 56–57

ergodic, 57
properties, 56

Steady state
finding distribution vector s, 124–125
significance of s, 123–124

Stochastic processes, 49
Stop-and-wait ARQ (SW ARQ) protocol,

303–304
modeling stop-and-wait ARQ, 305–306
SW ARQ performance, 306–308

Switches, 478, 579–580
basic performance measures, 491–492
classifications, 492
comparision, 574–576
components, 486–487, 487

control section, 488–489
datapath, 489
lookup table design, 489–490
Network Processing Unit (NPU),

487–488
switch fabric, 489

designing approaches, 579–580
functions, 490
input queuing, 493, 552–555

arrival and departure probabilities for
one queue of, 553

assumptions for analysis of, 552
congestion in, 555
efficiency of, 554
performance bounds on, 555–558
potential causes for packet loss, 494

modeling VRQ switch, 585–587
analysis of input buffer, 587–589
analysis of output queue, 589–591
performance bounds on VRQ switch,

591–593
multiple input/output queuing, 499–500
multiple input queuing, 497–498
multiple output queuing, 498–499
output queuing, 494–495, 558–559

assumptions for analysis of, 558
modeling input buffer, 559–561
modeling output queue, 561–562
output queue performance, 563–565,

566–569
potential causes for packet loss, 496
transition matrix, 562–563

Promina 4000 switch, 580–581
backplane bus operation, 581
features, 582
Input Port Operation, 581
output port operation, 581
versus VRQ switch, 584–585

scheduler location in, 432–434
shared buffer, 496–497, 569–572

assumptions for analysis of, 569
performance, 571–572
performance bounds on, 572–574

switch functions, 490
congestion control, 491
routing, 490
scheduling, 491
traffic management, 490–491

switch performance measures, 491–492
virtual routing/virtual queuing (VRQ),

500–502
VRQ switch, 582–583

backplane bus operation, 583
features, 584
input port operation, 583
output port operation, 583

Switches and routers, 477–479
circuit and packet switching, 481

circuit switching, 482–483
packet switching, 483–484

components, 486–487
control section, 488–489
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Switches and routers (cont.)
datapath section, 489
lookup table design, 489–490
Network Processing Unit (NPU),

487–488
switch fabric, 489

input queuing switch, 492–494
media access techniques, 479–480

code division multiple access
(CDMA), 481

frequency division multiple access
(FDMA), 481

time division multiple access
(TDMA), 480

multiple input/output queuing switch,
499–500

multiple input queuing switch, 497–498
multiple output queuing switch, 498–499
networking, 479
output queuing switch, 494–496
packet switching hardware, 484

bridge, 485
end-node, 484
gateway, 486
hub, 485
router, 486
switch, 485–486

shared buffer switch, 496–497
switch classifications, 492
switch functions, 490

congestion control, 491
routing, 490
scheduling, 491
traffic management, 490–491

switch performance measures,
491–492

VRQ switch, 500–502
Switching hub, 485
Switch modeling, 551

comparing three switches, 574–576
input queuing switch, 552–555

congestion in input queuing switch, 555
performance bounds on input queuing

switch, 555–558
modeling other switch types, 576
output queuing switch, 558–559

modeling input buffer, 559–561
modeling output queue, 561–566
performance bounds on, 566–569

shared buffer switch, 569–572
performance bounds, 572–574

Synchronization and clock speed, network
hardware, 508

T
Tail drop strategy, 466
Telecommunication traffic, models, 383
Three-state MMPP source model, 387
Time division multiple access

(TDMA), 509
interconnection networks, 509

random assignment, 510
static-assignment, 509–510

media access techniques, 480
random assignment, 510
static-assignment, 509–510

Time division switching, 480
random assignment, 510
static assignment, 510

Toeplitz matrix, 60
Token bucket algorithm, 280–281

control of data rate by, 281
modeling, 282
multiple arrivals/single departures model

(Mm/M/1/B), 288–291
single arrival/single departures model

(M/M/1/B), 282–285
throughput of, 286
token bucket performance (M/M/1/B

case), 285–288
token bucket performance (multiple

arrival/departure case), 291–295
Token buffer

Markov chain transition diagram, 284
state of occupancy, 283, 290

Traffic conservation, 227
Traffic intensity, 230
Traffic management protocols, 491

examples, 491
Traffic policing, see Traffic shaping
Traffic shaping, 269
Transition matrix

diagonalization
strongly periodic Markov chain, 188

Markov chains, 69–75
observations on asymptotic value, 216
periodic Markov chains, 185–187

determinant, 187–188
diagonalization, 188–191
eigenvalues, 191–195
elements, 195–196

unitary (orthogonal), 189
Trees, database design, 653

binary trees, 653–654
B-trees, 655–656
multiway trees, 654–655
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U
Union (set), 2

V
Vectors, 613–614

arithmetic operations with, 614
column, 613–614
linear independence of, 615

Vectors and matrices, 613
arithmetic operations with vectors, 614
diagonalizing matrix, 619
eigenvalues and eigenvectors, 618
inverse of matrix, 616–617
iterative techniques, 629

Gauss–Seidel iterations, 630–631
Jacobi iterations, 630
successive overrelaxation

iterations, 631
linear equations, 620–621

Gauss elimination, 621–623
Gauss–Jordan elimination, 623–625
Givens rotations, 627–629
row echelon form and reduced row

echelon form, 625–627
techniques for solving, 627

linear independence of vectors, 615
matrices, 615
matrix addition, 616
matrix multiplication, 616
null space of matrix, 617
rank of matrix, 618
scalars, 613
similarity transformation, 631–632
special matrices

circulant matrix, 632–633
diagonal matrix, 633
echelon matrix, 633–634
identity matrix, 634
nonnegative matrix, 634
orthogonal matrix, 634–635
plane rotation (givens) matrix, 635

stochastic (Markov) matrix, 635
substochastic matrix, 635–636
tridiagonal matrix, 636
upper Hessenberg matrix, 636

triangularizing matrix, 619–620
vectors, 613–614

Virtual circuit switching, 483
advantages over circuit and datagram,

483–484
Virtual clock (VC) algorithm, 451
Virtual output queuing (VOQ) switch, 433, 497
Virtual queuing, 583
Virtual routing/virtual queuing (VRQ) switch,

see VRQ switch
Virtual scheduling (VS) algorithm, 295–296

modeling, 296–297
protocol performance, 298–299

Von Neumann and Random numbers, 39
VRQ switch, 582–583

backplane bus operation, 583
features, 584
high-performance switch, 582

simple implementation of, 586
input port operation, 583
modeling, 585–587

analysis of input buffer, 587–589
analysis of output queue, 589–591
assumptions for analysis, 586–587
performance bounds on, 591–593

output port operation, 583
versus Promina 4000, 584–585

VS algorithm, see Virtual scheduling (VS)
algorithm

W
Wavelength division multiplexing

(WDM), 434
Weighted round robin scheduler (WRR),

444–445
queuing analysis for WRR, 445–446
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